
Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

COMPUTATIONAL THINKING
EDUCATION IN K–12

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

COMPUTATIONAL THINKING
EDUCATION IN K–12

ARTIFICIAL INTELLIGENCE LITERACY
AND PHYSICAL COMPUTING

EDITED BY SIU-CHEUNG KONG AND HAROLD ABELSON

THE MIT PRESS  CAMBRIDGE, MASSACHUSETTS  LONDON, ENGLAND

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

© 2022 Massachusetts Institute of Technology

This work is subject to a Creative Commons CC-BY-ND-NC license.

Subject to such license, all rights are reserved.

The MIT Press would like to thank the anonymous peer reviewers who provided

comments on drafts of this book. The generous work of academic experts is essential

for establishing the authority and quality of our publications. We acknowledge

with gratitude the contributions of these otherwise uncredited readers.

This book was set in Stone Serif and Avenir LT Std by Westchester Publishing

Services.

Library of Congress Cataloging-in-Publication Data

Names: Kong, Siu Cheung, editor. | Abelson, Harold, editor.

Title: Computational thinking education in K-12 : artificial intelligence

literacy and physical computing / edited by Siu-Cheung Kong and Harold

Abelson.

Description: Cambridge, Massachusetts ; London, England : The MIT Press,

[2022] | Includes bibliographical references and index.

Identifiers: LCCN 2021035151 | ISBN 9780262543477 (Paperback)

Subjects: LCSH: Critical thinking—Study and teaching. | Computer

literacy—Study and teaching. | Artificial intelligence—Educational

applications.

Classification: LCC LB1590.3 .C655 2022 | DDC 371.33—dc23/eng/20211213

LC record available at https://lccn.loc.gov/2021035151

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

	 INTRODUCTION TO COMPUTATIONAL THINKING EDUCATION

IN K–12  1

Siu-Cheung Kong, Harold Abelson, and Wai-Ying Kwok

I	 A MULTIPLICITY OF COMPUTATIONAL THINKINGS  13

1	 A CASE FOR WHY: SOCIETY, SCHOOL, SELF  15

Karen Brennan

2	 PROVIDING STUDENTS WITH COMPUTATIONAL LITERACY

FOR LEARNING ABOUT EVERYTHING  29

Mark Guzdial

3	 DEVELOPING COMPUTATIONAL THINKING SKILLS WITH

MULTIPLE MODELS AND REPRESENTATIONS  49

H. Ulrich Hoppe and Sven Manske

4	 TOWARD A THEORY (AND PRACTICE) OF MULTIPLE

COMPUTATIONAL THINKINGS  71

Marcos Román-González, Jesús Moreno-León, and Gregorio Robles

5	 LEARNING COMPUTATIONAL THINKING IN PHENOMENA-

BASED CO-CREATION PROJECTS: PERSPECTIVES FROM

FINLAND  103

Pasi Silander, Sini Riikonen, Pirita Seitamaa-Hakkarainen, and

Kai Hakkarainen

CONTENTS

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

vi	 Contents

6	 COMPUTATIONAL EMPOWERMENT  121

Christian Dindler, Ole Sejer Iversen, Michael E. Caspersen, and

Rachel Charlotte Smith

II	 COMPUTATIONAL THINKING AND ARTIFICIAL INTELLIGENCE

LITERACY IN K–12  141

7	 THE COMPUTATIONAL THINKING AND ARTIFICIAL

INTELLIGENCE DUALITY  143

Fredrik Heintz

8	 ARTIFICIAL INTELLIGENCE THINKING IN K–12  153

David S. Touretzky and Christina Gardner-McCune

9	 PREPARING CHILDREN TO BE CONSCIENTIOUS CONSUMERS

AND DESIGNERS OF AI TECHNOLOGIES  181

Daniella DiPaola, Blakeley H. Payne, and Cynthia Breazeal

III	 COMPUTATIONAL THINKING AND PHYSICAL COMPUTING

EDUCATION IN K–12  207

10	 EXAMINING THE MULTIDIMENSIONAL LEARNING

AFFORDANCES OF ROBOTICS FOR COMPUTATIONAL

THINKING AND SCIENCE INQUIRY  209

Florence R. Sullivan

11	 TOWARD A RESEARCH AGENDA FOR DEVELOPING

COMPUTATIONAL THINKING SKILLS BY SENSE-REASON-ACT

PROGRAMMING WITH ROBOTS  229

Nardie Fanchamps, Marcus Specht, Lou Slangen, and Paul Hennissen

12	 COMPUTATIONAL THINKING IN THE INTERDISCIPLINARY

ROBOTIC GAME: THE CHARM OF STEAM  245

Ju-Ling Shih

ADDITIONAL READINGS ON CT EDUCATION FOR K–12  271

CONTRIBUTORS  275

INDEX  277

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computing has been an essential element in national economies and

societal institutions since the 1960s. As such, it has been a major com-

ponent of technical education. But only in the past decade have innova-

tions such as social networks, online news, and internet commerce made

information technology omnipresent in daily life for much of the world’s

population. This has driven the call for K–12 school education, even at

levels as early as primary school, to include computing as an essential topic

in preparing students for a world that is being increasingly shaped by infor-

mation technology. In the words of the Computer Science Teachers Asso-

ciation (CSTA) in their 2017 K–12 computer science standards, “Computer

science and the technologies it enables rest at the heart of our economy

and the way we live our lives. To be well-educated citizens in a computing-

intensive world and to be prepared for careers in the 21st century, our stu-

dents must have a clear understanding of the principles and practices of

computer science.”

While these words, first written in 2011, highlight the principles of

computer science for K–12, the emphasis in K–12 computing educa-

tion continues to shift from computer science to a broader perspective

of computational thinking (CT), which is viewed not so much as about

technology but rather as a method of thought. As explained in a current

handbook on educational technology, “CT is essentially a framework to

INTRODUCTION TO COMPUTATIONAL
THINKING EDUCATION IN K–12

Siu-Cheung Kong, Harold Abelson, and Wai-Ying Kwok

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

2	S .-C. Kong, H. Abelson, and W.-Y. Kwok

describe a set of critical thinking and problem-solving skills, and it has

gained significant traction as a viable and useful way of thinking about

how to teach these skills in formal educational settings” (Hunsaker 2018).

The popularity of this view derives from a seminal article by Jeannette

Wing. In it Wing (2006) emphasizes that CT involves “solving problems,

designing systems, and understanding human behavior, by drawing on

the concepts fundamental to computer science,” and she argues that

CT is “a fundamental skill for everyone, not just computer scientists”

(33). These sentiments were quickly and enthusiastically echoed by com-

puter science educators, but they initially did not receive much attention

beyond that community. This has changed over the past decade, as people

have come to increasingly experience the impact of computing at a per-

sonal level and to better appreciate the role of computing in society and

in our institutions. Educational authorities around the world now share

a consensus that timely and flexible policies should be adopted to foster

broad exposure to computational thinking education (CTE) throughout

the curriculum and for students to start their CTE journey in schooling life

as early as middle school, possibly even earlier.

DESIRABLE ROLES FOR COMPUTATIONAL THINKING

EDUCATION IN K–12

Advocates for CTE in K–12 generally cite two classes of reasons: (1) CTE

as a tool to concretely realize “thinking education” for young people and

(2) CTE as a route to empowering young people to participate in an infor-

mation society.

COMPUTATIONAL THINKING EDUCATION FOR CONCRETELY

REALIZING THINKING EDUCATION

Wing’s articulation of CT as a tool for thinking traces to the work of Pap-

ert at MIT and the creation of the Logo computer language, the first pro-

gramming language explicitly designed for children. Papert’s first paper on

Logo was called “Teaching Children Thinking,” in which he argued that

manipulating computing could give children a sense of applied knowledge

and self-confidently realistic images of themselves as intellectual agents

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Introduction to Computational Thinking Education in K–12	 3

(Papert 1971). The first use of the term “computational thinking” in the

sense meant here is due to Papert (1980).1

Underlying this view is a theory of learning called constructionism. This

was proposed by Papert as an elaboration of the constructivist theory of

knowledge developed by the psychologist Jean Piaget, with whom Papert

had worked before coming to MIT. Piaget’s constructionism holds that

learning occurs as an active process of organizing knowledge based on

experience, rather than just through passive observation. Papert’s con-

structionism extends this to the idea that learning is most effective when

it is part of an activity that constructs a meaningful product (Papert 1987).

For Papert, computers could be powerful “construction kits,” with which

children can construct their own knowledge.

Following Wing’s article, there have been many proposed articulations

of the competences and dimensions central to CT. Some stress creativity

and general constructionist approaches to learning, while others adhere

to the centrality of ideas from computer science. For example, one popu-

lar definition holds that “we consider computational thinking to be the

thought processes involved in formulating problems so their solutions

can be represented as computational steps and algorithms” (Aho 2011).

The range of opinions notwithstanding, there’s general concurrence that

CT is a thinking process—the ability to think like a computer scientist for

solving real-world problems—and that people who possess CT are able to

systematically identify real-life problems and formulate them for possible

computational solutions. There’s also shared recognition of some of the key

concepts involved, such as abstraction and algorithmic thinking, whether

or not these are expressed in a programming language. Yet despite an emerg-

ing consensus on what to teach in K–12 computing, advances in technology,

together with a universe of new applications, have provided new options

for how to teach about computing. This has stimulated a healthy diversity

of approaches to CTE that occupies the first focus of this volume.

COMPUTATIONAL THINKING EDUCATION FOR EMPOWERMENT

IN AN INFORMATION SOCIETY

Teaching thinking aside, it’s inescapable that we live in a society increas-

ingly shaped by information technology. Just as we want students to

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

4	S .-C. Kong, H. Abelson, and W.-Y. Kwok

understand the natural world, we should want them to understand the

digital world. As computer scientist Simon Peyton-Jones argues, “Why do

we ask every child to learn science from primary school? . . . ​It’s because

science teaches us something about the world around us, and if we know

nothing about the way the world around us works, we’re disempowered

citizens” (Peyton-Jones 2014).

This reference to understanding might evoke an image of passive obser-

vation, but the importance of CTE goes beyond understanding. K–12

students, even primary school students, are personally engaged with infor-

mation technology, through online media, social networking, and elec-

tronic commerce. These applications are subjects of active current debate,

in which young people should contribute a voice. Primary goals for CTE

should therefore include empowering students to be “conscientious con-

sumers” with the ability to participate in democratic discussions around

the technology (see chapter 9 by DiPaola, Payne, and Breazeal). Students

can also have the opportunity to apply CT to address real-world issues.

CTE curricula could even start by having students work through real-world

problems without using computation before returning to them to apply

CT ideas and computational tools (Huang et al. 2021).

This emphasis on real-world applications and empowered understand-

ing comes full-circle when students can create computational applica-

tions that improve on their lives, their families and their communities.

Tissenbaum, Sheldon, and Abelson (2019) advocate moving from compu-

tational thinking to “computational action,” arguing that even primary

school students can achieve such an impact.

FOCUS AREAS FOR THIS VOLUME

The chapters in this volume are organized into three sections, each one

highlighting an area where CT is rapidly evolving. “A Multiplicity of Com-

putational Thinkings” reflects the profusion of educational options and

concerns as CTE expands throughout K–12. “Computational Thinking

and Artificial Intelligence Literacy in K–12” describes the challenges for

CTE emerging in response to today’s explosive progress in artificial intel-

ligence. “Computational Thinking and Physical Computing Education in

K–12” examines the impact on CTE of the increasing integration of com-

puting into physical objects. These three themes are tightly intertwined.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Introduction to Computational Thinking Education in K–12	 5

Together they reflect the challenges to CTE arising from the increasing

power of computing devices and the ongoing permeation of information

technology through all aspects of life.

FOCUS AREA 1: A MULTIPLICITY OF COMPUTATIONAL THINKINGS

When Wing highlighted the idea of CT fifteen years ago, Facebook and

Twitter had just been introduced, and the smartphone was still a year in

the future. Computing was certainly important, but it did not figure in

most people’s personal experience. In that environment, CTE saw itself as

an enterprise of engaging students with the “principles and practices of

computer science,” as expressed in the CSTA standards cited above.

This paradigm is starting to show its age.

CTE can still serve as an introduction for students to great ideas in

computer science. But more and more, students need to learn about com-

puting not only through the power of its ideas, but through its impact

on the world around us, its impact on society, and its impact on our

daily lives. For CT educators, this creates a wealth of options both in new

content and new pedagogical approaches. It also prompts reexamining

the reasons why CTE should be a subject for everyone in K–12, includ-

ing many students whose style of learning might be a poor match to the

abstract aspects of computer science.

One manifestation of this reexamination is to reconsider the role of

programming in CTE, or at least the role of popular programming lan-

guages like Java and Python. The emergence of block-based programming

languages like Scratch and App Inventor in the past decade has created

opportunities for students to create original applications using graphical

drag-and-drop interfaces that are accessible to those with little or no pro-

gramming background. The consequence is the opportunity for students

to exercise creativity and personal expression through computing even

in primary school, and the centrality of programming in CTE is a current

topic of debate among educators.

The six chapters in this section of the book show leaders in CTE prac-

tice and research confronting these new opportunities.

In “A Case for Why: Society, School, Self” Brennan takes a hard-headed

look at the rationale for teaching CT, pointing out that before looking at

how to teach CT, one must start with why teach it. The chapter examines

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

6	S .-C. Kong, H. Abelson, and W.-Y. Kwok

three classes of reasons—society, school, and self—and describes the chal-

lenges with each of these. There is a strong constructionist perspective and

an emphasis on programming as a vehicle for self-expression. Brennan dis-

cusses teachers’ perspectives on the pedagogical concerns and challenges of

implementing CTE in K–12 classrooms. She then shares and comments on

the pedagogical designs favorable to the delivery of CTE to K–12 students.

Last, she shares some practical considerations for deploying the creative

approaches to the design of CTE activities in K–12 classrooms for fostering

every young student to effectively develop CT.

The second chapter in this section—“Providing Students with Computa-

tional Literacy for Learning About Everything” by Guzdial—makes a strong

case for teaching programming, both as a general problem-solving skill and

as a tool for student understanding and empowerment in the world in

which they live. This does not require learning a complete programming

language like Python or Javascript. Rather it can be done through task-

specific microworlds. As an example, the paper describes a microworld for

constructing image filters using matrix transformations.

“Developing Computational Thinking Skills with Multiple Models and

Representations” by Hoppe and Manske argues for the importance of using

multiple models and representations in CT development through domain-

specific learning. The authors reflect on the common use of visual block-

based programming with imperative sequential models and then introduce

and compare the use of “reactive rule-based programming” as an alternative

computational representation for delivering CTE in K–12. They recommend

and illustrate the mixed use of computational representations in CTE activi-

ties for effectively supporting young students to develop CT competence as

well as domain-specific knowledge.

The fourth chapter in this section—“Toward a Theory (and Practice) of

Multiple Computational Thinkings” by Román-González, Moreno-León,

and Robles—argues that CT is best viewed through Gardner’s theory of

multiple intelligences, and that consequently there is not “computational

thinking” but rather there are multiple computational thinkings. The chapter

supports this claim through several examples that illustrate differences in CT

assessment results that would seem contradictory in the light of measuring

computational thinking if CT were unidimensional. It then gives examples

of how CT could be taught in the context of eight different intelligences:

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Introduction to Computational Thinking Education in K–12	 7

verbal-linguistic, logical-mathematical, musical, bodily-kinesthetic, visual-

spatial, interpersonal, intrapersonal, and naturalistic. The chapter indicates

ways in which this theory might be tested, pointing out that standard CT

tests are not adequate for this task. If the theory is validated, it would indi-

cate that CT curricula should be much more diverse, and more tolerant of

multiple intelligences.

In “Learning Computational Thinking in Phenomena-Based Co-

creation Projects—Perspectives from Finland,” Silander, Riikonen, Seitamaa-

Hakkarainen, and Hakkarainen describe “phenomenon-based learning,”

which is widely used in Finland, and advocate for this approach to CTE.

With this method, one always starts from real-world phenomena so that

learning is highly contextualized. It’s not enough to just understand algo-

rithms or CT: phenomena must be studied as complete entities from various

points of view that cross boundaries between school subjects and integrate

different themes. There is a strong emphasis on makerspaces and project-

based learning and realization the CT is more than just programming.

The final chapter in this section, by Dindler, Iversen, Caspersen, and

Smith shines a spotlight on “Computational Empowerment,” a framework

that grows out of the participatory design tradition common in Scandi-

navia. This framework reaches far beyond the issues addressed in typical

CT instruction. The authors present three key pillars for computational

empowerment: (1) students should engage critically and curiously with the

design of technology; (2) they should analyze and reflect on how technol-

ogy affects use as individuals and members of society; (3) they should be

able to promote democratic practices in the design of technology. CT itself

is only part of a curriculum that addresses computational empowerment.

One should also address the need for students to make informed choices

about the use of digital tools and to proactively engage in the digitization

of society.

FOCUS AREA 2: COMPUTATIONAL THINKING AND ARTIFICIAL

INTELLIGENCE LITERACY IN K–12

Computational thinking and artificial intelligence (AI) have a long history

together. Papert was co-director with Marvin Minsky of the MIT Artificial

Intelligence Laboratory, and many contributors to the MIT Logo project

were also researchers in AI. There was a great interest in understanding the

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

8	S .-C. Kong, H. Abelson, and W.-Y. Kwok

relation between machine intelligence and children’s intellectual devel-

opment. So it is understandable that the area to emerge from this work

would be called computational thinking. More pointedly, the influence of

AI on CT has now become transformative.

AI has been a solid branch of computer science since the 1960s, but

over the past fifteen years, world attention to AI has exploded to the point

where its potential for global economic impact on society is compared

to the impact of the steam engine in the 1800s (Bughin et al. 2018). This

excitement poses challenges to CTE. One is the sheer pace of innovation

in AI. Educators who are barely assimilating the call to include CT in the

K–12 curriculum are now being asked to address a new constellation of

ideas, with breakthrough applications heralded every few months.

More significantly, today’s AI draws on concepts that have until now

received little attention in CTE curricular work. Abstraction and modular-

ity remain fundamental, but algorithmic thinking concepts like sequenc-

ing and conditionals become less critical in light of increased emphasis on

machine learning and statistical methods. For example, in understanding

the outputs of systems that perform image classification or medical diag-

nosis, it can be more important for students to consider the effect of the

training data, as opposed to the learning algorithms.

The most important implication of progress in AI for CTE is the need

to pay attention to the societal impact of computing in primary school.

AI researchers and developers are beginning to come to grips with their

responsibility for the consequences of their work, especially in areas of

safety and fairness. Many technology companies have adopted policies

around “responsible AI,” and university courses in AI increasingly include

units on ethical design in their AI curricula. That same concern is moving

into CTE, with K–12 education beginning to draw on ideas from ethics

and sociology alongside traditional technical disciplines.

In “The Computational Thinking and Artificial Intelligence Duality,”

Heintz discusses and illustrates the duality of CT and AI. The essence of

this duality is the main focus of traditional computer science: CT is based

on algorithms and programs expressed as step-by-step instructions, whereas

the main focus of modern AI is to develop algorithms and programs that

learn from data even where the problem may not be well defined. Heintz

describes the complementary thinking strengths of computers and humans.

He elaborates the synergy between AI literacy and CT competence for the

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Introduction to Computational Thinking Education in K–12	 9

success in the AI economy and discusses the scope of AI literacy and CT

competence that should be cultivated in K–12 students for leveraging the

duality between CT and AI in daily problem-solving contexts.

The second chapter in this section—“Artificial Intelligence Thinking

in K–12” by Touretzky and Gardner-McCune—discusses and illustrates

the issue of AI thinking in AI education for CT development. The authors

introduce the national guidelines under the AI4K12 Initiative for AI edu-

cation in K–12 in the United States and then discuss the “five big ideas in

AI”: perception, representation and reasoning, learning, natural interac-

tion, and societal impact.

“Preparing Children to be Conscientious Consumers and Designers

of AI Technologies” by DiPaola, Payne, and Breazeal presents an extended

rationale and standards for AI education in middle school, together with

sample curriculum elements. The authors propose three key objectives

for middle school AI: (1) students should shift from being just consumers

of AI to become conscientious consumers of AI; (2) they should become

ethical designers of AI; and (3) they should be able to participate in demo-

cratic discussions around AI. The chapter outlines a week-long workshop

for middle school, which emphasizes for students that AI design reflects

the values of the designers. It uses image classification as an example of

how classifiers can be biased, and it includes a session in which students

redesign YouTube with the aid of an “ethical matrix” tool that encourages

students to consider the values of the system designers.

FOCUS AREA 3: COMPUTATIONAL THINKING AND PHYSICAL

COMPUTING EDUCATION IN K–12

The third current of CTE change explored in this volume is the increasing

influence of physical devices. Physical devices are hardly new territory for

CTE in K–12. Indeed, some of the first work in schools by Papert’s MIT

Logo group involved middle-school students in 1968 programming a robot

called the turtle, and “turtle” has been a persistent meme in educational

computing ever since. Today there is a growing variety of inexpensive

robotic toys that support computer controls and other digital interfaces,

and this is prompting critical rethinking of key CTE approaches.

One line of rethinking emphasizes that these are physical devices in

the real world. Bringing computing “off the screen” makes it concrete

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

10	S .-C. Kong, H. Abelson, and W.-Y. Kwok

and tangible and makes CTE accessible even to students at pre-primary

level. It also makes project work more readily sharable and social and

is encouraging CTE theorists to look beyond only constructionism and

draw upon Vygotsky’s view of learning as a social process.

A second line of rethinking results from the fact that programming in

the presence of sensors and actuators requires use of event-driven pro-

grams that can react to changes in the environment. This consequently

decreases the centrality of the straight-line programs whose elements

form the introductory material of much of CTE in K–12.

Three chapters in this volume explore these ideas from different

perspectives.

In “Examining the Multidimensional Learning Affordances of Robotics

for Computational Thinking and Science Inquiry,” Sullivan shares and dis-

cusses experience in the U.S. on multi-dimensional learning for CT develop-

ment afforded by robotics. She elaborates the nature of the interaction and

the synergy among three fundamental problem spaces in robotics learning:

the robotic device, the software program, and the actual physical environ-

ment for navigation by the robotic device. She illustrates the creation and

deployment of robotics learning environments that meaningfully engage

students in CT development along with the process of science inquiry. The

chapter adopts a Vygotskyan perspective that emphasizes social interac-

tion open-ended collaboration. It also describes how the work across three

perspectives supports the principles of science literacy as described in the

US Next Generation Science Standards (2013), including abstraction and

making inferences from data.

The second chapter in this section—“Toward a Research Agenda for

Developing Computational Thinking Skills by Sense-Reason-Act Program-

ming with Robots” by Fanchamps, Specht, Slangen, and Hennissen—shares

and discusses the experience in the Netherlands with CT development

through Sense-Reason-Act programming with robots. The authors review

the approach of Sense-Reason-Act programming in computer-related edu-

cation in K–12 schools. They also present their pioneering work on the

design of dynamic problem-solving environments for CT development,

where the approach of Sense-Reason-Act programming with robots is used

to support students in developing competences ranging from straight-line

programming to dynamic problem-solving algorithms.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Introduction to Computational Thinking Education in K–12	 11

In “Computational Thinking in the Interdisciplinary Robotic Game:

The CHARM of STEAM,” Shih shares and discusses the experience in Tai-

wan with a robotic game for CT development, in which students in grades

4 through 8 control physical robots that move on a large map. This “Great

Voyage Game” supports students in developing interdisciplinary knowl-

edge about the history, geography, diplomacy, and economy of European

countries in the Age of Discovery. The chapter includes a careful analysis of

student skills correlated with STEM (science, technology, engineering, and

math) topics and CT principles.

The goal of this edited collection is to advance a voice and substan-

tially augment discussion and debate about CT in K–12. The chapters

are organized into three sections to reflect the profusion of educational

approaches as CTE expands throughout K–12; describe the evolving chal-

lenges for CTE in response to today’s explosive progress in AI; and examine

the impact on CTE of the increasing integration of computing into physi-

cal objects. Taken together, these themes add immediacy and vibrancy to

a field that is already emerging as a key concern for educational research.

A list of additional readings on CTE for K–12 is also provided in the book-

end appendix for readers as an easy reference to the major keystone works

in the field.

NOTE

1.  The term “computational thinking” itself appeared as early as the nineteenth
century to refer to the use of quantitative methods in science, and later to the
emphasis on reasoning in teaching arithmetic. The modern association of the term
with computers and education comes from Papert (1980), who also referred to this
as “procedural thinking.”

REFERENCES

Aho, Alfred. 2011. “Computation and Computational Thinking.” Ubiquity 2011 (1).
https://doi​.org​/10​.1145​/1922681​.1922682​.

Bughin, Jacques, Jeongmin Seong, James Manyika, Michael Chui, and Raoul Joshi.
2018. “Notes from the AI Frontier: Modeling the Impact of AI on the World Econ-
omy.” https://www​.mckinsey​.com​/featured​-insights​/artificial​-intelligence​/notes​-from​
-the​-ai​-frontier​-modeling​-the​-impact​-of​-ai​-on​-the​-world​-economy​.

Computer Science Teachers Association (CSTA). 2017. “K–12 Computer Science
Standards, Revised 2017.” https://www​.csteachers​.org​/page​/standards​.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

12	S .-C. Kong, H. Abelson, and W.-Y. Kwok

Huang, Ronghuai, Junfeng Yang, Guangde Xiao, and Hui Zhang. 2021. “Computa-
tional Thinking and the New Curriculum Standards of Information Technology for
Senior High Schools in China” (forthcoming).

Hunsaker, Enoch. 2018. “Computational Thinking.” In The K–12 Educational Tech-
nology Handbook, edited by Anne Ottenbreit-Leftwich and Royce Kimmons. EdTech
Books. https://edtechbooks​.org​/k12handbook​/computational_thinking​.

Next Generation Science Standards. 2013. Next Generation Science Standards. https://
www​.nextgenscience​.org​/search​-standards​.

Papert, Seymour. 1971. “Teaching Children Thinking.” MIT Artificial Intelligence Labo-
ratory AI-247. https://dspace​.mit​.edu​/handle​/1721​.1​/5835​.

Papert, Seymour. 1980. Mindstorms: Children, Computers, and Powerful Ideas. New York:
Basic Books.

Papert, Seymour. 1987. Constructionism: A New Opportunity for Elementary Science Edu-
cation. Proposal to National Science Foundation Division for Research on Learning.

Peyton-Jones, Simon. 2014. “Teaching Creative Computer Science.” TEDexExeter talk.
Streamed live on April 29, 2014, YouTube video, 14:49. https://www​.youtube​.com​
/watch​?v=Ia55clAtdMs​.

Tissenbaum, Mike, Josh Sheldon, and Hal Abelson. 2019. “From Computational Think-
ing to Computational Action.” Communications of the ACM 62 (3): 34–36.

Wing, Jeannette M. 2006. “Computational Thinking.” Communications of the ACM
49 (3): 33–35.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

I
A MULTIPLICITY OF COMPUTATIONAL
THINKINGS

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

ASKING WHY

At Harvard University, in the Graduate School of Education, I teach a large

design class, in which students develop self-directed projects throughout

the term. The course explores constructionist and constructivist theories

of learning. As such, all of the projects inevitably connect to learning in

some way: students designing for their own learning, students designing

for others’ learning, or some combination of both. Early on in the project

development process, we engage in an exercise that unpacks the aspi-

rations underlying their projects by iteratively asking one question five

times: “And why is that important to you?” I love this exercise because

it evaluates our designs according to purpose, peeling back layers of

intentions. It quickly and sharply highlights contradictions and tensions

between how we are actually doing things and why we wanted to do those

things in the first place.

I have been thinking about this exercise in relation to the consider-

able attention that computational thinking (CT) is presently garnering

in K–12 settings. With individual classroom designs, district mandates,

statewide initiatives, and national-level activities, there is no shortage of

efforts to make CT accessible to all learners. As increasing numbers of

K–12 teachers are being asked to include CT as part of their pedagogical

1
A CASE FOR WHY
SOCIETY, SCHOOL, SELF

Karen Brennan

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

16	 K. Brennan

considerations, many teachers are reasonably asking, “Why should I

teach computational thinking?”

Before exploring the why of CT, it is necessary to clarify what CT is.

Although this term has a long history and there remains little consensus

on the specifics, it is often defined broadly as what one learns through

participation in the domain of computer science. Denning (2017) offered

a helpful guided tour and critique of CT through the history of computer

scientists’ conceptions of the field’s contributions—from Alan Perlis’s

early exhortations about algorithms to Seymour Papert’s introduction of

the term computational thinking in Mindstorms in 1980 to Jeannette Wing’s

popularization of CT to Al Aho’s focus on abstractions and the more recent

operationalization of CT for K–12 by organizations such as Computer Sci-

ence Teachers Association (CSTA), Computing at School, and International

Society for Technology in Education (ISTE).

I have been particularly interested in the extent to which programming

is included—or not—as a necessary component of CT. I first encountered

CT as a construct through Wing’s renowned 2006 article, “Computational

Thinking,” in Communications of the ACM. At the time, my work was

focused on young people’s participation and learning with Scratch pro-

gramming. CT seemed like an interesting, if underspecified, framework for

thinking about what one may learn through programming. That curiosity

about CT and young people programming with Scratch led to the devel-

opment of a CT framework and set of assessment strategies, which I cre-

ated in collaboration with Mitch Resnick at MIT and program evaluators

at Educational Development Center (EDC) (Brennan and Resnick 2012).

Our CT framework emphasizes programming as a way of developing as a

computational thinker—that is, developing fluency with computational

concepts (core conceptual knowledge required to construct programs, such

as sequences, loops, and variables), practices (the practices or strategies one

employs when putting that core conceptual knowledge into action in a

computer program, such as being iterative and incremental, or employing

abstraction and modularization), and perspectives (the evolving concep-

tions of self, others, and world that develop through the learner-directed

creation of programs).

There are benefits and challenges to aligning one’s commitments and

work to a popular term, as I did with CT. One benefit is recognition:

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

A Case for Why	 17

even for a term as contested as computational thinking, others in research

and practice can generally understand what is meant. Another benefit is

that individuals can contribute to the framing and shaping of the term

itself. My particular approach to CT foregrounds programming in a way

that others do not and consequently influences the conversation about

what CT is and how it may be supported. A central challenge, of course,

is the inherent limits of language and our understanding of particular

words. Some argue that “thinking” is too passive and too psychologically

interior as a signifier, which has led to other framings—such as computa-

tional participation (Kafai 2016), critical computational literacy (Lee and

Soep 2016), and computational action (Tissenbaum, Sheldon, and Abel-

son 2019)—that more explicitly signal the active and social qualities of

this learning.

I am not unduly preoccupied with this critique of the passivity or intro-

version of thinking in CT. My approach to design and research is guided

primarily by constructionist epistemological commitments. Construction-

ism, which builds on the learner-centered commitments of constructivism,

articulates the profound and powerful interconnectedness of thinking

as mental construction and making as physical construction (Kafai and

Resnick 1996). The externalization of our thinking, such as by creating

a computer program, creates opportunities for ourselves and for others to

inspect, test, reflect on, and respond to our thinking. Owing to my con-

structionist commitments, then, I regard thinking as inherently active and

social.

To be transparent about my conceptions and commitments, I men-

tion my framing of CT as a set of concepts, practices, and perspectives

developed through programming and my guiding learning theory as con-

structionism. These necessarily are the motivation behind and focus for

the arguments I make in this chapter about why we should want to sup-

port CT in K–12. Although these positions are certainly not universal, I

hope that, whether you think of CT differently (e.g., unplugged activities)

or are guided by different learning theory (e.g., behaviorist, cognitivist,

or constructivist), the arguments in this chapter will nonetheless be of

value. With this framing in mind, let us turn our attention to the various

conceptions of CT in K–12.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

18	 K. Brennan

EXPLORING WHY

Over the past ten years, there have been a variety of efforts in academia to

explore the why of CT. For example, in a 2010 National Research Council

report about a workshop focused on defining CT, academic participants

outlined a set of five justifications, including (1) “succeeding in a tech-

nological society,” (2) “increasing interest in the information technology

professions,” (3) “maintaining and enhancing U.S. economic competi-

tiveness,” (4) “supporting inquiry in other disciplines,” and (5) “enabling

personal empowerment.”

More recently, Vogel, Santo, and Ching (2017) engaged stakeholders in

New York City in a participatory process to identify justifications for com-

puter science education for all K–12 students. This process led to the devel-

opment of seven justifications, including “(1) economic and workforce

development impacts, (2) equity and social justice impacts, (3) competen-

cies and literacies impacts, (4) citizenship and civic life impacts, (5) scien-

tific, technological and social innovation impacts, (6) school improvement

and reform impacts, and (7) fun, fulfillment and personal agency” (610).

This list was then taken up and refined by Blikstein (2018) in a Google-

funded report about the state of K–12 computing education. This list was

presented as “four distinct positions,” including (1) “the labor market

rationale,” (2) “the computational thinking rationale,” (3) “the compu-

tational literacy rationale,” and (4) “the equity of participation rationale”

(8). Beyond academia, similar lists of justifications have been developed

by practitioner-facing organizations, including CSTA, ISTE, Association for

Computing Machinery (ACM), and Code​.org​.

As these three lists suggest, a wide variety of interconnected and over-

lapping justifications have been imagined for why CT may be helpful

for students. Rather than presenting a laundry list of justifications in my

conversations with K–12 teachers, I tend to group these various justifi-

cations into three broad categories: society (justifications that connect

the learner to the broader world, such as expectations for technological

literacy and workforce arguments), school (justifications that situate the

learner in an academic context, such as general aspirations for thinking

and means of learning about other subjects), and self (justifications that

focus on learners’ understandings of themselves, such as identity devel-

opment and opportunities for cultivating creative agency).

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

A Case for Why	 19

Before exploring each of these categories, I note a few properties of

the society-school-self categorization. All three categories focus on student

benefits; they are framed as things that are good for learners, first and

foremost, and, through a lens of diversity, equity, and inclusion, good

for all learners, rather than only a select few. The categories are nonhier-

archical; that is, there is not an implicit ranking of importance or value.

(Although, as I discuss later, I do not personally prioritize them equally,

which in turn informs my design decisions.) Relatedly, the categories are

overlapping; for example, one can be committed to justifications that are

related to society (e.g., preparing students for future work) and justifica-

tions related to school (e.g., understanding ways of thinking). A main

difference among the categories and justifications, however, is the varia-

tion in time horizons. For a third grader (typically eight years old and in

the fourth year of schooling), an argument about jobs likely has a differ-

ent sense of urgency and relevance than for a twelfth grader (typically

eighteen years old and in the thirteenth year of schooling), whereas an

argument about creativity has immediate relevance, age notwithstand-

ing. For each of the categories, I describe the essence of the narrative that

motivates the category, including specific examples of justifications, as

well as some considerations and cautions.

SOCIETY

The broad social impact of computing is undeniable; our personal, pro-

fessional, and public lives have been dramatically reconfigured over the

past twenty years by code—with no signs of abating, given ongoing discov-

eries and developments in artificial intelligence and automation. Accom-

panying this radical reconfiguration has been a set of arguments related

to why young people need to learn to program in the service of their

future participation in society. One common argument is that program-

ming forms a necessary computational and technological literacy. From

the early 1960s to present day, learning how to program has been argued

to be a necessary critical skill for understanding our changing technologi-

cal and social landscape (Lee and Soep 2016; Vee 2013). These arguments

are frequently grounded in a desire to differentiate “use of” or “consump-

tion of” from “making with” programmed artifacts (Rushkoff 2010) and

to challenge simplistic narratives around children as “digital natives,”

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

20	 K. Brennan

which are often more reflective of adult aspirations than actual student

actions or participation (Buckingham 2007).

Another common argument emphasizes programming as essential for

future jobs and employment. As noted by Guzdial (2015), “most of the

arguments . . . ​for computing in schools are based on jobs” (1). Although

there is a sense of value in programming in the present moment (which

I will explore shortly), in my conversations with K–12 teachers and their

students, there has been a pervasive theme of “the future” around learn-

ing how to program, especially related to jobs and the workforce. Teach-

ers and students have a sense that there will be future job opportunities

that will be missed if they do not focus on learning to program in the

present. There is also a more diffuse notion of innovation—that learning

how to program will somehow position them, eventually, to shape or

change the future.

Both of these justifications—about literacy more broadly and workforce

preoccupations—are echoed in the literature about justifications for CT

(Blikstein 2018; Flórez et al. 2017; Shein 2014; Vogel, Santo, and Ching

2017). Arguments about preparing students for the future are intuitively

appealing; they are aligned with long-standing articulations of the main

project of school, that is, preparing young people for future participation

and success in the world they will eventually enter as adults (Bransford,

Brown, and Cocking 2000; Graham 1984). However, it is worthwhile to

problematize these future-oriented framings. Certainly it is our responsi-

bility to prepare students for a world that will undoubtedly be different

from the world as it is today. But are we designing learning experiences

based on technologies that may cease to exist? And how do we prepare

students to participate in a world in which programming may, at some

point, become less essential because of automation of at least some aspects

of programming? It is also our responsibility to prepare students to contrib-

ute to making the world different than it is today. How do we, for example,

prepare students to avoid repeating the problematic computing workplace

cultures of today, which are widely recognized as being grossly unsuccess-

ful in addressing issues of diversity, equity, and inclusion? How do we help

students bring focus and attention to the increasing numbers of ethical

issues connecting computing and society?

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

A Case for Why	 21

SCHOOL

A more immediate set of justifications for CT focus on cognitive and aca-

demic benefits in the K–12 school context. For example, it is often argued

that by engaging in the types of algorithmic thinking and problem-

solving that accompany the design and debugging of computer programs,

students are building capacity for logical thinking and problem-solving

more generally. Relatedly, it is sometimes argued that CT (and, specifi-

cally, programming) can serve learning in other domains. In the early days

of programming in schools, integration with mathematics was a focus, as

popularized by the Logo programming language and by Papert’s Mind-

storms. In the current CT resurgence, Weintrop et al. (2016) offered three

reasons why disciplinary integration is appealing in schools: (1) the poten-

tial for the development of CT and disciplinary knowledge to be mutually

reinforcing; (2) the advancement of equity given that core subjects (like

math and science) are required, and including CT and programming in

them will reach all students rather than a limited number of students who

engage in computing electives; and (3) the experience of authentic pro-

fessional practice given the ascendant role of computing in many STEM

(science, technology, engineering, and math) disciplines. Disciplinary

integration is increasingly popular in research and practice in part because

of current funding priorities: for example, the US National Science Foun-

dation’s large investments in STEM plus Computing (STEM+C) research

as expanded or amplified by intersections with computing, computer sci-

ence, and CT.

These arguments about the benefits of programming in K–12 for devel-

oping discipline-specific knowledge and for young people’s thinking more

broadly have long and contested histories, exemplified by the early days

of Logo efforts, including public disagreements between Seymour Papert

(1987) and Roy Pea (1987) about what young people are doing and learn-

ing. In spite of a sense that the types of thinking and learning opportunities

that students have while programming seem different than other types of

activities in which they may engage, it is reasonable to be cautious about

overreach of claims. There is a lack of evidence that the problem-solving skills

developed in programming can transfer to other problem-solving contexts,

which is unsurprising given the thorniness of transfer in education more

broadly (Denning 2017; Guzdial 2015). There are also questions about

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

22	 K. Brennan

the unique contributions of programming and CT in contrast with other

forms of domain thinking (e.g., computational thinking vs. mathematical

thinking, historical thinking, scientific thinking, and so on) (Grover and

Pea 2013). As a practical caution, this interest in programming across the

curriculum is motivated, in no small part, by the bureaucratic challenge

of determining where to include computer science in a K–12 curriculum

that is already very full (Cooper et al. 2014). In other words, disciplin-

ary integration is sometimes a strategy for addressing administrative con-

cerns rather than benefiting student learning. Regardless of motivation,

disciplinary integration is challenging, particularly given many teachers’

time constraints and lack of disciplinary expertise (Fincher 2015) and as

evidenced by the history and failures of experiences in teaching Logo pro-

gramming in schools (Hickmott and Prieto-Rodriguez 2018).

SELF

As part of a fundraising event several years ago, my research team mem-

bers and I interviewed 150 K–12 students from around the United States

about their Scratch experiences, asking these young people, “What would

you tell your friend about Scratch?” It was striking to me that, although

students invoked some of the discourses I have mentioned thus far (e.g.,

workforce ambitions or general/disciplinary thinking), students from kin-

dergarten through grade 12 overwhelmingly talked about the importance

of creativity and self-expression and, relatedly, empowerment and identity. They

talked about the power of taking their ideas and bringing them into the

world and how those acts changed the ways in which they saw themselves

as agents in the world.

The justifications of creativity and empowerment are recognized

throughout the CT literature. Lee and Soep (2016) described the think-

ing associated with programming as “complex, circular, ambiguous, mul-

tiple, social, and rhizomatic” ways of thinking that centrally depend on

“imagination and creativity” (484). Creativity and empowerment are also

recognized in practice-focused writing. For example, the first “big idea”

from the Advanced Placement Computer Science Principles course is that

“[c]omputing is a creative activity” (College Board 2017, 1). Creative acts

can contribute to self-perceptions of empowerment. As Cooper and Dann

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

A Case for Why	 23

(2015) shared about their own teaching practice, “In our classes, we see

the joy when students complete their programming projects. The sense of

empowerment, creativity, and independence that is generated by success-

fully creating a program to perform some task (however trivial) is almost

tangible” (54). This connection between creativity and empowerment in

programming and computing is not new: Guzdial (2015) observed that,

in the early days of computing, “[R]esearchers and visionaries like Seymour

Papert, Cynthia Solomon, Alan Kay, and Andrea diSessa saw the computer

as a new medium for human expression and empowerment” (1).

While enthusiasm for creativity and empowerment is understandable

given the potential benefits for student interest and motivation, it has

been challenging to realize these benefits in K–12 schools. Even tools such

as Scratch that have an expressed commitment to supporting student cre-

ativity are not necessarily used in ways that actually support creativity in

classrooms (Yadav and Cooper 2017). Why? The culture of school is too

often in tension with the culture of creativity (Resnick 2017). This mis-

match between creative culture and school culture can be overwhelming

for teachers, who find themselves negotiating limitations of class time,

their own professional preparation, uncertainties about how to assess

these learning aspirations (particularly students’ evolving conceptions of

self), and broader expectations about their roles in the classroom (Bren-

nan 2015a; Brennan and Resnick 2012). Misalignment between creative

culture and school culture can similarly be challenging for students, who

may be unsettled by changes in what teachers expect of them and, in

turn, resist those changes (Brennan 2015a; Holt 1972).

DESIGNING FOR WHY

Why have I belabored the why of CT in this chapter? As Guzdial (2015)

asserted, “[A]s teachers and designers of education, the first question we

should ask is, ‘Why?’” (1). It is critical to foreground this question because

the why informs the how of supporting access to CT; it serves as the founda-

tion for subsequent design decisions about the instructional surround (Blik-

stein 2018). A lack of clarity about why can lead to misalignment between

intentions and actions. How does one choose among curricula or decide

when to introduce CT into an instructional sequence, for example, without

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

24	 K. Brennan

understanding why these learning opportunities should be included in the

first place? Although I am focusing on teachers and classroom practice

here, these concerns are not restricted to the microcosms of individual

classrooms; questions about purpose should be central no matter how one

contributes to the educational enterprise—from classroom teachers, to par-

ents, to administrators. Policy makers have an especially critical role, given

that policy determines priorities (i.e., emphasizing a particular why) and

shapes action (i.e., suggesting the how) (Coburn 2016; McDonnell 1995).

Understanding the motivation is even more important with any initia-

tive that is surrounded with considerable momentum or hype, where the

intentions and objectives are obfuscated by the frenzy of trying to keep up

with what everyone else seems to be doing, as well as attempts by corporate

interests to influence the agenda for their own purposes. The history of

education is littered with examples of these hype cycles—moments of great

enthusiasm that are then followed by disappointment and abandonment

of efforts (David and Cuban 2010; Graham 1984).

In my own research and design work, although I appreciate the society-

and school-grounded justifications, I am guided primarily by self-oriented

justifications, particularly justifications that foreground the creativity of

young people. I appreciate this particular grounding for its immediacy,

as expressed by the young people I have had the benefit of working with

over the past decade, but also for its broader impacts. As recognized by

educational philosophers from Friedrich Froebel to John Dewey to Paolo

Freire to bell hooks, creativity is a central part of human development

and experience, essential to learning as a lifelong endeavor.

Unfortunately, I frequently encounter examples of how intentions

for creativity are unexpectedly subverted in classrooms, from having few

opportunities for variation in student work to having little time for explo-

ration or creation, to a lack of conceptual capacity-building that would

enable greater creative fluency. So, in addition to offering a broad reminder

to check one’s actions against one’s aspirations, I would like to offer more

concrete guidance for the specific aspiration of fostering creativity. This

is challenging, however, when there are so many different ways of sup-

porting creativity. A list of actions to take or curriculum to follow would

be woefully insufficient to represent the enormous opportunity we have

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

A Case for Why	 25

collectively, in this moment, as designers committed to supporting CT for

all K–12 students. So, inspired by Postman and Weingartner (1969), I will

instead offer a set of questions. Questions are a delightfully effective way

to identify disparities between action and intention; they are suggestive

rather than directive, respectful both of variation in learning contexts and

of teacher agency when designing learning experiences. The questions

offered here are guided by my constructionist commitments to learning,

which foreground learner agency and creativity. I articulate these commit-

ments as opportunities for students to engage in personalizing, making, shar-

ing, and reflecting (Brennan 2015b).

My questions about personalizing emphasize opportunities for learn-

ers to express their interests and exercise their agency. Who is deciding

what is important to learn? Where do students connect their program-

ming activities with what they are interested in and care about? How

does the design of the learning experience recognize the variation within

the group of learners? My questions about making focus on opportunities

for learners to iteratively practice and develop their programming skills.

In a given class period, how is student time allocated? Are they doing more

listening or more creating? Are they following or are they exploring? My

questions about sharing focus on opportunities for learners to learn with

and from each other, in both a formative and summative manner, to

receive feedback and to circulate existing expertise. At what moments do

students share their work? How often do students get to see what their

peers are doing—or what their near-peers have done? How are process

and product shared? My questions about reflecting emphasize the impor-

tance of not just doing but also thinking about what one is doing, both in

real time and after the fact, as a critical part of learning and development.

What types of questions are students asked about their process and work

by others? What types of questions do students ask themselves about their

process and work? How do students document their progress and their

learning?

I continually ask myself these questions when I am designing and

researching learning experiences to support creativity in K–12 comput-

ing. They serve as guidelines to my work, reminding me when I am stray-

ing too far from my core commitments. These particular questions reflect

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

26	 K. Brennan

my personal commitments; as such, your own questions may be differ-

ent. But whether your work is designing classroom experiences, assessing

the appropriateness of a K–12 CT intervention, appreciating the ambi-

tions of individual students, or supporting some other dimension of CT

for all learners, I hope that this exploration underscores the value of con-

tinually attending to the alignment between intention and action in our

collective work as educators.

REFERENCES

Blikstein, Paulo. 2018. Pre-college Computer Science Education: A Survey of the Field.
Mountain View, CA: Google LLC. https://goo​.gl​/gmS1Vm​.

Bransford, John, Ann L. Brown, and Rodney R. Cocking. 2000. How People Learn:
Brain, Mind, Experience, and School. Washington, DC: National Academy Press.

Brennan, Karen. 2015a. “Beyond Right or Wrong: Challenges of Including Creative
Design Activities in the Classroom.” Journal of Technology and Teacher Education 23
(3): 279–299.

Brennan, Karen. 2015b. “Beyond Technocentrism: Supporting Constructionism in
the Classroom.” Constructivist Foundations 10 (3): 289–296.

Brennan, Karen, and Mitchel Resnick. 2012. “Using Artifact-Based Interviews to
Study the Development of Computational Thinking in Interactive Media Design.”
Paper presented at the American Educational Research Association meeting, Van-
couver, BC, Canada.

Buckingham, David. 2007. Beyond Technology: Children’s Learning in the Age of Digital
Culture. Malden, MA: Polity Press.

Coburn, Cynthia E. 2016. “What’s Policy Got to Do with It? How the Structure-
Agency Debate can Illuminate Policy Implementation.” American Journal of Educa-
tion 122 (3): 465–475.

College Board. 2017. AP Computer Science Principles Course Overview. Last modified
June 2017. https://apcentral​.collegeboard​.org​/pdf​/ap​-computer​-science​-principles​
-course​-overview​.pdf​.

Cooper, Stephen, and Wanda Dann. 2015. “Programming: A Key Component of
Computational Thinking in CS Courses for Non-Majors.” ACM Inroads 6 (1): 50–54.

Cooper, Steve, Shuchi Grover, Mark Guzdial, and Beth Simon. 2014. “A Future for
Computing Education Research.” Communications of the ACM 57 (11): 34–36.

David, Jane L., and Larry Cuban. 2010. Cutting through the Hype: The Essential Guide
to School Reform. Cambridge, MA: Harvard Education Press.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

A Case for Why	 27

Denning, Peter J. 2017. “Remaining Trouble Spots with Computational Thinking.”
Communications of the ACM 60 (6): 33–39.

Fincher, Sally. 2015. “What Are We Doing When We Teach Computing in Schools?”
Communications of the ACM 58 (5): 24–26.

Flórez, Francisco Buitrago, Rubby Casallas, Marcela Hernández, Alejandro Reyes, Silvia
Restrepo, and Giovanna Danies. 2017. “Changing a Generation’s Way of Thinking:
Teaching Computational Thinking Through Programming.” Review of Educational
Research 87 (4): 834–860.

Graham, Patricia Albjerg. 1984. “Schools: Cacophony about Practice, Silence about
Purpose.” Daedalus 113 (4): 29–57.

Grover, S., and R. Pea. 2013. “Computational Thinking in K–12: A Review of the
State of the Field.” Educational Researcher 42 (1): 38–43.

Guzdial, Mark. 2015. Learner-Centered Design of Computing Education: Research on
Computing for Everyone. Synthesis Lectures on Human-Centered Informatics: Morgan
& Claypool Publishers. https://doi​.org​/10​.2200​/S00684ED1V01Y201511HCI033​.

Hickmott, Daniel, and Elena Prieto-Rodriguez. 2018. “To Assess or Not to Assess:
Tensions Negotiated in Six Years of Teaching Teachers about Computational Think-
ing.” Informatics in Education 17 (2): 229–244.

Holt, John Caldwell. 1972. Freedom and Beyond. New York: E. P. Dutton and
Company.

Kafai, Yasmin B. 2016. “From Computational Thinking to Computational Participa-
tion in K–12 Education.” Communications of the ACM 59 (8): 26–27.

Kafai, Yasmin, and Mitchel Resnick, eds. 1996. Constructionism in Practice: Designing,
Thinking, and Learning in a Digital World. Hillsdale, NJ: Lawrence Erlbaum.

Lee, Clifford H., and Elizabeth Soep. 2016. “None but Ourselves Can Free Our Minds:
Critical Computational Literacy as a Pedagogy of Resistance.” Equity & Excellence in
Education 49 (4): 480–492.

McDonnell, Lorraine M. 1995. “Opportunity to Learn as a Research Concept and a
Policy Instrument.” Educational Evaluation and Policy Analysis 17 (3): 305–322.

National Research Council (U.S.). 2010. Report of a Workshop on the Scope and Nature of
Computational Thinking. Washington, DC: National Academies Press. https://www​.nap​
.edu​/catalog​/12840​/report​-of​-a​-workshop​-on​-the​-scope​-and​-nature​-of​-computational​
-thinking​.

Papert, Seymour. 1980. Mindstorms: Children, Computers, and Powerful Ideas. New
York: Basic Books.

Papert, Seymour. 1987. “Computer Criticism vs. Technocentric Thinking.” Educa-
tional Researcher 16 (1): 22–30.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

28	 K. Brennan

Pea, Roy D. 1987. “The Aims of Software Criticism: Reply to Professor Papert.” Edu-
cational Researcher 16 (5): 4–8.

Postman, Neil, and Charles Weingartner. 1969. Teaching as a Subversive Activity. New
York: Delta.

Resnick, Mitchel. 2017. Lifelong Kindergarten: Cultivating Creativity Through Projects,
Passion, Peers, and Play. Cambridge, MA: MIT Press.

Rushkoff, Douglas. 2010. Program or Be Programmed: Ten Commands for a Digital Age.
New York: OR Books.

Shein, Esther. 2014. “Should Everybody Learn to Code?” Communications of the ACM
57 (2): 16–18.

Tissenbaum, Mike, Josh Sheldon, and Hal Abelson. 2019. “From Computational
Thinking to Computational Action.” Communications of the ACM 62 (3): 34–36.

Vee, Annette. 2013. “Understanding Computer Programming as a Literacy.” Literacy
in Composition Studies 1 (2): 42–64.

Vogel, Sara, Rafi Santo, and Dixie Ching. 2017. “Visions of Computer Science Edu-
cation: Unpacking Arguments for and Projected Impacts of CS4All Initiatives.” In
Proceedings of the ACM SIGCSE Technical Symposium on Computer Science Education.
Seattle, WA, 609–614.

Weintrop, David, Elham Beheshti, Michael Horn, Kai Orton, Kemi Jona, Laura
Trouille, and Uri Wilensky. 2016. “Defining Computational Thinking for Math-
ematics and Science Classrooms.” Journal of Science Education and Technology 25 (1):
127–147.

Wing, Jeannette M. 2006. “Computational Thinking.” Communications of the ACM
49 (3): 33–35.

Yadav, Aman, and Steve Cooper. 2017. “Fostering Creativity Through Computing.”
Communications of the ACM 60 (2): 31–33.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

LEARNING ABOUT COMPUTING IS LEARNING

ABOUT PROGRAMMING

Learning about computing almost always requires learning about pro-

gramming. There have been some brilliant people, like Alan Turing and

John von Neumann, who could think about computing without a lan-

guage or notation, but those people are rare. It is analogous to learning

mathematics, including addition, subtraction, and multiplication, with-

out writing digits like “34.9” or symbols like “+.”

Programming is defining a computation, something that a computer

can do. A program describes a process. A program can be specified in any

notation, so we should pick one that best suits the programmer and the

domain. The most popular programming languages today are demand-

ing, requiring students to use complex cognitive skills such as abstraction

and decomposition of a problem into subcomponents. Programming

does not have to be so complex and overwhelming. A simple program-

ming language can still be effective for learning. Programming is a power-

ful tool for helping students learn in many different domains. I argue in

this chapter that providing students with the ability to program is providing

them with a literacy that can be an advantage in learning about everything else.

The term computer science first appeared in print in the Journal of Engi-

neering Education in 1961 in an article by George Forsythe (Knuth 1972).

2
PROVIDING STUDENTS WITH
COMPUTATIONAL LITERACY FOR
LEARNING ABOUT EVERYTHING

Mark Guzdial

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

30	 M. Guzdial

Forsythe described (in 1968) that he saw computation as a “general-purpose

mental tool” that would “remain serviceable for a lifetime.” Explicitly, com-

puter science was defined as something that students could use to aid in their

thinking and their learning, especially in STEM (science, technology, engi-

neering, and mathematics) classes. In this chapter, I argue that the value of

learning programming is even greater than what Forsythe described.

There are many possible benefits to students learning to program. The first

section of the chapter lists many of these, ending with the most powerful—

programming as a new kind of literacy. The next section explains why the

computer can help with learning everything else, because it is the “master

simulator.” Finally, I argue that even a simple programming language can

have enormous advantage in learning. We don’t need all the power of C,

Scheme, or Logo to learn with programming as a literacy.

WHY SHOULD STUDENTS LEARN TO PROGRAM?

Learning to program does not impart to the learner general problem-solving

skills. There have been several studies looking for transfer from teaching

programming to general problem-solving skills. Probably the first study

investigating this claim was done by Roy Pea and Midian Kurland in 1984.

David Palumbo completed a meta-review of the research relating learning

programming and learning problem-solving (1990). Since then, the topic

has been revisited, but I read Palumbo’s results as painting a picture of pro-

gramming as an opportunity to teach problem solving rather than an expe-

rience where problem-solving is learned automatically.

It is possible to teach problem-solving using programming, but

problem-solving skills are not the automatic and direct result of learning

to program (Grover and Pea 2013). Sharon Carver showed how to teach

problem-solving with programming (Carver 1988). She wanted students

to learn debugging skills, such as being able to take a map and a set of

instructions and then figure out where the instructions are wrong. She

taught those debugging skills by having students debug Logo programs.

Students successfully transferred those debugging skills from Logo pro-

gramming to the map task. That’s significant from a cognitive and learning

sciences perspective. But her students didn’t learn much programming;

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Literacy for Learning About Everything	 31

she didn’t need much programming to teach that problem-solving skill.

Other studies have found similar results (Grover, Pea, and Cooper 2015;

Kalelioglu and Gülbahar 2014).

Fortunately, there are many other benefits of learning to program.

These are described in the paragraphs that follow.

TO UNDERSTAND THE WORLD IN WHICH THEY LIVE

Simon Peyton Jones argued that computer science is a science like all the

others (Peyton Jones 2013). We teach chemistry to students because they

live in a world with chemical interactions. We teach biology because

they live in a world full of living things. We teach physics because they live

in a physical world. We should teach computer science because they live in

a digital world.

Students live in a world where secret messages can be hidden inside

of pictures and where machines can be infected with viruses. They live

in a world where they own many computers, some of which do noth-

ing more sophisticated than control their microwave oven. They do not

need to know how all of this works at a level that they could build it

(although they may want to). They do need to understand enough to

troubleshoot the computing in their lives: for example, to know that it is

unlikely for the internet to ever “break,” but the router in their home can

fail. They need to understand enough to protect themselves: for example,

why running any arbitrary program downloaded from the internet may

be dangerous for their security. They also need to understand that they

can make their own apps and games and that anyone with any computer

can invent something that is world changing. Students should know the

basic principles of how their world works.

TO USE COMPUTERS MORE EFFECTIVELY

We all use computers ubiquitously, from the cellphones in our hands to

the laptops on which we work. Does knowing how the computer works

lead to more effective use of the computer? Are people who program

less likely to make mistakes with software? Are they more resilient in

bouncing back from errors? Can programmers solve computing problems

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

32	 M. Guzdial

(those that happen in applications or with hardware, even without pro-

gramming) more easily?

I bet the answer is yes, but I am unaware of research results that sup-

port that argument. There are likely common elements to mental models

that are used to understand the computational systems with which we

interact. Some of those common elements may include the causal and

repeatable nature of computers, which is unlike our everyday experience

(e.g., your PowerPoint animations likely work exactly the same way every

time). Programming may be a way to learn those common elements explic-

itly and efficiently.

TO INFLUENCE THEIR WORLD

The default behavior of users with computers is to consume. We consume

books, videos, music, and commentary in an endless stream or scroll. The

promise of programming is to turn digital consumers into digital produc-

ers who can use computing to have an effect on the world.

Yasmin Kafai calls this promise computational participation (Kafai 2016),

and Tissenbaum, Sheldon, and Abelson (2019) call it computational action.

The computer’s connectivity, malleability, and representational power

give students the ability to make digital products and share them widely.

From YouTube videos to new apps, the computer provides a rich medium

for creativity and a far-reaching distribution mechanism.

The question of the role of programming changes if we reframe pro-

gramming. Imagine if programming was not a complex and hard-to-learn

activity. What if learning to program was like learning to use a drawing

app, a photo editing tool, or a video editor. If we think of programming

as defining a process for someone else to use, then teaching students to

program is giving them another way that they can create digital artifacts

(i.e., stored and executable process) and share them with the world.

TO STUDY AND UNDERSTAND PROCESSES

Alan Perlis (first Association for Computing Machinery [ACM] Turing

Award laureate) argued in 1962 that everyone on every campus should

learn to program (Perlis 1962). He said that computer science is the study

of process. He contrasted learning computer science with learning calculus.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Literacy for Learning About Everything	 33

Calculus is the study of rates, which is important for many disciplines.

Perlis argued that all students need to learn about process, from manag-

ers who work on logistics to scientists who try to understand molecular

or biological processes. Programming automates process, which creates

opportunities to simulate, model, and test theories about processes at

scale. Abelson, Sussman, and Sussman (1996) stated that mathematics is

about formalizing declarative knowledge (“what is”), while programming

is about formalizing imperative knowledge (“how to”).

Perlis was prescient in predicting computational science and engineer-

ing. Today, people play “what-if” games with spreadsheets daily. We use

computing to track our weather and our packages. Most professionals

use a computer to explore models. The ability to construct models and

test hypotheses by executing those models is one of the most powerful

abilities that a computer can provide us. It is especially powerful because

it extends a basic human capability—to imagine a possible future world.

The computer can allow us to realize this world (at a level of fidelity that

makes sense for our needs) and test it in simulation. Testing our imagined

worlds is difficult to do at the level of precision that a computer affords.

TO HAVE A NEW WAY TO LEARN SCIENCE AND MATHEMATICS

Mathematics places a critical role in understanding our world. The power

of mathematics in science is obvious, but the adoption of mathematics

in society may be even more influenced by its importance for business.

Without a doubt, the world runs on numbers.

Our notation for mathematics is mostly static equations representing

models about the world. Increasingly, we are finding that representing

code is different and gives us new insights. This is what Andy diSessa has

been saying in his calls for computational literacy (2001). Bruce Sherin

(2001), Idit Harel (1990), Yasmin Kafai (2014), Uri Wilensky (2016), and

many others have shown us how code gives us a powerful new way to

learn science and mathematics. Bootstrap:Algebra (Schanzer et al. 2015)

teaches algebra with computing. Every student of mathematics should

also be a student of programming, because it provides a different, dynamic

notation for understanding mathematical ideas. When the programming

context is tied to a real application (from image manipulation to video

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

34	 M. Guzdial

games), the computation can help to concretize the mathematical con-

cepts (Wilensky 1991), which can make them more engaging and easier

to learn.

TO BE ABLE TO ASK QUESTIONS ABOUT THE TECHNOLOGICAL

INFLUENCES ON THEIR LIVES

C. P. Snow (1962) also argued for everyone to learn computing in 1962,

but with more foreboding. He correctly predicted that computers and

computing algorithms were going to control important aspects of our

lives. He said, “I am asking whether we are now running into a posi-

tion where only those who are concerned with the computer, who are

formulating its decision rules, are going to be knowledgeable about the

decision,” and “It is not only that I am afraid of misjudgments by persons

armed with computing instruments; it is also that I am afraid of the rest

of society’s contracting out, feeling that they no part in what is of vital

concern to them because it is happening altogether incomprehensibly

and over their heads.” Snow would likely have agreed with Cathy O’Neil’s

premise in Weapons of Math Destruction (2016), that computer algorithms

are not inherently objective and that programmers’ biases may influence

their judgments.

If we don’t know about computing, we have “contracted out,” in

Snow’s terms. We don’t even know what to ask about the algorithms that

are controlling our lives. It shouldn’t be magic. Even if you’re not build-

ing these algorithms, simply knowing about them gives you power. C. P.

Snow argues that you need that power.

AS A JOB SKILL

The most common argument for teaching computer science in the

United States is as a job skill. The original Code​.org video (2013) argued

that everyone should learn programming because we have a shortage of

programmers. While the need for more programmers is important for

supporting our technological society, that is not a good enough reason

to put programming in front of every student. Moreover, that’s not a rea-

son to bear the enormous cost to change our school systems so that we

have enough teachers to teach all those students. Not everyone is going

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Literacy for Learning About Everything	 35

to become a software developer, and it does not make any sense to train

everyone for a job that only some will do.

But if you think about computing as a literacy, and not as a career, it

becomes more clear that computing will be an important component job

skill for many. Some fifteen years ago, we could already see that the ratio

of professional software developers to people who program just as part

of their job was somewhere between 1:4 and 1:9 (Scaffidi et al. 2005).

A more recent analysis shows that, for the same job category, workers

(who are not software developers) who program make higher wages than

those comparable workers (in the same job category) who do not (Scaffidi

2017). Learning to program gives students new skills that have value in

the economy.

Today, not everyone has access to computing education. It tends to

be centralized in more urban/suburban and more affluent schools. Even

when it’s available, it is mostly White and Asian males taking the class

(Margolis et al., 2017; Parker and Guzdial 2019). It is a social justice issue

if we do not make this economic opportunity available to everyone.

TO DEVELOP A NEW LITERACY

Alan Kay and Adele Goldberg made the argument in the 1970s that com-

puting is a whole new medium. In fact, it is humans’ first meta-medium—it

can be all other media, and it includes interactivity so that the medium can

respond to the reader/user/viewer (Kay and Goldberg 1977). Computing

gives us a new way to express ideas, to communicate to others, and to

explore ideas. Everyone should have access to this new medium.

Kay (1977) described what the experience of using the computer as a

literacy should be like: “Computer literacy is a contact with the activity

deep enough to make the computational equivalent of reading and writ-

ing fluent and enjoyable.’” We can use Kay’s perspective to contrast pro-

gramming and textual literacy. We can and do study reading and writing

for their own sake: for example, we read classics of literature and learn to

compose our own essays. For most of us, the greatest power of reading

and writing is that every day it enables us to express ideas, to commu-

nicate with others, and to understand our world. Literacy supports and

affects how we learn. Programming can be studied for itself, and there

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

36	 M. Guzdial

are obviously full-time, professional programmers—just as there are full-

time, professional writers. But programming can also be an everyday skill

that can inform the way we think and communicate.

The computer’s great power as a form of literacy is that it doesn’t

have to look like a computer. Kay (1995) pointed out that the computer

as meta-medium could be anything else: “The computer is the greatest

‘piano’ ever invented, for is it the master carrier of representations of

every kind. The heart of computing is building a dynamic model of an

idea through simulation.” The computer can be anything, which makes it

a powerful tool for learning about everything. The most powerful aspect

of the computer is the ability to encode models and execute them as

simulations.

As Sherin (2001) demonstrated when he taught physics with Boxer,

the computer provides a modeling capability different than equations.

Algebraic equations are useful for describing balance. Given all but one of

the variables in the equation, we can manipulate the equation to com-

pute that last variable. Computer programs typically do not work the

same way. Rather, computer programs can represent causality. Students

learning a programming model of physics learn about how acceleration

influences velocity and velocity influences position (Guzdial 1995)—a

causal chain that is not obvious in kinematics equations.

THE COMPUTER AS A TOOL FOR LEARNING EVERYTHING

When computers were first being developed as tools for learning, the goal

wasn’t learning computer science. From Kemeny and Kurtz developing

Basic, to Papert, Solomon, Feurzeig, and Bobrow developing Logo, the

goal was using the computer to learn about something else (Guzdial and du

Boulay 2019). Kemeny and Kurtz wanted everyone on campus to be able

to use computing in their work. Papert and the Logo developers wanted

students to learn about poetry, mathematics, and artificial intelligence.

In their seminal work “Personal Dynamic Media,” Kay and Goldberg

showed their new Smalltalk system being used in a wide variety of dis-

ciplines, with representations that matched the discipline. They used

the new graphical user interfaces to represent circuit diagrams, music,

art, animations, and a simulation of a hospital. Today, we recognize that

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Literacy for Learning About Everything	 37

each discipline has its own representations and ways of communicating,

which is called disciplinary literacy (Moje 2015). The computer is powerful

for teaching in all disciplines, in part, because it can support disciplinary

literacy.

The interface and language of the computer doesn’t have to look the

way that computer scientists want it to look. We can adapt the language

and interface to use the representations and abstractions of the domain.

We want students to learn abstractions that are powerful and generalize,

but these need not be abstractions that are native to the computer. There

is nothing sacred about FOR loops, bits and bytes, or arrays and linked

lists. Many domains have powerful abstractions. We can use the com-

puter to teach any of those, to adapt to any of those abstractions, and to

represent them in an authentic way.

HOW MUCH PROGRAMMING DOES A STUDENT

NEED FOR LITERACY?

Programming languages are growing in size and complexity. The defini-

tion of equality (= =) in JavaScript is a list of twenty-two dense rules (ECMA

2011), and that is one of the most basic operators. The number of primi-

tives and the sizes of the libraries grow with every new release of a lan-

guage. To “learn Python” is a significant challenge, one that can take years

to achieve. Certainly, we cannot expect students to learn all of any lan-

guage to be literate. So, how much programming does a student really need

to be expressive and to learn?

Scratch is likely the most successful programming environment ever

developed for children (Maloney et al. 2008, 2010), with tens of millions

of users around the world. Empirical studies of students using the block-

based programming language show that most students use very few of the

capabilities of the language (Fields, Kafai, and Giang 2017). Most loops

are simply forever loops. Few students use any Boolean expressions at all.

Students don’t need to know and use much programming to find Scratch

compelling. Even a small bit of programming has expressive power that

draws in tens of millions of students. What is likely more important than

the Scratch programming language are the environment and community

in which it is embedded.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

38	 M. Guzdial

Bootstrap:Algebra is a powerful way to teach algebra through pro-

gramming (Schanzer et al. 2015). Students build video games by writing

equations that describe the current frame of the video in terms of the

previous frame, then translate those equations into code. The analysis

process that students are taught in Bootstrap:Algebra helps them in solv-

ing word problems in algebra (Schanzer et al. 2018). But students don’t

actually use much programming when building their video games. There

is no explicit repetition (iteration or recursion). Students can improve

their learning of algebra without learning everything that is in a modern

programming language. Even a small bit of programming has power in

enabling powerful learning outside of computing.

Of course, there is a purpose for all those other programming language

features that aren’t used in Scratch or aren’t taught in Bootstrap:Algebra.

The programming needs are dependent on the students’ goals. The

important point is that students do not need to know everything in order

to learn enough to gain benefits of computational literacy.

Consider a comparison with textual literacy. There are professionals

who write for a living: for example, those who produce news stories or

novels. Most people find value in writing even if they do not write for

newspapers or publishers. Every day, people find value in writing letters

and grocery lists with less sophisticated words or grammatical constructs.

When people are learning a foreign language, they can often achieve basic

communication with a limited vocabulary and few verb tenses. Similarly,

there is value in even a small bit of programming.

WHY AREN’T WE THERE YET?

Over the last decade, the United States has made dramatic progress in

increasing access to computing education. For example, in Georgia, 43 per-

cent of high schools offer computer science classes (Parker and Guzdial

2019). However, only 1 percent of Georgia high school students take any

of those computer science classes. In Indiana, 33 percent of schools offer

computer science, but only about 2.5 percent of students ever take a com-

puter science class (Guzdial 2019; Guzdial and Arquilla 2019; Parker and

Guzdial 2019).

The reasons are complicated why students are still avoiding computer

science, even when they have access to computing education. Certainly,

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Literacy for Learning About Everything	 39

one of the explanations is that not all computing education experiences

are high quality. Some afterschool programs and internships dissuade

students from continuing in computing (Weston et al. 2019). A more

compelling explanation is that students do not see that computing is a

pathway to achieving their goals (Lewis et al. 2019). Students who leave

computing have a very different perception of the field than those who

stay in computer science (Biggers et al. 2008).

One solution to give more students access to computing education is

to find new ways to integrate computing across the curriculum. The idea

is to follow the lead of Bootstrap:Algebra to find ways that programming

can enhance learning in other subjects. If we can’t convince students to

come to programming and computational literacy, maybe we can bring

programming to them and provide computational literacy to support the

learning that students are interested in.

REDESIGNING PROGRAMMING FOR MICROWORLDS:

TASK-SPECIFIC PROGRAMMING

Microworlds are one of the great inventions for using programming to

teach a wide range of subjects. The idea of microworlds is to provide a

limited subset of the programming environment with tailored operations

that match the domain of the microworld. Seymour Papert (1980) first

defined microworlds as a “subset of reality or a constructed reality whose

structure matches that of a given cognitive mechanism so as to provide

an environment where the latter can operate effectively. The concept

leads to the project of inventing microworlds so structured as to allow a

human learner to exercise particular powerful ideas or intellectual skills.”

Andrea diSessa (with Hal Abelson) built on this idea in Boxer (diSessa and

Abelson 1986) and said in his book Changing Minds (diSessa, 2001): “A

microworld is a type of computational document aimed at embedding

important ideas in a form that students can readily explore. The best

microworlds have an easy-to-understand set of operations that students

can use to engage tasks of value to them, and in doing so, they come

to understanding powerful underlying principles. You might come to

understand ecology, for example, by building your own little creatures

that compete with and are dependent on each other.”

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

40	 M. Guzdial

Typically, a microworld is built on top of a general-purpose language:

for example, Papert used Logo and diSessa used Boxer. Thus, the designer

of the microworld could assume familiarity with the syntax and seman-

tics of the programming language and perhaps some general program-

ming concepts like mutable variables and control structures. The problem

here is that with Logo and Boxer, like any general-purpose programming

language, it takes time to develop proficiency. They are large and com-

plex things to learn, and learning those can get in the way of the power-

ful ideas or intellectual skills that Papert and diSessa are interested in.

Task-specific programming (TSP) aims to provide the same easy-to-

understand operations for a microworld, but with a language and envi-

ronment designed for a particular purpose. The task-specific programming

language (TSPL) is purposefully limited in the abstractions and concepts

needed for the tasks or explorations in the microworld so that program-

ming becomes much easier to learn than a complete programming lan-

guage. Some task-specific programming languages have been usable in

only five to ten minutes (Chasins et al. 2018). The ease of use makes it

possible to think about learning different concepts with different micro-

worlds, that is, different task-specific programming languages. Perhaps an

elementary or secondary school student might encounter several differ-

ent TSPLs in a single year.

AN EXAMPLE TASK-SPECIFIC PROGRAMMING ENVIRONMENT

The domain for the following example task-specific programming environ-

ment is precalculus. The operations in this prototype environment are the

simple matrix transformations taught in many precalculus curricula—

matrix addition and subtraction and scalar multiplication. The concrete

purpose in this microworld is the creation of image filters. The point of

this prototype is to engage students in practicing the intellectual skills

of matrix manipulation by engaging them in developing image filters.

Image filters become the concrete purpose for learning the abstraction of

matrix manipulation.

Figure 2.1 is the main screen for the prototype. Students see a pic-

ture (left-hand side) that is decomposed into matrices representing the red

channel of the pixels in the picture (bottom left), and the green and blue

channel matrices next to that. A set of matrix transformations is listed

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Literacy for Learning About Everything	 41

at the top left—this is the program that, applied to the input picture (on

left), produces the output picture (on right). The Change Picture button

changes the input picture so that the students can apply the operations

to different pictures to see that the program processes an arbitrary picture

to generate a similar image effect on all pictures.

The matrix transformations listed in figure 2.1 are a program, but the

language is not typed (as in a textual programming language) nor assem-

bled like a jigsaw puzzle (as in a block-based programming language).

Instead, the statements are constructed with a purpose-built editor that is

grounded in the disciplinary literacy of precalculus. Each matrix transfor-

mation is created and edited on a screen like in figure 2.2.

There are two possible transformations, which are selected by radio

button:

•	 The red, green, or blue matrices can be redefined (“set”) as the sum or

difference between four matrices: red, green, blue, or a matrix where

every value is 255. The matrices and operation (plus or minus) are

selected with pull-down menus. In the example, figure 2.2, the red

matrix (top left) is set to the difference of the green matrix and the blue

matrix (top middle). The matrices are presented, using the notation

2.1  Defining an image filter as a sequence of matrix transformations.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

42	 M. Guzdial

commonly appearing in precalculus texts, with the output matrix (the

new red matrix) appearing on the right. The all-255 matrix can be used

to compute the inverse of an image, by setting the red, green, and blue

matrices to 255 minus the current value in the matrix.
•	 Alternatively, one of the matrices (red, green, or blue) can be multi-

plied by a scalar. The matrix can be selected by pull-down menu, and

the scalar value is typed into a text area.

The image filter language is simple and grounded in the concepts

and notation of precalculus. The image filter prototype is an example

of task-specific programming to support learning matrix transformations

for precalculus. Students may use this tool to meet a challenge (e.g., to

generate a particular image manipulation effect) or to practice with trac-

ing and using matrix arithmetic (e.g., in this given effect, what happens

to pixels in the original picture whose RGB values are [128, 104, 12]).

Our approach to adoption is informed by the work on SimCalc. In their

scaling-up paper, Tatar et al. (2008) wrote: “Conversely, a wider path to

adoption exists if one can engineer materials to support short-term use

without extensive professional development and with a wide variety of

2.2  Defining one matrix transformation.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Literacy for Learning About Everything	 43

pedagogical styles. In the short term, innovators may be able to make

an earlier, more immediate impact on a wide audience and set a credible

base of authentic improvement that can then serve longer term growth.”

This is exactly our approach. While task-specific programing tools may

fit into project-based activities (Blumenfeld et al. 1991, 1994; Krajcik and

Blumenfeld 2006), the goal is to be usable in a variety of activities.

We use our prototypes in participatory design sessions with teachers

(DiSalvo 2016; Wilensky and Stroup, 1999). Our goal is to develop task-

specific programming that teachers would find useful and would inte-

grate into their classes, so we ask them to try it in the context of what

students find challenging about precalculus. The prototype is an artifact

to think with. Precalculus teachers learn and use it and then tell us what

would really be useful to them. We then iterate on the design.

Sessions with precalculus teachers support our hypothesis that they can

start using it in less than ten minutes. The general response from precalcu-

lus teachers has been guardedly positive. The teachers see that the micro-

worlds aim to take an abstract concept in precalculus and ground it in a

concrete application. They appreciate our attention to disciplinary literacy

and to the learning outcomes for precalculus. Several of our informants

saw the benefits of connecting precalculus to contexts that students found

personally meaningful, like Instagram or Snapchat photo filters.

However, the teachers tell us that we are solving the wrong problems.

While some students struggle with matrix notation and element-by-

element operations, most do not. The hard parts of matrices in precalcu-

lus are matrix multiplication and determinants, and even convolution.

Those parts are so difficult for students that matrices are often left out of

a school’s precalculus curriculum, which puts students at a disadvantage

when they face linear algebra in undergraduate courses. We are currently

iterating on this design.

A task-specific programming environment is unlikely to achieve all the

goals described at the beginning of this chapter. Rather, task-specific pro-

gramming may be an easier-to-use and easier-to-adopt programming experi-

ence than textual or block-base languages. Students will not use task-specific

programming environments alone as a notational tool for computational

literacy, but use of such tools may help students to gain understanding

about the nature of programs, programming, and debugging. Task-specific

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

44	 M. Guzdial

programming may help students develop the first competencies on trajec-

tories to learn programming (Rich et al. 2017, 2019).

CONCLUSION: FINDING PATHWAYS TO

COMPUTATIONAL LITERACY

There are many reasons for students to learn programming, from under-

standing the digital world in which they live, to developing computational

participation and action skills, to developing a new way to understand the

world in which they live. Programming offers a powerful notation for learn-

ing and thinking that is unlike mathematical equations. The computer is the

master simulator—it can look like any domain. Learning programming can

be about learning domains that students are already interested in. Learning

to program is not just about learning to become a software developer.

Achieving that vision may require us to rethink our programming envi-

ronments. Languages developed for professional programmers, or devel-

oped for children in an earlier age with fewer computational end-interface

skills, are unlikely to provide the affordances for learning that we can design

in purpose-built environments. Task-specific programming is an approach

for providing a pathway to computational literacy.

REFERENCES

Abelson, Harold, Gerald Jay Sussman, and Julie Sussman. 1996. Structure and Interpre-
tation of Computer Programs. 2nd ed. Cambridge, MA: MIT Press.

Biggers, Maureen, Anne Brauer, and Tuba Yilmaz. 2008. “Student Perceptions of
Computer Science: A Retention Study Comparing Graduating Seniors vs. CS Leav-
ers.” In SIGCSE ’08: Proceedings of the 39th SIGCSE Technical Symposium on Computer
Science Education. 402–406. https://doi​.org​/10​.1145​/1352135​.1352274​.

Blumenfeld, Phyllis C., Joseph S. Krajcik, Ronald W. Marx, and Elliot Soloway. 1994.
“Lessons Learned: A Collaborative Model for Helping Teachers Learn Project-based
Instruction.” Elementary School Journal 94 (5): 539–551.

Blumenfeld, Phyllis C., Elliot Soloway, Ronald W. Marx, Joseph S. Krajcik, Mark Guz-
dial, and Annemarie Palincsar. 1991. “Motivating Project-Based Learning: Sustaining
the Doing, Supporting the Learning.” Educational Psychologist 26 (3 & 4): 369–398.

Carver, Sharon M. 1988. “Learning and Transfer of Debugging Skills: Applying Task
Analysis to Curriculum Design and Assessment.” In Teaching and Learning Computer
Programming: Multiple Research Perspectives, edited by Richard E. Mayer, 259–297.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Literacy for Learning About Everything	 45

Chasins, Sarah E., Maria Mueller, and Rastislav Bodik. 2018. “Rousillon: Scraping
Distributed Hierarchical Web Data.” In Proceedings of the 31st Annual ACM Sympo-
sium on User Interface Software and Technology, UIST ’18. New York, 963–975.

Code​.org​. “What Most Schools Don’t Teach.” Streamed live on February 26, 2013,
YouTube video, 5:43. https://youtu​.be​/nKIu9yen5nc​.

DiSalvo, Betsy. 2016. “Participatory Design through a Learning Science Lens.” In
Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. New
York, 4459–4463.

diSessa, Andrea A. 2001. Changing Minds. Cambridge, MA: MIT Press.

diSessa, Andrea A., and Harold Abelson. 1986. “Boxer: A Recon-structible Computa-
tional Medium.” Communications of the ACM 29 (9): 859–868.

ECMA International. 2011. Ecma-262 Edition 5.1, The ECMAScript Language Specifica-
tion. https://262​.ecma​-international​.org​/5​.1​/​#sec​-11​.9​.3​.

Fields, Deborah A., Yasmin Bettina Kafai, and Michael T. Giang. 2017. “Youth Com-
putational Participation in the Wild: Understanding Experience and Equity in Par-
ticipating and Programming in the Online Scratch Community.” ACM Transactions
on Computing Education 17 (3): 15:1–15:22.

Grover, Shuchi, and Roy Pea. 2013. “Computational Thinking in K–12: A Review of
the State of the Field.” Educational Researcher, 42 (1): 38–43.

Grover, Shuchi, Roy Pea, and Stephen Cooper. 2015. “Designing for Deeper Learn-
ing in a Blended Computer Science Course for Middle School Students.” Computer
Science Education, 25 (2): 199–237.

Guzdial, Mark. 1995. “Software-Realized Scaffolding to Facilitate Programming for
Science Learning.” Interactive Learning Environments 4 (1): 1–44.

Guzdial, Mark. 2019. “Computing Education as a Foundation for 21st Century
Literacy.” In Proceedings of the 50th ACM Technical Symposium on Computer Science
Education, SIGCSE ’19. New York, 502–503.

Guzdial, Mark, and John Arquilla. 2019. “Is CS Really for All, and Defending Democ-
racy in Cyberspace.” Communications of the ACM, 62 (6): 8–9.

Guzdial, Mark, and Benedict du Boulay. 2019. “History of computing education
research.” In The Cambridge Handbook of Computing Education Research, edited by Sally
A. Fincher and Anthony V. Robins, 11–39. Cambridge: Cambridge University Press.

Harel, Idit, and Seymour Papert. 1990. “Software Design as a Learning Environ-
ment.” Interactive Learning Environments 1 (1): 1–32.

Kafai, Yasmin Bettina. 2016. “From Computational Thinking to Computational Par-
ticipation in K–12 Education.” Communications of the ACM 59 (8): 26–27.

Kafai, Yasmin Bettina, Quinn Burke, and Mitchel Resnick. 2014. Connected Code:
Why Children Need to Learn Programming. Cambridge, MA: MIT Press.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

46	 M. Guzdial

Kalelioglu, Filiz, and Yasemin Gülbahar. 2014. “The Effects of Teaching Program-
ming via Scratch on Problem Solving Skills: A Discussion from Learners’ Perspec-
tive.” Informatics in Education 13 (1): 33–50.

Kay, Alan C. 1977. “Microelectronics and the Personal Computer.” Scientific Ameri-
can 237 (3): 230–245.

Kay, Alan C. 1995. “Computers, Networks and Education.” Scientific American 272
(3): 148–155.

Kay, Alan C., and Adele Goldberg. 1977. “Personal Dynamic Media.” IEEE Computer
10 (3): 31–41.

Knuth, Donald E. 1972. “George Forsythe and the Development of Computer Sci-
ence.” Communications of the ACM 15 (8): 721–726.

Krajcik, Joseph S., and Phyllis C. Blumenfeld. 2006. “Project-based Learning.” In
The Cambridge Handbook of the Learning Sciences, edited by R. Keith Sawyer, 317–333.
Cambridge: Cambridge University Press.

Lewis, Colleen, Paul Bruno, Jonathan Raygoza, and Julia Wang. 2019. “Alignment of
Goals and Perceptions of Computing Predicts Students’ Sense of Belonging in Com-
puting.” In Proceedings of the 14th International Conference on Computing Education
Research, ICER ’19. New York, 11–9.

Maloney, John, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-
mond. 2010. “The Scratch Programming Language and Environment.” ACM Trans-
actions on Computing Education 10 (4): 16:1–16:15.

Maloney, John H., Kylie A. Peppler, Yasmin Bettina Kafai, Mitchel Resnick, and
Natalie Rusk. 2008. “Programming by Choice: Urban Youth Learning Programming
with Scratch.” In SIGCSE ’08: Proceedings of the 39th SIGCSE Technical Symposium on
Computer Science Education. New York, 367–371.

Margolis, J., R. Estrella, J. Goode, J. J. Holme, and K. Nao. 2017. Stuck in the Shallow
End: Education, Race, and Computing. Cambridge, MA: MIT Press.

Moje, Elizabeth B. 2015. “Doing and Teaching Disciplinary Literacy with Adoles-
cent Learners: A Social and Cultural Enterprise.” Harvard Educational Review 85 (2):
254–278.

O’Neil, Cathy. 2016. Weapons of Math Destruction: How Big Data Increases Inequality
and Threatens Democracy. New York: Crown.

Palumbo, David B. 1990. “Programming Language/Problem-Solving Research: A
Review of Relevant Issues.” Review of Educational Research 60 (1): 65–89.

Papert, Seymour. 1980. Mindstorms: Children, Computers, and Powerful Ideas. Sussex,
UK: Basic Books.

Parker, Miranda C., and Mark Guzdial. 2019. “A Statewide Quantitative Analysis of
Computer Science: What Predicts CS in Georgia Public High School?” In Proceedings of

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Literacy for Learning About Everything	 47

the 2019 ACM Conference on International Computing Education Research, ICER ’19. New
York, 317.

Pea, Roy D., and D. Midian Kurland. 1984. “On The Cognitive Effects of Learning
Computer Programming.” New Ideas in Psychology 2 (2): 137–168.

Perlis, Alan J. 1962. “The Computer in the University.” In Computers and the World of
the Future, edited by Martin Greenberger, 180–217. Cambridge, MA: MIT Press.

Peyton Jones, Simon. 2013, September. “Computer Science as a School Subject.” In
Proceedings of the 18th ACM SIGPLAN International Conference on Functional Program-
ming. Seattle, 159–160.

Rich, Kathryn M., Carla Strickland, T. Andrew Binkowski, and Diana Franklin. 2019.
“A K-8 Debugging Learning Trajectory Derived from Research Literature.” In Proceed-
ings of the 50th ACM Technical Symposium on Computer Science Education, SIGCSE ’19.
New York, 745–751.

Rich, Kathryn M., Carla Strickland, T. Andrew Binkowski, Cheryl Moran, and
Diana Franklin. 2017. “K-8 Learning Trajectories Derived from Research Literature:
Sequence, Repetition, Conditionals.” In Proceedings of the 2017 ACM Conference on
International Computing Education Research, ICER ’17. New York, 182–190.

Scaffidi, Christopher. 2017. “Workers Who Use Spreadsheets and Who Program
Earn More than Similar Workers Who Do Neither.” In 2017 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC). Raleigh, NC, 233–237.

Scaffidi, Christopher, Mary Shaw, and Brad A. Myers. 2005. “An Approach for Cat-
egorizing End User Programmers to Guide Software Engineering Research.” ACM
SIGSOFT Software Engineering Notes 30 (4): 1–5.

Schanzer, Emmanuel, Kathi D. Fisler, and Shriram Krishnamurthi. 2018. “Assess-
ing Bootstrap: Algebra Students on Scaffolded and Unscaffolded Word Problems.”
In SIGCSE ’18: Proceedings of the 49th ACM Technical Symposium on Computer Science
Education. New York, 8–13.

Schanzer, Emmanuel, Kathi D. Fisler, Shriram Krishnamurthi, and Matthias Fel-
leisen. 2015. “Transferring Skills at Solving Word Problems from Computing to
Algebra through Bootstrap.” In Proceedings of the 46th ACM Technical Symposium on
Computer Science Education. New York, 616–621.

Sherin, Bruce L. 2001. “A Comparison of Programming Languages and Algebraic
Notation as Expressive Languages for Physics.” International Journal of Computers for
Mathematical Learning 6: 1–61.

Snow, Charles Percy. 1962. “Scientists and Decision Making.” In Computers and the
World of the Future, edited by Martin Greenberger. Cambridge, MA: MIT Press.

Tatar, Deborah, Jeremy Roschelle, Jennifer Knudsen, Nicole Shechtman, Jim Kaput,
and Bill Hopkins. 2008. “Scaling Up Innovative Technology-Based Mathematics.”
Journal of the Learning Sciences 17 (2): 248–286.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

48	 M. Guzdial

Tissenbaum, Mike, Josh Sheldon, and Hal Abelson. 2019. “From Computational
Thinking to Computational Action.” Communications of the ACM 62 (3): 34–36.

Weston, Timothy J., Wendy M. Dubow, and Alexis Kaminsky. 2019. “Predicting
Women’s Persistence in Computer Science- and Technology-Related Majors from
High School to College.” ACM Transactions on Computing Education 20 (1): 1:1–1:16.

Wilensky, Uri. 1991. “Abstract Meditations on the Concrete and Concrete Implica-
tions for Mathematics Education.” In Constructionism, edited by Idit Harel and Sey-
mour Papert, 193–203. Norwood, NJ: Ablex.

Wilensky, U., K. Orton, D. Weintrop, E. Beheshti, M. Horn, and K. Jona. 2016.
“Bringing Computational Thinking into High School Mathematics and Science
Classrooms.” In Transforming Learning, Empowering Learners: The International Confer-
ence of the Learning Sciences (ICLS) , Vol. 2, edited by C. K. Looi, J. L. Polman, U. Cress,
and P. Reimann. Singapore: International Society of the Learning Sciences.

Wilensky, Uri, and Walter Stroup. 1999. “Learning through Participatory Simula-
tions: Network-Based Design for Systems Learning in Classrooms.” In Proceedings
of the 1999 Conference on Computer Support for Collaborative Learning. Stanford, CA:
International Society of the Learning Sciences, 80.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

INTRODUCTION

According to Hoppe and Werneburg (2019), the “essence of Computational

Thinking (CT) lies in the creation of ‘logical artifacts’ that externalize and

reify human ideas in a form that can be interpreted and ‘run’ on comput-

ers.” These logical artifacts can be the results of programming activities,

which link CT to programming as a medium. Although the term compu-

tational thinking has gained popularity more recently, especially through

Jeannette Wing’s formative paper (2006), Seymour Papert (1996) earlier

described the idea and used the term in conjunction with the development

of the Logo language as medium for learning mathematics.

Wing (2008, 2017) emphasizes the importance of abstraction in CT. In

contrast to the general common-sense notion of abstraction, in computer

science it is common to speak of “abstractions” (plural) as constructs, not

as a general notion of thinking process in which details of concrete exam-

ples are factored out. We can refer to Wing (2008) for a characterization:

“The essence of computational thinking is abstraction. . . . ​In working with

layers of abstraction, we necessarily keep in mind the relationship between

each pair of layers, be it defined via an abstraction function, a simulation

relation, a transformation or a more general kind of mapping. . . . ​And so

the nuts and bolts in computational thinking are defining abstractions,

3
DEVELOPING COMPUTATIONAL
THINKING SKILLS WITH MULTIPLE
MODELS AND REPRESENTATIONS

H. Ulrich Hoppe and Sven Manske

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

50	 H. U. Hoppe and S. Manske

working with multiple layers of abstraction and understanding the rela-

tionships among the different layers. Abstractions are the ‘mental’ tools of

computing.”

Following Wing, we see abstractions as mental constructs that can be

operationalized in different ways to make them executable using abstract

machines or different types of programming languages. Aho (2012) uses

the term models of computation to address the operationalization of con-

structive abstractions. Variations of such mappings are found between

different classes of programming languages (e.g., imperative versus declar-

ative languages) but also comprise “abstract machines” such as automata

or grammars. It is important to realize that CT can build on different, even

competing, abstractions. We will use the term representational flexibility

here to denote the characteristic of a CT environment supporting different

models of computation.

The idea of abstractions as mental and formal-operational constructs

relying on “models of computation” is still not too prominent in the

discussions around CT and CT education. The term computational models

is more commonly used to characterize the computational artifacts that

result from or are manipulated in CT activities. From a computer science

perspective it is also important to discuss how certain classes of com-

putational models depend on abstract machines or computational para-

digms. Computational models have always also been a central ingredient

of approaches for learning about STEM (science, technology, engineer-

ing, and math) through modeling and simulation. There is a spectrum of

activities using such simulations that range from setting up input param-

eters to modifying or defining the behavior of the simulation through pro-

gramming. This spectrum of activities includes CT skills (Sengupta et al.

2013). However, in such environments the basic computational “ingredi-

ents,” namely the underlying data structures and a basic processing model,

are usually predefined and fixed. In a computer science perspective on CT,

it is desirable to enable that the learners actively experience different com-

putational approaches and paradigms.

The study described in this chapter combines two different models of

computation applied to a specific problem and investigates sequencing

effects depending on the order of the learning experiences with the one

and the other model. The two different computational approaches are

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Thinking Skills	 51

applied to the same problem, namely enabling a programmable agent to

escape from a maze. In this context, successful problem-solving requires

understanding and skills on two levels. On one level, we have the problem

of finding a maze strategy, as discussed in the context of Turtle Geometry

(Abelson and diSessa, 1981). Programming is one way of expressing such

strategies that allows for testing and improvement. In this perspective,

programming would be instrumental to solving the maze problem in the

sense of “learning through programming.” In the CT perspective, the maze

problem could be used as a challenge to develop certain programming

skills in the sense of “learning to program.” The co-existence of these two

orientations frequently is found in programming-based microworlds (cf.

diSessa 2000).

The aim of our study is to investigate the influence of “representa-

tional flexibility” in terms of multiple models of computation on both

problem understanding and the development of programming skills.

REPRESENTATIONAL FLEXIBILITY

When it comes to an operationalization of CT as a thought process to be

carried out, the task of formulating problems and solutions in a way that

they can be carried out by computers unveils many degrees of freedom.

This flexibility manifests in a variety of aspects when dealing with com-

putational constructs and representations. We attribute “representational

flexibility” to a learning environment that preserves and supports alter-

natives regarding the constructs and representations. This would even

allow for asking students to explicitly choose a certain representation as

part of a creative CT activity.

Choosing the right representation has had a huge impact both on the

individual process and on the development of scientific computation

(Tedre and Denning 2016). It led to an entry of computational meth-

ods into different science disciplines advancing the computational sci-

ences. Tedre and Denning (2016) argue, “Computer simulation became

the main engine of progress across sciences and engineering fields, and

computational thinking was its mental toolbox.” However, this certain

wave in the history of CT was not driven by computer science but was

inspired mainly by highly specific application domains. On an individual

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

52	 H. U. Hoppe and S. Manske

level, the choice of the appropriate representation or programming tool

becomes relevant as the thought processes require learners to think at

multiple levels of abstraction. According to Dijkstra (1974), the cognitive

skills involved in programming can be described as a mental zoom lens,

when the programmer “switches back and forth between various seman-

tic levels, between global and local considerations, between macroscopic

and microscopic concerns.” In the following, we address different dimen-

sions in which representational flexibility can manifest.

MODELS OF COMPUTATION AND PROGRAMMING TOOLS

The creation of logical, computational artifacts relies on a certain model of

computation as an abstract engine. They can be categorized into sequen-

tial models (e.g., finite state machines or Turing machines), functional

models (e.g., lambda calculus), or concurrent models (e.g., Petri nets).

Although the direct use of computational models apart from automata is

underrepresented in K–12 education, there are a few examples of environ-

ments that make use of such models. For example, the CardBoard (later:

FreeStyler) environment supported modeling and running Petri nets in

an educational setting (Pinkwart, Hoppe, and Gaßner 2001).

The grounding of computation on such abstract engines, and accord-

ingly the choice of such foundations, is not very much in the focus of the

current, more educationally inspired CT discourse. It may seem that these

choices have little to do with CT practice. However, there are relevant

examples that explicitly address the choice of basic “models of computa-

tion” or representations:

•	 The “Kara” microworld (Hartmann, Nievergelt, and Reichert 2001) uses

a programmable ladybug to introduce concepts of computer science

and programming. It comes with different versions based on different

abstract engines. The original version was based on finite state machines,

but later versions based on programming languages (JavaKara, RubyKara)

were added. The microworld of Kara allows for solving the same or simi-

lar problems based on different “models of computation” in the sense of

Aho. The FSM version allows for linking the Kara experience to automata

theory in general, whereas the Java and Ruby versions may be used as

introductions to programming.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Thinking Skills	 53

•	 Kafura and Tatar (2011) report on a Computational Thinking Course

for computer science students in which different abstract formalisms

or engines (including Petri nets, BNF grammars, lambda expressions)

with corresponding tools were employed to construct computational

models in response to various problems. This example shows that

relying on abstract models of computation can be an alternative to

using programming in the construction of computational artifacts.
•	 Curzon and McOwan (2016) describe computational modeling as a

part of algorithmic thinking. The algorithm simulates the transforma-

tion of an idea in a virtual world; it is possible that these ideas can be

things from the real world like laws of physics but also a fantasy world,

which is modeled as a game.

The growing interest in teaching and learning programming during the

last decade has predominantly led to using visual block-based program-

ming interfaces in combination with imperative/procedural programming

languages. Scratch (Resnick et al. 2009) is a prominent example of this type.

Although it has been criticized for supporting or allowing bad program-

ming habits (Meerbaum-Salant, Armoni, and Ben-Ari 2011), it is a de facto

standard for exploratory programming in current CT education. However,

visual programming environments are not necessarily bound to the imper-

ative paradigm. Although very similar to Scratch in its visual appearance,

the Snap! environment also provides elements of functional programming

such as anonymous and higher-order functions in a visual block-based style

(Harvey and Mönig 2015).

Although common programming languages do not show fundamen-

tal differences in their models of computation, there is still a big dif-

ference across the various programming paradigms and in the levels of

abstraction as part of the mental models and thought processes involved

in the programming. A purely functional language such as Haskell offers

higher abstractions from mathematical thinking than writing assem-

bler code that is closer to the set of operations provided by a concrete

machine. Because of the set of computational constructs and paradigms

that underlie the specific programming tool, novices may expect difficul-

ties when they anticipate a certain behavior from their mental models

(Rogalski and Samurçay 1990). One example is using the equal operator

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

54	 H. U. Hoppe and S. Manske

for assignment in several imperative programming languages, in contrast

to algebra, where the operator is an assertion of equality.

In summary, there is a tension between models of computation and

learners’ cognitive models in programming. The choice of the right pro-

gramming tools is important on different levels. Therefore, it is desirable to

support a representational flexibility in the CT environment and activity.

Representational flexibility in this aspect means that the user in such a CT

environment has the ability to switch between different models of computa-

tion, programming tools, problem representations, or levels of abstraction.

This flexibility is not limited to the choice of a concrete programming

tool, paradigm, or language: it can be extended to the particular applica-

tion domain and the corresponding problem space as part of problem-

solving in CT activities. In the tradition of Logo and turtle graphics,

labyrinths are good examples for representational flexibility in this con-

text. On the one hand, the algorithmic specification of maze strategies

can be situated in the geometry of the microworld (turtle geometry) and

solved with procedural programs using actions in the concrete environ-

ment. Alternatively, the labyrinth may be represented as an abstract graph,

and the solution to the labyrinth may be based on general graph search.

This can have implications on which programming tool is suited best for

the domain-specific solution. It is plausible for many applications that

domain-specific languages (see the next subsection) are the appropriate

ways to address problem-formulating and problem-solving processes.

MICROWORLDS AND DOMAIN-SPECIFIC LANGUAGES

Andi diSessa’s notion of “computational literacies” (diSessa 2000) pre-

supposes the availability and accessibility of computational media as a

basis for creative invention and computational representation. The com-

putational medium would include a “model of computation” in Aho’s

sense but would also provide more or less easy access to different types

of abstractions. The medium may be a programming language, but as we

have seen before, it can also be an “abstract engine” or even a physical

model in the “unplugged” sense. For programming languages, it is well

known that they resonate with computational abstractions (as constructs)

in specific ways. For example, the concept of a variable as a storage or

memory location is typical for imperative languages. This implies that

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Thinking Skills	 55

variables can have mutable values, which is different from the concept of

variables in pure functional or logical languages. Computational media

for creative and constructive learning are often combined with concrete

application domains (corresponding also to learning domains) for which

the medium and its representational primitives are particularly designed.

This is captured in the notion of a “microworld”:

A microworld is a type of computational document aimed at embedding impor-
tant ideas in a form that students can readily explore. The best microworlds have
an easy-to-understand set of operations that students can use to engage tasks of
value to them, and in doing so, they come to understanding powerful under
lying principles. You might come to understand ecology, for example, by building
your own little creatures that compete with and are dependent on each other.
(diSessa 2000)

The educational affordances and usage patterns that originate from

microworlds are immense and have been widely discussed from an edu-

cational technology point of view (e.g., Rieber 1996). From a computer

science perspective, microworlds in the sense described by diSessa can be

conceived as domain-specific languages designed to facilitate constructive

learning in certain domains. Compare the general characterization given by

van Deursen, Klint, and Visser (2000): “A domain-specific language (DSL)

is a programming language or executable specification language that offers,

through appropriate notations and abstractions, expressive power focused

on, and usually restricted to, a particular problem domain.” This suggests

that the principles of designing and implementing DSLs should be consid-

ered when we develop microworlds as computational media for learning.

Regarding the structuring of learning processes and the enrichment

of such processes with computational media, inquiry learning in science

and CT education are closely related. However, a discourse that is primar-

ily driven by pedagogical inspirations and interest tends to neglect the

importance of genuine computer science concepts and their role in shap-

ing CT. The understanding of the computational principles underlying

and constituting such logical artifacts, including “models of computation”

in the sense of Aho as well as specific “abstractions as constructs,” are of

central importance for CT. In contrast, in general scientific inquiry learn-

ing, computational models are instrumental for the understanding the

domain of interest (e.g., the functioning of ecosystems or certain chemi-

cal reactions). Usually, the computational media used in general inquiry

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

56	 H. U. Hoppe and S. Manske

learning contexts are of limited “representational flexibility” regarding

the choice of data structures and abstract operational mechanisms.

THE EFFECT OF PROGRAMMING PARADIGMS

ON PROBLEM-SOLVING

Visual block-based programming (VBBP) can be seen as the current standard

for introductory programming in K–12 education with Scratch as the most

prominent facilitator (Resnick et al. 2009). There is evidence that VBBP,

with a well-defined semantics including a concrete environment inspired

by turtle geometry, can facilitate a smooth start of learning programming

and avoid issues of programming syntax as in textual languages. Overall,

it provides a rich and stimulating learning environment (Grover and Pea

2013). However, it is also reported that students perceive that these tools

are less powerful, cumbersome to use for larger projects, and inauthentic

if compared to conventional text-based programming tools (DiSalvo 2014;

Weintrop and Wilensky 2015). Although Scratch is mostly characterized

through the imperative programming paradigm, it promotes the creation

of interactive programs through a rich event-based programming interface.

However, the mechanisms provided tend to encourage learners to misuse

the constructs “broadcast” and “wait,” which is sometimes perceived as a

bad practice (Aivaloglou and Hermans 2016). This deficit is compensated

for in the App Inventor (Wolber et al. 2011), which follows a similar visual

approach but focuses on the development of mobile applications, which

are “native” to events. In contrast to proposing a one-size-fits-all solution

for introductory programming, we advocate the use of different program-

ming paradigms and representations in such environments.

A CT environment can be characterized as holding representational

flexibility if it provides the learners or users with a certain choice regard-

ing programming tools, paradigms, abstractions, and other aspects that

have been discussed in the previous section. However, little evidence

exists in research on CT regarding sequencing effects when switching

between different representations and programming tools. In this sec-

tion, we present ctMazeStudio, which is a virtual learning environment

that has been developed to explore the effects and implications of repre-

sentational flexibility on CT.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Thinking Skills	 57

CTMAZESTUDIO: A MULTI-PARADIGMATIC ENVIRONMENT

The ctMazeStudio system facilitates the definition of agent behavior in a

maze environment with different difficulty levels through two different

programming paradigms. The goal is to define a strategy that lets the

agent find a way out of any maze of the given level. In the overall learn-

ing process, the learners will formulate strategies of more and more gen-

eral nature, ending up with a correct implementation of “wall following.”

The reactive rule-based approach facilitates the formulation of strate-

gies in a bottom-up and “situated” fashion: In a given situation (i.e., with

the agent in a certain position in a certain maze), the learner is provided

with a “localized” rule that reflects the concrete situation in the neigh-

borhood of the agent in its pre-instantiated conditions (IF-part) and still

empty actions (THEN-part). Now, the learner has to fill in a correspond-

ing action or action sequence made up of 90-degree turns or stepwise

movements forward. These rules will be “memorized” by the agent and

will be re-applied under the same conditions. This approach was inspired

by the kind of visual agent programming introduced in “KidSim” (Smith,

Cypher, and Spohrer 1994).

To support this kind of learning and problem-solving activity, ctMaze

Studio contains three components: the rule editor, the behavior stage,

and a rule library (figure 3.1). The rule editor (figure 3.2) provides the

actual “local” programming interface, which is invoked when a new situa-

tion is encountered. The editor shows a condition component (IF-part) and

an action component (THEN-part). For the given conditions, the students

select desired actions to define a situated rule of “reactive” behavior. The

user can also delete conditions, which implies that the corresponding

rule will be applied in situations more general than the given one, disre-

garding one of the premises (as a generalization mechanism).

As can be seen in figure 3.3, the current situation implicitly specifies

the conditions from which the rule-building starts. If there is no existing

rule that matches the current premises, the system requests the student to

define actions for the given situation. Afterward, the newly defined rule

will be applied to all situations matching the same condition.

The architecture of the rule-based subsystem of ctMazeStudio is shown

in figure 3.4. In the graphical user interface, the user can create a new rule

or modify an existing rule in the rule editor. Each created rule is listed in

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

58	 H. U. Hoppe and S. Manske

3.1  ctMazeStudio with rule library.

3.2  ctMazeStudio’s “situated” rule editor.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Thinking Skills	 59

the rule library, initially in the order of creation. The ordering of the rules

determines the order of the matching and ensuing execution, which is rel-

evant if the rule conditions are not disjoint. The rule manager combines the

library of rules with the interpretation of the rules and renders the result

through a game engine. Depending on the success of the rule execution in

the solver, the rule is transformed into code to trigger the movement of the

agent (“hero”) in the game engine, which causes it to proceed.

Start

No

Yes

Current
situation

Execute the
defined rule

Is a rule for
the conditions of the

current situation
defined?

User
defines a

rule
End

3.3  Flow diagram for reactive rule-based programming (RRBP).

User interface

User Graphical user interface

ctMazeStudio - RRBP mode

Rule library

Rule manager

Rule

Rule list

SolverPhaser game
object

Hero

Rule editor

Log of
movement

3.4  Architecture of the rule-based system.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

60	 H. U. Hoppe and S. Manske

The rule library shown in figure 3.1 allows for managing the collec-

tion of all previously defined rules. The learners can edit or delete already

defined rules, directly enter new rules, and change the order (and thus

priority) of the rules to be checked. In the behavior stage, the behavior

of the agent is visualized. Depending on the entries in the rule library,

the corresponding actions are executed, and the specific entry in the rule

library is highlighted. The execution will stop if no more applicable rules

are found or the goal is reached.

On the higher levels, learners must apply different strategies to improve

their programming code (i.e., the rule set). When they develop and test

their rule sets, they may revise formerly defined rule sets through gener-

alization (dropping of conditions) or reordering. The challenge is to cre-

ate a maximally powerful rule set with a minimum number of rules. This

requires a level of understanding that allows for predicting global behavior

based on locally specified rules. In the maze example, a small set of rules

(minimally three) will be created to implement a wall-following strategy.

A correct algorithmic solution has to ensure that the wall is always kept

either on the right or on the left hand. This strategy works with any kind

of maze that has no cycles or “islands.” Beyond the predefined levels, this

strategy can still be refined to avoid circling around islands.

A specific characteristic of this approach to programming is that the

learner is confronted with concrete situations and “forced” to decide

what should happen. Afterward the learner sees the cascading effect of

this decision and can rethink or refine it. Many individual decisions com-

bine to an overall picture of reactions that solves the entire task. When

applying the rule library to other mazes, learners can evaluate and gen-

eralize the rules.

In addition to the reactive rule-based mode, the ctMazeStudio environ-

ment can also be programmed through a visual block-structured inter-

face (figure 3.5). The visual programming component for this variant of

ctMazeStudio has been implemented based on Google Blockly. Conceptu-

ally, it requires a top-down imperative programming approach with con-

ditionals and loops as control structures. ctMazeStudio therefore supports

a specific type of “representational flexibility” with the combination of

reactive rule-based programming (RRBP) and visual block-based program-

ming (VBBP).

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Thinking Skills	 61

RRBP and VBBP are not only different on a representational or coding

level; they also stand for different ways of tackling the maze challenge.

These differences include the aspect of control: RRBP is based on an agent

model with an implicit mechanisms of rule selection and execution (i.e.,

a predefined, local control model), whereas the VBBP require to define a

global control regime as part of the code. The analysis of cases in terms of

conditions comes as a follow-up activity in RRBP starting from given situ-

ation patterns, whereas it is a primary modeling step in VBBP. The basic

differences related to the two programming approaches are summarized

in figure 3.6.

HYPOTHESES AND STUDY DESIGN

The principal of supporting multiple computational approaches when teach-

ing CT is based on the rationale that we should not restrict CT to one specific

model of computation but convey the richness of different types of com-

putational models. Learning environments based on one specific computa-

tional approach will support a learning progression within this approach.

However, in our maze environment, we can also examine the impact of the

different computational representations and approaches on the understand-

ing of the problem domain. This problem understanding, in turn, is related

to algorithmic thinking (in the way of thinking about labyrinth algorithms).

3.5  Block-structured programming interface.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

62	 H. U. Hoppe and S. Manske

The main higher-level learning goal is the understanding of wall-following

as a general strategy. This understanding is induced by a level structure,

which adds new facets of labyrinths (e.g., circles, islands) stepwise to the

environment. During the study, the learners were asked to solve the levels

and to create such an algorithm to solve all labyrinths.

Based on these premises, we have studied the effect of sequencing the

usage of RRBP and of VBBP. Our central hypothesis was, “(H1) The under-

standing and active mastery of wall-following will be better supported by RRBP.”

Our two experimental conditions were RRBP first, followed by VBBP sec-

ond (group A) and vice versa for group B. Accordingly, we would expect

the learning gain (related to the maze strategy) to be higher for group A

than for group B after the first trial. We would expect group B to “catch

up” after the second round. Additional observations were made regarding

the problem-specific and general coding abilities in the VBBP approach.

Specifically, we would expect the following: “(H2) Prior experience with RRBP

will lead to better solutions in the VBBP modality in terms of finding and imple-

menting correct strategies.”

Figure 3.7 represents the overall experimental procedure.

The tests of algorithmic understanding were related to the maze prob-

lem and operationalized through specific questions, involving also paper

and pencil solutions with given labyrinths. CT competencies were tested

through questions inspired by the CTt questionnaire proposed by González

(2015) and the instruments used for the assessment by Grover and Basu

RRBP VBBP

► Bottom-up strategy

► Local control,
“situational” approach

► Ex-post generalization
(minimizing number of rules
requires inference of global
behavior from aggregate rules)

► Domain-specific

► Top-down strategy

► Explicit global control
 and case distinction

► Higher threshold
 (less specific support)

► More general

3.6  Comparison between reactive rule-based programming (RRBP) and visual block-

based programming (VBBP).

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Thinking Skills	 63

(2017) have been adapted to the specific application domain and pro-

gramming tools. Among others, this involves tasks about code compre-

hension, interpretation of statement sequences, and the formulation of

algorithms in a Scratch-like representation that uses natural language. Dur-

ing a mid-test, learners were asked to describe the algorithm they had used

to solve the labyrinth of the main level. These descriptions were evaluated

manually to assess algorithmic thinking with respect to the learning goal

of creating a wall-following strategy.

The study was conducted in a public German high school (“Gymna-

sium”) with a group of thirty-one grade-nine students participating in an

elective computer science course. Two were female and twenty-nine were

male,1 and all were between fourteen and sixteen years old (M = 14.87).

The average self-assessment of programming skills was 2.77 on a five-

point Likert scale. Group A had fifteen, and group B had sixteen partici-

pants. The duration of the test was ninety minutes.

EXPERIMENTAL RESULTS

Table 3.1 below captures the distribution of successful completions of

level 8 (corresponding to wall following) for all groups and conditions.

Pre-test

• Demographics
• Algorithmic
 understanding
• CT competences

• Group A: RRBP
• Group B: VBBP

• Algorithmic
 understanding

Run 1 Mid-test

• Algorithmic
 understanding
• CT competences

• Group A: VBBP
• Group B: RRBP

Post-testRun 2

3.7  Experimental procedure.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

64	 H. U. Hoppe and S. Manske

For both groups, the rate of success increased from trial 1 to trial 2 (A: 6

to 8; B: 2 to 5). The overall success was higher in group A.

The outcome for group A indicates that the correct problem understand-

ing developed in the RRBP condition could be transferred to the second

phase and allowed for a re-coding in the other modality (VBBP). In con-

trast, starting with VBBP did not facilitate success in solving the problem.

Although the results for RRBP look positive, there was a specific problem

that often created a learning obstacle: The rule editor allowed for entering

an unlimited sequence of actions so that a specific solution for the given

maze could be specified at a single blow. However, such solutions would

not be transferable to other mazes (not even of the same level). To avoid

this problem, the number of actions in one rule can now be limited in the

current version of ctMazeStudio. The maximally needed number of actions

would be two to be able to combine a forward step with a turn.

Figure 3.8 shows the quantified results of the “algorithmic understand-

ing” test applied after Run 1 (T1) and after Run 2 (T2). The questions were

designed in such a way as to distinguish procedural and declarative knowl-

edge related to this problem, and the diagram shows the results with this

distinction. First, we compared the different measurements for each of the

groups (A and B) separately using the non-parametric Wilcoxon signed-

rank test. For both groups, the difference (increase) in procedural knowl-

edge was not significant. However, group B showed a significant increase

in declarative knowledge between T1 and T2 (Z = 19.5, p = 0.026). The cor-

responding difference (slight decrease) of declarative knowledge in group

A was not significant.

Second, we used the Mann-Whitney U test to compare the declarative

understanding between groups A and B. We found a significant differ-

ence for the measurements at time point T1 (U = 68.5, p = 0.20), but no

Table 3.1  Success (completion of level 8)

per group and programming modality

RRBP VBBP

Group A 6 8

Group B 5 2

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Thinking Skills	 65

significant difference at T2 (U = 105.5, p = 0.286). This corroborates our

central hypothesis (H1): The RRBP experience is essential for a better

(declarative) understanding of the maze strategy in both groups. The

essential knowledge gain comes from the exposition to RRBP.

The second hypotheses (H2) is plausibly backed by the comparison of

success figures in table 3.1: Success in the VBBP condition is four times

higher if this modality is preceded by RRBP. However, an analysis of “pro-

ductivity” in terms of number of trials did not show a difference between

groups A and B in the VBBP condition.

DISCUSSION

This study investigated the differences in CT “induced” by different com-

putational approaches or paradigms used in a maze problem-solving task.

The differences were reflected and measured in terms of the understand-

ing of the problem-related strategies as an effect of “learning through

programming.”

The RRBP approach favors a bottom-up and “situated” type of rea-

soning and is certainly more specifically adapted to the problem than

VBBP. Accordingly, it provides an easier start. On the other hand, RRBP

T1 T2

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Declarative A

Procedural A

Declarative B

Procedural B

3.8  Algorithmic understanding: declarative and procedural knowledge of groups A

and B, measured at T1 and T2.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

66	 H. U. Hoppe and S. Manske

comes with the challenge of inferring the global behavior of the agent

from a collection of locally defined rules. A correct implementation of the

wall-following strategy requires the generalization of rules and typically

also a reduction of the accumulated rule set. We demonstrated that the

prior experience (of RRBP) supports the declarative understanding of the

problem better than VBBP and leads to higher success rates in the VBBP

condition, which is characterized by a top-down and imperative model of

computation. In this sense, RRBP can “feed into” VBBP as a more general

approach. Our findings suggest that we should exploit more variations in

basic computational approaches (“representational flexibility”) to support

the development of CT conceived as a rich collection of cognitive skills.

CONSEQUENCES FOR CURRICULUM DESIGN AND

ORCHESTRATING COMPUTATIONAL THINKING

Our study shows that models of computation or programming para-

digms do not just represent different flavors of building and understand-

ing concrete computational models to solve given problems. The choice

of a paradigm can have an important impact on the students’ ability to

solve the problems at hand and may also influence the overall learning

progression.

The provision to make a choice regarding the programming tool, para-

digm, abstractions, or data structures enables learners to better express

themselves through programming. Programming is a constructive activ-

ity that requires both creativity and formal rigor. Special languages and

interfaces have been developed to make it more novice friendly and acces-

sible; Scratch is one of the most prominent examples. However, based

on the work reported here, we argue that there are conditions, in which

other paradigms and approaches are more suited for a specific problem

type and activity. To optimally facilitate CT skills, learners need to accom-

modate to choose their own representations carefully with respect to a

given problem and to adapt it to their personal cognitive tools.

This has two main implications on the design of the curriculum or

the orchestration of CT. The existence of one general programming tool

may lead to a higher threshold in problem-solving for learners. This

has been presented in this chapter in the domain of maze algorithms,

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Thinking Skills	 67

where problem-solving strategies can be better applied and illustrated

using reactive rules in a bottom-up approach. In the visual block-based

approach, learners need to write their algorithms in advance and thus

must perform bigger steps to see and evaluate results. Supporting the

evaluation of pieces of code is often characterized as an important aspect

in CT activities. However, representational flexibility should not be sim-

plified nor be limited to the programming tool itself, the used paradigm,

or the examples from this article.

The predominance of imperative programming in visual approaches can

be traced back to the popularity of imperative programming languages at the

time these approaches have been developed. Therefore, other approaches

may be more supportive or helpful in the acquisition of CT skills. In his

remarks on CT, Aho (2012) underlines the importance of clarifying the

representational-operational basis of CT in terms of an underlying “model

of computation” with well-defined operational semantics. Imperative pro-

gramming in von Neumann architecture is a legitimate model of compu-

tation in this sense. However, there is a wide spectrum of other potential

models of computation. The example of the Kara environment (Hartmann,

Nievergelt, and Reichert 2001) shows that finite-state machines can be used

as an alternative to Java programming in controlling a robot in microworld.

We have also seen Petri nets being used to model the interaction in board

games. The empirical evidence gathered with ctMazeStudio is certainly

limited regarding the specificity of the task and the models of computa-

tion. Yet, it allowed us to demonstrate that there are benefits in providing

learners with alternative models of computation to support computational

problem-solving.

NOTE

1.  The quantitative dominance of male participants is typical for elective (choice-
based) computer science courses in German high schools. Given this sample, we
have not been able to analyze gender effects.

REFERENCES

Abelson, Harold, and Andrea diSessa. 1981. Turtle Geometry. Cambridge, MA: MIT Press.

Aho, Alfred V. 2012. “Computation and Computational Thinking.” The Computer
Journal 55 (7): 832–835.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

68	 H. U. Hoppe and S. Manske

Aivaloglou, Efthimia, and F. Felienne Hermans. 2016. “How Kids Code and How We
Know: An Exploratory Study on the Scratch Repository.” In Proceedings of the 2016
ACM Conference on International Computing Education Research. New York, 53–61.

Curzon, Paul, and Peter W. McOwan. 2016. The Power of Computational Thinking:
Games, Magic and Puzzles to Help You Become a Computational Thinker. London:
World Scientific.

Dijkstra, Edsger W. 1974. “Programming as a Discipline of Mathematical Nature.”
The American Mathematical Monthly 81 (6): 608–612.

DiSalvo, Betsy. (2014). “Graphical Qualities of Educational Technology: Using Drag-
and-Drop and Text-Based Programs for Introductory Computer Science.” IEEE Com-
puter Graphics and Applications 34 (6): 12–15.

diSessa, Andrea A. 2000. Changing Minds: Computers, Learning and Literacy. Cam-
bridge, MA: MIT Press.

Giere, R. 1988. “Laws, Theories, and Generalizations.” In The Limits of Deductivism,
edited by Adolf Grunbaum and Wesley Salmon, 37–46. Berkeley: University of Cali-
fornia Press.

González, Marcos Roman. 2015. “Computational Thinking Test: Design Guidelines
and Content Validation.” In Proceedings of the EDULEARN15 Conference. Barcelona,
2436–2444.

Google Blockly. Accessed December 19, 2019. https://developers​.google​.com​/blockly​.

Grover, Shuchi, and Satabdi Basu. 2017. “Measuring Student Learning in Introduc-
tory Block-Based Programming: Examining Misconceptions of Loops, Variables, and
Boolean Logic.” In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Com-
puter Science Education. New York, 267–272.

Grover, Shuchi, and Roy Pea. 2013. “Computational Thinking in K–12.” Educational
Researcher 42 (1): 38–43. https://doi​.org​/10​.3102​/0013189X12463051​.

Hartmann, W., J. Nievergelt, and R. Reichert. 2001. “Kara, Finite State Machines,
and the Case for Programming as Part of General Education.” In Proceedings IEEE
Symposia on Human-Centric Computing Languages and Environments. Washington, DC,
135–141.

Harvey, Brian, and Jens Mönig. 2015. “Lambda in Blocks Languages: Lessons
Learned.” In 2015 IEEE Blocks and Beyond Workshop (Blocks and Beyond), 35–38.
Washington, DC: IEEE.

Hoppe, Heinz Ulrich, and Sören Werneburg. 2019. “Computational Thinking—More
Than a Variant of Scientific Inquiry!” In Computational Thinking Education, edited by
Siu Cheung Kong and Harold Abelson, 13–30. Singapore: SpringerOpen.

Kafura, Dennis, and Deborah Tatar. 2011. “Initial Experience with a Computational
Thinking Course for Computer Science Students.” In Proceedings of the 42nd ACM
Technical Symposium on Computer Science Education. New York, 251–256.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Thinking Skills	 69

Meerbaum-Salant, Orni, Michal Armoni, and Mordechai Ben-Ari. 2011. “Habits of
Programming in Scratch.” In Proceedings of the 16th Annual Joint Conference on Inno-
vation and Technology in Computer Science Education. New York, 168–172.

Papert, Seymour. 1996. “An Exploration in the Space of Mathematics Educations.”
International Journal of Computers for Mathematical Learning 1 (1): 95–123.

Pinkwart, Niels, Ulrich Hoppe, and Katrin Gaßner. (2001, September). “Integration
of Domain-Specific Elements into Visual Language Based Collaborative Environ-
ments.” In Proceedings Seventh International Workshop on Groupware, CRIWG 2001.
Washington, DC, 142–147.

Resnick, Mitchel, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Saul Silver, Brian
Silverman, and Yasmin Kafai. 2009. Scratch: Programming for All. Communications
of the ACM 52 (11): 60–67.

Rieber, Lloyd P. 1996. Microworlds. Handbook of Research for Educational Communica-
tions and Technology, 2, 583–603.

Rogalski, Janine, and Renan Samurçay. 1990. “Acquisition of Programming Knowl-
edge and Skills.” In Psychology of Programming, edited by J-M. Hoc, T. R. G. Green,
D. J. Gilmore and R. Samurçay, 157–174. London: Academic Press.

Sengupta, Pratim, John S. Kinnebrew, Satabdi Basu, Gautam Biswas, and Douglas
Clark. 2013. “Integrating Computational Thinking with K–12 Science Education
Using Agent-Based Computation: A Theoretical Framework.” Education and Informa-
tion Technologies 18 (2): 351–380.

Smith, David Canfield, Allen Cypher, and Jim Spohrer. 1994. “KidSim: Program-
ming Agents without a Programming Language.” Communications of the ACM 37 (7):
54–67.

Tedre, Matti, and Peter J. Denning. 2016. “The Long Quest for Computational
Thinking.” In Proceedings of the 16th Koli Calling International Conference on Comput-
ing Education Research. New York, 120–129.

van Deursen, Arie, Paul Klint, and Joost Visser. 2000. “Domain-Specific Languages:
An Annotated Bibliography.” ACM Sigplan Notices 35 (6): 26–36.

Weintrop, David, and Uri Wilensky. 2015. “To Block or Not to Block, That Is the
Question: Students’ Perceptions of Blocks-Based Programming.” In Proceedings of the
14th International Conference on Interaction Design and Children, 199–208. https://doi​
.org​/10​.1145​/2771839​.2771860​.

Wing, Jeannette M. 2006. “Computational Thinking.” Communications of the ACM
49 (3): 33–35.

Wing, Jeannette M. 2008. “Computational Thinking and Thinking About Comput-
ing.” Philosophical Transactions of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences 366 (1881): 3717–3725.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

70	 H. U. Hoppe and S. Manske

Wing, Jeannette M. 2017. “Computational Thinking’s Influence on Research and
Education for All.” Italian Journal of Educational Technology 25 (2): 7–14.

Wolber, David, Harold Abelson, Ellen Spertus, and Liz Looney. 2011. App Inventor.
Sebastopol, CA: O’Reilly Media, Inc.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

INTRODUCTION

New theories often emerge from seemingly contradictory evidence. When

conflicting empirical results are found, a way forward is to enunciate new

and broader theories that can accommodate those contradictions within

a more comprehensive framework. That is the rationale for the present

chapter.

In this vein, recent computational thinking (CT) studies in K–12 have

yielded conflicting results depending on whether the computational

concepts involved were used to solve a specific type-modality of prob-

lem or another. Thus, in a study by Román-González, Pérez-González,

and Jiménez-Fernández (2017), participants from ten to sixteen years old

were asked to use computational concepts, such as sequences, loops, con-

ditionals, and functions to solve visuospatial problems, such as mazes

or graphic designs, on a digital canvas (figure 4.1). On the other hand,

in a study by Howland and Good (2015), participants from twelve to

thirteen years old were asked to use similar computational concepts to

solve linguistic-narrative problems (figure 4.2). To this end, children were

taught to use Flip, “a programming language that aims to help 11–15 year

olds develop computational skills through creating their own 3D role-

playing games [i.e., interactive storytelling]” (Howland and Good, 224).

4
TOWARD A THEORY (AND PRACTICE)
OF MULTIPLE COMPUTATIONAL
THINKINGS

Marcos Román-González, Jesús Moreno-León, and Gregorio Robles

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

72	 M. Román-González, J. Moreno-León, and G. Robles

Flip has a unique feature that consists of combining a block-based pro-

gramming language and a dynamically updating natural language version

of the script under creation on the same interface (figure 4.3).

The former study (Román-González, Pérez-González, and Jiménez-

Fernández 2017), which was fully conducted in pure pre-test condi-

tion (i.e., participants without any prior formal experience in computer

programming), showed significant differences in favor of the boys and

throughout all the school grades involved (figure 4.4, left). In contrast,

the latter research (Howland and Good 2015) yielded conflictive results

in favor of the girls, both in pre-test and post-test conditions (figure 4.4,

right). How can it be possible if both studies measured the same psycho-

logical construct (i.e., CT) in participants with a similar age range?

Nevertheless, these aforementioned results are just seemingly contra-

dictory since they reveal some alternative explanations:

•	 First, results summarized in figure 4.4 are consistent with classical and

relevant literature on gender differences. Thus, several meta-analyses

demonstrate higher male spatial ability, especially in tasks that involve

mental rotation of figures (e.g., Linn and Petersen 1985; Voyer, Voyer,

and Bryden 1995), which could explain differences in favor of boys in

the study by Román-González, Pérez-González, and Jiménez-Fernández

4.1  Computational concepts to solve a visuospatial problem (Román-González, Pérez-

González, and Jiménez-Fernández 2017).

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Theory (and Practice) of Multiple Computational Thinkings	 73

(2017). Analogously, some other meta-analyses show female superi-

ority in tasks involving verbal-linguistic ability (e.g., Hyde and Linn

1988; Lewin, Wolgers, and Herlitz 2001), which could explain differ-

ences in favor of girls in the study by Howland and Good (2015).
•	 Moreover, there is a great deal of empirical evidence that demonstrates

that CT is mainly a problem-solving ability linked with fluid intel-

ligence (e.g., Boom et al. 2018; Román-González, Pérez-González,

and Jiménez-Fernández 2017), which is characterized by adapting to

the context demands. In other words, if we assume that CT is a fluid

cognitive ability, then its concrete expression and behavior (i.e., its

if

else

player

edit

playerSmaug
Smaug

tell to attack

display on screen

is carrying

You escaped, but
without the amulet.

Amulet of Pow
NW IT MNEC

then

4.2  Computational concepts to solve a linguistic-narrative problem (Howland and Good

2015).

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

74	 M. Román-González, J. Moreno-León, and G. Robles

crystallization) may vary, depending on the type-modality of problems

on which such ability is projected. The same applies to a fluid, such as

water, that takes the shape of its container.

Therefore, all of the above suggests that CT could be manifested in

multiple and different ways, depending on the type-modality of problems

to be solved. In other words, it is plausible to hypothesize the existence

not of a single, but of multiple, computational thinkings. This statement

clearly resonates with the Theory of Multiple Intelligences (TMI) postu-

lated by Howard Gardner (1983, 1999), in which the author claimed the

4.3  Interface of Flip, which blends block-based programming-language and natural

language.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Theory (and Practice) of Multiple Computational Thinkings	 75

existence not of a single, but of multiple, intelligences. Since we are going

to intersect CT and TMI, let’s clarify each of these terms.

From our point of view, CT can be defined as a human-cognitive ability

that consists of formulating and representing problems so that they can be

subsequently solved using computational concepts (e.g., sequences, loops,

events, parallelism, conditionals, operators) and practices (e.g., experiment-

ing and iterating, testing and debugging, reusing and remixing, abstracting

and modularizing) (Moreno-León et al. 2019). Furthermore, we consider

that computer programming is the fundamental way that enables CT to

come alive (Lye and Koh 2014), although CT can be projected on different

kinds of problems that may not involve directly programming tasks. In

other words, “Just like we distinguish [for example] between verbal aptitude

(which is in the order of human cognitive abilities, with an important innate

base) and literacy skill(s) [i.e. reading and writing] (which is an instrumental

competence that requires a relatively formal teaching and learning process); we

could similarly establish a distinction between CT (human cognitive ability) and

programming skills (instrumental competence)” (Moreno-León et al. 2019, 32).

On the other hand, TMI is a modular theory of intelligence. This means

that, instead of considering the human mind as a single and general

5th & 6th

30

25

20

15

10

5

0

7th & 8th
Grades

S
co

re

C
T

 s
co

re

9th & 10th
Box plots of pre- and post-test

scores by gender

Male

5.00

10.00

15.00

20.00

0.00
Female

Gender Boys Girls Pre- Post-

4.4  Gender differences in CT performance over visuospatial problems (left; Román-

González, Pérez-González, and Jiménez-Fernández 2017) and linguistic-narrative prob-

lems (right; Howland and Good 2015).

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

76	 M. Román-González, J. Moreno-León, and G. Robles

information-processing agent (i.e., as a universal problem solver, which

works indifferently regardless the content or context of the problem), TMI

perceives the human mind as a set of separate cognitive modules or facul-

ties. According to TMI, each of these cognitive modules has very specific

capabilities (i.e., can solve specific types-modalities of problems, always in

context), and Gardner (1983, 1999) names these aforementioned faculties

as intelligences to place them all at the same level of hierarchy. In more con-

crete terms, TMI currently recognizes eight intelligences, namely verbal-

linguistic, logical-mathematical, musical, bodily-kinesthetic, visual-spatial,

interpersonal, intrapersonal, and naturalistic. Additionally, TMI states two

fundamental principles:

•	 The eight intelligences are relatively independent of each other (i.e.,

the subject’s level in a given intelligence does not predict his/her level

in another).
•	 A same intelligence may be needed to excel in different tasks or human

activity fields (e.g., visual-spatial intelligence is needed to orient your-

self in a city and to master graphic design tasks). In addition, to excel

in some human activity fields may require a high level in more than

one intelligence (e.g., being an excellent orchestra conductor probably

demands high levels in musical, bodily-kinesthetic, and interpersonal

intelligences).

Hence, in the following sections we intend to intertwine CT and TMI.

In other words, we will try to reinterpret Gardner’s theory in computa-

tional terms. This goal fully aligns with the initial premise of TMI: to be

intelligent is to solve problems within a given context and to create prod-

ucts that are valuable within a given culture-society. Since our present

context is mainly digital, given that our present culture-society relies on

digital artifacts and products, then it seems necessary to revisit Gardner’s

intelligences from a computational approach. To some extent, Gardner

himself has assumed this possibility since he has recently redefined an

intelligence as “a capacity to compute using a particular type of informa-

tion in service to a particular role” (Moran and Gardner 2018, 25).

Before continuing, readers should be aware that this chapter is specula-

tive; that is, it aims to generate and stimulate discussion and to open new

lines of research, not to establish a definitive and binding CT framework.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Theory (and Practice) of Multiple Computational Thinkings	 77

GROUNDING THE THEORY OF MULTIPLE

COMPUTATIONAL THINKINGS

In this section, we will try to ground our theory through a (nonexhaus-

tive) review of K–12 educational interventions, along which CT has been

used and developed, mostly by means of computer programming, to solve

different kinds of problems: verbal-linguistic, logical-mathematical, musi-

cal, bodily-kinesthetic, visual-spatial, interpersonal, intrapersonal, and

naturalistic.

COMPUTATIONAL THINKING IN VERBAL-LINGUISTIC PROBLEMS

Verbal-linguistic intelligence involves a special sensitivity toward lan-

guage, both spoken and written, an outstanding ability to learn (new/

foreign) languages, and the ability to use language to achieve certain

objectives. Among the people with high verbal-linguistic intelligence are

lawyers, speakers, writers, and poets. In other words, linguistic intelli-

gence is needed to deal with problems that are formulated or represented

in a verbal way (Gardner 1983, 1999).

We find several examples in the literature in which CT has been applied

to verbal-linguistic contexts. In this regard, we highlight the pioneering

studies of Quinn Burke, who almost one decade ago started to introduce

basic computational concepts to middle school students within the context

of the writing classroom and by means of Scratch (a block-based program-

ming language) (Burke 2012; Burke and Kafai 2012). Other experiences and

studies have infused CT into K–12 schools through digital (Campos, Signo-

retti, and Rodrigues 2017) or unplugged (Curzon et al. 2014) storytelling

activities. Campos, Signoretti, and Rodrigues (2017) is a clear example of

how a computational concept (e.g., conditional logic) can be embedded in

a verbal-linguistic product (figure 4.5, top). In another vein, computational

practices such as modeling have been used to support language learning

in several areas (Sabitzer et al. 2018): reading comprehension, vocabulary

acquirement, or grammar rules/structures visualization (figure 4.5, bottom).

In reverse, some computational tools have been designed in which natural

language supports and scaffolds the learning of a programming language

(e.g., Howland and Good 2015; Proctor and Blikstein 2017). Finally, empir-

ical evidence exists regarding the effectiveness of narrative and storytelling

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

78	 M. Román-González, J. Moreno-León, and G. Robles

activities to encourage and promote CT in girls at K–12 levels (e.g., Kelleher,

Pausch, and Kiesler 2007), consistently with Howland and Good (2015)

(figure 4.4, right).

COMPUTATIONAL THINKING IN LOGICAL-MATHEMATICAL

PROBLEMS

Logical-mathematical intelligence involves the ability to analyze problems

logically, to carry out mathematical operations, and to conduct research

with a scientific approach. Mathematicians, logicians, and scientists, among

other occupations, employ logical-mathematical intelligence (Gardner 1983,

1999). At first glance, the close relationship between CT and mathematical

4.5  Conditional logic embedded in a linguistic-verbal context (top; Campos, Signoretti,

and Rodrigues 2017), and modeling as a computational practice to support language

learning (bottom; Sabitzer et al. 2018).

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Theory (and Practice) of Multiple Computational Thinkings	 79

intelligence seems evident, since they both share being mostly based on

algorithmic thinking (Lockwood et al. 2016). In fact, some relevant CT def-

initions point out its algorithmic foundations. For example, Aho (2012)

defines CT as “the thought process involved in formulating problems so

their solutions can be represented as computational steps and algorithms”

(Aho 2012, 832). Meanwhile, much of mathematical thinking consists of

rules and procedures to reach a solution based on initial data (i.e., of apply-

ing algorithmic thinking on numerical information).

Furthermore, several authors have highlighted different points in com-

mon between CT and mathematical thinking, such as “conditional logic”

(Morais, Basso, and Fagundes 2017), “reflective abstraction” (Cetin and

Dubinsky 2017), or “modeling” (Sanford and Naidu 2017). From a more

comprehensive perspective, Gadanidis (2017) has proposed “Five Affor-

dances of Computational Thinking to support Elementary Mathematics

Education”: namely “agency,” “access,” “abstraction,” “automation,” and

“audience.”

Focusing on concrete experiences in K–12, which are aimed at foster-

ing mathematics education through CT and computer programming, we

consider that ScratchMaths project (https://www​.ucl​.ac​.uk​/ioe​/research​

/projects​/scratchmaths) is the most relevant and promising example (Ben-

ton et al. 2017, 2018). As can be seen in figure 4.6, ScratchMaths addresses

several mathematical concepts, such as symmetry, polygons, place value,

proportionality, or coordinates, by means of computational concepts and

practices that are implemented in Scratch block-based programming lan-

guage (Resnick et al. 2009).

All the mathematical concepts cited in the previous paragraph are part

of the traditional mathematics curriculum. According to Olabe et al. (2014),

this traditional curriculum is full of Type A problems, which “are deter-

ministic in their solution (the solution is known and unique); and they

are deterministic in process (the path to the solution is known and unique

too)” (76). Nevertheless, an emerging stream of authors and research argues

that computational tools, concepts, and practices are even more useful and

powerful with Type B problems (i.e., nondeterministic in their solution and

in their process). In addition, Type B problems are iterative in their nature,

and they require experimentation for their resolution (e.g., Olabe et al.

2014; Sengupta et al. 2013; Weintrop et al. 2016). These authors also claim

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

80	 M. Román-González, J. Moreno-León, and G. Robles

that many more Type B problems should be included in the mathematics

curriculum and within the broader framework of STEM education, in which

physical and biologic complex systems (i.e., typical Type B problems) are

frequently studied. In this regard, we find significant experiences that inte-

grate CT and STEM education through modeling and simulation practices

and by means of multi-agent–based computational tools (Sengupta et al.

2013; Weintrop et al. 2016).

COMPUTATIONAL THINKING IN MUSICAL PROBLEMS

Musical intelligence is defined as the ability to interpret, compose, and

appreciate musical patterns (Gardner 1983, 1999). Composing music implies

a series of knowledges and actions that align with several computational

Year 5 modules (ages 9–10)

Module 1: Tiling patterns

Year 6 modules (ages 10–11)

Module 4: Building with numbers

Module 5: Exploring mathematical relationships

Module 6: Coordinates and geometry

Module 2: Beetle geometry

Module 3: Interacting sprites

Introduces the key computational concepts of
sequencing, repetition, algorithm, debugging, and
definition as well as linking to symmetry, angles, and
negative numbers through building circular patterns.

Focuses on place value and requires the use of
broadcasting to build place value models within
several different contests such as time and
measurements.

Explores different types of mathematical
relationships, including proportionality and ratio
as well as introducing the concept of variable.

Centers around coordinates within multiple contexts
firstly to investigate emerging shapes through the use
of randomness, then to manipulate triangles and
quadrilaterals, and finally to explore different
transformations such as translations and reflections.

Focuses on creating different drawings using the pen
tool such as regular polygons, introducing pupils to
initialisation, expressions, and randomness as well as
consolidating earlier concepts.

Focuses on parallelism and building behaviors for
multiple sprites, firstly isolated reactions to an event
(when this sprite clicked), using conditions and
expressions linked to coordinates, and then implementing
interactions between multiple sprites using broadcasting.

4.6  Overview of ScratchMaths modules and topics (top), and the Scratch program,

which implements the mathematical concept of place value (bottom) (Benton et al. 2018).

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Theory (and Practice) of Multiple Computational Thinkings	 81

concepts and practices. Thus, music is a controlled sequence of notes, anal-

ogous to the commands that are sequenced under flow control structures

in programming languages (e.g., repetition structures such as loops, see

figure 4.7). Moreover, musical pieces combine and reuse smaller fragments

of sounds, which is analogous to the practice of modularizing through

functions in computer programming. In addition, within a musical piece,

the different instruments must be synchronized, analogous to the com-

putational concept of synchronization through events in programming.

Finally, the sound has a series of parameters that can be digitized and rep-

resented by variables when programming music.

Since the foundational article of Michael Edwards in 2011, entitled

“Algorithmic Composition: Computational Thinking in Music,” many

papers have been published on how music can motivate and promote CT

development, and vice versa. For example, we find experiences in primary

and secondary schools using block-based programming languages such as

Blockly (Baratè et al. 2017), AgentCubes (Hug et al. 2017), TunePad (Gor-

son et al. 2017), or Scratch (Ruthmann et al. 2010) to compose music.

From a different approach and aimed at high school students, Atherton

4.7  Flow control through repetition structures for composing music (Baratè et al. 2017).

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

82	 M. Román-González, J. Moreno-León, and G. Robles

and Blikstein (2017) present Sonification Blocks, “a programming lan-

guage for data sonification, the process of creating audio algorithms and

controlling them with streams of data” (733). At last, other authors pro-

pose to enrich musical CT with tangible devices/interfaces that must be

physically manipulated by the kids, for example, LEGO bricks (Baratè,

Ludovico, and Malchiodi 2017) or Algo.Rhythm, a tangible computational

drum kit with programmable behaviors (Peng 2012), which borders on

the next intelligence (bodily-kinesthetic).

COMPUTATIONAL THINKING IN BODILY-KINESTHETIC PROBLEMS

Bodily-kinesthetic intelligence involves the ability to use parts of the

body, or its totality, to solve problems or create products. It is evident that

dancers, actors, or athletes stand out for their high body-kinesthetic intel-

ligence. Nevertheless, this type of intelligence also excels in artisans, sur-

geons, laboratory technicians, mechanics, and other technical professions

(Gardner 1983, 1999).

Somehow, when developing CT in a kinesthetic manner, we assume the

fundamentals of so-called “embodied cognition” theory (Shapiro 2019),

which states that cognitive processes are shaped and enhanced by body

activity and movement. We find in literature three main approaches to

address CT in a kinesthetic way at K–12 school levels. First, CT is being

developed by means of tangible devices and interfaces, which can be pro-

grammed through physical object manipulation (figure 4.8, left) (e.g., Aggar-

wal, Gardner-McCune, and Touretzky 2017; Melcer 2017; Wang, Wang, and

Liu 2014). Second, we find several experiences where CT is fostered through

dance. In this case, computational concepts and practices are applied while

programming choreography that is subsequently danced by the students

(figure 4.8, middle) (e.g., Daily et al. 2014; Owen et al. 2016). Finally, among

the CT community there is a growing agreement on and commitment to

teaching computational concepts and practices through unplugged activi-

ties (UA). These activities do not use digital devices and, therefore, typically

imply some kind of physical movement in the participants. For example,

in figure 4.8 (right) we can see a picture of primary school kids learning

about sorting networks through one of the UA published in the relevant

site (https://csunplugged​.org​/). It is worth noting that there is increasing

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Theory (and Practice) of Multiple Computational Thinkings	 83

empirical evidence on the effectiveness of the unplugged approach to

develop CT in K–12 (e.g., Brackmann et al. 2017; Rodriguez et al. 2017).

COMPUTATIONAL THINKING IN VISUAL-SPATIAL PROBLEMS

Visual-spatial intelligence is defined as the ability to recognize and manip-

ulate spatial patterns, either in large spaces (e.g., as pilots or navigators

do) or in small spaces (e.g., as sculptors, chess players, graphic design-

ers, or architects do). Therefore, visual-spatial intelligence is used to solve

problems such as navigation and map usage, visualization of objects seen

from different angles, or distribution of objects in a given space, among

others (Gardner 1983, 1999).

Visual elements have played an essential role within the recent spread

of CT and computer programming across K–12 education. On the one

hand, block-based languages such as Blockly or Scratch provide visual ele-

ments/clues that scaffold children’s learning of programming since early

ages (even before learning to read or write, in the case of ScratchJr); these

visual elements are fundamental to characterize the aforementioned lan-

guages as “low floor” (Weintrop and Wilensky 2017). On the other hand,

many platforms and applications for kids aimed at teaching/learning to

code pose visual puzzles in this regard, such as mazes or graphic/geometric

patterns to be drawn (e.g., Kodable, LightBot, Code​.org) (Kalelioğlu 2015).

An example of a visual language used for solving a visual problem can be

seen in figure 4.9. Finally, some authors report how visual thinking and

visual techniques, such as mind maps or diagrams, can support CT devel-

opment (e.g., Fronza, El Ioini, and Corral 2016; Jamil 2017).

4.8  Examples of “embodied CT”: Tangible devices (left), dancing and programming

(middle), and learning about sorting networks by means of an unplugged activity (right).

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

84	 M. Román-González, J. Moreno-León, and G. Robles

In another vein, we find two main ways in which CT has been pro-

jected to face visual-spatial problems. First, within the context of algo-

rithmic art (i.e., graphic design through computer algorithms; see Orr

2009). Second, CT and computer programming have been used in K–12

schools to create 3-D models, scenarios, and architectures (figure 4.10),

often within the context of game-design (e.g., Bauer, Butler, and Popović

2017; Pinto-Llorente et al. 2018; Repenning et al. 2014).

COMPUTATIONAL THINKING IN INTERPERSONAL PROBLEMS

Interpersonal intelligence refers to the ability of people to understand and

interpret the intentions, motivations, and desires of others and conse-

quently to their ability to work effectively with other people. Therefore,

interpersonal intelligence is built on the nuclear ability to discriminate

differences between others (in particular, to feel contrasts in their moods,

4.9  Visual language for solving a visual problem (https://studio​.code​.org​/s​/express​-2019​

/stage​/19​/puzzle​/6).

4.10  Architectural design by means of computer programming (Bauer, Butler, and

Popović 2017).

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Theory (and Practice) of Multiple Computational Thinkings	 85

temperaments, motivations, and intentions). At its highest level, this intel-

ligence allows the individual to capture the intentions and desires of oth-

ers, even if those have been hidden. Interpersonal intelligence manifests in

an outstanding and sophisticated way in political and religious leaders, in

teachers, in doctors and therapists, or in sellers and traders, among other

occupations (Gardner 1983, 1999).

Computational concepts and practices are being applied within inter-

personal problems and contexts, mainly by means of programming con-

versational interfaces, such as chatbots (Klopfenstein et al. 2017). Focusing

on K–12, some experiences are found in this regard. For example, Benotti,

Martnez, and Schapachnik (2018) have recently presented Chatbot (figure

4.11), a platform “designed to introduce high school students to Computer

Science (CS) concepts in an innovative way: by programming chatbots.

A chatbot is a bot that can be programmed to have a conversation with

a human or robotic partner in some natural language such as English or

Spanish. While programming their chatbots, students use fundamental CS

constructs such as variables, conditionals and finite state automata, among

others” (Benotti, Martnez, and Schapachnik 2018, 179). These authors also

report that girls’ engagement with Chatbot was higher than boys’ for most

indicators, which is consistent with the textual-linguistic features of its

interface.

For a conversational interface to be fully functional within an interper-

sonal context (i.e., to be “interpersonally intelligent”), it must recognize

(or even infer) and adaptively react to a wide range not only of cogni-

tive states of the interlocutor (i.e., intentions, expectations, desires) but

also of emotional states (Zhou et al. 2018). To address that challenge,

classic rule-based programming (i.e., top-bottom approach) is inefficient

and definitely not enough. Instead, bottom-up approaches, such as build-

ing models from data through machine learning (ML) techniques, are

much more powerful and promising for this type of problem. In this vein,

we have recently published several experiences in primary and second-

ary schools (Rodríguez-García et al. 2019), in which a text recognition

model is built and trained with sample data through ML techniques

(using the tool Machine Learning For Kids [ML4K], available at https://

machinelearningforkids​.co​.uk​/) and subsequently implemented as a vir-

tual home assistant in Scratch (figure 4.12). It is worth noting that ML4K

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

86	 M. Román-González, J. Moreno-León, and G. Robles

4.11  Chatbot (Benotti, Martnez, and Schapachnik 2018): K–12 students learn condi-

tionals and variables (top), among other computational concepts, while programming a

conversational interface (bottom).

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Theory (and Practice) of Multiple Computational Thinkings	 87

4.12  Virtual home assistant built with ML techniques and implemented in Scratch

(Rodríguez-García et al. 2019).

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

88	 M. Román-González, J. Moreno-León, and G. Robles

allows students to build and train models not only from textual data but

also from images or sounds.

COMPUTATIONAL THINKING IN INTRAPERSONAL PROBLEMS

Intrapersonal intelligence involves the ability to understand oneself

(one’s desires, fears, expectations, abilities) and to use this information to

effectively regulate one’s life. Thus, intrapersonal intelligence consists in

the knowledge of the internal aspects of oneself (emotions, motivations,

cognitions, or expectations) and in the ability to label and discriminate

between them to finally interpret and guide one’s own behavior (Gardner

1983, 1999). Typical products derived from intrapersonal intelligence are

diaries, agendas, or personal schedules.

Looking inside scientific literature, we only find some tangential pub-

lications that relate computational concepts or practices to solving prob-

lems of one’s life. (For example, Gärling, Kwan, and Golledge published

in 1994 a paper entitled, “Computational-Process Modelling of House-

hold Activity Scheduling.”) Nevertheless, common sense and informal

observation lead us to suggest that nowadays more and more people

organize their own lives in computational or algorithmic terms (“la vie

algorithmique” in French terms of Éric Sadin [2015]). Indeed, if we have a

look inside grey literature, some relevant testimonials in this regard are

found. For example, the computational visionary Stephen Wolfram has

recently published in his blog the post entitled, “Seeking the Productive

Life: Some Details of My Personal Infrastructure” (Wolfram, February 21,

2019), in which he says:

I’m a person who’s only satisfied if I feel I’m being productive. I like figuring things
out. I like making things. And I want to do as much of that as I can. And part of
being able to do that is to have the best personal infrastructure I can. Over the years
I’ve been steadily accumulating and implementing “personal infrastructure hacks” for
myself. Some of them are, yes, quite nerdy. But they certainly help me be productive.
And maybe in time more and more of them will become mainstream, as a few already
have ( . . . ) At an intellectual level, the key to building this infrastructure is to struc-
ture, streamline and automate everything as much as possible—while recognizing both
what’s realistic with current technology, and what fits with me personally. In many
ways, it’s a good, practical exercise in computational thinking, and, yes, it’s a good
application of some of the tools and ideas that I’ve spent so long building.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Theory (and Practice) of Multiple Computational Thinkings	 89

In any case, it is essential that the new generations learn how to orga-

nize their own lives in computational terms (i.e., to use the currently

ubiquitous and pervasive algorithms for taking better personal decisions).

Otherwise, there is a serious risk regarding how these algorithms can con-

trol people’s lives without their consent or awareness. In terms of Douglas

Rushkoff (2010), it is a matter of “programming or being programmed.”

This motto could be the synthesis of the present subsection, expressed in

sociocritical terms.

From a different and emerging cognitive perspective, CT can finally

be linked to intrapersonal intelligence through so-called “executive func-

tions” (EF). Following Robertson et al. (2020, 36), “EF is an umbrella term

for higher order cognitive functions linked with the frontal lobes of the

human brain and include abilities such as inhibiting impulsive responses,

the ability to hold and simultaneously manipulate information in mind

(known as working memory), attention shifting (or cognitive flexibility),

planning and risk taking.” On the one hand, we find recent exploratory

studies in which CT correlates with EF (Robertson et al. 2020) and some

other experimental research that demonstrates positive effects of coding

on primary children’s EF, specifically on planning and response inhibition

skills (Arfé et al. 2019; Arfé, Vardanega, and Ronconi 2020). On the other

hand, Gardner himself has also recognized “the connection of EF strategies

to intrapersonal intelligence, which processes information relative to the self”

(Moran and Gardner 2018, 25). The conclusion seems evident: CT can be

developed mainly by means of coding tasks, which may enhance EF that

could subsequently serve to better regulate one’s cognition and behavior,

that is, to be more “intrapersonally intelligent.”

COMPUTATIONAL THINKING IN NATURALISTIC PROBLEMS

Naturalistic intelligence refers to the ability to recognize and classify the

different natural species (Gardner 1999), either animal or plant species.

One clear example of mastery within this intelligence was Carl Linnaeus,

pioneer and father of biological taxonomies. From another perspective,

naturalistic intelligence involves the ability to describe and understand the

structure and evolution of biological systems (i.e., living being systems);

for example, to understand what factors (and how) affect the evolution

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

90	 M. Román-González, J. Moreno-León, and G. Robles

of a given population of animals in a particular ecosystem. One essential

characteristic of biological ecosystems is that they are complex (i.e., non-

linear and dynamic), so they require multilevel explanations (Wilensky

and Reisman 2006).

In this vein, Rubinstein and Chor (2014) have presented an excellent

and comprehensive proposal on how to integrate CT in life science edu-

cation. Moreover, focusing on K–12, we find several experiences in which

the biological core concept of “natural selection” has been addressed

in computational terms. In the first experience, Dickes and Sengupta

(2013) “investigate how elementary school students develop multi-level

explanations of population dynamics in a simple predator–prey ecosys-

tem, through scaffolded interactions with a multi-agent-based computa-

tional model (MABM)” (921), by means of computer programming and

modeling with the tool NetLogo (figure 4.13). In another experience,

secondary students used computational concepts and practices to build

algorithmic explanations of the natural selection process through sev-

eral unplugged activities (Peel, Sadler, and Friedrichsen 2018). At a higher

level of complexity and aimed at high school students, Wilensky and

4.13  Wolf-Sheep predation model in NetLogo (Dickes and Sengupta 2013, Wilensky

and Reisman 2006).

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Theory (and Practice) of Multiple Computational Thinkings	 91

Reisman (2006) describe a “computation-based approach that enables

students to investigate the connections between different biological lev-

els. Using agent-based, embodied modeling tools (‘NetLogo’), students

model the microrules underlying a biological phenomenon and observe

the resultant aggregate dynamics” (Wilensky and Reisman 2006, 171)

(figure 4.13).

COMPUTATIONAL THINKING ASSESSMENT BATTERY (CTAB):

A PROOF-OF-CONCEPT

In the previous section, we have reported a sufficient number of studies,

experiences, and testimonials that show how CT can be used to address each

and every one of the types of problems stated by Howard Gardner (1983,

1999). That is, we have gathered enough preliminary hints and traces to

ground our Theory of Multiple Computational Thinkings. At this point,

the next step is to wonder and to anticipate how to empirically contrast the

aforementioned theory. A way to confirm it could be to conduct empirical

CT assessments/measurements on representative and large enough samples,

whose results should reflect the hypothesized multifactorial structure of the

construct (i.e., of CT).

To date, one of the most relevant assessment tools to measure CT at

K–12 school levels is the Computational Thinking Test (CTt). The CTt is

a multiple-choice test of 28 items, which has been designed from a psy-

chometric approach and has been demonstrated to be reliable for kids

between ten and sixteen years old. Furthermore, there is a great deal of evi-

dence regarding the content (Román-González 2015), criterion (Román-

González, Pérez-González, and Jiménez-Fernández 2017; Román-González

et al. 2018a), predictive (Román-González et al. 2018b), and instructional

(e.g., Brackmann et al. 2017; Rose, Habgood, and Jay 2019; Zhao and

Shute 2019) validities of the CTt, which is currently available in Spanish,

English, French, Portuguese, and German. Nevertheless, and regarding its

structural/factorial validity, results coming from different and indepen-

dent studies show that the CTt is unidimensional (e.g., Guggemos, Seufert,

and Román-González 20211; Román-González 2016; Wiebe et al. 2019).

We consider the following arguments to explain this unidimensionality

of the CTt:

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

92	 M. Román-González, J. Moreno-León, and G. Robles

•	 Following the psychometric notion of Fischer (1973), the items of a

unidimensional construct may be linearly decomposed into problem-

solving steps. Precisely, the items of the CTt can be linearly broken

down into a series of computational concepts that are progressively

incorporated and nested along the test (sequences, “repeat times”

loops, “repeat until” loops, “if-then” conditionals, “if-then-else” con-

ditionals, “while” conditionals, and simple functions).
•	 All the items of the CTt demand the subject to solve visual-spatial prob-

lems, such as mazes or graphic designs (figures 4.1 and 4.14). That is,

the CTt only presents a single type-modality of problems (i.e., visual-

spatial), among the eight proposed by Gardner. Then, the CTt may be

unidimensional because of its single/exclusive visuospatial conception

and design.

Consequently, the CTt seems to be insufficient and biased to empiri-

cally contrast our Theory of Multiple Computational Thinkings. An exclu-

sive assessment instrument cannot be used to confirm an inclusive theory.

Therefore, the CTt should be extended to a Computational Thinking

Assessment Battery (CTab) of tests, which should address the same afore-

mentioned computational concepts but through an inclusive set of items

that comprises the eight types of problems stated by the theory. Then, the

4.14  A visuospatial item for the upcoming CTab.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Theory (and Practice) of Multiple Computational Thinkings	 93

CTab could be an adequate instrument to verify the hypothesized multi-

dimensionality of CT.

A proof-of-concept (and very preliminary) design of a couple of items

for the CTab can be seen in the next two figures. Figure 4.14 shows item 22

from the original CTt, which addresses a visual-spatial problem through

“repeat” loops and “while” conditionals. Meanwhile, figure 4.15 trans-

lates and extrapolates that problem to a verbal-linguistic modality. To fully

design the CTab, the same should be done with all the computational con-

cepts involved and throughout all the types-modalities of problems.

DISCUSSION AND IMPLICATIONS

Here we discuss several implications of validating the multifactorial struc-

ture of the CTab and, consequently, of confirming our Theory of Multiple

Computational Thinkings.

First, if the CTab were validated, then it would be possible to establish

a personalized CT profile for any assessed person. Given that each of the

multiple computational thinkings is supposed to be relatively independent

of the others, it would be relevant to determine, for all students, in which

modality of CT they are most capable and then to design a personalized

4.15  A verbal-linguistic item for the upcoming CTab.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

94	 M. Román-González, J. Moreno-León, and G. Robles

CT educational intervention taking into account their strengths in this

regard.

Second, if the theory is not only empirically confirmed but also accepted

by the community of researchers, practitioners, and policy-makers, then

the subsequent CT curricula and interventions would probably become

more diverse and inclusive. CT education will be more equitable if a more

diverse set of problems to be computationally solved are offered within

K–12 scenarios.

Finally, confirming our Theory of Multiple Computational Thinkings

could also reinforce Gardner’s TMI. Throughout the last decades, TMI has

been often harshly criticized because of its insufficient and inadequate

empirical supporting evidence (e.g., Visser, Ashton, and Vernon 2006a,

2006b; Waterhouse 2006). In this vein, Visser, Ashton, and Vernon (2006a,

2006b) reported that administering their battery of tests, which suppos-

edly encompassed the eight intelligences of Gardner, resulted in a large

common factor (general or “g” factor) that clearly contradicted and dis-

carded TMI principles. Gardner (2006) replied that most of the tests used

in Visser’s battery were heavily and exclusively loaded with verbal and

logical information and were presented through typical school-like tasks,

all of which derived in obtaining that single “g” factor. In other words, Gard-

ner claims that TMI requires to be fairly contrasted with a more diverse and

contextualized set of tests/tasks, but at the same time Gardner recognizes

the difficulty of building an assessment battery with such a heterogeneous

set of abilities/intelligences to be measured. Therefore, to be effectively con-

trasted, TMI could lack an anchor that provides it with a minimum stability

and homogeneity. We consider that CT might be the anchor that Gardner’s

theory needs. It is a risky conclusion but also a suggestive and beautiful idea

for future research.

NOTE

1.  Manuscript under review.

REFERENCES

Aggarwal, Ashish, Christina Gardner-McCune, and David S. Touretzky. 2017. “Eval-
uating the Effect of Using Physical Manipulatives to Foster Computational Thinking

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Theory (and Practice) of Multiple Computational Thinkings	 95

in Elementary School.” In Proceedings of the 2017 ACM SIGCSE Technical Symposium
on Computer Science Education (SIGCSE ’17). Seattle, 9–14. https://doi​.org​/10​.1145​
/3017680​.3017791​.

Aho, Alfred V. 2012. “Computation and Computational Thinking.” The Computer
Journal 55 (7): 832–835. https://doi​.org​/10​.1093​/comjnl​/bxs074​.

Arfé, Barbara, Tullio Vardanega, Chiara Montuori, and Marta Lavanga. 2019.
“Coding in Primary Grades Boosts Children’s Executive Functions.” Frontiers in Psy-
chology 10: 2713. https://doi​.org​/10​.3389​/fpsyg​.2019​.02713​.

Arfé, Barbara, Tullio Vardanega, and Lucia Ronconi. 2020. “The Effects of Coding on
Children’s Planning and Inhibition Skills.” Computers & Education 148: 1–16. https://
doi​.org​/10​.1016​/j​.compedu​.2020​.103807​.

Atherton, Jack, and Paulo Blikstein. 2017. “Sonification Blocks: A Block-Based Pro-
gramming Environment for Embodied Data Sonification.” In Proceedings of the 2017
Conference on Interaction Design and Children (IDC ’17). Stanford, CA, 733–736. https://
doi​.org​/10​.1145​/3078072​.3091992​.

Baratè, Adriano, Andrea Formica, Luca A. Ludovico, and Dario Malchiodi. 2017.
“Fostering Computational Thinking in Secondary School through Music—An Edu-
cational Experience based on Google Blockly.” In Proceedings of the 9th International
Conference on Computer Supported Education. Vila Nova de Gaia, Portugal, 117–124.
http://dx​.doi​.org​/10​.5220​/0006313001170124​.

Baratè, Adriano, Luca A. Ludovico, and Dario Malchiodi. 2017. “Fostering Compu-
tational Thinking in Primary School through a LEGO®-based Music Notation.” Pro-
cedia Computer Science 112: 1334–1344. https://doi​.org​/10​.1016​/j​.procs​.2017​.08​.018​.

Bauer, Aaron, Eric Butler, and Zoran Popović. 2017. “Dragon Architect: Open Design
Problems for Guided Learning in a Creative Computational Thinking Sandbox
Game.” In Proceedings of the 12th International Conference on the Foundations of Digital
Games (FDG ’17). Hyannis, MA, 1–6. https://doi​.org​/10​.1145​/3102071​.3102106​.

Benotti, Luciana, Mara Cecilia Martnez, and Fernando Schapachnik. 2018. “A Tool
for Introducing Computer Science with Automatic Formative Assessment.” IEEE
Transactions on Learning Technologies 11 (2): 179–192. https://doi​.org​/10​.1109​/TLT​
.2017​.2682084​.

Benton, Laura, Celia Hoyles, Ivan Kalas, and Richard Noss. 2017. “Bridging Primary
Programming and Mathematics: Some Findings of Design Research in England.”
Digital Experiences in Mathematics Education 3: 115–138. https://doi​.org​/10​.1007​
/s40751​-017​-0028​-x​.

Benton, Laura, Piers Saunders, Ivan Kalas, Celia Hoyles, and Richard Noss. 2018.
“Designing for Learning Mathematics through Programming: A Case Study of Pupils
Engaging with Place Value.” International Journal of Child-Computer Interaction 16:
68–76. https://doi​.org​/10​.1016​/j​.ijcci​.2017​.12​.004​.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

96	 M. Román-González, J. Moreno-León, and G. Robles

Boom, Kay-Dennis, Matt Bower, Amaël Arguel, Jens Siemon, and Antonia Scholk-
mann. 2018. “Relationship between Computational Thinking and a Measure of
Intelligence as a General Problem-Solving Ability.” In Proceedings of the 23rd Annual
ACM Conference on Innovation and Technology in Computer Science Education (ITiCSE
2018). Larnaca, Cyprus, 206–211. https://doi​.org​/10​.1145​/3197091​.3197104​.

Brackmann, Christian P., Marcos Román-González, Gregorio Robles, Jesús Moreno-
León, Ana Casali, and Dante Barone. 2017. “Development of Computational Think-
ing Skills through Unplugged Activities in Primary School.” In Proceedings of the 12th
Workshop on Primary and Secondary Computing Education (WiPSCE ’17). Toronto, 65–72.
https://doi​.org​/10​.1145​/3137065​.3137069​.

Burke, Quinn. 2012. “The Markings of a New Pencil: Introducing Programming-as-
Writing in the Middle School Classroom.” Journal of Media Literacy Education 4 (2):
121–135.

Burke, Quinn, and Yasmin B. Kafai. 2012. “The Writers’ Workshop for Youth Pro-
grammers: Digital Storytelling with Scratch in Middle School Classrooms.” In Pro-
ceedings of the 43rd ACM Technical Symposium on Computer Science Education (SIGCSE
’12). Raleigh, NC, 433–438. https://doi​.org​/10​.1145​/2157136​.2157264​.

Campos, André, Alberto Signoretti, and Mário Rodrigues. 2017. “An Interactive
Book Authoring Tool to Introduce Programming Logic in Schools.” In Proceedings
of the 9th International Conference on Computer Supported Education. Porto, Portugal,
140–148. http://dx​.doi​.org​/10​.5220​/0006333501400148​.

Cetin, Ibrahim, and Ed Dubinsky. 2017. “Reflective Abstraction in Computational
Thinking.” The Journal of Mathematical Behavior 47: 70–80. https://doi​.org​/10​.1016​/j​
.jmathb​.2017​.06​.004​.

Curzon, Paul, Peter William McOwan, Nicola Plant, and Laura R. Meagher. 2014.
“Introducing Teachers to Computational Thinking Using Unplugged Storytelling.”
In Proceedings of the 9th Workshop in Primary and Secondary Computing Education
(WiPSCE ’14). Berlin, 89–92. https://doi​.org​/10​.1145​/2670757​.2670767​.

Daily, Shaundra Bryant, Alison E. Leonard, Sophie Jörg, Sabarish Babu, and Kara Gunder-
sen. 2014. “Dancing Alice: Exploring Embodied Pedagogical Strategies for Learning Com-
putational Thinking.” In Proceedings of the 45th ACM Technical Symposium on Computer
Science Education (SIGCSE ’14). Atlanta, 91–96. https://doi​.org​/10​.1145​/2538862​.2538917​.

Dickes, Amanda Catherine, and Pratim Sengupta. 2013. “Learning Natural Selection
in 4th Grade with Multi-Agent-Based Computational Models.” Research in Science
Education 43 (3): 921–953. https://doi​.org​/10​.1007​/s11165​-012​-9293​-2​.

Edwards, Michael. 2011. “Algorithmic Composition: Computational Thinking in Music.”
Communications of the ACM 54 (7): 58–67. https://doi​.org​/10​.1145​/1965724​.1965742​.

Fischer, Gerhard H. 1973. “The Linear Logistic Test Model as an Instrument in Edu-
cational Research.” Acta Psychologica 37 (6): 359–374. https://doi​.org​/10​.1016​/0001​
-6918(73)90003-6.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Theory (and Practice) of Multiple Computational Thinkings	 97

Fronza, Ilenia, Nabil El Ioini, and Luis Corral. 2016. “Teaching Software Design
Engineering across the K–12 Curriculum: Using Visual Thinking and Computational
Thinking.” In Proceedings of the 17th Annual Conference on Information Technology
Education. Boston, 97–101. http://dx​.doi​.org​/10​.1145​/2978192​.2978220​.

Gadanidis, George. 2017. “Five Affordances of Computational Thinking to support
Elementary Mathematics Education.” Journal of Computers in Mathematics and Science
Teaching 36 (2): 143–151. https://www​.learntechlib​.org​/primary​/p​/174346​/​.

Gardner, Howard. 1983. Frames of Mind: The Theory of Multiple Intelligences. New
York: Basic Books.

Gardner, Howard. 1999. Intelligence Reframed. New York: Basic Books.

Gardner, Howard. 2006. “On Failing to Grasp the Core of MI Theory: A Response
to Visser et al.” Intelligence 34 (5): 503–505. https://doi​.org​/10​.1016​/j​.intell​.2006​.04​
.002​.

Gärling, Tommy, Mei-Po Kwan, and Reginald G. Golledge. 1994. “Computational-
process Modelling of Household Activity Scheduling.” Transportation Research Part B:
Methodological 28 (5): 355–364. https://doi​.org​/10​.1016​/0191​-2615(94)90034-5.

Gorson, Jamie, Nikita Patel, Elham Beheshti, Brian Magerko, and Michael Horn.
2017. “TunePad: Computational Thinking through Sound Composition.” In Pro-
ceedings of the 2017 Conference on Interaction Design and Children (IDC ’17). Stanford,
CA, 484–489. https://doi​.org​/10​.1145​/3078072​.3084313​.

Guggemos, Josef, Sabine Seufert, and Marcos Román-González. (2021). “Assessing
Computational Thinking—A Person-Centered Approach.” Technology, Knowledge and
Learning (forthcoming).

Howland, Kate, and Judith Good. 2015. “Learning to Communicate Computation-
ally with Flip: A Bi-modal Programming Language for Game Creation.” Computers &
Education 80: 224–240. https://doi​.org​/10​.1016​/j​.compedu​.2014​.08​.014​.

Hug, Daniel, Serge Petralito, Sarah Hauser, Anna Lamprou, Alexander Repenning,
Didier Bertschinger, Nadine Stüber, and Markus Cslovjecsek. 2017. “Exploring Com-
putational Music Thinking in a Workshop Setting with Primary and Secondary School
Children.” In Proceedings of the 12th International Audio Mostly Conference on Augmented
and Participatory Sound and Music Experiences (AM ’17). London, 1–8. https://doi​.org​/10​
.1145​/3123514​.3123515​.

Hyde, Janet S., and Marcia C. Linn. 1988. “Gender Differences in Verbal Ability:
A Meta-Analysis.” Psychological Bulletin 104 (1): 53–69. https://doi​.org​/10​.1037​/0033​
-2909​.104​.1​.53​.

Jamil, Hasan M. 2017. “Visual Computational Thinking Using Patch.” In Advances
in Web-Based Learning—ICWL 2017, edited by Haoran Xie, Elvira Popescu, Gerhard
Hancke, and Baltasar Fernández Manjón, 208–214. Cham: Springer. https://doi​.org​
/10​.1007​/978​-3​-319​-66733​-1_23.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

98	 M. Román-González, J. Moreno-León, and G. Robles

Kalelioğlu, Filiz. 2015. “A New Way of Teaching Programming Skills to K–12 Stu-
dents: Code​.org​.” Computers in Human Behavior 52: 200–210. https://doi​.org​/10​.1016​
/j​.chb​.2015​.05​.047.

Kelleher, Caitlin, Randy F. Pausch, and Sara Kiesler. 2007. “Storytelling Alice Moti-
vates Middle School Girls to Learn Computer Programming.” In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI 2007). San Jose, CA,
1455–1464. https://doi​.org​/10​.1145​/1240624​.1240844​.

Klopfenstein, Lorenz Cuno, Saverio Delpriori, Silvia Malatini, and Alessandro Bogli-
olo. 2017. “The Rise of Bots: A Survey of Conversational Interfaces, Patterns, and
Paradigms.” In Proceedings of the 2017 Conference on Designing Interactive Systems (DIS
’17). Edinburgh, 555–565. https://doi​.org​/10​.1145​/3064663​.3064672​.

Lewin, Catharina, Gerhard Wolgers, and Agneta Herlitz. 2001. “Sex Differences
Favoring Women in Verbal But Not in Visuospatial Episodic Memory.” Neuropsychol-
ogy 1 5(2): 165–173. https://doi​.org​/10​.1037​/0894​-4105​.15​.2​.165​.

Linn, Marcia C., and Anne C. Petersen. 1985. “Emergence and Characterization of
Sex Differences in Spatial Ability: A Meta-Analysis.” Child Development 56 (6): 1479–
1498. http://dx​.doi​.org​/10​.2307​/1130467​.

Lockwood, Elise, Autumn Asay, Anna F. DeJarnette, and Matthew Thomas. 2016.
“Algorithmic Thinking: An Initial Characterization of Computational Thinking in
Mathematics.” In Proceedings of the 38th Annual Meeting of the North American Chapter of
the International Group for the Psychology of Mathematics Education. Tucson, 1588–1595.
https://files​.eric​.ed​.gov​/fulltext​/ED583797​.pdf​.

Lye, Sze Yee, and Joyce Hwee Ling Koh. 2014. “Review on Teaching and Learning of
Computational Thinking through Programming: What is Next for K–12?” Computers
in Human Behavior 41: 51–61. http://dx​.doi​.org​/10​.1016​/j​.chb​.2014​.09​.012​.

Melcer, Edward. 2017. “Moving to Learn: Exploring the Impact of Physical Embodi-
ment in Educational Programming Games.” In Proceedings of the 2017 CHI Conference
Extended Abstracts on Human Factors in Computing Systems (CHI EA ’17). Denver,
301–306. https://doi​.org​/10​.1145​/3027063​.3027129​.

Morais, Anuar Daian, Marcus Vinicius de Azevedo Basso, and Léa da Cruz Fagundes.
2017. “Educação Matemática & Ciência da Computação na escola: aprender a programar
fomenta a aprendizagem de matemática? [Mathematics Education and Computer Sci-
ence in school: does learning to code foster the learning of Mathematics?].” Ciência &
Educação (Bauru) 23 (2): 455–473. https://dx​.doi​.org​/10​.1590​/1516​-731320170020011​.

Moran, Seana, and Howard Gardner. 2018. “Hill, Skill, and Will: Executive Function
from a Multiple-Intelligences Perspective.” In Executive Function in Education: From
Theory to Practice, edited by Lynn Meltzer, 25–56. New York: The Guilford Press.

Moreno-León, Jesús, Gregorio Robles, Marcos Román-González, and Juan David
Rodríguez. 2019. “Not the Same: A Text Network Analysis on Computational Think-
ing Definitions to Study Its Relationship with Computer Programming.” RIITE.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Theory (and Practice) of Multiple Computational Thinkings	 99

Revista Interuniversitaria de Investigación en Tecnología Educativa 7: 26–35. http://dx​
.doi​.org​/10​.6018​/riite​.397151​.

Olabe, Juan Carlos, Xabier Basogain, Miguel Ángel Olabe, Inmaculada Maíz, and
Carlos Castaño. 2014. “Solving Math and Science Problems in the Real World with a
Computational Mind.” Journal of New Approaches in Educational Research 3 (2): 75–82.
http://dx​.doi​.org​/10​.7821​/naer​.3​.2​.75​-82​.

Orr, Genevieve. 2009. “Computational Thinking through Programming and Algo-
rithmic Art.” In SIGGRAPH 2009: Talks (SIGGRAPH ’09). New Orleans. https://doi​
.org​/10​.1145​/1597990​.1598021.

Owen, Charles B., Laura K. Dillon, Alison Dobbins, Noah Keppers, Madeline Levin-
son, and Matthew Rhodes. 2016. “Dancing Computer: Computer Literacy though
Dance.” In Proceedings of the 14th International Conference on Advances in Mobile
Computing and Multi Media (MoMM ’16). Singapore, 174–180. https://doi​.org​/10​.1145​
/3007120​.3007131.

Peel, Amanda, Troy D. Sadler, and Patricia Friedrichsen. 2019. “Learning Natural
Selection through Computational Thinking: Unplugged Design of Algorithmic
Explanations.” Journal of Research in Science Teaching 56 (7): 983–1007. https://doi​
.org​/10​.1002​/tea​.21545.

Peng, Huaishu. 2012. “Algo.Rhythm: Computational Thinking through Tangible
Music Device.” In Proceedings of the Sixth International Conference on Tangible, Embed-
ded and Embodied Interaction (TEI ’12). Kingston, Ontario, Canada, 401–402. https://
doi​.org​/10​.1145​/2148131​.2148234​.

Pinto-Llorente, Ana M., Sonia Casillas-Martín, Marcos Cabezas-González, and Fran-
cisco José García-Peñalvo. 2018. “Building, Coding and Programming 3D Models via
a Visual Programming Environment.” Quality & Quantity 52: 2455–2468. https://doi​
.org​/10​.1007​/s11135​-017​-0509​-4​.

Proctor, Chris, and Paulo Blikstein. 2017. “Interactive Fiction: Weaving Together Lit-
eracies of Text and Code.” In Proceedings of the 2017 Conference on Interaction Design and
Children (IDC ’17). Stanford, CA, 555–60. https://doi​.org​/10​.1145​/3078072​.3084324​.

Repenning, Alexander, David C. Webb, Catharine Brand, Fred Gluck, Ryan Grover,
Susan Miller, Hilarie Nickerson, and Muyang Song. 2014. “Beyond Minecraft: Facil-
itating Computational Thinking through Modeling and Programming in 3D.” IEEE
Computer Graphics and Applications 34 (3): 68–71. https://doi​.org​/10​.1109​/MCG​
.2014​.46​.

Resnick, Mitchel, John Harold Maloney, Andrés Monroy-Hernández, Natalie Rusk,
Evelyn Eastmond, Karen A. Brennan, Amon Millner, Eric Rosenbaum, and Jay Saul
Silver. 2009. “Scratch: Programming for All.” Communications of the ACM 52 (11):
60–67. https://doi​.org​/10​.1145​/1592761​.1592779​.

Robertson, Judy, Stuart Gray, Toye Martin, and Josephine Boot. 2020. “The rela-
tionship between Executive Functions and Computational Thinking.” International

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

100	 M. Román-González, J. Moreno-León, and G. Robles

Journal of Computer Science Education in Schools 3 (4): 35–49. https://doi​.org​/10​.21585​
/ijcses​.v3i4​.76​.

Rodriguez, Brandon, Stephen Kennicutt, Cyndi Rader, and Tracy Camp. 2017.
“Assessing Computational Thinking in CS Unplugged Activities.” In Proceedings of
the 2017 ACM SIGCSE Technical Symposium on Computer Science Education (SIGCSE
’17). Seattle, 501–506. https://doi​.org​/10​.1145​/3017680​.3017779​.

Rodríguez-García, Juan David, Jesús Moreno-León, Marcos Román-González,
and Gregorio Robles. 2019. “Developing Computational Thinking at School with
Machine Learning: An Exploration.” In Proceedings of the 2019 International Sympo-
sium on Computers in Education (SIIE 2019). Tomar, Portugal, 49–54.

Román-González, Marcos. 2015. “Computational Thinking Test: Design Guidelines
and Content Validation.” In Proceedings of the 7th International Conference on Educa-
tion and New Learning Technologies (EDULEARN 2015). Barcelona, 2436–2444.

Román-González, Marcos. 2016. “Codigoalfabetización y pensamiento computacional
en Educación Primaria y Secundaria: validación de un instrumento y evaluación de pro-
gramas [Code literacy and computational thinking in primary and secondary education:
Validation of an instrument and evaluation of programs].” PhD diss., Madrid: UNED.

Román-González, Marcos, Juan-Carlos Pérez-González, and Carmen Jiménez-
Fernández. 2017. “Which Cognitive Abilities Underlie Computational Thinking?
Criterion Validity of the Computational Thinking Test.” Computers in Human Behav-
ior 72: 678–691. https://doi​.org​/10​.1016​/j​.chb​.2016​.08​.047​.

Román-González, Marcos, Juan-Carlos Pérez-González, Jesús Moreno-León, and
Gregorio Robles. 2018a. “Extending the Nomological Network of Computational
Thinking with Non-Cognitive Factors.” Computers in Human Behavior 80: 441–459.
https://doi​.org​/10​.1016​/j​.chb​.2017​.09​.030​.

Román-González, Marcos, Juan-Carlos Pérez-González, Jesús Moreno-León, and Gre-
gorio Robles. 2018b. “Can Computational Talent be Detected? Predictive Validity of
the Computational Thinking Test.” International Journal of Child-Computer Interaction
18: 47–58. https://doi​.org​/10​.1016​/j​.ijcci​.2018​.06​.004​.

Rose, Simon P., M. P. Jacob Habgood, and Tim Jay. 2019. “Using Pirate Plunder to
Develop Children’s Abstraction Skills in Scratch.” In Extended Abstracts of the 2019
CHI Conference on Human Factors in Computing Systems (CHI EA ’19). Glasgow, 1–6.
https://doi​.org​/10​.1145​/3290607​.3312871​.

Rubinstein, Amir, and Benny Chor. 2014. “Computational Thinking in Life Sci-
ence Education.” PLOS Computational Biology 10 (11): 1–5. https://doi​.org​/10​.1371​
/journal​.pcbi​.1003897​.

Rushkoff, Douglas. 2010. Program or Be Programmed. New York: OR Books.

Ruthmann, Alex, Jesse M. Heines, Gena R. Greher, Paul Laidler, and Charles Saulters.
2010. “Teaching Computational Thinking through Musical Live Coding in Scratch.”

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Theory (and Practice) of Multiple Computational Thinkings	 101

In Proceedings of the 41st ACM Technical Symposium on Computer Science Education
(SIGCSE ’10). Milwaukee, 351–355. https://doi​.org​/10​.1145​/1734263​.1734384​.

Sabitzer, Heike Demarle-Meusel, and Maria Jarnig. 2018. “Computational Think-
ing through Modeling in Language Lessons.” In Proceedings of the 2018 IEEE Global
Engineering Education Conference (EDUCON). Santa Cruz de Tenerife, Canary Islands,
1913–1919. https://doi​.org​/10​.1109​/EDUCON​.2018​.8363469​.

Sadin, Éric. 2015. La vie algorithmique: critique de la raison numérique [The Algorithmic
Life: A Critique of Digital Rationality]. Paris: L’Echappée.

Sanford, John F., and Jaideep T. Naidu. 2017. “Mathematical Modeling and Com-
putational Thinking.” Contemporary Issues in Education Research 10 (2): 159–168.
Retrieved from https://files​.eric​.ed​.gov​/fulltext​/EJ1137705​.pdf​.

Sengupta, Pratim, John S. Kinnebrew, Satabdi Basu, Gautam Biswas, and Douglas
Clark. 2013. “Integrating Computational Thinking with K–12 Science Education
Using Agent-Based Computation: A Theoretical Framework.” Education and Informa-
tion Technologies 18: 351–380. https://doi​.org​/10​.1007​/s10639​-012​-9240​-x​.

Shapiro, Lawrence. 2019. Embodied Cognition. London: Routledge.

Visser, Beth A., Michael C. Ashton, and Philip A. Vernon. 2006a. “Beyond g: Putting
Multiple Intelligences Theory to the Test.” Intelligence 34 (5): 487–502. https://doi​
.org​/10​.1016​/j​.intell​.2006​.02​.004​.

Visser, Beth A., Michael C. Ashton, and Philip A. Vernon. 2006b. “g and the Mea-
surement of Multiple Intelligences: A Response to Gardner.” Intelligence 34 (5): 507–
510. https://doi​.org​/10​.1016​/j​.intell​.2006​.04​.006​.

Voyer, Daniel, Susan Voyer, and M. Philip Bryden. 1995. “Magnitude of Sex Differ-
ences in Spatial Abilities: A Meta-Analysis and Consideration of Critical Variables.” Psy-
chological Bulletin 117 (2): 250–270. https://doi​.org​/10​.1037​/0033​-2909​.117​.2​.250​.

Wang, Danli, Tingting Wang, and Zhen Liu. 2014. “A Tangible Programming Tool
for Children to Cultivate Computational Thinking.” Scientific World Journal. https://
doi​.org​/10​.1155​/2014​/428080​.

Waterhouse, Lynn. 2006. “Inadequate Evidence for Multiple Intelligences, Mozart
Effect, and Emotional Intelligence Theories.” Educational Psychologist 41 (4): 247–
255. https://doi​.org​/10​.1207​/s15326985ep4104_5​.

Weintrop, David, Elham Beheshti, Michael Horn, Kai Orton, Kemi Jona, Laura
Trouille, and Uri Wilensky. 2016. “Defining Computational Thinking for Math-
ematics and Science Classrooms.” Journal of Science Education and Technology 25 (1):
127–147. https://doi​.org​/10​.1007​/s10956​-015​-9581​-5​.

Weintrop, David, and Uri Wilensky. 2017. “How Block-Based Languages Support
Novices: A Framework For Categorizing Block-Based Affordances.” Journal of Visual
Languages and Sentient Systems 3: 92–100.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

102	 M. Román-González, J. Moreno-León, and G. Robles

Wiebe, Eric, Jennifer E. London, Osman Aksit, Bradford W. Mott, Kristy Elizabeth
Boyer, and James C. Lester. 2019. “Development of a Lean Computational Thinking
Abilities Assessment for Middle Grades Students.” In Proceedings of the 50th ACM
Technical Symposium on Computer Science Education (SIGCSE ’19). Minneapolis, 456–461.
https://doi​.org​/10​.1145​/3287324​.3287390​.

Wilensky, Uri, and Kenneth Reisman. 2006. “Thinking Like a Wolf, a Sheep, or a Fire-
fly: Learning Biology through Constructing and Testing Computational Theories—an
Embodied Modeling Approach.” Cognition and Instruction 24 (2): 171–209. https://doi​
.org​/10​.1207​/s1532690xci2402_1​.

Wolfram, Stephen. 2019. Seeking the Productive Life: Some Details of My Personal Infra-
structure (blog). February 21, 2019. https://writings​.stephenwolfram​.com​/2019​/02​
/seeking​-the​-productive​-life​-some​-details​-of​-my​-personal​-infrastructure​/​.

Zhao, Weinan, and Valerie J. Shute. 2019. “Can Playing a Video Game Foster Com-
putational Thinking Skills?” Computers & Education 141: 1–13. https://doi​.org​/10​
.1016​/j​.compedu​.2019​.103633​.

Zhou, Hao, Minlie Huang, Tianyang Zhang, Xiaoyan Zhu, and Bing Liu. 2018.
“Emotional Chatting Machine: Emotional Conversation Generation with Internal
and External Memory.” arXiv​.org​. https://arxiv​.org​/abs​/1704​.01074v4​.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

INTRODUCTION

Societies and industries have changed significantly in recent decades. The

emerging innovation society has resulted in the technological, sociological,

and cognitive development of society. Our professional lives are highly

digital, but K–12 education (both teaching and learning) is still taking its

first steps in a digital transformation. To understand and become an active

member of society, students have to learn to understand the technol-

ogy behind digitalization. Understanding algorithms, such as procedural

thinking, reasoning, and decision-making mechanisms, helps students

understand technology and how it works. However, in addition to under-

standing algorithms and computational thinking (CT), students should be

able to utilize them in their personal and collaborative thinking, problem-

solving, and creative pursuits.

Modern society relies on advanced technologies, such as artificial intel-

ligence (AI) and data analytics. To understand the automatic decision-

making of online services and social media, students need CT skills.

Moreover, the role of information that is processed and analyzed by AI

is increasingly important in our everyday lives. For example, while bank-

ing or shopping, a customer receives information determined by the ads

and customized services they see based on automatic decision-making

5
LEARNING COMPUTATIONAL
THINKING IN PHENOMENA-BASED
CO-CREATION PROJECTS
PERSPECTIVES FROM FINLAND

Pasi Silander, Sini Riikonen, Pirita Seitamaa-Hakkarainen,
and Kai Hakkarainen

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

104	 P. Silander, S. Riikonen, P. Seitamaa-Hakkarainen, and K. Hakkarainen

by AI. When using a search engine or reading a newspaper online, the

user is targeted by personalized content and ads based on the motives

and content interests of service providers. Learners should be aware that

the internet’s search engines and social networking tools rate and censor

search results and information based on various commercial and political

motives.

The major challenge for the K–12 educational system globally is to help

students develop critical thinking skills and creative capabilities, espe-

cially related to understanding computational processes and mechanisms.

In the digital world in which we live, CT skills are a prerequisite for critical

thinking. How can we ensure that K–12 educational systems are capable

of helping students develop these skills? What methods do we need to use

to learn and teach these skills? What wider changes in the organization of

teaching and learning in educational institutions are needed?

COMPUTATIONAL THINKING AS A TWENTY-FIRST-CENTURY SKILL

Various definitions and frameworks for twenty-first-century skills (Trill-

ing and Fadel 2009) have been used as a base for K–12 curricula to define

transversal competencies and goals for education. Widely used frameworks

in K–12 education usually include such competencies as collaboration,

communication, citizenship, creativity, critical thinking, and character

building. Most twenty-first-century skills frameworks are focused on so-

called soft skills (Bereiter and Scardamalia 2012) and neglect, to a large

extent, the importance of logic and mathematical or algorithmic rea-

soning. Wing (2006) introduced the idea of CT as a fundamental skill

for everyone; nevertheless, none of the widely used frameworks have

adopted it. Very often, CT is only linked to computer science or STEAM

(science, technology, engineering, arts, and mathematics) education and

is narrowly understood to only include coding or ready-made mathemat-

ical algorithms.

A common mistake is to talk about coding when we should talk about

CT. Coding is often used as a generalized term for programming or, even

more often, misused to describe some ill-defined activities with comput-

ers. To understand how to program, it is necessary to comprehend CT and

system design. CT is not a new concept but has been studied and discussed

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Thinking in Phenomena-Based Co-creation Projects	 105

mainly by computer scientists (Denning 2009; Tedre and Denning 2016;

Wing 2006). However, it should be more extensively investigated by edu-

cational researchers and learning scientists when designing K–12 curri-

cula and educational practices.

The importance of CT was introduced by Wing (2006) and more widely

studied by Denning and Tedre (2019). Primitive forms of CT have existed

in the form of mathematics and calculation throughout history, even

in the time before computers. In modern terms, CT may be defined as

cognitive skills and practices for designing computation and computing

systems and for explaining and interpreting the world in terms of com-

plex information processes (Denning and Tedre 2019). Wing (2008) has

defined CT more compactly as analytical thinking utilizing abstractions,

as she defines computing to be the automation of abstractions. However,

CT is not only important for computing or for learning programming but

it is also a highly generalized cognitive skill needed for critical thinking,

media literacy, and knowledge production, as well as for comprehending

ethical issues related to data-driven society and various aspects of AI and

its ethically sustainable use.

LEARNING AND TEACHING COMPUTATIONAL THINKING

IN MODERN K–12 EDUCATION

The utilization of CT in K–12 education is anchored in our conceptions

of emerging digital technology, theories of learning, and technology-

mediated practices of learning and teaching. It appears to us that CT

requires a new level of epistemic fluency (Markauskaite and Goodyear

2017), interconnecting abstract and real-life phenomena by learners and

teachers. When considering pedagogical applications of CT in K–12 edu-

cation, it is not enough to address mere programming or coding. Pro-

gramming in K–12 education is sometimes even simplified to routine

procedures of giving directions to a computer or to a robot through

individual commands. Coding does not equal CT (Wing 2006, 2008)

or adequate computing skills; a wider approach than coding is needed

for learning and understanding the computational aspects of problem-

solving and analyzing, modeling, and automating abstractions (see fig-

ure 5.1). The focus should be on modelling and understanding real-world

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

106	 P. Silander, S. Riikonen, P. Seitamaa-Hakkarainen, and K. Hakkarainen

phenomena by designing, creating, and utilizing abstractions and by creat-

ing algorithms and simulations. In addition, the focus of learning should

be on systemic thinking, as in system theories or system design.

CT skills cannot be adequately learned in a decontextualized setting

of programming or designing algorithms without a connection to real-

world phenomena and their modeling. We argue that epistemic flexibility

is essential to comprehending relations between the real-world pheno

mena (problems to be solved) and the abstractions (computational mod-

els or algorithms) that are used for problem-solving. The goal of learning

should be a systemic understanding of the entire computational system,

including real-world phenomena, computing, and human information

processing.

The use of modern information technology and modern computing

are fundamentally culturally mediated cognitive skills. CT (Wing 2006,

2008) can be associated with metacognitive skills and the sophisticated

use of a repertoire of cognitive strategies. Using algorithms as a mental

tool augments the power of human cognitive capacity and fosters the

Computational thinking
• Problem-solving process
 by utilizing abstractions
• Creating abstractions
• Designing systems
• Designing algorithms
• Programming/
 coding

Real-world phenomena

Human processing & computer processing
Problem-solving

Abstraction layers
Automation of abstractions

U
n

d
er

st
an

d
in

g
 r

el
at

io
n

s
b

et
w

ee
n

ab
st

ra
ct

io
n

 a
n

d
 p

h
en

o
m

en
a

Knowledge

Under-
standing

Computing Information

Data

 D
es

ig

ning – Evaluating – Innovating
 –

 S

im
ul

at
ing – Analyzing – Modeling

 –

5.1  Framework for learning computational thinking in K–12 education, consisting of

the computational system and human information processing.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Thinking in Phenomena-Based Co-creation Projects	 107

development of cognitive strategies. Simultaneously, computing and com-

puters are used as tools for complex physically distributed cognition (Pea

1985; Salomon 1993). Computational power and computers are often used

to solve problems that would be difficult or virtually impossible to solve

with a human’s information-processing capacity. A computational system

consists of human cognitive processes, distributed cognition, and informa-

tion processing on a computer (e.g., Pea, Kurland, and Hawkins 1985; Salo-

mon, Perkins, and Globerson 1991), all embedded in the social practices

of human communities (e.g., Ritella and Hakkarainen 2012). Human cog-

nition and computer processing can be seen as intertwined agents of the

cognitive system used for complex problem-solving. Moreover, the socially

shared cognition mediated by computers boosts these intertwined agents

of the cognitive systems that jointly may provide a crucial platform for cre-

ating novelty and innovations.

Ideally, when learners are provided with opportunities for cultivating

CT skills in K–12 education, they should have generalizable capabilities

for organizing, reorganizing, modeling, analyzing, utilizing, and comput-

ing information to problem-solve in any subject domain. This raises a

pedagogical challenge for K–12 educational systems: How should CT be

taught so that students gain adequate skills?

CT cannot be learned by reading books, by listening to teachers’ lectures,

or even by coding. Sociodigital processes combined with co-computational

thinking are needed. The best way to ensure a holistic understanding of

CT (see figure 5.1) is to connect it to a real-world phenomenon and to pur-

sue complex projects that require the interrelation of concrete experiences

with abstractions and associated formal languages. To learn novel skills

needed for the future, such as CT and creativity skills, new epistemologies

(see table 5.1) and metaphors for learning are needed. Beyond knowledge

acquisition, these emerging metaphors of learning highlight the impor-

tance of learning through computational participation (Kafai 2016) and

collaborative knowledge creation (Paavola and Hakkarainen 2005, 2014).

Hence, co-creation and co-innovation are seen as crucial for learning CT

and creativity.

Rather than merely digitalizing traditional acquisition-oriented and

teacher-centered instructional practices (surface learning), it is critical

to cultivate technology-enhanced practices of learning and instruction

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

108	 P. Silander, S. Riikonen, P. Seitamaa-Hakkarainen, and K. Hakkarainen

that provide opportunities for social participation and collaborative cre-

ation of knowledge (Hakkarainen 2009; Paavola and Hakkarainen 2014).

To appropriate sociodigital instruments as tools of everyday activity, it is

necessary to transform everyday practices of learning and instruction as

well as change the operational culture of schooling (Ritella and Hakkara-

inen 2012). Educational transformation is a systemic change and requires

strong institutional support to succeed (Fullan 2016; Fullan and Quinn

2015). It is particularly important to develop novel epistemologies of learn-

ing and teaching, such as the phenomena-based approach, to integrate the

entire community of the school and to promote the pedagogic transforma-

tions that the effective learning of CT will call for.

In addition to CT, we propose that computational creativity skills

should be a goal of K–12 curricula. We cannot train our children to be

merely computer players or even programmers in the future; we will have

to train them to become computer composers with real computational

creativity skills. To use a musical metaphor, it is not merely about press-

ing a piano’s keys but about being able to interpret, compose, and create

music. Computational creativity skills are not focused on the automation

of existing processes or abstractions of the real world but rather on inno-

vating and creating novel solutions, abstractions, and epistemic artifacts

that may not yet exist. Computational creativity skills are used to create

Table 5.1  The epistemic approach for learning the traditional and new skills needed

in a highly digitalized working life and in modern AI- and data-driven societies

Surface learning Deep learning
Phenomena-based
learning

Goal Recalling facts Understanding Creating new solutions

Outcome Capability to apply
information only in a
narrow context, if at all

Capability to apply
knowledge in
various situations

Capability to create
new solutions for
various new situations

Methods Information acquisition Collaborative
knowledge building

Co-creation and
co-innovation

Focus Facts Knowledge Thinking skills and
strategies as well as
innovation practices

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Thinking in Phenomena-Based Co-creation Projects	 109

art and design artifacts, processes, and innovations by using computing,

digital fabrication, and shared sociodigital processes.

PHENOMENA-BASED LEARNING AND CO-CREATION PROJECTS

AS AN APPROACH TO LEARNING COMPUTATIONAL THINKING

AND COMPUTATIONAL CREATIVITY SKILLS EDUCATION

Phenomena-based learning can be described as multidisciplinary inquiry

learning in which teaching and learning, as well as curriculum, are based

on holistic and authentic topics—not on traditional school subjects or

decontextualized exercises. The key dimensions of phenomena-based learn-

ing are presented in table 5.2.

The basis of phenomena-based teaching and learning can be found

in constructionism, which sees learners as active builders and creators of

knowledge and artifacts. Knowledge is constructed as a result of problem-

solving and creative production through the integration of little pieces into

a comprehensive whole according to the situational needs and the infor-

mation available at the time. When phenomena-based learning occurs in a

Table 5.2  Key dimensions of phenomena-based learning

Holism The topics and concepts to be learned are chosen for
their relevance in the real world, and a 360-degree
perspective is offered through the integration of
traditional school subjects.

Authenticity The methods, tools, materials, and cognitive practices
used in learning situations should correspond to ones
in the real world: for example, in professional life.

Contextuality Learners learn new things in their natural context and
learn to move fluidly between contextualization and
abstraction.

Problem-based inquiry
learning

Learning and collaborative knowledge building are based
on the questions and problems posed by learners, and
solutions are created by them as well, allowing them to
take an active role in designing the curriculum.

Learning as a nonlinear
process

Learning is seen as a nonlinear process, which is
activated, guided, and facilitated by open learning
challenges and supporting structures.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

110	 P. Silander, S. Riikonen, P. Seitamaa-Hakkarainen, and K. Hakkarainen

collaborative setting (when the learners work in teams, for example), it sup-

ports the socioconstructivist and sociocultural learning theories, in which

knowledge is not merely an internal element of an individual. Instead,

knowledge is formed in a social context. Sociocultural learning theories

focus on cultural artifacts (e.g., systems of symbols, such as language, math-

ematical calculation rules, and different kinds of thinking tools). Learning

relies on the knowledge and tools that are transmitted by cultures, which

are used generatively in novel contexts and for novel purposes.

Phenomena-based learning begins with the shared observation of holis-

tic, genuine real-world phenomena in the learning community. The phe-

nomena are studied as complete entities in their real context, and the

knowledge and skills related to them are studied by crossing the bound-

aries between school subjects. Phenomena-based integrative study units

frequently represent such holistic topics as climate change, the water cycle,

and health and nutrition. This differs from traditional school culture,

which is divided into subjects, where the things studied are often split

into relatively small, separate, and decontextualized parts.

In phenomena-based teaching, understanding and studying the phe-

nomenon start by asking a question or posing a problem (e.g., Why does

an airplane fly and stay up in the air?). At its best, phenomena-based

learning is cyclic inquiry learning, where the learners ask questions or

pose problems about a phenomenon that interests them and then dis-

cover answers and find solutions together. The problems and questions

are posed by the learners together—they are things the learners are genu-

inely interested in. Learners play a central role in creating and solving the

learning challenges being pursued.

The observation is not limited to a single point of view; instead, the

phenomena are studied from various points of view, crossing the bound-

aries between school subjects naturally and integrating subjects like

mathematics, history, foreign languages, and psychology with a variety

of themes. Phenomena-based structure in a curriculum actively creates

better opportunities for integrating CT in various subjects and themes

and for the systematic use of pedagogically meaningful methods, such

as collaborative knowledge building (Scardamalia and Bereiter 2006),

flipped classrooms (see, e.g., Bergmann and Sams 2012), and computa-

tional participation (Kafai 2016). The phenomena-based approach is also

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Thinking in Phenomena-Based Co-creation Projects	 111

key to the versatile utilization of various digital learning environments

(e.g., diversifying and enriching learning while using online learning

environments).

In the learning process, new knowledge and skills are always applied

to the phenomenon or the problem at hand, which means that the con-

cepts, knowledge, and skills have immediate utility value that is evident

in the learning situation. To absorb new knowledge and skills, it is very

important that learners apply and use the knowledge and skills, such as

CT, during the learning situation. Information learned only at the level of

reading or theory (such as memorized physics formulas and calculation

rules without real context or related problems) often remain superficial

and separate details for the learners. They are unable to gain a comprehen-

sive understanding and deeper knowledge of the real-world phenomenon

and unable to internalize its meaning. Often it has been said that “you

cannot learn to drive a car by using pen and paper” or that “cloze tests

only teach how to answer cloze tests—there are no cloze tests in real life

or professional life.” Beyond encapsulated schoolwork, there are real com-

munication situations where knowledge must be applied and messages

must be transmitted clearly and comprehensively to another person.

The phenomena-based approach can significantly increase the authen-

ticity of learning. This authenticity culminates in making the learner’s

cognitive processes and practices authentic. In a learning situation, the

learner’s cognitive processes, therefore, correspond to the cognitive prac-

tices required in the actual situation in which the knowledge and skills

would be used. Toward that end, it is important to engage learners in cre-

ative activities that guide them to adopt the practices and epistemic games

(Shaffer and Gee 2007) of computer scientists, designers, engineers, and

scientists. In this authentic learning, the aim is to bring genuine practices

and processes into learning situations in a pedagogically structured way

when applicable, which allows the learner to participate in the expert

culture of the field. Authenticity is a key requirement for the transfer and

practical application of knowledge.

The new phenomena-based approaches for teaching and learning com-

putational creativity skills are fostered by the novel affordances of sociodig-

ital technologies that provide sophisticated professional-level tools for

creative production. Associated practices involve, for instance, students

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

112	 P. Silander, S. Riikonen, P. Seitamaa-Hakkarainen, and K. Hakkarainen

learning by designing and building robots or utilizing 3-D HoloLens, 3-D

printers, and sensors in their creative projects. The phenomena-based proj-

ects emphasize a way of thinking in which students solve authentic design

challenges thorough various collaborative design activities, apply CT, and

do actual coding, depending on the nature of the project.

Many Finnish schools are building educational makerspaces (see e.g.,

Peppler, Halverson, and Kafai 2016) by integrating arts and crafts, tech-

nology education, and science laboratories into other school subjects.

Schools in Helsinki have organized codesign and co-invention projects

that engage learners in designing complex artifacts that spark intellec-

tual, engineering, and aesthetic challenges at lower and upper primary

schools (Seitamaa-Hakkarainen and Hakkarainen 2017). Students work in

small teams to solve an open-ended invention challenge using traditional

craft and digital fabrication technologies. Their projects, in which they

create various prototypes and products that assist in modeling the phe-

nomenon, test and develop the learners’ hypotheses and working theo-

ries. The challenge, which is co-configured with learners, might be, for

example, to “design an intellectually challenging, aesthetically appeal-

ing, and personally meaningful complex artifact that makes daily tasks

easier.” It could be a new or an improved invention, and it should inte-

grate both physical and digital (e.g., circuits or robotic) elements.

The role of teachers is not merely to facilitate learning but also to acti-

vate students’ CT and learning processes. Toward that end, the learning-by-

making activities are structured according to several stages, including skill

building (e.g., working with microcontroller or other circuit boards), orien-

tation (guided analysis of existing artifacts), and brainstorming with design

challenges (in the classroom and at home with parents). They analyze

design constraints (task requirements and resources), cluster design ideas,

identify promising ones, and decide on their teams’ design project. They

share design ideas in the classroom, get feedback, seek knowledge (e.g., by

visiting technical or design museums), experiment with design solutions,

and construct prototypes of the design to arrive at their final solutions. It is

also very important to organize exhibitions where teams can present their

co-inventions to other students and parents. The analysis of Sinervo et al.

(2020) of the designs of thirteen fifth-grade students (aged eleven to twelve

years old) revealed that the details of their innovations varied considerably.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Thinking in Phenomena-Based Co-creation Projects	 113

We categorized the teams’ co-inventions according to their main function,

such as improving cleanliness, providing reminders, or addressing hygiene,

health, and nutrition issues. The inventions also reflected issues related to

user values (health-related inequality, inclusion, or personalization), usage

values (helping to resolve problematic situations), and environmental val-

ues (Sinervo et al. 2020).

Most of the teams’ co-inventions were considered appropriate and

promising, and only two co-inventions were not explicated clearly enough

and could be considered quasi-creative and infeasible. Some very original

ideas for known problems were found—for example, how to vacuum a

carpet and the creation of a new gel comb for styling hair, even though

these teams were not able to construct fully functional solutions. The gel

comb team had a hard time figuring out how to get the gel out of the con-

tainer. Some of the co-inventions were based on an already existing idea

or product that was used in another context—for example, a pump bottle

that was extended to help brush teeth with toothpaste more easily. In some

cases, the co-invention was based on the adaptation of existing artifact

designs by slightly modifying an existing product—for example, an auto-

matic garbage container with an alarm that sounds when it is almost full.

This long-term, open-ended invention project provided valuable learning

opportunities for iterative problem-solving, shared meaning making, and

collaboration that required a division of labor, organization, and personal

responsibility. Phenomena-based learning empowers students to partici-

pate in the co-creation and co-innovation processes that are needed to

learn CT skills and computational creativity skills. By using co-creation and

co-innovation as learners’ activities, the learning process is more insightful

and inspiring. The role of the learner is not that of an object but that of an

active subject of learning.

A more demanding example of a phenomena-based co-invention pro

ject was conducted with one class of seventh-grade students (aged thir-

teen to fourteen years). The project was initiated by the craft and visual

arts teachers and involved the participation of mathematics, physics,

chemistry, and information technology (IT) teachers, who provided their

expertise to the inventors when needed. Eighth-grade digital technol-

ogy students who had done a similar project the year before also helped

the inventors during the project. The project started with two warm-up

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

114	 P. Silander, S. Riikonen, P. Seitamaa-Hakkarainen, and K. Hakkarainen

sessions for skill building. In the first session, the students built electric

circuits using cards with copper tape, simple LEDs, and a coin cell battery.

The aim of this warm-up session was to familiarize the students with basic

electric circuits so that they would be able to use them in their inventions.

The second warm-up session was organized by the eighth-grade students;

they planned and held a workshop for the seventh graders about micro-

controllers, basic programming with block-based coding, sensors, and DC

motors. Many of the students had only done very simple Scratch program-

ming tasks before this. After that, the actual collaborative invention proj-

ect was initiated, and it ran for eight to ten weekly two-hour sessions. Also,

in this project, the collaborative invention challenge was open ended:

“Invent a smart product or a smart garment by relying on traditional and

digital fabrication technologies, such as microcontrollers and 3D CAD.”

At the end of the project in May, the teams presented their inventions in

an open invention exhibition held at the University of Helsinki.

This project proceeded much as the previous example had; it was ini-

tiated and led by the student teams. The teachers and tutors provided

help when needed, but the project teams took most of the responsibility

for the design and the construction. As the challenge required, student

teams needed to use various digital technologies. It was also typical of the

teams’ processes that while ideating and experimenting, they confronted

many phenomena related to physics, such as mechanics, electronics, and

light and optics. Thus, they were exposed to numerous physics principles

without being necessarily conscious of it. For example, one team (the

banana light team) invented a banana-shaped LED light that attaches to

a laptop lid and lights up the keyboard area. The features of their lamp

included an RGB LED controlled by a microcontroller and a bendable

structure that allowed the light to be directed to the keyboard.

During their design process, the team produced sixty-three design ideas

in total, which can be divided into seven themes: (1) aesthetic features

and name of the project; (2) materials; (3) light controls; (4) mounting

to the laptop; (5) electrical connections; (6) directing light; and (7) other

functions. The banana light team’s invention process had many science-

intensive steps. For example, when the team designed the structure of

the lamp, some concepts of mechanics became relevant. With the joints,

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Thinking in Phenomena-Based Co-creation Projects	 115

they experimented intensively with 3-D models and concrete prototypes.

While the team searched for ways to attach the lamp to the lid of the

laptop, the concept of friction came up. Furthermore, as the light was the

main functionality of their invention, they spent a lot of time designing

it and, thus, light and optics concepts were studied many times during

the team’s work. The microcontroller was used to operate the LED lights

of the invention, and they tested several different options for controlling

them, especially for turning them on and off. Understanding classical IF

logic was particularly significant in these experiments in terms of learn-

ing programming and basic CT. Figure 5.2 shows a sketch and prototype

of the banana light.

Furthermore, the team continued by testing different methods of turn-

ing the light on and off with predetermined event functions of the micro-

controller, such as tapping the microcontroller twice or clapping their

hands to create a loud sound. In the second prototype, they ended up

using a simple button that they determined would be the most reliable

when presenting the lamp to an audience in a noisy environment. Later,

they decided to take their programming a bit further and added a function-

ality to control the brightness of the LED with the board’s second button.

The team was able to design a fully functional prototype meeting their

specifications. These and other extensive maker-centered learning projects

allow students to build epistemic flexibility in terms of interrelating con-

crete and abstract phenomena and, thereby, provide ample opportunities

for system design and learning computational creativity and CT skills.

5.2  Illustrating, designing, and making a prototype of the banana light invention.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

116	 P. Silander, S. Riikonen, P. Seitamaa-Hakkarainen, and K. Hakkarainen

DISCUSSION

The activities of CT and programming are not equivalent to a human giv-

ing commands to a computer or a robot. Instead, they involve problem-

solving and creativity, enhanced with computational tools and languages. It

is not a matter of mastering certain commands or coding procedures but of

engaging a designing system and creating digitally enhanced artifacts. How

can we transform the educational system to help transform children from

computer players to digital makers with real computational creativity skills?

To succeed in modern society, students should have advanced sociodig-

ital and CT skills when they complete their K–12 education. These essen-

tial skills are needed across all fields of study, from the humanities to the

sciences, including productive participation in knowledge-intensive work,

and for becoming an active citizen in data- and AI-driven digital societ-

ies. CT cannot, however, be learned incidentally, for example, by playing

computer games or by coding at home. Although informal interest-driven

and creative participation is important for overcoming digital divides, for-

mal education that deliberately cultivates innovative pedagogy and the

associated teachers’ expertise and guidance are urgently needed as well.

The best way to provide CT skills and computational creativity skills for

all students is to integrate them into K–12 education in curricula and in

everyday teaching and learning practices in the form of phenomena-based

co-creation projects. As we live in highly digital societies, we should also

start discussing twenty-second-century skills, which will be focused on the

innovation skills needed in an emerging innovation-driven society that is

thoroughly based in AI and the smart use of big data. CT and computa-

tional creativity skills are the key competencies of such a society’s citizens.

PRACTICAL IMPLICATIONS FOR CURRICULUM DESIGN

AND FOR EDUCATIONAL INSTITUTIONS

Learning CT should begin from early childhood (e.g., in the form of cog-

nitive games, songs, and plays) and continue across the whole span of

education. Digital technologies develop expansively and continuously,

so the process of learning CT and computational creativity skills should

also be a sustaining, lifelong learning process. A significant challenge of

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Thinking in Phenomena-Based Co-creation Projects	 117

teacher education is to help teachers develop digital and CT skills that

they did not have the opportunity to learn during their own childhood

education. Only by acquiring computational skills and practices can

teachers work as builders of children’s futures. To teach CT and creativity

skills in K–12 education, both competent and educated teachers and the

context and time for cultivating such competencies in teaching and learn-

ing are urgently needed. This creates a challenge for teachers’ in-service

training. How can teachers be trained in pedagogical skills and methods

that will scaffold students’ CT and computational creativity skills? Our

experiences indicate that novel professional competencies become acces-

sible when teachers are encouraged to collaborate with their colleagues

and negotiate challenges through co-teaching. Teacher training should

be thoroughly participatory and should engage teachers in co-creation

and co-invention projects similar to those of young learners.

Traditional computer science and programming education do not offer

ready-made solutions for learning CT or computational creativity skills in

K–12 education. Instead, new practices and innovations require new peda-

gogical considerations in educational institutions on the level of the cur-

riculum. An optimal impact on CT with phenomena-based learning and

co-creation projects can be achieved by implementing the change compre-

hensively throughout the school’s operating culture and by ensuring that

CT and phenomena-based learning are integrated into the holistic reform

of teaching and learning. The challenge is to implement the pedagogical

change coherently and simultaneously at all levels (teaching, leadership,

learning, technology, and curriculum). According to Fullan (2016), system

improvement will result from a deep change in the culture of learning, local

ownership of the learning agenda, and a system of continuous improve-

ment and innovation that is simultaneously bottom-up, top-down, and

sideways. Through systemic developmental efforts that integrate all levels,

a permanent change in the operating culture can be achieved.

ACKNOWLEDGMENTS

This research was supported by the Academy of Finland (Grant 286837)

and Strategic Research Grant 312527 of the Academy of Finland (Grow-

ing Mind Research Project).

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

118	 P. Silander, S. Riikonen, P. Seitamaa-Hakkarainen, and K. Hakkarainen

REFERENCES

Bereiter, Carl, and Marlene Scardamalia. 2012. “What Will It Mean to Be an Educated
Person in Mid-21st Century?” Gordon Commission on the Future of Education.
https://www​.ets​.org​/Media​/Research​/pdf​/bereiter_scardamalia_what_will_mean​
_educated_person_century​.pdf​.

Bergmann, Jonathan, and Aaron Sams. 2012. Flip Your Classroom: Reach Every Student
in Every Class Every Day. Washington, DC: International Society for Technology in
Education.

Denning, Peter J. 2009. “The Profession of IT Beyond Computational Thinking.”
Communications of the ACM 52 (6): 28–30.

Denning, Peter J., and Matti Tedre. 2019. Computational Thinking. Cambridge, MA:
MIT Press.

Fullan, Michael. 2016. “The Elusive Nature of Whole System Improvement in Educa-
tion.” Journal of Educational Change 17 (4): 539–544.

Fullan, Michael, and Joanne Quinn. 2015. Coherence: The Right Drivers in Action for
Schools, Districts, and Systems. Thousand Oaks, CA: Corwin Press.

Hakkarainen, Kai. 2009. “Three Generations of Technology-Enhanced Learning.”
British Journal of Educational Technology 40 (5): 879–888.

Kafai, Yasmin B. 2016. “From Computational Thinking to Computational Participa-
tion in K–12 Education.” Communications of the ACM 59 (8): 26–27.

Markauskaite, Lina, and Peter Goodyear. 2017. Epistemic Fluency and Professional Edu-
cation: Innovation, Knowledgeable Action and Actionable Knowledge. London: Springer.

Paavola, Sami, and K. Hakkarainen. 2005. “The Knowledge Creation Metaphor: An
Emergent Epistemological Approach to Learning.” Science and Education 14: 535–557.

Paavola, Sami, and Kai Hakkarainen. 2014. “Trialogical Approach for Knowledge
Creation.” In Knowledge Creation in Education, edited by S. C. Tan, H. J. Jo, and J. Yoe,
53–73. Singapore: Springer.

Pea, Roy D. 1985. “Integrating Human and Computer Intelligence.” In New Direc-
tions for Child Development, No. 8, Children and Computers, edited by Elisa L. Klein,
75–96. San Francisco: Jossey-Bass.

Pea, Roy D., D. Midian Kurland, and Jan Hawkins. 1985. “Logo and the Develop-
ment of Thinking Skills.” In Children and Microcomputers: Formative Studies, edited by
Milton Chen and William Paisley, 193–212. Beverly Hills, CA: Sage.

Peppler, Kylie, Erica Halverson, and Yasmin B. Kafai. 2016. Makeology: Makerspaces as
Learning Environments, vol. 1. London: Routledge.

Ritella, Giuseppe, and Kai Hakkarainen. 2012. “Instrument Genesis in Technology
Mediated Learning: From Double Stimulation to Expansive Knowledge Practices.”
International Journal of Computer-Supported Collaborative Learning 7: 239–258.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Thinking in Phenomena-Based Co-creation Projects	 119

Salomon, Gavriel. 1993. Distributed Cognitions: Psychological and Educational Consider-
ations. Cambridge, MA: Cambridge University Press.

Salomon, Gavriel, David N. Perkins, and Tamar Globerson. 1991. “Partners in Cog-
nition: Extending Human Intelligence with Intelligent Technologies.” Educational
Researcher 20 (3): 2–9.

Scardamalia, Marlene, and Carl Bereiter. 2006. “Knowledge Building: Theory, Peda-
gogy, and Technology.” In Cambridge Handbook of the Learning Sciences, edited by
Keith Sawyer, 97–118. New York: Cambridge University Press.

Seitamaa-Hakkarainen, Pirita, and Kai Hakkarainen. 2017. “Learning by Making.” In
The SAGE Encyclopedia of Out-of-School Learning, edited by Kylie Peppler. Thousand
Oaks, CA: Sage.

Shaffer, David Williamson, and James Paul Gee. 2007. “Epistemic Games as Edu-
cation for Innovation: Learning through Digital Technologies.” BJEP, Monograph
Series II, 5, 71–82.

Sinervo, Stiina, Kati Sormunen, Kaiju Kangas, Kai Hakkarainen, Jari Lavonen, Kalle
Juuti, Tiina Korhonen, and Pirita Seitamaa-Hakkarainen. 2020. “Elementary School
Pupils’ Co-Inventions: Products and Pupils’ Reflections on Processes.” International Jour-
nal of Technology Design and Education. https://doi​.org​/10​.1007​/s10798​-020​-09577​-y​.

Tedre, Matti, and Peter J. Denning. 2016. “The Long Quest for Computational
Thinking.” In Proceedings of the 16th Koli Calling International Conference on Comput-
ing Education Research. New York, 120–129.

Trilling, Bernie, and Charles Fadel. 2009. 21st Century Skills: Learning for Life in Our
Times. New York: John Wiley.

Wing, Jeannette M. 2006. “Computational Thinking.” Communication of the ACM 49
(3): 33–35.

Wing, Jeannette M. 2008. “Computational Thinking and Thinking about Comput-
ing.” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engi-
neering Sciences, no. 1881: 3717–3725.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

COMPUTATIONAL EMPOWERMENT: A CRITICAL COUNTERPART

In this chapter, we outline and position computational empowerment

as an approach to digital technology in education. We trace the origin of

computational empowerment through the participatory design tradition

and discuss how it intersects with established ideas within computational

thinking (CT). We use examples from teaching practice to illustrate how

computational empowerment may be operationalized, and, on the level

of curricula, we discuss the curriculum for the newly developed course,

Technology Comprehension, for Danish primary and lower secondary

education.

We define computational empowerment as a concern for the method

used by students, as individuals and groups, to develop the capacity to

understand digital technology and its effect on their lives and society at

large and their ability to engage critically and curiously with the con-

struction and deconstruction of technology (Dindler, Smith, and Iversen

2020). While this concern overlaps with the fundamental issues addressed

within some parts of the CT literature, it also signals a critical approach

that reaches beyond what is typically addressed in mainstream CT. Before

unfolding the principles of computational empowerment in more detail,

we trace the origin of the concept in the participatory design tradition.

6
COMPUTATIONAL EMPOWERMENT

Christian Dindler, Ole Sejer Iversen, Michael E. Caspersen,
and Rachel Charlotte Smith

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

122	 C. Dindler, O. S. Iversen, M. E. Caspersen, and R. C. Smith

A PARTICIPATORY DESIGN BACKGROUND

The participatory design tradition grew out of a series of projects in Scan-

dinavia in the 1970s and 1980s, in which researchers and unions engaged

in collaborative efforts to explore ways of democratizing the introduction

of technology and ensuring quality of work and products for workers

(Bjerknes et al. 1987). This fundamentally political commitment formed

the backdrop of the practices of active user participation in technological

development, using ethnographic methods to understand work practices

and collaboratively constructing mock-ups of future technologies (Green-

baum and Kyng 1991) that have since proliferated beyond Scandinavia.

The political commitment to empower people to understand and pose

demands for technology also remains a topic in contemporary participa-

tory design (Simonsen and Robertson 2013).

The notion of computational empowerment builds explicitly on the

political, democratic ideas from participatory design and draws on the

participatory practices that are used to realize these ideas. While the Scan-

dinavian workplace of the 1960s and 1970s might seem an odd compari-

son to the challenge of educating young people in computing, we believe

that there are parallels and that several principles from Scandinavian

participatory design are more relevant than ever. In the early participa-

tory design projects, unions and workers were fundamentally faced with

a situation where they lacked the knowledge, organization, and power

needed to understand and pose demands for technology. Similarly, the

challenge facing many young people today is that they, generally speak-

ing, have limited understanding of technology and computing, not only

in terms of its construction but how it affects their lives. Hence young

people have very limited capacity to pose demands for technology, make

informed choices about technology in their lives, and take part in the

development of technology and the cultures that surround it. Through

the years, participatory design has developed several principles and prac-

tices for promoting democratic approaches to technology design, qual-

ity of products, and for empowering people to make informed decisions

about technology. Here we draw out three principles from the participa-

tory design tradition that have played a particularly prominent role in

formulating the idea of computational empowerment.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Empowerment	 123

The first is a concern for providing people with firsthand experience of

technology in terms of how it is constructed and the consequences that

it has. This concern has been evident throughout the history of participa-

tory design, manifest in the archetypical participatory workshop, where

users, designers, and stakeholders collaboratively explore technology and

discuss its consequences and potential.

The second is a commitment to technology in use. This concern main-

tains that we need to understand technology not only as a technical issue

but also through its consequences for people’s everyday lives. In partici-

patory design, this concern has been manifest in a long-standing tradi-

tion for using ethnographic methods to gain a detailed understanding of

the practices for which technology was designed. Also, it is manifest in

a critical stance toward how technologies shape work practices and the

values inherent in these technologies.

The third is co-designing future technology. This concern reflects the

view that people should not only be considered users and recipients of

technology but also be invited to play an active role as co-designers. This

concern may be traced in participatory design’s catalog of methods (Han-

sen et al. 2019) and tools that invite future users to express their ideas and

understanding in mock-ups and participation in prototyping activities.

The common goals of these (and other) participatory design principles

have historically been to promote the agenda of democracy, quality of

life, and empowerment of people to take an active role in technological

development.

FROM PARTICIPATORY DESIGN TO COMPUTATIONAL

EMPOWERMENT

The three principles outlined previously make up the background for

computational empowerment. However, it is evident that the societal and

technological landscape today is very different from the one in which

participatory design emerged. So computational empowerment needs a

contemporary articulation, which is the focus of this section.

Whereas the notion of “empowerment” in early participatory design

was tied to empowering workers to have a say in the introduction of

technology at the workplace, empowerment in the context of computing

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

124	 C. Dindler, O. S. Iversen, M. E. Caspersen, and R. C. Smith

education is somewhat different. In education, the concepts itself carries

with it a long history (Lawson 2011). Despite the fact that empowerment

is explicitly mentioned as an objective in many contemporary papers

based on computing education research, recent literature studies reveal

that no clear definition of the term is provided in computing education

research (Musaeus et al. 2021) nor in child computer interaction research

(Van Mechelen et al. 2021). What comes closest to a definition is Shneider-

man’s manifesto entitled “Human Values and the Future of Technology:

A Declaration of Empowerment,” highlighting the need for empower-

ment at the intersection of human values and future technology. Here,

Shneiderman (1990) argues that we, as researchers, designers, managers,

implementers, and testers, must “recognize the powerful influence of our

science and technology” and must commit ourselves to “studying ways to

enable users to accomplish their personal and organizational goals while

pursuing higher societal goals and serving human needs.” This interpreta-

tion resonates well with that of computational empowerment. Here the

term empowerment refers to a concern for providing students with the intel-

lectual and practical capacity to understand and engage with technology.

This may be fleshed out in three pillars of computational empowerment

that are, effectively, contemporary articulations of the three participatory

design principles mentioned in the previous section.

First, students should be provided with the means for engaging critically and

curiously with the design of technology. This pillar reflects the idea that it is

necessary for students to gain firsthand experience with technology, not

only as something they use but also as a material that can be molded

and used to build and construct things with. To some extent, this pillar

resonates with the current focus on teaching students the basics of algo-

rithms, programming, decomposition, and modeling. However, our con-

cern is with the broader concept and approach of “designing” technology,

which entails more than technical construction and modeling. Broadly

speaking, design covers the entire iterative process including framing a

problem, doing research, generating design ideas, constructing, and test-

ing. Thus, this includes knowledge of how, for example, user research is

done, and it requires knowledge of techniques for idea generation.

Figure 6.1 depicts a design process model developed through our work

on computational empowerment (Iversen, Smith, and Dindler 2018)

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Empowerment	 125

embodying the first pillar of computational empowerment. In some

respects, the model is similar to other process models as it includes well-

described activities such as research, ideation, and construction. How-

ever, it differs in at least two ways, and these reflect that the model is

made in the interest of educating students in technology. First, besides

well-known activities, it also includes “argumentation” and “reflec-

tion.” These are deliberately included to make sure that design and

construction in the interest of education are not only about making

digital products but also about understanding how and why products

are made to fit particular people and situations and encouraging stu-

dents to reflect on what they learn by engaging themselves in design

and construction. Second, the model is circular, suggesting that the goal

is not a finished product (as is the case in most design models) but for

Design
brief

Research

Argumentation

Construction

Ideation

Reflection

6.1  Process model for engaging students in research, ideation, construction, and reflec-

tion upon technology.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

126	 C. Dindler, O. S. Iversen, M. E. Caspersen, and R. C. Smith

students and teachers to iterate through the activities and develop their

skills and knowledge.

This first pillar and the model inherently include knowledge and skills

that are central to CT, such as programming and modeling. These are

most clearly related to the “‘construction” activity. These skills are an

indispensable part of gaining firsthand experience with technology as a

material that can be used to solve problems and shape our surroundings.

As such, CT and computational empowerment are not competing ideas

about engaging students in technology; they are complementary ideas.

Next we provide a brief example of how the model can be used to scaffold

teaching practice.

This example was centered on a project in which the task was to rede-

sign an urban space in Aarhus, Denmark, to develop proposals for the

city’s upcoming year as EU Capital of Culture (2017). The design brief

challenged the students to redesign a public park in accordance with the

city council’s aim of developing a more recreational space in the area for

everyday leisure and social activities. The students had no prior experi-

ence with design processes or constructing with digital technology. The

brief contained two important components to engage the students in the

design process, namely authenticity and closeness, in terms of the local

urban setting and neighborhood, to give the students an intrinsic moti-

vation to engage in the design work. In the research phase, the pupils

in groups explored the park and its visitors from different themes using

observations, interviews, photo journeys, and mapping. Based on the

design brief, their materials, and insights, the students worked to frame

their unique challenges and collaborative ideation. Rather than devel-

oping specific technological artifacts, the design process emphasized an

exploratory process, working with technology as a flexible and creative

means. The role of the technology was downplayed in the initial activi-

ties and introduced during the ideation phase as students were able to

work with and integrate relevant technologies into their projects in the

construction activities. The availability of different technologies, such as

Arduino, Makey Makey, and various software platforms, as flexible tools

and materials to be integrated into the process with physical mock-up

materials shifted the students’ perceptions of technology from something

involving fixed objects to digital means for creating their own alternative

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Empowerment	 127

opportunities and solutions. This strategy was chosen to support the stu-

dents in developing their own reflective stance toward designing with

technology, which could form the basis of presentation and critical

feedback in argumentation, as well as common discussions of the impact

of technology and learnings from the process in reflection. The students

designed a series of concepts for the park that they presented to visitors from

the municipality, including automated bicycle stands to tidy up the park’s

many littered cycles, to new spaces for social activities and film screenings,

and interactive waste bins that would nudge visitors to help create a more

inviting public space. Students found the process challenging but exciting

with its emphasis on problem-solving and technology design.

Second, students should be provided the means to analyze and reflect on

how technology affects our lives as individuals, groups, and society. While the

first pillar is concerned with how students can engage actively in the

processes of researching, constructing, and reflecting on their designs,

this second pillar is concerned with how students are equipped to engage

with the technology that has been designed for them by others. This is

a re-articulation of the central participatory design idea that technology

shapes work practices and carries with it values embedded by those who

designed the technology. It is a fundamentally analytical and reflective

activity. Whereas the process described previously (figure 6.1) is concerned

with design and construction, this second pillar is concerned with decon-

struction. Figure 6.2 depicts the DORIT model developed for analysis and

deconstruction. DORIT is short for “Do your Own Research In Technol-

ogy.” The model depicts six areas that each represent an individual ana-

lytical focus: technology prompts us to ask questions about the physical

and digital materiality of the particular technology that we are analyzing.

Say we are analyzing a smart watch, the technology area concerns the

materials that have gone into the watch, the sensors and components

used, and the programs running on the watch. If we move the focus to

the purpose area, we ask questions concerning the purpose of the tech-

nology: What is the design meant to be used for; how is the interface

arranged to support people in discovering the functionality? Moving to

the area of use, we explore how the technology is actually used by people

in a given situation. This will likely require observing people and perhaps

interviewing them about their experience with the particular technology.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

128	 C. Dindler, O. S. Iversen, M. E. Caspersen, and R. C. Smith

The next two areas, value and impact, are concerned with exploring the

kinds of values that a particular technology reflects and the impact that

the technology has. Finally, the area of argumentation asks us to look at

the kinds of argument that the producer or the design itself provides for

why we should use it. In sum, the six areas provide a structured way of

analyzing, critiquing, and reflecting on the nature, use, and impact of

technology.

Our example here is from a day in a Danish lower secondary school.

Here, students worked with aspects of the idea of quantified self, using Gar-

min Connect watches during a whole school day. Based on the teacher’s

presentations of Garmin’s website and the promotions of the product, the

students were asked to analyze and reflect upon the artifact based on four

dimensions of the model: argumentation, technology, value, and use. Small

Value

Use

Argumentation

Technology

Purpose

Impact

6.2  The DORIT model for engaging students in analyzing and reflecting on the techni-

cal construction, purpose, use, value, and impact of technology.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Empowerment	 129

tasks included the categorization of statements concerning the aims, values,

and intentions promoted by Garmin through their online communication

and hence related to the area of “argumentation.” Unboxing the watches,

pupils explored data settings and submission of personal data (e.g., weight,

height, age) to Garmin’s system and did competitive running exercises

around the school to carry out a simple analysis of use from a consumer

perspective. Returning to the technology, students worked with the tech-

nical aspects of the watch by actively building a pedometer using simple

Micro:bits (using MakeCode). This spurred a general discussion about the

technical aspects of tracking movement and the technologies this could

involve. Using screenshots of the Garmin watches’ interfaces, the students

were asked to analyze aspects of interactivity relating to the artifacts’ com-

position and types of input/output data, before creating ideas for redesigns

of new interfaces to suit their own everyday lives, values, and preferences.

Such activities formed the foundations for discussions relating to impact,

in which students were asked to critically reflect upon various aspects and

layers of complexity in the digital artifact, from data privacy, intentionality,

and system design to the personal and societal consequences of a device,

such as a smartwatch, becoming part of our culture.

In this example, the teaching activities were arranged so as to move

between the different areas in the model to include both technical explora-

tion and design (building a pedometer) and more reflective task, including

a discussion of the use, value, and impact of fitness tracker technologies.

The third and final pillar of computational empowerment is the idea of pro-

moting democratic practices in the design and redesign of technology. In many

respects, this pillar sums up the first two pillars. The prerequisite for taking

part in technological development is an understanding of what technol-

ogy is and how it is produced and a well-developed language for posing

demands for technology. Democratization may, in this context, be under-

stood at a number of levels. At the individual level, learning about design

and construction as well as being able to critically analyze existing tech-

nologies provides students with the capacity to make informed decisions

about their own use of technology. Moreover, it allows them to configure

and perhaps redesign the technology of their everyday life. At the collec-

tive level, future generations that are well educated in terms of creating and

assessing technology stand a better chance of making their voices heard

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

130	 C. Dindler, O. S. Iversen, M. E. Caspersen, and R. C. Smith

when decisions are made about how technology is introduced and used

and how it shapes our culture. This third pillar thus concerns the potential

implications of the practices described in the first two pillars and hence it

points to the larger aims of working with computational empowerment.

Taken together, the three pillars form the basis of computational

empowerment. They also define two archetypal roles that students may

assume in their engagement with technology. In the first role, students

may engage in processes in which they design and construct technology

for other people. These processes primarily concern the first pillar and

include students researching, constructing, and reflecting on technology

that they themselves create. In the second role, students may assume the

role of analyzing and discussing the technology that others have designed

for them. These processes relate primarily to the second pillar and the

processes of analyzing the physical and digital construction, purpose, and

actual use of a given technology. Figure 6.3 provides a simple depiction of

these roles: the arrows at the top (moving left to right) illustrate processes

of design and construction and the arrows at the bottom (moving right

to left) illustrate processes of analyzing the technology made by others.

While computational empowerment is, in essence, different from clas-

sical articulations of CT, it shares concerns with a body of contributions

Others
Students

6.3  Students design and construct technology for others (arrows left to right), and stu-

dents analyze and critique technology that others have designed for them (arrows right
to left). (Adapted from Iversen, Dindler, and Smith 2019.)

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Empowerment	 131

within the field. In the next section we briefly review this literature to

unveil the overlaps and points of resonance.

COMPUTATIONAL EMPOWERMENT AND

COMPUTATIONAL THINKING

A concern for a broader framing of CT, including a more humanistic and

critical approach to computing education, is present not only in the com-

putational empowerment approach presented above but also in a series

of recent contributions.

In their frameworks for studying and assessing the development of

CT, Brennan and Resnick (2012) expanded the traditional conceptual

understanding of CT to also include computational practices (the practices

designers develop as they engage with the concepts, such as debugging

projects or remixing others’ work) and computational perspectives (the

perspectives designers form about the world around them and about them-

selves). Brennan and Resnick (2012) combine CT, practices, and perspectives

in their framework and thereby expand the scope of computing education

to also include collaborative efforts in the design process as well as students’

reflective understanding of digital technology.

This conceptual framework is also traceable in the realization of CT

through making presented by Rode et al. (2015). Here, the authors envi-

sion competences related to aesthetics, creativity, and construction, visu-

alizing multiple representations and understanding materials as integral

parts of computing education. Rode et al. (2015) emphasize the impor-

tance of integrating arts in the science, technology, engineering and math

focus, placing the “A” in STEAM.

Other prominent approaches include computational participation (Kafai

and Burke 2013), focusing on creative engagement with computing and

on moving beyond the individual to embrace wider social networks, and

computational fluency (Resnick 2017), focusing on children expressing

themselves through technology and becoming computational creators.

Wilensky, Brady, and Horn (2014) make the case for treating computa-

tion “as a core component in a broad-based cultural literacy” and express

this concern through the notion of computational literacy.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

132	 C. Dindler, O. S. Iversen, M. E. Caspersen, and R. C. Smith

The connection between computing and culture is also present in Tissen-

baum, Sheldon, and Abelson’s (2019) conception of computational action,

in which they argue that learners have the capacity to have authentic

impact in their lives through computing. They outline two key dimensions

of computational action: computational identity and digital empowerment.

Computational identity is a person’s recognition that they can use comput-

ing to have an impact in their lives and may have a place in the larger com-

munity of computational problem solvers. Digital empowerment involves

instilling in them the belief that they can put their computational identity

into action in authentic and meaningful ways. They further argue that by

focusing on computational action in addition to CT, computing educa-

tion can become more inclusive, motivating, and empowering for young

learners.

These approaches and characterizations are not conflicting; instead,

they may be seen as focusing on different key aspects of CT. Nor does

computational empowerment, as proposed in this chapter, take issues

with the technical, creative, and cultural aspects of CT that are expressed

in the work presented previously.

Computational empowerment accentuates two aspects in particular

that contribute to the perspectives presented earlier. First, as noted in

the second pillar earlier in this chapter and represented in model 3, we

suggest that it is essential that children are provided with the means to

analyze and reflect on the technology that surrounds them and makes

up a central part of their everyday life. Engaging children in construction

is not sufficient. Critical and curious deconstruction aided by model for

analysis (such as the DORIT model) are necessary. In this sense, compu-

tational empowerment accentuates the balance and potential interplay

between construction and analysis. A similar concern is also expressed by

Kafai, Proctor, and Lui (2019), who suggest that CT should also include

“‘pulling back the curtain’ of the technological mechanisms underlying

our existing computational systems in order to understand how these

may cause inequities in and of itself” (104).

Second, computational empowerment accentuates the notion of design

as the activity in which children, in addition to construction, do research,

ideate, and reflect. Design is central to computational empowerment: it

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Empowerment	 133

embodies the idea that technology is always imbued with values, it is always

the product of choices, and these choices come with consequences for oth-

ers and for ourselves. This concern has been inherited from participatory

design and is fleshed out in the design model described earlier (figure 6.1).

COMPUTATIONAL EMPOWERMENT IN THE CURRICULUM

As noted earlier, we believe that CT and computational empowerment

may complement each other to form the basis of an integrated approach to

educating coming generations for a digitalized society. The two examples

provided earlier demonstrate teaching activities that incorporate technical

and reflective elements. To demonstrate how such an integration of CT

and computational empowerment may be realized at the curricular level,

we turn to the development of the new “Technology Comprehension”

curriculum in Denmark.

An approach to embrace digital empowerment was present already in

the Danish upper secondary Informatics curriculum developed in 2009 and

2010 and made permanent in 2016. One of six key competence areas was

use and impact of digital artifacts on human activity. The purpose of this com-

petence area was that students should understand that digital artifacts and

their design have a profound impact on people, organizations, and social

systems. Design of a system is not just design of the digital artifact and its

interface, it is also design of the use and workflow that unfolds around the

artifact. The purpose is that the students understand the interplay between

the design of a digital artifact and the behavioral patterns that intention-

ally or unintentionally unfolds (Caspersen and Nowack 2013).

The curriculum for technology comprehension for primary and lower

secondary education was developed by mandate of the Danish Minis-

try of Education in 2018 and is currently running on trial in forty-six

schools for three years in Danish primary and lower secondary educa-

tion. A committee of twenty-five appointed experts within education and

research took part in the development of the curriculum. Based on pre-

vious research and impact of projects in both computational empower-

ment and CT (Caspersen et al. 2019; Smith and Iversen 2018), the authors

of this chapter were invited to be centrally involved in the process: two

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

134	 C. Dindler, O. S. Iversen, M. E. Caspersen, and R. C. Smith

of the authors acted as co-chairs for the working group, while a third

author was involved in developing the content of the curriculum. In the

choice of chairs, the Minister of Education signaled the importance of

integrating humanistic and computer science approaches to computing

education. Also, it was specified that the curriculum should embrace both

technical as well as critical and design-oriented content.

The technology comprehension curriculum is based on four compe-

tence areas depicted in figure 6.4 (Danish Ministry of Education, n.d.).

Digital empowerment1 refers to the critical and constructive exploration

and analysis of how technology is imbued with values and intentions

and how it shapes our lives as individuals, groups, and a society. It is con-

cerned with the ethics of digital artifacts and promotes an analytical and

critical approach to digital transformation.

Digital design and design processes refer to the ability to frame problems

within a complex problem area and, through iterative processes, generate

new ideas that can be transformed into form and content in interactive

prototypes. It focuses on the processes through which digital artifacts are

created and the choices that designers have to make in these processes,

highlighting students’ ability to work reflectively with complex problems.

6.4  The four competence areas in the technology comprehension curriculum.

Digital empowerment

Analysis of technology—intention and use | Evaluation | Redesign

Critical, reflexive, and constructive examination and understanding of
possibilities and consequences of digital artifacts.

Computational thinking

Data | Algorithms | Structuring | Modeling

Analysis, modeling, and structuring of data and data processes
for automatic execution by a computer.

Technological knowledge and skills

Programming | Computer systems | Networks | Security

“Mastery’’ of digital technologies (computer systems and networks),
associated languages and programming.

Digital design and design processes

Problem framing | Ideation | Prototyping | Argumentation

Organization and implementation of iterative and incremental design
processes considering the context of future use.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Empowerment	 135

Computational thinking (CT) concerns the ability to translate a framed

problem into a possible computational solution. It focuses on students’

ability to analyze, model, and structure data and data processes in terms

of abstract models (e.g., algorithms, data models, and interaction models).

Technological knowledge and skills concern knowledge of computer sys-

tems, digital tools and associated languages, and programming. They

focus on the students’ ability to express computational ideas and mod-

els in digital artifacts. This includes the ability to use computer systems

and the associated language and to express ideas through programming.

Working within this area aims at providing students with the experience

and abilities needed to make informed choices about the use of digital

tools and technologies.

Together, the four competence areas clearly integrate aspects of CT and

computational empowerment as outlined earlier. The lineage from com-

putational empowerment and participatory design is particularly evident

in the areas of digital empowerment and digital design and design processes.

It is, however, also evident when looking at the overall aim of the cur-

riculum where the needs for skills to proactively engage in the digitiza-

tion of society are accentuated: “In Technology Comprehension students

gain skills to understand the capabilities of digital technologies and the

implications of digital artifacts in order to strengthen students’ capacity

for understanding, creating and acting meaningfully in a digitized society

where digital technologies and digital artifacts are catalysts for change”

(Danish Ministry of Education, n.d., 1).

Moreover, technology comprehension is articulated as a support for

intellectual freedom and a democratic citizenship among students in the

Danish school system: “Freedom of spirit and democratic citizenship are

widely cultivated in digital environments, which is why a well-founded

understanding of technology is a prerequisite for being able to contribute

constructively and actively in the development of relationships, commu-

nities and societies” (Danish Ministry of Education, n.d., 8).

These concerns for students’ active engagement in technology devel-

opment, democratic citizenship, and freedom of spirit run through the

Technology Comprehension curriculum and can be traced throughout the

four competence areas. Design and design process is participatory, empha-

sizing user studies as a prerequisite for new design; digital empowerment

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

136	 C. Dindler, O. S. Iversen, M. E. Caspersen, and R. C. Smith

provides students with skills for analyzing and reflecting on the values,

intentionality, and impact of digital technologies in our everyday lives.

The areas of computational thinking and technological knowledge and skills

represent core aspects of computing. Importantly, however, the four areas

are not simply envisioned as separate entities that are positioned next to

each other. In the very first sentence of the curriculum it is stated, “There

is in the description a balance between the four competence areas that in deci-

sive ways enrichen each other and act as the premise for each other” (Danish

Ministry of Education, n.d., 1).

The integration of computational empowerment and CT form a bal-

anced view and approach to computing education that is not found in

other national curricula worldwide. Hence, it would appear that this cur-

riculum is an ideal example of a balanced integration of computational

empowerment and CT.

There are, however, a series of challenges and uncertainties relating to

the development and implementation of the curricula in practice that

are far from novel. The challenges include implementation in an exist-

ing national curriculum without educators’ competences or resources,

implementation of pipeline from preschool to higher education, and

navigation of changing politics and priorities of education. These will,

over time, determine whether the integration of computational empow-

erment and CT will endure in Danish primary and secondary education.

CONCLUSION

In this chapter, we make the case for computational empowerment—based

on the legacy of participatory design—as a critical counterpart to main-

stream CT. We envision computational empowerment as concern for how

coming generations can develop the capacity and skills to make informed

choices about technology and act critically and constructively as citizens

in a digitized society. As such, the computational empowerment objectives

resonate well with contemporary research efforts exploring computational

practices and computational perspectives in computing education litera-

ture. However, as described in this chapter, computational empowerment

accentuates the balance between construction and critical analysis of tech-

nology and the importance of engaging with the process of design.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Empowerment	 137

We have illustrated how computational empowerment can be intro-

duced into classroom teaching and how it has been adapted and intro-

duced in the curriculum at a national scale. Our example from the Danish

curriculum underpins how computational empowerment and CT can be

tightly connected and mutually beneficial in the Technology Compre-

hension curriculum.

It could be argued that the Danish school system is relatively unique

in terms of its statutory concern for critical perspectives on societal mat-

ters. However, we suggest that many school systems around the world

could find inspiration in the Danish concern for computational empow-

erment to secure a conscientious digitization of our societies, in which

future generations are provided with the educational means to engage

actively and critically as citizens in an increasingly digital democratic

society.

NOTE

1.  In the Danish curriculum, “digital empowerment” is used independently of and
with a different meaning than the term as used by Tissenbaum, Sheldon, and Abel-
son (2019).

REFERENCES

Bjerknes, Gro, Pelle Ehn, Morten Kyng, and Kristen Nygaard. 1987. Computers and
Democracy: A Scandinavian Challenge. Aldershot, UK: Gower Pub Co.

Brennan, Karen, and Mitchel Resnick. 2012. “New Frameworks for Studying and
Assessing the Development of Computational Thinking.” In Proceedings of the 2012
Annual Meeting of the American Educational Research Association. Vancouver, Canada,
1: 25. scratched​.gse​.harvard​.edu​.

Caspersen, Michael E., Judith Gal-Ezer, Andrew McGettrick, and Enrico Nardelli.
2019. “Informatics as a Fundamental Discipline for the 21st Century.” Communica-
tions of the ACM 62 (4): 58. https://doi​.org​/10​.1145​/3310330​.

Caspersen, Michael E., and Palle Nowack. 2013. “Computational Thinking and Prac-
tice: A Generic Approach to Computing in Danish High Schools.” In Proceedings of
the Fifteenth Australasian Computing Education Conference—Volume 136. Darlinghurst,
Australia, 137–143.

Danish Ministry of Education. n.d. “Danish Ministry of Education, Curriculum for
Technology Comprehension.” Danish Ministry of Education. https://www​.uvm​.dk​
/​-​/media​/filer​/uvm​/aktuelt​/pdf18​/181221​-laeseplan​-teknologiforstaaelse​.pdf​?la=da​.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

138	 C. Dindler, O. S. Iversen, M. E. Caspersen, and R. C. Smith

Dindler, Christian, Rachel Charlotte Smith, and Ole Sejer Iversen. 2020. “Compu-
tational Empowerment: Participatory Design in Education.” CoDesign: International
Journal of Cocreation in Design and the Arts 16: 1, 66–80.

Greenbaum, Joan, and Morten Kyng. 1991. Design at Work: Cooperative Design of
Computer Systems. New York: CRC Press.

Hansen, Nicolai Brodersen, Christian Dindler, Kim Halskov, Ole Sejer Iversen, Claus
Bossen, Ditte Amund Basballe, and Ben Schouten. 2019. “How Participatory Design
Works: Mechanisms and Effects.” In Proceedings of the 31st Australian Conference on
Human-Computer Interaction. Freemantle, Western Australia, 30–41.

Iversen, Ole Sejer, Christian Dindler, and Rachel Charlotte Smith. 2019. En Designtil-
gang til Teknologiforståelse [A Design Approach to Understanding Technology]. Frederik-
shavn, Denmark: Dafolo.

Iversen, Ole Sejer, Rachel Charlotte Smith, and Christian Dindler. 2018. “From Com-
putational Thinking to Computational Empowerment: A 21st Century PD Agenda.”
In Proceedings of the 15th Participatory Design Conference—Volume 1, 1–11.

Kafai, Yasmin B., and Quinn Burke. 2013. “The Social Turn in K–12 Programming:
Moving from Computational Thinking to Computational Participation.” In Proceed-
ings of the 44th ACM Technical Symposium on Computer Science Education. Denver,
603–608.

Kafai, Yasmin, Chris Proctor, and Debora Lui. 2019. “From Theory Bias to Theory
Dialogue: Embracing Cognitive, Situated, and Critical Framings of Computational
Thinking in K–12 CS Education.” In Proceedings of the 2019 ACM Conference on Inter-
national Computing Education Research. New York, 101–109.

Lawson, Tony. 2011. “Empowerment in Education: Liberation, Governance or a
Distraction? A Review.” Power and Education 3 (2): 89–103.

Musaeus, Line Have, Maarten Van Mechelen, Michael E. Caspersen, and Ole Sejer
Iversen. 2021. “Empowerment through Computational Thinking: A Literature Survey.”
Acta Didactica Norden.

Resnick, Mitchel. 2017. Lifelong Kindergarten: Cultivating Creativity through Projects,
Passion, Peers, and Play. Cambridge, MA: The MIT Press.

Rode, Jennifer A., Jennifer Booker, Andrea Marshall, Anne Weibert, Konstantin Aal,
Thomas von Rekowski, Houda El mimouni, Akshay Sharma, Jordan Jobs, and Alexis
Schleeter. 2015. “From Computational Thinking to Computational Making.” In
Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous
Computing and Proceedings of the 2015 ACM International Symposium on Wearable
Computers—UbiComp ’15, 401–402. https://doi​.org​/10​.1145​/2800835​.2800926​.

Shneiderman, Ben. 1990. “Human Values and the Future of Technology: A Declara-
tion of Empowermendermant.” Proceedings of the Conference on Computers and the
Quality of Life—CQL ’90. https://doi​.org​/10​.1145​/97344​.97360​.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Empowerment	 139

Simonsen, Jesper, and Toni Robertson. 2013. Routledge International Handbook of Par-
ticipatory Design. New York: Routledge.

Smith, Rachel Charlotte, and Ole Sejer Iversen. 2018. “Participatory Design for Sus-
tainable Social Change.” Design Studies 59: 9–36. https://doi​.org​/10​.1016​/j​.destud​
.2018​.05​.005​.

Tissenbaum, Mike, Josh Sheldon, and Hal Abelson. 2019. “From Computational
Thinking to Computational Action.” Communications of the ACM 62 (3): 34–36.

Van Mechelen, Maarten, Line Have Musaeus, Arthur Hjorth, and Ole Sejer Iversen.
2021. “A Systematic Review of Empowerment in Child-Computer Interaction
Research.” In Proceedings of the ACM Conference on Interaction Design and Children.
Athens, Greece, 119–130.

Wilensky, Uri, Corey E. Brady, and Michael S. Horn. 2014. “Fostering Computa-
tional Literacy in Science Classrooms.” Communications of the ACM 57 (8): 24–28.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

II
COMPUTATIONAL THINKING
AND ARTIFICIAL INTELLIGENCE
LITERACY IN K–12

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Artificial intelligence (AI) is a new, general-purpose technology that will

impact most, if not all, aspects of both our society and our personal every-

day life. AI technology has enabled applications such as speech interfaces,

vision-based object recognition, and machine translation. AI technology

also makes recommendations about music, books, and movies for you,

decides whether you will get a bank loan, and controls what posts you see

on social media, all of which can have a major impact on your life. It is

clear that AI technology will play a central role for most aspects of our pro-

fessional and private lives, as well as society at large. Kevin Kelly predicts,

“The business plans of the next 10,000 startups are easy to forecast: Take X

and add AI” (2016). Andrew Ng says that AI is the new electricity—it is a

fundamental part of almost all things (Lynch 2017).

Considering its expected impact, raising the awareness of what AI is

and what it is not, as well as understanding some of the ramifications,

are very important. Taking an educational perspective, it raises questions

such as these: What does this mean for the need for competences, and

what demands does it put on education? How can education retake its

position as a positive force to provide individuals with the knowledge,

skills, and attitudes they need to be constructive and critical actors in the

major transformation that we are in? What competences are needed to

effectively be able to use AI as the powerful tool it is?

7
THE COMPUTATIONAL THINKING AND
ARTIFICIAL INTELLIGENCE DUALITY

Fredrik Heintz

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

144	 F. Heintz

The starting point is that people and AI complement each other. It is

humans and AI, not humans or AI. It is clear that computers are significantly

better than we are at well-defined tasks such as mathematical calculations,

remembering huge numbers of facts, and repeating precise instruction over

and over again exactly the same way. It is equally clear that people are

significantly better than computers at understanding social interactions,

making decisions from a holistic perspective, and dealing with vague or

ambiguous situations. What is not clear is whether the progress of AI will

eventually make computers better than humans at all these things. For the

conceivable future, it is likely that humans will be better at some things and

computers will be better at other things, and most things can be done better

in collaboration than in isolation.

This means that we need to become better at solving problems together

with computers powered by AI technology. Those who know how to do

this effectively will have the best opportunities. The single most impor-

tant competence to achieve this will most likely be computational think-

ing (CT): solving problems using concepts and techniques from computer

science in such a way that computers can assist (Wing 2006).

AI and CT can actually be seen as duals with respect to problem-

solving by computers and humans. AI is about providing computers with

the ability to think like humans, while computational thinking is about

improving the problem-solving capability of humans by leveraging the

way a computer “thinks” when it solves problems.

Humans have developed increasingly powerful tools. Artificial intel-

ligence is the latest—perhaps the ultimate—tool. AI is about under-

standing what intelligence would be sufficient to create intelligence in a

computer or robot. A major challenge with this definition is that there is

no commonly accepted definition of human intelligence (Legg and Hut-

ter 2007). A computer can often do things that we assume requires intel-

ligence without any effort, like solving difficult mathematical problems.

At the same time, computers often are very poor when it comes to doing

what appears to be really simple things, like learning a new concept from

abstract descriptions, for example, the idea that a zebra is a horse with

black-and-white-striped hair.

AI can also be described as systems taking input, analyzing the data,

making decisions, and then acting based on these decisions. This approach

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

The Computational Thinking and Artificial Intelligence Duality	 145

is often called the Sense-Plan-Act approach (Russell and Norvig 2016). In

many cases these systems learn to improve their performance over time

from data collected (or given). These systems are often called agents, as they

have a sense of agency that differentiates them from other computer pro-

grams. This also gives rise to a cognitive and social view on computation.

Machine learning is currently seen as the most interesting part of AI,

both because many consider it an essential part of intelligence and because

it allows computer programs to improve over time based on experience.

This is important because it is hard for people to specify exactly what we

want a system to do. Instead the machine can partly learn what to do and

how to do it, as well as improve over time, by collecting data and modify-

ing its behavior (Brynjolfsson and Mitchell 2017).

The scientific field of AI has many subfields, which study different

aspects of intelligent behavior and cognition. Common topics at the main

AI conferences include machine learning, knowledge representation and

reasoning, heuristic search, planning and scheduling, natural language pro-

cessing, computer vision, robotics, and multiagent systems. All of these

topics have been studied since the 1950s. Most of them were in fact

discussed already at the seminal Dartmouth conference in 1956.

Two of the most important subfields are machine learning and knowl-

edge representation and reasoning. Knowledge representation and reason-

ing is the scientific study of how to represent knowledge in a computer and

how to reason with this knowledge to draw valid conclusions. Machine

learning is the scientific study of how a computer can learn things such as

finding patterns, recognizing objects, and acting to achieve specific goals.

Machine learning is mostly based on statistics and correlations (black box

models), while knowledge representation and reasoning is mostly based on

explicitly modeling cause and effect (white box models).

Currently, most of the attention is focused on machine learning, while

knowledge representation and reasoning were the focus in the 1980s and

1990s, often in the form of expert systems. The next big step is likely

the combination and integration of reasoning and learning, maybe in

a similar manner as we humans do it with type, separate but somehow

connected systems (Kahneman 2011). System I is the fast, automatic, and

opaque system for perception and intuition with very limited introspec-

tion, which shares many similarities with data-driven machine learning

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

146	 F. Heintz

approaches. System II is the slow, deliberate, and explicit system for ana-

lytical thinking and planning with a high degree of introspection, which

corresponds roughly to formal, symbolic reasoning-based approaches.

Another significant trend is to study the implications of AI and to make

sure that AI is developed in a way that benefits all. The EU is for example

putting its weight behind the concept of Trustworthy AI, which requires

AI systems to follow the applicable rules and regulations, live up to four

ethical principles, and have a robust and safe implementation (High-Level

Expert Group on AI 2019). A consequence of this is that the field of AI is

broadening and today includes researchers from a wide variety of scientific

disciplines, not only computer scientists.

Even if the goal is to make computers learn new things and act intelli-

gently, it is important to remember that AI is still a tool. A tool is something

people use to augment our capabilities (e.g., remember, move around, lift

things, count) and to give us completely new capabilities (e.g., fly, travel

in space, control processes in real-time, see in x-ray vision). Through digi-

talization, the effect and improvement rate of tools can grow exponen-

tially, according to Moore’s law. If these tools are connected in networks,

their value can increase further because of the network effects.

We have seen a long history of automation in agriculture and manu-

facturing. Machines have taken over much of the work previously done

through manual labor. Today, AI-based tools are enabling us to start auto-

mating tasks that require cognitive skills (Brynjolfsson and McAfee 2017).

The development is still in a very early stage, but the trend is clear. More

and more tasks are being automated. Automation often increases the effi-

ciency, but it is rare that complete processes are automated. Rather, parts

of the processes are automated, making people part of the resulting semi-

automated processes.

An interesting question then becomes how this influences the role

of humans. Humans and computers are fundamentally good at different

things, which makes humans and computers complementary. Instead of

complete automation, where we hand over the control completely to the

computer, it is better if humans and computers solve problems together.

Even if a computer is good at recognizing objects and classifying images,

humans are still many times better at these tasks and definitely better at

generalizing to other similar tasks. The role of humans then becomes to

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

The Computational Thinking and Artificial Intelligence Duality	 147

train and teach AI algorithms to do different tasks and monitor that they

are actually doing the correct thing in an appropriate manner. The train-

ing most likely never will be completely finished, but rather incremental

and continuous as new concrete examples of incorrect decisions and situ-

ations where the computer does not know what to do are collected. In

these cases, we humans have to take over and provide the correct answer.

A challenge for us humans then becomes what we think is correct, given

our different perspectives and backgrounds.

Does this mean that the role of humans is determined by the ability of

AI? Partly, but we are developing AI techniques to complement our selves

and to do things that we find hard, like dealing with combinatorial prob-

lems and problems, which require detailed knowledge of vast amount of

data. Similarly, humans are enabled to do what we are good at and what

AI systems find hard, like understanding context and judge what is right

or wrong from a societal or psychological perspective.

Does this mean that humans will eventually be marginalized? Prob-

ably not. First, by leveraging AI tools, humans will be able to do more and

solve harder and more complex problems. Second, even if a computer

could do the same things as a human, it is not necessary that it is cheaper,

better, or even desired.

An interesting example is chess. We humans have no chance against

the best chess computers and have not had a chance for over twenty

years (Siegel 2016). At the same time, the quality of human chess playing

is increasing, as we are practicing together with chess computers. Some

claim that Magnus Carlsen is the best chess player in the world since he

is the human who is the best at playing like a computer. This is natural to

him as he has been practicing against the computer since he was a small

child. What is even more interesting is that if you combine humans and

chess computers in a team, called a centaur, they become better than

both the best humans and the best computers. It is even the case that the

team becomes even better if you include several people (Kasparov 2017).

This is a concrete example of how the result improves when humans and

computers collaborate to solve complex problems.

There is no dichotomy between humans and computers; it is not a

question of either or, but rather humans and computers. Simplified, com-

puters are good at doing, while humans are good at what should be done

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

148	 F. Heintz

and why. We are good at asking questions, and computers are good at

answering them. Examples are question-answering systems that are great

at answering questions and planning systems that can generate elaborate

detailed plans for how to achieve goals, but the questions and the goals

have to be provided to the systems by human users.

An important observation is that it is a different skill to play chess with

a computer compared to playing chess on your own. This means that

even if you are an expert and are provided with the best possible tool, the

result does not necessarily improve significantly from your performance

without it. You might still perform worse than a person who is less of an

expert in the subject but more of an expert on using the tool effectively.

To really leverage the computational power we need to both educate

people in solving problems with AI tools and adapt the way we work to

truly leverage the tools. Thus, relevant education, changed ways of work-

ing, and new organizational forms are required. A central capability is to

transform business problems into computational problems. That is, to

formulate problems in such a way that computers or computer tools can

assist (Brynjolfsson and Mitchell 2017).

CT captures this general skill of solving problems in a way that com-

puters can assist (Wing 2011). For computers to help us, we have to be

better at understanding how a computer solves problems. Thus, CT is

to a large extent about learning to understand how a computer “thinks”

when it solves a problem.

When you solve problems with a computer, it is often about describ-

ing to the computer what should be done, rather than doing it yourself.

Programs are descriptions of how to solve something that a computer

understands. Traditionally, humans have to describe every step of the

process in great detail. AI actually reduces this by enabling the computer

to fill in some of the details.

CT is becoming a general basic skill (Wing 2006). We also need to

teach about AI and how AI can be applied to different fields and prob-

lems. To do this well, you need to understand both the domain and the

technology sufficiently well to make the right design choices or procure

the right solutions. This leads to a challenge for all those school systems

where subjects are taught independently. In the same way that AI breaks

down the silos in organizations, AI requires different ways of teaching in

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

The Computational Thinking and Artificial Intelligence Duality	 149

school. Instead of treating each subject independently, there is a need to

study both the subject matter and the AI tools and techniques used to

help solve the subject matter problems.

AI and CT can actually be seen as two sides of the same coin. AI is about

enabling the computer to solve problems we consider to require intelli-

gence, or casually speaking, to enable computers to “think.” CT turns this

around and asks the question: How can people become better at solving

problems by learning from how computers do?

We can now compare AI to the main CT activities.

AI tries to avoid step-by-step instructions through either (1) declarative

programming, such as logic programming, in which an engine interprets

declarative programs, stating what should be done and figuring out how to

achieve this, or (2) through machine learning, which could also be called

programming by example, in which a large set of examples together with

an objective function are used to define what the program should do.

Breaking down problems into smaller problems, or to divide and con-

quer, is a classical problem-solving technique used, for example, in AI to

provide dynamic programming solutions to optimization problems or as

part of reinforcement learning (Sutton and Barto 2018). It can be ques-

tioned whether the computer really breaks down the problem itself, but

in reinforcement learning the computer has the choice about what parts

of the state space to explore, providing some freedom to select how to

break down a problem.

Finding patterns is the main strength of deep learning neural network-

based approaches (Goodfellow, Bengio, and Courville 2016; LeCun, Ben-

gio, and Hinton 2015). Given sufficient (often large) amounts of relevant

examples, these methods are able to find patterns in the data that are

beyond what humans can do.

Abstraction is an area where AI-based approaches have had mixed

success. On one hand, it could be argued that all approaches to repre-

sentation learning are doing exactly this (Bengio, Courville, and Vincent

2013). On the other hand, the abstractions found are usually much more

limited than the type of abstractions we humans create.

Designing algorithms to solve specific problems is an important part

of CT. One way of characterizing AI, at least some parts, such as reinforce-

ment learning and planning, is as a form of automated programming.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

150	 F. Heintz

Some people even define AI as solving problems without being explicitly

programmed (Brynjolfsson and Mitchell 2017).

The focus of traditional computer science, and CT, is to develop algo-

rithms and programs that describe how to solve specific classes of problems

with some guarantees. This usually involves understanding the problem

in detail and then developing step-by-step instructions that allow a com-

puter to solve problem instances repeatedly and with great precision.

The focus of modern AI is to develop algorithms and programs that

can extract, or learn, general models or programs, from data where the

problem is not really well defined. It is very hard to specify precisely what

a cat or chair looks like, but it is relatively straightforward to create large

collections of images with and without cats or chairs. The same is true for

natural language.

By developing methods that do not require detailed specifications but

rather can extract the underlying phenomenon from positive and nega-

tive examples, we increase the range of problems that can be addressed by

computers. This is also significant for the skills required to leverage these

techniques. Maybe there is a need for data thinking or machine learning

thinking to capture the cognitive skills that highly skilled data science

and machine learning engineers use to solve problems through data?

By studying AI and CT, we will learn more about both thinking and

human intelligence, how to effectively solve problems with computers,

and most importantly, how we humans can solve large scale complex prob-

lems together with AI. In consideration of the major challenges human-

ity is facing, such as providing everyone on the planet with food, energy,

sustenance, and belonging in a long-term sustainable manner for both the

climate and ourselves, this is absolutely essential.

REFERENCES

Bengio, Yoshua, Aaron Courville, and Pascal Vincent. 2013. “Representation Learn-
ing: A Review and New Perspectives.” IEEE Transactions on Pattern Analysis and
Machine Intelligence 35 (8): 1798–1828.

Brynjolfsson, Erik, and Andrew McAfee. 2017. “The Business of Artificial Intelli-
gence.” Harvard Business Review, 1–20.

Brynjolfsson, Erik, and Tom Mitchell. 2017. “What Can Machine Learning Do?
Workforce Implications.” Science 358 (6370): 1530–1534.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

The Computational Thinking and Artificial Intelligence Duality	 151

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. Cam-
bridge, MA: MIT Press.

High-Level Expert Group on AI. 2019. Ethics Guidelines for Trustworthy AI. European
Commission, Brussels.

Kahneman, Daniel, 2011. Thinking, Fast and Slow. New York: Farrar, Straus and Giroux.

Kasparov, Garry. 2017. Deep Thinking: Where Machine Intelligence Ends and Human
Creativity Begins. New York: Public Affairs.

Kelly, Kevin. 2016. The Inevitable. New York: Viking Press.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015. “Deep Learning.” Nature
521 (7553): 436–444.

Legg, Shane, and Marcus Hutter. 2007. “Universal Intelligence: A Definition of
Machine Intelligence.” Minds and Machines 17 (4): 391–444.

Lynch, Shana. 2017. “Andrew Ng: Why AI is the New Electricity.” Insights by Stanford
Business, 11.

Russell, Stuart J., and Peter Norvig. 2016. Artificial Intelligence: A Modern Approach.
Upper Saddle River, NJ: Prentice Hall.

Siegel, Robert. 2016. “20 Years Later, Humans Still No Match for Computers on
the Chessboard.” NPR​.org​. https://www​.npr​.org​/sections​/alltechconsidered​/2016​
/10​/24​/499162905​/20​-years​-later​-humans​-still​-no​-match​-for​-computers​-on​-the​
-chessboard​.

Sutton, Richard, and Andrew Barto. 2018. Introduction to Reinforcement Learning.
Cambridge, MA: MIT Press.

Wing, Jeanette. 2006. “Computational Thinking.” Communications of the ACM 49 (3):
33–35.

Wing, Jeanette. 2011. “Research Notebook: Computational Thinking: What and
Why?” The Link Magazine 20–23. https://www​.cs​.cmu​.edu​/link​/research​-notebook​
-computational​-thinking​-what​-and​-why​.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

HISTORY OF THE FIVE BIG IDEAS IN ARTIFICIAL INTELLIGENCE

The “Five Big Ideas in AI” were inspired by the 2017 CSTA (Computer

Science Teachers Association) Computer Science Standards, which are

organized around five big ideas in computing. Those five big ideas are:

(1) algorithms and programming, (2) computing systems, (3) data and

analysis, (4) impacts of computing, and (5) networks and the internet.

Unfortunately, although artificial intelligence (AI) is an important branch

of computer science, the standards contain only two sentences about AI,

both in the eleventh- and twelfth-grade band, as shown in figure 8.1.

Until recently, AI was considered too advanced for younger students.

The Five Big Ideas in AI are a way to introduce teachers, parents, and

students to the essential concepts and major issues of a field often con-

fused with science fiction (Touretzky et al. 2019). We argue here that

studying AI can teach students about more than technology; it can help

them better appreciate the complexity of humanity.

Each of the Five Big Ideas is described by a key phrase and a one-

sentence statement; see figure 8.2. In a poster we published in 2019, each

statement was unpacked in a paragraph of explanatory text. This poster

has since been translated into fourteen languages, including Chinese,

Korean, Hindi, Spanish, Portuguese, Hebrew, and Arabic, all available on

8
ARTIFICIAL INTELLIGENCE THINKING
IN K–12

David S. Touretzky and Christina Gardner-McCune

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

154	D . S. Touretzky and C. Gardner-McCune

Describe how artificial intellgence
drives many software and
physical systems.

>

> Algorithms &
Programming

Algorithms &
Programming

Algorithms Communicating

CreatingAlgorithms

Implement an artificial intelligence
algorithm to play a game against
a human opponent or solve a
problem.

8.1  References to AI in the 2017 CSTA Computer Science Standards.

8.2  The Five Big Ideas in AI graphic from AI4K12​.org.

In
te

lli
ng

en
t a

ge
n

ts
 r

eq
u

ir
e

m
an

y
ki

nd
s

of

kn
ow

le
dg

e
to

 in
te

ra
ct

 n
at

u
ra

lly
 w

ith
 h

um
an

s.

A
gents m

ain
tain

 rep
resentations

of the w
orld and

 u
se th

em
 for reasoning.

Computers can learn from data.

Computers perceive the world using sensors.

4
- N

A
T

U
R

A
L

IN
TE

R
A

C
TI

O
N

3 - LEARNING

2 - REPR
ES

EN
TA

T
IO

N
 &

 R
EA

S
O

N
IN

G

1 - PERCEPTION

<
<<

<

A
l can impact society

 in

b
o

th positive and negativ
e w

ay
s.

5

- S
OCIETAL IMPACT

Object ID:
Human

Accuracy:
99.4%

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Artificial Intelligence Thinking in K–12	 155

the Artificial Intelligence for K–12 Students website (https://www​.AI4K12​

.org). In the guidelines, each Big Idea is broken down into a set of con-

cepts and skills that form the rows of a table called a grade band progres-

sion chart. The columns are the four grade bands, and the cells define

what students in that grade band should know about and be able to do

with that concept or skill. At the time of this writing, the draft grade

band progression chart for the first Big Idea, perception, has been released

for public comment and is currently undergoing revision. An excerpt is

shown in figure 8.3. The draft for the third Big Idea, learning, has also

been released.

The ordering of the Five Big Ideas progresses from narrow areas of low-

level processing (perception) to broad, high-level topics (societal impact).

But they are not meant to be covered in sequence. Some curriculum

developers have done this, such as ReadyAI’s “AI + ME” overview (ReadyAI

2019). But there are many other ways to survey AI, such as by examining

different application areas. A module on self-driving cars could touch on

all five of the Big Ideas.

BIG IDEA #1: PERCEPTION

Big Idea #1, perception, says, “Computers perceive the world using sen-

sors.” The initial guidelines for Big Idea #1 start with a discussion of

computer sensors, which connects with the computer science standards

for computer hardware (under Computer Systems), and a discussion of

human sensory capabilities, which naturally connects with human biology.

But sensing isn’t what this Big Idea is about.

The first major insight we want students to have is that perception is

more than sensing. Specifically, perception is the extraction of meaning

from sensory signals, using knowledge. An automatic door at a supermar-

ket has a sensor, but it does not perceive anything. The signal from the

pressure pad or ultrasonic transducer is too impoverished to carry much

information, and the response of the door too simplistic to require any

“meaning” beyond the raw signal. We want students to understand that

not all devices exhibit intelligence. We would not be enjoying YouTube

videos of wildlife wandering through supermarket aisles if their auto-

matic doors could properly perceive who (or what) was entering.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

8.
3 

Pa
rt

 o
f t

he
 d

ra
ft

 g
ra

d
e

b
an

d
 p

ro
g

re
ss

io
n

ch
ar

t
fo

r
B

ig
 Id

ea
 #

1,
 p

er
ce

p
tio

n.
 T

he
 r

ow
s

lis
t

co
nc

ep
ts

 a
nd

 s
ki

lls
; t

he
 c

ol
um

ns
 a

re
 t

he
 fo

ur
 g

ra
d

e

b
an

d
s.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Artificial Intelligence Thinking in K–12	 157

If the extraction of meaning from sensory signals requires knowledge,

what does that knowledge look like? In the case of speech perception, this

question leads to an examination of the many levels of language, starting

with articulatory gestures (the motions made by the tongue, lips, and vocal

tract), and progressing to phonology (sounds), morphology (word stems,

prefixes, and suffixes), prosody (stress and intonation), syntax (grammar),

and semantics (meaning). These are sophisticated concepts, but even young

children can discuss the phonetic inventory of their native language and

can understand why an intelligent agent like Siri or Alexa might have trou-

ble understanding different accents or speech patterns.

The second major insight into perception we want students to come

away with is what we call the abstraction pipeline: the transformation from

signal to meaning takes place in stages, with increasingly abstract fea-

tures and higher level knowledge applied at each stage. In the case of

speech this progression is inherent in the structure of language, and early

speech-recognition systems actually implemented the pipeline as a col-

lection of distinct modules proceeding from the raw acoustic signal to

phonemes, words, phrases, and meaning. In more recent systems based

on deep neural networks there are many more stages of processing, and

different types of knowledge co-exist across multiple levels. But even in

these messier neural net implementations there is a general progression

from more local, signal-based information to more global, meaning-based

information as one moves through the layers.

Visual perception differs from speech perception in that language is

something produced by humans for the purpose of transmitting meaning,

while vision is concerned with constructing, meaning by sensing natural

phenomena such as reflection and occlusion. The abstraction pipeline for

vision starts with pixels and ends with 3-D scenes, but what lies between

is a complex mix of edges, contours, boundaries, surfaces, parts, shad-

ows, reflections, and objects. Marr (1982) called this the 2½-D sketch. The

knowledge required to derive these representations is innate in humans

and not easily articulated explicitly in a computer program.

The abstraction pipeline is a wondrous thing. Information flows back-

ward as well as forward: for example, knowledge of the vocabulary of a

language can influence the perception of ambiguous sounds, and knowl-

edge about the shapes of objects can influence the interpretation of edges

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

158	D . S. Touretzky and C. Gardner-McCune

in a scene. Human perceptual processes are far from fully understood at

present. Studying how AI attempts to mimic these processes offers a new

route to appreciation of human perception.

How much of this can be conveyed in K–12 is still an open question,

but at least the early stages of the pipeline can be exposed to students

through interactive demos. Low-level vision can be illustrated by showing

the real-time output of vertical and horizontal edge detectors (figure 8.4)

applied to webcam images. Low-level auditory perception can be shown

with real-time spectrograms (figure 8.5) and pitch trackers.

BIG IDEA #2: REPRESENTATION AND REASONING

Big Idea #2 states that “Agents maintain representations of the world and

use them for reasoning.” In computer science terms, representations are

data structures, and reasoning is performed by algorithms. But how can

the concept of representations be explained to children in the lower grades

who are not yet familiar with data structures? Maps are a good place to

8.4  Edge detection is one of the first stages of computer vision. Vertical and horizontal

edges are detected by convolving 3×3 kernels with the image.

3x3 kernel

+1 0 –1

Vertical edges

Horizontal edges

+1 0 –1

+1 0 –1

+1

0

–1

+1

0

–1

+1

0

–1

3x3 kernel

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Artificial Intelligence Thinking in K–12	 159

start. Even young children can grasp the concept of a map being a repre-

sentation of a place. They understand that the map is not the territory, that

maps abstract away many details, and that maps follow certain notational

conventions, such as the way that roads or buildings are depicted. Having

children construct a map of their house, their school, or their neighbor-

hood brings these ideas home. Children can also appreciate that using a

map to plan a route is a kind of reasoning and that a self-driving car must

be doing a similar kind of reasoning. Thus, using maps, representation, and

reasoning can be made accessible even in K–2.

A good next step in exploring representation and reasoning, appropriate

for grades 3 through 5, is the decision tree. This can be introduced via the

“guess-the-animal” game, where the goal is to guess the animal a person

is thinking of by asking a series of yes-or-no questions, such as, “Does it

swim?” or “Does it fly?” The questions form the nonterminal nodes of a

binary tree, and the terminal nodes are the animals (figure 8.6). In playing

8.5  Real-time spectrogram of the first author saying, “Every child deserves to learn

about artificial intelligence.” The vertical axis is frequency; the horizontal axis is time;

shading indicates the amount of energy in that frequency band. (Created with https://

creatability​.withgoogle​.com​/seeing​-music​.)

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

160	D . S. Touretzky and C. Gardner-McCune

this simple game children encounter fundamental concepts in represen-

tation and reasoning that they will be exploring further for years to come.

First, the decision tree is drawn on the board so that everyone can fol-

low the reasoning process. This introduces students to the notion of tree

structures and serves as a simple formalism for encoding knowledge. Sec-

ond, the procedure for playing the game is formalized. One always starts

at the root node. Upon arriving at any nonterminal node, the student

must ask that node’s question and then follows either the “yes” or “no”

branch to reach the next node. Upon arriving at a terminal node, one

states the animal associated with that node and waits to see if the guess

is correct. Asking students to explain this procedure in their own words

prompts them to think about how the reasoning algorithm works.

Another valuable aspect of the guess-the-animal game is the proce-

dure for growing the tree. If one reaches a terminal node and guesses

8.6  Decision tree learning. (AI+ME: Big Idea 2—Representation & Reasoning: How AI
Makes Choices. AI + Me Series. Pittsburgh, PA: ReadyAI, 2020. Used with permission.)

First question

“Does it swim?”

Next question

“Does it have scales?”

New question

“Does it have
feathers?”

Yes

Yes Yes

Yes

NoNo

No

No

Next question

“Does it fly?”

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Artificial Intelligence Thinking in K–12	 161

“penguin,” but the correct answer is “octopus,” one has to obtain two

pieces of information: (1) what question distinguishes between a penguin

and an octopus, and (2) what is the correct answer for an octopus. The

decision tree can then be updated by replacing the “penguin” terminal

node with a nonterminal node containing the new question, “Does it

have feathers?” Penguin and octopus become its two children. Following

this procedure, especially when they choose the animals and questions

themselves, gives children a feeling for how human knowledge can be

encoded in a data structure, and how computers can learn.

A key insight we want students to have about this Big Idea is the inter-

dependence of representation and reasoning. Reasoning algorithms need

something to reason with, and representations are pointless if we have no

way to put them to use. Consider the map example from earlier: the map

representation needs a path-planning algorithm to find a route between

two locations. It’s also important to understand that representations are

not just the input to an algorithm, they may also be constructed by the

algorithm. The route constructed by the path planning algorithm is another

representation. Likewise, game playing programs need another common AI

representation, the search tree, to keep track of alternative moves as they

search for the move that will lead to a winning game. The search tree is

neither an input nor an output. It is constructed by the search algorithm

as it searches. We express the representation/reasoning duality as follows:

“Representation drives reasoning, and reasoning algorithms manipulate

representations.”

Older students can be introduced to a taxonomy of reasoning types to

help them understand the variety of ways AI is used to make decisions.

Classification and prediction (regression) problems are the most com-

mon applications of neural networks, although these problems can also

be approached symbolically. Combinatorial search is one of the oldest

parts of classical AI and still very important. Other reasoning approaches

include logical deduction and theorem proving, constraint satisfaction,

task planning, and numerical optimization. Some of these topics are too

advanced for K–12, but it may be possible to provide a taste. For example,

doing inference by resolution theorem proving using first-order predicate

calculus is a topic for undergraduates, but we might give students in 9–12

a taste of logical inference by looking at how a computer can handle

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

162	D . S. Touretzky and C. Gardner-McCune

syllogisms, such as the classic “all men are mortal; Socrates is a man;

therefore Socrates is mortal.”

SYMBOLIC VS. FEATURE VECTOR REPRESENTATIONS

While much of the recent progress on the difficult problems of speech

recognition, computer vision, and machine translation has resulted from

advances in neural network technology, symbolic representations remain

important, as evidenced by the resources Google and other large corpora-

tions have devoted to constructing knowledge graphs (Noy et al. 2019).

The knowledge panel displayed on the right hand side of the screen in a

Google search for “Thomas Jefferson” or “kiwi fruit” is generated from the

Google knowledge graph. Hand-crafted symbolic representations used in

classical AI are certainly easier to explain to children than the feature vec-

tor representations constructed by neural networks. But what should they

understand about feature vector representations? In the remainder of this

section we offer some speculation on how feature vector representations

may influence students’ views about word meanings.

Dictionaries and thesauruses are our traditional codifications of the

meaning of words. With six hundred thousand words spanning one thou-

sand years of usage, the Oxford English Dictionary (OED) is a landmark intel-

lectual achievement, billing itself as “the definitive record of the English

language” (Oxford University Press 2020). Dictionaries typically include

usage examples—often famous quotations—that help put words into con-

text. The OED contains 3 million quotations. All of this material was com-

piled over many years by committees of scholars. Similar efforts exist for

other languages: for example, a special commission composed of mem-

bers of the Académie Française produces the Dictionnaire de l’Académie

Française, endorsed by the French government. Dictionaries are important

cultural artifacts and are the original hand-crafted symbolic representa-

tions of words. But it is not easy for a computer to reason with this type of

representation.

Computing technology has offered our culture a new type of word repre-

sentation that now powers many natural language applications. This feature

vector encoding, also known as a word embedding, represents each word as a

point in a high-dimensional abstract space. To understand this encoding it

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Artificial Intelligence Thinking in K–12	 163

is helpful to first consider a less abstract example. The following is inspired

by the description of the word2vec family of models in Mikolov et al. (2013).

Suppose we want to represent the words “man,” “woman,” “boy,” “girl,”

“king,” “queen,” “prince,” and “princess.” Imagine a 3-D space where the

x coordinate encodes gender, the y coordinate encodes age, and the z coor-

dinate encodes royalty (figure 8.7). Each of our eight vocabulary words can

be mapped to a unique point in this space: for example, “man” might be

(0,1,0), and “princess” might be (1,0,1). Euclidean distance in this space

can serve as a heuristic for semantic similarity, allowing us to infer that

“man” is semantically closer to “woman” than to “princess.” We can go

on to embed additional words in this space, even without adding more

dimensions. “Son” would likely be close to “boy,” although less definitive

as to age, so perhaps its coordinates would be (0, 0.3, 0). “Parent” is gender

neutral but an adult, with no implication of royalty, so it might map to (0,

0.5, 0), and so on.

8.7  Representations of words as points in a 3-D semantic space.

1.5

1

0.5

0

–0.5 0 0.5
Gender

Age

girl

parent woman

princess

queen
king

prince

man

son
boy child

R
o

ya
lt

y

1 1.5

1.5

1

0.5

0

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

164	D . S. Touretzky and C. Gardner-McCune

Mikolov et al. (2013) showed that in addition to providing a similarity

heuristic, feature vector encodings admit a simple type of analogical reason-

ing by vector arithmetic. Subtracting the vector for “queen” (1,1,1) from the

vector for “woman” (1,1,0) yields a vector (0,0,-1) that removes the royalty

attribute from a word. Adding this vector to “prince” (0,0,1) yields “boy”

(0,0,0). Adding it to “king” (0,1,1) yields “man” (0,1,0). Similarly, subtract-

ing “man” from “boy” and adding the result to “parent” yields (0.5,0,0),

which is a plausible encoding for “child.”

Representing a larger vocabulary requires a higher-dimensional feature

space. Rather than designing those features by hand, they can be created

using machine learning, specifically neural networks. We don’t have a

convenient way to train the network directly on word meanings, but since

words with similar meanings tend to occur in similar contexts, it turns out

that training the network to predict what words are likely to co-occur with

a given word is an effective proxy for meaning. This approach captures

more than pure syntactic and semantic features; it also captures informa-

tion about usage: for example, which adjectives are typically applied to

which nouns.

Unlike the carefully constructed dictionary definitions produced by

human experts, feature vector representations are somewhat arbitrary. They

depend on parameters such as the size of the context window (the number

of words before and after the word whose features are being learned), the

vocabulary set, the dimensionality of the feature space (number of units

in the neural network’s hidden layer), and the training corpus. Even if all

these parameters are held constant, two separate runs of the learning algo-

rithm will produce different representations because of the randomness of

the network’s initial weights. Heuristics used for speed training also influ-

ence the vector representation. And these vectors are not easily interpre-

table by humans, although one can sometimes find correlations between

vector elements and semantic attributes by comparing the representations

of several words, as in figure 8.8.

Despite their lack of definitiveness, statistical feature vector represen-

tations have significant practical uses. For example, they can be used to

disambiguate homophones during real-time speech recognition. Tell a

chatbot you want “two coffees, not too hot, to go” and it will get every

word right. Neural machine translation systems use feature vectors as their

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Artificial Intelligence Thinking in K–12	 165

input and output encodings, as do some question answering systems such

as Siri, and machine translation applications such as Google Translate.

There are already simple online demos that allow people to explore word-

2vec vocabularies and experiment with the analogy via vector arithmetic.

Demos that are friendlier to K–12 users will surely follow. eCraft2Learn,

a children’s AI programming framework built on top of Snap!, recently

added blocks for working with feature vectors (Kahn and Winters 2020).

Allowing students to experiment on their own with feature vector repre-

sentations is the twenty-first-century version of teaching them to explore

a dictionary: it will enrich their appreciation of language. It will also give

them insight into the workings of the AI systems they interact with in their

daily lives.

BIG IDEA #3: LEARNING

Big Idea #3 says “Computers can learn from data.” It’s important to dis-

tinguish human learning from what the computer is doing, so the guide-

lines begin with a comparison. Machine learning mostly follows one of

two approaches: finding patterns in data, or optimizing behavior based

on trial and error. Humans do those things too, but they also learn in

other ways, such as by being told, by observing others, by asking ques-

tions, by experimenting, and by making connections to past experience.

Human learning, because it is part of a larger cognitive architecture, is

8.8  Feature vector representations of words in word2vec. (Figure modified from Alam-

mar 2019.)

woman

“child”? “human”? “non-royal”?

Scale

1.6
0.8

–0.8
–1.6

0.0

girl

boy

man

king

queen

water

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

166	D . S. Touretzky and C. Gardner-McCune

general and flexible, while machine learning is accomplished by special-

ized algorithms and focuses on performing a specific task.

Arthur Samuel, author of the first AI checkers playing program, is cred-

ited with coining the term machine learning in 1959. A definition often

attributed to Samuel is that machine learning is a “field of study that gives

computers the ability to learn without being explicitly programmed.” He

didn’t actually write those words, but they convey the gist of his think-

ing.1 Our take on this for the K–12 audience is: “Machine learning allows

a computer to acquire behaviors without people explicitly programming

those behaviors.” Another way to think about it is that machine learning is

a way to construct a reasoner. So humans program the learning algorithm,

the learning algorithm constructs a reasoner with the desired behavior,

and the reasoner is then employed in some task such as recognizing cats

in images or deciding whether an email is spam.

One of the things we want students to be able to do is construct a rea-

soner themselves. Several tools allow children to train an image classifier

on small numbers of examples using deep neural networks and transfer

learning. Probably the best known tool is Google’s Teachable Machine,

which conveniently runs in the browser. The demo can use images cap-

tured from a laptop’s camera and doesn’t require any programming. Simi-

lar capabilities now exist in children’s programming frameworks, such as

App Inventor, Cognimates (based on Scratch), and eCraft2Learn (based

on Snap!). Using a tool like Teachable Machine, students can train a clas-

sifier to recognize a thumbs-up gesture, a peace sign, and a “no gesture”

condition. They can then measure its accuracy on new images and exper-

iment with adding more varied training examples to help it perform bet-

ter. This makes a compelling educational experience for adults as well as

children. It’s a great way to approach machine learning, but it has some

limitations, which must be addressed through other activities.

To enhance their understanding of machine learning, we would like

students to experience what it feels like to acquire a concept by finding

patterns in data. The problem with training Teachable Machine to recog-

nize cats or thumbs-up gestures is that we start out already knowing those

concepts, even if the machine does not. Training a classifier on famil-

iar concepts cannot help one experience what it’s like to be the trainee.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Artificial Intelligence Thinking in K–12	 167

To address this, the guidelines have students play the role of machine

learner for concepts they don’t already know.

This exercise can be done as early as in grades K–2 by showing labeled

examples of cartoon creatures and asking students to figure out a rule

that predicts the labels. For example, the images could be of cartoon fish

of various colors, with different shaped heads, bodies, fins, and tails.

The labels could be “eats seaweed” and “doesn’t eat seaweed.” Labeled

instances would be presented one at a time, and after seeing a sufficient

number the students could begin positing what the pattern is that pre-

dicts a fish eating seaweed. A simple case would be that it’s the purple

fish that eat seaweed. More challenging cases may involve a conjunction

of features (only purple fish with pointy heads eat seaweed), or for older

students, a negated value (purple fish except those with small tails), a

disjunction of conjunctions (purple fish with pointy heads or orange fish

with small tails), or something even more complex.

In later grade bands, students are asked to simulate learning algorithms

in more detail. For example, in grades 3–5, instead of verbally stating a

classification rule, they may be asked to construct a decision tree, where

each node tests a single feature such as color or head shape. In 9–12 they

may be asked to train a classifier or predictor to fit a set of noisy training

points by turning knobs to adjust parameters, eyeballing the quality of the

fit. Such a model may predict a person’s height given their age, or the price

of a used car given its mileage. For a linear model y = mx + b, they would

adjust the slope (m) and intercept (b), but they could also train nonlinear

models such as logistic functions or cubic polynomials the same way.

CHANGES IN INTERNAL REPRESENTATIONS

Another insight we want students to have is, “Learning of new behaviors

is brought about by changes in internal representations.” In other words,

what the learning algorithm is doing is not magic; it is simply adjusting

a data structure. This is the second drawback to Teachable Machine and

similar transfer learning tools: they are black box demos whose internal

representations are unobservable. Given the complexity of deep neural

network representations, even if there were a practical way to display

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

168	D . S. Touretzky and C. Gardner-McCune

them, it’s not clear how their hidden layer activations could be made inter-

pretable by non-experts. There is, however, interesting work on giving

qualitative insights into what these networks are doing, such as displaying

which areas of a scene a network is attending to, or finding the optimal

stimulus for triggering a learned feature detector. As our methods for ana-

lyzing deep neural networks improve, the way we teach them will evolve.

For now, we advocate approaching “changes to internal representa-

tions,” using hand simulations of symbolic learning applications. We can

help students recognize that the decision trees they built in grades 3–5

or the parameter values they adjusted in grades 9–12 are the internal rep-

resentations that learning algorithms manipulate. We can also draw on

some “glass box” machine learning tools that disclose their representa-

tions. For example, MachineLearningForKids allows students to construct

a classifier using decision tree learning, and a recent enhancement added

the ability to draw the decision tree. While the tree can be very complex

for multivariate datasets, such as the Titanic survivor data used as one of

the illustrative examples, for simpler data the tree is easily interpretable.

For exploring changes in neural net representations, Google’s Tensor-

Flow Playground is an ideal tool. It allows students to train small feed-

forward neural networks that are graphically displayed in the browser.

Every connection is explicitly represented and gets thicker or thinner as

the magnitude of the weight increases or decreases; the sign of the weight

determines its color. By hovering over a connection, students can read

the exact weight value. What we want students to appreciate is that the

weights constitute an internal representation of a set of feature detectors

that the learning algorithm (backpropagation) is incrementally adjust-

ing. Exactly how those adjustments are calculated can be left to more

advanced classes. In deep neural networks, these feature detectors are

complex and hard to interpret, but for the shallow networks and simple

2-D input patterns supported by TensorFlow Playground, it is possible to

exactly visualize what each feature detector is doing.

TYPES OF LEARNING

“Finding patterns in data” is a broad concept that encompasses both super-

vised learning, where the data are labeled, and unsupervised learning,

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Artificial Intelligence Thinking in K–12	 169

where they are not. It can be used to produce both classifiers and predic-

tors. Classification is a special case of prediction in which the output is

drawn from a discrete set (the class labels) rather than a continuous range.

The other type of machine learning covered in Big Idea #3, “learning from

experience,” involves something radically different.

In supervised learning the algorithm is provided with the correct answer

(the label) for every training example. All it has to do is adjust the internal

representations to make the model more likely to produce this answer. In

learning from experience, known as reinforcement learning, the algorithm

is only provided with a scalar value, the reinforcement signal, which indi-

cates how well things are going. It is not told what it should do differently

to make things go better; it has to figure that out for itself.

The other reason reinforcement learning is radically different is that

reinforcement learning is used for sequential decision problems. While

classification and prediction are one-shot problems where a single input

is mapped to a single output, sequential decision problems involve a

series of action choices, where each action affects the choices available

in the next step. An example would be playing a game like chess, where

each move constrains the choices available for the next move. We want

students to appreciate two things about reinforcement learning. First,

the computer is not being trained by a teacher; it is generating its own

data by making a choice at each step and seeing where that choice leads,

that is, how much reinforcement it ultimately receives. Computers that

have become expert game players through reinforcement learning gener-

ated their training data by playing against themselves. Second, because

we are not required to provide the algorithm with the correct answer at

each step, it is possible for the algorithm to discover solutions to prob-

lems in which we don’t know ourselves what would be the best choice

to make.

Reinforcement learning is worth teaching in K–12 because it has led

to some significant achievements for AI, such as AlphaGo’s 2016 defeat

of world champion Go player Lee Sedol. But like deep neural networks,

the details of reinforcement learning algorithms are too complex for all

but the most advanced high school students. Hand-simulating the algo-

rithm would be tedious because of the large number of trials required

even for simple tasks. But tiny grid world simulations with only a handful

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

170	D . S. Touretzky and C. Gardner-McCune

of states and actions can provide a glimpse into how reinforcement learn-

ing works.

Some other topics covered in Big Idea #3 are the design of feature sets,

development and use of large datasets, and sources and effects of bias in

training data.

BIG IDEA #4: NATURAL INTERACTION

Big Idea #4 covers a range of topics relating to how computers interact with

people. The one-sentence description reads: “Intelligent agents require many

kinds of knowledge to interact comfortably with humans.” The major top-

ics that make up this Big Idea are natural language understanding, common

sense reasoning, affective computing, and consciousness/theory of mind.

Natural language understanding includes making sense of human requests

to intelligent agents, extracting information from text, and translating from

one language to another. Language is often syntactically ambiguous, so

finding the most likely meaning of a text requires some semantic analysis.

For example, “John saw the man from the restaurant” could mean either

that John was gazing out from the restaurant when he saw the man, or that

John saw the man who had some previous connection to the restaurant.

Further context is necessary to decide which meaning the speaker intended.

Speaking with an intelligent agent incapable of common sense reason-

ing would be tedious because everything would have to be spelled out in

detail. Common sense reasoning includes naive physics: understanding

the properties of solids and liquids and how they behave in response to

forces such as gravity. Winograd schema sentences such as, “The trophy

would not fit in the suitcase because it was too [large/small],” illustrate

how an understanding of naive physics, in this case volume and physical

containment, determines whether “it” refers to the trophy or the suitcase.

Another requirement for common sense reasoning is knowledge about

the world: for example, knowing that cats are living things, or what chairs

are used for. This also includes sociocultural knowledge, such as when to

pay at a restaurant, or what makes a good gift for a child.

Today’s AI systems show little common sense reasoning ability. Google

can translate text into over one hundred languages but can’t answer ques-

tions about a short story that a five-year-old would find trivial. AI systems

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Artificial Intelligence Thinking in K–12	 171

try to make up for this deficiency by focusing on retrieval from huge

knowledge bases. But retrieval is not the same as inference. For example,

ask Google how much an alligator weighs, and it will answer five hundred

pounds. Ask how much an ostrich weighs, and it will say 250 pounds. But

ask it, “Does an alligator weigh more than an ostrich?” and, as of April

2021, it doesn’t even understand the question. Retrieval alone doesn’t

cut it—usually. Sometimes it does. Ask Google, “Is Microsoft bigger than

IBM?” and it finds articles where people have discussed that question.

But ask it, “Is Intel bigger than Pfizer?” and it falls apart, despite the fact

that it can retrieve the number of employees and market capitalization

of these companies, either of which could be used to compare their size.

To achieve human-like common sense reasoning would require some-

thing called Artificial General Intelligence, or AGI. One of the essential

understandings we want children to come away with is the difference

between the narrow AI reasoners we have today and the broad AGI reason-

ers depicted in science fiction. One way to drive this idea home is to try to

have a conversation with an intelligent agent such as Alexa or Siri. At pres-

ent they do not maintain context from one utterance to another, so one

can’t have a meaningful discussion with them. AI developers are currently

working on this. Chatbots, which are more specialized than “agents” such

as Alexa, address the problem by relying on templates for common inter-

actions such as inquiring about the availability of a product, or placing an

order. But if the conversation veers outside the anticipated scenarios, the

chatbot is lost. We want children to be aware of these limitations so that

they do not attribute more intelligence to an AI agent than it deserves.

A third topic in Big Idea #4 is affective computing, or recognizing and

dealing with human emotional states. This includes sensitivity to tone

of voice, facial expressions, and body language, and the ability to adjust

interaction style to effectively respond to indications of frustration, bore-

dom, or excitement. If robot companions were as responsive as dogs to

our emotional states, they might truly capture our hearts.

The final topic in Big Idea #4 is consciousness and theory of mind. These

terms are normally addressed in university-level philosophy courses. But

because today’s children are growing up with intelligent agents, and in

a culture filled with fictional robots with human-like personas, they are

primed to appreciate questions about whether computers really do have

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

172	D . S. Touretzky and C. Gardner-McCune

minds, or could in principle have them. Concepts such as the Turing Test,

or Searle’s hypothetical Chinese room, can be introduced in high school,

and should be.

MORE PLAYING WITH LANGUAGE

We both enjoyed learning about sentence diagramming in school. In this

section we draw a connection between sentence diagramming and AI, spe-

cifically the question of how a natural language understander begins to

make sense of a sentence. We speculate that playing with AI language tools

may instill in future generations of students an appreciation for the formal

structure of language that we got from experimenting with diagramming.

Sentence diagramming was invented in the 1840s by Stephen W. Clark,

a rural New York schoolmaster, as a means of helping students learn to

“parse” (grammatically analyze) sentences (Florey 2012). The notation

was refined by Alonzo Reed and Brainerd Kellogg in 1877 into a form

that became widely used in nineteenth- and twentieth-century middle

and high schools. Diagramming is less frequently taught today and is not

included in the Common Core (Thomas 2014). English teachers argue

and research has shown that isolated direct grammar instruction does

not help students become more effective writers. Nonetheless, readers of

a certain age may have fond memories of learning to diagram sentences

(Florey 2006), perhaps because they were a first exposure to formal repre-

sentations. Diagrams are also something like data structures, a fundamen-

tal concept in computer science.

Sentence diagrams are a simplified version of the syntax trees used in

modern linguistics to represent the syntactic structure of sentences. Dia-

grams use only a few graphical devices, mainly horizontal, vertical, and

diagonal lines, as in figure 8.9. Some of these devices serve multiple roles,

whereas syntax trees label every node with an unambiguous grammatical

class.

Some linguistic theories are phrased in terms of transformations on

tree structures: for example, a sentence in the active voice can be trans-

formed into the passive voice by switching the subject and direct object

subtrees and modifying the verb phrase, so “John saw Mary” becomes

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Artificial Intelligence Thinking in K–12	 173

“Mary was seen by John.” Ambiguous sentences such as “John saw the

man with a telescope” are compatible with multiple tree structures, for

example, one in which “with a telescope” is attached to “saw,” and one

in which it is attached to “man.”

AI systems must parse sentences in order to understand them. While

syntactic analysis is only one part of language understanding, it is an essen-

tial component. The widespread availability of natural language parsers

presents an opportunity to introduce students to grammar in a new way:

by having them experiment with automated parsers. Figure 8.10 shows

a parse tree provided by the online demo page for the Berkeley Neural

Parser.2

Figure 8.11 shows the same parse in traditional syntax tree notation.

Students could learn to draw syntax trees by comparing their efforts to

computer-constructed syntax trees like the ones shown here. They could

explore the topic of syntactic ambiguity by constructing sentences and see-

ing if the parser generates more than one parse tree. And they could learn

to write simple rules in a phrase structure grammar and see those rules used

to generate parse trees (whose terminal nodes form sentences) by iterative

expansion of nonterminal nodes. With a well-designed graphical interface

to manage the rules, and automatic generation of many examples from

8.9  Diagramming a sentence. (Courtesy of Pop Chart Labs.)

As Gregor Samsa awoke one morning from uneasy dreams
he found himself transformed in his bed into a monstrous vermin.

Kafka, Metamorphosis

he found himself

As

transformed

Gregor Samsa awoke bed

vermin

dreams

fromm
orningone uneasy

his

in
into

m
onstrous

a

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

174	D . S. Touretzky and C. Gardner-McCune

8.10  Parse tree produced by the Berkeley Neural Parser (https://parser​.kitaev​.io). NP

indicates a noun phrase, VP a verb phrase, and PP a prepositional phrase.

Gregor Samsa awoke one morning from uneasy dreams

awoke one morning from uneasy dreams

from uneasy dreams

from uneasy dreams

uneasy dreams

S

VPNP

NNP NNP NP

NPINNNCD

JJ NNS

PPVBD

Gregor Samsa

Gregor Samsa awoke one morning

morningone

8.11  Traditional syntax tree notation, also from the Berkeley Neural Parser.

morningone

S

NP

NNP
Gregor Samsa awoke

CD NN IN NP

JJ NNS

NNP VBD NP PP

VP

from

uneasy dreams

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Artificial Intelligence Thinking in K–12	 175

the current rule set, students would have a grammar “sandbox” in which

to explore syntax and the relationship between parsing and generation.

The linguist Mark Liberman has remarked that because of diagramming

instruction, “grammar-school children of the 19th century learned more

about linguistic analysis than most graduate students in English depart-

ments do today” (Liberman 2012). Interactive language tools designed spe-

cifically for K–12 could remedy that.

What about semantics? Modern AI has leveraged statistical learning

over large datasets to construct practically useful natural language tools

for tasks such as machine translation or text summarization. These tools

use heuristics to resolve ambiguity from local context. The approach is a

powerful one but does not achieve true “understanding” in the human

sense, as evidenced by the limitations these systems still exhibit. For exam-

ple, given “John saw the man with binoculars,” the Berkeley Neural Parser

attaches “with binoculars” to “man,” while most humans would prefer

“saw.” But given “John easily saw the man with binoculars,” the Berkeley

Neural Parser attaches “with binoculars” to “saw.” It’s not just the presence

of “easily” that changes the attachment, because given “John easily saw

the man with groceries,” the prepositional phrase attaches to “man,” as it

should. The interaction of the noun with the adverb to influence attach-

ment is not the result of some explicitly formulated rule, nor is it the result

of commonsense reasoning. Rather it reflects the statistics of the corpus

the model was trained on, captured in a deep neural network. Another

example is the parser makes different but plausible attachment choices for

“John saw the man with one eye” (attached to “saw”) versus “John saw the

man with one leg” (attached to “man”). But it does not do so well on “John

saw the man with one ear.” Statistics can only get you so far.

One way students can explore machine understanding of language

is by comparing how AI parsers resolve ambiguous sentences with their

own preferred interpretations of those sentences, as we’ve done above.

It’s even more fun than sentence diagramming.

BIG IDEA #5: SOCIETAL IMPACT

Big Idea #5 is that “AI can impact society in both positive and negative

ways.” We want students to be aware of these potential impacts, especially

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

176	D . S. Touretzky and C. Gardner-McCune

since there is so much apprehension today about AI putting people out

of work, enabling unprecedented levels of government surveillance, or

unleashing killer robots on the world. All of those things are likely to hap-

pen to some extent. But there are also many benefits to be realized from AI,

such as improved medical diagnoses and treatment, faster drug discovery,

robotic assistance for disabled or elderly persons, increased productivity

in industry, and personalized instruction for learners of all ages. Students

need to be shown a balanced picture.

We’ve listed four subtopics for this Big Idea: (1) ethics of AI making

decisions about people, (2) economic impacts of AI technology, (3) AI and

culture, and (4) AI for social good.

A great deal of attention has been paid to bias in AI-powered systems.

One source of bias results from training a system on an unrepresenta-

tive dataset: for example, a face-recognition engine expected to work for

everyone but that was trained primarily on Caucasian faces. A trickier

problem is automated decision-making systems found to treat different

groups of people unequally based on criteria we do not consider appro-

priate. People don’t set out to build systems that discriminate based on

race or gender. They may even withhold that information from the AI

system in an attempt to ensure neutrality. But race and gender correlate

with other variables and so can be implicitly present. The problem is that

machine learning systems trained on data that are unbalanced for histori-

cal reasons can acquire biases that perpetuate these imbalances because

they want to correctly predict the training data. A famous example is

Amazon using information from past technical hiring decisions to train

a system for screening resumes only to find that it had learned to assign

negative values to keywords that correlate with being female (Dastin

2018).

An important message for students to hear is that it is possible to take

steps to mitigate the negative impacts of technology. Face recognition

engines can be required to undergo testing to ensure that they perform

equally well for all populations. Automated decision-making systems,

whether AI-powered or not, can be required by regulation to be transpar-

ent in their reasoning and can be explicitly tested for disparate treatment

of protected groups based on inappropriate criteria.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Artificial Intelligence Thinking in K–12	 177

ARTIFICIAL INTELLIGENCE AND CULTURE

Until recently, AI’s contributions to popular culture have been entirely

through science fiction. Speculation about possible futures remains an

engaging pastime: will we be happily coexisting with R2D2 and Lieuten-

ant Data, or fleeing the Terminator? Instilling a basic understanding of

AI helps students recognize that neither scenario is imminent. But now,

actual AI applications are appearing in popular culture. Intelligent assis-

tants modeled after Siri and Alexa are showing up in commercials and TV

show episodes. Radio station promos advise listeners to “tell Alexa to play

your favorite AM station.” Meanwhile, children’s interactions with Alexa

have sparked a debate about whether they should be taught to treat intel-

ligent agents with politeness (Elgan 2018). As Elgan observes, “Preparing

kids for the future means more than mere manners. It means teaching

them to appreciate the difference between real human people and mere

machines designed to create the illusion of humanity.”

We will soon have many more humble robots in our lives. Shelf-

scanning robots are appearing in department stores and supermarkets,

small-item delivery robots are trundling the halls of hospitals and high-

end hotels, and food and package delivery robots are beginning to share

the sidewalk with pedestrians. There is already a new genre of YouTube

videos showing mishaps with self-driving cars. Today’s children will grow

up in a culture where we routinely share our living space with machines

that, although not very bright, can navigate effectively through the world.

iRobot founder Colin Angle reported that 90% of Roomba owners named

their vacuums (Barker 2018). How will they respond to robots that can

see and hear?

CONCLUSION

In recent years there have been concerted efforts to introduce children

to “computational thinking” (Wing 2006), including its four cornerstone

concepts of problem decomposition, pattern recognition, abstraction,

and algorithms. ISTE (the International Society for Technology in Edu-

cation) and CSTA offer a joint operational definition of computational

thinking (CT, ISTE 2011) that includes five dispositions or attitudes:

(1) confidence in dealing with complexity, (2) persistence in working

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

178	D . S. Touretzky and C. Gardner-McCune

with difficult problems, (3) tolerance for ambiguity, (4) ability to deal with

open ended problems, and (5) ability to communicate and work with oth-

ers to achieve a common goal or solution.

AI thinking implicitly draws upon the core concepts and dispositions

of CT. The Big Ideas of perception, reasoning, and learning are all realized

as algorithms, while representations are examples of abstraction. And

introducing students to AI topics such as the richness of language or the

subtleties of visual understanding asks them to grapple with problems

that are complex, difficult, ambiguous, and open ended. But AI thinking

also goes beyond classical CT in this sense: it asks students to consider that

computation can actually be thinking. Not in the fully human, “strong

AI” sense that Turing envisioned in his seminal paper on machine intel-

ligence (Turing 1950), but at least in the specialized, narrow form known

today as “weak AI.” CT is exactly what humans need when they try to

understand how machines can think.

These are the early days of K–12 AI education. It’s a dynamic area that

is developing rapidly. Here is what we see at the frontier:

•	 New tools and demos are coming online, making it easier to give stu-

dents hands-on experiences with AI technologies. Since many of these

tools run in the browser, they are accessible even to low-resource schools.
•	 As more states adopt standards mandating computing instruction

for all K–12 students, programming is making its way into the lower

grades, which means students will be more computationally sophisti-

cated when they learn about AI.
•	 AI professional development opportunities for teachers will begin to

have an impact. Computer science in general is poorly represented in

the schools: many computing teachers have no formal computer sci-

ence training. Even so, they at least understand how a digital computer

works and have elementary programming skills. But few of these teach-

ers claim to know anything about AI, or can even define it. Over the

next few years we hope to see AI become more integrated into comput-

ing curricula and teachers become more confident about introducing AI

topics in their classes.
•	 AI technologies continue to progress. Intelligent agents are becom-

ing better conversationalists. Robot companions that are not vacuum

cleaners will find a niche where they can be successful, while robots in

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Artificial Intelligence Thinking in K–12	 179

the workplace become common. Fully autonomous, go-anywhere self-

driving cars are probably still two decades away, but less demanding

applications such as freight hauling or fixed-route shuttle services are

already being deployed. As AI becomes a larger part of our lives and

culture, the need to demystify AI in K–12 will be widely recognized.

NOTES

1.  See https://datascience​.stackexchange​.com​/questions​/37078​/source​-of​-arthur​-sam
uels-definition-of-machine-learning​.

2.  Try the Berkeley Neural Parser at https://parser​.kitaev​.io​/​.

REFERENCES

Alammar, Jay. 2019. “The Illustrated Word2vec.” http://jalammar​.github​.io​/illustrated​
-word2vec​/​.

Barker, Colin. 2018. “Automation: How iRobot’s Roomba Vacuum Cleaner Became Part
of the Family.” ZDNet​.com, June 15, 2018. https://www​.zdnet​.com​/article​/automation​
-how​-irobots​-roomba​-vacuum​-cleaner​-became​-part​-of​-the​-family​/​.

Computer Science Teachers Association (CSTA). 2017. “CSTA K12 Computer Science
Standards, Revised 2017.” https://www​.csteachers​.org​/standards​.

Dastin, Jeffrey. 2018. “Amazon Scraps Secret AI Recruiting Tool that Showed Bias
against Women.” Reuters, October 9, 2018.

Elgan, Mike. 2018. “The Case against Teaching Kids to Be Polite to Alexa.” Fast
Company, June 24, 2018. https://www​.fastcompany​.com​/40588020​/the​-case​-against​
-teaching​-kids​-to​-be​-polite​-to​-alexa​.

Florey, Kitty Burns. 2006. Sister Bernadette’s Barking Dog: The Quirky History and Lost
Art of Diagramming Sentences. New York: Melville House.

Florey, Kitty Burns. 2012. “A Picture of Language.” New York Times, March 26, 2012.

International Society for Technology in Education (ISTE) and the Computer Science
Teachers Association (CSTA). 2011. “Operational Definition of Computational Think-
ing for K–12 Education.” https://cdn​.iste​.org​/www​-root​/ct​-documents​/computational​
-thinking​-operational​-definition​-flyer​.pdf​.

Kahn, Ken, and Niall Winters. 2020. “A Guide to AI Extensions to Snap!” https://
ecraft2learn​.github​.io​/ai​/, chapter 5, “Working with Words and Language.”

Liberman, Mark. 2012. “Diagrammatic Excitement.” Language Log, March 27, 2012.
https://languagelog​.ldc​.upenn​.edu​/nll​/​?p=3868​.

Marr, David. 1982. Vision. Cambridge, MA: MIT Press.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

180	D . S. Touretzky and C. Gardner-McCune

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
“Distributed Representations of Words and Phrases and Their Compositionality.”
Advances in Neural Information Processing Systems 26: 3111–3119. https://dl​.acm​.org​
/doi​/10​.5555​/2999792​.2999959​.

Noy, Natasha, Yuqing Gao, Anshu Jain, Anant Narayanan, Alan Patterson, and
Jamie Taylor. 2019. “Industry-Scale Knowledge Graphs: Lessons and Challenges.”
Communications of the ACM 62 (8), 36–43. https://doi​.org​/10​.1145​/3331166​.

Oxford University Press. 2020. The Oxford English Dictionary. https://www​.oed​.com​.

ReadyAI. 2019. “AI+ME.” https://edu​.readyai​.org​/courses​/aime​/​.

ReadyAI. 2020. AI+ME: Big Idea 2—Representation & Reasoning: How AI Makes Choices.
AI + Me Series. Pittsburgh, PA: ReadyAI.

Thomas, Paul L. 2014. “Diagramming Sentences and the Art of Misguided Nostal-
gia.” https://radicalscholarship​.wordpress​.com​/2014​/08​/24​/diagramming​-sentences​
-and​-the​-art​-of​-misguided​-nostalgia​/​.

Touretzky, David, Christina Gardner-McCune, Fred Martin, and Deborah Seehorn.
2019. “Envisioning AI for K–12: What Should Every Child Know about AI?” In Pro-
ceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19). Palo
Alto, CA, 9795–9799. https://doi​.org​/10​.1609​/aaai​.v33i01​.33019795​.

Turing, A. M. 1950. “Computing Machinery and Intelligence.” Mind, LIX (236):
433–460. https://doi​.org​/10​.1093%2Fmind%2FLIX​.236​.433​.

Wing, Jeannette M. 2006. “Computational Thinking.” Communications of the ACM
49 (3), 33–35. https://doi​.org​/10​.1145​/1118178​.1118215​.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

“How many of you watch YouTube every day?”

A sea of eleven-year-old hands shot up. Every student in our summer

artificial intelligence (AI) workshop had not only heard of YouTube but

used it daily.

Although a bit jarring, this makes sense. In the 2019 Common Sense

Media Report, 56 percent of tweens (ages eight to twelve years) reported

watching online videos daily, and 76 percent reported regular usage of You-

Tube specifically. These statistics have almost doubled from 2015, suggest-

ing that children’s online video consumption is on the rise. At the same

time, we see TV consumption declining, with children watching about a

half-hour less television than four years ago (Rideout and Robb 2019).

We asked the same group of students, “Who uses AI every day?”

The answer looked a bit different, with about half of hands hesitantly

going up. It became clear that students were not aware that some of their

favorite technologies, like YouTube or Snapchat, are powered by artifi-

cially intelligent systems. Without knowing how these AI systems work,

students are unable to make choices about how they would like to inter-

act with them. AI is very much part of children’s technology landscape,

and it has implications for how they navigate their digital world. If chil-

dren are able to use AI, they must be able to identify it, know how it

works, and understand that they have the agency to change it. We need

9
PREPARING CHILDREN TO BE
CONSCIENTIOUS CONSUMERS AND
DESIGNERS OF AI TECHNOLOGIES

Daniella DiPaola, Blakeley H. Payne, and Cynthia Breazeal

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

182	D . DiPaola, B. H. Payne, and C. Breazeal

to give students these skills so that they are empowered to decide how

they would like AI to fit into their lives.

To meet this need, we developed a curriculum with three primary goals:

1.	 Students should be conscientious consumers of AI.

2.	 Students should be ethical designers of AI.

3.	 Students should be able to participate in democratic discussions

around AI.

CONSCIENTIOUS CONSUMERS OF ARTIFICIAL INTELLIGENCE

If children are touching AI-powered systems every day, they really should

be aware of it. For example, our middle schoolers shared that they often

rely on YouTube’s recommendation algorithm to determine what videos

to watch. According to YouTube, the recommendation algorithm uses the

consumer’s viewing history as one of the main factors for determining

which videos to recommend (Covington, Adams, and Sargin 2016). By

recommending videos based on what the user has previously watched,

YouTube hopes that the user will stay on the site for longer. The longer

viewers watch content, the more ads will sell. For the most part, YouTube

is successful in this endeavor. In 2018 Neal Mohan, YouTube’s chief prod-

uct officer, reported that the recommendation algorithm accounted for

70 percent of watch time on the platform (Solsman 2018).

In February of the same year, the Wall Street Journal published an arti-

cle entitled, “How YouTube Drives People to the Internet’s Darkest Cor-

ners,” which recounted an investigation the publication had done into

YouTube’s recommender system (Nicas 2018). The recommender system

seemed to suggest increasingly conspiratorial or extreme content to its

users, regardless of whether the user was searching for it. The article shows

screenshots of “suggested videos” that were recommended to a brand-new

user with no previous viewing history. When the new user searched for

“the pope,” suggestions included videos containing conspiracy theories

around the Pope (“How Dangerous Is the Pope?”). When the user searched

for “lunar eclipse,” videos implying that the Earth is flat (“Lunar Eclipse

Doesn’t Work on Your Globe!”) were suggested (Nicas 2018). Viral conspir-

acy videos become even more of an issue when popular teen YouTubers

spread these theories, like a popular YouTuber, Logan Paul, uploading

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Conscientious Consumers and Designers of AI Technologies	 183

a video trailer promoting the Flat Earth theory in early 2019 (Schoenberg

2019).

YouTube is one example of the many systems that children use. Snap-

chat, Instagram, Amazon Alexa, and Google Search are other common

examples of AI that children touch every day. These systems make deci-

sions, like recommending content, and children are often not aware of

the mechanics by which the systems make such decisions. AI education is

essential in raising conscientious consumers of these systems.

FUTURE ETHICAL DESIGNERS OF ARTIFICIAI INTELLIGENCE

Given the pervasive impact AI is having on the global economy and soci-

ety, for good or for bad, it is imperative to educate an AI literate citizenry.

If we’re to educate and train the next generation of AI makers, we need to

empower them with the tools and conceptual frameworks to design these

systems ethically. Present-day technologists and designers are beginning

to realize the long-term societal consequences of the AI-powered systems

that they create. Major AI tech companies have been criticized when their

products did not work as intended or behave equitably for everyone. Ama-

zon’s facial recognition technology has been shown to have high error

rates for darker-skinned minorities (Vincent 2019). Uber’s self-driving car

neglected to account for pedestrians who jaywalked (Marshall and Davies

2019). Google has been called out for search algorithms that perpetu-

ate harmful stereotypes (Manjoo 2018). AI can do tremendous good, but

these stories are a call to action for the technology community. Software

developers need to adopt ethical practices in the design and development

of AI systems. Classrooms that are introducing AI for the first time are a

great place to start.

It’s not enough for students to be conscientious consumers of AI; they

must become ethical designers of it as well. Universities teach computer

science and are preparing students to enter a workforce that develops AI

systems. AI has already had an incredible impact on fields like medicine

and renewable energy, and we want future generations to continue to

make positive contributions to society through AI. If computational think-

ing (CT) is starting to enter K–12 education, what about learning about AI?

In 2018 the David E. Williams Middle School in Coraopolis, Pennsylvania,

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

184	D . DiPaola, B. H. Payne, and C. Breazeal

became the first school to integrate AI into its curriculum. Students in

grades 5 through 8 are learning about and designing their own AI systems

through courses such as Introduction to Pattern-Finding through Gaming

and Recognizing Computer Patterns Virtually and Through Algorithms.

AI education has been integrated into their elective courses, and there is

interest in integrating AI literacy into their core curriculum, too (Aglio

2018).

K–12 AI literacy is in its infancy but gaining momentum. Schools like

David E. Williams are early adopters of AI curriculum. Traditional STEM

programs such as iD Tech summer camps are beginning to offer AI courses,

and new programs such as ReadyAI and Technovation are creating new

spaces for this content to emerge (Artificial Intelligence Summer Camp:

Machine Learning for Teens 2020; Empowering All Students to Improve

Our World with AI 2019). The AI4K12 initiative, jointly sponsored by

Association for the Advancement of Artificial Intelligence (AAAI) and the

Computer Science Teachers Association (CSTA), is working toward national

guidelines for AI K–12 education akin to national K–12 computer science

standards. As these groups set the precedence for AI education, we must

make sure that they include ethical design tools and practices.

TOMORROW’S DEMOCRATIC, AI-LITERATE CITIZENS

Even students who will not grow up to be future technologists should be

responsible users and conscientious consumers of AI. AI isn’t only affect-

ing our personal technologies and online circles. It’s entering our com-

munities as well, and citizens should be able to make informed decisions

about its use. Consider the case where facial recognition technology is

being used by law enforcement to detect criminal suspects. Many have

expressed concerns that this technology, which is known to consistently

misidentify darker-skinned faces, could further exacerbate racial inequal-

ity or could increase the amount of surveillance within communities. In

June of 2019 the residents of Somerville, Massachusetts, a town located

near Harvard University and MIT, passed legislation placing a morato-

rium on facial recognition technologies in the city. The city councilor

of Somerville, Ben Ewen-Campen, credits the bill to the technocentric

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Conscientious Consumers and Designers of AI Technologies	 185

community. The residents of Somerville know enough about the technol-

ogy to believe that it is not yet ready to be given authority in the legal

system. Cities around Silicon Valley are beginning to ban the technology

as well (Wu 2019).

As AI continues to enter and alter our cities, it is important that young

people grow up being well equipped to handle these democratic pro-

cesses. Like the constituents of Somerville, we want our students to have

the knowledge and skills to be able to make informed decisions in their

own communities.

CURRICULUM DESIGN

For these reasons, we have developed, piloted, and evaluated a hands-

on AI and ethics curriculum for middle school that can be integrated

into formal or informal learning contexts. The second author, Blakeley

H. Payne, developed the curriculum and teacher training guide as part

of her master’s thesis. The curriculum has three major goals. The first is

to teach young people how to be conscientious consumers when using

their own devices powered by AI. The second is to give students knowl-

edge and perspective so that they can participate in democratic discus-

sions around these technologies. Finally, we want to empower them to be

ethical designers as they begin to build these systems themselves. Three

principles inform the design of this curriculum: the idea that ethics edu-

cation should be integrated alongside technical education; the value of

“unplugged” activities as a complement to those that use technology;

and the value of peer collaboration and discussion with opportunities for

creative learning.

First and foremost, this curriculum sought an integrated approach to

ethics and AI topics. Although integrated approaches are beginning to

gain traction at the collegiate level (Grosz et al. 2019; Saltz et al. 2019;

Skirpan et al. 2019), research shows that most university machine learn-

ing courses do not teach ethics issues at all or relegate ethics as its own

class (Saltz et al. 2019). Within the K–12 setting, almost all activities that

mention ethics do so as the last module of a larger unit (Lissitsa 2019).

Such approaches are problematic because research suggests that isolating

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

186	D . DiPaola, B. H. Payne, and C. Breazeal

ethics from technical content often leads students to perceive ethics as

unrelated to their technical studies (Davis and Walker 2011; Spradling,

Soh, and Ansorge 2008). To offer a more holistic educational experience,

we introduce ethics concepts as frequently as technical ones, anchored in

familiar scenarios that are meaningful to students. For example, when we

teach students how machines learn to classify objects, we make sure to

have a discussion about how classifiers can encode biases, and the poten-

tial consequences for society when such systems are used to make impor-

tant decisions, such as the use of facial recognition technology in policing.

We intentionally designed our AI and ethics curriculum to be low cost

and accessible to students and schools from all economic backgrounds. To

truly democratize AI, it is important to remove as many barriers as possible

that may hinder or prevent low-income and minority students—students

who are most likely to be negatively affected by these technologies—from

understanding how AI works, the current impact AI has on society, and

the impact AI could have on society in the future. For these reasons, our

curriculum is largely unplugged (requiring only pencil and paper; two

lessons require access to the Chrome web browser) and is open source for

noncommercial use (CC-BY-NC; https://creativecommons​.org​/licenses​/by​

-nc​/4​.0). Furthermore, our unplugged activities are designed to engage stu-

dents in highly kinesthetic or creative activities with a sense of playful-

ness (Bell et al. 2009). Many of the activities throughout the curriculum

follow a constructivist approach in which the teacher acts as a facilitator.

Instead of lecturing students, we leverage topics that middle schoolers are

comfortable with, like YouTube, and allow them to shape classroom dis-

cussion. We found that students were often expert users when it came to

these technologies and were able to apply their learning to their everyday

life. We learned a lot from their experiences and observations.

We piloted the complete curriculum, comprising two plugged and

six unplugged activities, in a week-long workshop with twenty-eight

middle school students (eight female students) in the summer of 2019

(see figure 9.1). We recruited participants under an approved IRB proto-

col through a local science, technology, engineering, and mathematics

(STEM) enrichment program, Empow Studios. Students were divided into

two groups, fifth through seventh graders (led by the Blakeley H. Payne)

and seventh through ninth graders (led by Daniella DiPaola). Each group

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Conscientious Consumers and Designers of AI Technologies	 187

also had a mentor from Empow Studios who assisted in classroom facili-

tation and was trained in the workshop material. These students had a

wide range of previous computer science experience, ranging from no

prior experience to more than seven years. Very few had ever formally

learned about AI. Given this varied background, we first had to answer

the challenge of how to bring middle schoolers from being uninitiated

to ethical designers of AI. In the remainder of this chapter, we highlight

three different modules to show the range of activities and how middle

school students engaged with them.

WHAT IS ARTIFICIAL INTELLIGENCE?

The first activity in the curriculum is designed to help students identify

AI systems in their everyday lives. For simplicity, we ask students to look

for three components in an AI system: a dataset, learning algorithm, and

9.1  A group of fifth through seventh grade AI designers in front of their “Hopes +

Concerns about AI” mural.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

188	D . DiPaola, B. H. Payne, and C. Breazeal

a prediction. When students propose a technology that may be powered

by AI, we walk them through the following questions:

1.	 Is your system trying to predict something? If so, what?

2.	 What data does the system use to predict this?

At first, students were focused on the embodied examples of AI, such

as Amazon Alexa or a self-driving car. We nudged them to think about

more software or web systems, such as a spam filter on their email.

Once students were able to identify the parts of an AI system, we went

into a more detailed explanation of algorithms themselves, and how

specific objectives can be designed into them. Students learn that, like a

recipe, an algorithm is made up of a specified input transformed by many

specific steps to achieve a desired outcome. In introductory computer sci-

ence courses, students are commonly asked to write the steps to make a

peanut butter and jelly sandwich as a way to learn the specificity required

to construct a useful algorithm. We had our students do the same exer-

cise, but instead of writing instructions for a regular PB&J, we asked them

to find a partner and write instructions for the best PB&J.

After the activity, we had students reflect on their recipes. We asked,

“If you could replace the word best with another word, what would you

choose?” A pair of students said the word best meant the most sugar,

and they added hazelnut spread, sprinkles, and marshmallows to a classic

PB&J. Another pair decided that best meant “most allergy-friendly” and

decided to omit the peanut butter from their recipe. Not surprisingly,

none of the students said the word “healthy” or “cost-effective,” but we

did brainstorm what that might look like, including a “healthy” PB&J

with bananas instead of bread.

Students could clearly see that, based on their definition of best, their

algorithms had very different outcomes from their peers. Once an algo-

rithm tries to optimize, it is essentially encoding an opinion about what is

important to prioritize. To quote the well-known AI ethicist, Cathy O’Neil,

“Algorithms are opinions embedded in code” (O’Neil 2017). In the same

way, AI and machine learning algorithms used in commercial products are

optimized for different objectives based on who creates them—in fact, they

are not as objective as we would like to think. Words like best are words that

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Conscientious Consumers and Designers of AI Technologies	 189

we commonly see used with software solutions, but it may mean very differ-

ent things from algorithm to algorithm. For example, Google search strives

to give the “most relevant” results, although relevant is not clearly defined.

Is “most relevant” the link that I will most likely click on? Is it what will

make Google the most money? Is it what will give me the answer I was hop-

ing for? Whatever it is, it is referred to as what the search engine optimizes

for. Just as Google gets to decide what their search engine optimizes for,

our middle schoolers got to decide what their PB&J sandwiches optimize

for. Words such as relevant and best are not neutral, and their definitions

change based on who is creating them. Algorithms hold the opinions of

their creators.

Then we pose the following challenge to students: How do we decide

what our peanut butter and jelly algorithms should optimize for? To aid in

decision-making, we introduced students to a tool called the ethical matrix.

Originally a tool used in bioethics, Cathy O’Neil has written about how

it can be used in the context of AI (O’Neil and Gunn forthcoming). An

ethical matrix is a 2-D table where stakeholders are listed on the y axis and

the values those stakeholders hold in the system are listed on the x axis.

Designers can then go row by column and identify where stakeholders’

values align and where they conflict. Designers can also identify which

conflicts in values may produce the most harm for any of the stakeholders

involved. In filling out the matrix, designers are forced to empathize with

multiple perspectives of a diverse set of stakeholders.

Our students brainstormed various stakeholders and values for PB&J

sandwiches and practiced creating ethical matrices of various sizes. Stu-

dents identified stakeholders such as kids, parents, doctors, and supermar-

kets with values such as taste, health, cost, and efficiency. They compared

all stakeholder-value pairs to determine which stakeholders care about

various values (see example, figure 9.2). After they had laid out the matrix,

we asked them to decide on which value they should optimize for, after

reflecting on how stakeholders and values relate within the system. They

saw that depending on the particular stakeholders and values that they

accounted for, there were varied results. For example, a matrix with stake-

holders like parents, doctors, and dentists may value health more than one

with kids, teenagers, and supermarkets.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

190	D . DiPaola, B. H. Payne, and C. Breazeal

SUPERVISED MACHINE LEARNING AND ALGORITHMIC BIAS

In the PB&J activity, students learn that algorithms can be optimized

toward subjective goals. Building on their learning, this activity shows

another way in which algorithms can produce nonneutral outcomes. In

an example of a “plugged” activity, we focused on a specific class of AI

algorithms called supervised machine learning. Supervised machine learn-

ing finds patterns by being shown labeled examples of data points. For

instance, a supervised ML algorithm may be given examples of emails

labeled as “spam” or “not spam” with the goal of classifying unseen emails

as “spam” or “not spam” in the future. Recent studies have shown that

many of these supervised machine learning systems—from facial recogni-

tion to hiring algorithms, to advertising algorithms—tend to predict worse

outcomes for members of minority groups. This phenomenon is called

algorithmic bias. A common reason for these biases comes from the data

that trains the algorithms. If a dataset underrepresents or incorrectly char-

acterizes a certain group, the algorithm will also mischaracterize that group

(Barocas and Selbst 2016). For example, it is known that many commercial

facial recognition algorithms meant to classify faces as male or female will

misidentify darker-skinned female faces as male faces because of the fact

that these algorithms were trained primarily on lighter-skinned male faces

(Buolamwini and Gebru 2018). In this way, classification systems that are

9.2  An example of a completed ethical matrix for PB&J with child, parent, and doctor
as the stakeholders.

Values

S
ta

ke
h

o
ld

er
s

Taste Nutrition Cost

Child

Parent

Doctor

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Conscientious Consumers and Designers of AI Technologies	 191

trained on historical data that encode societal biases will perpetuate those

same biases.

Often these supervised machine learning classifiers are referred to as

“neural networks.” To demonstrate how a neural network is trained, how it

works, and how it can lead to algorithmic bias, we utilized Google’s Teach-

able Machines platform. Teachable Machines has an easy user interface that

allows students to train a deep neural net classifier by taking or uploading

photos or audio. Without any code or even any typing, students can train

an algorithm in a matter of minutes. This opens up the possibility for many

more students to play with the pieces of a machine learning algorithm,

manipulate them, and see how they impact the performance of the code.

During the workshop, we had students create their own classifier sys-

tem using a training set of provided cat and dog images. The goal of the

classifier was to distinguish between pictures of cats and pictures of dogs.

However, unknown to the students, the provided training dataset was

biased. It contained more images of cats than dogs, and the images of cats

contained a greater variety of breeds than did the images of dogs. After the

training period, we gave students a new collection of cat and dog images

to test out their classifier. After testing out each image of a cat or dog, the

students recorded whether the algorithm correctly classified the image,

and at what confidence level their classifier performed (figure 9.3). From

this data, students quickly realized that their systems worked much better

on cats than dogs. They were then tasked with re-curating their train-

ing datasets to produce fairer outcomes between cats and dogs. Students

decided to include an equal number of more diverse cats and dogs and

found that their algorithms worked much better.

Next, we showed the students a video about Joy Buolamwini’s “Gender

Shades” work on algorithmic bias in facial recognition systems (MIT Media

Lab 2018). Buolamwini explains that many facial recognition systems work

better on pale skin and male faces and work especially poorly on darker-

skinned female faces. We asked the students what they would do if they

were in charge of improving the system. Many students responded that

they would create a dataset that was much more representative of all skin

tones and gender. They were able to make the connection between the

simple cat and dog classifier and the advanced face recognition systems

used in commercial settings. If the system works better for one group than

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

192	D . DiPaola, B. H. Payne, and C. Breazeal

another group, changing the training data to be more representative is one

method designers can use to improve the system to make it behave more

equitably.

The importance of this topic became deeper for the students as they

watched live as Buolamwini testified before Congress, which serendipitously

aired on C-SPAN during the workshop. Buolamwini answered questions on

how facial recognition systems worked and why they were biased toward

specific groups of people. Students were not surprised by her answers, but

they were surprised that members of Congress were not aware of the impact

of these technologies. Our students were able to see that what they were

learning in our workshop had real implications for what was happening in

the world around them. At the end of the day, one child reflected on what

they had learned: “I still think that facial recognition is not fair, because they

still—these companies have not changed the fact that . . . ​it only works properly

for adults that are males and are pale white. And it’s not fair to people with col-

ored skin or like younger people or people who are girls.”

9.3  A group of students test their classifiers and record the confidence level for each

item of test data.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Conscientious Consumers and Designers of AI Technologies	 193

REDESIGNING YOUTUBE

In the last days of the workshop, the final activity is a collaborative paper-

prototyping project where students are tasked with redesigning the You-

Tube recommendation algorithm. Working in pairs, students were asked

to first identify stakeholders invested in YouTube’s recommendation algo-

rithm and the values those stakeholders hold. Next, they created an ethi-

cal matrix for their own system design, similar to those for PB&J at the

beginning of the week. After creating a matrix, students were asked to

discuss it and use their conversation with other student pairs to identify

the goal of their new system and provide a rationale for that goal. Some

examples of these matrices can be found in figure 9.4.

This work guided students in paper-prototyping their new YouTube

design. In the same pairs, students were provided craft supplies and

worked together to draw out a new version of YouTube with features that

served their identified goal. They used these initial drawings to get feed-

back from other classmates. Peer feedback guided changes made for the

final paper prototypes (figure 9.5).

Stakeholder-value pairs from the ethical matrices were recorded and

summed across all students. The stakeholder-value pairs that guided the stu-

dents’ redesigns were YouTube-money (9), kids-entertainment (7), ​You​Tubers-​

money (6), YouTube-entertainment (6), and Youtubers-entertainment (6).

These responses are visualized in figure 9.6. These pairs were used to deter-

mine the goals for the recommendation algorithm. The most common

goals for the system were entertainment (6) and profit (2). Most students

chose goals that aligned with the most stakeholder-value pairs: “because the

most stakeholders have the value of entertainment.” Others took a more

nuanced path, such as one group that justified their decision to optimize

for profit: “YouTube and YouTubers can use the profit to increase the qual-

ity of the site and videos.” Many students identified more than one goal

for their system, such as being entertaining while also being kid-friendly:

“[our design will have] all kid-friendly videos that will make you laugh and

any inappropriate content will be deleted.”

Next we spotlight three examples of student projects.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

9.4  Examples of ethical matrices for the YouTube Redesign Project. The image on the

top decided to optimize for “good content,” and the image on the bottom chose to

optimize for “profit.”

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Conscientious Consumers and Designers of AI Technologies	 195

9.5  Student drawing out a paper prototype for the YouTube Redesign Project.

9.6  A heatmap of stakeholder-value pairs for the YouTube Redesign project. Darker

and larger shapes denote pairs that were used most often.

Stakeholder Money

YouTube

Kids

YouTubers

Advertisers

Viewers

Parents

Adults

Sponsors

Media

Doctors

Entertainment Safety Ads Popularity Other
Value

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

196	D . DiPaola, B. H. Payne, and C. Breazeal

PROJECT 1: OPTIMIZING FOR PROFIT

This rising seventh grader and eighth grader decided that YouTube should

maximize profit. They identified YouTube, YouTubers, viewers, and adver-

tisers as their stakeholders with the values of profit, quality of videos,

recommendations, and appropriateness. Like previously mentioned, stu-

dents chose this goal because “YouTube and YouTubers can use the profit

to increase the quality of the site and videos.” Their paper prototype, seen

in figure 9.7, shows features including additional ads in the sidebar or the

inability to skip through ads in videos.

PROJECT 2: OPTIMIZING FOR ENTERTAINMENT

This pair of rising fifth graders decided to optimize their new version

of YouTube around entertainment. Students identified YouTube, kids,

parents, and advertisers as their stakeholders along with the values of

money, educational, good content, and fun, where most stakeholders

were interested in “good content.” The students wrote, “We decided on

this goal because having fun is very fundamental but being appropriate

9.7  Student shows her “profit-maximizing” YouTube prototype.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Conscientious Consumers and Designers of AI Technologies	 197

is also needed.” When asked how they would achieve this goal, the stu-

dents wrote, “We would also teach it to give us clean content or videos

that don’t have swears. It will have a child safety mode to make sure

there are no swears or inappropriate content.” Their paper prototype is

pictured in figure 9.8 and includes features like a slider, where users can

choose levels of “rudeness” that appear in their videos and a child safety

setting.

PROJECT 3: OPTIMIZING FOR TIME WELL SPENT

This pair of rising eighth graders decided to optimize for a version of

YouTube that was less addictive or as the students wrote, “[Users] are also

aware of how long they spend on the platform.” This group identified

a number of non-AI features that could help achieve this goal, such as

“screen pops up after an hour of usage” or “can set a time limit.” Their

paper prototype appears in figure 9.9.

9.8  An example of “Entertainment” YouTube. Students put filters on the left side of

the webpage to help the user tweak what they would like to see.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

198	D . DiPaola, B. H. Payne, and C. Breazeal

9.9  An example of “Time Well Spent” YouTube. The first image shows a pop-up win-

dow that lets the user know how long they have been on YouTube. The second picture

shows the home page. The bottom right sticky note reads, “This shows a history of

recently watched videos and time spent on YouTube session.”

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Conscientious Consumers and Designers of AI Technologies	 199

SOCRATIC SEMINAR

During the week of our workshop, the Wall Street Journal published an

article about the children’s content on YouTube. With so many known

consumers being minors, the FTC was pushing for YouTube to create a

separate app to house all kids’ content to be compliant with federal laws

such as the Children’s Online Privacy Protection Rule, commonly known

as “COPPA.” This new, hypothetical app would collect less data, remove

ads, and remove the AutoPlay feature.

We abridged the article and read it out loud with our students. Since

the results from this case could very well change the way that they use

YouTube, we were curious about their reactions and how they might

apply their ethical design skills to this real-world situation. We opened

up the conversation by asking about the various stakeholders involved

with the article. Kids were able to identify many stakeholders, includ-

ing Google executives, Google as a company, kids, parents, consumers of

YouTube, and advertisers. When we asked them whom the most impor-

tant stakeholder was, many said the kids impacted by the FTC’s ruling:

“Because it’s a lot about the safety of kids and what they watch because kids get

easily influenced. So when they see something’s happening around them, they

obviously think, ‘Oh, they’re more experienced; we should copy whatever they’re

doing.’ So, it could be really bad; that’s why they take a long time to make sure

everything’s cautious and there’s no bad content that could get released into the

world of children.”

One student mentioned that Google is a big stakeholder as well. “I

think Google would be like one of the major ones because, for one thing,

it’s making lots of money on YouTube.”

We asked the students if they thought that YouTube should move

forward and move all of the content. The majority of students thought

yes, they should. One student thought that kids’ safety was a reason to

move it, “because then even if YouTube doesn’t make as much money as

they used to, it’s still important that kids don’t watch grown-up stuff.”

Another thought that YouTube would actually lose viewers and money

if they didn’t move their content over: “It’s good to have a separate app,

because less people might start watching it, if they don’t.”

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

200	D . DiPaola, B. H. Payne, and C. Breazeal

One student thought YouTube should keep things the way that they

are because they might lose money if they moved everything to another

platform. This student thought that there was a problem with content,

but recommended an alternative fix: “I think this would be a bad thing.

Because, YouTube would be losing a lot of money. And the way that they could

fix it is add a different setting. Maybe find a better way to do the restrictive

mode, or something like that. Or add another setting that would help restrict,

like a child mode setting that will only have, that would send them to a different

part which is all kids’ videos.”

Regardless of their view on the situation, we asked students how they

would feel if their parents forced them to use the YouTube Kids app

instead of the regular app. Many expressed frustrations and felt like they

could maturely handle the content on the app as it was: “I would feel like,

‘Shucks.’ Because, I’ve been using YouTube a very long time. And I didn’t even

know what YouTube Kids was until a couple weeks ago . . . ​And so it’s like I

don’t know. People just totally . . . ​now you have to go to this new app called

YouTube Kids now. I’d be very confused. I also, if I didn’t know that at first,

I’d just be looking around YouTube for my favorite channels and videos that I

watch, and be like, ‘Where’d they all go?’”

Perhaps one of the most important parts of the discussion happened

when children were able to identify the different outcomes of new poli-

cies and features: “I would remove AutoPlay because it was, when it first came

out . . . ​People’s definition of what’s mature and what’s not mature is different.

It would feel like a more . . . ​Well, I’m kind of split on the issue. It would be a

much more simple and easier decision to just remove the AutoPlay. That way, a

kid and parents could choose at will what they want to watch. But then, again,

moving it all to a safer site will generally be more secure. You feel more secure.”

This discussion allowed students to apply what they had learned to a

concrete, timely, and relatable societal issue. Students had studied how

the AutoPlay feature worked, how to identify the stakeholders and their

values related to YouTube, and how to modify a design to change those

stakeholders’ interactions with the system.

A few months after the workshop Google and YouTube settled the

lawsuit for 170 million dollars and an agreement that they would no

longer collect data for videos labeled for children (“Google and YouTube

Will Pay Record $170 Million for Alleged Violations of Children’s Privacy

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Conscientious Consumers and Designers of AI Technologies	 201

Law,” Henderson 2019). Some of the students’ concerns were addressed

in the lawsuit, such as feeling safer that they will not get content that is

too mature for them, yet still accessing videos through the familiar You-

Tube site. Other student concerns, such as the impact of these changes

on content creators, remain hotly debated (Ray 2019). We are interested

in following up with students to understand their perspectives on this

recent change.

CONCLUSION

The first day of our workshop, some students came in with high-level ques-

tions such as, “What is AI? How does it work?” and “What are examples of

AI that we use in everyday life?” The students who had more specific defi-

nitions of AI often included science fiction references, such as the charac-

ters Hal from 2001: A Space Odyssey and Jarvis from the Iron Man franchise.

Their understanding of AI was limited to far-off dystopian narratives, yet

they were using these technologies daily. Through the workshop, we were

able to help them identify AI, understand how it works, and give them the

tools to design it to be more equitable.

AI can be complex, but we chose activities and technologies that the

students were already familiar with, like YouTube. It was evident that when

students arrived, even though they knew little about AI, they held exper-

tise on the topic of YouTube. Students could name their favorite content

creators and name ways in which YouTube’s recommendation algorithm

either assisted their favorite content creators or disadvantaged them. How-

ever, many students did not realize that the recommendation algorithm

was a form of AI.

Once we redirected them to talk about AI technologies in terms of a

system that they were familiar with, their conversations about ethics of

AI were much more focused and realistic, and at times quite nuanced. As

they were exposed to the curriculum, we saw their conversations transi-

tion into discussions around fairness and equity in their daily technical

tools and that they were capable of empathizing with a broader set of

stakeholders.

We observed increasingly more questions about agency as the students

became confident in their ability to identify the positives and negatives

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

202	D . DiPaola, B. H. Payne, and C. Breazeal

of various AI systems. They expressed interest in systems that would ben-

efit many stakeholders: “I hope AI benefits everybody, not just one or two

groups of people.” They began to question others’ knowledge of these sys-

tems as well. One student reflected on watching Congressional hearings

and asked, “Why does Congress not know about today’s modern tech?”

As students reflected on their week at the workshop, we saw their new

understanding of AI and its impact on society change their feelings of

agency over the AI-enabled technologies they use. Many students expressed

interest in presenting their ideas to various stakeholders, especially when

it came to their YouTube redesign project. Our activities throughout the

week became a means for them to question, vocalize, and create the socio-

technical systems that they would like to see. One student commented, “I

wonder if my parents will like my YouTube redesign,” while another ques-

tioned, “Will YouTube pay attention to our ideas?”

Our students came in with a wide range of exposure to technical con-

cepts as well as practical experience with coding. For some students, the

prospect of enrolling in an AI course with no prior knowledge was intimi-

dating. The parents of one student, Sarah, approached the instructors at

the beginning of the week to say, “I want you to know my child is a

little nervous about having no coding experience. She thinks she’ll be

behind, but she is excited about the societal impact of things.” However,

the curriculum was designed in a way that any child, regardless of back-

ground, could understand and contribute to the activities. The activities

were also designed to work with a variety of learning styles and interests,

including some that used computers and others that relied on creative

writing or drawing. We feel that the students not only could grasp the

material we were teaching, both ethical and technical, but were able to

apply it to the technologies they use every day. This was evident during

the last day of the workshop, where students presented their YouTube

Redesign projects to their parents and members of the MIT community,

often highlighting the processes they took to get to their final product.

The YouTube Redesign Activity was successful because students were able

to create a prototype based on what they had learned. We recommend

including more hands-on, project-based activities in future iterations of

this curriculum. While the unplugged nature helped students to initially

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Conscientious Consumers and Designers of AI Technologies	 203

grasp concepts, many students were excited by the idea that they could

continue to learn about AI through a more technical course. At the end

of the course, Sarah’s parents returned to say, “She loved it and wants to

sign up for a more technical course next time, especially something that

might involve web programming.”

As students build on their knowledge of AI through technical courses,

we encourage educators and education policymakers to ensure that ethics

is embedded in the course requirements. We saw the impact of a focus on

ethics in our final YouTube projects, where students’ outcomes took mul-

tiple perspectives into consideration. The implications of doing this kind

of work is not only to make children more AI literate but also to change

the norms and culture associated with the technology industry. Educa-

tion practices that promote perspective taking and thinking about con-

sequences will lead to expectations by the public that industry designers

and engineers will draw on these same skills.

The shift in students’ thinking from being consumers to conscientious

users of AI-enabled apps and services brought with it a new level of opti-

mism around the future of AI. Through our activities, we were able to have

deeper conversations about philosophical topics such as fairness, bias,

and perspective taking. AI became a tool for us to ask the question, “What

kind of world do we want to make?” Students were able to reflect on the

world as it is and were given the tools to design it to be what they wanted

it to be. They were not only capable of understanding the larger implica-

tions of AI, but they had excellent ideas on how to improve it to make a

more inclusive and just world.

For your own use, the materials used in this workshop can be found at

bit​.ly​/mit​-ai​-ethics​.

ACKNOWLEDGMENTS

The authors would like to thank Maeve Ronan, Danny Plouffe, Carolyn

Song, and Ilana Pelzman-Kern for teaching and mentoring our students

and for their feedback on the curriculum. Thank you to Empow Studios

for recruiting. Lastly, thank you to the MIT Media Lab Consortia for fund-

ing this work.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

204	D . DiPaola, B. H. Payne, and C. Breazeal

REFERENCES

Aglio, Justin. 2018. “Coming This Fall to Montour School District: America’s First
Public School AI Program.” Getting Smart, July 19, 2018. https://www​.gettingsmart​
.com​/2018​/07​/coming​-this​-fall​-to​-montour​-school​-district​-americas​-first​-public​
-school​-ai​-program​/​.

Barocas, Solon, and Andrew D. Selbst. 2016. “Big Data’s Disparate Impact.” Califor-
nia Law Review 104: 671–732.

Bell, Tim, Jason Alexander, Isaac Freeman, and Mick Grimley. 2009. “Computer Sci-
ence Unplugged: School Students Doing Real Computing Without Computers.” New
Zealand Journal of Applied Computing and Information Technology 13 (1): 20–29.

Buolamwini, Joy, and Timnit Gebru. 2018. “Gender Shades: Intersectional Accuracy
Disparities in Commercial Gender Classification.” In Proceedings of Machine Learning

Research 2018 Conference on Fairness, Accountability, and Transparency. New York, 1–15.

Covington, Paul, Jay Adams, and Emre Sargin. 2016. “Deep Neural Networks for
YouTube Recommendations.” In Proceedings of the 10th ACM Conference on Recom-
mender Systems. New York, 191–198.

Davis, Janet, and Henry M. Walker. 2011. “Incorporating Social Issues of Computing
in a Small, Liberal Arts College: A Case Study” In Proceedings of the 42nd ACM Techni-
cal Symposium on Computer Science Education. New York, 69–74.

Grosz, Barbara J., David Gray Grant, Kate Vredenburgh, Jeff Behrends, Lily Hu, Alli-
son Simmons, and Jim Waldo. 2019. “Embedded EthiCS: Integrating Ethics Broadly
across Computer Science Education.” Communications of the ACM 62 (8): 54–61.

Henderson, Juliana G. 2019. “Google and YouTube Will Pay Record $170 Million for
Alleged Violations of Children’s Privacy Law.” Federal Trade Commission, November
20, 2019. https://www​.ftc​.gov​/news​-events​/press​-releases​/2019​/09​/google​-youtube​-will​
-pay​-record​-170​-million​-alleged​-violations​.

iD Tech. n.d. “Artificial Intelligence (AI) Summer Camp: Machine Learning for
Teens: 2020.” Accessed May 20, 2020. https://www​.idtech​.com​/courses​/artificial​
-intelligence​-and​-machine​-learning​.

Lissitsa, Katherine. 2019. “Why Teach Kids About AI?” Kids Code Jeunesse, May 6,
2019. https://kidscodejeunesse​.org​/blog​?b=2019​-05​-06​-Why​-Teach​-Kids​-About​-AI​.

Manjoo, Farhad. 2018. “Here’s the Conversation We Really Need to Have About Bias
at Google.” New York Times, August 30, 2018. https://www​.nytimes​.com​/2018​/08​/30​
/technology​/bias​-google​-trump​.html​.

Marshall, Aarian, and Davies, Alex. 2019. “Uber’s Self-Driving Car Didn’t Know
Pedestrians Could Jaywalk.” Wired, November 5, 2019. https://www​.wired​.com​
/story​/ubers​-self​-driving​-car​-didnt​-know​-pedestrians​-could​-jaywalk​/​.

MIT Media Lab. 2018. “Gender Shades.” https://www​.gendershades​.org​.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Conscientious Consumers and Designers of AI Technologies	 205

Nicas, Jack. 2018. “How YouTube Drives People to the Internet’s Darkest Corners.”
The Wall Street Journal, February 7, 2018. https://www​.wsj​.com​/articles​/how​-youtube​
-drives​-viewers​-to​-the​-internets​-darkest​-corners​-1518020478​.

O’Neil, Cathy. 2017. “The Era of Blind Faith in Big Data Must End.” Filmed April
2017 in Vancouver, Canada. TED video, 13:19. https://www​.ted​.com​/talks​/cathy_o​
_neil_the_era_of_blind_faith_in_big_data_must_end​/transcript​?language=en​.

O’Neil, Cathy, and Gunn, Hanna. “Near term AI.” Ethics of Artificial Intelligence
(forthcoming).

Ray, Cory. 2019. “YouTube Family Vlogger Petitions FTC Ahead of 2020 COPPA
Enforcement.” Rogue Rocket, November 7, 2019. https://roguerocket​.com​/2019​/11​
/07​/youtube​-coppa​/​.

ReadyAI. n.d. Empowering All Students to Improve Our World with AI. Accessed May 20,
2020. https://www​.readyai​.org​/​.

Rideout, Victoria, and Michael B. Robb. 2019. The Common Sense Census: Media
Use by Tweens and Teens. Common Sense Media. https://www​.commonsensemedia​
.org​/sites​/default​/files​/uploads​/research​/2019​-census​-8​-to​-18​-full​-report​-updated​.pdf​.

Saltz, Jeffrey, Michael Skirpan, Casey Fiesler, Micha Gorelick, Tom Yeh, Robert
Heckman, Neil Dewar, and Nathan Beard. 2019. “Integrating Ethics within Machine
Learning Courses.” ACM Transactions on Computing Education (TOCE) 19 (4): 1–26.

Schoenberg, Nara. 2019. “Controversial YouTube Star Brings Flat-Earth Conspiracy
Theory to New Audience: Kids.” Chicago Tribune, March 13, 2019. https://www​
.chicagotribune​.com​/lifestyles​/ct​-life​-flat​-earther​-kids​-03132019​-story​.html​.

Skirpan, Michael, Nathan Beard, Srinjita Bhaduri, Casey Fiesler, and Tom Yeh. 2018.
“Ethics Education in Context: A Case Study of Novel Ethics Activities for the CS
Classroom.” In Proceedings of the 49th ACM Technical Symposium on Computer Science
Education. New York, 940–945.

Solsman, Joan E. 2018. “Ever Get Caught in an Unexpected Hourlong YouTube
Binge? Thank YouTube AI for That.” CNET, January 10, 2018. https://www​.cnet​.com​
/news​/youtube​-ces​-2018​-neal​-mohan​/​.

Spradling, Carol, Leen-Kiat Soh, and Charles Ansorge. 2008. “Ethics Training and
Decision-Making: Do Computer Science Programs Need Help?” In Proceedings of the
39th SIGCSE Technical Symposium on Computer Science Education. Portland, OR, 153–157.

Vincent, James. 2019. “AI Researchers Tell Amazon to Stop Selling ‘Flawed’ Facial
Recognition to the Police.” The Verge, April 3, 2019. https://www​.theverge​.com​
/2019​/4​/3​/18291995​/amazon​-facial​-recognition​-technology​-rekognition​-police​-ai​
-researchers​-ban​-flawed​.

Wu, Sarah. 2019. “Somerville City Council Passes Facial Recognition Ban.” The Boston
Globe, June 27, 2019. https://www​.bostonglobe​.com​/metro​/2019​/06​/27​/somerville​
-city​-council​-passes​-facial​-recognition​-ban​/SfaqQ7mG3DGulXonBHSCYK​/story​.html​.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

III
COMPUTATIONAL THINKING AND
PHYSICAL COMPUTING EDUCATION
IN K–12

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

ROBOTICS PROBLEM SPACES

Computational thinking (CT) is an integral aspect of learning and work

in the science, engineering, technology, and mathematics (STEM) fields

(Lee et al. 2020). Indeed, the Next Generation Science Standards (NGSS)

(2013) have defined mathematics and CT as one of the eight core disci-

plinary practices of science activity. Robotics is a robust learning environ-

ment that supports the development of CT and science literacy (Sullivan

2008; Sullivan and Heffernan 2016). Foundational to robotics learning is

integrated interaction in the three problem spaces typical of all robotics

learning environments, including the device itself, the screen-based pro-

gramming environment, and the actual physical environment in which stu-

dents are testing their robotic device. This chapter begins with a description

of each of the problem spaces, individually, and proceeds with examples of

student learning drawn from fifteen years of research on the topic. Specifi-

cally, I discuss student engagement in both science literacy practices (e.g.,

systems thinking, inferential reasoning) and CT practices (e.g., abstraction,

creative problem solving, and algorithmic thinking) as both are supported

by engagement in robotics learning. The chapter concludes with thoughts

for future research directions. These observations derive from both cogni-

tive and sociocultural viewpoints, with early work grounded in task analysis

10
EXAMINING THE MULTIDIMENSIONAL
LEARNING AFFORDANCES OF
ROBOTICS FOR COMPUTATIONAL
THINKING AND SCIENCE INQUIRY

Florence R. Sullivan

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

210	 F. R. Sullivan

and mental representations (Roth 2001), and later work grounded in a

socio-cultural framework (Vygotsky 1978).

THE FIRST PROBLEM SPACE: THE ROBOTIC DEVICE

We have focused primarily on using the LEGO Mindstorms robotics kit

with students. Therefore, in this chapter, I describe this device as the first

problem space. However, any robotic device that includes the same ele-

ments as the LEGO kits will support student learning in the same way. A

micro-computer, called a brick, is at the heart of the LEGO Mindstorms

kit; the brick was developed at the MIT Media Lab in the mid-1990s (Resn-

ick et al. 1996). This brick, which is in its third iteration, is currently called

the EV3. The EV3 is a device that can fit into the palm of an adult’s hand

(see figure 10.1). The brick has four ports in which output devices, such as

servo motors, can be plugged in with connecting wires, and another four

ports in which input devices, such as digital sensors, can be connected.

There are three motors that come with the kit, two large motors and

one small motor. The larger motors are typically used when children are

building a vehicular robot. Once the vehicular robot is constructed, the

motors are attached to wheels, and as the motor spins, so do the wheels.

The third, smaller motor can be used to operate a robotic arm that may

be affixed to the vehicular robot. While building a robotic vehicle is a

popular approach, many other types of machines can be built with the

materials.

In addition to the brick and the motors, each robotic kit comes with

several digital sensors, including a color sensor, a touch sensor, and an ultra-

sonic sensor. These sensors can be used in one of two ways (both of which

are important for science inquiry and are discussed in greater detail later).

The first mode is a data collection and display mode; the second is a wait-

for mode that can trigger a specific event, once a threshold has been met

or crossed. The kit also includes a number of LEGO pieces, called Technics,

which fit together around the brick and the motors to create any number

of structures or vehicles.

The design of the robotic device is dictated by the challenge that stu-

dents are attempting to solve. As noted previously, often a robotic vehicle

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Robotics for Computational Thinking and Science Inquiry	 211

is constructed and sensors are then added to the vehicle to aid in navi-

gation. For example, the ultrasonic sensor measures the distance between

the sensor and objects in its path; using this sensor, a program can be

written that will allow the robot to circumnavigate obstacles in the room.

The design of the robot as a problem space revolves around accurate design,

physical construction, and correct wiring of the motors and the sensors.

While students may initially develop a robotic device that they think is

adequate, through the process of working out a solution to the given chal-

lenge, students will often need to revise their design. So, while we may

think of the design of the device as the first problem space, it is a prob-

lem space that is returned to throughout the duration of problem-solving

activity.

10.1  The LEGO Mindstorms EV3.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

212	 F. R. Sullivan

THE SECOND PROBLEM SPACE: THE SCREEN-BASED

PROGRAMMING ENVIRONMENT

At this point, several types of software can be used to program the

LEGO EV3 robot: the actual software created by LEGO called LabVIEW

for LEGO MINDSTORMS (LVLM); an extension that can be used in the

2-D animation and game programming environment, Scratch (Scratch,

n.d.); EV3python; RobotC; and other programming environments (LEGO

Engineering, n.d.). For the purposes of this chapter, I focus our discussion

by drawing examples from LVLM. LVLM (see figure 10.2) is designed as a

drag-and-drop, block-based programming environment. It provides action

blocks for programming output devices (motors, sound, display, and/or the

brick light), flow control blocks for programming wait for loops and sen-

sor triggered events, sensor blocks for additional programming of sensors

10.2  The LabVIEW for LEGO Mindstorms (LVLM) programming environment.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Robotics for Computational Thinking and Science Inquiry	 213

including data collection, data operations blocks for working with data

that have been collected, advanced blocks (including message blocks, and

Bluetooth-enabled operations), and finally a “My Blocks” section, where

users can create their own blocks.

In addition to the programming blocks, the software includes a utility

in the bottom right-hand corner of the interface that, when the EV3 is

connected to the laptop, allows the user to quickly verify which ports the

motors are connected through, which port a sensor is connected to, and

whether that sensor is actually reading environmental data. This, along

with a context-sensitive help utility, which can be selected from a drop-

down menu, allows students to learn about the programming environ-

ment and also verify that all parts of the robot are functional.

THE THIRD PROBLEM SPACE: THE PHYSICAL ENVIRONMENT

For the purposes of this chapter I describe a specific environment, devel-

oped by the FIRST LEGO League, which is an international, nonprofit orga-

nization that publishes a thematic robotics challenge and holds regional

robotics events each year in which children participate. While this is a spe-

cific physical environment, the reader should bear in mind that robotics

environments can be created in any room, and/or one could do robotics

outdoors. Indeed, any physical space could be a potential robotics envi-

ronment. The FIRST LEGO League challenge map is four feet wide by eight

feet wide, which can be laid on the floor or set on a table with similar

dimensions. The challenge map comes with specific pieces that are placed

in specific spots on the map. For the purposes of this chapter, I provide

an image of one such challenge map created by the FIRST LEGO league

(2011). This challenge map was used in 2011 and is known as the Food

Factor Challenge (see figure 10.3). In this challenge, children were tasked

with completing specific large-scale food production robotic tasks on the

challenge board, while considering the environmental effects of such pro-

duction (e.g., the long-term effects of over-fishing). The board consists of

fifteen different challenges. All of the challenges include a description of a

real-world problem that the challenge attempts to solve.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

214	 F. R. Sullivan

LEARNING IN THE MULTIDIMENSIONAL PROBLEM SPACE

From a Vygotskyan (1978) perspective, students learn in the robotics

environment through interaction with the tools and dialogue with each

other and the teacher. It is important to note that the learning outcomes

described in the following pages are made possible through a pedagogical

approach that affords open-ended, collaborative learning. It is children’s

free movement within the space that also contributes to their learning

(Dewey 1938/1997). In other words, while children should be given a

specific challenge to solve, within the activity itself, children should have

freedom to explore various solutions and various approaches. It is through

collaborative exploration that children are able to engage in practices

that support their learning. In our research, we have found support for

student learning and growth in the following areas: systems learning, sci-

ence literacy, inferential reasoning, abstraction, creative problem-solving

(including the role of play), problem-solving strategy development, and

computational concepts (Sullivan 2008, 2011; Sullivan and Keith 2018;

Sullivan and Lin 2012; Sullivan, Söken, and Yildiz 2019). This learning

and growth are supported by the design affordances of the multidimen-

sional robotics environment. I address each aspect of learning with robot-

ics in turn.

SYSTEMS LEARNING

A system is defined as a collection of parts or processes (Penner 2000).

Hmelo-Silver, Holton, and Kolodner (2000) define a complex system as

10.3  The Food Factor Challenge Board by FIRST LEGO League.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Robotics for Computational Thinking and Science Inquiry	 215

one in which part of a system interacts with other systems; to understand

a complex system, students must engage with the “causal interactions and

functional relations” (p. 248) among systems. The three problem spaces

that make up the robotics learning environment function as a complex

system (Sullivan 2008). This is so because each problem space can be seen

as a system in its own right. And, while the problem spaces are tightly

coupled to create the learning environment, one must often master and

troubleshoot errors in each system, as well as across the complex system,

to solve challenges. For example, students often build a vehicular robot

with the LEGO pieces and wheels when they are working with robot-

ics. If the vehicle is constructed poorly, it will affect the performance of

the entire system. Therefore, students would need to work on fixing the

building error to continue with any challenge solution.

Meanwhile, the program may contain an error that prohibits it from

executing when transferred to the robot. In this instance, the feedback

students receive is simply no feedback: the robot will not execute the pro-

gram, it will not move. Students then must return to the programming

space to puzzle through the error. Importantly, students are learning about

the robotic system through these debugging activities. In this way, it is

easy to see how learning to think computationally (debugging a robotics

problem) is connected to science inquiry (learning about systems). In our

prior research, we found that students’ understanding of systems improved

after a long summer course in robotics. A total of twenty-six fifth-grade stu-

dents, ages ten to twelve years, worked in a three-week, 105-hour robotics

course. Results on a systems thinking test created by Cooper (2004) indi-

cated that students’ ability to think about systems improved significantly

from before to after (Sullivan 2008).

SCIENCE LITERACY

Science literacy has been variously defined as the ability to engage in the

activity of inquiry, including “making observations, posing questions, plan-

ning investigations, reviewing what is already known in light of experimen-

tal evidence, using tools to gather, analyze, and interpret data, proposing

answers, explanations, and predictions; and communicating the results”

(National Research Council [NRC] 1996, 23). Science literacy as defined by

the Next Generation Science Standards (NGSS 2013) includes knowledge of

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

216	 F. R. Sullivan

disciplinary core ideas (specific to each area of science), science and engi-

neering practices (including the practices identified previously by the NRC),

and cross-cutting concepts (including concepts that apply to all domains of

science). In robotics learning environments, students have the opportunity

to engage in many of the practices defined by the NRC and the NGSS. In

our prior research (Sullivan 2008), we identified some of the cross-cutting

concepts students engage with, including cause and effect, systems and sys-

tem models, and structure and function. For example, we found that the

feedback loop created by the activity of writing and executing programs on

the robotic device (problem spaces one and two) support student engage-

ment with cause and effect, whereas building a robotic device to carry out

specific tasks in a specific environment (problem spaces one and three) sup-

ports engagement with the concepts of structure and function. Finally, as

noted earlier, students engage with and improve their understanding of the

concept of systems as they work in the robotics learning environment (Sul-

livan 2007, 2008).

The NGSS (2013) refers to science and engineering practices as includ-

ing observing, questioning, and planning, as well as designing, testing

designs, analyzing results, and modifying the design accordingly. Impor-

tantly, these practices fall well within the CT construct as defined by other

researchers (Barr and Stephenson 2011; International Society of Technol-

ogy in Education and the Computer Science Teaching Association 2011).

For example, planning is an aspect of problem-solving; designing is an

aspect of programming activity; and testing designs, analyzing results,

and revising designs constitute debugging activity.

In prior research, I identified a very regular set of activities that stu-

dents engage in while working with robotics, which I have termed the

troubleshooting cycle (TSC) (Sullivan 2011). The TSC consists of designing

and building the robotic device, writing a program for the device, testing

the program, diagnosing errors, debugging the program, and/or revising

the design of the device, and retesting the program. This iterative practice

encompasses action and interaction across the three problem spaces. The

duration of a TSC is variable, it can last a few minutes, several minutes, or

longer. However, the actual troubleshooting activity is very stable, it always

consists of these six activities, and so it is an excellent unit of analysis

for educational research; it can also serve to organize and support student

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Robotics for Computational Thinking and Science Inquiry	 217

learning and activity. For example, in one curricular implementation we

studied, the teacher developed a note-taking worksheet that prompted stu-

dents to record their trials, including what the students did, the problems

they encountered, and their solutions to the problem. This worksheet is

akin to a researcher’s journal (Sullivan 2007). The troubleshooting cycle is a

computational activity that is clearly an aspect of science and engineering

practice as identified by the NGSS.

INFERENTIAL REASONING

As noted in the NGSS, “cause and effect” is a cross-cutting concept in sci-

ence. In our research, we have found that interaction across the three prob-

lem spaces of robotics supports both hypothesis development, through

debugging activity (Sullivan 2008), and inferential reasoning with data

collected by sensors attached to the robotic device (Sullivan, Söken, and

Yildiz 2019). Indeed, we have found that the sensors play an instrumental

role in supporting student engagement in science and engineering prac-

tices in the robotics setting. The sensors are designed to monitor and/or

collect data in the physical environment (the third problem space). The

robotic device can be programmed to respond to a specific result when

sensors are used to monitor the environment. The device can also be used

as a means of collecting, storing, and then transmitting data to another

device. In this way, the device, equipped with a programmed sensor can

function as a scientific instrument for data collection.

We conducted a study in a sixth-grade science classroom, in which

we followed a focal group of students as they worked to solve challenges

that centered on heat and light energy topics (Sullivan, Söken, and Yildiz

2019). The students in the study were twelve years old; they were work-

ing with the second LEGO iteration of the brick (called the NXT) and a

programming environment created at Tufts University called Robolab.

Robolab is equipped with science investigation utilities, including a data

graphing capability that allowed students to interpret the data numeri-

cally or through creating various graph-based visualizations of the data

(see figure 10.4). The challenge the students were solving in this class

was called Cave Explorer. This challenge asked students to explore three

simulated cave environments to find out which one may be the most

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

218	 F. R. Sullivan

comfortable to sleep in; the three simulated caves were actually three

cardboard boxes, prepared with varying levels of light and heat inside.

Students designed their robots with light, heat, and touch sensors and

programmed them to navigate into the caves, collect data, and navigate

back out. Table 10.1 presents a conversation among the students as one

of them makes an inference from the data collected by the light sensor

for one of the caves.

As can be seen in table 10.1, S makes an observation related to the

differences in the numerical readings and then she makes an inference

about where the data was collected. In line one, S has decided that the last

three collected readings were collected outside of the cave, because of the

numerical difference in the first three numbers as compared to the rest of

the numbers in the data readout. Each of the “caves” was darker than the

actual classroom itself. So, she infers that the light readings that were sig-

nificantly higher in number were collected outside of the cave. Meanwhile,

J interprets the last two readings as being outside the cave. In line seven, S

notes that it is not just the last three but also the first light reading that was

taken outside of the cave. In line 12, S begins to explain her reasoning to I

(the third student in the group). While S is consistently interrupted by J, we

10.4  Screenshot of the Robolab Datalogger.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Robotics for Computational Thinking and Science Inquiry	 219

Table 10.1  School A student discussion—Making inferences from numerical data

Line Speaker Utterance Researcher interpretation

1 S: The, the last three [readings]
are from outside.

Sara reads a numerical
presentation of the collected
light data and makes an
inference based on it.

2 J: What? Javier asks Sara to repeat
herself.

3 S: The last three make, I think
they’re from outside because
you know how when they
came out there was two
separate readings?

Sara repeats the comment
and expands with some
reasoning.

4 J: No, the last two. Javier interprets the data
slightly differently.

5 S: The last three. Sara repeats claim.

6 J: The last two. Javier repeats claim.

7 S: Three and then the first. Sara continues to read the
displayed data and interpret.

8 J: Mister we got five hundred and
two readings, why?

Javier asks the teacher a
question about the printout.

9 S: Yeah. Sara affirms question.

10 T: Oh, you got (?) Teacher remark is partly
unintelligible.

11 J: You do it go and do it. Javier instructs Sara to
continue.

12 S: Yeah, you know you’re inside
you’re inside look, look he
came out Ilana this . . . 

Sara interprets the readings
for Ilana.

13 J: No don’t (show it her) cause
she’s gonna say that’s not
gonna work.

Javier interferes with Sara’s
interpretation to Ilana.

14 S: Look at this look at the light. Sara continues interpreting.

15 J: It’s not gonna work. Javier continues to interfere.

16 S: These two are from outside. Sara continues interpreting.

17 J: It’s not gonna work. Javier continues to interfere.

(continued)

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

220	 F. R. Sullivan

can see that in lines 12, 14, 16, and 22, S points out to I how the amounts

of reflected light are different and how that indicates where the readings

were taken. In this example, it is possible to see that S is making inferences

from the data. She is engaged in deductive reasoning from the data, and

she is engaging in the cross-cutting concept of cause and effect—since the

device is outside of the box, the light readings are higher. This is a powerful

learning moment for these students that included both CT and science lit-

eracy elements. It is made possible by virtue of working in the multidimen-

sional problem space of robotics; each of the problem spaces mattered in

this interpretation, the designed device, the data read-out (part of problem

space two), and the physical “cave” in which the robot collected data.

ABSTRACTION

In addition to supporting systems thinking and science literacy practices,

the multidimensional problem space and iterative nature of robotics sup-

port the process of abstraction. Abstraction is an important computational

concept. Abstraction refers to the stripping away of detail to reduce the

complexity involved in a problem. The goal in abstraction is to identify

the generalizable elements of a problem, which may be seen as founda-

tional. It is when the foundational elements are clear that new represen-

tations of the problem can be developed, and these new representations

can help lead to solutions. The three problem spaces of the robotics learn-

ing environment support abstraction in an after the fact mode. This is so

Table 10.1  (continued)

Line Speaker Utterance Researcher interpretation

18 S: And then . . .  Sara continues interpreting.

19 J: It’s not gonna work. Javier continues to interfere.

20 I: So, we got to do it all over
again?

Ilana expresses confusion
between Sara and Javier’s
comments.

21 J: No. Javier continues to interfere.

22 S: And then these last these last
three are from outside, and so
feels right.

Sara continues interpreting
and suggests the last cave
“feels right.”

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Robotics for Computational Thinking and Science Inquiry	 221

because the physical robot and physical environment constitute 3-D rep-

resentations of the problem, and the 2-D programming space offers an

abstract representation of the 3-D movement of the robot. While work-

ing in the troubleshooting cycle, students move back and forth between

the 3-D challenge environment and the 2-D programming environment.

As they do so, they reason about the program they have written and the

movement of the robotic device. In this way, the shift in attention, back

and forth between the 2-D representation to the 3-D representation, sup-

ports students’ model development and abstract thinking ability. Since

the 2-D environment is provided to students, they do not have to create

the abstraction (hence the after-the-fact mode). However, they do need to

learn how to interpret the abstraction, and this work is supported by the

3-D aspects of the activity.

We have observed this behavior over and over again in our work.

To demonstrate the phenomenon, we provide a vignette from a recent

study (Sullivan and Keith 2018). Seventeen girls (ages eight to fourteen)

participated in this case study. The case study focused on girls learning

robotics in a one-day introduction to the FIRST LEGO league. Students

worked collaboratively in groups of two or three to solve the challenges

provided. Table 10.2 presents a short vignette featuring a conversation

that one focal group of students had as they worked to solve a challenge.

The conversation begins at the challenge board (lines 1 to 8), as the group

observes the functioning of the robot, and continues as they move back

to their worktable, where they were programming their robot.

As can be seen in table 10.2, the vignette begins with the students test-

ing their robot. It does not work completely (lines 2–8), so they diagnose

the problem, and then they move back to the 2-D representation and, as

can be seen in line 17, L gesture and talk through what each icon programs

the robot to do. While they are talking through the program, they are

thinking back to what they just saw happen on the 3-D challenge board.

In line 18, F pinpoints the block she believes should be programmed dif-

ferently. It is this same activity that supports the students’ ability to think

more abstractly about the problem—each time the students execute the

program, they must re-examine the icons used to program the robot to

gain a better understanding of how to revise the program. This constant

interplay between the 2-D and 3-D aspects of the activity provides students

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

222	 F. R. Sullivan

Table 10.2  Abstraction dialogue

Line Student Utterance Location
Researcher
interpretation

1 L: Okay, try that, I think
that might have been
what we have.

Challenge
Board

Three students stand
around the game board
to test their executable
program.

2 F: Yeah, I think we just
need to make that
distance longer. What?
Okay.

Challenge
Board

Possible solution is
forwarded by F.
F is surprised by the
robot’s movement.

3 L: Well . . .  Challenge
Board

L makes an utterance
while watching the
robot.

4 F: No. Challenge
Board

F articulates the failure
of the program.

5 S: It’s crashing. Challenge
Board

S narrates the
movement of the robot.

6 F: Alright let’s fix that. Walking
toward work
table

F suggests group
activity.

7 L: Okay, what do we
need to switch?

Challenge
Board

L asks aloud what needs
to be done.

8 S: Okay, we need to make
things that when
it goes that way it’s
longer.

Challenge
Board

S offers a potential
solution.

9 F: Yeah, we need one of
the distances to be
longer.

Walking
toward
worktable

F agrees with S’s
analysis.

10 S: Haba Worktable S tries to sit in F’s chair.

11 F: S! Worktable F asks S to move
(with tone implies S
should quit fooling
around).

12 L: S! Worktable L agrees with F.

13 S: Sorry. Worktable S apologizes for lack of
focus.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Robotics for Computational Thinking and Science Inquiry	 223

with strong supports for developing the ability to program and to think

abstractly about the movement of the robot. Essentially, the 3-D activity

of testing the executable program on the challenge board transforms stu-

dent understanding of the 2-D programming icons. In this way, the three

problem spaces work together to support learning about abstraction.

CREATIVE PROBLEM-SOLVING

In addition to supporting engagement in CT and science literacy prac-

tices, other modes of learning are strongly supported by robotics. These

modes include play and creativity. Both of these modes of interaction sup-

port student engagement in problem-solving and learning with robotics.

I argue that robotic devices are inherently playful; typically, the robotic

device spurs student curiosity, and observing the movement of the device

immediately raises a number of questions in students’ minds about what

the robot is and how it is doing what it does. Anecdotally, I have witnessed

many students become intrigued with the device and express a desire to

play with it; this desire to play with the robot serves as a means for learn-

ing more about it.

Table 10.2  (continued)

Line Student Utterance Location
Researcher
interpretation

14 F: Come on. Worktable F asks S to refocus.

15 S: Okay, so what are we
doing?

Worktable S refocuses.

16 F: Uh . . .  Worktable F begins a verbalization.

17 L: So it goes forward,
turns, forward, turns
when, when does it go
wrong?

Worktable L (looking at the
computer screen) thinks
aloud and moves her
hands as if they were
the robot moving across
the table.

18 F: I think it was that
one.

Worktable F (pointing at the
screen) points at the
block that needs to be
programmed differently.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

224	 F. R. Sullivan

Playfulness can lead to resourcefulness when students are attempting to

solve a robotics challenge. In a study conducted with students in a sixth-

grade science classroom (Sullivan 2011), I used a Bakhtinian (Bakhtin

1986, 1981) lens to identify the reified and spoken voices that influenced

students’ collaborative development of a creative idea to solve a particular

challenge. Integral to this analysis is the notion that the designed device

itself embeds the intentions of the designers and affords certain types of

interactions. Resnick (2003, 2006, 2014) has often discussed the role of

play at the heart of the technologies he develops, such as the LEGO brick.

This is in line with Papert’s (1993) strong support for the idea of tinker-

ing with technologies to learn more about them, but also to make them

one’s own. Moreover, the manipulative nature of the robotic device (i.e.,

one can hold it in one’s hands), coupled with the fact that the device can

be designed to roam around a room as a wheeled vehicle, affords a high

degree of student interaction and provides an opportunity for students

to think creatively about how to use the physical environment (the third

problem space) to help them solve challenges.

In this particular study (Sullivan 2011), the students repurposed an

item from the LEGO materials not used in the creation of the robotics

device to help them solve the challenge. The repurposing of the item was

an instance of bricolage (Lévi-Strauss 1966). Bricolage is the idea that one

should use what is “ready-to-hand” to address current problems, regard-

less of the intended use of an object. This type of practice leads students

to develop environmentally influenced problem-solving strategies and

algorithms to solve robotics challenges.

In addition to creating environmentally influenced problem-solving

strategies, we have also found that students developed strategies that entail

the use of the device itself. For example, in a case study conducted with

twelve students attending the three-week, 105-hour robotics camp refer-

enced earlier in the chapter, we identified a problem-solving strategy we

termed “simulating the movement of the robot” (Sullivan and Lin 2012).

This strategy includes holding the robot (the first problem space) and mov-

ing it about the physical environment that constitutes the challenge space

(the third problem space). We observed that, as students engaged in this

activity, they often verbalized the program that needed to be written to

solve the challenge. Here, one can recognize this activity from Vygotsky’s

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Robotics for Computational Thinking and Science Inquiry	 225

(1978) perspective as the role of externalized verbalizations and the use of

tools in mediating student learning in the robotics environment.

Finally, in addition to engagement in problem solving, our research has

indicated that students engage in a number of activities that emphasize

computational concepts while working across the three problem spaces that

make up the activity of learning with robotics. In our early work (Sullivan

and Lin 2012), we examined the computational concepts that fifth-grade

children engaged with while solving robotics challenge. For example, we

have found that children had the opportunity to engage with conditional

reasoning, program control and flow elements, and the basic idea of input/

process/output. In our later work (Sullivan and Keith 2018; Sullivan, Söken,

and Yildiz 2019), we developed a computational concepts coding scheme

to assist in the analysis of student problem-solving conversations and activ-

ities across two different studies. In each of these studies we collected video

data of focal student groups solving robotics challenges. We transcribed

these data and analyzed student talk at the level of the utterance.

Our computational concepts coding scheme was both data driven and

theoretically influenced from the literature (Barr and Stephenson 2011;

Grover and Pea 2013; Wing 2006). The scheme includes five CT codes

as follows: analysis, algorithmic thinking operations, algorithmic think-

ing variable, designing, and debugging. We split the algorithmic thinking

code in two because of the relative sophistication of setting the variable

parameter of a coding block (algorithmic thinking variable) versus sim-

ply selecting a coding block to use in the program (algorithmic thinking

operation). In two different case studies, we observed students intensely

involved in computational discussions regarding designing (problem

space one), algorithmic thinking (problem space two), and analysis and

debugging (problem spaces one, two, and three). Characteristic of stu-

dent involvement was a relationship between the difficulty of the chal-

lenge attempted and the sophistication of the solution. In this way, we

observed a phenomenon originally discussed by Dorst and Cross (2001)

regarding the co-evolution of the problem definition and the designed

solution; as students became more familiar with the problem spaces in

which they were working, the more sophisticated the designed solutions

became, both at the building level (problem space one) and the program-

ming level (problem space two).

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

226	 F. R. Sullivan

CONCLUSION

In summation, robotics is an integrated learning system comprising three

interwoven, multidimensional problem spaces. Interaction within and

among these problem spaces supports students’ development of CT and

their science inquiry abilities. A future research direction derived from our

research is further investigation of the intersection of CT and disciplin-

ary practices. As Lee et al. (2020) have pointed out, there are a number of

newer areas of inquiry in STEM that blend computation and science: for

example, computational biology. Future CT research should seek to further

explicate the interdisciplinary relationships endemic to these new areas,

such that powerful curriculum and pedagogical practices can be developed

to support students’ learning.

REFERENCES

Bakhtin, Mikhail Mikhailovich. 1981. The Dialogic Imagination, edited by Michael
Holquist; translated by Caryl Emerson and Michael Holquist. Austin, TX: University
of Texas Press.

Bakhtin, Mikhail Mikhailovich. 1986. “The Problem of Speech Genres.” In Speech
Genres and Other Late Essays, translated by Vern W. McGee, edited by Caryl Emerson
and Michael Holquist, 60–102. Austin: University of Texas Press.

Barr, Valerie, and Chris Stephenson. 2011. “Bringing Computational Thinking to
K–12: What Is Involved and What Is the Role of the Computer Science Education
Community?” ACM Inroads 2 (1): 48–54.

Cooper, Tim. 2004. “A Systems-Based Robotics Curriculum.” Unpublished master’s
thesis, New York: Teachers College, Columbia University.

Dewey, John. 1938/1997. Experience and Education. New York: Simon and Shuster.

Dorst, Kees, and Nigel Cross. 2001. “Creativity in the Design Process: Co-evolution
of Problem–Solution.” Design Studies 22 (5): 425–437.

FIRST LEGO League, 2011. Food Factor. http://www​.firstlegoleague​.org​/sites​/default​
/files​/food​-factor​/food​-factor​-challenge​.pdf​.

Grover, Shuchi, and Roy Pea. 2013. “Computational Thinking in K–12: A Review of
the State of the Field.” Educational Researcher 42 (38): 38–43. https://doi​.org​/10​.3102​
/0013189X12463051​.

Hmelo, Cindy E., Douglas L. Holton, and Janet L. Kolodner. 2000. “Designing to
Learn about Complex Systems.” The Journal of the Learning Sciences 9 (3): 247–298.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Robotics for Computational Thinking and Science Inquiry	 227

International Society for Technology in Education and the Computer Science Teach-
ers Association. 2011. Operational Definition of Computational Thinking for K–12 Edu-
cation. http://www​.iste​.org​/docs​/ct​-documents​/computational​-thinking​-operational​
-definition​-flyer​.pdf​?sfvrsn=2​.

Lee, Irene, Shuchi Grover, Fred Martin, Sarita Pillai, and Joyce Malyn-Smith. 2020.
“Computational Thinking from a Disciplinary Perspective: Integrating Computa-
tional Thinking in K–12 Science, Technology, Engineering, and Mathematics Edu-
cation.” Journal of Science Education and Technology 29, 1–8. https://doi​.org​/10​.1007​
/s10956​-019​-09803​-w​.

LEGO Engineering. n.d. LEGO Engineering. http://www​.legoengineering​.com​
/alternativeprogramming​-languages​/​.

Lévi-Strauss, Claude. 1966. The Savage Mind. Chicago: University of Chicago Press.

National Research Council. 1996. The National Science Standards. http://www​.nap​
.edu​/readingroom​/books​/nses​.

Next Generation Science Standards. 2013. Next Generation Science Standards. https://
www​.nextgenscience​.org​/search​-standards​.

Papert, Seymour. 1993. The Children’s Machine: Rethinking School in the Age of the
Computer. New York: Basic Books.

Penner, David, E. 2000. “Cognition, Computers, and Synthetic Science: Building
Knowledge and Meaning Through Modeling.” Review of Research in Education 25: 1–35.

Resnick, Mitchell. 2003. “Playful Learning and Creative Societies.” Education Update
VIII (6).

Resnick, Mitchell. 2006. “Computer as Paintbrush: Technology, Play, and the Cre-
ative Society.” In Play = Learning: How Play Motivates and Enhances Children’s Cognitive
and Social-Emotional Growth, edited by Dorothy Singer, Roberta Mitchnik Golikoff,
and Kathy Hirsh-Pasek, 192–208. Oxford: Oxford University Press.

Resnick, Mitchell. 2014. “Give P’s a Chance: Projects, Peers, Passion, Play.” Construc-
tionism and Creativity Conference, opening keynote speech, Vienna, Austria, August
19, 2014.

Resnick, Mitchell, Fred Martin, Richard Sargent, and Brian Silverman. 1996. “Pro-
grammable Bricks: Toys to Think With.” IBM Systems Journal 35 (3&4): 443–452.

Roth, Wolf Michael. 2001. “Learning Science Through Technological Design.” Jour-
nal of Research in Science Teaching 38: 768–790. https://doi​.org​/10​.1002​/tea​.1031​.

Scratch. n.d. Scratch. https://scratch​.mit​.edu​/​.

Sullivan, Florence, R. 2007. “Learning Through Building and Programming: Think-
ing and Reasoning with Robotics.” Invited presentation, the STEM Education Insti-
tute, University of Massachusetts, Amherst, October 23, 2007.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

228	 F. R. Sullivan

Sullivan, Florence, R. 2008. “Robotics and Science Literacy: Thinking Skills, Science
Process Skills, and Systems Understanding.” Journal of Research in Science Teaching 45
(3): 373–394.

Sullivan, Florence, R. 2011. “Serious and Playful Inquiry: Epistemological Aspects of
Collaborative Creativity.” Journal of Educational Technology and Society 14 (1): 55–65.

Sullivan, Florence, R., and P. Kevin Keith. 2018. “Computational Thinking and
Doing with Robotics in an All-Girl Workshop Setting.” Paper presentation at the
annual meeting of the American Educational Research Association. New York, April
13–17, 2018.

Sullivan, Florence, R., and John Heffernan. 2016. “Robotic Construction Kits as
Computational Manipulatives for Learning in the STEM Disciplines.” Journal of
Research on Technology in Education 48 (2): 1–24.

Sullivan, Florence, R., and Xiaodong Lin. 2012. “The Ideal Science Student Survey:
Exploring the Relationship of Students’ Perceptions to their Problem Solving Activ-
ity in a Robotics Context.” Journal of Interactive Learning Research 23 (3): 273–308.

Sullivan, Florence, R., Ali Söken, and Ozkan Yildiz. 2019. “Robotics and Science
Inquiry: The Affordances of Sensors for Learning About Data.” Paper presentation at
the annual Conference of the American Educational Research Association. April 5–9,
2019, Toronto, Ontario, Canada.

Vygotsky, Lev Semyonovitch. 1978. Mind in Society: The Development of Higher Psy-
chological Processes, edited by Michael Cole, Vera John-Steiner, Sylvia Scribner, and
Ellen Souberman. Cambridge: Harvard University Press.

Wing, Jean. 2006. “Computational Thinking.” Communications of the ACM 49 (3):
33–35.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

INTRODUCTION

Programming is important for pupils to develop computational thinking

(CT) skills (Kennisnet 2016; Serafini 2011). CT comprises the thought

processes that play a role in formulating and solving problems so that

the solutions are presented in a form that can be effectively conducted

making use of computer science concepts (Wing 2006). CT encompasses

a range of analytic and problem-solving skills, dispositions, habits, and

approaches used, such as the ability to break down complex tasks into

simpler components, pattern recognition, pattern generalization, paral-

lelization, and abstraction (Silk, Schunn, and Shoop 2009; SLO 2017; Toh

et al. 2016). Using CT in search for solutions also means gaining insight

into the design of algorithms (Fanchamps et al. 2019).

Programmable robots provide excellent opportunities to develop CT

skills as they combine the production of code with immediate tangible

results and feedback (Catlin and Woollard 2014; Slangen 2016). More

specifically, such a robotic programming environment can ensure that

programming actions and their results are immediately perceptible by

pupil and teacher (Sapounidis, Demetriadis, and Stamelos 2015). When

pupils can immediately test the response of their programming action

against the effect in reality, they will be better able to judge the effect of

11
TOWARD A RESEARCH AGENDA
FOR DEVELOPING COMPUTATIONAL
THINKING SKILLS BY SENSE-REASON-
ACT PROGRAMMING WITH ROBOTS

Nardie Fanchamps, Marcus Specht, Lou Slangen,
and Paul Hennissen

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

230	N . Fanchamps, M. Specht, L. Slangen, and P. Hennissen

their programming action(s) (Wang, Wang, and Liu 2014). In this way,

robotic environments function as direct manipulation environments

(DMEs), which make it possible to obtain direct feedback on the effect of

the programming operation (Jonassen 2006; Rekimoto 2000).

A robot that needs to anticipate changes in its environment requires a

different program than one carrying out an unchanging, predictable task.

By making use of sense-reason-act (SRA) programming, a robot can react to

changes in its surroundings (Slangen 2016). To enable the construction of

such SRA programs, a variety of encoding components are available. SRA

programming is the skill of using encoding components in such a way that,

by its program, a robot can anticipate and react autonomously to changes

in the environment. Selecting and using the proper encoding components

in a robotic problem environment require understanding variable solution

strategies and the deployment of powerful cognitive skills, which we here

define as SRA thinking. SRA thinking is characterized by the deployment

of cognitive skills such as analyzing, synthesizing, elaborating, imagin-

ing, parallel thinking, cause-effect reasoning, and problem decomposition

(Slangen and Sloep 2005). Moreover, the application of these cognitive

skills is closely related to principles of CT (Yadav et al. 2017). Therefore

it seems logical to operationalize these SRA characteristics in the learning

of CT skills. In addition, the perception of the type of execution of the

robot’s programming task appears to make a difference. A different level

of abstraction occurs when a physically present and concretely observable

robot executes programming commands than when the execution of the

programming task only occurs on a screen (Weintrop and Wilensky 2015).

The timing and kind of teacher interventions also contribute to pupils’

decision-making skills when learning how to solve robot programming

problems (Valcke 1985). Teacher support can help or hinder (Slangen

2016). For teachers it seems to be difficult to be sufficiently reticent at

crucial moments (Sentance and Csizmadia 2017). Instead of exercising

a certain restraint, teachers often intervene to inform pupils when dif-

ficult problems must be solved or when misconceptions are likely to arise

(Petrou and Dimitrakopoulou 2003). In addition to providing support and

guidance, teacher interventions can also disrupt pupils’ ongoing think-

ing and can interfere with learning processes (Dekker and Elshout-Mohr

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Sense-Reason-Act Programming with Robots	 231

2004). Therefore the reticence of the teacher is an important condition

to enable pupils to develop programming problem-solving skills through

the route of inquiry-based learning and problem-solving action (Yadav

et al. 2017).

McWhorter (2008) has found positive effects of programming robots

on pupil motivation, their use of learning strategies, and their agency

in selecting learning objectives, mediated by self-regulation skills, auton-

omy, and competence of the pupils. Pupils’ autonomy appears to increase

motivation and performance and is one of the basic psychological needs,

together with the need for building relationship and competence (Baard,

Deci, and Ryan 2004). The attention for these basic needs is an underly-

ing cause of a number of quality differences between intrinsic and extrin-

sic motivation. Moreover, learning to program from meaningful contexts

where one has a sense of control can influence the autonomy and com-

petence development of the learner (Rovai, Wighting, and Lucking 2004).

Previous research conducted by Fanchamps et al. (2019) has shown

that primary school pupils are capable of arriving at a certain level of SRA

programming but that pupils often do not apply SRA independently, even

when they have previously experienced the benefits of the SRA approach.

This research also anticipated that the instruction method used by the

teacher (a scaffolding-based approach versus direct instruction) would

show a characteristic difference on the development of self-efficacy, but

this could not be demonstrated.

Elaborating on the findings set out previously, our overarching research

proposal sets out to examine if the type of programming problem and task

design have an impact on evoking SRA thinking and to what extent the

influence of teacher interventions are of importance. We also want to exam-

ine whether these variables affect the effectiveness of the interventions.

THEORETICAL FRAMEWORK

From our literature review and previous research, we are generally inter-

ested in the question of whether the type of programming environment

and task design can evoke SRA thinking and therefore strengthen the

development of CT. We also specifically want to know if the instruction

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

232	N . Fanchamps, M. Specht, L. Slangen, and P. Hennissen

variant used influences SRA thinking and indicates the level of the effec-

tiveness of the intervention.

From prior research we know that primary school pupils, when pro-

gramming robots, primarily use linear programming structures, even

when they have previously experienced the benefits of parallel program-

ming and sensor use (Slangen 2016). In the pupils’ linear approach, all

commands are invariably sequenced in long strings, without several

handling routines being operational at the same time (Wyeth, Venz, and

Wyeth 2003). We also showed that pupils have considerable difficulties

in understanding and applying SRA programming and find it challenging

to use sensors or sensor programming (Slangen, van Keulen, and Grave-

meijer 2011). In an SRA program, there is always a conditional encoding

component, based on sensing (i.e., detection of change), that necessarily

influences the handling of the program. This is different from straight-

line programming, in which each encoding component is a stand-alone

command that is arranged in the correct sequence (Wyeth, Venz, and

Wyeth 2003). SRA programming has its origins in the robotics world and

connects physical reality with the virtual world based on observation,

decision-making, and action. Understanding SRA programming means

that pupils can explicitly relate processes in which a robot: (1) records

observations based on sensor use (sense), (2) compares these observations

with internal values of the external situation and decides which path to

follow (reason), and (3) reacts according to a subsequent process in which

the program “tells” the robot what action to take (act). SRA programming

involves complex elements, such as the “if-then-else,” the “nested loop,”

“when,” “while,” “wait-until,” “event handling,” and “simultaneous run-

ning parallel routines” that pupils find difficult to understand (Gregg et al.

2012). Understanding the functionality of the use of sensors also appears

to be an abstract task.

A functional application of SRA when programming robots, whether

combined with the applicability of sensory input, requires pupils to apply

logical reasoning in programming environments (Pea and Kurland 2007),

which we define here as SRA thinking. These insights enable pupils to

program a robot that can anticipate changes in its environment through

its program. In other words, it requires system thinking—the understand-

ing of the interactions and interdependencies between programming and

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Sense-Reason-Act Programming with Robots	 233

the sensors and actuators used (Slangen, van Keulen, and Gravemeijer

2011).

CT is the process-based (re)formulation of a problem in such a way that

it becomes possible to solve the problem with computer technology (Barr,

Harrison, and Conery 2011; Wing 2006). CT instrumentalizes an iterative

process based on three phases: (1) problem definition, (2) solution expres-

sion, (3) implementation and evaluation (Wong 2014; Yadav, Hong, and

Stephenson 2016). CT also refers to skills such as problem decomposi-

tion, pattern recognition, data formation, generalization, abstraction, and

algorithmization (Voogt and Roblin 2010).

SRA programming with functional sensor use can be applied in differ-

ent programming contexts and can be regarded as a smart way of pro-

gramming (Gregg et al. 2012). However, our previous research shows that

if pupils are still able to use linear programming structures, they do not

recognize the added value of SRA programming (Fanchamps et al. 2019;

Wyeth, Venz, and Wyeth 2003). This seems to be caused by the fact that

when a programming task is based on the use of an unchanging, static

environment, in which pupils are not confronted with changing events

that must be anticipated, they maintain a predictable approach to the

programming task (Slangen, van Keulen, and Gravemeijer 2011). How-

ever, if the programming environment in which a robot has to perform

its tasks is dynamic in nature, and therefore unpredictable because the

environment is constantly changing, then the solution requires the use

of SRA programming in which sensors, conditionals, and routines must

be used to successfully solve the programming problem (Demetriou 2011;

Dragone et al. 2005).

SRA programming requires a degree of abstract thinking. It means

being able to analyze the robotic task environment—being able to rec-

ognize the conditional and iterative conditions and translate them into

the correct application of programming instructions (Caci and D’Amico

2002; Pea and Kurland 2007). If pupils understand that the reasoning

process of a robot is based on principles of logic, conditional, causal, and

iterative reasoning and thinking in parameters and variables, this would

be recognizable in their created programs (Slangen and Rohaan 2018).

Code that is produced according to SRA principles contains such complex

principles of programming, conditionals, and loop structures. Analyzing

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

234	N . Fanchamps, M. Specht, L. Slangen, and P. Hennissen

pupils’ code reveals information about pupils’ SRA thinking skills such

as efficiency, creativity, higher-order reasoning, analyzing, synthesizing,

and judgment.

DMEs are innovative learning tools that combine ICT (information and

communications technology) control technology and programmable logic

controllers with the construction of a concrete, material model (mov-

able structures linked to motors, actuators, and sensors) (Jonassen 2006;

Rekimoto 2000). Characteristic for DMEs is the “direct” feedback from

the technology that provides pupils with feedback on their thinking and

actions (Slangen, van Keulen, and Gravemeijer 2011). Examples of such

tools are TechnoLogica, VEX IQ, Arduino Makeblock, and LEGO Mind-

storms EV3, with which pupils can build a working robot or machine that

must then be programmed to carry out predefined assignments (Jonas-

sen 2000; Slangen, Fanchamps, and Kommers 2008; Slangen, van Keulen,

and Gravemeijer 2011; Slangen, van Keulen, and Jochems 2009). The use

of DMEs imposes requirements on the environment and the task and the

type of guidance and is very suitable for inquiry-based learning and a

problem-solving approach.

Self-efficacy is an important requirement for pupils to be able to work

on a robotic programming task in a creative, targeted manner independently

of the teacher (Dignath and Büttner 2008; Spin 2015). It is the teacher’s

task to create and support opportunities and possibilities in which pupils

can conduct their assignment in a self-effective way (Dignath-van Ewijk

and Van der Werf 2012). This asks for learning contexts in which learners

can make their own choices and decisions and in which there are pos-

sibilities for direct feedback. As mentioned previously, DME robotics pro-

gramming environments seem to be suitable for solving programming

tasks in a self-effective way.

According to Stevens (2004) and Broeck et al. (2010), pupils’ self-

effectiveness is built on competence, autonomy, and relationship. Com-

petence refers to the feeling and belief in one’s own ability. To let pupils

experience what they are capable of requires challenge and motivational

strengthening elements. A combination of high (but realistic) expecta-

tions and the availability of help and support are necessary for develop-

ing a strong sense of competence. Autonomy is having the confidence to

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Sense-Reason-Act Programming with Robots	 235

be independent in such a way that pupils can make their own decisions

and choices. It is pupils feeling that they are capable of doing a task on

their own. Autonomy is only possible if tasks and instrumentation are

carefully aligned to the potential and needs of pupils. Relationship is the

feeling of belonging and being part of a community. Pupils need relation-

ships, both with their teacher and with other pupils, based on providing

safety, space, guidance, and support. Pupils and the teacher should collec-

tively feel responsible for a good atmosphere in the classroom, and pupils

should feel they can count on the support and guidance of the teacher

(Rovai, Wighting, and Lucking 2004).

Apart from the coaching and instruction of the supervising teacher,

the pedagogical needs of the learner play an important role (Vosniadou

et al. 2001). Our previous research showed that, when working with pro-

grammable robotics contexts in which pupils have to solve programming

problems with LEGO robots, the type of instruction offered (scaffolding-

based versus direct instruction) does not make a significant difference in

relation to the yield, solution, and efficiency of the constructed program

(Fanchamps et al. 2019). However, the teacher should adapt the pedagog-

ical offer to the pupils’ characteristics and associated pedagogical needs

in such a way as to achieve maximum learning efficiency (Alfieri, Brooks,

and Aldrich 2011).

Interventions by teachers can influence pupils’ final learning effi-

cacy outcomes in robot programming (Slangen 2016). Some pupils may

learn best when they perform all actions and thinking processes them-

selves with minimal coaching from the teacher, while other pupils may

learn most when the teacher explains everything fully (Fanchamps

2016).

Direct instruction can be defined as targeted actions of the teacher with

the aim of supporting pupils’ learning activities to structure them in a

desired direction (Veenman 2001). The starting point for direct instruction

is that there are moments in an educational learning process when knowl-

edge, insights, and skills that are considered meaningful and functional

within a context can be taught to pupils most effectively, purposefully,

and directly (Kirschner, Sweller, and Clark 2006). Direct instruction is

particularly appropriate when a well-structured set of knowledge, insights,

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

236	N . Fanchamps, M. Specht, L. Slangen, and P. Hennissen

and skills must be mastered by pupils (Leenders, Naafs, and van den Oord

2010).

Indirect instruction can be defined as an approach that allows pupils

to learn more autonomously—where the teacher’s help is temporarily

adapted to the needs of pupils’ learning. It is a method to acquire the

desired prior knowledge and to encourage the use of strategic approaches

(Kawalkar and Vijapurkar 2011). In case of indirect instruction, the

teacher coaches pupils if they are unable to continue independently

or when the teacher notices that pupils are heading in a direction that

would result in them becoming stuck. In principle, the open problem is

structured in such a way that it is expected that pupils will be able to carry

out most of the learning activities independently (Hmelo-Silver, Duncan,

and Chinn 2007). The teacher must resist direct instruction but can apply

verbal guidance techniques that ensure that the thinking process mainly

remains with pupils (Hogan and Pressley 1997).

Building on the theoretical exploration mentioned previously, we pre-

sume a correlation between the environment, the task design, and the

type of instructional method used will have an impact on the level of

self-efficacy and on the evocation of SRA thinking specifically and CT

more generally. Our conceptual model in figure 11.1 gives an overview

of supposed relationships between independent and dependent variables

that must be investigated further. Based on this conceptual model and

our preliminary research, a number of research questions arise that are

elaborated in the following research agenda.

11.1  Schematic representation of the conceptual model.

Computational
thinking

Evocation of
SRA-thinking

Type of instructional
method

identifies Self-effectiveness

impacts

Task design

influencesproduces

influences influences

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Sense-Reason-Act Programming with Robots	 237

TOWARD A SENSE-REASON-ACT RESEARCH AGENDA

In our previous research (Fanchamps et al. 2019), we investigated the rela-

tionship between the pedagogical environment and the development of

algorithmic thinking and SRA programming skills. We found some indi-

cations that it doesn’t matter which type of teacher guidance is used for

pupils to apply SRA programming. But we do have some indications that

pupils with experience in SRA programming are better capable of solving

mathematical problems based on algorithms. It also seems that the level

of self-efficacy is not influenced by the type of research design. Elaborat-

ing on these findings and our conceptual model, we want to investigate

which aspects can be decisive for better solving programming tasks and an

improvement of CT skills. In a broad sense, we assume that it is important

to look at the nature of the task design, such as a static/dynamic program-

ming environment and a visual/tangible programming environment.

This brings us to a first research direction of examining whether and

how the nature of the programming task and the programming environ-

ment affect what pupils can learn from it. From our research and further

theoretical exploration we know that pupils, when programming robots,

tend to look for solutions based on linear thinking and sequential pro-

gramming, even though they have been instructed how to use SRA

programming (Fanchamps et al. 2019; Slangen 2016). This is striking,

because these pupils have an earlier experience that showed that SRA pro-

gramming is more efficient in certain programming situations. Instead,

when children program robots, they predominantly choose the most obvi-

ous way that leads to an apparent good solution. Although pupils are not

inclined to use SRA programming, we assume that the problem situation

and task design are of significant relevance. To find out whether pupils are

indeed able to apply SRA programming when they find themselves in a

situation where a linear solution is no longer possible, we plan to develop

an experimental setting in which a dynamic task design will be used. The

assumption is that when the task is dynamic in nature, and the use of lin-

ear commands is no longer possible/sufficient, pupils have to apply SRA

programming. We expect this can be achieved by designing a dynamic task

environment (in opposite to a static task environment) in which the pro-

gramming task is unpredictable.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

238	N . Fanchamps, M. Specht, L. Slangen, and P. Hennissen

Our second direction of research is distilled from theoretical exploration

and practical experience, from which we know that pupils seek support by

immediately reflecting the outcome of their programming assignment as

feedback to the task at hand. Classroom programming can be characterized

in three ways: unplugged programming, textual programming, and visual

programming. Unplugged programming introduces pupils to how com-

puters and related technology works without the concrete use of this tech-

nology (Brackmann et al. 2017). Textual programming refers to the use of

a programming language by the application of written commands, specific

syntax, and abstract variables (Maloney et al. 2010). Visual programming

involves combining icon-based command blocks with predefined param-

eters, variables, and syntax that can be manipulated on the screen (Kork-

maz 2018; Sapounidis, Demetriadis, and Stamelos 2015; Weintrop and

Wilensky 2015). Each of these different programming environments can

have either a visual and/or a tangible output. Programming robots can be

defined as tangible output, while a representation of a tangible world on a

screen display can be seen as visual output. It seems enlightening to inves-

tigate whether the type of programming paradigm and the output of a pro-

gramming environment influence the development of aspects of CT and

the use of SRA approaches. Korkmaz (2018) compares the use of Scratch

and LEGO Mindstorms robots and describes a more positive contribution

to thinking skills with the latter. Sapounidis, Demetriadis, and Stamelos

(2015) claim that in a tangible programming environment, children were

more involved, created more complicated programs, and investigated dif-

ferent commands and parameters more actively. We therefore expect that a

more tangible output will lower the degree of abstraction and lead to more

understanding about programming. We propose to investigate if there is a

difference in the increase of CT skills when pupils apply SRA programming

with a visual output compared to a physically perceivable output.

A third research direction should identify whether there is a differ-

ence in yield in the development of CT skills when pupils program in

a visual, screen-oriented programming environment either with an SRA

approach or with an linear approach, respectively with or without the

use of sensor-based information, loops, conditionals, functions, and rou-

tines (Korkmaz 2018; Sapounidis, Demetriadis, and Stamelos 2015). We

expect that pupils who work with the visual SRA approach will show a

greater development of CT skills in comparison with pupils who work

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Sense-Reason-Act Programming with Robots	 239

with the visual linear approach. In a visually oriented programming envi-

ronment, pupils compose and construct functioning programs by merg-

ing programming commands in the correct order, and they receive only

visual feedback to inform them whether a particular constructed program

is valid (Weintrop and Wilensky 2015).

A fourth direction for research concerns the relationship of pedagogi-

cal aspects, such as teacher interventions and self-efficacy, and the use

of SRA programming and its effect on the development of CT skills. It

is reasonable that teachers will need to guide and supervise pupils while

programming (Hogan and Pressley 1997) and that the teacher has influ-

ence (directly/indirectly) on the pupils’ learning processes in acquiring

CT skills (Buitrago Flórez et al. 2017; Lye and Koh 2014). The type of teacher

support and number of teacher interventions also have a direct influence

on the level of self-efficacy of the learner (Liu, Lin, and Chang 2010; Rama-

lingam, LaBelle, and Wiedenbeck 2004). We assume that if pupils have to

find a solution to a particular programming problem by themselves, this

will lead to more in-depth learning than if the teacher presents everything

and pupils simply follow along (Igbaria and Iivari 1995; McWhorter 2008).

Therefore it is relevant to investigate to what extent the constructed SRA

solutions are related to the type and number of interventions of the teacher.

The instructional needs of respondents should also determine, to a large

extent, which form of guidance the teacher can best use to enable growth in

CT skills through the use of SRA programming. This paves the way to create

a pedagogical programming environment in which the teacher, through a

joint understanding with pupils, does not always provide direction but is

available for help, support, and guidance. The teacher, as a reflective prac-

titioner, can have an indispensable role in creating meaningful learning

experiences and in extending their pupils’ computational skills and practi-

cal knowledge.

RECONSIDERING COMPUTATIONAL THINKING

With these directions for future research, we want to contribute to a

further development of the construct of CT. Our perspective is that SRA

thinking is an underexposed characteristic of CT. We propose that study-

ing SRA programming can provide fruitful directions for a more generic

development of CT.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

240	N . Fanchamps, M. Specht, L. Slangen, and P. Hennissen

REFERENCES

Alfieri, Louis, Patricia J. Brooks, and Naomi J. Aldrich. 2011. “Does Discovery-Based
Instruction Enhance Learning?” Journal of Educational Psychology 103: 1–18. https://
doi​.org​/10​.1037​/a0021017​.

Baard, Paul P., Edward L. Deci, and Richard M. Ryan. 2004. “Intrinsic Need Satisfac-
tion: A Motivational Basis of Performance and Well-Being in Two Work Settings.”
Journal of Applied Social Psychology 34 (10): 2045–2068. https://doi​.org​/10​.1111​/j​
.1559​-1816​.2004​.tb02690​.x​.

Barr, David, John Harrison, and Leslie Conery. 2011. “Computational Thinking: A
Digital Age Skill for Everyone.” Learning and Leading with Technology 38 (6): 20–23.

Brackmann, Christian P., Marcos Román-González, Gregorio Robles, Jesús Moreno-
León, Ana Casali, and Dante Barone. 2017. “Development of Computational Thinking
Skills through Unplugged Activities in Primary School.” In Proceedings of the 12th Work-
shop on Primary and Secondary Computing Education. Nijmegen, Netherlands, 65–72.

Broeck, Anja Van den, Maarten Vansteenkiste, Hans De Witte, Bart Soenens, and
Willy Lens. 2010. “Capturing Autonomy, Competence, and Relatedness at Work:
Construction and Initial Validation of the Work-related Basic Need Satisfaction
Scale.” Journal of Occupational and Organizational Psychology 83 (4): 981–1002. https://
doi​.org​/10​.1348​/096317909X481382​.

Buitrago Flórez, Francisco, Rubby Casallas, Marcela Hernández, Alejandro Reyes,
Silvia Restrepo, and Giovanna Danies. 2017. “Changing a Generation’s Way of
Thinking: Teaching Computational Thinking through Programming.” Review of Edu-
cational Research 87 (4): 834–860. https://doi​.org​/10​.3102​/0034654317710096​.

Caci, Barbara, and Antonella D’Amico. 2002. “Children’s Cognitive Abilities in Con-
struction and Programming Robots.” In Proceedings. 11th IEEE International Workshop
on Robot and Human Interactive Communication. Berlin, 189–191.

Catlin, Dave, and John Woollard. 2014. “Educational Robots and Computational
Thinking.” In Proceedings of 4th International Workshop Teaching Robotics, Teaching with
Robotics & 5th International Conference Robotics in Education. Padova, Italy, 144–151.

Dekker, Rijkje, and Marianne Elshout-Mohr. 2004. “Teacher Interventions Aimed
at Mathematical Level Raising During Collaborative Learning.” Educational Studies
in Mathematics 56 (1): 39–65. https://doi​.org​/10​.1023​/B:EDUC​.0000028402​.10122​.ff​.

Demetriou, Georgios A. 2011. “Mobile Robotics in Education and Research.” In Mobile
Robots-Current Trends, edited by Zoran Gacovski, 27–48. Rijeka, Croatia: IntechOpen.

Dignath, Charlotte, and Gerhard Büttner. 2008. “Components of Fostering Self-
Regulated Learning among Students. A Meta-Analysis on Intervention Studies at
Primary and Secondary School Level.” Metacognition Learning 3: 231–264. https://doi​
.org​/10​.1007​/s11409​-008​-9029​-x​.

Dignath-van Ewijk, Charlotte, and Greetje Van der Werf. 2012. “What Teachers
Think about Self-Regulated Learning: Investigating Teacher Beliefs and Teacher

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Sense-Reason-Act Programming with Robots	 241

Behavior of Enhancing Students’ Self-Regulation.” Education Research Journal: 1–10.
https://doi​.org​/10​.1155​/2012​/741713​.

Dragone, Mauro, Ruadhan O’Donoghue, John J. Leonard, Gregory O’Hare, Brian
Duffy, Andrew Patrikalakis, and Jacques Leederkerken. 2005. “Robot Soccer Any-
where: Achieving Persistent Autonomous Navigation, Mapping, and Object Vision
Tracking in Dynamic Environments.” In Proceedings SPIE 5827, Opto-Ireland 2005:
Photonic Engineering. Dublin, Ireland.

Fanchamps, Nardie. 2016. “De Invloed van SRA Programmeren op Mathematisch
Redeneren en Zelfeffectiviteit met Lego Robotica in Twee Instructievarianten [The
Influence of SRA Programming on Mathematical Reasoning and Self-Efficacy Using
LEGO Robotics in Two Types of Instruction].” Master’s thesis, Open Universiteit Heer-
len, Netherlands.

Fanchamps, Nardie, Lou Slangen, Paul Hennissen, and Marcus Specht. 2019. “The
Influence of SRA Programming on Algorithmic Thinking and Self-Efficacy Using
LEGO Robotics in Two Types of Instruction.” International Journal of Technology and
Design Education: 1–20. https://doi​.org​/10​.1007​/s10798​-019​-09559​-9​.

Gregg, Chris, Luther Tychonievich, James Cohoon, and Kim Hazelwood. 2012.
“EcoSim: A Language and Experience Teaching Parallel Programming in Elementary
School.” In Proceedings of the 43rd ACM Technical Symposium on Computer Science Edu-
cation. Raleigh, NC, 51–56.

Hmelo-Silver, Cindy E., Ravit Golan Duncan, and Clark A. Chinn. 2007. “Scaffolding
and Achievement in Problem-Based and Inquiry Learning: A Response to Kirschner,
Sweller, and Clark (2006).” Educational Psychologist 42 (2): 99–107.

Hogan, Kathleen, and Michael Pressley. 1997. Scaffolding Student Learning. Cam-
bridge, MA: Brookline Books.

Igbaria, Magid, and Juhani Iivari. 1995. “The Effects of Self-Efficacy on Computer
Usage.” OMEGA International Journal of Management Science 23 (6): 587–605.

Jonassen, David H. 2000. Computers as Mindtools for Schools: Engaging Critical Think-
ing. Columbus, OH: Pearson Prentice Hall.

Jonassen, David H. 2006. Modeling with Technology: Mindtools for Conceptual Change.
Upper Saddle River, NJ: Pearson Merrill Prentice Hall.

Kawalkar, Aisha, and Jyotsna Vijapurkar. 2011. “Scaffolding Science Talk: The Role
of Teachers’ Questions in the Inquiry Classroom.” International Journal of Science Edu-
cation 35 (12): 1–43. https://doi​.org​/10​.1080​/09500693​.2011​.604684​.

Kennisnet [Knowledge Net]. 2016. “Computational thinking in het Nederlandse
onderwijs [Dutch Education].” Zoetermeer, Netherlands.

Kirschner, Paul A., John Sweller, and Richard E. Clark. 2006. “Why Minimal Guid-
ance During Instruction Does Not Work: An Analysis of the Failure of Constructivist,
Discovery, Problem-Based, Experiential, and Inquiry-Based Teaching.” Educational
Psychologist 41 (2): 75–86. https://doi​.org​/10​.1207​/s15326985ep4102_1​.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

242	N . Fanchamps, M. Specht, L. Slangen, and P. Hennissen

Korkmaz, Özgen. 2018. “The Effect of Scratch-And Lego Mindstorms Ev3-Based Pro-
gramming Activities on Academic Achievement, Problem-Solving Skills and Logical-
Mathematical Thinking Skills of Students.” Malaysian Online Journal of Educational
Sciences 4 (3): 73–88.

Leenders, Yvonne, Ferdy Naafs, and Ingrid van den Oord. 2010. Effectieve instructie.
Leren lesgeven met het activerende, directe instructiemodel [Effective instruction. Learn to
teach with the activating, direct instruction model]. Amersfoort, Netherlands: CPS.

Liu, Eric Zhi Feng, Chun Hung Lin, and Chiung Sui Chang. 2010. “Student Satisfac-
tion and Self-Efficacy in a Cooperative Robotics Course.” Social Behavior and Person-
ality 38 (8): 1135–1146. https://doi​.org​/10​.2224​/sbp​.2010​.38​.8​.1135​.

Lye, Sze Yee, and Joyce Hwee Ling Koh. 2014. “Review on Teaching and Learning of
Computational Thinking through Programming: What Is Next for K–12?” Computers
in Human Behavior 41: 51–61. https://doi​.org​/10​.1016​/j​.chb​.2014​.09​.012​.

Maloney, John, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn Eastmond.
2010. “The Scratch Programming Language and Environment.” ACM Transactions on
Computing Education (TOCE), 10 (4): 1–15. https://doi​.org​/10​.1145​/1868358​.1868363​.

McWhorter, William Isaac. 2008. The Effectiveness of Using LEGO Mindstorms Robot-
ics Activities to Influence Self-Regulated Learning in a University Introductory Computer
Programming Course. Citeseer.

Pea, Roy D., and Midian Kurland. 2007. “On the Cognitive Effects Learning Com-
puter Programming.” New Ideas in Psychology 2 (2): 31.

Petrou, Argyroula, and Angelique Dimitrakopoulou. 2003. “Is Synchronous Com-
puter Mediated Collaborative Problem-Solving ‘Justified’ Only When by Distance?
Teachers’ Point of Views and Interventions with Co-located Groups, During Every
Day Class Activities.” In Designing for Change in Networked Learning Environments, Pro-
ceedings of the International Conference on Computer Support for Collaborative Learning
2003, edited by Barbara Wasson, Sten Ludvigsen, and Ulrich Hoppe, 1–10.

Ramalingam, Vennila, Deborah LaBelle, and Susan Wiedenbeck. 2004. “Self-Efficacy and
Mental Models in Learning to Program.” In Proceedings of the 9th Annual SIGCSE Confer-
ence on Innovation and Technology in Computer Science Education. Leeds, UK, 171–175.

Rekimoto, Jun. 2000. “Multiple-Computer User Interfaces: Beyond the Desktop
Direct Manipulation Environments.” In CHI EA ‘00: CHI ‘00 Extended Abstracts on
Human Factors in Computing Systems. The Hague, Netherlands, 6–7.

Rovai, Alfred P., Mervyn J. Wighting, and Robert Lucking. 2004. “The Classroom
and School Community Inventory: Development, Refinement, and Validation of a
Self-Report Measure for Educational Research.” Internet and Higher Education 7 (4):
263–280. https://doi​.org​/10​.1016​/j​.iheduc​.2004​.09​.001​.

Sapounidis, Theodosios, Stavros Demetriadis, and Ioannis Stamelos. 2015. “Evaluat-
ing Children Performance with Graphical and Tangible Robot Programming Tools.”

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Sense-Reason-Act Programming with Robots	 243

Personal and Ubiquitous Computing 19 (1): 225–237. https://doi​.org​/10​.1007​/s00779​
-014​-0774​-3​.

Sentance, Sue, and Andrew Csizmadia. 2017. “Computing in the Curriculum: Chal-
lenges and Strategies from a Teacher’s Perspective.” Education and Information Tech-
nologies 22 (2): 469–495. https://doi​.org​/10​.1007​/s10639​-016​-9482​-0​.

Serafini, G. 2011. “Teaching Programming at Primary Schools: Visions, Experiences,
and Long-Term Research Prospects.” In Informatics in Schools. Contributing to 21st
Century Education. ISSEP 2011. Lecture Notes in Computer Science (vol 7013). Berlin,
Heidelberg: Springer, 143–154.

Silk, Eli, Christian Schunn, and Robin Shoop. 2009. “Synchronized Robot Dancing:
Motivating Efficiency & Meaning in Problem-solving with Robotics.” Robot Magazine
Carnegie Mellon Robotics Academy 17: 74–77.

Slangen, Lou. 2016. “Teaching Robotics in Primary School.” PhD, Eindhoven Uni-
versity of Technology. https://pure​.tue​.nl​/ws​/files​/25754482​/20160630_CO_Slan​
gen​.pdf​.

Slangen, Lou, Nardie Fanchamps, and Piet Kommers. 2008. “A Case Study about
Supporting the Development of Thinking by Means of ICT and Concretisation
Tools.” International Journal of Continuing Engineering Education and Life-Long Learning
18 (3): 305–322.

Slangen, Lou, Hanno van Keulen, and Koeno Gravemeijer. 2011. “What Pupils Can
Learn from Working with Robotic Direct Manipulation Environments.” International
Journal of Technology and Design Education 21 (4): 449–469. https://doi​.org​/10​.1007​
/s10798​-010​-9130​-8​.

Slangen, Lou, Hanno van Keulen, and Wim Jochems. 2009. “De bijdrage van Direct
Manipulation Environments aan de ontwikkeling van technische geletterdheid in
de basisschool [The contribution of Direct Manipulation Environments to the devel-
opment of technical literacy in primary school].” HBO-Kennisbank.

Slangen, Lou, and Ellen Rohaan. 2018. “Programmeren en robotica [Programming
and robotics].” In Onderzoekend en ontwerpend de wereld ontdekken, edited by Tycho
Malmberg, Ellen Rohaan, Sara Van Duijn and Remke Klapwijk, 18. Groningen,
Netherlands: Noordhoff Uitgevers bv.

Slangen, Lou, and Peter Sloep. 2005. “Mind Tools Contributing to an ICT-rich
Learning Environment for Technology Education in Primary Schools.” International
Journal of Continuing Engineering Education and Life Long Learning 15 (3–6): 225–239.

SLO. 2017. “Curriculum van de toekomst [Curriculum of the future].” SLO: Natio-
naal Expertisecentrum Leerplanontwikkeling. Accessed June 17, 2019. http://curricul​
umvandetoekomst​.slo​.nl​/21e​-eeuwse​-vaardigheden​.

Spin, Linda. 2015. “Zelfsturing door leerlingen in het basisonderwijs [Self-management
by pupils in primary education].” DaltonVisie, 4 (1): 18–21. Zwolle, Netherlands: KPZ.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

244	N . Fanchamps, M. Specht, L. Slangen, and P. Hennissen

Stevens, Luc. 2004. Zin in School. Amersfoort, Netherlands: CPS.

Toh, Lai Poh Emily, Albert Causo, Pei-Wen Tzuo, I-Ming Chen, and Song Huat Yeo.
2016. “A Review on the Use of Robots in Education and Young Children.” Educa-
tional Technology & Society 19 (2): 148–163.

Valcke, Martin. 1985. “Praktische ervaringen met het leren programmeren in de
klas—Karakteristieken van de leerkrachtinterventie [Practical experiences in learning
to code in the classroom—Characteristics of teacher intervention].” In Programmeer-
talen en courseware-aanmaak, edited by W Decoo, J Heyvaert and R Jansen, 61–90.
Gent, Belgium.

Veenman, Simon. 2001. Directe Instructie [Direct Instruction]. Nijmegen, Netherlands:
Katholieke Universiteit Nijmegen.

Voogt, Joke, and Natalie Pareja Roblin. 2010. 21st Century Skills. Enschede, Neth-
erlands: University of Twente, Department of Curriculum Design and Educational
Innovation.

Vosniadou, Stella, Christos Ioannides, Aggeliki Dimitrakopoulou, and Efi Papademe-
triou. 2001. “Designing Learning Environments to Promote Conceptual Change in
Science.” Learning and Instruction 11 (4–5): 381–419. https://doi​.org​/10​.1016​/S0959​
-4752(00)00038-4.

Wang, Danli, Tingting Wang, and Zhen Liu. 2014. “A Tangible Programming Tool
for Children to Cultivate Computational Thinking.” The Scientific World Journal
2014: 1–10. https://doi​.org​/10​.1155​/2014​/428080​.

Weintrop, David, and Uri Wilensky. 2015. “To Block or Not to Block, That is the
Question: Students’ Perceptions of Blocks-Based Programming.” In Proceedings of the
14th International Conference on Interaction Design and Children. Medford, MA, 199–208.

Wing, Jeannette M. 2006. “Computational Thinking.” Communications of the ACM
49 (3): 33–35. https://doi​.org​/10​.1145​/1118178​.1118215​.

Wong, Lawson L. S. 2014. “Rethinking the Sense-Plan-Act Abstraction: A Model
Attention and Selection Framework for Task-Relevant Estimation.” In Workshops at
the Twenty-Eighth AAAI Conference on Artificial Intelligence. Quebec, Canada, 71–72.

Wyeth, Peta, Mark Venz, and Gordon Wyeth. 2003. “Scaffolding Children’s Robot
Building and Programming Activities.” In RoboCup 2003: Robot Soccer World Cup VII.
RoboCup 2003. Lecture Notes in Computer Science, vol 3020, edited by Daniel Polani,
Brett Browning, Andrea Bonarini, and Kazuo Yoshida, 308–319. Berlin: Springer.

Yadav, Aman, Sarah Gretter, Jon Good, and Tamika McLean. 2017. “Computational
Thinking in Teacher Education.” In Emerging Research, Practice, and Policy on Com-
putational Thinking, edited by Peter J. Rich and Charles B. Hodges, 205–220. Cham,
Switzerland: Springer.

Yadav, Aman, Hai Hong, and Chris Stephenson. 2016. “Computational Thinking for
All: Pedagogical Approaches to Embedding 21st Century Problem Solving in K–12
Classrooms.” TechTrends 60 (6): 565–568. https://doi​.org​/10​.1007​/s11528​-016​-0087​-7​.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

INTRODUCTION

Computational thinking (CT) allows students to think critically, system-

atically, and algorithmically to solve problems that are either ordinary

or intricate. Hence, it is important to integrate computational ideas into

other subjects in school so that students can comprehend, define, and

seek appropriate solutions with a wider array of knowledge from various

disciplines. This interdisciplinary instructional approach has been widely

practiced with science, technology, engineering, arts, and mathematics

(STEAM), robots, and maker education.

The key educational matters are the principles and strategies to design

a well-rounded curriculum, to conduct dynamic learning activities, and

to evaluate students’ performance in the physically and socially active

learning scenario. This chapter attempts to tackle these issues by present-

ing a purpose-built robotic game, <STEMport>, along with a conceptual

framework that illustrates the following four components:

1. The synergic relationship between CT and interdisciplinary activity.

In the section “Computational Thinking with Interdisciplinary Learning,”

we posit the existence of situative CT that links specific CT and generic CT

to contextual interdisciplinary domain learning.

2. The innovative design of the instructional paradigm. In the section

“Computational Thinking with Robotic Games,” we provide justifications

12
COMPUTATIONAL THINKING IN THE
INTERDISCIPLINARY ROBOTIC GAME
THE CHARM OF STEAM

Ju-Ling Shih

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

246	 J.-L. Shih

for the innovation of the particular instructional paradigm using visual

programing to perform agent-based computation to facilitate game-based

learning.

3. The creation of an interdisciplinary robotic game. In the sections

“Educational Implementation” and “Pedagogical Benefits of the CHARM

of STEAM,” we outline the rationale of the learning game <STEMport>

and the pedagogical underpinning of the extended curriculum in which

modules are amenable to users’ needs, but at the same time illustrate the

core value, the breadth, and the generality of our approach. The <STEM-

port> learning environment: (a) supports students regardless of their

levels of competences; (b) initiates and motivates students to engage with

programming; (c) intrigues students to pursue further domain learning;

and (d) elevates students’ strategic thinking in a constructive fashion.

4. The development of various means of student evaluations. In the sec-

tion “Evaluations of Students’ Computational Thinking Performances,”

we elaborate the possibilities of multiple assessments that encompass cog-

nitions, affects, and skills of CT, and present preliminary research results.

Finally, in the section “Discussion and Conclusion,” we use empirical

evidence to sustain the effectiveness of our proposed conceptual frame-

work and the creation of a student-centered learning environment.

This game encompasses more than simple programming skills and is

intended to strengthen knowledge of multiple disciplines as well as to

promote social interactions that are central to the twenty-first-century 5C

skills—communication, collaboration, critical thinking, creativity, and

complex problem-solving. <STEMport> can be used as a targeted course

with specific purposes or as a mixed-age group activity that serves as an

extracurricular event. It can be an activity at the beginning of a curricu-

lum to spark students’ learning motivation; a central unit of learning that

guides students to construct knowledge; or be the concluding activity of

a curriculum that demonstrates students’ learning outcomes. The follow-

ing sections will set forth a general practice of the CT-based robotic game

<STEMport> followed by the demonstrations of the extended use of the

course to serve diverse needs of age, goals, proficiency level, personality

traits, or various instructional conditions.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Thinking in the Interdisciplinary Robotic Game	 247

CONCEPTUAL FRAMEWORK

COMPUTATIONAL THINKING WITH INTERDISCIPLINARY LEARNING

CT is a concept originating from computer science in which computer lan-

guage is used to manipulate computers to solve daily life problems (Wing

2006). CT can be divided into specific CT—the composition of computer

programming language (e.g., loop, if-else)—and generic CT—the cognitive

abilities to apply problem-solving methods in ways that a computer could

execute (Wing 2014). These can be understood as “CT as programming”

and “CT as problem-solving,” respectively.

Specific CT is more widely practiced in education, with such examples

as code​.org, or Scratch. The goal is to learn the principles of programming

and to use programming to execute the functions of computers or robots.

The use of generic CT in education is a bit more complex and abstract

to design for, since it involves the problem-solving process that requires

thinking abilities other than programming skills. In generic CT, comput-

ers may not be needed because the computation process happens within

human brains rather than in the computers. Wing (2008) said that humans

process information; humans compute. Generic CT is an approach to

designing systems and understanding human behavior that draws on

concepts fundamental to computing. It is a model and a process of think-

ing that uses the basic concepts of computer science to solve problems

(Wing 2006). CT is a type of analytical thinking that employs mathemati-

cal and engineering thinking to understand and solve complex problems

within the constraints of the real world (Voskoglou and Buckley 2012).

Therefore, the practice of CT combines logical, arithmetic, efficiency, sci-

entific, and innovative thinking together with qualities such as creativ-

ity and intuition (Curzon et al. 2009). Generic CT can be applied to the

use of information technology, coding, and robotics (Rogers and Ports-

more 2004). For example, Atmatzidou and Demetriadis (2016) showed

their educational results in teaching kids programming to mobilize LEGO

NXT robots for specific functions or to carry out tasks. Other schools may

teach robots to move, line trace, carry balls to certain points, or place bump

sensors.

The benefits of using STEM and robotics for generic CT education are

manifold. A guided instruction approach using robots facilitates teamwork

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

248	 J.-L. Shih

(Chambers, Carbonaro, and Rex 2007), develops conceptual understand-

ing, enhances critical thinking (Blanchard, Freiman, and Lirrete-Pitre 2010),

promotes higher-order learning in the domains of mathematics and science

(Petre and Price 2004), allows the students to develop procedural thinking

through programming (Nourbakhsh et al. 2005), and encourages ways of

algorithmically solving problems and the acquisition of technological flu-

ency (Papert 1980). Related research (e.g., Bers et al. 2014) obtaining positive

research outcomes on CT and STEM demonstrates that children between

four and six years old can build simple robotics projects. STEM is a cohesive

learning paradigm that is not limited to certain subjects but includes other

domains such as social studies, English language arts, visual art, and more

(Breiner et al. 2012). It uses an interdisciplinary approach (Barak and Assal

2018) by breaking down the discipline-independent teaching and making

connections to the context of the real world (Breiner et al. 2012; Honey,

Pearson, and Schweingruber 2014).

Nevertheless, Frymier, Shulman, and Houser (1996) explained that, in

a classroom context, students usually have little power to determine the

activities to be conducted, which teachers typically control. The same is

true for many robotics curricula that guide students to code for uniform

tasks or simply learn coding functions. For example, in the program by

Chen et al. (2017), students were taught to program robots to do actions

such as wave and sit down.

We take a step further and have attempted to create a learning environ-

ment where CT is applied in conjunction with interdisciplinary learning.

When CT thus becomes situative, it has features that are distinct from

generic CT: (1) It uses specific CT and generic CT in combination, writing

programming and solving problems at the same time. (2) It is practiced

in a contextual situation, normally a theme-based scenario that empha-

sizes domain knowledge correspondence. (3) Problems in the situation

are fluid and dynamic; instead of conducting uniformed tasks, students

have to respond to spontaneous situations in context. (4) CT is no longer

the learning goal but the tool (figure 12.1). In a situative CT learning sce-

nario, students solve contextual problems by accessing the appropriate

resources and strategies to be used.

For those CT curricula in which students are encouraged not just to

routinely follow instructions but to creatively find novel approaches to

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Thinking in the Interdisciplinary Robotic Game	 249

the activities (e.g., Brennan and Resnick 2012; Deschryver and Yadav 2015;

Voogt et al. 2015), students are more empowered in the learning process.

Four empowerment components can increase the likelihood of successful

task completion: (1) viewing the purpose of a programming task as mean-

ingful, (2) seeing impact from completing the tasks, (3) believing they can

creatively complete them, and (4) perceiving their competence to complete

them (Kong, Chiu, and Lai 2018).

COMPUTATIONAL THINKING WITH ROBOTIC GAMES

Robotics provides a very rich and attractive learning environment for STEM

education (Barak and Assal 2018) and provides a fun and exciting learning

environment because of its hands-on nature and the integration of technol-

ogy (Afari and Khine 2017). Robotics has the inclusive nature to achieve

what situative CT needs, while it creates an environment where children

can interact with the context and work with real-world problems.

To activate the curriculum further and enrich the hands-on construc-

tionism of Papert (1980) and Vygotsky’s sociocognitive interactions, game-

based learning (GBL) is an appropriate means to help students transform

from passive to active learners, constructing new knowledge by collabo-

rating with their peers and developing essential mental skills by acting as

researchers.

12.1  The conceptual framework of CT with interdisciplinary learning.

Contextual situation

Problem-solving

Algorithm Evaluation Decomposition Abstraction Generalization

Situative CT

Generic CT

Specific CT

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

250	 J.-L. Shih

GBL refers to an educational system that implements games or game

elements as a motivational driver for students (Park et al. 2019). It is per-

ceived as a potentially engaging form of supplementary learning that

could enhance the educational process and has been used at all levels of

education, including primary education. Motivation is a learners’ willing-

ness to make an extended commitment to engage in a new area of learn-

ing (Gee 2003), so many teachers now incorporate GBL to embed learning

with carefully designed curriculum so that students learn spontaneously

and repeatedly.

The spirit of GBL is not only to allow learning to happen in a fun process

(Perrotta et al. 2013) but also to challenge and stimulate higher level learn-

ing. Students actively explore the issues assigned by teachers from various

perspectives, work with peers to find answers, and then develop the skills

to communicate, coordinate, and engage in creative thinking and problem-

solving. Within those problem-solving spaces and challenges, students gain

the sense of achievement (Qian and Clark 2016). The experiential activities

allow students to be more immersed in the learning scenarios, enhancing

learning effectiveness and encouraging students to get wider and deeper

knowledge and skills. Students learn infinitely more by accessing extended

sources, creating strategies for overcoming obstacles, and understanding

complex systems through experimentation. GBL also promotes learning in

an engaging and entertaining manner to underpin the skills and attitudes

of CT (Apostolellis et al. 2014).

EDUCATIONAL IMPLEMENTATION

DESIGN OF THE ROBOTIC GAME <STEMPORT>
<STEMport> was designed by our research team based on the historical con-

text of the Great Voyage (Shih et al. 2017). It is an interdisciplinary game

that embeds STEM educational concepts and computational practices. In the

game, a large world map (600 by 400 cm) shows the geographical area from

Europe eastward to Asia, presenting the territorial scope of the European

Age of Discovery in the seventeenth century (figure 12.2). Colonies owned

by respective countries are identified by colored symbols on the map, along

with specific spices produced in the locations. Students are distributed into

five groups, each role-playing one of the European countries—England, the

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Thinking in the Interdisciplinary Robotic Game	 251

Netherlands, Portugal, Spain, and France. Robots represent their ships, iden-

tified with matching color lights. Since each country has different political

and economic status in history, all the ships come with predefined para

meters showing discrete strengths and weaknesses. The Dutch ship is faster,

the English stronger, the Spanish bigger, and the Portuguese has the most

available ports.

Roles in each country group such as navigator, captain, trader, and

warrior are decided by the students, so they all have responsibilities in the

game. The navigator is the only one who can step onto the large map to

physically measure the distance from one point to another; the captain

handles the coding job; the trader manages the spice trading processes;

the warrior is responsible for robot competitions. The groups take turns

to sail their robotic ships by writing block coding, going to designated

colonies to perform tasks. The first country to complete its tasks wins the

game (figure 12.3).

We initially chose the mBot robotics platform simply out of random

convenience. However, we found that its features led to its exclusive use

12.2  Game design of <STEMport>.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

252	 J.-L. Shih

with <STEMport>. First, mBot robots are on wheels; unmovable robots are

not possible, legged robots inappropriate, and those with sails not con-

venient. Second, its size is appropriate in comparison with the map, and

sailing routes are in a workable range. Third, the robots can be assembled

from parts, so an engineering course can be optionally included. Fourth,

accessories can be attached to most so that the students can aggregate

them as weapons. Fifth, it comes with its own programming software,

mBlock, that can easily connect to the robot. Finally, it is in an affordable

price range and widely known on the market, so students can extend

their learning after class.

12.3  Game play of <STEMport>.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Thinking in the Interdisciplinary Robotic Game	 253

COMPUTATIONAL PRACTICES

In the game, the students choose their target destinations, estimate the

distances from the starting points to the destinations, use limited game

points to move their robots in terms of seconds of moving time, and

decide on actions to take, either trading or going into battles to obtain

spices. While the students are completing all of these game tasks, they are

applying problem-solving CT skills.

Selby, Dorling, and Woollard (2014) defined five core concepts of CT: (1)

Algorithm is to the ability to develop rules that can solve similar problems

step by step and be implemented repeatedly. (2) Evaluation is the process of

ensuring an algorithmic solution is a good one. (3) Decomposition is a way

of thinking about problems, algorithms, artifacts, processes, and systems

in terms of their parts. The separate parts can then be understood, solved,

developed, and evaluated separately. This makes complex problems easier

to solve and large systems easier to design. (4) Abstraction is another way

to make problems or systems easier to think about. It simply involves hid-

ing details and removing unnecessary complexities. (5) Generalization is a

way of quickly solving new problems based on previous problems solved—

taking an algorithm that solves specific problems and adapting it to solve a

whole class of similar problems.

The problems of the <STEMport> game are situated in the contextual

scenario, which are complex and immersive. The students first “decom-

pose” the task requirements with the game rules and try to complete the

tasks in predefined parameters and in limited rounds. Then, they apply

“algorithm” skills to calculate the distance, angle, speed of the naviga-

tions; define the navigation routes; and do “abstraction” to transform

the measurements into computer programming codes. After they take

actions, the students “evaluate” their programming performances by ana-

lyzing the differences between the predicted paths and the actual paths of

the robots, and adjust their following actions. As the students solicit the

main strategies for the game, they “generalize” the conceptual patterns

for the subsequent rounds. The process of game also matches the general

problem-solving stages such as defining problems, searching for solu-

tions, implementing solutions, and evaluating results. The students are

immersed in the scenario, identifying with their country’s strengths and

weaknesses, managing the resources around them, including knowledge,

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

254	 J.-L. Shih

peers, and strategies to search for solutions, then reviewing the effects of

the strategies after actions. These are the essential logistic and creative

skills of CT.

With the instructional design for game-based learning, the game offers

coding-based and problem-solving-oriented CT practices at the same time.

As Kong, Chiu, and Lai (2018) described for CT education, the program-

ming environment should be created to achieve the instructional goal to

cultivate students’ CT abilities during programming activities by enabling

them to concentrate on the problem-solving process as they learn. The

robotics platform also offers a wide range of challenges and opportunities

for learners to develop disruptive thinking, innovative ideas, and other

learning skills needed both in the classroom and outside the school.

For elementary-level learners, the coding interface is preconfigured,

showing only the needed functions while hiding the rest, and making

ready needed functions while leaving only the parameters for them to fill

in. For higher-level learners, different categories of coding functions and

higher levels algorithm can be taught. Coding functions such as motion,

sensing, control, event, operators, data chart, and so on would provide

students more options to manipulate and create gaming environments.

The game can also be transformed using several levels of difficulties

and various forms for different purposes, using game mechanisms. A

higher level of programming skills can be reinforced by changing the

game rules that require the players to use commands such as loop, if-

then, else, and so on. For example, obstacles can be added, such as pirate

ships or storms, so that the players would have to code the robots to go

around them when encountered. Or, when the ships encounter ocean

currents, their ships would be accelerated or decelerated when they are

proceeding with or against the flows. Hence, the students have to come

up with new strategies to cope with the emergent situations. The process

of getting to know the geographic variables and their influences on the

ships, and to recognize the patterns of change, is the process of model-

ing in which relationships between the object, agent, and variables are

established.

For increasing game complexities, each country can choose ship parts

such as hull, oar, mast, and weapons, which would comprise their total

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Thinking in the Interdisciplinary Robotic Game	 255

ship parameters, including propulsion power, cargo capacity, decelera-

tion, firing distance, arm force, and sailing duration.

Gaming strategies that link programming with contextual problems

that require both generic and specific CT skills are inseparable in this

game. The robot is a tool to carry on tasks and solve problems. Robots are

the avatars of the students, with which they take actions. In this way, CT

skills become explicit actions that are observable and evaluable.

PEDAGOGICAL BENEFITS OF THE CHARM OF STEAM

This robotic game-based activity is unlike others where students code for

uniform tasks to compete for higher efficiency, speed, or design of robots.

Instead, <STEMport> opens up an exploratory environment in which stu-

dents start with unequal powers and distinct goals between groups and

apply critical thinking skills to find appropriate methods to achieve those

goals. In the game, each country has tasks to obtain three spices. The first

spice can be accessed by all countries, the second spice can be obtained

by single country, and the third spice is owned by the other countries

from the single one. With that condition set up, students have to cooper-

ate or compete with each other to obtain the spice from other countries.

They can choose to trade, build coalitions, or attack, fight, and battle for

the spices. The game encourages the students to have creative solutions

in terms of route, communication, negotiation, and competition. In this

way, the twenty-first century 5C skills are induced and nurtured.

Coopetition (cooperation and competition) is a common social phe-

nomenon and a rule for achieving success. In the teaching environment,

teachers often use competitive psychology to stimulate students’ learning

motivation to enhance their learning effectiveness (Lin et al. 2017). Thus,

<STEMport> has adopted the strategic game mechanism that allows learn-

ers to cooperate and compete with other players to successfully carry on

their tasks.

Along with the game, we have prepared a curriculum for students’

knowledge and skill extensions, such as unplugged coding, coding with

a block editor, coding for robots, making and crafting the robotic ships,

as well as an advanced issue-based version, the summit game. This is a

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

256	 J.-L. Shih

curriculum of STEAM, the science-oriented disciplines, connected to the

humanity-oriented disciplines, CHARM, which includes culture, humanity,

adventure education, reading, and maker. The CHARM of STEAM implies

that the spirit of interdisciplinary learning is humanity. By providing the

geographical context and historical content, the students are also nurtured

with the social scientific and humanistic spirit. It is to our understanding

and experience that the humanistic context has a large influence on stu-

dents’ attention, extension, and creation in the learning of CT, robotic edu-

cation, and interdisciplinary contents.

The game transforms the usual lecture-type teaching into an interest-

ing learning scenario. In accord with educational theories such as situated

learning, social cognition, and constructivism, we aimed at turning passive

classroom learning into one that embraces interaction, participation, explo-

ration, and knowledge construction. The four learning modes—namely,

narrative, investigative, strategic, and explorative—are implemented. Inter-

disciplinary learning is defined in this game to refer to “doing something

that requires knowledge and skills from various subjects.” Instead of distrib-

uting the tasks into classes of different subjects, the students are doing one

thing to learn many things.

The game is based on sociocultural constructivism, with which stu-

dents are situated in contextual learning scenarios. It is different from vir-

tual scenarios such as simulation. The physical world of learning creates

a real community of practice, in which collaboration and healthy com-

petition are encouraged. In the gaming process, students work together,

play their parts, construct meaning of their own, experience increased

motivation, and are stimulated to pursue extended learning that goes

beyond the game. They change their habits of treating complex problems

and change their way of looking at the world. With the practice of CT and

problem-solving, they learn systematic thinking and analytical thinking.

EVALUATIONS OF STUDENTS’ COMPUTATIONAL

THINKING PERFORMANCES

There are many methods to look at students’ CT performances. CT-related

evaluations can include knowledge testing, motivation scales, gender dif-

ferences, group dynamics, and personality traits. In this section, a few

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Thinking in the Interdisciplinary Robotic Game	 257

tools that we used in previous studies are introduced with brief report of

their results followed by extended discussions and implications.

COMPUTATIONAL THINKING QUESTIONNAIRE

A CT questionnaire can be used before and after the game-based learn-

ing course as the pre-test and post-test. The results of the questionnaires

can be tested through statistical means to evaluate the differences after

the instructional intervention. To see whether students’ CT skills would

influence their gaming results, cross-analyses were done with the stu-

dents’ gaming outcomes.

The CT questionnaire used in our previous studies (Huang, Huang, et

al. 2019) was designed based on the relevant literature (e.g., Atmatzidou

and Demetriadis 2016; Curzon et al. 2014; Dagiené, Sentence, and Stupu-

riené 2017; Selby, Dorling, and Woollard 2014) and taking the principles

of the Bebras International Challenge on Informatics and Computational

Thinking as the main reference. To produce a reliable questionnaire, two

academic researchers specializing in education validated the items twice

(Chu, Liang, and Tsai 2019). The questionnaire includes the five dimen-

sions of computational thinking: algorithm, evaluation, decomposition,

abstraction, and generalization. Each dimension composes five questions

with total of twenty-five questions in the questionnaire. Questions include:

“I will try to dissect the big problems into small parts” to test the students’

perception to the decomposition skills; “I will try to think of the most effi-

cient way to solve the problems” to test their perception to the evaluation

skills; “I will figure out the detailed steps for problem-solving” for the algo-

rithm skills; “I will try to find out the key factor of the problem” and “I will

try to use previous experience to solve new problems” for the abstraction

and generalization skills, respectively. The total correlation analysis showed

that the correlation coefficients of the overall divergence ranged from 0.42

to 0.61 and both reached significant (p < .01), which was a medium-high

correlation, indicating that each dimension has a certain degree of correla-

tion. The reliability Cronbach’s alpha of this scale is 0.91. The reliabilities

for the five dimensions ranged from 0.74 to 0.83. The pattern coefficient of

all dimensions is above 0.4. It shows that the questionnaire has good reli-

ability and validity.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

258	 J.-L. Shih

In one of our studies, fifth-grade students in an elementary school in

southern Taiwan were invited. There were sixty-five boys and thirty-four

girls with a total of ninety-nine students participating in the GBL. It is

found that students’ algorithmic skills can best predict their learning out-

come (Huang, Huang, et al. 2019); therefore algorithmic skill was used as

the main predictor to categorize students into high algorithmic (HA) and

low algorithmic (LA) groups (tables 12.1 and 12.2).

COMPUTATIONAL THINKING SKILLS

To know what CT skills are important and required in which stage of the

game, and how the CT skills influenced the students’ gaming outcome,

regression analysis was conducted using the five dimensions of the CT skills

as predictors in our previous study (Huang et al. 2019; tables 12.1 and 12.2).

The analysis result showed that in the beginning round, decomposi-

tion skill was essential because the students need to know how to dis-

sect the navigation routes into small portions for the coding purposes. In

the second and third rounds, generalization skill takes effect—students

needed to refer to their previous strategies to progress in the game. In

the end round of the game, decomposition skill was no longer impor-

tant because the students were supposed to be very familiar with the

game mechanism and programming. On the other hand, evaluation skill

showed positive effect, indicating that the students learned the strengths

and weakness of various strategies and were able to choose appropriate

ones for their victories.

The correlation test results also showed that the students’ skills of

decomposition and evaluation were closely correlated to their gaming

outcomes. Students with high algorithm skill performed better than those

with lower algorithm skill. Since algorithmic thinking is the core con-

cept of CT, the fundamental education should place more focus on algo-

rithmic thinking so that students can have stronger problem-solving and

strategic-thinking abilities.

STEM ATTITUDE QUESTIONNAIRE

We were curious to see if there were other factors that might influence stu-

dents’ gaming outcome other than CT. We explored students’ awareness

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Thinking in the Interdisciplinary Robotic Game	 259

of the importance of STEM learning and attitudes to STEM learning. The

STEM attitude questionnaire could be implemented before or after the

game. In the study (Huang, Shih, et al. 2019), the STEM questionnaire

was distributed with the post-test of CT, and the results of the question-

naires were cross-analyzed with Pearson Correlation Coefficient method.

The STEM attitude questionnaire was designed based on the relevant

literature (e.g., Lou et al. 2009; Unfried et al. 2015). The questionnaire

includes three dimensions, namely mathematics, science, and ET (engi-

neering and technology). There are nine questions in the mathematics

dimension, nine questions in the science dimension, and twelve ques-

tions in the ET dimension with total of thirty questions in the question-

naire. The questionnaire includes questions such as, “In the future, I could

do harder math problems” to test the students’ attitude to mathematics;

“Science will be important to me in my future work” to test the students’

attitude to science; “I am good at building and fixing things” and “I

Table 12.1  The first-round coefficients of each CT dimension with regression

analysis

Model

Unstandardized coefficients
Standardized
coefficients

tB Std. error Beta

HA Algorithm –6.09 4.379 –.21 –1.39

Evaluation –3.28 3.377 –.14 –.97

Decomposition 7.99 2.700 .45 2.96*

Generalization –5.81 2.990 –.30 –1.94

Abstraction .391 3.572 .02 .11

LA Algorithm –9.29 8.34 –.24 –1.11

Evaluation .313 6.94 .01 .05

Decomposition 1.58 4.53 .08 .35

Generalization –3.51 4.49 –.18 –.78

Abstraction 4.29 5.37 .22 .79

*p < .01

Source: Huang et al. (2019).

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

260	 J.-L. Shih

would like to use creativity and innovation in my future work” to test the

students’ attitude to ET. The reliability Cronbach’s alpha of these three

dimensions scale ranged from .568 to .897. The value is above .5.

In the study, a t-test was used to analyze the STEM attitude question-

naire results between high algorithm (HA) and low algorithm (LA) groups.

It showed that the students with high algorithmic skills have better STEM

attitude than those with lower algorithmic skills. It also showed that the

interdisciplinary robotic game is significant for HA students’ CT skills in

the aspects of decomposition, abstraction, and generalization. Although

the LA students’ STEM attitudes are not related to CT, the gaming results

show that the robotic game could raise their learning motivations. In par-

ticular, the LA students were highly motivated in their problem-solving

tasks even without extrinsic rewards and scores.

Further exploration into the relationship of students’ CT skills and

STEM attitudes (table 12.3) has shown that all STEM aspects are correlated

Table 12.2  The fourth-round coefficients of each CT dimension with regression

analysis

Model

Unstandardized coefficients
Standardized
coefficients

tB Std. error Beta

HA Algorithm 3.82 4.39 .14 .87

Evaluation 7.60 3.39 .35 2.25*

Decomposition –9.18 2.65 –.54 –3.46**

Generalization 3.09 3.19 .17 .97

Abstraction –4.12 3.51 –.19 –1.18

LA Algorithm –5.15 7.48 –.18 –.69

Evaluation –.38 5.99 –.02 –.06

Decomposition 6.58 4.26 .47 1.54

Generalization –5.96 4.63 –.43 –1.29

Abstraction 3.53 5.21 .28 .68

*p < .05, **p < .01

Source: Huang et al. (2019).

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Thinking in the Interdisciplinary Robotic Game	 261

with decomposition and generalization skills. ET are correlated with only

the algorithm skill. It indicates that the interdisciplinary robotic game is

significant for students’ CT skills in decomposition, abstraction, and gen-

eralization. The students were highly motivated in their problem-solving

tasks even without extrinsic rewards and scores.

NAVIGATION ROUTE ANALYSIS

The students’ CT skills are not only evident from the questionnaires but

also demonstrated in their performances in the game. In each round of

the game, all the groups have to predict their navigation routes and place

markers on the map as the targeted destinations. After they take actions

to mobilize the robots, their actual destinations are recorded for com-

parison. The students’ predicted path and actual path of the navigation

routes are documented to assess their spatial concepts, judgments of dis-

tances and angles, calculation of the robots’ speeds, and the students’

programming skills (figure 12.4).

Table 12.3  Correlations between CT and STEM

Fact N STEM Pearson correlation Sig. (2-tailed)

Abstraction 94 Math

Science

ET

.147

.165

.142

.157

.111

.171

Algorithm 94 Math

Science

ET

.148

.189

.261*

.154

.067

.011

Evaluation 94 Math

Science

ET

.113

.082

.081

.279

.431

.436

Decomposition 94 Math

Science

ET

.356**

.213*

.356**

.000

.039

.000

Generalization 94 Math

Science

ET

.319**

.223*

.272**

.000

.031

.008

*p < .05, **p < .01

Source: Huang, Shih et al. (2019).

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

262	 J.-L. Shih

The formula of the Pythagorean theorem is used to calculate the dis-

tance between the student’s predicted destination and the actual destina-

tion of every navigation. The formula is as in figure 12.5.

In the study (Huang, Huang, et al. 2019), students took four rounds

to complete the tasks in the game (figure 12.6). Round 1 involved mostly

straight lines to reach the destinations, so the students performed fair and

similarly to each other. Round 2 involved making turns, so the measure-

ment and calculation to angles had added complexity. Therefore, the differ-

ences between their predicted destinations and actual destinations become

larger; the varieties of students’ CT abilities were shown. In round 3, stu-

dents seemed to be more familiar with the measuring and coding processes,

and the distances were greatly reduced. Their performances reached peaks

at this stage. Thereafter in round 4, their performances remained consistent

and stable since the tasks become a routine. From the overall results, it can

12.4  Comparison of the predicted destination and actual destination of the mBot

navigation.

Predicted path

Actual path

Predicted destination

Actual destination

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Thinking in the Interdisciplinary Robotic Game	 263

be seen that all groups had obvious improvements along the game and they

all reached the expected learning outcomes at the end of the game. The

students’ predicted paths almost match the actual paths of the navigation

routes. The game allowed them to continually improve CT skills to the last

round.

DISCUSSION AND CONCLUSION

A FRAMEWORK FOR SITUATIVE CT

The game <STEMport> normally runs for sixty to ninety minutes, depend-

ing on the level of students’ prior knowledge in all aspects. However, the

extended curriculum can range from a few hours to a few months. It

can be implemented in a short-term student club or camp; it can also be

implemented within the structure of formal education as theme-based

12.5  The distance between predicted destination to actual destination.

The distance between predicted path to actual path:

D = Distance, AP = Actual Path, PP = Predicted Path

D = √|PA 2 – PP 2|
–––––––––––

12.6  The distance between the predicted path and the actual path (Huang, Huang et al.

2019).

80.00

70.00

60.00

50.00

40.00

30.00

20.00

10.00

0.00

France

Spain

Netherland

England

Portugal

1

37.34

15.00

0.00

15.00

33.00

2

8.60

5.00

75.66

18.25

30.00

3

0.00

18.00

5.83

15.00

12.81

4

4.24

8.00

10.00

12.21

11.18

×
×+

× × × ×

×+ ×+

×+ ×+

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

264	 J.-L. Shih

curriculum or be mentally linked to the curriculum of all subjects. Pap-

ert (1980) argued that robotics activities have tremendous potential to

improve classroom teaching. Although the classroom teaching he referred

to might mean a very different education system from those practiced in

Asian countries, what brought us to the same conclusion is that learning

is most effective when students are experiencing and discovering things

for themselves. Either inside or outside of formal education system, the

robotic activities have positive impacts on both specific CT and generic

CT abilities.

To construct an effective situative CT learning environment, a few sug-

gestions are given to the instructional designer. One has to set up narrative

scenario, provide dynamic context and open tasks for problem-solving,

encourage creative solutions, create the demand of negotiations and use

of algorithms, and make links to content or skills taught in other domain

specific classes.

INTERPRETATION TO PREVIOUS STUDIES

Our previous studies concluded that students in the game can learn and

practice the spatial concepts; measure the angles, distances, and speed;

as well as solve the navigation problems, all of which increased students’

CT skills. However, particular CT dimensions can better predict students’

gaming outcomes, especially algorithm. Therefore, it is necessary for us

to help the students to increase their algorithm skills so that they can

accomplish more in the strategic game and problem-solving tasks and

can have better learning performance in general. More dimensions of CT

skills should be reinforced in our pre-activity training, such as decom-

position of problems, abstraction for concept searching and solutions,

and generalization of strategies to other situations. Thus, it is critical to

sharing the elements of CT with other disciplines and prepare students

for the future.

One of our major contributions is the proposal of an interdisciplin-

ary robotic game-based learning approach that guides students to face

dynamic problem situations in an effective and enjoyable manner. From

students’ feedback, they were generally excited and immersed in playing

<STEMport>, which stimulated their interests in related domain learning.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Thinking in the Interdisciplinary Robotic Game	 265

It is a joyful mode of learning that also advances their collaboration, cre-

ativity, and self-confidence as they work together in the group for the

common goals.

EXTENDING LEARNING INTO THE FUTURE

From other research (e.g., Domínguez et al. 2013), we see that students

completed the gamified experience and got better scores in practical

assignments and in overall performances. To nurture our next genera-

tions with CT competencies, many countries have started spiral interdis-

ciplinary curriculum for students at young ages (e.g., Apostolellis et al.

2014; Bocconi et al. 2016; Shih et al. 2017). Taiwan is no exception and

introduced CT in the new curriculum plan to be implemented beginning

in August 2019, believing a high-quality computing education can guide

the students to understand and change the world just as proposed in the

United States (U.S. Office of Educational Technology 2016).

In our study, games helped students to integrate and reinforce exist-

ing knowledge and skills in an interdisciplinary way. Just like Barak and

Assal (2018) said, this robotic learning environment and the pedagogical

approach of involving the students in rich assignments of growing com-

plexity were among the major factors that contributed to students’ con-

tinuation in learning. Robotics is a learning tool that enhances students’

experience through hands-on, mind-on learning that, when combined

with project-based and goal-oriented learning experiences, has long-

lasting impacts on students’ learning and motivation for further explor-

ing in STEM-related fields (Eguchi 2010).

Since all the previous studies were short-term activities, it would be

meaningful to know whether the students experience better performance

in their formal classes after playing the game. Thereafter, linking more

content into the regular formal curriculum and doing long-term observa-

tion and investigation will be our next step. This game and the related

curriculum have successfully been adopted and transformed in several

mutations in many elementary schools in Taiwan. We are ready to take

the anthropological perspective to look into students’ behavioral changes

in this innovative and student-centered classroom and to analyze how

their personality traits would influence how they take on the role-play

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

266	 J.-L. Shih

and their actions. The humanistic approach for instructional and learning

analytics would help us to understand, respect, communicate, and work

with others better and to comprehend different individuals and cultures.

The understanding of empowered education would sustain students for

lifelong learning and would help us to be connected to the “worlds,” to

adapt to the “differences,” and to make positive changes either in educa-

tion or life.

ACKNOWLEDGMENTS

This study is supported in part by the Ministry of Science and Technology

of Taiwan, under MOST 104–2628-S-008–002-MY4. Thanks are due to my

research team for contributions to this and several previous studies.

REFERENCES

Afari, Ernest, and Myint Swe Khine. 2017. “Robotics as an Educational Tool: Impact
of LEGO Mindstorms.” International Journal of Information and Education Technology
7 (6): 437–442.

Apostolellis, Panagiotis, Michael Stewart, Chris Frisina, and Dennis Kafura. 2014.
“RaBit EscAPE: A Board Game for Computational Thinking.” In Proceeding ICD’14:
Proceedings of the 2014 Conference on Interaction Design and Children. New York,
349–352.

Atmatzidou, Soumela, and Stavros Demetriadis. 2016. “Advancing Students’ Compu-
tational Thinking Skills through Educational Robotics: A Study on Age and Gender
Relevant Differences.” Robotics and Autonomous Systems 75: 661–670.

Barak, Moshe, and Muhammad Assal. 2018. “Robotics and STEM Learning: Students’
Achievements in Assignments according to the P3 Task Taxonomy—Practice, Prob-
lem Solving, and Projects.” International Journal of Technology and Design Education,
28 (1): 121–144.

Bers, Marina Umaschi, Louise Flannery, Elizabeth R. Kazakoff, and Amanda Sullivan.
2014. “Computational Thinking and Tinkering: Exploration of an Early Childhood
Robotics Curriculum.” Computers & Education 72: 145–157.

Blanchard, Samuel, Viktor Freiman, and Nicole Lirrete-Pitre. 2010. “Strategies Used
by Elementary Schoolchildren Solving Robotics-Based Complex Tasks: Innovative
Potential of Technology.” Procedia Social and Behavioral Science 2 (2): 2851–2857.

Bocconi, Stefania, Augusto Chioccariello, Giuliana Dettori, Anusca Ferrari, and Katja
Engelhardt. 2016. Developing Computational Thinking in Compulsory Education-Implications

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Thinking in the Interdisciplinary Robotic Game	 267

for Policy and Practice (No. JRC104188). Luxembourg: Publications Office of the Euro-
pean Union.

Breiner, Jonathan M., Shelly Sheats Harkness, Carla C. Johnson, and Catherine M.
Koehler. 2012. “What Is STEM? A Discussion about Conceptions of STEM in Educa-
tion and Partnerships.” School Science and Mathematics 112 (1): 3–11.

Brennan, Karen, and Mitchell Resnick. (2012). “New Frameworks for Studying and
Assessing the Development of Computational Thinking.” In Proceedings of 2012
Annual Meeting of the American Educational Research Association (AERA’12). Vancou-
ver, BC, 1–25.

Chambers, Joan M., Mike Carbonaro, and Marion Rex. 2007. “Scaffolding Knowl-
edge Construction through Robotic Technology: A Middle School Case Study.” Elec-
tronic Journal for the Integration of Technology in Education 6: 55–70.

Chen, Guanhua, Ji Shen, Lauren Barth-Cohen, Shiyan Jiang, Xiaoting Huang, and
Moataz Eltoukhy. 2017. “Assessing Elementary Students’ Computational Thinking
in Everyday Reasoning and Robotics Programming.” Computers & Education 109:
162–175.

Chu, Yuan-Kai, Jyh-Chong Liang, and Meng-Jung Tsai. 2019. “Development of a
Computational Thinking Scale for Programming.” In Proceedings of the International
Conference on Computational Thinking Education 2019, edited by Siu-Cheung Kong,
Diana Andone, Gautam Biswas, Heinz Ulrich Hoppe, Ting-Chia Hsu, Ronghuai Huang,
and Bor-Chen Kuo, et al. Hong Kong: The Education University of Hong Kong,
185–189.

Curzon, Paul, Jonathan Black, Laura R. Meagher, and Peter W. McOwan. (2009).
“cs4fn​.org: Enthusing Students about Computer Science.” In Proceedings of Informat-
ics Education Europe IV, edited by Christoph Hermann, Tobias Lauer, Thomas Ott-
mann, and Martina Welte. Freiburg, Germany: Informatics Europe, 73–80.

Curzon, Paul, Mark Dorling, Thomas Ng, Cynthia Selby, and John Woollard. 2014.
Developing Computational Thinking in the Classroom: A Framework. Swindon, UK:
Computing At School.

Dagiené, Valentina, Sue Sentence, and Gabrielė Stupurienė. 2017. “Developing a
Two-Dimensional Categorization System for Educational Tasks.” Informatica 28 (1):
23–44.

Deschryver, Michael, and Aman Yadav. 2015. “Creative and Computational Think-
ing in the Context of New Literacies: Working with Teachers to Scaffold Complex
Technology Mediated Approaches to Teaching and Learning.” Journal of Technology
and Teacher Education 23 (3): 411–431.

Domínguez, Adrián, Joseba Saenz-de-Navarrete, Luis de-Marcos, Luis Fernández-
Sanz, Carmen Pagés, and José-Javier Martínez-Herráiz. 2013. “Gamifying Learn-
ing Experiences: Practical Implications and Outcomes.” Computers & Education 63:
380–392.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

268	 J.-L. Shih

Eguchi, Amy. 2010. “What Is Educational Robotics? Theories behind It and Prac-
tical Implementation.” In Proceedings of Society of Information Technology & Teacher
Education International Conference, edited by David Gibson and Bernie Dodge. Chesa-
peake, VA: Association for the Advancement of Computing in Education, AACE,
4006–4014.

Frymier, Ann Bainbridge, Gary M. Shulman, and Marian Houser. 1996. “The Develop-
ment of a Learner Empowerment Measure.” Communication Education 45 (3): 181–199.

Gee, James P. 2003. “What Video Games Have to Teach Us about Learning and Lit-
eracy.” Computers in Entertainment 1 (1): 20.

Honey, Margaret, Greg Pearson, and Heidi Schweingruber. 2014. STEM Integration in
K–12 Education: Status, Prospects, and an Agenda for Research. Washington, DC: The
National Academies Press.

Huang, Hsin-Yin, Shu-Hsien Huang, Ju-Ling Shih, Meng-Jung Tsai, and Jyh-Chong
Liang. 2019. “Exploring the Role of Algorithm in Elementary School Students’ Compu-
tational Thinking Skills from a Robotic Game.” In Proceedings of the International Con-
ference on Computational Thinking Education 2019, edited by Siu-Cheung Kong, Diana
Andone, Gautam Biswas, Heinz Ulrich Hoppe, Ting-Chia Hsu, Ronghuai Huang, and
Bor-Chen Kuo, et al. Hong Kong: The Education University of Hong Kong, 217–222.

Huang, Hsin-Yin, Ju-Ling Shih, Shu-Hsien Huang, and Jyh-Chong Liang. 2019.
“Effects of the Interdisciplinary Robotic Game to Elementary School Students’ Abili-
ties of Computational Thinking and STEM.” In Proceedings of the 27th International
Conference on Computers in Education, edited by Maiga Chang et al. Taiwan: Asia-
Pacific Society for Computers in Education, 95–103.

Kong, Siu Cheung, Ming Chiu, and Ming Lai. (2018). “A Study of Primary School
Students’ Interest, Collaboration Attitude, and Programming Empowerment in
Computational Thinking Education.” Computers & Education 127: 178–189.

Lin, Chang-Hsin, Shu-Hsien Huang, Ju-Ling Shih, Alexandra Covaci, and Gheorghita
Ghinea. 2017. “Game-Based Learning Effectiveness and Motivation Study between
Competitive and Cooperative Modes.” In Proceedings of 2017 IEEE 17th International
Conference on Advanced Learning Technologies (ICALT). Timisoara, Romania, 123–127.

Lou, Shi Jer, C. Ray Diez, Hsi Chi Hsiao, Wen Hsiung Wu, and Shu-Hsuan Chang.
2009. “A Study on the Changes of Attitude toward STEM among Senior High School
Girl Students in Taiwan.” Paper presented at 2009 ASEE Annual Conference and Expo-
sition. Austin, TX.

Nourbakhsh, Illah, Kevin Crowley, Ajinkya Bhave, Emily Hamner, Thomas Hsiu,
Andres Perez-Bergquist, Steve Richards, and Katie Wilkinson. 2005. “The Robotic
Autonomy Mobile Robotics Course: Robot Design, Curriculum Design and Educa-
tional Assessment.” Autonomous Robots 18 (1): 103–127.

Papert, Seymour. (1980). Mindstorms: Children, Computers, and Powerful Idea. New
York: Basic Books.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Computational Thinking in the Interdisciplinary Robotic Game	 269

Park, Juneyoung, Seunghyun Kim, Auk Kim, and Munyong Yi. 2019. “Learning to
Be Better at the Game: Performance vs. Completion Contingent Reward for Game-
Based Learning.” Computers & Education, 139: 1–15.

Perrotta, Carlo, Gill Featherstone, Helen Aston, and Emily Houghton. 2013. Game-
Based Learning: Latest Evidence and Future Directions. Slough, UK: National Founda-
tion for Educational Research.

Petre, Marian, and Blaine Price. 2004. “Using Robotics to Motivate ‘Back Door’
Learning.” Education and Information Technologies 9 (2): 147–158.

Qian, Meihua, and Karen R. Clark. 2016. “Game-Based Learning and 21st Century
Skills: A Review of Recent Research.” Computers in Human Behavior 63: 50–58.

Rogers, Chris, and Portsmore, Merredith. 2004. “Bringing Engineering to Elemen-
tary School.” Journal of STEM Education: Innovations and Research 5 (3–4): 17–28.

Selby, Cynthia, Mark Dorling, and John Woollard. 2014. Evidence of Assessing Com-
putational Thinking. https://eprints​.soton​.ac​.uk​/372409​/1​/372409EvidAssessCT​.pdf​.

Shih, Ju-Ling, Shu-Hsien Huang, Chang-Hsi Lin, and Chia-Chun Tseng. 2017.
“STEAMing the Ships for the Great Voyage: Design and Evaluation of a Technology-
integrated Maker Game.” Interaction Design and Architectures 34: 61–87.

Unfried, Alana, Malinda Faber, Daniel S. Stanhope, and Eric Wiebe. 2015. “The
Development and Validation of a Measure of Student Attitudes toward Science,
Technology, Engineering, And Math (S-STEM).” Journal of Psychoeducational Assess-
ment 33 (7): 622–639.

U.S. Office of Educational Technology. 2016. Future Ready Learning: Reimagining the
Role of Technology in Education. U.S. Department of Education. http://tech​.ed​.gov​.

Voogt, Joke, Petra Fisser, Jon Good, Punya Mishra, and Aman Yadav. 2015. “Compu-
tational Thinking in Compulsory Education: Towards an Agenda for Research and
Practice.” Education and Information Technologies 20 (4): 715–728.

Voskoglou, Michael Gr., and Sheryl Buckley. 2012. “Problem Solving and Comput-
ers in a Learning Environment.” Egyptian Computer Science Journal, ECS 36 (4): 28–46.

Wing, Jeannette M. 2006. “Computational Thinking.” Communications of the ACM
49 (3): 33–35.

Wing, Jeannette M. 2008. “Computational Thinking and Thinking about Comput-
ing.” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engi-
neering Sciences 366 (1881): 3717–3725.

Wing, Jeannette M. 2014. Computational Thinking Benefits Society (blog). http://
socialissues​.cs​.toronto​.edu​.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Angeli, Charoula, Joke Voogt, Andrew Fluck, Mary Webb, Margaret Cox, Joyce
Malyn-Smith, and Jason Zagami. 2016. “A K-6 Computational Thinking Curriculum
Framework: Implications for Teacher Knowledge.” Educational Technology & Society
19 (3): 47–57.

Berland, Matthew, and Uri Wilensky. 2015. “Comparing Virtual and Physical Robot-
ics Environments for Supporting Complex Systems and Computational Thinking.”
Journal of Science Education and Technology 24 (5): 628–647.

Buitrago Flórez, Francisco, Rubby Casallas, Marcela Hernández, Alejandro Reyes,
Silvia Restrepo, and Giovanna Danies. 2017. “Changing a Generation’s Way of Think-
ing: Teaching Computational Thinking through Programming.” Review of Educational
Research 87 (4): 834–860.

Chen, Guanhua, Ji Shen, Lauren Barth-Cohen, Shiyan Jiang, Xiaoting Huang, and
Moataz Eltoukhy. 2017. “Assessing Elementary Students’ Computational Thinking in
Everyday Reasoning and Robotics Programming.” Computers & Education 109: 162–175.

Curzon, Paul, Tim Bell, Jane Waite, and Mark Dorling. 2019. “Computational Think-
ing.” In The Cambridge Handbook of Computing Education Research, edited by Sally A.
Fincher and Anthony V. Robins, 513–546. Cambridge: Cambridge University Press.

Denning, Peter. 2017. “Remaining Trouble Spots with Computational Thinking.”
Communications of the ACM 80 (6): 33–39.

Durak, Hatice Yildiz, and Mustafa Saritepeci. 2018. “Analysis of the Relation between
Computational Thinking Skills and Various Variables with the Structural Equation
Model.” Computers and Education 116: 191–202.

ADDITIONAL READINGS ON CT
EDUCATION FOR K–12

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

272	 Additional Readings on CT Education for K–12

Erstad, Ola, Birgit Eickelmann, and Koos Eichhorn. 2015. “Preparing Teachers for
Schooling in the Digital Age: A Meta-Perspective on Existing Strategies and Future
Challenges.” Education and Information Technologies 20 (4): 641–654.

Gadanidis, George. 2017. “Five Affordances of Computational Thinking to Support
Elementary Mathematics Education.” Journal of Computers in Mathematics and Science
Teaching 36 (2): 143–151.

Grover, Shuchi, and Roy Pea. 2013. “Computational Thinking in K–12: A Review of
the State of the Field.” Educational Researcher 42 (1): 38–43.

Guzdial, Mark. 2019. “Computing for Other Disciplines.” In The Cambridge Hand-
book of Computing Education Research, edited by Sally A. Fincher and Anthony V.
Robins, 584–605. Cambridge: Cambridge University Press.

Israel, Maya, Jamie N. Pearson, Tanya Tapia, Quentin M. Wherfel, and George Reese.
2015. “Supporting All Learners in School-Wide Computational Thinking: A Cross-
Case Qualitative Analysis.” Computers and Education 82: 263–279.

Kafai, Yasmin B., and Quinn Burke. 2014. Connected Code: Why Children Need to
Learn Programming. Cambridge, MA: MIT Press.

Kafura, Dennis, Austin Cory Bart, and Bushra Chowdhury. 2018. “A Computational
Thinking Course Accessible to Non-STEM Majors.” Journal of Computing Sciences in
Colleges 34 (2): 157–163.

Lévy, Pierre. 1994. L’intelligence Collective. Pour une Anthropologie du Cyberespace [Col-
lective Intelligence: Mankind’s Emerging World in Cyberspace]. Paris: La Découverte.

Lye, Sze Yee, and Joyce Hwee Ling Koh. 2014. “Review on Teaching and Learning of
Computational Thinking through Programming: What Is Next for K–12?” Computers
in Human Behavior 41: 51–61.

Marope, Mmantsetsa. 2017. “Future Competences for Future Generations.” UNESCO
International Bureau of Education: In Focus, 2. Accessed May 11, 2020. http://ibe​-infocus​
.org​/wp​-content​/uploads​/2018​/03​/In​-Focus​-2017​.pdf​.

Merkouris, Alexandros, Konstantinos Chorianopoulos, and Achilles Kameas. 2017.
“Teaching Programming in Secondary Education through Embodied Computing
Platforms: Robotics and Wearables.” ACM Transactions on Computing Education 17
(2): 9.1–9.22.

Pérez, Arnulfo. 2018. “A Framework for Computational Thinking Dispositions in Math-
ematics Education.” Journal for Research in Mathematics Education 49 (4): 424–461.

Porayska-Pomsta, Kaśka. 2016. “AI as a Methodology for Supporting Educational
Praxis and Teacher Metacognition.” International Journal of Artificial Intelligence in
Education 26 (2): 679–700.

Przybylla, Mareen, & Ralf Romeike. 2014. “Physical Computing and Its Scope—
Towards a Constructionist Computer Science Curriculum with Physical Comput-
ing.” Informatics in Education 13 (2): 225–240.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Additional Readings on CT Education for K–12	 273

Román-González, Marcos, Juan-Carlos Pérez-González, and Carmen Jiménez-
Fernández. 2017. “Which Cognitive Abilities Underlie Computational Thinking? Cri-
terion Validity of the Computational Thinking Test.” Computers in Human Behavior 72:
678–691.

Sandoval, William A., and Philip Bell. 2004. “Design-Based Research Methods for
Studying Learning in Context: Introduction.” Educational Psychologist 39 (4): 199–201.

Shute, Valerie J., Chen Sun, and Jodi Asbell-Clarke. 2017. “Demystifying Computa-
tional Thinking.” Educational Research Review 22: 142–158.

Singer-Gabella, Marcy, Barbara Stengel, Emily Shahan, and Min-Joung Kim. 2016.
“Learning to Leverage Student Thinking: What Novice Approximations Teach Us
about Ambitious Practice.” Elementary School Journal 116 (3): 411–436.

Sullivan, Florence R., and John Heffernan. 2016. “Robotic Construction Kits as Com-
putational Manipulatives for Learning in the STEM Disciplines.” Journal of Research
on Technology in Education 48 (2): 105–128.

Sung, Woonhee, Junghyun Ahn, and John Black. 2017. “Introducing Computa-
tional Thinking to Young Learners: Practicing Computational Perspectives through
Embodiment in Mathematics Education.” Technology, Knowledge and Learning 22 (3):
443–463.

Tan, Jennifer Pei-Ling, Suzanne S. Choo, Trivina Kang, and Gregory Arief D. Liem.
2017. “Educating for Twenty-First Century Competencies and Future-Ready Learn-
ers: Research Perspectives from Singapore.” Asia Pacific Journal of Education 37 (4):
425–436.

Tatar, Deborah. 2007. “The Design-Tension Framework.” Human–Computer Interac-
tion 22 (4): 413–451.

Taylor, Kellie, and Youngkyun Baek. 2019. “Grouping Matters in Computational
Robotic Activities.” Computers in Human Behavior 93: 99–105.

Tuhkala, Ari, Marie-Louise Wagner, Ole Sejer Iversen, and Tommi Kärkkäinen. 2019.
“Technology Comprehension—Combining Computing, Design, and Societal Reflec-
tion as a National Subject.” International Journal of Child-Computer Interaction 20:
54–63.

Turchi, Tommaso, Daniela Fogli, and Alessio Malizia. 2019. “Fostering Computa-
tional Thinking through Collaborative Game-Based Learning.” Multimedia Tools and
Applications 78 (10): 13649–13673.

Vahrenhold, Jan, Quintin Cutts, and Katrina Falkner. 2019. “Schools (K–12).” In The
Cambridge Handbook of Computing Education Research, edited by Sally A. Fincher and
Anthony V. Robins, 547–583. Cambridge: Cambridge University Press.

Voogt, Joke, Petra Fisser, Jon Good, Punya Mishra, and Aman Yadav. 2015. “Compu-
tational Thinking in Compulsory Education: Towards an Agenda for Research and
Practice.” Education and Information Technologies 20 (4): 715–728.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

274	 Additional Readings on CT Education for K–12

Walker, Caroline, and Alan Gleaves. 2018. “Teaching Computational Thinking.” In
Creating the Coding Generation in Primary Schools: A Practical Guide for Cross-Curricular
Teaching, edited by Steve Humble, 22–35. Abingdon, UK: Routledge.

Wang, Tzu-Hua, Kenneth Y. T. Lim, Jari Lavonen, and Alison Clark-Wilson. 2019.
“Maker-Centred Science and Mathematics Education: Lenses, Scales and Contexts.”
International Journal of Science and Mathematics Education 17 (Supplement 1): 1–11.

Webb, Mary, Niki Davis, Tim Bell, Yaacov Katz, Nicholas Reynolds, Dianne Cham-
bers, and Maciej Sysło. 2017. “Computer Science in K–12 School Curricula of the
2lst Century: Why, What and When?” Education and Information Technologies 22 (2):
445–468.

Weintrop, David, Elham Beheshti, Michael Horn, Kai Orton, Kemi Jona, Laura
Trouille, and Uri Wilensky. 2016. “Defining Computational Thinking for Math-
ematics and Science Classrooms.” Journal of Science Education and Technology 25 (1):
127–147.

Whitherspoon, Eben, Ross Higashi, Christian Schunn, Emily Baehr, and Robin
Shoop. 2018. “Developing Computational Thinking through a Virtual Robotics Pro-
gramming Curriculum.” ACM Transactions on Computing Education 18 (1): 4.1–4.20.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Harold Abelson Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology

Cynthia Breazeal MIT Media Lab, Massachusetts Institute of Technology

Karen Brennan Harvard Graduate School of Education, Harvard University

Michael E. Caspersen IT-vest—Networking Universities, Denmark

Christian Dindler Center for Computational Thinking and Design, Aarhus University

Daniella DiPaola MIT Media Lab, Massachusetts Institute of Technology

Nardie Fanchamps Fontys University of Applied Science

Christina Gardner-McCune Computer & Information Science & Engineering Depart-

ment, University of Florida

Mark Guzdial Computer Science & Engineering Division, University of Michigan

Kai Hakkarainen Department of Education, University of Helsinki

Fredrik Heintz Department of Computer and Information Science, Linköping University

Paul Hennissen Zuyd University of Applied Science

H. Ulrich Hoppe Faculty of Engineering, University of Duisburg-Essen

Ole Sejer Iversen Center for Computational Thinking and Design, Aarhus University

Siu-Cheung Kong Centre for Learning, Teaching and Technology, The Education

University of Hong Kong

CONTRIBUTORS

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

276	 Contributors

Wai-Ying Kwok Centre for Learning, Teaching and Technology, The Education

University of Hong Kong

Sven Manske Faculty of Engineering, University of Duisburg-Essen

Jesús Moreno-León Programamos​.es, Spain

Blakeley H. Payne MIT Media Lab, Massachusetts Institute of Technology

Sini Riikonen Faculty of Educational Sciences, University of Helsinki

Gregorio Robles Universidad Rey Juan Carlos (URJC)

Marcos Román-González Faculty of Education, Universidad Nacional de Educación

a Distancia (UNED), Spain

Pirita Seitamaa-Hakkarainen Department of Teacher Education, University of Helsinki

Ju-Ling Shih Graduate Institute of Network Learning Technology, National Central

University, Taiwan

Pasi Silander Department of Teacher Education, University of Helsinki

Lou Slangen Fontys University of Applied Science

Rachel Charlotte Smith Center for Computational Thinking and Design, Aarhus

University

Marcus Specht Leiden-Delft-Erasmus Center for Education and Learning, Delft

University of Technology

Florence R. Sullivan College of Education, University of Massachusetts

David S. Touretzky Computer Science Department, Carnegie Mellon University

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

Abstraction, 49–50, 149, 220–221, 253

Algorithm(s), 103, 150, 153, 158,

188–189

Algorithmic thinking, 8, 53, 61, 79, 225,

258

App Inventor, 5, 56, 166

Artificial intelligence (AI), 7–8, 103,

143, 153, 182

Assessment, 16, 62, 91–92, 246

Automation, 19–20, 79, 105, 108, 146

Block-based programming, 41, 212–213,

239

Co-creation projects, 107–109, 113,

116–117

Coding, 104–105, 107, 112, 116, 247

Computation, 29–30, 50, 66, 105, 178

Computational empowerment, 121–123,

131–133

Computational thinking (CT), 1, 49,

135, 144, 177, 245

Computer science, 1–2, 29–30, 150, 172

Computing, 2, 29, 35, 50, 105, 107

Constructionism, 3, 10, 15, 17, 25, 109

Creativity, 22–23, 108–109, 234, 246

Critical thinking, 2, 9, 104, 246, 248,

255

Curriculum, 66, 117, 133–135, 182

Digital empowerment, 132–135, 137

Duality, 144, 161

Elementary school, 79, 90, 254, 258, 265

Empowerment, 18, 22–23, 123–124, 249

Ethics, 134, 176, 185–186

Evaluation, 67, 233, 246, 253, 256–257

Game-based learning, 246, 249, 254–255,

257, 264

High school, 38, 63, 85, 90, 169, 172

Information technology, 1, 3–4, 18, 106

Interdisciplinary, 245–250, 256, 260–261,

265

K–12 education, 56, 83, 105, 107,

116–117

Kindergarten/preschool, 22, 136

INDEX

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

278	 Index

Learning, 3, 165–167, 214, 264

LEGO Mindstorms, 210–212, 238

Literacy, 30, 35–37, 75, 184

Machine learning, 145, 165–166,

190–191

Middle school, 77, 182, 185–187, 189

Multiple computational thinkings,

74–75

Participatory design, 121–123, 127,

135–136

Perception, 155–158, 178

Phenomena-based learning, 109–113

Plugged, 186, 190, 210

Primary school, 81, 112, 121, 133,

231, 250

Problem solving, 51, 144, 223–225, 229

Problem space, 209–210, 212, 220, 225

Programming, 9–10, 19, 22, 29, 66

Programming environment, 37, 39–40,

229, 238, 254

Programming language, 2, 29, 37–38,

54, 238

Programming skills, 51, 75, 254

Reasoning, 103, 158–161, 232

Representation, 131, 158, 161, 178, 220,

238

Robotics, 209–211, 226, 247, 265

Scratch, 5, 22, 37, 53, 56, 83

Secondary school, 81, 85, 90, 121, 128,

133

Sense-Reason-Act (SRA), 230–232, 234,

239

Speech recognition, 157

STEAM (Science, Technology,

Engineering, Arts, and

Mathematics), 104, 131, 245

STEM (Science, Technology,

Engineering, and Mathematics),

21, 30, 50, 184, 209, 249

Teaching, 37, 108–109, 148, 169, 264

Twenty-first century skills, 104, 246

Unplugged, 54, 82, 186, 202, 238, 255

Visual block-based programming, 53,

56, 61–63, 67

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024

