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Truth is verified only by creation or invention.
— Gianbattista Vico

Artificial intelligence (AI), machine learning, and robotics have become  house hold terms 
following recent significant advances in AI for vari ous applications in health care, in 
banking, and on the web and in the testing of robots in nuclear- decommissioning sites, as 
social companions for  children and older  people, and, very recently, as potential technolo-
gies to manage infection risks in the COVID-19 era. Notwithstanding this significant 
pro gress and momentum and the overpromising, in some cases, of what robots endowed 
with AI algorithms can actually do, the challenge of building machines with humanlike 
behavioral, cognitive, and social capabilities is a daring enterprise.

What cognitive robotics offers is a novel and insightful way to address the bold chal-
lenges of building AI- powered intelligent robots by taking inspiration from the way natu ral 
cognitive systems (i.e.,  humans, animals, biological systems) develop intelligence by exploit-
ing the full power of the interactions between their bodies and their brains, the physical and 
social environments in which they live, and their phyloge ne tic, developmental, and learning 
dynamics. This is consistent with Vico’s philosophical approach that “truth is verified only 
by creation or invention.” That is, by creating or inventing something new, such as designing 
a computational cognitive architecture to control a cognitive agent, or developing a machine- 
learning model of intrinsic motivation and consciousness capabilities in robots, or  running 
experiments to test a robot’s capabilities to sense, plan, and act in the world, we can verify 
the validity of a scientific theory, hypothesis, or model.

The term and field of cognitive robotics have their origins in the 1990s, and it is some-
what surprising that over the last thirty years of research in this field, no comprehensive 
publication has covered the breadth and depth of cognitively inspired intelligent robotic 
systems. This is exactly the aim of this book: to provide the first comprehensive, state- of- 
the- art coverage of cognitive robotics research and of its definition, approaches, methods, 
and applications. We  will set the scene in part I (“Definition and Approaches”) by provid-
ing a systematic definition of the term cognitive robotics and an overview of its historical 
developments. This part  will also include a detailed discussion of the five main, seminal 
approaches to cognitive robotics: developmental, neuro- , evolutionary, swarm, and soft 
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x Preface

robotics. Part II (“Methods and Concepts”) further expands the primary methodologies 
and concepts employed in this field.  These range from the analy sis of the most commonly 
used cognitive robotics platforms and robot simulators to the case of biomimetic skin as 
an example of a hardware- based approach to cognitive robots. Two further methodological 
chapters examine the use of machine- learning methods and of cognitive architectures. 
Additionally, we look at theoretical considerations in cognitive robots, such as embodi-
ment and the ethical implications of robotics and AI. The final part, III (“Behavioral and 
Cognitive Capabilities”), comprises a set of chapters covering the broad spectrum of robot-
ics models, experiments, and applications with regard to vari ous behavioral and cognitive 
capabilities. This ranges from intrinsic motivation and perception to social cognition and 
language and up to robot consciousness issues. Each of  these chapters  will also explic itly 
discuss the psy chol ogy and neuroscience findings and princi ples that have inspired the cogni-
tive robots’ models and experiments.

The target readership of this volume includes master’s and PhD students who want to learn 
about the concepts and methods in the field as well as researchers interested in specific cogni-
tive robotics models and experiments. The book is written for an interdisciplinary audience, 
balancing technical details and examples for the computational reader as well as theoretical 
issues and high- level descriptions of robot experiments for the empirical sciences reader.

We hope the reader  will enjoy learning about the beneficial connection between psy-
chol ogy and neuroscience findings on cognitive development and learning in  humans and 
animals and the design of intelligent robots.

Angelo Cangelosi and Minoru Asada
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1.1 Context and Definition

The wider field of robotics concerns the building of hardware mechatronics platforms with 
sensors and actuators to perform actions in the physical world and the designing of soft-
ware solutions to link sensing and actuation in a purposeful— that is, intelligent— and 
adaptive way to achieve the task goal, with a variable degree of autonomy. This is captured, 
for example, in Matarić’s (2007, 2) definition of a robot as “an autonomous system which 
exists in the physical world, can sense its environment, and can act on it to achieve some 
goals.”

If we focus on the software side of robotics, the tools and approaches to building goal- 
oriented intelligent and adaptive capabilities in robots greatly overlap with the approaches 
and methods of artificial intelligence (AI).  These range from good old- fashioned AI (GOFAI) 
knowledge- based reasoning and planning systems to the latest machine- learning algorithms 
of deep neural networks and reinforcement learning. Such a field combining robotics and 
AI can be referred to as “intelligent robotics” or, as recently proposed by Murphy (2019), 
“AI robotics.” Murphy (2019, 7) defines an intelligent robot as “a physically situated intel-
ligent agent.” This designation is grounded in the concept of a robot being physically situated 
in the real world with an embodied physical structure suitable to perform a set task and the 
concept of an intelligent agent as a system that perceives its environment and takes actions 
to maximize its chances of success at adapting to the world. Such a definition and concepts 
of an intelligent robot practically coincide with Matarić’s general definition of a robot. In 
fact, the difference between (software) robotics and intelligent robotics is a  really fuzzy 
distinction, as no researcher is  really claiming to want to build “dumb” robots. Even the goal 
of modeling “Dumb Animals and Stupid Robots,” as Barbara Webb (1993) framed her proj-
ect on the robot cricket, requires the use of nontrivial computer science and AI methods.

What is cognitive robotics then? Is it the same as intelligent robotics (AI robotics)?
Dif fer ent definitions of cognitive robotics (CR hereafter) have been offered in the lit-

er a ture. In 1997 Stein proposed the first definition of CR when presenting the architectural 
princi ples for CR. Stein (1997, 471) defines CR as “the effort to build a physically embod-
ied intelligent system— draws much of its approach from the cognitive sciences and natu ral 

1 What Is Cognitive Robotics?

Angelo Cangelosi and Minoru Asada
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4 A. Cangelosi and M. Asada

examples of embodied intelligent systems.” Kawamura and Browne (2009, 1) define CR 
as the “design and use of robots with humanlike intelligence in perception, motor control 
and high- level cognition,” stressing the need for interdisciplinary contributions from the 
vari ous fields of robotics, AI, cognitive science, neuroscience, biology, philosophy, psy-
chol ogy, and cybernetics. Metta and Cangelosi (2012, 613) have proposed that CR is “the 
use of bio- inspired methods for the design of sensorimotor, cognitive, and social capabili-
ties in autonomous robots.” All  these definitions emphasize the role of an interdisciplinary 
approach to robot design and a focus on humanlike and bioinspired functions ranging from 
sensorimotor to higher- order cognitive functions, up to social skills. In par tic u lar, a funda-
mental influence in CR comes from the cognitive sciences, especially the disciplines interested 
in  human cognition, such as psy chol ogy and neuroscience. This humanlike focus, however, 
does not exclude complementary insights from animal cognition and neuroscience in the 
design of bioinspired cognitive robots, such as tortoises and crickets (cf. Walter’s tortoises in 
sections 1.2 and 1.3.1).

Other researchers have characterized CR primarily as the distinctive focus on integrating 
higher- order functions, such as reasoning, to complement the standard intelligent robotics 
focus on sensing and action. De Giacomo (1998, 1), in the organ ization of the first meeting 
explic itly dedicated to CR (the 1998 Association for the Advancement of Artificial Intelli-
gence [AAAI] Winter Symposium on Cognitive Robotics— see section 1.3.2), defined CR 
as the field “concerned with integrating reasoning, perception and action within a uniform 
theoretical and implementation framework.” Levesque and colleagues also focused on 
higher- order functions when defining CR as the “study of the knowledge repre sen ta tion and 
reasoning prob lems faced by an autonomous robot (or an agent) in a dynamic and incom-
pletely known world” (Levesque and Lakemeyer 2008, 869; see also Levesque and Reiter 
1998). As we  will see in section 1.2, the emphasis on reasoning skills in the definition of 
CR is related to some of the influence of early AI knowledge repre sen ta tions experts in CR.

To summarize and integrate the vari ous historical contributions to the characterization 
of CR, we would like to propose a comprehensive definition of CR that combines the 
above emphases on bioinspired— that is, humanlike and animallike— be hav ior and intel-
ligence and on the distinctive interdisciplinary approach with strong contributions from 
the cognitive and neural sciences and from biology:

Cognitive robotics is the field that combines insights and methods from AI, as well as 
cognitive and biological sciences, to robotics.

Most of the current CR models typically focus on the design of one, or few, bioinspired 
sensorimotor and cognitive skills, as is the case in the CR models presented in part III of 
this volume. However, some works in CR also underscore the modeling of a system- level 
integration of a range of cognitive functions— for example, linking higher- level functions 
in reasoning and social skills with sensorimotor knowledge.

Now that we have defined CR, is this field the same as intelligent robotics (AI robot-
ics)? In science it would be impossible, and counterproductive, to try to create an artificial, 
rigid distinction between dif fer ent (sub)disciplines and approaches. Though one main 
distinction between CR and intelligent robotics lies in CR’s strong emphasis on designing 
bioinspired and cognitively inspired cognitive robots, in real ity a continuum exists between 
the two fields. On one hand,  there are CR models strictly constrained to known biological 
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What Is Cognitive Robotics? 5

mechanisms that are built to simulate and replicate the cognitive development phenomena 
observed in natu ral organisms. This is the case, for example, with Mori and Kuniyoshi’s 
(2010) realistic rendering of the  human fetus in their model of prenatal motor skill develop-
ment (chapter 3) and of Morse et al.’s (2015) replication of child psy chol ogy experiments 
on the embodiment cues in early language learning (chapter 20). On the other hand, research-
ers have realized a variety of cognitive skills in intelligent robots via a combination of AI 
techniques without any justification for their biological inspiration or function.

The framing of CR as an integrative, systemic approach to modeling humanlike cognition 
in robots also explains its close link to the cognate modeling area of cognitive systems 
and its associated definition of cognition. The field of cognitive systems (a.k.a. artificial 
cognitive systems) refers to the creation of machines and software systems with humanlike 
cognition— that is, the “capacity for self- reliance, for being able to figure  things out, for 
in de pen dent adaptive anticipatory action” (Vernon 2014, 2). Cognitive systems also tend 
to focus on higher- level cognition, on structured repre sen ta tions and systems perspectives, 
on influence from  human cognition, and on exploratory research (Langley 2012). Cogni-
tive systems as a discipline typically refers to the wider area of cognitive modeling with 
simulated and virtual agents, as well as physical robots, and to a variety of software- based 
agents and hardware- based smart objects (Morris et al. 2005; Vernon 2014). In its broadest 
sense, this has been extended to the design of intelligent human- computer interaction systems 
(a.k.a. cognitive systems engineering; Woods and Roth 1988) and to general- purpose AI 
systems such as the IBM Watson application (High 2012). With re spect to CR,  there is a 
good index of overlap when we consider the subareas of cognitive systems using physical 
robots, including cognitive systems of simulated robotics agents with a high degree of fidelity 
to the replication of body- environment physics dynamics.

Vernon (2014) considers four aspects when modeling artificial cognitive systems: 1) how 
much inspiration we take from natu ral systems, 2) how faithful we try to be in copying 
them, 3) how impor tant we think the system’s physical structure is, and 4) how we separate 
the identification of cognitive capability from the way we eventually decide to implement 
it.  These aspects provide a method to position individual cognitive systems (and CR) 
models in a two- dimensional space where one axis defines the spectrum ranging from 
purely computational approaches to models strongly inspired by biological models, and 
the other axis defines the level of abstraction of the target biological model.

An impor tant contribution from the field of cognitive systems is that of providing a 
more comprehensive operational definition of cognition. Following Vernon’s (2014, 8) 
detailed characterization of cognition in artificial cognitive systems, cognition can be 
defined as “the pro cess by which an autonomous system perceives its environment, learns 
from experience, anticipates the outcome of events, acts to pursue goals, and adapts to 
changing circumstances.” Thus, cognition can be seen as a systemwide pro cess that inte-
grates all of the capabilities of the agent within the key attributes of autonomy, perception, 
learning, anticipation, action, and adaptation. In par tic u lar, cognition can be represented 
as a cycle of anticipation, assimilation, and adaptation, embedded within a continuous 
pro cess of action and perception and dynamically adapting via learning (figure 1.1).

This definition of cognition, and the identification of its six key attributes, can explain 
the variety of skills and capabilities the agent should possess: goal- oriented be hav ior, 
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6 A. Cangelosi and M. Asada

autonomy, interaction via cooperation and communication, intention reading, interpreta-
tion of expected and unexpected events, prediction of the outcome of its own and of  others’ 
actions, action se lection and evaluation, adaptation to changing circumstances, learning 
from experience, and monitoring and correcting its own per for mance (Vernon 2014).

This view of cognition is in line with the systemic and wider coverage of lower- level 
(perception and action) to higher- level (anticipation) capabilities of robots in CR. However, 
it places an emphasis on modeling the dynamic pro cesses of cognition (assimilation, adapta-
tion, learning). This is consistent with dynamical systems approaches in CR, such as in 
developmental robotics (cf. chapter 3).

The combined focus on the systemic and integrated approach to cognition, on the mod-
eling of bioinspired humanlike and animallike cognitive capabilities, and on the interdis-
ciplinarity approaches to CR, as reflected in its definition above,  will characterize the 
review of the state of the art in the chapters that follow. Of course, not all individual CR 
models aim to model the full breadth of behavioral and sociocognitive skills in a single 
robot. Typically, a specific CR model  will implement a subset of such humanlike (and/or 
animallike) capabilities, depending on the specific task and skills the robot has to perform 
or the cognitive mechanisms the robot’s model aims to operationalize and evaluate. This 
 will be the case for most of the CR models and experiments presented in part III, with 
each chapter focusing primarily on a specific capability, from sensing, navigation, and 
manipulation to social and language skills to higher- level reasoning and consciousness.

Next we  will look at the main epistemological and theoretical approaches to modeling 
be hav ior and intelligence that influenced and bootstrapped the emergence of the field of CR 
in the late 1990s. We  will then summarize the origins and historical developments of CR.

1.2 Inspiration Princi ples and Theories

The early approaches to CR  were influenced by both theoretical and computational stances 
in the modeling of be hav ior and cognition, in par tic u lar by the embodied cognition stand-
point (e.g., Clark, Pfeifer) and by computational approaches to AI modeling of behavior- 

Anticipate

LearnAdapt

Action Perception

Autonomy

Figure 1.1
The six key attributes of cognition in artificial cognitive systems. Source: Adapted from Vernon 2014.
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What Is Cognitive Robotics? 7

based robotics and of higher- order reasoning function (e.g., Brooks). A further inspiration, 
particularly impor tant from a historical point of view, was the direct influence of pioneering 
works on synthetic methods for modeling  simple, animallike organisms (Walter, Braitenberg) 
and early computational neuroscience models for robotics (Edelman, Krichmar). Below we 
briefly discuss the specific theoretical and modeling works that motivated robotics research-
ers to take on the cognitive and bioinspired approach to intelligent robots and CR.

1.2.1 Embodied Cognition Theories

Embodied cognition is the approach to studying natu ral intelligent systems that under-
scores the roles of sensorimotor knowledge and repre sen ta tion and the interaction between 
our own body and the environment in producing intelligent be hav ior. In par tic u lar, the 
strong embodied cognition thesis states that the body plays a significant causal role, as a 
physically constitutive role, in the agent’s cognitive pro cessing (Wilson and Foglia 2017). 
A related approach is that of grounded cognition (Barsalou 2008; Pezzulo et al. 2013), 
which emphasizes the sensorimotor (“modal”) nature of the repre sen ta tions and internal 
simulation mechanisms (Vernon 2014). See chapter 11 for a detailed discussion on embodi-
ment and embodied cognition.

Embodied cognition has affected vari ous disciplines, including psy chol ogy (Pecher and 
Zwaan 2005; Barsalou 2008); cognitive sciences (Clark 1999); neuroscience (Pulvermüller 
and Fadiga 2010); and vari ous computational modeling fields, such as language grounding 
(Cangelosi 2010), sensorimotor schema learning (Lara et al. 2018), and computational embod-
ied neuroscience (Caligiore et al. 2010). Chapter 11  will also provide a detailed discussion 
of this issue and its specific contribution to CR.

In the very early stages of CR,  there  were two main theoretical stances on embodied 
cognition that have since been explic itly acknowledged to have influenced the very first 
cognitive robots.  These are Andy Clark’s (1999) theory on embodied cognitive science 
and Rolf Pfeifer’s embodied intelligence and morphological computation stance.

Clark and Grush (1999) have specifically proposed a theoretical stance for a path  toward 
CR. This is based on the “Cartesian agent” metaphor— that is, the combination of directly 
embodied, coupled, real- world action- taking with a decoupled, off- line reasoning capabil-
ity. Thus, the cognitive phenomena of an agent involve off- line reasoning, which is vicari-
ous environmental exploration and an internal repre sen ta tion.

This focus on the capability of having off- line reasoning functions grounded in embod-
ied experience has had a strong impact on CR (Kawamura and Browne 2009) and has also 
contributed to some of the early CR emphasis on modeling knowledge repre sen ta tion and 
reasoning in robots (Levesque and Reiter 1998; Aiello et al. 2001).

This epistemological focus on higher- order cognition complements a parallel emphasis 
on the ability to develop cognition through sensorimotor coordination. This is the main 
stance proposed by Pfeifer and colleagues (Pfeifer and Scheier 2001; Pfeifer and Bongard 
2006). Such an embodied cognition view is exemplified by the concept of “morphological 
computation”— that is, that certain sensorimotor and cognitive control pro cesses are per-
formed by the body and its interaction with the environment, rather than being performed 
by the brain. Pfeifer and Bongard (2006) use the example that the muscles and tendons 
of the  human leg are elastic, and this directly influences locomotion control. When the leg 
impacts the ground while  running, the knee performs small adaptive movements without 
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8 A. Cangelosi and M. Asada

neural control. Thus, the control is supplied by the muscle- tendon system itself, which is 
part of the morphology of the agent. This morphological computation princi ple can also 
be exploited in robotics. A direct example of this is the “passive walker” (Collins et al. 
2005; McGeer 1990), a  simple robot that exploits gravity with a sloped track and the 
structure of two legs with flexible knees to move in a downward direction. This is pos si ble 
without requiring any electric motors or electrical energy.

This attention to sensorimotor embodiment for cognition has greatly affected the devel-
opment of CR, as many of the early cognitive robots have exploited the morphological 
computation princi ples (chapter 11). This is the case, for example, with soft robots exploit-
ing the dynamics of the soft material of sensors and actuators (chapters 6 and 8), with 
evolutionary and swarm robotics for the automatic design of coupled body- brain- environment 
systems (chapters 4 and 5), and with developmental robotics and its application of the 
embodied cognition princi ples to motor development models (chapter 3).

1.2.2 AI and Knowledge- Based Systems

The classical (GOFAI) approach to AI, with its focus and breadth of methods for knowledge- 
based systems, symbolic repre sen ta tion, and reasoning, was also one of the key influences 
on CR. We have already mentioned early work by Levesque, Reiter, De Giacomo, and 
colleagues in the bootstrap of the CR discipline and community. In the 1998 AAAI Winter 
Symposium on Cognitive Robotics, many of the participants contributed to a “Cognitive 
Robotics Manifesto” with the explicit aim of modeling high- level robotic control in which 
robotic agents require reasoning using explicit knowledge repre sen ta tion systems that lead 
to a decision on how to act (Levesque and Reiter 1998; Aiello et al. 2001).

This approach follows the paradigm of perception- reasoning- action (or sense- plan- act), 
with a strong emphasis on the AI methods and models for reasoning/planning to connect 
robot sensing and action. It often involves the methods of situation calculus, description 
logic, and geometric reasoning typically applied to planning for action and navigation for 
the RoboCup challenge and mobile robot platforms (e.g., Woodbury and Oppenheim 1988; 
Aiello et al. 2001; but see Asada and von Stryk [2020] for a recent discussion of the sci-
entific and technological challenges offered by the RoboCup challenge).

1.2.3 Behavior- Based Robotics

A dif fer ent path to CR emerged from the alternative approach to AI based on the behavior- 
based robotics and the subsumption architecture proposed by Brooks (1991, 1996; Arkin 
1998). In strong opposition to AI’s symbolic and repre sen ta tional methods, Brooks claims 
that intelligent be hav iors can be achieved by reactive architectures, with a direct sense- act 
cycle and without the need for intermediate (symbolic) repre sen ta tions. This is exem-
plified by Brooks’s (1991) “Intelligence without Repre sen ta tion” nouvelle AI manifesto 
paper.

 After the initial focus on mobile robot models of animal be hav ior (leading to the iRobot 
Roomba commercial vacuuming robot), the behavior- based robotics approach led to mod-
eling be hav ior and cognition in humanoid robots (Brooks 1996; Matarić 1998). This 
included proj ects on the COG and the KISMET platforms (Brooks and Stein 1994; Brooks 
et al. 1998). This work explic itly led to an interdisciplinary approach using behavior- based 
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robotics as a tool for the synthesis of artificial be hav ior and the analy sis of natu ral be hav-
ior, taking direct inspiration from cognitive science, neuroscience, and biology with methods 
from artificial life, evolutionary computation, and multiagent systems (Breazeal 2004). In 
the CR movement, this is closely linked to the development of evolutionary and swarm 
robotics (chapters 4 and 5, respectively).

1.2.4 Synthetic Methodologies

The “synthetic methodology” and “synthetic neural modeling” approaches to behavioral 
and cognitive modeling have also influenced CR (Krichmar 2012).  These are methodologies 
based on the idea of recreating, in a simulated virtual environment or via physical platforms, 
embodied agents with a brain- inspired control system. They offer a balanced approach that 
emphasizes the intertwined interaction of the brain, the body, and the environment. The 
main synthetic methodologies directly influencing CR have come from Grey Walter’s “tor-
toises,” Valentino Braitenberg’s “vehicles,” and Chris Langton’s “artificial life” systems.

Grey Walter was a neuroscientist and pioneer in synthetic approaches to behavioral and 
cognitive modeling. In the late 1940s and early 1950s, he developed a set of electromechani-
cal robots, called tortoises, capable of performing  simple tasks such as phototaxis, following 
a light, and homing be hav ior,  going to a battery- charging station. Walter’s first robot was 
called Machina Speculatrix, from the Latin verb speculari, which means “to explore,” as the 
tortoise actively explored the environment, as an animal would. Walter nicknamed two of 
the prototype robots ELSIE (from Electromechanical robot, Light Sensitive with Internal 
and External stability) and ELMER (ELectroMEchanical Robot; Walter 1950, 1953). He 
also proposed an electrical learning cir cuit named CORA (COnditioned Reflex Analogue) 
to model Pavlovian conditioning (Walter 1951).  These systems implemented  simple neural 
cir cuits. The focus on synthetic and neuroinspired modeling has galvanized many researchers 
in CR. For example, the Darwin series of robots developed by Edelman and colleagues 
(1992; Krichmar and Edelman 2003) follow on this synthetic methodology for mobile robots 
but with a stronger emphasis on using computational neuroscience models. This has led to 
the development of the CR neurorobotics approach (see chapter 2).

A subsequent synthetic modeling approach was proposed by the psychologist Braiten-
berg. In his well- known volume Vehicles: Experiments in Synthetic Psy chol ogy, Braiten-
berg (1986) describes a series of theoretical (fictional) models of  simple mobile agents (i.e., 
vehicles). For example, Vehicle 1 is the simplest agent, with one sensor and one motor, and 
is capable of getting around by  going straight with variable speeds depending on temperature 
sensors. Braitenberg describes a set of agents of increasing complexity in their sensorimotor 
system and the connectivity pattern between their sensors and motors and speculates on their 
ability to show be hav iors that he describes as “fear and aggression” (Vehicle 2) and “love” 
(Vehicle 3).

 These  simple but elegant models of control in mobile agents have significantly influenced 
the field of CR, and of robotics and AI in general, as they provide an analy sis of dif fer ent 
control systems and their role in understanding be hav ior and cognition. For example, Hogg 
et al. (1991) developed a set of Braitenberg “creatures” as LEGO robots implementing and 
extending the vari ous vehicles, and Hallam et al. (2002) used evolutionary computation to 
model the evolution of the spiking networks of Braitenberg’s controllers.
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The third CR influential synthetic approach is that of artificial life (ALife; Langton 
1997). This uses a prototypical synthetic methodology, as it aims to “synthetize” lifelike 
be hav ior and agents, in simulation and hardware. ALife models and applications go well 
beyond be hav ior and cognitive modeling; for example, they can be used to study artificial 
plants and artificial chemistry. In the early stage of ALife, significant emphasis was placed 
on agent and robot modeling, such as the CR evolutionary and swarm robotics approaches 
derived from building ALife agents (Steels and Brooks 1995). More recently, ALife has 
focused on synthetic biology and artificial chemistry, as well as on the origins of life.

1.3 History of Cognitive Robotics

Figure 1.2 gives a syncretic overview of the milestones in the history of CR, starting from 
the early attempts to model humanlike (and animallike) robots, which we call the “prehis-
tory” of CR (from the early 1950s to the 1980s), to the period of the official start and 
establishment of the roots of CR (in the 1990s), to the con temporary evolution, diversifica-
tion, and growth of vari ous CR approaches (from 2000 onward).  These historical develop-
ments  will be discussed in detail.

1.3.1 Prehistory (1950–1980)

The tortoise robot models developed by Grey Walter (1950, 1953) in the early 1950s at the 
Burden Neurological Institute in Bristol, UK, can be considered the very first step in the 
(pre)history and origins of CR. Their novel synthetic methodology, the behavior- modeling 
focus, and the neuroinspired learning architecture pioneered by Walter have left a significant 
legacy not only in the field of CR but in the fields of robotics and AI in general (Holland 
2003a, 2003b).

The 1960s saw the creation of the first intelligent robot, Shakey (Rosen et al. 1969; Nilsson 
1984; see figure 1.2). It was developed between 1966 and 1972 at the Artificial Intelligence 
Center of the Stanford Research Institute (now SRI International). Shakey was a mobile 
robot capable of planning, route finding, and rearranging  simple objects. The control archi-
tecture integrated sensing and action with the robot’s “model of the world.” This was imple-
mented as a collection of predicate calculus statements in an indexed data structure, with 
five classes of entities (doors, wall  faces, rooms, objects, robots) and a set of primitives to 
describe  these entities in the model (e.g., distance between entities). For problem- solving, it 
used the QA3.5 theorem- proving system (Nilsson 1984). Shakey, and subsequent intelligent 
robots such as Flakey with its ability to follow and communicate with  people,  were the first 
platforms to experiment with linking AI with robotics, thus also influencing the AI robotics 
origins of CR.

The de cade of the 1980s saw the creation of some of the seminal works that  later influ-
enced the development of CR.  These include Braitenberg’s vehicles theoretical analy sis 
and Brooks’s behavior- based robotics developments, as discussed in 1.2 (see figure 1.2). In 
the 1980s  there is one work that, to the best of our knowledge, contains the first mention of 
the term “cognitive robotics.” This is the book Princi ples and Ele ments of Thought Construc-
tion, Artificial Intelligence and Cognitive Robotics by Charles Bowling (1987). It proposes 
a cognitive architecture for a simplified AI application based on the object calculus lattice 
(OCL) method.
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1.3.2 Establishing Roots (1990s)

The first established gathering of a community explic itly using the title “Cognitive Robot-
ics” and working at the interface of AI and robotics was the 1998 AAAI Fall Symposium 
on Cognitive Robotics (De Giacomo 1998). Giuseppe De Giacomo chaired it, with a strong 
presence from Ray Reiter’s team and their innovative work combining logic and reasoning 
capabilities in intelligent robots. In fact, this pioneering event helped roboticists to stress 
the higher- level cognitive functions of reasoning in action and perception robotic systems. 
It led to the “Cognitive Robotics Manifesto” (Levesque and Reiter 1998; Aiello et al. 2001). 
This event also provided the first definition of CR as the field “concerned with integrating 
reasoning, perception and action within a uniform theoretical and implementation frame-
work” (De Giacomo 1998).

Other signs of the first attempts to focus on cognitively inspired robotics came from 
vari ous groups working in AI and robotics, in addition to the work in behavior- based 
robotics and embodied cognition discussed above. In Japan, researchers working on cogni-
tive skills design in humanoid robots started to define some of the princi ples of CR, such 
as exploring cognitive pro cesses in systems with advanced cognitive functions by means 
of a “constructive approach” realized by repeating hypotheses and verification using robots 
(Asada et al. 1999).

1.3.3 Growth, Diversification, and Funding (2000s)

The CR roots established in the late 1990s, feeding from parallel contributions from the 
areas of behavior- based robotics, embodied cognition, and cognitive systems, led to a burst 
of growth in CR in the early to mid-2000s that still continues to this day. This is reflected 
by the flourishing workshops and special issues and seminal volumes in CR as well as 
further expansion of the associated CR approaches of developmental robotics, evolution-
ary robotics, and neurorobotics. For example, in 2002 leading pioneers in CR gathered in 
Bristol, UK, for the International Workshop on Biologically Inspired Robotics, dedicated 
to William Grey Walter (WGW02; Damper 2003; Holland 2003a). Another AAAI Winter 
Symposium on “The Intersection of Cognitive Science and Robotics: From Interfaces to 
Intelligence” was or ga nized in 2004 (Shultz 2004). Other events included the 2006 Cogni-
tive Robotics, Intelligence and Control Workshop (COGRIC) in Reading, UK (Becerra 
et al. 2006), the 2010 Dagstuhl Seminar “Cognitive Robotics” (Lakemeyer et al. 2010), 
and the 2013 international symposium in Osaka on “Past and  Future Directions of Cogni-
tive Developmental Robotics.”

This period also led to the diversification and growth of parallel, crosscutting CR 
approaches, each focusing on a specific learning or behavioral mechanism.  These include 
developmental robotics, neurorobotics, evolutionary robotics, swarm/collective robotics, 
and soft robotics (as per part I of this volume).

The field of cognitive developmental robotics (Lungarella et al. 2003; Asada et al. 2009; 
Cangelosi and Schlesinger 2015) started in the early 2000s with the Workshop on Devel-
opment and Learning (WDL; April 5–7, 2000, East Lansing, IL; cf. Weng et al. 2001) and 
the First International Workshop on “Epige ne tic Robotics: Modeling Cognitive Develop-
ment in Robotic Systems” (EpiRob; September 17–19, 2001, Lund, Sweden; Zlatev and 
Balkenius 2001). The diffusion of baby robot platforms, such as the open systems iCub 
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robot (Metta et al. 2008, 2010) and the CB2 robot (Minato et al. 2007), significantly 
contributed to the growth of developmental robotics research (see figure 1.2 for the iCub 
and CB2 robots). See Cangelosi and Schlesinger (2015) and chapter 3 for a more recent 
and comprehensive review of the work in this field.

The field of neurorobotics is the subarea of CR that centers on the use of computational 
neuroscience and neuromorphic systems to control the robot’s be hav ior and cognitive 
system (Browne et al. 2009; Krichmar 2012; see also chapter 2). This followed the early 
Darwin mobile robot models in the mid-1990s (Edelman et al. 1992) and led to numerous 
applications to mobile and humanoid robots, including the use of a neuromorphic system 
directly implementing hardware with neuron- like cir cuits (Rast et al. 2018) and the more 
recent neurorobotic platform in the  Human Brain Proj ect (Knoll and Gewaltig 2016).

Evolutionary robotics (Nolfi and Floreano 2000) is the CR approach to modeling the 
autonomous design of cognitive functions in robots via the use of evolutionary computa-
tion algorithms (see also chapter 4). This approach actually started in the mid-1990s, with 
subsequent growth in the 2000s along the wider evolutionary computation field and the 
CR/systems- oriented conference series “SAB: Simulation of Adaptive Be hav ior” and “ALIFE 
Artificial Life.” Evolutionary robotics benefited from the design and ease of access to 
small mobile robots in research laboratories, such as the Khepera robot (Mondada et al. 
1999; see figure 1.2).

The field of swarm robotics can be seen as the application of swarm intelligence to robot-
ics (see also chapter 5). This goes back to the early 1990s (e.g., Kube and Zhang 1992), with 
significant growth in the 2000s (e.g., Dorigo and Şahin 2004; Şahin 2004). The initial 
research in this field was mainly characterized by the transferring of biological princi ples, 
such as self- organization, to multirobot systems (Kube and Zhang 1992). Research in swarm 
robotics  today generally focuses on specific methodologies, such as collective decision- 
making, as well as work  toward applications— for example, for applications in sea monitor-
ing, agriculture, and search and rescue.

More recently, the field of soft robotics has emerged as a branch of robotics, including 
CR, where soft and deformable materials are employed to endow robots with the ability 
to achieve more conformable, flexible, adaptable, and robust be hav iors (Laschi et al. 2016; 
see chapter 6). This can also lead to the development of biomimetic (e.g., animal- inspired) 
robots such as octopus robots (Cianchetti et al. 2015; figure 1.2). This emphasizes concepts 
such as functional materials, deformable structures, and adaptive sensor morphology, which 
 will be further discussed in chapter 6. The ability to devise and mimic unique, complex 
body dynamics and interactions with the physical world makes soft robots an exciting new 
field, where the limits of the (rigid) robots of the past  century can be overcome for further 
understanding of bioinspired robotics and embodied cognition.

This period also saw interest and financial investment from vari ous funding agencies 
worldwide in the growing areas of cognitive systems and CR. In 2002 the US Defense 
Advanced Research Proj ects Agency (DARPA) launched an initiative in cognitive systems 
to “develop the next generation of computational systems with radically new capabilities, 
‘systems’ that know what  they’re  doing” (Brachman and Lemnios 2002).

The Eu ro pean Commission identified “Cognitive Systems” as one of the funding priori-
ties for the new Sixth Framework Programme (FP7; 2002–2006), which then took on a 
more robotics- focused initiative with the “Cognitive Systems, Interaction and Robotics” 
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priority in the Seventh Framework Programme (FP7; 2007–2013; Maloney 2007). Exam-
ples of influential CR proj ects from  these framework programs are RobotCub (which led 
to the iCub’s cognitive robot platform development; Metta et al. 2010; see also chapter 7; 
robotcub . org), CoSy for human- robot interaction using context- specific (situation and 
task) knowledge (Christensen et al. 2010), ITALK on developmental robotics for language 
grounding (Cangelosi et al. 2010), and POETICON/POETICON++ on the synthesis (poesis) 
of sensorimotor repre sen ta tions and natu ral language in everyday  human interaction (Pastra 
2008). This initiative also led to the funding of the network action grant EUcognition (www 
. eucognition . org / ).

In 2003 the UK government’s Office of Science and Technology established a Foresight 
Proj ect on “Cognitive Systems,” with subsequent interdisciplinary proj ect funding from 
across the country’s dif fer ent councils. This used the working definition of “Cognitive 
systems— natu ral and artificial— sense, act, think, feel, communicate, learn and evolve” 
(UK Foresight 2003; Morris et al. 2005). In this program, (cognitive) robotics was explic-
itly seen as a major example of one of the pos si ble cognitive systems branches (along with 
computers, wearables, smart  things, and so on).

In Japan, this led to the funding of large, collaborative proj ects in CR such as the Japan 
Science and Technology Agency Exploratory Research for Advanced Technology (JST 
ERATO) Asada Synergistic Intelligence Proj ect and two Japan Society for the Promotion 
of Science (JSPS) Grants- in- Aid on “Constructive Developmental Science.”

1.4 Book Structure

This volume aims to provide a comprehensive, up- to- date overview of the state of the art 
in CR. As such, the chapters  were authored by the leading international experts in the field, 
including many of the pioneers in CR.

In part I, we  will first cover the main CR approaches or subareas— namely, neurorobot-
ics, developmental robotics, evolutionary robotics, swarm robotics, and soft robotics.

Part II focuses on the methods and concepts common to most CR models and applica-
tions. It includes two chapters introducing the robot platforms and simulators and the 
bioinspired robot sensor and actuator technologies, a chapter providing an overview of 
machine- learning methods for CR, and two chapters on cognitive architectures and the 
concept of embodiment. It also contains a chapter on ethics for robotics, which is a fun-
damental concept in CR.

Part III is a series of chapters covering the  whole spectrum of cognitive capabilities. Each 
chapter focuses on one specific behavioral/cognitive ability. Where appropriate, the chapter 
includes an explicit discussion of the bioinspired and cognitively inspired studies and theories 
that incited the subsequent robot models and experiments. This section of the book specifically 
includes chapters on the CR models of intrinsic motivation, visual perception, navigation and 
mapping, manipulation, human- robot interaction (HRI) decision and control, social cognition, 
human- robot interaction, language and communication, reasoning and knowledge repre sen-
ta tion, abstract concepts, and, fi nally, robot and machine consciousness.

This volume can be used to learn about the full breadth of approaches, methods, con-
cepts, and models in CR— for example, for gradu ate students and researchers or as a refer-
ence book for a targeted effort on specific topics and work.
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Each chapter also contains a section titled “Additional Reading and Resources” listing 
seminal papers and books in the specific topics covered by the authors, as well as links 
to internet and code resources. For general CR resources, see the “Introduction to Cogni-
tive Robotics” course (www . cognitiverobotics . net). For pointers to software resources on 
CR, refer to the resources page of the Institute of Electrical and Electronics Engineers 
(IEEE) Technical Committee for Cognitive Robotics (http:// www . ieee - coro . org).
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2.1 Introduction

Neurorobotics is the study of the interaction between neural systems and their physical 
embodiments on robotic platforms. Since the brain is strongly coupled with the body and 
situated within the surrounding environment, neurorobots can be a power ful tool for study-
ing the intricate interactions between neural systems and the outside world. Neurorobotics 
also serves as a way to create autonomous systems that capture the advantages of biology 
for intelligent be hav ior. Compared to the general study of cognitive robotics, neurorobotics 
centers around biological brain functions— for example, the neural circuitry and functional 
anatomy that support basic cognitive pro cesses. This chapter provides our viewpoints on 
this field, highlights some of its milestone events, and talks about its  future potential.

2.2 Foundational Ideas in Neurorobotics

Many believe that neurorobotics got its beginning with Grey Walter’s tortoises, which had 
 simple light sensors and collision detectors attached to a basic analog cir cuit. His first 
robots, Elmer and Elsie,  were programmed with  simple reflexive neural cir cuits that con-
trolled their movements based on the sensors. Despite the simplicity of  these robots, 
complex and in ter est ing be hav iors emerged. For instance, one robot was placed in front 
of a mirror with a light on its nose. The robot started to react to its own presence in what 
could be interpreted as narcissistic be hav ior.

Braitenberg vehicles  were another impor tant example of complex be hav iors emerging 
from  simple circuitry. First introduced in the book titled Vehicles by Valentino Braitenberg 
(1986), a series of  simple robots showed how basic neural cir cuits could create complex 
be hav iors, some of which could even be attached to abstract  human notions, such as 
emotion, with vehicle names like Fear, Aggression, Love, and Exploration. Each of  these 
vehicles contained a light sensor and a motor on the left and right sides. In the vehicle 
displaying fear, the speed of each motor was directly proportional to the amount of light 
sensed by the sensor on the equivalent side. This caused the vehicle to speed away from 
the stimulus source, as if in fear. However, just crossing the wires caused the vehicle to 
speed  toward the stimulus, as if in aggression. This  simple robot provided an impor tant 
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neuroscience lesson on the function of ipsilateral and contralateral connections in the ner vous 
system. By making the motor speeds inversely proportional to the sensors, the vehicle dis-
playing fear could turn into love, slowing down its movement  toward the stimulus. Like-
wise, aggression then turned into exploration,  gently seeking to be away from the stimulus. 
In this way, Braitenberg demonstrated how changing the balance of excitatory and inhibitory 
connections can affect be hav ior. Although the cir cuits themselves  were  simple, it was easy 
to place  human interpretations on the resulting be hav iors, teaching an impor tant lesson that 
complex cognitive functions may actually be composed of very  simple mechanics.

The Keck Machine Psy chol ogy Laboratory at the Neurosciences Institute in La Jolla, 
California, was also a source of foundational contributions in neurorobotics. Director 
Gerald Edelman (1987, 1993), whose work in immunology led to the Nobel Prize, advo-
cated his theory of the ner vous system in a book titled Neural Darwinism: The Theory of 
Neuronal Group Se lection. The theory suggested  there was se lection of neural cir cuits 
during development through synaptic pruning and se lection of groups of neurons during 
adulthood through reentrant connections. Impor tant for neurorobotics was the notion of 
value systems to tie environmental signals to neuronal groups, which led to the se lection 
of be hav iors impor tant for survival. As Edelman would say, “The brain is embodied, and 
the body is embedded in the environment.” Based on this idea, the group developed the 
Darwin series of Brain- Based Devices (Edelman et al. 1992; Reeke, Sporns, and Edelman 
1990). Another phrase that drove this work was “The world is an unlabeled place,” which 
meant that perceptual categories must be selected through experience, rather than supervi-
sion.  These Brain- Based Devices  were robots with large- scale neural networks controlling 
their be hav ior (figure 2.1). However,  these  were not the feedforward- input neural networks 
that  were popu lar then and became the deep neural networks of  today. The Brain- Based 
Device’s neural networks contained anatomical details that resembled biological neural 
networks.  There  were sensory streams, top- down connections, and long- range connections 
between regions that  were bidirectional as well as local lateral excitation and inhibition 
within brain regions. An early Brain- Based Device called Darwin V had an artificial ner-
vous system that could learn preferences and predict the value of objects (Almassy, 
Edelman, and Sporns 1998). Although the robot was lumbering and did not exactly operate 
in real time, it did demonstrate operant conditioning and value- based learning.

One of the major venues in the early days of neurorobotics was the annual Simulation 
of Adaptive Be hav ior (SAB) conference. For example, SAB 2000 introduced a wide variety 
of exemplars, which would now be called neurorobots (Meyer et al. 2000). Arleo and 
Gerstner (2000) presented a model of head direction cells and hippocampal place cells, 
which was embodied on a Khepera robot, to demonstrate spatial navigation in the rodent. 
Arsenio (2000) created a neural cir cuit based on oscillators observed in the brain and showed 
how  these could be used to realize humanoid arm movements and gait patterns. Collins and 
Wyeth (2000) introduced a cerebellar controller, based on Albus’s cerebellar model arithmetic 
computer (CMAC) neural network, to overcome delays when planning trajectories. Gonzalez 
and colleagues (2000) constructed a basal ganglia model to show action se lection in a mobile 
robot. The robot would find cylinders, pick them up, and deposit the cylinders outside the 
wall of the robot arena. At this same meeting, Darwin VII, a Brain- Based Device capable 
of perceptual categorization, was introduced (Krichmar et al. 2000). For more details on 
Darwin VII, see the case study below. This is just a sampling of the work  going on at this time. 
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The theme connecting the wide range of methods, robots, and be hav iors at SAB 2000 was 
that neural network models  were used to study some aspect of neuroscience by demonstrating 
be hav ior in a physical robot. Many of the researchers in  these studies  were pivotal in estab-
lishing the field of neurorobotics as it is known  today.

Around this time period, other groups  were creating robot designs that could be 
included within the field of neurorobotics. Rather than building brain cir cuits, they  were 
investigating how the body and brain interact and how neural networks may develop. For 
example, Tony Prescott and his group at the University of Sheffield studied whisking in 
the rodent and developed a robotic sensorimotor cir cuit with biomimetic whis kers (Pearson 
et al. 2011). Figure 2.2 shows their Whiskerbot, which was completed around 2005. Dario 
Floreano helped establish the field of evolutionary robotics (Nolfi and Floreano 2000). 
Floreano and colleagues used evolutionary algorithms to evolve neural networks that 
supported a range of be hav iors from navigating mazes to developing predator- prey strate-
gies (Floreano and Keller 2010). For more details, the reader should refer to chapter 4. 
Rolf Pfeifer and Josh Bongard (2006) had the insight that the “body shapes the way we 
think.” They suggested that biological organisms perform morphological computation— 
that is, the body performs certain pro cesses that would other wise be performed by the 
brain.

Even though  these biomimetic and evolutionary algorithms  were not directly testing 
brain theories, they  were increasing our knowledge of how the brain and body interact, 
and they  were creating novel, biologically inspired algorithms and robot designs that 
would further the field of robots and AI.

As parallel- computing resources improved, some groups  were approaching brain- 
scale neural simulations. Darwin VII’s neural network contained approximately twenty 
thousand neurons and nearly five hundred thousand synaptic connections, all of which 
had to be updated in real time to keep up with the active vision and sensors. The Darwin 

Figure 2.2
Whiskerbot from the University of Sheffield. Whiskerbot had two active whis kers and a detailed neural network 
model to convert whisker deflection signals into simulated spike trains. Source: Adapted with permission from 
Pearson et al. 2011.
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team used a Beowulf cluster with Message Passing Interface (MPI) to achieve real- time 
per for mance. Phil Goodman’s Virtual Neurobot proj ect had at least one hundred thou-
sand highly detailed neurons on a computer cluster. Although the robot was virtual, it 
did need to respond in real time to recognize intent and trust in a  human actor (Bray 
et al. 2012).

During this time  there was often pushback from the community about the necessity for 
large- scale modeling. Many in ter est ing results could be achieved with smaller neural net-
works, often with fewer than one hundred neurons. However, solving a prob lem in certain 
domains with small neural networks was unavoidable. For example, a model of the visual 
cortex that tested theories of feature binding and invariant object recognition (Seth et al. 
2004b) required a neuron at  every camera pixel (or receptive field) for each feature (two 
colors and four orientations). Since the network simulated the expansion of visual cortex 
receptive fields combining primitive features into objects (i.e., V1 → V2 → V4 → IT), a 
large- scale neural network was necessary. However, applying the same modeling detail to 
a neural network that encoded tactile features with whis kers resulted in an order- of- 
magnitude- smaller network (Seth et al. 2004a).

In addition to practical reasons, large- scale modeling is often required to realize the 
neuronal dynamics and anatomical pathways observed in brain responses. Although this 
fidelity results in highly complex networks, it does allow one to test theories of the brain 
and make better predictions. Preserving anatomical projections leads to large- scale hetero-
geneous architectures. Having large groups of neurons with biophysical properties leads 
to in ter est ing neural dynamics, as was observed in a large- scale model of the hippocampus 
and surrounding regions (Krichmar, Nitz, et al. 2005). In this model the complex interplay 
between the entorhinal cortex and the hippocampal subfields resulted in the reliance on 
dif fer ent functional pathways at dif fer ent points in the robot’s learning (figure 2.3). Using 
large- scale neural models does come with a cost beyond computing power. At some point 
the neural network becomes so complex that it is as difficult to understand as the real 
brain. Interestingly, the analy sis of the large- scale hippocampus model required the devel-
opment of new tools; one was a recursive backtrace through neural activity (Krichmar, 
Nitz, et al. 2005), and the other applied Granger causality to the simulated neural network 
(Krichmar, Seth, et al. 2005).

Nowadays, large- scale neural network models are the norm. Neuromorphic hardware 
can support brain- scale neural networks at very low power (Indiveri et al. 2011; Merolla 
et al. 2014; Davies et al. 2018). Deep neural networks with many hidden layers are regu-
larly developed (LeCun, Bengio, and Hinton 2015). With tools such as PyTorch and 
TensorFlow, graphics pro cessing unit (GPU) clusters, and cloud computing, large- scale 
neural networks are within the reach of most researchers and students. Moreover, it turns 
out that size, in the form of many layers, is necessary to solve more challenging prob lems, 
such as image recognition (Krizhevsky, Sutskever, and Hinton 2017) or human- level game 
playing (Mnih et al. 2015).

2.2.1 Case Study: Darwin VII— Perceptual Categorization and Conditioning  
in a Brain- Based Device

Darwin VII was one of the first neurorobots to demonstrate experience- dependent learning 
(i.e., learning by sampling the environment without supervisory signals) with a detailed, 
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neurobiologically plausible neural network (Krichmar and Edelman 2002). Darwin VII 
autonomously explored its environment and sampled stimuli that contained positive and 
negative values (figure 2.4). Through its experiences, Darwin VII built up perceptual 
categories of the objects it sampled. Darwin VII’s simulation was based on the anatomy 
and physiology of vertebrate ner vous systems. The simulated ner vous system comprised 
a number of areas labeled according to the analogous cortical and subcortical brain regions 
for vision, auditory pro cessing, and value. Each area contained dif fer ent types of neuronal 
units consisting of simulated local populations of neurons or neuronal groups. The simu-
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Figure 2.3
Darwin X and a hippocampal model of episodic memory. (a) The overall neural network architecture included 
neuronal groups for the visual “what” and “where” streams (V1 → V2/4 → IT, V1 → V2/4 → Pr, respectively), 
head direction system (HD), reward system (R+, R−, S), and hippocampus. (b) Subfields within the hippocampus 
neural group. Arrows denote synaptic projections between subgroups. (c) Schematic of a dry variant of the Morris 
 water maze. Colors denote landmarks; numbers denote starting positions of  trials. (d) Darwin X Brain- Based 
Device. The hidden platform was a piece of black construction paper that Darwin X could not see with its camera 
but could detect with a downward- facing IR sensor. Adapted with permission from Krichmar, Nitz, et al. 2005.
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lated ner vous system contained 18 neuronal areas, 19,556 neuronal units, and approximately 
450,000 synaptic connections. Figure 2.4b shows a high- level diagram of the dif fer ent neural 
areas and the synaptic connections between neural areas in the simulated ner vous system. A 
neuronal unit in Darwin VII was simulated with a mean firing- rate model, and the activity 
of such a unit corresponded roughly to the firing activity of a group of neurons averaged 
over a time period of 200 ms. This corresponded to the time needed to pro cess sensory input, 
compute neuronal unit activities, update the connection strengths of plastic connections, and 
generate motor output.
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Figure 2.4
Darwin VII robot and neural network. (a) Darwin VII consists of a mobile base equipped with several sensors 
and effectors. Darwin VII is constructed on a circular platform with wheels that permit in de pen dent translational 
and rotational motion, with pan and tilt movement for its camera and microphones, and with object gripping by a 
one- degree- of- freedom manipulator or gripper. The CCD camera, two microphones on  either side of the camera, 
and sensors embedded in the gripper that mea sure the surface conductivity of stimuli provide sensory input to the 
neuronal simulation. Eight infrared (IR) sensors are mounted at 45° intervals around the mobile platform. The IR 
sensors are responsive to the bound aries of the environment and  were used to trigger reflexes for obstacle avoidance. 
All behavioral activity other than obstacle avoidance is triggered by signals received from the neural simulation. 
(b) The regional and functional neuroanatomy of Darwin VII.  There are six major systems that make up the 
simulated ner vous system: an auditory system, a visual system, a taste system, sets of motor neurons capable of 
triggering be hav ior, a visual tracking system, and a value system. The 64 × 64 gray- level pixel image captured by 
the CCD camera was relayed to a ret i nal area R and transmitted via topographic connections to a primary visual 
area VAP. Three subpartitions in VAP  were selective for blob- like features, short horizontal line segments, or short 
vertical line segments. Responses within VAP closely followed stimulus onset and projected nontopographically 
via activity- dependent plastic connections to a secondary visual area analogous to the inferotemporal cortex (IT). 
The frequency and amplitude information captured by Darwin VII’s microphones was relayed to a simulated 
cochlear area (LCoch and RCoch) and transmitted via mapped tonotopic and activity- dependent plastic connections 
to a primary auditory area A1. A1 and IT contained local excitatory and inhibitory interactions producing firing 
patterns characterized by focal regions of excitation surrounded by inhibition. A1 and IT sent plastic projections 
to the value system S and to the motor areas Mapp and Mave.  These two neuronal areas  were capable of triggering 
two distinct be hav iors, appetitive and aversive. The taste system (Tapp and Tave) consisted of two kinds of sensory 
units responsive to  either the presence or absence of conductivity across the surface of stimulus objects as mea-
sured by sensors in Darwin VII’s gripper. The taste system sent information to the motor areas (Mapp and Mave) 
and the value system (S). Area S projected diffusely with long- lasting, value- dependent activity to the auditory, 
visual, and motor be hav ior neurons. The visual tracking system controlled navigational movements, in par tic u lar 
the approach to objects identified by brightness contrast with re spect to the background. To achieve tracking 
be hav ior, the ret i nal area R projected to area C (“colliculus”). Source: Adapted with permission from Krichmar 
and Edelman 2002.
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The total contribution of synaptic input to unit i was given by

Ai(t) = cij s j (t)
j = 1

N

∑

where N is the number of connections to unit i, cij is the weight value of the connection 
projecting to unit i from unit  j, and sj (t ) is the activity of unit j at time step t. Negative values 
for cij corresponded to inhibitory connections. The activity level of unit i was given by

Si (t + 1) = φ (tanh( gi (Ai(t ) + ω si (t ))))

where

φi(x) =
0; x <σ i

x;  otherwise 

⎧
⎨
⎪

⎩⎪

and ω determined the per sis tence of unit activity from one cycle to the next, σi is a unit- 
specific firing threshold, and gi is a scale  factor, which differed depending on the neural area.

Connections within and between neuronal areas  were subject to activity- dependent modi-
fication following a value- independent and a value- dependent synaptic rule. Synaptic modi-
fication was determined by both pre-  and postsynaptic activity and resulted in  either 
strengthening or weakening of the synaptic efficacy between two neuronal units. The Bienen-
stock, Cooper, and Munro (BCM) learning rule was used to govern synaptic change  because 
it has a region in which weakly correlated inputs are depressed, and strongly correlated inputs 
are potentiated (Bienenstock, Cooper, and Munro 1982).

Value- independent synaptic changes in cij  were given by

Δ cij (t + 1) = ε (cij (0) − cij (t )) + ηsj(t )F (si (t ))

where si (t ) and sj (t ) are activities of post-  and presynaptic units, respectively, η is a fixed 
learning rate, ε is a decay constant, and cij (0) is the initial (t = 0) weight of connection cij. 
The decay constant ε governed a passive, uniform decay of synaptic weights to their original 
starting values. The function F is a piecewise linear approximation of the BCM learning 
rule.

The synaptic change for value- dependent synaptic plasticity was given by

Δcij (t + 1) = ε(cij (0) − cij (t)) +ηs j (t)F(si(t))S

where S  is the average activity of the value system S (see figure 2.4b).
Darwin VII’s environment consisted of an enclosed area with black walls and a floor 

covered with opaque black plastic panels, on which metallic cubes  were distributed 
(figure 2.4a). The top surfaces of the blocks  were covered with black- and- white patterns: 
blobs and stripes. Stripes on blocks in the gripper could be viewed in  either a horizontal or 
vertical orientation, yielding a total of three stimulus classes of visual patterns to be dis-
criminated (blob, horizontal, and vertical). A flashlight mounted on Darwin VII and aligned 
with its gripper caused the blocks, which contained a photodetector, to emit a beeping tone 
when Darwin VII was in the vicinity. The sides of the stimulus blocks  were metallic and 
could be rendered  either strongly conductive (“good taste,” or appetitive) or weakly conduc-
tive (“bad taste,” or aversive). Gripping of stimulus blocks activated the appropriate taste 

Downloaded from http://direct.mit.edu/books/book-pdf/2239475/book_9780262369329.pdf by guest on 30 September 2024



Neurorobotics 27

neuronal units ( either area Tapp or area Tave) to a level sufficient to drive the motor areas 
above a behavioral threshold. In the experiments, strongly conductive blocks with a striped 
pattern and a 3.9 kHz tone  were arbitrarily chosen to be positive- value exemplars, whereas 
weakly conductive blocks with a blob pattern and a 3.3 kHz tone represented negative- value 
exemplars.

Early during the conditioning  trials, Darwin VII picked up and “tasted” blocks that led to 
 either appetitive or aversive responses (see figure 2.5a, left panel). During this period, it was 
the output of the taste neuronal units that activated the value system (S) and drove the motor 
neuronal units (Mapp and Mave) to cause a behavioral response.  After conditioning, however, 
both the value system and the motor neuronal units  were immediately activated upon the 
onset of IT’s response to a visual pattern or A1’s response to a tone. This shift from value 
system activity triggered in early  trials by the unconditioned stimulus to value system activity 
triggered at the onset of the conditioned stimulus is analogous to the shift in dopaminergic 
neuronal activity found in the primate ventral tegmental area  after conditioning (Schultz, 
Dayan, and Montague 1997).

 After associating visual patterns with taste, Darwin VII continued to pick up and “taste” 
stripe- patterned blocks but avoided blob- patterned blocks (see figure 2.5a, left panel). 
 After associating auditory sounds with taste, Darwin VII continued to pick up the high- 
frequency beeping blocks but avoided the low- frequency beeping blocks (see figure 2.5c, 
left panel). The right panel of figure 2.5b shows the percentage of conditioned responses, 
which  were driven by the auditory or visual stimulus, for seven Darwin VII  trials. The 
increase in conditioned responses showed that Darwin VII learned that auditory or visual 
cues predicted the value of the object, which resulted in it taking the appropriate behavioral 
response.  These learning curves closely resembled  those for similar conditioning experi-
ments in rodents, pigeons, and other organisms.

In Darwin VII, activity in the simulated inferotemporal cortex, IT, provided the basis 
for visual perceptual categorization. Initially, IT’s responses to visual stimuli  were weak 
and diffuse (see IT activity in figure 2.5a, right panel ).  After approximately five stimulus 
encounters, activity- dependent plasticity between primary visual cortex, VAP, and IT caused 
IT responses to the dif fer ent stimuli to become strong, sharp, and separable (see IT activity 
in figure 2.5b, right panel). Darwin VII’s object recognition was observed to be invariant 
with re spect to scale, position, and rotation. Visual categorization of a stimulus occurred no 
 matter where an object appeared in Darwin VII’s visual field, with the apparent size of the 
stimulus ranging from a maximum when the object was directly in front of Darwin VII to 
one- quarter of the maximum size when the object was distal to Darwin VII. Correct catego-
rization of striped blocks in Darwin VII’s field of vision, when blocks  were not in its gripper, 
occurred when the stripes on the blocks  were rotated over a range of ±30° of a horizontal or 
vertical reference.  These invariant category responses developed as a result of competition 
among activity- dependent plastic connections between retinotopically mapped VAP and non-
topographically mapped IT.

The be hav ior of Darwin VII showed that a robot operating on biological princi ples and 
without prespecified instructions could carry out perceptual categorization and conditioned 
responses. In both the perceptual categorization and conditioning experiments, the devel-
opment of categorical responses required exploration of the environment and sensorimotor 
adaptation through specific and highly individual changes in connection strengths. Darwin VII 
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A

B

C

Figure 2.5
Left: Darwin VII during behavioral experiments. The panels to the right of Darwin VII show the activity of 
selected neural areas in the simulation (R, top left; IT, top right; A1, bottom left; Mave, bottom right, left side; 
Mapp, bottom right, right side). Each pixel in a selected neural area represents a neuronal unit, and activity is 
normalized in a range from no activity (dark blue) to maximal activity (bright red). (a) Darwin VII upon the 
first encounter with an aversive block. The stimulus block shown in this figure and in (b) had a blob- like visual 
pattern but did not beep. In this early conditioning trial, Darwin VII is shown picking up and “tasting” an aversive 
block. Activity in IT is insufficient, but activity in the taste system Tave is sufficient to drive activity in the aversive 
motor be hav ior neural area (Mave) above the behavioral threshold. (b) Darwin VII upon the tenth encounter with 
an aversive block having blob- like visual patterns.  After primary conditioning with visual stimuli, activity in 
area IT is sufficient to drive the Mave neuronal units above the behavioral threshold, triggering a motor response 
to avoid “tasting” an aversive block. (c) Darwin VII upon the tenth encounter with an aversive block having 
only auditory cues.  After primary conditioning with auditory stimuli, activity in area A1 is sufficient to drive the 
Mave neuronal units above the threshold to trigger a behavioral response. Right: The percentage of conditioned 
responses (%CR) per stimuli encountered by Darwin VII for auditory and visual stimuli. Each point is the average 
%CR for seven Darwin VII  trials. Source: Adapted with permission from Krichmar and Edelman 2002.
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laid down groundwork for increasingly sophisticated neurorobots with more complex 
neural cir cuits and morphologies, which gave further insights into the relationships between 
brain, body, and be hav ior.

2.3 Building a Neurorobotics Community

Over the years, a neurorobotics community has emerged in part due to workshops and 
special journal issues on the topic. The IEEE Robotics and Automation Magazine devoted 
an issue to the topic (Browne et al. 2009). Special sessions  were occasionally held on the 
topic at major IEEE robotics conferences. The Eu ro pean Union’s  Human Brain Proj ect, a 
large- scale research proj ect for understanding the ner vous system, included a neurorobot-
ics division headed up by Alois Knoll and Florian Rohrbein (Falotico et al. 2017).

In 2004, a special session on “Neurorobotic Models in Neuroscience and Neuroinformat-
ics” took place at the International Conference on the Simulation of Adaptive Be hav ior (Seth, 
Sporns, and Krichmar 2005). To introduce the session, it was stated that a neurorobotic device 
has the following properties: 1) It engages in a behavioral task, 2) it is situated in a structured 
environment, and 3) its be hav ior is controlled by a simulated ner vous system designed to 
reflect, at some level, the brain’s architecture and dynamics. The session included Auke 
Ijspeert’s research on evolving neural networks for a robotic salamander (Ijspeert, Crespi, and 
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Cabelguen 2005; Ijspeert et al. 2007). In this research, dif fer ent motor patterns (i.e., swimming 
or walking) emerged due to the interaction between brain and body with the specific environ-
ment (i.e.,  water or land). Olaf Sporns and Max Lungarella showed how embodiment can 
alter and improve information pro cessing in a neural system (Lungarella et al. 2005). In 
addition, several papers on how the hippocampus contributes to spatial memory  were pre-
sented (Arleo, Smeraldi, and Gerstner 2004; Banquet et al. 2005; Chavarriaga et al. 2005; 
Krichmar, Seth, et al. 2005).

Robot models of rodent navigation have made up a number of neurorobotic implementa-
tions. One reason for the interest in  these models is  because robot navigation is a fascinating 
and complex prob lem. Another reason is that the neural activity patterns observed in the rat 
are clear, in ter est ing, and amenable to modeling. For example, a head- direction cell can be 
modeled with an attractor network and cosine tuning curves (Stringer et al. 2002). A hip-
pocampal place cell can be modeled with a two- dimensional Gaussian (Foster, Morris, and 
Dayan 2000). The more recent finding of grid cells in the entorhinal cortex has led to a 
number of proposed neural models (Zilli 2012). Using attractor networks and neural ele ments 
that resemble head direction cells, place cells, and grid cells, the Australian RatSLAM team 
has reported results with neuro- inspired algorithms that are as good as or better than state- 
of- the- art localization and mapping by conventional robots (Milford et al. 2016). Although 
 great pro gress has been made in the conventional robotics community with SLAM, or 
simultaneous localization and mapping (Kohlbrecher et al. 2011; Mur- Artal, Montiel, and 
Tardos 2015) and path planning (LaValle 2011a, 2011b), a number of open issues still remain 
when it comes to flexible navigation  under dynamic conditions.  Under  these challenging 
situations, rodents show superior per for mance and robustness and still provide inspiration 
for improved robot navigation algorithms.

2.4 Neurorobotics and Neuromorphic Engineering

An impor tant potential development for the field of neurorobotics is the reemergence of 
neuromorphic engineering (Indiveri et al. 2011). By reemergence, we mean that the origi-
nal analog cir cuits developed by Carver Mead (1990) and his team in the 1980s have led 
to near- commercially  viable computers designed by large companies such as IBM (Merolla 
et al. 2014) and Intel (Davies et al. 2018). Like neurorobotics, neuromorphic engineering 
uses inspiration from the brain to build computer architectures and sensors.  Because  these 
computers  were specifically designed for asynchronous, event- driven pro cessing, spiking 
neural networks that controlled neurorobots  were ideal for  these platforms. Moreover, 
neuromorphic architectures hold  great promise for neurorobot applications due to their 
low power bud get and their fast, event- driven responses. For example, the SpiNNaker 
neuromorphic computer from Manchester has been used in an obstacle avoidance and 
random exploration task (Stewart et al. 2016). In addition to  running neural networks on 
specialized hardware, very low power neuromorphic vision and auditory sensors are being 
developed (Liu and Delbruck 2010). Similar to biology,  these sensors only respond to 
change or salient events, and when they do respond, it is with a train of spikes. This allows 
seamless integration of  these sensors with spiking neural networks, and their event- driven 
nature leads to power efficiency that’s ideal for embedded systems, such as robots.
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The development of lightweight neuromorphic chips inspired the idea that many com-
puting pro cesses related to outdoor navigation could be implemented on neuromorphic 
hardware to control ground robots. Neuromorphic hardware is especially beneficial for 
outdoor navigation, as the robots must rely on battery power for long periods of time and 
are often used in vital operations such as search and rescue. Spiking implementations of 
low- level perceptual navigation tasks as well as high- level planning tasks allow for naviga-
tion subtasks to run in parallel.

Working with IBM’s low- power TrueNorth neuromorphic chip (Esser et al. 2016), we 
demonstrated that a convolutional neural network (CNN) could be trained to self- drive a 
robot on a mountain trail (Hwu et al. 2017). Initially, the robot was driven along the trail 
using remote control. The RGB camera frames, along with the corresponding action con-
trols of steering left, steering right, and driving forward,  were recorded for training the 
CNN. The CNN was first trained with conventional backpropagation techniques, using 
the RGB images as input and the set of three actions as output. The weights of this neural 
network  were then transferred to weights in a spiking neural network of the same structure 
as the original CNN. This spiking network was run on the TrueNorth chip, which was 
powered by the same single hobby- level nickel metal hydride (NiMH) battery used to 
power the motors of the robot (figure 2.6). The advantage of using this pipeline was that 
we  were able to harness well- developed techniques of CNN training while achieving 
order- of- magnitude gains in energy efficiency. The cir cuit diagram and pipeline shown in 
figure 2.6 could generalize to other hardware and neurorobot applications.

2.4.1 Case Study: Spiking Wavefront Propagation— Brain- Inspired 
Neuromorphic Path Planning

Navigation is a necessary component of most robots and animals, both of which operate 
 under the constraints of  limited time and energy. Using inspiration from brain connectivity, 
neuron spiking dynamics, and a recent finding that axonal conductance undergoes 
experience- dependent plasticity (Fields 2015), a model of spiking wavefront propagation 
was created (Hwu et al. 2018). The model was inspired by the role of the hippocampus 
in animal navigation. This includes the existence of place cells in the hippocampus, which 
are active according to the physical location of the animal (O’Keefe and Dostrovsky 1971). 
 These place cells are involved in hippocampal replay, in which the place cells activate in 
sequence according to potential trajectory routes the animal can take (Dragoi and Tonegawa 
2011; Pfeiffer and Foster 2013). Another biological observation  behind spiking wavefront 
propagation is that spreading waves of activity can be found across several areas of the 
brain including the hippocampus, supporting brain connectivity and memory (Zhang and 
Jacobs 2015).

Combining  these observations, the model of spiking wavefront propagation is able to 
plan paths through a grid repre sen ta tion of space. Each grid unit corresponds to a dis-
cretized area of physical space, and connections between units represent the ability to 
travel from one area to a neighboring area. Each unit in the grid represents a single neuron 
with spiking dynamics. The membrane potential of neuron i at time t + 1 is represented by

vi (t + 1) = ui (t ) + Ii (t ),
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in which ui (t ) is the recovery variable, and Ii (t ) is the input current at time t. The recovery 
variable ui (t + 1) is modeled as

ui (t + 1) = (−5 if vi (t ) = 1; min(ui (t ) + 1, 0) other wise),

such that if it starts as a negative value, it increases at a steady rate  toward a baseline value 
of 0. The input current Ii (t + 1) is represented as

Ii(t + 1) = (1 if dij (t) = 1; 0 otherwise),
j
∑

such that dij (t ) is the delay  counter of the signal from neighboring neuron j to neuron i. 
The delay dij (t + 1) is calculated as

dij (t + 1) = (Dij (t ) if vj (t ) = 1; max(dij (t ) − 1, 0) other wise),

such that it behaves as a timer corresponding to axonal delay with a starting value of Dij (t ). 
This starting value of Dij (t ) is a delay value depending on the cost of traversing the spatial 
area corresponding to the neuron. Taken together,  these equations describe the simplified 
dynamics of a spiking neuron. When a spike from a neighboring neuron occurs, the input 
current Ii is set to 1, causing a spike. Immediately  after, the recovery variable ui is set to −5, 
which then counts up by 1 at each successive time step and stops at 0. This mechanism models 
the refractory period of the neuron. Next, all delay  counters dij for all neighbor neurons j are 
set to their assigned starting values of Dij.

Multiple possibilities exist for encoding the values Dij.  These values should encode the 
cost of traversing from one area to another. This may be the energy required, the potential 
risks, or the physical wear. For instance, traveling through rough terrain would be riskier 
and require more energy for ground robots and therefore have higher costs. A cost map of 
the same dimensions as the grid can transfer to values of Dij in a one- to- one fashion. The 
cost map, if known in advance, can be used to populate delay values of the grid prior to 
 running spiking wavefront propagation. They may also be learned on the fly while explor-
ing the terrain. In neuroscience, this would correlate to axonal plasticity, in which the 
myelin sheath of a neuron consisting of white  matter grows in volume with heightened 
activity and subsequently increases the speed of signals traveling from one neuron to 
another (Fields 2015). As an agent travels through its environment,  either randomly or by 
intentionally navigating, Dij values are updated each time the agent enters a new grid area 
using the following equation:

Dij (t + 1) = Dij (t ) + δ (mapxy − Dij (t )),

where δ is the learning rate, and mapxy is a sample of the cost as the agent traversed loca-
tion coordinates (x, y) corresponding with grid neuron i. The update rule is applied for 
each of the j neighbors of neuron i. The advantages of axonal plasticity are that the agent 
can learn while operating, continuously gaining new information. With a small learning 
rate, the model accounts for noise in the environment such that if the agent samples a 
faulty cost value due to sensor error or environmental  factors, the effect is averaged across 
multiple  trials. However, learning accurate cost values for an entire grid may require many 
 trials, as each grid area must be traversed several times. It may therefore be preferable to 
start with an a priori map of costs, updating with sensor- based observations as they occur.
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To perform path planning using the grid encoded with costs, an input current is added to 
the neuron corresponding to the location of the agent to induce a spike. This induces spikes 
in neighboring neurons, subsequently starting a traveling wave across the entire grid. As the 
spikes occur, their spikes are recorded using address event repre sen ta tion (AER), which 
includes pairs of neuron IDs and spike times. Figure 2.7 shows how using AER can be used 
for path planning.

To plan a path from the start location to any other location, the first spike time of the 
destination neuron is recorded. The ID of the destination neuron is also recorded on a list. 
Then the spike times of each neighboring neuron are examined, and the neuron with the 
most recent spike is appended to the list. The same pro cess is repeated with this neighbor-
ing neuron, and so on,  until the start neuron is added to the list. The optimal path account-
ing for length and cost is then returned as the reversed list of neuron IDs.

The pre sent spiking wavefront algorithm was successfully tested on a mobile ground robot 
traversing over grass, dirt, and asphalt terrains (Hwu et al. 2018). The robot was created 
from affordable hobbyist parts and an Android phone for computation (figure 2.8, bottom 
left ). The robot motors and sensors  were powered by a single NiMH battery, making energy 
savings a priority in its operation. The robot was tested at a large outdoor park in two areas 
(figure 2.8, top left ). One area was a grass field surrounded by an asphalt road. Three cost 
maps  were created out of this area (figure 2.8, top right ): one with a uniform low cost, one 
with a low cost for the surrounding road, and one with a low cost for the surrounding road 
and a medium cost for park benches. The other area was grassy with trees, a surrounding 
outer asphalt road, and a dirt trail cutting straight across. A single cost map was generated 
from this area, consisting of a low cost for the surrounding road, a high cost for the trees, 
and a medium cost for the dirt road. Using  these dif fer ent maps, researchers generated a path 
to navigate between a set of starting and end points with the spiking wavefront algorithm. 

Time Neuron ID (r,c)

 1 (1,1)

 2 (1,2),(2,1),(2,2)

 3 (1,3),(2,3),()3,1

 ... ...

 6 ...(3,6),(5,3),...

 ... ...

 9 (3,4),(4,2),(6,6)

Goal

Start

Figure 2.7
Path planning using an address event repre sen ta tion  table. Left: Spike types and neuron IDs are recorded in this 
 table. In order to plan a path using the trained grid of neurons, the neuron corresponding with the location of 
the agent receives an impulse spike. This spike triggers a wavefront signal to propagate across the grid surface. 
Since some neurons have longer axonal delays, the wavefront edge travels at dif fer ent speeds. Using the  table, 
the neuron corresponding to the goal is identified. Then, stepping back through the time steps, a path of neurons 
can be traced back to the start neuron (right). Since costs are encoded using axonal delays, the planned path 
avoids costlier terrains with obstacles. Source: Adapted with permission from Hwu et al. 2018.
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Waypoints along the path corresponded to neuronal units representing locations on the map. 
The robot then used the GPS of the Android phone to drive along the waypoints generated 
by the algorithm. The paths taken by the robot highlighted trade- offs between finding the 
shortest path and finding the smoothest path (figure 2.8, bottom right). When a uniform cost 
was used, the shortest path was always chosen. When the road was considered, the robot 
would occasionally take it, even if it meant traveling a longer distance. For the map contain-
ing the dirt road, the robot judged the trade- offs of taking the fastest route versus traveling 
over bumpy grass. The robot demonstration applied spiking wavefront propagation to cost- 
aware path planning, showing the possibility of energy savings on an energy- limited mobile 
platform.

This demonstration combined with the spiking CNN shows the potential for a complete 
neuromorphic computing solution to outdoor navigation (Hwu, Krichmar, and Zou 2017). 

a  Map 1 – Without road

c  Map 1 – With road
and obstacles

d  Map 2 – With roads
and obstacles
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b  Map 1 – With road

Figure 2.8
Outdoor demonstration of spiking wavefront propagation. Top left: A satellite image of an outdoor park where 
two areas  were used to generate cost maps. Top right: (a) A uniform cost was given to the grassy area. (b) A low 
cost was given to the road surrounding the grassy area. (c) A low cost was given to the road, and a medium cost 
was given to park benches. (d) A low cost was given to the surrounding road, a high cost was given to trees, and 
a medium cost was given to the dirt path cutting across the area. Bottom left: Side, front, and interior views of 
the Android- based robotics platform. Bottom Right: The first row shows two paths planned with the same starting 
and ending points. The path on the left column was generated using a cost map without the outer road, and the 
path on the right column was generated using a cost map including the outer road. The bottom row shows the 
same but with a dif fer ent set of starting and ending points. When the road is accounted for, the planned path takes 
the longer, smoother path, as opposed to the shortest path. Source: Adapted with permission from Hwu et al. 2018.
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Such a system could enable more computation on mobile platforms and provide more 
insight into how the brain is able to function with  limited energy.

2.5  Future Outlook 

Built on a variety of interdisciplinary ideas, neurorobotics has grown into a rich and in ter-
est ing field. Some of the subtopics of research have remained the same throughout its history, 
such as navigation, motor planning, mapping, and the development of neural networks. 
However, the research continues to develop as newer techniques in neurobiology, such as 
optoge ne tics, as well as techniques in machine learning and deep neural networks continue 
to add new tools and insights.

The fields of AI, machine learning, and especially artificial neural networks have enjoyed 
par tic u lar success in recent years. Although deep neural networks have largely been suc-
cessful,  there are a number of new challenges within the field. For the most part, the 
neural networks work well on specific tasks but have trou ble extending knowledge from 
previously learned tasks to newer but related tasks. Moreover, the neural networks take 
a large amount of data and training and fail to capture many be hav iors that are easy for 
 humans (Larson 2017). This indicates that the study of the brain can contribute much to 
the field.

According to neuroscientist and entrepreneur Jeff Hawkins (2017), the brain has three 
key features required for intelligence: 1) learning by rewiring; learning in the brain is both 
rapid and gradual and can store repre sen ta tions that last over a lifetime; 2) sparse repre-
sen ta tions;  under the constraints of nature, the brain stores information using the fewest 
metabolic resources pos si ble; 3) embodiment; interaction between the brain and environ-
ment together is required for intelligence. We would also argue that the following features 
are impor tant: 4) value systems; good and bad stimuli from the environment must be 
learned by detecting saliency and reacting appropriately (Friston et al. 1994; Krichmar 
2008) and 5) prediction; we must be able to extrapolate from past experiences to learn 
how to pro cess  future experiences (Clark 2013). Applying  these princi ples,  future research 
in neurorobotics can potentially achieve a more holistic understanding of intelligence, 
striving for be hav ior that generalizes across multiple domains and maintains information 
over long time frames. Neurorobotics is a promising approach to addressing many of the 
issues the AI community  faces  today.

2.6 Conclusion

To truly understand intelligence, we believe one must study the brain and body and apply 
 these princi ples to all applications. Intelligent biological systems are currently our best 
standard, serving as a model for what AI eventually hopes to achieve. The insights gathered 
from neurorobotics  will ultimately lead to a strong understanding of the essence of intel-
ligence, which  will then benefit our understanding of ourselves and lead to applications 
that improve  future technologies.
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Additional Reading and Resources

•  Edelman, G. M. 1987. Neural Darwinism: The Theory of Neuronal Group Se lection. 
New York: Basic Books. This book introduces an impor tant brain theory that was amenable 
to testing with neurorobotics.
•  Krichmar, J. L., and H. Wagatsuma, eds. 2011. Neuromorphic and Brain- Based Robots. 
Cambridge: Cambridge University Press. This book provides a snapshot of the state of the 
art in neurorobotics at that time. It covers a range of topics from low- level perception to 
machine consciousness.
•  Tani, Jun. 2016. Exploring Robotic Minds: Actions, Symbols, and Consciousness as Self- 
Organizing Dynamic Phenomena. Oxford: Oxford University Press. Jun Tani has been a 
pioneer in neurorobotics. His book covers how higher- order cognition might be realized in 
neurorobots.
•  Neurorobotics software and designs:

◦  RatSLAM: https:// openslam - org . github . io / openratslam . html.
◦  Android- based robotics platform: https:// www . socsci . uci . edu / ~jkrichma / ABR / index 
. html.
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3.1 Introduction

In this chapter we introduce “developmental robotics” in the context of cognitive robotics. 
Developmental robotics can be defined as “the interdisciplinary approach to the autono-
mous design of behavioral and cognitive capabilities in artificial agents (robots) that takes 
direct inspiration from the developmental princi ples and mechanisms observed in the 
natu ral cognitive systems of  children” (Cangelosi and Schlesinger 2015, 4). Developmen-
tal robotics relies on a highly interdisciplinary effort of developmental psy chol ogy, neu-
roscience, and comparative psy chol ogy with robotics and artificial intelligence. In par tic u lar, 
developmental sciences such as child psy chol ogy provide the empirical bases to identify 
the general developmental princi ples, mechanisms, models, and experimental protocols 
guiding the design of cognitive robots and their testing in situated developmental robotics 
experiments. Given this close interaction, developmental psy chol ogy and developmental 
robotics can also mutually benefit from such a combined effort (Cangelosi and Schlesinger 
2018).

Developmental robotics is based on the vision that a baby robot, using developmental 
princi ples and mechanisms regulating the real- time interaction between its body, brain, 
and environment, can autonomously acquire an increasingly complex set of sensorimotor 
and  mental capabilities. Thus, within the wider approach of cognitive robotics, develop-
mental robotics specializes in its emphasis on the design of baby robots with an autono-
mous capability to acquire ever- more- complex skills.

Historically, the field of developmental robotics has also been known as “cognitive devel-
opmental robotics” (Asada et al. 2001), “autonomous  mental development” (Weng et al. 
2001), and “epige ne tic robotics” (Zlatev and Balkenius 2001). Asada et al. (2001) proposed 
“cognitive developmental robotics” as a new paradigm for the design of humanoid robots. 
Lungarella et al. (2003) published the first survey paper on developmental robotics. Asada 
et al. (2009)  later proposed a systematic survey of the early cognitive developmental robotics 
approaches. More recently, Cangelosi and Schlesinger (2015) provided a comprehensive 
review of the field in their book Developmental Robotics: From Babies to Robots.

In this chapter we  will first consider the theoretical background of cognitive develop-
mental robotics, focusing on epistemological paradigm shifts from human- object dichotomy 
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to human- machine physical and  mental interaction. Based on this background, “physical 
embodiment” and “social interaction” are introduced as key concepts of developmental 
robotics (Asada et al. 2009). We  will then extend this to the six defining princi ples of devel-
opmental robotics proposed by Cangelosi and Schlesinger (2015), with brief examples of 
each.

3.2 Theoretical and Philosophical Background

Asada (2019) has proposed a general outline of the theoretical and philosophical back-
ground of the relationship between consciousness,  humans, and objects/technology at the 
origin of cognitive developmental robotics. The discussion below follows the concepts 
introduced in Tani (2016) but adds further consideration of the contribution of the phi los-
o phers Kant and Vico (figure 3.1).

Initially, Descartes advanced mind- body dualism,1 establishing the relationship between 
mind and body or  things, and laid the foundation for modern philosophy. Then Vico opposed 
Cartesianism and all reductionism, asserting the verum factum princi ple that truth is verified 
only by creation or invention, not by observations, as proposed in Cartesianism.2

Husserl, Heidegger, and Merlot- Ponty presented impor tant concepts such as embodi-
ment, interaction, and intersubjectivity (see Tani 2016) and noted that the essence of real ity 
is lost by discriminating between  humans and objects (cf. Asada [2019] for more details 
on this issue).

In his moral philosophy, Kant spoke from the perspective of morality as an obligatory 
act— that is, “what should be.”3 In  today’s world, due to technological pro gress, interacting 
with objects exposes the limits of anthropocentric thinking. Peter- Paul Verbeek has shown 
a typical example of such a situation when he and his wife entered the ultrasound exami-
nation room. He mentioned in the preface of Moralizing Technology: Understanding and 
Designing the Morality of  Things that “even though the technology in the ultrasound practice 
clearly had moral significance, it did not directly steer our be hav ior. Rather, it helped to 
shape our experience of our unborn child and the interpretive frameworks that guided our 
actions and decisions. By us, this technology had not simply granted us a ‘peek into the 
womb’; it had reor ga nized the relations between our unborn child and ourselves” (Verbeek 
2011). As he mentioned, this is one aspect of the moral significance of technology, and the 
fixed view of Kant’s moral philosophy seems unable to  handle appropriate relationships with 
 these technologies. Foucault’s (1994) moral ethics, or “what we like to be,” are considered 
more relevant.

Figure 3.1 shows a paradigm shift from mind- body dualism, which emphasizes the 
relationship between  humans and objects by anthropocentric thinking (above the thick 
broken line in the figure), to a concept that emphasizes both the importance of a creation- 
based viewpoint and societal impacts (below the thick broken line in the figure). In other 
words, objects and technologies have come to judge and commit to decision- making via 
machine learning represented by deep learning, such as autodrive, and the structure and 
mechanism of  free  will and consciousness have gradually been revealed in neuroscience, 
physiology, and cognitive sciences. This is  because traditional views of consciousness and 
autonomy no longer function in modern disciplines.
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All  these theoretical considerations have significantly influenced the approach of cogni-
tive developmental robotics (Asada et al. 2009; Asada 2019).  These epistemological con-
cepts advocate the importance of physical embodiment and social interaction, which have 
influenced the wider field of cognitive robotics, as discussed in chapter 1. Before introduc-
ing the key princi ples and related studies of developmental robotics, we review the devel-
opmental pro cess of the  human fetus and infant, which  will have an impact on the design 
issues and approaches of developmental robotics.

3.3 A Brief Overview of the Development of the  Human Fetus and Infant

Advanced imaging technologies such as three- dimensional ultrasound movies have 
enabled the observation of vari ous kinds of fetal movements in the womb  after several 
weeks of gestation. This reveals the possibility of the fetus learning in the womb (Hopson 
1998). De Vries et al. (1984) reported that fetal motility started from the early state of 
“just discern movements (7.5 weeks)” to the  later state of “sucking and swallow (12.5–14.5 
weeks)” through “startle, general movements, hiccup, isolated arm movements, isolated 
leg movements, head retroflexion, head rotation, hand/face contact, breathing movements, 
jaw opening, stretch, head anteflexion, and yawn.” Campbell (2004) also reported that the 
eyes of the fetus open around twenty- six weeks’ gestation and that the fetus often touches 
their face with the hands during embryonic weeks twenty- four and twenty- seven.

Touch is the first sense to develop in the fetus, followed by the other senses, such as 
taste, hearing, and vision. Chamberlain stated that just before eight weeks’ gestational age, 
the first sensitivity to touch manifests in a set of protective movements to avoid a mere 
hair stroke on the cheek. From this early stage, experiments with a hair stroke on vari ous 
parts of the body show that skin sensitivity quickly extends to the genital area (ten weeks), 
palms (eleven weeks), and  soles (twelve weeks).  These areas of first sensitivity  will have 
the greatest number and variety of sensory receptors in the adult. By seventeen weeks, all 
parts of the abdomen and buttocks become sensitive. Skin is marvelously complex, con-
taining a hundred va ri e ties of cells that seem especially sensitive to heat, cold, pressure, 
and pain. By thirty- two weeks, nearly  every part of the body is sensitive to the same light 
stroke of a single hair. Both hearing and vision start to function about eigh teen weeks  after 
gestation and fully develop at around twenty- five weeks.

Moreover, it is reported that visual stimulation from the outside of the maternal body 
can activate the fetal brain (Eswaran et al. 2002). Figure 3.2 summarizes the emergence 
of fetal movements with the development of the fetal senses reviewed above.

 After birth, infants are supposed to gradually develop body repre sen ta tion, categories 
for graspable objects, capability of  mental simulation of actions, and so on through learn-
ing pro cesses. For example, controlling the hand at the fifth month means learning the 
forward and inverse models of the hand.  Table 3.1 shows typical be hav iors and their cor-
responding targets to learn.

Our growing understanding of the early stages of fetus and infant development have been 
very influential in developmental robotics. Asada et al. (2009) analyzed in detail a wide set 
of pioneering developmental robotics models of early fetal and infant development. Two 
three- dimensional simulation models of the fetus and newborn infants  were developed by 
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Kuniyoshi and colleagues within the Japan Science and Technology Agency Exploratory 
Research for Advanced Technology (JST ERATO) Asada proj ect. The first model (Kuniyoshi 
and Sangawa 2006) provided the initial, minimally  simple body model of fetal and neonatal 
development. The subsequent fetus model (Mori and Kuniyoshi 2010) produced a more 
realistic rendering of the fetus’s sensorimotor apparatus and a stronger focus on learning 
experiments.  These models offer a useful research tool to investigate prebirth sensorimotor 
development by providing a realistic repre sen ta tion of the fetus’s sensors and the reaction 
of the body to gravity and the womb border and environment. The first model, for instance, 
was used to study the role of general embodied developmental princi ples in early sensorimo-
tor learning. In par tic u lar, it aimed at exploring the hypothesis that partially ordered embodi-
ment dynamical patterns emerge from the chaotic exploration of body- brain- environment 
interactions during gestation.  These patterns lead,  later in development, to the emergence of 
meaningful motor be hav ior such as rolling over and crawling motions in neonates.

3.4 Six Princi ples of Developmental Robotics

Figure 3.3 shows the six princi ples of developmental robotics, centering two key concepts, 
embodiment and social interaction. Embodiment, or physical embodiment, is a fundamen-
tal constraint for infants ( humans and robots) to learn sensorimotor mapping through interac-
tion with the environment. Related research topics are motor babbling and body repre sen ta tion 
(body schema or body image) through crossmodal association (e.g., Mannella et al. 2018). 
 These topics lead to the emergence of the early concept of the self, often called the “ecologi-
cal self ” (Neisser 1994) through embodied, situated, and enactive development. The ecologi-
cal self is also called the temporary self or, according to Gallagher (2000), the minimal self, 
involving a sense of agency or a sense of owner ship of motion.

The early stage of social interaction can be observed as infant- caregiver interaction. 
Intrinsic motivation and social- learning instinct (Baldassarre and Mirolli 2013; Ishihara 
et al. 2011) inside the agents play impor tant roles in developing vari ous behavioral and 
cognitive functions, such as imitation (e.g., gesture, vocalization, and joint attention), turn 
taking, and so on.

 Table 3.1
Infant developmental be hav ior and learning targets

Month— be hav ior Learning targets

5 hand regard Forward and inverse models of the hand
6 fin ger the another’s face Integration of visuotactile sensation of the face
7 drop objects and observe the result Causality and permanency of objects
8 hit objects Dynamic modeling of objects
9 drum or bring a cup to mouth Tool use
10 imitate movements Imitation of unseen movements
10 rudimentary sympathy Feel pain and empathy
11 grasp and carry objects to  others Action recognition and generation, cooperation
12 pretend  Mental simulation

Source: Adapted from Asada et al. 2009.
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Both phyloge ne tic and ontoge ne tic interactions occur during the above developmental pro-
cesses. Innate functions are regarded as assumptions, and learning targets are set at each stage 
of development. The learning results become the assumptions for the next stage of learning, 
and vice versa— that is, the assumptions at the current stage might be the results of learning 
during the previous stage. Thus, nonlinear stagelike learning develops (Lee et al. 2007).

Developmental pathways are diverse, from typical development to aty pi cal, and this 
also holds true for developmental robots.  These pathways are expected to share several 
key points that enable social interactions from dif fer ent pathways, and learning continues 
beyond dif fer ent stages in terms of a lifelong scale as a  whole. It is an online, open- ended, 
cumulative learning pro cess.

Thelen and Smith (1994) proposed the dynamical systems approach as a developmental 
psy chol ogy theory, and several computational- modeling methods attempt to reproduce 
nonlinear, dynamic developmental pro cesses of coupled interactions involving the classi-
cal nature- nurture issue.

In the following sections, we  will describe in detail the six key defining princi ples of 
developmental robotics, as proposed in Cangelosi and Schlesinger (2015). The pre sen ta-
tion of each princi ple  will refer to certain seminal developmental psy chol ogy studies and 
related developmental robotics models.

3.4.1 Dynamical Systems Development

In mathe matics, a dynamical system is characterized by complex changes, over time, in the 
phase state that result from the self- organization of multifaceted interactions between the 
system’s variables. The complex interaction of nonlinear phenomena results in the produc-
tion of unpredictable states of the system, often referred to as emergent states. In child psy-
chol ogy this concept has been borrowed by Thelen and Smith (1994) to explain child 

Dynamical systems development

Social interaction

Embodiment

Phylogenetic
and ontogenetic

interaction

Embodied, situated, and
enactive development

Nonlinear, stage-like development

Online, open-ended, cumulative learning

Intrinsic
motivation and
social learning

instinct

Figure 3.3
Princi ples of developmental robotics.
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development as the emergent product of the intricate and dynamic interaction of many 
decentralized and local interactions related to the child’s growing body and brain and the 
environment. Thus, Thelen and Smith have proposed that the development of a child should 
be viewed as change within a complex dynamic system, where the growing child can gener-
ate novel be hav ior through interaction with the environment, and  these behavioral states vary 
in their stability within the complex system.

One key concept in this theory is that of multicausality— for example, in the case when 
one be hav ior, such as crawling and walking, is determined by the simultaneous and dynamic 
consequences of vari ous phenomena at the level of the brain, body, and environment. Thelen 
and Smith analyzed the dynamic changes in crawling and walking as an example of mul-
ticausality changes in the child’s adaptation to the environment, in response to body growth. 
When the child’s body configuration produces sufficient strength and coordination to 
support them through the hands and knees posture but is not strong enough for upright 
walking, the child  settles for a crawling strategy to locomote in the environment. But when 
the infant’s body growth results in stronger and more stable legs, the standing and walking 
be hav ior emerges as the stable developmental state, which as a consequence destabilizes, 
and gradually stops, the pattern of crawling. This demonstrates that the locomotion be hav ior 
is the result of self- organizing dynamics of decentralized  factors such as the child’s chang-
ing body (stronger legs and better balance) and its adaptation to the environment.

Another key concept in the dynamical systems view of development is that of nested 
timescales. That is, neural and embodiment phenomena act at dif fer ent timescales and 
affect development in an intricate, dynamical way. For example, the dynamics of the very 
fast timescale of neural activity (milliseconds) is nested within the dynamics of the other 
slower timescales, such as action- reaction time (seconds or hundreds of milliseconds), 
learning ( after hours or days), and physical body growth (months). One of the best- known 
developmental psy chol ogy examples used by Thelen and Smith to demonstrate the com-
bined effects of the concepts of multicausality and nested timescales is that of the A- not- B 
error. This example is inspired by Piaget’s object permanence experiment, when one toy 
is repeatedly hidden  under a lid at a location A (right) during the first part of the experi-
ment and then,  toward the end of the task, is hidden in a location B (left) for a single trial, 
and the child is asked to reach for the object. While infants older than twelve months have 
no prob lem in reaching for the toy in its correct location B, unexpectedly, most eight- to- 
ten- month- old  children err in looking for the object in location A. Although psychologists 
such as Piaget have used explanations based on age (stage) differences linked to qualitative 
changes in the ability to represent objects and space, a computational simulation of the 
dynamical system model (Thelen et al. 2002) has demonstrated that many decentralized 
 factors (multicausality) and timing manipulations (nested timing) affect such a situation. 
 These, for example, depend on the time delay between hiding and reaching, the properties 
of the lids on the  table, the saliency of the hiding event, and the past activity of the infant 
and their body posture.

The use of a dynamical system approach as a theory of development has had significant 
influence in developmental robotics research, as well as in other cognitive robotics areas 
(Beer 2000; Nolfi and Floreano 2000). This theory has been applied, for example, to 
developmental robotics models of early motor development, as in Mori and Kuniyoshi’s 
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(2010) simulation on the self- organization of body repre sen ta tion and general movements 
in the fetus and newborn. In Meola et al. (2015) and Mannella et al. (2018), the initial 
dynamical movements of a robot, analogous to Piaget’s circular reactions,  were progres-
sively  shaped into purposeful actions. Additionally, a developmental robotics model of 
early word learning (Morse et al. 2010) uses a similar setup to the A- not- B error to inves-
tigate dynamic interactions between embodiment  factors and higher- order language devel-
opment phenomena. Tani (2016) also showed approaches to neurorobotics based on the 
idea of dynamical systems.

3.4.2 Embodied, Situated, and Enactive Development

Chapter 1 has already discussed the role of embodiment in robot design. In addition, two 
more concepts have influenced developmental robotics models. One is the role of interaction 
between the body and its environment (situatedness), and the other looks at the organ-
ism’s autonomous acquisition of a model of the world through sensorimotor interactions 
(enaction).

Ziemke (2001) and Wilson (2002) analyzed dif fer ent views of embodiment and their 
consideration in computational models and psy chol ogy experiments.  These views ranged 
from considering embodiment as the phenomenon of “structural coupling” between the 
body and the environment to the more restrictive “organismic” embodiment view based 
on the autopoiesis of living systems— that is, that cognition actually is what living systems 
do in interaction with their world (Varela et al. 1992). Along the same lines, the paradigm 
of enaction highlights the fact that an autonomous cognitive system interacting in its 
environment is capable of developing its own understanding of the world and generating 
its own models of how the world works (Vernon 2010; Stewart et al. 2010).

Embodied and situated intelligence has significantly influenced developmental robotics, 
and practically any developmental model places  great emphasis on the relation between the 
robot’s body, brain, and environment. Embodiment effects concern pure motor capabilities 
(morphological computation) as well as higher- order cognitive skills such as language 
(grounding) and imagination. Hoffmann et al. (2010) surveyed vari ous approaches to body 
repre sen ta tions in robotics. Among them, body image/schema acquisition by Yoshikawa 
et al. (2002), Fuke et al. (2007), and Hikita et al. (2008) focused on crossmodal association 
and self- organizing maps, both of which are power ful methods in developmental robotics. 
Yamada et al. (2016) showed a brain- body interaction in the fetus utilizing 2.6 million spike 
neurons and a realistic musculoskeletal model, although it was computer simulation.

On the other end, an example of the role of embodiment in higher- order cognitive functions 
can be seen in models of the grounding of words in action and perception (Cangelosi 2010; 
Morse et al. 2010), the relationship between spatial repre sen ta tion and numerical cognition 
in psy chol ogy and developmental robotics (Rucinski et al. 2011; see also chapter 22), and the 
relationship between sensorimotor be hav ior and imagination pro cesses (Seepanomwan et al. 
2015).

3.4.3 Intrinsic Motivation and Social- Learning Instinct

Developmental robotics explores methods for designing intrinsically motivated agents and 
robots who can define their own goals and value systems (see chapter 13; Baldassarre and 
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Mirolli 2013). An intrinsically motivated robot explores its environment in a completely 
autonomous manner by deciding for itself what it wants to learn and what goals it wants 
to achieve. In other words, intrinsic motivation enables the agent to construct its own value 
system.

The concept of intrinsic motivation is inspired by a variety of be hav iors and skills that 
begin to develop in infancy and early childhood, including diverse phenomena such as 
curiosity, surprise, novelty seeking, and the “drive” to achieve mastery. Oudeyer et al. 
(2007) proposed a framework for organ izing research on models of intrinsic motivation, 
including two major categories: 1) knowledge- based approaches ( later subdivided into 
novelty- based and prediction- based approaches; Barto et al. 2013) and 2) competence- based 
approaches. Within this framework, a large number of algorithms can be defined and sys-
tematically compared.

Novelty- based approaches to intrinsic motivation study robots that learn about their envi-
ronments by exploring and discovering unusual or unexpected features. A useful mechanism 
for detecting novelty is habituation: the robot compares its current sensory state to past 
experiences, devoting its attention to situations that are unique or dif fer ent (e.g., Vieira Neto 
and Nehmzow 2007).

Prediction- based approaches use knowledge- based intrinsic motivation to explic itly 
attempt to predict  future states of the world (Schmidhuber 2010). The rationale of this 
approach is that incorrect or inaccurate predictions provide a learning signal— that is, they 
indicate events that are poorly understood and require further analy sis and attention. As 
an example of this approach, Oudeyer et al. (2005) describe the playground experiment, 
in which the Sony AIBO robot learned to explore and interact with a set of toys in its 
environment.

The third approach to modeling intrinsic motivation is competence based. The robot is 
motivated to explore and develop skills that effectively produce reliable consequences 
(Barto et al. 2004; Santucci et al. 2016). A key ele ment of the competence- based approach 
is contingency detection (Jacquey et al. 2019): this is the capacity to detect when one’s 
actions have an effect on the environment. While the knowledge- based approaches moti-
vate the agent  toward discovering properties of the world, the competence- based approach, 
in contrast, motivates the agent to discover what it can do with the world.

Child development research has shown the presence of social- learning capabilities 
(instincts). This is evidenced, for example, by observations that newborn babies instinctu-
ally imitate the be hav ior of  others from the very first day of life and can imitate complex 
facial expressions (Meltzoff and Moore 1977). Moreover, comparative psy chol ogy studies 
have demonstrated that eighteen- to- twenty- four- month- old  children have a tendency to 
cooperate altruistically, a capacity not observed in chimpanzees (Warneken et al. 2006).

Developmental robotics places a heavy emphasis on social learning; vari ous robotics 
models of joint attention, imitation, and cooperation have been tested. Nagai et al. (2003b, 
2006) showed the early developmental model of joint attention, and Sumioka et al. (2010) 
proposed a contingency model for joint attention. Asada (2016) reviewed modeling approaches 
to early vocal development through infant- caregiver interaction. Imitation and cooperation 
have been other hot topics in general, with representative studies introduced by Cangelosi 
and Schlesinger (2015).
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3.4.4 Phyloge ne tic and Ontoge ne tic Interaction

Two dif fer ent timescales must be considered in developmental robotics: 1) the ontoge ne tic 
phenomena of learning, over a timescale of hours or days, with maturational changes 
occurring for periods of months or years and 2) the phyloge ne tic phenomena of evolution-
ary changes. Therefore, the additional implication of the interaction between ontoge ne tic 
and phyloge ne tic phenomena should be considered in developmental robotics models of 
development.

The  whole pro cess of development can be observed as a heterogeneous interaction 
between phyloge ne tic constraints and ontoge ne tic pro cesses. Therefore, the issues are not 
a  simple dichotomy of “nature versus nurture.” Ridley (2003) reframed this dichotomy in 
terms of “nature via nurture.” Although it has been said that “ontogeny recapitulates phy-
logeny,” it does not seem so  simple. Both pro cesses are highly intertwined and show a 
broad and dynamic landscape as a result.

Maturation refers to changes in the anatomy and physiology of both the child’s brain 
and body, especially during the first years of life. Maturational phenomena related to the 
brain include the decrease of brain plasticity during early development and the gradual 
hemispheric specialization and pruning of neurons and connections (Abitz et al. 2007). 
Brain maturation changes have also been evoked to explain the critical period in learning. 
Critical periods are stages (win dows of time) of an organism’s life span during which the 
individual is more sensitive to external stimulation and more efficient at learning. More-
over,  after the critical period has ended, learning becomes difficult or impossible. The 
best- known example of a critical period (aka a “sensitive period”) in ethology is Konrad 
Lorenz’s study on imprinting— that is, the attachment of ducklings to their  mother (or to 
Lorenz), which is only pos si ble within the first few hours of life and has a long- lasting 
effect. In vision research, Hubel and Wisel (1970) demonstrated that the cat’s visual cortex 
can only develop its receptive fields if the animal is exposed to visual stimuli during the 
first few months of life and not when it experiences total visual deprivation as a kitten by 
having its eyes covered.

Maturation in the body of the child is more evident, given the significant morphological 
changes a child goes through from birth to adolescence.  These changes naturally affect 
the motor development of the child, as in Thelen and Smith’s (1994) analy sis of crawling 
and walking. Morphological changes occurring during development also have an implica-
tion for the exploitation of embodiment  factors, as discussed in 3.4.2.

Some developmental robotics models have explic itly addressed the issue of brain and 
body maturation changes. For example, the study by Schlesinger et al. (2007) modeled 
the effects of neural plasticity in the development of object perception skills.

Ontoge ne tic changes due to maturation and learning have impor tant implications for the 
interaction of development with phyloge ne tic changes due to evolution. Body morphology 
and brain plasticity variations can in fact be explained as evolutionary adaptations of the 
species to changing environmental contexts.  These phenomena have been analyzed in terms 
of ge ne tic changes affecting the timing of ontoge ne tic phenomena, known as heterochronic 
changes (McKinney et al. 1991). Heterochronic changes have been used to explain the 
complex interaction between nature and nurture in models of development, as in Elman 
et al.’s (1996) proposal that the role of ge ne tic  factors in development is to determine the 
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architectural constraints, which subsequently control learning. Such constraints can be 
explained in terms of brain adaptation and neurodevelopmental and maturational events.

The interaction between ontoge ne tic and phyloge ne tic  factors has been investigated 
through computational modeling. For example, Hinton and Nowlan (1987) and Nolfi et al. 
(1994) have developed simulation models explaining the effects of learning in evolution, 
as in the Baldwin effect. Cangelosi (1999) tested the effects of heterochronic changes in 
the evolution of neural network architectures for simulated agents. Furthermore, the mod-
eling of the evolution of varying body and brain morphologies in response to phyloge ne tic 
and ontoge ne tic requirements is also the goal of the “evo- devo” computational approach. 
This aims to simulate the simultaneous effects of developmental and evolutionary adapta-
tion in body and brain morphologies (e.g., Stanley and Miikkulainen 2003; Kumar and 
Bentley 2003; Pfeifer and Bongard 2006).

Developmental robotics models are normally based on robots with fixed morphologies and 
cannot directly address the simultaneous modeling of phyloge ne tic changes and its interaction 
with ontoge ne tic morphological changes. However, vari ous epige ne tic robotics models take 
into consideration the evolutionary origins of the ontoge ne tic changes of learning and matura-
tion, especially for studies including changes in brain morphology. Nagai et al. (2006) com-
pared per for mances in terms of the timing pa ram e ter that controls the learning phase for joint 
attention. One is a fixed time schedule in which the learning phase shifts to the next one 
(phyloge ne tic constraint), and the other depends on the learning result— that is, shifting to the 
next learning phase if the target of the current learning phase is achieved (ontoge ne tic con-
straint).  Because this is a case of brain maturation, the fixed time schedule for the timing 
pa ram e ter could be arbitrary, allowing the designer to tune anyway. However, in the case of 
body maturation it may interfere with the learning pro cess, accelerating or decelerating the 
pro cess to some extent. This seems to be a typical case of a heterogeneous interaction between 
the phyloge ne tic and ontoge ne tic pro cesses. Although the brain maturation pro cess was not 
clearly described, Yamada et al. (2010) showed two kinds of computer simulations for the 
fetus and the infant that indicated body maturation.

3.4.5 Nonlinear, Stagelike Development

The lit er a ture on child psy chol ogy has plenty of theories and models proposing a sequence 
of developmental stages. Each stage is characterized by the acquisition of specific behavioral 
and  mental strategies, which become more complex and articulated as the child progresses 
through  these stages. Piaget’s (1952) four stages of development of thought is the prototypi-
cal example of a theory of development centered on stages. Numerous other examples of 
stage- based development exist (Courage and Howe 2002; Butterworth and Jarrett 1991).

In most theories, the transition between stages follows nonlinear, qualitative shifts. In 
the example of Piaget’s four stages, the  mental schemas used in each stage are qualitatively 
dif fer ent, as they are the results of accommodation pro cesses that change and adapt the schema 
to new knowledge repre sen ta tions and operations. Another well- known developmental theory 
based on qualitative changes during development is the representational- redescription model 
of Karmiloff- Smith (1995). Her model assumes four levels of development  going from the 
use of implicit repre sen ta tion to dif fer ent levels of explicit knowledge- representation strate-
gies. When a child learns new facts and knowledge about specific domains, they develop 
new repre sen ta tions, which are gradually “redescribed” and increase the child’s explicit 
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understanding of the world. This has been applied to a variety of knowledge domains such 
as physics, math, and language.

The nonlinearity of the developmental pro cess, and the qualitative shifts in the  mental 
strategies and knowledge repre sen ta tions employed by the child at dif fer ent stages of 
development, has been extensively investigated through U- shaped learning- error patterns 
and the vocabulary spurt phenomenon— that is, the sudden growth of the vocabulary  after 
a slow word- acquisition stage (Elman et al. 1996).

Many developmental robotics studies aim to model the progression of stages during the 
robot’s development, with some directly addressing the issue of nonlinear phenomena in 
developmental stages as a result of learning dynamics. Ogino et al. (2006) proposed an 
active lexicon- acquisition method based on curiosity to partially model the vocabulary 
spurt phenomenon. Nagai et al. (2003a) explic itly modeled the joint attention stages pro-
posed by Butterworth and Jarrett (1991). However, the model shows that qualitative 
changes between  these stages are the result of gradual changes in the robot’s neural and 
learning architecture, rather than ad hoc manipulations of the robot’s attention strategies. 
Some models have also directly addressed the modeling of U- shaped phenomena, such as 
the Morse et al. (2011) model of error patterns in phonetic pro cessing. Asada (2015) pro-
posed a conceptual model for the development of artificial empathy that shows a stagelike 
development starting from emotional contagion through emotional/cognitive empathy to 
sympathy/compassion. Lee et al. (2007) proposed the lift constraint, act, and saturate method 
for which robots can develop increasingly complex skills by “saturating” the acquisition of 
knowledge at a certain level of competence and thus release the possibility of learning at a 
more complex level.

3.4.6 Online, Open- Ended, Cumulative Learning

 Human development is characterized by online, crossmodal, continuous, open- ended learning. 
“Online” refers to the fact that learning happens while the child interacts with the environment 
and not in an off- line mode. “Crossmodal” refers to the fact that dif fer ent modalities and 
cognitive domains are acquired in parallel by the child and interact with each other. “Continu-
ous” and “open- ended” refers to the fact that learning and development do not start and stop 
at specific stages but rather are lifelong learning experiences (Baldassarre and Mirolli 2013).

Online learning is currently implemented in developmental robotics. However, the appli-
cation of crossmodal, cumulative, open- ended learning, which can lead to cognitive boot-
strapping phenomena, has been investigated less frequently. Most of the current models 
typically focus on the acquisition of only one task or modality (perception, or phonetics, or 
semantics, and so on), and few consider the parallel development, and interaction, between 
modalities and cognitive functions. Thus, a truly online, crossmodal, cumulative, open- ended 
developmental robotics model remains a fundamental challenge for the field.

3.5 Conclusion

The numerous philosophical consideration and research issues, challenges, and princi ples 
discussed have led to the creation of numerous developmental robotics models exploring 
a wide range of behavioral and cognitive skills. In many of the chapters of part III, which 
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focus on cognitive robotics models of specific sensorimotor and cognitive functions, we 
 will see further examples of developmental robotics models and experiments. For example, 
chapter 13 is largely based on developmental approaches, and chapter 18 and 20 pre sent 
vari ous developmental robotics models of social and linguistic skills.

Additional Reading and Resources

•  The most comprehensive overview of the field of developmental robotics: Cangelosi, 
Angelo, and Schlesinger, Matthew. 2015. Developmental Robotics: From Babies to Robots. 
Cambridge, MA: MIT Press.
•  Seminal review paper on the initial theoretical issues and pioneering models of baby 
robots: Asada, Minoru, Koh Hosoda, Yasuo Kuniyoshi, Hiroshi Ishiguro, Toshio Inui, Yuich-
iro Yoshikawa, Masaki Ogino, and Chisato Yoshida. 2009. “Cognitive Developmental Robot-
ics: A Survey.” IEEE Transactions on Autonomous  Mental Development 1 (1): 12–34.
•  A rich theoretical and computational analy sis of princi ples and models of cognitive and 
developmental robotics: Tani, Jun. 2016. Exploring Robotic Minds: Actions, Symbols, and 
Consciousness as Self- Organizing Dynamic Phenomena. Oxford: Oxford University Press.

Notes

1.  Substance dualism, material- centered dualism, spiritual dualism, classical dualism, and so on, https:// www 
. iep . utm . edu / dualism / .
2.  Wikipedia, “Giambattista Vico,” https:// en . wikipedia . org / wiki / Giambattista _ Vico.
3.  Wikipedia, “Kantian Ethics,” https:// en . wikipedia . org / wiki / Kantian _ ethics.
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4.1 Introduction

Evolutionary robotics (Nolfi and Floreano 2000; Nolfi et al. 2016; Nolfi, 2021) is a method 
that allows the creation of robots capable of developing the ability to perform one or more 
functions as a result of an adaptation pro cess analogous to natu ral evolution.

Robots are considered to be autonomous artificial organisms that adapt in close interaction 
with the environment without  human intervention. The role of the experimenter is  limited 
to the specification of the fitness function— that is, the criteria used to evaluate the per for-
mance level of the robots— and to the specification of the characteristics of the robots that 
are not subjected to the adaptive pro cess. The remaining characteristics are encoded in a 
vector of par ameters (genotype) and evolved through an evolutionary algorithm (Rechenberg 
1973; Goldberg and Holland 1988). In the majority of cases, the evolving robots are provided 
with neural network controllers. The connection weights of the network, which determine 
the be hav ior of the robot, are encoded in the genotype and evolved. Eventually, the archi-
tecture of the neural network (Stanley and Miikkulainen 2002; Durr, Mattiussi, and Floreano 
2006) and/or the morphology of the robot can be encoded in the genotype and evolved (Sims 
1994; Lipson and Pollack 2000; Auerbach and Bongard 2012; Hiller and Lipson 2012).

The evolutionary pro cess is realized by creating an initial population of genotypes 
generated randomly and then repeating the following steps for a certain number of genera-
tions: 1) create a population of robots with the characteristics specified in the correspond-
ing genotypes, 2) allow the robots to interact with their environment for a finite amount 
of time and calculate a scalar value (fitness) that rates the per for mance of each robot with 
re spect to a given prob lem, and 3) create a new population of genotypes composed of 
copies with random variations of the genotypes of the fittest robots.

An impor tant aspect to consider is that the utilization of a fitness function that rewards 
the robot for performing a given function— for example, foraging— can drive the develop-
ment of several behavioral and cognitive capacities that are instrumental to the achievement 
of that function, such as avoiding obstacles and dangers, orienting and navigating in the 
environment, discriminating relevant objects, integrating sensory information over time and 
 later using it to appropriately regulate the robot’s be hav ior, and so on. The analy sis of the 

4 Evolutionary Robotics

Stefano Nolfi

Downloaded from http://direct.mit.edu/books/book-pdf/2239475/book_9780262369329.pdf by guest on 30 September 2024



60 S. Nolfi

way in which  these capacities are realized and integrated in evolving robots can provide 
valuable information from the perspective of modeling the organ ization and the develop-
ment of similar capacities in natu ral systems.

Evolutionary robotics has been applied to the study of a wide range of phenomena, 
including embodied cognition, sensorimotor coordination, integration of behavioral and 
cognitive skills, social and collective be hav iors, internal models, and interaction between 
evolution and learning. In the following sections, I  will describe a few representative 
examples of the work conducted in  these areas.

4.2 Evolving Bodies and Brains: Morphological Computation

The behavioral and cognitive skills of robots or animals are dynamical properties that 
unfold in time and arise from a large number of interactions between the agent’s ner vous 
system, body, and environment (Chiel and Beer 1997; see also chapter 11). The dynamical 
pro cess originating from the interactions depends on the characteristics of the agent’s body 
and brain. This implies that varying the characteristics of the body and/or of the brain can 
shape the dynamical pro cess.

An example of be hav ior that can be realized by shaping the characteristics of the body 
or of the brain is walking on a declining plane. Indeed, it can be produced  either by 
brainless robots with passive joints and carefully designed body morphologies (McGeer 
1990; Collins et al. 2005) or by highly controlled robots lacking the morphological fea-
tures of the former robots (Chestnutt et al. 2005). The term “morphological computation” 
(Pfeifer et al. 2006; Paul 2006; see also chapter 1) has been introduced to indicate pro-
cesses performed by the body that other wise would have to be performed by the brain. 
Solutions exploiting morphological computation are often advantageous in terms of 
energy efficiency and robustness with re spect to alternative solutions (Pfeifer and Bongard 
2006).

The possibility of adapting both the body plan and the control policy of robots permits 
the se lection of solutions that are simpler and more effective within the spectrum of  those 
available— that is, among solutions relying primarily on morphological computation or on 
control. Moreover, it permits the generation of solutions in which the morphological and 
control features are coadapted. Evolutionary robotics constitutes an ideal approach for 
adapting both the policy and the morphology of robots since it is a model- free method 
that does not make any assumption about the structure of the adaptive system. Moreover, 
unlike alternative model- free training methods, it permits the adaptation of any type of 
pa ram e ter, including a combination of qualitatively dif fer ent par ameters. The number of 
body parts forming the body of the robot, the relative position of  these parts, the physical 
properties of each body part, and the characteristics of the joints among body parts can 
be encoded in the genotype and evolved together with the characteristics of the neural 
network of the robot. This is typically realized by using genotypes that encode growing 
rules, which determine how the initial “embryo” grows and differentiates, rather than using 
genotypes that directly encode the property of a fully formed robot.

In a pioneering work in this area, Sims (1994) demonstrated how artificial evolution can 
be used to evolve the morphology and the control policy of simulated creatures capable of 
swimming, walking, and grabbing objects while competing with other creatures. Lipson and 
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Pollack (2000)  later used a similar approach to evolve simulated walking robots that are then 
manufactured using a three- dimensional printer and spare electronic components.

Since that time, this approach has been used for vari ous purposes. For example, Long 
(2012) evolved the stiffness of artificial tails of swimming robots to investigate how back-
bones evolved in early vertebrates. By evolving robots in environments of varying complex-
ity, Auerbach and Bongard (2012) showed how the complexity of the evolved morphology 
correlates with the complexity of the environment. For example, robots evolved to walk on 
irregular terrain develop morphologies that include appendages missing in robots evolved 
over flat terrain. Hiller and Lipson (2012) demonstrated how evolving robots made of cells 
with dif fer ent material properties arranged in evolved topologies can produce a variety of 
locomotion be hav iors.  These be hav iors originate from  simple periodic expansion/contraction 
actions produced by some of the cells and from the physical interactions among the cells 
composing the robot body and among the cells and the environment.  These simulated robots 
composed of multiple cells can then be transformed into artificial living creatures by assem-
bling ectoderm and cardiac stem cells in the same three- dimensional spatial configuration 
(Kriegman et al. 2020). Remarkably,  these artificial living creatures are able to locomote 
and to explore their aqueous environment autonomously for days.

4.3 Sensorimotor Coordination

In agents that are embodied and situated, the role of perception cannot be separated by 
that of action and vice versa. What an agent perceives is determined by what it does, and 
what an agent does can be determined by what the agent needs to perceive.

The existence of a close link between perception and action draws on a number of distinct 
traditions in philosophy, in psy chol ogy, and in the cognitive sciences. It is at the core of the 
ecological theory of perception developed by Gibson (1979) and of several other fundamen-
tal contributions (Arbib 1989; Varela, Thomson, and Rosh 1991; Maturana and Varela 1987; 
Thelen and Smith 1994; Berthoz 2000; O’Regan and Noë 2001; Noë 2004; Clark 1998, 
1999). The coupling of the sensory and the motor pro cess can be indicated with the term 
“sensorimotor coordination” (Dewey 1981 [1986]).

Evolutionary robotics constitutes an ideal framework for studying the role of sensorimo-
tor coordination in the development of behavioral and cognitive skills. The first reason is 
that the evolutionary pro cess leaves the evolving robots  free to determine the way in which 
they achieve their adaptive goals. Consequently, the robots are  free to coordinate their 
perceptual and action pro cesses in ways that are functional to the achievement of their 
objectives. The second reason is that the evolutionary pro cess is driven by a fitness mea-
sure that rates the overall per for mance of the robot— that is, the sum of rewards obtained 
over an extended evaluation period. This permits variations that enhance the coordination 
between the sensory and action pro cess to be identified and retained regardless of  whether 
the time interval between actions and associated rewards is immediate or delayed.

Indeed, sensorimotor coordination plays a crucial role in practically all experiments 
carried out by evolving robots. The first demonstration was reported in an experiment in 
which a wheeled robot provided with infrared sensors and situated in an arena surrounded 
by walls was evolved for the ability to find and remain near a cylindrical object (Nolfi 1996, 
2005). Interestingly, the evolved robots did not solve the prob lem by internally pro cessing 
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the experienced sensory states in order to discriminate the stimuli corresponding to walls 
and cylinders, a strategy that was actually challenging since the stimuli experienced near 
cylinders and walls strongly overlap in sensory space. They instead solved the task by react-
ing to the stimuli to produce behavioral attractors— that is, oscillatory be hav ior generated 
by alternating move- forward/move- backward and turn- left/turn- right actions, near cylinders 
but not near walls. In other words, they exploited the fact that the execution of the same 
actions has dif fer ent perceptual consequences near walls or cylinders that can lead to the 
production of the two required differentiated be hav iors. This experiment can be replicated 
with the Evorobotpy software tool available from https:// github . com / snolfi / evorobotpy (see 
the instruction for  running the ErDiscrim experiment in Nolfi 2021, chapter 13).

In an extended version of this experiment, in which the robot was provided with proprio-
sensors that encoded the speed of the robot’s wheels, Scheier, Pfeifer, and Kunyioshi (1998) 
observed the evolution of a qualitatively dif fer ent sensorimotor strategy that exploits actions 
to self- select easy- to- interpret stimuli. In this case the evolved robots displayed a wall- 
following be hav ior near walls and cylinders of moving straight along the wall and turning 
around the cylinder, respectively. They then used the perceived offset between the speed of 
the left and right wheel to keep producing the wall- following be hav ior near cylinders and 
to move away from walls. In other words, the robots acted to  later experience favorable 
sensory states. They displayed an initial be hav ior that enabled them to  later experience two 
well- differentiated states on their propriosensors near walls and cylinders.

Qualitatively similar solutions have been observed in more complex robots evolved for 
the ability to solve more challenging prob lems. This is the case, for example, of an experi-
ment in which a simulated iCub robot (Sandini, Metta, and Vernon 2004) was evolved for 
the ability to discriminate  spherical and ellipsoid objects on the basis of rough tactile 
information (Tuci, Massera, and Nolfi 2010). The robot was provided with fourteen motor 
neurons that encoded the torque produced by seven sets of antagonistic muscles controlling 
the seven degrees of freedom (DOFs) of the arm and of the wrist, two motor neurons that 
encoded the desired extension/flexion of the thumb and of the four fin gers, and two motor 
neurons that indicated the category of the object (i.e.,  spherical or ellipsoid). The sensors 
of the robot included eight neurons that encoded the current angular position of the DOFs 
of the arm and of the wrist, five neurons that encoded the extension/flexion of the five 
corresponding fin gers, and ten neurons that encoded the ten touch sensors located on the 
fingertips and on the palm. Touch sensors binarily encoded  whether the corresponding part 
of the robot body collided with another body. The robots  were rewarded for discriminating 
the shape of the objects experienced during multiple evaluation episodes. They  were not 
rewarded for the production of any specific be hav iors and consequently  were left  free to 
select be hav iors that enabled and/or facilitated the discrimination prob lem.

The analy sis of the evolved robots demonstrates that they did indeed develop manipula-
tion be hav iors that enabled them to experience stimuli allowing them to reliably discrimi-
nate the two types of objects despite the similarity of the objects’ shapes and the  limited 
resolution of the touch sensors. The categorization pro cess involves three phases. In the 
first part, the robot manipulates the object by wrapping it with its fin gers and by moving 
the object  until a suitable hand/object posture is reached. The information contained in the 
tactile stimuli experienced during this phase increases and fi nally reaches a high value 
when a hand/object achieves a suitable posture, which remains almost stable in the remain-
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ing part of the episode. During the second phase, the robot starts to produce a categoriza-
tion answer, keeps producing fine manipulation actions, and keeps integrating the sensory 
information experienced by eventually reversing its categorization decision. This contin-
ues during the third phase, in which the categorization decision is no longer reversible.

The solutions discovered by the evolved robots thus fit the dynamical view of cognition 
elaborated by Spivey (2007). The extension of the categorization pro cess over time enables 
the robot to experience useful stimuli and to integrate the conflicting evidence experienced 
over time in order to maximize the accuracy of the categorization decision.

4.4 On the Relation between Reactive and Cognitive Capabilities

Evolutionary robotics can also be used to study the relation and the integration between 
behavioral and cognitive capabilities.

As discussed above, morphological computation and sensorimotor coordination can be 
used to perform pro cesses that the brain would other wise have to perform. The exploitation 
of the interaction between the agent and the environment thus permits reliance on solutions 
that are simpler, from an internal- processing perspective, than solutions that do not rely on 
 these properties. This opens up questions about the relationship between reactive and cogni-
tive capabilities. Do they tend to interact in a synergetic or conflictual manner? And “is 
cognition truly seamless— implying a gentle, incremental trajectory linking fully embodied 
responsiveness to abstract thought and off- line reason? Or is it a patchwork quilt, with jumps 
and discontinuities and with very dif fer ent kinds of pro cessing and repre sen ta tions serving 
dif fer ent needs?” (Clark 1999, 350).

In ter est ing evidence supporting a synergetic relation and a smooth incremental integration 
of reactive and cognitive capabilities has been reported in evolutionary experiments address-
ing the evolution of a robot selected for the ability to navigate in a double T- maze environ-
ment (figure 4.1; Carvalho and Nolfi 2016). The robot, which is initially located in an area 
at the bottom of the central corridor with a randomly varying position and orientation, should 

Figure 4.1
The object- discriminating robot.
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travel  toward a target destination located at one of the four ends of the maze. The correct 
destination is marked by two green objects located in the central corridor. The robot should 
thus solve a time- delay prob lem in which the information experienced while it travels down 
the central corridor should  later influence the direction in which the robot turns when it 
reaches the first and the second junction.

The analy sis of evolving robots indicates that they solve the prob lem with a strategy 
that does not require them to store the information extracted from the green object in 
internal states, recognize the arrival at the first and at the second junction, or turn left or 
right on the basis of the internal states and of the junction. As shown in figure 4.2, the 
trajectories produced during dif fer ent evaluation episodes first converge in the bottom 
portion of the central corridor and then diverge while the robot perceives the position of 
the green objects. The initial convergence enables the robot to reduce the differences 
caused by the varying initial positions and orientations. The divergent pro cess allows the 
robot to enter into one of four separate basins of attraction of robot/environmental dynam-
ics that bring the robot to the right destination— the destination that matches the relative 
position of the two green beacons.

The strategy displayed by evolved robots thus exploits a form of cognitive off- loading— 
that is, the possibility of off- loading an agent’s  future intention into the external environment 
(Gilbert 2015a, 2015b). More specifically, the robot off- loads the information experienced in 
the central corridor by assuming dif fer ent positions and orientations with re spect to the cor-
ridor and by then maintaining such positions/orientations. The relative position of the robot 
in the corridor is then used to turn appropriately left or right at the first and then at the second 
junction. The trajectories displayed in figure 4.2 are produced by a robot that has no memory. 
However, similar strategies are produced by robots with memory— that is, by robots provided 
with recurrent connections in their internal neurons. The possibility of off- loading information 
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Figure 4.2
Trajectories of a typical evolved robot postevaluated for three hundred episodes. The trajectories (shown in 
magenta, blue, yellow, and cyan) indicate  those produced by the robot during episodes in which it should have 
navigated  toward the destination with the corresponding color. The target destination is marked by the relative 
position of the two green objects located to the left or right of the central corridor.
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in the environment is thus preferred to alternative solutions relying on internal pro cessing 
in de pen dently from the availability of memory.

Interestingly, evolving robots subjected to position perturbations, such as being randomly 
moved left or right as a result of “gusts of wind” occurring from time to time, solve the 
prob lem by developing composite strategies that rely on cognitive off- loading to determine 
the motor trajectory and on memory to reenter the appropriate basin of attraction  after a 
position perturbation. This and additional control experiments reported in Carvalho and Nolfi 
(2016) demonstrate how, at least in this domain, reactive strategies do not prevent but rather 
promote the development of cognitive capabilities. Moreover, they illustrate how the devel-
opment of cognitive capacities does not lead to the elimination of preexisting reactive capaci-
ties but rather to their extension.

4.5 Social and Collective Be hav ior

In the previous section, we  limited our analy sis to individual be hav iors—to the evolution 
of robots placed in an environment that does not include other robots. The evolutionary 
method, however, can also be applied to evolve social be hav iors. This can be done simply 
by situating the evolving robots in environments containing other robots.

This scenario has been used to study the conditions that support the evolution of coopera-
tive be hav ior. As expected, cooperative be hav ior readily emerges when a group of interact-
ing robots is formed by genet ically related individuals (e.g., individuals possessing identical 
genotypes) or when se lection operates at the level of the colony or swarm (Floreano et al. 
2007). When instead the individuals forming the colony are not genet ically related and 
se lection operates at the level of individuals, the evolutionary pro cess leads to a dynamic 
in which cooperation periodically emerges and extinguishes (Mitri, Floreano, and Keller 
2009).

The evolution of genet ically related robots readily produces self- organizing 
properties— that is, the spontaneous formation of spatial, temporal, or spatiotemporal 
structures or functions that emerge from local interactions among individual robots and 
that are robust with re spect to environmental variations (Camazine et al. 2001; see also 
chapter 5). For example, Sperati, Trianni, and Nolfi (2011) conducted experiments in 
which a population of wheeled robots was evolved for the ability to forage. The evolving 
robots developed an ability to arrange themselves in dynamic chains that enabled the 
colony to efficiently navigate between a nest and a foraging area.  These dynamic chains, 
which self- sustain in the presence of perturbations, allow robots with  limited individual 
sensory capacities to efficiently navigate to the right destination by discovering and storing 
information on the location of the relevant environmental areas at the level of the colony. 
Another example of self- organized be hav ior has been observed in a population of robots 
capable of self- assembly—in this case, by physically attaching together—to master prob-
lems that cannot be solved by individual robots. Robots evolved for the ability to move 
while attached developed an ability to negotiate a common direction of motion and to keep 
moving along that direction by compensating for misalignments originating during motion 
(Baldassarre et al. 2007). Also in this case, the ability to coordinate and to cooperate was 
robust with re spect to variations in the environmental conditions. Indeed, evolved robots 
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 were capable of coordinating in de pen dently from the configuration in which they  were 
assembled. Moreover, robots evolved in specific environmental conditions demonstrated 
the ability to generalize their skills to new environmental conditions. Such generalization 
capacity included the ability to display new be hav iors adapted to the new experienced 
conditions. For example, robot swarms evolved in an environment with no obstacles 
demonstrated an ability to avoid obstacles and to rearrange their shape to pass through 
narrow passages when situated in a mazelike environment with obstacles (Nolfi 2009).

The evolution of collective be hav ior in robots can also lead to the emergence of task 
specialization— that is, to individuals capable of assuming dif fer ent complementary roles 
that increase the efficacy of the group (Ferrante et al. 2015; Pagliuca and Nolfi 2018).

The evolution of robots selected for the ability to solve a prob lem that benefits from coop-
eration has also been used to study the evolution of communication and language (Cangelosi 
and Parisi 2002; Nolfi and Mirolli 2010; see also chapter 20). In a series of experiments 
reported in De Greef and Nolfi (2010), the authors analyzed the origin and complexification 
of the communication system displayed by evolving robots across generations and the origin 
and transformation of the meaning associated with communication signals.  These analyses 
indicate that the development of communication capabilities is strongly interlinked with the 
evolution of other capabilities. Robots need to develop appropriate be hav iors to access and/
or generate the information to be communicated and to react appropriately to detected signals. 
Interestingly, the development of communication skills scaffolds the development of behav-
ioral skills and vice versa. This leads to the development of integrated capabilities and to a 
progressive complexification of robots’ skills (Nolfi 2013).

Fi nally, evolutionary robotics experiments have been used to explain why reciprocity, 
the reciprocal exchange of episodes of help between two partners, is rare in nature (André 
and Nolfi 2016). This fact contrasts with the predictions generated by game theoretic 
models that reciprocity should evolve easily (Axelrod and Hamilton 1981). As shown by 
André and Nolfi (2016),  these game theoretic models’ predictions are in error  because 
 these methods do not model the mechanisms under lying the generation of be hav ior, a 
limitation that does not affect evolutionary robotics models. Indeed, the experiments 
carried out by evolving robots predict correctly that reciprocity is unlikely to evolve, due 
to the numerous neutral mutations required to generate a reciprocator be hav ior from indi-
viduals that do not reciprocate.

Another line of research has investigated the evolution of social be hav iors in competing 
scenarios— for example, the evolution of a population of robots with conflicting interests. 
The coevolution of competing species such as predator and prey might  favor the synthesis 
of evolutionary innovations. Indeed, “an adaptation in one lineage (e.g., predators) may 
change the se lection pressure on another lineage (e.g., prey), giving rise to a counter- 
adaptation. If this occurs reciprocally, an unstable runaway escalation of ‘arm races’ may 
result” (Dawkins and Krebs 1979, 489; Rosin and Belew 1997). In other words, adapta-
tions on one side call for counteradaptations on the other side, and the counteradaptations 
call for more counteradaptations, and so on, thus producing an escalation pro cess. More-
over, the concurrent evolution of the agents and of the learning environment can lead to 
a spontaneous, progressive complexification of the adaptive prob lem. That is to say, a 
pedagogically sound training pro cess can be produced in which pro gress in one population 
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is accompanied by a gradual complexification of the adaptive task caused by parallel pro-
gress in the competing population (Rosin and Belew 1997).

Evolutionary experiments performed by evolving predator and prey robots (Cliff and 
Miller 1995; Nolfi and Floreano 1998) showed that co- evolution does indeed lead to “arms 
races” that produce a progressive complexification during the initial generations. The evo-
lutionary dynamics, however,  later converge in a limit- cycle dynamic in which pro gress 
against current competitors (local pro gress) is accompanied by retrogression with re spect 
to ancient or  future competitors. Cycling dynamics of this type  were found in natu ral evolu-
tion in a population of side- blotched lizards (Uta stansburiana) by Sinervo and Lively 
(1996) and in Daphnia and associated parasites conserved in lake sediment (Decaestecker 
et al. 2007). More recently, Simione and Nolfi (2017, 2019) showed how long- term global 
pro gress can be produced in controlled ecological conditions— that is, in experiments in 
which the evolving populations are divided into subgroups that normally interact with 
specific subgroups of the competing population and only occasionally with the remaining 
competitors.

4.6 Evolution, Development, and Learning

The basic evolutionary method illustrated in the introduction can be extended to incorpo-
rate development and learning. In the basic method, the pro cess that maps a genotype into 
a robot is completed before the robot starts to interact with its environment. In other words, 
robots are born as fully formed individuals. In extended evolutionary methods, by contrast, 
the developmental pro cess continues during the period in which the robot interacts with 
its environment.

A model described in Bongard (2011), in which the evolving robots developed from an 
anguilliform morphology to a legged morphology while they interacted with the external 
environment, provides an example. The comparison with control experiments, in which 
the robots did not transition through the anguilliform body plan, indicates that morphologi-
cal change accelerates the evolution of robust walking be hav iors. A second example is 
given by a series of experiments reported in Kriegman, Cheney, and Bongard (2018) in 
which soft robots with developmental morphology  were evolved for the ability to move 
over a surface. The analy sis of the interaction between the evolutionary and developmental 
pro cesses in  these experiments enabled the authors to highlight an unknown aspect of 
ge ne tic assimilation— namely, that the traits that render the agents robust to changes in 
other traits have a greater probability of becoming genet ically assimilated in successive 
generations than traits that are less robust to ge ne tic variations.

A model in which the brains of the robots keep developing while the robots operate in 
their environment was studied in Nolfi, Miglino, and Parisi (1994). In this model, the 
evolving robots  were provided with neuron axons that grew and branched by establishing 
connections with other neurons while the robots operated in the environment. As with real 
ner vous systems, the growth pro cess of axons is influenced both by the activity patterns 
of the single neurons and by ge ne tic  factors (Purves 1994; Quartz and Sejnowski 1997). 
This leads to the evolution of robots capable of developing brains adapted to the environ-
ment in which they are situated— for example, to robots that might or might not develop 
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a brain area dedicated to pro cessing light and in which development of the area is triggered 
by the exposure to light (Nolfi, Miglino, and Parisi 1994).

Other works have investigated the combination of evolution and learning (Nolfi and 
Floreano 1999). In  these models the topology of the neural network was fixed, but the 
connection weights varied while the robots interacted with the environment on the basis 
of an unsupervised (Floreano, Durr, and Mattiussi 2008), self- supervised (Nolfi and 
Parisi 1993), or reinforcement- learning algorithm (Schembri, Mirolli, and Baldassarre 
2007). The combination of evolution and learning enables evolving robots to adapt to 
environmental variations that occur within generations. For example, it enables predator 
robots to modify their be hav ior on the fly while interacting with a prey robot to display 
the strategy that is effective against the current encountered prey (Floreano and Nolfi 
1997).

4.7 Internal Models

Evolutionary robotics is a model- free approach, a method that permits the robots to develop 
behavioral and cognitive skills from scratch without the need to rely on a model of the 
external environment and/or the robot’s own self. However, the abilities that the robots 
develop during their adaptation can include the ability to build and use a model of their own 
body, a model of the external environment, and/or a forward model that allows the conse-
quences of the robots’ actions to be predicted.

Bongard, Zykov, and Lipson (2006) give an example of a robot capable of acquiring a 
model of its own body. In this work, a physical robot was equipped with an onboard simu-
lator that it used to continually evolve a model of itself. The model consisted of a three- 
dimensional description of the robot’s own body that enabled it to predict the perceptual 
effects of the actions it could execute without actually performing them. The robot then 
used the model to cope with damages, such as the mechanical separation of a leg. This 
was realized by 1) using the offset between the  actual and predicted consequences of 
actions to diagnose the damage, 2) updating the model of the robot’s own body to reduce 
the offset between the predicted and  actual consequences of the robot’s action, 3) evolving 
a new control policy capable of operating effectively with the damaged body by using a 
 mental simulation, and 4) using the new control policy to keep operating effectively despite 
the damage. The availability of the world model thus permits the evolution of a compensa-
tory policy by using the  imagined effect of variations of the current policy ( mental simula-
tion) as a proxy for the  actual effect of variations.

Cully et al. (2015) showed how the ability to recover from damages or faults can be 
speeded up by learning a behavior- performance map that encodes the correlation between 
the value of the connection weights and the value of fitness. The map can then be used to 
introduce mutations that have a higher chance of producing improvements with re spect to 
random mutations.

Gigliotta, Pezzulo, and Nolfi (2011) demonstrated how a robot subjected to sensory depri-
vation can evolve the ability to react appropriately to sensory stimuli and to self- generate 
states functionally equivalent to sensory stimuli during sensory deprivation phases in which 
stimuli are not available. The be hav ior consists of moving the robot’s eye to foveate consecu-
tive portions of the image located over a circular trajectory. In normal phases, the robot can 
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determine the movement of the eye on the basis of the current perceived color. During blind 
phases, the robot should use self- generated internal states as proxies for missing sensory 
states. The analy sis of the evolved robots indicates that the prob lem is not solved by generat-
ing states that match the missing sensory states. Rather, it is realized by generating internal 
states that elicit the appropriate movements but are not necessarily similar to the states that 
would be experienced in normal conditions.

Fi nally, Ha and Schmidhuber (2018) demonstrated how agents that determine their 
actions on the basis of features extracted from the sensory states, by a neural network 
trained with a self- supervised learning algorithm, outperform agents that determine their 
actions directly on the basis of the features encoded in sensory states. The prob lem consid-
ered consists of learning to drive in a car- racing environment called CarRacing- v0 (Brock-
man et al. 2016). The learning agent receives an image containing a top- down view of the 
car and the environment as input. The features are extracted by 1) a variational autoencoder 
network (Kingma and Welling 2013; Rezende et al. 2014) trained with the ability to encode 
perceived images in compact repre sen ta tions that can be used to reconstruct the original 
image and 2) a long short- term memory (LSTM) network (Hochreiter and Schmidhuber 
1997) trained to predict the compressed state of the next perceived image on the basis of 
the compressed state of the current image and of the action the agent is  going to perform. 
 These two networks are pretrained using the images collected by the agent during several 
evaluation episodes in which the agent moves by performing random actions. The neural 
network controller of the evolving agents, which receives as input the internal state extracted 
by the sensors from the two pretrained networks described above, is evolved by using a 
standard evolutionary method for the ability to drive the car. In a second experiment per-
formed by using the VizDoom game prob lem (Kempka et al. 2016), the authors showed 
that the autoencoder and LSTM prediction network described above can be used to evolve 
the agents in virtual worlds  imagined by the agents themselves. The solutions evolved in 
 these  imagined worlds can then be successfully used to control the agent of a real VizDoom 
game.

4.8 Evolution as a Form of Learning

The evolutionary method can also be used to model ontoge ne tic learning (Schlesinger 
2004). This is  because the evolutionary algorithm constitutes one of the simplest yet most 
effective ways to evolve an embodied neural network through a trial- and- error pro cess 
based on distal rewards. An example is illustrated in experiments in which an iCub human-
oid robot (Sandini, Metta, and Vernon 2004) trained through an evolutionary method devel-
ops reaching and grasping skills analogous to  those displayed by  human infants from two 
to eigh teen months of age (Savastano and Nolfi 2013). During this period, infants display 
a first transition from sweeping and unsuccessful arm movements to primitive, imprecise 
reaching and grasping be hav iors and then a second transition leading to integrated and 
effective reaching and grasping be hav iors (Konczak et al. 1995; Konczak, Borutta, and 
Dichgans 1997; Konczak and Dichgans 1997; von Hofsten and Rönnqvist 1993; Spencer 
and Thelen 2000).

As illustrated in figure 4.3 (left), the robot is set in an upright position in front of a suspended 
object. This setting is similar to that used by Hofsten (1982) to analyze the development of 
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reaching and grasping be hav ior in infants (figure 4.3, center and right). The training of the 
robot is realized in three phases: 1) a prereaching phase in which the robot has  simple prewired 
reflex be hav iors, low visual acuity, and an immature ner vous system; 2) a gross- reaching 
phase in which the robot has improved visual acuity and matured cortical areas; and 3) a 
fine- reaching phase in which the robot has access to perceptual information that encodes the 
relative position of the object with re spect to the hand.

The analy sis of the experiments shows that the lack of internal neural resources during the 
prereaching phase has an adaptive role (i.e., channels the developmental pro cess  toward better 
solutions during the gross- reaching phase) and a bias role (i.e., represents a necessary condi-
tion for the emergence of the exploratory motor- babbling be hav ior). This suggests that the 
 later involvement of cortical areas (Martin 2005) can play an adaptive role in  humans and 
might have evolved to accomplish this function. Moreover, analy sis of the be hav ior displayed 
by the robots during the course of the training pro cess shows that the following phenomena 
observed in infants originate spontaneously: 1) a reduced use (freeze) of the distal DOFs of 
the arm of the robot during the prereaching phase, 2) an exploratory (motor- babbling) be hav ior 
during the prereaching phase, and 3) a temporal regression of the reaching capabilities at the 
onset of the fine- reaching phase. The fact that  these qualitative variations emerge spontane-
ously indicates that they do not necessarily reflect the presence of additional specific matu-
rational constraints. They can be the manifestation of a general self- structuring pro cess that 
operates by temporarily reducing the complexity of the motor space, of the sensory space, 
and of the relevant task space, respectively.

In contrast to reinforcement- learning algorithms (Sutton and Barto 2018) that represent 
the most common choice to model trial- and- error learning, evolutionary algorithms pre sent 
advantages and drawbacks. The advantages include the possibility of adapting all the char-
acteristics of the robot, including the robot’s morphology and the architecture of the robot’s 
neural network and the ability to operate well in the presence of sparse reward. Reinforcement- 
learning algorithms, on the other hand, are generally more sample efficient.

The development of new evolutionary algorithms that operate by estimating the local 
gradient (Hansen and Ostermeier 2001) and eventually rely on stochastic gradient optimiz-
ers to vary the adaptive par ameters (Salimans et al. 2017) makes the usage of evolutionary 
methods even more attractive. Indeed, although  these gradient- ascent methods can also 
operate on populations that include multiple parents, they are typically used with popula-

Figure 4.3
The simulated setting (left) is derived from experiments carried out on infants (center and right) by von Hofsten 
(1982).
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tions composed of a single parent producing several offspring. The evaluation of the 
offspring is used to estimate the local gradient, which in turn is used to vary the par ameters 
of the parent. This implies that, as in ontoge ne tic learning, the adaptation pro cess is real-
ized by varying the par ameters of a single individual.

As demonstrated by Salimans et al. (2017), modern evolutionary methods represent a 
scalable alternative to the state- of- the- art reinforcement- learning algorithm (Schulman 
et al. 2015, 2017). Indeed, they can be used to adapt neural network controllers with mil-
lions of par ameters by achieving results that are competitive with reinforcement- learning 
methods. The results have been collected on state- of- the- art benchmarking prob lems: the 
Mujoco control prob lems that require controlling articulated robots (Todorov, Erez, and 
Tassa 2012) and the Atari games that require controlling game players that receive as input 
the images of the console (Bellemare et al. 2013).

4.9 Conclusion

Evolutionary robotics is not only a method for automatic robot development inspired by 
biology but also a tool for investigating open questions concerning natu ral systems such 
as, for example, the role of embodiment in cognition, the origins of symbolic communica-
tion, the relation between behavioral and cognitive capacities, and the mechanisms sup-
porting the development of cooperative be hav iors.

Despite initial skepticism demonstrated by representatives of mainstream disciplines 
and even by pioneers of the approach (Matarić and Cliff 1996), over the years an increas-
ing number of researchers from a wide range of disciplines have  adopted the method. The 
richness and fecundity of the approach combined with the novel opportunities granted by 
recent methodological pro gress suggest that it  will continue to play an impor tant role in 
the  future.

Readers interested in acquiring hands-on knowledge on evolutionary robotics can access 
freely available tools that permit the replication of standard experiments and the design 
of new experiments (see Auerbach et al. 2014; Massera et al. 2014; Nolfi 2021; see also 
https:// github . com / snolfi / evorobotpy).

Additional Reading and Resources

•  A recent review of the field: Nolfi, S., J. Bongard, P. Husbands, and D. Floreano. 2016. 
“Evolutionary Robotics.” In Springer Handbook of Robotics, edited by Bruno Siciliano 
and Oussama Khatib, 1423–1541. 2nd ed. Berlin: Springer Verlag.
•  An article that illustrates in more detail the complex adaptive system nature of be hav ior 
and cognition in embodied agents: Nolfi, S. 2009. “Be hav ior and Cognition as a Complex 
Adaptive System: Insights from Robotic Experiments.” In Handbook of the Philosophy of 
Science. Volume 10: Philosophy of Complex Systems, edited by C. Hooker. General editors: 
Dov M. Gabbay, Paul Thagard, and John Woods. San Diego: Elsevier.
•  A more detailed review of the field: Nolfi, S., and D. Florean, Evolutionary Robotics: 
The Biology, Intelligence, and Technology of Self- Organizing Machines. Cambridge, MA: 
MIT Press, 2000.
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•  Evorobotpy (Nolfi 2021; https:// github . com / snolfi / evorobotpy2) is a  simple and well- 
documented tool that can be used to perform evolutionary robotics experiments. The 
associated documentation (Nolfi 2021, chap. 13) includes tutorials and exercises.
•  Farsa (Massera et al. 2014; https:// sourceforge . net / projects / farsa / ) is another software 
tool that can be used to conduct evolutionary robotics experiments.
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5.1 Introduction

Swarm robotics is the study of how in de pen dent robots can interact as a group, giving rise 
to collective be hav iors that a single such robot could not achieve on its own (Dorigo et al. 
2014; see figure 5.1). The field can be considered an application of swarm intelligence, 
as defined by Bonabeau et al. (1999), and its approaches to robot control are typically based 
on princi ples of self- organization (Hamann 2018b). Swarm robotics is studied in pursuit 
of the oft- cited benefits that distributed or self- organized control can provide, in par tic u lar: 
robustness, flexibility, and scalability.

5.1.1 What Is a Swarm?

A swarm is a system of agents,  whether natu ral or artificial, in which the characterizing 
be hav iors occur at the group level rather than the individual level. An agent (e.g., a particle, 
insect, person, or robot), as defined by Russell and Norvig (2016), is “just something that 
acts,” and typically, it acts autonomously. Though systems of agents may show swarm 
be hav iors that vary considerably,  these be hav iors are unified by their characteristic level 
of organ ization.

Swarm be hav iors are not or ga nized by a central entity that dictates instructions to indi-
viduals and likewise are not directly or ga nized by the individuals themselves. Rather, swarm 
be hav iors arise from the complex nonlinear dynamics of local interactions occurring in a 
distributed and decentralized system. Such dynamics are studied in many fields (cf. Bar- 
Yam 1997), being both observed in natu ral systems and developed in artificial ones. In 
nonliving systems studied in physics, self- organization can, for instance, be observed in 
Rayleigh- Bénard convection— wherein heating a fluid layer from below induces the forma-
tion of regular cellular patterns—or in self- organized criticality, which is seen, for example, 
in the power- law probability distribution of avalanche sizes. Swarm be hav iors are notably 
widespread in biology— for instance, in social organisms. They include mobility be hav iors 
such as flocking birds or marching locusts and spatial manipulation be hav iors such as 
foraging in ants and honeybees or construction in termites and wasps. Artificial swarm 
be hav iors have been studied for a broad range of tasks, including foraging (Pinciroli et al. 
2012; see also the link in the additional resources section), object retrieval (Dorigo et al. 
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2013), and construction (Werfel et al. 2014), and recently have even been investigated for 
hybridization with natu ral systems (Hamann et al. 2017). Although real- world artificial 
swarms have rarely been deployed according to publicly available information, recent 
exceptions—in par tic u lar the NASA (2015) swarms of nanosatellites— suggest their appli-
cation may become more common.

 Because the be hav iors that characterize a swarm occur at the group level, they can only be 
observed with a minimum of three agents, and many swarm be hav iors  will require far more. 
A precise definition of swarm size, as provided by Beni (2004), would be a system that is 
best represented as a multi- body prob lem, as it is respectively too large and too small for its 
dynamics to be well described as a few- body prob lem or by mean- field approximation.

5.1.2 Self- Organization and the Micro- Macro Link

Self- organization is the mechanism by which macroscale (i.e., global or systemwide) spatial 
and temporal structures can generate from microscale (i.e., local or peer- to- peer) interactions. 
In physical and biological systems, it can be observed in Rayleigh- Bénard convection, cell 
differentiation and embryogenesis, or pigmentation patterns in animals. In self- organizing 
systems, the macrostructures may generate from a combination of short- range and long- range 
interactions, as seen in reaction- diffusion models of biological activation- inhibition mecha-
nisms (Meinhardt and Gierer 2000).

In swarm robotics, the link between micro-  and macroscale occurs not directly but via 
self- organization. Actions of individual robots (i.e., microscale, or local) are typically 
primitive and involve a high degree of uncertainty, as they are informed only by  limited 
knowledge and by short- range sensing and communication (see section 5.2). By contrast, 
collective actions of the robot swarm (i.e., macroscale, or global) are more sophisticated 

Figure 5.1
Example of a robot swarm consisting of the Kilobot. Source: From Rubenstein et al. 2012.
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and are capable of solving complex tasks. The macroscale is where development, testing, 
and analy sis of swarm be hav iors take place, while the implementation of robot controllers 
(i.e., executable code) occurs at the microscale. Therefore, in developing robot swarms, 
the desired global be hav iors must be translated to local controllers, but due to the nonlinear 
dynamics of self- organization, this task is challenging. No generalized method has cur-
rently been developed to compile macro specifications into micro implementations, and 
the management of the “micro- macro link” is a key challenge in developing self- organized 
control (see section 5.3).

Self- organization, as defined by Bonabeau et al. (1999), functions via certain features 
that must be pre sent in the system.  These features are positive and negative feedback, 
fluctuations (i.e., random events), and multiple microscale interactions. Multiple interac-
tions are an evident requirement, as self- organized be hav iors arise from them. Positive 
and negative feedback are necessary to modulate deviations in the system and work in 
tandem to steer a robot swarm  toward equilibrium or consensus. Positive feedback on its 
own  will continuously reinforce a trend that may be based on a minor random deviation 
and, in all cases,  will eventually surpass the desired target, creating what we might call a 
snowball effect or  bubble. The incorporation of negative feedback is crucial to damp 
overshoots and tempers the impact of random deviations. Fluctuations are manageable in 
a swarm  because of positive and negative feedback, but they are also a necessary feature, 
as they enable a balance between exploration and exploitation. Exploration allows a swarm 
to search for desired targets, while exploitation allows it to remain at  those targets once 
they are found; a balance of  these two tendencies stops a swarm from getting “stuck.” For 
instance, if positive feedback in a robot swarm steers it to exploit a reasonably good solu-
tion, fluctuations  will be crucial for the swarm to escape that local optimum and find a 
better one. Likewise, if a swarm has found the best solution for a current environment, 
fluctuations allow it to adapt to  future environmental changes by discovering that a dif-
fer ent solution has since become superior.

5.1.3 Cognitive and Bioinspired Machine Be hav ior

Artificial swarms  were originally heavi ly inspired by pro cesses observed in biology. For 
instance, the dynamics governing flocks of birds, herds of mammals, and schools of fish  were 
the inspiration  behind the Reynolds (1987) model for multiagent computer graphics. Another 
key biological inspiration has been stigmergy, as seen, for instance, in ant colonies (Bonabeau 
et al. 1999). Stigmergy is a class of mechanisms whereby social insects do not communicate 
directly but rather communicate by modifying their environment in response to its current 
configuration, inducing nonlinear cascades of be hav iors and environmental changes. In cogni-
tive science, key perspectives such as that of Couzin (2009) consider natu ral stigmergy to be 
a cognitive mechanism. It is often considered a model of group cognition not only for insects 
but also for other domains such as social systems, and it can operate with many types of 
environmental features. In ant colonies foraging for food, for instance, the environmental cues 
involved in stigmergy are pheromone trails left collectively by the ants. Stigmergy has inspired 
the artificial swarm metaheuristic of “ant colony optimization” (Dorigo and Di Caro 1999), 
along with many swarm robotics approaches such as termite- inspired construction in response 
to the observed shape of a climbable structure (Werfel et al. 2014).
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Cognitive sources of bioinspiration are common in swarm robotics and self- organized 
control. Slime mold, a type of amoeboid organism that spatially navigates via the self- 
organization of thousands of cells, does not have internal memory. It instead uses a form 
of spatial, external memory to steer its exploration. Slime molds have been used as models 
for optimization and self- organization generally. What may be considered minimal cogni-
tion in plants has in part inspired self- organized grammars such as Lindenmayer systems. 
The distributed steering of plant morphology in response to stimuli has inspired a “vascular 
morphogenesis controller” used for adaptation in robot swarm aggregation (Divband 
Soorati et al. 2019). In social insects, collective be hav iors other than stigmergy have also 
been studied, such as thermoregulatory be hav iors in honeybees, which have inspired 
“Beeclust” (Schmickl and Hamann 2011) control for robot swarm aggregation. Further 
inspiration may come from  human social and economic systems, which are increasingly 
considered a form of swarm intelligence and often involve social cognition. Models used 
for social systems are also implemented in robots— for example, the voter model, used on 
online social networks, is often used for decision- making in a robot swarm (e.g., Valentini 
et al. 2014). Further cognitive sources of bioinspiration are discussed in sections 1.5 and 
1.6.3, as emerging perspectives consider swarms a “liquid brain” class of cognition (Piñero 
and Solé 2019) or, alternatively, renew their consideration as a “superorganism” to which 
psy chol ogy models and theories can be applied (Reina et al. 2018).

5.1.4 Scalability

Changing a system’s size can cause prob lems. A system that is too large may have low 
per for mance due to bottlenecks, while a system that is too small may have low per for-
mance due to  limited opportunities for collaboration between entities. Parallel computing 
defines speedup as S = T1 /TN , where T1 is the time one has to wait for the result of computa-
tion using one CPU, and TN is the time for the same computation using N CPUs. In a pre-
sumably ideal case, one achieves linear speedups of S = N; a doubled system size results in 
doubled per for mance. A multirobot system is scalable if the same control algorithm can be 
used for both large and small numbers of robots while obtaining reasonable speedups 
(Hamann 2018b). Although any nontrivial multirobot scenario requires some coordination 
among the robots (see section 5.2), coordination can be avoided by preassigning areas of 
operation to each robot. This way, a multirobot scenario is effectively broken down into 
multiple single- robot scenarios in the form of trivial parallelization. However, if we want to 
make the system robust against robot failures (see section 5.1.5), then each robot should 
check the operation areas of other robots to see  whether they accomplish their respective 
tasks. This requires online coordination to administrate task allocation. Disallowing collabo-
ration between robots would also exclude the possibility of generating superlinear speedups 
(cf. Hamann 2018a).

Swarm robotics research targets maximal scalability— that is, the possibility of scaling to 
virtually any system size. The necessary requirements to achieve this are a strictly decentral-
ized approach and  limited communication. All robots exclusively use local communication 
and local information. Instead of point- to- point communication across the  whole swarm, 
robots are restricted to only communicate with neighbors (“narrowcast”). If the robot density 
ρ = N/A (number of robots N per area A) is constant, then the neighborhood size is constant, 
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and scaling the system is a change in the number of robots N and the provided area A. Even 
if  these requirements are satisfied, a robot swarm may still fail to scale perfectly due to 
 limited shared resources (e.g., the entrance to a base station) or  because the required infor-
mation cannot be propagated through the swarm quickly enough (e.g., by diffusion). Con-
versely, an advantage is that speedups of S > N can potentially be achieved when robots 
collaborate (Hamann 2018a), for example, to cross a gap or to manipulate objects.

5.1.5 Fault Tolerance

For any engineered system, but especially in robotics, it is challenging to prepare for failures 
and unanticipated changes in the environment. As a  simple definition, fault tolerance is a 
system’s ability to continue functioning despite the occurrence of faults and failures. Multi-
robot systems have a supposedly higher degree of fault tolerance than a single robot due 
merely to the system’s inherent redundancy; this applies even more to robot swarms. In swarm 
robotics, losing one or more robots is supposed to have a  limited impact on per for mance. 
 Because the system is decentralized, each robot relies on local information only, and all or 
many robots can take over the task of another robot. The high potential for fault tolerance 
in robot swarms is illustrated by comparing the vulnerability of single space probe mis-
sions to the concept of swarms of nanosatellites (NASA 2015). Winfield and Nembrini (2006) 
have shown that the potential for fault tolerance in robot swarms has possibly been over-
estimated and is not necessarily an inherent feature. Partial failures of robots may be harmful, 
and systemwide vulnerability to faults can occur, even in robot swarms.

In a study on fault tolerance and fault detection, Christensen et al. (2009) leverage 
multiple equivalent units, letting them monitor each other and detect anomalies. Features 
that have been defined to describe robot be hav iors are first determined by each robot for 
its neighbors and used to detect faulty be hav ior. In a second step, the robots collectively 
determine  whether a robot should be considered faulty and consequentially ignored. Faulty 
robots decrease swarm size, such that fault tolerance requires the swarm to adapt online 
to changes in size. Recently, Wahby et al. (2019) have proposed a mechanism that allows 
robots to continuously monitor the swarm density. If a considerable change is detected, 
each robot adapts the par ameters of its control algorithm to compensate for the changed 
density. In summary,  there is high potential for fault tolerance in swarm robotics, but it is 
not inherent in all cases. Each robot is required to monitor its neighbors and relevant 
environmental features to detect faults or crucial changes and to adapt accordingly.

5.2 Robot- Robot Interaction

Based on the added value of automating a task with a single robot, it can seem advanta-
geous to add another robot, and then many more. The subsequent question is  whether and 
how the robots should interact. Allowing the robots to interact and collaborate can intro-
duce considerable complexity to the system. One option to avoid increased complexity is 
the  simple parallelization of tasks, with negligible communication. In a cleaning task, for 
example, each robot might be assigned a separate area, so that  there cannot be interference 
between robots. One might then argue that zero interaction between robots is ideal, as 
this keeps the system  simple. However, robot- robot interaction brings many advantageous 
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possibilities, such as true collaboration between robots or a per for mance increase that goes 
beyond parallelization.

In multirobot systems, dif fer ent forms of robot- robot interaction can result in the emer-
gence of collective be hav iors for given tasks.  These forms of interaction can be the fol-
lowing: direct, using explicit signaling; indirect, based on observed change in be hav ior or 
cues left in the environment; or  simple physical contact. Robots interacting by physically 
connecting and docking to one another have been studied in reconfigurable modular robot-
ics and in a robot swarm inspired by self- assembly in ants (Groß and Dorigo 2009). The 
remainder of this section describes methods of direct and indirect communication (i.e., not 
exclusively physical contact).

5.2.1 Direct Communication (Signals)

Robots might need to communicate their strategic decisions, pro gress, environmental per-
spective, or presence. In multirobot systems with centralized control, the robots use global 
communication to negotiate a strategy and assign roles. In robot swarms, by contrast, com-
munication is constrained to be local. Therefore, infrared communication is a popu lar method 
for signaling, as it allows reliable short- range obstacle detection, distance calculation, and 
data communication. For example, in the Beeclust (Schmickl and Hamann 2011) control 
algorithm, inspired by the hive navigation be hav ior of young honeybees, infrared short- range 
obstacle detection is used for aggregation according to luminance. In the Beeclust algorithm, 
robots perform a random walk while turning away from obstacles and pausing when encoun-
tering another robot. A paused robot uses its luminance sensor reading e to determine the 
waiting period w, according to w(e) = wmaxe2/e2 + k. Using infrared communication for kin 
recognition and communication of environmental perceptions, Wahby et al. (2019) extended 
the Beeclust algorithm to achieve adaptive aggregation in dynamic conditions (see figure 5.2). 
Other common signaling methods include short- range radio communication and visual com-
munication via LED color. For instance, Groß et al. (2006) used blue- and- red light signals 

Figure 5.2
A swarm of nine robots adapting their be hav ior according to detected conditions in an aggregation task. Source: 
From Wahby et al. 2019.
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to influence the formation of self- assembled connection patterns for a robot swarm. Other 
methods such as odor and sound have also been studied. For instance, inspired by necro-
phoric pheromone communication that triggers corpse- removal be hav ior in bees, Purnama-
djaja and Russell (2005) have built two mobile robots that perform a rescue task, equipped 
with tin oxide gas sensors. By using an odor localization algorithm, the robots can find and 
rescue a plastic foam artificial robot (i.e., a malfunctioning robot replica) that is releasing a 
chemical vapor.

5.2.2 Indirect Communication (Cues)

In indirect communication approaches, a robot in a swarm does not explic itly signal other 
robots or directly exchange data. Instead, the robots adjust their be hav ior based only on 
their observations of the local environment.  These observations can relate to changes in 
the be hav ior of other robots or changes made to the environment (i.e., stigmergy; see 
section 5.1.3). Several indirect approaches have also been used to implement flocking 
be hav iors without estimating neighbors’ relative headings. For instance, Ferrante et al. 
(2012) defined attraction/repulsion dynamics for linear and angular velocities based only 
on range and bearing proximity values. Similarly, Yasuda et al. (2014) defined a topologi-
cal interaction model that relies only on the proximity of local neighbors. In  these 
approaches, the interaction is based only on the observed changes in the movement be hav-
ior of peer robots, and the robots adapt their motion accordingly.

5.2.3 Challenges of Communicating Robots

Communication is essential to allow robots to collaborate but can also be a potential bottle-
neck when dozens, or even hundreds, of robots need to communicate. Radio and sound 
communication both suffer from interference if prohibitively many senders operate in 
bounded areas si mul ta neously. Many protocols for radio communication also have further 
limitations and do not scale easily (e.g., Bluetooth, carrier- sense multiple access with col-
lision avoidance [CSMA/CA]). Therefore, many swarm robotics implementations rely on 
other forms of communication, such as infrared with  limited range (typically less than 
15 cm) narrowcasting to direct neighbors.

Vari ous hardware platforms also come with their own respective challenges. For example, 
aerial drone- based search and rescue missions operate in detrimental environments while 
requiring high bandwidth and an extensive communication range to transfer real- time footage. 
Many typical communication techniques are highly  limited in such cases. For instance, Wi- Fi 
supports up to 250 m for outdoor communication, which can be a limitation in search and 
rescue missions that can extend to several kilo meters between neighboring drones. Worldwide 
interoperability for micro wave access network (WiMAX) technology supports a communica-
tion range of up to 30 km and is therefore a good candidate for tasks in which drones require 
long- range communication. The capabilities of current 4G+ mobile networks can also support 
the coverage and transfer rates of drones deployed at low altitudes. As a further improvement, 
upcoming 5G networks may provide more robust and effective connectivity for long- range 
communication in swarms of drones.

Underwater communication is more challenging than aerial communication  because 
 water absorbs most electromagnetic radiation except for a portion of the vis i ble spectrum. 
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This vis i ble light can furthermore travel only a few hundred meters in clear  water and 
much shorter distances in cloudy  water. Reliable acoustic modems have therefore been 
developed for long- range underwater communication and have been used in a swarm of 
autonomous underwater vehicles for communication and navigation (Behrje et al. 2018). 
Recently, Farr et al. (2010) have developed an optical communication method based on 
exchanging packets of modulated blue- green light. This method is faster and cheaper than 
acoustic modems but supports a shorter communication range.

5.3 Methods of Designing Robot Swarms

Designing controllers for robot swarms can be approached in the following two key ways: 
 either with the  human designer in the loop or automatically based on methods of optimiza-
tion or machine learning. Both options can be challenging  because of the micro- macro 
prob lem. Collective effects of many robot- robot interactions are difficult to anticipate analyti-
cally, and similarly, macroscale rewards used in automatic design cannot easily be traced 
back to be hav iors of individual robots (see section 1.1.2).

5.3.1 Design with the  Human in the Loop

The traditional approach of designing and implementing robot control algorithms is, of 
course, based on keeping the  human in the loop; in other words, a  human engineer pro-
grams the robot. In swarm robotics, often but not necessarily, control of the individual 
robot is kept  simple  because system complexity on the macroscale is supposed to emerge 
from robot- robot interactions. Therefore, focus has been placed primarily on  simple reac-
tive control without memory and the frameworks of behavior- based robotics. Often robot 
swarms have a controller based on a finite state machine. Designing a  simple state- machine 
controller for a robot swarm is usually challenging  because of the micro- macro prob lem 
(see section 5.1.2).

Even experienced robot swarm programmers need to follow an iterative trial- and- error 
pro cess  until the par ameters of the algorithm are fine- tuned and the desired swarm be hav-
ior is achieved.

Some approaches introduce mechanisms to allow the robots to automatically adapt the 
par ameters of a manually designed algorithm, at runtime, according to the surrounding condi-
tions (e.g., Wahby et al. 2019). However,  these approaches offer adaptive solutions tailored 
for task- specific scenarios and could fail in scenarios with unanticipated features. An inter-
mediate next step before applying an automated approach is to support the  human designer 
with models. While a trial- and- error approach uses robot simulations to estimate the result of 
the current algorithm design, another approach is to instead increase the level of abstraction 
and use a model of swarm dynamics. The objective of the modeling approach is to get generic 
predictions of swarm be hav ior for a given algorithm, rather than episodic samples from simu-
lations. Probabilistic macroscale models are often used. The challenge is to find models that 
are abstract but still allow for a clear connection to the under lying control algorithm. For 
example, Hamann and Wörn (2008) modeled space and allowed for a mathematical connec-
tion between micro-  and macroscale.
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5.3.2 Evolutionary Swarm Robotics

Among automatic approaches to swarm design, artificial evolution— originally inspired 
by evolutionary biology— can be considered the most widespread. Evolutionary robotics 
(Nolfi and Floreano 2000) is a commonly followed approach outside of swarms (see 
chapter 4) and has been considered a framework to study generalized models of cognition 
(Harvey et al. 2005). The typical evolutionary swarm robotics approach is to evolve an 
artificial neural network controller (i.e., neuroevolution) in simulation (see link to the 
MultiNEAT software library in the additional resources section) in a homogeneous swarm 
(e.g., Baldassarre et al. 2003). Finite- state machines have also sometimes been evolved, 
instead of the typical neural network. A main challenge in evolutionary robotics in general, 
but especially in swarms, is the transfer to real ity, as the evolutionary pro cess can exploit 
any errors in the modeling of the experimental setup, thereby overfitting to the simulation. 
This “real ity gap” can be addressed using the Koos et al. (2012) “transferability approach” 
(i.e., evaluating the evolved controllers both in simulation and in the real setup), seen, for 
instance, in the swarm scenario explicated in section 1.4. Online evolution (i.e., embodied 
evolution) is attractive for its accuracy but unattractive for its slowness, which is exacer-
bated in swarms. A solution to this conflict has been proposed by O’Dowd et al. (2011) 
via coevolution of the controller with the respective simulator. Automatic design approaches 
besides evolution exist, such as the modular control architecture “AutoMoDe,” where a 
probabilistic finite- state machine comprises a priori parametric modules wired by an opti-
mization pro cess (Francesca et al. 2014).

5.3.3 Neuro-  and Bioinspired Automatic Design

Some inspiration sources for robot swarms have also inspired heuristics. For instance, 
particle swarm optimization inspired by flocking has been used in distributed versions for 
multirobot learning (Di Mario et al. 2015).

Artificial neural networks (ANNs)— roughly neuroinspired— have proven highly effec-
tive in many fields and have also been explored in swarm robotics (for the related topics 
of machine learning for robotics and neurorobotics, see chapters 3 and 9.) In a common 
approach, each robot in a swarm receives the same full ANN controller, evolved off- line. 
The “odNEAT” approach by Silva et al. (2015) extends to neuroevolution that is online 
and decentralized. Distributed neural networks have also been proposed. In the approach 
of Otte (2018), each robot holds a slice of neurons in a swarm- wide ANN, enabled by 
parallel neural network training. In an alternative neuroinspired approach, Mathews et al. 
(2017) have developed “mergeable ner vous systems,” where attached robots can flexibly 
fuse their distributed control systems into a shared adaptive network.

5.4 Indoor and Outdoor Applications of Robot Swarms

Swarm robotics research often focuses on fundamental models and design approaches, 
supported by experiments in laboratory environments. Although basic characteristics of 
robot swarms, such as scalability, would evidently have an impact on applications, spe-
cific applied scenarios have rarely been studied directly. Some approaches have indirectly 
studied a specific industrial or field task despite conducting only laboratory experiments. 
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For an industrial task, a laboratory approach can use a stand-in robot to replicate the key 
sensing and actuation capabilities of a patented industrial robot and then use the laboratory 
stand-in to study self- organized control (e.g., reconfigurable fiber deployment in manu-
facturing; Eschke et al. 2019). Swarm robotics approaches in laboratory environments 
have also proposed solutions to field tasks— such as the prob lem of impassable step height 
in disaster relief— for example, by distributed construction of amorphous ramps (Napp 
and Nagpal 2014). In another approach, ele ments from the field can be brought into labo-
ratory environments for experiments, as seen in biohybrid robotics research with plants 
(Wahby et al. 2018).

It is recently becoming more common for swarm robotics research to conduct field 
experiments. The “subCULTron” EU proj ect (Thenius et al. 2016) is testing its swarm of 
underwater robots for marine monitoring in a lagoon environment in Venice, Italy (see 
in- process field photos printed in Hamann [2018b]). Another proj ect, “SAGA,” develops 
a swarm of quadrotor UAVs for field monitoring and mapping of agricultural conditions— 
for instance, with weed detection (Albani et al. 2017).

5.4.1 Example Outdoor Scenario

In order to provide a didactic example of an indoor or outdoor application, we give a 
detailed walk- through of an approach by Duarte et al. (2016)  because it is the first pub-
lished instance of real field experiments with a robot swarm. Duarte et al. (2016) use ten 
autonomous aquatic surface vehicles and test them in a shallow open- water environment 
in Lisbon, Portugal. The robots are differential drive boat vehicles that use inexpensive 
and accessible off- the- shelf components. They are 60 cm at their longest dimension, are 
capable of up to 1.7 m/s linear speed and 90°/s rotational speed, and comprise components 
costing roughly three hundred euros per robot. Each boat robot is equipped for decentral-
ized communication with other robots via a wireless ad hoc network for UDP (User 
Datagram Protocol) broadcasting and is equipped with GPS and a compass. The controllers 
output linear and rotational speeds, which are used to calculate motor speeds based on the 
real robot dynamics (affected by friction and inertia in  water). The controller inputs are 
three values representing locations in the environment, calculated from GPS and compass 
readings of the robot and its neighbors, as communicated over the wireless network.

Using  these robots and controllers, Duarte et al. (2016) have conducted simulated and 
real field experiments for four dif fer ent tasks that require coordination between robots. 
The robot controllers are evolved in simulation,1 then transferred to real field experiments 
in open  water using the transferability approach of evolutionary robotics (see section 5.3.2). 
In the first task, homing, the swarm collectively moves to a target in the environment while 
avoiding collisions. During evolution, controllers are rewarded for minimizing distance d 
to the target; specifically, the average value of Δ d/dt = 0 for each robot at each time step, 
multiplied by coefficient S to penalize controllers when robots get less than 3 m apart. 
The second and third tasks are dispersion and aggregation, in which the robots should 
 either spread out over a large area without losing contact with neighbors or should move 
 toward each other to form clusters  after starting from a spread- out configuration. The 
fourth task is area monitoring, in which the robots should move around to collectively 
give continual coverage to a defined and  limited area. The four be hav iors are combined 
into a single “multicontroller” mission in the field, which was not previously evolved for 
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or tested in simulation. The researchers equip the robots with temperature sensors for this 
mission and select the highest- performing controllers from each respective task. The four 
controllers are triggered sequentially in the swarm, successfully completing an application- 
oriented mission of sampling  water temperature. Within this mission, the robot swarm 
moves in a close group from the starting point to the target area, disperses and monitors 
the full area, then aggregates back into a close group and returns to the initial starting point.

5.5 Swarm Cognition and Psy chol ogy

As introduced in section 5.1.3, collective cognition is found in many natu ral swarms and 
is a target in engineering artificial ones. An established perspective on natu ral swarms is 
that their collective be hav iors bear commonalities with neural mechanisms and therefore 
should be studied in the same framework of cognitive science (Couzin 2009; Trianni et al. 
2011). Another perspective holds that swarms should be studied as an in de pen dent class 
of cognition, forming what can be considered “liquid brains” (Piñero and Solé 2019).

Pro cesses of collective cognition that are investigated in swarms include collective per-
ception (Schmickl et al. 2006), collective memory (Couzin et al. 2002), collective learning 
(Montes de Oca and Stützle 2008), and collective decision- making (see section 5.6). Cogni-
tive pro cesses observed in  simple organisms that rely on decentralization, such as ants, have 
commonly inspired swarm robotics. Examples inspired by more complex organisms, or by 
coordination that is not strictly decentralized, are far more rare. However,  there are a few 
examples. Regarding more complex organisms with higher- order cognition and centralized 
ner vous systems,  there has been inspiration from neuroscience (e.g., in automatic design 
methods for swarms) and  human psy chol ogy (e.g., in natu ral swarms that can be considered 
superorganisms). Regarding coordination that is not strictly decentralized, species with 
hierarchical social structures (e.g., baboons) display coordination strategies that may, specu-
latively, be relevant to multirobot control. It has also been proposed that simpler social 
animals such as schooling fish, often considered to exclusively use peer- to- peer communi-
cation for movement, may sometimes use hierarchical social structures with temporary 
leaders for fast predator response (Ioannou 2017). We therefore look to neuroscience and 
 human psy chol ogy—in addition to models of complex social structures such as  those seen 
in online social networks or hierarchical animal groups— for key theories that may have 
potential for useful application in a robot swarm.

Key theories from psy chol ogy and neuroscience have thus far been implemented in 
models of swarm be hav ior in a few seminal works on collective decision- making, described 
in detail in section 5.6.3. Implementations of such theories have not occurred in models of 
swarm perception, memory, or learning. We therefore describe existing swarm robotics 
examples related to  these aspects of cognition and review some of the key psy chol ogy and 
neuroscience theories that are potentially relevant to distributed and decentralized robot 
cognition. As our aim is to follow a natu ral inspiration source only insofar as is useful for 
the engineering task at hand, we pre sent theories based on their potential relevance to 
robot control, without taking a stance on the positions of  those theories within their origi-
nating disciplines.

Downloaded from http://direct.mit.edu/books/book-pdf/2239475/book_9780262369329.pdf by guest on 30 September 2024



88 M. K. Heinrich et al.

5.5.1 Collective Perception and Attention

In existing strategies for collective perception in a robot swarm, peers trade information 
capturing their individual perceptions with their local neighbors, progressively building 
consensus about the perceived environment. For instance, they signal votes or hypotheses 
about perceived features (Valentini et al. 2014) or share “trophallaxis- inspired” cues about 
implicit elapsed time since they last reached a target (Schmickl et al. 2006). It is typically 
held that natu ral swarms similarly use distributed strategies for perception. However, it is 
sometimes conversely held that in some social animals, such as fish, the improved predator 
perception of larger groups may result simply from a pooled visual field and the temporary 
leadership of a faster- moving individual (Ioannou 2017), without any peer- to- peer com-
munication about perception.

Established  human psy chol ogy laws for stimuli- response mechanisms have been shown 
to be relevant to collective decision- making— for instance, in terms of the speed- accuracy 
trade- off in swarms— and may also relate to collective perception. In disciplines such as 
human- computer interaction, motor speed- accuracy trade- offs have been well described 
by the psy chol ogy princi ple of Fitts’s law, proposed by Paul Fitts in 1954, wherein the 
size and distance of a target predict movement patterns  toward it. Though established as 
a motor law, it has been shown to hold for agents’ perception of action (Grosjean et al. 
2007), an impor tant aspect of robot- robot collaboration in swarms. As another example, 
psy chol ogy has established a relationship between attention levels and the exploration- 
exploitation trade- off in foraging (Van den Driessche et al. 2019), a task often studied in 
swarm robotics.

In biology, sensorimotor pro cesses are key to perception, especially in coordination 
between individuals. Santana and Correia (2010) propose that, by considering attention in 
isolation from subsequent motor system pro cesses, biological neural mechanisms might 
inspire approaches to swarm perception. For example, mechanisms governing selective 
attention could be transferred to robot swarms to establish a relationship between attention 
be hav iors and predictions or motivations.

5.5.2 External and Collective Memory

Behavioral science has proposed a variety of group memory concepts in natu ral swarms, 
such as the “joint memory” proposition of Thierry et al. (1995), including, first, a collective 
type in which memories of individuals are coupled and, second, an external type in which 
memory refers to the environment. External memory might be saved in modifications to the 
environment, as in stigmergy, or may simply comprise references to landmarks in the envi-
ronment (e.g., to facilitate novel actions rather than the repetition of remembered actions). 
In artificial swarms, a  simple approach is to equip agents with local memory of their own 
history to enhance per for mance when interacting with the environment. Another approach, 
which can be applied to foraging in robot swarms, is the use of a maplike repre sen ta tion of 
terrain features, which may be predetermined or built adaptively (Kumar and Sahin 2003). 
The most common approach in robot swarms is evidently the external memory approach of 
stigmergy, which can also be combined with other types of memory, such as short- term 
memory of individual history. Short- term memory in a swarm is discussed further below, in 
relation to a natu ral swarm being considered a superorganism.
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Theoretical biology notably provides simulation- based evidence of collective memory 
in swarms, demonstrating that the history of swarm structure has an impact on the dif fer ent 
collective be hav iors that might arise from identical individual be hav iors (Couzin et al. 
2002). In honeybees, Beekman (2005) has experimentally demonstrated individual memo-
ries of past stimuli that may affect subsequent interactions and collective be hav ior, as 
agents triggered by  others to revisit a site that is still remembered  will be more efficient 
(e.g., by avoiding unsuccessful route attempts).

In the coupled- memory type proposed by Thierry et al. (1995), individuals manage 
their own memory of an opinion or piece of information and communicate that individual 
memory to  others— for instance, in honeybees, each knows only a portion of information 
about an environment. In existing robot swarms,  there are typically no subgroups of 
spatial memory distribution across a swarm (i.e., the opinions held by individuals vary, 
but the topic on which they have opinions is homogeneous). However, the role that an 
individual plays in information pro cessing in a swarm may be influenced by its spatial 
position. It is notable that distributed memory in the brain is heavi ly differentiated accord-
ing to spatial distribution, but the physical connections pre sent in biological neural cir-
cuits may limit them as a direct inspiration source for robot swarms. In social insects, 
differentiated memory subgroups have been shown to arise, specifically, when a small 
group of individuals becomes short- term specialists for a repeated, temporary task (Diez 
et al. 2011).

5.5.3 Social and Collective Learning

Social learning, or collective learning, refers to the pro cess of be hav ior development via 
observation and imitation of neighbors (Rendell et al. 2010). A common mechanism in 
swarms that may be considered a  simple form of social learning is the disproportionately 
large influence that a few informed individuals have on the be hav ior of a group. The 
proportion of informed agents needed to maintain accuracy has even been shown to 
decrease with increasing group size (cf. Couzin 2009). Procedures to reach consensus in 
collective decision- making (addressed as its own aspect of cognition in section 5.6) have 
also been considered a type of social learning in animal groups, in cases in which agents 
are selective about the neighbors they imitate (Rendell et al. 2010). This selectivity has 
roughly inspired a social- learning approach in artificial swarms, where a large group reaches 
consensus more quickly by incrementally adding agents to an initially small decision- 
making subgroup (Montes de Oca and Stützle 2008). In another approach, artificial agents 
follow instructions from a leader and use  these downstream instructions to indirectly learn 
the respective task so they can collectively reconstruct it if the leader is lost (Karydis et al. 
2016).

In social animals, associative learning in an individual has been frequently studied, 
establishing a direct link between individual preferences and actions. However, Kao et al. 
(2014) contend that the majority of the animals studied in lab conditions  will naturally 
exist in social groups, where collective learning  will break the established relationship 
between preference and action in associative learning. The influence of collective learning 
on associative learning in animals has yet to be studied directly (Kao et al. 2014), although 
related established studies on honeybees have examined both associative learning by cues 
and social learning by the well- known mechanism of dance communication. The effect of 
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agent individuality (i.e., behavioral heterogeneity) on natu ral swarm dynamics has been 
studied, possibly bringing implications for robot swarms (Saffre et al. 2018).

Burini et al. (2016) have proposed a unified formulation of collective- learning dynam-
ics using kinetic theory, including learning of abilities and of social messages. Their for-
mulation presumes heterogeneity in the group (i.e., the “population- thinking” approach)—in 
a robot swarm, such heterogeneity could potentially be characterized as deviations in 
be hav iors or opinions during progression  toward consensus. Approaches to opinion con-
sensus in robot swarms have been studied in collective decision- making.

5.6 Collective Decision- Making in Robots

Collective decision- making is the key mechanism of swarm cognition. A robot swarm can 
only act as a  whole by ensuring consensus or vast majorities for certain coordinated actions. 
Achieving such consensus and coordination in a swarm, particularly in unknown or dynamic 
environments, requires swarm- wide sensing, information pro cessing, and action se lection.

5.6.1 Swarm Autonomy and Swarm Awareness

Following the agent models of Russell and Norvig (2016), the autonomy of an agent 
originates from its ability to make informed decisions. Similarly, a robot swarm can only 
be autonomous and self- governing on a macroscale if the swarm as a  whole is capable of 
making informed decisions. This requires a form of collective decision- making that ensures 
the collection of relevant information, collective pro cessing of that information, and a 
subsequent swarm- wide decision of what to do next. In addition, the swarm needs to reach 
awareness that a decision is necessary and that a consensus or large majority has been 
achieved such that the decision- making pro cess concludes (Hamann 2018b). As pointed 
out, for example, by Khaluf et al. (2019), this corresponds to common subdivisions of 
 human decision- making, such as identifying the prob lem, obtaining information (identifi-
cation of options and their quality), and evaluating it.

In swarm robotics, and also in opinion dynamics and related fields, some aspects of 
swarm awareness are often ignored (Khaluf et al. 2019). Experiments often isolate one 
aspect, for instance, by starting immediately with the collective decision- making pro cess 
before being  stopped by an external observer once a sufficient majority is reached. The 
challenge of extending beyond experiments of isolated aspects  will be crucial to achieving 
full swarm awareness. For full swarm awareness, each robot needs to be sensitive to 
changes in the environment or in the (signaled) states of its neighbors. If the swarm in a 
critical situation does not collectively detect that a collective decision is required, then the 
swarm may split, crash, or other wise fail at its task. Similarly, to ensure the decision- 
making pro cess ends, each robot needs to estimate when to stop switching opinions. As 
each robot relies on local information only, this estimation is necessarily probabilistic. 
This can be implemented as each robot voting for ending the collective decision- making 
pro cess, which consequently means that we are embedding another decision- making pro-
cess into the system. This can be even more challenging when the swarm has to adapt to 
environmental conditions and adaptively balance the speed versus accuracy of its decision- 
making pro cess. So collective decisions make a swarm autonomous on a macroscale but 
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also require sophisticated forms of information diffusion, gossiping, and sharing of internal 
states to create swarm awareness of globally required swarm actions.

5.6.2 Methods of Collective Decision- Making

Methods of implementing a complete collective decision- making system include all of the 
following: starting and ending the pro cess, exploring options, disseminating knowledge 
about options, pro cessing that information in an individual robot, and ensuring the swarm 
decides accurately and quickly (Hamann 2018b).  These parts are all complex and cannot 
be discussed in full detail  here. Even more complexity would be added when considering 
modeling techniques that deal with under lying dynamic networks and, for instance, try to 
predict expected convergence times. Instead, this section focuses on the decision- making 
mechanism of an individual robot and the impact of dif fer ent algorithm choices by looking 
at two  simple techniques. Assuming that a robot operates iteratively on three phases (explore, 
disseminate, and switch opinion),  here we focus only on the opinion- switch phase. Take, for 
instance, a robot that collects messages from its neighbors that include merely  whether they 
are in  favor of option red or option blue. Then it is reasonable to count red and blue mes-
sages, to determine the majority, and to switch to the majority opinion (or keep it if the robot 
already has that opinion).

This straightforward approach is called majority rule (e.g., Valentini et al. 2015)— that is, 
in a decision between two opinions, the opinion of robot ri switches if it does not match the 
majority opinion in [ri, ri + n ], where n is the number of robots in the neighborhood. Example 
code for majority rule can be found in the PyCX repository (Sayama 2013). If each robot 
follows this  simple rule, then the expectation may be that the swarm  will converge on a 
consensus, given enough time. In general, this is true, but it can be complicated by noise or 
by inhomogeneously distributed robots in space (Valentini et al. 2015). A second straight-
forward approach is the voter model (e.g., Valentini et al. 2014)— that is, the opinion of robot 
ri switches to a uniformly randomly selected opinion from the robots in the neighborhood, 
[ri + 1, ri + n ]. Example code for a voter model can also be found in the PyCX repository 
(Sayama 2013). Although it may seem counterintuitive, the voter model is a useful option 
for a decision- making mechanism. In decision- making, and also in collective decision- 
making,  there exists a speed- accuracy trade- off (also mentioned at the end of section 5.6.3). 
This trade- off means that a decision- making pro cess can be  either fast or accurate but not 
both at the same time.  Whether a given decision mechanism is better than another  will always 
depend on the requirements of a given application scenario. In general, the majority rule is 
fast but relatively inaccurate, while the voter model is accurate but slow.  There is no  simple 
description that can provide an intuitive understanding of that finding except that the voter 
model tends to be more forgiving to local temporary deviations, while majority rule tends 
to exploit the current local system state. A better understanding requires deeper study of the 
dif fer ent modeling techniques of collective decision- making.

5.6.3 Psy chol ogy of the Robot- Swarm Superorganism

One demonstrated approach to modeling collective decision- making in a swarm is to take 
inspiration from established mechanisms in  human psy chol ogy and apply them to the 
 whole swarm as if it  were one organism. The group cognition and organ ization seen in 
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natu ral swarms has sometimes prompted their biological characterization as superorgan-
isms (cf. Wilson and Sober 1989). In a superorganism, such as a honeybee colony, natu ral 
se lection might operate according to the survival of the colony as a unit, evolving a tightly 
interdependent group and establishing a higher class of biological organ ization. This 
tighter interdependence can be seen in social apoptosis in honeybees, where colony immu-
nity is supported by the increased infection susceptibility of individual sacrificial bees 
(Page et al. 2016). The superorganism concept can look similar to the established group 
se lection mechanism in evolution of cooperation but has also been proposed as distinct. 
Without commenting on evolutionary biology,  here we refer to the superorganism as a 
useful analogy concerning natu ral swarms, and potentially robot swarms. Natu ral swarms 
have been shown to perform typical organism- level functions at the level of the group, for 
instance, by a “common stomach” to regulate foraging (Schmickl and Karsai 2016) or 
neurologically by governing speed- accuracy trade- offs similarly to the brains of individual 
animals (Sasaki and Pratt 2018). Collective decision- making in colonies responding to 
stimuli has notably been shown to follow certain established laws of  human psy chol ogy 
(Pais et al. 2013; Reina et al. 2018), a generality that may extend to robot swarms.

The signals and cues of robot swarm communication described in section 5.2 are also 
seen in natu ral swarms, as stimuli that might be  shaped differently by se lection—in evo-
lutionary biology, signals are stimuli formed for the express purpose of communication, 
while cues are stimuli that may trigger responses but have not necessarily developed for 
that function. As shown by Reina et al. (2018), although stronger signals are known to 
lead to faster decisions and avoidance of deadlocks, they may also lead to negative per-
for mance effects. In simulated honeybee colonies, Reina et al. (2018) demonstrated that 
when mea sur ing signaling by signal- to- noise ratio, increased signaling worsens the group 
ability to differentiate between similar stimuli. This is reminiscent of the well- known 
exploration- exploitation trade- off in swarm robotics. As described in section 1.1.2, explo-
ration and exploitation are necessary mechanisms in self- organization. Achieving the 
optimal balance between exploiting already known solutions and exploring to find new 
(possibly better) solutions cannot be solved generically as it depends on the respective 
task and environment. For example, in a bistable regime where a robot swarm should 
select the best site but finds two equally good sites, the main challenge for the exploration- 
exploitation trade- off is to break symmetry effectively (Hamann et al. 2012).

Established psy chol ogy laws may govern the dynamics known to be pre sent in natu ral 
swarms; for instance, Reina et al. (2018) demonstrated that the exploration- exploitation 
trade- off in a honeybee colony may be governed by Weber’s law on the perception of 
external stimuli, proposed by Gustav Fechner in 1858. This law describes differential 
sensitivity as dp = dS /S— that is, the perceived change in stimulus dS is proportional to 
the initial stimulus S. In natu ral swarms, Pais et al. (2013) and Reina et al. (2018) have 
shown that Weber’s law holds in honeybee colonies choosing between sites in a bistable 
regime. In swarms that maintain relative spatial distributions, such as flocking birds, Perna 
et al. (2019) have shown that a  simple antidiffusion mechanism based on Weber’s law is 
alone sufficient to achieve stability, compared to the two or more separate mechanisms 
needed to balance one another in the classic Reynolds (1987) approach. Similarly, natu ral 
flight patterns observed in honeybee colonies have been shown by Reynolds et al. (2013) 
to be achievable by odometry following Weber’s law.
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Another established psy chol ogy law— Hick’s law, proposed by William Hick in 1952 and 
Robert Hyman in 1953— describes a concept termed rate of information gain, holding that 
reaction time rises linearly with the degree of uncertainty. That is, reaction time RT = kH, 
where H represents the amount of information that must be pro cessed in a given decision. 
In the case of equally likely alternatives, Hick’s law states that H = log2 (n + 1), such that H 
is a logarithmic function of the number n of stimulus- response alternatives. Reina et al. 
(2018) have found that in a honeybee colony superorganism making a best- of- n decision, 
reaction time RT rises with the number of alternatives as in Hick’s law but rises exponentially, 
proposing that this may be due to nonlinearities in the swarm. Another established psy chol-
ogy law that may fit this phenomenon is the Cooney and Troyer (1994) approach that inte-
grates interference susceptibility into a model of reaction time. Alternatively, Reina et al. 
(2018) have proposed a new model of reaction time RT in a honeybee superorganism: 
RT =αv −βe µn, where v  is the mean quality or likelihood of the n available options, and α, 
β, and μ are constants. This new model by Reina et al. (2018) combines Hick’s law with the 
Pieron law, proposed by Henri Pieron in 1913, wherein reaction time decreases with increas-
ing intensity of stimulus as a power law.

In their implementation of Hick’s law, Reina et al. (2018) have found a trade- off in 
signal- to- noise ratio in a best- of- n decision, in which increased signaling improves speed 
but weakens se lection quality, fitting with the established speed- accuracy tradeoff seen not 
only in robot swarm decision- making and in natu ral decision- making but across many 
aspects of information pro cessing. A variety of  factors demonstrably affect speed and 
accuracy in decision- making and can potentially have an impact on their trade- off in 
engineering robot swarms. In animal populations, the speed- accuracy trade- off during 
se lection is proposed to result in a heterogeneous behavioral tendency to be fast or slow, 
as both strategies may perform similarly due to a related risk- reward trade- off (Sih and 
Del Giudice 2012). In natu ral swarms, Pais et al. (2013) have shown that in a honeybee 
colony where binary alternatives are distinguishable, as defined by Weber’s law, the speed- 
accuracy trade- off is dependent on cross- inhibition strength (a mechanism observed both 
in honeybee colonies and in complex brains). In individual  human decision- making, when 
accuracy itself displays a trade- off between true and false positives, a collective approach 
has been shown to invert that trade- off by both increasing true positives and decreasing 
false ones (Wolf et al. 2013). Reina et al. (2018) have noted that accuracy in a natu ral 
swarm is dependent on the ratio between the time spent exploring versus signaling, remi-
niscent of the exploration- exploitation trade- off.

5.7 Conclusion

Swarm robotics was initially inspired by be hav iors observed in biology, and new advances 
in artificial swarms continue to be interdependent with  those of natu ral swarms, especially 
in the study of swarm cognition. Bioinspired and neuroinspired approaches have been used 
to develop robot swarm models and be hav iors— such as the cognitive mechanism of 
stigmergy— and have influenced popu lar automatic design methods for swarm controllers, 
such as neuroevolution. Swarm robotics uses  these approaches to address challenges in, 
for instance, direct and indirect communication, management of the “micro- macro link,” 
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swarm autonomy, and swarm cognition, and is moving  toward applications in the field. 
Swarm cognition has been studied in terms of collective perception, collective memory, 
collective learning, and collective decision- making and, in some cases, takes inspiration 
from  human psy chol ogy and cognitive sciences.  These disciplines may provide swarm 
robotics with new and useful inspiration sources if measurably novel and not a reformula-
tion of an existing approach, and if effective for the respective engineering task.

Additional Reading and Resources

•  The classical introduction to swarm intelligence: Bonabeau, Eric, Marco Dorigo, and 
Guy Theraulaz. 1999. Swarm Intelligence: From Natu ral to Artificial Systems. Oxford: 
Oxford University Press.
•  A recent, comprehensive overview of swarm robotics, with detailed pre sen ta tions of 
methods and example scenarios for the design of large- scale robot swarms: Hamann, 
Heiko. 2018. Swarm Robotics: A Formal Approach. Berlin: Springer.
•  A recent perspective of swarm robotics and its  future: Dorigo, Marco, Guy Theraulaz, 
and Vito Trianni. 2021. “Swarm Robotics: Past, Pre sent, and  Future.” Proceedings of the 
IEEE 109 (7): 1152–1165.
•  A brief summary of swarm robotics’s origins, application domains, and current research 
issues: Dorigo, M., G. Theraulaz, and V. Trianni. 2021. “Swarm Robotics: Past, Present, 
and Future.” Proceedings of the IEEE 109 (7): 1152–1165. https://doi.org/10.1109/JPROC 
.2021.3072740.
•  Software for swarm foraging, in the repository of the ARGoS simulator (Pinciroli et al. 
2012): https:// github . com / ilpincy / argos3 - examples.
•  MultiNEAT software library for the evolution of neural networks: http:// www . multineat 
. com.
•  scikit- learn software library for machine learning, including for training neural networks: 
https:// scikit - learn . org / stable / .
•  Software for majority- rule simulations: https:// github . com / hsayama / PyCX.
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Note

1.  Evolution in Duarte et al. (2016) was conducted in JBotEvolver, available at https:// github . com / BioMachinesLab 
/ jbotevolver.
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6.1 Introduction

In this chapter we  will first introduce and review soft robotics research, with emphasis on 
how compliance and softness have changed the robotics landscape in the past two de cades. 
We  will then briefly discuss the key ideas in developmental robotics that are fundamental 
for understanding the relationship between biological and artificial systems, and examine 
how the developmental sciences and soft robotics are irrevocably linked, into what we 
have chosen to name “developmental soft robotics.”  Here, in fact, the two fields can be 
merged into one in which the developmental sciences can aid in the design and make of 
soft robots that can then be used as platforms to better understand biological systems. We 
 will fi nally discuss how phyloge ne tic development, ontoge ne tic development, and short- 
term adaptation are indeed naturally suited to be embedded within a “soft” robotic context. 
(For further reading, see Trivedi et al. 2008; Pfeifer, Iida, and Lungarella 2014; Laschi 
et al. 2016.)

6.2 Bioinspired Soft Robotics

Deformation is a fundamental characteristic of biological systems. Almost 90  percent of 
the  human body is composed of soft tissue; many vital organs such as the heart, lungs, 
muscles, eye lenses, and more depend on deformation of materials.

In bipedal walking, for example, evidence has shown how the soft tissue of the body 
might not only cushion the impacts of each stride, but also save muscles the effort of 
actively dissipating energy, while performing a considerable amount of the total positive 
work, per stride, by soft tissue elastic rebound (Zelik and Kuo 2010).

In the past few de cades,  there has been an unpre ce dented advancement in material science 
and manufacturing techniques, furthering our knowledge of functional materials and empow-
ering artificial systems with newfound capabilities.  These advancements, together with a 
better understanding of biological systems, have given rise to the era of soft robotics, in 
which bioinspired robotics platforms make use of soft and deformable materials to achieve 
more flexible, adaptable, and robust be hav iors (Kim, Laschi, and Trimmer 2013; Hughes 
et al. 2016).

6 Soft Robotics: A Developmental Approach

Luca Scimeca and Fumiya Iida
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Since the dawn of soft robotics, the application of material science and soft- body com-
pliance has changed the robotics landscape. In manipulation, for example, the “universal 
gripper,” a soft gripper capable of particle jamming through vacuum pressure control, has 
been shown to be able to grasp a large number of objects (Brown et al. 2010). Other solu-
tions for grasping and manipulation range from tentacle- like systems (Laschi et al. 2012) 
to pneumatic soft grippers (Yap, Ng, and Yeow 2016) and human- inspired soft- robotic hands 
(Hughes, Maiolino, and Iida 2018; figure 6.1).

Animal- inspired soft robots are among the most developed subareas of soft robotics, 
where the robot platforms range from worms (Seok et al. 2010) or caterpillars (Lin, Leisk, 
and Trimmer 2011) to octopuses (Laschi et al. 2012), fish (Katzschmann et al. 2018), and 
 others (figure 6.1). In wormlike soft robots, for example, akin to their biological counter-
parts, the contraction of longitudinal muscles followed by the contraction of circumferen-
tial muscles simulates a traveling wave along the body, generating locomotion (Trueman 
1975). In caterpillars, motion is generated by coordinated control of the time and location 
of the prolegs attachment to the substrate, together with waves of muscular contraction 
(Belanger and Trimmer 2000).

The ability to mimic  these unique systems makes soft robots an exciting new field, 
where the limits of the (rigid) robots of the past  century can be overcome with newfound 
solutions.

6.2.1 Soft Materials and Soft Actuation

The area of soft robotics is inevitably connected to the field of material science, in which 
new discoveries in the latter facilitate pro gress in the former. For a soft robot to be able 
to use material compliance to aid in robotics tasks, it is necessary for the make of the robot 
to be, at least in part, deformable. Elastomeric (polymer) materials, like EcoFlex or Drag-

a

b

c

d e

Figure 6.1
Bioinspired soft robot examples. (a) Worm- inspired soft robot. Source: Seok et al. 2010. (b) Caterpillar- inspired 
soft robot. Source: Lin et al. 2011. (c) Octopus- inspired tentacle. Source: Cianchetti et al. 2011. (d) Human- inspired 
soft passive hand. Source: Hughes et al. 2018. (e) Fish- inspired soft robot. Source: Katzschmann et al. 2018.
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onSkin (Siegenthaler et al. 2011), have been at the center of researchers’ attention for 
several years, with new substances being discovered  every year. Moreover, the advent of 
three- dimensional printing technology has led to much faster robot design and testing 
operations than before, facilitating rapid and cheap prototyping in soft robotics.

Actuation poses one of the biggest challenges. In many animals, the coaction of a large 
number of muscles distributed over the body is capable of generating relatively high 
forces, facilitating coordinated and robust action. Replicating this ability is no easy feat, 
as the majority of the robotics solutions lack the ability to generate forces comparable to 
the industrial robots of the past.

Four main soft- actuation techniques currently exist: tendon driven, pressurized air or 
fluids, dielectric elastomeric actuators, or DEAs, and shape memory alloys, or SMAs (Kim 
et al. 2013). First, tendon- driven actuation mimics biological musculoskeletal systems, in 
which actuation is achieved through the pull and release of tendons, via the appropriate 
control of motors (figure 6.2a). Although a power ful and widespread actuation technique, a 
large number of tendons are usually necessary to achieve complex be hav iors, and control 
complexity increases along with the number of motors necessary to control the tendons. For 
softer robots, like continuum soft robots, this type of actuation usually does not scale. 
Second, the employment of fluids is one of the most power ful actuation techniques for soft 
robots, capable of generating high forces and displacements. The actuation usually consists 
of varying the pressure inside predesigned chambers within the body of the robot to achieve 
their expansion and contraction and generate motion or morphological changes (figure 6.2b). 
However,  these actuation systems are usually bulky and heavy and require high power 
sources, making them unsuitable for untethered robotics systems (Laschi and Cianchetti 
2014). Third, DEAs are made of soft materials that can be actuated through electrostatic 
forces (figure 6.2c). DEAs have been shown to have high- strain/stress and mass- specific 
power. However, the need for DEAs to be prestrained imposes rigid constraints on the robots’ 
design (O’Halloran, O’Malley, and McHugh 2008). Fi nally, SMAs, with the most common 
nickel titanium alloys, can generate force through a change in shape due to a rise or fall in 
the temperature of the material (figure 6.2d). Temperature change control, however, is a 
challenge. High voltages are usually required to achieve temperature changes, and robustness 
over varying temperatures in the environment is still an issue to be overcome (Rodrigue 
et al. 2017). Other methods exist; it is pos si ble, for example, to induce pneumatic contraction 
by evaporating ethanol via resistive heating (Miriyev, Stack, and Lipson 2017) or to achieve 
bending through combustion (Tolley et al. 2014). Other issues, such as reduced output force 
or slow speed, however, come into play (Rich, Wood, and Majidi 2018). Soft robotics actua-
tion and material sciences are still an ever- changing field, with new solutions being expedited 
by fast prototyping and iteration.

6.2.2 Soft Robot Control, Simulation, and Learning

Soft- robotic control poses several challenges and opportunities.  Here, the “degree of soft-
ness”  matters. Take, for example, a rigid robotic hand with the palms and fingertips covered 
with an elastomeric material. The control of the hand is usually pos si ble to achieve with 
classical methods (i.e., inverse kinematics), in which the complexity of the control depends 
on the complexity of the mechanical system. If the hand  were entirely rigid, achieving the 
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appropriate control to perform a “light” touch might not be trivial. By appropriately exploit-
ing the mechanical passive dynamics of the soft fin gers, the complexity of the control can 
be reduced to achieve the desired grasping be hav ior, averting the need for submillimeter 
precision in robot control (Pfeifer, Lungarella, and Iida 2007; Iida and Laschi 2011). 
However, as the “degree of softness” in the body increases, new challenges arise.

A robot made entirely of elastomeric materials— for example, one emulating the tentacle 
of an octopus or the trunk of an elephant— cannot be controlled classically; moreover, 
proprioception and simulation become problematic. As opposed to the hard links with 
sliding or rotational joints in classical robots, the continuity and softness of the body makes 
the control and simulation of continuous soft robots much more difficult. Novel actuation 
methods aid robotics researchers in their endeavors to achieve desired robot control 
(section 6.2.1), and new sensing and control methods are discovered on a daily basis (Rus 
and Tolley 2015). To achieve autonomy and go beyond open- loop control for soft robots, 
both proprioception and tactile sensing are required.

Much effort has been put into the sensorization of soft robots. The most common soft 
sensors are perhaps strain sensors, which are soft, deformable sensors capable of sensing 
body deformations through stretching. It is thus pos si ble to embed such sensors into the 
(soft) body of a robot without influencing its ability to deform. Some of the most widespread 
sensors are based on resistive (Homberg et al. 2015) or capacitive (Maiolino et al. 2015) 
technologies. Recently, work in Galloway et al. (2019) and Scimeca et al. (2019) have shown 
how it is pos si ble to achieve a high- fidelity proprioceptive understanding of a continuum 
soft body through sensorization via fiber- optic and capacitive tactile sensors, respectively.

In the context of control and simulation, learning plays a fundamental role. With the 
infinite degrees of freedom posed by a continuum soft body, for example, precise control 
via classical methods is hard and usually does not scale. Model- based solutions relying on 
the piecewise constant curvature assumption have been shown to work for small, tentacle- 
like robots (Della Santina et al. 2018). However, the error in the controller always increases 
with an increase in the number of soft segments within the robots. The models, in fact, are 
usually too simplistic to accurately capture the complexity of continuum soft robots. Learn-
ing in this case has been shown to be useful in compensating for a lack of knowledge or 
model complexity (Scimeca, Maiolino, and Iida 2018, 2020; Rosendo, von Atzigen, and 
Iida 2017).

6.3 Developmental Soft Robotics

Cognitive developmental robotics (CDR) is an area of research in which robotics and the 
developmental sciences merge into a unique field, one that seeks to better robotics with 
insights from developmental sciences and further our understanding of developmental 
sciences through the use of robotics platforms (Lungarella et al. 2003). The need for CDR 
to be a research area on its own arose at the dawn of the twenty- first  century from the 
need to understand not only the cognitive and social development of individuals, as explored 
in the area of epige ne tic robotics (Zlatev and Balkenius 2001), but also the acquisition and 
development of motor skills and how they, as well as morphology, influence the develop-
ment of higher- order cognitive functions (Lungarella et al. 2003; Asada et al. 2001, 2009). 
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In this context, robots can be used as experimental subjects, where developmental models 
can be implemented in robotics platforms, and scientists can gain insights from behavioral 
analy sis, an approach known as synthetic methodology (Scheier and Pfeifer 1999; Sporns 
2003).

In stark contrast to the traditional computationalist approach, in developmental robotics 
 there is no clear separation between the physical body, the pro cesses that determine reasoning 
and decision- making (cognitive structure), and the symbolic repre sen ta tion of entities in the 
world. Rather,  these pro cesses influence each other, and intelligence emerges from their 
interaction. Developmental robotics is treated in detail in chapter 3.

One of the most difficult tasks in modern- day robotics is to achieve an appropriate robot 
design for a robot to perform certain tasks in the world. The advent of soft robotics, if any-
thing, has increased the complexity of robots, revoking the rigidity constrains established in 
the  earlier  century and bringing about a new era. In this new era, robot design is driven by 
 factors much like biological systems, in which functional morphology, coordinate sensorimo-
tor action, physical adaptation, and embodiment all contribute to the “robot’s survival” in 
the world and to its ability to see a task to completion.

Developmental soft robotics aims to bring together the areas of soft robotics with  those 
of developmental robotics and the developmental sciences.  These, in fact, are irrevocably 
linked, as we  will show.

6.3.1 Soft Robotics and Developmental Timescales

Within the developmental sciences, in its simplest form, the development of a biological 
organism can be distinguished on three dif fer ent scales: phyloge ne tic, ontoge ne tic, and 
short- term.

In biological organisms, phyloge ne tic development has the largest timescale, in which 
changes happen at the level of groups of organisms, over many generations, and pro cesses 
such as natu ral se lection are responsible for certain “traits” surviving and evolving, while 
 others become extinct. Akin to phyloge ne tic development is soft robotics design, in which 
the design of robots is adaptive and ever changing to comply and conform to the task the 
robot must achieve. Currently, much of the adaptation is due to  human design and biased 
by  human skill and experience. However, new methodologies for autonomous designs are 
a hot research topic, and pro cesses such as evolutionary algorithms have shown promise 
in the past (Nolfi and Floreano 2000; Doncieux et al. 2015).

Ontoge ne tic development concerns changes throughout and within the life span of an 
organism and includes growth and bodily adaptation. The ability of robots to “morph” 
throughout their life span to achieve desired be hav iors has been one of the key advantages 
of soft robots, as opposed to their rigid counter parts of the previous  century. Robots navi-
gating through growth like fungal hyphae (Hawkes et al. 2017), elongating their bodies 
due to pressure and changing their stiffness to alter their body dynamics and achieve dif-
fer ent be hav iors (Cianchetti et al. 2013), are examples of such adaptability.

Short- term adaptation refers to the shortest adaptive and developmental timescale of 
all, in which adaptation needs to be achieved instantaneously. Short- term adaptation is 
perhaps the most naturally suited to be discussed in a soft setting. In the past this type of 
adaptation needed to be actively achieved at the control level, where real- time control 
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would allow short- term adaptive be hav ior through mechanical or sensory feedback. Within 
the soft robotics framework, much like biological organisms, the short time adaptation is 
just a consequence of the soft, instantaneous deformation of the soft body itself. When we 
delicately slide our fin ger through a ridged surface, for example, the need for complex 
and precise control is voided by the ability of our dermis to deform and conform to the 
surface  under our touch. Much like the illustrated example, the compliance and softness 
of materials, in soft robots, can achieve short- term adaptation. The mechanical feedback 
becomes only a physical consequence of contact, and compliance can naturally suppress 
the need for complex controllers. Figure 6.3 illustrates the main idea  behind the develop-
mental soft robotics framework.

6.3.2 Functional Morphology and Morphological Computation

When designing robotics systems, if shape was initially the most salient of morphological 
features, with the advent of soft robotics this may no longer be the case. Materials at dif-
fer ent levels of elasticity have demonstrated the ability to perform “computation” (Scimeca 
et al. 2018; Eder, Hisch, and Hauser 2018). Recent work in Scimeca et al. (2018), for 
example, has shown how complex haptic information can be used to classify objects based 
on dif fer ent properties, solely based on clustering analy sis. The simplicity of the inference 
is pos si ble due to a “soft filter” or elastic layer between the tactile sensor and the object. 
When changing the properties of the elastic layer, the tactile information is appropriately 
influenced (spatially filtered) in order to induce object similarities with re spect to dif fer ent 
object properties, like edges or elongation. The “intelligence” is  here in the body, since 
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the body’s ability to appropriately mold the sensory information allows for the agent’s 
higher cognitive functions to solve the object classification prob lem with  simple clustering 
methods, without prior training or supervision, an other wise impossible feat.

A paradigm trying to make use of the complex body- environment interactions is the 
“reservoir- computing” framework of computation. The original idea  behind reservoir 
computing begins with network computation, in which an input is fed to a network, which 
computes a corresponding output. In reservoir computing, a fixed random dynamical system, 
also known as a reservoir, is used to map input signals to a higher- dimensional space. The 
“readout” final part of the network, then, is trained to map the signals from the higher- 
dimensional space to their desired output. As previously mentioned, soft robots, as well as 
biological organisms, are usually made, at least in part, of soft materials. The body dynam-
ics of soft robots are thus very complex, highly nonlinear, and high dimensional, making 
control challenging. Through the reservoir- computing paradigm, it is pos si ble to capitalize 
on the complexity of such a system by exploiting the soft body as a computational resource, 
using the body dynamics to emulate nonlinear dynamical systems, and, as a result, off- 
loading some of the control to the body itself (Nakajima et al. 2013, 2015). Nakajima et al. 
(2014), for example, have shown it is pos si ble to control a complex continuum soft arm, 
inspired by the tentacle of an octopus, in a closed loop without any external controller, by 
using the body of the robot as a computational resource. In this light, high nonlinearity and 
complexity may be a desirable property of the body, and design might have to be thought 
of accordingly.

An additional property that allows soft bodies to be used as a computational resource 
is memory. The soft body dynamics of soft robots, in fact, can exhibit short- term memory, 
allowing robots to emulate functions that require embedded memory (Nakajima et al. 
2014). When underactuating a continuum soft robot, for example, it may be that the control 
mechanism is not deterministic with re spect to the be hav ior of the robot. In  these cases 
the be hav ior of the robot may depend not only on the induced control and its current state 
but also on the history of the previous robot states, as it may be the case when actuating 
a soft tentacle arm by moving one of its extremities.

6.3.3 Emergent Be hav iors of Soft Robots

At the dawn of the twenty- first  century, the concept of “morphofunctional machines” was 
proposed. Morphofunctional machines  were defined as  those that  were adaptive by being 
able to change their morphology as they performed tasks in the real world (Ha ra and Pfeifer 
2003). In this context, changes at dif fer ent timescales  were already argued to be impor tant— 
that is, short- term, ontoge ne tic, and phyloge ne tic, or evolutionary. It is impor tant to note that 
the adaptation and the resolution of the task  here is achieved not at the control level but at 
the morphological level.

As advocated by the developmental robotics paradigm (chapter 3), intelligence and 
coordinated action are the result of complex interactions between the body, the mind, and 
the environment. The latter, in fact, plays an impor tant role in determining the be hav iors 
of the artificial or natu ral organisms living within it.

One of the most influential experiments of the last two de cades was the “dead fish 
experiment,” performed in collaboration with Harvard and the Mas sa chu setts Institute of 
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Technology (MIT) in 2005 (Beal et al. 2006). In the experiment, a dead fish was able to 
swim upstream even when its brain was clearly sending no control impulse. Upon further 
study it was apparent how the streamlined body of the fish, passively oscillating, was 
capable of turning the surrounding energy into mechanical energy and thus propel itself 
forward passively. Although the morphology and make of the body allowed the dead fish 
to transduce the surrounding energy, the environment was the enabling  factor. The vor-
tices created by  water streams  were key in the experiment, as they generated the energy 
to be transduced and re created the conditions for the body to manifest its propelling 
abilities. The interaction between the body and the environment  were, in fact, the decisive 
 factors in determining the observed be hav ior. A similar influential experiment was the 
passive dynamic walker. The make of the robot, with kneecaps, springs, pendulum- like 
leg swings, and more, was capable of stable, humanlike, and low- energy bipedal locomo-
tion without any complex control. However, the environment initiated and stabilized the 
walking locomotion, as it manifested when the robot was placed on a downward slope 
(Collins et al. 2005), allowing the potential energy to be skillfully turned into kinetic 
energy.

In robot design it is therefore always necessary to take the environment into account. 
Much like the examples previously mentioned, the body and the brain are often not enough 
to achieve useful objectives.  Things in the world exist to affect and change their surround-
ings and live within the environment they are situated in (Matarić 2006). In this context 
it is in the interplay of the body and the environment that intelligent, situated be hav ior 
can be observed and that morphology can be empowered and purposefully adapted.

6.3.4 Sensing and Perception of Soft Robots

In nature, morphology plays a fundamental role within the sensing landscape, mechani-
cally converting, filtering, and amplifying sensor stimuli from the outside world to make 
sense of the surrounding environment or internal states (Towal et al. 2011; Iida and Nurza-
man 2016). In rats and mice, for example, vibrissae, or sensitive tactile hairs, have been 
known to confer to  these mammals specialized tactile capabilities, aiding them in a number 
of sensory discrimination tasks (Prescott et al. 2009). In a similar manner, most mammals 
have evolved to mediate vision through compound eyes, compromising resolution for 
larger fields of view and high temporal resolution, and enabling fast panoramic perception 
(Land and Nilsson 2012). Within the biomimetic robotics field, attempts have been made 
to endow robotics systems with the capabilities of organisms observed in nature. Haptic 
robot perception through whis kers (Pearson et al. 2011) and compound vision (Floreano 
et al. 2013) are two such examples (figure 6.4).

Soft sensing is one of the most popu lar fields within the soft robotics landscape. Aug-
menting soft robotics systems with the ability to sense the environment can enable robots 
to react to unknown events, to improve their control and morphology over time, and to 
capture information or reason about entities in the world. Sensorizing soft robots is no easy 
task. One of the goals within this field is to devise sensors that themselves exhibit some 
“soft” behavioral characteristics; usually, flexibility (i.e., can be bent) and stretchability (Lu 
and Kim 2014) are desirable. Currently, approaches to achieve stretchable electronics include 
wavy cir cuits (Majidi 2014; Rogers, Someya, and Huang 2010) and conductive liquids (Cheng 
and Wu 2012). One of the most widespread soft sensors are strain sensors, shown to be highly 
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elastic (Muth et al. 2014). New embedding methodologies have also demonstrated the pos-
sibility of embedding strain sensors within elastomers through three- dimensional printing 
techniques. Other flexible sensing technologies such as capacitive tactile sensing (Maiolino 
et al. 2013) and fiber optics (Galloway et al. 2019) have been used within soft robotics 
systems.

As previously mentioned, sensorimotor coordination and morphology can enhance the 
sensing capabilities of robotics systems. Sensors should not be thought of simply as in de-
pen dent and self- sufficient technologies. Instead, it is fundamental to think of sensor 
technologies as apparatuses that reside within a body. The body dynamics derived from 
its morphological properties, coupled with the environment the robotic system is situated 
in, should all contribute to the sensor morphology, its characteristics, and its perceptual 
capabilities. The appropriate coupling of  these  factors has been shown to improve the 
sensing capabilities of robotic systems (Iida and Pfeifer 2006). In Hughes and Iida (2017), 
for example, the sensorization of a universal gripper was achieved with a pair of conduc-
tive thermoplastic elastomer (CTPE) strain sensors (figure 6.4d). Differential sensing was 
then used to compute deformations within the soft body. Morphology, however, was key. 
By weaving the strain sensor in dif fer ent patterns within the soft gripper, information 
regarding the magnitude, orientation, or location of a deformation could be detected. 
 Because such sensing is also inescapably linked to motor control, mechanical dynamics, 
and the objectives of the robotic system, the concept of “adaptive morphology” has 
recently been proposed (Iida and Nurzaman 2016), wherein the iterative design, assembly, 
and evaluation of sensor methologies attempt to explain the adaptive nature of the percep-
tual abilities of living organisms.

a b c

d e

Figure 6.4
Bioinspired flexible and soft sensing examples. (a) Artificial compound eyes. Source: Floreano et al. 2013. 
(b) Robotic tactile vibrissal sensing. Source: Pearson et al. 2011. (c) iCub robot with large- area flexible capacitive 
tactile skin. Source: Hoffmann et al. 2017. (d) Conductive thermoplastic elastomer sensorized universal gripper. 
Source: Hughes and Iida 2017. (e) Stretchable and conformable sensor for multinational sensing. Source: Hua et al. 
2018.
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6.3.5 Adaptation and Growth

The princi ples previously discussed encourage a dif fer ent approach to design, in line with 
endowing robots with the ability to adapt to ever- changing environments and indeed make 
use of the environment as a means of solving their assigned tasks. Besides design princi ples 
at a phyloge ne tic scale and instantaneous deformation on the short- term scale via material 
properties and design, another impor tant  factor is ontoge ne tic change and adaptation. Plants, 
for example, are capable of continuously changing their morphology and physiology in 
response to variability within their environment in order to survive (Mazzolai, Beccai, and 
Mattoli 2014). Inspired by the unique abilities of plants to survive in diverse and extreme 
environments, a stream of researchers have more avidly tried to reproduce some of their 
adaptivity in robotics systems. Plantoids, or robotic systems equipped with the distributed 
sensing, actuation, and intelligence to perform soil exploration and monitoring tasks, have 
started to gain traction in this direction (Mazzolai, Beccai, and Mattoli 2014). Rootlike 
artificial systems in Sadeghi et al. (2013) and (2014), for example, have been shown to be 
able to perform soil exploration through novel methodologies simulating growth via elonga-
tion of the robot’s tip. Other plant- inspired technologies in biomimicry and the material 
sciences include Velcro, from the mechanisms  behind the hooks of plant burrs (Velcro SA 
1955), bamboo- inspired fibers for structural engineering materials (Li et al. 1995), and 
novel actuation mechanisms in Taccola et al. (2013) based on reversible adsorption and 
desorption of environmental humidity and, in Mazzolai et al. (2010), based on the osmotic 
princi ple in plants.

Another impor tant  factor in ontoge ne tic adaptivity is the ability of organisms to mend 
their own tissue over their life spans. Endowing artificial systems with self- healing abilities 
has recently become of primary importance, setting the landscape for untethered robots to 
“survive” for longer periods of time in more uncertain and dynamic task environments. 
Self- healing of soft materials is typically achieved through heat treatment of the damaged 
areas, which allow some polymers to reconnect and retrieve most of their structural proper-
ties. In (Terryn et al. 2017), for example, a soft gripper, a soft hand, and artificial muscles 
 were developed with Diels- Alder materials (Scheltjens et al. 2013). In the developed systems, 
the Diels- Alder materials  were shown to be reversible at temperatures of 80°C, recovering 
up to 98 to 99  percent of the mechanical properties of the polymers postdamage.

6.3.6 Tool Use and Extended Phenotype

In biology, the phenotype is the set of observable traits of an organism, including its mor-
phology, developmental pro cess, and physiological properties. The idea of extended phe-
notypes was first introduced by Richard Dawkins (1982) when he argued that the original 
concept of phenotype might have been too restricted. In fact, the effects that a gene may 
have are not  limited to the organism itself but to the environment the organism is situated 
in, through that organism’s be hav ior. The coupling of an artificial agent and its environ-
ment was discussed in section 6.3.3. The extended phenotype notion, however, extends to 
even more radical concepts.

One of the most fascinating examples of this is found in primates, corvids, and some 
fish, which have been found to purposefully make and use “tools” to achieve goals within 
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their environments, such as the acquisition of food and  water, defense, recreation, or 
construction (Shumaker, Walkup, and Beck 2011).

Extending the phenotype concept, the observable traits of the organisms should be 
augmented to include their extended functionalities, be hav iors, and morphology, as derived 
from the use of the tool in question. When a primate is holding a small branch, for example, 
the physical characteristics of the primate are undeniably changed: its reach is longer, and 
its weight and morphology are affected, as is its stance to balance on two or three limbs 
or its ability to affect the environment around it.  Under the extended phenotype concept, 
 these changes must be captured within the phenotypic traits of the organism.

In the context of soft developmental robotics, the ontoge ne tic development of robotics 
systems should include their ability to adapt to their environments over their life span (physi-
cal adaptation) and indeed their ability to augment their functionality by the active creation 
and use of tools initially excluded from their phenotypic traits. This ability was previously 
investigated in Hoffmann et al. (2010) and Nabeshima, Kuniyoshi, and Lungarella (2006), 
where it was obvious that at the foundation of the idea of tool use was the concept of body 
schema (cf. chapter 3). The body schema in this scenario requires adaptability and alterability 
throughout ontoge ne tic development to cope with the changes in one’s body, including 
growth, as well as with the extended capabilities conferred by the use of tools. An under-
standing of the tool is necessary  here (Wang, Brodbeck, and Iida 2014). Nabeshima, Kuniyo-
shi, and Lungarella (2006) argued that the temporal integration of multisensory information 
is a plausible candidate mechanism to explain tool use incorporation within the body schema. 
Another core component in this context is proprioceptive sensing, or the ability to sense 
self- movement and body position. Proprioception also plays a significant role in the percep-
tion/action model of body repre sen ta tions (de Vignemont 2010).

6.4 Conclusion

Throughout this chapter we have examined the vari ous aspects of bioinspired robotics, with 
emphasis on soft robotics and the idea that intelligence is exhibited as an interplay, and 
reciprocal dynamical coupling, of the brain, the body, and the environment. The concept of 
developmental soft robotics was introduced in this context, in which some design princi ples 
can be established on three dif fer ent timescales, aiding and enabling roboticists and research-
ers to develop systems for a new generation of robots. Many enabling technologies for 
sensing and actuation have driven pro gress in the past few de cades and have allowed robots 
to pass from rigid and industrial to soft and human- friendly.  These robots have been shown 
to achieve locomotion, to pick up and manipulate objects, to safely interact with  humans, 
and much more. However, many challenges still await this field, as the road to the ultimate 
goal of creating machines with abilities akin to  those of organisms in the animal world is 
only in its early stages.

6.4.1 Physical Soft Robot Evolution

On the phyloge ne tic timescale, the question of how to achieve complex embodied be hav ior 
has been answered by nature for a very long time. The concept of evolution in biological 
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organisms is fairly straightforward, where evolution is thought of as the change in inheritable 
characteristics of populations over successive generations (Hall and Strickberger, 2008). Due 
to vari ous sources of ge ne tic variation, new generations have increasingly dif fer ent traits, 
and via a mediating pro cess like that of natu ral se lection, some traits  will ensure higher or 
lower chances of survival (Scott- Phillips et al. 2014). Eventually, the surviving population 
has all the dif fer ent traits that we can now see in the im mense variety of living organisms 
on our planet, which have adapted to use a plethora of dif fer ent methodologies and tech-
niques to ensure their survival.

The field of phyloge ne tics in the context of soft robotics is tightly coupled with this 
concept, and consequently, this field has a major impact on emergent design and control in 
robotics. In the area of “evolutionary robotics,” evolutionary computation is used to develop 
physical designs or controllers for robots (cf. chapter 4). Evolutionary computation takes 
inspiration from biological evolution. In robotics, for example, it is pos si ble to create an 
initial set of candidate robots and encode their physical and or control characteristics numeri-
cally. By testing the robot population against a specific task, it is then pos si ble to identify 
which combination of morphology and control performed better. The encoded characteristics 
of the best- performing robots can then be perturbed and used to create a new generation of 
robots that can be tested again. The iteration of this pro cess for thousands of iterations has 
been shown to achieve robust controls (Mautner and Belew 2000; Fleming and Purs house 
2002) and designs (Lund, Hallam, and Lee 1997; Lipson and Pollack 2000; Pfeifer, Iida, 
and Bongard 2005; Vujovic et al. 2017; Brodbeck, Hauser, and Iida 2015).

One of the biggest limitations of evolutionary algorithms lies with the resources and time 
necessary to achieve good controllers or designs.  Because the iteration of robot design, robot 
testing, and robot evaluation are very time- consuming, it is generally not feasible to apply 
evolutionary algorithms in very complex prob lems by starting from a generic, nonbounded, 
encoding of robot characteristics. The world of simulation has historically been more suited 
for evolutionary algorithms (Lipson and Pollack 2000; Mautner and Belew 2000; Nolfi et al. 
1994) given the ease with which populations can be created, tested, and iterated over. The 
controllers and designs found, however, are usually not robust real- world solutions, as 
simulation environments are still very  limited, and the solutions found within them do not 
necessarily correspond to solutions in the real world (Jakobi, Husbands, and Harvey 1995). 
Moreover, depending on the complexity of the prob lem, computational resources are still an 
issue.

In soft robotics, given the complexity of the bodies and the interactions emerging from 
them, design and control pose two of the biggest prob lems. Evolutionary algorithms find 
themselves suited as a candidate solution, but the limitations previously mentioned still apply. 
Further advancements in virtual real ity engines, new manufacturing methods for fast proto-
typing, advancements in material science, and the ever- increasing power of computing, 
however, may bypass some of the  these limitations in the near  future.

6.4.2 Complexity and Scalability

As of  today, the robots we see still “feel” unnatural; they move slowly and sluggishly; 
humanoid robots still do not possess the ability to walk, run, or move the way  humans do; 
they cannot reason about the world the same way we do and they get confused when 
unknown events occur (Pfeifer, Lungarella, and Iida 2012). One of several reasons con-
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tributing to this fact is complexity. The number of actuators and distributed sensors pre sent 
in  humans is much too high to be replicated by motors and standard sensors in machines. 
This complexity poses a prob lem, as does controlling the coupling of a high number of 
motors and sensors. Even when dealing with subproblems, like humanoid hands, the 
complexity may very well already be too high to try and tackle with standard methods. 
Some attempts to replicate complexity  were made, for example, by replicating in a robotic 
manipulator many of the degrees of freedom pre sent in a  human hand (Tuffield and Elias 
2003). This approach, however, did not give the results many  were hoping for, as complex-
ity in the body was coupled with complexity in the control, and achieving an adaptable, 
smooth grasp and manipulation be hav ior was no easy task. Recent advances have shown 
how an underactuated, or even passive, hand can achieve complex be hav iors, if its interac-
tions with the environment are appropriately exploited (Hughes et al. 2016, 2018). It is 
 here that complexity can be displaced, since complex be hav ior can emerge from  simple 
design when appropriate interactions take place.

Within this framework, many questions remain. It is, in fact, unclear how design should 
be achieved to avoid or exploit complexity. Exploiting environmental constraints is no easy 
feat, as the constraints to be exploited are also tightly coupled with the task at hand. In soft 
robotics the make of the robots themselves leads to highly nonlinear be hav iors and robots 
with complex dynamics. Paradigms like that of reservoir computing can capitalize on the 
complexity of such structures, using them as a computational resource and thus making 
complexity a desirable feature. Control, however, is still hard to achieve, and mathematical 
models fail to comprehensively account for dynamical interactions when the complexity of 
the body becomes too high. This complexity pre sents infinite challenges and opportunities, 
which the ever- changing landscape of robotics  will have to face in the near  future.

6.4.3 Learning through the Body

The advancements in artificial intelligence (AI) in the last two de cades have begun a scien-
tific revolution, endowing machines with the possibility to achieve superhuman per for mance 
levels in several dif fer ent fields, like image- based object detection (Schmidhuber 2015), 
virtual agent control (Mnih et al. 2015), and haptic texture identification (Fishel and Loeb 
2012). In robotics, machine learning has been extensively used both on the perceptual side, 
such as for object detection and recognition, and on the control side, such as for robot trajec-
tory planning and motor control.

The most power ful machine- learning algorithms make use of supervision, or the knowl-
edge of target labels, to improve per for mance over time or  trials. Broadly speaking, from 
the machine- learning point of view, it is common to try to solve a task by fitting a function 
to sensor or observation data, and thus to try to achieve good per for mance on the same 
(or a similar) task when new data is available. The data could, for example, be streaming 
images from a camera mounted on an indoor mobile robotic platform, and the supervised 
machine- learning module could learn when and how to turn the wheels left and right, 
based on collected and labeled visual feeds in a similar indoor environment. Throughout 
this chapter we have treated the concepts of soft morphology with the repercussions of 
what are known as morphological pro cessing, sensorimotor coordinated be hav ior, and soft 
environment interactions. In similar cases to the example above, it is common for this 
interconnection of mind, body, and environment to be neglected. In fact, in soft robotics, 
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as well as other robotics areas, the data is usually perceptual information collected by the 
robot itself. The perceptual information  here is influenced by the morphology of the robot’s 
body, as well as the way in which the robot interacts with entities in the world. The soft 
robot can thus be seen as a real ity filter, which can act in its environment and affect the 
information in the way most appropriate for learning.

Previous research has shown robots to be capable of purposefully affecting the informa-
tion gathered from their environment through both morphological pro cessing and senso-
rimotor coordination (Pfeifer and Scheier 1997; Pfeifer, Iida, and Gómez 2006). In this 
context, not only the information can be structured so it is rendered suitable for learning, 
but the structure information itself can guide both the morphology and the control of the 
robot, creating a sensorimotor and morphological adaptation loop capable of intrinsically 
driving the robot’s be hav ior. We use the term “soft morphological computation” to describe 
the ability of a soft robot to understand how its own body and actions filter the information 
retrieved from the world, and change its configuration and interactions accordingly to 
optimize information retrieval. This simplification can then drive learning and further the 
adaptive capabilities of autonomous robotics systems. In Scimeca, Maiolino, and Iida 
(2018), for example, the soft morphology of the robot is shown to be capable of achieving 
the cluster separation of stimuli belonging to dif fer ent object types. Learning can therefore 
be achieved with unsupervised methods, as the “labels” or classes come from skillful 
body- environment interaction, which induces sensory separation.

The ability of robotics systems to purposefully shape the sensory information through 
their actions, or morphology, and to learn from the induced structure has the potential to 
change the learning landscape within robotics systems. In this context, learning may be 
thought of not as a pro cess that starts in the information world but rather as one that exists 
in the physical world, where “learning” the actions and interactions appropriate for sensory 
perception is the first step  toward appropriate learning of the sensory stimuli at a  later stage.

Additional Reading and Resources

•  A comprehensive review of papers on soft robotics (up to 2007): Trivedi, Deepak, Chris-
topher D. Rahn, William M. Kier, and Ian D. Walker. 2008. “Soft Robotics: Biological 
Inspiration, State of the Art, and  Future Research.” Applied Bionics and Biomechanics 5 (3): 
99–117.
•  Paper extensively discussing the connection between cognition, body morphology, and 
material properties: Pfeifer, Rolf, Fumiya Iida, and Max Lungarella. 2014. “Cognition 
from the Bottom Up: On Biological Inspiration, Body Morphology, and Soft Materials.” 
Trends in Cognitive Sciences 18 (8): 404–413.
•  Recent overview of current research, technologies, and applications of soft robotics: 
Laschi, Cecilia, Jonathan Rossiter, Fumiya Iida, Matteo Cianchetti, and Laura Margheri. 
Soft Robotics: Trends, Applications and Challenges. Proceedings of the Soft Robotics 
Week. Berlin: Springer.
•  Soft robotic tool kit website: https:// softroboticstoolkit . com.
•  Soft robotics TC website: http:// softrobotics . org.
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7.1 Introduction

Cognitive robotics is a broad field that spans diverse areas of robotics such as human- robot 
interaction (HRI), navigation, visual perception, object manipulation, physical human- robot 
interaction, and the study of cognitive architectures. This places specific constraints on the 
robotic platform to be used. HRI, for example, studies robot be hav iors that are as close as 
pos si ble to  those of  humans, with the goal of making the interaction between robots and 
 humans as seamless as pos si ble. HRI relies on communication channels that are familiar to 
 humans, such as speech, vision, and touch. To implement humanlike robot be hav iors some 
HRI studies require a platform capable of replicating at least some of the movements of 
 humans (such as eye movements or gestures). Navigation and visual perception are typically 
carried out using a combination of sensors, such as LIDAR, RGB, or RGBD cameras. Object 
manipulation and physical human- robot interaction benefit from torque sensors and tactile 
sensors. The study of cognitive architectures is often bioinspired; it emphasizes humanlike 
sensing and perception and, often, their integration in multimodal studies.

For  these reasons, the focus of research in cognitive robotics is frequently on systems- 
level capabilities. In  these cases, individual capabilities are not to be studied in isolation 
and must be integrated into the same platform.

Fi nally, given its intrinsic interdisciplinary nature, research in cognitive robotics is 
carried out not only by roboticists but also by computer scientists, psychologists, and 
neuroscientists with  little expertise in mechatronics.

It is not surprising, therefore, that the community of researchers working in cognitive 
robotics has been among the first to recognize the importance of the platform as an enabler 
in investigating given research questions and, in addition, to highlight the advantages of 
research platforms that are easy to use by nonexperts and that are shared among dif fer ent 
groups. Early examples of platforms  adopted in the cognitive robotic community are the 
Aibo Robot developed by the Sony Corporation (2020) and the iCub humanoid robot 
(Parmiggiani et al. 2012). Other popu lar examples are the NAO (Gouaillier et al. 2009) 
and Pepper (Pandey and Gelin 2018) robots developed by Aldebaran.

A large amount of research in robotics is carried out in simulation. This is  because 
software simulators allow much faster prototyping and debugging, especially considering 
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that most robotic platforms are prototypes with  limited reliability. Developing software 
in simulation allows for testing research algorithms without the worries of damaging the 
robot or the environment. Recently, deep- learning research has demonstrated that it is 
pos si ble to train algorithms using data generated in simulation and deploy them in the real 
world with impressive results. This has been shown to work well in perception using a mix 
of data augmentation and photorealistic rendering to solve the prob lem of six- dimensional 
object pose estimation (Tremblay et al. 2018) and, in reinforcement learning, to solve in- 
hand object manipulation with a dexterous hand (Andrychowicz et al. 2020). This research 
has pushed the development of simulation tools that are able to reproduce the physical 
environment with  great accuracy, including sophisticated photorealism.

In the past  there have been efforts to develop platforms specifically tailored to research 
cognitive robots. A notable example is the iCub, a humanoid robot specifically developed 
to target the cognitive robotic community. Other platforms  were not designed with this 
goal in mind but have become de facto standards thanks to their massive adoption (e.g., 
Aibo, NAO, and Pepper, already mentioned above, and also Baxter from Rethink Robotics 
[Fitzgerald 2013] and Panda from Franka Emika GmbH [2020]). The goal of this chapter 
is to identify and describe the robotic platforms and simulation tools used most often by 
the community, highlighting their pros and cons in supporting research activities.

7.2 Methodology

In writing this chapter, we tried to understand which platforms are in use in the cognitive 
robotic community. We performed detailed research by looking at two of the main scien-
tific journals on cognitive robotics: IEEE Transactions on Cognitive Developmental Systems 
(TCDS) and the Springer International Journal of Social Robotics (IJSR). We inspected all 
papers published in  these journals during the period 2016–2019, noting for each which robot 
platforms and which software simulators (if any)  were employed. The goal of this lit er a ture 
survey was to identify  those platforms and software simulators used within the community. 
It is worth mentioning that we de cided to focus on journals instead of a larger pool of venues, 
including conferences,  because this allowed us to inspect publications over a longer time 
span and to have access to more consolidated work.

The results are summarized in  table 7.1 for the hardware platforms and  table 7.2 for the 
simulators. In  table 7.1 we report, for each platform, the number of times a paper was 
published  either in TCDS or IJSR during the considered period.  Because it was not pos-
si ble to list all the robot platforms, we grouped all the platforms found in a small number 
of papers (not more than two times) in the category “ others.”

Overall we analyzed 337 papers, in which we found references to 62 dif fer ent hardware 
platforms and 13 software frameworks. The first observation was the large fragmentation of 
the community: with minor exceptions, most robotic platforms  were found only once. This 
demonstrates that other groups do not use  these platforms and that most research in the field 
is carried out with custom prototypes used only within a specific research group. Yet this 
investigation also allowed us to clearly identify some platforms that are used within the 
community: The NAO robot was found to be used most often (forty- seven papers), followed 
by iCub (sixteen), Pepper and Robovie (seven), the Pioneer 3- Dx/3- AT (six), Baxter (five), 
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 Table 7.1
Lit er a ture survey: results for the hardware platforms

TCDS 
2019

TCDS 
2018

TCDS 
2017

TCDS 
2016

IJSR 
2019

IJSR 
2018

IJSR 
2017

IJSR 
2016 SUM

 Others 10 9 3 4 10 16 10 62
NAO 3 5 3 2 4 14 9 7 47
iCub 6 2 6 2 16
Pepper 1 3 3 7
Robovie  family 3 2 2 7
Pioneer 3- Dx/3- AT 2 1 2 1 6
Baxter 1 2 1 1 5
Kuka LBR iiwa 1 1 1 3

Note: We report the number of papers that  were published on each platform for each year in the TCDS and 
IJSR. The last column reports the sum across all years. We list only  those platforms found in more than two 
papers. Overall we found sixty- seven dif fer ent platforms.

 Table 7.2
Lit er a ture survey: simulation frameworks

Simulator Robot platform
Supported 
language Operating system Reference

ODE iCub (5), HOAP-2 (1) C/C++ macOS, Linux, Win dows (Smith 2020)
Gazebo NeuroSnake (1),  

Eddie (1), PKU- HR6 (1)
C++ macOS, Linux, Win dows (Open 

Software 
Robotics 
Foundation 
2014)

V- REP NAO (1), Pioneer (2), 
Exapod (1)

LUA, C/C++, 
Python, Java, 
MATLAB/Octave

macOS, Linux, Win dows (Coppelia 
Robotics 
GmbH 2020)

Webots NAO (1),  
Salamander (1)

C/C++, Python, 
Java, MATLAB

macOS, Linux, Win dows (Cyberbotics 
Ltd. 2020)

Nextage Kawada (1) Python
Blender Custom (1) Python macOS, Linux, Win dows (Blender 

Foundation 
2020)

OpenSim JacoArm (1) C++, Python, 
MATLAB, Java

macOS, Linux (API 
only), Win dows

(OpenSim 
2020)

RobWorkSim UR3 (1) C++, Python, 
Java, LUA

macOS, Linux, Win dows (SDU 
Robotics 
2020)

SMILE Baxter (1) Java macOS, Linux, Win dows (SMILE 2020)
Stage iRat (1) C++ macOS, Linux (Stage 2020)
FARSA iCub (1) C++ macOS, Linux, Win dows (Farsa 

Sourceforge 
2020)

SIGVerse TurtleBot (1) C# (Unity) Win dows (SIGVerse 
2020)

3D Studio Probo (1) macOS, Linux, 
Win dows

Win dows (Autodesk 
Inc. 2020)

Note: For each simulation framework, we report the name of the robot simulated and the number of times it 
occurred in the papers we analyzed. We also add general information on the supported programming 
languages and operating system and link to the web page hosting the simulator code.
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and Kuka LBR iiwa (three).  These platforms are reviewed in some detail in the next section 
of this chapter.

We also observed that, surprisingly, software simulators are not used very often in the 
community, which largely prefers to experiment with real robots. We believe this is  because 
simulators are still quite immature for research in cognitive robotics, as they do not model 
complex environments well, especially when interaction with  humans is impor tant. Another 
possibility could be that recent pro gress in software simulation has been mostly pushed by 
the robot learning community, which focuses on perception and grasping and publishes in 
dif fer ent venues (e.g., the International Conference on Robot Learning). The following 
software frameworks  were found to be used most often: Open Dynamic Engine (ODE; four 
times), Gazebo (three times), and V- REP (four times). However, this view does not repre-
sent well the growing importance that the robotic community has given to the development 
of simulation frameworks. This situation  will change, as it is likely that much better simula-
tion environments  will be available in the coming years, with consequential impact on the 
cognitive robotics community. For  these reasons, in section 7.4 we provide an overview of 
how software simulators are used in robotics, describing the dif fer ent type of simulators 
used in the community and the current trends in research pushed by the growing field of 
robot learning.

7.3 Robot Platforms

In this section we review the platforms most commonly used in the cognitive robotics 
community, as identified by our survey. As a summary the details of each platform are 
also reported in  table 7.3.

The iCub is an open- source humanoid robot developed within the context of the RobotCub 
proj ect (figure 7.1a). The iCub has fifty- three degrees of freedom (DOF), and it is endowed 
with a rich sensor suite (stereo cameras, microphones, six- axis force- torque sensors, and 
whole- body tactile sensors). The cost of the iCub robot is about €250,000. It is controlled 
with the YARP middleware and custom motion- control libraries (more details on the software 
architecture of the iCub are described in Natale et al. [2016]).  These ele ments allow the 
planning and control of complex HRI tasks that also involve physical interaction. Although 
the iCub has onboard computation and batteries, it is generally operated from a fixed base 
that does not allow autonomous navigation. The iCub is a versatile platform used to study 
all aspects of robotics, including sensorimotor learning (Hoffmann et al. 2018; Zambelli and 
Demiris 2017; Giagkos et al. 2017; Çelikkanat et al. 2016), object learning and tool use 
(Ribes et al. 2016; Mar, Tikhanoff, and Natale 2017), intrinsically motivated and reinforce-
ment learning (Meola et al. 2016; Santucci, Baldassarre, and Mirolli 2016), HRI (Förster, 
Saunders, and Nehaniv 2018; Baraglia, Nagai, and Asada 2016; Petit, Fischer, and Demiris 
2016), social robotics (Anzalone et al. 2017; Ivaldi et al. 2017), and artificial cognitive 
architectures (Moulin- Frier et al. 2018).

The Pepper robot is a humanoid robot originally developed by the Aldebaran com pany, 
which was  later acquired by Softbank Robotics (figure 7.1c). The Pepper robot has sev-
enteen DOF and is equipped with omnidirectional wheels for navigating indoor environ-
ments. The Pepper robot was specifically developed for social, nonphysical HRI tasks; its 
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motors are sufficiently power ful to move the joints but not strong enough to hurt someone 
through accidental contact. The Pepper robot was designed with a focus on affordability. 
The cost of this robot has been reported to be about $440/month for an enterprise model 
(TechCrunch 2015) and $13,100 for the 2018 edition of the RobotCub@Home competitor 
(RobotCub@Home 2018). The Pepper mechanical structure relies heavi ly on plastic materi-
als, for structural parts as well as bearings. Pepper is equipped with cameras, three- dimensional 
sensors for visual perception, and microphones for auditory perception, as well as  laser, sonar, 
and infrared sensors for navigation.

Pepper has been used for HRI (Izui and Venture 2020), including robot- assisted therapy 
(Cao et al. 2019), emotion recognition (Tsiourti et al. 2019), and communication (Hirano 
et al. 2018; Claret, Venture, and Basañez 2017), as well as robot design studies (Kwak, 
Kim, and Choi 2017).

The NAO is a small humanoid robot developed by the Aldebaran com pany,  later acquired 
by Softbank Robotics (figure 7.1b). NAO has twenty- five DOF and was designed to be an 
affordable, open, and easy- to- handle platform. The cost of a NAO is about $7,500 (Smashing 
Robotics 2016). It is 57 cm tall and weighs 4.5 kg. Thanks to its  simple and functional design, 

a d

b

c

Figure 7.1
(a) The iCub robot. Source: Courtesy of the Istituto Italiano di Tecnologia. (b) The NAO robot. Source: Wikimedia: 
Ubahnverleih 2016, released with license CC0. (c) The Pepper. Source: Wikimedia: Tokumeigakarinoaoshima 2014, 
released with license CC0. (d) Robovie R3. Source: Courtesy of the Cognitive and Social Robotics Laboratory, 
Istanbul Technical University.
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NAO became the standard platform for the RoboCup league in 2008. It has been a popu lar 
choice for groups working in HRI who want to avoid the experimental complexities related 
to the use of larger robots.

The NAO robot is primarily used for HRI studies (e.g., Khamassi et al. 2019; Murata 
et al. 2018; Liu and Zhang 2016; Izui and Venture 2020), including robot- mediated therapy 
for autistic  children (Cao et al. 2019; David et al. 2018) and educational robotics (Chandra, 
Dillenbourg, and Paiva 2020; Jones and Castellano 2018), but also sensorimotor learning 
(Wieser and Cheng 2018), imitation learning (Park, Kim, and Nagai 2017), and learning 
by demonstration of tactile gestures (Pierris and Dahl 2017), to mention just a few.

A considerable amount of research on HRI, especially in Japan, is carried out on the 
Robovie R2 platform and its successor R3 (ATR- Creative 2010; figure 7.1d ). The Robovie 
R3 is a small, 108 cm tall humanoid robot that has two four- DOF arms, a three- DOF neck, 
and two wheels for autonomous navigation. It carries two video- camera touch sensors and 
a  laser for detecting obstacles. The robot was developed by ATR- C and VStone in 2010 
and was supplied  until 2016 at the price of about $40,000 (RobotShop Community 2020), 
when it was eventually discontinued.

The robots of the Robovie series have been extensively used for researching HRI, assess-
ing anthropomorphism (Złotowski et al. 2018), testing deictic be hav ior (Liu et al. 2017), 
testing the effects of negative evaluations (Nomura and Kanda 2015), evaluating lexical 
entrainment (Iio et al. 2015), and studying social side- by- side walking (Karunarathne et al. 
2018).

Other robots without an anthropomorphic appearance  were employed frequently in the 
papers analyzed in our study. Baxter was presented in 2012 by the American com pany Rethink 
Robotics. It is a bimanual manipulator with two seven- DOF arms (figure 7.2a). The Baxter 
was developed with a focus on safe physical HRI and was therefore equipped with series- 
elastic actuators (SEAs) at all arm joints. This feature allows the robot to perceive external 
forces and consequently adapt its motion. Rethink Robotics designed the Baxter robot to be 
eco nom ically  viable, targeting repetitive assembly applications in small and medium enter-
prises (SMEs). The robot was supplied at the average cost equivalent to the salary of an 
assembly operator in the United States (base price of $25,000; Wikipedia 2020). In 2018 
Rethink Robotics ceased operations, thus interrupting the Baxter program.

In our survey we found the Baxter robot used to study learning by demonstration (Yang 
et al. 2018) and learning by imitation (Katz et al. 2018) and to evaluate HRIs (Herath, 
Jochum, and Vlachos 2018) and assess the legibility of be hav iors in collaborative tasks 
(Busch et al. 2017). The LBR iiwa from Kuka AG is a seven- DOF robot arm, with inte-
grated joint- level torque sensing (figure 7.2b). It is based on the hardware of the DLR 
LWRIII (Hirzinger et al. 2002) developed at the DLR Institute for Robotics and Mecha-
tronics and is available for about $200,000 (Robotics Business Review 2015). The capabil-
ity for torque and force control make this robot especially suitable for experiments that 
require safe physical interaction.

The Kuka LBR iiwa robot was, for example, used in experiments on cooperative object 
manipulation (Donner et al. 2017), affordance learning (Ugur and Piater 2017), and learn-
ing by demonstration in an assistive context (Lauretti, Cordella, and Zollo 2019). A second 
robot arm suited for physical HRI experiments is the Panda from Franka Emika GmbH 
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(figure 7.2c). The Panda has seven DOF; each joint integrates joint torque sensing at 
1 kHz. One of the distinctive features of this system is its relatively low price tag: its target 
cost was €10,000 (IEEE Spectrum 2020a), and at the time of writing, in France it is distrib-
uted with its software for about €20,000 excluding taxes (Generation Robots 2020). A second 
advantage of the Panda is its user- friendly programming interface, which makes it accessible 
to users with no expertise in software programming. Overall,  these features make the Panda 
arm a popu lar choice for research in collaborative robotics and object grasping. The Pioneer 
3- DX/3- AT models by  Adept (now part of Omron) are wheeled mobile robots that have been 
used extensively for research (figure 7.2d). The Pioneer 3- DX is a compact differential- drive 
mobile robot, with two motorized wheels. It comprises a motion controller and sensors 
(sonars and optional  laser scanner) for navigation and obstacle avoidance. The Pioneer 3- AT 
is a similar platform with four wheels designed for outdoor navigation. The Pioneer robots 
 were discontinued in 2015 as part of the new Omron product strategy  after the acquisition 
of  Adept. The cost of the platform, depending on the configuration, varied between $4,195 
to $30,000 (IEEE Spectrum 2020a). They  were often equipped with additional sensors (like 
RGBD or RGBD cameras) and grippers. Benli, Motai, and Rogers (2019) equipped a 3- DX 

d
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Figure 7.2
(a) The Baxter robot. Source: Energy . gov 2013, released with license CC0. (b) Kuka LBR iiwa. Source: Caré 2015, 
released with license CC BY- SA 4.0. (c) The Panda arm. Source: Ims 2017, released with license CC BY- SA 
4.0. (d) The Pioneer robot (3- AT model), equipped with a gripper. Source: J. Wang 2008, released with license 
CC BY- SA 3.0.

Downloaded from http://direct.mit.edu/books/book-pdf/2239475/book_9780262369329.pdf by guest on 30 September 2024



Robot Platforms and Simulators 131

with a thermal camera to study  human be hav ior tracking, and Glover and Wyeth (2018) 
equipped it with a gripper to study the lifelong learning of object affordances. The same 
platform was used to study how to solve object search tasks by integrating object identifica-
tion, avoidance, path planning, and navigation (Wang et al. 2019). It was also employed in 
HRI settings to study attention (Caccavale and Finzi 2017) and to evaluate the effectiveness 
of telepresence interfaces (Ahn and Kim 2018).

7.4 Software Simulators

In all fields of modern engineering, it is standard practice to automatically build mathe-
matical models that describe systems currently being designed or  under study and then to 
use  these models in digital computers to “simulate” their be hav ior.

One of the advantages of simulations is that they enable research where real- world inves-
tigations would be difficult to conduct. For example, the phenomena of interest could be 
inaccessible, too dangerous, too expensive, or morally unacceptable to study empirically, at 
least at an early experimental stage. Even though the study of real phenomena is often desir-
able, simulations provide a set of advantages in comparison to studying the real world. They 
allow for repeated observations, strict control of conditional par ameters, and scalability. In 
general, simulations offer controlled, safe, and affordable environments in which task- oriented, 
social, and cognitive skills can be repeatedly engaged, practiced, assessed, and explored.

The main advantage for cognitive science researchers in using robotic simulators is the 
possibility of reproducing the physics and dynamics of the robot and its interactions with 
the environment. It enables studying the be hav ior of dif fer ent types of embodied agents 
without facing in advance the prob lem of building and maintaining a complex hardware 
device. Often, the simulator becomes a tool to test and validate an algorithm before porting 
it on a real robot. Mar, Tikhanoff, and Natale (2017) proposed a framework to identify the 
affordance properties of objects, with the goal of predicting the effect of the actions per-
formed while using a novel tool. Their experiments  were carried out on both the iCub 
robot and its simulator. The simulator was used to test in advance the effectiveness of the 
proposed framework and to automate extensive experiments on a large set of objects, 
which would have been tedious to perform on the real setup. When the case- study scenario 
makes real- world experimentations unfeasible or too expensive, the simulation becomes 
a valid alternative option. This is the case, for example, of social skills analyses, in which 
a proper experimental environment should include  humans and be able to model dynamic 
interactions between  humans, the robot, and the environment. Truong and Ngo (2017) solved 
the issue by simulating in Gazebo an office scenario, complete with doors, objects, and 
 people. A socially aware mobile robot can navigate around the office with the goal of detect-
ing  humans, identifying their social state, and defining an approaching strategy.

Another advantage of simulators is that they allow many experiments to be conducted 
with the robot by varying its morphology and sensors without the need to develop  these 
corresponding features in hardware. For example, Luo et al. (2018) proposed an infant- 
inspired framework for a robot to acquire reaching abilities. They used a simulation in 
Gazebo to evaluate the per for mance of the framework in dealing with diverse cases. They 
simulated two versions of the same robot with dif fer ent arm lengths in order to imitate the 
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growth of the infants during the learning phase and the dif fer ent uses of tools that can 
result.

Many studies in cognitive robotics are HRI studies. From this perspective, it is fundamen-
tal to include the  human subject in the experimental environment. To do this, the simulation 
framework can be adapted to allow a user to interact with the simulation. For example, the 
user can send vocal inputs to the simulated robot as in Rossi, Staffa, and Rossi (2016), 
wherein the authors used V- REP to create a multirobot architecture, guided by a  human 
operator, and analyzed how the vocal interaction evolved. Alternatively, a camera sensor can 
be used to monitor the movements of a  human user and translate their gestures into com-
mands for the robot. Caccavale and Finzi (2017) simulated both a Kuka omnirobot and a 
user in V- REP. The simulated user interacted with the robot by reproducing the gestures of 
a real  human operator, whose movements  were detected and recognized through an RGB- D 
sensor. A third way is to use the keyboard to generate events in the simulated environment, 
as in Pinto, Kuo, and Nikolaidis (2019). They used a reinforcement- learning framework in 
which a robotic arm collected data to learn a manipulation task while a  human acted as an 
adversary in its learning pro cess. The experiments  were performed in Mujoco, where the 
user disturbed the interaction of the robot with the objects by applying force to the objects 
through the keyboard.

Since the 1980s, simulators have been part of the tools used for robotics research (Chan, 
Weston, and Case 1988). In the 2000s the interest in tools for robotics simulation and 
software development grew further, also thanks to the launch of tools such as Microsoft 
Robotics Developer Studio (Gates 2008; Jackson 2007) and USARSim (Carpin et al. 
2007). The capability of simulators to reproduce the real world— both in terms of physics 
and photorealism— has been constantly improving. Recent pro gress obtained with large- 
scale training techniques, such as deep learning and reinforcement learning, have made 
simulation even more relevant. Deep architectures need to be trained on massive amounts 
of data in order to learn an effective and generalized repre sen ta tion of the world or 
effective control policies. The possibility of generating data with a simulated environment 
allows for faster data acquisition, without the need for a  human operator to supervise the 
procedure and while avoiding damages to the real setup. This has been shown to work 
well in perception using a mix of data augmentation and photorealistic rendering to solve 
the prob lem of six- dimensional object pose estimation (Tremblay et al. 2018). The model 
developed by Mahler et al. (2017) can perform accurate precision grasps of many dif fer ent 
objects by being trained on millions of depth images and grasp poses generated in simula-
tion. Nowadays, a lot of effort is spent on the use of simulators to transfer skills and abili-
ties learned in the simulated environment to the real- world system. This is particularly 
useful for reinforcement learning– based approaches in which the learning pro cess may 
require months of real- world interaction, with the risk of damaging the robot, whereas in 
simulation it can be speeded up using modern parallel computing. However, the effective-
ness of this approach is not straightforward due to the so- called real ity gap, the discrepancy 
between real ity and simulation that prevents simulated robotic experience from directly 
enabling effective real- world per for mance. A pos si ble solution to this prob lem is to execute 
multiple simulations in which some of the par ameters are randomized so the system can 
learn more robust control policies. An example is the recent work of Open AI, in which 
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a robot learns in- hand object manipulation with a dexterous hand (Andrychowicz et al. 
2020).

In the context of cognitive robotics, the simulated task must support the under lying psy-
chological and cognitive operations employed in performing the real- world task to ensure that 
the transfer effectively occurs. Many recent works address the prob lem, proposing promising 
ways to close the sim- to- real gap (Peng et al. 2018; Chebotar et al. 2019).

7.4.1 Types of Simulator

Simulators focus on dif fer ent aspects of a robotic system. For example, it is pos si ble to 
simulate how dif fer ent parts of a robot deform given the forces that the robot exchanges with 
the environment. Another example is the simulation of physical quantities inside the robot, 
such as the temperature, or the current and voltage in the motors or boards. For researchers 
in cognitive robotics, the main focus is on real- time tools that can simulate full robot arms 
or humanoid robots in approximate real time on regular computers. In this context, “real 
time” means that one second of simulation takes approximately one second to be simulated, 
as opposed to specialized simulations that can be several  orders of magnitude slower than 
real time. To run in real time, simulators typically disregard the simulation of fine details 
such as mechanical deformation or thermal propagation.

One of the major simplifications to achieve real time is to use multibody dynamics or 
rigid- body dynamics (Horak and Trinkle 2019; Featherstone and Orin 2016). This follows 
the assumption that robots are an assembly of multiple, perfectly rigid bodies, called links, 
interconnected by joints. Another simplifying assumption is to ignore the complex details 
of the actuators of the robot,  whether electrical, hydraulic, or pneumatic, and just assume 
that it is pos si ble to directly control the torque or force that the motors apply to the joints 
of the robot (Neunert, Boaventura, and Buchli 2016).

Available simulators can be classified into two main families: physics engines and simu-
lation environments. Physics engines provide all the functionality necessary to simulate the 
physics of a system modeled as a rigid body, taking into account external forces and col-
lisions with other simulated bodies. Simulation environments, instead, provide many other 
functionalities such as an integrated GUI, and they expose a user- friendly interface to one 
or more physics engines.

Several commercial and open- source physics engines are commonly used for robotics 
simulations. They are available as libraries for a given programming language, which is 
typically C/C++ given that per for mance is impor tant in robot simulation. Examples of 
open- source physics engines are ODE, Bullet, and DART ( these are discussed in detail in 
section 7.4.2).

In some cases, researchers use physics engine libraries directly to build their own simulators 
(an example is the iCub simulator based on the ODE physics engine (Tikhanoff et al. 2008), 
typically combining a physics engine with a rendering engine to visualize a three- dimensional 
model of the robot and the environment during the simulation. Simulation environments, on 
the other hand, are ready- to- use programs that permit the use of a physics engine, a rendering 
engine, and a user interface without the need to write code specific to each simulation scenario. 
In contrast, they provide description languages that allow the specification of the robot struc-
ture and the environment to be loaded through a file description. Examples of such simulation 
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environments are Gazebo, CoppeliaSim (formerly V- REP), Webots, and SIGVerse.  These 
environments also support the ability to load code specific to given experiments in the form 
of custom plug-in systems or provide support for exposing the functionalities of the simu-
lated robots using middleware interfaces or APIs, such as ROS/ROS2 or YARP (as an in- 
depth discussion of robot middleware like ROS is out of the scope of this chapter, we refer 
the reader to Kortenkamp, Simmons and Brugali [2016] and Magyar, Krizsán, and Sinčák 
[2015]).

For both physics engines and simulation environments, it is worth distinguishing two 
dif fer ent use cases. In the first case, the user starts the simulation manually, as a real robot 
would be started, and then its execution continues in real time. In the second case, the 
user automatically runs multiple simulations at the same time, or multiple simulations over 
a long time— for example, for training a learning algorithm.  These use cases respond to 
dif fer ent needs of the users, and one environment can be optimized to provide more facili-
ties for one use case or the other.

Another impor tant aspect is the API exposed by the simulators to control the robot. In 
some cases the API is designed to replicate the interface of the real robot. This avoids the 
need to rewrite the control software when switching from the simulator to the real robot 
(proving in this way to be a digital twin of the real robot). This approach is followed, for 
example, by the iCub humanoid robot simulators (Tikhanoff et al. 2008; Hoffman et al. 
2014).

Figure 7.3 shows examples of simulators from  those built directly using the function-
alities of a physics engine library to mature simulation environments able to reproduce 
realistic scenes with photorealistic rendering. In the next section, we discuss some of the 
physics engines and simulation environments we found in our survey and some we con-
sidered impor tant given the current trend in robotics as of early 2020.

7.4.2 Available Simulators

Common open- source physics engines used extensively by the robotic community are Open 
Dynamic Engine (ODE; Smith 2020), Bullet (2020), and DART (2020). Excluding DART, 
 these tools  were originally developed for computer games and then adapted to work with 
robots. Nowadays  these two domains have almost converged, providing at the same time 
accurate physics simulations and photorealistic rendering. A popu lar closed- source physics 
engine used extensively by the robot- learning community is MuJoCo (Roboti LLC 2020). 
For per for mance reasons, the physics engines are developed in low- level languages like C 
and C++, although they often provide bindings to other languages such as Python. The 
majority of both open- source and commercial simulation environments interface with at least 
one of the physics engines reported above.

Initial attempts to build robot simulators relied directly on the functionalities offered by 
a physics engine library. A notable example in this re spect is the iCub ODE simulator 
(Tikhanoff et al. 2008), which used the ODE API to build a full simulation of the iCub 
robot, including all joints, the inertial sensors in the head, the cameras, and the facial 
expressions. The iCub ODE simulator also provides a software interface for position, 
velocity, and torque control. It also allows the loading of physical objects, directly from 
a configuration file or another software module using the YARP middleware. The iCub 
ODE simulator has been used in experiments with sensorimotor learning (Tommasino 

Downloaded from http://direct.mit.edu/books/book-pdf/2239475/book_9780262369329.pdf by guest on 30 September 2024



Robot Platforms and Simulators 135

et al. 2019), tool affordances (Mar, Tikhanoff, and Natale 2017), estimation of affective 
states during face- to- face interaction (Boccignone et al. 2018), the study of computational 
models of development of language (Štepánová et al. 2018), coordination of cognitive 
skills (Hwang and Tani 2018), and altruistic be hav ior (Baraglia, Nagai, and Asada 2016).

The main limitation of such simulators is their maintainability. Changes in the robot have 
to be propagated by modifying the simulation code; for this reason, it becomes difficult to 
support multiple robots or give the user the option to add new robots or objects to the simu-
lation environment. Other benefits of using simulated environments, beyond improved user 
experience, include the possibility of extending the simulation with custom features and the 
opportunity to directly interact with simulated bodies from a graphic interface. In cognitive 
robotics research, particularly, interaction is of paramount importance. For  these reasons, 
more recently, the community has shifted  toward the adoption of simulation environments.

One of the most complete and enduring simulation environments is Gazebo (Koenig 
and Howard 2004), currently developed by the Open Software Robotics Foundation (2014) 

a

c

b

Figure 7.3
Examples of simulators: (a) the iCub ODE simulator; (b) an example of simulation using Gazebo; and (c) the 
Isaac Sim. Source: Tikhanoff et al. 2008; (Hoffman et al. 2014; NVIDIA Corporation 2020).  These examples 
show the evolution of simulation environments, from custom simulators programmed using the functionalities 
of a physics engine library to mature environments that allow the loading of complex scenes from description 
files and 3D models of objects, with high- fidelity rendering.
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and distributed as open- source software. The developers of Gazebo also proposed the SDF 
(Open Source Robotics Foundation 2019), an XML format, which describes robot models, 
the objects, and the environment in which the robot is deployed. With time the SDF was 
extended to describe all aspects that characterize a robot, static as well as dynamic objects, 
terrain, and lighting. Gazebo supports all the common sensors typically mounted on robots 
and allows developing software plug- ins to extend its capabilities. It also supports multiple 
physics engines such as ODE, Bullet, Simbody, and DART. Gazebo was initially devel-
oped for Linux, and more recently, it was extended to support Win dows as well. The main 
advantage of Gazebo is its maturity and large community: Gazebo has been extensively 
used during the DARPA robotics challenge (Defense Advanced Research Proj ects Agency 
2013) to simulate the ATLAS humanoid robot, and it is currently the simulator of choice 
for experiments on whole- body control and locomotion with the iCub robot (Hoffman 
et al. 2014). It has also been integrated as part of the Neurorobotic Platform within the 
 Human Brain Proj ect (2018) to study models of the brain in simulated closed- loop systems 
(see, for example, Chen et al. 2019). Other examples are the simulation of a mobile plat-
form for HRI studies (Truong and Ngo 2017) and the simulation of infant- like humanoid 
robots to investigate a developmental approach to learning reaching tasks (Luo et al. 2018).

CoppeliaSim (Rohmer, Singh, and Freese 2013), formerly V- REP, is a framework that, 
similarly to Gazebo, supports multiple physics engines, including Bullet and ODE. It is 
multiplatform, as it is distributed for macOS, Linux, and Win dows. It can be used  free of 
charge, but only in its educational version.

In our survey we found CoppeliaSim/V- REP used to simulate a custom robot system to 
study reinforcement learning for a domestic task (cleaning the  table; Cruz et al. 2016), a 
multirobot mobile architecture (Rossi, Staffa, and Rossi 2016), and a Kuka omnirobot in 
HRI settings (Caccavale and Finzi 2017).

Webots (Cyberbotics Ltd. 2020) is another simulation environment, which was devel-
oped in 1998 by the Swiss Federal Institute of Technology (EPFL) and became a com-
mercial product of the EPFL spin- off com pany Cyberbotics (Olivier 2004). It was initially 
distributed as a closed- source application, and prob ably for this reason, its adoption suf-
fered, especially when open- source alternatives like Gazebo gained popularity. With the 
release of the R2019a, Webots is being distributed with an open- source license. Webots is 
based on ODE; it provides a graphic interface that simplifies the design of the environment 
and achieves fast prototyping of robot systems starting from a set of sensors and actuators. 
It is multiplatform and runs on Win dows, Linux, and macOS. In Pierris and Dahl (2017), 
Webots is employed to simulate a salamander- like robot to study an architecture for deriv-
ing novel skills by extending existing skills learned by demonstration.

Choregraphe (Pot et al. 2009) is the built-in programming application for Aldebaran 
robots, including NAO and Pepper. It allows the robot programmer to create animations, 
be hav iors, and dialogues. Besides  these programming capabilities, it lets users test the pro-
grammed be hav ior on a simulated robot, and for this reason, researchers who use Aldebaran 
robots often use it.

The MATLAB environment also provides a toolbox for robotic control and simulation, 
called the MATLAB Robotics System Toolbox (MathWorks 2020), which includes simula-
tion tools integrated with Simulink and Simscape Mechanics. Furthermore, the MATLAB 
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Robotics System Toolbox offers out- of- the- box integration with the Gazebo simulator, 
permitting users to control Gazebo models with MATLAB and Simulink.

NVIDIA Corporation (2020) recently released Isaac Sim. It is part of the Isaac SDK, which 
additionally provides machine- learning algorithms and algorithms for motion planning, 
SLAM, and perception. Given the know- how of the com pany, it focuses on exploiting GPU 
acceleration for machine learning and simulation. For this reason and thanks to the support 
by NVIDIA, it is expected that Isaac Sim  will soon be  adopted by a large community.

A second categorization we discuss is between interactive or batch simulations. Interactive 
simulations are executed in real time, and robots belonging to the simulation are analogous 
to virtual replicas of real robots. Batch simulations, instead, are multiple instances of in de-
pen dent simulations that can run even faster than real time. The need for batch simulations 
has been driven by recent techniques proposed in reinforcement learning and their integration 
with deep learning, which demand training data sets obtained by  running hundreds of thou-
sands or even millions of actions. Key research areas in cognitive robotics such as imitation, 
be hav ior transfer, and knowledge acquisition could benefit from the usage of batch simula-
tions. Simulation frameworks that support batch execution are Mujoco, PyBullet, Coppelia-
Sim, and Isaac Sim.

7.5 Conclusion

In this chapter we have provided an overview of the hardware platforms and simulation 
environments in use within the cognitive robotics community. We analyzed the lit er a ture 
in the field to identify the platforms commonly used in the community and described  those 
found to be used most frequently.

Our main observation is that the community is widely fragmented. In our analy sis of 337 
papers, we found references to sixty- seven dif fer ent hardware platforms and thirteen soft-
ware simulators. Most of the platforms and simulators  were used only once. Only a few 
platforms— namely, iCub, NAO, and Pepper— appeared to be  adopted by a community of 
researchers. This is clearly a substantial prob lem  because such a fragmentation in the com-
munity poses strong challenges in terms of experimental reproducibility and the sharing of 
code and research results. Yet the NAO and Pepper robots have been quite successful in 
building a community of researchers. We can speculate that this is due to their affordable 
cost and the fact that— being commercial products— they are more reliable than research 
platforms. Unfortunately, only a subset of the community— mostly researchers involved in 
HRI studies— has  adopted  these robots. The iCub robot, on the other hand, seems to support 
research that is more heterogeneous, ranging from HRI to sensorimotor learning, whole- 
body control, and learning. Yet the versatility of the platform comes with higher cost and 
complexity, which may reduce adoption, especially in groups that do not have a core exper-
tise in robotics.

If we look at the field of robot grasping, however, we notice a dif fer ent trend, in which 
platforms such as the Panda arm and the Baxter robot are becoming de facto standards for 
research. We believe this is  because  these platforms strike a good balance between cost, 
reliability, complexity, and the type of research questions they allow users to address. In 
this re spect, it seems challenging for a single platform to serve the  whole cognitive robotics 

Downloaded from http://direct.mit.edu/books/book-pdf/2239475/book_9780262369329.pdf by guest on 30 September 2024



138 D. Ferigo et al.

community. In any case it seems clear that the community would greatly benefit from a 
larger adoption of shared platforms and that new platforms able to meet at least a subset 
of the requirements of the researchers would have a large impact on the community.

In our survey we also noticed a mild interest in simulations, outlined by a very scattered 
adoption of simulation tools. We argued that a pos si ble reason could be that simulators do 
not yet provide complex models of the environment and do not allow the modeling of 
realistic interactions with  humans. In fact, since HRI is often bidirectional, a simulator for 
HRI should provide interfaces for the robot to receive input from the  human and for the 
 human to receive feedback (visual and acoustic, but also haptic) from the simulated robot. 
Advances in virtual and augmented real ity technology may progressively fill the gap; 
however, their integration with robotic simulators has not been extensively explored yet.

Several novel applications of simulation tools could find applications in cognitive robot-
ics, even if their use is not currently widespread. Recent technologies developed for virtual 
real ity (VR), such as VR headsets, would allow  human users to interact naturally with 
simulated robots, as is done, for example, in SIGVerse (Mizuchi and Inamura 2017). At 
the same time, vari ous technologies that sense  humans are maturing, and they could be 
used to reproduce the movement of the  human inside the simulation. Examples of such 
technologies are body- tracking systems that rely on vision (e.g., CMU open pose; Cao 
et al. 2017) and sensorized suits that integrate information from a distributed network of 
inertial units and torque and pressure sensors (Latella et al. 2019).

Fi nally, for the subfield of physical HRI, a useful  future application of simulation tools 
may be physical interfaces able to provide users with force feedback from the simulation, 
using haptic feedback devices (Hannaford and Okamura 2016).  These  will simulate not 
only visual interaction between the user and the robot but also physical contact arising 
from the interaction.

Additional Reading and Resources

•  A recent, complete handbook on humanoid robotics, with specific sections on robot 
platforms (part II) and simulators (part VIII): Ambarish G., and V. Prahlad, eds. 2019. 
Humanoid Robotics: A Reference. Netherlands: Springer.
•  IEEE robots— your guide to robotics: https:// robots . ieee . org.
•  ROS robot operating system: https:// www . ros . org.
•  Official iCub website with links to robot simulator and middleware: https:// icub . iit . it / .
•  IEEE education resources in robotics: https:// www . ieee - ras . org / educational - resources 
- outreach / educational - material - in - robotics - and - automation.
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8.1 Introduction

Replicating the fundamental characteristics of biological organs to develop their artificial 
equivalents and using them in robotic platforms is an area that is attracting significant interest 
through topics such as soft robotics; electronic skin, or eskin; and bionic limbs (Dahiya 2019; 
Dahiya, Akinwande et al. 2019; Dahiya, Yogeswaran et al. 2019; Soni and Dahiya 2020). 
The interest in this field is also fueled by the new and emerging applications of robots in 
areas such as smart factories and ambient assisted living, where safe and intelligent human- 
robot interaction is necessary. For robotic systems to move from industrial environments to 
home and urban or social areas, it is critical for them to have human- skin- like capabilities in 
order to enable safe  human and robot interaction (Argall and Billard 2010; Dahiya et al. 2013). 
Robotic systems need to function close to  humans for this to be achieved; therefore, the 
equivalents of  human organs are needed for robots. Pacemakers and cochlear implants are 
some of the artificial organs developed in the past. The successful commercialization of some 
of the bionic organs such as electronic noses and ears and bionic eyes has encouraged 
researchers to explore more artificial organs— for example, eskin or tactile skin. This pro gress 
is also supported by technological advances in soft and flexible electronics (Gupta, Navaraj, 
et al. 2018; Núñez, Manjakkal, and Dahiya 2019), which could allow tactile skin to conform 
to curved surfaces (Hammock et al. 2013; Dahiya, Yogeswaran, et al. 2019); artificial muscles 
(Roche et al. 2014); and computation including artificial intelligence (AI; Decherchi et al. 
2011; Luo et al. 2017; Navaraj et al. 2017). However, current advances still fall short of 
leading us to the functionalities offered by  human skin. A deeper look at the sensory mecha-
nisms in the  human body shows the importance of the “sense of touch” in wide- ranging tasks 
such as the assessment of vari ous properties of real- world objects and their  handling. The 
size, shape, texture, temperature, surface roughness, hardness, softness, curvature, and more 
can all be assessed by touching. To determine such par ameters, the  human skin has dif fer ent 
types of receptors that are distributed nonuniformly throughout the body, as discussed in the 
next section (Dahiya, Metta et al. 2009; Dahiya and Valle 2013; Dahiya, Mittendorfer et al. 
2013; Yogeswaran, Dang et al. 2015).  These receptors are embedded at dif fer ent depths in 
the soft skin. It is challenging to realize an artificial skin with this level of complexity, espe-
cially when soft electronics technology is still at an early stage of development. Furthermore, 
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the sensing feature of skin is intimately connected with computation, actuation, and energy 
(Soni and Dahiya 2020). An eskin with tightly coupled sensing, actuation, computation, and 
energy devices over a large area  will be hugely beneficial for robotics as well as other emerg-
ing areas such as autonomous vehicles, tactile internet (Simsek et al. 2016), and augmented/
virtual real ity in which intelligent interaction is desired. This chapter focuses on a new 
perspective related to eskin or tactile skin and pre sents some case studies. Section 8.1 pre-
sents a new approach for obtaining sensorized complex structures such as robotic or pros-
thetic hands. The advanced multimaterial, three- dimensional (3D) printing approach and the 
innovative designs used to realize the robotic hand with embedded sensors, actuators, and 
electronics are presented in section 8.3. Section 8.4 pre sents another case study in which 
dif fer ent types of transducers (piezoelectric and capacitive) have been stacked to obtain the 
FA (fast- adapting) and SA (slow- adapting) receptors’ equivalents of the  human skin. The 
presented sensor stack is expected to allow eskin to detect both static and dynamic tactile 
or contact events. Furthermore, the machine- learning approach has been used to demonstrate 
the texture- detection capability of the presented sensor stack. Last, section 8.5 describes a 
new soft sensor device with a tightly coupled touch sensor and actuator. Altogether,  these 
case studies show how eskin research is advancing  toward tightly coupled sensing, actuation, 
and computation.

8.2 Tactile Sensing

The  human skin is the largest organ of the  human body. It comprises multiple mechano-
receptors, classified into two major categories (FAs and SAs) based on their response 
( table 8.1). The FA mechanoreceptors (Meissner’s corpuscles and Pacinian corpuscles) are 
responsible for the detection of dynamic contact force/pressure applied to the  human skin. 
They respond to slippage, to high- frequency vibration, and to the onset and offset of stimu-
lation. On the other hand, SA mechanoreceptors (Merkel cells and Ruffini corpuscles) detect 
roughness, stretch, and static stimulation on the skin. Furthermore, the fingerprint patterns 
and the interlocked microstructures of the  human skin enhance the perception of fine texture 
by amplifying the vibrotactile signals during surface exploration (figure 8.1). In general, 
 these cutaneous mechanoreceptors of the  human body provide the necessary tactile informa-
tion to manipulate objects with extreme accuracy (see chapter 6)

The artificial skin (eskin) was developed to mimic  human skin through a combination 
of dif fer ent materials, structures, and technologies. One of its earliest uses was in 1985, 

 Table 8.1
Classification of vari ous mechanoreceptors

Classification Pacinian corpuscle Ruffini corpuscle Merkel cells Meissner’s corpuscle

Adaptation rate Fast Slow Slow Fast
Effective stimuli Temporal change 

in skin morphology
Vertical force 
detection, slippage

Spatial deformation, 
curvatures, edges

Temporal change  
in skin morphology

Sensory function High- frequency 
vibration

Position, grasp, 
motion

Pattern detection, 
perception, texture

Low- frequency 
vibration, grip 
control

Source: Adapted from Dahiya 2010.
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when a flexible array with a resolution of 5 cm was attached on a robotic arm for sensing 
proximity (Hammock et al. 2013). Since then the nature of eskin has not changed much, 
as most of the eskins share similar sensors and readout characteristics along with their 
morphologies (Navaraj et al. 2017; Yogeswaran et al. 2018; Núñez, Manjakkal, and Dahiya 
2019). Generally, they have a base substrate (bendable/stretchable) on top of which the 
sensing element/s (capacitive, resistive, piezoelectric, and so on) are developed. Usually, 
an encapsulation layer is added on top of the sensing structure to reduce the possibility of 
wear and tear.  These devices can be bendable in order to conform to the surface of a robot’s 
rigid body to equip them with more advanced humanlike tactile- sensing capabilities (Kap-
passov, Corrales, and Perdereau 2015; Yogeswaran et al. 2015; Núñez et al. 2017).

8.3 Robotic Hands with Intrinsic Tactile Sensing

Intrinsic or tightly integrated sensing, actuation, and computation ele ments, all embedded in 
3D structures,  will underpin the advances in the next generation of smart and complex 
systems such as humanoid robots with the capabilities to carry out cognitive tasks (Ntagios 
et al. 2020). The  human skin is densely packed with dif fer ent types of mechanoreceptors 
(as described in section 8.1) that support  humans’ ability to carry out cognitive tasks by 
enabling them to understand and rapidly respond to the constantly changing environment. 
As  humans interact with the environment, the touch stimuli from  these tightly coupled recep-
tors are constantly being pro cessed, interpreted, and stored by the brain followed by swift 
action from the concerned effector in response to the stimulus (Bear, Connors, and Paradiso 
2020). This real- time, closed- loop interaction enables  humans to respond using not only the 
immediate stream of information from the receptors but also the previously stored informa-
tion. So for robots to be autonomous and able to carry out cognitive tasks, eskin should be 
able to acquire, pro cess, and store information from the environment in a closed- loop fashion 
through tightly coupled sensors, actuators, and computation ele ments. This  will enable a fast, 
real- time response and adaptation of the robot to its dynamic environment.

 There have been some attempts  toward bestowing robots with humanlike dexterity 
through artificial muscles, large- area eskins, computing devices, and so on, but  these 
robots often fail to execute intricate tasks that are easily conducted by  humans (Viteckova, 
Kutilek, and Jirina 2013; Siegwart et al. 2011). The reason is that current arrangements 
do not explore the synergistic working of sensors, actuation, and computation to the same 
degree as  humans. The eskins developed nowadays have some human- skin- like features, 
but their surface mounting comes with the challenge of wear and tear during frequent use. 
 These issues arise from the way they are deployed on the surface of robotic bodies. The 
sensors need to be in direct contact with objects and often have  limited protection from 
extreme forces and/or sharp edges. Another common prob lem is routing the vast amount 
of wires in eSkin devices to the computing unit. This often results in a potential  hazard 
when operating a robotic system. Some of  these challenges can be alleviated by embedding 
the sensing ele ments in the core structure of robots.

Additive manufacturing, or 3D printing, as it is more commonly known, has emerged over 
the last few de cades and could offer new solutions for developing robotic parts with embed-
ded sensors (see section 2.1). The pro cess is based on a build sequence in which the structure 
is constructed from the layer- by- layer deposition of materials. As an additive method (as 
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opposed to a subtractive technique such as milling), 3D printing provides an ability to obtain 
complex 3D structures with arbitrary shapes and more geometric freedom when taking the 
build pro cess into consideration. If  today’s single- materials- based, 3D- printing approach can 
be adapted to incorporate the simultaneous printing of multiple materials (e.g., plastic and 
metal) then  there is potential for the manufacturing of “smart” objects with enhanced func-
tionalities and with embedded sensing/electronic components (Nassar et al. 2018). This is 
an exciting approach for robotics  because dif fer ent sensing and actuating materials can be 
embedded into a robot’s body as part of the build pro cess. The printing of vari ous conducting 
materials, along with typical plastic or polymers to create complex 3D structures,  will allow 
the efficient use of 3D space inside  these structures. The open- source nature of most fused 
deposition modeling (FDM) printers and their accompanying software also lends itself to 
widespread modifications to the printers in vari ous ways, such as incorporating multiple 
printing heads, printing novel materials, and adjusting the print settings to suit a desired 
custom application. This being said,  there are some limitations, particularly with regard to 
the print resolution. Nozzle dia meters, build volumes, relatively slow fabrication speeds for 
mass production, material properties, and lack of adjustability during fabrication are some 
of the limiting  factors of this technology. Researchers are currently working  toward improv-
ing  these machines via integrating other fabrication mechanisms, feedback controls, and AI 
(Sitthi- Amorn et al. 2015; Skylar- Scott et al. 2019). Nonetheless, the overwhelming benefits 
of printing rigid structural materials, soft materials, conductive inks, and sensing and actuat-
ing ele ments all in one fabrication method for robots in arbitrary shapes is an ave nue that 
 will spur the research in coming years.

Recent work (Ntagios et al. 2020) in which innovative hand design has been used along 
with multimaterial 3D printing is a good example of this approach. A 3D- printed soft capaci-
tive sensor and associated readout electronics (e.g., a capacitance to digital converter chip on 
a small PCB)  were embedded into the 3D- printed robotic hand (Ntagios et al. 2020). At first 
a five- finger 3D- printed hand was designed to have embedded actuators for movement of 
each of the fin gers. The design consisted of multimaterial 3D printing by a modified 3D 
printer mounted with multiple hot ends with dif fer ent materials. The hand’s design was seg-
mented into three sections: bottom,  middle, and top (figure 8.2a). The top and bottom sections 
 were printed with polylactic acid (PLA), a well- known 3D- printing material, and the  middle 
part was printed with flexible thermoplastic polyurethane (TPU). In between the sections, a 
thin layer of acrylonitrile butadiene styrene (ABS) was printed to increase the adhesion 
between the sections. In this way, the entire hand was fabricated in one continuous print 
without the need for assembly or support material. This arrangement of materials utilized the 
rigidity of the PLA and ABS and the elasticity of TPU to achieve flexion of the fin ger joints. 
The hand is an underactuated and self- adapting mechanical end effector without any complex 
mechanical parts. This is an attractive approach to mechanical design  because it achieves 
multiple requirements of robotic end effectors, minimizing the postpro cessing and assembly 
time, in contrast with the more common production of robotic end effectors that utilize fab-
rication techniques such as machining, molding, and/or  laser cutting to produce the parts of 
the system and are often required to implement extremely complex driving mechanisms to 
animate the hand (Weiner et al. 2020). Most robotic hands, especially the commercial ones, 
are fabricated with completely rigid materials, resulting in a massive amount of parts needing 
to be fabricated and assembled (Belter et al. 2013).
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Further, a similar methodology was used to produce fingertips with an embedded capaci-
tive sensor and embedded readout electronics (figure 8.2b). The fingertip had a  simple design 
to enable the fabrication of the aforementioned system (figure 8.2c). The architecture of the 
phalanx imitated the structure of the  human fin ger, with a rigid interior (bone), soft tissue, 
and skin. The pattern of the sensor mimicked this morphology, with a rigid PLA base and 
conductive and dielectric material encapsulated between the rigid PLA and the top surface 
made of TPU. In the core of the rigid PLA structure lay the embedded electronics. The 
fabrication of this part was performed in steps, the first being the printing of PLA up to the 
level of the two pull-up resistors, which are needed to implement the interintegrated cir cuit 
(I2C) protocol for the integrated cir cuit (IC) chip meant to read the capacitance variations. 
The subsequent steps involved the placement of resistors and the direct ink writing (DIW) 
of a custom- made graphite ink for interconnects.  After the ink dried, a second section of 
PLA was printed on top  until the designated area housing the PCB was mounted with a 
capacitance- to- digital converter IC. The PCB was placed on top, followed by further printing 
 until complete encapsulation was reached. In the study three conductive materials, silver 
adhesive paste, conductive PLA, and custom- made graphite- based ink, and two dielectric 
materials, Ecoflex and TPU,  were explored to create the capacitive sensor. Other studies 
have printed silicone rubber materials as part of their transducers, and they have concluded 
that softer materials such as Ecoflex reduce the hysteresis of the transducer (Tomo et al. 
2018). Five variations of the sensor  were created with a combination of  these materials: 

Solid state IC

Pull up
resistors

Dielectric

Sensor
connection

to IC

Parallel plates

b

a c

Embedded sensor
and readout circuit

TPU

PLA

Conductive
tracks

Output pins
Printing of bottom
PLA structure

Placing of pull of
resistors

Printing of conductive
tracks

Placement of IC

Printing of top PLA
structure

Merging of sensor and
embedded electronics

Printing of PLA mold
for IC

Figure 8.2
The 3D- printed hand with intrinsic tactile sensing. (a) CAD design of the hand with the smart sensing phalanx 
that has a soft capacitive touch sensor and an embedded readout cir cuit. (b) CAD design of the interior structure 
of the phalanx. (c) Fabrication steps for the 3D- printed phalanx.
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Ecoflex- silver, TPU- silver, Ecoflex- graphite, TPU- graphite, and Ecoflex- TPU. All sensor 
variations  were fabricated using the customized 3D printer. The conductive PLA and the 
TPU  were deposited with fused deposition modeling (FDM) technique, and the Ecoflex was 
drop casted. The graphite ink was printed with direct ink writing (DIW) technique, and the 
silver paint was brushed, but similar techniques can also be used with the silver.

The Ecoflex- silver variation showed superior per for mance (figure 8.3) and a stable and 
repeatable response in static and dynamic conditions with a minor hysteresis effect. The 
superiority of the Ecoflex dielectric and the silver paste electrodes over the other devices 
was due to the materials’ properties. The adhesion of the Ecoflex and the silver paint was 
found to be the strongest with re spect to other samples. The silver paste, which is known 
to develop cracks, did not do so in the embedded configuration. This arrangement of 
materials and the interactions between them demonstrate an alternative approach  toward 
sensor endurance. The embedding of sensing ele ments inside flexible elastomers provides 
the required protection to the sensing ele ments, thus increasing the duration of the use 
phase of the sensing modules and preventing costly repairs.

In recent years, a number of similar studies have been initiated that attempt to utilize 
this technology. Previously, most 3D- printed sensors  were fabricated using the direct ink 
method (Muth et al. 2014).  These methods  were most commonly used for soft robotics 
and eskin- type approaches (Truby et al. 2019). Recently, more studies are using FDM 
techniques as well (Kaur and Kim 2019).
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Obtaining complex smart structures with intrinsic sensing, actuation, and computing is 
the way to pro gress to the next era of autonomous robotic systems. The tightly integrated 
sensing within the 3D- printed structures could pave the way for a new generation of truly 
smart systems that can change their appearance and shape autonomously. In comparison 
with state- of- the art robotic or prosthetic hands, this approach could lead to robust and 
affordable hands with more functionalities. Furthermore, the multimaterial 3D- printing 
methodology offers efficient use of 3D space through embedded components.

8.4 Tactile Sensor with Piezoelectric/Capacitive Stack

The dynamic and static force feedback from the skin is central to  humans for daily tasks. 
As mentioned in 8.1,  human skin contains both FA and SA mechanoreceptors. However, 
most of the tactile sensors reported in the lit er a ture provide  either static or dynamic pres-
sure (Yousef, Boukallel, and Althoefer 2011; Jamone et al. 2015; Kaur and Kim 2019). 
The spatiotemporal detection of tactile stimuli is impor tant for texture recognition (Yousef, 
Boukallel, and Althoefer 2011; Dahiya et al. 2013), and for this purpose it is necessary 
for eskin to have the ability to detect both static and dynamic contacts. To address this 
issue, scientists have recently developed a new touch sensor— a stack of piezoelectric and 
capacitive sensors. This allows the mea sure ment of both static and dynamic stimuli, and 
with the use of machine- learning or artificial intelligence (AI) tools, we can explore further 
cognitive skills such as detecting the texture of a curved surface (Navaraj and Dahiya 2019). 
This highly sensitive, capacitive- piezoelectric, flexible sensing skin with fingerprint- like 
patterns was formed to detect and discriminate between spatiotemporal tactile stimuli, 
including static and dynamic pressures and textures.

Multifunctional sensors that provide information about static and dynamic events are vital 
for the autonomy and dexterity of robots. In this study, to compensate for the inability of the 
piezoelectric sensor to perform static sensing, an integrated capacitive sensor was introduced. 
Thus, a capacitive- piezoelectric sensor stack was formed to mimic  human skin’s SA and FA 
mechanoreceptors (figure 8.4). The sensor was encapsulated within the 3D- printed distal 
phalanx of the index fin ger, using fingertip patterns from TPU. This pattern enhanced the 
detection capability of the system to identify surface roughness. This is a significant leap 
forward, as most of the surface roughness systems developed prior to this work have relied 
heavi ly on large area arrays (Drimus et al. 2014; Lee, Kukreja, and Thakor 2017).

The tactile sensor had a floating electrode- based capacitive structure in tandem with a 
piezoelectric structure. The sensor utilized two soft elastomers with low and high Young’s 
modulus. This arrangement enabled high sensitivity at low pressures, due to the softer 
elastomer, without saturating at higher pressures, due to the high Young’s modulus elas-
tomer. At static pressure, the elastomers compressed, and the floating electrode moved 
closer to the signal and ground electrodes (figure 8.4). The sensor stack was integrated 
into the distal phalange of the index fin ger of a 3D- printed prosthetic/robotic hand. The 
sensing device was covered with fingerprint ridges made from TPU polymer 3D- printed 
filament. The ridges  were positioned in a staggered fashion to provide robust protection, 
in a way similar to  human skin.

Early studies in this field have implemented classifiers with tactile sensors utilizing 
Fourier transform wavelets. Researchers have concluded that a change in texture over time 
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is an impor tant  factor between surfaces with irregular textures. A short- term Fourier trans-
form could be used to explore more irregular surfaces (Jamali and Sammut 2011).

In Navaraj and Dahiya (2019), a biologically plausible wavelet transform was used to 
encode the sensor’s output into spike trains based on a leaky integrated- and- fire (LIF) 
model. The spikes  were classified with a tempotron classifier using a biological observed 
spike timing- dependent plasticity (STDP) mechanism learning algorithm. With this approach 
nonplanar texture surfaces can be classified, unlike prior works. This was made pos si ble 
with a six- degrees- of- freedom robotic arm that maintained constant static pressure on the 
surface of the object. The data  were fed to a wavelet- based pro cessing algorithm, using 
the Gabor wavelet transform (GWT) instead of the common Fourier transform. This 
approach offers localization in time and frequency domain, and at the same time wavelet 
transform appears to be a more plausible approach in biological systems. To further prove 
the point, the results  were also presented using short- time Fourier transform (STFT) with 
a win dow size of one hundred samples.  After the GWT transform, the data  were encoded 
into latency- coded spike trains, as this is the assumed reason why biological systems have 
such a fast response to dynamic stimuli. An LIF model was used for the spike model, while 
the amplitude represented how fast the spike was elicited within the time span. This work 
was tested to prove  whether textures can be perceived with a single biomimetic sensory 
stack. To prove the truthfulness of the above statement, hook- and- loop fasteners  were used 
as textures for binary classification. The classification was conducted using both planar and 
nonplanar surfaces to remove pos si ble biases. One hundred planar scans, fifty concave and 
fifty convex,  were recorded, with each scan comprising both hook and loop textures. Train-
ing data consisted of 160 randomly selected samples for the neural network and 40 for 
testing.

Figures 8.5a– d show the system’s response and easily demonstrate that the loops pro-
duced higher amplitude signals than the hooks due to loops interacting more with the 
fingertip patterns. In the training error over the number of epochs, it is also clear that the 
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Figure 8.4
(a) Schematic illustration of the biomimetic sensory stack. (b) The layers in the sensory stack, with fingerprint 
ridges shown at the top. (c) An equivalent diagram of the biomimetic sensory stack. (d) The dimensions of the 
designed fingerprint ridges realized via 3D printing using NinjaFlex.
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GWT approach to texture recognition is superior to the traditional STFT method. The 
STFT- based approach has an accuracy of 95.3  percent, while the GWT- based approach 
offers 99.45  percent accuracy for the same win dow of time (figure 8.5e). In conclusion, 
the output of the sensory stack  under a closed- loop system was able to classify textures 
with a maximum accuracy of 99.45  percent, which also demonstrated the possibility that 
a single sensory stack may be sufficient for texture classification.

8.5 Integrated Sensing and Actuation Technology

This section examines the research focused on integrating sensors and actuators for an 
advanced eSkin. To utilize the full potential of robots, it is impor tant to enable them to 
interact with dexterity and cognitive capabilities, as well as learn from their resulting 
interaction with the environment. The purposeful employment of a robot’s environment is 
proposed in the context of developmental robotics in section 6.3.  Future robots should be 
able to deal with the uncertainty of the natu ral environment by continually learning, rea-
soning, and sharing their knowledge. As previously discussed in section 8.2, eskin is one 
of the effective approaches that researchers have used to achieve this. However, existing 
robots are mostly equipped with eskin having only sensing capabilities. As mentioned in 
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section 8.2, researchers have designed tactile sensors for eskin using vari ous material 
(Yogeswaran et al. 2015) structures (Mannsfeld et al. 2010; Gong et al. 2014; Wang et al. 
2014), morphologies (Dahiya and Gori 2010; Navaraj et al. 2017; Navaraj and Dahiya 
2019), and transduction methods (Dahiya et al. 2011; Adami et al. 2012; Dahiya and Valle 
2013; Khan et al. 2015; Gupta, Shakthivel, et al. 2018; Gupta, Yogeswaran, et al. 2018; 
Hannah et al. 2018; Kawasetsu et al. 2018; Yogeswaran et al. 2018), with some mimicking 
the  human skin’s features, such as fingertip- like patterns on the surface and integrated 
static and dynamic sensors (Navaraj and Dahiya 2019). However, the complexity of eskin 
goes beyond just integrating vari ous types of touch sensors on flexible substrates (Núñez 
et al. 2017).

Seamless integration of both sensing and actuation capabilities  will improve the granu-
larity of haptic information inherent in the next generation of eskin (Dahiya et al. 2019), 
enabling a substantial contribution to AI systems. Robots donned in such eskin  will have 
humanlike dexterity, cognitive skills, and physical abilities, as they  will be able to learn 
from their environment via rich and diverse information. In this context, some studies have 
explored adding sensing capabilities to dif fer ent types of actuators to obtain information 
regarding the degree of displacement produced during actuation.  These actuators include 
electromagnetic (Andò and Marletta 2016; Do et al. 2018), pneumatic (Yeo et al. 2016), 
and electroactive polymers (EAPs; Nakamura and Kawakami 2019) with dif fer ent operat-
ing princi ples and materials (Chen et al. 2019). Unlike electromagnetic actuators and ionic 
EAPs (Asaka et al. 2013), the majority are unable to provide bidirectional actuation, 
vibrotactile feedback, or a high level of displacement due to limitations in the actuation 
princi ple and/or materials used (Biswas and Visell 2019). Further, the majority of the 
actuators with integrated sensing functions are manufactured  either on paper (Phan et al. 
2017; Amjadi and Sitti 2018) or with EAPs (Jung, Kim, and Choi 2008) that require rela-
tively high voltages (~150 V per micrometer displacement; Yeo et al. 2016). Electromag-
netic actuators are capable of providing high displacement (up to 1 mm and a high force 
~5 mN/mm2 at 5 V; Guo et al. 2018; Noguchi, Nagai, and Kawamura 2018) as well as 
bidirectional actuation (Bintoro et al. 2005) and vibrotactile feedback (Do et al. 2018) at 
dif fer ent frequencies (⇐1 Hz and >500 Hz). In par tic u lar, bidirectional actuation is advan-
tageous in the manipulation of the direction of actuation, as it provides options for con-
trolled multidirectional displacement (Cho and Ahn 2002). In the effort to make electromagnetic 
actuators intrinsically soft and wearable, the field of magnetoelectronics has also been rapidly 
gaining attention (Hellebrekers, Kroemer, and Majidi 2019). In this case, flexible magnets 
and elastomers mixed with ferromagnetic materials are harnessed for the purpose of actuation 
(Almansouri et al. 2019; Hintze et al. 2014). However, electromagnetic actuators have so far 
been  those most employed for actuation purposes (Said et al. 2016; Paknahad and Tahmase-
bipour 2019), with primary applications in micropumps (Said et al. 2018) and tactile displays 
(Zárate and Shea 2016). By integrating sensing capabilities in electromagnetic actuators, 
multidirectional actuation capability and excellent controllability could be adequately har-
nessed to advance applications in the realization of soft eskin with both sensing and haptic 
feedback capabilities.

Electromagnetic actuators (EMAs) function by converting magnetic energy into mechan-
ical energy and are generally governed by three fundamental laws: the Lorentz law, Fara-
day’s law, and the Biot- Savart law (Gomis- Bellmunt and Campanile 2009). Actuation in 
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EMAs occurs through the interaction of the magnetic field (produced by a current through 
a coil) with a permanent magnet and/or a ferromagnetic material (Kawasetsu et al. 2018). 
This interaction produces  either a repulsive or an attractive force applied directly to a 
membrane or plunger, thereby causing displacement. This repulsive or attractive force is 
utilized to achieve the repulsion and attraction of soft membranes of the eskin. Principally, 
electromagnetic actuation occurs by means of two main cir cuits: 1) the electrical cir cuit 
that establishes the current and voltages and 2) the magnetic cir cuit that establishes the 
magnetic field strength and flux. The current I produces the controllable magnetic field 

!
H , 

while the magnetic field produces the magnetic flux ø and the magnetic flux density 
!
B 

(equation 8.1).

 
!
B = µr µ0

!
H , (8.1)

where μr = relative permeability of the material, μo = permeability of the vacuum, and the 
magnetic constant = 4π × 10–7H.

The addition of intrinsic sensing to electromagnetic actuators is advantageous, as mentioned 
in section 8.3 and shown in research (Ozioko, Navaraj, et al. 2018; Ozioko, Hersh, and Dahiya 
2018, 2019; Ozioko, Karipoth, et al. 2021). Figure 8.6a shows this princi ple and the device 
structure composed of a tactile sensing (piezoresistive) layer integrated on top of a permanent 
magnet that is part of a flexible electromagnetic, coil- based actuator. The device can detect 
contact force via the piezoresistive layer and si mul ta neously produce a proportional actuation 
using the electromagnetic actuator. Figure 8.6a shows the device before actuation, while 
figure 8.6b and figure 8.6c show the device during dif fer ent actuation modes. During actua-
tion, the top layer is attracted to or repelled by the coil, as shown in figure 8.6b and figure 8.6c 
respectively, in accordance with the electromagnetic princi ple previously described in this 
section. In each case,  there are two pos si ble states, the vibration state and the nonvibration 
state, depending on the direction of the supplied current. When a constant current is supplied, 
the device operates in a nonvibration state. The vibration state occurs when the pulsating 
current of a given frequency is supplied through the coil. This makes it pos si ble to control 
the speed, movement, and direction of the top layer via the manipulation of the magnitude 
and direction of the supplied current. Hence, eskin with this feature can be controllably tuned 
as required.

Figure 8.7 shows a more detailed operating princi ple of the device. The two main 
modules of the device (sensing and actuation) are controlled by the sensing and actuation 
module, respectively. Figure 8.7a shows the soft, piezoresistive sensing layer. This sensing 
layer could be realized using any soft sensing layer, but in this case a graphite ink was 
encapsulated using Sil- PoxyTM. When an external force is applied to the sensing layer, the 
particles of graphite move closer to one another from distance d1 and d2 to d1 + Δ d1 and 
d2 + Δ d2, respectively. This creates a closer conducting network that  causes a reduction 
in re sis tance of the material from R (figure 8.7a1) to R + Δ R (figure 8.7a2). Figure 8.7c 
shows what happens when external pressure is applied to the sensing layer. In this case, 
a change in re sis tance (Δ R) occurs as read by the sensing control module. This re sis tance 
shift  causes a change in current (Δ I ) flowing through the spiral coil that is driven by the 
actuation control module. This change in current in turn  causes a proportional change in 
the magnetic field produced by the spiral coil that leads to a change in the force of actua-
tion. This change in actuation force  causes the top layer to move away from the coil due 
to repulsion or closer to the coil due to attraction. Therefore, this device takes advantage 
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of the sensing ability of the piezoresistive layer and the magnetic interaction between the 
coil and the permanent magnet to produce simultaneous sensing and actuation. Addition-
ally, the sensing and actuation could be in de pen dently controlled using digital logic gates 
and a microcontroller programmed with corresponding algorithms.

Figure 8.8 shows the response of the sensing layer of the integrated device alone as well 
as that of simultaneous sensing and actuation. This result illustrates that the self- controllability 
characteristic of the integrated device makes the concept advantageous for use in  future 
tunable eskin, enabling controllability and the extraction of richer information.  Future appli-
cations could explore embedding this integrated device in a robotic fingertip to control its 
stiffness for improved grasping of objects.
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8.6 Conclusion

This chapter presented the current state and development of tactile sensing and actuation 
technologies in robotic skin along with new approaches  toward biomimetic and bioinspired 
tactile sensing and computing. Current fabrication techniques and their limitations and 
drawbacks  were discussed. The growth of 3D printing and the advantages it provides  were 
examined, as well as how this new technology can enhance current tactile and actuation 
systems. The two tactile sensor structures presented in sections 8.3 and 8.4 do in many 
ways mimic  human skin’s functionality. The 3D- printed hand with intrinsic tactile sensing 
discussed in section 8.2 has the embedded actuation, capacitive sensors in the distal pha-
langes, and embedded electronics capable of reading the capacitive value and transmitting 
the digital information to the microcontroller. In this way the wear and tear issue of eskin 
is alleviated, along with the wiring complexity issue. The biomimetic tactile sensor pre-
sented in section 8.3 uses a sensory stack to si mul ta neously mea sure dynamic and static 
conditions. Data from sensors  were fed into a neural network that could classify two 
textured surfaces with an extreme accuracy rate of 99.45  percent. In the study, a compari-
son between the commonly used short- time Fourier transform and a biomimetic Gabor 
wavelet transform was performed to explore the superior system. The piezoresistive sensor 
with integrated actuation presented in section 8.5 can provide vibrotactile feedback. 
Devices such as  these have the potential to advance soft robotics by allowing such robots 
to “squeeze” while continuing to sense ambient conditions.

In general, the case studies presented show how eskin research is advancing  toward 
tightly coupled sensing, actuation, and computation. The key cognitive skills needed to 
advance robot capabilities include memory, decision- making, action understanding, and 
prediction. The technologies discussed in this chapter open opportunities for achieving 
 these skills by allowing robots to effectively sense their environment and pro cess, store, 
and use the obtained information to respond to their dynamic environment. This can have 
a significant impact on human- robot interaction— for instance,  humans are able to extract 
impor tant information from tactile stimuli that depends not only on the under lying touch 
characteristics but also on the context of the touch, culture, and emotions of the individuals 
who are communicating. So enabling robots not only to sense tactile information but also 
to understand the intended meaning of touch has  great potential to advance robot cognition 
as well as human- robot interaction.

Additional Reading and Resources

•  This edited volume provides a complete overview of tactile sensing in  humans. It includes 
definitions and classification. It also classifies all transduction methods to realize tactile 
sensors and materials. Dahiya, Ravinder S., and Maurizio Valle. 2013. Robotic Tactile Sensing: 
Technologies and System. Berlin: Springer Science and Business Media.
•  A compact volume conveying a  great deal of information on sensing and actuation. This 
volume provides information on sensing for broad variety of stimuli. Extensive description 
is given to robot motion, both for soft and rigid robots, tackling some control algorithms. 
Siciliano, Bruno, and Oussama Khatib, eds. 2016. Springer Handbook of Robotics. Berlin: 
Springer.
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•  A special issue presenting the latest work on flexible electronics and eskin. Dahiya, 
Ravinder, Deji Akinwande, and Joseph S. Chang. 2019. “Flexible Electronic Skin: From 
Humanoids to  Humans.” Special Issue, Proceedings of the IEEE 107 (10): 2011–2015.
•  Basic knowledge of dif fer ent types of tactile- sensing mechanisms for nonexperts. Explains 
the dif fer ent stimuli and basic circuitry used for reading the outputs: https:// www . elprocus 
. com / tactile - sensor - types - and - its - working / .
•  BEST (Bendable Electronics and Sensing Technologies) YouTube channel, containing 
robotic/prosthetic videos with tactile sensing, 3D printing, and more: https:// www . youtube 
. com / channel / UCOOdG132wFmWSTPPBUARAvA / .
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9.1 Introduction

In recent years, the technology of deep learning has been confirmed to be effective in vari-
ous fields, such as image recognition, speech recognition, and language pro cessing, and 
vari ous applied methods have been proposed (LeCun et al. 2015).Deep learning generally 
refers to hierarchical neural network models of multiple layers with large dimensional 
inputs. One of the impor tant characteristics of this approach is that the sensory features that 
 human experts should typically design and select based on their knowledge and experience— 
for example, for a computer vision algorithm— can be self- organized through the learning 
pro cess. This enables the training of deep- learning models, as long as the teaching labels 
are given to the target data. Data sets with high- dimensional signals can be used for train-
ing. This property enables deep learning to  handle vari ous types of data, such as images, 
sounds, and languages, differently from the way  these prob lems have been treated in other 
research areas. The per for mance of deep- learning models is close to that of conventional 
methods and can in some modalities achieve per for mance superior to  human abilities.

 There are several methods of deep learning. One of the representative ones is with the 
use of autoencoders. An autoencoder is a model to learn so that input and output are the 
same. Once input data are provided, it is classified as “unsupervised learning”  because it 
is simply learned to reproduce it. For example, an image input of one thousand dimensions 
is compressed to tens of dimensions in the  middle layer, and then it is decompressed to 
restore the original image.  Here, the low- dimensional repre sen ta tion in the  middle layer 
could be used for image recognition by relearning (fine- tuning).

Convolutional neural networks (CNNs) are the current driving force of deep learning. In 
a multilayer network, the connections between layers are usually connected with full 
(dense) connection patterns. In CNNs, however, the convolution layer and the pooling layer 
have sparser connectivity with repeated and shared par ameters, and a dense connection 
layer is typically added at the end. In the case of image recognition, the change of position 
does not affect the recognition result thanks to the convolution and pooling structure. 
Rather, it is impor tant to capture a subset of features. Therefore, a CNN has small neural 
networks (kernels) that take only certain areas of the input image. For example, the values 
of three- by- three pixels are multiplied by the weights and compressed into a single value. 
This operation is called convolution. The kernel can be designed in many dif fer ent sizes 
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and shapes. Since the kernel reacts to certain features in the image, it slides over the entire 
image area to produce a compressed repre sen ta tion of the image. And the pooling layer 
compresses the image size to save memory. With repeated convolution and pooling, the 
final feature repre sen ta tion is acquired, and fi nally, the recognition result is output through 
full connection.

 There is also a set of deep networks based on recurrent neural networks (RNNs). An 
RNN is a neural network that does not directly connect inputs to outputs in a feedforward 
way, as it also has feedback connections. Even if the inputs are in a similar state, the output 
can change according to the internal neural condition. In RNNs, not only the connection 
weights but also the internal states are trained to improve prediction accuracy. RNNs have 
an advantage for time- series learning. However, it can be difficult to obtain good per for-
mance with an RNN  because it has the same prob lem as deep learning, gradient vanish-
ment. Errors are eliminated  because it is difficult to propagate output errors to past steps 
if the learning sequences are long. To solve this prob lem, a new type of RNN has been 
developed that has multiple types of neurons. Some neurons retain their internal state in 
the long term (slow neurons). Some neurons change their internal state in the short term 
(fast neurons).  These are called multitimescale neurons. As a result, fast neurons learn the 
short time series of input value, and long- term neurons learn the sequence of  these short 
time series. A multitimescale RNN (MTRNN; Yamashita and Tani 2008) uses continuous 
neurons, with internal states represented by continuous values. By adjusting the time con-
stant of the neuron change, it is pos si ble to create fast and slow neurons. Another com-
monly used type of deep RNN is the long short- term memory (LSTM; Hochreiter and 
Schmidhuber 1997). In addition to the weight of the current input, the LSTM neuron learns 
 whether to accept it (Input Gate),  whether to output it (Output Gate),  whether to keep the 
current state (Forget Gate), and other vari ous outputs used by the error back- propagation 
method. LSTM models now perform well, especially in natu ral language pro cessing.

Vari ous deep- learning models and applications can be used for dif fer ent modalities, such 
as vision, audio, and tactile modalities, in cognitive robotics. Furthermore, due to the fact 
that vari ous modalities can be handled in a similar framework,  these can lead to the multi-
modal applications of deep learning. In par tic u lar, a robot working in the real world is a 
typical multimodal system with cameras, microphones, distance sensors, tactile sensors, 
and actuators.

This chapter provides an overview of the research that focuses mainly on the applica-
tions of deep learning for robotics. In subsequent chapters focusing on specific cognitive 
robotics capabilities, more examples of deep- learning models  will be discussed. The first 
part of this chapter contains three subsections concerning the learning of visual, tactile, 
and language modalities and skills. The subsequent sections focus on be hav ior learning 
related to imitation learning and on reinforcement- learning approaches. The final section 
discusses the possibilities of deep learning and its  future prospects.

9.2 Deep- Learning Model for Modality Application

9.2.1 Robot Vision

The most natu ral application of deep- learning technology is in the research field of robot 
vision. For example, Lenz, Lee, and Saxena (2015) proposed a method to output the posi-

Downloaded from http://direct.mit.edu/books/book-pdf/2239475/book_9780262369329.pdf by guest on 30 September 2024



Machine Learning for Cognitive Robotics 167

tion and direction (four dimensions) of a hand to grasp from a distance an image of an 
object. Using a CNN, Yang, Li, et al. (2015) identified forty- eight kinds of objects and six 
types of grasping directly from a YouTube video of a  human cooking and applied them 
to the motion of a robot.

Redmon and Angelova (2015) also used CNNs to predict the grasping position of an 
object from a three- dimensional RGB- D image consisting of color (RGB) and depth (D) 
data. Concretely, for an RGB image of 224 × 224 pixels, a grasping position vector of an 
object is labeled by  human. The grip position vector has six dimensions, including the 
rectangular shape of the center coordinate, the rotation  angle, and the grip position of the 
vector (figure 9.1).

The success rate is calculated using two conditions: 1) the rotation  angle error is within 
30°, and 2) the overlapping area (A ∩ B) with re spect to the total area (A ∪ B) is over 
25  percent. However,  these criteria do not evaluate the  actual motions of the robot. The 
success rate of grasping using a real robot is not always high.

What is impor tant  here is that information regarding the object grasping cannot be 
obtained from just the image of the object. The learning pro cess should reflect the hard-
ware (body) of the robot and the effects of the pos si ble motion. For example, although the 
grip position vector shown in figure 9.1 is a feature for a gripper,  there is no guarantee 
that it is a sufficient and optimum feature quantity for general gripper mechanisms. When 
extracting a region for grasping an object, a robot should consider the physical features 
of the target object, such as the weight, center- of- mass, surface friction, shape change, and 
so on. Even if the same hand is used, grasping should be changed in vari ous ways depend-
ing on the hand size, the payload, the direction of the approach (trajectory), and more. 
That is, the learning pro cess should include not only the image of the object but also the 
motion generated by the robot hardware.

9.2.2 Tactile Learning

Learning the tactile sense is impor tant for robots to allow them to obtain physical informa-
tion while interacting with environments. This can be useful for operations such as 

Figure 9.1
The grip position vector.
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walking, physical contact with  people, and object manipulation. The improved availability 
of tactile sensors has enabled research in this field to flourish (see chapter 8). Prior to the 
use of learning- based approaches, tactile sensor data  were only used with handcrafted 
features (Yang, Sun, et al. 2016) or to trigger specific actions (Yamaguchi and Atkeson 
2016). However, such methods may not scale well as tactile- sensing technology advances— 
for example, when a higher resolution and a larger amount of data are necessary, or as 
task complexity increases. By using learning- based approaches, in par tic u lar deep learn-
ing, it is now pos si ble to  handle tasks such as image recognition and natu ral language 
pro cessing, which involve high- dimensional data and  were previously difficult to pro cess. 
Moreover, deep- learning approaches have recently been applied to tactile sensing, such as 
object recognition (Schmitz et al. 2014; Baishya and Bäuml 2016), tactile properties rec-
ognition (Gao et al. 2016; Yuan, Wang, et al. 2017), and grasping (Calandra et al. 2018).

In recent years, within research involving tactile sensors, object manipulation using 
robotic hands has been gaining attention since manipulation is one of the fundamental 
functions for a robot to perform vari ous tasks such as tidying up, cooking, and folding 
clothes. In this chapter, the recent development of tactile learning and the following four 
categories of the object manipulation pro cess are described: 1) object recognition, 2) grasping, 
3) in- hand object pose estimation, and 4) in- hand object manipulation.

Types of tactile sensors
Many dif fer ent tactile sensors have been developed to improve manipulation in robotic 
hands (Dahiya et al. 2013; see also chapter 8 for a detailed analy sis). The majority of  these 
sensors, however, belong to one of the following three categories:

–   Multitouch sensors that can only sense force information along one axis— namely, 
perpendicular to the surface of the sensor.  These types of sensors are known as pressure 
sensors (Ohmura, Kuniyoshi, and Nagakubo 2006; Iwata and Sugano 2009; Mittendorfer 
and Cheng 2011; Fishel and Loeb 2012).
–   Three- axis sensors that can sense both shear and pressure forces but are only single 
touch (Paulino et al. 2017).
–   Three- axis sensors for both shear and pressure forces that are multitouch (Tomo et al. 
2018; Yamaguchi and Atkeson 2016; Yuan, Dong, and Adelson 2017).

At the time of writing,  there are only three sensors of the last type: uSkin (Tomo et al. 
2018), Fin ger Vision (Yamaguchi and Atkeson 2016), and GelSight (Johnson and Adelson 
2009; Dong, Yuan, and Adelson 2017; Yuan, Dong, and Adelson 2017). The uSkin mea-
sures the deformation of silicon during contact by monitoring changes in the magnetic 
fields of magnets in silicon. The sensor is able to mea sure both pressure as well as shear 
force per sensor unit for multiple contact points.

Instead of a magnet, the Fin ger Vision is a vision- based tactile sensor, meaning that it 
uses a camera to capture and mea sure the deformation of its attached marker during contact 
with a surface. In addition to contact sensing, it can also function as a proximity sensor 
since the Fin ger Vision uses transparent silicon.

The GelSight can be manufactured by covering the silicon surface of the Fin ger Vision 
with another layer of silicon that contains aluminum powder. The aluminum powder high-
lights the deformation of the silicon layer more clearly and hence allows for richer informa-
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tion during sensing. The GelSight can be duplicated easily and is suitable for deep learning 
 because it also uses a camera, so existing image- processing techniques can be employed to 
pro cess the data. Therefore, the GelSight has become increasingly popu lar in research 
(Calandra et al. 2018; Tian et al. 2019; Zhang et al. 2020; Anzai and Takahashi 2020).

Object recognition
One of the main approaches to recognizing the type of object in a robotic hand (Schmitz et al. 
2014), its materials (Baishya and Bäuml 2016; Yuan, Zhu, et al. 2017), and its properties (Gao 
et al. 2016), using touch and image information, is its classification through supervised learn-
ing using manually designed labels. Baishya and Bäuml (2016) and Yuan, Zhu, et al. (2017) 
estimated the hardness of an object as a continuous value using a tactile sensor through 
supervised learning. In  these approaches, however, the results of class labels and their degrees 
depend completely on the manner in which  these class labels are designed. On the other hand, 
one of the approaches without manually specified labels represents tactile properties in a 
continuous space using an unsupervised- learning approach (Takahashi and Tan 2019).

Grasping
A dif fer ent use case is shown in Calandra et al. (2018), in which they utilized deep reinforce-
ment learning and combined input data acquired from a tactile sensor with images to grasp 
objects using a parallel gripper, which improved their success rate in grasping experiments 
compared to only vision. Wu et al. (2019) showed similar results using a multifinger hand. 
By using a tactile sensor, the stability of a grasp can be evaluated and improved upon regrasp-
ing (Calandra et al. 2018; Wu et al. 2019; Hogan et al. 2018).

In- hand object pose estimation
In order to realize the target object pose, it is necessary to be able to estimate the current 
object posture. Object pose estimation is a well- studied prob lem in computer vision. Many 
researchers have been developing methods using depth data (point cloud) or RGB- D data 
(Choi and Christensen 2012; Aldoma et al. 2012; Choi et al. 2012). Classical approaches 
with depth data are mainly based on point cloud matching methods, such as iterative closest 
point (ICP; Rusinkiewicz and Levoy 2001). Since this method requires three- dimensional 
(3D) models of objects, unknown objects cannot be handled. In the state- of- the- art research 
in pose estimation, methods that do not require 3D models have been studied using deep 
learning (Schwarz, Schulz, and Behnke 2015; Hodaň et al. 2018; Hu et al. 2019).

 These methods, however, are challenging to apply to in- hand manipulation  because of 
occlusion by the hand in the image or depth data. Since tactile sensors can observe the 
contact state despite a visual occlusion, they are suitable for overcoming this challenge. 
Some research has performed object pose estimation with tactile sensors by means of a 
model- based approach using a 3D model (Bimbo et al. 2016) and without using a 3D 
model (Anzai and Takahashi 2020).

To overcome challenges such as occlusions or lack of sufficient information, one can 
use multiple sensors to try to obtain an improved perception of the environment or situa-
tion. In this case it is of  great importance to know which modals can be trusted in a given 
situation—in other words, how reliable a given sensor modal is. For example, if a vision 
sensor is impaired, one should give its data less importance than other sensor modals. It 
is difficult, however, to determine sensor modal reliability through rule- based methods. 
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Anzai and Takahashi (2020) proposed a network that can autonomously determine the 
reliability of each modal.

In- hand object manipulation
To manipulate a grasped object to a target posture is one of the most challenging tasks. 
Analytical approaches exist, but they come with limitations, such as the known object 
model and the rigid object (Han et al. 1997; Han and Trinkle 1998). In learning- based 
approaches, manipulation is performed by predicting the state of the tactile sensor for the 
motion of a robot’s end effector (Tian et al. 2019; Li et al. 2014; Funabashi et al. 2018). 
Since object manipulation with a multifingered hand is still challenging, most of  these 
studies are  simple tasks and take place in experimental settings, with a few exceptions 
(e.g., Falco et al. 2018).

9.2.3 Learning of Language Grounding in Robot Be hav ior

Natu ral language is the most power ful tool for expressing our requests to other agents. 
Ser vice robots must be able to understand natu ral language to flexibly respond to  human 
requirements or to effectively work together with  humans. However, to arbitrarily design 
mapping between language, which is a discrete system, and the referents in the real world, 
which is a continuous and dynamical system, is notoriously difficult, as stated in the 
symbol grounding prob lem (Harnad 1990). The meanings of linguistic expressions also 
greatly depend on the current context that an agent is situated in. For instance, to respond 
to the instruction “grasp the red ball,” a robot is required to generate dif fer ent trajectories 
of joint  angles in accordance with the position of the red ball. Unlike most situations in 
industrial factories, our living environment is highly changeable and open ended; new 
situations almost always differ from the previous ones. It is almost impossible to make 
explicit rules that can  handle all pos si ble situations in a top- down manner.

Many attempts have been made to get robots to learn grounding relationships from their 
own experiences in a bottom-up manner.  Here we review existing studies that consider 
the learning of grounding relationships between language and be hav ior in robots. In par-
tic u lar, we discuss the two main approaches to language grounding: probabilistic modeling 
and neural networks. See also chapter 20 for more details on deep- learning approaches to 
robot language models.

Probabilistic modeling
One way to model the relationships between language and other modalities is to model 
them as probabilistic relationships. For example, Inamura et al. (2004) utilized hidden 
Markov models (HMMs) to recognize and generate  human motions. In their framework, 
protosymbols, which represent a specific motion pattern, emerged in the learning pro cess. 
Nishihara, Nakamura, and Nagai (2017) utilized a multimodal latent Dirichlet model 
(MLDA) for a robot to learn object concepts that connected multimodal information con-
sisting of co- occurring word, auditory, visual, and tactile data. Tellex et al. (2011) proposed 
a framework called generalized grounding graphs, which dynamically instantiated a graphic 
model depending on the semantic structure of linguistic commands, and they then inferred 
appropriate plans for navigation and manipulation in the graph.

One advantage of probabilistic models is their high intelligibility. In the case of graphic 
models, each node in the graph is designed as a meaningful ele ment. Therefore, it is easy 
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to understand what kind of inference is performed by the model. However, a probabilistic 
model that has the capability of dealing with long- term dependencies sufficiently has not 
yet been developed.

Neural networks
On the other hand, methods that model language grounding deterministically also exist. 
One popu lar method is neural networks, such as with RNNs. Sugita and Tani (2005) pro-
posed a trainable architecture that consisted of two neural networks— one of which was 
for language and the other, robot be hav ior— with a small number of shared nodes called 
parametric bias (PB). The model learned to embed the relationships between language and 
be hav ior in topological organ ization in the PB space. Ogata et al. (2007) employed a similar 
architecture to learn the bidirectional mapping between language and robot be hav ior. Hein-
rich and Wermter (2014) proposed a model that connected three RNNs. Each RNN was 
specialized for vision, proprioception, and language, respectively, but they  were connected 
to each other.  After learning, the model could generate sentences that described robot motions 
as a sequence of characters. Stramandinoli, Marocco, and Cangelosi (2017) utilized a Jordan- 
type RNN (Jordan 1997) to ground abstract words (e.g., use and make) in robots’ sensorimo-
tor experiences. The abstract words  were learned by recalling the meanings of previously 
learned basic words and combining them.

An advantage of neural networks is that by introducing recurrent connections and 
some gating mechanism, such as LSTM (Hochreiter and Schmidhuber 1997), they can 
achieve a much higher per for mance in learning temporal structure with long- term de pen-
dency without a priori knowledge. One disadvantage of neural networks is that it is 
difficult to understand their be hav ior since their repre sen ta tions in hidden layers are in 
a distributed form. Recently, some studies have proposed methods to visualize the inter-
nal be hav ior of neural networks (Bach et al. 2015; Smilkov et al. 2017) and to make 
their repre sen ta tions more intelligible (Chen et al. 2016; Xu et al. 2015). The following 
introduces a recent study that proposed an RNN- based framework to ground language 
in robot be hav ior.

Yamada, Matsunaga, and Ogata (2018) attempted to bidirectionally convert language 
and robot be hav ior by utilizing two coupled recurrent autoencoders (RAEs; figure 9.2): 
one RAE coped with language, and the other dealt with be hav ior.

Each RAE consists of an encoder RNN and a decoder RNN. The encoder RNN com-
presses a time series (a sentence or a behavioral sequence; x1, x2, . . .  , xT ) into a fixed- 
dimensional feature vector z:

z = EncoderRNN ( x1, x2,  . . .  , xT )

The decoder RNN produces a sequence by recursively decoding the feature vector:

( y1, y2,  . . .  , yT ) = DecoderRNN(z)

The RAE is trained to reconstruct the original sequence through the feature vector— 
namely, identity function. The loss function is as follows:

L = 1
T

ψ (xt , yt).
t = 1

T

∑
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The detail of loss function ψ at each time step depends on the modality. In the learning 
pro cess, the language RAE and the be hav ior RAE are optimized to extract the impor tant 
features of time series data in each modality.

In addition, the  whole system is trained in such a way that the feature vectors of co- 
occurring language and robot be hav ior get closer to each other, and the feature vectors of 
unpaired language and be hav ior grow more distant from each other. With this constraint, 
this coupled RAE system is able to bidirectionally convert language and be hav ior through 
the latent feature space. Producing a be hav ior sequence in response to a sentence is realized 
by using the encoder of the language RAE to encode the sentence and the decoder of the 
be hav ior RAE to expand the feature vector. In contrast, producing a sentence description 
of a robot be hav ior is realized by having the encoder of the be hav ior RAE encode a behav-
ioral sequence and having the decoder of the language RAE expand the feature vector.

Figure 9.3 shows the latent feature spaces or ga nized by learning in this robot experiment. 
Each point corresponds to a sentence in the left panel and to a behavioral sequence in the 
right panel. It can be seen that the behavioral sequences  were actually bound with their 
paired sentences.  Here, it is worth noting that  because the be hav ior RAE also receives 
vision input, the model could respond to the same sentence by producing dif fer ent joint- 
angle trajectories depending on the current contexts.

9.3 Imitation Learning (Predictive Learning)

Imitation learning, also referred to as learning from demonstration (LfD) or programming 
by demonstration (PbD), is a learning- based approach that enables robots to acquire skills 
(or infer policies) for action generation from a set of expert demonstrations representing 
the robots’ sensorimotor experiences. Imitation learning is mostly performed by a scheme 
of predictive learning in which robots are required to learn to predict the (sensory-)motor 
state at the next time step from the sensory(- motor) state at the current time step. This is 
a more data efficient approach in comparison to the reinforcement learning to be intro-
duced in a forthcoming section. Imitation learning is a particularly useful approach when 
the use of a reinforcement- learning algorithm is unrealistic due to the difficulty in design-
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Two coupled RAEs to bidirectionally convert language and robot be hav ior. Source: Adapted from Yamada, 
Matsunaga, and Ogata 2018.
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ing a reward function and in performing a massive amount of exploration (with real robots). 
In the context of (cognitive) robotics and robot learning, imitation learning includes the fol-
lowing two cases: 1) learning from sensorimotor experiences and 2) learning from sensorimo-
tor experiences by observing another agent’s demonstrations. In both cases, it is necessary to 
provide demonstrations about robot per for mance during the learning pro cess via kinesthetic 
teaching or teleoperation by a  human demonstrator. The difference between them is  whether 
or not the sensory (mainly visual) experiences include demonstrations about the per for mance 
of another agent, typically a  human. Namely, in the second case robots are required not only 
to learn to generate their own actions but also to map an observed other’s actions to their own 
by inferring what to perform and how to perform. This is much closer to the original meaning 
of imitation by  humans and animals in the context of cognitive science (Meltzoff and Moore 
1977).

 There are several machine- learning approaches for performing imitation learning, such 
as neural networks (e.g., CNNs and RNNs); probabilistic models such as the combination 
of a Gaussian mixture model and Gaussian mixture regression (e.g., Calinon, Guenter, and 
Billard 2007); hidden Markov models (e.g., Inamura et al. 2004); and dynamical systems 
(e.g., dynamic movement primitives in Ijspeert, Nakanishi, and Schaal [2002] and Ijspeert 
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et al. [2013]). In this section, we focus particularly on neural network– based approaches 
(refer to review papers for other approaches, such as Argall et al. [2009] and Billard et al. 
[2008]). In what follows, several studies of the above two cases of imitation learning are 
examined. In addition, their extensions with deep- learning approaches, such as the use of 
deep autoencoders for visual feature extraction from raw images and LSTM for learning 
long- term dependencies, are introduced. Fi nally, related advanced topics, including one- shot 
imitation learning and self- supervised learning from play data, are also briefly discussed.

9.3.1 Imitation Learning from Own Sensorimotor Experiences

Ito et al. (2006) studied the learning of primitive actions for object manipulation by using 
an RNN with parametric bias (RNNPB). In their experiment, the sensorimotor experiences 
of a small humanoid robot QRIO for ball  handling  were first collected via kinesthetic 
teaching.  There  were two dif fer ent primitive actions for ball  handling, including: 1) rolling 
a ball from the left to right sides and vice versa (referred to as ball- rolling action hereafter) 
and 2) lifting the ball and letting it fall to the ground (referred to as ball- lifting action 
hereafter). Sensorimotor experiences consisted of time- series data items (or trajectories) 
of visual information represented as ball position and action information represented as 
joint  angles of both arms. The robot with an RNNPB was required to learn to predict the 
visuomotor state at the next time step given the state at the current time step. Through this 
learning pro cess, the vari ous primitive actions  were represented by the difference in opti-
mized PB vectors. Namely, once a PB vector corresponding to the ball- rolling action is 
set into the network, the robot generates the ball- rolling action, and once the other vector 
corresponding to the ball- lifting action is set, the robot generates the ball- lifting action. 
This means that dif fer ent primitive actions  were acquired as multiple limit cycle attractors 
in the RNNPB.

One of the impor tant points of this experiment is that the PB vector during action gen-
eration  after the learning phase was also optimized online in the direction of minimizing 
prediction errors computed during a time win dow of immediate past time steps. This iterative 
optimization of the PB vector enabled the robot to adapt to unexpected situational changes. 
For example, consider a situation in which the PB vector for the ball- rolling action is set, 
and the robot is generating the corresponding action. Then, an experimenter suddenly 
disturbs the ball movement between the left and right sides, and the ball movement stops 
at the center front of the robot. Before the disturbance, the robot was predicting that the 
ball would be moving between the left and right sides as a consequence of its own action 
generation. However, due to the disturbance that  stopped the ball movement, the robot 
feels a discrepancy between the anticipated and  actual situations or prediction errors. The 
only solution to minimize  these errors is to switch the originally set PB vector to the other 
one that generates the ball- lifting action. This switching of the PB vector enables the robot 
to minimize the generated prediction errors and to perform stable action generation again. 
The impor tant point of this phenomenon is that the robot had never learned to switch 
between the dif fer ent primitive actions. Thanks to the  simple computational princi ple of 
the so- called prediction error minimization (Nagai 2019), the robot realized adaptive action 
generation. This is closely related to the active inference scheme based on the  free energy 
princi ple (Friston et al. 2010).
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Chen, Murata, et al. (2016) extended the framework to an interaction between two NAO 
robots. In their experiment, each robot with an RNNPB first learned a set of primitive 
actions for ball manipulation with a  human experimenter. The learned primitive actions 
 were dependent on the ball movement such that when the ball was heading  toward the 
right side of a robot, the robot was required to hit the ball with its right hand.  After the 
learning phase, the robots faced each other and  were required to perform a ball- play inter-
action.  Because the experiment was performed in the real world, with some fluctuations 
such as the friction between the ball and a  table, sometimes the ball dynamics suddenly 
changed in an unpredictable manner. In such a situation, prediction errors arose in both 
the robots, and  these errors triggered the PB vector of each robot, optimizing it to fit the 
current situation. This dual optimization of the PB vector of each robot enabled spontane-
ous action switches without any training.

In the former examples using an RNNPB, the switch between primitive actions was 
triggered by environmental changes. Next, we consider how such switching can be inten-
tionally generated by learning action sequences consisting of combinations of primitive 
actions. Yamashita and Tani (2008) and Nishimoto and Tani (2009) tackled this issue by 
using the MTRNN introduced above. In a manner similar to the RNNPB experiments intro-
duced  earlier, they first collected visuomotor experiences of the QRIO robot via kinesthetic 
teaching. The recorded sequences  were more complex than the first study above. For 
example, in one sequence the robot reached for an object from a home position and then 
moved the object up and down three times before fi nally moving it back to the home posi-
tion. Specifically, each sequence contained multiple primitive actions such as reaching for 
and moving the object, and the robot was required to switch or repeat such actions. The 
robot with an MTRNN performed predictive learning of  these complex and longer visuomo-
tor experiences by utilizing the sensitivity of the initial conditions of the slow dynamics layer 
of the MTRNN.  After the learning phase, the robot succeeded in generating the learned action 
sequences. Analy sis of the fast and slow dynamics layers revealed that primitive actions 
 were represented in the fast dynamics layer, and the combinations of  these primitives 
(sequence information)  were represented in the slow dynamics layer thanks to the self- 
organized functional hierarchy.

Namikawa, Nishimoto, and Tani (2011) extended this experimental setup and consid-
ered how probabilistic transitions among primitive actions could be learned. In the same 
manner as the former cases, they first recorded visuomotor experiences for an object 
manipulation in which the QRIO robot moved an object from center to left, from left to 
center, from center to right, and so on via kinesthetic teaching.  These transition patterns 
 were determined probabilistically, and they investigated  whether such sequences with 
probabilistic transitions could be learned by a deterministic MTRNN. The robot  after the 
learning phase reconstructed a demonstrated visuomotor sequence from the beginning by 
setting an optimized initial state of the slow dynamics layer, but the sequence gradually 
changed from the learned one. The analy sis of the generated action sequences demon-
strated that the transition probabilities  were still preserved in newly generated sequences. 
The analy sis of each layer of the MTRNN revealed that in the same way as in the former 
studies (Yamashita and Tani 2008; Nishimoto and Tani 2009), dif fer ent types of informa-
tion  were stored in each layer. One more in ter est ing phenomenon is that only the slow 
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dynamics layer exhibited chaotic dynamics with a positive Lyapnov exponent, which led 
to the reconstruction of the probabilistic transitions by deterministic neural dynamics.

In the experiments conducted before the deep- learning era, such as that just described, 
the experimental setup was simplified so that, for example, the visual information was just 
the object position.  Here, some scaled-up experiments are introduced that deal with high- 
dimensional raw visual images by using deep- learning approaches such as a deep (convo-
lutional) autoencoder.

Noda et al. (2014) conducted a study on the integrative learning of multimodal informa-
tion such as vision, auditory, and motor data using a combination of deep autoencoders 
for feature extraction and temporal pro cessing. As in the previous studies, they first col-
lected sensorimotor experiences of the NAO robot via kinesthetic teaching. Then, low- 
dimensional features of high- dimensional raw visual images and auditory information 
 were extracted by using the respective deep autoencoders. The extracted visual and audi-
tory features  were concatenated with joint  angle information. They used another deep 
autoencoder called a time- delay neural network (TDNN) that received a time win dow of 
the multimodal information and outputs its reconstruction. By using this framework, they 
realized action generation by prediction and retrieval, such as visual retrieval from auditory 
and joint  angle information using high- dimensional sensorimotor states.

Yang et al. (2017) extended this framework to the human- size industrial robot Nextage 
and performed a towel- folding task. It is known that towel  handling is a challenging task 
in robotics  because modeling a deformable object is difficult. They recorded visuomotor 
experiences via teleoperation using a 3D mouse. In their experiment, the normal autoen-
coder for visual feature extraction was replaced with a deep convolutional autoencoder 
(ConvAE). They realized repeatable towel folding with a high success rate  after the learn-
ing phase. Kase and colleagues replaced the TDNN used in the above two experiments 
with RNN- based architectures, an MTRNN (Kase et al. 2018) and an LSTM (Kase et al. 
2019).  These replacements realized much longer and complex task executions such as 
put- in- the- box and skewering thanks to their characteristics of functional hierarchy and 
long short- term memories.

9.3.2 Imitation Learning from Observing Another Agent’s Demonstrations

When learning from observing another agent’s action generation, robots need to infer what 
to perform and how to perform. Arie et al. (2012) considered this issue by using an 
MTRNN. In their experiment, a small humanoid robot, HOAP-3, learned a set of visuo-
motor sequences consisting of multiple primitive actions. For example, in one sequence the 
robot first reached for an object from a home position, then moved the object right, then 
knocked the object over, and fi nally moved the object back to the home position. Note 
that the robot learned not only its own action generation but also how to map an observed 
action of  human per for mance to its per for mance.  There  were four primitive actions, includ-
ing R (moving the object to the right), L (moving the object to the left), K (knocking over 
the object), and U (moving the object upward). The robot first learned three dif fer ent types 
of visuomotor sequences (RK, UK, and UL) produced by itself and the experimenter.  After 
 these sequences, the robot was subjected to the demonstration of only the  human’s per-
for mance for the RL sequence. The robot was evaluated on  whether it could generate its 
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own action for the RL sequence, which had not been learned, by mapping the observed 
demonstration of  human per for mance to its own per for mance.

The slow dynamics layer of the MTRNN had two special neural units whose initial 
conditions  were optimized to be the same values when the demonstrations  were the same 
patterns, regardless of the generation of robot per for mance and the observation of  human 
per for mance. The other two units in the slow dynamics layer served as a PB vector that 
discriminated the self- mode (generation of robot per for mance) and the other- mode (obser-
vation of  human per for mance) by assigning a par tic u lar value for each (one for the self- 
mode and minus one for the other- mode). In the evaluation  after the additional learning 
phase, an action- specific initial state for the demonstration of  human per for mance for the 
RL sequence was set, and the demonstrator- specific PB vector was switched to the self- 
mode. This enabled the robot to generate the unlearned combinatory actions for the RL 
sequence.

Nakajo et al. (2015) considered another impor tant topic concerning the acquisition of 
viewpoint repre sen ta tion.  Humans can understand what action is demonstrated by another 
regardless of a difference in viewpoint. Acquiring such an ability is useful for robots  because 
the demonstration of  human per for mance can be provided from any direction. However, this 
is not straightforward for robots  because the visual information from the demonstration of 
 human per for mance from dif fer ent viewpoints is distinct. They used an MTRNN for learning 
the demonstrations of object manipulation for both the robot and  human per for mances. In 
their experiment, a  human demonstrator performed actions from multiple viewpoints. They 
provided constraints on the initial state optimization by introducing a subnetwork for repre-
senting viewpoints. Their analy sis of the initial state space of the subnetwork revealed that 
the positional relationship of the viewpoints was self- organized in the space. In their experi-
ment, although the structured repre sen ta tion of viewpoints was self- organized, how to map 
the demonstration of  human per for mance provided from multiple viewpoints to the same 
robot per for mance remained an issue.

To tackle this issue, Nakajo et al. (2018) extended the experiment by introducing a 
sequence- to- sequence (seq2seq) deep- learning approach that has been widely used, espe-
cially in machine translation (Sutskever, Vinyals, and Le 2014). The seq2seq framework 
consists of an RNN- based encoder- decoder architecture. In the machine translation, the 
encoder RNN receives source sentence information, such as an En glish sentence, sequen-
tially and transforms it into a fixed- dimensional vector. The decoder receives this vector 
and transforms it to target sentence information, such as a Japa nese sentence. By referring 
to this information pro cessing of the seq2seq framework, they first encoded visual features 
of video information about the demonstration of  human per for mance extracted by a con-
volutional encoder with an MTRNN. Then an achieved fixed- dimensional vector was 
transformed to the robot’s action generation.  After a learning phase, the robot was able to 
map the demonstration of  human per for mance provided from an unlearned viewpoint to 
its own action generation. The analy sis of each layer of the MTRNN shows the repre sen-
ta tion of actions, objects, and viewpoints. More specifically,  after the demonstration of 
 human per for mance, the fast dynamics layer represented viewpoint information, and the 
slow dynamics layer represented action and object information without any viewpoint 
information. The key point for the success of mapping from unlearned  human demonstration 
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to robot per for mance is that the slow dynamics layer acquired the viewpoint- invariant 
repre sen ta tion about the actions and objects by squishing the viewpoint information, which 
is unnecessary for a robot’s own action generation  after the observation.

9.3.3 One- Shot Imitation Learning and Self- Supervised Learning

One of the new directions in imitation learning is one- shot imitation learning (Finn et al. 
2017; Yu et al. 2018; Duan et al. 2017). One- shot imitation learning means that robots are 
required to learn a new task from only a single demonstration of the robot’s or  human’s 
per for mance for the given task. As an example, Finn et al. (2017) combined a metalearning 
algorithm called model- agnostic meta- learning (MAML; Finn, Abbeel, and Levine 2017) 
and imitation learning. The MAML enables neural networks to learn a new task from only 
a few training data. More specifically, the MAML assumes vari ous tasks, and it samples 
some tasks from which it also samples training and validation data items (at least one item 
for each). During a meta- learning phase, first the training loss for each task is computed 
by using initial model par ameters and the sampled training data item. By using the com-
puted training loss for each task, the initial model par ameters are (tentatively) adapted for 
each task by gradient descent. Then the validation loss for each task is computed by using 
the corresponding adapted par ameters and the sampled validation data item. Fi nally, the 
initial model par ameters are optimized to minimize the sum of the validation losses by 
gradient descent. This means the metalearning algorithm tries to discover generalized 
initial par ameters that can be easily adapted for any task. During a subsequent meta- testing 
phase, only a single training data item from a new task kept separate from tasks for the 
meta- learning phase is given, and the generalized initial par ameters can be quickly adapted 
to the task.

In their experiment using a robot PR2, they first collected demonstrations of robot per-
for mance for vari ous tasks of object placing via teleoperation. The collected demonstra-
tions consisted of raw visual images from a camera mounted on the robot and action 
information. The meta- learning was conducted by using  these demonstrations to learn how 
to infer a policy for a new task from only a single demonstration of robot per for mance. 
Then, in the meta- testing phase, the robot learned a new task from a single demonstration 
provided via teleoperation by a  human. This is effective for learning a new task quickly; 
however, the prob lem is that the framework needs a demonstration of robot per for mance, 
and providing a single demonstration of  human per for mance is more straightforward. To 
tackle this issue, Yu et al. (2018) extended the framework by introducing domain- adaptive 
meta- learning (DAML). This enables robots to learn how to infer a policy for a new task 
from only a single demonstration of  human per for mance. They evaluated this extended 
framework with both the PR2 and Sawyer robots. As expected,  these robots could learn a 
new task from a single demonstration of  human per for mance and could also learn a new 
task even when the demonstration was performed in dif fer ent viewpoints and background 
environmental situations.

Another new direction is self- supervised learning (Nair et al. 2017; Pathak et al. 2018; 
Lynch et al. 2019). In all the experiments explained above, the demonstrations by  human 
experts  were provided for performing specific tasks. As an alternative approach, Lynch 
et al. (2019) proposed a new paradigm of learning from play (LfP), in which robots acquire 

Downloaded from http://direct.mit.edu/books/book-pdf/2239475/book_9780262369329.pdf by guest on 30 September 2024



Machine Learning for Cognitive Robotics 179

vari ous skills for object manipulation only from play data given by teleoperators and 
realize goal- directed tasks  after a learning phase. In their experiment,  human operators 
first teleoperated a robot in a simulation environment. In the environment, multiple objects 
for manipulation sat on a desk equipped with a drawer and a shelf with buttons that turned 
on lights. The operators  were asked to freely explore the environment by operating the robot, 
and visuomotor experiences during this  free exploration  were collected. The impor tant point 
is that the curiosity and intrinsic motivation of the operators enabled the acquisition of vari-
ous types of complex and interactive actions with both manipulative and nonmanipulative 
objects available in the environment. The collected visuomotor experiences  were learned by 
the play- supervised latent motor plans (Play- LMP) framework that consists of a plan pro-
posal encoder, a plan recognition encoder, and an action decoder. During a learning phase, 
the first part of the visuomotor experiences was randomly sampled as a sequence. Then only 
the initial and final states of the sampled sequence  were encoded by the plan proposal 
encoder, and the entire sequence was encoded by the plan recognition encoder. Both encoders 
generated a latent plan repre sen ta tion and that from the recognition encoder was provided 
for the action decoder. The encoders and decoder  were jointly optimized to maximize action 
likelihood on the decoder and minimize the KL divergence between the distributions of the 
latent plan repre sen ta tions from the encoders.  After the learning pro cess, providing the current 
and goal states to the plan proposal encoder and sending the generated latent plan repre sen-
ta tion from this encoder to the action decoder can generate an action sequence that interpo-
lates the current and goal states. The experimental results showed that the robots that learned 
from play data  were more robust to perturbations in comparison to robots that learned from 
demonstrations for specific tasks. They also exhibited retrying- until- success be hav ior thanks 
to the diversity of the play data.

9.4 Reinforcement- Learning Robot Applications

In the previous part of this chapter, we reviewed neural network– based methods to control 
robots using predefined data sets of a robot’s be hav ior. In contrast to this “off- line” method, 
online learning techniques collect samples of the training data set while optimizing models. 
We now take a look at online learning methods with the deep- learning method called “deep 
reinforcement learning.” This approach provides a way to explore solutions that enable a 
robot to learn visuomotor tasks instead of a carefully designed training data set. However, 
it is known that reinforcement- learning methods tend to require large amounts of episode 
sampling  because of noises of rewards or the stochastic property of interaction. In the case 
of robot tasks, performing many episodes with real robots is costly (e.g., time, computational 
costs, robot hardware reliability). In this section, we first give an overview of the reinforcement- 
learning prob lem setting. Next, we review research on robot tasks using deep reinforcement 
learning from the viewpoint of how to reduce the cost of episode sampling.

9.4.1 Reinforcement- Learning Prob lem Setting

The reinforcement- learning (RL) prob lem setting assumes the interaction between a control-
lable agent (e.g., a robot controller) and an environment (Sutton and Barto 2018; figure 9.4). 
For example, a controller of a picking robot can be regarded as an agent, and the environment 
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corresponds to the space surrounding the robot with some target objects. The agent interacts 
with the environment by performing an action a. Then the environment’s states are altered 
by the action, and this returns new states and a reward signal r. The reward signal represents 
how well the current state transition is  going, such as the achievement of the task— for 
example, it may be +1 when the robot successfully picks an object, 0 when the robot moves 
its arm  toward the object, and −1 for failures. The interaction between the agent and the 
environment  will produce a sequential tuple of state, action, and new state with reward 
(s, a, r, s′ ). Usually, the RL prob lem assumes this tuple is sampled from a finite Markov 
decision pro cess (MDP). To infer an action from the current state is represented as a function 
called policy π (a | s), and the state transition dynamics is formulated as a stochastic probabil-
ity function p (s′ | s). The goal of RL is to find a policy that can maximize the expected sum 
of reward (called return) in each state of interactions. The expected return is often called 
“value” v(s) = E(∑r |s).

Finding the best policy or explic itly computing the accurate value is intractable due to 
the stochastic property of MDP; thus, we need to approximate value function. RL approaches 
can be categorized into several types of this approximation method. One of them is to 
approximate value conditioned by actions, called “action value.” If we can compute an 
accurate action value, the agent  will be able to obtain the best return by selecting an action 
whose action value is the highest at each time step. The action value is also difficult to 
compute as well as the state value, so it should be approximated by Monte Carlo methods 
on episode data sampled by the interactions between agent and environment. The RL 
Q- learning method adopts a bootstrapping method of the action value by predicting the 
sum of discounted  future rewards. The approximation ability of the action value estimator 
is the key to the per for mance of Q- learning. Using deep- learning models as action value 
approximators has led to significant improvement in RL agents’ abilities in video game 
environments, whose states are usually large- dimensional image data (Mnih et al. 2015; 
Vinyals et al. 2019). The other RL approach is to optimize a pa ram e terized policy function 
directly. In the context of deep RL, the policy function is implemented using deep- learning 
models and optimized via gradient ascent  toward the higher state value, called the policy 
gradient method. This optimization method allows actions to be in continuous space, 
whereas Q- learning usually allows only discrete action space. Policy gradient methods 

Agent Environment

Action

State, reward

Figure 9.4
Interaction between agent and environment.
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have several variants with re spect to the type of policy functions and optimization tech-
niques used to stabilize value estimation. Another way to categorize the RL approach is 
to distinguish  whether a learning method is explic itly modeling state transition probability 
p (s′ | s). Methods that model state transition probability are called “model based,” whereas 
“model- free” do not model it. The model- based approach promises lower sample complex-
ity compared to model- free methods  because we could substitute predicted  future states 
for states given by  running real interactions. When the action space is discrete and the 
state transition can be accurately simulated on a long time- step horizon, the heuristics of 
action searches, such as the Monte Carlo tree search, can be used for collecting good 
sample data for value estimation (Silver et al. 2018). In cases of robotic experimental set-
tings, the state is required to have a large amount of sensory data, including camera images 
or poses of the robot, so other value estimation or policy optimization methods are required.

By harnessing the power of the deep- learning model’s function approximator ability, 
RL methods have recently been applied to large- dimensional state data and complex tasks, 
such as games (Mnih et al. 2015; Vinyals et al. 2019) and generative tasks (Ganin et al. 
2018; Huang, Heng, and Zhou 2019), including in robotics. However, RL still requires us 
to collect a good deal of sample data by having the agent explore the environment, in contrast 
to imitating expert be hav ior by supervised learning.  Running a lot of real robot interactions 
requires a huge cost in terms of the experiment and the risks of damaging the robots as 
they explore. Therefore, deep RL researchers have tried to make optimization methods 
more efficient and stable. One major research direction is to make data collection efficient, 
and the other is to leverage sample complexity using model- based approaches.

9.4.2 Making Data Collection Efficient

One of the ways to reduce data collection using real robots is to utilize physics simulation 
software. Although a simulator drastically reduces the cost of experiments,  there are huge 
real ity gaps due to the  limited abilities of simulated environments and robots to reproduce 
physical world dynamics. One of the approaches to overcome the prob lem of the real ity 
gap is to augment collected sample data by adding noise to simulation pro cesses, also known 
as “domain randomization” (Tobin et al. 2017). For example, experiments by Andrycho-
wicz et al. (2020) randomized the property of the robot, the physical par ameters such as 
mass or gravity, and the visual appearance. Domain randomization is expected to improve 
generalization ability with regard to noise in real environment states or state transition 
dynamics. Instead of randomizing the state given by a simulator’s renderer, replacing state 
images with more realistic images faked by a generative model has also been investigated. 
Bousmalis et al. (2018) reported that they drastically reduce the amount of episode sam-
pling in the real robot environment by enhancing the quality of the simulated state image 
using a generative adversarial network. Adding constraints to force an RL agent trained 
in simulated environments to behave like an agent in the real environment has also been 
attempted. Fang et al. (2018) incorporated the adversarial loss of classifying the source of 
episode data in order to transfer knowledge from an agent in simulation to one in the real 
environment.

RL experiments on simulators often require multiple software environments  running in 
parallel for sampling efficiency. Conducting real robot exploration tasks in parallel could also 
reduce data collection time. Levine et al. (2018) built multirobot arm- picking environments 
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and trained an action value estimator for large collected data samples of images of cluttered 
objects. The action that controlled the robot arm was obtained by an evolutionary strategy 
whose candidates  were evaluated by the action values estimated as success rates by a deep 
neural network.

Providing expert episode sequences helps exploration. It is also expected to reduce data 
collection cost. Peng and colleagues (Peng, Abbeel, et al. 2018; Peng, Kanazawa, Malik, et al. 
2018) showed that  human motion capture data assisted with a robot control agent’s explora-
tion in a simulator. They added a reward that encouraged simulated robots to take poses similar 
to a  human’s target poses in the original task, such as walking or performing acrobat motions. 
Also, the initial state at exploration was sampled from target poses to observe states that are 
difficult to achieve by taking random actions from the same initial state.

Incorporating reward for imitating expert sequences is related to inverse reinforcement 
learning, which is an RL approach for estimating reward function from expert data (Ng 
and Russell 2000). Finn et al. (2016) and Peng, Kanazawa, Toyer, et al. (2018) proposed 
the use of a generative adversarial protocol to determine the similarities between episodes 
by the RL agent and the expert data. In this case, the reward was given by a discriminator 
network trained to distinguish between the sequences from the agent’s exploration and the 
expert. A training reward function approximator network was also expected to relieve the 
sparseness of the reward. Basic RL requires us to design reward functions for representing 
task achievements carefully. Very sparse reward distribution, such as a nonzero signal only 
at the end of an episode, makes exploration challenging since value estimation becomes 
unstable. A reward estimator by a trained machine- learning model is expected to give nonzero 
rewards even during episodes. Ganin et al. (2018) proposed a painting RL agent that can 
be trained by reward signals given by a discriminator network able to distinguish  whether 
a picture image is drawn by the agent or by a  human.

9.4.3 Reducing Data Collection by Modeling Environment Dynamics

Model- based RL methods allow policy optimization to acquire sequential data predicted 
from environment models, and thus they promise to reduce sample complexity in contrast 
to model- free algorithms. The recent success of generative deep- learning models has 
led to their utilization in modeling high- dimensional and complex state transitions— for 
example, image frame sequences. Ebert et al. (2018) proposed image sequence modeling 
conditioned by a robot’s actions for object manipulation tasks. They collected image 
sequences by moving the robot’s arm with random actions and training a deep convolu-
tional network to predict  future image frames.  After training an image frame predictor, 
actions  were directly optimized by a cross- entropy method, which is a derivative- free 
optimization method. They produced multiple predicted image sequences from their exist-
ing image obtained by a robot with action candidates. Each action candidate was then 
evaluated with the predicted image at the end of the time- step horizon for differences 
between the given goal image and the predicted image, or pixel annotation by an experi-
menter. A combination of  future image predictions and a derivative- free algorithm  were 
also proposed by Ha and Schmidhuber (2018). In this study, a state transition function was 
modeled by a stochastic neural model based on a mixture density network. They argued 
that the states predicted by deterministic dynamics make the policy optimization adver-
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sarial. Nevertheless, nondeterministic modeling  will easily lead to inaccurate state predic-
tion due to the uncertainty of the  future. Hafner et al. (2018) proposed a combination of 
both RL modeling methods using a recurrent state- space model (Karl et al. 2019). Instead 
of directly optimizing the action sequence, model- free RL methods can be used jointly 
with model- based RL methods. An issue when combining model- based RL with model- 
free optimization methods is inaccurate dynamics modeling. Kurutach et al. (2018) indi-
cated that policy optimization tends to exploit the region of state space insufficient for 
achieving good per for mance. Buckman et al. (2018) proposed the use of an ensemble of 
several versions of the learned dynamics to stabilize value estimation.

9.5 Conclusion

This chapter introduced several research examples of robot applications using machine 
learning, especially deep learning, for tasks such as robot vision, the learning of tactile 
sense and motion, imitation learning, prediction learning, reinforcement learning, and lan-
guage learning.

It is impor tant to realize that robotics research showing the robot’s per for mance only 
in simulation and/or in specific environments cannot lead to practical applications. One 
of the most critical conditions to consider is the evaluation of the robustness of the vari ous 
noisy situations in the real environment.

In Japan, vari ous manufacturers of industrial robots have already developed multiple 
prototypes of robot applications of imitation learning and prediction learning. The modu-
larization of robotic systems at the hardware and software levels is progressing quickly, 
and big developments are expected to be realized with deep- learning technology. In general, 
the robotics approaches using AI deep- learning methods have the potential to significantly 
advance cognitive capabilities in robots.

Additional Reading and Resources

•  A comprehensive book on deep- learning methods: Goodfellow, Ian, Yoshua Bengio, and 
Aaron Courville. 2016. Deep Learning. Cambridge, MA: MIT Press ( free online copy: 
https:// www . deeplearningbook . org).
•  Position paper discussing the challenges and opportunities connecting robotics with deep 
learning: Sünderhauf, Niko, Oliver Brock, Walter Scheirer, Raia Hadsell, Dieter Fox, 
Jürgen Leitner, Ben Upcroft, et al. 2018. “The Limits and Potentials of Deep Learning for 
Robotics.” International Journal of Robotics Research 37 (4–5): 405–420.
•  Recent volume with extensive coverage of reinforcement- learning methods: Sutton, 
Richard S., and Andrew G. Barto. Reinforcement Learning: An Introduction. Cambridge, 
MA: MIT Press.
•  OpenAI Gym tool kit for developing reinforcement- learning simulation, including with 
simulated robots: https:// gym . openai . com.
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10.1 Introduction

As the definition of cognitive robotics in chapter 1 makes clear, the field draws on several 
disciplines, including robotics, artificial intelligence, and cognitive science. Its goal is to 
design an integrated cognitive system that combines a range of abilities, such as senso-
rimotor be hav iors, knowledge- based reasoning, and social skills, in the form of an intelligent 
robot. Its foundations in systems engineering and cognitive science coalesce in a single 
concept: a cognitive architecture.

From the perspective of systems engineering, a cognitive architecture mirrors the system 
architecture, using the power of abstraction to render the modeling, specification, and 
design of a complete complex system tractable.

From the perspective of cognitive science, in which the term “cognitive architecture” 
originates (Newell 1990), the concept of a cognitive architecture is the result of over sixty 
years of research. To understand what it means from this perspective requires us to first 
familiarize ourselves with the roots of cognitive science and the dif fer ent paradigms that 
exist within that discipline. In turn, this  will allow us to understand the dif fer ent types of 
cognitive architecture and the role a cognitive architecture plays in cognitive science, in 
general, and cognitive robotics, in par tic u lar.

With this understanding in place, we review the key attributes of a cognitive architecture 
before surveying the core cognitive abilities of the many cognitive architectures that exist 
 today. We examine two cognitive architectures in some detail to highlight the way  these 
abilities are realized in cognitive robots. We finish by exploring what the  future might 
hold for cognitive architectures and the challenges that remain.

10.2 The Foundations of Cognitive Science

Cognitive science embraces neuroscience, cognitive psy chol ogy, linguistics, epistemology, 
philosophy, and artificial intelligence, among other disciplines. Its primary goal is to 
explain the under lying pro cesses of  human cognition, ideally in the form of a model that 
can be replicated in artificial agents. It has its roots in cybernetics in the early 1940s 
(Wiener 1948) but appears as a formal discipline referred to as cognitivism in the late 
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1950s. Cognitivism built on the logical foundations laid by the early cyberneticians and 
exploited the computer as a literal meta phor for cognitive function and operation, using 
symbolic information pro cessing as its core model of cognition. Cybernetics also gave rise 
to the alternative emergent systems approach, which recognized the importance of self- 
organization in cognitive pro cesses, eventually embracing connectionism, dynamical systems 
theory, and the enactive perspective on cognitive science. Hybrid systems attempt to combine 
the cognitivist and emergent paradigms to varying degrees, quite often ignoring some of the 
incompatible assumptions that the cognitivist and the emergent paradigms make about 
the fundamental nature of cognition (Vernon 2014).

10.2.1 The Cognitivist Paradigm of Cognitive Science

The cognitivist paradigm, which embraces artificial intelligence (AI), dates from a confer-
ence held at Dartmouth College, New Hampshire, in July and August 1956. It was attended 
by Allen Newell, Herbert Simon, John McCarthy, Marvin Minsky, and Claude Shannon, 
among  others, all of whom exerted a very significant influence on the development of AI 
over the next half  century.

The essential position of cognitivism is that cognition is achieved by computations per-
formed on internal symbolic knowledge repre sen ta tions in a pro cess whereby information 
about the world is taken in through the senses, filtered by perceptual pro cesses to generate 
descriptions that abstract away irrelevant data, represented in symbolic form, and reasoned 
about to infer what is required to perform some task and achieve some goal. In the cogni-
tivist paradigm, any physical platform that supports the per for mance of the required sym-
bolic computation  will suffice. In other words, the physical realization of the computational 
model is inconsequential to the model. The principled decoupling of computational opera-
tion from the physical platform that supports  these computations is referred to as compu-
tational functionalism (Piccinini 2010). Allen Newell made several landmark contributions 
to the establishment of practical cognitivist systems: in the early 1980s with his introduction 
of the concept of a knowledge- level system, the maximum rationality hypothesis, and the 
princi ple of rationality (Newell 1982); in the mid-1980s with the development of the Soar 
cognitive architecture for general intelligence (along with John Laird and Paul Rosenbloom; 
Laird, Newell, and Rosenbloom 1987); and in 1990 with the concept of a unified theory of 
cognition (Newell 1990)— that is, a theory that covers a broad range of cognitive issues, 
such as attention, memory, problem- solving, decision- making, and learning from several 
aspects, including psy chol ogy, neuroscience, and computer science.

10.2.2 The Emergent Paradigm of Cognitive Science

In the emergent paradigm, cognition is one of the pro cesses by which an autonomous 
system maintains its autonomy. Through cognition, the system constructs its real ity— its 
world and the meaning of its perceptions and actions—as a result of its operation in that 
world. This pro cess of making sense of its environmental interactions is one of the founda-
tions of a branch of cognitive science called enaction (Stewart, Gapenne, and Di Paolo 
2010; Vernon 2010). Cognition is also the means by which the system prepares for interac-
tion that may be necessary in the  future. Thus, cognition is intrinsically linked with the 
ability of an agent to act prospectively. As such, many emergent approaches focus on the 
acquisition of anticipatory skills rather than knowledge, asserting that pro cesses that guide 
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action and improve the capacity to guide action form the root capacity of all intelligent 
systems (Christensen and Hooker 2000). As a result, in contrast to cognitivism, emergent 
approaches are necessarily embodied, and the physical form of the agent’s body plays a 
causal role in the cognitive pro cess. Together, the body and the brain form the basis of a 
cognitive system, and they do so in the context of a structured environmental niche to 
which the body is adapted.  Because of this, cognition in the emergent paradigm is some-
times referred to as embodied cognition, although some emergent approaches make even 
stronger assertions about the nature of cognition. The emergent paradigm typically exploits 
connectionism or dynamical systems theory. In general, connectionist systems correspond 
to models at a lower level of abstraction, dynamical systems to a higher level. They are 
sometimes referred to as subsymbolic pro cesses.

10.2.3 Hybrid Systems

Hybrid systems are attempts to exploit both the cognitivist and emergent paradigms of 
cognitive science. They exploit symbolic knowledge to represent the agent’s world and 
logical rule- based systems to reason with this knowledge to pursue tasks and achieve goals. 
At the same time, they typically use emergent models of perception and action to explore 
the world and construct this knowledge. Hybrid systems use both symbolic and subsym-
bolic repre sen ta tions. The latter are constructed using subsymbolic connectionist pro cesses 
as the system interacts with and explores the world. So, instead of a designer programming 
in all the necessary knowledge, objects and events in the world can be represented by 
observed correspondences between sensed perceptions, agent actions, and sensed out-
comes. Thus, as with an emergent system, a hybrid system’s ability to understand the 
external world is dependent on its ability to flexibly interact with it. Interaction becomes 
an organ izing mechanism that establishes a learned association between perception and 
action. For a detailed comparison of cognitivist, emergent, and hybrid paradigms of cogni-
tive science, see Vernon, Metta, and Sandini (2007b) and Vernon (2014).

10.3 The Types of Cognitive Architecture

A cognitive architecture is a software framework that integrates all the ele ments required 
for a system to exhibit the attributes considered to be characteristic of a cognitive agent. 
Just what  these ele ments are is open to interpretation, but as we  will see,  there is common 
ground in the identification of core cognitive abilities in  these interpretations— for example, 
perception, action, learning, adaptation, anticipation, motivation, autonomy, internal simu-
lation, attention, action se lection, memory, reasoning, and metareasoning (Vernon 2014; 
Vernon, von Hofsten, and Fadiga 2016; Kotseruba and Tsotsos 2020).

Furthermore, a cognitive architecture determines the overall structure and organ ization of 
a cognitive system, including the component parts or modules (Sun 2004), the relations 
between  these modules, and the essential algorithmic and repre sen ta tional details within 
them (Langley 2006). The architecture specifies the formalisms for knowledge repre sen ta-
tions and the types of memories used to store them, the pro cesses that act upon that knowl-
edge, and the learning mechanisms that acquire it. For cognitivist and hybrid approaches, a 
cognitive architecture also provides a way of programming the system so that domain and 
task knowledge can be embedded in the system.
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A cognitive architecture makes explicit the set of assumptions upon which that cognitive 
model is founded.  These assumptions are typically derived from several sources: biological 
or psychological data, philosophical arguments, or working hypotheses inspired by work 
in dif fer ent disciplines such as neurophysiology, psy chol ogy, and artificial intelligence. 
Once it has been created, a cognitive architecture also provides a framework for develop-
ing the ideas and assumptions encapsulated in the architecture.

 There are three dif fer ent types of cognitive architecture, each derived from the three 
paradigms of cognitive science: the cognitivist, the emergent, and the hybrid. Cognitivist 
cognitive architectures are often referred to as symbolic cognitive architectures (Kotseruba 
and Tsotsos 2020). It is noteworthy that the term “cognitive architecture” itself is due to 
Allen Newell and his colleagues in their work on unified theories of cognition (Newell 
1990). Consequently, for cognitivism a cognitive architecture represents any attempt to 
create a unified theory of cognition. The cognitive architectures Soar (Laird, Newell, and 
Rosenbloom 1987; Laird 2009, 2012), ACT- R (Anderson 1996; Anderson et al. 2004), and 
CLARION (Sun 2007, 2016) are archetypal candidate unified theories of cognition, all of 
which are classified as hybrid cognitive architectures in the survey by Kotseruba and 
Tsotsos (2020).

10.3.1 The Cognitivist Perspective on Cognitive Architecture

In the cognitivist paradigm, the focus in a cognitive architecture is on the aspects of cogni-
tion that are constant over time and that are in de pen dent of the task (Ritter and Young 
2001; Langley, Laird, and Rogers 2009). A cognitivist cognitive architecture is a generic 
computational model that is neither domain- specific nor task- specific, and it needs to be 
provided with knowledge to perform any given task. This combination of a given cognitive 
architecture and a par tic u lar knowledge set is generally referred to as a cognitive model. 
In many cognitivist systems, much of the knowledge incorporated into the model is nor-
mally provided by the designer, and often this knowledge is highly crafted, possibly 
drawing on years of experience working in the prob lem domain. Machine learning is 
increasingly used to augment and adapt this knowledge.

10.3.2 The Emergent Perspective on Cognitive Architecture

Emergent approaches to cognition focus on the development of the agent from a primitive 
state to a fully cognitive state over its lifetime. As such, an emergent cognitive architecture 
is the initial state from which an agent subsequently develops. Development requires 
exposure to an environment that is conducive to development, one in which  there is suf-
ficient regularity to allow the system to build a sense of understanding of the world around 
it but not excessive variety that would overwhelm an agent that has inherent limitations 
on the speed with which it can develop. Thus, emergent cognition has two aspects, archi-
tecture and gradually acquired experience, mirroring the two aspects of a cognitivist cogni-
tive architecture: architecture and knowledge.  These two aspects of emergent cognition 
are referred to as phylogeny and ontogeny (or ontogenesis), the latter being the interactions 
and experiences that a developing cognitive system is exposed to as it acquires an increas-
ing degree of cognitive capability. Since the emergent paradigm holds that the physical 
system— the body—is also a part of the cognitive pro cess, an emergent cognitive archi-
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tecture should reflect in some way the structure and capabilities— the morphology—of the 
physical body in which it is embedded.

10.3.3 The Hybrid Perspective on Cognitive Architecture

As we have noted, hybrid systems endeavor to have the best of both worlds, combining 
the strengths of the cognitivist and emergent approaches. Most hybrid systems focus on 
integrating symbolic and subsymbolic (usually connectionist) pro cessing.

Hybrid cognitive architectures are the most prevalent type. The survey by Kotseruba 
and Tsotsos (2020) lists twenty- two symbolic (i.e., cognitivist) cognitive architectures, 
fourteen emergent, and forty- eight hybrid, thirty- eight of which are fully integrated.

10.4 Desirable Characteristics of a Cognitive Architecture

If a cognitive architecture is intended to be a unified theory of cognition, as most cognitivist 
cognitive architectures are, then it should exhibit certain desirable attributes— desiderata— 
including ecological realism, bioevolutionary realism, cognitive realism, and eclecticism of 
methodologies and techniques, as well as several behavioral characteristics (Sun 2004). 
Ecological realism means that a cognitive architecture should focus on allowing the cognitive 
system to operate in its natu ral environment, engaging in everyday activities and dealing 
with many concurrent and often conflicting goals with many environmental contingencies. 
Bioevolutionary realism means that a cognitive model of  human intelligence should be 
reducible to a model of animal intelligence. Cognitive realism means that a cognitive archi-
tecture should attempt to capture the essential characteristics of  human cognition from the 
perspectives of psy chol ogy, neuroscience, and philosophy. Eclecticism of methodologies and 
techniques means that new models should draw on, subsume, or supersede older models. 
Most cognitive architectures for cognitive robotics are not intended to be a unified theory 
of cognition, and consequently,  these attributes can be addressed only to the extent that they 
are useful from a robotics perspective.

In the emergent paradigm of cognitive science, development is the pro cess whereby a 
cognitive agent 1) expands its repertoire of action capabilities and 2) extends the time 
horizon of its ability to anticipate events in its world, including the need to act, the outcome 
of selected actions, the intentions of other cognitive agents, and the outcome of their 
actions (Vernon 2010).  These considerations give rise to an additional set of desiderata for 
developmental cognitive architectures (Vernon, von Hofsten, and Fadiga 2016), including 
the need for a value system to determine the goals of actions and provide the drive for 
achieving them (Oudeyer, Kaplan, and Hafner 2007; Merrick 2010) along with exploratory 
and social motives (Piaget 1954; Vygotsky 1978; Lindblom 2015) to modulate be hav ior 
and select actions (Edelman 2006). The adaptation inherent in development is dependent 
on learning. A developmental cognitive architecture needs to have at least three dif fer ent 
modes of learning: supervised learning, reinforcement learning, and unsupervised learning 
(Doya 1999). It also requires some mechanism to simulate  future events (Seligman et al. 
2013), to simulate the execution of actions and the likely outcome of  those actions 
(Hesslow 2002, 2012), and to take alternative perspectives, including  those of other agents 
(Schacter, Addis, and Buckner 2008).
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10.5 Surveys of Cognitive Architectures

While several surveys of cognitive architectures have been published over the past ten or 
so years (Vernon, Metta, and Sandini 2007b; Duch, Oentaryo, and Pasquier 2008; Samso-
novich 2010; Thórisson and Helgasson 2012), the recent survey by Kotseruba and Tsotsos 
(2020) is by far the most comprehensive. It targets eighty- four cognitive architectures, 
estimating that approximately three hundred cognitive architectures have been developed 
and that approximately one- third are currently active. The most often cited cognitive archi-
tectures are ACT- R (Anderson 1996; Anderson et al. 2004), Soar (Laird, Newell, and Rosen-
bloom 1987; Laird 2012), CLARION (Sun 2007, 2016), ICARUS (Langley 2006; Langley 
and Choi 1999 [2006]), EPIC (Kieras and Meyer 1997), and LIDA (Franklin et al. 2007, 
2014). The majority of cognitive architectures focus on modeling  human cognition.

Despite its comprehensive coverage, almost inevitably the Kotseruba and Tsotsos survey 
is not complete. For example, it omits the CRAM cognitive architecture (Beetz et al. 2010; 
Mösenlechner 2016), possibly  because the CRAM lit er a ture refers to a cognitive robot 
abstract machine and to cognition- enabled robotics, rather than a cognitive architecture. 
 Later in the chapter, we use CRAM as one of our two examples of cognitive architectures 
for cognitive robotics. Nevertheless, the survey provides a peerless basis on which to 
compare and contrast existing cognitive architectures by addressing the extent to which 
they exhibit core cognitive abilities, and we  will refer to it throughout this section.

10.5.1 Comparing Cognitive Architectures

Despite efforts to establish an agreed set of criteria for comparing and evaluating cognitive 
architectures based on desirable characteristics such as Sun’s (2004) desiderata and New-
ell’s (1990, 1992) functional criteria, disagreements persist regarding the research goals, 
structure, operation, and application of cognitive architectures.  Because of this, and in the 
absence of a clear definition and general theory of cognition, not to mention difficulties 
in defining intelligence, Kotseruba and Tsotsos adopt a pragmatic approach, treating intel-
ligence as a set of system competences and be hav iors. Thus, rather than summarize and 
review each cognitive architecture individually, Kotseruba and Tsotsos address seven core 
cognitive abilities— perception, attention mechanisms, action se lection, memory, learning, 
reasoning, and metareasoning— and discuss the degree to which the eighty- four architec-
tures surveyed exhibit  these abilities. Significantly, they  don’t include anticipation (i.e., 
prospection) as a core cognitive ability as  others do, both in surveys of cognitive archi-
tectures (Vernon, Metta, and Sandini 2007b) or in the cognitive science lit er a ture (Atance 
and O’Neill 2001; Gilbert and Wilson 2007; Schacter et al. 2012; Seligman et al. 2013). 
On the other hand, they do include attention, reasoning, and metacognition, three pivotal 
abilities that have often been omitted from other surveys. We summarize  these seven core 
cognitive abilities in the following, adding, for completeness, a short note on the central 
role played by anticipation (i.e., prospection) in cognition and cognitive architectures.

10.5.2 Core Cognitive Abilities

Perception
Perception is a pro cess that transforms raw input into the system’s internal repre sen ta tion. 
Vision is the most commonly implemented sensory modality, but more than half of the 
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cognitive architectures surveyed use simulated visual input rather than transforming the 
raw sensory data. In general, symbolic cognitive architectures tend to have  limited percep-
tual abilities, and therefore they rely on direct simulated data input. Audition is less com-
monly found in cognitive architectures, while touch, smell, and proprioception are rarely 
implemented with any fidelity. Most architectures use only two modalities si mul ta neously— 
for example, vision and audition or vision and range data (e.g., from Lidar sensors). Only 
a few architectures aim for biological fidelity in perception. For the most part, cognitive 
architectures ignore crossmodal interaction and adopt a modular approach when dealing 
with sensory modalities, despite its importance in developmental robotics (Cangelosi and 
Schlesinger 2015).

Attention
Attention is a pro cess that reduces the information a cognitive system has to pro cess, 
selecting relevant information and filtering out irrelevant information from sensory data. 
Kotseruba and Tstotsos refer to three classes of information reduction mechanism (Tsotsos 
2011): se lection, restriction, and suppression. Se lection mechanisms choose one entity 
from many— for example, gaze and viewpoint se lection, restriction mechanisms choose 
some entities from many, and suppression mechanisms suppress some entities from many. 
The restrictive mechanism reduces the search space by priming— that is, preparing the 
visual system for input based on task requirements, exogenous motivations (e.g., domain 
knowledge), exogenous cues (external stimuli), exogenous tasks (restricting attention to 
objects relevant to the task), and visual field (limiting the visual field). The suppression 
mechanisms include feature or spatial inhibition, task- irrelevant stimuli suppression, nega-
tive priming, and location or object inhibition of return to bias the agent returning attention 
to previously attended locations. The most frequently implemented mechanisms of atten-
tion are se lection and restriction, with only a few cognitive architectures implementing a 
suppression mechanism. Kotseruba and Tstotsos note that visual attention is largely over-
looked in cognitive architectures, with exceptions including the ISAC (Kawamura et al. 
2008) and iCub cognitive architectures (Vernon, Sandini, and Metta 2007a).

Action Se lection
Action se lection determines what the agent should do next.  There are two major approaches: 
planning and dynamic action se lection. Planning, using traditional AI techniques, determines 
a sequence of steps to reach a certain goal or solve a prob lem prior to execution of the plan. 
Dynamic action se lection involves the se lection of one action based on knowledge at the 
time, typically using winner- take- all, probabilistic, or predefined order se lection mecha-
nisms. The criteria for se lection include relevance, utility (in the sense of expected contribu-
tion to the current goal), and internal functions— for example, transient emotion, drives, or 
internal mechanisms, including basic physiological needs and high- level social drives and 
personality traits that bias or modulate the action se lection rather than directly determining 
the next be hav ior. Planning, prevalent in symbolic architectures and in hybrid architectures 
but also found in emergent architectures, is often augmented with dynamic action se lection 
mechanisms to improve the capability for adaptivity to environmental changes.

Memory
Kotseruba and Tsotsos identify six types of memory in cognitive architectures: short- term 
sensory memory and working memory and long- term episodic, semantic, procedural, and 
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global memory. Sensory memory is a very short- term buffer that stores several recent 
percepts and has a decay rate in the region of tens of milliseconds for visual data, longer 
for aural data. Working memory is temporary storage for percepts and information related 
to the current task and is frequently associated with the current focus of attention. It is 
critical for attention, reasoning, and learning.

Episodic memory (Tulving 1972, 1984) plays a key role in the anticipatory aspect of 
cognition. It refers to specific instances in the agent’s experience, while semantic memory 
refers to general knowledge about the agent’s world that may be in de pen dent of the agent’s 
specific experience: knowledge of general facts about objects and concepts and the rela-
tionships between  those objects. In symbolic cognitive architectures, semantic memory is 
often represented as a graph- like ontology network, the nodes being the concepts and the 
links the relationships. In emergent cognitive architectures, semantic memory is typically 
represented by a pattern of activity in a connectionist network.

Episodic and semantic memory are collectively known as declarative memory. Declara-
tive memory captures knowledge, while procedural memory captures skills, equipping an 
agent to “know that” and “know how,” respectively (Ryle 1949).

In symbolic production systems, procedural knowledge is the knowledge of how to carry 
out some task, represented by a set of if- then rules preprogrammed or learned for a par tic-
u lar domain. In emergent systems, procedural memory may comprise sequences of state- 
action pairs or perceptuomotor associations.

Global memory is reserved for cognitive architectures that  don’t draw the type- duration 
distinction and use a unified global structure for all knowledge.

Learning
Learning refers to an ability for a system to improve its per for mance over time through 
the acquisition of knowledge or skill. Two types of learning can be distinguished: declara-
tive and nondeclarative. Declarative learning is concerned with explicit knowledge acqui-
sition, while nondeclarative learning focuses on perceptual, procedural, associative, and 
nonassociative learning.

Of the eighty- four cognitive architectures surveyed by Kotseruba and Tsotsos, nineteen— 
mostly symbolic and hybrid—do not implement learning of any type.

Declarative learning can take several forms. In production systems, new declarative 
knowledge— facts about the world— are learned when  either a fact or a rule is added to 
declarative memory— for example,  after completing a goal or resolving an impasse. Thus, 
new symbolic knowledge is learned when local inference rules are applied to existing 
knowledge to obtain new knowledge, encapsulated in what is referred to as a chunk. In 
emergent and hybrid cognitive architectures, declarative learning often takes the form of 
the association of perceptual features with the identity of objects.

Perceptual learning refers to learning about the environment from perceptual data: 
uncovering perceptual patterns, constructing associations between percepts, and inferring 
knowledge about the environment— for example, its spatial organ ization.

Procedural learning refers to learning skills by repetitive practice  until the skill becomes 
automatic. Note that this view of procedural learning entails a dif fer ent view of what 
constitutes procedural knowledge compared with procedural knowledge in cognitivist 
production systems.
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Associative learning is used to refer to the pro cess of improving decision- making 
through the influence of reward and punishment. Reinforcement learning is often used as 
a computational model of associative learning, including variants such as temporal differ-
ence learning, Q- learning, and Hebbian learning. Nearly half the cognitive architectures 
surveyed use reinforcement learning to implement associative learning. Since reinforce-
ment learning can be used with many forms of repre sen ta tion, it is used in all types of 
cognitive architecture: symbolic, emergent, and hybrid. In symbolic (i.e., cognitivist) 
cognitive architectures, reinforcement learning facilitates adaptation by weighting the 
importance of beliefs and actions based on the outcome of their use. In hybrid and emer-
gent cognitive architectures, reinforcement learning also facilitates adaptation, but in  these 
cases by establishing weighted associations between states and actions. This often takes 
the form of an initial phase of motor babbling— that is, performing random movements 
and observing their sensory outcome, followed by a learning phase to establish stable 
patterns known as sensorimotor contingencies.

Nonassociative learning refers to an often gradual adjustment of the weighting or impor-
tance of a single system entity, rather than an associative linking between two or more 
entities— for example, the gradual reduction of the strength of a response to some stimulus 
or pattern of system activity that is repeatedly presented. This is known as habituation. 
Sensitization has the opposite effect, such as a gradual increase in the strength of response 
to some repeated stimulus or activity.

Kotseruba and Tsotsos note that, surprisingly, deep learning does not yet feature strongly 
in cognitive architectures, but it is likely to play an impor tant role in the  future. We return 
to this topic in section 10.7.

Reasoning
Reasoning is the ability to logically and systematically pro cess knowledge, typically to 
infer conclusions. The three classical forms of logical inference are deduction, induction, 
and abduction. In the context of cognitive architectures, reasoning focusses on the practical 
objective of finding the next (best) action to perform. Cognitive architectures typically 
aim to facilitate human- level intelligence, but they do not necessarily try to model the 
pro cesses of  human reasoning.  Those that do include ACT- R (Anderson 1996; Anderson 
et al. 2004), Soar (Laird et al. 1987; Laird 2009, 2012), and CLARION (Sun 2007, 2016). 
Many emergent cognitive architectures do not address reasoning, even if they are capable 
of facilitating complex be hav ior. Some emergent cognitive architectures, such as SPA 
(Eliasmith et al. 2012), effect symbolic reasoning using neural architectures, raising the 
possibility that it might not be necessary to introduce a hard distinction between symbolic 
cognition and subsymbolic cognition.

Metacognition
Metacognition refers to a cognitive system’s ability to monitor its internal cognitive pro-
cesses and reason about them, acquiring data about the internal operation and status of the 
cognitive system— for example, availability of internal resources, confidence values 
during task execution, and sometimes generating temporal traces of activity during task 
execution. Approximately one- third of the eighty- four cognitive architectures surveyed by 
Kotseruba and Tsotsos have a metacognition ele ment.  These are mainly symbolic cognitive 
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architectures and hybrid cognitive architectures with a strong component of symbolic pro-
cessing. Metacognition is needed for social cognition, especially if the cognitive architec-
ture is to form a theory of mind, also known as perspective taking— that is, the ability 
to infer the cognitive states of other agents with which it is interacting, predicting their 
be hav ior, and acting appropriately. Very few cognitive architectures support this ability. 
Kotseruba and Tsotsos note only two: Sigma (Rosenbloom, Demski, and Ustun 2016) and 
PolyScheme (Trafton et al. 2005).

Prospection
Although the core cognitive abilities identified by Kotseruba and Tsotsos do not include prospec-
tion, it plays such a central role in cognition that we include it  here for completeness.

Prospection— the capacity to anticipate the  future—is one of the hallmark attributes of 
cognition. It also lies at the heart of the other core characteristics of a cognitive agent: 
autonomy, perception, action, learning, and adaptation (Vernon 2014). It facilitates autonomy 
and the ability to cope with adversarial conditions by allowing the agent to prepare to act. 
It is also involved in constitutive autonomy (Froese, Virgo, and Izquierdo 2007), predictively 
adjusting internal system pro cesses through allostasis (Sterling 2012). It facilitates perception 
through expectation- driven attentional pro cesses (Borji, Sihite, and Itti 2014). Attention, in 
turn, facilitates predictive control of, for example, gaze (Flanagan and Johansson 2003) and 
the prediction of the consequences of actions (Flanagan et al. 2013). In general, anticipation 
is central to action since actions are goal directed and guided by prospective information 
(von Hofsten 2009): a cognitive agent continually anticipates the need to act, and it antici-
pates the outcome of  those actions (Vernon, von Hofsten, and Fadiga 2011). Prospection also 
lies at the heart of learning, for learned models are used both for prediction and explanation. 
Fi nally, adaptivity arises in cognitive agents when the learned models fail to produce accurate 
or reliable predictions.

Consensus is emerging that internal simulation plays a key role in prospection (Svens-
son, Lindblom, and Ziemke 2007; Mohan, Bhat, and Morasso 2018). However,  there is 
less agreement about the manner in which internal simulation is accomplished. Some 
cognitive architectures opt for an explicit module in the architecture (e.g., Kawamura et al. 
2008; Beetz et al. 2010; Kunze and Beetz 2017), while in  others it is a covert mode of 
operation, with internal simulation effected by the same subsystems as  those responsible 
for sensorimotor- mediated action but using covert, internally generated endogenous sen-
sorimotor signals rather than exogenous sensorimotor signals (e.g., Demiris and Khadhouri 
2006; Shanahan 2006).

10.5.3 Applications

Kotseruba and Tsotsos identify more than nine hundred proj ects that use one of the eighty- 
four cognitive architectures surveyed. They identify ten classes of application: psychologi-
cal experiments, robotics,  human per for mance modeling, human- robot and human- computer 
interaction, natu ral language pro cessing, categorization and clustering, computer vision, 
games and puzzles, virtual agents, and miscellaneous proj ects that  don’t fall into the other 
nine classes. Robotics applications account for nearly a quarter of all applications, mainly 
for navigation and obstacle avoidance, fetch and carry tasks, object localization, and object 
manipulation.
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10.6 Example Cognitive Architectures

To highlight the issues we have covered so far, in this section we examine two examples 
of cognitive architectures that focus specifically on cognitive robotics: CRAM (Beetz, 
Mösenlechner, and Tenorth 2010; Mösenlechner 2016), a knowledge- based reasoning archi-
tecture, and ISAC (Kawamura et al. 2008), an architecture built from communicating soft-
ware agents and memory subsystems.

10.6.1 The CRAM Cognitive Architecture

CRAM stands for cognitive robot abstract machine. It is a hybrid cognitive architecture, 
first introduced in 2010 (Beetz, Mösenlechner, and Tenorth 2010). Since then it has devel-
oped significantly, building on the original basis for the architecture: the achievement of 
cognition- enabled robot manipulation in everyday situations, carry ing out goal- directed 
tasks that need only be vaguely defined using underdetermined robot action plans specified 
in abstract terms. The vagueness is resolved at runtime by reasoning: querying knowledge 
bases and combining the resultant knowledge with information about the current state of 
the robot’s environment acquired through perception, inferring the concrete actions that 
need to be performed to achieve the goal, and adapting them at runtime, as necessary. For 
example, figure 10.1 shows a PR2 robot setting a  table during a demonstration of CRAM- 
based robot manipulation at the Everyday Activity Science and Engineering interdisciplin-
ary research center (https:// ease - crc . org / ).

CRAM— see figure 10.2— comprises five core ele ments: 1) the CRAM Plan Language 
(CPL) executive; 2) a suite of knowledge bases and associated reasoning mechanisms, 
collectively referred to as KnowRob2 (Beetz et al. 2018); 3) a perception executive; 4) an 
action executive; and 5) a metacognitive reasoning system. Several publications document 

Figure 10.1
A PR2 robot setting a  table during a demonstration of cognition- enabled robot manipulation using the CRAM. 
Source: Courtesy of the EASE interdisciplinary research center at the University of Bremen, Germany.
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the development of CRAM over the past ten years, a small subset of which includes Winkler 
et al. (2012), Tenorth and Beetz (2013), Beetz et al. (2015), and Kunze and Beetz (2017).

The CRAM Plan Language (CPL) executive is an extension of the Lisp programming 
language. It represents all the key aspects of a plan as per sis tent first- class objects in first- 
order logic. Thus, CRAM can reason about its plans, even at runtime. This is particularly 
relevant in the metacognition system. Plans specify how the robot should respond to sensory 
events, changes in belief states, and detected failures in plans. All  these aspects of a plan 
can be queried, inspected, and reasoned about. A plan comprises a set of abstract plan 
designators for actions, objects, locations, and motions— that is, elementary movements. 
Designators are effectively placeholders and require runtime resolution based on the current 
context of the task action. Designator resolution is accomplished  either by querying a priori 
knowledge embedded in the plan, by querying knowledge in the KnowRob2 knowledge 
base, or by accessing sensorimotor data through the perception executive. All plans have a 
similar generic structure, as shown below. The terms prefixed with a question mark are 
resolved at runtime based on the current state of the robot and the environment.

 (par

(perform

(desig: an action

(type picking−up)

(arm ?grasping−arm)

(grasp left−side)

(object ?perceived−object ))

. . .

)

The KnowRob2 knowledge base is a knowledge repre sen ta tion and reasoning framework 
for robotic agents (cf. chapter 21). It is implemented in Prolog, and it is exposed as a 
conventional first- order time interval logic knowledge base. However, many logic expres-
sions are constructed on demand from sensorimotor data computed in real time. It provides 
the background common sense intuitive- physics knowledge required by the CPL executive 
to implement its goal- directed underdetermined task plans— for example, how to grasp an 
object, depending on the object’s shape, weight, softness, and other properties; how it must 
be held while moving it— for example, upright to avoid spilling its contents; and where 
the object is normally located. Some knowledge is specified a priori, some is derived from 
experience, and some is the result of the simulated execution of candidate actions using 
a high- fidelity virtual real ity physics engine simulator. All knowledge is represented by a 
first- order time interval logic expression and reasoned about, as needed.

KnowRob2 comprises five core ele ments embedded in a hybrid (i.e., multiformalism) 
reasoning shell, exposed through a logic- based language layer to an interface shell that 
provides perception, question answering, experience acquisition, and knowledge learning. 
The five ele ments are 1) a central set of knowledge ontologies and axiomatizations; 2) an 
episodic memory knowledge base encapsulating the robot’s experiences, represented in both 
subsymbolic form and in generalized symbolic form; 3) an inner- world knowledge base and 
virtual real ity physics engine simulator; 4) a logic knowledge base with abstracted symbolic 
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sensor and action data, logical axioms, and inference rules; and 5) a virtual knowledge base 
comprising a set of data structures for pa ram e terized motion control and path planning.

The knowledge ontologies and associated axiomatizations provide structured repre sen-
ta tion of the knowledge about the robot and its environment.  There is a core ontology and 
additional special- purpose, application- specific ontologies. The core ontology defines the 
robot configuration, object configurations, robot actions, tasks, activities and be hav iors, 
environment configuration, and situational context. The axioms identify roles that objects 
can play— for example, a mug is a cylindrical vessel, with a  handle, that can be used as 
a receptacle from which its contents can by drunk, mixed, or poured.

One of the main distinguishing aspects of KnowRob2 is its focus on episodic memory. 
This is an autobiographical memory of the robot’s experience as it had carried out tasks 
in the past.  These are or ga nized as NEEMS— narrative- enabled episodic memories— a 
concept introduced by the KnowRob2 designers. A NEEM comprises an experience and 
a narrative. The experience is a detailed low- level recording of a certain episode, such as 
rec ords of poses and percepts based on exteroceptive and proprioceptive sensory data. It 
also includes control signals. This is unusual  because motor aspects of memory are nor-
mally stored in procedural memory. Thus, CRAM episodic memory, and NEEMS in par-
tic u lar, generalizes the concept of an episode to include procedural ele ments. The narrative 
is an abstract symbolic description of the tasks, the context, the intended goals, and the 
observed effects (Beetz et al. 2018). KnowRob2 episodic memory, in representing proce-
dural knowledge as declarative knowledge, allows it to be reasoned about. The episodic 
knowledge base provides the basis for answers to queries such as what actions  were 
performed by the robot, when it performed them, how it performed them, why they  were 
performed,  whether or not they  were successful, what the robot perceived while perform-
ing them, and what the robot believed when it performed them. The extraction of the 
generalized symbolic knowledge from NEEMS is facilitated by an interface to the Weka 
machine- learning framework (Holmes, Donkin, and Witten 1994).

The inner- world knowledge base facilitates geometric reasoning using a high- quality 
virtual real ity system and physics engine. This allows KnowRob2 to simulate the outcome 
of candidate action and to establish the feasibility of that action. It provides symbolic 
names and properties for each entity, and it can infer background knowledge— for example, 
where an object is stored. The inner- world knowledge base serves two roles: as a repre-
sen ta tion of the belief state of the robot about itself and the world and as a reasoning 
mechanism for determining the outcome of candidate actions. Thus, it encapsulates two 
types of knowledge: current beliefs about robots and the world and the projected internal 
simulation of  future states. It also acts as a learning mechanism, generating episodic 
memories off- line, effectively dreaming while physically inactive, and  running simulations 
of activities with varying control par ameters.  These are recorded and transferred to the 
episodic- memory knowledge base.

The logic knowledge base provides information about the entities in the robot’s environ-
ment, including objects, object parts, object articulation models, and environments com-
posed of objects, actions, and events. It uses an entity description language that allows 
partial descriptions of entities in terms of both symbolic and subsymbolic properties.

The virtual knowledge base provides computable predicates that facilitate the integra-
tion of nonsymbolic data into the reasoning pro cess, allowing symbolic queries of non-

Downloaded from http://direct.mit.edu/books/book-pdf/2239475/book_9780262369329.pdf by guest on 30 September 2024



Cognitive Architectures 205

symbolic data. This allows run- time sensorimotor states to be integrated into the knowledge 
base at run- time and to be used in reasoning in the same was as symbolic knowledge.

KnowRob2 provides a logic- based language interface that allows the hybrid reasoning 
shell to be exposed as a purely symbolic knowledge base even though internally it uses 
multiple symbolic and subsymbolic repre sen ta tions and reasoning formalisms. In this way, 
KnowRob2 can be treated by the CPL executive (and other systems through its OpenEASE 
interface; Beetz et al. 2015) as a symbolic, object- oriented query system in which entities 
can be retrieved by providing partial descriptions of them using the entity predicate. This 
allows KnowRob2 to appear as a “Siri for robots” (Beetz 2018)— that is, as a query and 
response oracle. Consequently, during task execution  there is an ongoing dialogue between 
the CPL executive and KnowRob2, in which the CPL executive pre sents a series of under-
determined queries, and KnowRob2 provides the corresponding responses, allowing the 
CPL executive to carry out the task using the action executive.

The action executive controls the robot by mapping pa ram e terized actions (as requested 
by the CPL executive) to adaptive trajectories in real time.

Sensory information is available to the CPL executive  either directly from the perception 
executive or indirectly through KnowRob2 by means of the virtual knowledge base and 
the associated computable predicates.

The metacognition subsystem allows CRAM to reason about plans and exploit trans-
formational learning and planning to improve them in two complementary ways: by spe-
cialization using pragmatic everyday activity manifolds (PEAMs) and by generalization 
through metacognitive induction. This is pos si ble  because, as we noted above, the plans 
themselves are represented as first- class objects in first- order logic. PEAMs capture the 
subspace of motions necessary to carry out an action successfully by exploiting the con-
straints that knowledge of everyday activities and the environment bring to bear, rendering 
tractable by specialization the solution of prob lems that in their full generality are intrac-
table. Generalization through metacognitive induction complements the PEAM solution 
strategy by exploring patterns among actions plans, seeking ways to transform them  either 
by carry ing out the action in a more efficient and effective manner or by accomplishing 
the outcome of the action in a dif fer ent way.

10.6.2 ISAC

ISAC— intelligent soft arm control—is a hybrid cognitive architecture for an upper- torso 
humanoid robot also called ISAC (Kawamura et al. 2008). From a software engineering 
perspective, ISAC is constructed from an integrated collection of software agents and 
associated memories. Agents encapsulate all aspects of a component of the architecture, 
operate asynchronously (i.e., without a shared clock to keep the pro cessing of all agents 
locked in step with each other), and communicate with each other by passing messages.

As shown in figure 10.3, the multiagent ISAC cognitive architecture comprises Activa-
tor Agents for motion control, Perceptual Agents, and a First- Order Response Agent (FRA) 
to effect reactive perception- action control. It has three memory systems: short- term 
memory (STM), long- term memory (LTM), and a working memory system (WMS).

STM has a robot- centered spatiotemporal memory of the perceptual events currently 
being experienced. This is called a Sensory EgoSphere (SES), and it is a discrete repre-
sen ta tion of what is happening around the robot, represented by a geodesic sphere indexed 
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by two  angles: horizontal (azimuth) and vertical (elevation). STM also has an Attention 
Network that determines the perceptual events that are most relevant and then directs the 
robot’s attention to them.

LTM stores information about the robot’s learned skills and past experiences. LTM is 
made up of semantic, episodic, and procedural memory. Together, the semantic memory and 
episodic memory make up the robot’s declarative memory of the facts it knows. On the other 
hand, procedural memory stores repre sen ta tions of the motions the robot can perform.

ISAC’s episodic memory abstracts past experiences and creates links or associations 
between them. It has multiple layers. At the lowest level, an episodic experience contains 
information about the external situation (i.e., task- relevant percepts from the SES), goals, 
emotions (in this case, internal evaluation of the perceived situation), actions, and out-
comes that arise from actions and the valuations of  these outcomes (e.g., how close they 
are to the desired goal state and any reward received as a result). Episodes are connected 
by links that encapsulate be hav iors: transitions from one episode to another. Higher layers 
abstract away specific details and create links based on the transitions at lower levels. This 
multilayered approach allows for the efficient matching and retrieval of memories.

WMS, inspired by neuroscience models of brain function, temporarily stores informa-
tion that is related to the task currently being executed. It forms a type of cache memory 
for STM, and the information it stores, called chunks, encapsulates expectations of  future 
reward that are learned using a neural network.

Cognitive be hav ior is the responsibility of a Central Executive Agent (CEA) and an 
Internal Rehearsal System (IRS), a system that simulates the effects of pos si ble actions. 
Together with a Goals and Motivation subsystem comprising an Intention Agent and an 
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The ISAC cognitive architecture.

Downloaded from http://direct.mit.edu/books/book-pdf/2239475/book_9780262369329.pdf by guest on 30 September 2024



Cognitive Architectures 207

Affect Agent, the CEA and the IRS form a compound agent called the Self Agent that, 
along with the FRA, makes decisions and acts according to the current situation and 
ISAC’s internal states. The CEA is responsible for cognitive control, invoking the skills 
required to perform some given task on the basis of the current focus of attention and past 
experiences. The goals are provided by the Intention Agent. Decision- making is modulated 
by the Affect Agent.

ISAC works in the following way. Normally, the FRA produces reactive responses to 
sensory triggers. However, it is also responsible for executing tasks. When a task is assigned 
by a  human, the FRA retrieves the skill from procedural memory in the LTM that corre-
sponds to the skill described in the task information. It then places it in the WMS as chunks 
along with the current percept. The Activator Agent then executes it, suspending execution 
whenever a reactive response is required. If the FRA finds no matching skill for the task, 
the CEA takes over, recalling from episodic memory past experiences and be hav iors that 
contain information similar to the current task. One behavior- percept pair is selected, based 
on the current percept in the SES, its relevance, and the likelihood of successful execution 
as determined by internal simulation in the IRS. This is then placed in working memory, 
and the Activator Agent executes the action.

10.7  Future Prospects

The design and implementation of a cognitive architecture is a daunting undertaking. This 
is evident when you consider that con temporary cognitive architectures such as Soar 
(Laird, Newell, and Rosenbloom 1987; Laird 2009, 2012), ACT- R (Anderson et al. 2004; 
Anderson 1996), CLARION (Sun 2007, 2016), and CRAM (Beetz et al. 2010; Mösen-
lechner 2016) have taken ten to twenty years or more to develop and are all still being 
developed further.1 In an effort to consolidate cognitive architecture research, the cognitive 
science community has launched an exercise to identify the key design features shared by 
the most prominent cognitive architectures, with the goal of creating a common model of 
cognition (Laird, Lebiere, and Rosenbloom 2017) and promoting more cohesive develop-
ment and achieving greater pro gress. In any case, pro gress  will depend on the thorough 
evaluation of cognitive architectures in diverse, challenging, realistic environments (Kot-
seruba and Tsotsos 2020) consistent with human- level intelligence, such as the CRAM 
cognitive architecture targets in everyday activity science and engineering (EASE).

 There is a need for more realistic perceptual capabilities that can operate in adverse 
conditions with noise and uncertainty, using context to improve per for mance. Almost half 
the cognitive architectures surveyed by Kotseruba and Tsotsos do not implement any visual 
perception or other sensory modalities. For example, audition, touch, and olfaction are 
typically addressed in a trivial manner (Kotseruba and Tsotsos 2020).

Cognitive architectures also need to facilitate more natu ral communication with  humans 
to infer their intentions and emotional states; engage in adaptive, personalized interaction; 
read body language, such as gestures and facial expressions; engage in natu ral turn- taking; 
and facilitate human- robot joint action. Examples of cognitive architectures that focus 
on  these aspects of cognitive human- robot interaction include Lemaignan et al. (2017); 
Sandini et al. (2018); Tanevska et al. (2019).

Computational models of episodic memory have not received significant attention, 
especially for lifelong learning, despite the fact that its existence and importance has been 
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widely recognized (Kotseruba and Tsotsos 2020). Notable exceptions include the CRAM 
cognitive architecture (Beetz, Mösenlechner, and Tenorth 2010; Mösenlechner 2016) and 
the iCub neural framework for episodic memory (Mohan, Sandini, and Morasso 2014).

Deep learning (Schmidhuber 2015; Goodfellow, Bengio, and Courville 2016) has not 
yet made a significant impact on cognitive architectures (Kotseruba and Tsotsos 2020). 
This  will almost certainly change, giving rise to new architectural requirements— for 
example, deep developmental robotics architectures (Sigaud and Droniou 2016) and a 
reconciliation of deep learning with symbolic artificial intelligence (Garnelo and Shanahan 
2019). One of the main advantages of deep learning is its ability to produce end- to- end 
systems— that is, systems that map directly from an input space to an output space, such 
as pixels- to- classes in computer vision. In robotics, the situation is dif fer ent: end- to- end 
systems must map from pixels (and other sensory stimuli) to torques in a dynamic interac-
tive environment. Supervised deep learning based on static data sets is not  viable in  these 
circumstances. However, deep reinforcement learning (Arulkumaran et al. 2017; Li 2018) 
is capable of learning end- to- end robot control or action policies. This form of learning is 
typically implemented using simulators and may not be feasible on physical robots. Sün-
derhauf et al. (2018) estimate that it would take fifty- three days to accomplish a deep 
reinforcement learning exercise that currently takes twenty- four hours using simulation. 
They suggest that  there is also a real ity gap between simulation and the real world that 
limits the usefulness of simulation- based deep reinforcement learning, and they discuss a 
solution based on transfer learning, initially learning in the simulated environment, freez-
ing the network weights, and then continuing the learning with the physical robot. On the 
other hand, results using photorealistic simulations to support reasoning in cognition- 
enabled robots (Beetz et al. 2018; Mania and Beetz 2019) suggest that the real ity gap may 
not be significant and that the simulation approach may be plausible.

10.8 Conclusion

A cognitive architecture captures both the abstract conceptual form and the details of 
functional operation, focusing on inner cohesion and self- contained completeness. This 
means that all of the mechanisms required for cognition fall  under the compass of a cogni-
tive architecture, including perception, attention, action, control, learning, reasoning, memory, 
adaptivity, and anticipation. Thus, cognition, as a pro cess, and a cognitive architecture, as 
a framework, embrace all of the ele ments required for effective action. A cognitive archi-
tecture specifies the system components and the way  these components are dynamically 
related as a  whole. It provides both an abstract model of cognitive be hav ior and a sufficient 
basis for a software instantiation of that model (Lieto et al. 2018). Despite the magnitude 
of the task, the design and implementation of an appropriate cognitive architecture remains 
an indispensable step in the creation of a cognitive robot.

Additional Reading and Resources

•  To delve more deeply into the field of cognitive architectures, you might begin by 
reading the review by Kotseruba and Tsotsos (2020) and referring to the companion 
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website: http:// jtl . lassonde . yorku . ca / project / cognitive _ architectures _ survey / index . html. The 
review does not focus specifically on robot cognitive architectures but provides a con-
temporary and comprehensive overview of the field, nonetheless.
•  Appendix A of Vernon, von Hofsten, and Fadiga (2011), summarizing the operation of 
twenty cognitive architectures: Vernon, D., C. von Hofsten, and L. Fadiga. 2011. A Roadmap 
for Cognitive Development in Humanoid Robots. In Vol. 11, Cognitive Systems Monographs. 
Berlin: Springer. http:// www . vernon . eu / COSMOS _ CAs . pdf.
•  The Introduction to Cognitive Robotics course (www . cognitiverobotics . net) has several 
lectures devoted to cognitive architectures, in general, and to the CRAM cognitive archi-
tecture summarized in section 10.6.1, in par tic u lar, expanding on the material in the online 
CRAM tutorials: http:// cram - system . org / tutorials.
•  Software is available online for, for example, the CRAM cognitive architecture: http:// 
cram - system . org; the openEASE software components for cognition- enabled control of 
robotic agents: https:// ease - crc . org / open - ease / ; and the iCub cognitive robot platform: 
http:// www . icub . org.
•  Instructions on how to access, download, and install the CRAM software is included in 
the Introduction to Cognitive Robotics course and on the CRAM website (http:// cram 
- system . org / installation), along with practical exercises to help you get started.
•  For other software resources, refer to the “Resources” page on the IEEE Technical Com-
mittee for Cognitive Robotics site: http:// www . ieee - coro . org.

Note

1.  The average age of cognitive architecture proj ects in the survey by Kotseruba and Tsotsos (2020) is approxi-
mately fifteen years.
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11.1 Introduction

Writing a book chapter on the notion of embodiment in the cognitive sciences, or cogni-
tive robotics more specifically, is not an easy task  these days. Many researchers nowadays 
share the belief that, as M. Wilson (2002, 625) formulated it, “Cognitive pro cesses are 
deeply rooted in the body’s interactions with the world,” and we can take that as a useful 
first approximation of the fundamental claim of embodied cognition research. That state-
ment, however, means surprisingly many and surprisingly dif fer ent  things to dif fer ent 
 people.

Hence, explaining what embodiment is, in a single chapter, is difficult for several 
reasons: First, embodiment has been discussed in the cognitive sciences for several de cades 
now. Early examples include Lakoff and Johnson’s (1980) work on the role of bodily 
meta phors in  human cognition and language, as well as Maturana and Varela’s (1980) 
work on the biology of cognition. Moreover, many of  these discussions have roots preced-
ing cognitive science as a discipline by several more de cades, such as the work of William 
James in the late nineteenth  century. So  there simply is a long history to cover. Second, 
embodied cognition has become a popu lar and more- or- less mainstream position in the 
last twenty years (e.g., Clark 1999; Damasio 1999; Gallagher 2005; Ziemke et al. 2006; 
Pfeifer and Bongard 2007; Chemero 2009; Shapiro 2010; Black 2014; Lindblom 2015). 
Some would go so far as to claim that “embodied cognition is sweeping the planet,” as it 
says in one of the endorsements on the back cover of Shapiro’s (2010) textbook on the 
topic. However, research on embodied cognition is not so well established and mainstream 
yet that research has converged sufficiently to establish clear bound aries and shared defini-
tions of what is or is not embodied cognition (e.g., Wilson and Golonka 2013; Ziemke 
and Thill 2014; Ziemke 2016). Hence,  there are many dif fer ent— and in some cases also 
conflicting— perspectives to address. Last, but not least, the issue of embodiment is some-
what uniquely placed at the intersection of engineering, science, and philosophy, which 
means that embodiment simply has dif fer ent significance to dif fer ent, but overlapping, 
research communities.

The latter point should be relatively clear in the context of a book on cognitive robotics 
(see also section 1.2): On the one hand,  there is the engineering perspective (with an emphasis 
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on the “robotics” in “cognitive robotics”) on how to equip robots with the required sensorimo-
tor, cognitive, and communicative capacities for par tic u lar tasks. If you think of a typical 
example, such as a ser vice robot helping el derly  people at home, it is clear that the robot’s 
embodiment—in the sense of what the robot looks like, what sensors, actuators, and interac-
tive modalities it has, and so on— plays a crucial role in determining what it can do and how 
 people can interact with it.  After all, robot lawnmowers and vacuum cleaners, for example, 
might be well suited for their specific purposes, but they are not exactly easy to talk to. On 
the other hand,  there is the (cognitive-) scientific perspective (with an emphasis on the “cogni-
tive” in “cognitive robotics”), according to which embodied (i.e., robotic) models that share 
some bodily and sensorimotor features with the organism they are supposed to model might 
be preferable to purely computational or mathematical models. If, for example, you are 
working on modeling how  human language use is grounded in sensorimotor interaction, then 
it might make sense to use humanoid robot models that are, at least to some degree, similar 
in terms of bodily features and sensorimotor capacities to the  people and pro cesses you are 
trying to model. On the third hand (to use an intentionally confusing bodily meta phor),  there 
is of course the philosophical perspective, according to which theories of embodied cognition 
and cognitive- robotics models offer novel approaches to age- old questions concerning the 
so- called mind- body prob lem.

To cover a broad range of perspectives on embodiment, the remainder of this chapter 
is structured as follows: section 11.2 asks some basic questions— such as what is a body, 
what do we mean by embodiment, and what do we mean by embodied cognition— and 
provides some preliminary answers in the form of basic distinctions that might be useful. 
Section 11.3 then addresses fundamental conceptions of embodied cognition in cognitive 
science and the philosophy of mind. Section 11.4 narrows the perspective to notions of 
embodiment in artificial intelligence (AI) research, where naturally some of the central 
questions are what would constitute an artificial body or embodiment capable of support-
ing artificial embodied intelligence, and how we should go about building such systems. 
Section 11.5 then addresses the role of embodiment in cognitive robotics more specifically 
and connects back to the above discussion of dif fer ent perspectives on embodiment. 
Section 11.6, fi nally, provides a brief summary and some conclusions.

It should be noted that throughout this chapter, for the reasons mentioned above, we 
prioritize breadth— that is, provide a broad spectrum of perspectives on embodiment and 
its role in  human (and robotic) cognition and refer the interested reader to the original 
lit er a ture for more in- depth discussions.

11.2 Notions of Embodiment and Embodied Cognition

What actually is a body? Or, more specifically, what constitutes the kind of body—or 
embodiment— that might be a necessary requirement for embodied cognition? Somewhat 
surprisingly, maybe, many discussions of embodied cognition actually pay relatively  little 
attention to the nature and the role of the body involved. This might be natu ral in psy chol-
ogy or linguistics, which mainly deal with phenomena such as  human cognition or lan-
guage, where it is more or less obvious that discussions of embodiment are about the role 
that  human bodies play in such phenomena. In AI and robotics, however,  things are less 
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obvious. This raises questions, such as what kind of embodiment might be required for an 
artificial system that could deal with, for example,  human language. In the realm of science 
fiction, you might have noticed that the Star Wars android C-3PO claims to be fluent in 
six million forms of communication and thus is presumably capable of dealing with many 
dif fer ent species, although his embodiment is rather humanlike. In  today’s real world, on 
the other hand, many of us regularly encounter systems that appear rather disembodied, 
such as Google Translate, or devices with somewhat minimal and distinctly nonhuman 
physical “embodiments,” such as Amazon Echo or Google Home, which nevertheless all 
seem to be able to deal with  human language to some degree. Let us therefore have a 
quick look at some of the notions of what kind of body or embodiment is required for 
embodied cognition (following Ziemke 2001, 2003b).

Embodiment as Structural Coupling

Prob ably the broadest notion of embodiment is that systems are embodied if they are struc-
turally coupled to their environment. The concept of structural coupling originally comes 
from Maturana and Varela’s (1980, 1987) work on the biology of cognition, which  will be 
discussed in further detail below. Quick and colleagues (1999, 340) tried to formalize this 
as follows in their minimal definition of embodiment: “A system X is embodied in an envi-
ronment E if perturbatory channels exist between the two. That means, X is embodied in E 
if for  every time t at which both X and E exist, some subset of E’s pos si ble states with re spect 
to X have the capacity to perturb X’s state, and some subset of X’s pos si ble states with 
re spect to E have the capacity to perturb E’s state.” This definition of embodiment in itself 
does not make a distinction between cognitive and noncognitive systems, which is illustrated 
by Quick et al.’s (1999) example of a granite outcrop on the Antarctic tundra that is perturbed 
by the wind and in turn perturbs the flow of air. This would seem to include practically all 
physical objects, but it might be worth noting that it has been argued that structural coupling 
does not necessarily require a physical body. Franklin (1997, 500), for example, explic itly 
stated: “Software systems with no body in the usual physical sense can be intelligent. But 
they must be embodied in the situated sense of being autonomous agents structurally coupled 
with their environment.”

Historical Embodiment

Several researchers have emphasized that cognitive systems are not only structurally 
coupled to their environment in the pre sent. Their embodiment is in fact a result or reflec-
tion of a history of agent- environment interaction. According to Varela et al. (1991, 149), 
for example, “Knowledge depends on being in a world that is inseparable from our bodies, 
our language, and our social history—in short, from our embodiment.” Ziemke (1999, 
187) pointed out: “Natu ral embodiment is more than being- physical . . .  it reflects/embodies 
the history of structural coupling and mutual specification between agent and environment 
in the course of which the body has been constructed.” In a similar vein, Riegler (2002, 
347) included an agent’s adaptation to its environment over time in his definition of 
embodiment: “A system is embodied if it has gained competence within the environment 
in which it has developed.”
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Physical/Sensorimotor Embodiment

Many researchers in embodied (robotic) AI—to distinguish their approach from traditional 
AI— hold that, as Pfeifer and Scheier (1999, 649) formulated it, “intelligence cannot merely 
exist in the form of an abstract algorithm but requires a physical instantiation, a body.” This 
would seem to rule out software agents but could possibly still be considered to include the 
granite outcrop mentioned above. However, most researchers in embodied AI and robotics 
naturally adopt a more restrictive version of the notion of physical embodiment— which 
might be labeled sensorimotor embodiment— that is, the view that embodied systems need 
to be connected to their environment not just through physical forces but more specifically 
through their own sensors and actuators. This is also the essence of Brooks’s (1990) physical 
grounding hypothesis, according to which building an intelligent system requires having its 
repre sen ta tions grounded in the physical world, which in turn requires connecting it to the 
world via sensors and actuators.

At this point it might be worth pointing out that, although historical embodiment and 
physical/sensorimotor embodiment can be considered special cases of structural coupling, 
neither of  these notions necessarily includes or excludes the other. Riegler (2002), for 
example, stated that his historical notion definition of embodiment “does not exclude 
domains other than the physical domain” and in par tic u lar that “computer programs may 
also become embodied” if they are the result of self- organization rather than conventional 
 human design and programming.

Organismoid Embodiment

Another, yet more restrictive, notion of physical and sensorimotor embodiment would be 
that at least certain types of organism- like cognition might be  limited to organism- like 
bodies— that is, physical bodies with par tic u lar structural features or sensorimotor capacities. 
A  simple early example of this was a robot used by Lund et al. (1998) equipped with an 
auditory cir cuit and two microphones the same distance from each other as the two “ears” 
of the cricket whose phonotaxis it was supposed to model. The placement of the sensors/
ears, in both robot and cricket, reduced the amount of internal signal pro cessing required to 
respond selectively to certain sound frequencies. Note that in this case the bodies of the 
cricket and the wheeled robot  were of course very dif fer ent except for one crucial detail, 
namely the distance between the “ears.” More recent and complex examples of organismoid 
embodiment can be found in humanoid cognitive robotics, such as the work of Cangelosi 
and colleagues, in which humanlike embodiment is taken to be a key ingredient for robotic 
models of  human language learning and use (e.g., Morse et al. 2015; cf. section 11.5).

Organismic Embodiment

The most restrictive notion of embodiment discussed in this section is that embodied cognition 
emerges from the interaction between organisms— that is, living bodies, and their environ-
ments. Maturana and Varela’s (1980, 1987) work on the biology of cognition, for example, 
suggests, in a nutshell, that cognition is what living systems do in interaction with their 
environment. In a similar vein, from a neuroscientific perspective Damasio (1998) criticized 
“the prevalent absence of a notion of organism in the sciences of mind and brain” as a prob-
lem, which he elaborated as follows: “It is not just that the mind remained linked to the brain 
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in a rather equivocal relationship, but that the brain remained consistently separated from the 
body and thus not part of the deeply interwoven mesh of body and brain that defines a complex 
living organism” (Damasio 1998, 84). Somatic theories of emotion constitute “a multi- tiered 
affectively embodied view of mind” (Panksepp 2005, 63), according to which emotion, cogni-
tion, and consciousness arise from multiple, nested levels of homeostatic (self-) regulation of 
bodily activity. This is, at least at this point in time, a clear difference between living systems 
and robotic bodies, which typically have no own needs or viability constraints (e.g., Bickhard 
2009; Ziemke 2016) and therefore need to be equipped with artificial motivational systems 
(cf. chapter 13).

In addition to the above dif fer ent notions of embodiment, let us also take a quick look 
at dif fer ent views of embodied cognition. M. Wilson (2002) distinguished six such views 
from a psychological perspective, of which, however, only the last explic itly addresses the 
role of body:

“Cognition is situated” This claim is widely held in the lit er a ture on embodied cogni-
tion. M. Wilson (2002) herself distinguished between situated cognition, taking place “in 
the context of task- relevant inputs and outputs” and “off- line cognition.”

“Cognition is time pressured” Cognition is constrained by the requirements of real- 
time interaction with the environment, such as the repre sen ta tional bottleneck (e.g., Brooks 
1991; Clark 1997; Pfeifer and Scheier 1999).

“We off- load cognitive work onto the environment” Brooks (1990) formulated a 
similar claim stating that “the world is its own best model.” Another well- known example 
is Kirsh and Maglio’s (1994) study of the Tetris computer game players’ epistemic actions— 
that is, decision- preparing movements carried out in the world, rather than in the head.

“The environment is part of the cognitive system” The classical example is Hutchins’s 
(1995) work on distributed cognition, considering, for example, the instruments in a 
cockpit as parts of the cognitive system.

“Cognition is for action” A claim made, for example, by Franklin (1995), who argued 
that minds are the control structures of autonomous agents.

“Off- line cognition is body- based” According to M. Wilson (2002, 625), at the time 
this claim had received the least attention in the cognitive science lit er a ture, although “it 
may in fact be the best documented and most power ful of the six claims.” An early example 
is the aforementioned work of Lakoff and Johnson (1980, 1999) who argued that abstract 
concepts are based on meta phors grounded in bodily activity and experience (such as the 
En glish expression “to grasp,” which refers to both manual grasping of physical objects 
and the more abstract grasping of, for example, ideas or concepts). More recently, the 
under lying mechanisms have been elaborated in terms of embodied simulation accounts 
of conceptualization and cognition (e.g., Gallese and Lakoff 2005; Gallese 2005).

It might be worth noting  here that, in one way or another, all of the above six views 
deal with the sensorimotor interaction between an agent’s body and its environment, but 
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none addresses the question of  whether the body involved necessarily needs to be physical, 
biological, and so on. Again, from the perspective of psy chol ogy or linguistics— with a 
focus on  human cognition and language— this might be understandable, and the physical 
or biological nature of the body involved might be considered a nonissue. However, John-
son’s (2007, x) account of the development of research on the embodiment of language, 
which also initially focused on the sensorimotor aspects, indicates that the under lying 
biological mechanisms  were initially somewhat overlooked: “In retrospect I now see that 
the structural aspects of our bodily interactions with our environments upon which I was 
focusing  were themselves dependent on even more submerged dimensions of bodily 
understanding. It was an impor tant step to probe below concepts, propositions, and sen-
tences into the sensorimotor pro cesses by which we understand our world, but what is 
now needed is a far deeper exploration into the qualities, feelings, emotions, and bodily 
pro cesses that make meaning pos si ble.”

11.3 Embodiment in Cognitive Science

The introduction referred to M. Wilson’s (2002) general statement that “cognitive pro-
cesses are deeply rooted in the body’s interactions with the world” as a useful first approxi-
mation of the fundamental claim of embodied cognition research. Dif fer ent general notions 
of embodiment and embodied cognition have already been addressed in the previous 
section. In this section, let us quickly look at the general theoretical conceptions of embod-
ied cognition in cognitive science and in par tic u lar philosophy of mind. The following 
somewhat simplified diagram from Chemero (2009) provides one useful perspective on 
the current embodied cognition research landscape (figure 11.1). As Chemero pointed out, 
 there are at least two rather dif fer ent general theoretical frameworks that are both referred 
to as “embodied cognitive science.” One of  these, which Chemero referred to as “radical 
embodied cognitive science,” is grounded in the antirepre sen ta tionalist and anticomputation-
alist traditions of eliminativism, American naturalism (such as the work of James and Dewey), 
and Gibsonian ecological psy chol ogy. The more mainstream version of embodied cognitive 
science, on the other hand, is derived from the traditional repre sen ta tionalist and computa-
tionalist theoretical frameworks that have long dominated cognitive science, and therefore is 
still more or less compatible with  these. In a cognitive robotics context, the latter can be 
exemplified with the popu lar notion of symbol/repre sen ta tion grounding (Harnad 1990; 
Ziemke 1999), whereas the former is closer to the antirepre sen ta tionalism advocated by 
embodied AI researchers such as Brooks (1991) and Beer (1995). As Chemero pointed out, 
although—or maybe just  because— the mainstream version of embodied cognitive science 
can be considered a “watered- down” version of its more radical counterpart, it currently 
receives significantly more attention in the cognitive sciences.

Chemero’s (2009) formulation of radical embodied cognition can be summarized in the 
following claims:

1.  Repre sen ta tional and computational views of embodied cognition are wrong.
2.  Embodied cognition should be explained using a par tic u lar set of tools T, including 
dynamical systems theory.
3.  The explanatory tools in set T do not posit  mental repre sen ta tions.
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It might be worth noting, though, that Chemero’s fundamental and rather strict distinc-
tion between repre sen ta tional and antirepre sen ta tional approaches to embodied cognition, 
while offering one useful perspective, should not necessarily be taken to provide some 
kind of ground truth. First, that seemingly clear- cut distinction obviously hinges on the 
assumption that  there is a more or less wide agreement on what exactly constitutes a repre-
sen ta tion. This is not necessarily the case (Haselager et al. 2003; Svensson and Ziemke 
2005). Hence, it is not difficult to find embodied AI researchers who reject repre sen ta tion 
in one paper but argue for the grounding of repre sen ta tions in another (e.g., Brooks 1990, 
1991). Second, it could be argued that the outright rejection of repre sen ta tion risks throw-
ing out the baby with the bathwater (to use a somewhat dramatic bodily meta phor). That 
means that while  there might very well be good reason to reject the traditional notion of 
repre sen ta tion, it might be too early, or simply misguided, to reject the notion of repre-
sen ta tion altogether. Bickhard (1993, 2009), for example, has strongly criticized the tra-
ditional notion of repre sen ta tion, which he refers to as encodingism, but has developed an 
interactivist notion of repre sen ta tion, which is much in line with Gibsonian ecological 
psy chol ogy and other ele ments of radical embodied cognitive science. Similarly, somatic 
theories of emotion and consciousness, such as the work of Damasio and Panksepp, con-
stitute “a multi- tiered affectively embodied view of mind” (Panksepp 2005, 63), in which 
repre sen ta tion does play a central role. In this case, however, it is the brain that is consid-
ered to “represent” bodily activity, rather than an agent that holds an internal repre sen ta tion 
of its external environment (cf. Ziemke 2016).

While the controversial issue of repre sen ta tion is certainly too complex to resolve in 
this chapter, it  here suffices to say that, although much early work on embodied cognition 
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Figure 11.1
Current notions of embodied cognitive science and their historical roots. Source: Adapted from Chemero 2009 
and Ziemke 2016.
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(e.g., Varela et al. 1991) and embodied AI (e.g., Brooks 1991; Beer 1995) was explic itly 
antirepre sen ta tionalist, nowadays much of mainstream embodied cognitive science is more 
or less repre sen ta tionalist. However,  there are at least some accounts of embodied cogni-
tion that reject the functionalism/computationalism that characterizes the approaches on 
the right side of Chemero’s diagram without, however, rejecting altogether the notion of 
repre sen ta tion. Hence, as illustrated in figure 11.2, a revised version of Chemero’s diagram, 
more directly relevant in the context of embodied AI and cognitive robotics, could instead 
be based on the following distinctions:

•  On the one hand, some approaches view cognition as (a) embodied and (b) first and fore-
most a biological phenomenon; some of  these are repre sen ta tionalist in some nontraditional 
sense (e.g., Damasio, Bickhard), and some of them are antirepre sen ta tionalist (where the 
latter roughly correspond to what Chemero referred to as radical embodied cognitive science).
•  On the other hand,  there are functionalist approaches— such as traditional cognitive 
science and GOFAI— that view cognition as first and foremost a computational (and repre-
sen ta tional) phenomenon; among  these we can distinguish between the computational func-
tionalism of GOFAI and the robotic functionalism (Harnad 1989) that characterizes much 
of Chemero’s notion of mainstream embodied cognitive science (according to which cogni-
tion is computational, but its repre sen ta tions need to be grounded in sensorimotor interaction 
with the environment; cf. Harnad 1990; Pezzulo et al. 2013).

 Needless to say, the diagram in figure 11.2 should not necessarily be considered as some 
kind of ground truth  either: First, the picture is not complete (behaviorism, for example, is 
not included). Second, conceptions of repre sen ta tion, computation, embodiment, and so on 
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Current views of cognition.
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obviously vary significantly among researchers. Hence, the real ity of the cognitive science 
and AI research landscape is significantly more complex than  either of  these diagrams.

11.4 Embodiment in AI

As should be clear from the discussions in previous sections, the issue of embodiment in 
AI is not straightforward. Many embodied AI researchers, like Brooks (1990) and Steels 
(1994), emphasize the importance of physical grounding and therefore advocate robotic 
AI.  Others, like Franklin (1997), argue that software agents could be embodied as well if 
they are situated in an environment (e.g., a search bot searching the internet) and structur-
ally coupled to it. Moreover, many cognitive roboticists in their research practice com-
monly make use of software simulations of robots and their environments— for example, 
in order to more quickly train a computational cognitive model in simulation first, which 
is then  later tested on the physical robot. In  these cases the computer programs controlling 
the robots— physical or simulated— are of course for the most part still just as computa-
tional as the computer programs of traditional AI. Another case that does not neatly fit 
into the theoretical categories discussed above are virtual agents, as they might appear in 
video games, for example, or in par tic u lar embodied conversational agents. Such systems, 
typically appearing on computer screens, usually have a (simulated) body, used to com-
municate with their  human users, but they typically do not actually use  those bodies for 
sensorimotor interaction with their environment. Hence, while they might appear embod-
ied to the  people interacting with such systems, in some sense, or to some degree, they 
 really are not embodied in any strong sense.

In fact, most research in embodied AI, although initially often driven by rejections of 
GOFAI and/or the traditional notion of repre sen ta tion, has been relatively pragmatic in 
developing the practice of embodied AI, without much concern for philosophical or theo-
retical distinctions (cf. Ziemke 2004). Based on many years of experience in building 
embodied AI systems, Pfeifer and colleagues (Pfeifer and Gomez 2005; cf. Pfeifer et al. 
2005; Pfeifer and Bongard 2007; Froese and Ziemke 2009) have formulated a number of 
embodied AI design princi ples, which together can serve as a characterization of embodied 
AI as a research field. The first of  these are five design procedure princi ples:

•  P1— synthetic methodology: aiming for understanding by building.
•  P2— emergence: systems designed for emergence are often more adaptive.
•  P3— diversity- compliance:  there is a trade- off between exploiting the givens and gener-
ating diversity.
•  P4— time perspectives: three perspectives are required to understand a system’s be hav-
ior: the “ here and now,” its ontogeny (development), and its phylogeny (evolution).
•  P5— frame of reference: the need to distinguish between observed be hav ior and under-
lying mechanisms.

 These are complemented by eight agent design princi ples:

•  A1— three constituents: an agent, its task, and its ecological niche.
•  A2— complete agents: focus on embodied, situated, autonomous agents.
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•  A3— parallel pro cesses: asynchronous pro cesses, loosely coupled via the environment.
•  A4— sensorimotor coordination: self- structured/- generated sensory input.
•  A5— cheap design: systems exploit their niche and interactions.
•  A6— redundancy: robustness through overlapping functionalities.
•  A7— ecological balance: between internal and external complexity.
•  A8— value: systems have driving forces, development, self- organization.

 These five plus eight princi ples can be seen as guidelines for how to design, build, and/
or understand embodied AI systems— where the term “embodied” mainly refers to some 
form of robotic embodiment and the sensorimotor interaction of internal control and exter-
nal environment over time. As an elaboration of the value princi ple (A8)— which can be 
questioned in the case of typical robots that might be argued have no own needs or values, 
given that they do not have bodies that need to self- maintain, survive, and so on— Froese 
and Ziemke (2009) have formulated two additional enactive AI design princi ples:

1)  The system must be capable of generating/maintaining its own systemic identity at 
some level of description.
2)  The system must have the capacity to actively regulate its sensorimotor interaction in 
relation to viability constraints.

The difference or complementarity between embodied and enactive AI princi ples can be 
understood in relation to the theoretical distinctions made in previous sections. While the 
embodied AI princi ples of Pfeifer and colleagues mainly emphasize physical/sensorimotor 
embodiment and structural coupling through sensors and actuators, the enactive AI princi ples 
additionally emphasize that the organismic embodiment of living systems implies additional 
constraints and requirements, but also opportunities, that arise from the fact that living bodies 
need to self- regulate their internal pro cesses and external interactions so as to remain  viable, 
which implies some kind of bodily homeostasis or allostasis (Froese and Ziemke 2009; cf. 
Damasio and Carvalho 2013; Vernon et al. 2015; Ziemke 2016).

11.5 Embodiment in Cognitive Robotics

Since this chapter is part of a book on cognitive robotics, we  will not dwell on trying to 
define cognitive robotics in detail (see chapter 1 for a more detailed discussion). For the 
discussion of embodiment, it might be useful, however, to distinguish roughly between 
the scientific approach and the engineering approach, although in practice they can cer-
tainly overlap.

The engineering approach to cognitive robotics could be characterized as the general 
endeavor to provide robots with cognitive capacities, such as perception, memory, learn-
ing, or communication. An example of this is recent work in our lab, and several  others, 
in the Eu ro pean proj ect DREAM (https:// dream2020 . github . io / DREAM / ), whose aim it 
was to develop humanoid robots that could interact with kids with autism as part of psy-
chological therapy, with the goal of teaching social interaction skills, such as joint atten-
tion, turn- taking, and imitation (e.g., Cao et al. 2019). This is an example of an engineering 
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approach  because the mechanisms under lying the robots’ cognitive and interactive capaci-
ties, for the most part,  were not based on models of  human cognition, although they  were 
of course tailor- made to match the cognitive and interactive capacities of the  children 
involved. Hence, the role of the robot’s physical embodiment, much like in the case of the 
embodied conversational agents mentioned above, is not so much that it is fundamental 
to the robot’s cognitive pro cesses as such but rather that the embodiment plays a crucial 
role in the kids’ embodied social interaction with the robot. For example, the robots needed 
to be able to perceive the same objects, to observe the kids’ be hav ior, to act (e.g., point 
to objects), and to communicate (e.g., talk) in ways that the kids could understand.

The (cognitive-) scientific approach to cognitive robotics, on the other hand, could be 
characterized as the use of robotic models for the express purpose of understanding the 
mechanisms under lying the cognitive and behavioral capacities of  humans and/or other 
animals. Hence, the contribution of cognitive robotics to the study of embodied cognition 
lies in building robotic models that help elucidate the many ways in which “cognitive 
pro cesses are deeply rooted in the body’s interactions with the world”—to get back to 
M. Wilson’s (2002) characterization of embodied cognition that we used in the introduction. 
We can further roughly distinguish between minimalist approaches, which usually try to 
model general mechanisms or princi ples under lying cognition and be hav ior, and more 
complex approaches, which usually try to build specific models, in many cases aiming to 
replicate data observed in  human or animal experiments.

Some of our own work in evolutionary robotics can be used to illustrate the minimal-
ist approach: Ziemke and Thieme (2002), for example, presented experiments using an 
evolutionary- robotics methodology (Nolfi and Floreano 2000, chap. 4).  Simple simulated 
wheeled robots  were evolved to deal with delayed- response tasks that required “memory” 
of where light sources had previously been perceived in order to find a goal location in a 
maze. Delayed response tasks are the classical paradigm in psy chol ogy for studying 
working memory in  humans and other animals (Malloy 2011). The point of the  simple 
robotic model in this case was not to replicate the body or the data from some specific 
animal experiment. It was to illustrate how the embodied cognitive capacity (memory) 
required to solve the delayed response task (i.e., to “remember” where the light was per-
ceived) could emerge from the interplay of the robot’s minimal internal mechanisms and 
its sensorimotor interaction with its environment, rather than from some explicit internal 
repre sen ta tion in the traditional sense. The “embodiment” of the robotic agents used in 
such experiments is often intentionally reduced to a bare minimum, which makes it easy 
to analyze in detail the interaction of internal and external mechanisms (cf. Ziemke 2003a, 
2005), which is of course not pos si ble to do in equivalent experiments with animals. 
Another example of interacting and coadapting agents would be our work (Buason et al. 
2005) on evolving robotic agents in a predator- prey scenario.  Here predators and prey 
 were given the opportunity to coevolve— that is, adapt to each other, over a series of 
generations. In a nutshell, the results showed several effects that have also been observed 
in natu ral predator- prey coevolution, such as the fact that predators tended to evolve a 
narrow field of view (suited to pursue the prey in front of them), whereas the prey evolved 
a significantly wider field of view (suited to detect both obstacles in front of them and 
predators  behind them). Like the above delayed response tasks, this is another example 
of minimally cognitive be hav ior (Beer 1996; Barandiaran and Moreno 2006)  because 
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predators and prey had to “remember” each other whenever they temporarily lost track of 
each other. Again, the “embodiment” in  these simulation experiments was intentionally 
kept minimal— a number of sensors on a simulated,  simple circular robot body— and the 
experiments did not replicate data from some specific experiment or species but rather 
provided insight into the general mechanisms of predator- prey coadaptation of body and 
be hav ior.

An example of a more complex cognitive robotics experiment aiming to model specific 
aspects of  human cognition, and to also replicate  human experimental data, comes from 
the work of Morse et al. (2015). Using a full- scale humanoid robot, they replicated infant 
studies investigating the role of bodily posture in how infants learn mappings between 
words and objects (see chapter 20). The robot model was used to test the hypothesis that 
a body- centric spatial location, and thus its momentary posture, is used to bind the mul-
timodal features of visual objects and their names. The robot model was shown to replicate 
data from infant studies and generate novel predictions, which  were then tested in new 
infant studies. This model showed how the memory of name- object mappings, used in 
new spatial locations, can emerge through the body’s momentary disposition in space.

Hence, although the above robotic models differ radically in the complexity of the robotic 
embodiment used ( simple simulated wheeled robots vs. a physical humanoid), they all 
address how a cognitive capacity such as memory can emerge—in an embodied manner— 
from an agent’s sensorimotor interactions with its environment over time.

A negative take on the somewhat perplexing diversity of “embodiments” used by 
researchers in embodied AI and cognitive robotics would be that 1) researchers simply 
have not come to any significant agreement on what embodiment “is,” and/or 2) all exist-
ing embodied AI systems are still at best very  limited versions of the real  thing— that is, 
 human or other living bodies. Dreyfus (2007), for example, argued the latter point in his 
critique of embodied AI, stating that attempts to model  human cognition are more or less 
doomed  because they would require “a detailed description of our body and motivations 
like ours” and that such models “ haven’t a chance of being realized in the real world.” 
However, as we have argued in more detail elsewhere (Froese and Ziemke 2009), the 
purpose of a model, of course, is usually not to replicate or (re-) instantiate a par tic u lar 
phenomenon in its entirety but rather to help explain it (cf. Morse and Ziemke 2008; Di 
Paolo and Iizuka 2008). Or, as Froese and Ziemke (2009, 470–471) put it, “It could also 
be argued that such a detailed modeling approach is not even desirable in the first place 
since it does not help us to understand why having a par tic u lar body allows  things in the 
environment to show up as significant for the agent possessing that body. . . .  In other words, 
instead of blindly modeling the bodies of living beings in as much detail and complexity 
as pos si ble, it would certainly be preferable to determine the necessary conditions for the 
constitution of an individual agent with a meaningful perspective on the world.”

As the philosophically minded reader might have noticed by now, this discussion is of 
course closely related to Searle’s (1980) classical distinction between what he called “weak 
AI,” the claim that computational models can contribute to our scientific understanding 
of  human cognition, and what he referred to as “strong AI,” the claim that computer models 
can actually constitute or replicate  human or humanlike cognition, consciousness, and so 
on. Or, in the terms of the discussion in previous sections, if you find yourself sympathiz-
ing with functionalist/computationalist approaches to embodied cognition, then you are 
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likely to think that cognitive robotics could lead to a robotic “strong AI,” at least in theory. 
The functionalist position has been formulated explic itly by Zlatev (2001, 155), who 
posited that “a robot with bodily structures, interaction patterns and development similar 
to  those of  human beings . . .  could possibly recapitulate [ human] ontogenesis, leading to 
the emergence of intentionality, consciousness and meaning.” If, on the other hand, you 
consider cognition first and foremost a biological phenomenon, then you are likely to think 
that cognitive robotics is  limited to being a form of “weak AI” in Searle’s sense— that is, an 
approach to the scientific modeling of embodied cognition rather than striving for replication 
of  human or humanlike cognition, in a strong sense. While the term “weak” might sound 
negative, it should be noted that it is only weak in the sense that it is the weaker—or the 
more realistic, some would say—of the two claims (weak vs. strong AI). As the examples 
of cognitive robotics models discussed in this section illustrate, this approach can certainly 
make strong contributions to our scientific understanding of the mechanisms under lying 
embodied cognition, especially when used as a complement to other scientific approaches 
and methodologies.

11.6 Conclusion

We started this chapter by characterizing research on embodiment as guided by the view 
that “cognitive pro cesses are deeply rooted in the body’s interactions with the world” 
(M. Wilson 2002, 625). In the context of AI and robotics, it is then natu ral to ask what kind 
of body an artifact with certain cognitive capacities might require and how such a system 
might become grounded (cf. Harnad 1990; Ziemke 1999) in its environment in roughly 
the way that  humans and other animals are. As the discussion in section 11.2 showed, 
 there is not much agreement regarding the first question: What kind of body? The answers 
range from software agents, to physical robots, to living organisms. In section 11.3 we 
discussed that we might need to distinguish between at least two fundamentally dif fer ent 
conceptions of embodied cognition, which Chemero (2009) referred to as mainstream 
embodied cognitive science, which has inherited the repre sen ta tionalism and computation-
alism of traditional cognitive science, and radical embodied cognitive science, which 
rejects representationalism—at least according to Chemero (2009). We suggested that a 
more relevant distinction might be between the functionalist view of cognition as first and 
foremost a computational phenomenon (which at least in princi ple should be implementable 
in robots) and the antifunctionalist view of cognition as first and foremost a biological 
phenomenon (which simply might not be replicable, at least not with current robotic and 
computational technologies). As discussed in section 11.4, much—if not most— research 
in embodied AI is somewhat indifferent to such theoretical distinctions (cf. Ziemke 2004), 
although antirepre sen ta tionalism has long been a driving force in early embodied AI. 
Instead, much embodied AI research has been driven more by the development of a prac-
tice of embodied AI— that is, how should we synthesize and analyze embodied forms of 
(artificial) intelligence— here characterized with a number of embodied and enactive AI 
design princi ples. Section 11.5 then discussed the role of embodiment in cognitive robotics 
and illustrated this with examples of both minimalistic and more complex/human- level 
robotic models of embodied cognition, in par tic u lar how memory can emerge from embod-
ied agent- environment interactions.
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From an engineering perspective, the diversity of concepts and approaches discussed 
 here might be somewhat disappointing—we still  don’t know how to build Westworld- type 
humanlike robots or even if we  will ever be able to. However, from the scientific perspec-
tive of cognitive robotics as an approach to modeling  human and animal cognition, the 
diversity of approaches is actually rather promising  because dif fer ent approaches can 
complement each other. As the above examples illustrate, cognitive robotics models can 
function as both

•  a complement to theoretical discussions (e.g., helping to clarify overly abstract discus-
sions of “repre sen ta tion” by concrete models of pos si ble under lying mechanisms) and as
•  a complement to empirical studies of cognition in  humans and animals (e.g., offering 
better opportunities for the replication and analy sis of experiments, as well as a mechanism 
of hypothesis testing and generation).

A useful step forward for  future research on embodied cognition and cognitive robotics, 
though, might be a clearer distinction between the dif fer ent “bodies” or perspectives being 
addressed. From the discussions in this chapter, we can conclude that we have to distin-
guish between at least

•  the social body, as it appears to  others,
•  the sensorimotor body, which interacts with the environment,
•  the living body, which has to self- regulate and self- maintain, and
•  the lived body, as it is experienced by an agent itself.

In living systems,  these four “bodies” are of course  really dif fer ent aspects of the same 
body, and they roughly correspond to the overlapping perspectives of dif fer ent disciplines, 
such as social psy chol ogy, behavioral psychology/ethology, biology, and phenomenology, 
respectively.  These multiple bodies also roughly correspond to the first- person (lived body), 
second- person (social body), and third- person (living, sensorimotor body) perspectives 
that are fundamental to much of our social cognition and language use.

Moreover, in living systems  these multiple bodies are nested in some sense like Rus sian 
dolls, to use one final bodily meta phor; that is, the living body motivates and regulates 
the sensorimotor body’s interaction with the environment, which in turn facilitates and 
manifests the social body and its interactions. In embodied AI and cognitive robotics, 
however, some of  those Rus sian dolls are usually missing: Most robots have physical/
sensorimotor bodies that are not driven by the needs and motivations of an under lying 
living body. Furthermore, an artificial agent— most obvious in the case of many embodied 
conversational agents— might appear to have a social body, although it is not necessarily 
driven and grounded by a sensorimotor body.

While for researchers in cognitive robotics all of this might be relatively transparent, it 
remains to be seen exactly how this affects the public perception of robotic systems with 
cognitive and interactive capacities (e.g., Thellman and Ziemke 2020, 2021)— and in par-
tic u lar how it affects  people’s embodied social interaction with such diversely embodied 
technologies as humanoid robots, virtual agents, and automated vehicles (cf. Ziemke 
2020). Some of  those Rus sian dolls might not be easy to unpack.
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Additional Reading and Resources

•  The classical book on the embodied mind and the starting point for enactive cognitive 
science: Varela, F. J., E. Thompson, and E. Rosch. 1991. The Embodied Mind: Cognitive 
Science and  Human Experience. Cambridge, MA: MIT Press.
•  A broad introduction and comprehensive overview of the research area: Shapiro, L. 2010. 
Embodied Cognition. London: Routledge.
•  A review paper with a focus on embodied cognition as a biological phenomenon: 
Ziemke, T. 2016. “The Body of Knowledge: On the Role of the Living Body in Grounding 
Embodied Cognition.” BioSystems 148:4–11.
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12.1 Introduction

This chapter  will provide a comprehensive introduction to the ethics of robotics, with a 
par tic u lar emphasis on the integration of artificial intelligence (AI) and robotics.  After the 
introduction to the field in section 12.1, the main themes are, in section 12.2, ethical issues 
that arise with robotics systems as objects (i.e., tools made and used by  humans), where 
the main sections are privacy, human- robot interaction, employment, and the effects of 
autonomy, and in section 12.3, robotics systems as subjects (i.e., when ethics is for the 
systems themselves in machine ethics and artificial moral agency). Many of  these ques-
tions concern the use of AI, so the ethics of AI  will play a role in this chapter.

For each section within  these themes, we provide a general explanation of the ethical 
issues, we outline existing positions and arguments, and then we analyze how this plays 
out with current technologies and fi nally what policy consequences may be drawn.

12.1.1 Background of the Field

The ethics of robotics is often focused on “concerns” of vari ous sorts— which is a typical 
response to new technologies. The task of an essay such as this is to analyze the issues 
and to deflate the nonissues. Some technologies, such as nuclear power, cars, or plastics, 
have caused ethical and po liti cal discussion and significant policy efforts to control the 
trajectory of  these technologies— usually once some damage is done.

The ethics of robotics has seen significant press coverage in recent years, which supports 
this kind of work but also may end up undermining it: It often talks as though we already 
knew what would be ethical and as if the issues  were just what  future technology  will bring 
and what we should do about it. Press coverage thus focuses on considerations of risk, 
security (Brundage et al. 2018), and the prediction of impact (e.g., on the job market). The 
result is a discussion of essentially technical prob lems and on how to achieve the desired 
outcome. Another result is that much of the current discussion in policy and industry, with 
its focus on image and public relations— where the label “ethical” is  really not much more 
than the new “green,” is perhaps used for “ethics washing.” For a prob lem to qualify as a 
prob lem for robot ethics would require that we do not readily know what is the right  thing 
to do. In this sense, job loss, theft, or killing with a robot are not a prob lem for ethics, but 
 whether  these are permissible  under certain circumstances is such a prob lem.

12 Ethics of Robotics

Vincent C. Müller
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A last caveat is in order for our pre sen ta tion: The ethics of robotics is a very young 
field within applied ethics, with significant dynamics but few well- established issues and 
no authoritative overviews— though surveys for the ethics of robotics exist (Lin, Abney, 
and Jenkins 2017; Royakkers and van Est 2016; Calo, Froomkin, and Kerr 2016; Tzafestas 
2016; Eu ro pean Group on Ethics in Science and New Technologies 2018). So this article 
cannot just reproduce what the community has achieved thus far but must propose an 
ordering where  little order exists.

12.1.2 A Note on Policy

 There is significant public discussion about robot ethics, and  there are frequent pronounce-
ments from politicians that the  matter requires new policy, but  actual technology policy 
is difficult to plan and to enforce. It can take many forms, from incentives and funding, 
infrastructure, taxation, or good- will statements to regulation by vari ous actors and the 
law. Policy for robotics  will possibly come into conflict with other aims of technology 
policy or general policy. One impor tant practical aspect is which agents are involved in 
the development of a policy and what power structures oversee it.

For  people who work in ethics and policy,  there is prob ably a tendency to overestimate 
the impact and the threats from a new technology and to underestimate how far current 
regulation can reach (e.g., for product liability). On the other hand, for businesses, the 
military, and some administrations  there is an interest to “talk” and to preserve a good 
public image but not to “do” anything. Governments, parliaments, associations, and indus-
try circles in industrialized countries have produced reports and white papers in recent 
years, and some have generated good- will slogans. For a survey, see (Jobin, Ienca, and 
Vayena 2019).

Though very  little  actual policy has been produced,  there are some notable beginnings. 
The latest EU policy document suggests “trustworthy AI” should be lawful, ethical, and 
technically robust and then spells this out as seven requirements:  human oversight, technical 
robustness, privacy and data governance, transparency, fairness, well- being, and account-
ability (AI HLEG 2019). Much Eu ro pean research now runs  under the slogan of “responsible 
research and innovation” (RRI), and “technology assessment” has been a standard field since 
the advent of nuclear power. Professional ethics is also a standard field in information tech-
nology, and this includes issues that are relevant  here. We also expect that much policy  will 
eventually cover specific uses or technologies of robotics, rather than the field as a  whole 
(see Calo 2018; Stahl, Timmermans, and Mittelstadt 2016; Johnson and Verdicchio 2017; 
Giubilini and Savulescu 2018; Crawford and Calo 2016). The more po liti cal  angle of tech-
nology is often discussed in “science and technology studies” (STS). As books like The 
Ethics of Invention (Jasanoff 2016) show, the concerns are often quite similar to  those of 
ethics (Jacobs et al. 2019).

12.2 Ethics for the Use of Robotics Systems

In this section we outline the ethical issues of the  human use of AI and robotics systems that 
can be more or less autonomous— which means we look at issues that arise with certain uses 
but would not arise with  others. It must be kept in mind, however, that the design of technical 
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artifacts has ethical relevance for their use (Houkes and Vermaas 2010; Verbeek 2011), so 
beyond “responsible use,” we also need “responsible design” in this field.

12.2.1 Human- Robot Interaction

Human- robot interaction (HRI) now pays significant attention to ethical  matters, to the 
dynamics of perception from both sides, and to the dif fer ent interests and the intricacy of 
the social context, including coworking (e.g., Arnold and Scheutz 2017).

Deception and authenticity
The central questions  here often involve  whether a robot involves deception, or perhaps 
violates  human dignity or the Kantian requirement of “re spect for humanity” (Lin, Abney, 
and Jenkins 2017).  Humans very easily attribute  mental properties to objects, and empa-
thize with them, especially when the outer appearance of  these objects is similar to that 
of living beings. This can be used to deceive  humans (or animals) into attributing more 
intellectual or even emotional significance to robots than they deserve. Some parts of 
humanoid robotics are problematic in this regard (e.g., Hiroshi Ishiguro’s remote- controlled 
Geminoids), and  there are cases that have clearly been deceptive for public relations pur-
poses (e.g., Hanson Robotics’ “Sophia,” with exaggerated statements and even remote 
control). Of course, some fairly basic constraints of business ethics and law apply to robots 
too: product safety and liability, or nondeception in advertisement. It appears that  these 
existing constraints take care of many concerns that are raised.  There are cases, however, 
in which HRI has aspects that appear specifically  human in ways that can perhaps not be 
replaced by robots: care, love, and sex.

Example A: Care robots
The use of robots in health care for  humans is currently at the level of concept studies in 
real environments, but it may become a usable technology in a few years and has raised a 
number of concerns for a dystopian  future of dehumanized care (Sharkey and Sharkey 2011; 
Sparrow 2016). Current systems include robots that support  human carers (caregivers)— for 
example, in lifting patients or transporting material; robots that enable patients to do certain 
 things by themselves, such as eat with a robotic arm; and also robots that are given to patients 
as com pany and comfort (e.g., the “Paro” robot seal). For an overview, see (van Wynsberghe 
2016; Fosch- Villaronga and Albo- Canals 2019; Nørskov 2017) and for a survey of users 
Draper et al. (2014).

One reason why the issue of care has come to the fore is that  people have argued we 
 will need robots in aging socie ties. This argument makes problematic assumptions— 
namely, that with longer life spans  people  will need more care and that it  will not be pos si ble 
to attract more  humans to caring professions. It may also show a bias about age (Jecker 
2020). Most importantly, it ignores the nature of automation, which is not simply about 
replacing  humans but about allowing  humans to work more effectively. It is not very clear 
that  there  really is an issue  here since the discussion mostly focuses on the fear of robots 
dehumanizing care, but the  actual and foreseeable robots in care are for the classic automa-
tion of technical tasks as assistive robots. They are thus “care robots” only in a behavioral 
sense of  doing what is required, not in the sense that a  human “cares” for the patients. It 
appears that the success of “being cared for” relies on this intentional sense of “care,” which 
foreseeable robots cannot provide. If anything, the risk of robots in care is the absence of 
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such intentional care— because fewer  human carers may be needed. Interestingly, caring 
for something, even a virtual agent, can be good for the carer themselves (Lee et al. 2019). 
A system that pretends to care would be deceptive and thus problematic— unless the decep-
tion is countered by sufficiently large utility gain (Coeckelbergh 2016). Some robots that 
pretend to “care” on a basic level are available (Paro seal), and  others are in the making. 
Perhaps feeling cared for by a machine, to some extent, can be pro gress in some cases?

Example B: Sex robots
Several tech optimists have argued that  humans  will likely be interested in sex and com-
panionship with robots and feel good about it (Levy 2007). Given the variation of  human 
sexual preferences, including sex toys and sex dolls, this seems very likely: the question 
is  whether such devices should be manufactured and promoted and  whether  there should 
be limits to use in this touchy area. It seems to have moved into the mainstream of “robot 
philosophy” in recent times (Sullins 2012; Danaher and McArthur 2017; Sharkey et al. 
2017; Bendel 2018; Devlin 2018).

 Humans have long had deep emotional attachments to objects, so perhaps companion-
ship or even love with a predictable android is attractive, especially to  people who strug-
gle with  actual  humans and already prefer dogs, cats, a bird, a computer, or a Tamagotchi. 
Danaher (2019b) argues against Nyholm and Frank (2017) that this can be true friendship 
and is thus a valuable goal. It certainly looks like such friendship might increase overall 
utility, even if lacking in depth. In all  these areas,  there is an issue of deception since a 
robot cannot (at pre sent) mean what it says or have feelings for a  human. It is well known 
that  humans are prone to attribute feelings and thoughts to entities that behave as if they 
had sentience and even to clearly inanimate objects that show no be hav ior at all. Also, 
paying for deception seems to be an elementary part of the traditional sex industry.

Fi nally,  there are concerns that have often accompanied  matters of sex— namely, consent 
(Frank and Nyholm 2017), aesthetic issues, and worry that  humans may be “corrupted” 
by certain experiences. Old- fashioned though this may seem,  human be hav ior is influenced 
by experience, and it is likely that pornography or sex robots support the perception of 
other  humans as mere objects of desire, or even as recipients of abuse, and thus ruin a 
deeper sexual and erotic experience. The Campaign against Sex Robots argues that  these 
devices are a continuation of slavery and prostitution (Richardson 2016).

12.2.2 The Effects of Automation on Employment

It seems clear that AI and robotics  will lead to significant gains in productivity and thus 
overall wealth. The attempt to increase productivity has prob ably always been a feature 
of the economy, though the emphasis on “growth” is a modern phenomenon (Harari 2016, 
240). However, productivity gains through automation typically mean that fewer  humans 
are required for the same output. This does not necessarily imply a loss of overall employ-
ment, however,  because available wealth increases and that can increase demand suffi-
ciently to counteract the productivity gain. In the long run, higher productivity in industrial 
socie ties has led to more wealth overall. Major  labor market disruptions have occurred in 
the past— for example, farming employed over 60  percent of the workforce in Eu rope and 
North Amer i ca in 1800, while by 2010 it employed about 5  percent in the Eu ro pean Union 
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and even less in the wealthiest countries (Anonymous 2013). In the twenty years between 
1950 and 1970, the number of hired agricultural workers in the UK was reduced by 
50  percent (Zayed and Loft 2019). Some of  these disruptions lead to more labor- intensive 
industries moving to places with lower  labor cost— this is an ongoing pro cess.

Classic automation replaces  human muscle, whereas digital automation replaces  human 
thought or information processing— and unlike physical machines, digital automation is 
very cheap to duplicate (Bostrom and Yudkovski 2014). It may thus mean a more radical 
change in the  labor market. So the main question is: Is it dif fer ent, this time?  Will the 
creation of new jobs and wealth keep up with the destruction of jobs? And even if it is 
not dif fer ent, what are the transition costs, and who bears them? For example,  will lower- 
cost areas suffer and higher- cost areas gain from this development? Do we need to make 
societal adjustments for a fair distribution of costs and benefits of digital automation?

Responses to the issue of unemployment from robotics and AI have ranged from the 
alarmed (Frey and Osborne 2013; Westlake 2014) to the neutral (Metcalf, Keller, and Boyd 
2016; Calo 2018; Frey 2019) and the optimistic (Brynjolfsson and McAfee 2016; Harari 
2016; Danaher 2019a). In princi ple, the  labor market effect of automation seems to be 
fairly well understood as involving two channels: “(i) the nature of interactions between 
differently skilled workers and new technologies affecting  labor demand and (ii) the equi-
librium effects of technological pro gress through consequent changes in  labor supply and 
product markets” (Goos 2018, 362). What currently seems to happen in the  labor market 
as a result of automation is “job polarization” or the “dumbbell” shape (Goos, Manning, 
and Salomons 2009): the highly skilled technical jobs are in demand and highly paid, the 
low- skilled ser vice jobs are in demand and badly paid, but the midqualification jobs in 
factories and offices— that is, the majority of jobs— are  under pressure and reduced 
 because they are relatively predictable and most likely to be automated (Baldwin 2019).

Perhaps enormous productivity gains allow the “age of leisure” to be realized, which 
Keynes (1930) predicted to occur around 2030, assuming a growth rate of 1  percent per 
annum? Actually, we have already reached the level he anticipated for 2030, but we are 
still working— consuming more and inventing ever more levels of organ ization. Harari 
explained how this eco nom ical development allowed humanity to overcome hunger, 
disease, and war, and now we aim for immortality and eternal bliss through AI, thus his 
title Homo Deus (Harari 2016, 75).

In general terms, the issue of unemployment is one of how goods in a society should 
be justly distributed. A standard view is that distributive justice should be rationally 
de cided from  behind a “veil of ignorance” (Rawls 1971)— that is, as if one does not know 
what position in a society one would actually be taking (laborer or industrialist, and so 
on). Rawls thought the chosen princi ples would then support basic liberties and a distribu-
tion that is of greatest benefit to the least- advantaged members of society. It would appear 
that the robotics economy has three features that make such justice unlikely: First, it oper-
ates in a largely un regu la ted environment where responsibility is often hard to allocate. 
Second, it operates in markets that have a “winner- takes- all” feature, where monopolies 
develop quickly. Third, the “new economy” of the digital ser vice industries is based on 
intangible assets, also called “capitalism without capital” (Haskel and Westlake 2017). 
This means that it is difficult to control multinational digital corporations that do not rely 
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on a physical plant in a par tic u lar location.  These three features seem to suggest that if 
we leave the distribution of wealth to  free market forces, the result would be a heavi ly 
unjust distribution. And this is indeed a development that we can already see.

One in ter est ing question that has not received too much attention is  whether the devel-
opment of robotics is environmentally sustainable. Like all computing systems, they 
produce waste that is very hard to recycle, and they consume vast amounts of energy, 
especially for the training of machine- learning systems (and even for the mining of crypto-
currency). Again it appears that some agents off- load costs to the general society.

12.2.3 Privacy and Surveillance

 There is a general discussion about privacy and surveillance in information technology 
(e.g., Macnish 2017; Roessler 2017), which mainly concerns the access to private data 
and data that are personally identifiable. Privacy has several well- recognized aspects— for 
example, “the right to be left alone,” information privacy, privacy as an aspect of person-
hood, control over information about oneself, and the right to secrecy (Bennett and Raab 
2006). Privacy studies have historically focused on state surveillance by secret ser vices 
but now include surveillance by other state agents, businesses, and even individuals. The 
technology has changed massively in the last de cades, while regulation has been slow to 
respond (though  there is the GDPR [2016]). The result is an anarchy that is exploited by 
the most power ful players— sometimes in plain sight, sometimes in hiding.

The digital sphere has widened massively: all data collection and storage are now 
digital, our lives are more and more digital, most digital data are connected to a single 
internet, and  there is more and more sensor technology around that generates data about 
nondigital aspects of our lives. At the same time, control over who collects which data, 
and who has access, is much harder in the digital world than it was in the analog world 
of paper and telephone calls.  Every new technology amplifies the known issues. For 
example, face recognition in photos and videos allows identification and thus profiling 
and searching for individuals (Whittaker et al. 2018, 15ff ). The result is that “in this vast 
ocean of data,  there is a frighteningly complete picture of us” (Smolan 2016, 1:1), a scandal 
that still has not received due public attention.

The data trail we leave  behind is how our “ free” ser vices are paid for, but we are not told 
about that data collection and its value, and we are manipulated into leaving ever more such 
data. The primary focus of social media, gaming, and most of the internet in this “surveil-
lance economy” is to gain, maintain, and direct attention— and thus data supply. This surveil-
lance and attention economy is sometimes called “surveillance capitalism” (Zuboff 2019).

Such systems  will often reveal facts about us that we ourselves wish to suppress or are not 
aware of. With the last sentence of his best- selling book Homo Deus, Harari (2016) asks about 
the long- term consequences of AI: “What  will happen to society, politics and daily life when 
non- conscious but highly intelligent algorithms know us better than we know ourselves?”

Robotic devices have not yet played a major role in this area, except for security patrol-
ling, but this  will change once they are more common outside of industry environments. 
Together with the Internet of  Things, the “smart” systems (phone, TV, oven, lamp, virtual 
assistant, home . . .), the “smart city” (Sennett 2018), and “smart governance,” they are 
set to become part of the data- gathering machinery that offers more detailed data, of dif-
fer ent types, in real time, with ever more information.
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Privacy- preserving techniques that can conceal the identity of persons or groups to a 
large extent are now a standard staple in data science; they include (relative) anonymiza-
tion, access control (plus encryption), and other models in which computation is carried 
out without access to full unencrypted input data (Stahl and Wright 2018), in the case of 
“differential privacy” by adding calibrated noise to the output of queries (Dwork et al. 
2006; Abowd 2017). While requiring more effort and cost, such techniques can avoid many 
of the privacy issues. Some companies have also seen better privacy as a competitive 
advantage that can be leveraged and sold at a price.

12.2.4 Autonomous Systems

Autonomy generally
Several notions of autonomy can be found in the discussion of autonomous systems. A stron-
ger notion is involved in philosophical debates in which autonomy is the basis for responsibil-
ity and personhood (Christman 2018). In this context, responsibility implies autonomy, but 
not inversely, so some systems can have degrees of technical autonomy without raising issues 
of responsibility. The weaker, more technical, notion of autonomy in robotics is relative and 
gradual: a system is said to be autonomous with re spect to  human control to a certain degree 
(Müller 2012).  There is a parallel  here to the issues of bias and opacity in AI since autonomy 
also concerns a power relation: Who is in control, and who is responsible?

Generally speaking, one question is  whether autonomous robots raise issues that suggest 
a revision of pre sent conceptual schemes or  whether they just require technical adjust-
ments. In most jurisdictions,  there is a sophisticated system of civil and criminal liability 
to resolve such issues. Technical standards— for example, for the safe use of machinery 
in medical environments— will likely need to be adjusted.  There is already a field of 
“verifiable AI” for such safety- critical systems and for “security applications.” Bodies like 
the IEEE and the BSI have produced “standards,” particularly for more technical subprob-
lems, such as data security and transparency. Among the many autonomous systems on 
land, on  water, underwater, in the air, or in space, we discuss two samples: autonomous 
vehicles and autonomous weapons.

Example A: Autonomous vehicles
Autonomous vehicles hold the promise of reducing the very significant damage that  human 
driving currently  causes— with approximately one million  humans killed per year, many 
more injured, the environment polluted, the earth sealed with concrete and tarmac, the cities 
full of parked cars, and so on. However,  there seem to be questions of how autonomous 
vehicles should behave and how responsibility and risk should be distributed in the compli-
cated system the vehicles operate in. ( There is also significant disagreement over how long 
the development of fully autonomous, or “level 5,” cars [SAE 2015]  will actually take.)

 There is some discussion of “trolley prob lems” in this context. In the classic trolley 
prob lems (Thompson 1976; Woollard and Howard- Snyder 2016, sect. 2), vari ous dilem-
mas are presented. The simplest version is that of a trolley train on a track that is heading 
 toward five  people and  will kill them  unless the train is diverted onto a side track. However, 
on that track is one person who  will be killed if the train takes that side track. The example 
goes back to a remark in (Foot 1967, 6), who discusses a number of dilemma cases in 
which tolerated and intended consequences of an action differ. Trolley prob lems are not 
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supposed to describe  actual ethical prob lems or to be solved with a “right” choice. Rather, 
they are thought experiments in which choice is artificially constrained to a small, finite 
number of distinct one- off options and where the agent has perfect knowledge.  These 
prob lems are used as a theoretical tool to investigate ethical intuitions and theories— 
especially the difference between actively  doing versus allowing something to happen, 
intended versus tolerated consequences, and consequentialist versus other normative 
approaches (Kamm and Rakowski 2016). This type of prob lem has reminded many of the 
prob lems encountered in  actual driving and in autonomous driving (Lin 2015). It is doubt-
ful, however, that an  actual driver or autonomous car  will ever have to solve trolley prob-
lems (but see Keeling 2019). While autonomous car trolley prob lems have received a lot 
of media attention (Awad et al. 2018), they do not seem to offer anything new to  either 
ethical theory or to the programming of autonomous vehicles.

The more common ethical prob lems in driving, such as speeding, risky overtaking, not 
keeping a safe distance, and more are classic prob lems of pursuing personal interest versus 
the common good. The vast majority of  these are covered by  legal regulations on driving. 
Programming the car to drive “by the rules” rather than “by the interest of the passengers” 
or “to achieve maximum utility” is thus deflated to a standard prob lem of programming 
ethical machines (see section 3.1).  There are prob ably additional discretionary rules of 
politeness and in ter est ing questions on when to break the rules (Lin 2015), but again this 
seems to be more a case of applying standard considerations (rules vs. utility) to autonomous 
vehicles.

Notable policy efforts in this field include the report by the German Federal Ministry 
of Transport and Digital Infrastructure (2017), which stresses that safety is the primary 
objective. Rule 10 states, “In the case of automated and connected driving systems, the 
accountability that was previously the sole preserve of the individual shifts from the motor-
ist to the manufacturers and operators of the technological systems and to the bodies 
responsible for taking infrastructure, policy and  legal decisions” (see 3.2.1). The resulting 
German and EU laws on licensing automated driving are much more restrictive than their 
US counter parts, where “testing on consumers” is a strategy used by some companies— 
without informed consent of the consumers or the pos si ble victims.

Example B: Autonomous weapons
The notion of automated weapons is fairly old: “For example, instead of fielding  simple 
guided missiles or remotely pi loted vehicles, we might launch completely autonomous land, 
sea, and air vehicles capable of complex, far- ranging reconnaissance and attack missions” 
(DARPA 1983, 1). This proposal was ridiculed as “fantasy” at the time (Dreyfus, Dreyfus, 
and Athanasiou 1986, ix), but it is now a real ity, at least for more easily identifiable targets 
(missiles, planes, ships, tanks, and so on) but not for  human combatants. The main argu-
ments against (lethal) autonomous weapon systems (AWS or LAWS) are that they support 
extrajudicial killings, take responsibility away from  humans, and make wars or killings 
more likely— for a detailed list of issues see (Lin, Bekey, and Abney 2008, 73–86).

It appears that lowering the hurdle to use such systems (autonomous vehicles, “fire- 
and- forget” missiles, or drones loaded with explosives) and reducing the probability of 
being held accountable would increase the probability of their use. The crucial asymmetry 
in which one side can kill with impunity and thus has few reasons not to do so already 
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exists in conventional drone wars with remote- controlled weapons (e.g., the US in Pakistan). 
It is easy to imagine a small drone that searches, identifies, and kills an individual  human—or 
perhaps a type of  human.  These are the kinds of cases brought forward by the Campaign to 
Stop Killer Robots and other activist groups. Some seem to be equivalent to saying that 
autonomous weapons are indeed weapons, and weapons kill, but we still make them in 
gigantic numbers. On the  matter of accountability, autonomous weapons might make the 
identification and prosecution of the responsible agents more difficult, but this is not clear 
given the digital rec ords that one can keep, at least in a conventional war. The difficulty of 
allocating punishment is sometimes called the “retribution gap” (Danaher 2016).

Another question seems to be  whether using autonomous weapons in war would make 
wars worse or perhaps less bad? If robots reduce war crimes and crimes in war, the answer 
may well be positive and has been used not only as an argument in  favor of  these weapons 
(Arkin 2009; Müller 2016) but also as an argument against (Amoroso and Tamburrini 
2018). Arguably, the main threat is not the use of such weapons in conventional warfare 
but in asymmetric conflicts or by nonstate agents, including criminals.

It has also been said that autonomous weapons cannot conform to International Humani-
tarian Law, which requires observance of the princi ples of distinction (between combatants 
and civilians), proportionality (of force), and military necessity (of force) in military 
conflict (Sharkey 2019). It is true that the distinction between combatants and noncomba-
tants is difficult to discern, but the distinction between civilian and military ships is easy 
to see—so all this says is that we should not construct and use such weapons if they do 
violate humanitarian law. Additional concerns have been raised that being killed by an 
autonomous weapon threatens  human dignity, but even the defenders of a ban on  these 
weapons seem to say that  these are not good arguments: “ There are other weapons, and 
other technologies, that also compromise  human dignity. Given this, and the ambiguities 
inherent in the concept, it is wiser to draw on several types of objections in arguments 
against AWS, and not to rely exclusively on  human dignity” (Sharkey 2019).

A lot has been made of keeping  humans “in the loop” or “on the loop” of military guid-
ance on weapons— these ways of spelling out “meaningful control” are discussed in 
Santoni de Sio and van den Hoven (2018).  There have been discussions about the difficul-
ties of allocating responsibility for the killings of an autonomous weapon, and a “respon-
sibility gap” has been suggested (esp. Sparrow 2007), meaning that neither the  human nor 
the machine may be responsible. On the other hand, we do not assume that for  every event 
 there is someone responsible for that event, and the real issue may well be the distribution 
of risk (Simpson and Müller 2016). Risk analy sis (Hansson 2013) indicates it is crucial 
to identify who is exposed to risk, who is a potential beneficiary, and who makes the 
decisions (Hansson 2018, 1822–1824).

12.3 Ethics for Robotics Systems

12.3.1 Machine Ethics

Machine ethics is ethics for machines, for “ethical machines,” and for machines as subjects 
rather than for the  human use of machines as objects. It is often not very clear  whether 
this is supposed to cover all of robot ethics of to be a part of it (Floridi and Saunders 2004; 

Downloaded from http://direct.mit.edu/books/book-pdf/2239475/book_9780262369329.pdf by guest on 30 September 2024



240 V. C. Müller

Moor 2006; Wallach and Asaro 2017; Anderson and Anderson 2011). Sometimes it looks 
as though  there is the (dubious) inference at play  here that if machines act in ethically 
relevant ways, then we need a machine ethics. Accordingly, some use a broader notion: 
“Machine ethics is concerned with ensuring that the be hav ior of machines  toward  human 
users, and perhaps other machines as well, is ethically acceptable” (Anderson and Ander-
son 2007, 15). This might include mere  matters of product safety, for example. Some of 
the discussion in machine ethics makes the very substantial assumption that machines can, 
in some sense, be ethical agents responsible for their actions, or “autonomous moral 
agents” (see van Wynsberghe and Robbins 2019). The basic idea of machine ethics is now 
finding its way into  actual robotics, where the assumption that  these machines are artificial 
moral agents in any substantial sense is usually not made (Winfield et al. 2019). It is 
sometimes observed that a robot that is programmed to follow ethical rules can very easily 
be modified to follow unethical rules (Vanderelst and Winfield 2018).

The idea that machine ethics might take the form of “laws” has famously been inves-
tigated by Isaac Asimov (1942), who proposed “three laws of robotics”: “First Law— A 
robot may not injure a  human being or, through inaction, allow a  human being to come 
to harm. Second Law— A robot must obey the  orders given it by  human beings except 
where such  orders would conflict with the First Law. Third Law— A robot must protect 
its own existence as long as such protection does not conflict with the First or Second 
Laws.” Asimov then showed in a number of stories how conflicts between  these three laws 
 will make it problematic to use them, despite their hierarchical organ ization.

It is not clear that  there is a consistent notion of “machine ethics” since weaker versions 
are in danger of reducing “having an ethics” to notions that would not normally be con-
sidered sufficient (e.g., without “reflection” or even without “action”); stronger notions 
that move  toward artificial moral agents may describe a— currently— empty set.

12.3.2 Artificial Moral Agents

If one takes machine ethics to concern moral agents, in some substantial sense, then  these 
agents can be called “artificial moral agents” having rights and responsibilities. However, 
the discussion about artificial entities challenges a number of common notions in ethics, 
and it can be very useful to understand  these in abstraction from the  human case (cf. Powers 
and Ganascia, forthcoming; Misselhorn 2020).

Several authors use “artificial moral agent” in a less demanding sense, borrowing from 
the software “agent” use in which case  matters of responsibility and rights  will not arise 
(Allen, Varner, and Zinser 2000). James Moor (2006) distinguishes four types of machine 
agents: ethical impact agents (example: robot jockeys), implicit ethical agents (example: 
safe autopi lot), explicit ethical agents (example: using formal methods to estimate utility), 
and full ethical agents (“Can make explicit ethical judgments and generally is competent 
to reasonably justify them. An average adult  human is a full ethical agent”). Several ways 
to achieve “explicit” or “full” ethical agents have been proposed, via programming it in 
(operational morality), via “developing” the ethics itself (functional morality), and fi nally, 
full- blown morality with full intelligence and sentience (Allen, Smit, and Wallach 2005; 
Moor 2006). Programmed agents are sometimes not considered “full” agents  because they 
are “competent without comprehension,” just like the neurons in a brain (Dennett 2017; 
Hakli and Mäkelä 2019).
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In some of  these discussions, the notion of “moral patient” plays a role: ethical agents 
have responsibilities, while ethical patients have rights,  because harm to them  matters. It 
seems clear that some entities are patients without being agents— for example,  simple 
animals that can feel pain but cannot make justified choices. On the other hand, it is normally 
understood that all agents  will also be patients (e.g., in a Kantian framework). Usually, being 
a person is supposed to be what makes an entity a responsible agent, someone who can have 
duties and be the object of ethical concerns, and such personhood is typically a deep notion 
associated with  free  will (Frankfurt 1971; Strawson 2005) and with having phenomenal 
consciousness. Torrance (2011) suggests “artificial (or machine) ethics could be defined as 
designing machines that do  things which, when done by  humans, are criterial of the posses-
sion of ‘ethical status’ in  those  humans”— which he takes to be “ethical productivity and 
ethical receptivity”— his expressions for moral agents and patients.

Responsibility for robots
 There is broad consensus that accountability, liability, and the rule of law are basic require-
ments that must be upheld in the face of new technologies (Eu ro pean Group on Ethics in 
Science and New Technologies 2018, 18), but the issue is how this can this be done and 
how responsibility can be allocated. If the robots act,  will they themselves be responsible, 
liable, or accountable for their actions? Or should the distribution of risk perhaps take 
pre ce dence over discussions of responsibility?

Traditional distribution of responsibility already occurs: a car maker is responsible for the 
technical safety of the car, a driver is responsible for driving, a mechanic is responsible for 
proper maintenance, the public authorities are responsible for the technical conditions of the 
roads, and so on. In general “the effects of decisions or actions based on AI are often the 
result of countless interactions among many actors, including designers, developers, users, 
software, and hardware. . . .  With distributed agency comes distributed responsibility” (Taddeo 
and Floridi 2018, 751). How this distribution might occur is not a prob lem that is specific 
to robotics, but it gains par tic u lar urgency in this context (Nyholm 2018a, 2018b).

Rights for robots
Some authors have indicated that  whether or not current robots must be allocated rights 
should be seriously considered (Gunkel 2018a, 2018b; Turner 2019; Danaher 2020). This 
position seems to rely largely on criticism of the opponents and on the empirical observa-
tion that robots and other nonpersons are sometimes treated as having rights. In this vein, 
a “relational turn” has been proposed: If we relate to robots as though they had rights, 
then we might be well advised not to search  whether they “ really” do have such rights, 
but we should assume that they do (Coeckelbergh 2010, 2012, 2018). This raises the ques-
tion of how far such antirealism or quasi- realism can go and what it means then to say 
that “robots have rights” in a human- centered approach (Gerdes 2016). On the other side 
of the debate, Bryson (2010) has insisted with a useful (but admittedly problematic) slogan 
that “robots should be slaves”— that is, not enjoy rights, though she considers it a possibil-
ity (Gunkel and Bryson 2014).

 There is a wholly separate issue of  whether robots (or other AI systems) should be given 
the status of “ legal entities” or “ legal persons”—in the sense in which natu ral persons but 
also states, businesses, or organ izations are “entities” and can have  legal rights and duties. 
The Eu ro pean Parliament has considered allocating such status to robots in order to deal 
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with civil liability (EU Parliament 2016; Bertolini and Aiello 2018) but not criminal liabil-
ity, which is reserved for natu ral persons. It would also be pos si ble to assign only a certain 
subset of rights and duties to robots. It has been said that “such legislative action would 
be morally unnecessary and legally troublesome”  because it would not serve the interest 
of  humans (Bryson, Diamantis, and Grant 2017, 273). In environmental ethics  there is a 
long- standing discussion about the  legal rights for natu ral objects like trees (Stone 1972).

It has also been said that the reasons for developing robots with rights, or artificial moral 
patients, in the  future are ethically doubtful (van Wynsberghe and Robbins 2019). In the 
community of “artificial consciousness” researchers is significant concern about  whether 
it would be ethical to create such consciousness since this would presumably imply ethical 
obligations to a sentient being— for example, not to harm it and not to end its existence 
by switching it off. Some authors have called for a “moratorium on synthetic phenomenol-
ogy” (Bentley et al. 2018, 28f ).

12.4 Conclusion

It is remarkable how imagination or a “vision” of robotics and AI has played a central role 
since the very beginning of the disciplines in the 1950s. And the evaluation of this vision 
is subject to dramatic change: In a few de cades, we went from the slogans “AI is impos-
sible” (Dreyfus) and “AI is just automation” (Lighthill 1973) to “AI  will solve all prob lems” 
(Kurzweil 1999) and “AI may kill us all” (Bostrom 2014). This created media attention 
and public relations efforts, but it also raises the prob lem of how much of this “philosophy 
and ethics of AI and robotics” is  really an  imagined technology. As we said at the outset, 
AI and robotics have raised fundamental questions about what we should do with  these 
systems, what the systems themselves should do, and what risks they have in the long term. 
They also challenge the  human view of humanity as the intelligent and dominant species 
on Earth. We have seen the issues that have been raised, and we  will have to watch tech-
nological and social developments closely to catch the new issues early and to develop a 
philosophical analy sis, as well as to debate the traditional prob lems of philosophy.
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13.1 Introduction

Cognitive robotics and machine learning are producing a growing amount of works on 
intrinsic motivations (IMs) and open- ended learning. IMs, often contrasted to extrinsic 
motivations (EMs) that in animals are directed to satisfy biological needs such as hunger 
and thirst, refer to pro cesses such as curiosity, surprise, novelty, and success at accomplish-
ing one’s own goals (Barto et al. 2004; Oudeyer et al. 2007; Baldassarre 2011; Baldassarre 
and Mirolli 2013). Open- ended learning refers to robots and agents that, similarly to the 
early development of  humans (Weng et al. 2001; Lungarella et al. 2003), undergo pro-
longed periods of learning wherein they autonomously acquire knowledge and skills that 
might be useful to  later solve tasks given by the user (Seepanomwan et al. 2017; Doncieux 
et al. 2018).

IMs are very impor tant for robotics and machine learning  because they can drive the 
autonomous open- ended learning of robots and machines by requiring  little or no  human 
intervention to furnish guidance in terms of data sets, be hav iors to imitate, tasks, reward 
functions, and goals. Moreover, they allow the construction of robots and machines able 
to robustly operate in cluttered and unstructured environments posing challenges that 
cannot be anticipated at design time and preventing the possibility of programming be hav-
iors in advance. Consider, for example, ser vice robots that have to operate in ware houses, 
offices,  houses, and health- care environments and in the fields of construction, agri- food, 
and space. Despite this importance, IMs are a subtle concept, as they come in dif fer ent 
types, involve both functions (“what they are for”) and mechanisms (“how do they work”), 
and can be mixed in vari ous ways in the components of cognitive systems and robot 
controllers. This tends to generate quite a lot of confusion and to make it difficult to choose 
between the dif fer ent available solutions when implementing robots and machines. This 
chapter addresses this prob lem in two ways. First (section 13.2), it provides computation-
ally driven conceptual grids to define IMs by contrasting them with EMs and then to 
classify dif fer ent types of IMs based on their pos si ble functions and mechanisms, in par-
tic u lar by referring to three main classes of IMs  here referred to as epistemic intrinsic 
motivations (eIMs). Second (section 13.3), it pre sents a se lection of example models from 
cognitive robotics and machine learning to show how dif fer ent IMs can be used to face 
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dif fer ent computational prob lems. The work concludes (section 13.4) by presenting some 
of the open challenges of the research on IMs.

13.2 Conceptual Grids: Mechanisms and Functions of Extrinsic and 
Intrinsic Motivations and Classes of (Epistemic) Intrinsic Motivations

The concept of IM has been proposed and developed within the psychological lit er a ture 
to overcome the difficulties of the behaviorist theory on learning and drives (e.g., Skinner 
1938; Hull 1943), in par tic u lar to explain why animals spontaneously engage in puzzles 
(Harlow 1950) or can be instrumentally conditioned to produce par tic u lar responses on 
the basis of apparently neutral stimuli (e.g., a sudden light onset; Kish 1955), as happens 
with “standard” primary rewards (e.g., food). Subsequent proposals highlighted how the 
properties of certain stimuli can trigger animals’ exploration and guide their learning 
processes— for example, when the stimuli are complex, unexpected, or in general surpris-
ing (Berlyne 1966). Another impor tant thread of psychological research highlighted the 
importance that action plays in IMs— for example, in relation to the motivation coming 
from the fact that an agent manages to affect the environment with its be hav ior (effectance; 
White 1959) or can autonomously set its own goals and master their achievement (Ryan 
and Deci 2000). IMs involving actions are also related to sensorimotor contingencies 
studied by psy chol ogy and involving the mechanisms under lying the keen interest of 
animals and  humans for the effects of their own actions (Polizzi di Sorrentino et al. 2014; 
Taffoni et al. 2014; Jacquey et al. 2019).

Within the computational sciences, Schmidhuber (1991a, 1991b) was the first to pre sent a 
computational operationalization of some IM mechanisms (in par tic u lar prediction- based 
IMs; see below), and Barto et al. (2004) settled the fundamental link between IMs (in par tic-
u lar competence- based IMs; see below) and reinforcement- learning (RL) methods (Sutton 
and Barto 2018).  These initial ideas  were first developed within the developmental robotics 
scientific community (with works in the IEEE Transactions on Autonomous  Mental Develop-
ment journal, the International Conference on Development and Learning, and the Epige ne tic 
Robotics Conference; Zlatev and Balkenius 2001; Lungarella et al. 2003; Oudeyer et al. 2007; 
Schembri et al. 2007; Doya and Taniguchi 2019), and more recently have been developed 
within the autonomous/cognitive robotics and machine- learning community (e.g., Bellemare 
2016; Nair et al. 2018), in par tic u lar driven by the success of deep neural networks and RL 
(Goodfellow et al. 2017; Sutton and Barto 2018).

We now focus on understanding and defining  these concepts more in detail and furnish 
conceptual grids on them.  These grids are grounded in two perspectives from which one 
can look at cognitive pro cesses (Tinbergen 1963; Marr and Poggio 1976): 1) the compu-
tational functions they serve— that is, the prob lems they solve:  these indicate the pos si ble 
“uses” for which they might be employed within an overall cognitive/robotic system; 
2) the mechanisms, or algorithms:  these refer to the information operations used to accom-
plish the functions. Some specifications are due on how the terms “functions” and “mecha-
nisms” are used  here. First, for animals “function” refers to adaptive function— that is, the 
utility of certain ele ments of intelligence, such as an IM, for the animal’s biological fitness. 
For robots, “function” refers to the utility of a certain ele ment of the robot’s intelligence 
for the robot’s user. Second, as with the functions in a computer program, “functions” can 
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be or ga nized at multiple hierarchical levels: from the highest level just mentioned (“biologi-
cal fitness”; “utility for the user”) to lower levels. For example, “moving an object as desired” 
can be further decomposed into lower- level functions such as “recognizing the object posi-
tion” and “issuing suitable motor commands.” Thus, a function can be seen as realized 
through a mechanism, but this mechanism in turn can be seen as a function to be realized 
with lower- level mechanisms. This downward decomposition can continue  until some mech-
anisms are reached that are (arbitrarily) considered primitive for a given analy sis.

13.2.1 Extrinsic and Intrinsic Motivations

What are motivations? Motivations are an ele ment of intelligence having at least three impor-
tant functions (for organisms; cf. Panksepp 1998): 1) se lection drives the system to select a 
be hav ior, among alternative available ones, to attend the most impor tant current needs/goals; 
2) energy establishes the amount of energy invested in executing the selected be hav ior; 
3) learning generates learning signals to change be hav ior. This chapter considers in par tic u lar 
the first and third functions of motivations. For example, we  will see how IMs can drive an 
agent to move to some areas of the environment in navigation tasks (be hav ior se lection) or 
can produce the reward signals for RL pro cesses (production of learning signals).

What are intrinsic motivations? When initially studied in psy chol ogy, IMs  were defined 
as motivations driving the per for mance of be hav ior “for its own sake”— that is, without 
any direct apparent purpose (Berlyne 1966). Although useful to guide intuition, this defini-
tion clarifies neither the functions nor the mechanisms of IMs. A more operational defini-
tion proposed  here is that intrinsic motivations are pro cesses that can drive the acquisition 
of knowledge and skills in the absence of extrinsic motivations (cf. Baldassarre 2011). IMs 
are hence best understood by contrasting them to extrinsic motivations (EMs).  Table 13.1 
highlights the main differences between EMs and a very impor tant subset of IMs we  will 
call epistemic intrinsic motivations (eIMs). In Baldassarre (2011) eIMs  were considered 
to be IMs tout court, but  here we recognize that they do not cover the full spectrum of 

 Table 13.1
Main features of extrinsic and (epistemic) intrinsic motivations (eIMs)

Extrinsic motivations (EMs) (Epistemic) intrinsic motivations (eIMs)

Function Organisms: acquisition of material 
resources.

Acquisition of knowledge and skills.

Robots: accomplishment of user’s goals.
Mechanism Organisms: mea sure the acquisition of 

material resources by getting information 
on their levels/changes from body and 
resource monitoring.

Mea sure the acquisition of knowledge 
and skills by getting information on their 
levels/changes in other parts of the brain 
(organisms) or controller (robots).

Robots: mea sure the level/change of 
accomplishment of the user’s goals.

Time of contribution 
to the “ultimate” 
(extrinsic) function

Immediately: when the material resource 
is acquired and used (organisms); when 
the user’s goals are accomplished (robots).

 Later: when the acquired knowledge 
and skills are used to acquire resources 
(organisms) or to accomplish the user’s 
goals (robots).

“Time signature”  
of the motivation

They tend to go away when the related 
resources are acquired and to come back 
when  there is a lack of  those resources.

They tend to go away for good when the 
related pieces of knowledge/skills are 
acquired.
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IMs  because, as we  shall see,  there are some IMs, which we call other IMs (oIMs), that 
are not eIMs. In the  table, EMs are contrasted to eIMs  because  these form the core of IMs 
and  because for their distinctive features they can help to clarify the overall nature of all 
IMs. The  table entries illustrate this in more detail.

Regarding functions, EMs have the overall function of driving be hav ior and learning to 
the acquisition of material resources (Baldassarre 2011). For example, the EM of “hunger” 
drives be hav ior to look for and ingest food, and when this happens the be hav ior leading to 
it is strengthened. Instead, IMs have the overall function of driving be hav ior and learning 
 toward the acquisition of knowledge and skills (note that “knowledge” also encompasses 
skills, but  here “skills” are referred to explic itly to emphasize the aspects of knowledge 
more directly linked to action). For example, an IM related to novelty seeking could drive 
an agent to explore a novel object to learn its appearance, weight, shape, and so on. This 
function is shared by all IMs, not only by eIMs, as all IMs support the acquisition of knowl-
edge and skills: in other words, all IMs have an epistemic function. In this re spect, the term 
“epistemic motivations” might have been used in place of the term “intrinsic motivations,” 
which is somehow a misnomer as “intrinsic” suggests “internal” or at best, stretching it, “not 
directed to external material resources.” However, the term “intrinsic motivations” is kept 
 here for its tradition. Moreover, the term IMs is handy to refer also to oIMs that, contrary to 
eIMs, are not based on an epistemic mechanism. In this re spect, eIMs are the most prototypi-
cal IMs as they encompass both an epistemic function and an epistemic mechanism, and thus 
having a term that refers only to them is useful.

In terms of mechanisms, in animals EMs are based on mea sures of the acquisition of 
material resources by getting information on their levels/changes in the body or in the 
environment. For example, hunger, a drive guiding the se lection of be hav iors related to 
food seeking, might be triggered when the blood glucose level is low, and a reward- 
learning signal might be produced when food is ingested. Alternatively, an EM might be 
related to detecting the presence/availability of resources externally to the body— for 
example, the presence of a mating companion or the smell of prey in the environment 
(Baldassarre 2011). In robots, EMs are based on the mea sure of the accomplishment of 
the user’s goals; for example, a robot might self- charge its battery to remain operational 
and bring some objects to the user.  Here the terms “extrinsic tasks/goals”  will thus be 
referring to tasks/goals involving the acquisition of material resources or the accomplish-
ment of the user’s goals. Incidentally, notice how EMs are a direct derivation of an evo-
lutionary pro cess not only for animals but also for robots: in animals, the acquisition of 
material resources is a means to increase biological fitness (number of fertile offspring) 
and, more specifically, the means for it— that is, survival and reproduction. Similarly, in 
robots the successful accomplishment of the user’s goals produces a higher chance that 
the specific features of the robot controller and physical structure are “reproduced,” as 
they are or in variants, in  future robots.

Differently from EMs, eIMs rely on mechanisms that mea sure knowledge and skills by 
getting information on their levels/changes in other parts of the brain (for organisms) or 
in the controller (for robots). Importantly, this implies that an eIM involves the presence 
of at least three structures and functions inside the brain/controller (figure 13.1): (a) a 
source component that acquires knowledge; (b) an “IM mechanism” that mea sures the 
level or change of the knowledge of the source component; (c) a “target component” that 
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receives the output of the IM mechanism and uses it to select behavior/energize behavior/
drive learning pro cesses. The core of this  whole pro cess is (b), the IM mechanism that 
mea sures the level or change of knowledge of the source component.

The specification above is very impor tant, as, conceptually, eIMs involve the learning 
pro cesses and knowledge of two dif fer ent cognitive/computational components that might 
be very dif fer ent in terms of the mechanisms and functions they play within the overall 
system, and this might make it difficult to recognize them in organisms or to recognize/
implement them in robots. In some cases (figure 13.1a), the source component and the 
target component are the same data structure, in the sense that the IM mechanism detects 
the knowledge level/change in a component with the function of affecting the learning of 
the same component (possibly with the mediation of other components; figure 13.1b). For 
example, the se lection of the skill to be trained among many skills to be learned might be 
based on the competence improvement of the skill itself (e.g., a robot might focus on 
learning to move one object, rather than on grasping it, if learning the first skill proceeds 
faster than for the second skill). In other cases (figure 13.1c), the source component and 
target components are distinct. For example, a component of a robot might detect the novelty 
of some objects, and this might drive a motor component to explore them with the function 
of improving its motor ability to manipulate them.

IMs that are not eIMs differ from the latter, as they do not use a learning source com-
ponent as the origin of the motivation but rather other mechanisms: as anticipated,  these 

Source/
target-

component

a

b

c

IM
mechanism

IM
mechanism

IM
mechanism

Intermediate
component

Source/
target-

component

Target-
component

Source-
component

Figure 13.1
The key components of eIMs. (a) Case in which the source component and target component are the same 
structure. (b) Case in which the source component and the target component are the same structure, but the 
retroaction is mediated by an intermediate component. (c) Case in which the source component and the target 
component are dif fer ent structures.
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 will be called other IMs (oIMs) to distinguish them from eIMs. Sometimes such “other 
mechanisms” mimic the acquisition of knowledge by a pos si ble source component, but 
the latter is not actually pre sent. For example, count- based novelty mechanisms (Bellemare 
et al. 2016) perform novelty detection on the basis of the frequency with which states are 
encountered rather than on the basis of how well they are memorized (although it is true 
that they are still present/absent in the  counter memory). In other cases, other mechanisms 
are used that can support the function of acquiring knowledge and skills, but they them-
selves do not rely on a mechanism mea sur ing the knowledge of some component. For 
example, the princi ple of empowerment (Klyubin et al. 2005), further discussed below, or 
the concept of bottlenecks (McGovern and Barto 2001), can support the acquisition of 
skills not by mea sur ing the knowledge of a source component but by considering some 
properties of the environment or of the agent’s actions.

A critical difference between EMs and all IMs is the time when they express their 
function— that is, their utility. EMs tend to express their function at a time very close to 
when they are triggered. This is  because they lead to the acquisition and consumption of 
material resources (organisms) or to the accomplishment of the user’s goals (robots), and 
when this happens they manifest their utility. Instead, IMs lead to the acquisition of knowl-
edge and skills that are useful only  later with re spect to the time when they operate: the 
utility is indeed expressed only when such knowledge and skills are used to accomplish 
material resources or solve the user’s goals.

The time when IMs and EMs express their utility is particularly impor tant  because it 
makes it difficult to actually mea sure the effectiveness of a given IM mechanism. A pos-
si ble way to mea sure such effectiveness is to divide the life of the agent into two phases 
(Schembri et al. 2007; Baldassarre et al. 2019): 1) the intrinsic motivation phase, in which 
the agent uses IMs to acquire knowledge and skills without a direct utility; 2) the extrinsic 
motivation phase, in which the agent uses the knowledge and skills acquired in the intrinsic 
phase to solve extrinsic prob lems.  These two phases resemble the two main phases of 
 human life involving a first infancy/childhood phase, mainly guided by IMs, and an adult-
hood phase, mainly guided by EMs (Schembri et al. 2007). This idea of the two phases 
was set at the core of the REAL competition (Robot open- Ended Autonomous Learning; 
Cartoni et al. 2020) proposed to create a benchmark for open- ended learning. In this com-
petition, during a first intrinsic phase a simulated camera- arm- gripper robot can freely interact 
with some objects to autonomously acquire knowledge and skills without being given any 
goal or reward; in a second extrinsic phase, the quality of such knowledge and skills is mea-
sured by asking the robot to solve some sampled extrinsic tasks involving the re- creation of 
some sampled object configurations. The robot’s per for mance in the second phase thus fur-
nishes a mea sure of the quality of the IM mechanisms used to acquire the knowledge in the 
first intrinsic phase. Two caveats come with this issue. Often in organisms, but also robots, 
IMs and EMs operate at the same time; for example, a robot might aim to learn how to 
manipulate an object while accomplishing a user’s tasks. This requires suitable arbitration 
mechanisms to mediate between the time and resources dedicated to IMs and EMs. Second, 
IM and EM mechanisms and functions might be mixed. For example, a “source compo-
nent” and an “IM mechanism” might support a “target component” pursuing an extrinsic 
goal. For example, the next sections show a common use of novelty- based IMs to improve 
exploration in the accomplishment of extrinsic RL tasks.
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EMs and eIMs (and sometimes also oIMs) also have a typical “temporal signature” (Bal-
dassarre 2011). In par tic u lar, EMs tend to go away when the resources they are directed at 
are obtained and to come back when such resources are consumed/lost. For example, hunger 
and the reward of food ingestion go away  after a sufficient amount of food is ingested and, 
say, blood glucose level increases and come back when the blood glucose level is low again. 
Instead, eIMs triggered by the acquisition of a par tic u lar piece of information stored in the 
source component tend to go away forever when such a piece of information is acquired 
( unless the information is forgotten). From a cognitive perspective, this helps in recognizing 
 whether a motivation is an (e)IM or an EM; from a computational perspective, this is relevant 
 because it possibly generates nonstationary, challenging prob lems (e.g., a typical prob lem 
faced is that if an IM mechanism is used to produce a reward signal for an RL component, 
then the resulting reward function keeps changing and so should the be hav ior).

13.2.2 Three Classes of eIMs

The computational lit er a ture has greatly contributed to distinguishing between dif fer ent 
classes of IM mechanisms.  These classes in par tic u lar involve eIMs and often are not 
applicable to oIMs: the classification presented  here uses the term “IMs” to stay with the 
common nomenclature, but it actually refers to eIMs. A first contribution (cf. Oudeyer and 
Kaplan 2007) distinguishes between knowledge- based IMs, related to the acquisition of 
information on the world, and competence- based IMs (CB- IMs), related to the acquisition 
of the capacity to act effectively. Another contribution (Barto et al. 2013) highlights the 
need to differentiate between two types of knowledge- based IMs— namely, novelty- based 
IMs (NB- IMs) and prediction- based IMs (PB- IMs), often confused within the computational 
and biological/cognitive lit er a ture. The main features of  these three classes of IMs, sum-
marized in  table 13.2, are now considered in detail. The classes are based on the function 

 Table 13.2
The three classes of (e)IMs

Novelty- based IMs Prediction- based IMs Competence- based IMs

Source component: nature Memory component  
(pattern magazine)

Predictor  
(forward model)

Skill  
(inverse model)

Source component: 
function

Pattern storing and 
recoding

Prediction of patterns 
based on other patterns

Action se lection

IM mechanism: type of 
knowledge mea sured

How well represented is 
the item in memory, or 
how much did its 
repre sen ta tion improve?

What is the prediction 
error or the prediction 
error change?

How efficient/effective is 
the skill to accomplish 
the task/goal?

IM mechanism: pro cesses 
involved in the 
mea sure ment

One pro cess:
memory check

Two pro cesses:
(a) prediction
(b)  comparison of 

prediction with data

Multiple pro cesses: 
iterated perception- action 
per for mance, check of 
success

Target component: typical 
functions

-  Store/recode new items
-  Direct attention
-   Drive physical 

exploration
-  Support goal formation

-  Improve predictions
-   Drive physical 

exploration
-  Direct attention
-   Support goal 

formation

-   Speed up the learning 
of multiple skills

Source: Partially based on Barto et al. 2013.
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implemented by the source component. For each class,  there exist many subclasses depend-
ing on the functions and mechanisms of the target component. The IM mechanism always 
mea sures the level or change of the knowledge of the source component.

NB- IMs are based on a memory source component that encodes patterns, such as per-
cepts, with the function of storing and possibly recoding them in more useful formats— for 
example, to compress information or to facilitate downstream pro cesses. The IM mecha-
nism of NB- IMs mea sures knowledge of the source component based on a one- step pro cess 
that checks the level of novelty/familiarity of a target pattern, such as an image from the 
world. Another possibility is that the IM mechanism mea sures the novelty change of the 
internal repre sen ta tion of the pattern, rather than its level: this can happen if the pattern is 
experienced multiple times and the source component progressively improves its repre sen-
ta tion. Typical functions realized by the target component involve storing/recoding novel 
items (which is the case when the source and target components coincide), directing atten-
tion to novel items, driving their physical exploration, or supporting goal formation.

PB- IMs are based on a predictor source component that predicts patterns on the basis 
of other patterns. In par tic u lar, the predictor receives as input a pattern, and possibly the 
agent’s action, and on this basis predicts a target pattern in a  future time. The “ future time” 
involves a time range in which the target item should happen, but predictions can also be 
“in space,” as in this example: “Given that I see a tree, I predict to see an apple if I look 
down 1 m.” The IM mechanism of PB- IMs performs a mea sure ment of the knowledge of 
the source component (predictor) based on a two- step pro cess in which first the predictor 
predicts the target pattern on the basis of an input pattern, and possibly of the agent’s 
action, and then the mechanism compares the prediction with the  actual target pattern to 
compute the size of their mismatch— that is, to compute the prediction error. Another 
possibility is that the mea sure involves the prediction error improvement (change), rather 
than the prediction error (level), based on monitoring how the prediction error evolves in 
time. Typical functions played by the target component, possibly coincident with the source 
component, involve improving predictions, directing attention to unpredicted items, driving 
their physical exploration, and forming goals.

CB- IMs assume the existence of tasks/goals and are based on a skill source component 
that can accomplish the tasks/goals (e.g., within a given period of time, the trial). The skill 
is a closed- loop or open- loop controller (e.g., a dynamic movement primitive, a policy, 
or an option) potentially able to solve the task/achieve the goal. The IM mechanism of 
CB- IMs performs a mea sure ment of the knowledge of the source component that involves 
a multistep pro cess: 1) the skill acts to accomplish the task/goal, possibly based on multiple 
sensorimotor steps; 2) its competence level is mea sured, for example, in terms of the 
amount of reward collected during the trial, or in terms of goal achievement, or in terms 
of distance between the achieved state and the goal. Another possibility is that the IM 
mechanism actually mea sures the competence improvement, rather than the competence 
level, based on the monitoring of the per for mance at multiple times. CB- IMs are particularly 
impor tant in cases where multiple skills for accomplishing dif fer ent tasks/goals have to be 
learned. In this re spect, typical functions realized by the target component, usually coinci-
dent with the source component, are to learn multiple skills/goals, and the IM mechanism 
speeds up their learning by focusing on the skills with the highest learning speed.
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Note that the definition of CB- IMs assumes the existence of tasks/goals. This is a critical 
aspect of CB- IMs  because open- ended learning agents should be able to autonomously 
generate or discover such tasks/goals, as  these are a major means to learn skills in an 
incremental fashion (Mirolli and Baldassarre 2013). Vari ous oIMs considered in the fol-
lowing sections can be used to support such self- generation/discovery of tasks/goals.

13.3 Cognitive Robotics and Machine- Learning Models

This section considers the main functions that can be supported by IMs through the pre-
sen ta tion of some computational models drawn from the robotics and machine- learning 
lit er a ture. In par tic u lar, it focuses on how IMs serve the acquisition of the overall capacity 
of agents to interact in the world to modify it (Mirolli and Baldassarre 2013). This focus 
leads us to consider in par tic u lar the relation between IMs and RL, the learning paradigm 
most closely related to the acquisition of the capacity to act in the world. Given this focus, 
the IM functions considered  here are as follows (figure 13.2): (a) the accomplishment of 
sparse extrinsic rewards; (b) the self- generation of goals; (c) the acquisition of skills,  either 
as policies per se or as policies linked to goals.  These functions in par tic u lar are accom-
plished through pro cesses that rely strongly on IM mechanisms alongside other mecha-
nisms;  these other mechanisms are 1) exploration, 2) goal sampling, imagination, or “marking,” 
and 3) the autonomous se lection of skills to learn. Evolutionary pro cesses are also con-
sidered to be pos si ble general mechanisms searching the IM mechanisms themselves or 
the goals supporting CB- IMs.

13.3.1 Sparse Rewards

A first main function of IMs is to support the solution of RL tasks involving sparse extrin-
sic rewards— that is, rewards that are encountered rarely if the agent explores the environ-
ment randomly. Sparse rewards challenge learning agents, as they can be experienced only 

Functions
Accomplishment

of extrinsic sparse
rewards

Goal formation Skill learning

Exploration

Novelty-based
IMs

Prediction-based
IMs

Competence-
based IMs

Goal sampling,
goal imagination,

goal marking

Autonomous
selection of skills

to learn

Evolutionary
process

Processes

Intrinsic
motivation

mechanisms

Figure 13.2
Some impor tant functions that can be accomplished through IM mechanisms via some relevant pro cesses.
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 after the per for mance of a long sequence of actions and therefore provide only very weak 
guidance for training. For example, imagine a camera- arm robot with no initial motor 
skills getting rewarded only for succeeding to grasp and lift an object with random move-
ments. In this case it is close to impossible for a random exploration to lead to getting the 
reward and support learning. IMs can be very useful to solve tasks involving sparse rewards 
 because they can facilitate the exploration of the environment through which the agent 
searches for the reward. Standard exploration methods, such as ε- greedy exploration (the 
agent selects a random action with a probability ε and the best action other wise) and the 
Boltzmann distribution exploration (the pos si ble actions are selected on the basis of a soft- 
max function of their expected reward returns), are not adequate to face sparse- reward tasks 
 because they lead to obtaining the reward only rarely. Vari ous approaches have been pro-
posed to produce a more effective exploration of the environment. A popu lar approach to 
foster exploration is based on NB- IMs. The idea is that the agent is attracted to states that 
it visited few times and tends to move away from familiar states. An extra reward (novelty 
bonus) could be given to the agent for making novel states attractive (Brafman and Ten-
nenholtz 2002; Kakade and Dayan 2002). A nice property of novelty bonuses, and in general 
of IMs used to foster the pursuit of extrinsic rewards, is that since IMs have a transient 
nature, they tend to not affect the final policy acquired to maximize the final extrinsic reward.

A relevant class of methods using novelty to foster exploration in the search for extrinsic 
rewards is based on state novelty, mea sured as the number of times a state is encountered 
(Bellemare et al. 2016). In par tic u lar,  these methods use density models to compute a pseudo- 
count of the times in which states are visited based on the generalization of the counts for 
similar states. The method was successfully applied to agents able to solve the Atari game 
Montezuma’s Revenge, involving a highly sparse reward. Another model used for similar 
purposes is presented in Burda et al. (2018).  Here a random network is used to recode the 
state observations (images), and a second “copy” network is trained with supervised learning 
to “mimic” the first network (same input; desired output as the random network). The idea 
is that when states become more familiar the error of the copy network decreases.

Exploration to pursue extrinsic goals could also be pursued through PB- IMs. PB- IMs 
can rely on the prediction error (Schmidhuber 1991b) or the prediction error improvement 
(Schmidhuber 1991a) of a predictor network— that is, a world model predicting the next 
state on the basis of the current state and possibly the planned action. The prediction error 
has the disadvantage, if used by an IM mechanism, of not fading away in stochastic worlds. 
This prob lem is solved by the prediction error improvement, although at the cost of having 
a noisy and slow- adjusting signal. In the initial models using  these strategies (Schmidhuber 
1991a, 1991b), the predictor was used both as the source component and as the target 
component, meaning that the function of the used IM was to train the predictor itself. The 
same IM mechanism can, however, be also used to foster exploration to accomplish extrin-
sic tasks involving sparse rewards. An example of a model  doing this is presented in Pathak 
et al. (2017).  Here a forward model is used to produce a prediction error used as an intrinsic 
reward to train a RL agent to solve video games, such as Mario Bros., involving sparse 
extrinsic rewards. Interestingly, the model also proposes a mechanism to only focus on 
effects that are caused by the agent’s actions by using a predictor that uses as input the 
internal repre sen ta tions of an inverse model predicting actions based on an input formed 
by the before-action state and the after-action state.
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13.3.2 Goal Formation

A very in ter est ing function for which IMs can be used is related to the acquisition of 
multiple sensorimotor skills that might be  later used to accomplish other intrinsic tasks, 
or extrinsic tasks, particularly within a hierarchical RL framework where be hav ior is 
chunked into options (Sutton et al. 1999).  Here we consider the goal- based version of 
options, in which each option involves (Barto et al. 2004; Singh et al. 2004) 1) a termina-
tion condition associated with the accomplishment of a goal, 2) an action policy indicating 
the primitive actions to select in correspondence with dif fer ent states of the world, 3) 
possibly an initiation set encompassing the states from which if executed the policy is able 
to accomplish the goal. A goal is a repre sen ta tion of a set of world states that if reactivated 
internally drives the agent to act in the world so that the world assumes one of  those states. 
 There are vari ous types of goals, such as goals as states of the world, goals as trajectories 
of states, avoidance goals, maintenance goals, and more (Merrick et al. 2016), but  here 
we focus only on state goals for simplicity, and as many considerations can be extended 
to the other types of goals. Goals can have dif fer ent levels of abstraction and can involve 
one’s own body (Mannella et al. 2018; Hoffmann et al. 2010), the external environment 
(e.g., Santucci et al. 2016), the relation between a  couple of ele ments (Kulkarni et al. 
2016), or social aspects (Acevedo- Valle et al. 2018).

Vari ous subfunctions, supported by IMs, are impor tant for learning repertoires of mul-
tiple skills for  later use.  Here four are considered: 1) the autonomous generation of goals; 
2) the coverage of the widest pos si ble part of the goal space (goal exploration); 3) the 
generation of the reward for learning the policy of the single option; 4) the support of the 
progressive learning of skills, from easy to difficult, to speed up their acquisition.

The function of goal formation is impor tant  because during intrinsic learning the robots 
are not given any task to solve and so should autonomously self- generate tasks/goals guiding 
the acquisition of the related skills. Note that although goal formation is extremely impor tant 
for open- ended learning, and vari ous methods supporting it involve eIMs (Mirolli and Bal-
dassarre 2013), it often also involves mechanisms differing from the ele ments of eIMs 
(source component, IM mechanism, and target component).  These are  here considered oIM 
mechanisms; further investigations are needed to understand if and how oIMs are linked to 
eIMs. We  will now consider some relevant methods used to autonomously generate goals.

Goal sampling
When the goal space is given— for example, it is formed by the posture  angles of a robot 
or the x, y positions of an object on a  table— goals can be sampled on the basis of their 
skill learnability. For example, goal babbling (Rolf et al. 2010) allows a robot to self- 
generate posture goals that facilitate the learning of a coherent inverse model by maximiz-
ing the end- effector displacement, which  favors the exploration of novel goals while 
minimizing the posture change, which  favors the learning of regular versus awkward 
postures among the pos si ble redundant postures. The approach has been  later extended, 
for example, to learn multiple models in parallel (from end- effector position space to joint 
space and from the joint space to the motor space) through associative radial- basis- function 
networks growing on the basis of novel experiences (Rayyes and Steil 2019).

The goal space might not be given to the agent but form a subspace of the state or 
observation space to be actively searched. In this case goal sampling is not pos si ble, 
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especially if the subspace is small with re spect to the  whole space; in this case the goal 
subspace has to be actively discovered by the agent. Consider, for example, an observation 
space formed by images. In this case, the agent has to actively discover the image goals 
that it might actually achieve with its actions within the  whole huge space formed by all 
pos si ble images corresponding to all combinations of the pixel values. Now some 
approaches usable to this purpose are considered.

Goal marking
A number of models have proposed specific mechanisms to “mark”— that is, establish as 
goals— experienced states or observations.  These models do not have the features of eIMs 
but can support open- ended learning via the formation of goals and the learning of the 
related skills, so they can be considered oIMs. A classic approach is the one for marking 
as goals the experienced states of the world that represent bottlenecks (McGovern and 
Barto 2001), nodal conditions that are often traversed when solving multiple extrinsic tasks 
(e.g., doorways when navigating an office).

Another model proposed to form goals corresponding to salient events, such as a change 
of light or sound (Barto et al. 2004; Singh et al. 2004). Linked to this, another approach 
proposed to mark as goals the novel observations that follow changes caused by the agent’s 
actions in the environment (Santucci et al. 2016; Mannella et al. 2018). The idea  behind 
this approach is that what robots (and organisms) ultimately should do during intrinsic 
learning is become able to change the world at  will, so the observations that follow a 
change caused by own actions indicate a potential for  doing this. The novelty of the 
changes guarantees that the goal has not been already formed. If changes in the world can 
also happen in de pen dently of the agent’s action, additional mechanisms are needed to 
allow the agent to identify the subset of changes that depend on its action (Sperati and 
Baldassarre 2018; Pathak et al. 2017). Another approach forms goals when a par tic u lar 
relation between  couples of ele ments takes place— for example, the “agent” picks up a 
“key” in an Atari game (Kulkarni et al. 2016).

A dif fer ent approach (Zhao et al. 2012) uses RL to acquire vari ous be hav iors with 
motorized cameras within an active vision context (Ballard 1991; Ognibene and Baldas-
sarre 2015)— for example, to lead two cameras to focus on the same target (vergence 
control).  Here the model uses as a reward the accuracy of the reconstruction of images of 
a sparse- coding component (Olshausen and Field 1996), and the low error marks states 
where the two cameras manage to focus on the same target.

Another approach for skill learning is empowerment (Klyubin et al. 2005). Empower-
ment has a wide relevance for open- ended learning, but for lack of space only a few ele-
ments of it can be considered  here. Empowerment is based on information theory and can 
be used to assign to each given world state a value that represents the variety of dif fer ent 
outcome states that the agent can achieve with its actions from the given state. States with 
high empowerment can be used as target states; for example, their empowerment value 
can be directly used as reward to drive skill learning (T. Jung et al. 2011). Der and Martius 
(2015) propose another approach exploiting emergent properties of the environment- body- 
controller dynamics to autonomously acquire in ter est ing motor skills in dynamic simulated 
agents. The skills are acquired on the basis of a  simple two- layer neural network senso-
rimotor controller whose connection weights are trained through a differential extrinsic 
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plasticity (DEP) rule derived from differential Hebbian learning (Zappacosta et al. 2018) 
that captures correlations between the changes of the input neurons and the output neurons.

Goal manifold search
This strategy searches goals within large observation spaces based on the idea that similar 
goals involve similar skills/actions, and so the per for mance of noisy variants of the already 
discovered skills/actions might possibly lead to discovering new achievable goals. This 
strategy was first used in a model (skill babbling; Reinhart 2017) to control an arm robot 
learning to displace an object in the 3D space. The model forms clusters of similar goals 
and discovers new goals by performing noisy versions of the actions corresponding to the 
centroid goals of clusters. The active goal manifold exploration model (AGME; Cartoni 
and Baldassarre 2018) actively discovers the goal manifold hidden in the observation 
space— for example, a posture space or an image space. For this purpose, the model builds 
a distance- based graph of the discovered goals, selects goals that have a higher distance 
from other discovered goals, generates perturbed versions of the policies associated with 
such goals, and performs them to discover new goals. The quality diversity algorithm (Kim 
et al. 2019) learns a repertoire of be hav iors and goals by searching for be hav iors that are 
dif fer ent (novel) with re spect to the already learned be hav iors. The algorithm is, for 
example, used to allow a humanoid robot to acquire the skills to throw a ball into a basket 
located in many pos si ble dif fer ent positions (goals) on the floor. The hindsight experience 
replay approach (HER; Adrychowicz et al. 2017) exploits the outcome of policies to dis-
cover new goals, even if they are dif fer ent from the pursued goal. The approach is very 
effective to incrementally discover new goals— for example, to manipulate objects in a 
simulated camera- arm- gripper robot.

Goal formation by imagination
Another related strategy discovers goals by first imagining them. For example, the rein-
forcement learning with  imagined goals model (RIG; Nair et al. 2018), tested with a robot 
arm moving objects on a  table, uses a generative model (a variational autoencoder; Kingma 
and Welling 2013) to first learn an internal compact repre sen ta tion of goals by randomly 
exploring the environment and then to “imagine” other pos si ble goals whose skills are 
learned by RL. A  later version of the model generates goals that have a high probability 
of being novel with re spect to already learned goals by sampling them on the fringe of 
the distribution of the internal repre sen ta tion of the discovered goals (Pong et al. 2019). 
“Imagination” is a relevant means not only to generate goals but also to formulate plans 
to achieve  those goals by assembling other goals/skills (Seepanomwan et al. 2015; Hung 
et al. 2018; M. Jung et al. 2019; Tanneberg et al. 2019) possibly acquired with IMs. This 
is an in ter est ing trend that reformulates some high- level concepts elaborated by the classic 
symbolic planning lit er a ture (Russell and Norvig 2016), such as goals and planning, 
through neural network repre sen ta tions.

13.3.3 Se lection of Skills to Train

The lit er a ture on animal learning (Skinner 1953) and on staged child development (Piaget 
1953) shows that learning pro gress is faster if it proceeds from easy to difficult tasks. This 
strategy can also be used in artificial systems by training them with a curriculum involving 
increasingly difficult tasks (Asada et al. 1996; Bengio et al. 2009). One of the most in ter est ing 
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uses of IMs allows open- ended learning agents to autonomously select the skills needed to 
train to achieve goals possibly generated autonomously with the approaches illustrated above. 
Initially, PB- IMs  were used to support the autonomous se lection of tasks to learn (e.g., Singh 
et al. 2004; Oudeyer et al. 2007).  Here the source component was a predictor, while the target 
component was the skill to learn, and the agent focused learning on skills causing the highest 
predictor error, or prediction error improvement, of the predicted skill outcome. Successively, 
CB- IMs  were shown to be more appropriate than PB- IMs for selecting the skills to train 
 because the predictor of the PB- IMs might learn to predict the skill outcome too early or too 
late with re spect to when the controller finishes learning the skill. Instead, CB- IMs directly 
mea sure the competence acquired by dif fer ent skills so it returns accurate information usable 
for selecting them (Santucci et al. [2013] compared  these dif fer ent IM mechanisms for task 
se lection).

When a goal can be accomplished starting from a dif fer ent initial condition, the CB- IM 
signal related to the goal must also take into account such an initial condition; moreover, 
when a goal can be selected not only depending on its learning rate but also depending 
on  whether its achievement can be the precondition for learning other skills, then the 
CB- IM signal has to be used as a reward within a  whole RL pro cess selecting goals rather 
than actions (Santucci et al. 2019). IMs can also guide the progressive learning of increas-
ingly difficult tasks represented at multiple levels of abstraction— for example, in robots 
learning to interact with dif fer ent objects (Ugur and Piater 2016). In all  these models, the 
skill of the selected goal should be trained (with RL) through a pseudo- reward equal to 
one when the goal is accomplished and to zero other wise. This is more effective than what 
was done in the early years of research on IMs when the PB- IM signal used to select the 
goal/skill was also used to train the skill, as the PB- IM signal gradually fades away when 
the skill is learned.

13.3.4 Evolution

Tasks/goals could also be generated autonomously through evolutionary pro cesses (ge ne tic 
algorithms). Schembri et al. (2007) proposed the first model to do so in a population of 
RL simulated robots moving on a colored arena. During the intrinsic phase, the robots 
used intrinsic reward functions generated by a ge ne tic algorithm to learn skills. In the  later 
extrinsic phase, the robots learned to compose the acquired skills to accomplish extrinsic 
tasks (specific places in the arena). The success in learning  these extrinsic tasks produced 
the fitness for the ge ne tic algorithm. Singh et al. (2010) used an algorithm equivalent to 
evolution to search reward functions of RL agents engaged in searching for food in a grid 
world. They found that reward functions having the highest score rewarded the agents not 
only for searching for food but also for “opening boxes” where food was hidden. The model 
was used to suggest the existence of a continuum between EMs and IMs, rather than a 
distinction between them, as from an evolutionary perspective the two differ only for their 
distance from the events increasing fitness. The view proposed  here distinguishes eIMs and 
EMs, as eIMs are based on the mea sure of knowledge in a component of the controller, 
whereas EMs are based on the mea sure of material resources in the body or the environ-
ment. It is, however, true that in the case of evolved oIMs that support the formation of 
goals and skills, as in the models reviewed above, a continuum with EMs can be seen since 
the criterion of the “knowledge- measurement” typical of eIMs is missing.
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 There is an additional impor tant prob lem for open- ended learning that could be tackled 
with evolutionary approaches: Which goals/skills should be acquired, among  those pos si-
ble, to  later best learn several dif fer ent extrinsic tasks in a given domain? Del Verme et al. 
(2020) faced this prob lem and used a ge ne tic algorithm to search goals/skills that  were 
optimal for the solution of tasks drawn from a certain distribution of pos si ble tasks in a 
given environment. The work showed how the optimal goals and skills depended on the 
time bud get that the agent had in order to solve the extrinsic tasks and on the physical regu-
larities of the environment. It so demonstrated that “fixed” mechanisms for goal generation, 
as  those seen above, might lead to suboptimal solutions. Importantly, evolutionary approaches 
might thus be used to evolve the IM mechanisms themselves, as hinted by the arrows in 
figure 13.2 departing from the “evolutionary pro cesses” box (Salgado et al. 2016). Although 
very in ter est ing, this possibility is now  limited by its high computational costs.

13.4 Conclusion

The study of intrinsic motivations is making impor tant pro gress. However, many relevant 
open issues need further investigation. One open issue is the clarification of how non-
epistemic intrinsic motivations work and are related to epistemic ones. Another open issue 
is the clarification of the link between intrinsic motivations and the autonomous formation 
of goals. A further issue, in part related to that, is the clarification of the relationship exist-
ing between intrinsic motivations and concepts such as empowerment and sensorimotor 
emergent be hav iors. We have also seen how the computational lit er a ture is uncovering the 
existence of an articulated typology of intrinsic motivation mechanisms and functions. 
Understanding if and how  these are also pre sent in organisms’ brains and be hav ior is a 
very in ter est ing open prob lem.

Robot open- ended learning itself is still unsolved, as shown by the fact that we do not 
have robots able to undergo a truly open- ended learning experience leading to an unbounded 
accumulation of knowledge and skills. This might depend on multiple  factors. On the side 
of goal formation, we have vari ous mechanisms for the autonomous generation of goals, 
but all of them have limitations: goal sampling can only be applied to known small goal 
spaces; goal formation based on mechanisms such as bottlenecks, novel environment 
changes, goal- manifold discovery, and goal imagination has yet to be scaled to larger goal 
spaces and dif fer ent domains. The autonomous se lection of skills to train, based on competence- 
based intrinsic motivations, is becoming a standard, but it generally assumes discrete goals 
and hence must be further developed to be easily applicable to continuous goal spaces. Fi nally, 
systems working with discrete goals solve extrinsic prob lems based on planning and search 
methods that require the number of learned goal/skills to be  limited to be efficient. This prob-
lem might be solved with evolutionary methods that indirectly search for a few robust skills 
to learn by searching the IM mechanisms themselves that lead to their generation; this, 
however, currently has a prohibitive computational cost.

Despite  these challenges, the research field of open- ended learning driven by intrinsic 
motivations is surely one of the most exciting fields of cognitive robotics due to its poten-
tial for applications in robots acting in unstructured environments and to its close link with 
some of the most sophisticated and intriguing pro cesses of  human cognition, such as 
curiosity and the drive for the autonomous acquisition of knowledge.

Downloaded from http://direct.mit.edu/books/book-pdf/2239475/book_9780262369329.pdf by guest on 30 September 2024



266 G. Baldassarre

Acknowl edgments

This research received funding from the Eu ro pean Union  under the 7th Research Frame-
work Program, Grant Agreement n° 231722, Proj ect “IM- CLeVeR— Intrinsically Moti-
vated Cumulative Learning Versatile Robots”; and the Horizon 2020 Research and 
Innovation Program, Grant Agreement n° 713010, Proj ect “GOAL- Robots— Goal- based 
Open- ended Autonomous Learning Robots.”

Additional Reading and Resources

•  A collection of works on intrinsic motivations and open- ended learning: Baldassarre, 
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•  A work that complements the current work, with a perspective on the biology and brain 
mechanisms under lying intrinsic motivations: Baldassarre, Gianluca. 2011. “What Are 
Intrinsic Motivations? A Biological Perspective.” In Proceedings of the International Con-
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•  A work presenting a general architecture supporting several of the functions for open- ended 
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14.1 Is Perception Only a Recovery Pro cess?

The goal of computer vision has been to create three- dimensional (3D) descriptions of the 
scene in view and to recognize the aspects of the scene by assigning labels to the objects 
and actions that exist or are happening in the scene (Marr 1982).  These labels would then 
be provided to symbolic reasoning systems—of the kind artificial intelligence develops— 
that would reason about the world. Psychologists have also written extensively on the 
cognitive impenetrability of visual perception, implying that the workings of visual percep-
tion are shielded from any cognition. Thus, visual perception is seen as a mechanistic black 
box that delivers labels through recognition, and nowadays this is achieved through 
machine- learning techniques that use gargantuan amounts of (mostly static) data.

Current practice, however, has suggested repeatedly that the path from pixels to symbols 
in a bottom-up manner is difficult, if not impossible. It certainly does not make explicit 
the causal link between the pre sent (i.e., what is seen now) and the past. Therefore, vision 
cannot be used to anticipate the  future course of events, which is the core of cognition. It 
appears that knowledge of some form comes into the pro cess of visual perception quite 
early in the perceptual pro cess. In the classical framework described above,  there is only 
one place where perception and cognition meet. However, this is counterintuitive to our 
common- sense understanding of perception and thinking.  Human be hav ior is active. 
 Humans (and animals) continuously shift their gaze to dif fer ent locations in their scene in 
view. They recognize objects, sounds, and actions, and this leads them to fixate on new 
locations continuously. More importantly in the framework of this chapter,  humans have 
intentions and goals to link the past with pre sent with the aim of anticipating the  future; 
animals interpret perceptual input by using their knowledge of images, sounds, actions, 
and objects, along with the perceptual operators that extract information from signals. 
 Human actions, in par tic u lar, are goal driven, and they are guided not only by motor 
expectations but also by perceptual expectations (Rao and Ballard 1997; Sandini et al. 
1993). Cognitive vision is an expectation- driven pro cess, and in this sense, vision supports 
both the recovery of perceptual information to guide actions and the pro cess of predicting 
the perceptual consequences of goal- directed actions. Currently, this debate about the 
nature of the perceptual pro cess is no longer a philosophical nature as it has acquired 
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practical significance. As the field of cognitive robotics is evolving, prac ti tion ers and theo-
rists are faced with basic questions: How should the visual system of the cognitive robot 
be structured? Specifically, should it be a black box delivering a 3D model of the scene 
in view along with labels for the objects and actions happening in the scene, or should it 
be structured differently, more in line with what biological systems do? If it  ought to be 
the latter, precisely what would that be?

14.2 Is Perception (Only) an Inference Pro cess?

Signal analy sis is not enough to produce an understanding of a scene; rather,  there must 
be some additional source of information beyond the images that can be used in the pro-
cess of perception. The physicist von Helmholtz proposed that the additional knowledge 
is brought in through a pro cess of inference—as we look at the world, we are also thinking 
about it. Since we are not aware of this thinking, he labeled it unconscious inference. 
Indeed, adding any form of knowledge to the signal pro cessing can be considered reason-
ing or making an inference. The prior knowledge  people bestow upon a scene is about the 
likely configurations of objects, events, and their relations, along with basic physics. Thus, 
perception interacts continuously with cognition at dif fer ent levels of abstraction: it guides 
attention, constrains the search space for recognition, reasons over what is being perceived, 
and makes predictions about what  will be perceived. This is an interactive bottom-up and 
top- down pro cess; as visual (perceptual) information is anticipated from past experience 
and searched for through purposive actions, meanings emerge. This is what we call cogni-
tive vision, which can be succinctly defined as a system implemented as a continuous 
exchange of information between perception and reasoning. It is a form of predictive 
vision in the sense that it does not simply rely on actions to optimize information acquisi-
tion; rather, actions are driven by perceptual expectations (How should I act to see my 
hand close to the object to grasp vs. how should I act to reach the object?).

14.3 Cognitive Vision: The Vision of the  Middle Layer  
(in an Embodied Framework)

Low- level perception is traditionally thought of as feeding into a high- level knowledge 
database (KB) where inference can work (Marr 1982). However, in cognitive systems, 
perceptual outcomes can be predicted, and through embodiment they can be actively 
searched for through goal- directed actions. The goal is to obtain the expected sensory 
input; as such, actions are a means to achieving this goal. This generates the mutually 
supportive roles of perception and inference through actions and expectation. This occurs 
not simply at low and high levels but also at an intermediate or midlevel where input- 
driven, bottom-up signals are combined with top- down, expectation- driven signals. At this 
level, reasoning and perception talk with each other about objects, actions, events, and 
alternative possibilities in a kind of internal cognitive dialogue that loops between predic-
tion (what the system expects perceptually) and exploration (how the system acts to verify 
if  these predictions are being met). In this framework, “active inference” (Friston, Dau-
nizeau, and Kiebel 2009) is the pro cess of inferring which actions minimize the error 
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between the expected sensation and the resultant outcome. Thus, cognitive vision is the 
set of pro cesses that pro cesses real- time information and provides the perceptual hypoth-
esis required to carry out this dialogue (the “predictive coding” stream of research by Rao 
and Ballard [1997] and the “learning to predict the next sensation” proposed by Tani and 
Nolfi [1999] and recently reported by Nagai [2019]).

With re spect to computer vision, the peculiarity of cognitive vision is the extension of 
the concept of “pro cessing visual data” beyond the concepts of “extracting visual features 
for real- time control” (as in reactive systems) to address how to “generate expected visual 
features supporting anticipatory be hav ior.”

 Here are five rough interaction paths through which Vision (V) and Reasoning (R) can 
engage during an internal cognitive dialogue.

1.  V → R. This is the traditional perspective of first applying computer vision and then 
transferring the results to AI for reasoning.
2.  R → V. For example, “search for the scissors” starts with the concept “scissors” and 
invokes a visual search. When we perform a task and we follow a procedure, we continu-
ously invoke this path.
3.  V → R → V. For example, the vision system concludes that the activity taking place is 
“someone is cutting the tomato with a spoon,” and it communicates this to the Reasoner. 
Subsequently, the Reasoner finds it implausible and asks V to check again to determine 
 whether the tool is a spoon or a knife.
4.  R → V → R. For example, the Reasoner needs to know the number of cars in some 
location, and it initiates a counting search for the Vision system.
5.  R → VV . . .  V. This amounts to imagining and envisioning a situation, action, or event.

As such, the interactions between V and R are many and complex, and it is not clear 
how one should best develop them.

The interactions between Vision and Reasoning can happen at dif fer ent stages. First, it 
can happen at “ later stages,” meaning that vision is  running recognition procedures and 
producing symbolic information that it gives to the Reasoning pro cess. Second, it can happen 
at “ earlier stages,” meaning that Reasoning helps Vision by resolving the ill- posedness of 
visual pro cesses. In the latter case, instead of vision performing only a bottom-up segmenta-
tion and recognition, additional knowledge can be introduced. For example, it is easier to 
segment an object with known attributes, such as delineating a “long red object” from a 
background, as opposed to generically segmenting the scene into surfaces using only bottom-
up vision. Moreover, the interaction can also happen at the  middle stages where, for example, 
knowledge about the action produces expectations for both objects and movements.

As discussed in Vernon (2006), cognitive vision can be defined in terms of its generic 
functionalities (i.e., detection, localization, recognition, categorization, and understanding 
of an object or event), its nonfunctional attributes (i.e., purposive be hav ior, adaptability, 
and anticipation), and how it supports the acquisition, storage, and use of knowledge (i.e., 
learning, memory, and deliberation). This final ele ment is considered “the key differentiat-
ing characteristic of Cognitive Vision vis- à- vis Computer Vision” (Vernon 2006).

How should cognitive vision be implemented? Unfortunately, this question does not have a 
clear answer. It would be useful if existing cognitive architectures could be used to implement 

Downloaded from http://direct.mit.edu/books/book-pdf/2239475/book_9780262369329.pdf by guest on 30 September 2024



274 Y. Aloimonos and G. Sandini

the exchange between vision and reasoning. However, existing cognitive architectures do not 
consider this exchange at the core (Laird 2012; J. Anderson 2007; Kotseruba and Tsotsos 
2020; Vernon, von Hofsten, and Fadiga 2010). Thus, instead of devising an architecture for 
cognitive vision, it would make sense to list a number of princi ples or attributes of cognitive 
vision that should be considered in the development of any architecture. Fundamentally, the 
architecture has to be a “message- passing architecture.”

14.4 Princi ples of Cognitive Vision

14.4.1 Cognitive Vision Is to Support Prospection

A peculiarity of cognitive vision is that it is inherently linked to the interactions of the 
perceptual agent with the environment. This includes other agents and, within the scope 
of this book, it specifically emphasizes the interactions between the embodied agents that 
can not only analyze the environment but also change the environment through their 
actions. The distinction between analyzing and changing brings about the proposed organ-
ization of the  human visual system into two information- processing streams that, originat-
ing in the occipital cortex, proj ect dorsally to the parietal cortex and specialize in spatial 
vision and ventrally to the temporal cortex, specializing in object recognition. The original 
evidence of the so- called what- and- where organ ization was proposed initially in Unger-
leider and Mishkin (1982) based on behavioral studies in monkeys. In one study, lesions 
of the what (ventral) pathways produced an inability to discriminate objects while leaving 
intact visuospatial tasks such as visually guided reaching. In turn, lesions in the where 
(dorsal) pathway did not affect visual discrimination but severely affected per for mance in 
visuospatial tasks. In their original paper, Ungerleider and Mishkin (1982) proposed that 
the ventral pro cessing stream mediated the visual recognition of objects (“what” an object 
is), while the dorsal pro cessing stream mediated the appreciation of the spatial relation-
ships among objects and the visual guidance  toward them (“where” an object is). Goodale 
and Milner (1992) proposed a modification to this model, emphasizing “perception” versus 
“action” for the ventral and dorsal pro cessing streams, respectively. However, this separa-
tion cannot be interpreted as a chiasm between the areas involved in the execution of 
actions and the areas devoted to recognizing objects  because, in general, the view of the 
brain as a collection of areas connected statically has evolved in the vision of the brain as 
a dynamical system in which individual regions are functionally diverse and used and 
reused in many dif fer ent tasks across the cognitive domain (M. Anderson 2014). Certainly, 
spatial information is not segregated into the dorsal pathway, but it is closely integrated 
with “object pro cessing” both in terms of relational dimensions as well as the position of 
objects in the environment. The current view is that “the ventral and dorsal pathways treat 
objects and space differently, but they cannot treat them separately” (Connor and Knierim 
2017). From the point of view of prospection, it is nonetheless true that expectations play 
an impor tant role in the object’s localization and recognition (as demonstrated by Bieder-
man, Mezzanotte, and Rabinowitz [1982]; see figure 14.1). Actions play a fundamental 
role in building knowledge about the object’s properties; in turn,  these properties are 
retrieved from memory to both act on and recognize objects. The cognitive pro cesses 
exploiting this shared memory do not distinguish between anticipating the occurrence of 
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objects and events. Therefore, even though this chapter is focused upon actions and be hav-
ior and less upon object categorization and recognition, we believe that the cognitive 
princi ples that we describe apply to the information carried through the ventral as well as 
the dorsal visual pathways.

From the cognitive vision perspective, embodied interaction adds the need to use vision 
“to control actions” as well as the use of vision “to anticipate actions.” Cognitive vision 
supports prospection both through detection and recognition. Within the “cognition” frame-
work, prospection refers to the ability to anticipate the outcome of the (inter)actions, includ-
ing its sensory outcome. The visual system must be able to “imagine” (anticipate, synthesize) 
what it is  going to see as a result of a given action and, during actions, to “monitor”  whether 
the sensory expectations are being met (predictive vision; Sandini et al.1993). It is worth 
noting  here that the need for this “anticipatory” role of vision has been proposed by neu-
roscientists such as Alain Berthoz (1997) and Marc Jeannerod (2001) in his “ mental simu-
lation theory,” as well as by computational neuroscientists such as Rao and Ballard (1997). 
The behavioral difference  here is that the agent can plan its actions so they cause a specific 
sensory outcome. If what I see is an object, I should see a dif fer ent “optical flow” pattern 
when I push it or grasp it, and I plan the action to verify the matching of the “ imagined” 
(desired) pattern with the one being generated contingently (Sandini et al. 1993). That is to 
say, through purposively planned actions and monitoring of anticipated sensory outcomes, 
behavior- related visual features are used to segment objects in a visual environment, as 
shown in figure 14.2. Objects are not identified only by edges and blobs.

This mapping from a reactive action- perception loop to an anticipatory exploration- 
prediction loop (in which actions are planned and sensory outcome is anticipated) does 

Figure 14.1
Example of position violation supporting the view that anticipation is involved in object recognition. Source: 
From Biederman, Mezzanotte, and Rabinowitz 1982.
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not diminish the importance of extracting and mea sur ing other “visual features” per se; 
rather, it extends their use to a generative model. An impor tant consequence of this cause- 
effect link between perception and action is the dif fer ent ways they represent shape. In 
the anticipatory exploration- prediction loop, the emphasis shifts from the features used to 
describe geometric features (such as generalized cylinders) to action- based, proactive 
features. A striking example of the latter are the “canonical neurons” that code the shape 
of an object as a function of the actions best suited to grasping it (Fadiga et al. 2000). In 
this way, shape is defined by “grasp type,” and conversely, the hand is preshaped during 
reaching actions to encode and anticipate the shape of the object that  will be grasped 
(Campanella, Sandini, and Morrone 2011; Gori et al. 2011). The relevance of  these and 
other anticipatory features in relation to human- human and human- robot interactions is 
the subject of the next section.

a

c d

b

Figure 14.2
Object segmentation through purposive action. During a pushing action (a), motion information (optical flow 
pattern, b) is extracted to detect the instant of contact and to segment the approaching hand (c) and the object 
pushed (d). Source: Adapted from Sandini et al. 1993.
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14.4.2 Cognitive Vision Is to Support Human- Robot Interaction

A vast amount of lit er a ture discusses how anticipation affects vision in both the recognition 
and categorization of objects and events as well as visually guided be hav ior. However, 
considering the primary role of cognition on social be hav ior,  here we focus on the special 
case of the ability to anticipate the goals and intentions of a partner agent during social 
interactions. In this framework (referred to as “social cognition”), vision is an impor tant 
channel (before physical contact occurs vision is the only channel) used to synchronize the 
activities during the execution of collaborative tasks and to derive the kind of shared goals 
and intentions necessary for two agents to work together instead of simply working next to 
each other. In this case the peculiarities of cognitive vision are not limited to the use of 
visual information to “control” movements (e.g., the trajectory of the hand  toward the object 
to be grasped) or the forces exchanged (such as when multiple entities jointly  handle a box). 
Rather, they refer to the use of vision as a communication channel through which the inter-
acting agents are exchanging “messages” (Sciutti et al. 2012; Sandini, Sciutti, and Rea 2019). 
Therefore, the role of vision extends from anticipating the outcome of the agent’s own actions 
(as described in section 14.4.1) to anticipating (understanding) the outcome of the partner’s 
actions, including their intentions and goals. The special case of an anthropomorphic partner 
is particularly in ter est ing  because it offers the possibility of using humanoid robots to study 
aspects of social cognition in  humans that are still unknown and that cannot be investigated 
in other ways (Sandini 1997; Sciutti et al. 2015).  Here, we  will focus on the special case of 
an anthropomorphic agent even though what we are reporting may be applied to systems 
with dif fer ent degrees of anthropomorphism and not only to humanoid robots. In this case, 
behavior- based communication originates primarily from bodily features such as the physics 
and topology of biological sensors and actuators.

In relation to the kinds of messages that can be exchanged visually between embodied 
agents, we first need to make an impor tant distinction between implicit and explicit mes-
sages. Implicit (covert) social signs are expressions of a physical property of the body or 
of a general law of physics (e.g., gravity), and they are not  under voluntary control. In 
contrast, explicit (overt) social signs are voluntarily controlled, and they include gesticula-
tion language and culture- related movements (Sciutti et al. 2018). In both cases many 
segments of the human/robot body can be involved in producing such social signs: eyes, 
hands, heads, face, appearance, whole- body posture, and so on (messages are  limited to 
 those that can be exchanged visually). In relation to using cultural- based, overt gestures, 
a vast amount of computer- vision lit er a ture exists in relation to gesture recognition in 
general and hand signs in par tic u lar (Wu and Huang 1999; Al- Shamayleh et al. 2018), even 
if we disregard all the methods used for movement studies based on wearable accelerom-
eters, reflective markers, and active sensors.

In this article we concentrate on the role vision plays in anticipating one’s partner’s 
goals and intentions on the basis of implicit, body- based messages specific to  human social 
interaction (and, to some extent, also to other social species). By “body- based,” we are 
 here referring to the messages embedded in some fundamental, physical property of the 
 human body that are inherited as a result of evolution.

The first, most obvious message is the direction of gaze, which makes an actor’s inten-
tion explicit by displaying her “region of interest” (see figure 14.3). This is an anticipatory 
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feature, as gaze direction anticipates grasping actions and is used by the actor to guide 
reaching (Gandolfo, Sandini, and Bizzi 1996; Sandini, Metta, and Konczak 1997; Flanders, 
Daghestani, and Berthoz 1999); moreover, it is used by the observer to anticipate the 
intentions of the actor (Johansson et al. 2001). This holds true even in young infants 
(Falck- Ytter, Gredebäck, and von Hofsten 2006). See Gredebäck and Falck- Ytter (2015) 
for a recent review on the effect of eye movements during action observation.

In the case of mutual gaze, fixation has an even more impor tant social effect in establish-
ing a preferential communication channel between two agents. Even if one’s gaze can be 
actively controlled and one’s attention is not necessarily linked to the direction of the gaze, 
eye movements are ultimately needed  because of the space- variant nature of our ret ina, and 
as such, they are a fundamental implicit visual signature of the agent’s internal state. The 
role of the gaze is well known in  humans and  great apes (Tomasello et al. 2007; George and 
Conty 2008), and it has been exploited in dif fer ent areas of research with specific emphasis 
on joint attention (Doniec, Sun, and Scassellati 2006), eye contact (Palinko, Sciutti, et al. 
2015; see figure 14.4), human- robot engagement (Hall et al. 2014), and turn- taking.

In addition to gaze direction, the way  humans (as well as other biological systems) move 
has regularities that are ultimately linked to the very nature of their muscles (a true embodi-
ment constraint). If  these regularities can be perceived visually (i.e., if they are within the 
range of the signal that vision can “see”), they may be related to specific visual features. 
As stated very clearly by Jeannerod and Jacob (2005), “Not only is what one can do  shaped 
by what one perceives, but also conversely what one can do shapes what one can perceive.” 
It is on the basis of  these regularities that  humans (and other biological systems; Regolin, 
Tommasi, and Vallortigara 2000) can distinguish biological motion from the movements 
generated by other sources (e.g., a tree’s branches being moved by the wind, vehicles 
traveling, balls rolling, and so on). The ability to detect biological motion, which is pre sent 
from birth, is one of the power ful stimuli that allow  humans to develop social cognition. 

Figure 14.3
Without the subject being aware, the iCub’s be hav ior was driven only by the direction of the subject’s gaze 
making explicit her intention to reach for the left or right hand during an interaction task. Source: From Palinko 
et al. 2016.
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For example, a signature of biological motion known as the two- thirds power law is 
applied to movements of a body segment (e.g., the hand during drawing or writing or the 
knee or ankle during walking); this reflects the relationship between angular velocity and 
the curvature of the trajectory (Lacquaniti, Terzuolo, and Viviani 1983; Viviani and Ter-
zuolo 1982; see also Richardson and Flash [2002] for a comparison with other descriptions 
and generalizations). This pa ram e ter can be visually mea sured and used to identify and 
segment a moving biological body in de pen dently of its shape and color (Vignolo et al. 
2017). Thus, it is in de pen dent of skin color or of the occlusions hiding one’s body (a 
shadow of a body segment can still be detected in the same way). Of course, this is just 
the initial segmentation phase of understanding gestures and movement; nonetheless, it is 
impor tant for its unique biological signature (see figure 14.5).

Another signature of biological motion specific to ballistic movements (such as reach-
ing) is the velocity profile of the end effector, which has a par tic u lar bell- shaped profile 
(Abend, Bizzi, and Morasso 1982; Morasso and Mussa Ivaldi 1982). It is worth mentioning 
that both  these low- level visual mea sures are not only useful for discriminating biological 
systems; they can also be further exploited to anticipate the intentions and goals of the 
partner and the properties of the manipulated objects that are, apparently, not accessible 
through vision (e.g., anticipating the instant in time when the hand  will be reaching a target 
point in space and where that target is located in the image). An in ter est ing example of 
this is the  human ability to estimate the weight of an object being lifted by another person. 
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Figure 14.4
Contingent detection of eye contact by the iCub was used to time turn taking during a dictation task. The per-
for mance improved with re spect to timing related to word length. The subject was unaware of the difference but 
reported a more natu ral condition in the “contingent” situation. Source: Adapted from Palinko, Rea, et al. 2015.
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This ability, which is pre sent in adults (Hamilton, Wolpert, and Frith 2004; Hamilton et al. 
2007; Senot et al. 2011), develops during the first six to ten years of one’s life (Sciutti, 
Patanè, and Sandini 2019) in synchrony with  children’s ability to exploit weight to suc-
cessfully execute manipulation tasks (Wang, Williamson, and Meltzoff 2018).

The motion par ameters that elicit the visual signature used by the observer to estimate 
the object weight  were identified by modulating the kinematic par ameters of a robot actor 
lifting objects with dif fer ent weights and comparing the results with the estimated weights 
elicited by a  human actor. The results showed that the relevant features are related to 
velocity profile (Sciutti et al. 2014; see figure 14.6). In this way we can literally see the 
forces exerted by a partner even without (or before) having any physical contact.

Another impor tant aspect of the visual features described  here that have a fundamental 
role in interaction is that they can be used to anticipate the outcome of one’s own action 
(e.g., the instant in time I  will touch the object), and they can be easily extended to anticipate 
the effects of the actions of other cospecifics (meaning the agents with similar structures 
and/or similar motion par ameters). In fact, both mea sures (i.e., the two- thirds power law and 
the velocity profile) are in de pen dent of the relative positions of the observer and the actor 
(thus, they are in de pen dent of perspective transformation). As a special case, the actions 
described on the basis of  these par ameters are invariant to mirror transformation, and they 
could very well be the elementary visual mea sures that contribute to the activation of mirror 
neurons. In this way, the expected velocity profile (and the related behavioral mea sures) of 
one’s own hand or someone  else’s hand reaching for an object are the same, and they can 
be used to anticipate both the position of the targeted object and the expected time to contact.

Of course, this does not solve the issue of action understanding, which requires a hier-
archical repre sen ta tion of motor symbols to be handled, memorized, and recalled. However, 
it offers an alphabet (or part of an alphabet) with impor tant invariances that can be 
exploited. For example, one can exploit what is learned by an agent by looking at one’s 
own actions, not only to learn to move but also to learn to understand.

Gesticulate

Biological motion Non-biological motion

Toy car moving

Figure 14.5
Segmentation based on biological motion obtained through optical flow computation and identification of blobs 
moving according to the two- thirds power law constraint. Source: Adapted from Vignolo et al. 2017.
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Another aspect of action understanding (which goes more directly into understanding 
one’s state of mind) that can be supported by visual mea sures is the style of action, which 
conveys indirectly the internal state of the actor (e.g., actions performed while calm vs. the 
same action performed while angry or impatient; Di Cesare et al. 2019; Vannucci et al. 2018).

14.4.3 Cognitive Vision Involves Language as an Attention Mechanism

One can connect perception with reasoning through knowledge- based engineering and 
through the use of language— basically, using language to reason. The field of computer 
vision has led to interest in introducing additional higher- level knowledge about image 
relationships into the interpretation pro cess (Farhadi et al. 2010; Forsyth et al. 2009; Gupta, 
Kembhavi, and Davis 2009). Although existing work acquires this additional information 
from captions or related texts, one could use more advanced techniques to obtain additional 
high- level information.

Computational linguists have an interest in lexical semantics— that is, conceptual mean-
ings of lexical items and how  these lexical items relate to each other (Cruse 1986). They 
have also created resources through which we can obtain information about dif fer ent con-
cepts, such as cause- effect, performs- functions, used- for, and motivated-by. For example, 
the WordNet database relates words through synonymy (words having the same meaning, 
like “argue” and “contend”) and hypernymy (“is- a” relationships, as between “car” and 
“vehicle”), among many other relations (Miller and Fellbaum 2007). Linguistics has also 
created large text corpora and statistical tools that enable us to obtain probability distributions 
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Figure 14.6
In this experiment, subjects  were asked to report the weight of objects  after observing both an actor and a robot 
lifting, transporting, and putting in place a set of  bottles that  were visually identical but of dif fer ent weights. The 
possibility of fine- tuning and modulating the motion par ameters of the robot (using the robot as a stimulus) and 
comparing the outcome with  human observation allowed researchers to identify the vertical velocity of the action 
and its duration as the most relevant kinematic par ameters for weight estimation on the basis of action observation. 
See Sciutti et al. (2014) for more details.
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for the co- occurrence of any two words, such as how likely a certain noun co- occurs with 
a certain verb.

Using  these linguistic tools, we can aid vision to build better systems for interpreting 
images. One way is to use linguistic information as a contextual system that provides addi-
tional information to interpretations; this is already utilized in some multimedia systems. 
Certain objects are likely to co- occur; for example, “ tables” often co- occurs with “cups” and 
“spoons.” But if we consider vision an active pro cess,  there is more than just observation. 
Let’s say you are in a kitchen.  Because you have prior knowledge about kitchens, their 
structure, and the actions that take place in them, and  because a large part of this knowledge 
is expressed in language, we can utilize this information during our visual inspections. A 
knife in the kitchen  will most prob ably be used for cutting a food item, so one’s vision can 
look for it. In this way, language acts as a high- level prior knowledge system that aids per-
ception. Moreover, let’s say you observe someone picking up the knife and putting it in a 
drawer. You know that the object is not gone; rather, it is just hidden from sight. In this case, 
language acts as a part of the reasoning pro cess. When  humans interpret a visual scene, we 
fixate upon some location and recognize the nouns, verbs, adjectives, adverbs, and preposi-
tions that are part of that location.  Because our linguistic system is highly structured, our 
recognition produces a large number of inferences about what could be happening in the 
scene. Subsequently, when we fixate upon a new location, the same pro cess is repeated. In 
other words, language acts as part of the attention mechanism of  humans.

14.4.4 Cognitive Vision Is Supported by a Question/Answer Mechanism:  
The Cognitive Dialogue

During the pro cess of vision, our visual procedures interact with language pro cesses and 
motor actions. Low- level perceptual object features and/or movements, high- level knowl-
edge, and our overall goals guide our attention. The pro cesses that recognize objects and 
actions interact continuously with prior knowledge that enables  people to formulate expec-
tations; in turn, this constrains the recognition search space. Reasoning is used to analyze 
visual input and, if needed, to correct the visual recognition  toward the solutions that make 
sense within the specific context. This dynamic interaction of cognitive pro cesses is gener-
ally agreed upon, but it has not yet been implemented computationally.

We suggest that this interaction should be implemented as a dialogue computationally 
so that intelligent systems can achieve scalable visual scene analy sis. For example, let’s 
say the goal is to produce a semantic description of the scene in view. This can be achieved 
by having the Reasoner (R) and the visual pro cesses (V) engage in some form of a cogni-
tive dialogue through language. The R can ask the V a number of questions, such as: Is 
 there a noun in the scene? Where is it? What is next to the noun? Where did the agent 
that performed actionX go afterward? By allowing the R to ask questions and to receive 
answers, and then by repeating this pro cess, we bring forward the  whole power of language 
in the semantic analy sis. This is something that has not been pos si ble before. If we also 
include the motor pro cesses and the auditory pro cesses (AP), the cognitive dialogue inte-
grates perception, action, and cognition.
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14.4.5 Cognitive Vision Uses Linguistic and Optimization Tools

Consider the prob lem of activity description, as in this sentence: A man cuts the tomato 
with a knife on the  counter (i.e., assume that the cognitive system is observing a man 
cutting a tomato with a knife, and it needs to come up with the linguistic description “a 
man cuts a tomato with a knife on the  counter”). Language tools should provide us with 
two kinds of information. First, we need information about the pos si ble quantities within 
a certain context. In the example above, assuming we know that we are pro cessing a 
kitchen scene, language should provide the pos si ble objects and verbs that are generally 
used in this setting. Current computer vision applications deal with predefined data sets. 
However, knowledge databases can provide this new information. The Praxicon Proj ect 
(Poeticon Proj ect 2012; Pastra et al. 2011) is a resource that contains knowledge of com-
monsense everyday activities. This lexical database, obtained by reengineering WordNet, 
provides pragmatic relations about verbs and objects and also provides algorithms that we 
can use to query domain- specific knowledge (for example, if we want to obtain the quantities 
involved in cooking a par tic u lar meal). Second, we need language tools to provide us with 
the contextual relations of dif fer ent quantities, such as that “knives” are possibly used for 
“cutting,” and this activity is often performed “on  tables.” Classical linguistics can build 
domain knowledge of this kind, and it can provide information on  whether or not certain 
combinations are plausible. Statistical language tools that access large text corpora can provide 
statistics on the co- occurrence of the dif fer ent quantities in certain domains. Subsequently, 
we can use this statistical language information, along with the statistical information gained 
from the visual recognition, with classifiers to optimize for scene interpretation.

For an example, see Teo et al. (2012) for the use of the statistical language approach 
for interpreting actions in video, where the probabilities of the co- occurrence of quantities 
 were obtained from a large text corpus to generate a sentence description. In addition, the 
lexical database approach has been demonstrated to enable a robot to observe  humans 
performing actions and then subsequently to create descriptions that  will allow the robot 
to execute similar actions (Summers- Stay et al. 2012; Yang et al. 2014). In ter est ing ques-
tions arise when we realize the dialogue for active agents and then construct the models 
dynamically. As the dialogue continues the construction, the additional knowledge intro-
duced into the language space changes the expectation for other concepts. Similarly, 
knowledge creates expectations in the visual space, and thus, it constrains the search space 
for object and action recognition. For example, if  there is a high probability during the 
dialogue that the  human is performing a cutting action, the vision module  will not need 
to run  every object classifier to identify the tool used for cutting; rather, it  will examine 
a small set of cutting tools to determine which tool is being used.  Going even further, 
instead of applying object classifiers it could instead apply procedures that check for the 
appearance of cutting tools.

The cognitive dialogue is also well suited for action interpretation  because actions are 
compositional in nature. Starting from the  simple actions that occur on a part of the body, 
we can compose actions from several limbs to create more complex actions; further, we 
can combine a sequence of  simple actions into activities (figure 14.7). Language can be 
used to further enhance action recognition at the higher levels using the compositions from 
lower levels. Moreover, language can be used to enforce temporal and logical constraints 
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on how actions can be chained together by using a grammar of action (Pastra and Alo-
imonos 2012) that binds sensorimotor symbols (hands, arms, body parts, tools, objects) 
with language. In this case the Reasoner R  will work across all levels, from the bigrams 
of actions to inferring the most likely activity that could be occurring by examining the 
sequence of such bi- grams, using large corpora.

14.4.6 Cognitive Vision Uses Knowledge- Based Control

An essential component of the vision knowledge/language dialogue is that it should guide 
the attention to expected objects, their locations, and their attributes and to the actions in 
the scene. Thus, we need models for the attention mechanism that  will predict the order 
of fixations, specifically to what and where we should allocate the computational resources. 
As an example, Yu et al. (2011) proposed a way to control cognitive dialogue using infor-
mation theory. At all times the system has a goal. This goal can be as  simple as recognizing 
a scene by the objects in it or as complicated as recognizing an activity that is described 
by many quantities. At each time t, the system must utilize what it already knows in order 
to determine the optimal question to ask at step t + 1.

The researchers formulated this technique using Bayesian estimation. The probabilities 
involved come from the accuracy of the visual detectors; the importance of the individual 
quantities in describing the scene or activity is derived from language. At step t + 1, the 
criterion for selecting the appropriate quantity is to maximize the information gained about 
the scene/activity recognition as a result of the response of the added quantity detector. 
This can be modeled by considering the KL divergence between the probability distribu-
tions of detecting the activity on the basis of the quantity detectors at step t and the prob-
ability distribution of detecting the activity upon the addition of a new quantity detector. 
By adding criteria for how to start the pro cess (for example, such as always attending first 
to moving  humans) as well as criteria for finishing the pro cess, we obtain a systematic 
way of carry ing on the dialogue.

14.4.7 Cognitive Vision Senses “Parts of Speech” Operators

 Because the dialogue is carried out in language, it is impor tant for vision to find and 
recognize nouns (objects), verbs (actions), adjectives (attributes), adverbs (manner of the 
action), and prepositions (spatiotemporal relations). In that way, V can search for a “red 
object,” for a “long blue object,” for “the object to the left of the noun,” or for “the action 
before the tomato was picked up.” In this way the operators are the grounding of language 
in perception. For the past several years, the community at large has been working on 
vari ous aspects of this prob lem, such as object recognition, attribute- based recognition, 
action recognition, and prediction (Fermüller et al. 2018).

The cognitive dialogue offers a new way of recognition by making it similar to the 
twenty- questions game; we can ask questions about the object related to its affordances 
or properties (Jamone et al. 2016; Myers et al. 2015; see figure 14.8) in order to recognize 
the object. Segmentation becomes an impor tant operation since it is needed to infer adjec-
tives related to shape (Mishra and Aloimonos 2009; Mishra et al. 2012; see figure 14.9 
and figure 14.10). However, the recognition of verbs remains a challenge.  There has been 
pro gress with a number of data sets; however, we are still far from achieving robust action 
recognition procedures based on visual information alone (Carreira and Zisserman 2017; 
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Damen et al. 2018; Gu et al. 2018; Caba Heilbron et al. 2015; Soomro, Zamir, and Shah 
2012; Sigurdsson et al. 2016).

14.4.8 Cognitive Vision Is Supported by Deep- Learning Techniques

Cognitive vision amounts to a set of pro cesses; some of  these are geometric or photometric, 
while  others interact with reasoning, planning, language, and the motor system. Many of 
 these pro cesses could be implemented in a deep- learning framework. For example, take 
the pro cess of segmentation described in the previous section, in which the analy sis is 
happening in a (log) polar space. In this case we can develop deep networks that are able 
to learn the transformation from Cartesian to polar space (Esteves et al. 2018). In a similar 
fashion, using supervised convolutional neural networks (CNNs), we can learn the appear-
ance of dif fer ent hand grasps that can aid in recognizing manipulation activities (Yang 

Affordance of Object Parts from Geometric Features 

Using hierarchical matching pursuit (M-HMP)

grasp

Raw features

Color
Depth

Normal

Curvature

x Feature 1 Feature 2 Feature 3

Linear SVM

f(x)

Segmentation Hierarchical sparse coding Prediction CRF refinement

wrap-grasp cut scoop contain pound support

Figure 14.8
Using machine- learning techniques, we can employ supervised learning to “color” each pixel with its associated 
affordance. Source: Myers et al. 2015. Bottom: Results from the application of the learned classifier to the images 
of tools.
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et al. 2016). Overall, many of the geometric aspects of cognitive vision can be formulated 
into a deep- learning framework.

Along a dif fer ent path, recent approaches by researchers have utilized the power of deep 
learning to investigate attention, prediction, and semantics. See, for example, Vondrick, 
Pirsiavash, and Torralba (2016) on anticipating visual repre sen ta tions from unlabeled 
video. Regarding semantics, the entities we recognize in a scene are structured in the so- 
called scene description graph (SDG; Aditya et al. 2018), which could be learned using 
deep learning. See, for example, the work of Xu et al. (2015) on neural image caption 
generation with visual attention, which takes one from vision to language.

14.5 Conclusion

It is impor tant to stress that cognitive vision does not exist in isolation as a mechanistic 
system that learns to detect what is where; this is in direct contrast to how vision is pre-
dominantly studied  today. Since the seminal works of Held and Hein (1963), Stein and 
Meredith (1993), and Milner and Goodale (1995) and the stream of experiments on the 
visual coding of space and actions by Graziano, Yap, and Gross (1994), Graziano et al. 
(2002), and Fadiga et al. (2000), it has become evident that, apart from the very early 
pro cessing stages, cognition operates through a unified repre sen ta tion wherein vision and 
other sensory modalities are dynamically merged through action. In this sense, cognitive 

Compositionality and Depth Boundaries

Images
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analysis (filtering)

Texture

Intensity
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Disparity
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3D motion
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3D motionOrdinal depth

Depth Shape

Optical flow
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Optical flow

Motion
occlusions

Depth
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Color
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Texture
boundaries

Binocular
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Figure 14.9
Cognitive vision focuses on the segmentation prob lem. All low- level cues participate in finding the bound aries 
in a compositional manner. Source: From Ogale and Aloimonos 2007.
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vision has to be considered part of an intelligent system that reasons and acts. Thus, it can 
ask questions beyond what and where— such as why, how, who, and many other questions 
(Amy and Song- Chun 2013; Verschure 2012). Cognitive vision does not only address how 
to extract information from images to control actions; it also considers how to synthesize 
visual information by anticipating the effects of actions. As such, cognitive vision intro-
duces more in ter est ing questions, and it points to a new theory for the integration of intel-
ligent systems with perception.

Additional Reading and Resources

•  Cognitive vision can be seen in some recent papers of the current lit er a ture,  under the 
heading of question answering or visual- question answering or visual search. Indeed, to 
answer a question related to an image (or a video) one would need procedures for search 
(matching words to parts of the scene (image or video), procedures for recognizing actions 
as well as their constituents (objects, tools, agents), and procedures for predicting activi-

Step 1: Cartesian to polar with fixation as the pole

Segmenting a fixated object

Step 2: Find the optimal cut through the polar map

Figure 14.10
Top left: The edges of the image shown at the bottom right with a green fixation point. By turning this into a 
polar map, segmentation amounts to finding a top- down contour. Source: Mishra et al. 2012.
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ties. In addition, some form of commonsense background knowledge is required.  These 
operations are examples of cognitive vision. See, for example: 1) Aditya, Somak, Yezhou 
Yang, and Chitta Baral. 2018. “Explicit Reasoning over End- to- End Neural Architectures 
for Visual Question Answering.” In 32nd AAAI Conference on Artificial Intelligence, 
629–637. Menlo Park, CA: AAAI Press; 2) Goyal, Y., T. Khot, D. Summers- Stay, D. Batra, 
and D. Parikh. 2017. “Making the V in VQA  Matter: Elevating the Role of Image Under-
standing in Visual Question Answering.” In Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition. New York: IEEE.
•  This work pre sents the first effort to generate commonsense captions directly from 
videos in order to describe latent aspects such as intentions, attributes, and effects: Fang, 
Zhiyuan, Tejas Gokhale, Pratyay Banerjee, Chitta Baral, and Yezhou Yang. 2020. “Video-
2commonsense: Generating Commonsense Descriptions to Enrich Video Captioning.” In 
Proceedings of the 2020 Conference on Empirical Methods in Natu ral Language Pro-
cessing (EMNLP), 840–860. Association for Computational Linguistics. https:// doi . org / 10 
. 18653 / v1 / 2020 . emnlp - main . 61.
•  Answering questions related to images or video is a prob lem of cognitive vision, and 
research on the issue is expected to flourish in the near  future. The relationship between 
vision, action, and language  will be central to this enterprise: Moens, M.- F., K. Pastra, 
K. Saenko, and T. Tuytelaars. 2018. Vision and Language Integration Meets Multimedia 
Fusion. New York: IEEE.
•  This book chapter by David Vernon is a nice starting point introducing “cognitive vision” 
in the context of visual perception and explaining its role in the context of cognition: 
Vernon, David. 2006. “The Space of Cognitive Vision.” In Cognitive Vision Systems, edited 
by H. I. Christensen and H. H. Nagel, 7–24. Berlin: Springer- Verlag.
•  The relationship between cognitive vision and embodiment is the central theme devel-
oped  here: Vernon, David. 2008. “Cognitive Vision: The Case for Embodied Perception.” 
Image and Vision Computing 26:127–140.
•  This chapter by Sandini et al. is a good starting point for a review of works on the use 
of vision to understand communication signs exchanged through gestures: Sandini, G., 
A. Sciutti, and F. Rea. 2019. “Movement- Based Communication for Humanoid- Human Inter-
action.” In Humanoid Robotics: A Reference, edited by A. Goswami and P. Vadakkepat, 
2169–2197. Dordrecht: Springer Netherlands.
•  This Introduction to Cognitive Robotics course (www . cognitiverobotics . net) has several 
lectures (from fourteen to twenty) devoted to robot vision, with a comprehensive descrip-
tion of the impor tant aspects of vision, which are then put into the context of cognition 
and cognitive architectures.
•  The most commonly used software library for vision research is OpenCV: opencv . org.
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15.1 Introduction

Navigation in cognitive robotics has been strongly influenced by studies on navigation in 
animals. During the  later de cades of the twentieth  century, researchers have focused on 
studying rats’ spatial learning and memory in mazes to help understand the idea of spatial 
cognition for other species, including  humans. The fact that a rat can reach flexible target 
locations effortlessly in complex mazes inspired scientists to determine that the flexible 
movement be hav ior is dependent on an inner map formed in the brain. This inner map can 
reflect the spatial and geometric relations between animals and surroundings. Furthermore, 
by observing animals’ be hav iors, including rats, bats, and more, researchers obtained two 
impor tant findings: 1) animals  were able to successfully return home even when put into 
a seldomly visited place; 2) animals looked for shortcuts. The two findings could verify 
that the inner map made it pos si ble for the evaluation of relative positions and navigation 
from the current position to target places.

By behavioral observation and psychological analy sis, researchers started to study 
animals’ spatial cognition (Tolman 1948) and to understand the spatial cognition abilities 
in complex environments. The concept of a “cognitive map,” proposed by Tolman in 1948, 
has been widely considered to possibly provide the basis for spatial memory and naviga-
tion. In order to reveal how animals construct cognitive maps of environments, studies in 
arthropods found the existence of a highly effective path integration mechanism depending 
on directional heading and distance computations. Then impor tant discoveries about 
spatial cells in mammals demonstrated that the path integration mechanism completed by 
some brain regions is necessary to form inner cognitive maps.  These maps represent the 
topological structures of environments and surrounding landmarks by position coordinates. 
With the discoveries of place cells (O’Keefe and Dostrovsky 1971), head direction cells 
(Taube, Muller, and Ranck 1990), and grid cells (Hafting et al. 2005), neuroscientists 
began to study the mechanisms under lying spatial navigation skills in animals. This 
research became a milestone of cognitive map and spatial navigation research.

The cognitive map mechanism of animals provides good insight to develop bioinspired 
models of spatial cognition for robots. Animals can perform simultaneous localization and 
mapping (SLAM) robustly and effortlessly in daily life. They can also quickly adapt to 
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new dynamic environments and localize themselves. Based on psychological and neuro-
scientific studies on animal spatial navigation, researchers have attempted to create bio-
inspired map building simulations and make the spatial navigation of mobile robots more 
flexible and robust (Milford, Wyeth, and Prasser 2004). The target is to make more stable 
and general intelligent navigation systems for robots to increase the capabilities of auton-
omy and operation flexibility.

15.2 From Psy chol ogy to Neuroscience

In the 1930s, E. C. Tolman started to research cognitive behavioral psy chol ogy by observ-
ing rats  running in vari ous types of mazes. Experiments showed that rats could plan paths 
with fewer and fewer  mistakes  until they fi nally completed the correct path planning. Thus, 
Tolman concluded that  there is one kind of inner  mental knowledge structure in an animal’s 
brain that stores information according to the animal’s position in the environment. Tolman 
(1948) then proposed the concept of the cognitive map in 1948. The key findings of the 
cognitive map include latent learning and spatial learning. Latent learning means that the 
rats learn about the structure of the maze without getting a food reward and can quickly 
plan the optimal path in the maze once food is given. And in the sunburst maze, the rats 
first learn to plan specific paths according to dif fer ent rewards. If the planned path is 
blocked, they can still find an optimal path they have not previously experienced. This 
ability has been called spatial learning. The cognitive map theory directly sets the stage 
for studies about how space is represented in the brain.

Neurophysiological experiments have helped to verify Tolman’s cognitive map theory 
and have searched for the neural basis of the cognitive map mechanism in animals’ brains 
from neural structures and cell activities. In one such prominent and successful experiment, 
Hubel et al. (Hubel and Wiesel 1959, 1977) inserted electrodes into specific brain regions 
of awake animals and  were able to observe and rec ord neurons’ activities in the cortex. 
They demonstrated that animals’ specific functional be hav ior can be understood by neural 
activity and the interaction between neurons.  After that, extensive neuroscience research 
studies at the neuron and synapse level  were carried out to establish the relationship of 
synaptic physiology and animal be hav ior. Based on the advancement of neurophysiologi-
cal experimental techniques, early research on the hippocampal region provided good 
insight and resulted in widespread agreement that the hippocampus is an impor tant region 
for encoding and maintaining memories. In another set of studies, neuroscientists  were 
motivated to associate specific individual be hav iors with neuronal population activities in 
specific brain regions, including the hippocampus. A series of studies about special firing 
patterns of cells in the hippocampus and the surrounding regions  were performed to unveil 
the spatial cognition and navigation mechanism in animal brains. In  these studies, when 
rats moved into controlled maze environments, the activity of a single neuron or a neural 
population (mainly in the hippocampus and surrounding areas) was recorded through an 
electrode inserted into a specific brain region. The accumulated experimental results led 
to the discoveries of multiple types of cells responsible for inner cognitive mapping.  Every 
type of cell shows specific firing patterns for encoding the environment and thus plays an 
impor tant role in animals’ spatial cognition.
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Place cells  were discovered by O’Keefe and colleagues in the 1970s (O’Keefe and 
Dostrovsky 1971).  These cells are in the hippocampus and fire consistently when a rat is 
at a par tic u lar location in the environment. The firing cell signals recognition of a specific 
place in an environment, known as the cell’s “place field.” It is suggested that thousands 
of place cells, covering the surface of any space, act as a mapping system in the hippo-
campus to create a cognitive map (O’Keefe and Nadel 1978). Each place cell receives two 
dif fer ent inputs, one external input about environmental stimuli and external events and 
an internal input from an inner- path integration system based on its self- motion.

In the 1980s, Ranck (1984) observed strong directional tuning when cellular activity 
was recorded from the pre-  and parasubiculum regions.  These direction- tuned cells  were 
also discovered in other brain regions (Taube 2007), such as the medial entorhinal cortex 
(MEC; Sargolini et al. 2006).  These cells respond to an animal’s head direction and are 
called head direction cells. They only fire when the rat’s head is at specific orientations. 
All orientations are represented by the head direction cell population. About thirty years 
 after the discovery of the place cell, grid cells  were discovered in the entorhinal cortex 
(EC) by Edvard I. Moser (Fyhn et al. 2004). Grid cells show the properties most like place 
cells but have multiple firing fields (figure 15.1)— that is, they can fire in a metrically 
regular way on the  whole surface of a given environment. The firing fields of  these cells 
have been demonstrated to be in a hexagonal pattern. In fact, a single grid cell  will fire 
when the rat is located at any of the vertices of a tessellating hexagonal pattern. Grid cell 
firing appears to be a signal used for mea sur ing displacement distances and direction—in 
other words, a “metric.” Grid cells differ from each other in grid spacing, phase, and 
orientation (Hafting et al. 2005; Fyhn et al. 2004), and the spacing of grid cells increases 
along the dorsal- ventral axis of the EC (Brun et al. 2008).

In the same parahippocampal brain regions are additional cells, called border cells, 
related to spatial mapping. The border cells can achieve responses when the animal is near 
a boundary of the local environment (Solstad et al. 2008; Savelli, Yoganarasimha, and 
Knierim 2008). Boundary- related cells have also been recorded in the subiculum, which 

a b

Figure 15.1
(a) The path on which the rat traveled in a square maze and the firing of a grid cell. (b) The firing rate of the 
grid cell at each place. Source: Moser and Moser 2007.
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indirectly links the feedback from CA1 to the MEC, the presubiculum and parasubiculum 
(Lever et al. 2009).

Neuroscientific experiments show us a number of neural repre sen ta tions of the inner 
cognitive map. They might have innate connection circuitries and together could constitute 
a metric navigation system: head direction cells are responsible for direction tuning; grid 
cells play the impor tant roles in path integration; border cells are used for evaluating 
vicinity to bound aries, and place cells are taken as the place repre sen ta tion. The discovery 
of spatial cells made the cognitive map theory more dominant in spatial cognition research.

15.3 Computational Theories on Robot Spatial Cognition

15.3.1 Path Integration

Path integration means to estimate positions and plan paths to targets via the continuous 
integration of movement cues such as directional heading and distance over the  whole 
path. Inspired by animal be hav iors, head direction cells are responsible for orientation 
tuning, grid cells can execute path integration, and place cells contribute to representing 
places. In order to build cognitive maps, outputs from head direction cells are first 
considered as the input signals for grid cells, then place cells and grid cells provide a 
population- encoding method for path integration. Most researchers have reached a 
consensus on this topic, but a few impor tant questions still rise: How do we simulate 
the direction- tuning characteristic of head direction cells? How do we provide grid- 
cell- encoding methods for path integration? How do we represent place cells using grid 
cells?

Direction tuning
Information pro cessing in biological systems is generally considered to be nonlinear 
dynamic and can be implemented by neural networks. Stable, per sis tent activity has been 
thought impor tant for neural computation. Amit (1989) suggested that per sis tent neural 
activity in biological networks is a result of dynamical attractors in the state space of 
recurrent biological networks. This study resulted in the increasing popularity of using 
attractor networks in neuroscientific simulation and biologically inspired system building. 
In addition,  there was evidence that many brain areas act as attractor networks ( Wills et al. 
2005), including the hippocampus and the entorhinal cortex.  Because of the association 
with the ability to continuously track changing stimuli in certain brain regions, continuous 
attractor dynamics are widely used for brain mechanism simulation (McNaughton et al. 
1996; Trappenberg 2002).

Simulations of head direction cells can be or ga nized in a ring attractor and modeled as 
a one- dimensional continuous attractor network (CAN). In this network, the head’s angular 
velocity (inner signals provided by other brain regions) is integrated for head direction 
repre sen ta tion updating. The rat’s turning range (360°) is evenly discretized into N parts 
that correspond to N neurons, and each neuron has weighted connections to  others, as 
shown in figure 15.2 (Skaggs et al. 1994). The connection strength decreases with increas-
ing distance between neurons and active neurons, and then only one direction is focused 
at each time point. Activity in one part of the ring is initialized by visual input from visual 
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cells. When the animal turns its head, sensory inputs (mainly from the vestibular region) 
can detect the change that activates rotation cells and cause activity bumps to move in the 
appropriate direction around the ring, keeping the repre sen ta tion concordant with the real 
head direction (Calton et al. 2008; Knierim and Zhang 2012).

Path integration
Currently, some proposed computational models of grid cells include oscillatory interfer-
ence (OI) models (Burgess 2008; Zilli and Hasselmo 2010) and CAN models (Fuhs and 
Touretzky 2006; Burak and Fiete 2009). In OI models, the grid pattern arises from several 
oscillators with slightly dif fer ent frequencies around the theta frequency (Blair, Welday, 
and Zhang 2007; Burgess, Barry, and O’Keefe 2007). The key requirement is that the 
frequency is modulated by the animal’s velocity.  Under appropriate conditions, the beat 
frequencies of the interference patterns cause a cell to reach its firing threshold whenever 
the rat is at the grid vertex. The key assumptions of oscillatory models have been experi-
mentally challenged  because theta oscillations have not been observed in fruit bats (Yartsev, 
Witter, and Ulanovsky 2011) and macaque monkeys (Killian, Jutras, and Buffalo 2012), 
despite robust grid cell activity having been recorded in both species.

A grid cell model with a single grid scale based on CAN models was proposed (Burak 
and Fiete 2009) to perform path integration with noise- free velocity inputs. Based on dif-
fer ent spacing in grid cells, a grid cell model with multiple grid scales is required for the 
path integration. In this case, neurons are often arranged in a two- dimensional neural sheet. 
Recurrent connectivity among neurons with global inhibition leads to random patterns of 
population activity that spontaneously merge into or ga nized “bumps” of grid cell popula-
tion activity. A response from the grid cell can be obtained by accumulating the firing 
activity of a single neuron over a full trajectory. The most remarkable pro gress in the field 
(Burak and Fiete 2009) has been to accurately integrate velocity inputs into grid cell 
models.

Head direction cell

Rotation cell (left)Rotation cell (right)

Vestibular cell (left)

Vestibular cell (right)

Visual cell

EastWest

North

South

Figure 15.2
One- dimensional CAN modeling head direction cell. Source: Skaggs et al. 1994.
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From grid cell to place cell
Functionally, path integration can be accomplished by grid cells driven by the rat’s moving 
velocities in par tic u lar directions. Anatomically, the majority of the principal cells in layers 
II and III of the MEC have grid properties (Sargolini et al. 2006), and  there is a strong 
projection from the MEC to the hippocampus. Therefore, place cell activities might have 
been, at least partially, generated in response to stimulation from grid cells. As the size 
and spacing of grid patterns increase from small in the dorsal MEC to large in the ventral 
MEC (Fyhn et al. 2004; Hafting et al. 2005), it is believed that the input for place cells 
comes from a combination of several grid cells. Linear combinations of grid fields are 
generally used for generating firing fields of place cells (O’Keefe and Burgess 2005; 
Hafting et al. 2005; McNaughton et al. 2006; Solstad, Moser, and Einevoll 2006). Although 
other mechanisms, such as feedback inhibition of place cells, can achieve similar results 
(Monaco and Abbott 2011), linear- combination- based models are easy to implement and 
widely employed. As each place cell receives a subset of grid cells as its input afferent, a 
learning algorithm is required to do se lection. Since Hebbian learning is commonly accepted 
as a biologically plausible theory for synaptic adaption, it was chosen to determine the 
connection weights between the place cell and grid cell input (Hu et al. 2016). Furthermore, 
the learning per for mances of dif fer ent variations of Hebbian learning have also been com-
pared, and potential mechanisms to improve the learning pro cess have been discussed.

Dif fer ent learning rules have been tested, and the experimental results are shown in 
figure 15.3 (Hu et al. 2016). The presynaptically gated learning shows better results with 
fewer bumps. The gated input stimulation removes the enhancement of unnecessary inputs 
from grid cells. The introduction of a spatial- learning win dow weakens stimulation from 
unnecessary afferents and enhances certain inputs that contribute most to place cells. 
Hebbian learning refines the place cell activity to fewer bumps, but place cells tend to 
have more and more bumps during learning without a mechanism to prevent multiple 
bumps. Therefore, a circle- shaped learning win dow is applied to the learning pro cess so 
the number of bumps can be reduced. As shown in figure 15.3, only two bumps are left 
with the help of the spatial- learning win dow. To further explore the effect of learning, 
synaptic weights are examined from grid cells to place cells  after learning. Initially, syn-
aptic weights from grid cells to place cells are randomized with a normal distribution. As 
learning proceeds, synaptic weights from contributing grid cells to corresponding receiv-
ing place cells are enhanced.  After learning, each place cell is expected to be strongly 
connected to a subset of grid cells.

One should notice that the current network structure has been simplified. In the current 
setting, grid cells in the same neuron sheet share the same synaptic weights as place cells. 
One should notice that stimulation from grid cells provides only partial information for 
place cells. Other sensory information, such as visual, auditory, and olfactory signals, may 
also affect the learning pro cess.

15.3.2 Cognitive Map Building

Evidence has revealed that rats can correct accumulative movement errors in path integra-
tion when they meet salient landmarks (McNaughton et al. 2006). When a rat returns to 
a familiar environment, the path integrator should be reset to adjust to the perceived 
environment (Moser, Kropff, and Moser 2008). However, it remains unclear how the brain 
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senses and transforms external sensory inputs into an internal cognitive map (Burak and 
Fiete 2009). The cognitive map theory has continuously inspired impor tant advances in 
robotic mapping and navigation. The multimodal integration of visual place cells and grid 
cells has been proposed to enhance robot localization (Cuperlier, Quoy, and Gaussier 2007; 
Jauffret et al. 2012).

Milford et al. made significant pro gress in emulating the spatial navigation ability of 
the hippocampal system by building a semimetric topological map in a very large area 
(Milford and Wyeth 2008, 2010). In their work, the core model, RatSLAM, has been 
demonstrated to build maps si mul ta neously in large and complex environments. It emu-
lates the rat’s spatial- encoding be hav ior using three key components: the pose cells that 
are analogous to the rodent’s conjunctive grid cells, the local view cells that provide the 
interface to the robot’s sensors in place of the rodent’s perceptual system, and the experi-
ence map that functionally replaces place cells. Each local view cell is associated with a 
distinct visual scene of the environment and activated when the robot sees that scene. A 
CAN is built for pose cells to encode the estimate of the robot’s pose. Each pose cell is 
connected to proximal cells by excitatory and inhibitory connections with wrapping across 
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Figure 15.3
Neural activities of place cells with dif fer ent learning algorithms. Source: Hu et al. 2016.
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all six  faces of the network. Intermediate layers in the xy plane are not shown. The network 
connectivity leads to clusters of active cells known as activity packets. Active local view 
and pose cells drive the creation of experience nodes in the experience map, a semimetric 
graphic repre sen ta tion of visited places in the environment and their interconnectivity. 
RatSLAM is an attempt to build a practical robotic system to take advantage of the spatial 
navigation mechanism highlighted by studies of the rat brain. It can perform well for some 
challenging prob lems in robotic navigation. The maps based on RatSLAM are less accu-
rate than  those of traditional SLAM systems, but its flexibility can help to cope with noisy 
input, deal with a changing environment, and accommodate increasing complexity. The 
cognitive map building mechanism in bioinspired SLAM  will create a new generation of 
lightweight and low- cost mapping and navigation systems to be deployed in the robotic 
navigation field for real and large environments.

In 2013, Steckel and Peremans (2013) proposed a biomimetic navigation model named 
BatSLAM, which can solve simultaneous localization and map tasks with a biomimetic 
sonar mounted on a mobile robot. They analyzed the per for mance of the proposed robotic 
implementation operating in the real world and concluded that the biomimetic navigation 
model operating on the information from the biomimetic sonar can allow an autonomous 
agent to map unmodified environments efficiently and consistently. This showed that 
consistent topological maps with semimetric properties can be constructed using only 
motor commands and biomimetic sonar “fingerprints.” Furthermore, if  these sonar “fin-
gerprints” are sufficiently informative,  there is no requirement for further interpretation 
of them in terms of discrete objects positioned in the environment.

In 2015, Silveira et al. (2015) presented a new bioinspired algorithm for underwater 
SLAM called DolphinSLAM, which extended the successful previous RatSLAM approach 
from 2D ground vehicles to 3D underwater environments. The proposed model uses a 
neural network model to localize and deal with low- resolution monocular images and 
imaging sonar data, in contrast to other available navigation systems that focus on proba-
bilistic methods and occupancy grids. The model is composed of six modules: the prepro-
cessing module, the local view recognition module, the motion detection module, the 3D 
place cells network module, and an experience map module. It has the par tic u lar advantage 
of being an appearance- based navigation system that can work well with low- resolution 
sonar and visual image data, in contrast to other available navigation underwater systems 
that focus on probabilistic methods.

Together with sensory- information pro cessing, grid and place cells are considered to 
afford animals with an innate sense of the world around them. Inspired by the path integra-
tion mechanism of grid cells, Yuan et al. (2015) proposed a cognitive map model 
(figure 15.4), simulating grid and place cells for path integration and place repre sen ta tion. 
Visual cues are used for the error correction and cell population activity, resetting when 
loop closures are detected. Depth information in visual cues is invariant to lighting condi-
tions and makes some similar indoor scenes more distinguishable. A comparison between 
image profiles is performed for each pair of incoming RGB and depth frames for loop 
closure and new scene detection. More details can be found in Tian et al. (2013).

In this work the cognitive map contains a set of spatial coordinates that the robot has 
experienced in its past travels. The robot’s spatial coordinates are calculated from place 
cell population activities, which are generated from a subset of grid cell population activi-
ties. Nodes in the cognitive map are constructed by associating the major peak of the place 
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cell population activities with corresponding visual cues and locations being denoted as 
visual experiences. Algorithm 1, below, shows the cognitive map building pro cess. The 
incoming visual inputs are compared with past visual experiences. If the latest input 
matches the previous visual experience, it is considered a familiar scene that the robot has 
previously seen. The status of the grid cell population activities and the place cell popula-
tion activities is then reset to the previous matched visual experiences. The current visual 
input and the matched visual experience are merged into the same experience. Other wise, 
a new visual experience is created. Once a loop closure is detected, the map  will be 
adjusted to the recalled visual experiences.

Algorithm 1. The Cognitive Map Building Algorithm
Input: Raw odometry data from wheel encoders and visual images from the RGB- D sensor (1)
Output: Cognitive map
Begin: Calculate grid cell population activities (2)

Calculate place cell population activities (3)
Obtain one major peak of place cell population activities
Perform visual profile comparison (4)
if the incoming visual input matches the previous visual experiences
then perform resetting and map correction (6)
 else create a new visual experience (5)
end if

End

...

...

Self-motion
(Raw odometry)

w eh i

w eh 1

w
eh N

Place cells

Visual calibration

Resetting

(1)

(4)

ASUS Xtion Pro Live

(2)

Grid cells

Path
integration Cognitive map

(3)

Figure 15.4
The system architecture of a cognitive map building model. Source: Yuan et al. 2015.
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A cognitive map for a large office environment of 35 m × 35 m on a mobile robot was 
built to validate the effectiveness of the proposed model (for more details of the pa ram e ter 
setting and platforms, see Yuan et al. [2015]). Figure 15.5 demonstrates the experimental 
results. Row A shows the dead- reckoning map obtained from the robot odometry. Obvi-
ously, this map cannot represent the environment properly. Row B shows the cognitive 
map based on the proposed computational model. With visual inputs, the system can suc-
cessfully perform loop closure detection and correct the odometry drift. Fi nally, it gener-
ates a cognitive map that encodes both topological and metric information. In Row C, the 
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blue dotted line shows the real trajectory traveled by the robot, and the red crosses indicate 
the firing locations of the grid cell located at (20, 20) in the twenty- first layer of the neural 
sheets. Row D shows the per for mance of maps corresponding to dif fer ent rates. To gener-
ate the rate map, a spatial smoothing algorithm with a Gaussian kernel, as described in 
Hafting et al. (2005), is  adopted with a bin size of 0.5 m × 0.5 m.

It is a significant challenge to build robust SLAM systems in dynamical large- scale envi-
ronments. Inspired by findings in the entorhinal- hippocampal neuronal cir cuits, Zeng and Si 
(2017) proposed a cognitive mapping model that includes continuous attractor networks 
of head- direction cells and conjunctive grid cells to integrate velocity information by 
conjunctive encodings of space and movement. Visual inputs from the local view cells in 
the model provide feedback cues to correct drifting errors of the attractors caused by the 
noisy velocity inputs. The key components of the proposed model include head direction 
(HD) cells, conjunctive grid cells, and local view cells. Both HD cells and conjunctive 
grid cells are modeled by continuous attractor networks that operate on the same princi-
ples. The conjunctive repre sen ta tions of space and movement allow the networks to reach 
stable states for all movement conditions. And the proposed model is robust in building a 
coherent semimetric topological map of the entire urban area using a monocular camera, 
even though the image inputs contain vari ous changes caused by dif fer ent light conditions 
and terrains.

Animals such as birds and bats possess superlative navigation capabilities, robustly 
navigating over vast three- dimensional environments and leveraging an internal neural 
repre sen ta tion of space combined with external sensory cues and self- motion cues. Yu 
et al. (2019) presented a novel, neuroinspired 4- DOF (degrees of freedom) SLAM system 
named NeuroSLAM for mapping and localization in large, real- world three- dimensional 
environments that integrated with a vision system that provides external visual cues and 
self- motion cues. In this model, the robot’s state of a 4- DOF pose (x, y, z, yaw) in 3D 
environments is represented by the activity in the 3D grid cell network and the multilay-
ered head direction cell network, conjunctively. The conjunctive pose cell network per-
forms path integration on the basis of the self- motion cues and performs calibration based 
on the local visual cues. The approaches to the creation and relaxation of the multilayered 
graphic experience map are based on the combination of local view cells, conjunctive pose 
cells, and 3D visual odometry. The 3D multilayered experience map generated by the 
NeuroSLAM system can be learned and generated when the robot visits unknown environ-
ments. It can also be incrementally maintained and updated based on the learning and 
recalling mechanism. The 3D spatial experience nodes represent a 4- DOF pose in a spe-
cific 3D location, and the links contain distances and directions between nodes. This metric 
and topology information can be used for 3D path planning and guidance control in 3D 
environments. It is likely that map maintenance routines could also be deployed to ensure 
long- term map stability as well as computation and storage viability.

The computational mechanisms of mammalian brains in integrating dif fer ent sensory 
modalities  under uncertainty for navigation are enlightening for robot navigation. Zeng 
et al. (2020) proposed a concise yet biologically plausible model integrating visual and 
vestibular inputs, NeuroBayesSLAM, based on spatial cognitive mechanisms of mam-
malian brains to solve the SLAM prob lem. The proposed model successfully built coherent 
cognitive maps in both large- scale outdoor and small indoor environments. In the model, 
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the pose of the robot is encoded separately by two subnetworks— namely, a head direction 
network for  angle repre sen ta tion and a grid cell network for position repre sen ta tion, using 
the similar neural codes of head direction cells and grid cells observed in mammalian 
brains. The neural codes in each of the subnetworks are updated in a Bayesian manner by 
a population of integrator cells for vestibular cue integration, as well as a population of 
calibration cells for visual cue calibration. The conflict between the vestibular cue and 
visual cue is resolved by the competitive dynamics between the two populations. The 
model successfully builds semimetric topological maps and self- localizes in outdoor and 
indoor environments with dif fer ent characteristics, achieving a per for mance comparable 
to previous neurobiologically inspired navigation systems but with much less computation 
complexity. The proposed multisensory integration method constitutes a concise yet robust 
and biologically plausible method for robot navigation in large environments. The model 
provides a  viable Bayesian mechanism for multisensory integration that may pertain to 
other neural subsystems beyond spatial cognition.

One should note that in most experiments (Burak and Fiete 2009; Zilli and Hasselmo 
2010), velocity inputs are extracted from ground- truth trajectories. However, for animals 
or autonomous mobile robots, accumulated errors are inevitable. In the above model, 
velocity inputs  were extracted from idiothetic wheel encoders to drive CAN- based grid 
cell population activities, and accumulated errors exist in raw odometry data. Together 
with visual cues for loop- closure detection and map correction, the model can produce an 
accurate repre sen ta tion of the environment and contributes to developing, innovative 
robotic spatial cognition approaches (Huang, Tang, and Tian 2014; Milford and Wyeth 
2010), showing the potential for machines that mimic more complex activity in the brain.

15.3.3 Cognitive Navigation

 Humans and animals have an instinctual ability to navigate freely in environments. However, 
it is a challenging task to endow a robot with this ability, as a robot needs to be integrated 
with several functional mechanisms, such as scene understanding, mapping, self- localization, 
obstacle avoidance, dead reckoning and path planning (Brooks 1999; Thrun 2002). Discov-
eries of spatial cells and the development of the cognitive map theory motivate researchers 
to use biologically plausible princi ples for acquiring, storing, and maintaining spatial 
knowledge and to explore biologically inspired navigation strategies for robots.

The use of “directions” as guidance has been raised in several studies. Méndez (2012) 
presented a spatial conceptual map framework to transfer cognitive  human navigation 
be hav iors to an artificial agent, which can generate route directions similar to  those created 
by  humans. This conceptual map was modeled as three levels of interconnected graphs to 
simulate  human spatial reasoning. However, this navigation system was only tested in a 
simulation environment. A method for modeling environments from a route perspective 
was discussed in Saiki et al. (2011). The route perspective is defined as a  mental tour of 
an environment, which is represented by a person when they are walking around the area. 
When describing an environment in this perspective, the terms regarding relative directions 
such as left and right are used. Another perspective is known as a survey perspective, which 
describes an environment from a top view where routes and landmarks are known in 
advance.
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A navigation strategy considering both the route and survey perspectives, called 
direction- driven navigation, was presented by Shim et al. (2014). The directions extracted 
from a cognitive map denote the use of the survey perspective, while the execution of the 
directions by a mobile robot in a real environment implies the involvement of the route 
perspective. When traveling to a target destination, the robot is guided by a direction- 
driven be hav ior, such as following the directional guidance from someone  else or from 
GPS, instead of closely following a global or local path.

The system architecture of the proposed navigation system is presented in figure 15.6, 
consisting of three main components: cognitive map building, a grid- based direction planner, 
and multilayered asymmetrical local navigation. The proposed grid- based direction planner 
(as global planner) and multilayered asymmetrical local navigation (as local planner) con-
struct the direction- driven navigation system. The global planner plans a global path con-
necting its current location and the final goal destination. The local planner creates a local 
path, connecting the current location to a local goal destination, which follows the global 
path closely. Initially, images are captured by a vision sensor, and odometry is obtained from 
the mobile base. They are assisted by a CAN (McNaughton et al. 2006), which constructs 
the cognitive map of the environment.

By analyzing the constructed map, the movement directions can easily be extracted in 
the form of “moving forward,” “turning left,” “turning right,” and “making a U- turn.” The 
grid- based direction planner provides directional guidance at junctions for guiding the 
robot to a target location. The robot compares its current visual cues to the templates 
associated in the cognitive map in order to localize itself. It should be noted that the 
localization is crucial, as a bad localization may lead the direction planner to give wrong 
directions. Given a direction, the navigation system executes the corresponding action only 
when it conforms with real conditions. For example, the robot  will not execute the “turning 
right” instruction when the right junction is not detected.
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Figure 15.6
System architecture of the direction- driven navigation system. Source: Shim et al. 2014.
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Other wise, the proposed multilayered asymmetrical local navigation module is used to 
control the velocity and turning rate of the robot to guarantee a safe motion such as obstacle 
avoidance. A  laser range finder is used as the sensor input to the local navigation module.

15.3.4 Beyond Spatial Navigation

 Humans have an innate ability to explore, map, and navigate in unknown environments 
while si mul ta neously performing variant tasks. However, current technology is still far 
from producing a robotic servant to perform daily tasks in unstructured environments. 
Taking the task of serving milk tea as an example, when one  orders a cup of milk tea, a 
robotic servant needs to understand the environment first before performing a sequence 
of preparatory actions at specific locations. This is a common task requiring the cognitive 
map and episodic memory (Buzsáki and Moser 2013), and both components play impor-
tant roles for  humans to perform spatiotemporal tasks. The cognitive map can provide 
internal spatial repre sen ta tions of the environment, and episodic memory for  humans to 
learn cognitive tasks through self- experiences and then plan the actions accordingly. Bio-
logically, the entorhinal- hippocampal region is necessary for cognitive maps and episodic 
memory, though it may not be sufficient (Fyhn et al. 2004; Hafting et al. 2005; Tulving 
and Markowitsch 1998). Functionally, the cognitive map and episodic memory form the 
main technologies for robotic spatial cognition. Some work has been accomplished in this 
field (Fleischer et al. 2007; Krichmar et al. 2005). The integration of the cognitive map 
and episodic memory can make the per for mance of the robotic system more brain- like. 
The cognitive map- based SLAM approaches have been successfully applied to mobile 
robots in real- life environments (Tian et al. 2013; Shim et al. 2014; Yuan et al. 2015). The 
cognitive map interfering with cognitive memory has been explored by computational 
modeling and applied to robotic applications (Tang et al. 2017; Hu et al. 2016).

Integrating cognitive navigation with episodic memory
Episodic memory endows  humans with the ability to respond to salient events in a tem-
poral sequence (Moser, Kropff, and Moser 2008) and recall them sequentially (Tulving 
and Markowitsch 1998). Though episodic memory has been studied for de cades in psy-
chol ogy and neuroscience, recently, researchers have started to build models of episodic 
memory for intelligent systems. A few studies have developed episodic memory models 
for cognitive robots using designed data structure to simulate the functionality of episodic 
memory (Endo 2008; Stachowicz and Kruijff 2012; Jockel, Westhoff, and Zhang 2007). 
A cognitive memory network plays the role of episodic memory and is involved in naviga-
tion through recalling travel experiences, as shown in figure 15.7. This enables a robot to 
recognize and memorize dif fer ent locations while storing and recalling the correct sequence 
to accomplish a task. This system takes advantage of the autoassociation of the memories 
through neural activities, which can achieve better flexibility and generalization abilities 
compared to data structure– based models relying on explicit symbolical knowledge pro-
gramming. The details of the cognitive map can be found in Tang, Yan, and Tan (2018).

Episodic memory
As shown in figure 15.7, a dual network model for the CA3 region in the hippocampus is 
used for encoding and representing episodic memory (Tang, Yan, and Tan 2018). Both 
networks have synchronized gamma cycles as they share common inhibitory neurons. The 
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episodic memory network stores the active sequence in its synaptic weights before trans-
ferring them to the neocortex. During recall, a cue consisting of the first two items in the 
desired sequence is presented to the neocortex, which  will then reproduce the rest of the 
stored sequence. The output sequence  will only be produced once and  will not be repeated. 
The main steps  will be discussed as follows:

1) Storage: the storage of a memory sequence is first demonstrated by introducing seven 
distinct items in the memory sequence to the CA3 short- term memory network. Each item 
is introduced to the network at the trough of the theta rhythm, and the network  will repeat 
this value near the peak of each subsequent oscillation. Once the entire sequence has been 
fully introduced to the short- term memory network, the sequence is presented to the epi-
sodic memory network for storage.  Here, the sequence is repeated a few times in its 
entirety  until the episodic memory network can learn and store the sequence by updating 
synaptic weights. Once the storing phase is completed, the amplitude of theta rhythm is 
reset to zero to stop the function of short- term memory.

2) Retrieval: in the retrieval phase, the first two items in the memory sequence are 
presented directly to the neocortex as a retrieval cue.  After receiving the cue, the pyramidal 
cells representing the first two items  will fire and transmit the action potentials down 
through synaptic connections to subsequent memory items. Synaptic inputs from the firing 
of the first two memory items are sufficient to trigger the firing of the next memory item 
but insufficient for other items. Next, the cumulative synaptic inputs from the firing of the 
first three memory items trigger the firing of the fourth memory item. The pro cess con-
tinues  until the entire sequence has been triggered. Hence, the stored sequence memory 
is retrieved.

Exploration and navigation
The proposed architecture is verified based on a mobile robot platform Neco in a labora-
tory environment and a convention hall environment. The robot is equipped with sonar 
sensors and  laser scanners for obstacle avoidance, maintaining a straight path, and detecting 
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turns and junctions. Neco is programmed to conduct five types of motion: moving forward, 
turning 90° right, turning 90° left, turning 180°, and then stopping at intersections and stop-
ping at the end. In the task mode,  after decoding the neural signals to grid indexes, the memory 
in CA3 is converted to a sequence of target locations on a cognitive map. Based on the current 
and target position, a sequence of motion types from the motion pool is generated to guide 
the robot from its current position to the target position. The navigation combines egocentric 
local obstacle avoidance and the allocentric global cognitive map. Local navigation is based 
on data collected directly from sensors, and global navigation is the path planning inside a 
self- generated global map.

To put the architecture in the real world, a task named “serving milk tea to guest” was 
performed. We simplified a living- room environment into a 4 m × 4 m maze, as shown in 
figure 15.8a. The “cup,” “tea,” “hot  water,” and “milk”  were placed in dif fer ent locations. 
The  actual experiment with trajectory data is shown in figure 15.8b.

This system offers the capabilities of navigating and mapping in a spatial environment 
as well as storing and retrieving high- level episodic memories and can be applied to solve 
high- level ser vice robot tasks. This work would also contribute to developmental robotics 
by providing a neurophysiological cognitive architecture.

15.4 Conclusion

In this chapter, we presented the development history and the state- of- the- art and elemen-
tary components of spatial navigation from the bioinspired perspective, mainly focusing 
on spatial cells, the cognitive map, and navigation. Next we list some valuable  future 
research directions in biologically inspired spatial cognition and navigation as references 
for readers.

Multi- map mechanism Rat studies indicate that the brain hosts multiple cognitive 
maps representing dif fer ent subsets of the environment at dif fer ent times and scales. Maps 

a b
3.5

3

2.5

2

13

9

5 6 7 8

10 11 12

14 15 16

Route 1
Route 2
Route 3
Route 4
Back

1 2 3 4

1.5

1

0.5

–0.5
–3 –2.5 –1.5 –0.5 0.5–2 –1 0

0

Figure 15.8
(a) The maze environment for the “serving milk tea to guest” experiment. The required items are placed in dif-
fer ent locations in the maze. The arrows indicate the sequence of the action order. (b) The  actual experiences 
trajectory of the mobile robot in the “serving milk tea to guest” task. Task 1 is to get a cup, task 2 is to get the 
tea, task 3 is to fill the cup with hot  water, and task 4 is to add milk.

Downloaded from http://direct.mit.edu/books/book-pdf/2239475/book_9780262369329.pdf by guest on 30 September 2024



Cognitive Robot Navigation 311

can be stored and retrieved within a few hundred milliseconds or quickly remapped when 
environments change or some actions are taken. A  future major objective may be to deter-
mine how the multiple maps interact with each other and how spatial cells and other  factors 
in the brain contribute to the spatial mapping dynamics. A more comprehensive architec-
ture for space repre sen ta tion and bioinspired navigation  will hopefully be developed.

Spatial memory By pro cessing inner and environmental signals, the brain can encode 
and store spatial information for  future retrieval. Research on spatial memory is an ongoing 
topic in the neuroscience and computer science communities. The input signals can be 
self- movement signals from the vestibular system, visual information, tactile information, 
and olfactory and auditory cues. Spatial memory can be stored at several levels, including 
working memory, short- term memory, and long- term memory. The inner cognitive map 
in the brain and spatial memory can be integrated to help the robot complete very complex 
cognitive tasks.

AI and cognitive navigation The firing patterns of spatial neurons in the brain shed 
new light on spatial navigation research. What ever form the cognitive map takes, a broad 
consensus has emerged that spatial cognition and learning can be achieved through a priori 
and inherent patterns in the brain. In addition, artificial intelligence (AI) studies demon-
strate that  these a priori patterns can be obtained through pretraining with large data sets 
and many learning epochs. So the pretraining design may be an impor tant  future research 
direction. Recent studies, such as the curiosity model and the Bert language model, show 
us how to design pretraining for a priori structure generation.

Nonspatial cognitive task The exploration of spatial cognition provides  great inspira-
tion to study many nonspatial cognitive tasks. For example, language reflects a  human’s 
ability to use and control signs and can be correlated to spatial cognition: signs correspond 
to spatial points (or spatial cells), and language corresponds to spatial navigation. If the 
relationship between spatial cells and navigation can be abstracted as a general cognitive 
mechanism, maybe we can try to model signs and language from another novel aspect. In 
an abstracted map with signs, the movement is no longer an action from one point to 
another in Euclidean space but may be a logical- thinking flow.

Additional Reading and Resources

•  This book is the key publication presenting the hippocampal- based approaches to robot 
navigation and the RatSLAM approach: Milford, Michael. 2008. Robot Navigation from 
Nature: Simultaneous Localisation, Mapping, and Path Planning Based on Hippocampal 
Models. Vol. 41. Berlin: Springer Science and Business Media.
•  This book gives a comprehensive overview of  human spatial navigation: Ekstrom, 
Arne D., Hugo J. Spiers, Véronique D. Bohbot, and R. Shayna Rosenbaum. 2018.  Human 
Spatial Navigation. Prince ton, NJ: Prince ton University Press.
•  This paper provides a recent analy sis of the neurobiology of mammal navigation: 
Poulter, Steven, Tom Hartley, and Colin Lever. 2018. “The Neurobiology of Mammalian 
Navigation.” Current Biology 28 (17): R1023– R1042.
•  Accessible code for RatSLAM: https:// github . com / davidmball / ratslam.
•  Accessible code for NeuroSLAM: https:// github . com / cognav / NeuroSLAM.
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16.1 Introduction

Manipulation is commonplace among animals and  humans.  Human beings can effectively 
manipulate objects with dif fer ent shapes, weights, sizes, and materials in a variety of tasks 
such as writing, carry ing, pushing, throwing, and rolling. The ability to grasp and manipu-
late objects is one of the most fundamental  human skills. However,  these might not be 
that easy for robots. Robotic manipulation represents the manner in which robots interact 
with objects, like reaching and grasping an object, picking and placing, opening a door, 
folding laundry, and so forth (Billard and Kragic 2019). The manipulations are subject to 
the laws of physics since  every manipulation involves a physical robot- environment inter-
action. The robot must first enter a state in which it can change the state of the object and 
then apply the desired manipulation.  These requirements can be expressed as a set of 
nonholonomic constraints that define how the robot moves through the entire state space 
based on its dif fer ent interactions with the environment. In the past de cades, robotic sci-
entists have done extensive research on robot manipulation (see Murray et al. 1994; 
Siciliano and Khatib 2016; Asada and Slotine 1986; Yang, Luo, et al. 2018; Jiang et al. 
2017).

Although a huge effort has been made to advance robotic mechanisms, perception, and 
control, robot manipulation is far inferior to  human in terms of dexterity. To date, robots 
are still unable to manipulate deformable objects or carry out a screwing task with ease. 
Therefore,  people are seeking more intelligent methods for robot manipulation. To improve 
the skills of robot manipulation, one natu ral idea is to understand  human manipulation 
skills and then transfer them to robots. With the prospect of enabling robots to manipulate 
with humanlike dexterity in scenarios such as sorting, picking and placing objects, folding 
laundry, and performing  house chores, research on the transfer of  human skills to robots 
has attracted considerable attention in the community of roboticists (Yang, Zeng, et al. 
2017). This requires robots to learn from  human movements and to perform motion plan-
ning and to be controlled in a humanlike way to accomplish  these actions with dexterity 
(Tsarouchi et al. 2016). The transferring of  human skills to robots can be achieved through 
1) learning and 2) perception/cognition of actions of  humans. To capture the data from 
 humans, several methods are available: 1) body sensors and 2) visual perception.  There 
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would be many advantages to this human- robot dynamic transfer: safety, compliant inter-
action with  humans, and an environment with low contact force, fewer trajectory errors, 
and less time spent on robot training.

The objective of this chapter is to introduce the recent state- of- the- art cognitive robot 
manipulation using advanced sensors to learn from  human be hav ior. Studies of  human 
motor be hav ior have shown that the central neural system (CNS) can adapt force and 
impedance in order to interact with the environment optimally. Muscle activities regulated 
by the CNS can be represented by surface electromyography (sEMG) mea sured by elec-
trodes attached to the skin (Hermens et al. 2000). They reflect  human muscle activation, 
which represents  human joint motion, force, stiffness, and so on and has been employed 
in robot manipulation tasks (Osu et al. 2002; Ray and Gu ha 1983). A brain- computer 
interface (BCI) system is another pathway to connect the  human to robots. A BCI system 
collects a subject’s electroencephalograph (EEG) signals, analyzes them, and classifies 
them to indicate the subject’s intention. To help  people better understand the function of 
the brain, BCI can be used to communicate with and control external robotic systems using 
 mental activity (Wolpaw et al. 2000). The EEG signals rec ord the electrical activity of the 
brain, which can reflect the cortical electrical activity (Guler and Ubeyli 2007). The first 
report of  human EEG was published in 1929 by Hans Berger (Collura 1993), and since 
then scientists and psychologists have produced a  great deal of knowledge regarding EEG, 
especially in the neuroscience area. Recently, BCI technologies have developed rapidly. 
They have a wide range of applications in the field of control interfaces (Kosmyna et al. 
2016), patient rehabilitation (Young et al. 2014), entertainment (Folgieri and Zampolini 
2015), brain cognition, and more. BCI provides a direct pathway to connect the  human 
brain with external devices. This advantage makes it appropriate to combine with a robot 
system. In Zhao et al. (2015), steady- state visual evoked potentials (SSVEP) BCI was 
employed to control a humanoid robot. In Geng, Gan, and Hu (2010), a self- paced online 
BCI was developed for a mobile robot. In Tsui, Gan, and Hu (2011), a motor imagery BCI 
was designed to control a wheelchair.

Recently, rapid developments in artificial intelligence and deep learning have provided 
power ful tools for robotic cognitive manipulation. Deep learning has empowered robots 
to learn vari ous skills, such as pushing (Yuan et al. 2019), grasping (Jang et al. 2018; 
Kalashnikov et al. 2018), inserting (Lee et al. 2019), and manipulating deformable objects 
(Matas, James, and Davison 2018), and plays an impor tant role in the strategic planning 
of subsequent actions. Thus, deep- learning methods have been widely used in robotics. 
Deep reinforcement learning has been popu lar since its study in the game of Go (Silver 
et al. 2016) and in video games (Mnih et al. 2015). Reinforcement- learning algorithms 
can be grouped into two categories depending on  whether the action is continuous (Lil-
licrap et al. 2015) or discrete (Mnih et al. 2015). As the algorithms continue to improve, 
 there are a growing number of research results on the application of algorithms in robotics. 
Yuan et al. (2019) examined nonprehensile rearrangement based on deep Q- learning, 
pushing an object to the predefined goal pose in an environment with obstacles. Nair et al. 
(2018) utilized a variational autoencoder to encode the input image, calculate the reward 
based on the Euclidean distance of the encoded vector, and verify this algorithm in an 
experiment with reaching and pushing. Liang, Lou, and Choi (2019) studied how to attach 
a flat object to a wall to enable a grasp from the side.
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For grasping detection and classification, Redmon et al. (2016) proposed YOLO (you 
only look once) to classify objects with high accuracy and localize the recognized objects 
with coordinates of the bounding box si mul ta neously in real time. Inspired by simultane-
ous implementation, Trottier, Giguere, and Chaib- Draa (2017) used a residual convolu-
tional neural network to predict the confidence map and the rectangle for grasping single 
objects in an image. However, for all- purpose utility, a robot should be able to grasp objects 
in cluttered scenes. A generative grasping convolutional neural network (GG- CNN) was 
proposed by Morrison, Corke, and Leitner (2018) and used the depth image to predict 
grasp quality and grasp the pose of  every pixel. Zhang, Lan, et al. (2018) developed a 
region of interest (ROI)- based detection system that can grasp objects in a pile- of- objects 
scene. All their work and more (Chu and Vela 2018; Kumra and Kanan 2017; Redmon 
and Angelova 2015) made full use of convolutional neural networks, which needed no 
prepro cessing and could automatically extract features.

In order to make robots manipulate similarly to  humans, robots also need to be taught 
to learn specific skills (Yang, Zeng, et al. 2018; Yang, Zeng, et al. 2019; Yang, Chen, He, 
et al. 2019; Yang, Chen, Wang, et al. 2019). Traditional robot- teaching methods require 
professionals to use a teaching pendant to program (Billard et al. 2008). The tasks are 
programmed with one or a set of discrete movements— that is, point- to- point motions. For 
example, a grasp- and- place task can be regarded as a combination of several discrete 
movements: 1) moving the gripper to the object, 2) grasping the object, and 3) moving 
the gripper to the target position. However, this approach is time- consuming and inefficient 
to adapt to the work, which requires frequently updated skills. Compared with traditional 
methods, teaching by demonstration (TbD) or programming by demonstration (PbD) is an 
efficient way to reduce the complexity of enabling the robot to perform new tasks (Billard 
and Calinon 2008; Schaal 1999). In a PbD task, a  human tutor demonstrates a task, and 
then a robot learns the motions. The correspondence prob lem is evident in how the robot 
imitates the  human tutor (Dautenhahn and Nehaniv 2002) movement. One of the solutions 
is guiding the robot by hand or teleoperating the robot with motion sensors— for example, 
the motion sensor Kinect, produced by Microsoft. Through  human motion capture, visual 
techniques and devices can be used to enhance the per for mance of teleoperation- based 
TbD (Peng et al. 2016). Visual teleoperation techniques, therefore, allow the robots to be 
programmed directly by learning humanlike manipulation skills from a skillful demonstra-
tor, also known as teleoperation- based TbD.

On the other hand, once  human motion data are recorded, we need to build a motion 
model to transfer them to robot manipulation. The dynamic systems (DS) method, which 
uses a first- order dynamic system to encode trajectories, has been widely used in motion 
modeling (Mülling et al. 2013). Hu et al. (2015) proposed a method to learn stable motions 
from  human demonstrations. The implicit mapping of the dynamic system is learned 
through training a neural network model, the extreme learning machine (ELM). Global 
stability is ensured by imposing constraints derived from a Lyapunov function on the ELM. 
This method shows good per for mance in convergence and generalization. A stable estima-
tor of dynamical systems (SEDS) is another approach of PbD with dynamic system repre-
sen ta tion (Khansari- Zadeh and Billard 2011). The stability at the target is confirmed by 
the theory of Lyapunov stability. The difference of the DS method is that the unknown 
function is modeled as a Gaussian mixture model (GMM) in order to encode the joint 
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distribution. The GMM makes it pos si ble to account for the features of many demonstra-
tions of a task. As mentioned in Calinon et al. (2012), the GMM combined with Gaussian 
mixture regression can provide additional information when learning from multiple dem-
onstrations. The probabilistic framework of statistical learning is a power ful tool in PbD 
(Calinon 2018; Rozo et al. 2013). The dynamic movement primitive (DMP) is widely 
applied to motion modeling. A DMP represents the movement trajectory by using a spring- 
damper system coupled with a nonlinear term (Schaal, Mohajerian, and Ijspeert 2007). 
The inherent stability of the spring- damper system ensures that the generated motion is 
stable enough to reach the target and robust to perturbation. Therefore, it is unnecessary 
to impose extra constraints on the model. The generalization ability of a DMP is acquired 
from a single demonstration. This provides sufficient room to improve the generalization 
ability.

Next, we  will introduce some state- of- the- art techniques for acquiring physiological 
signals and  human motion be hav ior and their applications, such as EEG visual- system- 
based robot object picking, visual teleoperation, and motion sensors based on  human skill 
learning and generalization. Moreover, techniques of robot learning by demonstration and 
skill generalization approaches in robot manipulation are detailed. Additionally, some 
recent pro gress in deep learning and machine learning for robot manipulation is intro-
duced. Fi nally, a brief conclusion  will be presented to summarize  these works.

16.2 Techniques to Capture  Human Information on Robot Manipulation

16.2.1 Surface Electromyography Signals

Ideally, to be used for robot manipulation, sEMG signals reflect  human muscle activation 
and embed rich information about  human joint motion, force, stiffness, and so on. Gener-
ally, sEMG signals can be pro cessed into two divisions: finite class recognition serials and 
continuous control reference. The former usually refers to pattern recognition, such as hand 
posture recognition (Chu et al. 2006; Khezri and Jahed 2007), and such data serials are 
usually used for switch control, while the latter refers to extracting continuous force, stiff-
ness, and even motion serials from sEMG signals, which reflect the variations of  human 
limb kinematics and dynamics during limb movement or pose maintenance. Furthermore, 
the relationship between sEMG and stiffness, force, and motion is approximately linear, 
and thus biocontroller design tends to be  simple in sEMG- based robot control systems.

16.2.2 Electroencephalograph Signals

The EEG application focuses on two types of signals: evoked potential (EP) and spontane-
ous signal modulation. Evoked potential, including visually evoked potential (Müller- Putz 
et al. 2005) and P300 event- related potential (Rebsamen et al. 2007), is the electrical 
activity of the ner vous system, stimulated by internal and external stimuli. An EEG signal 
acquisition device is shown in figure 16.1.

When a certain area of the ce re bral cortex is activated, metabolism and information 
pro cessing in this region  will increase, leading to the amplitude reduction or blocking of 
the brain waves, especially in the alpha and beta rhythm. This electrophysiological phe-
nomenon is called event- related desynchronization (ERD). On the contrary, when this 
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region is at rest, the brain waves  will show an obvious increase in amplitude, which is 
called event- related synchronization (ERS). Studies have shown that in unilateral limb 
movement or motor imagery, the contralateral side of the brain produces ERD, while the 
ipsilateral side of the brain produces ERS. It means that if we image right hand movement, 
the power of the EEG signals  will be reduced on the left side of the brain, increased on 
the right side of the brain, and vice versa. According to the ERS/ERD phenomenon, we 
can classify the EEG signals into two categories, imaging left and right hand movement. 
The BCI system can extract the thinking activity information inside the brain using specific 
mea sure ment technology and then analyze the real intent of the  human brain contained in 
the information through the embedded platform and convert it into the control command 
to the external device to realize the goal of the  human brain directly controlling the periph-
eral device. The operator can use this to operate the mechanical arm as needed, which 
overcomes the limitation of using traditional physical bottoms as control ports.

16.2.3 Visual Sensor

Visual sensors are widely employed in robot manipulation and control in applications such 
as visual servo control and object detection. In this part we briefly introduce several kinds 
of visual sensors and  will be explaining their specific usage scenarios  later. The representa-
tive visual sensors include the Bumblebee2, ZED, and Kinect sensors. The Bumblebee2 
is a stereo camera with two CCD strictly paralleled cameras. At one time, Bumblebee2 

Electrode
cap

a b

Figure 16.1
The EEG signal acquisition device Neuroscan. EEG raw data are collected by a Neuroscan device with twenty- 
seven electrode channels (left). The EEG sampling rate is set to 250 Hz, and a band- pass filter of 0.5–40 Hz is 
used in the SCAN 4.5. Source: From Wu et al. 2017.
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captures two photos of the robot and the other objects with its two sensors, respectively 
(Yang, Ma, and Fu 2016). The ZED stereo camera is a passive- depth camera that consists 
of two RGB cameras with fixed alignment (Yang, Ma, and Fu 2016). The Kinect sensor 
is widely applied to full- body three- dimensional (3D) motion capture and facial recogni-
tion and more (Xu et al. 2017; Wu et al. 2012).

A visual servo system is used in the study of robotic manipulator control by using visual 
sensors to reconstruct realistic scenes and objective detection. Bumblebee2 can obtain the 
depth information and a 3D model of the scene in real time. ZED has a high frame rate, 
a wide field of view, and the ability to run in multiple environments. Kinect has real- time 
motion capture, image recognition, microphone input, speech recognition, and other func-
tions. The choice of vision sensor  will be explained  later before the specific use.

16.3 Robot Manipulation by Skill Transferring

16.3.1 Robot Manipulation Using EEG Signals

In this part we introduce an innovative robot arm control method of 3D space manipulation 
using EEG signals. The realized system is designed to allow users to teleport robots to 
perform tasks using EEG signals with no hands or feet involved. This system contains 
three parts: the BCI, visual feedback, and the robot control platform.

System overview
The working mechanism of the system is depicted in figure 16.2. We employ a Bumble-
bee2 to detect the 3D coordinates of the target objects and the end effector of the robot in 
real time.  These coordinates  will be used to display the repre sen ta tions of the objects and 
the robot in a two- dimensional (2D) plane on the screen. The user looks at the screen, 
decides the direction of the robot, and generates the specific EEG signals immediately. 
 These signals are collected by Neuroscan and analyzed by a server computer to be con-
verted into robot commands. Then the end effector of the robot  will move accordingly in 
3D space. As the end effector moves, we can, in the meantime, get position feedback 
information from the screen to decide the motion of the next movement. In the experiment, 
Bumblebee2 keeps taking photos with its left and right cameras, from which we construct 
a disparity map to get one object’s depth information. Then we can detect its position in 
the image and read the object’s depth information from the disparity map.

To represent the position of the target objects and the end effector of the robot in a 2D 
plane on the screen, we should decompose 3D coordinates into several lower- dimension 
coordinate systems. The repre sen ta tion rectangles’ positions are based on the x and y 
coordinates of the objects and robot hand, which are captured by Bumblebee2 in real time.

Object picking using BCI
To control the robot hand to manipulate in 3D space, six commands are needed: up, down, 
forward, backward, left, and right. However, our BCI system only offers two kinds. In 
order to employ the BCI system, coordinate decomposition for the robot control system 
is needed. At first, the 3D coordinate system  will be decomposed into a 2D plane and a 
z- axis where the 2D plane is parallel with the desktop, and the z- axis indicates the vertical 
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direction. As the height of the desktop is changeless, we do not need to manually adjust 
the z coordinates of the robot hand in picking. It can be designed as a fixed mode. So we 
need to adjust the position of the robot hand in the xy plane. We continue to divide this 
plane into two parts— that is, the x- axis and the y- axis. We first adjust the robot hand in the 
direction of the x- axis to be coincident with the destination’s x- axis. Next, we adjust the y 
coordinate to be the same as the destination. Then we finish the xy plane’s adjustment, and 
the x and y coordinates of the robot’s end effector are the same as the destination.

Employing the method of coordinates decomposition mentioned above, the main pro-
cess of object picking is shown in figure 16.3a. In the first step, the robot’s end effector 
stays on a 2D plane above and parallel to the desk. Bumblebee2 captures the positions of 
both the robot end effector and the objects and then abstracts and displays them on the 
screen. Based on this visual feedback, the subject uses their mind to control the robot hand 
through the BCI system to move to the destination, which is directly above the target 
object. When the subject finishes this procedure, the control system  will detect it, and the 
end effector  will go down to pick up the target object.

The detailed pro cess of how to adjust the robot hand to be directly above the target 
object is shown in figure 16.3b. As figure 16.3b.I shows, in the first step of the experi-
ments the target objects are abstracted as several rectangles. And the robot’s end effector 
is abstracted as a line. The subject uses their mind to control the end effector of the robot 
to move along the direction of the x- axis. The robot line on the screen  will move  toward 
the left or the right according to the x coordinate of the end effector. As figure 16.3b.II 
shows, if the robot line reaches one of the rectangles, which means that the x coordinate 
of the end effector and the target object are the same, the color of the rectangle  will 
change to blue. In this step, if the user keeps on moving the end effector of the robot in 
the same direction as before, the robot line  will go out of the rectangle, and then the 
system  will go back to the first step. Other wise, if the user changes the direction, the 
robot line  will remain in the rectangle without moving. If the system detects that the robot 
line has remained in the rectangle for more than two seconds, it  will go to the next step. 
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controller
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Contro
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Figure 16.2
Robot control system overview. Source: From Yang, Wu, et al. 2018.
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Figure 16.3b.III shows the end effector of the robot represented as a  little square on the 
screen in this step. The square is just able to move up and down, which is the direction 
of the y- axis of the real world. The user controls their mind to move the robot’s end effec-
tors along the direction of the coordinate axis. As figure 16.3b.IV shows, if the square enters 
one of the rectangles, the color of the rectangle  will change to yellow. Similar to the second 
step, if the user keeps  going in the same direction, the square  will leave the rectangle, and 
the system returns to the third step. Other wise, if the square remains in the rectangle for 
more than two seconds, the target object  will be selected, and the robot  will prepare to pick 
up this object. As the x coordinate and the y coordinate of the end effector and the target 
object are the same  after the user completes the steps above, the end effectors of the robot 
just need to move along the direction of the z coordinate and use its clamper to pick up the 
object.

In  these experiments the subject wears an EEG cap, and the machine  will collect their 
EEG data for analy sis. Following the steps we introduced before, the subject watches the 
video on the screen and decides which directions to move the robot block on the screen. 
When the subject makes their decision, their brain  will generate specific EEG signals of 

Adjust the position of the end effector in
the 2D plane above the desk

Go down and pick up the target object

a
b

IV

III

II

I

Robot

Robot

Robot

detail process

Figure 16.3
Pro cess of picking up an object.
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some mode. The BCI system analyzes the signals, classifies them into dif fer ent commands, 
and sends them to the robot control platform. The robot’s system receives  these commands 
and controls the robot’s manipulator to go in the given direction.

In the experiments, the BCI achieves an accuracy rate of about 70  percent. For stable 
control, we employ a control strategy using the maximum probability princi ple. We collect 
a series of BCI commands and analyze them to infer which command may be the real 
decision of the subject for the highest probability. By employing the mean, we can avoid 
some errors in the BCI part. The experiment result has shown a high recognition rate and 
a high efficiency of the robot system.  After training several times, three subjects have been 
able to use the system to control the robot to pick up within one minute.

16.3.2 Robot Manipulation Based on Visual Teleoperation

This section introduces an example of visual teleoperation, which allows the robot manipu-
lation to be controlled by a  human demonstrator. Specifically, in the beginning the dem-
onstrator controls the robot by visual interaction. A learning algorithm based on a radial 
basis function (RBF) network is used to transfer the demonstrator’s motions to the robot. 
Several simulation experiments have been carried out to verify the effectiveness of this 
advanced method.

The virtual teleoperation system
The virtual teleoperation system, which can simulate the real system, consists of a  human 
demonstrator, a Kinect sensor, and a computer with V- REP, as shown in figure 16.4. Sepa-
rately, the  human should make a demonstration of a specific task; Kinect is applied to 
capture the  human body motion, and V- REP is used to build a virtual work environment 
and robot.

Space vector approach to calculate  human joint  angle
Calculating the  human joint  angle is the key to controlling the Baxter robot by Kinect. 
Kinect V2 is able to capture twenty- five joint points of a  human body in Cartesian space. 
In a 3D space, the distance between two points A(x1, y1, z1) and B(x2, y2, z2 ) can be calculated 

Kinect V2

Joint angle

Human
demonstrator

Teleoperation

Visual fe
edback

Skeleton information

Figure 16.4
The architecture of the teleoperation system. Source: From Xu et al. 2017.
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by the equation d = (x2 − x1) 2 + ( y2 − y1) 2 + (z2 − z1) 2 . The vector AB
! "!!

 can be expressed 

as AB
 

= (x2 − x1, y2 − y1, z2 − z1), d = AB
! "!!

. In 2D or 3D space, we can use the law of cosines 
to calculate any desired  angle between two vectors. And a joint in a Kinect coordinate can 
be expressed as a vector. If joint 1 is [−0.987, 0.564, 0.635], and joint 2 is BC

! "!!

, the  angle 

between the two joints can be calculated as cos AB
! "!!

, BC
! "!!( ) = AB

! "!!

⋅BC
! "!!

AB
! "!!

⋅ BC
! "!! .

Using the above equations, we can convert all the coordinates detected by Kinect to the 
corresponding vectors, and the respective  angles of the joints in 3D space can be calculated 
by the law of cosines cos AB

 

, BC
 ( ).

According to the above equation, we obtain all the location coordinates from Kinect, 
then we build a geometric model of the  human left arm as shown in figure 16.5. The 
directed straight lines OX, OY, and OZ form a coordinate system in the Cartesian space 
of Kinect. From three points O, E, and F, we can get the vectors OE

! "!!

 and EF
! "!!

. Fi nally, 
we  will calculate the shoulder pitch  angle ∠OEF. Using the same method, we can get the 
elbow pitch ∠EFG. And by projecting points D, O, and F to the plane XOZ, we can cal-
culate the shoulder yaw  angle ∠KOJ . So we solve for the  angle of shoulder roll ∠LEM. 
Using the same method, we can calculate the elbow roll, which is the  angle between LE

! "!!

 
and GN
! "!!

, and the hand yaw, which is the  angle between GN
! "!!

 and GQ
! "!!

. To make data pro-
cessing  simple, we control the shoulder joint S0, S1 and the elbow joint E1 by using a space 
vector approach.
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Figure 16.5
The geometry model of the  human left arm.
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TbD based on an RBF network
Using the virtual system, we can control Baxter’s movement according to a trajectory. And 
 these point- point motions can be modeled as a dynamical system, which can be expressed 
by a first- order autonomous ordinary differential equation

!x = f (x) + ε

where x denotes the robot’s end-effector position or joint  angles, and !x is the first deriva-
tive of x. The data set is {x, x}, and ε is a zero mean Gaussian noise. The goal is to obtain 
an estimation of !f  from f. To achieve this goal, we use a method based on a radial basis 
function (RBF) network, which has universal approximation and regularization capabili-
ties. If the radial basis function can be suitably chosen, the RBF network  will approximate 
any continuous function arbitrarily (Wu et al. 2012).

The pro cess of training and trajectory reproduction
In the demonstration phase, the robot has completed certain tasks, and the joint  angle is 
recorded as training data. Then the training data are sent to an RBF neural network to get 
a new set of joint  angles. We implement the learning algorithm based on the RBF network 
in MATLAB. The function newrb in MATLAB is mainly used to build the RBF network. 
The relationship between mean square error (MSE) and the number of hidden neurons are 
shown in  table 16.1. Using the constructed RBF network to approximate the robot trajectory, 
we obtain three groups of output data.

In the next step, the data is sent to the robot in V- REP by MATLAB. Then the robot 
 will reproduce the trajectory it learned from a  human demonstrator. Using the virtual system, 
we can control Baxter’s movement according to this trajectory.

To verify the effectiveness of this TbD method, a simulation scene is designed in the 
V- REP. The scene consists of a Baxter robot, a desk, and some rectangular building blocks. 
As shown in figure 16.6, using the Kinect, a  human demonstrator controls the Baxter robot 
as it knocks over a building block, and then the robot’s arm returns to its original position. 
This action  will be performed many times. During this, the robot joint  angle in this pro cess 
is recorded at regular intervals.

 Because each simulation when controlling the robot is dif fer ent, the number of data sets 
recorded in the experiment is also dif fer ent. We randomly interpolate the experimental 
data. Using  these pro cessed joint  angles to control the robot, the robot can reproduce the 
same trajectory, which confirms that this method has no effect on the effect of the robot’s 
trajectory. Therefore, a sample with the dimension 142 × 3 is obtained from each simula-
tion  after data pro cessing.

 Table 16.1
The relationship between MSE and the number of hidden neurons

Neurons 50 100 150 200 250 300

MSE(S0) 0.0122 0.0088 0.0081 0.0079 0.0079 0.0079
MSE(S1) 0.0391 0.0183 0.0117 0.0107 0.0106 0.0106
MSE(E1) 0.0073 0.0072 0.0071 0.0070 0.0070 0.0070
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In the next step, the data is sent to V- REP through MATLAB to control the Baxter robot. 
As shown in figure 16.7, the Baxter in V- REP can autonomously complete the task taught 
by a  human demonstrator.

16.4 Human- to- Robot Skill Transfer and Generalization for Manipulation

In this section we introduce skills transfer and a generalization approach for robot manipula-
tion to learn point- to- point motions from  human demonstrations. This work enables the model 
to learn from a set of demonstrations of a task and extract better motions. Additionally, the 
generalizability of the original dynamic movement primitive (DMP) is inherited, including 
the ability of spatial scaling and temporal scaling. We apply the method to the virtual Baxter 
robot and use the Kinect, a motion sensor, to capture the  human demonstrations.

A DMP consists of a spring- damper system and an external forcing term. The model is 
defined as follows:

τ !ω = k(g − θ ) − cω + (g − θ0 )sf (s)

 τ !θ =ω  (16.1)

where θ ∈ R is the joint  angle, ω ∈ R is the angular velocity of the joint, g ∈ R is the goal, 
θ0 ∈ R is the start  angle, τ > 0 is the temporal scaling  factor, k > 0 is the spring constant, 
c > 0 is the damping coefficient, f : R → R is assumed to be a nonlinear continuous bounded 
function, and s ∈ R is the state of a first- order dynamic system:

 τ s = −α ss  (16.2)

where αs > 0 is the time constant. This system is referred to as a canonical system. It is 
introduced to remove the nonlinear function’s dependence on time so that the  whole system 

Figure 16.6
Controlled by a  human with a Kinect, Baxter can knock over a building block on a desk.
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(16.1) is autonomous. The state s is regarded as a phase variable. It is monotonically decreas-
ing and  will converge to zero. Generally, the initial value is chosen as s0 = 1. More detail 
about the DMP can be found in Schaal, Mohajerian, and Ijspeert (2007). The generalization 
ability of the DMP is acquired from a single demonstration, which provides enough space 
to improve the generalization ability.

With spatial and temporal scaling, we can get a similar motion through modulating the 
par ameters g, θ0 of the DMP. By setting the  factor τ, we can adjust the speed of the gener-
ated motion. The issue with the DMP is how to determine the nonlinear function f (s)— that 
is, the weights γi. The function approximation prob lem can be solved using locally weighted 
regression (Atkeson, Andrew, and Schaal 1997). However, this method can only be used 
for a single demonstration. In order to model multiple demonstrations, the GMMs can be 
employed (Calinon, Guenter, and Billard 2007).

16.4.1 Learning from Multiple Demonstrations

For the given demonstrations θ t,n , θ t,n , θ t,n{ }t = 0,n = 1
Tn ,N , where θt, n ∈ R is the joint  angle, Tn is 

the duration of the demonstrations, and N is the number of demonstrations, we first need 

to calculate the data set from st , ft,n{ }t = 0,n = 1
Tn ,N  (see figures 16.8a and 16.8b. The st ∈ R is the 

state of the system at time step t, and the ft, n ∈ R is calculated through substituting 
st ,θt,n, θt,n, θt,n into the first differential equation of system (16.1). When N = 1— that is, a 
single demonstration is available— the function f (s) can be learned from the data set 
St , ft,1{ }t = 0

T1
 using locally weighted regression (LWR). However, this method is not suitable 

when learning from several demonstrations at the same time. To solve this prob lem, we 
use GMMs to model  these demonstrations. For con ve nience, we use {s, f } to represent 
the data set St , ft,n{ }t = 0,n = 1

T n,N
 in the remainder of the chapter.

Figure 16.7
The experiment results: through learning and training via an RBF network, Baxter can autonomously knock over 
a building block.
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A GMM is a statistical method of probability density estimation. Combined with Gauss-
ian mixture regression, it can be used to estimate nonlinear functions.  Here, we use GMMs 
to encode the joint distribution P (s, f ), which is defined as follows:

 
P(s, f ) = α k

k = 1

K

∑ N (s, f ; µk , Σk)
 

(16.3)

 
α k

k = 1

K

∑ = 1
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(16.5)

 
N (s, f ; µk , Σk) =

e−0.5 [s, f ]
T − µk( )T Σk−1 [s, f ]T − µk( )

2π |Σk |  
(16.6)
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Figure 16.8
The learning pro cess of GMMs/GMR. (a) Three demonstrations in joint space. (b) The data set {s, f } calculated 
from (a).  Here we select one hundred points. (c) The learned GMMs, which encode the joint distribution with 
three Gaussian models. (d) The learning result of GMR. The estimation f̂  is retrieved from the GMMs.
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where k is the number of Gaussian models, αk ≥ 0 is a prior probability, Σk ∈R2 × 2 is the 
covariance matrix of the k th Gaussian model, N (S , f ; µk , Σk) is the Gaussian probability 
distribution.

The α k , µk, Σk are unknown par ameters of the models. They can be estimated using the 
expectation- maximization (EM) algorithm (Dempster, Laird, and Rubin 1977), an iterative 
method of the maximum likelihood estimation. This algorithm is sensitive to the initial 
value of the par ameters. Thus, the k- means method (MacQueen 1967) should be used to 
initialize the models. Additionally, the number of models influences the error and the 
smoothness of the estimation. It can be chosen empirically or be estimated through model 
se lection approaches, such as the Bayesian information criterion (BIC).

16.4.2 Experiments

 These experiments are based on a virtual robot platform V- REP, as discussed in the previ-
ous section. In our experiments, we use the virtual Baxter robot in its model library. We 
also use vision techniques to capture a  human tutor’s action and then transmit the dem-
onstration information to the robot. The states of the  human tutor’s joints are captured by 
the Kinect, and  these shoulder joints and elbow joints are used in the experiments.

In our experiments, the robot is expected to perform a task of pushing boards off of a  table. 
If the Baxter robot needs to do that with its left arm, it has to try to avoid obstacles. The 
 human tutor  will show the robot how to perform this task, and the robot learns from the 
demonstrations. This type of task is common in our daily lives. If you want to grab something 
placed in a messy environment, you have to avoid other objects before you touch it. In this 
situation, the shape of the motion trajectory is impor tant for the completion of the task.  Here, 
the DMP model is utilized to learn and further generate  human motion skills such as  those 
described above.

16.4.3 Motion Learning and Generation

In the first experiment, the robot learns how to push the board on its left and how to 
reproduce the learned motion. As shown in figure 16.9, the Baxter robot imitates the  human 
tutor’s motions in order to perform the task. The robot raises its left arm over the pillar 

Figure 16.9
(a) A  human tutor demonstrates how to push the left board off of the  table. (b) The robot imitates the motion of 
the  human tutor.
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and then moves its gripper to push the left board off the  table. This demonstration is 
repeated ten times. All of the joint  angles that we focus on are recorded throughout the 
demonstrations. Then the data is used to train the DMP. In order to match the autonomy 
of the dynamic system, we use a time step to represent the duration of the motion, and all 
durations of the demonstrations are converted to one hundred steps.

The original DMP is learned from a single demonstration. In order to compare the per for-
mance of the two methods, we use  those demonstrations to train ten DMPs. We use them to 
generate new motions without modifying the goal. Then we apply them to the robot to test 
 whether the robot is able to perform the task successfully. In six of the tests, the robot cannot 
push the left board off of the  table or  will push both boards off.  After modifying the goal of 
 these DMPs to an appropriate position, the robot can complete the task with the regenerated 
motions.

In the second experiment, we modify the initial  angle of one joint to evaluate the 
stability of the DMP. To evaluate the spatial scaling ability of the DMP, we modify 
the goal of the motion to another board. The previous goal of three joint  angles is 
[θ1, θ2, θ3] = [−0.755, 0.652, 0.664] (rad). We modify it to [−0.987, 0.564, 0.635] so 
that the left arm of the robot can reach the right board. We also apply the generated 
motion to the robot. As figure 16.10a shows, the robot’s left arm moves around the pillar 
and then pushes the right board successfully. Another ability of DMP is temporal scaling. 
We adjust the temporal spatial  factor τ from 1 to 0.5, which can speed up the generated 
motion. Three joint  angles reaching the goals at time step = 50 are shown in figure 16.10b.

16.5 A Brief Introduction to Deep Reinforcement Learning for Robot 
Grasping and Manipulation

Deep reinforcement learning plays an impor tant role in the strategic planning of sequen-
tial actions. Most applications of reinforcement learning in robots are low- level control 
methods that need long sequences to achieve the goal. The large- scale exploration space 
and the delayed reward makes it difficult to get training data of high quality, and thus a 

Figure 16.10
(a) The motion generated while modifying the goal position to another board. (b) The motion generated while 
modifying the temporal scaling  factor τ from 1 to 0.5.
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lot of time is needed to collect data. As presented in Quillen et al. (2018) and Levine 
et al. (2018), a robot requires more than one hundred thousand grasps to learn the grasp-
ing skill without camera calibration. This amount of data requires multiple robots to 
execute a task over a long period of time, which is costly for most of us, and it is chal-
lenging to transfer the skill to dif fer ent robots. As for deep supervised learning of the 
grasping skill, Chu and colleagues (e.g., Chu, Xu, and Vela 2018) came up with a proposal 
based on the faster region- based CNN (RCNN) network to transfer the grasp rectangle 
detection to object detection, resulting in high classification per for mance. In Morrison, 
Corke, and Leitner (2018), they achieved pixel- wise grasp rectangle detection by using 
a fully convolutional network like Unet to predict the rectangle for  every pixel. Without 
fully connected layers, their network was significantly smaller than other networks. In a 
task of clearing clustered objects that needs to combine pushing and grasping, we are 
inspired by an algorithm that maps the image to high- level action instead of continuous 
action of a low level based on the mapping relation between the image and the workspace 
(Berscheid, Meißner, and Kröger 2019). One- to- one correspondence between discrete 
actions and pixels has the ability to make precise decisions but leads to a large network 
and a long reasoning time.

In Zeng et al. (2018), pushing and grasping  were both learned based on reinforcement 
learning. They used Q- learning to choose discrete actions on pixel-  wise and map the pixel 
coordinates to the real- world location. It should be noted that the more complex the task, 
the more time is needed for the real robot to collect data by interacting with the environ-
ment and for neural network fitting. Especially for grasping, few positive samples and 
diverse objects mean that hundreds of hours of collecting data is inescapable. Although 
sim- to- real techniques can ease this prob lem to some extent, learning to grasp with rein-
forcement learning is still time- consuming and costly. As for pushing,  there are multiple 
solutions to separate objects. This kind of prob lem is hard to define manually and  doesn’t 
require a very precise solution; hence, it is suitable for reinforcement learning.

In our recent work (Chen, Yang, and Feng 2020), we found that the grasp detection algo-
rithm based on supervised learning was mostly trained on the Cornell Grasping Dataset or 
the Jacquard Dataset, whose depth image is strikingly dif fer ent from the depth image in simu-
lation  because of dif fer ent shooting  angles. Therefore, we utilized a traditional morphological 
method in Zhang, Yang, et al. (2018), which can be easily transferred to a virtual image with 
 little change. Compared with their work, the framework applies a policy that outputs continu-
ous action to avoid large action dimensions, and the accurate grasp point detection ensures a 
high grasp rate of graspable objects. Therefore, the framework is  simple in structure but 
competent for the clutter- clearing task. We have combined pushing based on reinforcement 
learning and grasping based on a traditional, rule- based grasp- detection algorithm (Zhang, 
Yang, et al. 2018). We employ the twin delayed deep deterministic policy gradient (Fujimoto, 
van Hoof, and Meger 2018) to train the policy that determines where to start pushing and the 
pushing direction according to the current image depth. The pushing direction within 360° is 
divided into two sides, and we introduce a variable to decide which direction one needs to 
push  toward. The grasp detection is pro cessed with a rule- based method mainly based on the 
recognition of a minimum bounding convex hull and a minimum bounding rectangle of con-
nected regions. The grasp detection algorithm determines  whether an object is graspable and 
computes the grasp center and the grasp orientation. When performing the task, the pushing 
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action is executed only when no object is graspable, which is determined by the grasp detec-
tion algorithm.

16.6 Conclusion

Robots with arm manipulators are shifting from industrial factories to  factors in  people’s 
daily lives, such as home ser vices and medical care. One pos si ble solution to achieve these 
goals is to enable the robots to learn manipulation skills from  human be hav ior. This chapter 
investigated a number of effective methods to transfer  human adaptation skills to robots 
within a variety of sensor data— for example, physiological signals such as EEG, body motion 
signals, visual signals, and so on. The PbD approach was proposed to improve the efficiency 
of a robot learning  human motion skills through imitating a  human tutor. We combined the 
DMP with GMMs to enable a robot to learn from a set of demonstrations that are captured 
by a motion sensor to provide friendly human- robot interaction. Moreover, we introduced 
some recent pro gress in deep learning applied to robot manipulation.  Future work includes 
teaching a robot in a more intelligent manner so that a robot can learn more dexterous skills 
from a  human using position, stiffness, and force information.
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Additional Reading and Resources

•  A classical book introducing the basic theory and mathematical foundation of robot 
manipulation: Murray, R. M., Z. Li, S. S. Sastry, and S. S. Sastry. 1994. A Mathematical 
Introduction to Robotic Manipulation. Boca Raton: CRC Press.
•  A systematic handbook of robotics, with specific sections on robotic manipulation: Siciliano, 
Bruno, and Oussama Khatib, eds. 2016. Springer Handbook of Robotics. Berlin: Springer.
•  A recent and comprehensive book introducing advanced technologies of robotic manipu-
lation, with specific sections on bioinspired robotic manipulation and visual servoing 
control: Yang, C., H. Ma, and M. Fu. 2016. Advanced Technologies in Modern Robotic 
Applications. Singapore: Springer.
•  Physiological signals enhanced manipulation: https:// www . youtube . com / watch ? v 
= rvHluEVSyZw.
•  Skills transfer from  human to robot using sEMG: https:// www . youtube . com / watch ? v 
= CCKy88QTkGY.
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This chapter focuses on the concept of cognitive control in robotics and how it is linked 
to decision, control, and human- robot interaction (HRI). Achieving a control paradigm that 
enables robust, flexible goal- driven per for mance in a myriad of scenarios involving unstruc-
tured changing environments and interaction between robots and other agents such as  humans 
has been pursued during the last de cade (e.g., Avery, Kelley, and Davani 2006; Baud- Bovy 
et al. 2014; Herrmann and Leonards 2018). In order to achieve this, inspiration has been taken 
from nature, with a focus on the way  humans and other animals undertake their decision and 
control pro cesses (see chapter 1). Indeed, by creating controllers inspired by  human flexibility 
and adaptability, some or all of the qualities found in  human cognitive pro cesses can be 
pursued (i.e., adaptability, robustness, goal- driven be hav ior with sensor and subtask priori-
tization) in artificial programmable systems.

First, this chapter includes an introduction to the concept of control in the context of 
industrial pro cesses and expands it to robotics in general; challenges  behind robot control 
 will be raised, highlighting the need for novel decision and control architectures for 
modern robotics such as  those involved in closely interacting with  humans, dealing with 
unstructured environments, and learning to better perform a task— hence cognitive control.

Second, the word “cognitive” in the context of control  will be defined  after an overview 
about how “cognition” has been used in the lit er a ture; the definition of what a cognitive 
controller is  will include aspects about both its architecture and inputs, highlighting how it 
relates to the term originally used in  human behavioral studies and cognitive neuroscience.

Fi nally, a modeling approach for cognitive control, which integrates the princi ples of mul-
tiagent interaction into a decision- making (i.e., discrete and probabilistic) and control action 
(i.e., continuous and dynamic) framework  will be proposed. This  will be followed by a dis-
cussion around the framework’s ele ments and their wider impact in dif fer ent areas of applica-
tion, such as autonomous driving, teleoperation, and human- humanoid interaction.

17.1 Control in Robotics

When considering any system that interacts with the environment and manipulates it by 
any means or in any way, the concept of control needs to be considered. Starting from 
industrial control or pro cess control (Ogata 2010), the main objective of “control” science 

17  Cognitive Control for Decision and Human- Robot 
Collaboration
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is to be able to manipulate one or several variables of a system and make them behave as 
one desires. Control prob lems can be described generically as  either a trajectory- following 
prob lem (i.e., make a system’s variable follow a set of values) or a regulation prob lem 
(i.e., keep a system’s variable at a fixed value). Most modern control prob lems deal with 
closed- loop control architectures, using sensor or estimation inputs from the system to 
feed back to the controller; this feedback allows a comparison of expected system outputs 
with real outputs, which is a prerequisite to modify control outputs based on the state of 
the system (i.e., outputs). When considering the controller in a system description (Ogata 
2010; Maciejowski 2002), it can be described based on its inputs (i.e., single input [SI] or 
multiple input [MI]) and its outputs (i.e., single output [SO] or multiple output [MO]), with 
its subsequent combinations (e.g., single input, single output [SISO] or single input, multiple 
output [SIMO] and so on). This relates to the system’s complexity and the control goals— 
that is, the amount of inputs being how many sensor inputs or control goals the system 
requires and the amount of outputs as control signals or controlled variables. When consider-
ing the controller’s inner workings, an explicit understanding of the system to be controlled 
is used and most of the time is needed in the form of a mathematical description of its 
dynamics. This understanding and the requirements for control determine how the controller 
inputs relate to the desired outputs. Based on the level of detail  these models require, they 
could be described using any sort of mathematical description, such as linear operators, non-
linear equations, and probability distributions, usually in a dynamic framework. Per for mance 
criteria are imposed on the controller in order to have a complete description of how each 
variable is controlled (e.g., time to reach the desired value, percentage of error when reaching 
the desired value, maximum error if the controller overshoots). Fi nally, controllers can be 
designed to deal with uncertainty from the system model and to be adaptable to changes in 
the environment or changes in the model itself. Figure 17.1 shows a general description of a 
control architecture, considering its required input (i.e., the system’s demanded output), the 
controller that looks to achieve this input, the system, plant, or environment to be controlled, 
and the sensory input that comes from the system itself.

Bringing  these concepts from industrial machinery to the realm of robotics was a 
straightforward task in the early stages of robotics, as industrial robots had similar physical 
shapes and objectives compared to industrial machinery (i.e., industrial manipulators  were 
dealing with repetitive tasks with high precision at high speeds). Indeed, most industrial 
controller designs focused on dealing with low- level control for each link or motor, while 

Controller

Sensor input

System+

–

Demand
input Output

Figure 17.1
General control architecture.
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high- level path and trajectory planning was dealt with through solutions based on the 
robot’s geometric properties (e.g., a kinematic description using a Jacobian for end- effector 
positioning or forward kinematics and motion planning or inverse kinematics).  These 
approaches  were highly successful for a wide variety of industrial applications (see LaValle 
2006; Scassellati 2002; Visioli and Legnani 2002).

However, as the field of robotics expands, the desire to move robots from industrial 
setups to more general environments brings challenges beyond what previous approaches 
can solve. First of all, the goals of a robot outside an industrial setup are potentially more 
generic and difficult to define completely in advance. Robots thus need to be able to change/
adapt over time. For example, taking care of an el derly person could start with only check-
ing their temperature and helping with mobility inside a room but might then evolve into 
reaching for objects, general social companionship, administering medicine, and more. In 
addition, using robots outside an industrial setup involves dealing with unstructured, 
complex, and changing environments that could be difficult to assess or predict at all times. 
Fi nally, some applications, such as robots for retailing, teaching, and medical care, would 
require interaction and/or cooperation with other autonomous agents—be it other robots or 
 human beings (i.e., human- robot interaction).  These are all challenges that go well beyond 
what traditional frameworks focusing on motion control would be able to deal with.  Going 
back to the closed- loop controller description, any such system requires many multiple- 
input, multiple- output (MIMO) controllers with potentially nonlinear models, configured 
for both trajectory following and regulation just to focus on general movement alone— for 
example, to move the robot body to a known location, traverse unknown terrain, or mediate 
closeness to interacting robots or  humans while maintaining safety. Additional components 
such as high- level decision- making and multimodal communication, supported by special-
ized hardware such as sensing, actuating, and communication devices, would be necessary 
to complement the proposed controller (Whitsell and Artemiadis 2017).

The goal  here is to find an architecture or methodological approach that can help solve 
such prob lems in a complete and integrated manner. To achieve this, inspiration has been 
drawn from nature and, particularly, from  human cognitive pro cesses to better replicate 
and improve robots in “humanlike capabilities” such as dealing with unstructured and 
uncertain environments or prioritizing between subtasks and sensory input while maintain-
ing a goal- driven task execution that is adaptable and changes over time. Indeed,  human 
beings are the best- known system to date for adapting to new environments, performing 
robustly, and prioritizing while reaching a goal. In addition, it has been suggested that a 
robot that tries to copy or mimic  human capabilities by relying on similar mechanisms as 
the person it is interacting with might be the easiest to understand intuitively (e.g., non-
verbally) when interaction between artificial agents and  humans is needed (Eder, Harper, 
and Leonards 2014).

17.2 Cognition in Control and Robotics

The use of the word “cognition” for control has been suggested  because it takes inspiration 
from  human cognitive pro cesses. Cognition in  humans covers  mental pro cesses and their 
role in thinking, feeling, and behaving, as defined by Kellogg (2015). Cognition includes 
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perception— that is, the pro cessing and understanding of the outside world by sensory 
inputs (Fischer and Demiris 2019); memory, or how information is stored, manipulated, 
and used (Baddeley 2012); decision- making, or how to decide on the best action to reach 
a certain goal (Haefner, Berkes, and Fiser 2016); and acquisition of knowledge and exper-
tise, including abstracting high- level understanding and learning from its interaction with 
the world (Moulin- Frier et al. 2018), among other  factors, such as creativity and reasoning, 
as aspects of  human capabilities.

17.2.1 Cognitive Architectures

In robotics, the concept of cognitive architecture comes from research in the field of arti-
ficial intelligence to describe a list of components, orga nizational structures, information 
flows, repre sen ta tions, and computational procedures that enable some intelligent be hav ior 
(Kotseruba and Tsotsos 2020; see also chapter 10);  these mechanisms mimic ways the 
brain is thought to deal with and manipulate information. Such architectures tend to work 
as blueprints, with no consideration or explanation of how to be implemented in any specific 
agent. This means that they can be software based only or embodied in the form of a robot 
body (Kawamura et al. 2008; Wei and Hindriks 2013; see chapter 11). They focus on describ-
ing dif fer ent “cognitive” modules that enable the mimicking of certain intelligent capabilities 
such as short-  and long- term memory modules for better decision- making (Ratanaswasd, 
Gordon, and Dodd 2005). Such modular descriptions tend to focus on the modules’ intercon-
nections, their interaction with the outside world (i.e., environment) in the form of sensor 
inputs (i.e., stimuli), and their pos si ble control outputs (i.e., action).

A wide range of cognitive architectures have been proposed over the past forty years, each 
author tackling the prob lem of representing humanlike intelligence or capabilities in their own 
way (see Kotseruba and Tsotsos [2020] for a recent review and chapter 10). A pos si ble general 
classification for  these architectures lies in the way information is pro cessed and represented, 
 either by using a handcrafted symbolic repre sen ta tion (i.e., symbolic or cognitivist systems), 
a sensor and data- based repre sen ta tion (i.e., emergent or connectionist systems), or a mix of 
both (i.e., hybrid systems; Kotseruba and Tsotsos 2020). Symbolic systems tend to have a 
long design pro cess  because they require a large initial knowledge base including rules, condi-
tions, label descriptions, or pos si ble scenario descriptions. They achieve  great predictability 
and reproducibility, although at the expense of flexibility and robustness to changing envi-
ronments. In contrast, emergent systems are highly adaptable, suited for learning from the 
environment and easier to design, but they require potentially long training pro cesses, losing 
transparency in their results and traceability due to  these learning pro cesses. It thus becomes 
difficult to know what to learn, what exactly is being learned, and when to stop learning in 
order to achieve optimal per for mance.

The above classification serves as a parallel to one often employed in control science 
to describe the mathe matics used to design and create the controller itself (Lopez Pulgarin 
et al. 2018): model- based controllers are designed using a mathematical repre sen ta tion of 
the system (i.e., plant model) that describes the dynamics surrounding the system. Such 
controllers are in stark contrast to a data- driven controller that uses available environment 
mea sure ments to construct a relation between how a system is manipulated (i.e., actions) 
and the system itself (i.e., states) based on rewarding or punishing certain be hav iors and 
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 limited to no knowledge of the system itself (e.g., Al- Tamimi, Lewis, and Abu- Khalaf 
2007; Na et al. 2012; Lewis, Vrabie, and Vamvoudakis 2012).

17.2.2 Cognitive Controllers

Cognitive controllers then are  those that allow the creation of a controller by  either implement-
ing or taking inspiration from cognitive architectures (Haykin et al. 2012; Fatemi and Haykin 
2014; Kawamura and Gordon 2006). Note that some authors define cognitive control as an 
addition to other low- level adaptive controllers (Haykin et al. 2012) or as a supplementary 
way to deal with high sensor input in parallel in a data- driven fashion while ignoring noncriti-
cal information (Kawamura and Gordon 2006). Yet, even for such alternative uses of the word 
“cognitive,” authors generally agree on the idea of drawing inspiration from  mental models 
or brain- inspired cognitive architectures. As many cognitive architectures exist, however,  there 
is no single standard of how the components should look (i.e., submodules, types of inputs 
or outputs, functionality implemented) and thus how  these intelligent/mental capabilities are 
achieved. Figure 17.2 shows an adaptive controller, an extension of the architecture shown 
in figure 17.1, that allows the model to learn from the environment and inform the controller 
of some previously unknown par ameters in the system to allow it to adapt (Khan et al. 2012; 
Na et al. 2015). In cognitive architectures,  these capabilities are embedded in a cognitive 
action module, where information derived from perception inform the system how to learn 
and adapt to the changing and unknown environment.

The main difference between a modern or smart controller (Kawamura et al. 2008) 
and a cognitive controller is their flexibility in goal description. Although both include 
interaction with the environment via sensory input and actuation output, having some 
kind of memory of the environment and the interaction of the controller with it, the 
cognitive controller is not restricted to one par tic u lar task; it has the capability to trans-
late information to other tasks and thus goes beyond initial requirements. In other words, 
cognitive controllers have the ability to go beyond an initial task definition in order to 

Controller

Sensor input

System+

–

Demand
input Output

Learning
model

Figure 17.2
Adaptive controller architecture.
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achieve an overarching goal through generalization and flexibility (Kotseruba and 
Tsotsos 2020).

Considering the goal of allowing high- level decision- making and control by a cognitive 
controller (Kotseruba and Tsotsos 2020), a more detailed cognitive architecture can be 
formulated by reviewing the specifics of  human cognitive pro cesses (Kellogg 2015; e.g., 
perception, memory, learning). Figure 17.3 introduces the general information loop used 
in many cognition- inspired applications (Kawamura and Gordon 2006; Ratanaswasd, Gordon, 
and Dodd 2005), expanding the previously introduced perception and action modules. Sensing 
and actuation are separated, suggesting they deal only with how sensory information is trans-
formed into useful knowledge and information (i.e., perception) and how the selected decision 
or sets of actions are performed (i.e., actuation and low- level control), respectively (Haefner, 
Berkes, and Fiser 2016). A module is added that deals with both the regulation and control 
of how perception outcomes are used (Gold and Heekeren 2013) and how they can relate 
to a specific goal such as executive functions or more general goal- related information. An 
additional module (Ratanaswasd, Gordon, and Dodd 2005) is added that considers how all 
remaining modules can generate relevant information that could be stored and used to improve 
their functioning over time and how this pro cess is performed (i.e., learning and memory); 
the inner workings of this module tend to take inspiration from working- memory models in 
 humans (e.g., Baddeley 2000, 2012).

The information loop of decision- making and control in figure 17.3 implies that for a 
certain scenario the best pos si ble decision is selected from any set of possibilities by 
cycling through them and performing any necessary motor control (e.g., limb movement, 
gaze control, speech). This loop resembles the prob lem faced in nonlinear control when 

Cognitive actionCognitive perception

Environment

Sensor Actuator

Learning and
memory

Executive functions
and goal-related

information

Stimuli Action

Figure 17.3
Cognitive control architecture with general functional blocks. Source: Inspired by Kazahiko Kawamura and 
Gordon 2006; Ratanaswasd, Gordon, and Dodd 2005.
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dealing with uncertain or highly dynamic environments for which a certain controller has 
been specifically designed or tuned for optimal per for mance within a specific range of the 
dynamics, called gain scheduling (Yang et al. 2010). The challenges faced in gain schedul-
ing could be seen as a reduced set of  those arising in cognitive control: in the former, the 
cases for which a set of controllers is designed and the controllers themselves are known 
in advance, and the challenge is to tune the controllers and change from one to the other 
to maintain per for mance and stability; in the latter, an additional challenge is to select 
from an only vaguely defined set of uncertain possibilities and to perform control over 
them with  little to no prior knowledge.

17.2.3 Control in Cognitive Robotics and HRI

Cognitive robotics (Levesque and Lakemeyer 2008; see also chapter 1) arises with the use 
of cognitive architectures or concepts inspired by  these architectures in order to tackle chal-
lenges faced in robotics at both task (e.g., object manipulation, exploration) and application 
levels (e.g., autonomous operation, teleoperation, HRI), respectively. Tasks that have been 
performed in cognitive robotics range from command following for object manipulation 
(e.g., Ratanaswasd, Gordon, and Dodd 2005; Dodd and Gutierrez 2005; Kawamura and 
Gordon 2006; Kawamura et al. 2008) to autonomous navigation (e.g., Avery, Kelley, and 
Davani 2006; Wei and Hindriks 2013) to reaching a goal by changing tasks (e.g., Khamassi 
et al. 2011).

Building on such achieved robotic capabilities (e.g., object reaching and navigation), 
applications that go beyond following an explicit  human command have been proposed 
that tend to involve  humans in some aspect or another (e.g., medical aid; Neerincx et al. 
2019); hence, Human- robot interaction (HRI) is involved. HRI is the term used to include 
all the tools and studies around the actuation and interaction of robots with  human beings 
in any pos si ble way (see also chapter 19). Cognitive robotics has proposed a range of 
methodologies to better interact with  humans, such as knowledge and skill transfer from 
 human to robot (e.g., Tan and Liang 2011), knowledge acquisition and learning through 
interaction (e.g., Moulin- Frier et al. 2018; Nakamura, Nagai, and Taniguchi 2018), and 
perspective taking (Fischer and Demiris 2019), to name but a few. However, robots with 
full autonomy have not yet been achieved.

Building from the definition of HRI, a special category focused on scenarios in which robot 
and  human work together to reach a common goal is called human- robot collaboration (HRC). 
Two key methodological aspects of HRC highlighted by Bauer, Wollherr, and Buss (2008) in 
their review of the most challenging aspects of HRC are intention and action; the former 
considers an initial agreement of the common/joint goal  either by explicit (e.g., speech and 
haptic commands) or implicit (e.g., hand gestures, eye gaze, estimation from physiological 
signals) means, and the latter considers planning and replanning capabilities to deal with 
unstructured dynamic environments and a potential joint action (e.g., carry ing and sharing a 
moving load).

HRI brings challenges beyond  those previously stated. Even if cognitive pro cesses could 
be mimicked to better deal with an unstructured and uncertain environment following a 
certain goal, the challenge of interacting with an autonomous agent who deals with a 
similar cognitive architecture that requires dynamic change and adaptation is a daunting 
task. As  human beings can perform many dif fer ent tasks and actions with no guarantee 
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that they  will do what the interacting robot expects, robots need to be equipped with the 
ability to both predict  human actions effectively and to clearly communicate their inten-
tions to the interacting  human (e.g., Scassellati 2002; Grigore et al. 2013; Eder, Harper, 
and Leonards 2014; Herrmann and Leonards 2018).

17.3 A Multiagent- Inspired Approach to Control in Cognitive Robots

 After having introduced cognitive robotics and its challenges, particularly for advanced 
HRI applications, we now move on to a decision and control action scheme (DCAS) that 
provides a clear application framework in which we try to tackle some of the issues raised 
above. This framework is focused on applications in which spatially close interaction or 
cooperation between  human and robot is  either a necessity or would at least improve 
overall task per for mance (e.g., semiautonomous vehicles or robotic care). The main chal-
lenge in  these applications is to achieve safe, cooperative, human- centered, and human- 
predictive decision- making between a technological robotic device and a goal- oriented 
 human through intelligent control and decision- making.

17.3.1 Paradigm Proposal for a Multiagent- Inspired Dynamic Decision  
and Action Framework for Human- Robot Interaction

Current state- of- the- art HRI sees the  human as “in the loop” and thus as an unpredictable 
part of the robot’s cognitive control system (see, e.g., Eder, Harper, and Leonards 2014). 
The addition of the  human inside a control loop means trying to model the  human’s 
requirements, needs, or general be hav ior in order to minimize any negative effect on task 
per for mance or any risk of harming the  human in close proximity to the robot while the 
robot navigates an environment (Dondrup et al. 2015). The uncertainty that arises from 
the “unpredictable”  human can be dealt with safely and reliably as long as the environment 
in which such interactions happen is well controlled (Eder, Harper, and Leonards 2014). 
However, prob lems arise as soon as the environment itself becomes unpredictable. For 
most everyday environments, this is the case  because they often include both other  humans 
and animals (i.e., autonomous agents), making the environment unpredictable and demand-
ing the system to interact or coordinate not only with one unpredictable partner but, 
potentially, with a  whole range of external agents at the same time. Moreover, many 
physical environments themselves are too complex to be predicted in their entirety, thus 
leaving further risk of unpredictability. This means that we have an unpredictable part 
within the system itself as well as an unpredictable, continuously changing environment, 
a prob lem that is very hard to solve.

One way to solve this issue is by changing how one understands the directly collaborat-
ing partner and their role relative to the robot. If we understand the robot as an autonomous 
yet collaborative agent in its own right and take the  human out of its direct loop by under-
standing them as an autonomous partner in the robot’s environment, then we have to solve 
only one issue— namely, the dynamic environmental uncertainty or unpredictability. As a 
partner, the  human has built an internal model of the autonomous agent (e.g., robot or 
another  human), as much as the autonomous agent has an internal model regarding the 
 human colead/any other  human in the environment. In cognitive psy chol ogy terms, such 
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an internal model of an interaction partner’s mind would be based on a concept known as 
theory of mind (Baron- Cohen et al. 1985). Theory of mind refers to the attribution of 
 mental states (e.g., intentions, beliefs, and desires) to living beings; for an interaction 
scenario between two  people, an understanding of the other agent’s intentions and decision- 
making pro cess is essential for seamless interaction. Translated to HRI,  there is thus only 
an “intensity” proximity difference or connectivity between the  human and other autono-
mous agents in the environment, comparable to human- human interaction in close proxim-
ity or further away (i.e., personal space or extrapersonal space; Curioni, Knoblich, and 
Sebanz 2017). Hence, we suggest a scenario in which an autonomous system and a  human 
each act as in de pen dent autonomous agents. As in human- human interaction, the two 
interacting partners can then have substantially dif fer ent abilities as long as their internal 
repre sen ta tion of each other is sufficiently accurate.

This creates a redundant, safe, and interchangeable cooperative dynamic partnership 
between the “lead” and “colead” in which both robot and  human can take on  either role 
(Curioni, Knoblich, and Sebanz 2017). Communication and cooperation between the autono-
mous system and the  human are a necessity not only for safety reasons but also for the 
accomplishment of common objectives as determined by the  human. The joint action pro cess 
between an artificial agent and a  human being can only realize the optimal outcome of safe 
and efficient cooperation (i.e., shared control) if the autonomous system is able to synthesize, 
evaluate, and predict the  human colead’s intentions and communicate its own possibly 
 limited aims and capabilities to the interacting partner and the environment more generally 
(figure 17.4). This can be achieved as a cooperative decision and a subsequent dynamic 

Lead
role

Co-lead
role

Redundant, safe, and better
task performance 

Active communication and
intention estimation

Communication

Role switch

Types of links

Effective role
switch

Figure 17.4
Autonomous robot: roles and their interchange between a  human and an autonomous system.
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action. In fact, such communication and cooperation are key, yet highly problematic, for 
HRI in general (Herrmann and Leonards 2018). The following suggestion of a decision- and- 
action framework provides a pos si ble basis for a technical, dynamic HRI control paradigm 
to deal with interaction issues.

The above proposed paradigm shift in the way we think about fast dynamic interactions 
between  people and artificial autonomous systems (i.e., robots) looks at the interaction 
and cooperation of two cooperative autonomous agents (figure 17.5) who operate as an 
interchangeable lead and colead (figure 17.4). Both agents are engaged in the task, and 
any inattention or objective track loss can be detected immediately. We propose a fluent 
change between who leads and who follows in joint actions in line with what is known 
for human- human interaction (Curioni, Knoblich, and Sebanz 2017). Indeed, coordination 
with  others is implicit in many of our  human be hav iors. Such princi ples of cooperation 
can be nicely framed in a theoretical cooperative hybrid decision and dynamic control 
framework, the technical instantiation of the paradigm shift in dynamic HRI.

We propose that the solution to any human- artificial agent interaction lies in creating an 
intelligent cooperative decision and actuation framework in which decision- making- relevant 
information can be seamlessly merged with the  human’s goals and interests through theory 
of mind, to the extent necessary and pos si ble. Similar to human- human joint action, the 
autonomous agent becomes a partner in its own right that is jointly involved in the decision- 
making pro cess.

Within this cooperative framework, it is impor tant for each agent to be aware that  there 
are other, possibly less capable, autonomous agents in the environment. In this development 
context, the autonomous system- human relationship can be seen as the pupil (robot)- teacher 
( human) relationship in a learning stage, with a relationship of a close set of trusted partners 
as the end goal. The willing and supportive autonomous agent learns how to better interpret 
and interact (i.e., the autonomous agent learns from and adapts to the  human agent).  There 
is also the need for a “human- agent- detection” method to pick up on “error signals” induced 
during a task (e.g., inattentiveness within the teacher) so corrective actions can be made.

The successful interaction between  human and autonomous agent would have to be 
fluid. This requires both cooperative decisions and cooperative dynamic actions to guar-
antee a safe and trusted cooperative pro cess during the decisive changeover of leader and 
follower. For such a technical mechanism of cooperative interaction between two autono-
mous agents to work, the guiding princi ple that underlies this cooperation needs to be 
based on optimality, a princi ple well known in engineering (Turnbull et al. 2016) and 
robotics (Mombaur, Truong, and Laumond 2010; Khan et al. 2012) as well as an under-
lying concept to cognitive science (Berkes et al. 2011; Fiser et al. 2010), where it has been 
shown that  under most circumstances  humans decide and dynamically act in an optimal 
sense (e.g., Spiers, Khan, and Herrmann 2016; Haefner, Berkes, and Fiser 2016).

Putting the dif fer ent concepts together, a hybrid optimal, yet adaptive, cooperative agent- 
based decision and control action scheme (i.e., DCAS) must provide the “intelligence” as 
an active negotiation scheme between autonomous agent and  human. This scheme must 
resolve both the dynamic, the physical, and the behavioral event- driven interaction between 
 human and autonomous system. To date, this is still an impor tant unresolved step.
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17.3.2 Princi ples and Characteristics of the Dynamic Decision  
and Action Framework

Based on predictions of the pos si ble decisions a  human agent could make (Lopez Pulgarin, 
Herrmann, and Leonards 2018), any DCAS should look at making decisions within a 
fraction of  those prediction win dows (e.g., one second) to then dynamically cue and 
actively influence the decisions of the  human partner. Hence,  human and autonomous 
agent would be able to cooperatively act within the time period of the predicted decisions 
and actions thereafter. The following axioms would lead to the DCAS:

1)  The realization that we can treat the  human as an “external source” or in de pen dent 
collaboration partner in relation to the autonomous agent instead of “in the loop.”
2)  Learning from and adapting to the  human and the signals  people send in joint action 
situations, proxemics, and so on; learning to understand and predict adaptability within 
the  human and their trust of the autonomous system as an autonomous, collaborative agent 
or partner.
3)  Identification and subsequent learning from the “error” signals when situations go 
wrong. The princi ple of optimality of decisions and actions in  human agents and control 
technology is an exploited commonality.
4)  Identification and enabling of verbal and nonverbal communication channels in a 
 human to indicate changes in “who is the leader, who is the follower” in joint action.
5)  Subsequent “joint” cooperative, agent- based decision- making and dynamic action taking.

Overall, a coherent modeling methodology for decisions and actions would have to be 
developed that is deeply rooted in complementary research on  human decision- making, 
cognition, communication, dynamic actions, dynamic decisions, and action theories in 
control and computer science.

This requires that agent models and their uncertainties involved in the joint decision- 
making pro cess be predetermined. This includes both the  human and the autonomous 
system. The more the autonomous system relies on princi ples that underlie successful 
human- human interaction, the easier it  will be for the  human to develop a theory of mind 
of the robot. Only an approach that allows the  human to intuitively understand the “mind” 
of the robot and that takes into account that an agent’s own actions influence other agents’ 
actions and vice versa  will make joint actions among intelligent autonomous systems and 
 humans pos si ble (King, Rowe, and Leonards 2011).

Autonomous artificial agent models take inspiration from the fact that  human decision 
models (e.g., Bellet et al. 2009; Berkes et al. 2011) have strong similarity to discrete hybrid 
stochastic automata (DHSA; Bemporad and Di Cairano 2005).  There is a decision- making 
level that is responsible for the decisions, resulting in subsequent dynamic actions at the 
automatic level. Hence, the decision- making level may imply a set of discrete yet uncertain 
decisions, each followed by an uncertain dynamic action. Decisions are carried out within 
a fraction of a second, while dynamic actions can extend over intervals of several seconds.

The probabilistic approach for the analy sis of  human decision- making based on Fiser’s 
sampling- based probabilistic repre sen ta tional framework (Haefner, Berkes, and Fiser 2016; 
Fiser et al. 2010) is a pos si ble guidance for the development of such agent models. In 
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Fiser’s framework, both the  human’s internal repre sen ta tion of visual, aural, and tactile 
events during acting as a colead and the decision- making pro cess in lead situations must 
be assessed. For the sequential character of decisions and dynamic actions, it therefore 
becomes necessary to explore how decisions in the pre sent moment depend on the series 
of decisions made in the recent past. This leads to an assessment pro cess of cues given to 
the  human and the decisions made. For modeling the  human decision- making pro cess, the 
optimality princi ple following a Bayesian method can be used, such as the “cognitive 
tomography” method of Houlsby et al. (2013). Applied to behavioral tasks, this allows for 
a quantitative description of an internal repre sen ta tion of a  human based on discrete test 
choices (figure 17.6). Alternatively, a machine- learning- based understanding of the decision- 
making model (Lopez Pulgarin, Herrmann, and Leonards 2017) could be deployed and 
the synergies explored in which decision probabilities determine decision costs. Though 
such methods resemble emergent methods in cognitive architectures, they aim at present-
ing their results in a clearer and more predictable manner than traditional data- driven 
methods.

For the lower automatic dynamic action level— that is, the dynamic action following the 
decision— learning- based, regressive models based on data- driven methods might be prefer-
able to strongly physical model- based methods; they may provide a continuous integral or 
summative optimal cost function that the  human follows. Optimal cost function models 
allow for a more flexible prediction of the  human’s actions. This is, for example, used in 
inverse optimal reinforcement learning (Mombaur, Truong, and Laumond 2010). Both 
levels are joint via the DHSA (Bemporad and Di Cairano 2005) and exploit mechanisms 
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Figure 17.6
Probabilistic internal decision model of a driver attempting to pass a car in front of them. Source: Adapted from 
Berkes et al. 2011.

Downloaded from http://direct.mit.edu/books/book-pdf/2239475/book_9780262369329.pdf by guest on 30 September 2024



350 E. J. Lopez Pulgarin, U. Leonards, and G. Herrmann

like model predictive control (Morari and Lee 1999; Di Cairano et al. 2014; Rosolia, Zhang, 
and Borrelli 2018).

As mentioned  earlier, a joining princi ple in  human decision,  human action dynamics, 
and many artificially designed technological pro cesses is optimality. Each decision and 
action can be quantitatively associated with a cost. For a robot, a part of the cost in a 
dynamic action can be characterized, for instance, by its distance,  either to a target for 
target tracking or to the distance from a  human for safety. For both  humans and robots, their 
energy consumption could be included in the cost and would be expected to increase over 
time while remaining  limited in order for it to be optimized. The optimization of energy 
consumption underlies many  human functions, such as locomotion (e.g., Warren 2006).

In terms of decision- making, the synergetic power of cognitive- science- founded models 
(e.g., Fiser et al. 2010; Berkes et al. 2011; figure 17.6) and machine- learning models (e.g., 
Lopez Pulgarin, Herrmann, and Leonards 2017, 2018) has to be exploited.  Humans 
develop an internal model for each perceptive decision that guarantees that the decision 
regarding an intended task is carried out with the highest probability of success (Fiser 
et al. 2010; Berkes et al. 2011) considering the uncertainty of the environment (figure 17.7). 
Hence, decision costs are inversely related to the probability of the decision made. Iden-
tifying not only the models and their uncertainty sources but the optimal criteria for joint 
action between agents is key (Fiser et al. 2010).

The cooperative decision- making pro cess can use the set of aforementioned DHSAs 
within a cooperative agent- based pro cess, using model predictive control princi ples, to 
speed up the decision pro cess and to allow fast computation of dynamic control actions 
from the multiagent framework. A probabilistic decision framework would possibly enhance 
such a pro cess (Turnbull et al. 2016). For this, a virtual autonomous agent (figure 17.7) can 
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Figure 17.7
DCAS overview.
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be developed by applying the princi ples  behind DCAS. This virtual agent represents the 
nominal action computed from a joint optimal criterion for safety and a nominal understand-
ing of the  human, the internal model of the virtual leader, including individual differences 
between  humans and in their intentions. The virtual model  will act as an agent to be com-
pared with the  human characteristics and its short- term predictions using the unconstrained 
 human model. Hence, the  human and the virtual agent are assessed for their cost function, 
which evaluates  whether the  human cooperative partner is in line with the virtual  human 
model. Subcomponents for safety are prioritized in decision- making, together with repre-
sen ta tions of  human intention to decide to what extent the  human or the virtual agent lead 
within the collaboration within a network of decentralized agents. Princi ples of game- 
theoretic approaches and agent synchronization can be used for a control policy in the vital 
time frame of dynamic actions following a decision, thus leading to an action of the coop-
erative decision- making pro cess. To minimize conflicts, the autonomous system  will take 
the  human’s desired actions as long as they do not compromise safety.

17.3.3 Impact on Autonomous Systems and HRI

Below we  will analyze cognitive control for HRI with dif fer ent types of robots and human- 
robot collaboration scenarios.

Humanoid robots
Humanoid robots (Oh, Kim, and Kim 2005) and interaction with them (i.e., human- humanoid 
interaction (HHI; Herrmann and Leonards 2018) could be enabled or improved by imple-
menting a DCAS similar to that described above. Robots performing tasks that benefit from 
understanding the interacting  human(s) while aiming at a final goal, such as to jointly move 
an object, to keep the  human safe, or to maintain a  human’s vital signs inside a desired 
threshold, are the key benefits of the DCAS. Similar to existing cognitive architectures that 
aim at achieving humanlike capabilities, DCASs would allow many robotics applications to 
improve  human life.

Understanding the interacting  human and having the ability to share certain goals would 
be a big step  toward safe, trustworthy HRI. For example, applications in medical assistive 
robotics could range from robots serving as partial nurses or assistants to medical profes-
sionals to shared physical cooperative work (e.g., object carry ing; Parker and Croft 2012) 
or object manipulation (Sheng, Thobbi, and Gu 2015; Whitsell and Artemiadis 2017). By 
understanding the final goal that both the robot and medical professional share, meaning 
patient care, auxiliary actions could be performed by the robot across the  whole care 
experience.

For cases in which the  human is the recipient of the robot’s actions and not the cooperative 
leader or companion, substantial benefits would be derived from understanding the  human 
recipient’s mindset in order to take the appropriate decisions at the best time pos si ble.

Although the DCAS’s main goal is not restricted to better understanding a robot’s sur-
rounding environment, it is one of its planned capabilities. Hence, the DCAS should 
improve the robot’s autonomy during its sensing and decision- making pro cesses by means 
of a collaborative learning strategy (e.g., supervised learning). By learning from the sensed 
environment while keeping a preset goal, long- term goals can be achieved autonomously 
and cooperatively as decision- making is improved across task iterations.
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Teleoperated robots
Robotic teleoperation, understood to be the operation of a robot at a distance that allows 
one or many operators to interact with an environment (Li, Xia, and Su 2015), can benefit 
from the use of DCAS. As the scope of both operation and distance in teleoperation can 
be very wide (e.g., operation being by direct control or control by commands and distance 
understood as  either a physical distance or difference in scale), many applications include 
a teleoperation setup (e.g., robotic surgeon, robotic manipulator for maintenance).

As in other HRI examples, DCAS would improve interaction to achieve a shared goal. 
Even if teleoperated robots are not considered autonomous or able to make decisions, the 
robot could possess intelligent mechanisms to help improve overall task performance— 
for example, to deal with potential delays in communication channels or complications 
introduced by control means or interfaces. By considering the robotic teleoperation device as 
a cooperative agent that understands and predicts the  human operator’s actions, the impact of 
delays could be minimized, as shared control would be made pos si ble. This has been proposed 
before (e.g., Corredor, Sofrony, and Peer 2017), but  here the idea is applied to a multitask 
and multidimensional space. Following a paradigm of a shared control, the level of autonomy 
in teleoperation devices could increase with improved understanding of the teleoperation task 
and increased safety.

In par tic u lar, higher autonomy of the system could speed up the operator’s learning 
curve to use the device. Learning curve theory started empirically in the 1930s as cost 
reduction due to repetitive procedures in production plants was observed (see Anzanello 
and Fogliatto [2011] for the full reference); its goal is to exemplify and track how profi-
ciency in performing a task or in the use of a device is improved via repetition (i.e., 
experience). Learning curves have been applied in teleoperation (e.g., Anvari 2007) to 
evaluate how much training is needed with using a device to achieve proficiency (Doumerc 
et al. 2010). Learning curves have been used in the field of medicine, particularly to evalu-
ate both manual surgical procedures (e.g., Hopper, Jamison, and Lewis 2007; de Oliveira 
Filho 2002) and robotically assisted surgical procedures (e.g., Kaul, Shah, and Menon 
2006; Chen et al. 2017) and to compare the two types of procedures with each other.

Building on the results around learning curves for robotic teleoperated devices, particu-
larly in medicine (e.g., Yamaguchi et al. 2015; Samadi et al. 2007), a general learning curve 
can be proposed. Figure 17.8 shows the potential shape of the learning pro cess  behind a 
robotic device when plotting per for mance against experience. Three dif fer ent phases can be 
identified: 1) an initial slow learning phase in which the operator gets used to the device 
 until it reaches some minimal proficiency pg1  after certain experience tp1, 2) a second prac-
ticing phase in which an acceptable proficiency pg2 is achieved  after continuous training tp2, 
and 3) a mastery phase in which optimal per for mance pg3 is reached with continuous training 
and repetition.

DCAS could reduce training times tp1 and tp2 by making the teleoperation device both 
more intuitive and more responsive to the operator’s needs. In addition, the gap between 
pg1 and pg2 could be reduced following the princi ple previously explained, ultimately leading 
to improvement in overall per for mance (i.e., push pg3 higher).

The training of operators is an impor tant task of teleoperation devices when autonomy 
levels of the teleoperation system are low. However, as the autonomy of a teleoperated 
robot increases, following autonomy levels similar to  those declared by the Society of 

Downloaded from http://direct.mit.edu/books/book-pdf/2239475/book_9780262369329.pdf by guest on 30 September 2024



Cognitive Control for Decision  353

Automotive Engineers (SAE; SAE International 2016), the DCAS could be an impor tant 
enabler of improved teleoperation. Indeed, in many re spects a teleoperated task is similar 
to a vehicular driving task in which increasing autonomy is introduced for improved per-
for mance, decreased  human operator workload, and, ultimately, higher levels of safety.

Autonomous vehicles
Autonomous vehicles are a key target of many companies, as they could potentially bring 
significant economic and societal benefits (Fagnant and Kockelman 2015). Enormous 
structural efforts have been undertaken in terms of legislation and technology to enable 
autonomous driving. This includes the introduction of high- bandwidth G5 communication 
technology as an impor tant enabler of autonomous driving through connectivity between 
cars or for high- precision maps. At the same time, the diverse and historically grown 
character of cities poses a challenge in its own right, with partially outdated infrastructure, 
differences in road regulations, and a highly dynamic environment due to other road users.

Albeit error prone,  humans are fully capable of steering around a city’s complexities. 
They can interpret complex situations, make decisions, resolve prob lems, and even rein-
terpret rules and road regulations within new contexts. Autonomous vehicles fail in such 
situations (see, e.g., fatal accidents with regard to Uber and Tesla; Banks, Plant, and 
Stanton 2018), meaning the  human needs to remain included in the driving pro cess. In 
addition, a significant number of countries, especially within Eu rope, demand a human- 
focused approach that requires the driver to be able to retake control at any moment— 
something that is not pos si ble if a person has been occupied with a dif fer ent task.

However, not only autonomous cars make  mistakes.  Drivers can be expected to make 
 mistakes commensurate with the cognitive load they have to deal with or when they lack 
situational awareness through distraction or mind wandering (de Winter et al. 2014). While 
some advanced driver assistance systems (ADAS) and semiautonomous driving technolo-
gies try to account for  human inattentiveness (e.g., Fagnant and Kockelman 2015), the 
majority work in de pen dently. Yet a more alert and experienced driving partner and copi lot 
would be able to help steer a driver out of a temporary prob lem by direct communication 
or by providing supportive and intuitive cues for the driver.

 Whether to allow  human passengers to interact with autonomous cars remains an unre-
solved prob lem affecting cockpit design (Fagnant and Kockelman 2015), in addition to 
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Potential learning curve for the teleoperation of robotic devices.
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the aforementioned uncertainty of understanding the  human within the vehicle as part of 
the car’s system (i.e., the  human in the loop) and separating it conceptually from the 
external environment.

The DCAS suggested in this chapter interacts with the  human in the car (i.e., the driver) 
in a cooperative way (figure 17.5), like a  human pi lot would with their  human copi lot. As 
pi lot and copi lot swap roles, so do the artificial agent (i.e., autonomous car) and the  human 
driver, considering the requirements at hand and allowing the  human agent to retake control 
of the driving pro cess if desired.

17.4 Conclusion

A DCAS was introduced as a response to some of the challenges faced in modern robotics, 
such as goal- driven task per for mance and flexible and robust interaction with autonomous 
agents and the environment, as well as learning and knowledge acquisition. This decision 
and control framework was inspired by cognitive architectures and is expected to benefit 
many fields of application inside and beyond robotics. A list of a DCAS’s major capabilities 
would be to

1.  enable the robot’s interaction with  humans by understanding the  human’s goals and 
current state,
2.  provide an agent- based description for both  human and robot in order to enable joint 
action or cooperative work,
3.  deal with partial or incomplete repre sen ta tions of the environment and the interacting 
agents using learning, and
4.  exploit commonalities of recent research in  human decisions and actions and existing 
predictive decision and action methodologies in control and decision theory.

However, many aspects of such a DCAS remain open questions, specifically of how to 
implement a cohesive mathematical framework around each of the scheme’s components 
or capabilities.  Going back to the previous list, some of its key challenges are as follows:

1.   Human state and intention estimation and prediction
1.1.  What mea sure ments can we use to help estimate or predict a  human intention 
related to a certain task?
1.2.  How do we generate estimations or predictions of a  human before, during, or  after 
a task is being performed?
1.3.  How do we keep track of  these estimations or predictions and update them as a 
task is being performed?

2.  Task per for mance and coordination
2.1.  How do we make the robot perform a certain task or part of it?
2.2.  How do we let the robot know when to stop performing the task?
2.3.  How do we make the robot stop performing the task and release partial or complete 
control over a task?
2.4.  How do we let the robot know when to take back partial or full control of the task?
2.5.  How do we make the robot take back control of the task?
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3.  Decision- making and action with incomplete models
3.1.  How do we integrate a learning pro cess in a decision- making and control application?
3.2.  How do we learn from performing a task and interacting with a  human?
3.3.  How do we convert sensed data and the learning pro cess into knowledge useful 
for task completion and goal reaching?

Some technical insight has been given into how to answer  these questions. A data- driven 
approach, taking advantage of both machine- learning (e.g., Lopez Pulgarin, Herrmann, 
and Leonards 2017, 2018; Khamassi et al. 2011) and probabilistic- sampling techniques 
(e.g., Nakamura, Nagai, and Taniguchi 2018; Haefner, Berkes, and Fiser 2016; Fiser et al. 
2010), has been proposed as a feasible solution to improve understanding of the environ-
ment and to create knowledge, acknowledging challenges around modeling and validating 
and integrating the proposed methods into a more general cognitive control framework. 
Discrete hybrid automata (e.g., Bemporad and Di Cairano 2005) and model predictive 
control (e.g., Morari and Lee 1999) have been proposed as solutions for  handling several 
action paths si mul ta neously (i.e., decision- making) and implementing controllers, with some 
 others using reinforcement learning (i.e., data- driven methods) to deal with both situations 
(e.g., Lopez Pulgarin et al. 2018; Haykin et al. 2012; Khan et al. 2012; Khamassi et al. 2011). 
Hence, a suggested major joint guiding princi ple of  these methods is optimality in discrete 
decisions and dynamic actions for dynamic autonomous agent- based cooperation. Some 
authors have managed to integrate data- driven methods with dynamical systems for control 
(e.g., Warren 2006), which again keeps the discussion  going about how to better achieve a 
cognitive controller that takes advantage of symbolic (i.e., model- based) and emergent (i.e., 
data- driven) repre sen ta tions in cognitive architectures for control.

 After introducing the concept of cognitive control and cognitive robotics, including its 
benefits and challenges, we hope to have sparked more interest in this promising research 
field while sharing some ideas and concepts developed over the past few years.
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Additional Reading and Resources

•  An in ter est ing book with applied examples of controllers for robotic arms movement: 
Spiers, Adam, Said Ghani Khan, and Guido Herrmann. 2016. Biologically Inspired Control 
of Humanoid Robot Arms. Cham, Switzerland: Springer.
•  A comprehensive overview of some of the challenges in human- humanoid interaction 
inspiring work in cognitive robotics: Eder, Kerstin, Chris Harper, and Ute Leonards. 2014. 
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“ Towards the Safety of Human- in- the- Loop Robotics: Challenges and Opportunities for 
Safety Assurance of Robotic Co- workers.” In 23rd IEEE International Symposium on 
Robot and  Human Interactive Communication, 660–665. New York: IEEE.
•  A specific overview on optimal control and reinforcement learning, some of the techniques 
used in advanced control applications: Khan, Said G., Guido Herrmann, Frank L. Lewis, Tony 
Pipe, and Chris Melhuish. 2012. “Reinforcement Learning and Optimal Adaptive Control: 
An Overview and Implementation Examples.” Annual Reviews in Control 36 (1): 42–59. 
https:// doi . org / 10 . 1016 / j . arcontrol . 2012 . 03 . 004.
•  ROS packages for symbolic planning and robot task planning: https:/ / moveit . ros . org / , 
http: /  / wiki . ros . org / smach, http: / / wiki . ros . org / flexbe.
•  Software packages to get started with data- driven control (RL):

◦  MATLAB (proprietary but with better documentation): https:// uk . mathworks . com 
/ products / reinforcement - learning . html.
◦  PYTHON ( free and more popu lar) for algorithms: https:/ / github . com / openai / baselines; 
testing environments: https: /  / github . com / openai / gym; use with robotic simulators http: 
/ / wiki . ros . org / openai _ ros.

•  Software packages to get started with traditional control and model- based control (MPC):
◦  Optimization solver: https:// osqp . org / .
◦  MATLAB (proprietary but with better documentation) control toolbox: https:/ / uk 
. mathworks . com / products / control . html; MPC toolbox: https: /  / uk . mathworks . com / products 
/ mpc . html; modeling language wrapper: https: / / yalmip . github . io / .
◦  PYTHON ( free) control library: https:/ / python - control . readthedocs . io / en / latest / ;  free 
modeling language wrapper: https: / / www . cvxpy . org /.
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18.1 Introduction

 People live in social environments. They receive vari ous social signals, including gaze, 
facial expressions, gestures, and speech presented by other individuals.  People also send 
such signals to  others, regardless of their intentions. Most  people have strong tendencies 
to attribute social meaning to the be hav ior of  others and try to infer communicative inten-
tions from them. Such tendencies enable other individuals, especially young  children, to 
be easily engaged in social interactions.

This chapter addresses the issue of “social cognition.” It refers to the abilities of recogniz-
ing and controlling the self in relation to  others and the abilities of applying and perceiving 
social signals in interactions with  others. Such abilities enable  people to exchange informa-
tion and knowledge and thus to acquire new skills from other individuals. Indeed,  people 
who have difficulties in social cognition often face challenges in learning new tasks. An 
example is autism spectrum disorder (ASD), a type of neurodevelopmental disorder charac-
terized by deficits in social communication.  People with low- functioning ASD often show 
difficulties in acquiring higher cognitive skills such as language use and cooperation. Inves-
tigating diverse social abilities is necessary to better understand the roles and the mechanisms 
of social cognition.

How can robotics researchers endow robots with humanlike social cognition? A promising 
approach is to learn from  human infant development. It has been suggested that infants acquire 
basic social abilities in the first few years of life (Bremner 1994; Johnson 1997). They are 
born with  limited abilities and gradually acquire physical and cognitive skills through interac-
tions with the physical and social environment. In par tic u lar, caregivers play impor tant roles 
in facilitating infant development. Caregivers engage their infants in social interactions and 
try to infer communicative signals from infant be hav ior. Such scaffoldings by caregivers 
enable infants to learn how to behave in social environments. Computational approaches 
inspired by infant development can be used to build cognitive developmental mechanisms in 
robots as well as to uncover under lying mechanisms of infant development (Asada et al. 2001; 
Asada et al. 2009; Cangelosi and Schlesinger 2015).

This chapter is or ga nized as follows: First, psy chol ogy and neuroscience studies on social 
cognition are introduced in section 18.2. When and how infants acquire social cognitive 
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abilities are explained. We focus on four cognitive abilities that appear in early infancy: 
self- other recognition, joint attention, intention reading, and altruistic be hav iors. Substan-
tial findings relative to  these abilities have motivated robotics researchers to replicate them 
in robots. Sections 18.3 to 18.5 describe robotics models of  these cognitive functions. 
Computational models based on neural networks, probabilistic models, and reinforcement- 
learning models are introduced as potential mechanisms for development. Section 18.6 
then pre sents a new developmental theory based on predictive coding. While a lot of 
robotics research has targeted a specific function in social cognition, the predictive coding 
theory provides a unified princi ple that accounts for both temporal continuity and individual 
diversity in development. Fi nally, section 18.7 concludes this chapter by presenting  future 
issues.

18.2 Psy chol ogy and Neuroscience Theories on Social Cognition

18.2.1 Self- Other Recognition

Recognizing the self is a fundamental ability for infants (Bertenthal and Fischer 1978; 
Rochat 2003). Infants must discriminate their bodies from their environment in order to 
control their bodies in an intentional manner. They also need to differentiate other indi-
viduals from the self and the environment. Other individuals are active and self- propelled 
entities, who have similar but dif fer ent bodies and internal states from  those of infants. 
Detecting similarities as well as differences between the self and  others is crucial for 
establishing social interactions.

Psychologists have been investigating when and how infants come to recognize them-
selves. Meltzoff, Saby, and Marshall (2019) examined neural repre sen ta tions of the self- 
body in sixty- day- old infants. They mea sured brain activities when infants received tactile 
stimulation of vari ous body parts. Their results revealed differentiated body repre sen ta-
tions, which overlap with the body maps in the adult brain. The quality of body awareness 
changes during development. Infants at a few months of age are aware of their body as 
physical entities (Moore et al. 2007). They detect the relationship between proprioceptive 
and visual information and recognize their bodies visually. At around eigh teen months of 
age, infants begin to recognize themselves even in reflections such as mirrors (Brownell, 
Zerwas, and Ramani 2007). Infants at this stage can pass a mirror test (Amsterdam 1972), 
which is a behavioral signature of self- recognition. A short time  later, infants become able 
to recognize their bodies in time and space (Moore et al. 2007). They fi nally learn to 
effectively control their bodies in order to affect the environment.

Rochat (2003) summarized  these findings and proposed six levels of self- awareness that 
unfold during infancy: confusion, differentiation, situation, identification, permanence, and 
self- consciousness. Infants start with confused repre sen ta tions of the self and the environ-
ment and gradually learn to differentiate their bodies from the environment.  Later, they 
begin to identify their bodies in multiple modalities and fi nally extend self- awareness to 
time and space.

Despite a number of findings about self- awareness, the development of self- other rec-
ognition has been less studied. How infants detect similarities as well as differences 
between the self and  others is still an open question. Some neural and behavioral evidence 
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supports a hypothesis that the self and  others remain undifferentiated during early infancy. 
Meltzoff et al. (2018) found neural responses in the infant brain that detect the equivalence 
between the self and  others. They revealed that the primary somatosensory cortex of the 
infant brain was activated for both a felt touch (i.e., being touched on their bodies) and 
an observed touch (i.e., observing another person being touched). Neonatal imitations are 
behavioral signatures to support the hypothesis. Meltzoff and Moore (1977) found that 
newborn babies could imitate facial and manual movements presented by other individu-
als. The ability to detect the equivalence between dif fer ent modalities (e.g., vision and 
proprioception) and thus between the self and  others might be innate in infants (Meltzoff 
and Moore 1977). Mirror neurons and mirror neuron systems are known to be relevant 
neural mechanisms for imitation (Rizzolatti et al. 1996; Rizzolatti, Fogassi, and Gallese 
2001; Iacoboni and Dapretto 2006). It has been found that the same brain areas are acti-
vated both when a person is executing an action and when they are observing the same 
action performed by other individuals.

Section 18.3 pre sents robotics models for the development of self- recognition and self- 
other recognition. How to detect similarities as well as differences between the self and 
 others is discussed from a computational standpoint.

18.2.2 Joint Attention

Joint attention is a phenomenon in which two  people attend to the same object (Scaife and 
Bruner 1975; Moore and Dunham 1995). While self- other recognition is a dyadic interac-
tion, joint attention concerns a triadic interaction involving an object. This ability is consid-
ered a cornerstone for many social abilities, including imitation, theory of mind, and language 
use,  because it enables infants to share experiences with and learn from other persons (Toma-
sello and Farrar 1986; Charman et al. 2000; Morales et al. 2000).

Butterworth and Jarrett (1991) closely examined when and how infants come to achieve 
joint attention. They found three stages of development appearing from the age of six to 
eigh teen months. The first stage is called the ecological stage. Infants from six to nine 
months old detect the direction of another person’s gaze but cannot precisely localize the 
target object. Salient properties of the object rather than the gaze cue guide the infants’ 
attention. The second stage is called the geometric stage, in which infants start establish-
ing joint attention. At age twelve months, infants learn to follow the gaze direction of 
another person and identify the object the person is looking at. This ability, however, is 
 limited to an object within the field of the infant’s first view. Only in the third stage, 
called the repre sen ta tional stage, does the ability become fully functional. Infants at age 
eigh teen months establish joint attention regardless of the position of the object. They 
can turn around along the direction of another person’s gaze even when the object is 
located outside the field of the infants’ first view. This stage requires a  mental repre sen-
ta tion of the environment.

Other studies have investigated the effects of dif fer ent visual cues on joint attention. 
The turning of another person’s head facilitates gaze following in younger infants (Moore, 
Angelopoulos, and Bennett 1997). Infants who do not yet spontaneously follow a person’s 
static head orientation can learn to follow a dynamic head turn. The coordinated movement 
of the head and the eyes together enable joint attention in younger infants (Lempers 1979). 
Only the orientation information or only eye movement is not sufficient for them to 
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perform joint attention. Furthermore, communicative signals from a person have been 
found to be crucial for joint attention (Senju and Csibra 2008). Six- month- old infants 
follow the direction of another person’s gaze only when the person establishes eye contact 
or produces infant- directed speech, which is characterized by a wide range of pitch varia-
tion, before the gaze shift.

Inspired by  these findings, vari ous robotics models for joint attention have been pro-
posed. Section 18.4 describes how computational studies have contributed to a better 
understanding of the under lying developmental mechanisms.

18.2.3 Reading Intentions and Altruistic Be hav ior

The abilities of reading intention and altruistic be hav ior are thought to be acquired based 
on joint attention. Once infants are able to share their experiences with  others, they realize 
that other persons have unobservable internal states, such as beliefs and intentions. Theory 
of mind refers to this ability (Premack and Woodruff 1978; Baron- Cohen 1995), which 
becomes a basis for higher social cognition.

Woodward and colleagues (Woodward 1998; Sommerville, Woodward, and Needham 
2005; Gerson and Woodward 2014) investigated when and how infants come to understand 
other persons’ intentions. Employing visual habituation paradigms, they examined  whether 
infants recognized a change in the goal of an experimenter’s reaching action. Their results 
demonstrated that six- month- old infants could already encode another person’s actions 
as goal directed (Woodward 1998). They further revealed that the motor experiences of 
infants have a  great impact on infants’ abilities with regard to action perception (Som-
merville, Woodward, and Needham 2005; Gerson and Woodward 2014). Three- month- old 
infants, who could not yet spontaneously reach for an object, exhibited the ability to 
recognize goal directedness in another person’s reaching  after experiencing the apprehend-
ing of an object with a sticky mitten. The importance of motor experiences in reading 
 others’ intentions was also found in another study (Kanakogi and Itakura 2011). The 
researchers revealed synchronous development of action production and action perception 
in four-  to 10- month- old infants.

The ability to infer another person’s intentions can lead to the development of altruistic 
be hav ior. Older infants can help  others by completing the  others’ goal even if they do not 
receive any immediate benefits. Warneken and Tomasello (2006) showed that eighteen- 
month- old infants could help  others in a variety of dif fer ent situations, such as handing 
over an out- of- reach object, opening a cabinet to store objects, and so on. Younger infants, 
in contrast, could help other persons only in easier scenarios (Warneken and Tomasello 
2007). Cirelli et al. (Cirelli, Einarson, and Trainor 2014; Cirelli, Wan, and Trainor 2014) 
examined prerequisites for altruism in infants. They revealed that the social relationship 
between infants and an experimenter affects helpfulness in infants. Fourteen- month- old 
infants more significantly helped an experimenter who presented body movement syn-
chronized with infants versus asynchronous movement.

An open question is the developmental mechanism and the motivation for altruistic 
be hav iors. Two hypotheses have been proposed to account for development (Paulus 2014). 
The first hypothesis is called the emotion- sharing model, which proposes that infants are 
able to differentiate the self from  others and to recognize  others as intentional agents. 
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Infants are motivated to help other persons based on empathic concerns for the needs of 
 others. The second hypothesis is called the goal- alignment model. This model does not 
propose self- other discrimination but rather assumes undifferentiated self- other repre sen-
ta tions. It is believed that infants estimate the goal of other persons and take over the goal 
as if it  were their own.

Section 18.5 pre sents robotics models for reading intentions and altruistic be hav ior. 
Computational studies provide new insight into how  these abilities successively develop 
through a common mechanism.

18.3 Cognitive Robotics Models for Self- Other Recognition

This section pre sents computational models for self- recognition and self- other recognition. 
Refer to a recent review article (Georgie, Schillaci, and Hafner 2019) for more details.

18.3.1 Robotics Models for Self- Recognition

Many computational models have been proposed to enable robots to recognize their own 
bodies. Yamada et al. (2016) and Hoffmann et al. (2018) investigated the development of 
body repre sen ta tions in artificial agents. They proposed learning models for a fetus simula-
tor or a humanoid robot to self- organize somatosensory signals through tactile experiences. 
Their experiments demonstrated structured body repre sen ta tions acquired in the simulator/
robot that  were similar to  those found in the primary somatosensory cortex in  humans or 
primates. Hafner and colleagues (Lang, Schillaci, and Hafner 2018; Schillaci, Hafner, and 
Lara 2016) and Lanillos and colleagues (Lanillos, Dean- Leon, and Cheng 2017; Lanillos 
and Cheng 2018) developed learning models for robots to visually recognize their own 
bodies. Their key idea was that a forward model that learns to predict sensory signals 
through multimodal experiences plays a crucial role in self- recognition. Their experiments 
replicated not only self- recognition ability but also relevant phenomena such as attenua-
tions of self- generated movements (Lang, Schillaci, and Hafner 2018) and rubber hand 
illusions (Lanillos and Cheng 2018). In contrast to  these studies focusing on sensory 
predictability, Tani (1998) suggested that the self becomes aware through interactions 
between the bottom-up sensations and the top- down predictions in dynamic systems. 
Neural networks, which are trained to achieve certain goals, transit spontaneously between 
goal- directed stable states and unstable states. His study on analogies between the model’s 
be hav iors and the lit er a ture on the phenomenology of self- recognition indicated that the 
self is recognized during unstable phases.

18.3.2 Robotics Models for Self- Other Recognition

Other researchers have addressed the issue of self- other recognition. Gold and Scassellati 
(2009) proposed a probabilistic model for a robot to discriminate its own body, the bodies 
of animate individuals, and inanimate objects (see figure 18.1a). They hypothesized that 
 these entities could be detected as image motion that has dif fer ent probabilities of being 
generated by the robot’s motor commands. Their experiment demonstrated that the robot 
could successfully differentiate its body from the body of a  human even using an image 
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reflected in a mirror. Nakajo et al. (2016) proposed a recurrent neural network that dif-
ferentiates the self, other individuals, and objects based on the certainty of predictions (see 
figure 18.1b). Their network could learn to predict the variance as well as the mean of 
sensory signals, where the variance was used as an index of predictability. Their experi-
ments demonstrated successful discrimination of the robot’s own body as a highly predict-
able entity (i.e., low variance) compared to other persons or objects.

In contrast to the above studies focusing on self- other discrimination, Nagai et al. (Nagai, 
Kawai, and Asada 2011; Kawai, Nagai, and Asada 2012) proposed a neural network that 
learns to detect both similarities and differences between the self and  others (see figure 18.1c). 
They hypothesized that immaturity in sensory acuity enhances self- other equivalence in the 
early stage of development and therefore enables the network to maintain the self- other cor-
respondence while learning to differentiate the self and  others. Their experiments comparing 
dif fer ent learning conditions acknowledged the importance of sensory development. Only the 
network with sensory development acquired both similarities and differences between the self 
and  others. All the above computational studies provide impor tant insights into the under lying 
neural mechanisms for self- other recognition.

a

b

c

Figure 18.1
Cognitive robotics models for self- other recognition. (a) Self- other recognition using probabilistic Bayesian 
models (Gold and Scassellati 2009). (b) Self- other recognition using a recurrent neural network with variance 
prediction (Nakajo et al. 2016). (c) Self- other recognition based on sensorimotor associative learning with 
sensory development (Nagai, Kawai, and Asada 2011).
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18.4 Cognitive Robotics Models for Joint Attention

Vari ous robotics models for joint attention have been proposed, inspired by behavioral 
findings about infant development. This section pre sents computational models using 
dif fer ent learning architectures, such as neural networks and reinforcement learning. 
Refer to Kaplan and Hafner (2006) for a comprehensive review of joint attention in 
robots.

18.4.1 Neural Network Models for Joint Attention

Studies by Nagai and colleagues (Nagai et al. 2003; Nagai, Asada, and Hosoda 2006; 
Nagai 2005b) proposed neural network models through which robots learned to achieve 
joint attention with  human caregivers (see figure 18.2a). Their networks  were designed to 
learn the sensorimotor contingency between a visual input (i.e., a camera image capturing 
the caregiver’s face) and a motor output (i.e., a motor command to shift the robot’s gaze 
direction). Their key ideas  were that only successful experiences of joint attention involve 
higher sensorimotor correlations and that  these correlations can be acquired by a network 
even without explicit teaching signals. Their experiments not only replicated behavioral 
findings from psy chol ogy but also provided new insights into the under lying mechanisms. 
For example, unsupervised contingency learning could lead to the three- staged develop-
ment of joint attention, as observed in infants (refer to section 18.2.2; Nagai et al. 2003); 
sensory development and caregiver’s scaffolding could facilitate learning (Nagai, Asada, 
and Hosoda 2006); and motion information from the caregiver’s head turn could enable 
early development of joint attention, as observed in young infants (Nagai 2005b). Nagai 
(2005a) further applied a neural network to the development of comprehending deictic 
gestures. She trained a robot to recognize  human gestures such as reaching, tapping, and 
pointing. The experiment demonstrated that reaching gestures  were easier to recognize 
than the other two, as observed in infants. The static and motion cues produced by reach-
ing gestures  were richer and thus contributed to  earlier development.

18.4.2 Reinforcement- Learning Models for Joint Attention

In contrast to the above studies using neural networks, studies by Triesch and colleagues 
(Jasso et al. 2012; Triesch, Jasso, and Deák 2007; Triesch et al. 2006) proposed joint attention 
models based on reinforcement learning (see figure 18.2b). Their key idea was that an infant 
learner acquires a sensorimotor map based on the rewards of looking at a salient object. The 
sensorimotor signals used in their experiment included a saliency map of the environment, 
the head and eye direction of a caregiver, and the gaze direction of the infant. Their experi-
ments replicated multiple aspects of joint attention: the staged development of joint attention, 
facilitated learning with head and eye cues from a caregiver (Jasso et al. 2012), and mirror- 
neuron- like properties acquired in motor repre sen ta tions (Triesch, Jasso, and Deák 2007). 
They also examined the  causes of developmental delays or difficulties observed in ASD and 
Williams syndrome. Their experiments manipulating model par ameters suggested that aty pi-
cal reward structures for the caregiver’s face and objects prevented the development of joint 
attention (Triesch et al. 2006).
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18.4.3 Miscellaneous Models

Sumioka, Yoshikawa, and Asada (2008, 2010) extended the idea of contingency learning 
proposed by Nagai et al. (2003). They assumed that robots as well as infants do not know 
what sensorimotor signals to learn beforehand. They employed transfer entropy to detect 
inherent contingency in social interactions. Their experiments demonstrated the successful 
open- ended development of joint attention and relevant functions (e.g., gaze following and 
gaze alternation). Hoffman et al. (2006) proposed a probabilistic model combined with a 
saliency map. Inspired by active intermodal mapping as a basis for infant imitation (Melt-
zoff and Moore 1997), their model learned supramodal repre sen ta tions between the visual 
and proprioceptive signals of a robot. Their experiments showed that learned probability 
distribution represented even instructor- specific distributions over objects.

18.5 Cognitive Robotics Models for Reading Intentions  
and Altruistic Be hav ior

How  people infer the internal states (e.g., intentions and emotions) of other individuals 
remains unclear in social cognition.  People cannot directly access other persons’ internal 
states and do not always receive feedback from  others. Unlike the abilities of self- other 
recognition and joint attention, statistical learning through sensorimotor experiences is not 
sufficient for the development of  these abilities. This section pre sents robotics studies that 
have addressed this challenge.

a

b

Figure 18.2
Cognitive robotics models for joint attention. (a) Development of joint attention based on contingency learning 
using a neural network (Nagai et al. 2003). (b) Development of joint attention using reinforcement learning (Jasso 
et al. 2012).
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18.5.1 Robotics Models for Reading Intentions

Inspired by the discovery of mirror neurons (Rizzolatti et al. 1996; Rizzolatti, Fogassi, 
and Gallese 2001; Iacoboni and Dapretto 2006) robotics researchers have proposed neural 
network models that exhibit activation similar to mirror neurons. Neuroscience studies 
have shown that the  human brain recognizes the goal and estimates the intention of another 
individual’s actions by recruiting the brain areas used for action generation. Copete, Nagai, 
and Asada (2016) replicated this neural function using a deep autoencoder (see figure 18.3a). 
The network was first trained through a robot’s motor experience to execute desired actions 
(e.g., reaching) and was then applied to recognizing actions by other individuals. Of impor-
tance is that the robot received only the visual input during action observations, while it 
obtained the visual, tactile, and proprioceptive signals during action executions. Their key 
ideas  were that the network could reconstruct unobservable signals through multimodal 
repre sen ta tions and that the reconstructed signals could be used for further prediction of 
 future sensory states. Their experiments demonstrated that the imaginary tactile and proprio-
ceptive signals recalled from the visual input contributed to a more accurate estimation of 
 future states, which is indicative of intention reading.

Horii, Nagai, and Asada (2016, 2018) proposed a multimodal deep belief network able to 
estimate and imitate the emotions of  others (see figure 18.3b). Emotional states such as hap-
piness and sadness are internal states and must be inferred from observable signals. Their key 
idea was analogous to the model put forth by Copete, Nagai, and Asada (2016). Multimodal 
repre sen ta tions acquired through one’s own motor experiences enable the network to estimate 

a

b

Figure 18.3
Cognitive robotics models for reading intention. (a) Reading intention based on mirror neurons using a deep 
autoencoder (Copete, Nagai, and Asada 2016). (b) Estimation and imitation of emotion using a multimodal deep 
belief network (Horii, Nagai, and Asada 2016).
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the internal states and furthermore improve the estimation by reconstructing unobservable 
sensory signals. Their experiments demonstrated that a robot equipped with the network could 
acquire emotional states through developmental differentiation, as in infants (Horii, Nagai, 
and Asada 2018), and that it could estimate and imitate emotional states of  humans (Horii, 
Nagai, and Asada 2016).

18.5.2 Robotics Models for Altruistic Be hav ior

Once robots are able to estimate the intention of other individuals, they can help  others 
by completing  others’ goals. Baraglia et al. (Baraglia, Nagai, and Asada 2016; Baraglia 
et al. 2017) proposed a robotics model for altruistic be hav ior by extending the model 
proposed by Copete, Nagai, and Asada (2016). They suggested that a robot equipped with 
a mirror- neuron- like mechanism is able to estimate the goal of another person based on 
the robot’s own motor experiences and furthermore is able to fulfill the goal as if it  were 
their own. This idea supports the goal- alignment model hypothesis (Paulus 2014). The 
robot does not need to differentiate the self from  others but rather exploits an immature 
repre sen ta tion between them. Their experiment replicated the developmental pro gress 
observed in infants (Warneken and Tomasello 2006, 2007). The robot that had more experi-
ences of action generation produced helping be hav ior in wider situations, whereas the 
robot with less action experiences showed  limited abilities. This result supports the devel-
opmental hypothesis and further provides a potential neural mechanism for altruism.

18.6 A Unified Computational Theory for Social Cognition

Most studies in cognitive robotics have focused on a specific ability of social cognition. 
For example, one model reproduced the ability of self- other recognition but did not address 
joint attention. In contrast, psychological studies suggest that cognitive abilities are closely 
interlinked. An open challenge for robotics researchers is to propose a unified mechanism 
that drives the continuous development of multiple cognitive functions.

18.6.1 Cognitive Development Based on Predictive Coding

Nagai (2019) suggests that the theory of predictive coding provides a unified account for 
both temporal continuity and individual diversity in cognitive development. The predictive 
coding theory was originally proposed as a princi ple of the  human brain (Friston, Kilner, 
and Harrison 2006; Friston 2010; Clark 2013). Neuroscientists suggest that the brain works 
as a predictive machine that tries to minimize prediction errors between incoming sensory 
signals and top- down predictions produced by internal models. Of importance is that both 
perception and action are produced through the pro cess of minimizing prediction errors. 
Perceptions are formed by integrating sensory signals with top- down predictions according 
to their precision (i.e., perceptual inference), whereas actions are generated to minimize 
prediction errors by altering sensory signals (i.e., active inference).

Nagai (2019) suggested that two pro cesses of minimizing prediction errors lead to the 
continuous development of social cognition (see figure 18.4). First, the pro cess of updating 
internal models enables infants to acquire basic sensorimotor abilities related to the self 
(see figure 18.4a).  Humans are born with immature internal models and therefore must 
update their models through sensorimotor experiments. For example, the abilities of self- 
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recognition and self- other differentiation are achieved by detecting their dif fer ent predict-
abilities using the internal models. Goal- directed actions are acquired by updating the 
internal models in order to intentionally control the self. Internal models come to represent 
the relationship between proprioceptive signals and exteroceptive/interoceptive signals 
(e.g., vision and audition) from the body.

Second, social cognitive abilities are considered to emerge through the pro cess of acting 
on the environment to minimize prediction errors (see figure 18.4b). When interacting 
with other individuals, infants detect prediction errors  because the be hav ior of  others 
cannot be completely predicted using their internal models. Generating actions to minimize 
prediction errors results in protosocial be hav ior. For example, altruistic be hav ior emerges 
as a pro cess of completing predicted goals, which  were thought to be achieved by other 
persons. This view agrees with the goal- alignment model (Paulus 2014) and suggests that 
early forms of altruistic be hav ior do not involve social motivation. Only in the  later stage 
of development do infants acquire social motivation by receiving social feedback.

18.6.2 ASD Caused by Impairments in Predictive Pro cessing

The development of social cognition shows individual diversity. Some infants exhibit devel-
opmental delays and/or difficulties in acquiring cognitive functions. ASD is a type of neuro-
developmental disorder characterized by difficulties with social communication and interaction 
and a preference for restricted and repetitive patterns of be hav iors, interests, and activities 
(American Psychiatric Association 2013). Despite substantial behavioral and neural evidence 
about ASD, its developmental cause has not been fully elucidated.

Inspired by the predictive coding theory (Friston 2010; Friston, Kilner, and Harrison 2006; 
Clark 2013), neuroscientists have suggested that impairments in predictive pro cessing may 
produce the hypersensory sensitivities and/or lower adaptabilities observed in ASD (Pelli-
cano and Burr 2012; Brock 2012; Van de Cruys et al. 2014). Diverse characteristics of ASD 
might be accounted for by too weak or too strong reliance on predictions (Nagai 2019). Two 
computational studies that have tested this hypothesis are presented below. Refer to Lanillos 
et al. (2020) for a comprehensive review.

Idei et al. (2018) investigated the influence of the precision of sensory predictions on a 
robot’s be hav iors (see figure 18.5a). They employed a recurrent neural network called 

a b

Figure 18.4
Cognitive development based on predictive learning. (a) Updating the internal model through own sensorimotor 
experiences. (b) Generating actions to alter sensory signals.
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S- CTRNN (Murata et al. 2013) that can learn to predict not only sensory inputs but also 
their variances based on the minimization of precision- weighted prediction errors. The 
network implemented in a robot was first trained with ball manipulation tasks and then tested 
to reproduce the tasks using a modified model pa ram e ter. Their results demonstrated that 
both increased and decreased sensory precision induced behavioral rigidity similar to ASD. 
Decreased sensory precision caused invariability of the robot’s intention, whereas increased 
sensory precision resulted in fluctuations and subsequent fixations of the intention.

Philippsen and Nagai (2018) investigated how hyper-  and hypo- priors affect predictive 
learning (see figure 18.5b). They employed S- CTRNN (Murata et al. 2013), the same network 
used in Idei et al. (2018), and altered model par ameters that control hyper-  and hypo- priors 
in predictive pro cessing. In contrast to the previous study, their experiment modified the par-
ameters both during and  after learning  because properties of ASD should emerge during 
development. Their experiments demonstrated that ASD- like be hav iors emerged with two 
extremes of model par ameters, whereas be hav iors similar to typically developed individuals 
 were produced with properly balanced par ameters. On one hand, hyper- priors prevented the 
network from learning to achieve the tasks  because the network strongly relied on its own 
dynamics and ignored target signals. On the other hand, hypo- priors achieved very precise 
task be hav iors but failed to acquire generalization capabilities. The internal repre sen ta tions 
of the network  were unstructured  because it did not utilize its own dynamics and was overfit-
ted to the target be hav iors. They concluded that a high variety of ASD be hav iors could be 
accounted for by two extremes of hyper-  and hypo- priors in predictive pro cessing.

18.7 Conclusion

This chapter introduced social cognition from the perspective of psy chol ogy, neuroscience, 
and robotics.  Human infants acquire social cognitive abilities such as self- other recogni-
tion, joint attention, intention reading, and altruistic be hav iors through interactions with 
other individuals. A number of findings from psy chol ogy and neuroscience have motivated 
robotics researchers to design computational models for social cognition. Conversely, such 
models have contributed to a better understanding of the under lying mechanisms for cogni-
tive development.  Future issues to be addressed include a closer verification of the new 
theory of predictive coding that provides a unified account for cognitive development. To 
what extent the theory explains dif fer ent aspects of development should be investigated 
from both analytical and synthetic approaches.

Additional Reading and Resources

•  This paper pre sents the details about a developmental theory based on predictive coding 
(relevant to section 18.6). It explains to what extent the predictive coding theory can 
account for temporal continuity and individual diversity in cognitive development, with 
examples of robotic experiments: Nagai, Yukie. 2019. “Predictive Learning: Its Key Role 
in Early Cognitive Development.” Philosophical Transactions of the Royal Society B: 
Biological Sciences 374 (1771): 20180030.
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•  This paper provides a comprehensive review of computational studies on autism spec-
trum disorder and schizo phre nia (relevant to section 18.6.2): Lanillos, Pablo, Daniel Oliva, 
Anja Philippsen, Yuichi Yamashita, Yukie Nagai, and Gordon Cheng. 2020. “A Review 
on Neural Network Models of Schizo phre nia and Autism Spectrum Disorder.” Neural 
Networks 122:338–363.
•  This paper pre sents a neural network model for the development of joint attention. The 
robot experiment demonstrates the three- staged development as observed in  human infants 
(relevant to section 18.4.1): Nagai, Yukie, Koh Hosoda, Akio Mo rita, and Minoru Asada. 
2003. “A Constructive Model for the Development of Joint Attention.” Connection Science 
15 (4): 211–229.
•  Proj ect on cognitive and developmental robotics, including social cognition modeling: 
JSPS Grant- in- Aid for Specially Promoted Research “Constructive Developmental Science”: 
https:// www . youtube . com / watch ? v = 1etzhzSd17I.
•  Proj ect on cognitive robotics for cognitive modeling: JST CREST “Cognitive Mirroring” 
(in Japa nese): https:/ / www . jst . go . jp / kisoken / jyonetsu / interview / h29 / nagai . html; https: / / www 
. youtube . com / watch ? v = 1Onr2xssces.
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19.1 Introduction

Human- robot interaction (HRI) studies the interaction between  people and robotic systems. 
While robots are traditionally operated using user interfaces gleaned from human- computer 
interaction, such as control panels or screen- based interfaces,  there is potential to move 
 toward more natu ral modes of interaction.  These  will, to a large extent, be modeled on 
how  people interact with each other and are composed of verbal and nonverbal ways of 
interacting.

HRI is a broad church: at one end of the spectrum, it studies how an operator can control 
one or more robotic systems through traditional methods and sometimes focuses on the 
cognitive load imposed by controlling one or more robots. For example, if an operator 
coordinates a handful of semiautonomous drones during a search and rescue operation, 
how can the cognitive load on the operator be optimized to maximize the efficiency of the 
overall mission (e.g., Goodrich et al. 2011)? On the other end of the spectrum of HRI, 
one finds research into natu ral interaction between  humans and robots. This field is also 
known as social robotics, and the large majority of research efforts in HRI concentrate 
on it (Bartneck et al. 2020). The holy grail of social HRI, of course, is the natu ral and 
intuitive interaction between  people and artificial systems. On one hand, this is a techni-
cal effort, with results in social signal pro cessing, artificial intelligence, and robotics 
coming together to create social robots. But social robotics offers a unique opportunity 
to study how  people respond and interact with artificial social agents. Social robots take 
up a singular position in agents we interact with. The interaction between  people has, 
of course, been the subject of extensive study for more than a  century, and the interac-
tion between animals and  people has been researched at length, but robots are a new 
and,  until recently, unexplored “species.”  Until recently, we have known very  little about 
how  people interact with robots, and our relation and interaction with robots is continu-
ously evolving. Culture, media, education, context, and exposure change our attitudes 
 toward robots and the ways in which we interact with them. When we meet a robot, 
several automatic social responses kick in that color our interaction with the robot;  these 
responses evolved or developed to interact with other  humans and often transfer to our 
interaction with robots.

19 Human- Robot Interaction
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This is not unique to robots. We treat all technology to some extent as if it is humanlike, 
something known as anthropomorphization, which Clifford Nass called the “media equa-
tion.” We relate to media— computers, printers, mobile phones, and of course robots—as 
if they are  human (Reeves and Nass 1996). Every one has at one time or another muttered 
at their computer when it crashed or cursed their printer when the paper jammed, but the 
media equation theory takes  things a  little further by claiming that we not only respond 
to  these media as if they  were persons but ascribe personal qualities to each, such as a 
personality, expertise, and even gender. And we often do so without being aware of it. The 
media equation is taken to the extreme in social robots, as the appearance of the robot and 
its be hav ior (the  things it does) have been carefully designed to elicit a strong social 
response from us.

19.2 Cognitive and Neuroscientific Insights Informing HRI

Social psy chol ogy is immediately relevant to the design of social robots, and knowingly 
or not, designers and programmers of social robots take concepts and theories from social 
psy chol ogy into consideration when building robots. Failing to do so usually results in a 
disappointing HRI.  Whether you wish to create a friendly robot or a horror experience, 
you  will rely on fundamentals from social psy chol ogy when designing the appearance of 
your robot and its interaction.

The media equation predicts that  people  will perceive and treat robots in a humanlike way, 
but the fact that we readily interpret animated objects as having humanlike emotions and 
intentions has been known for a long time. Fritz Heider and Marianne Simmel (1944), two 
psychologists working together in the United States, published an influential paper titled 
“An Experimental Study of Apparent Be hav ior” in which they described a  simple and elegant 
experiment: They asked  people to describe short film clips of moving geometric figures, 
such as circles and triangles. The figures  were animated by hand and seemed to play out a 
short story. Every one who saw the videos ascribed emotions and intentions to the figures. 
The original videos from the 1940s can still be found online, and even now when seeing the 
videos,  people readily see the figures having emotions, intentions, and motivations, and they 
see a narrative unfold over the few minutes of video runtime. This is our social brain inter-
preting the world around it and, specifically, our theory of mind— our ability to attribute 
 mental states to  others and ourself— overinterpreting moving geometric figures. This concept 
has been gratefully used by animators, and some striking examples exist of very minimalist 
animation films that show that very  little is needed to nudge our social brain into interpreting 
 simple shapes and movement as having agency (Thomas and Johnston 1995). If you have 
ever observed a vacuuming robot moving around the room, you have prob ably been struck 
by its animallike appearance as it scuttles around the room,  gently bumping into furniture 
and working hard at getting specks of dirt from the floor.  These robots are not designed to 
be social, and yet they still evoke a strong social response in us. In social robots, designers 
add ele ments such as a head, eyes, and reactive responses to evoke a strong social response 
in  people.

One such social response on which designers rely is pareidolia: the tendency to see 
 human or animal forms in objects, such as dogs in clouds or the face of Elvis on a piece 
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of burnt toast. Using magnetoencephalography (MEG), researchers found that the ventral 
fusiform face area (FFA) in the brain is involved. The FFA has been implicated in detect-
ing  faces of  people and animals and is also involved in distinguishing animate from inani-
mate visual stimuli (Kanwisher et al. 1999). This area shows a cortical response 170 ms 
 after we are presented with a  human face and shows a similar but slightly  earlier activation 
of 165 ms when seeing objects that resemble  faces (Hadjikhani et al. 2009). This suggests 
that seeing  faces is a very early and automatic response and is not something the brain 
puzzles together  after extended cognitive pro cessing. As such, we can assume that responses 
to robots with a face are early and automatic.

19.3 Design of Social Robots

One aspect that often arises in robot design is that of neoteny, a juvenile appearance that 
usually evokes a caring response and is generally described as “cute.” Young animals, includ-
ing  human  children, have a large head, large eyes, chubby cheeks, a small chin, a flat face, 
a small nose, and relatively short arms and legs. Konrad Lorenz (1982) argued that infantile 
and juvenile features have a biological function by triggering nurturing responses in adults. 
We are so keen on neotenous appearances that we breed domesticated animals to retain 
neotenous features. Many breeds of smaller dogs retain juvenile features, such as a short 
snout and a relatively large head and large eyes, and consequently are considered cute by 
most  people. The nurturing response is also largely cross- cultural. The same physical features 
evoke a similar response in  people regardless of culture or background. This has been used 
to good effect by robot designers: if a robot is to be likeable, designers  will give it features 
that evoke a caring response. This not only  causes  people interacting with the robot to find 
it cute but also makes them inclined to feel more generous  toward any  mistakes the robot 
makes. The opposite seems to hold as well. Robots that have adult, or gerontomorphic, 
features appear less cute and have less appeal. While  there is no research on this yet, it is 
likely that they are considered more knowledgeable and authoritative, and therefore it makes 
sense for robot designers to give robots that need to radiate authority or trust an adult appear-
ance (see figure 19.1).

Perhaps the most well- known issue in robot design is that of the uncanny valley 
(figure 19.2). This effect, first hypothesized by Mori in 1970 (Mori et al. 2012), describes 
the familiarity or appeal of a robot as a function of its  human likeness. Mori in his original 
paper wrote about 親和感 (shinwa- kan), which does not translate well into En glish but is 
sometimes described as familiarity, appeal, likeability, or affinity. When a robot does not 
resemble a  human, it has low familiarity. This gradually goes up: As  human likeness 
increases, so does familiarity,  until the robot is almost humanlike but not quite. At this point 
familiarity gets knocked back, and when plotted this resembles a sharp dip in the familiarity 
curve. This is known as the uncanny valley. Androids, robots that have humanlike skin but 
lack humanlike motions, find themselves firmly in the uncanny valley. You can climb out 
of the uncanny valley by making a robot that is almost indistinguishable from a person. 
Note that the uncanny valley effect is more pronounced when the robot is moving: the 
familiarity or eeriness of the robot is more exaggerated when the robot is animated. Mori 
never backed up his hypothesis with data, but  later empirical research has shown that the 
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Figure 19.1
A neotenous appearance, characterized by a large forehead, big eyes, a small mouth, and a large head, in robots 
such as the SoftBank Robotics NAO robot (left), make  people feel more attracted to them. Robots with adultlike 
features, such as the Engineered Arts SociBot, which has an adult face (right), are likely to be found more 
authoritative and knowledgeable.
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Figure 19.2
A plot showing the uncanny valley, with the famous dip when robots look almost humanlike but repel us  because 
they are not sufficiently humanlike. Source: Based on Mori 1970, Wikimedia.
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uncanny valley is indeed real (MacDorman and Ishiguro 2006; MacDorman and Chatto-
padhyay 2016).

Rosenthal- von der Pütten et al. (2019) studied the neural mechanisms under lying  human 
responses to artificial agents and, specifically, the uncanny valley response. They suggest 
that the uncanny valley requires a neural system that derives  human likeness from sensory 
cues followed by a downstream system that integrates  these signals into a nonlinear value 
function representing the uncanny valley response curve. Using functional magnetic reso-
nance imaging (f MRI), they investigated the neural activity of  people when observing 
 people and artificial agents, including robots, while making rated responses or expressing a 
preference for stimuli. They found that the ventromedial prefrontal cortex encoded a repre-
sen ta tion of the uncanny valley, in which the subjective likability of artificial agents was a 
nonlinear function of  human likeness. Functionally connected areas in the brain encoded 
critical inputs for signals: the temporoparietal junction (TPJ) encoded a linear  human likeness 
continuum. The TPJ was also found to be active in detecting agency (Mar et al. 2007), belief 
attribution, and learning from  others (Rosenthal- von der Pütten et al. 2019). In addition, 
nonlinear repre sen ta tions of  human likeness found in the dorsomedial prefrontal cortex 
(DMPFC) and fusiform gyrus (FFG) emphasized a human- nonhuman distinction. The 
DMPFC is known to show activity when attributing  mental states to  others or when assessing 
per for mance of  others or of the self (Rosenthal- von der Pütten et al. 2019), while the FFG 
is implicated in distinguishing animate from inanimate stimuli (Chaminade et al. 2010). 
Activation in the amygdala, which in  humans is implicated in the formation and storage of 
memories associated with emotional events, was found to predict a negative response to 
artificial agents. As such, the brain seems to have a direct neural repre sen ta tion of the uncanny 
valley, or rather the uncanny valley can be explained by brain pro cesses that are universal 
to all  people.

If the same neural mechanisms implicated in assessing  people,  people’s be hav ior, and 
the agency of stimuli are also active when we perceive robots, then this might help us 
design more effective robots. Generally, what makes  people appealing  will make robots 
appealing, and only cultural conditioning and habituation are likely to change the initial, 
and often automatic, responses we have to robots.

When discussing the uncanny valley, one cannot escape mentioning androids and perhaps 
their more famous ilk, the Geminoids. A Geminoid— a contraction of Gemini (meaning 
“twins” in Latin) and android—is modeled  after a  human being and as such is their robotic 
doppelgänger. Hiroshi Ishiguro was the first to build Geminoids, and the vari ous models that 
have been built— including ones of himself, his  daughter, and a Japa nese news anchor— have 
been the subject of academic study into the uncanny valley effect.  These studies showed that 
the uncanny valley effect is sometimes not  there or cannot be explained by relying on appear-
ance alone. Bartneck et al. (2009) had  people briefly interact with Hiroshi Ishiguro or with 
his Geminoid. While participants could clearly distinguish an android from a  human, and 
unsurprisingly found the  human to be more humanlike, the android was not liked less, which 
goes against Mori’s prediction. This result and  others suggest that the uncanny valley is a 
multidimensional phenomenon and that the two- dimensional plot of figure 19.2 should be 
revised. Instead the effect is caused by a mismatch between dif fer ent aspects of the robot: a 
robot that appears  human but moves like a robot  causes tension in the observer, which leads 
to an eerie appearance (Moore 2012).
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19.4 Verbal Interaction

Social robots  will often be addressed using language. Even robots that are not humanlike 
in appearance, such as animallike robots, are often addressed using speech. Depending 
on the robot’s appearance,  people might expect a coherent linguistic response. We  don’t 
expect a robot dinosaur to talk back, but we do have expectations of humanoid robots and 
are invariably somewhat disappointed when  those expectations are not met.

In addition, language is most likely to be the most natu ral and therefore intuitive way 
to interact with robots. But despite the use of language seeming effortless to us, verbal 
interaction between  people and robots is still a formidable challenge. The typical approach 
in building natu ral language interaction (NLI) has been to cut up the prob lem into several 
components: speech recognition, dialogue management, language generation, and speech 
production. And while pro gress is being made in each of  these, unconstrained natu ral 
language interaction is still well beyond our technical grasp. Speech recognition, using 
deep neural networks trained on large sets of annotated speech, now performs better than 
 human transcribers for En glish spoken by adults (e.g., Xiong et al. 2018). Speech produc-
tion is almost indistinguishable from  human speech for the reading of text with neutral 
prosody (van den Oord et al. 2016). The developments in speech recognition and speech 
production have led to a raft of novel applications. Prime examples are the digital assis-
tants, such as Amazon’s Alexa or Apple’s Siri assistants, that can act on spoken instructions 
and respond using speech. But  these assistants are still very much  limited in their func-

Figure 19.3
Hiroshi Ishiguro and his Geminoid, a robot replica used to study  people’s responses to lifelike robots. Source: 
Osaka University, Intelligent Robotics Laboratory.
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tionality, as are most spoken NLI applications. They can take short phrases and take the 
user through a turn- based dialogue to fill in slots, but they cannot engage in unconstrained 
dialogue. They do strug gle with pragmatic language use— that is, the social language that 
we use in our daily interactions with  others, from the short utterances such as “yup,” 
“sure,” or “dunno” that keep linguistic interaction flowing to the extensive reliance on 
contextual cues to interpret and produce linguistic utterances.

When comparing artificial linguistic interaction systems to language pro cessing in the 
 human brain, it is clear that the two are far apart on several levels. At a fundamental level, 
language in computers is meaningless to the computer. A chatbot can utter phrases about 
feelings or the weather, but it does not  really understand what it is talking about. It has never 
experienced feelings or weather, or any other words for that  matter. The words that a chatbot 
uses are not grounded. Grounding happens when words and linguistic expressions are expe-
rienced and from that become meaningful. The word “chair” only becomes meaningful when 
a computer or robot has an experiential sensation of a chair by seeing a chair through its 
camera, by feeling a chair through tactile sensors, or by understanding the function of a chair.

 There have been some in ter est ing developments in statistical language pro cessing, 
where algorithms are used to build models of a language by analyzing large corpora of 
text. The earliest such algorithms built cooccurrence statistics of words, basically counting 
which words appeared near  others in texts. A distance mea sure is used to report which 
words are closer in meaning and which are not. One such technique, latent semantic analy sis 
(LSA), can tell that “king” and “queen” are closely related and that “king” and “lemon” 
are not (Landauer et al. 1998). New neural network- based approaches take statistical cooc-
currence further by learning long- distance dependencies between words. The most recent 
solutions use recurrent neural networks. At the time of writing, the most notable model is 
the generative pretrained transformer 3, or GPT-3, but given the arms race between large 
corporations to outperform each other’s language models, the GPT-3  will soon be super-
seded. The GPT-3 uses transformer networks and was trained on hundreds of billions of 
words. It was tasked with learning to predict the next word in a sentence and by  doing so 
built a model not only of the En glish language but also of programming languages (Brown 
et al. 2020). The GPT-3 seems to have a firm grasp on semantics. It can not only complete 
sentences;  there are impressive examples of it completing short- story lines starting from 
only an opening paragraph. It can answer questions and passes tests aimed at assessing the 
vocabulary skills of  children. From a cursory inspection, it would seem that the GPT-3 
understands language, as it uses language in a very coherent way. However, while the GPT-3 
can tell you who the president of the United States is, it would not be able to recognize the 
president in a photo. The reason, of course, is that the GPT-3, and all other text- based natu-
ral language pro cessing systems, are completely text based: the words they use are not 
grounded.

The contrast with  human cognition could not be greater: all the words and linguistic 
constructions we use are grounded in a sensory real ity (Harnad 1990). Many have argued 
that robots should do the same if they are to interact with  people in a way in which our 
exchanges are meaningful (Cangelosi et al. 2002). A robot without grounded linguistic 
symbols can seem to know the “color of grass,” but if it is not able to tie the visual per-
ception of green and grass together, together with all the other memories and cultural 
agreements on language, human- robot conversation is likely to remain fairly  limited.
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Another challenge, especially in the context of cognitive robotics, is that language in 
the  human brain is rather poorly understood. We can prod the linguistic brain through 
behaviorist experiments— for example, by mea sur ing response times to words, which gives 
us an insight into how words and their meaning might be represented in the brain. Or we 
sometimes get intriguing views into the linguistic brain through patients who have suffered 
brain injuries. Impor tant brain regions implicated in language pro cessing and production, 
such as Broca’s and Wernicke’s areas,  were discovered  after studying patients with lesions 
to  those areas. We also discovered that language is to some extent pro cessed in the right 
hemi sphere,  after studying patients who had both hemi spheres separated by cutting the 
corpus callosum, the part of the brain connecting both hemi spheres, but  were still able to 
interpret words shown to only the right visual field.

But even modern brain- imaging techniques have shed relatively  little light on how 
language is pro cessed (Dronkers et al. 2004), represented (Hagoort 2005), and produced 
in the brain (Levelt 2001) and certainly not to an extent in which insights from cognitive 
neuroscience would enable us to build better natu ral language interaction systems. If  there 
is perhaps one valuable lesson, it is that language is not compartmentalized. Instead lan-
guage seems to permeate the entire brain, with some clear loci for more specific language 
functions. Artificial NLP, on the other hand, is compartmentalized into components such 
as speech recognition, language interpretation, dialogue pro cessing, language generation, 
and speech production while ignoring ele ments often essential to linguistic communica-
tion. Most importantly, the multimodal and nonverbal aspects of communication are 
largely ignored, and artificial NLP is therefore rather impoverished. Two examples should 
make this clear: prosody and priming. Prosody is ignored in NLP, although the meaning 
of a spoken utterance can be completely changed through prosody. Just think of the many 
ways in which “I’m not at all angry” can be expressed and how the meaning of such a 
short sentence can swing between joking, furious, irritated, or sad.  Human linguistic per-
ception and production is fine- tuned for this, but it remains firmly outside the grasp of 
artificial speech recognition and production.

Priming is the effect whereby one stimulus influences the response to a  later stimulus. For 
example, asking, “What do cows drink?” often results in  people answering “milk” instead 
of “ water” (Rose et al. 2015). Language in the brain is or ga nized as an associative network, 
with sounds, words (or lemmas), and meaning connected in networks (Collins and Loftus 
1975; Levelt 2001). Statistical methods of language modeling, such as hidden Markov 
models or long short- term memory networks, indispensable in speech recognition and 
machine translation, explic itly learn statistical associations between phonemes and words. 
Priming is a very impor tant mechanism both in the brain and in  these artificial models: the 
pre sen ta tion of a word or phoneme primes, or rather predicts, the next most probable word 
or phoneme. In the brain, priming is multimodal (Wood et al. 2012), but in NLP the priming 
only happens within the phonetic or lexical domain, thereby cutting NLP off from modalities 
that the  human brain relies upon to disambiguate and enrich language.

19.5 Nonverbal Interaction

Most content of a natu ral interaction is contained in its nonverbal aspects. Of course, written 
text contains very  little nonverbal communication (apart from the occasional emoticon) and 
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seems to work well at conveying information. But spoken language, and specifically lan-
guage spoken in the presence of  others, relies heavi ly on nonverbal ele ments. The division 
of  labor between verbal and nonverbal is contested. A widely cited statement is that of 
Mehrabian (1972), which claims that 55  percent of communication is contained in body 
language, 38  percent in tone of voice, and only 7  percent in the words spoken. While the 
exact ratio is up for debate, the fact that verbal communication only accounts for a fraction 
of communication should point out the flaws in our current efforts in building HRI. For 
historical reasons most of our technical efforts have been on creating verbal or text- based 
linguistic interactions while at the same time ignoring nonverbal aspects of interaction. And 
if we did study nonverbal interaction, we studied it in isolation from other communication 
channels.

Emotion is a textbook example of this: Due to technical and resource limitations, the 
first studies of emotion used photo graphs of facial expressions. Paul Ekman, in his effort 
to show that some emotions are universal, took a number of photo graphs of himself and 
 others showing extreme emotions, such as happiness or anger. He indeed confirmed that 
 these emotions are universally recognized and, building on this work, argued that  there 
are at least six or seven basic emotions (Ekman 1972, 1992). Ekman built on a tradition 
started by Darwin (1872) of using photo graphs of  faces to study emotions, and ever since 
the discussion of emotions has been dominated by a focus on facial expressions. Neverthe-
less,  faces only show extreme emotions, and emotion is much more likely to be gleaned 
from context and other body cues (Kappas 2003). In a striking experiment, it was shown 
that the body posture of tennis players, rather than their facial expressions, showed  whether 
they had won or lost a point, convincingly demonstrating that the face is not necessarily 
a win dow to the soul, or to emotions in this case (Aviezer et al. 2012).

Just as with anthropomorphization, the  human brain is ever  eager to interpret nonverbal 
signals as meaningful. The clicks, beeps, and whirrs that R2- D2, one of the robot leads 
from the Star Wars series, emits are never interpreted as background noise on the 
soundtrack of the film but are interpreted as meaningful and relevant by the cinema audi-
ence.  These clicks and beeps, or nonlinguistic utterances (NLU), can be used to add a 
nonlinguistic communication channel to robots, complementing language or even short-
cutting the need for language. NLUs are interpreted as meaningful by  children and adults 
and can be used to communicate the emotional state of the robot (Read and Belpaeme 
2014; see figure 19.4).

Further analy sis showed how NLUs are interpreted categorically: if  people are asked to 
interpret an NLU as an emotion, then their interpretation is being drawn to one of only a 
handful of basic emotions such as happiness, anger, surprise, or fear (Read and Belpaeme 
2016). Categorical perception is a fundamental property of perception and is instrumental 
in interpreting perceptual stimuli. The  human brain interprets sensory perception as belong-
ing to a  limited number of conceptual states. For example, speech sounds are interpreted as 
belonging to only a distinct number of phonemes. If hearing a speech continuum in which 
the amount of voicing is changed gradually, from not at all in “p” in /pa/ to fully voiced in 
“b” in /ba/, then the perception  will be drawn  toward known vowels,  either “pa” or “ba” but 
nothing in between. It is surprising that the cognitive mechanisms used to interpret human- 
human verbal and nonverbal communication are still at work when we are interpreting robotic 
communicative signals.
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The combination of verbal and nonverbal interaction, often referred to as multimodal 
communication in technical parlance, is perhaps the biggest challenge in HRI. One of the 
reasons for this is that a divide- and- conquer approach, in which a prob lem is divided up 
into smaller prob lems, each to be solved on their own before being recombined to form a 
total solution, does not seem promising when it comes to building multimodal HRI. In 
 human cognition, multimodal interaction is a complex activity to which all cognitive facul-
ties contribute without clear division, sequence, or hierarchy. For example, hearing a verb 
(such as “kick”) activates the corresponding action in the motor cortex (activity when 
kicking or thinking about kicking; Pulvermüller 1999), and hearing a naturalistic sound 
(such as a dog’s “woof”) and spoken words (/dɔg/) 346 ms before a picture search task 
led to faster visual detection of the picture of a dog from between distractors (Chen 
and Spence 2011). It is very likely that the cognitive organ ization of  human interaction 
 will need to be reflected in some way when building HRI. The current separation of 
pro cessing, with separate components such as speech recognition, dialogue, text to speech, 
emotion recognition, facial expressions, gesture production, or prosody is artificial and 
does not have the tight and dynamic coupling that is likely to be necessary for natu ral 
HRI.
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Figure 19.4
Random robot sounds, a concatenation of clicks and beeps,  were played to  children between six and eight years 
old. The  children  were asked to show which emotion the robot was displaying by recreating the emotion on a digital 
face.  These responses  were then mapped to a 3D emotion space. Instead of responses being uniformly scattered 
over the emotion space plot, the  children’s responses clustered together near basic emotion. This suggests that robot 
sounds are interpreted as humanlike emotions and that this pro cess is categorical. Source: From Read and Belpaeme 
2012, 2016.
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19.6 Applications

A better understanding of the cognitive mechanisms involved in HRI would surely allow 
us to build better robots, better interactions, and the best applications. For now, the design 
of robots and interactions has relied a lot on the gut feeling of designers and engineers and 
to a lesser extent on theory. However, as soon as HRI is used for applications, an improved 
understanding of the responses of the  human brain to robots might be essential.

Social robots can be used to entertain, persuade, and inform. The strong social character 
of robots lends itself well to establishing a social bond, and this can be used in diverse 
applications, such as retail, education, or therapy.

Robots show potential in education. When compared to screen- based learning technolo-
gies, such as educational software on computers or tablets, robots tend to have better out-
comes. This can be explained by the explicit and tangible social character of the robots, 
which leads to both improved attitudes  toward learning and better learning outcomes. In a 
metareview (Belpaeme et al. 2018), papers comparing tutoring robots against an alternative, 
such as educational software or an on- screen avatar, showed that the mean cognitive outcome 
effect size (Cohen’s d) of robot tutoring is 0.70 (95  percent confidence interval (CI), 0.66 to 
0.75), which compares favorably to what  human tutors can achieve:  human tutors achieve 
an outcome effect size of d = 0.79 (Vanlehn 2011). While robot tutors do show promise, 
designing a robot tutor still is challenging. Robots can be used to tutor restricted domains, 
such as  simple math exercises, but  little is known about how to design robot tutors that tackle 
harder learning challenges. One such challenge is language: the current school- based teach-
ing of a second language relies a  great deal on class- based learning of vocabulary and 
grammar with  little to no attention to language use and interaction. This is far removed from 
how a first language is seemingly effortlessly acquired through interacting with parents, 
siblings, and peers. The main reason why school- based language learning is so dif fer ent is 
that the teacher cannot engage in interaction on an individual basis with all pupils in the 
classroom. And this is where robots show considerable promise: a robot has the time and 
infinite patience to interact with  those learning a target language. A robot prob ably also has 
a better accent than the teacher and can personalize its tutoring to the learner.

Vogt et al. (2019) reported on a large- scale study in which a language- tutoring robot helped 
young  children learn the words and grammar of a second language (see figure 19.5). They 
used a NAO robot to teach En glish to five- to- six- year- olds in the Netherlands.  Children 
learned not only nouns (“giraffe” or “boy”) but also words used in numeracy (counting words 
or quantities, such as “more” or “fewer”) and spatial language (such as “ behind,” “in front,” 
and “next to”). The robot tutored the  children over seven lessons, introducing six new words 
during  every lesson. The study was used not only to establish  whether the robot would be 
better than only a tablet but also to see  whether a robot using gestures to accentuate the words 
would be a better language tutor. It was divided over four study conditions (a control condi-
tion receiving no tutoring, a tablet- only condition, a robot without gestures condition, and 
a robot with gestures condition), and 208  children took part. While the  children did learn 
En glish, no significant difference could be found between the learning outcomes:  children 
did not learn more from a robot,  whether it was using gestures or not, than from a tablet alone. 
While  there are demonstrations of robots being very effective tutors in narrow domains, the 
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benefits of using robots in more complex domains, such as second- language tutoring, are 
harder won. Robots have been shown to be effective in tutoring vocabulary (van den Berghe 
et al. 2019), but a more complex use of language prob ably requires a more complex HRI. A 
better understanding of how  children and adults learn, and how robots can have an impact on 
this pro cess,  will be necessary. It is likely that the social and physical presence of robots is a 
strong influence on the learning pro cess, but without more open- ended natu ral interaction, 
the use of robot tutors is likely to be  limited to narrow and closed domains, such as math 
exercises or vocabulary.

Another application of HRI in which robots are likely to have a significant impact in 
the  future is therapy (Belpaeme et al. 2013). In the last two de cades, robotics has been 
promoted as a promising new technology in autism spectrum disorder (ASD) therapy 
(Scassellati, Admoni, and Matarić 2012; Thill et al. 2012), and while many supportive 
case studies exist,  there has been a dearth of quantitative empirical evidence about the 
efficacy of robot therapy (Diehl et al. 2012; Pennisi et al. 2016) that only recently is being 
resolved. The effect of robots and their be hav ior on  people with ASD is only being studied 
through the lens of psychological therapy, with  little consideration for the cognitive pro-
cesses involved in the perception of and interaction with robots. It is very likely that a 
better understanding of the neuropsychology and cognition involved in HRI  will allow us 
to build more effective HRI.

19.7 Conclusion

The relation between  human cognition and HRI has largely been explored at the behavioral 
level. Recently, brain- imaging techniques and response time experiments have given us a 

Figure 19.5
A child learning a second language with the support of a social robot.
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view on how the brain responds to robot stimuli and interactions with robots. All data 
seem to suggest that interaction with robots relies on the very same social cognitive 
mechanisms and neural pathways that are also active when we interact with  people. This 
in itself is not very surprising: the brain just generalizes, and our social cognition spills 
over to nonhuman agents, be they pets or robots. What is more surprising is that our brain 
readily interprets robotic be hav iors, robot forms, and robot noises for which our brain 
certainly did not evolve. Of course, the nonlinguistic utterances of fictional robots and toy 
robots have been designed to be interpretable, but even odd combinations— such as a robot 
vacuum cleaner with a wagging tail (Singh and Young 2012)— remain legible and socially 
meaningful to us, showing that the  human brain  really is a most gregarious social inter-
preter. Understanding how it accomplishes that is likely to lead to a more efficient design 
of new forms and be hav ior in HRI.

Additional Reading and Resources

•  A classic survey of early approaches to HRI: Goodrich, Michael A., and Alan C. Schultz. 
2007. “Human- Robot interaction: A Survey.” Foundations and Trends in Human- Computer 
Interaction 1 (3): 203–275.
•  A recent, comprehensive volume on HRI: Bartneck, Christoph, Tony Belpaeme, Frie-
derike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic. 2020. Human- 
Robot Interaction: An Introduction. Cambridge: Cambridge University Press.
•  A recent collection on research methods in HRI: Jost, Céline, Brigitte Le Pévédic, Tony 
Belpaeme, Cindy Bethel, Dimitrios Chrysostomou, Nigel Crook, Marine Grandgeorge, 
and Nicole Mirnig, eds. 2020. Human- Robot Interaction: Evaluation Methods and Their 
Standardization. Vol. 12. Berlin: Springer.
•  A time line of HRI, podcasts on HRI, and additional material accompanying Bartneck 
et al. (2020): https:// www . human - robot - interaction . org / .
•  The portal link to the flagship HRI conference in the field and resources on HRI: http:// 
humanrobotinteraction . org / .
•  A one- hour video introduction to HRI and social robotics: https:// www . youtube . com 
/ watch ? v = Lpp1FjkOyN4.
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20.1 Introduction

Communication is a rich multimodal pro cess combining spoken language with a variety 
of nonverbal be hav iors such as gaze, gestures, tactile interaction, and emotional cues 
(Mavridis 2015; Cangelosi and Ogata 2019; Liu and Zhang 2019). For cognitive robotics 
and human- robot interaction, linguistic and nonverbal communication skills are funda-
mental cognitive capabilities necessary to interact with  people. To ask a humanoid robot 
to perform a specific task, or to engage in a dialogue with a social robot companion, both 
 people and robots must possess a language- like communication system. In cognitive robot-
ics, the design of speech and nonverbal communication skills is directly inspired by com-
munication in  people.

The organ ization of  human language and communication has been the focus of attention 
in linguistics and psy chol ogy. Specific levels of repre sen ta tion and analyses of linguistics 
skills, ranging from the pro cessing of low- level phonetic features to higher- level com-
municative and pragmatic pro cesses, have been identified to study language. In addition, 
developmental psy chol ogy has significantly contributed to the identification of the devel-
opmental stages and language- learning princi ples. This has been contextualized within the 
debate of nativist versus constructivist theories— that is, language acquisition theories 
giving emphasis to a ge ne tic predisposition to language- related competence versus devel-
opmental theories stressing the role of environmental  factors.  These linguistics and psy-
chol ogy analyses have significantly contributed to the design of cognitively inspired 
language and communication skills in cognitive robots. Below, we first look at the devel-
opmental theories of language learning and the linguistics approach of natu ral language 
pro cessing (NLP) and the five levels of analy sis. This  will inform the discussion of the 
dif fer ent models of language acquisition in developmental robotics, of NLP models used 
in robots, and of the more recent machine- learning models.

20.1.1 Language Development and Learning in  Humans

An impor tant issue in language development research is the “nature” versus “nurture” 
debate. This is the debate between the “nativists,” who hypothesize that babies are born 
with language- specific knowledge and skills, and the “empiricists,” who propose that 
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babies construct linguistic knowledge through interaction with their social, language- 
speaking community. Within the nativist position, influential theories have proposed that 
 there are universal syntactic rules and generative grammar princi ples (e.g., Chomsky’s 
“brain organ” and “language acquisition device” hypothesis) and that  these are innate in 
the  human brain (Chomsky 1965). On the contrary, according to the nurture stance, the 
essence of linguistic knowledge emerges from language use during development, without 
any need to assume the existence of innate language- specific knowledge. This empiricist 
view of language development is also known as the constructivist, usage- based theory of 
language development (Tomasello 2003; MacWhinney 1998). The child is seen as an 
active constructor of their own language system through the implicit observation and 
learning of statistical regularities and logical relationships between the meaning of words 
and the words used (e.g., cognitive linguistic theories of Goldberg [2006]).

In developmental psy chol ogy research, the most significant phenomena of language 
acquisition occur during the first four years. The early milestones of language development 
follow the parallel and intertwined development of incremental phonetics- processing capa-
bilities, increasing lexical and grammatical repertoires, and refined communicative and 
pragmatic faculties.  Table 20.1 provides an overview of the main milestones of language 
development (Hoff 2013; Cangelosi and Schlesinger 2015).

In the first year, the most evident sign of linguistic development concerns phonetic 
capabilities such as vocal babbling. Babbling initially consists of vocal play with sounds 
such as cooing, squeals, and growls (“marginal babbling”) and  later consists of the repeti-
tion of language- like syllabic sounds such as “dada” or “bababa” (canonical/reduplicated 
babbling).  Toward the end of the first year,  children also start to produce communicative 
gestures (e.g., pointing) and iconic gestures (e.g., raising the fist to the ear to mean tele-
phone). This is hypothesized to demonstrate the child’s prelinguistic intentional commu-
nication and cooperation skills (Tomasello, Carpenter, and Liszkowski 2007).

 Toward the beginning of the third year, the child starts to develop more complex gram-
matical constructs and skills. This is the case, for example, of the “verb islands” phenom-
enon (Tomasello 1992). Initially,  children can use a variety of verbs and treat them as 
in de pen dent syntactic ele ments called “verb islands” (e.g., the child only uses very  simple 
syntactic combinations of the same verb with dif fer ent nouns of objects: “cut bread,” “cut 
paper”).  These intermediate syntactic constructions allow the child to subsequently develop 
more refined morphological and syntactic constructs, with more general verb islands 
combined with a richer set of prepositions. From the fourth year of age, the child gradually 
develops adultlike syntactic constructions such as  simple transitives (agent- verb- patient, 
as in “John likes sweets”) and locatives (agent- verb- patient- locative- location, as in “John 
puts sweets on  table”; Tomasello and Brooks 1999). This gradually leads to the develop-
ment of ever- more complex syntactic- morphologic constructions, more abstract and gen-
eralized grammatical categories known as word classes.  These syntactic skills are accompanied 
by extended pragmatic and communicative skills, leading to refined narrative and discur-
sive capabilities.

The constructivist view of language is highly consistent with the embodied and situated 
cognition theories (Pezzullo et al. 2013) and the relevant embodied robotics approach to 
the modeling of language learning (Cangelosi 2010, 2011). This embodied view stresses 
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the fact that the body of the child, and its interaction with the environmental context, 
determines the type of repre sen ta tions, internal models, and cognitive strategies learned.

In cognitive robotics models, the embodied approach is linked to that of “symbol ground-
ing” (Harnad 1990; Cangelosi 2010) and “grounded cognition” (Pezzulo et al. 2013). This 
refers to the capability of natu ral and artificial cognitive agents to acquire an intrinsic (autono-
mous) link between internal symbolic repre sen ta tions and referents in the external world 
or internal states. Cognitive robotics models implement the grounded learning of associa-
tions between words and the external and internal entities they refer to (objects, actions, 
internal states).

20.1.2 Levels of Analy sis in Language Studies

In linguistics and psy chol ogy, a hierarchy of five levels of language analyses has been 
proposed: phonetic, lexical, semantic, syntactic, and pragmatic (see Cangelosi 2017). 
 These levels are useful in cognitive robotics models  because they identify the dif fer ent 
aspects that need to be modeled and implemented to successfully achieve humanlike lin-
guistic capabilities. For example, a robot, like a person, must be able to recognize language- 
specific sounds (phonetic level) to segment and identify the words (lexical level) and the 
grammatical structure of spoken utterances (syntactic level). This supports the understand-
ing of the meaning of words and sentences (semantic level) and their contextualization 
within the interactive communication task (pragmatic level).  These dif fer ent levels of 
analy sis should not, however, be considered separate modular components of language- 
processing models. In fact, all levels of language are strictly intertwined. For example, 
knowledge of the lexicon helps the lower- level recognition of phonemes and words. The 
pragmatic level of communication can also prime the recognition of the words and sen-
tences that the hearer expects the speaker to choose to communicate the intended meaning.

Cognitive robotics models of language benefit from the field of natu ral language pro-
cessing (NLP), which uses a set of computation linguistics methods for the dif fer ent levels 

 Table 20.1
Typical timescale and major milestones of language development

Age (months) Competence

0–6 months Marginal babbling
6–9 months Canonical (reduplicated) babbling
10–12 months Intentional communication

First gestures
12 months Single words, holophrases

Word- gesture combinations
18 months Reor ga ni za tion of phonological repre sen ta tions

50+ word lexicon size, vocabulary spurt
Two- word combinations

24 months Increasingly longer multiple- word sentences
Verb islands

36+ months Adultlike grammatical constructions
Narrative skills

Source: Adapted from Cangelosi and Schlesinger 2015.
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of analy sis and the repre sen ta tion of language. Numerous NLP methods and software tools 
have been proposed for phonetic analy sis and automatic speech recognition (e.g., Markov 
models), for lexical and semantic analy sis (e.g., WordNet), for parsing and syntactic analy-
sis, and for pragmatics and communication (e.g., dialogue systems). This field has very 
recently gone through a significant revolution with the use of deep- learning models (cf. 
chapter 5). For example, deep neural networks are used for state- of- the- art speech recogni-
tion systems and parsing and word tagging (LeCun et al. 2015).  These changes include 
the increasing use of end- to- end (a.k.a seq- to- seq— i.e., sequence- to- sequence) machine- 
learning models.  These use deep neural networks that receive the raw input (e.g., sound 
wave or a word list) and, without specifically decomposing the linguistic pro cessing into 
dif fer ent levels of analy sis or mechanisms, produce the desired output (e.g., translation of 
the input sentence into another language). In section 20.2 we  will look at both NLP and 
the deep- learning models used in language systems for cognitive robots.

20.2 Robot Language Models

In robot language research, we can distinguish three main approaches to the design of 
language communication capabilities in robots (Cangelosi and Ogata 2019). The first 
directly models incremental, developmental phenomena on language acquisition. This is 
primarily based on developmental robotics approaches (chapter 3). Another approach is 
based on vari ous NLP techniques, while the third focuses on the latest machine- learning 
approaches (chapter 9). The NLP approach typically combines off- the- shelf techniques 
and language- processing tools (e.g., ready- made lexicons and knowledge bases, parsers, 
automatic speech recognition, and speech synthesis software) to implement in the robot 
the ability to respond to linguistic instructions and to utter sentences to express a request. 
The language- learning approach, on the other hand, uses machine- learning methods (e.g., 
neural networks, Bayesian methods) to train the robot to acquire language skills. In prac-
tice, however, some NLP robotic approaches do use machine- learning methods (e.g., most 
of the current speech recognition systems are based on statistical learning and deep neural 
network methods), and some robot language- learning approaches partially rely on off- the- 
shelf NLP tools.

20.2.1 Developmental Robot Language Models

Developmental language- learning models are typically based on the developmental robot-
ics approach (Cangelosi and Schlesinger 2015; see also chapter 3). As such, this approach 
puts a strong emphasis on constraining the robot’s cognitive and linguistic architecture 
and behavioral and learning per for mance to known child psy chol ogy theories, data, and 
developmental princi ples. This permits the modeling of the developmental sequence of 
the qualitative and quantitative stages leading to the acquisition of adultlike sensorimotor, 
cognitive, and linguistic skills. Developmental robotics is also naturally suited to model 
embodied and situated cognition for the grounding of cognition (Pezzulo et al. 2013). 
Specifically, for the embodied bases of language learning, the use of robots that have to 
learn to name objects they see and name actions they perform constitutes an ideal way to 
model the grounding of symbols in sensorimotor knowledge and experience (Harnad 1990; 
Cangelosi 2011).
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Some developmental robotics models focus on the acquisition and grounding of the first 
words.  These models directly rely on child psy chol ogy studies on language acquisition in 
infants in the second year of age— that is, when the first words are acquired. One seminal 
developmental model is that of Morse et al. (2010, 2015), as it directly replicates child 
psy chol ogy data on embodied language acquisition via body posture interaction (Samuel-
son et al. 2011). In Samuelson et al.’s (2011) child psy chol ogy study, the infant repeatedly 
experiences two new objects (the target and the foil) in dif fer ent locations (left/right), 
requiring a postural change to attend to the object. Subsequently, the child hears the object 
name “modi” while attending to a foil object that has been placed in the location normally 
associated with the target object. When the infant is asked, “Where is the modi?,” they 
select the target object— that is, the object normally associated with the posture and spatial 
location they  were attending to, rather than the  actual object they  were looking at when 
they heard the name. This means that infants rely on memory for their own posture and 
the related object location to associate objects and their names.

Morse et al. (2015) have proposed an embodied model of this phenomenon with the 
iCub humanoid robot, replicating the original experiments by Samuelson et al. and further 
exploring how this spatial component can be achieved via the robot’s physical interaction 
with objects and locations. The model is an implementation of the epige ne tic robotics 
architecture (Morse et al. 2010), a developmental robotics cognitive architecture specifi-
cally designed for studying embodied language learning. The core of such an architecture 
consists of three self- organizing maps with Hebbian connections between their units 
(figure 20.1). The first (visual) map is used to represent in a topological way the similarity 
of prepro cessed visual information (e.g., color and/or shape) implemented as input of a 
spectrogram of the color of each object in view. The second (body) map is driven by 
postural information (the current motor encoder values of the eyes, head, and torso of the 
robot). The final (word) map responds to each word encountered (prepro cessed by a stan-
dard NLP speech recognition system). The visual color map and the word map are both 
fully connected to the body posture map, with connection weights adjusted by a normal-
ized positive and negative Hebbian learning rule.

In one version of the experiment, the target object (a red ball) is placed to the left of 
the iCub. The robot looks at the target for approximately ten seconds before the target 
object is removed, and the foil object is placed to the right of the iCub, which again orients 
for approximately ten seconds. This procedure is repeated four times. In the fifth pre sen-
ta tion cycle, the foil object is placed in the position normally associated with the target 
object, and the word “modi” is spoken. The original placements of each object are repeated 
one final time, and then both objects are positioned in new locations to test the robot by 
stating, “Find the modi.” The robot then orients and reaches for one of the objects. Vari ous 
versions of the experiment  were carried out, each repeated twenty times (with all prelearn-
ing weights randomly initialized). Morse et al. (2015) conducted an additional experiment 
following the same procedure outlined above but with the addition of another spatial 
dimension of the robot’s posture (from sitting to standing) for the naming event only at 
the fifth pre sen ta tion cycle. As a result of this change, the naming event occurs in a posture 
that has not been previously associated with  either the target or the foil object. Thus, testing 
the interference between previously experienced objects and that posture  causes the iCub 
to select the foil object (the object it was observing when it first heard the name). This 
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result was also replicated in new child experiments (Morse et al. 2015). Overall, this model 
shows that infants, like robots, use the memory of postures as a way to or ga nize their 
learning task. If two dif fer ent postures are used at this early stage of development, they 
are used by the robot to separate dif fer ent cognitive tasks.

An extended version of this model has already been used to replicate a range of other 
language acquisition phenomena (Morse and Cangelosi 2017; Cangelosi and Schlesinger 
2018). For example, Twomey et al. (2016) used the ERA architecture to model mutual 
exclusivity— that is, the developmental phenomenon in which a child can learn the name 
of a new object if they hear a new label and are presented with an unseen (unlabeled) 
object among other objects with a known label. Other developmental language models 
have looked at the learning of both object and action labels, moving  toward the first 
examples of syntax learning. For example, Tikhanoff et al. (2011) proposed a simulation 
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Setup for word- learning experiments (a) and cognitive architecture (b) in Morse et al. (2015).
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model of the iCub robot in the development of a lexicon based on both names of objects 
and of actions and their basic combinations to understand  simple commands such as 
“pick_up blue_ball.”

A few developmental robotics models have focused on grammar development— for 
example, modeling the emergence of semantic compositionality for syntactic composition-
ality for multiple word combinations and generalizations (Sugita and Tani 2005; Tuci et al. 
2011; Zhong et al. 2019). For example, the robot model by Sugita and Tani (2005) inves-
tigated the emergence of compositional meanings and lexicons with no a priori knowledge 
of any lexical or formal syntactic repre sen ta tions. The environment consisted of three 
colored objects (red, blue, and green) in three dif fer ent locations (a red object on the left- 
hand side of the robot’s field of view, a blue object in the  middle, and a green object on 
the right). The robot could respond with nine pos si ble be hav iors based on the combination 
of three actions (POINT, PUSH, HIT) with the three objects (RED, BLUE, GREEN) 
always in the same locations (LEFT, CENTER, RIGHT). The robot learning architecture 
was a parametric bias recurrent neural network (PBRNN), which is capable of learning a 
set of parametric bias units able to represent action sequences via language- like symbols. 
The robot experiments  were divided into two stages: training and generalization. In the 
training phase, the robot acquired associations between given sample training sentences 
and corresponding behavioral sequences. In the testing phase, the robot’s ability to gener-
ate the correct be hav ior by recognizing the sentences used during training and, above all, 
novel combinations of words was tested. A subset of fourteen object/action/location com-
binations was used during training, with four left for the generalization test.  After the 
successful training stage, in the generalization test phase the four remaining novel sen-
tences  were given to the robot: “Point green,” “point right,” “push red,” and “push left.” 
Behavioral results showed  whether the linguistic module had acquired the under lying 
compositional syntax correctly. The robot could generate grammatically correct sentences 
and understand them by giving a behavioral demonstration of the generalized actions. 
Detailed analyses of the robot’s neural repre sen ta tions supporting the verb- noun compo-
sitional knowledge showed a separated substructure for the verbs and nouns. In par tic u lar, 
the congruence in the substructures for verbs and nouns indicated that the combinatorial 
semantic/syntactic structure was successfully extracted by the robot’s neural network.

Yamashita and Tani (2008) proposed an extension of this work using the multiple- 
timescale recurrent neural network (MTRNN) for compositional action and language 
learning experiments. Zhong et al. (2019) further extended the MTRNN architecture to 
control the compositional learning and generalization of nine actions on nine objects for 
verb- noun learning in the iCub robot.

Developmental learning models have also been proposed to investigate the acquisition 
of abstract concepts and words in robots, including words referring to general- purpose 
motor actions such as “use” and “make” and number and counting words (Cangelosi and 
Stramandinoli 2018). To model the grounding and embodied bases of abstract word learn-
ing in cognitive robots, one study looked at abstract action verbs such as “to use,” which 
can be applied to dif fer ent motor contexts (e.g., “use a hammer” or “use a pen”) with no 
common motor program. The developmental robotics model of Stramandinoli et al. (2017) 
exploits the hierarchical recursive structures of both the linguistic and the motor system 
to integrate  simple motor primitives and concrete words to create the semantic referents 
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of abstract action words that do not have a direct mapping to the sensorimotor world. An 
iCub robot is first trained to recognize a set of tools of dif fer ent colors, sizes, and shapes 
(e.g., knife, hammer, brush) and to perform object- related actions (e.g., cut, hit, paint). 
Subsequently, the robot is taught to name  these objects and actions (e.g., “cut with knife”). 
Fi nally, the robot is taught the abstract motor words of “use” and “make” by combining 
 these new action words with the appropriate tool name (e.g., “use knife”). The experiments 
investigated the effects of using dif fer ent combinations of the three input modalities (i.e., 
vision, language, and proprioception). For example, incompatible condition tests between 
the perceptual and linguistic input showed that the robot ignored the linguistic command 
by executing the actions elicited by the seen objects. Hence, the knowledge associated 
with objects relies not only on the objects’ perceptual features but also on the actions that 
can be performed on them (i.e., affordances). Further simulation experiments showed that 
the acquisition of concepts related to abstract action words (e.g., “use knife”) requires the 
reactivation of similar internal repre sen ta tions of the network activated during the acquisi-
tion of the concrete concepts (e.g., “cut with knife”) contained in the linguistic sequences 
used for the grounding of abstract action words (e.g., “use knife” is “cut with knife”). This 
finding suggests that the semantic repre sen ta tion of abstract action words requires the 
recall and reuse of sensorimotor repre sen ta tional capabilities (i.e., embodied understanding 
of abstract language). Indeed, neurophysiological evidence of the modulation of the motor 
system during the comprehension of both concrete and abstract language exists to support 
this finding.

Fi nally, developmental models with humanoid robots have also been used to model 
abstract concepts and the repre sen ta tion of the under lying knowledge of numbers. Number 
cognition is another key example of the contribution of embodied cognition in the acquisi-
tion of abstract, symbol- like manipulation capabilities. Vari ous embodied strategies, such 
as pointing and counting gestures, object touching, and fin ger counting, have been shown 
to facilitate the development of number cognition skills (e.g., Alibali and DiRusso 1999; 
Moeller et al. 2011). Given the implicit embodied nature of humanoid robots, some recent 
models have specifically looked at the modeling of the acquisition of number concepts 
and words via embodied strategies such as gestures (Ruciński et al. 2012) and fin ger 
counting (De La Cruz et al. 2014; Pecyna et al. 2020). For example, a developmental 
robotics model was used specifically to explore  whether fin ger counting and the associa-
tion of number words to each fin ger could bootstrap the repre sen ta tion of numbers in a 
cognitive robot. This study used a recurrent artificial neural network to model the learning 
of associations between (motor) fin ger counting, (visual) object counting, and (auditory) 
number word and sequence learning. In par tic u lar, this study manipulated the coupling 
between dif fer ent modalities, such as with the comparison of the Auditory- Only condition, 
when the robot solely learns to hear and repeat the sequence of number words (“one,” 
“two,” . . .  up to “ten”), with the Fin ger + Auditory condition, when the robot si mul ta-
neously learns the sequence of acoustic number words and moving fin gers.

The results showed that learning the number word sequences together with fin ger 
sequencing (Fin ger + Auditory condition) helps to quickly build the initial repre sen ta tion 
of numbers in the robot. Robots who only learn the auditor sequences (Auditory- Only 
condition) achieve the worst per for mances. Moreover, the neural network’s internal repre-
sen ta tions of  these two conditions resulted in qualitatively dif fer ent patterns of similarity 
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in the repre sen ta tion between numbers. Only  after the Fin ger + Auditory sequence learning 
did the network represent the relative distance between numbers, which corresponded 
to the quantitative difference between numbers. In Fin ger + Auditory- trained robots, the 
cluster analy sis diagram of the hidden layer’s activation showed that the repre sen ta tion 
for the word “one” was adjacent to that of “two” and increased differently (distant) from 
the higher numbers. However, in the auditory- only condition,  there was no correspondence 
between the cluster diagram similarity distance and the numerical distance.

This finger- counting model has recently been extended by Pecyna et al. (2020) to model 
numerosity estimation and by Di Nuovo and McClelland (2019), who combined develop-
mental robotics and deep- learning methods to show that proprioceptive information from 
robot hands improves accuracy in the recognition of spoken digits. See chapter 22 for an 
extended discussion of abstract and number word learning.

20.2.2 NLP- Based Robot Language Models

NLP methods have been used for two dif fer ent types of robot language models. In the con-
versational approach, the robot uses NLP tools primarily to engage in a linguistic conversa-
tion with a  human user for social companionship, entertainment, or information- gathering 
tasks, with no  actual motor tasks to perform (no language grounding required). In human- 
robot interaction models, robots use language primarily to respond to instructions to perform 
a physical action.

Conversational robots have their origins in conversational agents and chatterbots, such 
as the very first conversational agent developed called ELIZA (Weizembaun 1966). More 
recent conversational agents are often based on animated virtual 3D characters, such as 
A.L.I.C.E. (Wallace 2009). Conversational agents embodied in physical robots include 
work with the android robot ERICA (ERato Intelligent Conversational Android; Ishiguro 
2016), the Robot- ERA system for supporting older  people in in de pen dent living (Di Nuovo 
et al. 2018), and museum/station guides and robot tutors for  children (Shiomi et al. 2008; 
Belpaeme et al. 2018).  These conversational robots use a variety of NLP tools for speech 
recognition, parsing, and dialogue systems.

Many NLP- based robot language systems are designed with the primary function of fol-
lowing a user’s instructions and selecting the appropriate motor be hav ior.  These applications 
typically cover object manipulation tasks (e.g., “pick up blue ball,” “clean the  table”) and 
navigation scenarios (e.g., “go to the exit,” “take me to the rest room”; Mavridis 2015). The 
use of speech for language instruction understanding requires a tight coupling (grounding) 
of the robot’s visual and motor repertoire with its language pro cessing and knowledge repre-
sen ta tion methods. In NLP- based approaches, this link is typically predefined by the designer. 
 There is no autonomous grounding of the robot’s words via situated learning, as the robot 
can only use a set of “meanings” defined by the programmer. For example, Aloimonos and 
Pastra developed a language and action repre sen ta tion formalism, called PRAXICON, for 
action and language knowledge repre sen ta tion of object manipulation tasks (Pastra and 
Aloimonos 2012; Pastra 2008). It uses a goal- based repre sen ta tion of actions employing 
a multimodal semantic network- type repre sen ta tion that is directly inspired by linguistic 
methods, such as the mapping of a minimalist grammar of language into a minimalist 
grammar of action repre sen ta tion. PRAXICON was tested on the Baxter robot capable of 
learning to cook from “watching” videos available on the Web (Yang et al. 2015).
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Nonverbal communication capabilities have also been proposed to complement and 
enhance a robot’s linguistic production and communicative expressivity. For example, Csapo 
et al. (2012) complemented speech production with nonverbal strategies such as face track-
ing, nodding, gesturing, proximity detection, and interruptions. Mutlu et al. (2012) modeled 
humanlike gaze mechanisms to help robots signal dif fer ent interaction roles to the  human 
interlocutor to manage turn exchanges and the dynamics of the conversation.

20.2.3 Machine- Learning Robot Language Models

Multimodal integration, which directly concerns the field of language learning for con-
necting speech, vision, and action, has long been a difficult prob lem in robotics. For 
example, the crossmodal complementation of information loss or the application of cross-
modal memory search for be hav ior generation prob lems have not been thoroughly studied. 
Second, lit er a ture discussions on how to fuse multimodal information to achieve stable 
environmental awareness have not reached a comprehensive consensus. In robotics, the 
sensory input acquired from dif fer ent sources is still typically pro cessed using a dedicated 
feature extraction mechanism (Murphy 2019). Third, multimodal synchronization model-
ing as a means for implementing the sensorimotor prediction of robot applications has not 
been adequately studied. Several studies so far have proposed a computational model that 
develops synchronization of behavioral effects in a developmental way  toward an under-
standing of interaction (Kuriyama et al. 2010; Ogino et al. 2006). However, most casual 
models are expressed using a  limited number of modalities and in many cases focus only 
on vision and be hav ior.

In recent years, dif fer ent types of graphic models of multimodal classification have been 
reported. Lallee and Dominey (2013) proposed a multimodal convergence map based on 
a self- organizing map (SOM) that integrates visual- motor and language modality. Sinapov 
and Stoytchev (2011) developed a graph- based model that enables robots to recognize 
untrained objects based on their similarity to trained objects. They also let the robot take 
ten dif fer ent actions to collect visual, auditory, and tactile data; explore one hundred 
objects; and categorize twenty objects with supervised learning (Sinapov et al. 2014). 
Ivaldi et al. (2013) developed a robot that can learn object categories by active sensing. 
Nakamura et al. (2009, 2015) proposed studies on multimodal classification using multi-
lateral latent Dirichlet allocation (MLDA) and its extension. They developed robotic 
systems that can obtain visual, sound, and tactile information by  handling objects. The 
robot grasps an object several times and shakes the object to acquire sound information. 
By applying the MLDA, they showed that robots can classify many objects into categories, 
which is similar to  human classification results (Nakamura et al. 2009). Araki et al. (2011) 
developed an MLDA online and conducted experiments on completely autonomous mul-
timodal category acquisition in the home environment.

Notwithstanding the above multimodal machine- learning examples,  there has been  little 
research on scalable learning frameworks for  handling a large amount of sensorimotor 
data of a high dimension. The latest robots are equipped with state- of- the- art sensor 
devices such as high- resolution image sensors, distance sensors, and multichannel micro-
phones as the demand for perception accuracy with re spect to the surrounding environment 
increases (Kaneko et al. 2008; Sakagami et al. 2002). Thus, a remarkable improvement in 
the amount of sensorimotor information available has been achieved. However, due to the 
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scalability limitations of conventional machine- learning algorithms, few computational 
models achieve robust be hav ior control and environmental recognition by fusing multi-
modal perceptual inputs into a single repre sen ta tion. To overcome the prob lem of the 
scalability limitation, deep- learning approaches such as deep neural networks (DNNs), 
used as perceptual feature extraction and multimodal integration learning mechanisms, 
have attracted the attention of the robotics and machine- learning community in recent 
years. One of the main advantages of applying a DNN is the ability to self- organize highly 
generalized sensory functions from large- scale raw data. For example, DNNs have been 
successfully applied to unsupervised feature learning for a single modality such as text, 
images, and voice. The same approach has also been applied to the learning of integrated 
repre sen ta tion among multiple modalities, resulting in a significant improvement in speech 
recognition per for mance. In another context using unsupervised learning, Le (2013) 
showed that DNNs with large- scale data can automatically construct high- level features 
from image data. Connecting acquired repre sen ta tion by neural networks and multimodal 
classification is an impor tant research field (Bengio et al. 2013). However, the application 
of DNNs for more dynamic information such as robot motion and language has just begun 
to be considered.

Multimodal integration based on DNNs is generally accomplished by two approaches. 
First, in the feature extraction method, feature vectors from some plural modalities are 
transformed to acquire an integrated feature vector. For example, Ngiam et al. (2011) 
utilized a DNN that extracts directly integrated expressions from multimodal signal input 
by compressing the input dimension. Huang and Kingsbury (2013) used deep belief net-
works (DBNs) for audiovisual speech recognition tasks by combining intermediate- level 
features learned by a DBN of a single modality. However,  these methods have difficulty 
explic itly and adaptively selecting their respective information gains in response to dynamic 
changes in the reliability of multimodal information sources. Alternatively, in the fusion 
method the outputs of the unimodal classifiers are merged to determine the final classifica-
tion. Unlike the feature extraction approaches, the fusion methods can improve robustness 
by incorporating the stream reliability associated with multiple information sources as a 
mea sure of the information gain of the recognition model.

Specifically for robot language models, Noda et al. (2015) proposed a speech recogni-
tion model that uses a DNN both for noise reduction of speech features and for using 
visual information in a complementary style. The perception features acquired from the 
audio signal and the corresponding mouth region image are then integrated. Two kinds of 
DNNs, a deep denoising autoencoder (DDA) and a convolution neural network (CNN), 
are used for the feature extraction of audio information and visual information, respec-
tively. In addition, the multistream hidden Markov model (MSHMM) is applied to inte-
grate the two perceptual features acquired from the speech signal and the mouth region 
image. They show that the CNN outputs higher recognition rates than the visual features 
extracted by PCA (principal component analy sis), and the effect of the dif fer ent image 
resolutions is not prominent. The word recognition rate, visual features acquired by the 
CNN, is approximately 22.5  percent.

The DNN language and multimodal integration models provide intuitive and direct ways 
to accomplish temporal sequence recognition tasks. The focus of the task is to “recog-
nize” by symbolizing the raw sensory signal. However, since recognition methods using 
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probabilistic models specialize in obtaining symbolic repre sen ta tion from the raw signal, 
they are not suitable for sensorimotor coordination tasks, such as robot be hav ior genera-
tion. Therefore, this approach needs to design external mechanisms to generate be hav iors 
corresponding to the recognized state. To address this, Heinrich et al. (2015) utilized mul-
tiple timescale recurrent neural networks (MTRNN) to integrate visual, auditory, and motor 
information.

Noda et al. (2014) also proposed a multimodal temporal sequence integration learning 
framework using a DNN for multimodal time series integrated learning, as well as feature 
extraction by dimensional compression. They showed the framework with multiple DNNs 
as a crossmodal memory retriever and as a temporal sequence predictor. Specifically, they 
integrated image, sound signal, and motor modalities with multiple deep autoencoders 
(DAs). The learning experiments  were conducted on six types of object manipulations by 
the humanoid robot NAO, generated by direct teaching. The data of high dimension, such 
as images and sound signals, are compressed to thirty dimensions by the DA. The image 
and sound data obtained from this pro cess and the motor command obtained from the 
robot are integrated using a DA instead of an HMM. The data  were extracted within a 
sliding time win dow of thirty steps. Results showed that this model self- organizes not only 
the sensory features but also the motion patterns from the time series of sensorimotor data 
corresponding to the plural robot motions. The principal component analy sis of the acquired 
internal repre sen ta tion showed that each motion does not correspond to the motion cluster 
designed by the  human teacher. Some motions have multiple clusters reflected by the 
characteristics of the learning condition. Some motions overlap the other motions, thereby 
associating with each other. Thus, the real world, the body structure, and the learning model 
self- organize the expressions of be hav iors coupled with recognition. They realized a cross-
modal memory association by using this internal repre sen ta tion. For example, robot motion 
is generated from images and sound data; the visual image (movie) is produced from body 
motion or sound. This demonstrates a significant advantage of using DNN multimodal learn-
ing to generate expressions of a very large dimension.

DNNs have also been used to extend developmental models of language learning, inte-
grating recurrent neural networks, such as long short- term memory (LSTM), with simul-
taneous action and language pro cessing. For example, Antunes et al. (2019) used a bidirectional 
multiple timescales LSTM for the grounding of actions and verbs without explic itly learn-
ing an intermediate repre sen ta tion. The model self- organizes such repre sen ta tions at the 
level of a slowly varying latent layer connecting the language and the action route (figure 20.2). 
The model is also trained in a bidirectional way, learning how to produce a sentence from 
a certain action sequence input and, si mul ta neously, how to generate an action sequence 
given a sentence as input. This network was evaluated on motor actions performed by an 
iCub robot and their corresponding letter- based description. Yamada et al. (2017) also used 
recurrent DNNs to train a robot to translate sentences that included logic words, such as 
“not,” “and,” and “or,” into robot actions. The model analy sis showed that referential words 
are merged with visual information and the robot’s own current state, while logical words 
are represented by the model in accordance with their functions as logical operators.
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20.3 Conclusion

This chapter summarizes the cognitively inspired approaches to the design of language 
learning and language grounding and pro cessing capabilities in robots. Developmental 
language- learning models have been able to replicate humanlike developmental trajecto-
ries in the early acquisition of words and  simple grammatical structures. They also exploit 
embodied strategies, such as posture bias and finger- counting skills, in learning and ground-
ing concrete and abstract words. However, the level of complexity of the robot’s language 
repertoire is  limited to small lexicons. NLP- based models, on the other hand, have been 
widely used to  handle dialogue with conversational agents and complex lexicons. However, 
in  these models the robot is not able to autonomously ground the words it uses for senso-
rimotor knowledge, and it must rely on the hand coding of the word- meaning mappings 
defined by the system designer.

An impor tant development in robot language research is the very recent pro gress on 
learning methods for language and multimodal information based on machine- learning 
models. However, on its own, DNN cannot address the  whole prob lem of robot language 
grounding. For example, deep learning takes a batch- learning and a supervised- learning 
approach, and generally, it cannot work online. It acquires repre sen ta tions approximating 
the given input data, and it cannot easily define novel symbols (and meanings) about the 
world, as  humans do with language generativity. It is also impor tant to acknowledge that 
although DNNs can match  human per for mance in some par tic u lar data- processing tasks, 
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A bidirectional LSTM for action and language learning. Source: Adapted from Antunes et al. 2019.
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they do have significant limitations. The most critical issue with DNNs for robot language 
models is that it is extremely challenging to understand a DNN’s internal mechanism. 
Even when high per for mance is achieved, it is difficult to identify the cause when a  mistake 
occurs. This is a serious prob lem in the be hav ior learning of real- world systems such as 
an interactive robots or automatic driving cars. In DNNs, the internal repre sen ta tion is 
embedded not only in its large structure but also in its small structure.  These mechanisms 
enable DNNs to self- organize very large and complicated structures of data and to show 
high per for mance rates. However,  simple statistical analy sis and modeling are not directly 
effective for explaining the mechanism of deep learning. Thus, a mathematical understand-
ing of the DNN as a multidimensional complex system— that is, a dynamic system—is an 
impor tant area for  future work that  will have significant implications for the use of deep 
learning in robot language models.

Fi nally, an impor tant direction for  future research is to focus on a developmental approach, 
where symbol acquisition emerges from the incremental interaction between the robot, the 
 human user, and their environment. This requires the long- term and open- ended development 
of a human- robot interaction and communications system that allows a developmental learn-
ing robot to bootstrap its multimodal, grounded language- learning skills and repertoire.

Additional Reading and Resources

•  An extensive position paper proposing a developmental robotics approach to communica-
tion and language integration: Cangelosi, Angelo, Giorgio Metta, Gerhard Sagerer, Stefano 
Nolfi, Chrystopher Nehaniv, Kerstin Fischer, Jun Tani, et al. 2010. “Integration of Action 
and Language Knowledge: A Roadmap for Developmental Robotics.” IEEE Transactions 
on Autonomous  Mental Development 2 (3): 167–195.
•  A comprehensive paper on the symbol- emergence approach to language development mod-
eling: Taniguchi, Tadahiro, Takayuki Nagai, Tomoaki Nakamura, Naoto Iwahashi, Tetsuya 
Ogata, and Hideki Asoh. 2016. “Symbol Emergence in Robotics: A Survey.” Advanced Robot-
ics 30 (11–12): 706–728.
•  A recent extensive review of language and speech models for humanoid robotics: Cange-
losi, Angelo, and Tetsuya Ogata. 2019. “Speech and Language in Humanoid Robots.” In 
Humanoid Robotics: A Reference, edited by P. Vadakkepat and A. Goswami. Berlin: Springer.
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Robots are already making large strides in their abilities, but as the generalizable knowledge repre sen-
ta tion prob lem is addressed, the growth of robot capabilities  will begin in earnest, and it  will likely be 
explosive. The effects on economic output and  human workers are certain to be profound.
— Pratt 2015

21.1 Introduction

One of the most impressive cognitive capabilities of  humans is the ability to accomplish 
their everyday manipulation tasks. In most cases,  simple and vague instructions such as 
“set the  table,” “bring me something to drink,” or “clean up” suffice to let us know what to 
do. The be hav ior that  humans generate in order to perform such manipulation tasks is sophis-
ticated, complex, and tailored to the objects they manipulate, their skill level, the context of 
the task, and the surrounding scene in which the task is to be performed. Accomplishing 
 these tasks also requires  humans to avoid common pitfalls such as breaking objects or spill-
ing fluids.

A main challenge in accomplishing a task such as “set the  table” is that it is underde-
termined. The request does not spell out which objects to put on the  table, the arrangement 
of the objects, where to find the objects, how they look, how they have to be handled, 
how they can be efficiently carried, or  whether  there are social conventions on how to 
grasp and hold them. Consequently,  humans must have the knowledge and the reasoning 
capacity required to close the gaps between what they are explic itly told and what they 
are expected to do. This knowledge, including commonsense and intuitive physics knowl-
edge, is shared by most  humans, which makes it pos si ble for a person to execute a task 
to the satisfaction of the person requesting it even if the instructions are vague.

By contrast, imagine how hard it must be to write a robot control program for an 
autonomous  house hold assistant robot that has to accomplish  these tasks in dif fer ent 
 house holds, with dif fer ent objects, for dif fer ent habits and preferences, and  under dif fer ent 
circumstances, requiring the program to select the most adequate course of action in so 
many pos si ble contexts.1

Many dif fer ent approaches can be taken to generate robot control programs for tasks 
such as “set the  table,” including robot learning (Peters et al. 2016), task and motion planning 

21 Knowledge Repre sen ta tion and Reasoning

Michael Beetz

Downloaded from http://direct.mit.edu/books/book-pdf/2239475/book_9780262369329.pdf by guest on 30 September 2024



414 M. Beetz

(Lynch and Park 2017; Kavraki and LaValle 2016; Chung, Fu, and Kröger 2016; Villani 
and Schutter 2016), knowledge- based approaches (Beetz et al. 2012, 2016), and combina-
tions of them.

To make our discussion more concrete, we take a look at the knowledge- based approach 
to robot programming that is illustrated in figure 21.1. The control program of a robotic 
agent in the knowledge- based approach consists of a generalized plan and a knowledge 
base of assertions and asserted reasoning patterns, often called axioms and inference rules.

The generalized plan spells out the logic of the implemented action. For the fetch&place 
task, this means the robot performs the pickup action at the location where it expects the 
object to be and places the object at its destination. Lots of complexity is hidden by this 
 simple plan structure. For example, in order to be at a certain location, the robot has to 
navigate  there. And if the robot has to change its position— for example, due to a sudden, 
more urgent request—it has to interrupt the task and return to it  later in order to complete 
it. Another impor tant aspect hidden in the plan is failure detection, recovery, and continu-
ation. In autonomous robot applications requiring goal- directed object manipulation, more 
than 80  percent of the programs are concerned with competent failure  handling.

A key reason why the robot plan is so compact and elegant is that programmers can 
state action par ameters vaguely. The term “at the location of the object” abstracts away 
from vari ous pieces of detailed information that a robot needs to perform the task success-

Generalized plan

def-plan

at-location (a location (location-of 〈obj〉))

perform (an action

perform (an action

(type fetching)

(type placing)

(object-acted-on 〈obj〉))

(object-acted-on 〈obj〉))
(destination 〈dest〉))

•  Cups used for tablesetting have to be clean and unused

•  People want to use their preferred items

•  Cups in cupboards are clean

•  Clean cups are empty

•  Cups have to be grasped outside

•  . . . 

fetch&place (〈obj〉: (an object (type thing)),

1.

at-location (a location 〈dest〉)2.

〈dest〉: (a location (type place)))

Knowledge base

Figure 21.1
The knowledge- based approach to robot programming includes two main components: a generalized robot plan 
and a knowledge base of assertions and rules.
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fully. For example, in order to pick the object up, the robot has to look at the object with 
a camera pose that enables it to estimate the pose of the object accurately enough given 
the inaccuracies of the cameras and occlusions caused by other objects. Then robots often 
have to reposition themselves to reach the object with the appropriate hand pose, given 
bulky robot arms. Not specifying  these information pieces puts the burden on the robot 
control programs to infer them automatically.

The programmers also need not specify how the object is to be picked up. But consider 
the scene in figure 21.2 where the object to be picked up is a pot filled with boiling veg-
etables and  water sitting on a hot stove in order to pour the  water out. Any robot plan that 
competently and robustly picks up the pot with the generalized plan has to make the fol-
lowing inferences. It has to infer the motion par ameters and constraints for the pickup 
action, including that the pot has to be picked up with two hands, grasped by its  handles, 
and held horizontally. It has to infer that the  handles must be grasped so the robot can tilt 
the pot around the axis between the  handles, that the weight of the pot  will change while 
pouring, and that the lid must be removed before pouring. Fi nally, the robot has to infer 
many motion specifics, such as the positions of the robot grippers on the object, the grasp 
type, and the grasp and lift force as well as the reaching trajectories for the hands.

In order to fill the knowledge gaps, the plan is complemented with the knowledge 
depicted in the lower part of figure 21.1. This states very general knowledge chunks includ-
ing facts, rules, and other relationships between objects, tasks, environments, capabilities, 
and preferences that are asserted to be true. Using this knowledge, the robot can execute an 
underdetermined action by inferring the appropriate motion pa ram e terization by applying 
the knowledge in the knowledge base to the given action description in the specific situation’s 
context, as suggested in the example above of picking up the pot from the stove.

Advantages of the knowledge- based approach to robot control over other approaches 
include the fact that knowledge can be combined by automated reasoning engines in order 

Figure 21.2
Easy for  humans but difficult for robots: picking up a pot filled with boiling vegetables in order to pour the  water out.
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to achieve open question- answering capabilities. The abstract format of the knowledge 
ensures that it can be applied to  future situations that are unknown at the time of specifica-
tion. So, if the robot knows that all open and filled containers have to be held upright, it 
can use this knowledge for all containers it ever encounters regardless of form and size.

While knowledge- based programming is attractive  because of its potential scalability 
 toward open- task domains, it also raises difficult open- research questions. For example, 
it remains to be seen  whether robots can fully leverage knowledge bases in which all 
knowledge pieces have preconditions that have to be known for the knowledge piece to be 
applicable. For example, the knowledge that containers have to be held upright is helpful 
only if the robot can reliably recognize containers. Unfortunately, many components of 
robot control programs can only provide uncertain information.

 There is substantial evidence that accomplishing manipulation tasks requires robotic 
agents, as well as the  human brain, to employ a combination of learning, planning, and 
other reasoning methods.

21.2 Body Motion Query

Perhaps the most essential reasoning task for a robotic agent manipulating objects is figur-
ing out how to move its body in order to achieve some goal by causing some desired 
effects and avoiding unwanted side effects. Wolpert (2011), a leading neuroscientist inves-
tigating  human motion control, argues, “We have a brain for one reason and one reason 
only, and that is to produce adaptable and complex movements. . . .  Movement is the only 
way you have of affecting the world around you.”

For goal- directed object manipulation, we reason not only about the motions but also 
about related aspects of actions.  These aspects include the relationship between motion 
pa ram e terization and physical effects, the information preconditions needed to perform 
actions, and expectations about effects and pos si ble failure modes. If one pours pancake 
batter onto a pancake maker, the shape of the pancake,  whether round or oval or in one 
piece or more, as well as  whether batter  will be spilled, depends on the pouring motion. 
A robotic agent has to acquire knowledge and reason to determine the body motions that 
enable it to modify its physical surroundings to achieve its goals.

Imagine that a robotic agent is given the task “pour the  water out,” which might be 
stated as a formal expression of the following form:

(perform (an = action (type pouring) (theme (some = substance (type  water)).

Any robot control program that is to accomplish this underdetermined instruction— 
including the one depicted in figure 21.2— has to infer how the motion is to be generated. 
As we have argued before, it has to infer the need to grasp the pot by the  handles, hold it 
horizontally, tilt the pot around the axis between the  handles, and adjust the force with 
which to hold the pot according to the changing weight.

Figure 21.3 shows why it is so impor tant to reason about the motions that a robot intends 
to perform in order to achieve the desired effects of a manipulation task and avoid the 
unwanted ones. The figure displays examples of unwanted side effects caused by inappropri-
ate motion pa ram e terizations: We see the spatula stuck inside a pancake  because the robot 
did not push the spatula hard enough to slip  under it (upper left ). The robot is not able to lift 
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the pancake  because it has targeted the top of the pancake with the spatula rather than sliding 
the spatula under neath (upper right). The robot has poured too much pancake batter, causing 
it to spill down the side of the pancake maker (lower left ). The pancakes are not being properly 
placed on the plate, causing them to fall off when the plate is lifted (lower right).

The composition of elementary movements into the complex movements needed to 
accomplish actions such as picking and placing and pouring has been investigated in 
several research areas (Schmidt 1975; Schack et al. 2016), including action science (Prinz, 
Beisert, and Herwig 2013). Flanagan, Bowman, and Johansson (2006) proposed concep-
tualizing the action category- specific patterns of movements as motion plans that imple-
ment an action as a partially ordered and synchronized set of motion phases. Each motion 
phase has motion goals, and the transition between motion phases is initiated through 
perceptually distinctive force- dynamic events (see figure 21.4; Siskind 2001). The motion 
phases also have knowledge preconditions: in order to execute a reaching motion, I have 
to know the destination of the reach and the type of grasp to be executed. Thus, to execute 
a motion plan, the knowledge preconditions of the motion plans have to be inferred.

In order to execute the motion plan for picking up an object, the robot has to infer the 
body pose with which to start the activity. The robot typically has to be able to see and 
reach the object. If the object is inside a container, the container often must be opened to 
reach the object. When starting the reaching motion, the robot must commit to a grasp 
type, contact points, and a reaching trajectory.  These decisions might require the robot to 
simulate its action and motion plan before carry ing it out in the real world. If  there are 
constraints, such as keeping the object upright, or the placement of the object requires the 
grasp pose to satisfy additional constraints, the robot must foresee the consequences of its 
pa ram e terization decisions on  these  future constraints. It also has to decide on the forces 
it intends to use for grasping and lifting the object.

Figure 21.3
Action failures and unwanted effects caused by inappropriate motion pa ram e terizations.
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According to this model of implementing actions through movement plans, a promising 
approach to organ izing the computational pro cess for executing underdetermined actions 
is the following: The robot infers belief about where the object could be found and formu-
lates the instruction with this belief. It then augments the action description with placehold-
ers for the motion par ameters and then asks the robot’s reasoning system to infer the appropriate 
pa ram e terizations. This is done by asking the body motion query:

how = do I have to move my body
in order to

accomplish the given action description
for the current task
with the objects and in the context
that I see or believe

Answering the body motion query is a very complex and challenging reasoning task. 
Depending on the context, it might require predicting the physical effects of actions, 
having commonsense, understanding intuitive physics, knowing social norms, and having 
experience. In the next section, we  will consider how this knowledge can be stated and 
reasoned about using symbolic knowledge repre sen ta tion.

21.3 Complementary Ways of Structuring Actions

In the previous section, we learned one par tic u lar perspective on actions— namely, underde-
termined action descriptions and how they can be used to help the robotic agent generate 
the motions that accomplish goals and avoid unwanted side effects. In this section we look 
at other perspectives that take complementary views and facilitate other modes of reasoning 
actions that complement the mechanism introduced in the previous section (Zech et al. 2019).

The first one is to represent and reason about actions by modeling the structure of actions 
using grammar for understanding and generating natu ral language. The grammar view 
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Figure 21.4
Generalized motion plan for a fetch action.
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of actions provides a power ful way of dealing with the variations of be hav iors and of imple-
menting actions depending on dif fer ent contexts. The grammatical structure is used for 
understanding, executing, and learning actions. An example is the grammar proposed by 
Pastra and Aloimonos (2012) that generates action structures guided by the objects acted on 
and the tools used.

Another view is to categorize actions and model action categories with re spect to the 
entities that participate in actions and the role they take. For example, in a pouring action 
you might have a substance that is poured, a container as a source that it is poured from, 
a destination that it is poured into, and the purpose of the pouring action. In this view we 
can model action categories as graphic structures where the nodes represent the concepts of 
the entities that participate in the action and links the role that the entities take. Online 
knowledge ser vices such as FrameNet and VerbNet provide  these repre sen ta tions that can 
be used by robotic agents in order to refine and disambiguate action descriptions (Kipper 
et al. 2008). Nyga and Beetz (2018), for example, learned joint probability distributions over 
 these graph structures from instructions on websites such as wikiHow that let robots compute 
the most probable completion given a partial action description as evidence.

Force dynamics (Talmy 1988) is another linguistically motivated approach to represent 
the structure of actions. It focuses on how entities involved in an action interact with 
re spect to the forces they exert during the action. Force dynamics introduces concepts such 
as the exertion of, the re sis tance against, and the blockage of forces, which model the 
causal structure of an action in a more fine- grained manner.

In addition to linguistically motivated structures of actions, one can also model actions 
based on body poses and motions. Examples of this line of action modeling are taxonomies 
of manipulation actions based on hand- object relations (Wörgötter et al. 2013) and the whole- 
body support taxonomy based on multicontact motions (Borràs et al. 2017).  These models 
have primarily been used for action understanding and imitation learning (Aksoy et al. 2017).

Another approach is the categorization of action categories in terms of the general 
structures in the sensor data and motion streams generated through the execution of 
actions. Impor tant models in this dimension are object- action complexes (OACs; Krüger 
et al. 2011, Wörgötter et al. 2015), which model actions through state prediction functions 
and probabilistic success mea sures. The OAC repre sen ta tion is designed to be learned in 
a bootstrapping fashion and to provide a universal repre sen ta tion for the efficient planning 
and execution of goal- directed actions.

The structure of actions often becomes more complicated when the environment in 
which the action takes place is more complex and cluttered and when the changes of the 
scene are correlated with the success and failure of actions (Yang et al. 2013).

21.4 Symbolic Knowledge Repre sen ta tion and Question Answering

In the early days of artificial intelligence (AI), researchers proposed a power ful class of 
mechanisms for automating reasoning called physical symbol systems. Physical symbol 
systems are information- processing systems that operate on symbols, combine them into 
composite symbol structures, and manipulate them to produce new symbol structures (Newell 
and Simon 1976). They thereby evolve collections of symbol structures by adding, deleting, 
and modifying them.
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One power ful application of physical symbol systems is their use as knowledge repre-
sen ta tion and reasoning systems: symbol structures can be used as internal repre sen ta tions 
of knowledge about robots’ tasks and actions, and the creation of new symbol structures 
can be used to draw conclusions from the knowledge. Using physical symbol systems, 
programmers can equip robots with symbol structures representing the tasks that a robot 
is to accomplish, the actions it can execute, the environment it is acting in, the objects that 
it manipulates, and their states. Physical symbol systems can then implement intelligent 
reasoning, decision- making, and planning as mechanical symbol manipulations.

One of the most prominent categories of physical symbol systems is logic (Hayes 1977).2 
A logic consists of three components: its syntax, its semantics, and its calculus. The syntax 
of the logic defines what can be expressed; it is the set of symbolic expressions that con-
stitute the language of the logic. The semantics assigns truth values to expressions— that 
is, it defines  whether expressions are true or false. Fi nally, the calculus defines the rules 
for creating new symbol structures out of existing ones. Thus, logics are physical symbol 
systems in which the semantics defines  whether a given symbol structure is true or false.

In order to use logics for implementing reasoning in computer systems, and in par tic u lar 
for enabling robots to decide on their courses of action, researchers aim to design logics 
with which they can express relevant prob lems and the knowledge that is necessary to 
solve them. In addition, they define a semantics for the new logics in which the truth 
values are defined on the basis of the truth values of the constituent structures. Fi nally, 
they aim at defining a calculus in which a symbol structure can be derived from a set of 
symbol structures if and only if the derived symbol structure is true if the original symbol 
structures are true. In this case the calculus is called correct and complete with re spect to 
the semantics of the logic.

Logics with correct and complete calculi are potentially very power ful tools for solving 
prob lems with computers. They allow computers to solve prob lems without requiring the 
computer to understand the domain of problem- solving. This is pos si ble  because solving a 
prob lem p can be implemented as answering the question of  whether  there exists a solution 
for p. To determine the answer, it suffices to determine  whether the statement “ there exists 
a solution for p” is true. In a logic with a complete and correct calculus, this is exactly the 
case if we can derive the symbolic expression that represents “ there exists a solution for p.”

This gives us a method for solving prob lems that can be automated in a straightforward 
manner: Given a set of symbolic expressions that are asserted to be true, generate all 
symbolic structures that can be derived using the rules of the calculus. If for the prob lem 
p that we want to solve the symbol structure representing “ there exists a solution for p” 
is in the resulting collection of symbol structures, then we know a solution exists.

Some logic calculi have technical properties that make them particularly attractive for 
problem- solving. The first such property is that the tree of derivations that result in the 
symbol structure representing the solution constitutes a rigorous proof of the existence of 
a solution. Some calculi also provide the proof of existence by generating an example 
solution, which is what we want in the first place. The proof can also be used as an expla-
nation of why the generated example is a solution, which is an asset for constructing explain-
able AI systems.

From this perspective, predicate logic, together with some of its calculi, is a particularly 
power ful and adequate logic (Kowalski 1979). Predicate logic is a logic capable of express-
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ing factual knowledge of our natu ral language. Together with the resolution, calculus can be 
used as a problem- solver. The programming language Prolog, which is a subset of predicate 
logic and provides a  limited implementation of negation, is a pragmatic alternative for pro-
gramming prob lem solvers, which suffices for most of our purposes.

Taking the logic approach gives us a potentially very elegant and power ful way to program 
robotic agents, which is illustrated in figure 21.5. In the lower part, we see a robot accom-
plishing everyday manipulation tasks such as setting and cleaning the  table. Researchers 
propose to distill the knowledge that the robot needs to accomplish its tasks as a col-
lection of symbolic expressions asserted to be true, which is called the axiomatization of 
the problem- solving domain. Each symbolic expression, called an axiom, corresponds to a 
piece of  human knowledge, and this correspondence is implied by the semantics of the logic. 
Researchers then aim at inventing axiomatizations in a correct and complete calculus of a 
problem- solving domain that are strong enough to solve all prob lems in this domain. This 
means that whenever the robot needs to achieve a goal g starting from the current state s, 
this task can be transformed into a logical- reasoning prob lem that can be solved mechani-
cally. In order to do this, the environment, the current state, models of the actions, and other 
kinds of knowledge have to be asserted as axioms. The question “Does  there exist a state of 
the environment that satisfies the goal and can be reached through a sequence of actions?” 
must be asked. Then the calculus proves the existence by searching for a symbolic expres-
sion that represents such a state. The way this state can be achieved— that is, the sequence 
of actions that has to be executed—is contained in the existence proof. Now the real goal 
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Figure 21.5
Deciding on a course of action using logic- based inference engines.
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state and the actions the robot is to execute can be computed as the meaning of the respective 
logic expressions.3

Now suppose that we can axiomatize the actions that a robot can perform, the conditions 
 under which the actions are executable, and their physical effects such that each executable 
action sequence and the state resulting from the sequence can be inferred from the axioms. 
This set of axioms is a valuable knowledge source for robotic agents that are to perform 
open tasks in open domains. Using the axioms, the robotic agents can reprogram them-
selves to accomplish new tasks. The action sequences they return are proven to achieve 
the given goals, and they can generate an action sequence for  every task they are capable 
of  doing.

A large community of researchers has followed this research direction. McDermott 
proposed an axiomatization of problem- solving in a first- order time interval logic by 
providing a power ful set of axioms talking about plans and their execution and the physical 
effects they cause. Hayes (1968, 1979) proposed a comprehensive research enterprise aiming 
at formalizing the commonsense and naive physics knowledge and reasoning needed to 
solve a broad range of everyday tasks. This research direction has also been put forward 
in textbooks by (Davis 1990) and (Mueller 2006).

Many researchers have proposed component axiomatizations for specific categories of 
reasoning prob lems, including reasoning about actions (Reiter 2001); qualitative reasoning 
(Davis 2017; Davis and Marcus 2015); spatial and temporal reasoning (Allen 1984); con-
straint and resource reasoning; rational agency by formalizing the relations between the 
beliefs, desires, and intentions of agents (Georgeff et al. 1998; Rao and Georgeff 1992); 
and multiagent activity (Hoek and Wooldridge 2012; Wooldridge 2009).

The logic approach to problem- solving has also raised some questions regarding its fea-
sibility. One of  these questions is  whether we can find general calculi that solve all relevant 
prob lems. This was originally brought up in the context of reasoning about actions. When 
you try to predict what  will happen, you typically want your inference system to have the 
bias that changes in the world only occur if they are forced to. In other words, the world has 
the tendency to stay as it is, and change tends to occur as late as pos si ble (the law of inertia). 
If you are reasoning backward in order to explain why a change occurred, it does not make 
sense to assume that the change occurred immediately before noticing it. This seems to 
suggest that dif fer ent inference pro cesses are needed depending on the question you ask— 
whether you reason forward or backward in time (Hanks and McDermott 1987; McDermott 
1987). Another essential prob lem is that symbolic repre sen ta tions represent objects and states 
in the world. So imagine that the symbol structure cup-23 stands for my cup. If a robotic 
agent looks at a  table with two identical cups sitting next to each other, the robotic agent 
might not have the perceptual ability to distinguish my cup from the other one and therefore 
is not able to execute the action pick-up (my cup). This and related prob lems are often referred 
to as the symbol- grounding prob lem (Harnad 1990), and some variations of the prob lem 
are addressed through reasoning about the knowledge preconditions of plans (Moore 1984; 
Morgenstern 1987).

Occasionally, reasoning challenges have been proposed that require a combination of 
dif fer ent reasoning capabilities, including spatial and temporal reasoning and reasoning 
about action and change. One of  these challenges is the egg- cracking prob lem (Miller and 
Morgenstern 1997; Morgenstern 2001). It is based on a sequence of actions that leads to 
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an egg being cracked and the egg yolk to be separated from the egg white and dropped 
into a bowl. The challenge for logical reasoning is to answer an open set of “what if” 
questions, including what happens if the egg is hit on the  table very smoothly or very 
forcefully, if the egg is from an ostrich, if the bowl is placed upside down, and so on. Can 
we formalize a compact axiom set that entails all the answers to  these “what if” questions? 
As it turns out, the axiom sets become huge quickly, and the appropriate level of abstrac-
tion depends on the question to be answered.

Another prob lem is the effectiveness and efficiency of the reasoning pro cesses. If axi-
omatizations are very comprehensive and general, the axioms can be used in many ways 
to generate new symbolic structures, and the search space for a proof can be highly expo-
nential and exceed the available resources. Therefore, more efficient repre sen ta tions and 
algorithms have been proposed and investigated in order to infer action plans for robotic 
agents.  Here the repre sen ta tions of actions for planning (Fikes and Nilsson 1971; Ghallab 
et al. 1998; Fox and Long 2011) and special- purpose planning algorithms are particularly 
impor tant for robotics applications (Ghallab, Nau, and Traverso 2004, 2016).

Unfortunately, the capability of inferring provably correct plans does not mean that the 
plans  will work when executed. This is  because the axioms formalize idealized models of 
the world, robot capabilities, and actions and their effects. One reason why we cannot 
equip robotic agents with faithful logic models of their perception and action capabilities 
is that perception, action, and, consequently, robot beliefs about the world are incomplete 
and uncertain. One prominent way to competently reason with uncertainty is to use proba-
bilistic repre sen ta tion and reasoning methods (Thrun, Burgard, and Fox 2005).

21.5 Ontologies and Encyclopedic Knowledge Bases

Robots need comprehensive knowledge about their tasks, their bodies and capabilities, the 
objects they are to manipulate, and their environments. An outdoor drone might want to 
use a web ser vice such as OpenStreetMap as an information resource for landmarks, street 
maps, or building functions. A robot that is loading and unloading machines in a factory 
might need structural, functional, and pro cess knowledge about the machine to act more 
competently. A key question for deploying cognitive robots for a variety of tasks in a 
variety of domains is how the necessary knowledge can be provided in a structured and 
or ga nized manner (Noy and McGuinness 2013).

Key mechanisms in knowledge repre sen ta tion and reasoning that have been developed 
for  these purposes are encyclopedic knowledge bases, particularly in the form of ontolo-
gies (Baader et al. 2007). Ontologies specify the concepts— categories of entities— needed 
for answering questions about a prob lem domain in a machine- understandable manner 
such that symbolic reasoning methods can use them. For example, in an ontology you can 
specify the concept “refrigerator” as specializations of the concepts “electrical device” and 
“container.”  Because all instances of the concept “electrical device”  were previously defined 
to have a property “state,” which can take the values “switched on” or “switched off,” all 
refrigerators inherit this property  because refrigerators  were defined as specializations of 
electrical devices.  Because refrigerators are also containers, we know from the concept 
description of “container” that they have a capacity and can be opened. We might want to 
assert additional properties for the concept “refrigerator”— namely, that the primary function 
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of a refrigerator is to store perishable food.  Here perishable food is again a concept defined 
to be a specialization of the concepts “perishable items” and “food.”

Now, if the perception system of a robot categorizes an object as a refrigerator, it can 
assert that the detected object is an instance of the concept “refrigerator.” By making this 
assertion, the robot automatically infers that the detected object satisfies all the knowledge 
it has about a refrigerator. In par tic u lar, if the robot searches for milk and knows that milk 
is a perishable food, it can automatically infer that it might be able to find the milk inside 
the refrigerator  because that is a storage place for perishable food.

More generally, the key idea of an ontology is to name, define, and formally represent 
concepts in terms of more primitive concepts, their properties, and their relations to other 
concepts. The collection of defined concepts is the vocabulary that can be used to represent 
and reason about an application domain.

Of course, such general knowledge is applicable to dif fer ent tasks and environments. 
This fact has motivated research with the goal of developing a comprehensive and common 
ontology that can serve many dif fer ent applications. Perhaps the best- known ontology that 
has been developed for this purpose is the Cyc ontology (Lenat 1995). The Cyc knowledge 
base was developed more than thirty- five years ago. Cyc contains an ontology of about 
1.5 million general concepts and more than 25 million general rules and assertions involv-
ing  these concepts and representing how the world works. The Cyc knowledge base includes 
commonsense knowledge and knowledge that is typically implicit.

Ontologies, developed in the knowledge repre sen ta tion field, are mostly developed for 
question answering and problem- solving applications. Therefore, they are typically too 
abstract for robot control and have to be extended through the addition of domain- specific 
subontologies to cover robot agency (Olivares- Alarcos et al. 2019).

Ontologies are also used to make information available in the internet machine-under-
standable. An area investigating this research direction is called the semantic web technol-
ogy (Hendler 2001; Heflin and Hendler 2001). Its basic idea is to represent the information 
contained on a web page as logical fact. Then the formatting of the web page is automati-
cally generated through rules specified by the web programmers. Names of the predicates 
used in the logical repre sen ta tion and the categories of objects used as terms are defined 
in ontologies that the web pages point to. By reading the logical facts of the web page and 
the corresponding ontology, computer programs can automatically reason about the infor-
mation contents of web pages.

Potentially, the semantic web is a power ful enabler for cognitive robots. Imagine that 
a retailer has a web store implemented as a semantic website. A cognitive ser vice robot 
acting in the physical retail store could use the content of the semantic web store as part 
of its domain model.

Unfortunately, only a small part of the internet is encoded using semantic web technol-
ogy. Therefore, researchers have started to automatically construct knowledge bases through 
statistical learning based on huge amounts of web data. This way a computer program can 
learn that Stephen Curry is a basketball player, plays for the Golden State Warriors, and 
plays in the position of a guard. Knowledge bases built this way are called lightweight 
knowledge bases. Perhaps the most impor tant knowledge base built this way is the Google 
knowledge graph, which reportedly included more than seventy billion facts by the year 
2016.
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As knowledge bases acquired through statistical learning from large databases are built on 
correlations rather than facts, they may contain inconsistencies and faulty knowledge pieces. 
 Because logic- based reasoning engines cannot deal with inconsistent knowledge, other forms 
of reasoning are needed. To allow for pos si ble inconsistencies in knowledge bases, scalable 
inference systems employ an ensemble of expert reasoning methods that do heuristic reason-
ing. Results from the individual reasoning mechanisms are then treated as hypotheses for 
pos si ble answers and solutions, which have to be tested and rated according to their plausibil-
ity. The IBM Watson system that won the famous quiz show Jeopardy against  human cham-
pions is a successful example of this technology (Ferrucci et al. 2010). Given a quiz question, 
the system generates hundreds of pos si ble answers and tests and ranks them according to 
plausibility within three seconds.

For cognitive robots, hybrid knowledge repre sen ta tion and reasoning seems the most 
promising path to go. This means using correct and well- designed knowledge repre sen ta-
tion and reasoning where pos si ble and employing the huge data and information resources 
available in many modern information ser vices. For the successful agency of robotic 
agents, it is of key importance that existing knowledge sources are combined with the 
robot’s own experiences to make the knowledge actionable and tailor it to the robot’s 
needs.

21.6 Knowledge Repre sen ta tion and Reasoning Systems  
for Cognitive Robots

Several knowledge repre sen ta tion and reasoning systems have been specifically designed 
for autonomous robot control, including KnowRob (Tenorth and Beetz 2013; Tenorth and 
Beetz 2015; Beetz et al. 2018), ORO (Lemaignan et al. 2010), and ROSETTA (Topp et al. 
2018). In this section we discuss the specifics of robot knowledge repre sen ta tion and 
reasoning in the context of the KnowRob system, which is the most comprehensive and 
widely used robot knowledge repre sen ta tion and reasoning system (Olivares- Alarcos et al. 
2019).

The KnowRob KR&R system is open source, with documentation, installation guides, 
and tutorials at www . knowrob . org .  KnowRob can also be used through the web- based 
knowledge ser vice www . open - ease . org.

The software architecture of the KnowRob KR&R system is depicted in figure 21.6. The 
core of the system is an ontology that makes all concepts needed for question answering 
and reasoning explicit and machine-understandable. The ontology is surrounded by the 
hybrid reasoning kernel, which employs several mixed symbolic-subsymbolic representa-
tion structures. This kernel is surrounded by the logic-based language shell, which provides 
a unified symbolic interface to the dif fer ent repre sen ta tions and reasoning methods of the 
hybrid reasoning kernel. The outer layer consists of the interfaces to the dif fer ent applica-
tions of KR&R for robot control, including question answering, perception, the recording 
of experiences, and the learning from knowledge and experience.

Compared to KR&R systems for other application domains,  those for autonomous robot 
control employ ontologies that are particularly strong and expressive with re spect to the 
repre sen ta tion of objects and actions. Object repre sen ta tions typically include physical and 

Downloaded from http://direct.mit.edu/books/book-pdf/2239475/book_9780262369329.pdf by guest on 30 September 2024



426 M. Beetz

geometric properties, their parts, articulation models, functional information, and visual 
appearance. The repre sen ta tion of actions often includes the be hav ior they generate, the 
physical effects they cause, and the intentions they serve.

Another particularity is that the represented domain is accessible to the KR&R system 
 because the repre sen ta tion and the represented control system reside in the same computer 
system. Therefore, robot programmers can develop a robot capable of using its control 
system and perception system as knowledge sources. Often, information that is needed for 
abstract reasoning is already available in some form in the robot’s internal data structures, 
such as the robot’s pose estimate, or can be acquired from its components, such as the 
perception system. To reuse this information, the robot can “listen” to the control program, 
rec ord the dynamic data structures, and use the data as a dynamic and virtual knowledge 
base (Mösenlechner, Demmel, and Beetz 2010). The knowledge- processing system thus 
reuses and abstracts data structures used by the control program for the purpose of reason-
ing. Since the knowledge is generated on demand and just in time, the abstract repre sen-
ta tions are solidly grounded in  these data structures.

A second repre sen ta tion and reasoning component is the inner- world knowledge base 
(Ziemke 2001). It is a detailed and photorealistic reconstruction of the robot’s environment 
in a game engine with physics simulation and vision capabilities and adds power ful rea-
soning methods to the knowledge- processing framework. First, the robot can geometrically 
reason about a scene by virtually looking at it using the vision capability provided by the 
game engine (Qiu and Yuille 2016) and predict the effects of actions through semantic 
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annotations of force dynamic events monitored in its physics simulation. As Winston 
(2012) would phrase it, it allows the robot to reason with its eyes and hands. All physical 
entities in the game engine are also entities in the symbolic knowledge base, which means 
the game engine state is correctly, accurately, and completely represented by the inner- 
world knowledge base.

A third component is the symbolic knowledge base that contains common- sense, intui-
tive physics knowledge as well as domain knowledge. In many cases the domain knowl-
edge bases can be constructed automatically from semi structured web pages such as 
Google Maps, OpenStreetMap, web stores, DBpedia and the likes.

As the repre sen ta tions and mechanisms used in the hybrid reasoning shell  were origi-
nally created for the action execution shell and are redundant, the solutions hypothesized 
by the individual methods may have to be checked and ranked with re spect to their plau-
sibility as, for example, was done in the Watson system (Ferrucci et al., n.d.).

The subsequent interface layer casts the hybrid reasoning shell as a first- order logic 
knowledge base that is largely constructed on demand from data structures of the control 
program and computed through robotics algorithms.

21.7 Neurosymbolic Learning and Reasoning

In recent years the machine- learning approach to perception, action, and intelligent 
problem- solving has gained a lot of momentum (Hassabis et al. 2017). In par tic u lar, deep 
learning and deep reinforcement learning (Silver et al. 2016; Berner et al. 2019) have 
achieved impressive successes in specific tasks of autonomous agency. Where symbolic 
knowledge repre sen ta tion has its strengths in generalization, modular and compositional 
structure, and potential for introspective capabilities, artificial neural repre sen ta tions have 
their strengths in learning repre sen ta tions that are well correlated and in learning complex 
action se lection, question answering, and problem- solving tasks in an end- to- end fashion 
(Levine et al. 2016, 2018; Sünderhauf et al. 2018). Technically speaking, action se lection 
and execution are computational tasks that map the continuous sensor data streams into 
continuous motion actuation functions and therefore are in the applicability domain of deep 
network technology. However, limitations have been identified in the robust  handling of 
prob lem instances that are not covered in the experience data, in explaining and diagnosing 
the generated be hav ior in order to quickly adapt to unpredicted circumstances, and in effi-
cient learning from  little experience (Marcus and Davis 2019).

Inspired by  these successes and considerations, some researchers have proposed methods 
to combine the strengths of both approaches and extend neural repre sen ta tions with opera-
tions that replicate some of the functionality of symbolic repre sen ta tions or combine 
artificial neural learning mechanisms with symbolic reasoning. The characteristics of  these 
approaches show substantial promise for representing the structures of actions and reason-
ing about them. Examples of such learning and reasoning approaches include hyperdimen-
sional (Kanerva 2009, 2018) and neurosymbolic computing (Garcez et al. 2019; Besold 
et al. 2017).

Hyperdimensional computing (Neubert et al. 2019) performed by vector symbolic archi-
tectures represents symbols through high- dimensional vectors (typically thousands of 
dimensions) and exploits the redundancy of the encoding to achieve robustness to noise 
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and uncertainty. In addition, it employs operators to perform symbolic computations with 
high- dimensional vectors (Gayler 2004; Blouw et al. 2016; Levy and Gayler 2008).  These 
operators enable the encoding of prior knowledge, the generalization of concepts from 
similar symbols, the composition of complex expression, and thereby also the advantage 
of learning from fewer examples. Thus, the intuition is to add some repre sen ta tion and 
reasoning capabilities to high- dimensional vector spaces (Eliasmith et al. 2012). Examples 
in which hyperdimensional computing is applied to intelligent robot agency include active 
perception, place recognition, and the learning and recalling of reactive be hav ior.

Another category of approaches is neural- symbolic computation (Garcez et al. 2019). 
It aims at integrating robust vector- based learning and symbolic reasoning by implement-
ing new power ful alternatives for knowledge repre sen ta tion, learning, and reasoning based 
on neural computation.

21.8 Conclusion

Knowledge repre sen ta tion and reasoning  will be a key information- processing capability 
for cognitive robots that are to accomplish vaguely specified tasks in open environments. 
Knowledge pro cessing can complement machine- learning decision- making and control 
mechanisms  because reasoning steps are based on rules that can be asserted to be valid. 
Additionally, the use of knowledge repre sen ta tion and reasoning substitutes the black 
box reasoning of machine- learning methods with justifiable inference chains that make 
the reasoning transparent and enable cognitive robots to reason about their decision- 
making. It is essential that the methods not only work in the abstract but apply to the 
sensory and motion level to achieve the full potential of the repre sen ta tion and reasoning 
methods. Leveraging modern information- processing techniques— including realistic 
simulation and rendering techniques, neurosymbolic and hyperdimensional computing, 
and big data and data- intensive machine- learning methods— provides promising oppor-
tunities to do this.

Additional Reading and Resources

•  A seminal, extensive volume on commonsense knowledge repre sen ta tion: Davis, Ernest. 
1990. Repre sen ta tions of Commonsense Knowledge. The Morgan Kaufmann Series in Repre-
sen ta tion and Reasoning. Burlington, MA: Morgan Kaufmann. ISBN 978-1-55860-033-1.
•  A comprehensive pre sen ta tion of the KnowRob robot knowledge repre sen ta tion and 
reasoning architecture: Tenorth, Moritz, and Michael Beetz. 2013. “KnowRob: A Knowl-
edge Pro cessing Infrastructure for Cognition- Enabled Robots.” International Journal of 
Robotics Research 320 (5): 566–590. http:// ijr . sagepub . com / content / 32 / 5 / 566 . short.
•  A systematic taxonomy for categorizing action repre sen ta tions in robotics along vari ous 
dimensions, with a meticulous lit er a ture survey on action repre sen ta tions in robotics: Zech, 
Philipp, Erwan Renaudo, Simon Haller, Xiang Zhang, and Justus H. Piater. 2019. “Action 
Repre sen ta tions in Robotics: A Taxonomy and Systematic Classification.” International 
Journal of Robotics Research 380 (5). https:// doi . org / 10 . 1177 / 0278364919835020.
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•  The knowledge repre sen ta tion and reasoning framework KnowRob is accessible, including 
open- source software, documentation, installation guides, and tutorials, at www . knowrob . org .  
KnowRob can also be used through the web- based knowledge ser vice openEASE: www 
. open - ease . org .  Examples of the application of reasoning to the plan- based control of robotic 
agents  were realized through CRAM (Cognitive Robot Abstract Machine), which is acces-
sible through the website www . cram - system . org.

Notes

1.  Kemp et al. (2007) and Mustafa Ersen et al. (2017) provide comprehensive review articles about challenges 
and approaches to autonomous robot manipulation in  human environments.
2.  Excellent textbooks on the logic- based approach to building intelligent systems include Genesereth and 
Nilsson (1987); Reiter (2001); Davis (1990).
3.  As stated in chapter 1, this approach constitutes one of the roots of cognitive robotics in which Levesque, 
Reiter, De Giacomo, Lakemeyer, and colleagues propose to model high- level robotic control using explicit 
knowledge and reasoning in order to decide which actions to execute (Levesque and Lakemeyer 2008). This 
chapter adopts this view but does not limit the repre sen ta tion of actions and reasoning to the high level of 
abstraction. Rather, we extend the view to reasoning about how actions should be executed.
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22.1 Introduction

One of the characteristics of  human intelligence is the ability of thinking and reasoning 
about abstract concepts like “knowledge” and “beauty.” This ability is at the core of  human 
innovation and creativity. In fact, it is required for fundamental capabilities such as the 
retrieval of past thoughts and memories, relational reasoning and problem- solving in 
current situations, and the pro cessing of thoughts linked to the  future (e.g., design, plan-
ning). Indeed, abstract concepts constitute an essential part of  human language, where 
abstract words are often used in daily conversations to represent emotions, events, and 
situations that occur in physical environments and social interactions among  people.

 Human language includes concrete concepts, such as “ water” or “glass,” that are linked 
to objects that can be objectively defined and understood.  These are usually studied 
through a bottom-up approach that involves five major levels of analy sis: phonetic, lexical, 
semantic, syntactic, and pragmatic. In contrast, abstract concepts like “love” or “freedom” 
 don’t have specific physical referents; hence, they are more ambiguous, and their notion 
can significantly variate across individuals (Borghi et al. 2018). In this chapter, abstract 
concepts are broadly defined as higher- order, or complex, thoughts that are not bounded 
to a single, perceptually derived piece of information and that do not exist at any par tic u lar 
time or place (Barsalou 2003).

Even if the most common and intuitive definition of abstraction is opposite to that of 
concreteness, abstract and concrete concepts are not a dichotomy. They are considered 
part of a continuum (Barsalou and Wiemer- Hastings 2005), in which entities can have 
both abstract and concrete features in dif fer ent proportions ranging from highly abstract 
(e.g., “justice”) to highly concrete (e.g., “stone”). The continuum view has gained strength 
in recent years,  after growing evidence in support of embodied and grounded theories of 
cognition. In fact, a number of proposals have argued that abstract concepts can be 
grounded in a sensorimotor system as concrete concepts (see Pexman 2019) characterized 
by a continuum from unembodied (fully symbolic) to strongly embodied (Meteyard and 
Vigliocco 2008). A fundamental assumption of this view is that abstract concepts can be 
linked to embodied perceptions and learned through a pro cess of progressive abstraction 
(Gentner and Asmuth 2019).

22 Abstract Concepts

Alessandro Di Nuovo
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The embodied theories of the development of abstract thinking and reasoning constitute 
the theoretical resource for the design of artificial agents capable of abstract and symbolic 
pro cessing, which is required for higher cognitive functions such as natu ral language under-
standing. This is one of the current challenges for the fast- growing field of cognitive robotics, 
in which  future robots are expected to take on tasks once thought too complex or delicate 
to automate, especially in the fields of social care, companionship, therapy, domestic assis-
tance, entertainment, and education (Matarić and Scassellati 2016; Di Nuovo et al. 2016).

This chapter aims at stimulating new research in cognitive robotics and artificial intel-
ligence  toward the creation of smarter robots that  will be capable of understanding and 
manipulating abstract concept and words, thus overcoming the current limitations in human- 
robot communication by using natu ral language, which is the most intuitive of the user 
interfaces (Di Nuovo et al. 2018). To this end, section 22.2 provides a multidisciplinary 
background, briefly exploring recent embodied theories for the development of abstract 
concepts in  humans. Section 22.3  will pre sent pioneer work on cognitive robotics models 
of abstract words by implementing in robots the grounding transfer mechanism.

However, abstract concepts are not a single entity. They can be categorized into dif fer ent 
domains that can be acquired using dif fer ent strategies. Indeed, section 22.4  will pre sent 
a dif fer ent strategy for the embodied learning of numerical concepts that combines gestures 
and action with words, such as in the use of finger- counting repre sen ta tions to augment 
teaching a child (or a robot) about numbers. Numbers are a special domain of abstract 
concepts that constitute the building blocks of mathe matics, a language of the  human mind 
that can express the fundamental workings of the physical world and make the universe 
intelligible. Section 22.5  will pre sent cognitive robotics models of emotion, another group 
that requires special attention among the abstract concepts since recent proposals that 
emotions can play an effective intermediary role for learning and grounding abstract con-
cepts. Section 22.6  will discuss the current limitations in abstract cognition and robotics 
research. Fi nally, section 22.7  will give conclusions and identify  future directions.

22.2 Education, Neuroscience, and Psy chol ogy Views on the Development 
of Abstract Concepts

Abstract concepts cover a vast domain, ranging from numbers to emotions and from social 
roles to  mental state concepts. Anthropologists, cognitive scientists; developmental, social, 
and cognitive psychologists; educationalists; linguists; neuroscientists; and phi los o phers 
have extensively investigated how abstract concepts are acquired, used, and represented 
in the brain. This heterogeneity is one of the main reasons why it has been difficult to find 
a comprehensive theory that can account for the multiplicity of abstract concepts. This 
section  will explore current views in education, neuroscience, and psy chol ogy character-
ized by an embodied approach to the development of abstract concepts.

The developmental psychologist Jean Piaget, whose work had an extensive influence 
on both theory and practice in education, argued that  children develop abstract reasoning 
skills as part of their last stage of development, known as the formal operational stage, 
which usually occurs around the age of twelve (Piaget 1972). Specifically, this is the age 
at which most  children transition from the concrete operational stage to the formal opera-
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tional stage. However, brain- imaging studies have provided new evidence that  there is a 
continuous neural development during adolescence that may last longer than what was 
theorized by Piaget. In par tic u lar, abstract reasoning requires maturational changes in some 
brain regions, such as the prefrontal cortex, which may last  until late adolescence (Giedd 
and Rapoport 2010). Educational studies confirm that some tests of prefrontal lobe activity 
highly correlate with scientific reasoning ability and the capacity to reject scientific mis-
conceptions and adopt correct ideas (Kwon and Lawson 2000). Other developmental 
psychologists (Harwood, Miller, and Vasta 2011) have argued that the development of 
abstract reasoning is not just a natu ral developmental stage; rather, it is the product of 
culture, experience, and teaching. Hayes and Kraemer (2017) explored cognitive neurosci-
ence studies and presented evidence suggesting that sensorimotor pro cesses can strengthen 
learning associated with the fundamental abstract concepts for understanding science, 
technology, engineering, and mathe matics (STEM). On this basis, they proposed that embod-
ied exercises could improve STEM pedagogy by situating abstract concepts in a concrete 
context, thus correlating intangible ideas with corporeal information. In  doing so, rich 
multimodal distributed neural repre sen ta tions are forged, giving students a better chance at 
succeeding in the “hard” sciences, which are universally considered to be among the most 
abstract constructions of the  human mind.

Numerous cognitive neuroscience studies suggested that both concrete and abstract 
concepts might be bodily grounded  because they share similar mechanisms and modalities 
of repre sen ta tions, as both abstract and concrete concepts activate brain systems for action 
and perception (Gallese 2009). Behavioral and neurophysiological studies demonstrated 
a causal link between the motor system and the comprehension of both concrete and 
abstract language, where abstract concepts are acquired via a simulation pro cess that calls 
on neural systems used in perceiving and acting on related concrete events (Glenberg et al. 
2008).  These results, also linked to the use of mirror neurons, support the embodied simu-
lation theory (Gallese and Sinigaglia 2011), which provides a unitary explanation of basic 
abstract cognition, indicating that  people reuse their own  mental states or pro cesses, rep-
resented in a bodily format, when functionally attributing them to  others.

In the embodied cognition domain, at least three proposals have been offered to explain 
how abstract concepts could be acquired.

The first was proposed in the seminal work by Lakoff and Johnson (1980), who sug-
gested that the meanings of abstract concepts could be grounded through conceptual 
meta phors (e.g., “love is a journey”), which help to embody abstract concepts into the 
sensorimotor experience. The linguistic and psychological evidence supporting the con-
ceptual meta phors from the perspective of embodied simulations can be found in a review 
by Gibbs (2011). In this proposal, the evidence from the embodied cognition experiments 
should be explained in the light neural theory of thought and language; thus, he proposed 
that while  children learn  these meta phors, they develop conceptual meta phor neural cir-
cuits in connection to embodied experience, and  these characterize abstract concepts. However, 
other authors (e.g., Murphy 1996; Dove 2011) criticized the developmental plausibility of 
this explanation, noting that  children reach a mature meta phorical comprehension only quite 
late in  middle childhood, at around ten years old. Several studies, however, show that meta-
phorical thinking emerges much  earlier and constantly progresses, along with  children’s 
knowledge and information- processing abilities (Vosniadou 1987). But it is not clear  whether 
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 these  earlier developments in  children’s meta phorical thinking might contribute to the 
grounding of abstract concepts.

The second proposal assumes that the abstract concepts are mediated by language— that 
is, the conceptual grounding is augmented by concrete words (Dove 2014). In this context, 
the WAT (words as social tools) theory proposes a multiple repre sen ta tion view (Borghi 
et al. 2019), which attributes a major role to language and sociality in the acquisition of 
abstract concepts. Specifically, it hypothesizes that more abstract concepts are mainly 
linguistically acquired and induce in us a higher necessity to rely on  others  because of 
their complexity and our feelings of incompetence. Borghi et al. (2011) tested this idea in 
a study with adults, showing that learning novel abstract concepts was facilitated by verbal 
explanations (motor linguistic information) and not by manual actions, whereas the pattern 
was opposite for concrete concepts. By this view, the acquisition of language is a prereq-
uisite for embodying abstract concepts. However, this proposal that abstract meaning is 
grounded through language is difficult to reconcile with strongly embodied developmental 
theories, like that of Glenberg and Gallese (2012), but it could be well associated with 
weak embodiment or hybrid models.

Howell, Jankowicz, and Becker (2005) suggested that  children are likely to learn the 
first concrete words via direct experience.  Later, abstract words are acquired, and their 
meanings are grounded by linguistic experience and by relationships to words learned 
 earlier. According to Howell et al.’s model,  children’s repre sen ta tions of lexical cooccur-
rence information become increasingly sophisticated. Dove (2011) proposed a hybrid 
model in which language provides the child with new repre sen ta tional capacities (e.g., 
linguistic perceptual symbols) that support the learning of all kinds of concepts and are 
particularly helpful with characterizing abstract concepts.

Fi nally, a relatively recent idea is the proposal that abstract meaning is grounded through 
emotions (Vigliocco et al. 2013). The argument is that emotional experience should be 
considered a primary source of the embodied information that supports the development 
of abstract thinking and reasoning. Indeed, it forms a continuum that goes from sensori-
motor experience that strongly characterizes concrete word repre sen ta tions to emotional 
experiences that dominate repre sen ta tions of abstract words (Moffat et al. 2015; Siakaluk, 
Knol, and Pexman 2014). Statistically, abstract words tend to have a stronger intensity of 
valence (good/bad, pleasant/unpleasant) than concrete words, making emotions an effec-
tive intermediary for learning and grounding abstract concepts (Altarriba, Bauer, and 
Benvenuto 1999). In this proposal, introspective emotion states could help the grounding 
of abstract meanings in embodied experience. Indeed, a significant step in forming abstract 
thinking occurs when, around two years of age,  children start to learn words to express 
their emotions, mapping nonconcrete language to their felt experience for the first time. 
Kousta et al. (2011, 26) argued that “emotion may provide a bootstrapping mechanism for 
the acquisition of abstract words”  because this pro cess of learning labels for internal 
emotion states supports  children in comprehending that words can identify entities that do 
not have an external, perceptual substantiation. Analyzing ratings of acquisition for abstract 
words by age, Kousta et al. (2011) showed that abstract words with a higher intensity of 
valence (e.g., “joy,” “grief”)  were acquired  earlier than neutral abstract words (e.g., “fashion,” 
“space”). Since emotional development continues throughout childhood, it seems likely that 
early grounding in emotion may be more about valence than about more complex emotions, 
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which develop  later. However, the mechanism for the  later acquisition of neutral abstract 
words is not fully explained by this proposal. Perhaps this might be facilitated through expe-
riencing their use in the context of other words.

One of the current trends in the recent lit er a ture on abstract concepts focuses on the 
identification of the dif fer ent domains and their corresponding brain repre sen ta tions (Borghi 
et al. 2017). In this re spect, Desai, Reilly, and van Dam (2018) conducted a meta- analysis 
of the neural basis of four types of abstract concepts (numerical and emotional concepts 
and two higher- order abstract pro cesses, morality judgments and theory of mind). Desai 
et al.’s (2018) analy sis showed that the repre sen ta tion of abstract concepts is more wide-
spread than is often assumed. Importantly, repre sen ta tions of dif fer ent types of abstract 
concepts differ in impor tant aspects, with each of the domains examined being associated 
with some unique areas of the brain. They found significant overlaps in the activation of 
morality and theory of mind concepts, which are likely pro cessed when referring to social 
and episodic memories or to emotions and imagery. However, recent evidence suggests that 
defining concepts in terms of sole concreteness/abstractness is a simplification. Borghi et al. 
(2019) interviewed over three hundred adults and identified four domains of abstract concepts: 
philosophical- spiritual (e.g., sanctity), self- sociality (e.g., courtesy), emotive/inner states (e.g., 
anger), and physical, spatial, temporal, and quantitative (e.g., numbers).

Among the abstract domains, number concepts received special attention  because of the 
strong relationship between the  human mind and numerical cognition, which has made 
the latter a subject of research in the vari ous disciplines that study the  human mind and 
its development (Di Nuovo and Jay 2019). Their special role was confirmed by develop-
mental, cross- cultural, and neuroscientific evidence that converges in the conclusion that 
number concepts occupy a range of positions on the continuum between abstract and 
concrete conceptual knowledge (Fischer and Shaki 2018). This includes the strong con-
nection between spatial and mathematical domains (Young, Levine, and Mix 2018). There-
fore, the study of numerical cognition can be a way to explore neuronal mechanisms of 
high- level brain functions (Nieder 2016). In fact, the observation of numerical practice within 
a situation can provide a provisional basis for pursuing the explanation of cognition as a 
nexus of relations between the mind at work and the world in which it works.

Number cognition is one of the skills that can be extended through embodied experi-
ences from a rather  limited set of inborn skills to an ever- growing network of abstract 
domains (Lakoff and Nuñez 2000). The early numerical practice is usually accompanied 
by gestures that are considered a win dow onto  children’s number knowledge  because 
 children spontaneously use gestures to convey information that is not necessarily found 
in their speech (Goldin- Meadow 1999). Within the  human body, a special role is attributed 
to fin gers, including a significant influence on the development of our system of counting. 
For example, we likely use a base- ten system  because of the number of fin gers we have. 
Indeed, recent research on the embodiment of mathe matics has evidenced fin gers as natu-
ral tools that play a fundamental role, from developing number sense to becoming profi-
cient in basic arithmetic pro cessing (Soylu, Lester, and Newman 2018).

 These behavioral observations are confirmed by recent neuroimaging research in which 
empirical studies suggest  there is a neural link or even a common substrate for the repre-
sen ta tion of numbers and fin gers in the brain (for a review, see Peters and De Smedt 2018). 
Neuroimaging data show neural correlates of fin ger and number repre sen ta tions located 
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in neighboring or even overlapping cortex areas, suggesting that fin gers may have a role 
in setting up the biological neural networks for more advanced (i.e., abstract) mathematical 
computations (Moeller et al. 2011). Importantly, several studies (e.g., Sato et al. 2007; 
Tschentscher et al. 2012) empirically showed the existence of a permanent neural link 
between the fin ger configurations and their cardinal number meaning in adults.

Emotions play a very impor tant role in many aspects of our lives, including decision- 
making, perception, learning, and be hav ior, and emotional skills are an impor tant compo-
nent of  human intelligence. The research on emotion concepts is intrinsically tied to the 
more general and controversial debate about the nature of emotion itself (Adolphs 2016). 
However, direct links between the body and the emotions have been long established. 
James (1894) provided the canonical example of such a link: “We know that we ‘fear’ a 
bear by perceiving changes in our own bodily state.”  There is neuroscientific evidence that 
emotion changes the operating characteristics of cognition and action se lection (Pessoa 
et al. 2019) and that  there is, in fact, emotional activation before, during, or shortly  after 
learning enhances memory (McGaugh 2018) and alters judgment (Gasper and Danube 
2016). Given the importance of the body and its neural repre sen ta tion in emotion, it is 
perhaps unsurprising that the domain of emotion concepts has long been highlighted as a 
natu ral application for theories of embodied cognition. Indeed, almost all emotion theories 
consider that emotions are embodied via somatosensory, interoceptive, or motor informa-
tion (Niedenthal and Ric 2017). Importantly, modern theories not only focus on embodi-
ment but propose that emotions involve a cascade of events, with somatosensory and motor 
resources recruited at multiple time points in the perception, understanding, experience, 
and production of emotions (Winkielman, Coulson, and Niedenthal 2018).

22.3 Cognitive Robotics Models of Abstract Words

The design of cognitive robots that are capable of learning new words and concepts typi-
cally adopts an embodied and grounded approach. Chapter 20 introduced the “direct- 
grounding” approaches for developing language models in robots and presented applications 
of this strategy to learning more concrete words— that is, when the robot learns the names 
of objects it can perceive or words for actions it is performing or observing. For instance, 
robots can simulate the early stages of language development via the interaction of infants 
with caregivers (for a review, see Asada [2016]). Interestingly, Kawai et al. (2020) proposed 
a hidden Markov model to explain the development of syntactic categories that fit the 
developmental psychological experiments at dif fer ent ages and for dif fer ent languages.

The abstract/concrete continuum view of concepts suggests that the learning of higher- 
order, more abstract words may be obtained by extending the strategies and models for the 
grounding of concrete words. However, in the scientific lit er a ture only very few examples 
explore such an extension.

Recently, Cangelosi and Stramandinoli (2018) offered a review of two main strategies for 
grounding concepts without the sensorimotor experience of direct physical referents. In the 
“grounding- transfer” strategy (Cangelosi and Riga 2006), new concepts and words are 
learned by the robot in successive stages, via combining words whose meanings have been 
previously acquired through direct grounding. For example, a robot can learn the word 
“mermaid” if instructed to merge the previously acquired grounded meanings of “ woman” 
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and “fish” and then transfer the result to the new word without ever seeing such a fantastic 
animal. In the alternative strategy, the robot learns abstract concepts by associating words 
to gestures and actions— for example, the use of fin ger counting to teach a child (or a robot) 
to count. In this section, we review some examples of the first strategy, while the second 
strategy is discussed in the next section, which pre sents cognitive robotics models of number 
cognition.

Recurrent neural networks (RNNs) are particularly suitable structures for modeling 
abstract concept learning since the recurrent connections allow the network to  handle the 
sequence of progressive abstraction. Two main types of RNN  were proposed: the Elman 
type, with a recursion on the hidden layer (Elman 1990), and the Jordan type, with a recur-
sion from the output to the input (Jordan 1986).

From the “grounding transfer” view, Stramandinoli, Marocco, and Cangelosi (2012, 2017) 
investigated the prob lem of grounding intermediate abstract concepts— that is, higher- 
order actions that can be obtained by combining concrete motor concepts. Stramandinoli, 
Marocco, and Cangelosi (2012) performed experiments on a cognitive model for the 
humanoid robot iCub based on an RNN of the Elman- type, which permit the learning of 
higher- order concepts based on temporal sequences of action primitives and word sen-
tences. The training of the model is incremental. The mechanism includes two stages: 1) the 
basic- grounding (BG) and 2) higher- grounding (HG) transfer mechanisms. During the 
BG, the robot learns a set of action primitives (e.g., “PUSH,” “GRASP” or “PULL,” 
“NEUTRAL”) using embodied and situated strategies. Two dif fer ent stages  were imple-
mented for the HG training to enable dif fer ent levels of the combination between basic 
and complex actions. In the first HG stage (i.e., HG-1), a sequence of previously learned 
words (e.g., “RECEIVE [is] PUSH [and] GRASP [and] PULL”) are provided to guide the 
hierarchical organ ization of the basic concepts directly grounded in sensorimotor experi-
ence (e.g., “PUSH,” “GRASP,” or “PULL”) in order to learn novel concepts (e.g., “GIVE”). 
Subsequently, the network receives as input the higher- order word “receive” and targets 
the outputs previously stored. During the second HG stage (i.e., HG-2), the robot learns 
three new higher- order words (“accept,” “reject,” “keep”) consisting of a combination of 
basic action primitives and higher- order words acquired during the previous HG-1 stage 
(e.g., “KEEP [is] PICK [and] NEUTRAL”). HG-2 adds a further hierarchical combination 
of words from both concrete concepts (BG) and the first level of abstraction words (HG-1). 
This training methodology is extremely flexible and permits designers to freely add novel 
words to the known vocabulary of the robot or to completely rearrange the word- meaning 
associations.

In follow-up work, Stramandinoli, Marocco, and Cangelosi (2017) proposed a partial 
RNN (Jordan- type) for learning the relationships between motor primitives and objects and 
performed experiments on the iCub robot for investigating the grounding of more abstract 
action words, such as “use” or “make.” Abstract action words represent a class of terms 
distant from the immediate perception that describe actions with a general meaning and that 
can refer to several events and situations. Therefore, they cannot be directly linked to sen-
sorimotor experience through a one- to- one mapping with their physical referents in the 
world. The grounding of abstract action words is achieved through the integration of the 
linguistic, perceptual, and motor input modalities, recorded from the iCub sensors, in a three- 
layer RNN model (figure 22.1). The iCub robot first develops some basic perceptual and 
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motor skills, such as “PUSH,” “PULL,” and “LIFT,” necessary for initiating the physical 
interaction with the environment, and then it can use such knowledge to ground language. 
The training of the model is incremental and consists of three stages:

1. Prelinguistic— the robot is trained to recognize a set of objects (e.g., “KNIFE,” 
“HAMMER,” “BRUSH,” and so on) and learn object- related action primitives (e.g., “CUT,” 
“HIT,” “PAINT,” and so on) by combining low- level motor primitives. For example, the 
action primitive “cut” is built by iterating the “push- pull” sequence several times.

2. Linguistic- perceptual training— this is the first stage of language acquisition. The 
model is trained to associate labels with the corresponding object and actions (two- word 
sentences consisting of a verb followed by a noun— e.g., “CUT [with] KNIFE”).  These 
words are directly grounded in perception and motor experience.

3. Linguistic abstract training— abstract action words (e.g., “USE, “MAKE”) are grounded 
by combining and recalling the perceptual and motor knowledge previously linked to basic 
words (i.e., the previous linguistic- perceptual training). To derive the meaning of abstract 
action words, the robot, guided by linguistic instructions (e.g., “USE a KNIFE”), organizes 
the knowledge directly grounded in perception and motor knowledge. This phase of training 
represents the abstract stage of language acquisition when new concepts are formed by 
combining the meaning of terms acquired during the previous stages of training.

Novel lexical terms can be continually acquired throughout the robot’s development via 
new sensorimotor interactions with the environment that correspond to new linguistic 
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The partially recurrent neural network model for language abstraction.
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descriptions. At the end of the training, the robot was able to perform the be hav ior trig-
gered by the linguistic description and the perceived object. The presence of clusters in 
the hidden units of the model suggested the formation of concepts from the multimodal 
data received as input by the network.

22.4 Cognitive Robotics Models of Numerical Concepts: Development  
and Repre sen ta tion

To explore embodied abstract cognition, cognitive robotics allows building embodied 
calculators that can merge abstract and concrete interpretations of numbers. This section 
concisely reviews some of the major computational models that  were created to simulate 
the development of numerical cognition in artificial cognitive systems and robots. A more 
detailed review of the topic can be found in Di Nuovo and (Jay 2019).

In pure computational modeling, one of the milestones is the work of Ahmad, Casey, and 
Bale (2002), who introduced a very complex multinetwork modular system following a 
mixture- of- experts approach. A peculiar aspect of the counting subsystem was a module for 
“pointing” to the next object to count “like a fin ger,” which was one of the first times that 
embodiment was included, even if its implications  were not explic itly studied. The proposed 
architecture included two subsystems for subitizing and counting, which  were realized by 
interconnecting several constituent modules, including connectionist networks that  were 
trained in de pen dently. The main constituent architectures included, other than the multilayer 
feedforward neural network, recurrent connections of both Elman and Jordan types in the 
counting subsystem, and two self- organizing map (Kohonen 2001) architectures in the subi-
tizing subsystem. The construction of this system also followed the assumption that subitiz-
ing is an innate capability, while counting should be learned via examples. This model has 
shown good adherence to the  children’s data but also some inconsistency. For example, the 
simulation has a higher frequency of counting no objects compared to when  children, who 
rarely make this error, count.

Chen and Verguts (2010) studied the interaction between the repre sen ta tions of number 
and space, presenting a bioinspired connectionist model that exhibited the SNARC effect in 
the parity judgment and number comparison tasks. The model was able to simulate not only 
the SNARC effect but also several other experimental data effects, including the spatial 
attention bias known as the Posner- SNARC effect and,  after lesion, the spatial dysfunction 
found in patients with left- hemisphere damage. However, the “space repre sen ta tion” was 
hand- wired in such a way that it exhibited properties suggested by neuroscientific data.

The first attempt to use robots to explore embodied aspects of the interactions between 
numbers and space, made by Ruciński (2014), reproduced three psychological phenomena 
connected with number pro cessing: size and distance effect, the SNARC effect, and the 
Posner- SNARC effect. The architecture was split into two neural pathways: “ventral,” 
which elaborates on the identity of objects and makes decisions according to the task and 
pro cesses the language, and “dorsal,” which pro cesses the spatial information— that is, 
locations and shapes of objects and sensorimotor transformations that provide direct 
support for visually guided motor actions. The results show that the embodied approach 
generated a more biologically plausible model by replacing arbitrary parts of the Chen 
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and Verguts model with ele ments that have direct physical connection and, therefore, more 
realistic interpretation.

In another experiment, Ruciński (2014) presented a new cognitive developmental robotics 
model to simulate aspects of the  earlier work on gesture in counting by Alibali and DiRusso 
(1999), and indeed experimental results showed that pointing gestures significantly improved 
the counting accuracy of the humanoid robot iCub. The architecture was a recurrent neural 
network of the Elman type, with two input layers: one for the items to count— that is, a 
binary vector— and another for the proprioceptive information— that is, the arm and hand 
encoder values. The model was trained via backpropagation through time. Statistical analy sis 
of the results showed adherence to the experimental data of Alibali and DiRusso.

Recently, Di Nuovo et al. conducted several experiments (De La Cruz et al. 2014; Di 
Nuovo, De La Cruz, and Cangelosi 2014; Di Nuovo et al. 2014) with the iCub humanoid 
robot to explore  whether the association of fin ger counting with number words and/or 
visual digits could serve to bootstrap numerical cognition in a cognitive robot. The models 
(e.g., figure 22.2)  were based on three RNNs of the Elman type, which  were trained sepa-
rately and then merged to learn the classification of the three inputs: fin ger counting 
(motor), digit recognition (visual), and number words (auditory)— that is, the triple- code 
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Figure 22.2
A schematic repre sen ta tion of the deep architecture for number cognition showing an integration of the models 
proposed by the several investigations of Di Nuovo et al. (2014).
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model (Dehaene 1992). Also, the model mimics the two- hemisphere organ ization of the 
brain. Results of the vari ous robotic experiments show that learning fin ger sequencing 
together with number word sequences speeds up the building of the neural network’s 
internal links, resulting in a qualitatively better understanding (higher likelihood of the 
correct classification) of the real number repre sen ta tions.

Optimal cluster analy sis (figure 22.3) showed that the internal repre sen ta tions of the 
fin ger configurations form the ideal basis for the building of an embodied number repre-
sen ta tion in the robot. Furthermore, it has been shown that such a cognitive developmental 
robotic model can subsequently sustain the robot’s learning of the basic arithmetic opera-
tion of addition. However, this operation was implemented with an additional handcrafted 
layer just to show the pos si ble further abstraction offered by the model.

Further investigation increased the biological adherence of the models and demonstrated 
the potential benefits, in terms of learning efficacy and efficiency, when used with deep- 
learning approaches, which are inspired by the complex layered organ ization and functioning 
of the ce re bral cortex (Bengio 2009). Di Nuovo, De La Cruz, and Cangelosi (2015) created 
a model (e.g., figure 22.3) with an improved setup of the network weights employing restricted 
Boltzmann machines (RBMs) and the contrastive divergence- learning algorithm.

Follow-up studies (Di Nuovo 2017, 2018) focused on extending the simulation by 
incorporating the neural link observed between visual and motor areas in neuroscientific 
studies. Particularly, Di Nuovo (2018) investigated the long short- term memory architec-
ture (Graves 2012) for learning to perform addition with the support of the robot’s fin ger 
counting. Interestingly, the model showed similarities with studies with  humans ( children 
and adults) by performing an unusual number of split- five errors, which can be linked to 
the five fin ger repre sen ta tions (Domahs, Krinzinger, and Willmes 2008).

Di Nuovo and McClelland (2019) investigated the perceptual pro cess of recognizing 
spoken digits in deep convolutional neural networks embodied in the iCub robot. Simula-
tion results showed that the robot’s fin gers boost the per for mance by setting up the network 
and augmenting the training examples when  these  were numerically  limited. This is a 
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common scenario in robotics, where robots  will likely learn from a small amount of data. 
The embodied repre sen ta tion (fin ger encoder values) was compared to other repre sen ta-
tions, showing that fin gers can represent the real counterpart of that artificial repre sen ta tion 
and can maximize learning per for mance. The results are associated with some be hav ior 
observed in several  human studies in developmental psy chol ogy and neuroimaging. Overall, 
the hand- based repre sen ta tion provided our artificial system with information about mag-
nitude repre sen ta tions that improved the creation of a more uniform number line, as seen 
in  children (Gunderson, Spaepen, and Levine 2015). Importantly, this is the first time that 
a cognitive developmental robotics model has demonstrated effectiveness when compared 
against the standard approach for a benchmark machine- learning prob lem— that is, the 
Google Tensorflow Speech Recognition data set.

22.5 Cognitive Robotics Models of Emotions

The idea that robots may have emotions has captured the imagination of many researchers 
in the field of artificial intelligence, who have identified the crucial importance of emotions 
in the design of more intelligent and sociable robots (e.g., Breazeal 2004b; Fellous and 
Arbib 2005; Ziemke and Lowe 2009). The behavior- based robotic (BBR) has been a 
common approach for emotion- aware robots, which can use emotions as internal variables, 
which drive their external actions, mostly by correcting their operations according to the 
signals gained from their sensors (Arkin 2005). BBR ideas stimulated the design of robots 
capable of expressing emotional cues, such as the Kismet, Mexi, iCub, and Emys (Breazeal 
2004a; Parmiggiani et al. 2012; Esau et al. 2003; Kędzierski et al. 2013). However, the 
mechanical expression of physical cues is just a preliminary step for the successful modeling 
of emotions; thus, emotionally capable cognitive architectures are necessary for enhancing 
the implementation of believable, autonomous, adaptive, and context- aware artificial agents 
(Hudlicka 2011).

Despite the theoretical agreement that the next generation of cognitive architectures 
must integrate emotion and cognition to define realistic models of human- machine interac-
tion, in practice the computational modeling of emotion has been often underrated in 
cognitive architecture research. Models account for emotion as well as some other aspects 
of cognition, but usually, they are not aiming to be comprehensive architectures (see 
Rodríguez and Ramos 2015).

The computational modeling of emotion is frequently associated  later with the addition 
of an emotion module that can influence some of the components of the general cognitive 
architecture (see Reisenzein et al. 2013). A notable example is SOAR (Laird 2012), which 
was not designed to model emotions; nevertheless, two dif fer ent computational emotion 
models have been built upon SOAR: EMA (Marsella and Gratch 2009) and PEACTIDM 
(Marinier, Laird, and Lewis 2009).  These two models represent the two principal alterna-
tive paths available to model emotions in cognitive architectures, and they also illustrate 
how theoretical assumptions in psy chol ogy can influence modeling choices. A general 
cognitive architecture designed to include emotions as flexible motivators for action is 
LIDA (Franklin et al. 2014), but this has only been considered at a conceptual level since 
modeling of emotions has not been implemented yet.
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Pessoa (2017) identified two main categories of applications for emotion models in 
robotics: 1) to provide robots urgency to take action and make decisions, 2) to aid under-
standing of emotion in  humans or to generate humanlike expressions. For the first category, 
significant applications of emotion- enabled general cognitive architectures have not yet 
been created for use with robots, even if general cognitive architectures have been used 
to control complex robots— for example, SOAR in the REEM robot (Puigbo et al. 2015). 
For the second category, it should be noted that many contributions in the robotics lit er a-
ture are loosely connected with the neuropsychological aspects of emotions, and the  great 
majority fall  under the category of pure machine- learning exercises, such as computer 
vision for facial expression recognition. Discussion and examples of recent contributions 
to modeling emotions in robotics can be found in the first volume of the book by Esposito 
and Jain (2016).

An example of the first category can be found in eMODUL, a perceptual system of 
emotion- cognition interaction specifically designed for robotics by Belkaid, Cuperlier, and 
Gaussier (2019). The eMODUL system is situated in its physical and social environment, 
and its components constantly appraise events from the body and the world, with a par tic u lar 
interest in emotionally relevant stimuli that affect other computational/cognitive pro cesses 
(e.g., allocation of resources, organ ization of be hav ior). The system continuously pro cesses 
emotionally modulated signals and reintegrates them into the information pro cessing flow 
for higher- order pro cessing. Valence extraction consists of the evaluation (appraisal) of the 
emotional values of complex repre sen ta tions. Therefore, the system sensations and actions 
are no longer neutral and objective but rather emotionally colored. For example, when occur-
ring on the sensation space, emotional modulation affects perception and memory. When 
occurring on the action space, it can modulate action se lection and motor expression. In 
terms of the system autonomy,  these two types of modulations, respectively, have an impact 
on the allocation of cognitive/computational resources and the organ ization of appropriate 
be hav ior with regard to the system’s survival, well- being, and task/goal demands. The authors 
provide two experimental examples of the application of the eMODUL system with artificial 
neural networks, in which emotional modulation consists of increasing or decreasing the 
synaptic efficacy of targeted populations of the neurons involved in  these pro cesses. The 
first experiment is in the context of a survival prob lem, in which a hunger modulation makes 
the robots more determined to access the resources and feed. The second is a visual search 
task designed similarly to the common experimental paradigm in psy chol ogy, in which the 
emotional (frustration or boredom) modulation of attention increases the robot’s per for mance 
and fosters exploratory be hav ior to avoid deadlocks.

As an example of the second category, Prescott et al. (2019) included emotional signals 
in a neuroscience- inspired multimodal computational architecture for the autobiographical 
memory system, named the  mental time travel model, to control the iCub robot. The model 
allows for retrieving past events, including their emotional associations, and projecting 
them into an  imagined  future by using the same system. This architecture proves useful 
for the social capabilities of robots by enabling face, voice (including emotion), action, 
and touch gesture recognition through interaction with  humans. Using this system for 
imagining  future events should allow for simulating and visualizing actions as well as 
planning actions before  actual execution. This work is still at an early stage; however, 
experiments show that deploying emotionally mediated memory models into a brain- inspired 
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control architecture for the iCub robot has enhanced the robot’s capability for recognizing 
social actors and actions.

22.6 Open Issues in Abstract Cognition and Robotics Research

In the interdisciplinary lit er a ture, most contributions recognize that to fully account for 
the repre sen ta tion of abstract concepts an extension beyond a purely grounded approach 
is needed. Pecher and Zeelenberg (2018) raised doubts on  whether sensorimotor grounding 
alone can fully explain abstract concepts  because recent evidence indicates that even 
concrete concepts are not always grounded in sensorimotor pro cesses.

Another open issue has been highlighted by (Pexman 2019), who noted that so far none 
of the proposals for grounding abstract meaning have yet been tested in child studies. It 
 will be impor tant to investigate  whether  children’s early abstract concepts are grounded 
through meta phor, language cooccurrence, and emotion. To this end, developmental robot-
ics modeling can provide a power ful tool to collect preliminary information to evaluate 
or compare existing theories and to make novel experimental predictions that can be tested 
on  humans (see chapter 3 for details). In par tic u lar, they could provide computational 
evidence in the debate on language development between “nativists” and “empiricists” 
(see chapter 20, section 1.1) by modeling the alternate theories and analyzing the resulting 
robot be hav ior in comparison to  children’s be hav ior.

To this end, computational models have the advantage of being fully specified in any 
implementation aspect, which makes them easily reproducible and verifiable, and they can 
produce detailed simulations of  human per for mance in vari ous situations and, for example, 
be used in experiments with any combination of stimuli. Furthermore, models can be 
lesioned (e.g., links between neurons can be cut) to simulate cognitive dysfunctions, and 
per for mance can be compared to the be hav ior of patients to gain information and insights 
into diagnosis and treatment that might be difficult to discover other wise.

However, the cognitive robotics models proposed so far have been relatively naive 
 because they focused on simulating only a par tic u lar aspect, verified with dummy tasks 
in simplified scenarios, and provided  little evidence of their generalization ability in alter-
native, realistic settings. They considered only the concepts (e.g., meta phorical concepts 
such as “to grasp an idea”) that have been empirically investigated in  humans and found 
to be grounded in action and perception systems. Thus, we have yet to see if we might be 
able to extend  these conclusions to other kinds of abstract concepts such as “politics” or 
“metaphysics.” This is also the case with emotion modeling, which has predominantly 
been studied in terms of replicating  human social be hav ior, while very  little has been done 
to improve robots’ abstract thinking. Significant improvement in the complexity of the 
models and, moreover, the test scenarios is needed before cognitive robotics modeling can 
be considered a reliable tool in education, neuroscience, and psy chol ogy research.

The reason for this lack of real ity can be attributed not only to the limitations of current 
robotic platforms but also to the unavailability of raw data from  children’s experiments. 
Indeed,  there are no open “benchmark” databases for cognitive robotics, unlike the typical 
open data be hav ior in machine learning. Robotic modelers can use only postpro cessed 
data and statistical analyses for designing and validating models.
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22.7 Conclusion

All  these studies provided valuable information about the simulation of artificial learning 
and demonstrated the value of the cognitive robotics approach for studying aspects of abstract 
cognition.  These findings reveal a novel way to achieve the humanization of artificial learn-
ing strategies, in which embodiment can make the robot’s training more efficient and under-
standable for  humans.

Further multidisciplinary research is required to gather data from  children and get a 
better understanding of the under lying pro cesses and strategies of abstract thinking and 
reasoning. It seems likely that  there are developmental differences in the acquisition of 
the dif fer ent types of concepts; therefore, hybrid models that combine sensorimotor experi-
ence and language appear to be  viable options that should be investigated. In this re spect, 
cognitive robotics can contribute to the theoretical development of abstract concepts 
acquisition and use in  humans— that is, by providing a simulated environment for testing 
hypotheses— and benefit from the resulting discoveries to create innovative models of 
humanlike learning and social interaction.

To advance knowledge in this interdisciplinary field, we remark that closer collaboration 
among researchers in the multiple disciplines involved is necessary to share expertise and 
codesign studies. Importantly, we envision the need for real ad hoc joint experiments and 
for artificial simulations to obtain well- matched data comparing robots’ and  children’s 
tasks. Furthermore, the availability of open databases  will  favor the engagement of the 
machine- learning community, as has occurred in other applied fields, such as computer 
vision, speech recognition, and DNA sequencing.

Additional Reading and Resources

•  Book exploring the ways in which embodied and grounded cognition theories can be 
expanded into abstract words: Borghi, Anna, and Ferdinand Binkofski. 2014. Words as 
Social Tools: An Embodied View on Abstract Concepts. New York: Springer.
•  This book pre sents a collection of studies that relate to vari ous theoretical frameworks 
for abstract concepts, from neuroimaging to computational modeling and from behavioral 
experiments to corpus analyses: Bolognesi, Marianna, and Gerard Steen, eds. 2019.  Human 
Cognitive Pro cessing, Vol. 65: Perspectives on Abstract Concepts: Cognition, Language 
and Communication. Amsterdam: John Benjamins.
•  Special issue with a collection of experimental and modeling papers on abstract con-
cepts: Borghi, Anna M., Laura Barca, Ferdinand Binkofski, and Luca Tummolini. 2018. 
“Va ri e ties of Abstract Concepts: Development, Use and Repre sen ta tion in the Brain.” 
Philosophical Transactions of the Royal Society B 373 (1752): 20170121.
•  Pearl, Lisa S., and Jon Sprouse. 2015. “Computational Modeling for Language Acquisi-
tion: A Tutorial with Syntactic Islands.” Journal of Speech, Language, and Hearing Research 
58 (3): 740–753.
•  Source code and data for Di Nuovo and McClelland (2019): “Developing the Knowledge 
of Number Digits in a Child- Like Robot.” Nature Machine Intelligence 1 (12): 594–605. 
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http:// doi . org / 10 . 17032 / shu - 180017 .  Number Understanding Modelling in Behavioral 
Embodied Robotic Systems (NUMBERS): http:// doi . org / 10 . 17032 / shu - 180017.
•  Data set on concrete/abstract decision data for ten thousand En glish words in Pexman, 
P. M., et al. 2017. “The Calgary Semantic Decision Proj ect: Concrete/Abstract Decision 
Data For 10,000 En glish Words.” Be hav ior Research Methods 49:407–417. https:// doi . org 
/ 10 . 3758 / s13428 - 016 - 0720 - 6.
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23.1 Introduction

Building a conscious robot is an enormous scientific and technological challenge. Debates 
about the possibility of sentient robots and the positive outcomes and risks for  human 
beings are no longer confined to philosophical circles. Consciousness is part of the physi-
cal world, and therefore its aspects can be studied and even replicated by robot systems.

 There is no accepted definition of consciousness so far. Searle (2000) claimed that 
“consciousness consists of inner, qualitative, subjective states and pro cesses of sentience 
or awareness. Consciousness, so defined, begins when we wake in the morning from a 
dreamless sleep and continues  until we fall asleep again, die, go into a coma, or other wise 
become ‘unconscious’ ” (559). Vimal (2009) overviewed several meanings of the word 
employed in scientific works related to the study of consciousness.

Although  there are contrasting philosophical positions concerning consciousness (see, 
e.g., Blackmore and Troscianko [2018] for an up- to- date review), it is useful to point out 
the broad distinction of consciousness as experience versus consciousness as function. For 
experience, a subject is conscious when they feel visual experiences, bodily sensations, 
 mental images, and emotions (Chal mers 1995). As Nagel (1974) pointed out, a subject has 
a conscious experience if  there is something that is like to be that subject.

For function, a conscious subject can integrate information (Tononi 2008); they pro cess 
information that is globally available (Dehaene et al. 2017); they are introspectively aware 
of themselves (Floridi 2005). Moreover, they possess an inner model of themselves and of 
the external environment (Holland 2003b). They can anticipate perceptual and behavioral 
activities (Hesslow 2002). They generate inner speech (Morin 2005) and act by sensorimotor 
interactions with the external world (O’Regan and Noë 2001), among other capabilities.

In brief, the multidisciplinary effort of robot and machine consciousness is aimed at inves-
tigating consciousness in the light of robotics and artificial systems, psy chol ogy, philosophy 
of mind, ethics, and neuroscience. The broad scopes of robot and machine consciousness are:

•  to build robots that show forms of functional consciousness by taking inspiration from 
biological consciousness;
•  to build robots based on theoretical issues of consciousness;

23 Robots and Machine Consciousness
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•  to employ robots as tools to model and to understand biological aspects of 
consciousness;
•  to study procedures aimed at mea sur ing consciousness in robots;
•  to discuss ethical prob lems emerging through the overlap of robotics and consciousness.

23.2 A Brief History of Robot Consciousness

To the best of the author’s knowledge, the first occurrence of the word “artificial conscious-
ness” is found in the book Cybernetic Machines by T. N. Nemes, published in Hungary in 
1962. The book was translated into En glish in 1970. Nemes, in this early attempt, considered 
artificial consciousness as the capability of a robot to discriminate between self and  others. 
The author proposed a conceptual sketch of a cir cuit able to distinguish between propriocep-
tive inputs that generate sentences as “I go” from shape recognition and motion perception 
cir cuits that pro cess data from external inputs able to create sentences as “Peter goes.”

The modern scientific framework of artificial and robot consciousness has been primarily 
introduced by Igor Aleksander (1992, 2015). At the ICANN 1992 Conference in Brighton, 
Aleksander presented a paper on capturing consciousness in neural systems, where he pro-
posed the postulates defining a conscious organism that may be applied to a biological organ-
ism or an artifact. Notably, during the invited talk, Aleksander announced that the “hunting 
season of artificial consciousness is open.”

Another influential early model for machine consciousness is due to Schmidhuber 
(1992). He discussed machine consciousness by presenting an unsupervised neural network 
able to discover and learn unexpected events.

The symposium on “Can a Machine Be Conscious,” or ga nized by the Swartz Founda-
tion in 2001, was another milestone for robot consciousness. The concluding remarks of 
Christof Koch, valid still  today, stated that “we know of no fundamental law or princi ple 
operating in this universe that forbids the existence of subjective feelings in artifacts 
designed or evolved by  humans.”1

Since 2001, many conferences, workshops, and special issues of journals have been devoted 
to the field of robot consciousness. Early works are described in the collections edited by 
Holland (2003a), Clowes et al. (2007), and Chella and Manzotti (2007b). In 2007, the Associa-
tion for the Advancement of Artificial Intelligence (AAAI) or ga nized a fall symposium on “AI 
and Consciousness,” with the proceedings edited by Chella and Manzotti (2007a).

Reggia (2013) provided quite an up- to- date review of the field. A collection of recent 
research papers concerning consciousness in humanoid robots was edited by Chella et al. 
(2019).

During the summer of 2017, SRI International or ga nized a series of workshops on technol-
ogy and consciousness. The workshops provided a general view of machine consciousness; 
the outcomes are summarized in a technical report edited by Rushby and Sanchez (2018).

A continuous source of information is the Journal of Artificial Intelligence and Con-
sciousness (JAIC), formerly known as the International Journal of Machine Conscious-
ness and edited by World Scientific Press.
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23.3 Robot Consciousness and Neuroscience

Consciousness is an impor tant research topic in neuroscience (Rees et al. 2002; Tononi 
and Koch 2008; Koch et al. 2016). Many neuroscientists working on consciousness have 
built computational models to test their theories.

The late Nobel Prize winner Gerald Edelman, a scholar of research on biological con-
sciousness, employed robots to validate parts of his theory. Reeke et al. (1990) discussed 
the Darwin series of automata (see chapter 1 for their influence in the history of cognitive 
robotics). They are computational systems that incorporate models of synaptic modifica-
tions, of the organ ization of neural cells in large assemblies, and of the integration of the 
actions of dif fer ent cortical layers to generate the be hav ior of a robot according to context 
and its history and without the need for preprogramming the robot. Darwin I is a  simple 
network able to recognize patterns, while Darwin II can categorize and generate associa-
tions. Darwin III is a sophisticated robot model working in a simulated environment and 
able to learn sensorimotor coordination, the capability of tracking objects, and the ability 
to reach and grasp objects and to categorize them by interacting with the environment.

Krichmar et al. (2005) discussed complex systems implemented on a real moving robot 
and based on computational simulations of parts of the ner vous system. Darwin VII can 
carry out perceptual categorization and conditioned responses in  simple foraging tasks, 
and Darwin VIII can solve the binding prob lem— that is, to bind the attributes of a per-
ceived scene to form suitable coherent categories, without the need of a control system. 
The robot be hav ior emerges from the interaction of dif fer ent cell assemblies without the 
need for preprogramming.

Stanislas Dehaene, a world- leading expert on biological consciousness, built several 
computational models of the neural correlates of consciousness (Dehaene et al. 2003; Zyl-
berberg et al. 2010). In more detail, Dehaene et al. (2003) describe a computational model 
based on two spaces. The first space is a global neural workspace made up of distributed 
neurons tightly interconnected with long- range axons. The second space is a set of special-
ized pro cessors related to perception, motion, memory, attention, and evaluation. Briefly, the 
role of the first space is to broadcast the information coming from the specialized pro cessors 
belonging to the second space. The global neural workspace is tightly related to the global 
workspace theory (see below).

Paul Verschure (2013) analyzed the core princi ples of conscious states and proposed a 
biologically inspired architecture for perception, cognition, and action (DAC, or distributed 
adaptive control) to implement the core princi ples. Verschure claimed that the shift of 
research from artificial intelligence to artificial consciousness would bring more advanced 
machines and address the critical prob lem of subjective experience in  humans and machines.

Recently, Dehaene et al. (2017) discussed the possibility of machine consciousness in 
the prestigious journal Science. They proposed a separation of two dif fer ent information- 
processing aspects related to consciousness. The first aspect is related to the se lection of 
information for global broadcasting. A second aspect is correlated to self- monitoring of  these 
computations. The article reviewed examples of computational models inspired to machine 
consciousness, and it concluded with the claim that “the empirical evidence is compatible 
with the possibility that consciousness arises from nothing more than specific computations” 
(Dehaene et al. 2017, 7).
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23.4 Theoretical Issues of Consciousness in  Humans and Robots

A common route of investigation in robot and machine consciousness is to find a minimal 
set of characteristics that should be verified in an artifact before asserting  whether the 
artifact is conscious or not.

Aleksander (1992), in the previously cited attempt, proposed five axioms that should 
be verified by a conscious organism. They are as follows: 1) an organism that does not 
learn cannot be conscious; 2) a conscious organism possesses an inner state able to rep-
resent the external world; 3) a conscious organism is able to pay attention to the contents 
of its internal state; 4) a conscious organism is able to generate inner states related to 
sequences of external inputs and to generate suitable actions; 5) the organism is able to 
predict external events by controlled developments of its inner state.

Aleksander and Dunmall (2003) extended this early attempt and proposed a new set of 
axioms for minimal consciousness in agents.  These axioms are the minimal mechanisms 
underpinning experience. It should be noted that  these authors are interested in finding a 
theoretical grounding for experiential consciousness in  humans and artifacts. The axioms 
are derived from the introspective analy sis of consciousness.

Let A be a generic agent in the world S. For A to be conscious of S:

•  A has perceptual states that represent parts of S, corresponding to the subjective feeling 
that the conscious subject A is a part of, but separate from, the world S;
•  A has internal states that recall ele ments of S or generate  imagined S- like sensations, 
corresponding to the subjective feeling that the perception of the world S is mixed with 
A’s past experiences;
•  A can pay attention to parts of S to represent or to imagine, corresponding to the reflec-
tive feeling that A’s experience of the world S is selective;
•  A can control  imagined state sequences to generate a plan of action, corresponding to 
the reflective feeling that A can think ahead of time to decide what to do;
•  A has affective states able to evaluate planned operations and determine the appropriate 
action, corresponding to the subjective feeling that A has emotions and moods that deter-
mine its course of activities.

Aleksander and Dunmall translated  these axioms in terms of mathematical constraints 
to be satisfied by a neural system to be considered as endowed with minimal conscious-
ness. Aleksander (2005) proposed a schema of a cognitive architecture derived from the 
axioms (figure 23.1).

Selmer Bringsjord (see, e.g., Bringsjord 2007) contrasted the possibility of experiences 
in robots and proposed the notion of cognitive consciousness defined in terms of formal 
axioms of deontic cognitive event calculus (DCEC*; Bringsjord et al. 2018). DCEC* is a 
logical framework based on multisorted, quantified modal logic. It considers operators for 
belief, intention, knowledge, obligation, and so on. The framework allows the repre sen ta-
tion of formulae for belief and obligation. It is a  family of logic in which the personal 
pronoun I* is based on provable theorems.

The framework provided by Bringsjord and colleagues considers the cognitive aspects 
of consciousness  because it represents the belief about oneself and is related to a first- 
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person repre sen ta tion of self- consciousness, but without considering bodily experiences. 
HyperSlate™ is a freely available implementation of the framework (see link in the list 
of additional resources).

Bringsjord et al. (2015) reported an impressive example of the framework by presenting 
an implementation on the NAO robot that passed the  human test of self- consciousness 
proposed by Floridi (2005).

Giulio Tononi proposed the information integration theory (IIT) of consciousness. IIT 
is  today the most debated scientific theory of consciousness, and many scholars actively 
contribute to the theory. Impor tant outcomes also follow for robot consciousness.

The original formulation (Tononi and Sporns 2003; Tononi 2004; Tononi 2008) starts 
from the observation that conscious experience is differentiated  because the potential 
repertoire of dif fer ent conscious states is enormous. At the same time, conscious experi-
ence is integrated, as  every conscious state is experienced as a single entity. Thus, the 
substrate of conscious experience must be an integrated entity able to differentiate among 
an enormous repertoire of dif fer ent states.

The capability of a system S to differentiate among states is related to how much 
information can be generated by the system, and it is mea sured by the entropy of the 
system H = −∑ pi log2 pi, where pi are the probabilities of the alternative outcomes of the 
system S.

The capability of a system S to integrate information can be mea sured through the 
effective information EI. Let us consider the system S subdivided into two partitions [A, B], 
and let us perturb A in order to reach the maximum entropy to outputs of A— that is, AHmax. 
Then, the effective information from A to B is given by EI (A → B) = MI (AHmax, B), where 
MI (A, B) = H (A) + H (B) − H (AB) is the mutual information that mea sures the information 
shared by the source A and the target B.

The effective information EI is a mea sure of how the subsystem B is connected with 
the subsystem A. Let us consider the system S1 in figure 23.2 (top), where  there are tight 
connections from A to B. Then, when A is highly perturbed, B  will produce many dif fer ent 
outputs, and EI (A → B)  will be a high value.

From world
and body

Perception
(Axs. 1,3)

Action
(Ax. 4)

Emotion
(Ax. 5)

To world

Awareness area

Memory
(Axs. 2,3,4)

Figure 23.1
The cognitive architecture proposed by Aleksander (2005) summarizing the consciousness axioms by Aleksander 
and Dunmall (2003).
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Instead, if  there are scarce or low connections between A and B, as in the case of system 
S2 in figure 23.2 (bottom), then the perturbation of A  will produce scarce effects on B, 
and thus EI (A → B)  will be a small or null value. The effective information is generally 
nonsymmetric, so, for a given partition, the effective information is the sum of the EI for 
both directions: EI (A ↔ B) = EI (A → B) + EI (B → A). It is to be noted that if  there is a 
partition [A, B] of the system S so that EI (A ↔ B) = 0, then S is made up by the two in de-
pen dent subsystems A and B.

To mea sure the capability of the system to integrate information, we need to find the 
minimum information bipartition MIB (S ) = [A, B]— that is, the partition [A, B] of the 
system S for which the normalized effective information leads a minimum. Φ (S ) mea sures 
the capability of the system S to integrate information, and it is the effective information 
given by the minimum information partition: Φ (S ) = EI (MIB (S )).

A subset of the system S with Φ > 0 is called a complex when it is not included within 
a more substantial subset of S with a higher value of Φ. The complex of the system S with 
the maximum amount of Φ (S ) is the main complex. Tononi (2004) claims that the main 
complex contributes to the conscious experience of S, and the mea sure Φ (S ) grades the 
consciousness of the system.

Therefore, a conscious complex is a complex with a high value of Φ (S ). The other parts 
of the systems do not contribute to the consciousness of the system. He supports his claim 
by analyzing dif fer ent neural network models of parts of the brain and by showing that the 
networks with high values of Φ (S ) are  those typically associated with consciousness.

S1

a b

S2

a b

Figure 23.2
A pictorial view of a system subdivided into connected partitions A and B. Top: The two partitions of S1 are 
tightly connected, and EI (A → B)  will be a high value. Bottom: The two partitions of S2 are barely connected, 
and EI (A → B)  will be a low value.
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Koch (2009) indicates some of the challenges of the IIT to be the unclear relationship 
of high values of Φ (S ) with intelligence, the need for efficient algorithms for computing 
Φ (S ) in real systems, and the need to clarify the relationships between conscious and 
unconscious pro cessing.

It is to be noted that the original Φ (S ) is a static mea sure of S; that is, it depends on the 
connections of the subparts of S and not on its dynamics. Balduzzi and Tononi (2008) gen-
eralize the IIT by considering the dynamics of the system. Several other extensions of IIT 
have been proposed in the lit er a ture; the most up- to- date version is in Oizumi et at. (2014). 
Tegmark (2016) investigates many variants of the original Φ (S ) mea sure to derive exact and 
approximated versions that are computationally feasible to apply to real- world data.

According to IIT, experience— for example, information integration—is a fundamental 
quantity of nature as the mass, the charge, and the energy. Any physical system may have 
experiences to the extent that it can integrate information. Therefore, it could be pos si ble 
in princi ple to build conscious artifacts by endowing them with a complex of high Φ (S ). 
However, Kock and Tononi (2017) suggest that conventional computer architectures are 
unable to perform an effective integration of information, and they are unable to experi-
ence anything. A robot based on a conventional computer may be a “zombie,” an entity 
similar to a conscious entity from its outside be hav ior but incapable of having real experi-
ence. Unconventional architectures, such as the neuromorphic systems, are more likely to 
perform the effective information integration pro cesses happening in the brain, and there-
fore, they are more likely to have experience.

According to the analy sis of Kock and Tononi (2008),  there are many unessential ingre-
dients for consciousness, in the sense that they have no roles in information integration. 
Sensory inputs and motor outputs, emotions, attention, explicit or working memory, self- 
reflection, and language are all capabilities that have no roles in consciousness or in robot 
consciousness.

Edlund et al. (2011) performed artificial life experiments to analyze the evolution of  simple 
agents aimed to solve a maze in a simulated environment. The authors found a clear correla-
tion between the mea sures of information integration and the mea sures of fitness of the agent, 
suggesting that information integration capabilities evolve and are related to the functional 
complexity of the agent.

23.5 Self- Consciousness in Robots and Machines

A significant topic of robot consciousness is to give a robot the capabilities of self- 
awareness— that is, to reflect about itself, its perceptions, and actions during its operating 
life. According to this approach, a computational model of the mind may be made up of 
a hierarchy of modules, where low- level modules are related to reactive input- outputs, and 
middle- level modules are related to deliberative planning and reasoning. The high- level 
modules are associated with self- monitor and self- reflection capabilities.

The first theoretically founded attempt to give self- reflection capabilities to an artificial 
reasoning system is described in the seminal paper of Weyhrauch (1980). Weyhrauch 
proposed the reasoning system FOL, able to perform inferences and based on a logic system 
and a simulation structure capable of analog repre sen ta tions. The system can exploit meta 
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repre sen ta tions and reflect about itself, its inferences, and its capabilities. Weyhrauch (1995) 
discusses the relationships between FOL and consciousness in artifacts. The original 
implementation of FOL is still available in LISP (see link in the list of additional resources).

An early attempt to model consciousness by considering dif fer ent levels of repre sen ta-
tion is in Johnson- Laird (1983). In the well- known book on  mental models, Johnson- Laird 
discusses consciousness as the “operating system” of the mind. Several unconscious dis-
tributed pro cesses run in the brain, and consciousness acts as the central control system 
of the mind, a sort of operating system. According to this view, the content of conscious-
ness is made up of the value par ameters of the central control system.

Minsky (2006) described a multiagent system based on several interacting agents at 
dif fer ent levels, in which the tasks of higher- level agents are self- reflection and self- 
consciousness (figure 23.3). In detail, Minsky proposed dif fer ent levels of agents, in which 
each level reflects on and critiques the levels beneath.

The first levels of the system are related to agents devoted to instinctive reflexes and learned 
reactions. The  middle level is relevant to deliberation— that is, to the prediction- planning 
capabilities of the system. The higher levels are related to reflection, self- reflection, and self- 
consciousness. In par tic u lar, the reflection level is related to the ability to criticize the delib-
erative techniques  adopted in the previous level; the self- reflection level is associated with 

Self-conscious thinking

Self-reflective thinking

Reflective thinking

Deliberative thinking

Learned reactions

Innate reactions

Figure 23.3
An outline of the multiagent system proposed by Minsky (2006).
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the ability to generate critiques of the deficiencies and the weaknesses in the knowledge and 
methods employed by the system.

The higher level of the system is related to self- consciousness— that is, the ability to 
reflect on what  others may think of the capabilities and per for mances of the system itself. 
A first attempt to implement the scheme proposed by Minsky in a simulated world was 
described by Singh and Minsky (2005).

Sloman and Chrisley (2003) followed a similar approach in the design of the H- CogAff 
architecture. H- CogAff is a framework architecture based on three primary levels related 
to reactive mechanisms, deliberative reasoning, and metamanagement— that is, reflective 
pro cesses. The proposed framework prescribes dif fer ent types of information, forms of 
repre sen ta tion, uses of data and types of mechanism for each level, and ways to put them 
together in the architecture. The SimAgent Toolkit is a freely available implementation in 
the Poplog framework.

McDermott (2001) made a distinction between normal access to the output of a compu-
tational module and introspective access to the same module. The first concerns the output 
related to the pro cessing algorithms of the module. The second is related to the higher- order 
access within the pro cessing of the module according to the self- model. He discussed the 
relationships between higher- order access and phenomenology in the line of higher- order 
theories of consciousness (see, e.g., Carruthers 1996).

McCarthy (1995) stressed the idea that a robot needs the ability to observe its  mental 
states. He proposed a logic formalism to deal with aspects of self- reflection that could 
make robots conscious of their  mental states. In detail, he presented the “ mental situation 
calculus,” an extension of the situation calculus formalism aimed at modeling introspective 
actions in robots.

According to the classic version of situation calculus (see, e.g., Reiter 2001), the evolution 
of a state of affairs in the world is modeled by a sequence of situations S0, S1, S2,  . . .  Sn. The 
world changes when an instantaneous action a is performed. A new situation Si is the result 
of the application of action a to the old situation Si – 1; then Si = Result (a, Si – 1 ). In the situ-
ation calculus formalism, the truth value of a proposition p depends on the considered 
situation. Then the formula Holds ( p, Si ) means that p is true in the situation Si.

Let us consider the situation Si where the robot knows the proposition p— for example, 
the color of the object A. The formula Holds (Know (Color (A)), Si ) formalizes the fact that 
the robot knows the color of A. The situation in which the robot infers by introspection 
that it does not know the color of A is formalized by the formula Holds (Know (Not (Know 
(Color (A)))), Si ). In this case, the robot knows that it does not know the color of A. Then, 
 because of this fact, the robot may start some actions to learn the color of A.

The  mental state of the robot may evolve  because of learning actions. Let us consider the 
previous  mental situation Si, in which the robot does not know the color of A. As an effect 
of teaching activities, the robot may learn the color of A. Then its  mental state evolves to a 
new situation: Si + 1 = Result (Learn (Color (A))), Si ). The robot is in a new  mental situation in 
which it now knows the color of A: Holds (Knows (Color (A)), Result (Learn (Color (A))), Si ). 
Forgetting actions may be modeled similarly.

The  mental situation calculus wants to capture the dynamics of self- reflection so that a 
robot may reason about its  mental states. As emerges from the previous examples, the 
propositions and actions are  mental, and the situations are the  mental states of the robot. 
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In summary, the  mental situation calculus is aimed at capturing the dynamic evolution of 
robot  mental states.

Chella et al. (2008) proposed a cognitive architecture for a robot with introspective 
capabilities, or ga nized in three computational areas. The subconceptual area is concerned 
with the low- level pro cessing of perceptual data coming from the sensors. In the lin-
guistic area, repre sen ta tion and pro cessing are based on a logic formalism. In the con-
ceptual area, the data coming from the subconceptual area are or ga nized in conceptual 
categories.

Robot self- consciousness is based on the higher- order perception of the robot, in the 
sense that the first- order perception of the robot is the immediate perception of the envi-
ronment, while higher- order perception is the perception of the inner world of the robot.

The described cognitive architecture has been tested on the board of a moving robot 
performing guided tours at the Archaeological Museum of Agrigento, Italy.

23.6 Global Workspace Theory

The global workspace theory (GWT) was proposed by Baars (see, e.g., Baars 1997) as the 
unification of dif fer ent pro cesses in the cortex. The GWT is tightly related to the global 
neuronal theory discussed by Dehaene et al. (2003). Baars observed that the brain could 
perform an enormous amount of unconscious parallel pro cessing, while consciousness is 
serial and of  limited capacity.

The GWT is based on assumptions that the brain is a collection of many specialized 
pro cessors. Consciousness is associated with a global workspace whose contents “broad-
cast” to the pro cessors. The pro cessors work in parallel, and they compete to gain access to 
the global workspace (figure 23.4, left).

At some point, one pro cessor wins the competition, and it gains access to the global 
workspace. Then it enters into consciousness and broadcasts to all the other pro cessors to 
recruit  others and to select the corresponding action (figure 23.4, right).

Global workspace

Figure 23.4
Global workspace theory. Left: Several unconscious pro cessors compete to gain access to the global workspace. 
Right: The winning pro cessor gains access to the global workspace— that is, to consciousness— and it recruits 
other pro cessors.
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Let us consider, for example, an agent attending an elaborate scene where  there are many 
moving objects. According to the GWT,  every moving object may be pro cessed by an uncon-
scious pro cessor. All pro cessors compete to gain access to the global workspace. Then, at 
some point, one pro cessor corresponding, for example, to a ball moving  toward the agent 
wins the competition, and it enters into consciousness. The winning pro cessor recruits other 
pro cessors to select the best action to be performed: for example, it  will recruit the pro cessors 
related to the motion of the arm so that the arm catches the moving ball.

Contexts shape conscious contents, and they constrain the competition of unconscious 
pro cessors. Therefore, a co ali tion of pro cessors may be expedited to gain access in a par-
tic u lar context and to recruit other pro cessors. For example, a context related to a specific 
emotion may assist pro cessors in achieving consciousness instead of other pro cessors.

The GWT is a framework theory, and several cognitive architectures inspired by the GWT 
have been proposed in the lit er a ture. The main cognitive architecture is LIDA (Learning Intel-
ligent Distributed Agent), developed by Stan Franklin and colleagues over the years (see, e.g., 
Franklin et al. 2014; see also chapter 10 for a general discussion of cognitive architectures).

Baars and Franklin (2009) reported on the relationships between LIDA and the GWT. An 
initial version of LIDA, named IDA, was built by Franklin (2003) as a dispatching system 
for the US Navy. The goal of IDA was to assign sailors to new billets at the end of their tours 
of duty.  These assignments  were performed by detailers, and IDA completely automated the 
roles of detailers. Interaction with sailors was performed by email in natu ral language, and 
IDA was able to negotiate the new billets with sailors and to write  orders to them.

An overview of LIDA is shown in figure 23.5. Several pro cessors based on dif fer ent 
technologies  were implemented in the architecture, such as neural networks, sparse distrib-
uted memories, schema mechanisms, be hav ior networks, and subsumption architectures. 
LIDA performs several aspects of the GWT, like perception, attention, episodic and declara-
tive memories, the global workspace, and the se lection of actions.

The cognitive cycle of LIDA is based on the following steps:

–  The system perceives an entity, giving rise to a percept.
–  The percept is sent to a preconscious buffer, where the percept gives rise to local 
associations.
–  The percept competes for consciousness.
–  If the percept wins the competition, then it broadcasts to all the other pro cessors to 
recruit for resources.
–  An action is selected according to the goal context hierarchy.
–  Once the action is selected, then the action is executed, and the cognitive cycle restarts.

The chosen action may be performed immediately, or it may be sent back to the perceptual 
system for further examinations.

The LIDA architecture pre sents learning capabilities through the feedback generated by 
the global workspace. The feedback signals are sent to the unconscious modules, and they 
provide the basis of the reinforcement-  and associative- learning pro cesses of the architec-
ture. The Lidapy framework is a freely available recent implementation of LIDA in Python 
(see link in additional resource list).
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The LIDA architecture has proved to fit a body of empirical evidence concerning con-
sciousness. Notably, a version of LIDA (Madl et al. 2011) implementing the Allport (1968) 
test modeling the phenomenal simultaneity of stimuli obtained time frames comparable to 
 human subjects. Ramamurthy and Franklin (2009) discuss the general prob lems of con-
scious experiences and functional consciousness in the framework of LIDA.

Other cognitive architectures inspired by the GWT have been proposed in the lit er a ture. 
Shanahan (2006) discussed a cognitive architecture for a robot that extends the GWT by 
considering a cognitive cycle made up of an inner and an outer loop. The outer loop is 
similar to the cycle previously discussed in LIDA, while the role of the inner loop is to 
simulate the interaction with the environment internally. The internal simulation facilitates 
anticipation and planning in the architecture: the robot may internally simulate the effects 
of the actions before choosing the current course of activities.

Arrabales et al. (2009) discussed CERA- CRANIUM, a cognitive architecture based on 
GWT that controls a video game character. The architecture performed well in the BotPrize 
competition (Hingston 2009), a kind of Turing test (see below) in which autonomous bots 
have to convince a jury that they are  human controlled. Notably, the CERA- CRANIUM 
bot won the award for the most humanlike bot at the 2010 competition. The software code 
of the bot is freely available (see link in the additional resource list).

Haikonen (see, e.g., Haikonen 2019), starting from engineering princi ples, designed the 
HCA, or Haikonen cognitive architecture, which pre sents contact points with the GWT.

Perception Attention

Episodic
memory

Declarative
memory

Workspace

Global workspace

Action
selection

Procedural memory

Figure 23.5
An overview of the LIDA cognitive architecture.
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The HCA is at the basis of the operating robot XCR-1, where many modules are imple-
mented, including the auditory module, the visual module, and the emotional module. The 
modules send broadcast signals and compete in a winner- takes- all fashion to control the robot, 
similar to GWT. XCR-1 pre sents many aspects of machine consciousness: the robot can self- 
talk, respond to visual stimuli, and “feel” pain and emotions, among other functionalities.

23.7 The Internal Model Hypothesis

The internal model hypothesis states that an agent, to act in an intelligent and meaningful 
way, operates via an internal model of itself and the external world. The internal model 
allows the agent the capability to simulate its actions and evaluate its outcomes before 
 doing them in the external environment. In this way, the agent can generate expectations 
about the course of events in the world and on the outcomes of its actions.

The internal model hypothesis is inspired by the “small- scale model” of real ity dis-
cussed by Craik (1943). Dennett (1996) discusses “Popperian” creatures— that is, creatures 
able to generate theories about the external world and simulate experiments in their 
internal environment.

The proposal of an internal model acting as a simulation structure in a robot is not new: 
robot architectures have been proposed in the lit er a ture that pre sent forms of an internal 
model of themselves and the external environment. Early examples have been provided 
by Mel (1990), Stein (1994), and Payton (1990), among  others.

According to Hesslow (2002), the internal model hypothesis allows the brain to simulate 
actions, to simulate perceptions, and to generate anticipation about  future events. Hesslow 
claims that conscious thoughts are based on  these simulations. As the simulation of per-
ception is related to the internally generated sensory inputs resembling the perception of 
the external world, it would be accompanied by the experience of the internal model of 
the world.

In brief, the internal model hypothesis states that consciousness arises from interaction 
between the internal model of the agent and the internal model of the world. Let us consider 
an agent interacting with the external world (figure 23.6, top).

Let us now consider the internal model of the agent, including the model of the agent 
and the external world (figure 23.6, bottom). According to the internal model hypothesis, 
consciousness arises not from the interaction of the agent with the external world but 
instead from the interaction of the internal model of the agent with the internal model of 
the external world. Susan Blackmore (1986) states that “being conscious is simply what 
it is like being a repre sen ta tion of the world” (163).

Figure 23.7, inspired by Grush (2004) and Gerdes and Happee (1994), describes the 
general framework of the internal model. A similar structure has been presented by Gray 
(2006). The robot has an internal model of itself and the external environment, allowing 
it to simulate its interactions with the external world. The controller sends the control signal 
at the same time to the real robot moving in the external world and to the inner model of 
the robot moving in the inner environment. Again, according to the internal model hypoth-
esis, robot consciousness arises in the interaction of the internal model of the robot with 
the internal model of the situation.
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Agent World

Agent World

Figure 23.6
The internal model hypothesis. Top: The agent interacting with the external world. Bottom: The agent with an 
internal model of itself interacting with an internal model of the external world.

Controller Robot

Robot/
environment

simulator

Comparator

Figure 23.7
A general framework of the internal model hypothesis for robot consciousness.
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A robot implementation inspired by the internal model hypothesis is EcceRobot, developed 
by Holland and colleagues (Holland 2007; Holland et al. 2007). EcceRobot is an anthro-
pometric robot with a humanlike body. The robot has an internal simulator of itself and the 
environment that is able to represent in three dimensions (3D) the robot and the environment. 
The internal 3D simulation is employed to teach suitable neural networks how to control the 
motors of the robot.

Bongard et al. (2006) describe a “starfish” robot, a four- legged robot that generates a 
3D model of itself by trial and error using suitable ge ne tic algorithms. The robot uses the 
actuation- sensation relationship to infer an internal model of its body, and then it uses this 
model to learn locomotion. The robot is resilient: in case of damage— for example, a broken 
leg— the robot can generate a new model of its body and learn locomotion again with its 
current damaged body. A similar approach was described by Cully et al. (2015).

Chella and Macaluso (2009) discussed the robot CiceRobot, which was able to offer guided 
tours in an indoor and outdoor museum and was based on the internal model hypothesis. The 
architecture was instantiated on a wheeled robot for indoor and outdoor use. Currently, it is 
instantiated on a Pepper robot. The robot is a case study of many capabilities associated with 
the functional aspects of consciousness: to build and to maintain an internal model of the 
environment and itself, to pay attention to the relevant entities in the environment, to integrate 
information from dif fer ent sources and dif fer ent parts of the same source, to generate expecta-
tions about the pos si ble events in the environment, to self- monitor, to simulate emotional 
states, and to pro cess information by making it globally available to the robot.

The primary outcome of the case study was the acceptancy and transparency of the 
autonomous be hav ior of the robot in an environment populated by untrained users as museum 
tourists.

23.8 Tests for Robot Consciousness

 People are concerned that current robot systems might already be conscious, so a substan-
tial amount of research has been conducted on how a robot system can be tested for con-
sciousness. An extended review of proposed criteria for consciousness in machines and 
robots is discussed by Elamrani and Yampolskiy (2019).

Many tests are based on the famous Turing (1950) test of imitation, in which a  human 
interrogates an entity by teletype and decides  whether they are examining a  human or a 
machine that imitates  human responses.

Sloman (2010) proposed the Robot Phi los o pher Test, a variant of the Turing test in 
which the arguments of discussion between the  human tester and the tested entity are the 
philosophical theories of consciousness and experience.

Schneider and Turner (2017; see also Turner and Schneider 2019) proposed the Artificial 
Consciousness test (ACT), another variant of the Turing test in which the questions to be 
posed are focused on the quality of the inner experience of the entity  under examination. 
The entity must be isolated from the external world to avoid the risk that a smart machine 
may retrieve the correct answers from the internet.

Harnad (1991) extended the Turing test by proposing the Total Turing test, in which a 
robot— that is, an embodied entity— should imitate the  whole of  human be hav ior in dif-
fer ent situations.
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Another source of inspiration for consciousness tests is the mirror test for primates 
(Gallup 1970; Gallup et al. 2002). In this case, a robot should recognize and describe itself 
and its movements by looking through a mirror, even in the presence of other robots and 
distractors. See Gold and Scassellati (2005), Chella et al. (2003), Suzuki et al. (2005), and 
Haikonen (2007) for examples of robot implementations of the mirror test.

Consciousness in robots and machines can be assessed by mea sur ing specific features 
ascribed to consciousness, like the ability to pre sents forms of creativity— that is, to 
produce something new and unexpected. Bringsjord et al. (2001) presented the Lovelace 
Test, named  after Ada Lovelace, while Chella and Manzotti (2012) discussed how a con-
scious robot should be able to improvise jazz in a jazz ensemble.

A related approach is to consider the capability of the conscious robot to generate a 
genuine inner speech, as proposed by Haikonen (2007). Inner speech is considered tightly 
related to self- consciousness (Morin 2005). Steels (2003), Clowes (2007), Arrabales (2012), 
and Chella et al. (2020) demonstrate examples of robots presenting forms of inner speech.

Another approach for testing machine consciousness is to apply the algorithmic theories 
proposed for  human and robot consciousness, such as the previously described set of axioms 
by Aleksander and Dunmall or the Φ (S ) mea sure derived from the information integration 
theory.

Gamez (2010) implemented SpikeStream, a freely available neural network simulator 
able to mea sure the Φ (S ) of dif fer ent kinds of networks (see the link to the system in the 
list of additional resources). In detail, Gamez applied Φ (S ) to analyze the neural networks 
at the basis of SIMNOS, a simulation of EcceRobot.

Iklé et al. (2019) followed a similar approach to mea sure Φ (S ) in the cognitive system 
controlling the robot Sophia when the robot was reading and when it was conversing. Seth 
et al. (2006) and Gamez and Aleksander (2009) proposed methods for designing suitable 
neural networks presenting high values of the mea sure Φ (S ).

An in ter est ing approach to assess consciousness in robots and machines was proposed 
by Arrabales et al. (2010a). They discussed ConsScale, a scale of consciousness in artificial 
agents that scores from −1 and 0 (the disembodied and isolated agent) to 11 (the super-
conscious agent).

ConsScale considers a generic characterization of an artificial agent to comprise a body, 
a set of sensors, a set of actuators, a set of software routines, types of memories, and an 
external environment where the agent operates.

ConsScale assigns a level of consciousness according to the architectural complexity 
of the agent and to the be hav iors of the agent. At the low level of ConsScale are reactive 
agents based on a direct link between sensors and actuators. At the intermediate levels are 
the agents able to adapt themselves, to pay attention, to generate plans, and to have emo-
tions. At the higher level of the scale are the self- conscious agents, the empathic agents, 
and the social agents. At the top level is the humanlike agent, which can pass the Turing 
test, and the superconscious agent, able to manage several streams of consciousness. The 
ConsScale calculator is freely available (see the link in the list of additional resources).

Arrabales et al. (2010b) tested ConsScale by assessing some cognitive architectures 
such as CERA- CRANIUM, CRONOS (an implementation of EcceRobot), LIDA, and a 
version of the HCA. According to the assessment by ConsScale, the HCA and LIDA 
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received the highest score  because they  were successful at the emotional level— that is, at 
an intermediate level of consciousness. No architectures entered the higher levels.

23.9 Conclusion

Chella and Manzotti (2009) wrote a manifesto for robot consciousness in which they 
discussed some of the main challenges in the field. Notwithstanding the pro gress in this 
field, as seen in the numerous machine consciousness theories presented above, the chal-
lenges from this manifesto are still valid  today. They include the role of embodiment and 
situatedness in machine consciousness, the roles of emotion and motivation, the difficulties 
in achieving information integration, the concept of time for robot consciousness, the 
question of  free  will for robots, and fi nally, the issue of robot experience.

The pos si ble advent of conscious robots would lead to ethical concerns as well as issues 
related to the social integration of such robots. Bryson (2012, 2018) discussed in detail 
the risks of our moral obligations  toward self- conscious systems. According to Bryson 
(2018, 15), “While constructing AI systems as  either moral agents or patients is pos si ble, 
neither is desirable.”

According to Gunkel (2012), if an entity has subjective experiences and is capable of 
suffering, then it should be treated as a person.  These arguments may force us to review 
our fundamental definitions of the concept of person. If we assert that a robot system is 
conscious, then the moral responsibility of the system for its actions must be recognized. 
On the other hand, we may have to concede moral rights to conscious robots, such as the 
right to not be switched off.

In summary, robot consciousness is a research field that not only offers outstanding 
opportunities but brings ethical risks that cannot be undervalued.

Additional Reading and Resources

•  This collection of classic papers on machine and robot consciousness is a valuable aca-
demic reference in the field: Chella, A., and R. Manzotti, eds. 2007b. Artificial Conscious-
ness. Exeter, UK: Imprint Academic.
•  This book is an introduction to robot consciousness from the perspectives of philosophy, 
cognitive science, and computer science, written by a founding  father of the discipline: 
Aleksander, I. 2015. Impossible Minds: My Neurons, My Consciousness. Rev. ed. Singa-
pore: World Scientific.
•  This freely available e- book is a collection of papers that cover the most recent research 
trends of consciousness in robots and AI systems: https:// www . frontiersin . org / research 
- topics / 5781 / consciousness - in - humanoid - robots .  Chella, A., A. Cangelosi, G. Metta, and 
S. Bringsjord, eds. 2019. Consciousness in Humanoid Robots. Lausanne: Frontiers Media. 
doi:10.3389/978-2-88945-866-0.
•  This new journal, with a freely available inaugural issue, pre sents the latest works in the 
field of consciousness in robotics and AI: https:// www . worldscientific . com / worldscinet / jaic.
•  HyperSlate™ logical framework by Bringsjord: https:// rpi . logicamodernapproach . com / .
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•  Reasoning system FOL by Weyhrauch: https:// github . com / getfol / GETFOL.
•  The SimAgent Toolkit by Aaron Sloman: https:// www . cs . bham . ac . uk / research / projects 
/ poplog / packages / simagent . html.
•  The LIDA framework: https:// github . com / CognitiveComputingResearchGroup / lidapy 
- framework.
•  The CERA- CRANIUM bot: https:// github . com / raul - arrabales / CCbot4.
•  The SpikeStream simulator by Gamez: http:// spikestream . sourceforge . net / .
•  The ConsScale consciousness calculator by Arrabales: https:// www . conscious - robots 
. com / consscale / calc _ 30 . html.

Note

1.  Swartz Foundation, Final Report of the Workshop Can a Machine Be Conscious, 2001, http:// www 
. theswartzfoundation . org / abstracts / 2001 _ summary . asp.
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Care, robotics, 251, 233–234, 332, 339,  

344
CB2 robot, 11, 13
CERA-CRANIUM cognitive architecture, 464, 468, 

470
Chatterbot, 403
Choregraphe, robot software, 136
CiceRobot robot, 467
CLARION, 194, 196, 199, 207
Coevolution, 66, 85, 223
Cognition
attributes, 6
definition, 3
off-line, 7, 217
swarm, 87
theories, 218–221

Cognitive abilities, core, 196–200
Cognitive architectures, 123, 126, 191–213, 273, 

289, 340–343, 349, 351, 354, 355, 444–445, 
463–464

desirable characteristics, 195
consciousness, 456–457

Cognitive consciousness, 456
Cognitive Control, Decision, 337–356
Cognitive control architecture, 342
Cognitive dialogue, 282
Cognitive map, Tolman, 295
Cognitive map building, 300–306
Cognitive science, foundations, 191–193
Cognitive system, 3, 6, 13–14, 49, 191, 193–199, 

217, 283, 468
Cognitivist Paradigm, 192, 194
COG robot, 8
Collaboration, human-robot, 337–361. See also 

Human-robot interaction
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Collective
behavior, 65–67, 77–98
decision-making, 90–92
memory, 88
perception, 88

Commonsense knowledge, 289, 413, 418, 424, 428
Communication, 395–412. See also Language
direct, 82–83
indirect, 83–84
underwater, 84

Competence-based intrinsic motivation, 50, 252–253, 
257

Complexity, 61, 84, 104–105, 112–113, 168, 182, 
302, 338, 468

Consciousness
machine, 453–474
neuroscience, 455

ConsScale, consciousness scale, 468, 470
Constructive developmental science, 374
Control
cognitive, 337–360
robotics, 337–339
soft robot, 101–104

Control in cognitive robotics and HRI, 343–344
Conversational agents, 403
Convolutional neural networks (CNNs), 165–166, 

166–170, 286–287, 331, 405. See also Deep 
learning

Counting gestures, 442
CRAM Cognitive Architecture, 201–205, 207, 209, 

429
Crawling, 51
Cyc ontology, 424

Darwin robots, 20–26, 455
Data collection, efficient, 181–183
Deception, 233
Decision and control action scheme (DCAS), 

344–351, 353, 354
Deep belief networks (DBNs), 405
Deep learning (Deep neural networks), 166–181, 

183, 208, 286–287, 427
language, 405–408
vision, 286–287

Deep reinforcement learning, 179, 181, 208, 316, 
330, 427

Grasping and Manipulation, 330–332
Definition
abstractness, 433
cognition, 3, 196
cognitive robotics, 3–4, 12
consciousness, 453
embodiment, 215, 216

Deontic cognitive event calculus (DCEC), 456–457
Development, language, 395–397
Development, nonlinear stages, 51, 52–53, 273, 395, 

398, 438
Developmental robotics, 6, 8, 12–13, 41–58, 99, 104, 

107–111, 154, 197, 208, 252, 310, 374, 398–403, 
442, 444

language, 398–403
soft robotics, 104–108

Direction tuning, navigation, 298–299
DolphinSLAM, 302
Domain-adaptive meta-learning (DAML), 178

Domain randomization, 181
Driver assistance systems (Advanced DAS), 353
Dynamical systems, 47–49, 107, 170, 274, 325
Dynamic Movement Primitive (DMP), 318, 

328–330, 332

EASE project, 202–203, 207
EcceRobot, 467, 468
Education, abstract concepts, 434–438
Education robotics, 389–390
EEG/EMG, manipulation, 316, 318–320
Electromagnetic actuators (EMAs), 155
ELIZA, 403
ELMER robot, 9, 19
ELSIE robot, 9, 19
Embodied cognition, 6–8, 12–13, 60, 193, 213–218, 

224–227, 398, 402, 435, 438
Embodiment, 5, 8, 14, 30, 36, 46–50, 105, 213–230, 

272, 289, 396, 436–437, 441, 447, 469
abstract concepts, 433–436, 446
AI, 221–222
cognitive robotics, 222–225
cognitive science, 218–221
language, 396–397
learning through body, 113
vision, 272–274

Emergent behavior, 47–48, 107–108, 112, 192
Emergent paradigm, 192, 194
eMODUL emotion system, 445
Emotions, 206, 218, 368, 380, 387–389, 433–434, 

438, 444–446, 453, 456, 465
Empathy, artificial, 46, 52–49, 53
Enactive cognition, 46–47, 49, 192, 222, 227
Encyclopedic Knowledge Bases, 423–425
Epigenetic Robotics (EpiRob), 12, 41, 52, 104, 252, 

339
Episodic memory, cognitive navigation, 308–309
Epistemic intrinsic motivations (eIMs), 251
ERA cognitive architecture, 399–400
ERICA robot, 403
Ethics, 42, 231–248, 453, 477
Evolution, intrinsic motivation, 264–265. See also 

Intrinsic motivation
Evolutionary algorithm, 60, 111–112
Evolutionary robotics, 12–14, 22, 59–76, 85–89, 223
Exploration and navigation, 309–310
Extended Phenotype, 110
External memory, 88
Extrinsic motivations, 253–259

FARSA simulator, 125
Fault Tolerance, 81
Fetus model, 5, 44–46, 52, 365
Finger counting, 402–403, 442–444
FOL reasoning system, 459
Functional morphology, 105–107

Gaussian Mixture Model (GMM), 173, 317–318, 332
Gazebo simulator, 125–126, 135–136
General control architecture, 338
Generalized plan, knowledge base, 414, 418
Global workspace theory (GWT), 455, 462–465
Goal Formation, intrinsic motivation, 261
Goal formation by imagination, 263
Goal manifold search, 263
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Goal marking, 262
Goal sampling, 261
GOFAI, 3, 8, 219, 220, 221
GRAIL cognitive architecture, 266
Grasping, 69–71, 10, 104, 126, 130, 167–169, 203, 

217, 255, 276, 278, 315–317, 330–333, 417
Grid cell, 297–300, 306
Grounding, language, 7, 14, 49, 170–172, 216, 

218–220, 227, 285, 398–403, 407, 422, 436, 
438–441, 446, 456

Grounding transfer, 434, 438–441
Group selection, 20, 92
Growth, soft robot, 110

Hand (in-hand) object manipulation, 170
Hand (in-hand) object pose estimation, 169
HCA cognitive architecture, 464–465, 468
H-CogAff cognitive architecture, 461
Head direction cell, 297, 299, 305
Hebbian learning, 199, 263, 300–301, 399
Hick’s law, 93
Hidden Markov Models (HMMs), 170–173, 386
Historical Embodiment, 215
History, Cognitive robotics, 10–14
HOAP-3 robot, 178
Honeybees, 92–93
Human in the Loop, design, 84
Humanoid robots, 8, 12, 20, 41, 112–113, 124–129, 

134–138, 148, 205, 214, 216, 222–224, 233, 277, 
289, 337, 351, 355, 382–384, 395, 408, 439. See 
also Robot platforms review

Human-robot collaboration, 337–356. See also 
Human-Robot Interaction

Human-Robot Interaction (HRI), 14, 123, 159, 207, 
231, 233–234, 277–281, 332, 343–344, 379–394, 
408

applications, 389–390
autonomous systems, 351–354
control, 343–344
dynamic Decision and Action Framework, 344–347
ethics, 233–234
neuroscience, 380–381
non-verbal interaction, 386–388
verbal interaction, 384–386
vision, 277–281

Hybrid Systems, 193, 195
Hyperdimensional computing, 427–428
HyperSlate logical framework, 468

IBM Watson, 5, 425, 427
iCub robot, 12, 69–71, 124, 126–129, 138, 278, 281, 

369–370, 399–402, 439–440, 443–444, 445
iCub simulator, 134–135
Imitation, 46, 50, 89, 129, 137, 172–174, 176–179, 

152, 222, 363, 368–369, 419, 467
Imitation Learning, 172–179
one-shot, 178–179

Implicit/explicit social signs, 277
Infant development, 46, 351
Inference, for perception, 272
Information integration theory (IIT) of 

consciousness, 457–458
Inner speech, 453, 468
Intelligent Robotics (AI robotics), 3
Intention reading, 6, 362, 364–365, 369–370

Interaction, robot-robot, 81–82, 88
Internal model, 68–69, 344–345, 349–352, 317
hypothesis, 465–467

Intrinsic motivation, 14, 46–47, 49–50, 179,  
251–270

Intrinsic tactile sensing, 148–152
iRat robot, 125
ISAC cognitive architecture, 197, 201, 205–207
IsacSim simulator, 135

Joint attention, 46, 50–53, 279, 362–364, 367–368, 
372, 374

Kilobot, 78
KISMET robot, 8, 444
Knowledge-based, vision, 285
Knowledge representation (knowledge based 

systems), 413–432
KnowRob, 202–205, 425–427, 428
Kuka LWR robot, 125–127, 129, 130, 136

Language, 6, 49, 66, 125, 135, 165–166, 170–173, 
200–201, 204–205, 213–215, 226, 277, 281–282, 
285–287, 289, 311, 361, 384, 387, 395–412, 
419–420, 433–447, 459

Learning, 179–183. See also Reinforcement learning; 
Social learning

from demonstration (LfD), 172, 328–329
from play (LfP), 178–179
cognitive capability, 197–198
collective, 89–90
imitation, 172–179
One-Shot, 178–179
Online, Open-Ended, Cumulative, 53
social, 89–90

Lexical, language analysis, 397–398
LIDA cognitive architecture, 463–465, 468
Lindenmayer systems, 80
Logics, 420–421
LSTM, 69, 166, 171, 176, 406–407. See also 

Recurrent neural networks

Machine consciousness, 453–473. See also 
Consciousness

Machine Ethics, 231, 239–242, 243
Machine learning, 165–190. See also Deep learning
Intrinsic motivation, 259–265
robot language models, 404–407

Majority rule, 91
Manipulation, 6, 14, 48, 53, 63, 100, 113, 123–124, 

127, 129, 168–169–171, 175, 179, 201, 315–336, 
343, 351, 403, 413, 416

EEG/EMG, 316, 318–320, 320–323
in-hand object, 170

MATLAB Robotics System Toolbox, 136
Maturation, development, 51–52, 435
Mental models, 105, 341, 460
Metacognition, 196, 199–203, 205
Micro-Macro Link, 78
Microsoft Robotics Developer Studio, 132
Minimal consciousness, 456
Mirror neurons, 280, 363, 369, 435
Mirror test, 468
Model-agnostic meta-learning (MAML), 178
Moral Agents, 240–241
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Morphological Computation, 7–8, 22, 49, 60–61, 
106–107, 114

Motion Learning, manipulation, 328–329
MuJoCo simulator, 71, 132, 134, 137
Multiagent system, Minsky, 460–461
Multi-lateral latent Dirichlet allocation (MLDA), 404
MultiNEAT, 94
Multiple timescale recurrent neural networks 

(MTRNN), 166, 175–177, 401, 406
Multirobot arm-picking, 181

NAO robot, 123–124, 128–129, 136, 175–176, 382, 
390, 406, 157

Narrative-enabled episodic memories (NEEMS), 204
Nature versus nurture, 51, 395–396
Navigation, 6, 8, 20, 30–36, 82, 123, 126–127, 130, 

200, 295–314, 343, 403
cognitive, 306–308
neuroscience/animal, 296–298

Neural Darwinism, 20, 37
Neuromorphic, 13, 23, 30–36, 459
Neurorobotic Platform (Human Brain Project), 13, 

136
Neurorobotics, 9, 12–13, 19–40, 49, 85
NeuroSLAM, 305, 311
Neurosnake robot simulator, 125
Neurosymbolic Learning and Reasoning, 427
NLP, robot language, 404–405
Nonverbal communication, 404
Number learning, 49, 402–403, 441–444

Object-action complexes (OAC), 419
Object recognition, 23, 27, 168–169, 274–275, 285
ODE Open Dynamics Engine simulator, 125–126, 

133, 134–136
Off-line cognition, 217
Off-loading, cognitive, 64–65, 69
One-Shot Learning, 174, 178–179
Ontogenetic learning, 47, 51–52, 69–71, 99, 

105–107, 110–111
Ontologies, 203–204, 423–425
OpenAI Gym, 183
OpenCV, 289
OpenEASE, 429
Open-ended learning, 47, 53, 251–270, 368, 390, 408
Organismic Embodiment, 216
Organismoid Embodiment, 216
ORO, knowledge representation, 425
Outdoor robot swarm, 86–87

Panda robot, 124, 127, 129–130, 137
Path Integration, navigation, 298–300
Perception, 5–6, 12, 37, 49, 51, 61, 88–89, 96, 

108–109, 123–124, 128, 137, 146–147, 193, 
196–197, 201–203, 207–208, 233–234, 271–289, 
315, 340–342, 364, 387, 423, 425–426, 438, 
456–457, 462. See also Sensing, tactile; Vision

Phonetic, language analysis level, 397–398
Phylogenetic-Ontogenetic Interaction, 51–52, 67–68
Physical/Sensorimotor Embodiment, 216
Piezoelectric/Capacitive Stack, 152–154
Pioneer robot, 124–125, 127, 130
Place cell, 300, 301
Platforms, robot, 123–144
Polar map, vision, 286, 288

PolyScheme, cognitive architecture, 200
Popperian creatures, 465
PR2 robot, 178, 202, 284
Pragmatic, language analysis level, 397–398
Pragmatic everyday activity manifolds (PEAMs), 

205
PRAXICON cognitive architecture, 283, 403
Predicate logic, 420–421
Prediction, 6, 36, 50, 159, 174–175, 200, 252, 

257–260, 275, 285, 369–372, 419, 460
Prediction-based intrinsic motivation, 252
Predictive Coding, 273, 370–371, 372
Predictive Learning, 172–179
Principles, Cognitive robotics, 6–9
Principles, Developmental robotics, 46–53
Privacy and Surveillance, ethics, 236–237
Probabilistic representation and reasoning, 423
Programming by demonstration (PbD), 172
Prospection, 196, 200
vision, 274–276

Prosthetic hand, 146, 152, 382

Q-learning, 180, 199, 316, 331. See also Deep 
reinforcement learning

QRIO robot, 174–176
Question Answering, 282, 418–423

RatSLAM, 30, 37, 301–302, 311
Reaching, 48, 69–71, 131, 136, 175, 274, 278–280, 

315–316, 330, 343, 355, 367, 515, 417
Reactive cognition, 8, 63–64, 207, 273, 275
Reasoning, 3–4, 8, 12, 191, 199, 201–205, 272–273, 

340, 413–432, 433–434, 459–460, 470. See also 
Knowledge representation

Recurrent neural networks (RNNs), 166, 171, 
174–175, 356, 439, 442. See also Deep learning; 
LSTM

REEM robot, 445
Reinforcement learning, 71, 179–183. See also Deep 

Reinforcement Learning
joint attention, 367

Representation, sparce, 36
Representational-redescription model, 52
Responsibility for robots, 241
Rewards, Sparse, 259–260
Rights for robots, 241–242
RNNPB (Recurrent neural networks with parametric 

bias), 142, 174–176. See also Deep learning
RoboCup, 8, 129
Robot Philosopher Test, 467
Robot platforms review, 127–131. See also 

Humanoid robots
Robot-Robot Interaction, 81
Robot simulator review, 131–137
Robovie, 124–127, 129
RobWorkSim simulator, 125
Roomba robot, 8
ROSETTA, knowledge representation, 425
ROS middleware, 127, 134, 138, 356

Salamander robot simulator, 125
Sawyer robot, 178
Scalability, 77, 80–81, 112–113, 121, 405
SciBot robot, 382
S-CTRNN Neural network, 371–372
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Segmentation, vision, 287
Selection of Skills, intrinsic motivation, 263–264
Self-Consciousness, 459–462
Self-Organization, 13, 47–49, 77–80, 92, 216, 222
Self-organizing map (SOM), 400, 404
Self-Other Recognition, 362–363, 365–366
Semantic, language analysis level, 397–398
Sensing, tactile, 146–148, 167–170
Sensing-Actuation integration, 154–158
Sensorimotor coordination, 61–63
Sensory EgoSphere (SES), 205
Service robots, 214, 251, 310, 425
Sex robotics, ethics, 234
Shakey robot, 10–11
Sigma, cognitive architecture, 200
SIGVerse simulator, 125, 138
SimAgent Toolkit, 470
SIMNOS robot simulator, 468
Sims creatures, 60
Simulator, review of robot, 125, 131–137
Situated cognition, 49, 217, 396, 398
Situation calculus, 461
Skill Transfer, manipulation, 326–327
Skin, 145–164
SLAM, 127, 137, 295–296, 305, 308. See also 

RatSLAM
cognitive map building, 300–306

SNARC effect, 442
Soar, cognitive architecture, 182, 194, 199, 207, 

444–445
Social cognition, 14, 80, 200, 226, 277–278, 

361–378, 391
psychology/neuroscience, 362–365
unified computational theory, 370–372
vision, 277–281

Social learning instinct, 49–50
Social robotics, 126, 379–383. See also Human-robot 

interaction
Soft materials, 100–101
Soft robotics, 12, 13, 99–120, 145, 151, 19
Soft sensing, bioinspired, 109
Sparse rewards, 259–260
Speech. See Language
Speech and vision, 281, 283–286
SpikeStream simulator, 468, 470
Spike timing-dependent plasticity (STDP), 153
Spiking neural networks, 9, 30–34
Spiking wavefront propagation, 31–36
Stages, Piaget, 52–53. See also Development, 

nonlinear stages
Stigmergy, 79–80, 93
Superintelligence, 242
Superorganism, swarm, 80, 91–93
Swarm cognition, 87–94
Swarm intelligence, 13, 77, 80, 94
Swarm robotics, 8, 12–13, 65–66, 77–98
Symbol emergence, 408
Symbol grounding, 170, 220, 397, 442
Symbolic knowledge representation, 418–423.  

See also Knowledge representation
Syntactic, language analysis level, 397–398
Synthetic methodologies, 9–10

Tactile sensors, types, 168
Teaching by demonstration (TbD), 317, 325, 332

Teleoperated robots, 352–353
Teleoperation, manipulation, 317, 323–324
Temporal difference learning, 199
Tests for Robot Consciousness, 467–469
Time-delay neural network (TDNN), 176
Tortoise, Walter, 4, 9–11, 19
Total Turing test, 467
Touch (tactile), 145–159
Transducers, 146
Trustworthy AI, 232, 351
Turing test, 464–468
Turtlebot robot, 125

Uncanny valley, 381–382
Universal gripper, 100, 109
USARSim, 132
U-shaped learning, 53

Value systems, 25–26, 36, 50, 195
Vehicles, Braitenberg, 7, 9–10, 19–20
Virtual reality, 138
Vision, 271–294. See also Perception
knowledge-based, 285
principles, 274–287

Vision and speech, 281, 283–286
VizDoom game, 69
V-REP (CoppeliaSim) simulator, 125, 136

Walking, 30, 48, 51, 60–61, 67, 99, 108, 129, 162, 
279

Webots simulator, 125, 134–136
Wiskerbot robot, 22
Word combination, 401
Words as Social Tools, 447

XCR-1 robot, 465

YARP middleware, 126–127, 134
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