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Computing has been an essential element in national economies and 

societal institutions since the 1960s. As such, it has been a major com-

ponent of technical education. But only in the past decade have innova-

tions such as social networks, online news, and internet commerce made 

information technology omnipresent in daily life for much of the world’s 

population. This has driven the call for K– 12 school education, even at 

levels as early as primary school, to include computing as an essential topic 

in preparing students for a world that is being increasingly shaped by infor-

mation technology. In the words of the Computer Science Teachers Asso-

ciation (CSTA) in their 2017 K– 12 computer science standards, “Computer 

science and the technologies it enables rest at the heart of our economy 

and the way we live our lives. To be well- educated citizens in a computing- 

intensive world and to be prepared for careers in the 21st century, our stu-

dents must have a clear understanding of the principles and practices of 

computer science.”

While these words, first written in 2011, highlight the principles of 

computer science for K– 12, the emphasis in K– 12 computing educa-

tion continues to shift from computer science to a broader perspective 

of computational thinking (CT), which is viewed not so much as about 

technology but rather as a method of thought. As explained in a current 

handbook on educational technology, “CT is essentially a framework to 

INTRODUCTION TO COMPUTATIONAL 
THINKING EDUCATION IN K– 12

Siu- Cheung Kong, Harold Abelson, and Wai- Ying Kwok

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024



2 s.- C. Kong, H. Abelson, And W.- Y. KWoK

describe a set of critical thinking and problem- solving skills, and it has 

gained significant traction as a viable and useful way of thinking about 

how to teach these skills in formal educational settings” (Hunsaker 2018).

The popularity of this view derives from a seminal article by Jeannette 

Wing. In it Wing (2006) emphasizes that CT involves “solving problems, 

designing systems, and understanding human behavior, by drawing on 

the concepts fundamental to computer science,” and she argues that 

CT is “a fundamental skill for everyone, not just computer scientists” 

(33). These sentiments were quickly and enthusiastically echoed by com-

puter science educators, but they initially did not receive much attention 

beyond that community. This has changed over the past decade, as people 

have come to increasingly experience the impact of computing at a per-

sonal level and to better appreciate the role of computing in society and 

in our institutions. Educational authorities around the world now share 

a consensus that timely and flexible policies should be adopted to foster 

broad exposure to computational thinking education (CTE) throughout 

the curriculum and for students to start their CTE journey in schooling life 

as early as middle school, possibly even earlier.

DESIRABLE ROLES FOR COMPUTATIONAL THINKING  

EDUCATION IN K– 12

Advocates for CTE in K– 12 generally cite two classes of reasons: (1) CTE 

as a tool to concretely realize “thinking education” for young people and 

(2) CTE as a route to empowering young people to participate in an infor-

mation society.

CoMPUtAtIonAl tHInKIng edUCAtIon FoR ConCRetelY 

ReAlIZIng tHInKIng edUCAtIon

Wing’s articulation of CT as a tool for thinking traces to the work of Pap-

ert at MIT and the creation of the Logo computer language, the first pro-

gramming language explicitly designed for children. Papert’s first paper on 

Logo was called “Teaching Children Thinking,” in which he argued that 

manipulating computing could give children a sense of applied knowledge 

and self- confidently realistic images of themselves as intellectual agents 
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(Papert 1971). The first use of the term “computational thinking” in the 

sense meant here is due to Papert (1980).1

Underlying this view is a theory of learning called constructionism. This 

was proposed by Papert as an elaboration of the constructivist theory of 

knowledge developed by the psychologist Jean Piaget, with whom Papert 

had worked before coming to MIT. Piaget’s constructionism holds that 

learning occurs as an active process of organizing knowledge based on 

experience, rather than just through passive observation. Papert’s con-

structionism extends this to the idea that learning is most effective when 

it is part of an activity that constructs a meaningful product (Papert 1987). 

For Papert, computers could be powerful “construction kits,” with which 

children can construct their own knowledge.

Following Wing’s article, there have been many proposed articulations 

of the competences and dimensions central to CT. Some stress creativity 

and general constructionist approaches to learning, while others adhere 

to the centrality of ideas from computer science. For example, one popu-

lar definition holds that “we consider computational thinking to be the 

thought processes involved in formulating problems so their solutions 

can be represented as computational steps and algorithms” (Aho 2011).

The range of opinions notwithstanding, there’s general concurrence that 

CT is a thinking process— the ability to think like a computer scientist for 

solving real- world problems— and that people who possess CT are able to 

systematically identify real- life problems and formulate them for possible 

computational solutions. There’s also shared recognition of some of the key 

concepts involved, such as abstraction and algorithmic thinking, whether 

or not these are expressed in a programming language. Yet despite an emerg-

ing consensus on what to teach in K– 12 computing, advances in technology, 

together with a universe of new applications, have provided new options 

for how to teach about computing. This has stimulated a healthy diversity 

of approaches to CTE that occupies the first focus of this volume.

CoMPUtAtIonAl tHInKIng edUCAtIon FoR eMPoWeRMent  

In An InFoRMAtIon soCIetY

Teaching thinking aside, it’s inescapable that we live in a society increas-

ingly shaped by information technology. Just as we want students to 
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4 s.- C. Kong, H. Abelson, And W.- Y. KWoK

understand the natural world, we should want them to understand the 

digital world. As computer scientist Simon Peyton- Jones argues, “Why do 

we ask every child to learn science from primary school? . . .  It’s because 

science teaches us something about the world around us, and if we know 

nothing about the way the world around us works, we’re disempowered 

citizens” (Peyton- Jones 2014).

This reference to understanding might evoke an image of passive obser-

vation, but the importance of CTE goes beyond understanding. K– 12 

students, even primary school students, are personally engaged with infor-

mation technology, through online media, social networking, and elec-

tronic commerce. These applications are subjects of active current debate, 

in which young people should contribute a voice. Primary goals for CTE 

should therefore include empowering students to be “conscientious con-

sumers” with the ability to participate in democratic discussions around 

the technology (see chapter 9 by DiPaola, Payne, and Breazeal). Students 

can also have the opportunity to apply CT to address real- world issues. 

CTE curricula could even start by having students work through real- world 

problems without using computation before returning to them to apply 

CT ideas and computational tools (Huang et al. 2021).

This emphasis on real- world applications and empowered understand-

ing comes full- circle when students can create computational applica-

tions that improve on their lives, their families and their communities. 

Tissenbaum, Sheldon, and Abelson (2019) advocate moving from compu-

tational thinking to “computational action,” arguing that even primary 

school students can achieve such an impact.

FOCUS AREAS FOR THIS VOLUME

The chapters in this volume are organized into three sections, each one 

highlighting an area where CT is rapidly evolving. “A Multiplicity of Com-

putational Thinkings” reflects the profusion of educational options and 

concerns as CTE expands throughout K– 12. “Computational Thinking 

and Artificial Intelligence Literacy in K– 12” describes the challenges for 

CTE emerging in response to today’s explosive progress in artificial intel-

ligence. “Computational Thinking and Physical Computing Education in 

K– 12” examines the impact on CTE of the increasing integration of com-

puting into physical objects. These three themes are tightly intertwined. 
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Together they reflect the challenges to CTE arising from the increasing 

power of computing devices and the ongoing permeation of information 

technology through all aspects of life.

FoCUs AReA 1: A MUltIPlICItY oF CoMPUtAtIonAl tHInKIngs

When Wing highlighted the idea of CT fifteen years ago, Facebook and 

Twitter had just been introduced, and the smartphone was still a year in 

the future. Computing was certainly important, but it did not figure in 

most people’s personal experience. In that environment, CTE saw itself as 

an enterprise of engaging students with the “principles and practices of 

computer science,” as expressed in the CSTA standards cited above.

This paradigm is starting to show its age.

CTE can still serve as an introduction for students to great ideas in 

computer science. But more and more, students need to learn about com-

puting not only through the power of its ideas, but through its impact 

on the world around us, its impact on society, and its impact on our 

daily lives. For CT educators, this creates a wealth of options both in new 

content and new pedagogical approaches. It also prompts reexamining 

the reasons why CTE should be a subject for everyone in K– 12, includ-

ing many students whose style of learning might be a poor match to the 

abstract aspects of computer science.

One manifestation of this reexamination is to reconsider the role of 

programming in CTE, or at least the role of popular programming lan-

guages like Java and Python. The emergence of block- based programming 

languages like Scratch and App Inventor in the past decade has created 

opportunities for students to create original applications using graphical 

drag- and- drop interfaces that are accessible to those with little or no pro-

gramming background. The consequence is the opportunity for students 

to exercise creativity and personal expression through computing even 

in primary school, and the centrality of programming in CTE is a current 

topic of debate among educators.

The six chapters in this section of the book show leaders in CTE prac-

tice and research confronting these new opportunities.

In “A Case for Why: Society, School, Self” Brennan takes a hard- headed 

look at the rationale for teaching CT, pointing out that before looking at 

how to teach CT, one must start with why teach it. The chapter examines 
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three classes of reasons— society, school, and self— and describes the chal-

lenges with each of these. There is a strong constructionist perspective and 

an emphasis on programming as a vehicle for self- expression. Brennan dis-

cusses teachers’ perspectives on the pedagogical concerns and challenges of 

implementing CTE in K– 12 classrooms. She then shares and comments on 

the pedagogical designs favorable to the delivery of CTE to K– 12 students. 

Last, she shares some practical considerations for deploying the creative 

approaches to the design of CTE activities in K– 12 classrooms for fostering 

every young student to effectively develop CT.

The second chapter in this section— “Providing Students with Computa-

tional Literacy for Learning About Everything” by Guzdial— makes a strong 

case for teaching programming, both as a general problem- solving skill and 

as a tool for student understanding and empowerment in the world in 

which they live. This does not require learning a complete programming 

language like Python or Javascript. Rather it can be done through task- 

specific microworlds. As an example, the paper describes a microworld for 

constructing image filters using matrix transformations.

“Developing Computational Thinking Skills with Multiple Models and 

Representations” by Hoppe and Manske argues for the importance of using 

multiple models and representations in CT development through domain- 

specific learning. The authors reflect on the common use of visual block- 

based programming with imperative sequential models and then introduce 

and compare the use of “reactive rule- based programming” as an alternative 

computational representation for delivering CTE in K– 12. They recommend 

and illustrate the mixed use of computational representations in CTE activi-

ties for effectively supporting young students to develop CT competence as 

well as domain- specific knowledge.

The fourth chapter in this section— “Toward a Theory (and Practice) of 

Multiple Computational Thinkings” by Román- González, Moreno- León, 

and Robles— argues that CT is best viewed through Gardner’s theory of 

multiple intelligences, and that consequently there is not “computational 

thinking” but rather there are multiple computational thinkings. The chapter 

supports this claim through several examples that illustrate differences in CT 

assessment results that would seem contradictory in the light of measuring 

computational thinking if CT were unidimensional. It then gives examples 

of how CT could be taught in the context of eight different intelligences: 
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verbal- linguistic, logical- mathematical, musical, bodily- kinesthetic, visual- 

spatial, interpersonal, intrapersonal, and naturalistic. The chapter indicates 

ways in which this theory might be tested, pointing out that standard CT 

tests are not adequate for this task. If the theory is validated, it would indi-

cate that CT curricula should be much more diverse, and more tolerant of 

multiple intelligences.

In “Learning Computational Thinking in Phenomena-Based Co- 

creation Projects— Perspectives from Finland,” Silander, Riikonen, Seitamaa- 

Hakkarainen, and Hakkarainen describe “phenomenon- based learning,” 

which is widely used in Finland, and advocate for this approach to CTE. 

With this method, one always starts from real- world phenomena so that 

learning is highly contextualized. It’s not enough to just understand algo-

rithms or CT: phenomena must be studied as complete entities from various 

points of view that cross boundaries between school subjects and integrate 

different themes. There is a strong emphasis on makerspaces and project- 

based learning and realization the CT is more than just programming.

The final chapter in this section, by Dindler, Iversen, Caspersen, and 

Smith shines a spotlight on “Computational Empowerment,” a framework 

that grows out of the participatory design tradition common in Scandi-

navia. This framework reaches far beyond the issues addressed in typical 

CT instruction. The authors present three key pillars for computational 

empowerment: (1) students should engage critically and curiously with the 

design of technology; (2) they should analyze and reflect on how technol-

ogy affects use as individuals and members of society; (3) they should be 

able to promote democratic practices in the design of technology. CT itself 

is only part of a curriculum that addresses computational empowerment. 

One should also address the need for students to make informed choices 

about the use of digital tools and to proactively engage in the digitization 

of society.

FoCUs AReA 2: CoMPUtAtIonAl tHInKIng And ARtIFICIAl 

IntellIgenCe lIteRACY In K– 12

Computational thinking and artificial intelligence (AI) have a long history 

together. Papert was co- director with Marvin Minsky of the MIT Artificial 

Intelligence Laboratory, and many contributors to the MIT Logo project 

were also researchers in AI. There was a great interest in understanding the 
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relation between machine intelligence and children’s intellectual devel-

opment. So it is understandable that the area to emerge from this work 

would be called computational thinking. More pointedly, the influence of 

AI on CT has now become transformative.

AI has been a solid branch of computer science since the 1960s, but 

over the past fifteen years, world attention to AI has exploded to the point 

where its potential for global economic impact on society is compared 

to the impact of the steam engine in the 1800s (Bughin et al. 2018). This 

excitement poses challenges to CTE. One is the sheer pace of innovation 

in AI. Educators who are barely assimilating the call to include CT in the 

K– 12 curriculum are now being asked to address a new constellation of 

ideas, with breakthrough applications heralded every few months.

More significantly, today’s AI draws on concepts that have until now 

received little attention in CTE curricular work. Abstraction and modular-

ity remain fundamental, but algorithmic thinking concepts like sequenc-

ing and conditionals become less critical in light of increased emphasis on 

machine learning and statistical methods. For example, in understanding 

the outputs of systems that perform image classification or medical diag-

nosis, it can be more important for students to consider the effect of the 

training data, as opposed to the learning algorithms.

The most important implication of progress in AI for CTE is the need 

to pay attention to the societal impact of computing in primary school. 

AI researchers and developers are beginning to come to grips with their 

responsibility for the consequences of their work, especially in areas of 

safety and fairness. Many technology companies have adopted policies 

around “responsible AI,” and university courses in AI increasingly include 

units on ethical design in their AI curricula. That same concern is moving 

into CTE, with K– 12 education beginning to draw on ideas from ethics 

and sociology alongside traditional technical disciplines.

In “The Computational Thinking and Artificial Intelligence Duality,” 

Heintz discusses and illustrates the duality of CT and AI. The essence of 

this duality is the main focus of traditional computer science: CT is based 

on algorithms and programs expressed as step- by- step instructions, whereas 

the main focus of modern AI is to develop algorithms and programs that 

learn from data even where the problem may not be well defined. Heintz 

describes the complementary thinking strengths of computers and humans. 

He elaborates the synergy between AI literacy and CT competence for the 
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success in the AI economy and discusses the scope of AI literacy and CT 

competence that should be cultivated in K– 12 students for leveraging the 

duality between CT and AI in daily problem- solving contexts.

The second chapter in this section— “Artificial Intelligence Thinking 

in K– 12” by Touretzky and Gardner- McCune— discusses and illustrates 

the issue of AI thinking in AI education for CT development. The authors 

introduce the national guidelines under the AI4K12 Initiative for AI edu-

cation in K– 12 in the United States and then discuss the “five big ideas in 

AI”: perception, representation and reasoning, learning, natural interac-

tion, and societal impact.

“Preparing Children to be Conscientious Consumers and Designers 

of AI Technologies” by DiPaola, Payne, and Breazeal presents an extended 

rationale and standards for AI education in middle school, together with 

sample curriculum elements. The authors propose three key objectives 

for middle school AI: (1) students should shift from being just consumers 

of AI to become conscientious consumers of AI; (2) they should become 

ethical designers of AI; and (3) they should be able to participate in demo-

cratic discussions around AI. The chapter outlines a week- long workshop 

for middle school, which emphasizes for students that AI design reflects 

the values of the designers. It uses image classification as an example of 

how classifiers can be biased, and it includes a session in which students 

redesign YouTube with the aid of an “ethical matrix” tool that encourages 

students to consider the values of the system designers.

FoCUs AReA 3: CoMPUtAtIonAl tHInKIng And PHYsICAl 

CoMPUtIng edUCAtIon In K– 12

The third current of CTE change explored in this volume is the increasing 

influence of physical devices. Physical devices are hardly new territory for 

CTE in K– 12. Indeed, some of the first work in schools by Papert’s MIT 

Logo group involved middle- school students in 1968 programming a robot 

called the turtle, and “turtle” has been a persistent meme in educational 

computing ever since. Today there is a growing variety of inexpensive 

robotic toys that support computer controls and other digital interfaces, 

and this is prompting critical rethinking of key CTE approaches.

One line of rethinking emphasizes that these are physical devices in 

the real world. Bringing computing “off the screen” makes it concrete 
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and tangible and makes CTE accessible even to students at pre- primary 

level. It also makes project work more readily sharable and social and 

is encouraging CTE theorists to look beyond only constructionism and 

draw upon Vygotsky’s view of learning as a social process.

A second line of rethinking results from the fact that programming in 

the presence of sensors and actuators requires use of event- driven pro-

grams that can react to changes in the environment. This consequently 

decreases the centrality of the straight- line programs whose elements 

form the introductory material of much of CTE in K– 12.

Three chapters in this volume explore these ideas from different 

perspectives.

In “Examining the Multidimensional Learning Affordances of Robotics 

for Computational Thinking and Science Inquiry,” Sullivan shares and dis-

cusses experience in the U.S. on multi- dimensional learning for CT develop-

ment afforded by robotics. She elaborates the nature of the interaction and 

the synergy among three fundamental problem spaces in robotics learning: 

the robotic device, the software program, and the actual physical environ-

ment for navigation by the robotic device. She illustrates the creation and 

deployment of robotics learning environments that meaningfully engage 

students in CT development along with the process of science inquiry. The 

chapter adopts a Vygotskyan perspective that emphasizes social interac-

tion open- ended collaboration. It also describes how the work across three 

perspectives supports the principles of science literacy as described in the 

US Next Generation Science Standards (2013), including abstraction and 

making inferences from data.

The second chapter in this section— “Toward a Research Agenda for 

Developing Computational Thinking Skills by Sense- Reason- Act Program-

ming with Robots” by Fanchamps, Specht, Slangen, and Hennissen— shares 

and discusses the experience in the Netherlands with CT development 

through Sense- Reason- Act programming with robots. The authors review 

the approach of Sense- Reason- Act programming in computer- related edu-

cation in K– 12 schools. They also present their pioneering work on the 

design of dynamic problem- solving environments for CT development, 

where the approach of Sense- Reason- Act programming with robots is used 

to support students in developing competences ranging from straight- line 

programming to dynamic problem- solving algorithms.
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In “Computational Thinking in the Interdisciplinary Robotic Game: 

The CHARM of STEAM,” Shih shares and discusses the experience in Tai-

wan with a robotic game for CT development, in which students in grades 

4 through 8 control physical robots that move on a large map. This “Great 

Voyage Game” supports students in developing interdisciplinary knowl-

edge about the history, geography, diplomacy, and economy of European 

countries in the Age of Discovery. The chapter includes a careful analysis of 

student skills correlated with STEM (science, technology, engineering, and 

math) topics and CT principles.

The goal of this edited collection is to advance a voice and substan-

tially augment discussion and debate about CT in K– 12. The chapters 

are organized into three sections to reflect the profusion of educational 

approaches as CTE expands throughout K– 12; describe the evolving chal-

lenges for CTE in response to today’s explosive progress in AI; and examine 

the impact on CTE of the increasing integration of computing into physi-

cal objects. Taken together, these themes add immediacy and vibrancy to 

a field that is already emerging as a key concern for educational research. 

A list of additional readings on CTE for K– 12 is also provided in the book- 

end appendix for readers as an easy reference to the major keystone works 

in the field.

NOTE

1. The term “computational thinking” itself appeared as early as the nineteenth 
century to refer to the use of quantitative methods in science, and later to the 
emphasis on reasoning in teaching arithmetic. The modern association of the term 
with computers and education comes from Papert (1980), who also referred to this 
as “procedural thinking.”
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ASKING WHY

At Harvard University, in the Graduate School of Education, I teach a large 

design class, in which students develop self- directed projects throughout 

the term. The course explores constructionist and constructivist theories 

of learning. As such, all of the projects inevitably connect to learning in 

some way: students designing for their own learning, students designing 

for others’ learning, or some combination of both. Early on in the project 

development process, we engage in an exercise that unpacks the aspi-

rations underlying their projects by iteratively asking one question five 

times: “And why is that important to you?” I love this exercise because 

it evaluates our designs according to purpose, peeling back layers of 

intentions. It quickly and sharply highlights contradictions and tensions 

between how we are actually doing things and why we wanted to do those 

things in the first place.

I have been thinking about this exercise in relation to the consider-

able attention that computational thinking (CT) is presently garnering 

in K– 12 settings. With individual classroom designs, district mandates, 

statewide initiatives, and national- level activities, there is no shortage of 

efforts to make CT accessible to all learners. As increasing numbers of 

K– 12 teachers are being asked to include CT as part of their pedagogical 

1
A CASE FOR WHY
SOCIETY, SCHOOL, SELF

Karen Brennan
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considerations, many teachers are reasonably asking, “Why should I 

teach computational thinking?”

Before exploring the why of CT, it is necessary to clarify what CT is. 

Although this term has a long history and there remains little consensus 

on the specifics, it is often defined broadly as what one learns through 

participation in the domain of computer science. Denning (2017) offered 

a helpful guided tour and critique of CT through the history of computer 

scientists’ conceptions of the field’s contributions— from Alan Perlis’s 

early exhortations about algorithms to Seymour Papert’s introduction of 

the term computational thinking in Mindstorms in 1980 to Jeannette Wing’s 

popularization of CT to Al Aho’s focus on abstractions and the more recent 

operationalization of CT for K– 12 by organizations such as Computer Sci-

ence Teachers Association (CSTA), Computing at School, and International 

Society for Technology in Education (ISTE).

I have been particularly interested in the extent to which programming 

is included— or not— as a necessary component of CT. I first encountered 

CT as a construct through Wing’s renowned 2006 article, “Computational 

Thinking,” in Communications of the ACM. At the time, my work was 

focused on young people’s participation and learning with Scratch pro-

gramming. CT seemed like an interesting, if underspecified, framework for 

thinking about what one may learn through programming. That curiosity 

about CT and young people programming with Scratch led to the devel-

opment of a CT framework and set of assessment strategies, which I cre-

ated in collaboration with Mitch Resnick at MIT and program evaluators 

at Educational Development Center (EDC) (Brennan and Resnick 2012). 

Our CT framework emphasizes programming as a way of developing as a 

computational thinker— that is, developing fluency with computational 

concepts (core conceptual knowledge required to construct programs, such 

as sequences, loops, and variables), practices (the practices or strategies one 

employs when putting that core conceptual knowledge into action in a 

computer program, such as being iterative and incremental, or employing 

abstraction and modularization), and perspectives (the evolving concep-

tions of self, others, and world that develop through the learner- directed 

creation of programs).

There are benefits and challenges to aligning one’s commitments and 

work to a popular term, as I did with CT. One benefit is recognition: 
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even for a term as contested as computational thinking, others in research 

and practice can generally understand what is meant. Another benefit is 

that individuals can contribute to the framing and shaping of the term 

itself. My particular approach to CT foregrounds programming in a way 

that others do not and consequently influences the conversation about 

what CT is and how it may be supported. A central challenge, of course, 

is the inherent limits of language and our understanding of particular 

words. Some argue that “thinking” is too passive and too psychologically 

interior as a signifier, which has led to other framings— such as computa-

tional participation (Kafai 2016), critical computational literacy (Lee and 

Soep 2016), and computational action (Tissenbaum, Sheldon, and Abel-

son 2019)— that more explicitly signal the active and social qualities of 

this learning.

I am not unduly preoccupied with this critique of the passivity or intro-

version of thinking in CT. My approach to design and research is guided 

primarily by constructionist epistemological commitments. Construction-

ism, which builds on the learner- centered commitments of constructivism, 

articulates the profound and powerful interconnectedness of thinking 

as mental construction and making as physical construction (Kafai and 

Resnick 1996). The externalization of our thinking, such as by creating 

a computer program, creates opportunities for ourselves and for others to 

inspect, test, reflect on, and respond to our thinking. Owing to my con-

structionist commitments, then, I regard thinking as inherently active and 

social.

To be transparent about my conceptions and commitments, I men-

tion my framing of CT as a set of concepts, practices, and perspectives 

developed through programming and my guiding learning theory as con-

structionism. These necessarily are the motivation behind and focus for 

the arguments I make in this chapter about why we should want to sup-

port CT in K– 12. Although these positions are certainly not universal, I 

hope that, whether you think of CT differently (e.g., unplugged activities) 

or are guided by different learning theory (e.g., behaviorist, cognitivist, 

or constructivist), the arguments in this chapter will nonetheless be of 

value. With this framing in mind, let us turn our attention to the various 

conceptions of CT in K– 12.
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EXPLORING WHY

Over the past ten years, there have been a variety of efforts in academia to 

explore the why of CT. For example, in a 2010 National Research Council 

report about a workshop focused on defining CT, academic participants 

outlined a set of five justifications, including (1) “succeeding in a tech-

nological society,” (2) “increasing interest in the information technology 

professions,” (3) “maintaining and enhancing U.S. economic competi-

tiveness,” (4) “supporting inquiry in other disciplines,” and (5) “enabling 

personal empowerment.”

More recently, Vogel, Santo, and Ching (2017) engaged stakeholders in 

New York City in a participatory process to identify justifications for com-

puter science education for all K– 12 students. This process led to the devel-

opment of seven justifications, including “(1) economic and workforce 

development impacts, (2) equity and social justice impacts, (3) competen-

cies and literacies impacts, (4) citizenship and civic life impacts, (5) scien-

tific, technological and social innovation impacts, (6) school improvement 

and reform impacts, and (7) fun, fulfillment and personal agency” (610). 

This list was then taken up and refined by Blikstein (2018) in a Google- 

funded report about the state of K– 12 computing education. This list was 

presented as “four distinct positions,” including (1) “the labor market 

rationale,” (2) “the computational thinking rationale,” (3) “the compu-

tational literacy rationale,” and (4) “the equity of participation rationale” 

(8). Beyond academia, similar lists of justifications have been developed 

by practitioner- facing organizations, including CSTA, ISTE, Association for 

Computing Machinery (ACM), and Code . org .

As these three lists suggest, a wide variety of interconnected and over-

lapping justifications have been imagined for why CT may be helpful 

for students. Rather than presenting a laundry list of justifications in my 

conversations with K– 12 teachers, I tend to group these various justifi-

cations into three broad categories: society (justifications that connect 

the learner to the broader world, such as expectations for technological 

literacy and workforce arguments), school (justifications that situate the 

learner in an academic context, such as general aspirations for thinking 

and means of learning about other subjects), and self (justifications that 

focus on learners’ understandings of themselves, such as identity devel-

opment and opportunities for cultivating creative agency).
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Before exploring each of these categories, I note a few properties of 

the society- school- self categorization. All three categories focus on student 

benefits; they are framed as things that are good for learners, first and 

foremost, and, through a lens of diversity, equity, and inclusion, good 

for all learners, rather than only a select few. The categories are nonhier-

archical; that is, there is not an implicit ranking of importance or value. 

(Although, as I discuss later, I do not personally prioritize them equally, 

which in turn informs my design decisions.) Relatedly, the categories are 

overlapping; for example, one can be committed to justifications that are 

related to society (e.g., preparing students for future work) and justifica-

tions related to school (e.g., understanding ways of thinking). A main 

difference among the categories and justifications, however, is the varia-

tion in time horizons. For a third grader (typically eight years old and in 

the fourth year of schooling), an argument about jobs likely has a differ-

ent sense of urgency and relevance than for a twelfth grader (typically 

eighteen years old and in the thirteenth year of schooling), whereas an 

argument about creativity has immediate relevance, age notwithstand-

ing. For each of the categories, I describe the essence of the narrative that 

motivates the category, including specific examples of justifications, as 

well as some considerations and cautions.

soCIetY

The broad social impact of computing is undeniable; our personal, pro-

fessional, and public lives have been dramatically reconfigured over the 

past twenty years by code— with no signs of abating, given ongoing discov-

eries and developments in artificial intelligence and automation. Accom-

panying this radical reconfiguration has been a set of arguments related 

to why young people need to learn to program in the service of their 

future participation in society. One common argument is that program-

ming forms a necessary computational and technological literacy. From 

the early 1960s to present day, learning how to program has been argued 

to be a necessary critical skill for understanding our changing technologi-

cal and social landscape (Lee and Soep 2016; Vee 2013). These arguments 

are frequently grounded in a desire to differentiate “use of” or “consump-

tion of” from “making with” programmed artifacts (Rushkoff 2010) and 

to challenge simplistic narratives around children as “digital natives,” 
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which are often more reflective of adult aspirations than actual student 

actions or participation (Buckingham 2007).

Another common argument emphasizes programming as essential for 

future jobs and employment. As noted by Guzdial (2015), “most of the 

arguments . . .  for computing in schools are based on jobs” (1). Although 

there is a sense of value in programming in the present moment (which 

I will explore shortly), in my conversations with K– 12 teachers and their 

students, there has been a pervasive theme of “the future” around learn-

ing how to program, especially related to jobs and the workforce. Teach-

ers and students have a sense that there will be future job opportunities 

that will be missed if they do not focus on learning to program in the 

present. There is also a more diffuse notion of innovation— that learning 

how to program will somehow position them, eventually, to shape or 

change the future.

Both of these justifications— about literacy more broadly and workforce 

preoccupations— are echoed in the literature about justifications for CT 

(Blikstein 2018; Flórez et al. 2017; Shein 2014; Vogel, Santo, and Ching 

2017). Arguments about preparing students for the future are intuitively 

appealing; they are aligned with long- standing articulations of the main 

project of school, that is, preparing young people for future participation 

and success in the world they will eventually enter as adults (Bransford, 

Brown, and Cocking 2000; Graham 1984). However, it is worthwhile to 

problematize these future- oriented framings. Certainly it is our responsi-

bility to prepare students for a world that will undoubtedly be different 

from the world as it is today. But are we designing learning experiences 

based on technologies that may cease to exist? And how do we prepare 

students to participate in a world in which programming may, at some 

point, become less essential because of automation of at least some aspects 

of programming? It is also our responsibility to prepare students to contrib-

ute to making the world different than it is today. How do we, for example, 

prepare students to avoid repeating the problematic computing workplace 

cultures of today, which are widely recognized as being grossly unsuccess-

ful in addressing issues of diversity, equity, and inclusion? How do we help 

students bring focus and attention to the increasing numbers of ethical 

issues connecting computing and society?
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sCHool

A more immediate set of justifications for CT focus on cognitive and aca-

demic benefits in the K– 12 school context. For example, it is often argued 

that by engaging in the types of algorithmic thinking and problem- 

solving that accompany the design and debugging of computer programs, 

students are building capacity for logical thinking and problem- solving 

more generally. Relatedly, it is sometimes argued that CT (and, specifi-

cally, programming) can serve learning in other domains. In the early days 

of programming in schools, integration with mathematics was a focus, as 

popularized by the Logo programming language and by Papert’s Mind-

storms. In the current CT resurgence, Weintrop et al. (2016) offered three 

reasons why disciplinary integration is appealing in schools: (1) the poten-

tial for the development of CT and disciplinary knowledge to be mutually 

reinforcing; (2) the advancement of equity given that core subjects (like 

math and science) are required, and including CT and programming in 

them will reach all students rather than a limited number of students who 

engage in computing electives; and (3) the experience of authentic pro-

fessional practice given the ascendant role of computing in many STEM 

(science, technology, engineering, and math) disciplines. Disciplinary 

integration is increasingly popular in research and practice in part because 

of current funding priorities: for example, the US National Science Foun-

dation’s large investments in STEM plus Computing (STEM+C) research 

as expanded or amplified by intersections with computing, computer sci-

ence, and CT.

These arguments about the benefits of programming in K– 12 for devel-

oping discipline- specific knowledge and for young people’s thinking more 

broadly have long and contested histories, exemplified by the early days 

of Logo efforts, including public disagreements between Seymour Papert 

(1987) and Roy Pea (1987) about what young people are doing and learn-

ing. In spite of a sense that the types of thinking and learning opportunities 

that students have while programming seem different than other types of 

activities in which they may engage, it is reasonable to be cautious about 

overreach of claims. There is a lack of evidence that the problem- solving skills 

developed in programming can transfer to other problem- solving contexts, 

which is unsurprising given the thorniness of transfer in education more 

broadly (Denning 2017; Guzdial 2015). There are also questions about 
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the unique contributions of programming and CT in contrast with other 

forms of domain thinking (e.g., computational thinking vs. mathematical 

thinking, historical thinking, scientific thinking, and so on) (Grover and 

Pea 2013). As a practical caution, this interest in programming across the 

curriculum is motivated, in no small part, by the bureaucratic challenge 

of determining where to include computer science in a K– 12 curriculum 

that is already very full (Cooper et al. 2014). In other words, disciplin-

ary integration is sometimes a strategy for addressing administrative con-

cerns rather than benefiting student learning. Regardless of motivation, 

disciplinary integration is challenging, particularly given many teachers’ 

time constraints and lack of disciplinary expertise (Fincher 2015) and as 

evidenced by the history and failures of experiences in teaching Logo pro-

gramming in schools (Hickmott and Prieto- Rodriguez 2018).

selF

As part of a fundraising event several years ago, my research team mem-

bers and I interviewed 150 K– 12 students from around the United States 

about their Scratch experiences, asking these young people, “What would 

you tell your friend about Scratch?” It was striking to me that, although 

students invoked some of the discourses I have mentioned thus far (e.g., 

workforce ambitions or general/disciplinary thinking), students from kin-

dergarten through grade 12 overwhelmingly talked about the importance 

of creativity and self- expression and, relatedly, empowerment and identity. They 

talked about the power of taking their ideas and bringing them into the 

world and how those acts changed the ways in which they saw themselves 

as agents in the world.

The justifications of creativity and empowerment are recognized 

throughout the CT literature. Lee and Soep (2016) described the think-

ing associated with programming as “complex, circular, ambiguous, mul-

tiple, social, and rhizomatic” ways of thinking that centrally depend on 

“imagination and creativity” (484). Creativity and empowerment are also 

recognized in practice- focused writing. For example, the first “big idea” 

from the Advanced Placement Computer Science Principles course is that 

“[c]omputing is a creative activity” (College Board 2017, 1). Creative acts 

can contribute to self- perceptions of empowerment. As Cooper and Dann 
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(2015) shared about their own teaching practice, “In our classes, we see 

the joy when students complete their programming projects. The sense of 

empowerment, creativity, and independence that is generated by success-

fully creating a program to perform some task (however trivial) is almost 

tangible” (54). This connection between creativity and empowerment in 

programming and computing is not new: Guzdial (2015) observed that, 

in the early days of computing, “[R]esearchers and visionaries like Seymour 

Papert, Cynthia Solomon, Alan Kay, and Andrea diSessa saw the computer 

as a new medium for human expression and empowerment” (1).

While enthusiasm for creativity and empowerment is understandable 

given the potential benefits for student interest and motivation, it has 

been challenging to realize these benefits in K– 12 schools. Even tools such 

as Scratch that have an expressed commitment to supporting student cre-

ativity are not necessarily used in ways that actually support creativity in 

classrooms (Yadav and Cooper 2017). Why? The culture of school is too 

often in tension with the culture of creativity (Resnick 2017). This mis-

match between creative culture and school culture can be overwhelming 

for teachers, who find themselves negotiating limitations of class time, 

their own professional preparation, uncertainties about how to assess 

these learning aspirations (particularly students’ evolving conceptions of 

self), and broader expectations about their roles in the classroom (Bren-

nan 2015a; Brennan and Resnick 2012). Misalignment between creative 

culture and school culture can similarly be challenging for students, who 

may be unsettled by changes in what teachers expect of them and, in 

turn, resist those changes (Brennan 2015a; Holt 1972).

DESIGNING FOR WHY

Why have I belabored the why of CT in this chapter? As Guzdial (2015) 

asserted, “[A]s teachers and designers of education, the first question we 

should ask is, ‘Why?’” (1). It is critical to foreground this question because 

the why informs the how of supporting access to CT; it serves as the founda-

tion for subsequent design decisions about the instructional surround (Blik-

stein 2018). A lack of clarity about why can lead to misalignment between 

intentions and actions. How does one choose among curricula or decide 

when to introduce CT into an instructional sequence, for example, without 

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024



24 K. bRennAn

understanding why these learning opportunities should be included in the 

first place? Although I am focusing on teachers and classroom practice 

here, these concerns are not restricted to the microcosms of individual 

classrooms; questions about purpose should be central no matter how one 

contributes to the educational enterprise— from classroom teachers, to par-

ents, to administrators. Policy makers have an especially critical role, given 

that policy determines priorities (i.e., emphasizing a particular why) and 

shapes action (i.e., suggesting the how) (Coburn 2016; McDonnell 1995). 

Understanding the motivation is even more important with any initia-

tive that is surrounded with considerable momentum or hype, where the 

intentions and objectives are obfuscated by the frenzy of trying to keep up 

with what everyone else seems to be doing, as well as attempts by corporate 

interests to influence the agenda for their own purposes. The history of 

education is littered with examples of these hype cycles— moments of great 

enthusiasm that are then followed by disappointment and abandonment 

of efforts (David and Cuban 2010; Graham 1984).

In my own research and design work, although I appreciate the society-  

and school- grounded justifications, I am guided primarily by self- oriented 

justifications, particularly justifications that foreground the creativity of 

young people. I appreciate this particular grounding for its immediacy, 

as expressed by the young people I have had the benefit of working with 

over the past decade, but also for its broader impacts. As recognized by 

educational philosophers from Friedrich Froebel to John Dewey to Paolo 

Freire to bell hooks, creativity is a central part of human development 

and experience, essential to learning as a lifelong endeavor.

Unfortunately, I frequently encounter examples of how intentions 

for creativity are unexpectedly subverted in classrooms, from having few 

opportunities for variation in student work to having little time for explo-

ration or creation, to a lack of conceptual capacity- building that would 

enable greater creative fluency. So, in addition to offering a broad reminder 

to check one’s actions against one’s aspirations, I would like to offer more 

concrete guidance for the specific aspiration of fostering creativity. This 

is challenging, however, when there are so many different ways of sup-

porting creativity. A list of actions to take or curriculum to follow would 

be woefully insufficient to represent the enormous opportunity we have 
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collectively, in this moment, as designers committed to supporting CT for 

all K– 12 students. So, inspired by Postman and Weingartner (1969), I will 

instead offer a set of questions. Questions are a delightfully effective way 

to identify disparities between action and intention; they are suggestive 

rather than directive, respectful both of variation in learning contexts and 

of teacher agency when designing learning experiences. The questions 

offered here are guided by my constructionist commitments to learning, 

which foreground learner agency and creativity. I articulate these commit-

ments as opportunities for students to engage in personalizing, making, shar-

ing, and reflecting (Brennan 2015b).

My questions about personalizing emphasize opportunities for learn-

ers to express their interests and exercise their agency. Who is deciding 

what is important to learn? Where do students connect their program-

ming activities with what they are interested in and care about? How 

does the design of the learning experience recognize the variation within 

the group of learners? My questions about making focus on opportunities 

for learners to iteratively practice and develop their programming skills. 

In a given class period, how is student time allocated? Are they doing more 

listening or more creating? Are they following or are they exploring? My 

questions about sharing focus on opportunities for learners to learn with 

and from each other, in both a formative and summative manner, to 

receive feedback and to circulate existing expertise. At what moments do 

students share their work? How often do students get to see what their 

peers are doing— or what their near- peers have done? How are process 

and product shared? My questions about reflecting emphasize the impor-

tance of not just doing but also thinking about what one is doing, both in 

real time and after the fact, as a critical part of learning and development. 

What types of questions are students asked about their process and work 

by others? What types of questions do students ask themselves about their 

process and work? How do students document their progress and their 

learning?

I continually ask myself these questions when I am designing and 

researching learning experiences to support creativity in K– 12 comput-

ing. They serve as guidelines to my work, reminding me when I am stray-

ing too far from my core commitments. These particular questions reflect 
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my personal commitments; as such, your own questions may be differ-

ent. But whether your work is designing classroom experiences, assessing 

the appropriateness of a K– 12 CT intervention, appreciating the ambi-

tions of individual students, or supporting some other dimension of CT 

for all learners, I hope that this exploration underscores the value of con-

tinually attending to the alignment between intention and action in our 

collective work as educators.
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LEARNING ABOUT COMPUTING IS LEARNING  

ABOUT PROGRAMMING

Learning about computing almost always requires learning about pro-

gramming. There have been some brilliant people, like Alan Turing and 

John von Neumann, who could think about computing without a lan-

guage or notation, but those people are rare. It is analogous to learning 

mathematics, including addition, subtraction, and multiplication, with-

out writing digits like “34.9” or symbols like “+.”

Programming is defining a computation, something that a computer 

can do. A program describes a process. A program can be specified in any 

notation, so we should pick one that best suits the programmer and the 

domain. The most popular programming languages today are demand-

ing, requiring students to use complex cognitive skills such as abstraction 

and decomposition of a problem into subcomponents. Programming 

does not have to be so complex and overwhelming. A simple program-

ming language can still be effective for learning. Programming is a power-

ful tool for helping students learn in many different domains. I argue in 

this chapter that providing students with the ability to program is providing 

them with a literacy that can be an advantage in learning about everything else.

The term computer science first appeared in print in the Journal of Engi-

neering Education in 1961 in an article by George Forsythe (Knuth 1972). 

2
PROVIDING STUDENTS WITH 
COMPUTATIONAL LITERACY FOR 
LEARNING ABOUT EVERYTHING

Mark Guzdial
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Forsythe described (in 1968) that he saw computation as a “general- purpose 

mental tool” that would “remain serviceable for a lifetime.” Explicitly, com-

puter science was defined as something that students could use to aid in their 

thinking and their learning, especially in STEM (science, technology, engi-

neering, and mathematics) classes. In this chapter, I argue that the value of 

learning programming is even greater than what Forsythe described.

There are many possible benefits to students learning to program. The first 

section of the chapter lists many of these, ending with the most powerful— 

programming as a new kind of literacy. The next section explains why the 

computer can help with learning everything else, because it is the “master 

simulator.” Finally, I argue that even a simple programming language can 

have enormous advantage in learning. We don’t need all the power of C, 

Scheme, or Logo to learn with programming as a literacy.

WHY SHOULD STUDENTS LEARN TO PROGRAM?

Learning to program does not impart to the learner general problem- solving 

skills. There have been several studies looking for transfer from teaching 

programming to general problem- solving skills. Probably the first study 

investigating this claim was done by Roy Pea and Midian Kurland in 1984. 

David Palumbo completed a meta- review of the research relating learning 

programming and learning problem- solving (1990). Since then, the topic 

has been revisited, but I read Palumbo’s results as painting a picture of pro-

gramming as an opportunity to teach problem solving rather than an expe-

rience where problem- solving is learned automatically.

It is possible to teach problem- solving using programming, but 

problem- solving skills are not the automatic and direct result of learning 

to program (Grover and Pea 2013). Sharon Carver showed how to teach 

problem- solving with programming (Carver 1988). She wanted students 

to learn debugging skills, such as being able to take a map and a set of 

instructions and then figure out where the instructions are wrong. She 

taught those debugging skills by having students debug Logo programs. 

Students successfully transferred those debugging skills from Logo pro-

gramming to the map task. That’s significant from a cognitive and learning 

sciences perspective. But her students didn’t learn much programming; 
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she didn’t need much programming to teach that problem- solving skill. 

Other studies have found similar results (Grover, Pea, and Cooper 2015; 

Kalelioglu and Gülbahar 2014).

Fortunately, there are many other benefits of learning to program. 

These are described in the paragraphs that follow.

to UndeRstAnd tHe WoRld In WHICH tHeY lIve

Simon Peyton Jones argued that computer science is a science like all the 

others (Peyton Jones 2013). We teach chemistry to students because they 

live in a world with chemical interactions. We teach biology because 

they live in a world full of living things. We teach physics because they live 

in a physical world. We should teach computer science because they live in 

a digital world.

Students live in a world where secret messages can be hidden inside 

of pictures and where machines can be infected with viruses. They live 

in a world where they own many computers, some of which do noth-

ing more sophisticated than control their microwave oven. They do not 

need to know how all of this works at a level that they could build it 

(although they may want to). They do need to understand enough to 

troubleshoot the computing in their lives: for example, to know that it is 

unlikely for the internet to ever “break,” but the router in their home can 

fail. They need to understand enough to protect themselves: for example, 

why running any arbitrary program downloaded from the internet may 

be dangerous for their security. They also need to understand that they 

can make their own apps and games and that anyone with any computer 

can invent something that is world changing. Students should know the 

basic principles of how their world works.

to Use CoMPUteRs MoRe eFFeCtIvelY

We all use computers ubiquitously, from the cellphones in our hands to 

the laptops on which we work. Does knowing how the computer works 

lead to more effective use of the computer? Are people who program 

less likely to make mistakes with software? Are they more resilient in 

bouncing back from errors? Can programmers solve computing problems 
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(those that happen in applications or with hardware, even without pro-

gramming) more easily?

I bet the answer is yes, but I am unaware of research results that sup-

port that argument. There are likely common elements to mental models 

that are used to understand the computational systems with which we 

interact. Some of those common elements may include the causal and 

repeatable nature of computers, which is unlike our everyday experience 

(e.g., your PowerPoint animations likely work exactly the same way every 

time). Programming may be a way to learn those common elements explic-

itly and efficiently.

to InFlUenCe tHeIR WoRld

The default behavior of users with computers is to consume. We consume 

books, videos, music, and commentary in an endless stream or scroll. The 

promise of programming is to turn digital consumers into digital produc-

ers who can use computing to have an effect on the world.

Yasmin Kafai calls this promise computational participation (Kafai 2016), 

and Tissenbaum, Sheldon, and Abelson (2019) call it computational action. 

The computer’s connectivity, malleability, and representational power 

give students the ability to make digital products and share them widely. 

From YouTube videos to new apps, the computer provides a rich medium 

for creativity and a far- reaching distribution mechanism.

The question of the role of programming changes if we reframe pro-

gramming. Imagine if programming was not a complex and hard- to- learn 

activity. What if learning to program was like learning to use a drawing 

app, a photo editing tool, or a video editor. If we think of programming 

as defining a process for someone else to use, then teaching students to 

program is giving them another way that they can create digital artifacts 

(i.e., stored and executable process) and share them with the world.

to stUdY And UndeRstAnd PRoCesses

Alan Perlis (first Association for Computing Machinery [ACM] Turing 

Award laureate) argued in 1962 that everyone on every campus should 

learn to program (Perlis 1962). He said that computer science is the study 

of process. He contrasted learning computer science with learning calculus. 
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Calculus is the study of rates, which is important for many disciplines. 

Perlis argued that all students need to learn about process, from manag-

ers who work on logistics to scientists who try to understand molecular 

or biological processes. Programming automates process, which creates 

opportunities to simulate, model, and test theories about processes at 

scale. Abelson, Sussman, and Sussman (1996) stated that mathematics is 

about formalizing declarative knowledge (“what is”), while programming 

is about formalizing imperative knowledge (“how to”).

Perlis was prescient in predicting computational science and engineer-

ing. Today, people play “what- if” games with spreadsheets daily. We use 

computing to track our weather and our packages. Most professionals 

use a computer to explore models. The ability to construct models and 

test hypotheses by executing those models is one of the most powerful 

abilities that a computer can provide us. It is especially powerful because 

it extends a basic human capability— to imagine a possible future world. 

The computer can allow us to realize this world (at a level of fidelity that 

makes sense for our needs) and test it in simulation. Testing our imagined 

worlds is difficult to do at the level of precision that a computer affords.

to HAve A neW WAY to leARn sCIenCe And MAtHeMAtICs

Mathematics places a critical role in understanding our world. The power 

of mathematics in science is obvious, but the adoption of mathematics 

in society may be even more influenced by its importance for business. 

Without a doubt, the world runs on numbers.

Our notation for mathematics is mostly static equations representing 

models about the world. Increasingly, we are finding that representing 

code is different and gives us new insights. This is what Andy diSessa has 

been saying in his calls for computational literacy (2001). Bruce Sherin 

(2001), Idit Harel (1990), Yasmin Kafai (2014), Uri Wilensky (2016), and 

many others have shown us how code gives us a powerful new way to 

learn science and mathematics. Bootstrap:Algebra (Schanzer et al. 2015) 

teaches algebra with computing. Every student of mathematics should 

also be a student of programming, because it provides a different, dynamic 

notation for understanding mathematical ideas. When the programming 

context is tied to a real application (from image manipulation to video 
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games), the computation can help to concretize the mathematical con-

cepts (Wilensky 1991), which can make them more engaging and easier 

to learn.

to be Able to AsK QUestIons AboUt tHe teCHnologICAl 

InFlUenCes on tHeIR lIves

C. P. Snow (1962) also argued for everyone to learn computing in 1962, 

but with more foreboding. He correctly predicted that computers and 

computing algorithms were going to control important aspects of our 

lives. He said, “I am asking whether we are now running into a posi-

tion where only those who are concerned with the computer, who are 

formulating its decision rules, are going to be knowledgeable about the 

decision,” and “It is not only that I am afraid of misjudgments by persons 

armed with computing instruments; it is also that I am afraid of the rest 

of society’s contracting out, feeling that they no part in what is of vital 

concern to them because it is happening altogether incomprehensibly 

and over their heads.” Snow would likely have agreed with Cathy O’Neil’s 

premise in Weapons of Math Destruction (2016), that computer algorithms 

are not inherently objective and that programmers’ biases may influence 

their judgments.

If we don’t know about computing, we have “contracted out,” in 

Snow’s terms. We don’t even know what to ask about the algorithms that 

are controlling our lives. It shouldn’t be magic. Even if you’re not build-

ing these algorithms, simply knowing about them gives you power. C. P. 

Snow argues that you need that power.

As A Job sKIll

The most common argument for teaching computer science in the 

United States is as a job skill. The original Code . org video (2013) argued 

that everyone should learn programming because we have a shortage of 

programmers. While the need for more programmers is important for 

supporting our technological society, that is not a good enough reason 

to put programming in front of every student. Moreover, that’s not a rea-

son to bear the enormous cost to change our school systems so that we 

have enough teachers to teach all those students. Not everyone is going 
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to become a software developer, and it does not make any sense to train 

everyone for a job that only some will do.

But if you think about computing as a literacy, and not as a career, it 

becomes more clear that computing will be an important component job 

skill for many. Some fifteen years ago, we could already see that the ratio 

of professional software developers to people who program just as part 

of their job was somewhere between 1:4 and 1:9 (Scaffidi et al. 2005). 

A more recent analysis shows that, for the same job category, workers 

(who are not software developers) who program make higher wages than 

those comparable workers (in the same job category) who do not (Scaffidi 

2017). Learning to program gives students new skills that have value in 

the economy.

Today, not everyone has access to computing education. It tends to 

be centralized in more urban/suburban and more affluent schools. Even 

when it’s available, it is mostly White and Asian males taking the class 

(Margolis et al., 2017; Parker and Guzdial 2019). It is a social justice issue 

if we do not make this economic opportunity available to everyone.

to develoP A neW lIteRACY

Alan Kay and Adele Goldberg made the argument in the 1970s that com-

puting is a whole new medium. In fact, it is humans’ first meta- medium— it 

can be all other media, and it includes interactivity so that the medium can 

respond to the reader/user/viewer (Kay and Goldberg 1977). Computing 

gives us a new way to express ideas, to communicate to others, and to 

explore ideas. Everyone should have access to this new medium.

Kay (1977) described what the experience of using the computer as a 

literacy should be like: “Computer literacy is a contact with the activity 

deep enough to make the computational equivalent of reading and writ-

ing fluent and enjoyable.’” We can use Kay’s perspective to contrast pro-

gramming and textual literacy. We can and do study reading and writing 

for their own sake: for example, we read classics of literature and learn to 

compose our own essays. For most of us, the greatest power of reading 

and writing is that every day it enables us to express ideas, to commu-

nicate with others, and to understand our world. Literacy supports and 

affects how we learn. Programming can be studied for itself, and there 
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are obviously full- time, professional programmers— just as there are full- 

time, professional writers. But programming can also be an everyday skill 

that can inform the way we think and communicate.

The computer’s great power as a form of literacy is that it doesn’t 

have to look like a computer. Kay (1995) pointed out that the computer 

as meta- medium could be anything else: “The computer is the greatest 

‘piano’ ever invented, for is it the master carrier of representations of 

every kind. The heart of computing is building a dynamic model of an 

idea through simulation.” The computer can be anything, which makes it 

a powerful tool for learning about everything. The most powerful aspect 

of the computer is the ability to encode models and execute them as 

simulations.

As Sherin (2001) demonstrated when he taught physics with Boxer, 

the computer provides a modeling capability different than equations. 

Algebraic equations are useful for describing balance. Given all but one of 

the variables in the equation, we can manipulate the equation to com-

pute that last variable. Computer programs typically do not work the 

same way. Rather, computer programs can represent causality. Students 

learning a programming model of physics learn about how acceleration 

influences velocity and velocity influences position (Guzdial 1995)— a 

causal chain that is not obvious in kinematics equations.

THE COMPUTER AS A TOOL FOR LEARNING EVERYTHING

When computers were first being developed as tools for learning, the goal 

wasn’t learning computer science. From Kemeny and Kurtz developing 

Basic, to Papert, Solomon, Feurzeig, and Bobrow developing Logo, the 

goal was using the computer to learn about something else (Guzdial and du 

Boulay 2019). Kemeny and Kurtz wanted everyone on campus to be able 

to use computing in their work. Papert and the Logo developers wanted 

students to learn about poetry, mathematics, and artificial intelligence.

In their seminal work “Personal Dynamic Media,” Kay and Goldberg 

showed their new Smalltalk system being used in a wide variety of dis-

ciplines, with representations that matched the discipline. They used 

the new graphical user interfaces to represent circuit diagrams, music, 

art, animations, and a simulation of a hospital. Today, we recognize that 
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each discipline has its own representations and ways of communicating, 

which is called disciplinary literacy (Moje 2015). The computer is powerful 

for teaching in all disciplines, in part, because it can support disciplinary 

literacy.

The interface and language of the computer doesn’t have to look the 

way that computer scientists want it to look. We can adapt the language 

and interface to use the representations and abstractions of the domain. 

We want students to learn abstractions that are powerful and generalize, 

but these need not be abstractions that are native to the computer. There 

is nothing sacred about FOR loops, bits and bytes, or arrays and linked 

lists. Many domains have powerful abstractions. We can use the com-

puter to teach any of those, to adapt to any of those abstractions, and to 

represent them in an authentic way.

HoW MUCH PRogRAMMIng does A stUdent  

need FoR lIteRACY?

Programming languages are growing in size and complexity. The defini-

tion of equality (= =) in JavaScript is a list of twenty- two dense rules (ECMA 

2011), and that is one of the most basic operators. The number of primi-

tives and the sizes of the libraries grow with every new release of a lan-

guage. To “learn Python” is a significant challenge, one that can take years 

to achieve. Certainly, we cannot expect students to learn all of any lan-

guage to be literate. So, how much programming does a student really need 

to be expressive and to learn?

Scratch is likely the most successful programming environment ever 

developed for children (Maloney et al. 2008, 2010), with tens of millions 

of users around the world. Empirical studies of students using the block- 

based programming language show that most students use very few of the 

capabilities of the language (Fields, Kafai, and Giang 2017). Most loops 

are simply forever loops. Few students use any Boolean expressions at all. 

Students don’t need to know and use much programming to find Scratch 

compelling. Even a small bit of programming has expressive power that 

draws in tens of millions of students. What is likely more important than 

the Scratch programming language are the environment and community 

in which it is embedded.
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Bootstrap:Algebra is a powerful way to teach algebra through pro-

gramming (Schanzer et al. 2015). Students build video games by writing 

equations that describe the current frame of the video in terms of the 

previous frame, then translate those equations into code. The analysis 

process that students are taught in Bootstrap:Algebra helps them in solv-

ing word problems in algebra (Schanzer et al. 2018). But students don’t 

actually use much programming when building their video games. There 

is no explicit repetition (iteration or recursion). Students can improve 

their learning of algebra without learning everything that is in a modern 

programming language. Even a small bit of programming has power in 

enabling powerful learning outside of computing.

Of course, there is a purpose for all those other programming language 

features that aren’t used in Scratch or aren’t taught in Bootstrap:Algebra. 

The programming needs are dependent on the students’ goals. The 

important point is that students do not need to know everything in order 

to learn enough to gain benefits of computational literacy.

Consider a comparison with textual literacy. There are professionals 

who write for a living: for example, those who produce news stories or 

novels. Most people find value in writing even if they do not write for 

newspapers or publishers. Every day, people find value in writing letters 

and grocery lists with less sophisticated words or grammatical constructs. 

When people are learning a foreign language, they can often achieve basic 

communication with a limited vocabulary and few verb tenses. Similarly, 

there is value in even a small bit of programming.

WHY ARen’t We tHeRe Yet?

Over the last decade, the United States has made dramatic progress in 

increasing access to computing education. For example, in Georgia, 43 per-

cent of high schools offer computer science classes (Parker and Guzdial 

2019). However, only 1 percent of Georgia high school students take any 

of those computer science classes. In Indiana, 33 percent of schools offer 

computer science, but only about 2.5 percent of students ever take a com-

puter science class (Guzdial 2019; Guzdial and Arquilla 2019; Parker and 

Guzdial 2019).

The reasons are complicated why students are still avoiding computer 

science, even when they have access to computing education. Certainly, 
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one of the explanations is that not all computing education experiences 

are high quality. Some afterschool programs and internships dissuade 

students from continuing in computing (Weston et al. 2019). A more 

compelling explanation is that students do not see that computing is a 

pathway to achieving their goals (Lewis et al. 2019). Students who leave 

computing have a very different perception of the field than those who 

stay in computer science (Biggers et al. 2008).

One solution to give more students access to computing education is 

to find new ways to integrate computing across the curriculum. The idea 

is to follow the lead of Bootstrap:Algebra to find ways that programming 

can enhance learning in other subjects. If we can’t convince students to 

come to programming and computational literacy, maybe we can bring 

programming to them and provide computational literacy to support the 

learning that students are interested in.

REDESIGNING PROGRAMMING FOR MICROWORLDS:  

TASK- SPECIFIC PROGRAMMING

Microworlds are one of the great inventions for using programming to 

teach a wide range of subjects. The idea of microworlds is to provide a 

limited subset of the programming environment with tailored operations 

that match the domain of the microworld. Seymour Papert (1980) first 

defined microworlds as a “subset of reality or a constructed reality whose 

structure matches that of a given cognitive mechanism so as to provide 

an environment where the latter can operate effectively. The concept 

leads to the project of inventing microworlds so structured as to allow a 

human learner to exercise particular powerful ideas or intellectual skills.” 

Andrea diSessa (with Hal Abelson) built on this idea in Boxer (diSessa and 

Abelson 1986) and said in his book Changing Minds (diSessa, 2001): “A 

microworld is a type of computational document aimed at embedding 

important ideas in a form that students can readily explore. The best 

microworlds have an easy- to- understand set of operations that students 

can use to engage tasks of value to them, and in doing so, they come 

to understanding powerful underlying principles. You might come to 

understand ecology, for example, by building your own little creatures 

that compete with and are dependent on each other.”
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Typically, a microworld is built on top of a general- purpose language: 

for example, Papert used Logo and diSessa used Boxer. Thus, the designer 

of the microworld could assume familiarity with the syntax and seman-

tics of the programming language and perhaps some general program-

ming concepts like mutable variables and control structures. The problem 

here is that with Logo and Boxer, like any general- purpose programming 

language, it takes time to develop proficiency. They are large and com-

plex things to learn, and learning those can get in the way of the power-

ful ideas or intellectual skills that Papert and diSessa are interested in.

Task- specific programming (TSP) aims to provide the same easy- to- 

understand operations for a microworld, but with a language and envi-

ronment designed for a particular purpose. The task- specific programming 

language (TSPL) is purposefully limited in the abstractions and concepts 

needed for the tasks or explorations in the microworld so that program-

ming becomes much easier to learn than a complete programming lan-

guage. Some task- specific programming languages have been usable in 

only five to ten minutes (Chasins et al. 2018). The ease of use makes it 

possible to think about learning different concepts with different micro-

worlds, that is, different task- specific programming languages. Perhaps an 

elementary or secondary school student might encounter several differ-

ent TSPLs in a single year.

An eXAMPle tAsK- sPeCIFIC PRogRAMMIng envIRonMent

The domain for the following example task- specific programming environ-

ment is precalculus. The operations in this prototype environment are the 

simple matrix transformations taught in many precalculus curricula— 

matrix addition and subtraction and scalar multiplication. The concrete 

purpose in this microworld is the creation of image filters. The point of 

this prototype is to engage students in practicing the intellectual skills 

of matrix manipulation by engaging them in developing image filters. 

Image filters become the concrete purpose for learning the abstraction of 

matrix manipulation.

Figure 2.1 is the main screen for the prototype. Students see a pic-

ture (left- hand side) that is decomposed into matrices representing the red 

channel of the pixels in the picture (bottom left), and the green and blue 

channel matrices next to that. A set of matrix transformations is listed 
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at the top left— this is the program that, applied to the input picture (on 

left), produces the output picture (on right). The Change Picture button 

changes the input picture so that the students can apply the operations 

to different pictures to see that the program processes an arbitrary picture 

to generate a similar image effect on all pictures.

The matrix transformations listed in figure 2.1 are a program, but the 

language is not typed (as in a textual programming language) nor assem-

bled like a jigsaw puzzle (as in a block- based programming language). 

Instead, the statements are constructed with a purpose- built editor that is 

grounded in the disciplinary literacy of precalculus. Each matrix transfor-

mation is created and edited on a screen like in figure 2.2.

There are two possible transformations, which are selected by radio 

button:

• The red, green, or blue matrices can be redefined (“set”) as the sum or 

difference between four matrices: red, green, blue, or a matrix where 

every value is 255. The matrices and operation (plus or minus) are 

selected with pull- down menus. In the example, figure 2.2, the red 

matrix (top left) is set to the difference of the green matrix and the blue 

matrix (top middle). The matrices are presented, using the notation 

2.1 Defining an image filter as a sequence of matrix transformations.
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commonly appearing in precalculus texts, with the output matrix (the 

new red matrix) appearing on the right. The all- 255 matrix can be used 

to compute the inverse of an image, by setting the red, green, and blue 

matrices to 255 minus the current value in the matrix.
• Alternatively, one of the matrices (red, green, or blue) can be multi-

plied by a scalar. The matrix can be selected by pull- down menu, and 

the scalar value is typed into a text area.

The image filter language is simple and grounded in the concepts 

and notation of precalculus. The image filter prototype is an example 

of task- specific programming to support learning matrix transformations 

for precalculus. Students may use this tool to meet a challenge (e.g., to 

generate a particular image manipulation effect) or to practice with trac-

ing and using matrix arithmetic (e.g., in this given effect, what happens 

to pixels in the original picture whose RGB values are [128, 104, 12]). 

Our approach to adoption is informed by the work on SimCalc. In their 

scaling- up paper, Tatar et al. (2008) wrote: “Conversely, a wider path to 

adoption exists if one can engineer materials to support short- term use 

without extensive professional development and with a wide variety of 

2.2 Defining one matrix transformation.
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pedagogical styles. In the short term, innovators may be able to make 

an earlier, more immediate impact on a wide audience and set a credible 

base of authentic improvement that can then serve longer term growth.” 

This is exactly our approach. While task- specific programing tools may 

fit into project- based activities (Blumenfeld et al. 1991, 1994; Krajcik and 

Blumenfeld 2006), the goal is to be usable in a variety of activities.

We use our prototypes in participatory design sessions with teachers 

(DiSalvo 2016; Wilensky and Stroup, 1999). Our goal is to develop task- 

specific programming that teachers would find useful and would inte-

grate into their classes, so we ask them to try it in the context of what 

students find challenging about precalculus. The prototype is an artifact 

to think with. Precalculus teachers learn and use it and then tell us what 

would really be useful to them. We then iterate on the design.

Sessions with precalculus teachers support our hypothesis that they can 

start using it in less than ten minutes. The general response from precalcu-

lus teachers has been guardedly positive. The teachers see that the micro-

worlds aim to take an abstract concept in precalculus and ground it in a 

concrete application. They appreciate our attention to disciplinary literacy 

and to the learning outcomes for precalculus. Several of our informants 

saw the benefits of connecting precalculus to contexts that students found 

personally meaningful, like Instagram or Snapchat photo filters.

However, the teachers tell us that we are solving the wrong problems. 

While some students struggle with matrix notation and element- by- 

element operations, most do not. The hard parts of matrices in precalcu-

lus are matrix multiplication and determinants, and even convolution. 

Those parts are so difficult for students that matrices are often left out of 

a school’s precalculus curriculum, which puts students at a disadvantage 

when they face linear algebra in undergraduate courses. We are currently 

iterating on this design.

A task- specific programming environment is unlikely to achieve all the 

goals described at the beginning of this chapter. Rather, task- specific pro-

gramming may be an easier- to- use and easier- to- adopt programming experi-

ence than textual or block- base languages. Students will not use task- specific 

programming environments alone as a notational tool for computational 

literacy, but use of such tools may help students to gain understanding 

about the nature of programs, programming, and debugging. Task- specific 
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programming may help students develop the first competencies on trajec-

tories to learn programming (Rich et al. 2017, 2019).

CONCLUSION: FINDING PATHWAYS TO  

COMPUTATIONAL LITERACY

There are many reasons for students to learn programming, from under-

standing the digital world in which they live, to developing computational 

participation and action skills, to developing a new way to understand the 

world in which they live. Programming offers a powerful notation for learn-

ing and thinking that is unlike mathematical equations. The computer is the 

master simulator— it can look like any domain. Learning programming can 

be about learning domains that students are already interested in. Learning 

to program is not just about learning to become a software developer.

Achieving that vision may require us to rethink our programming envi-

ronments. Languages developed for professional programmers, or devel-

oped for children in an earlier age with fewer computational end- interface 

skills, are unlikely to provide the affordances for learning that we can design 

in purpose- built environments. Task- specific programming is an approach 

for providing a pathway to computational literacy.
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INTRODUCTION

According to Hoppe and Werneburg (2019), the “essence of Computational 

Thinking (CT) lies in the creation of ‘logical artifacts’ that externalize and 

reify human ideas in a form that can be interpreted and ‘run’ on comput-

ers.” These logical artifacts can be the results of programming activities, 

which link CT to programming as a medium. Although the term compu-

tational thinking has gained popularity more recently, especially through 

Jeannette Wing’s formative paper (2006), Seymour Papert (1996) earlier 

described the idea and used the term in conjunction with the development 

of the Logo language as medium for learning mathematics.

Wing (2008, 2017) emphasizes the importance of abstraction in CT. In 

contrast to the general common- sense notion of abstraction, in computer 

science it is common to speak of “abstractions” (plural) as constructs, not 

as a general notion of thinking process in which details of concrete exam-

ples are factored out. We can refer to Wing (2008) for a characterization: 

“The essence of computational thinking is abstraction. . . .  In working with 

layers of abstraction, we necessarily keep in mind the relationship between 

each pair of layers, be it defined via an abstraction function, a simulation 

relation, a transformation or a more general kind of mapping. . . .  And so 

the nuts and bolts in computational thinking are defining abstractions, 

3
DEVELOPING COMPUTATIONAL 
THINKING SKILLS WITH MULTIPLE 
MODELS AND REPRESENTATIONS
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working with multiple layers of abstraction and understanding the rela-

tionships among the different layers. Abstractions are the ‘mental’ tools of 

computing.”

Following Wing, we see abstractions as mental constructs that can be 

operationalized in different ways to make them executable using abstract 

machines or different types of programming languages. Aho (2012) uses 

the term models of computation to address the operationalization of con-

structive abstractions. Variations of such mappings are found between 

different classes of programming languages (e.g., imperative versus declar-

ative languages) but also comprise “abstract machines” such as automata 

or grammars. It is important to realize that CT can build on different, even 

competing, abstractions. We will use the term representational flexibility 

here to denote the characteristic of a CT environment supporting different 

models of computation.

The idea of abstractions as mental and formal- operational constructs 

relying on “models of computation” is still not too prominent in the 

discussions around CT and CT education. The term computational models 

is more commonly used to characterize the computational artifacts that 

result from or are manipulated in CT activities. From a computer science 

perspective it is also important to discuss how certain classes of com-

putational models depend on abstract machines or computational para-

digms. Computational models have always also been a central ingredient 

of approaches for learning about STEM (science, technology, engineer-

ing, and math) through modeling and simulation. There is a spectrum of 

activities using such simulations that range from setting up input param-

eters to modifying or defining the behavior of the simulation through pro-

gramming. This spectrum of activities includes CT skills (Sengupta et al. 

2013). However, in such environments the basic computational “ingredi-

ents,” namely the underlying data structures and a basic processing model, 

are usually predefined and fixed. In a computer science perspective on CT, 

it is desirable to enable that the learners actively experience different com-

putational approaches and paradigms.

The study described in this chapter combines two different models of 

computation applied to a specific problem and investigates sequencing 

effects depending on the order of the learning experiences with the one 

and the other model. The two different computational approaches are 
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applied to the same problem, namely enabling a programmable agent to 

escape from a maze. In this context, successful problem- solving requires 

understanding and skills on two levels. On one level, we have the pro blem 

of finding a maze strategy, as discussed in the context of Turtle Geometry 

(Abelson and diSessa, 1981). Programming is one way of expressing such 

strategies that allows for testing and improvement. In this perspective, 

programming would be instrumental to solving the maze problem in the 

sense of “learning through programming.” In the CT perspective, the maze 

problem could be used as a challenge to develop certain programming 

skills in the sense of “learning to program.” The co- existence of these two 

orientations frequently is found in programming- based microworlds (cf. 

diSessa 2000).

The aim of our study is to investigate the influence of “representa-

tional flexibility” in terms of multiple models of computation on both 

problem understanding and the development of programming skills.

REPRESENTATIONAL FLEXIBILITY

When it comes to an operationalization of CT as a thought process to be 

carried out, the task of formulating problems and solutions in a way that 

they can be carried out by computers unveils many degrees of freedom. 

This flexibility manifests in a variety of aspects when dealing with com-

putational constructs and representations. We attribute “representational 

flexibility” to a learning environment that preserves and supports alter-

natives regarding the constructs and representations. This would even 

allow for asking students to explicitly choose a certain representation as 

part of a creative CT activity.

Choosing the right representation has had a huge impact both on the 

individual process and on the development of scientific computation 

(Tedre and Denning 2016). It led to an entry of computational meth-

ods into different science disciplines advancing the computational sci-

ences. Tedre and Denning (2016) argue, “Computer simulation became 

the main engine of progress across sciences and engineering fields, and 

computational thinking was its mental toolbox.” However, this certain 

wave in the history of CT was not driven by computer science but was 

inspired mainly by highly specific application domains. On an individual 
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level, the choice of the appropriate representation or programming tool 

becomes relevant as the thought processes require learners to think at 

multiple levels of abstraction. According to Dijkstra (1974), the cognitive 

skills involved in programming can be described as a mental zoom lens, 

when the programmer “switches back and forth between various seman-

tic levels, between global and local considerations, between macroscopic 

and microscopic concerns.” In the following, we address different dimen-

sions in which representational flexibility can manifest.

Models oF CoMPUtAtIon And PRogRAMMIng tools

The creation of logical, computational artifacts relies on a certain model of 

computation as an abstract engine. They can be categorized into sequen-

tial models (e.g., finite state machines or Turing machines), functional 

models (e.g., lambda calculus), or concurrent models (e.g., Petri nets). 

Although the direct use of computational models apart from automata is 

underrepresented in K– 12 education, there are a few examples of environ-

ments that make use of such models. For example, the CardBoard (later: 

FreeStyler) environment supported modeling and running Petri nets in 

an educational setting (Pinkwart, Hoppe, and Gaßner 2001).

The grounding of computation on such abstract engines, and accord-

ingly the choice of such foundations, is not very much in the focus of the 

current, more educationally inspired CT discourse. It may seem that these 

choices have little to do with CT practice. However, there are relevant 

examples that explicitly address the choice of basic “models of computa-

tion” or representations:

• The “Kara” microworld (Hartmann, Nievergelt, and Reichert 2001) uses 

a programmable ladybug to introduce concepts of computer science 

and programming. It comes with different versions based on different 

abstract engines. The original version was based on finite state machines, 

but later versions based on programming languages (JavaKara, RubyKara) 

were added. The microworld of Kara allows for solving the same or simi-

lar problems based on different “models of computation” in the sense of 

Aho. The FSM version allows for linking the Kara experience to automata 

theory in general, whereas the Java and Ruby versions may be used as 

introductions to programming.
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• Kafura and Tatar (2011) report on a Computational Thinking Course 

for computer science students in which different abstract formalisms 

or engines (including Petri nets, BNF grammars, lambda expressions) 

with corresponding tools were employed to construct computational 

models in response to various problems. This example shows that 

relying on abstract models of computation can be an alternative to 

using programming in the construction of computational artifacts.
• Curzon and McOwan (2016) describe computational modeling as a 

part of algorithmic thinking. The algorithm simulates the transforma-

tion of an idea in a virtual world; it is possible that these ideas can be 

things from the real world like laws of physics but also a fantasy world, 

which is modeled as a game.

The growing interest in teaching and learning programming during the 

last decade has predominantly led to using visual block- based program-

ming interfaces in combination with imperative/procedural programming 

languages. Scratch (Resnick et al. 2009) is a prominent example of this type. 

Although it has been criticized for supporting or allowing bad program-

ming habits (Meerbaum- Salant, Armoni, and Ben- Ari 2011), it is a de facto 

standard for exploratory programming in current CT education. However, 

visual programming environments are not necessarily bound to the imper-

ative paradigm. Although very similar to Scratch in its visual appearance, 

the Snap! environment also provides elements of functional programming 

such as anonymous and higher- order functions in a visual block- based style 

(Harvey and Mönig 2015).

Although common programming languages do not show fundamen-

tal differences in their models of computation, there is still a big dif-

ference across the various programming paradigms and in the levels of 

abstraction as part of the mental models and thought processes involved 

in the programming. A purely functional language such as Haskell offers 

higher abstractions from mathematical thinking than writing assem-

bler code that is closer to the set of operations provided by a concrete 

machine. Because of the set of computational constructs and paradigms 

that underlie the specific programming tool, novices may expect difficul-

ties when they anticipate a certain behavior from their mental models 

(Rogalski and Samurçay 1990). One example is using the equal operator 
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for assignment in several imperative programming languages, in contrast 

to algebra, where the operator is an assertion of equality.

In summary, there is a tension between models of computation and 

learners’ cognitive models in programming. The choice of the right pro-

gramming tools is important on different levels. Therefore, it is desirable to 

support a representational flexibility in the CT environment and activity. 

Representational flexibility in this aspect means that the user in such a CT 

environment has the ability to switch between different models of computa-

tion, programming tools, problem representations, or levels of abstraction.

This flexibility is not limited to the choice of a concrete programming 

tool, paradigm, or language: it can be extended to the particular applica-

tion domain and the corresponding problem space as part of problem- 

solving in CT activities. In the tradition of Logo and turtle graphics, 

labyrinths are good examples for representational flexibility in this con-

text. On the one hand, the algorithmic specification of maze strategies 

can be situated in the geometry of the microworld (turtle geometry) and 

solved with procedural programs using actions in the concrete environ-

ment. Alternatively, the labyrinth may be represented as an abstract graph, 

and the solution to the labyrinth may be based on general graph search. 

This can have implications on which programming tool is suited best for 

the domain- specific solution. It is plausible for many applications that 

domain- specific languages (see the next subsection) are the appropriate 

ways to address problem- formulating and problem- solving processes.

MICRoWoRlds And doMAIn- sPeCIFIC lAngUAges

Andi diSessa’s notion of “computational literacies” (diSessa 2000) pre-

supposes the availability and accessibility of computational media as a 

basis for creative invention and computational representation. The com-

putational medium would include a “model of computation” in Aho’s 

sense but would also provide more or less easy access to different types 

of abstractions. The medium may be a programming language, but as we 

have seen before, it can also be an “abstract engine” or even a physical 

model in the “unplugged” sense. For programming languages, it is well 

known that they resonate with computational abstractions (as constructs) 

in specific ways. For example, the concept of a variable as a storage or 

memory location is typical for imperative languages. This implies that 
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variables can have mutable values, which is different from the concept of 

variables in pure functional or logical languages. Computational media 

for creative and constructive learning are often combined with concrete 

application domains (corresponding also to learning domains) for which 

the medium and its representational primitives are particularly designed. 

This is captured in the notion of a “microworld”: 

A microworld is a type of computational document aimed at embedding impor-
tant ideas in a form that students can readily explore. The best microworlds have 
an easy- to- understand set of operations that students can use to engage tasks of 
value to them, and in doing so, they come to understanding powerful under-
lying principles. You might come to understand ecology, for example, by building 
your own little creatures that compete with and are dependent on each other. 
(diSessa 2000)

The educational affordances and usage patterns that originate from 

microworlds are immense and have been widely discussed from an edu-

cational technology point of view (e.g., Rieber 1996). From a computer 

science perspective, microworlds in the sense described by diSessa can be 

conceived as domain- specific languages designed to facilitate constructive 

learning in certain domains. Compare the general characterization given by 

van Deursen, Klint, and Visser (2000): “A domain- specific language (DSL) 

is a programming language or executable specification language that offers, 

through appropriate notations and abstractions, expressive power focused 

on, and usually restricted to, a particular problem domain.” This suggests 

that the principles of designing and implementing DSLs should be consid-

ered when we develop microworlds as computational media for learning.

Regarding the structuring of learning processes and the enrichment 

of such processes with computational media, inquiry learning in science 

and CT education are closely related. However, a discourse that is primar-

ily driven by pedagogical inspirations and interest tends to neglect the 

importance of genuine computer science concepts and their role in shap-

ing CT. The understanding of the computational principles underlying 

and constituting such logical artifacts, including “models of computation” 

in the sense of Aho as well as specific “abstractions as constructs,” are of 

central importance for CT. In contrast, in general scientific inquiry learn-

ing, computational models are instrumental for the understanding the 

domain of interest (e.g., the functioning of ecosystems or certain chemi-

cal reactions). Usually, the computational media used in general inquiry 
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learning contexts are of limited “representational flexibility” regarding 

the choice of data structures and abstract operational mechanisms.

THE EFFECT OF PROGRAMMING PARADIGMS  

ON PROBLEM- SOLVING

Visual block- based programming (VBBP) can be seen as the current standard 

for introductory programming in K– 12 education with Scratch as the most 

prominent facilitator (Resnick et al. 2009). There is evidence that VBBP, 

with a well-defined semantics including a concrete environment inspired 

by turtle geometry, can facilitate a smooth start of learning programming 

and avoid issues of programming syntax as in textual languages. Overall, 

it provides a rich and stimulating learning environment (Grover and Pea 

2013). However, it is also reported that students perceive that these tools 

are less powerful, cumbersome to use for larger projects, and inauthentic 

if compared to conventional text- based programming tools (DiSalvo 2014; 

Weintrop and Wilensky 2015). Although Scratch is mostly characterized 

through the imperative programming paradigm, it promotes the creation 

of interactive programs through a rich event- based programming interface. 

However, the mechanisms provided tend to encourage learners to misuse 

the constructs “broadcast” and “wait,” which is sometimes perceived as a 

bad practice (Aivaloglou and Hermans 2016). This deficit is compensated 

for in the App Inventor (Wolber et al. 2011), which follows a similar visual 

approach but focuses on the development of mobile applications, which 

are “native” to events. In contrast to proposing a one- size- fits- all solution 

for introductory programming, we advocate the use of different program-

ming paradigms and representations in such environments.

A CT environment can be characterized as holding representational 

flexibility if it provides the learners or users with a certain choice regard-

ing programming tools, paradigms, abstractions, and other aspects that 

have been discussed in the previous section. However, little evidence 

exists in research on CT regarding sequencing effects when switching 

between different representations and programming tools. In this sec-

tion, we present ctMazeStudio, which is a virtual learning environment 

that has been developed to explore the effects and implications of repre-

sentational flexibility on CT.
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CtMAZestUdIo: A MUltI- PARAdIgMAtIC envIRonMent

The ctMazeStudio system facilitates the definition of agent behavior in a 

maze environment with different difficulty levels through two different 

programming paradigms. The goal is to define a strategy that lets the 

agent find a way out of any maze of the given level. In the overall learn-

ing process, the learners will formulate strategies of more and more gen-

eral nature, ending up with a correct implementation of “wall following.”

The reactive rule- based approach facilitates the formulation of strate-

gies in a bottom- up and “situated” fashion: In a given situation (i.e., with 

the agent in a certain position in a certain maze), the learner is provided 

with a “localized” rule that reflects the concrete situation in the neigh-

borhood of the agent in its pre- instantiated conditions (IF- part) and still 

empty actions (THEN- part). Now, the learner has to fill in a correspond-

ing action or action sequence made up of 90- degree turns or stepwise 

movements forward. These rules will be “memorized” by the agent and 

will be re- applied under the same conditions. This approach was inspired 

by the kind of visual agent programming introduced in “KidSim” (Smith, 

Cypher, and Spohrer 1994).

To support this kind of learning and problem- solving activity, ctMaze-

Studio contains three components: the rule editor, the behavior stage, 

and a rule library (figure 3.1). The rule editor (figure 3.2) provides the 

actual “local” programming interface, which is invoked when a new situa-

tion is encountered. The editor shows a condition component (IF-part) and 

an action component (THEN-part). For the given conditions, the students 

select desired actions to define a situated rule of “reactive” behavior. The 

user can also delete conditions, which implies that the corresponding 

rule will be applied in situations more general than the given one, disre-

garding one of the premises (as a generalization mechanism).

As can be seen in figure 3.3, the current situation implicitly specifies 

the conditions from which the rule- building starts. If there is no existing 

rule that matches the current premises, the system requests the student to 

define actions for the given situation. Afterward, the newly defined rule 

will be applied to all situations matching the same condition.

The architecture of the rule- based subsystem of ctMazeStudio is shown 

in figure 3.4. In the graphical user interface, the user can create a new rule 

or modify an existing rule in the rule editor. Each created rule is listed in 
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3.1 ctMazeStudio with rule library.

3.2 ctMazeStudio’s “situated” rule editor.
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the rule library, initially in the order of creation. The ordering of the rules 

determines the order of the matching and ensuing execution, which is rel-

evant if the rule conditions are not disjoint. The rule manager combines the 

library of rules with the interpretation of the rules and renders the result 

through a game engine. Depending on the success of the rule execution in 

the solver, the rule is transformed into code to trigger the movement of the 

agent (“hero”) in the game engine, which causes it to proceed.

Start

No

Yes

Current
situation

Execute the
defined rule

Is a rule for
the conditions of the

current situation
defined?

User
defines a

rule
End

3.3 Flow diagram for reactive rule- based programming (RRBP).

User interface

User Graphical user interface

ctMazeStudio - RRBP mode

Rule library

Rule manager

Rule

Rule list

SolverPhaser game
object

Hero

Rule editor

Log of
movement

3.4 Architecture of the rule- based system.
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The rule library shown in figure 3.1 allows for managing the collec-

tion of all previously defined rules. The learners can edit or delete already 

defined rules, directly enter new rules, and change the order (and thus 

priority) of the rules to be checked. In the behavior stage, the behavior 

of the agent is visualized. Depending on the entries in the rule library, 

the corresponding actions are executed, and the specific entry in the rule 

library is highlighted. The execution will stop if no more applicable rules 

are found or the goal is reached.

On the higher levels, learners must apply different strategies to improve 

their programming code (i.e., the rule set). When they develop and test 

their rule sets, they may revise formerly defined rule sets through gener-

alization (dropping of conditions) or reordering. The challenge is to cre-

ate a maximally powerful rule set with a minimum number of rules. This 

requires a level of understanding that allows for predicting global behavior 

based on locally specified rules. In the maze example, a small set of rules 

(minimally three) will be created to implement a wall- following strategy. 

A correct algorithmic solution has to ensure that the wall is always kept 

either on the right or on the left hand. This strategy works with any kind 

of maze that has no cycles or “islands.” Beyond the predefined levels, this 

strategy can still be refined to avoid circling around islands.

A specific characteristic of this approach to programming is that the 

learner is confronted with concrete situations and “forced” to decide 

what should happen. Afterward the learner sees the cascading effect of 

this decision and can rethink or refine it. Many individual decisions com-

bine to an overall picture of reactions that solves the entire task. When 

applying the rule library to other mazes, learners can evaluate and gen-

eralize the rules.

In addition to the reactive rule- based mode, the ctMazeStudio environ-

ment can also be programmed through a visual block- structured inter-

face (figure 3.5). The visual programming component for this variant of 

ctMazeStudio has been implemented based on Google Blockly. Conceptu-

ally, it requires a top- down imperative programming approach with con-

ditionals and loops as control structures. ctMazeStudio therefore supports 

a specific type of “representational flexibility” with the combination of 

reactive rule- based programming (RRBP) and visual block- based program-

ming (VBBP).
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RRBP and VBBP are not only different on a representational or coding 

level; they also stand for different ways of tackling the maze challenge. 

These differences include the aspect of control: RRBP is based on an agent 

model with an implicit mechanisms of rule selection and execution (i.e., 

a predefined, local control model), whereas the VBBP require to define a 

global control regime as part of the code. The analysis of cases in terms of 

conditions comes as a follow- up activity in RRBP starting from given situ-

ation patterns, whereas it is a primary modeling step in VBBP. The basic 

differences related to the two programming approaches are summarized 

in figure 3.6.

HYPotHeses And stUdY desIgn

The principal of supporting multiple computational approaches when teach-

ing CT is based on the rationale that we should not restrict CT to one specific 

model of computation but convey the richness of different types of com-

putational models. Learning environments based on one specific computa-

tional approach will support a learning progression within this approach. 

However, in our maze environment, we can also examine the impact of the 

different computational representations and approaches on the understand-

ing of the problem domain. This problem understanding, in turn, is related 

to algorithmic thinking (in the way of thinking about labyrinth algorithms). 

3.5 Block- structured programming interface.
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The main higher- level learning goal is the understanding of wall- following 

as a general strategy. This understanding is induced by a level structure, 

which adds new facets of labyrinths (e.g., circles, islands) stepwise to the 

environment. During the study, the learners were asked to solve the levels 

and to create such an algorithm to solve all labyrinths.

Based on these premises, we have studied the effect of sequencing the 

usage of RRBP and of VBBP. Our central hypothesis was, “(H1) The under-

standing and active mastery of wall- following will be better supported by RRBP.” 

Our two experimental conditions were RRBP first, followed by VBBP sec-

ond (group A) and vice versa for group B. Accordingly, we would expect 

the learning gain (related to the maze strategy) to be higher for group A 

than for group B after the first trial. We would expect group B to “catch 

up” after the second round. Additional observations were made regarding 

the problem- specific and general coding abilities in the VBBP approach. 

Specifically, we would expect the following: “(H2) Prior experience with RRBP 

will lead to better solutions in the VBBP modality in terms of finding and imple-

menting correct strategies.”

Figure 3.7 represents the overall experimental procedure.

The tests of algorithmic understanding were related to the maze prob-

lem and operationalized through specific questions, involving also paper 

and pencil solutions with given labyrinths. CT competencies were tested 

through questions inspired by the CTt questionnaire proposed by González 

(2015) and the instruments used for the assessment by Grover and Basu 

RRBP VBBP

► Bottom-up strategy

► Local control,
“situational” approach

► Ex-post generalization
(minimizing number of rules
requires inference of global
behavior from aggregate rules)

► Domain-specific

► Top-down strategy

► Explicit global control
 and case distinction

► Higher threshold
 (less specific support)

► More general

3.6 Comparison between reactive rule- based programming (RRBP) and visual block- 

based programming (VBBP).
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(2017) have been adapted to the specific application domain and pro-

gramming tools. Among others, this involves tasks about code compre-

hension, interpretation of statement sequences, and the formulation of 

algorithms in a Scratch- like representation that uses natural language. Dur-

ing a mid- test, learners were asked to describe the algorithm they had used 

to solve the labyrinth of the main level. These descriptions were evaluated 

manually to assess algorithmic thinking with respect to the learning goal 

of creating a wall- following strategy.

The study was conducted in a public German high school (“Gymna-

sium”) with a group of thirty- one grade- nine students participating in an 

elective computer science course. Two were female and twenty- nine were 

male,1 and all were between fourteen and sixteen years old (M = 14.87). 

The average self- assessment of programming skills was 2.77 on a five- 

point Likert scale. Group A had fifteen, and group B had sixteen partici-

pants. The duration of the test was ninety minutes.

eXPeRIMentAl ResUlts

Table 3.1 below captures the distribution of successful completions of 

level 8 (corresponding to wall following) for all groups and conditions. 

Pre-test

• Demographics
• Algorithmic
  understanding
• CT competences

• Group A: RRBP
• Group B: VBBP

• Algorithmic
  understanding

Run 1 Mid-test

• Algorithmic
  understanding
• CT competences

• Group A: VBBP
• Group B: RRBP

Post-testRun 2

3.7 Experimental procedure.
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For both groups, the rate of success increased from trial 1 to trial 2 (A: 6 

to 8; B: 2 to 5). The overall success was higher in group A.

The outcome for group A indicates that the correct problem understand-

ing developed in the RRBP condition could be transferred to the second 

phase and allowed for a re- coding in the other modality (VBBP). In con-

trast, starting with VBBP did not facilitate success in solving the problem.

Although the results for RRBP look positive, there was a specific problem 

that often created a learning obstacle: The rule editor allowed for entering 

an unlimited sequence of actions so that a specific solution for the given 

maze could be specified at a single blow. However, such solutions would 

not be transferable to other mazes (not even of the same level). To avoid 

this problem, the number of actions in one rule can now be limited in the 

current version of ctMazeStudio. The maximally needed number of actions 

would be two to be able to combine a forward step with a turn.

Figure 3.8 shows the quantified results of the “algorithmic understand-

ing” test applied after Run 1 (T1) and after Run 2 (T2). The questions were 

designed in such a way as to distinguish procedural and declarative knowl-

edge related to this problem, and the diagram shows the results with this 

distinction. First, we compared the different measurements for each of the 

groups (A and B) separately using the non- parametric Wilcoxon signed- 

rank test. For both groups, the difference (increase) in procedural knowl-

edge was not significant. However, group B showed a significant increase 

in declarative knowledge between T1 and T2 (Z = 19.5, p = 0.026). The cor-

responding difference (slight decrease) of declarative knowledge in group 

A was not significant.

Second, we used the Mann- Whitney U test to compare the declarative 

understanding between groups A and B. We found a significant differ-

ence for the measurements at time point T1 (U = 68.5, p = 0.20), but no 

Table 3.1 Success (completion of level 8) 

per group and programming modality

RRBP VBBP

Group A 6 8

Group B 5 2
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significant difference at T2 (U = 105.5, p = 0.286). This corroborates our 

central hypothesis (H1): The RRBP experience is essential for a better 

(declarative) understanding of the maze strategy in both groups. The 

essential knowledge gain comes from the exposition to RRBP.

The second hypotheses (H2) is plausibly backed by the comparison of 

success figures in table 3.1: Success in the VBBP condition is four times 

higher if this modality is preceded by RRBP. However, an analysis of “pro-

ductivity” in terms of number of trials did not show a difference between 

groups A and B in the VBBP condition.

dIsCUssIon

This study investigated the differences in CT “induced” by different com-

putational approaches or paradigms used in a maze problem- solving task. 

The differences were reflected and measured in terms of the understand-

ing of the problem- related strategies as an effect of “learning through 

programming.”

The RRBP approach favors a bottom- up and “situated” type of rea-

soning and is certainly more specifically adapted to the problem than 

VBBP. Accordingly, it provides an easier start. On the other hand, RRBP 

T1 T2

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Declarative A

Procedural A

Declarative B

Procedural B

3.8 Algorithmic understanding: declarative and procedural knowledge of groups A 

and B, measured at T1 and T2.
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comes with the challenge of inferring the global behavior of the agent 

from a collection of locally defined rules. A correct implementation of the 

wall- following strategy requires the generalization of rules and typically 

also a reduction of the accumulated rule set. We demonstrated that the 

prior experience (of RRBP) supports the declarative understanding of the 

problem better than VBBP and leads to higher success rates in the VBBP 

condition, which is characterized by a top- down and imperative model of 

computation. In this sense, RRBP can “feed into” VBBP as a more general 

approach. Our findings suggest that we should exploit more variations in 

basic computational approaches (“representational flexibility”) to support 

the development of CT conceived as a rich collection of cognitive skills.

CONSEQUENCES FOR CURRICULUM DESIGN AND 

ORCHESTRATING COMPUTATIONAL THINKING

Our study shows that models of computation or programming para-

digms do not just represent different flavors of building and understand-

ing concrete computational models to solve given problems. The choice 

of a paradigm can have an important impact on the students’ ability to 

solve the problems at hand and may also influence the overall learning 

progression.

The provision to make a choice regarding the programming tool, para-

digm, abstractions, or data structures enables learners to better express 

themselves through programming. Programming is a constructive activ-

ity that requires both creativity and formal rigor. Special languages and 

interfaces have been developed to make it more novice friendly and acces-

sible; Scratch is one of the most prominent examples. However, based 

on the work reported here, we argue that there are conditions, in which 

other paradigms and approaches are more suited for a specific problem 

type and activity. To optimally facilitate CT skills, learners need to accom-

modate to choose their own representations carefully with respect to a 

given problem and to adapt it to their personal cognitive tools.

This has two main implications on the design of the curriculum or 

the orchestration of CT. The existence of one general programming tool 

may lead to a higher threshold in problem- solving for learners. This 

has been presented in this chapter in the domain of maze algorithms, 
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where problem- solving strategies can be better applied and illustrated 

using reactive rules in a bottom- up approach. In the visual block- based 

approach, learners need to write their algorithms in advance and thus 

must perform bigger steps to see and evaluate results. Supporting the 

evaluation of pieces of code is often characterized as an important aspect 

in CT activities. However, representational flexibility should not be sim-

plified nor be limited to the programming tool itself, the used paradigm, 

or the examples from this article.

The predominance of imperative programming in visual approaches can 

be traced back to the popularity of imperative programming languages at the 

time these approaches have been developed. Therefore, other approaches 

may be more supportive or helpful in the acquisition of CT skills. In his 

remarks on CT, Aho (2012) underlines the importance of clarifying the 

representational- operational basis of CT in terms of an underlying “model 

of computation” with well- defined operational semantics. Imperative pro-

gramming in von Neumann architecture is a legitimate model of compu-

tation in this sense. However, there is a wide spectrum of other potential 

models of computation. The example of the Kara environment (Hartmann, 

Nievergelt, and Reichert 2001) shows that finite- state machines can be used 

as an alternative to Java programming in controlling a robot in microworld. 

We have also seen Petri nets being used to model the interaction in board 

games. The empirical evidence gathered with ctMazeStudio is certainly 

limited regarding the specificity of the task and the models of computa-

tion. Yet, it allowed us to demonstrate that there are benefits in providing 

learners with alternative models of computation to support computational 

problem- solving.

NOTE 

1. The quantitative dominance of male participants is typical for elective (choice- 
based) computer science courses in German high schools. Given this sample, we 
have not been able to analyze gender effects.
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INTRODUCTION

New theories often emerge from seemingly contradictory evidence. When 

conflicting empirical results are found, a way forward is to enunciate new 

and broader theories that can accommodate those contradictions within 

a more comprehensive framework. That is the rationale for the present 

chapter.

In this vein, recent computational thinking (CT) studies in K– 12 have 

yielded conflicting results depending on whether the computational 

concepts involved were used to solve a specific type- modality of prob-

lem or another. Thus, in a study by Román- González, Pérez- González, 

and Jiménez- Fernández (2017), participants from ten to sixteen years old 

were asked to use computational concepts, such as sequences, loops, con-

ditionals, and functions to solve visuospatial problems, such as mazes 

or graphic designs, on a digital canvas (figure 4.1). On the other hand, 

in a study by Howland and Good (2015), participants from twelve to 

thirteen years old were asked to use similar computational concepts to 

solve linguistic- narrative problems (figure 4.2). To this end, children were 

taught to use Flip, “a programming language that aims to help 11– 15 year 

olds develop computational skills through creating their own 3D role- 

playing games [i.e., interactive storytelling]” (Howland and Good, 224). 

4
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OF MULTIPLE COMPUTATIONAL 
THINKINGS
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Flip has a unique feature that consists of combining a block- based pro-

gramming language and a dynamically updating natural language version 

of the script under creation on the same interface (figure 4.3).

The former study (Román- González, Pérez- González, and Jiménez- 

Fernández 2017), which was fully conducted in pure pre- test condi-

tion (i.e., participants without any prior formal experience in computer 

programming), showed significant differences in favor of the boys and 

throughout all the school grades involved (figure 4.4, left). In contrast, 

the latter research (Howland and Good 2015) yielded conflictive results 

in favor of the girls, both in pre- test and post- test conditions (figure 4.4, 

right). How can it be possible if both studies measured the same psycho-

logical construct (i.e., CT) in participants with a similar age range?

Nevertheless, these aforementioned results are just seemingly contra-

dictory since they reveal some alternative explanations:

• First, results summarized in figure 4.4 are consistent with classical and 

relevant literature on gender differences. Thus, several meta- analyses 

demonstrate higher male spatial ability, especially in tasks that involve 

mental rotation of figures (e.g., Linn and Petersen 1985; Voyer, Voyer, 

and Bryden 1995), which could explain differences in favor of boys in 

the study by Román- González, Pérez- González, and Jiménez- Fernández 

4.1 Computational concepts to solve a visuospatial problem (Román- González, Pérez- 

González, and Jiménez- Fernández 2017).
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(2017). Analogously, some other meta- analyses show female superi-

ority in tasks involving verbal- linguistic ability (e.g., Hyde and Linn 

1988; Lewin, Wolgers, and Herlitz 2001), which could explain differ-

ences in favor of girls in the study by Howland and Good (2015).
• Moreover, there is a great deal of empirical evidence that demonstrates 

that CT is mainly a problem- solving ability linked with fluid intel-

ligence (e.g., Boom et al. 2018; Román- González, Pérez- González, 

and Jiménez- Fernández 2017), which is characterized by adapting to 

the context demands. In other words, if we assume that CT is a fluid 

cognitive ability, then its concrete expression and behavior (i.e., its 

if

else

player

edit

playerSmaug
Smaug

tell to attack

display on screen

is carrying

You escaped, but
without the amulet.

Amulet of Pow
NW IT MNEC

then

4.2 Computational concepts to solve a linguistic- narrative problem (Howland and Good 

2015).
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crystallization) may vary, depending on the type- modality of problems 

on which such ability is projected. The same applies to a fluid, such as 

water, that takes the shape of its container.

Therefore, all of the above suggests that CT could be manifested in 

multiple and different ways, depending on the type- modality of problems 

to be solved. In other words, it is plausible to hypothesize the existence 

not of a single, but of multiple, computational thinkings. This statement 

clearly resonates with the Theory of Multiple Intelligences (TMI) postu-

lated by Howard Gardner (1983, 1999), in which the author claimed the 

4.3 Interface of Flip, which blends block- based programming- language and natural 

language.
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existence not of a single, but of multiple, intelligences. Since we are going 

to intersect CT and TMI, let’s clarify each of these terms.

From our point of view, CT can be defined as a human- cognitive ability 

that consists of formulating and representing problems so that they can be 

subsequently solved using computational concepts (e.g., sequences, loops, 

events, parallelism, conditionals, operators) and practices (e.g., experiment-

ing and iterating, testing and debugging, reusing and remixing, abstracting 

and modularizing) (Moreno- León et al. 2019). Furthermore, we consider 

that computer programming is the fundamental way that enables CT to 

come alive (Lye and Koh 2014), although CT can be projected on different 

kinds of problems that may not involve directly programming tasks. In 

other words, “Just like we distinguish [for example] between verbal aptitude 

(which is in the order of human cognitive abilities, with an important innate 

base) and literacy skill(s) [i.e. reading and writing] (which is an instrumental 

competence that requires a relatively formal teaching and learning process); we 

could similarly establish a distinction between CT (human cognitive ability) and 

programming skills (instrumental competence)” (Moreno- León et al. 2019, 32).

On the other hand, TMI is a modular theory of intelligence. This means 

that, instead of considering the human mind as a single and general 
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4.4 Gender differences in CT performance over visuospatial problems (left; Román- 

González, Pérez- González, and Jiménez- Fernández 2017) and linguistic- narrative prob-

lems (right; Howland and Good 2015).
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information- processing agent (i.e., as a universal problem solver, which 

works indifferently regardless the content or context of the problem), TMI 

perceives the human mind as a set of separate cognitive modules or facul-

ties. According to TMI, each of these cognitive modules has very specific 

capabilities (i.e., can solve specific types- modalities of problems, always in 

context), and Gardner (1983, 1999) names these aforementioned faculties 

as intelligences to place them all at the same level of hierarchy. In more con-

crete terms, TMI currently recognizes eight intelligences, namely verbal- 

linguistic, logical- mathematical, musical, bodily- kinesthetic, visual- spatial, 

interpersonal, intrapersonal, and naturalistic. Additionally, TMI states two 

fundamental principles:

• The eight intelligences are relatively independent of each other (i.e., 

the subject’s level in a given intelligence does not predict his/her level 

in another).
• A same intelligence may be needed to excel in different tasks or human 

activity fields (e.g., visual- spatial intelligence is needed to orient your-

self in a city and to master graphic design tasks). In addition, to excel 

in some human activity fields may require a high level in more than 

one intelligence (e.g., being an excellent orchestra conductor probably 

demands high levels in musical, bodily- kinesthetic, and interpersonal 

intelligences).

Hence, in the following sections we intend to intertwine CT and TMI. 

In other words, we will try to reinterpret Gardner’s theory in computa-

tional terms. This goal fully aligns with the initial premise of TMI: to be 

intelligent is to solve problems within a given context and to create prod-

ucts that are valuable within a given culture- society. Since our present 

context is mainly digital, given that our present culture- society relies on 

digital artifacts and products, then it seems necessary to revisit Gardner’s 

intelligences from a computational approach. To some extent, Gardner 

himself has assumed this possibility since he has recently redefined an 

intelligence as “a capacity to compute using a particular type of informa-

tion in service to a particular role” (Moran and Gardner 2018, 25).

Before continuing, readers should be aware that this chapter is specula-

tive; that is, it aims to generate and stimulate discussion and to open new 

lines of research, not to establish a definitive and binding CT framework.
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GROUNDING THE THEORY OF MULTIPLE  

COMPUTATIONAL THINKINGS

In this section, we will try to ground our theory through a (nonexhaus-

tive) review of K– 12 educational interventions, along which CT has been 

used and developed, mostly by means of computer programming, to solve 

different kinds of problems: verbal- linguistic, logical- mathematical, musi-

cal, bodily- kinesthetic, visual- spatial, interpersonal, intrapersonal, and 

naturalistic.

CoMPUtAtIonAl tHInKIng In veRbAl- lIngUIstIC PRobleMs

Verbal- linguistic intelligence involves a special sensitivity toward lan-

guage, both spoken and written, an outstanding ability to learn (new/

foreign) languages, and the ability to use language to achieve certain 

objectives. Among the people with high verbal- linguistic intelligence are 

lawyers, speakers, writers, and poets. In other words, linguistic intelli-

gence is needed to deal with problems that are formulated or represented 

in a verbal way (Gardner 1983, 1999).

We find several examples in the literature in which CT has been applied 

to verbal- linguistic contexts. In this regard, we highlight the pioneering 

studies of Quinn Burke, who almost one decade ago started to introduce 

basic computational concepts to middle school students within the context 

of the writing classroom and by means of Scratch (a block- based program-

ming language) (Burke 2012; Burke and Kafai 2012). Other experiences and 

studies have infused CT into K– 12 schools through digital (Campos, Signo-

retti, and Rodrigues 2017) or unplugged (Curzon et al. 2014) storytelling 

activities. Campos, Signoretti, and Rodrigues (2017) is a clear example of 

how a computational concept (e.g., conditional logic) can be embedded in 

a verbal- linguistic product (figure 4.5, top). In another vein, computational 

practices such as modeling have been used to support language learning 

in several areas (Sabitzer et al. 2018): reading comprehension, vocabulary 

acquirement, or grammar rules/structures visualization (figure 4.5, bottom). 

In reverse, some computational tools have been designed in which natural 

language supports and scaffolds the learning of a programming language 

(e.g., Howland and Good 2015; Proctor and Blikstein 2017). Finally, empir-

ical evidence exists regarding the effectiveness of narrative and storytelling 
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activities to encourage and promote CT in girls at K– 12 levels (e.g., Kelleher, 

Pausch, and Kiesler 2007), consistently with Howland and Good (2015) 

(figure 4.4, right).

CoMPUtAtIonAl tHInKIng In logICAl- MAtHeMAtICAl 

PRobleMs

Logical- mathematical intelligence involves the ability to analyze problems 

logically, to carry out mathematical operations, and to conduct research 

with a scientific approach. Mathematicians, logicians, and scientists, among 

other occupations, employ logical- mathematical intelligence (Gardner 1983, 

1999). At first glance, the close relationship between CT and mathematical 

4.5 Conditional logic embedded in a linguistic- verbal context (top; Campos, Signoretti, 

and Rodrigues 2017), and modeling as a computational practice to support language 

learning (bottom; Sabitzer et al. 2018).
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intelligence seems evident, since they both share being mostly based on 

algorithmic thinking (Lockwood et al. 2016). In fact, some relevant CT def-

initions point out its algorithmic foundations. For example, Aho (2012) 

defines CT as “the thought process involved in formulating problems so 

their solutions can be represented as computational steps and algorithms” 

(Aho 2012, 832). Meanwhile, much of mathematical thinking consists of 

rules and procedures to reach a solution based on initial data (i.e., of apply-

ing algorithmic thinking on numerical information).

Furthermore, several authors have highlighted different points in com-

mon between CT and mathematical thinking, such as “conditional logic” 

(Morais, Basso, and Fagundes 2017), “reflective abstraction” (Cetin and 

Dubinsky 2017), or “modeling” (Sanford and Naidu 2017). From a more 

comprehensive perspective, Gadanidis (2017) has proposed “Five Affor-

dances of Computational Thinking to support Elementary Mathematics 

Education”: namely “agency,” “access,” “abstraction,” “automation,” and 

“audience.”

Focusing on concrete experiences in K– 12, which are aimed at foster-

ing mathematics education through CT and computer programming, we 

consider that ScratchMaths project (https:// www . ucl . ac . uk / ioe / research 

/ projects / scratchmaths) is the most relevant and promising example (Ben-

ton et al. 2017, 2018). As can be seen in figure 4.6, ScratchMaths addresses 

several mathematical concepts, such as symmetry, polygons, place value, 

proportionality, or coordinates, by means of computational concepts and 

practices that are implemented in Scratch block- based programming lan-

guage (Resnick et al. 2009).

All the mathematical concepts cited in the previous paragraph are part 

of the traditional mathematics curriculum. According to Olabe et al. (2014), 

this traditional curriculum is full of Type A problems, which “are deter-

ministic in their solution (the solution is known and unique); and they 

are deterministic in process (the path to the solution is known and unique 

too)” (76). Nevertheless, an emerging stream of authors and research argues 

that computational tools, concepts, and practices are even more useful and 

powerful with Type B problems (i.e., nondeterministic in their solution and 

in their process). In addition, Type B problems are iterative in their nature, 

and they require experimentation for their resolution (e.g., Olabe et al. 

2014; Sengupta et al. 2013; Weintrop et al. 2016). These authors also claim 
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that many more Type B problems should be included in the mathematics 

curriculum and within the broader framework of STEM education, in which 

physical and biologic complex systems (i.e., typical Type B problems) are 

frequently studied. In this regard, we find significant experiences that inte-

grate CT and STEM education through modeling and simulation practices 

and by means of multi- agent– based computational tools (Sengupta et al. 

2013; Weintrop et al. 2016).

CoMPUtAtIonAl tHInKIng In MUsICAl PRobleMs

Musical intelligence is defined as the ability to interpret, compose, and 

appreciate musical patterns (Gardner 1983, 1999). Composing music implies 

a series of knowledges and actions that align with several computational 

Year 5 modules (ages 9–10)

Module 1: Tiling patterns

Year 6 modules (ages 10–11)

Module 4: Building with numbers

Module 5: Exploring mathematical relationships

Module 6: Coordinates and geometry

Module 2: Beetle geometry

Module 3: Interacting sprites

Introduces the key computational concepts of 
sequencing, repetition, algorithm, debugging, and 
definition as well as linking to symmetry, angles, and 
negative numbers through building circular patterns.

Focuses on place value and requires the use of 
broadcasting to build place value models within 
several different contests such as time and 
measurements.

Explores different types of mathematical 
relationships, including proportionality and ratio
as well as introducing the concept of variable.

Centers around coordinates within multiple contexts 
firstly to investigate emerging shapes through the use
of randomness, then to manipulate triangles and 
quadrilaterals, and finally to explore different 
transformations such as translations and reflections.

Focuses on creating different drawings using the pen 
tool such as regular polygons, introducing pupils to 
initialisation, expressions, and randomness as well as 
consolidating earlier concepts.

Focuses on parallelism and building behaviors for 
multiple sprites, firstly isolated reactions to an event 
(when this sprite clicked), using conditions and 
expressions linked to coordinates, and then implementing 
interactions between multiple sprites using broadcasting.

4.6 Overview of ScratchMaths modules and topics (top), and the Scratch program, 

which implements the mathematical concept of place value (bottom) (Benton et al. 2018).
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concepts and practices. Thus, music is a controlled sequence of notes, anal-

ogous to the commands that are sequenced under flow control structures 

in programming languages (e.g., repetition structures such as loops, see 

figure 4.7). Moreover, musical pieces combine and reuse smaller fragments 

of sounds, which is analogous to the practice of modularizing through 

functions in computer programming. In addition, within a musical piece, 

the different instruments must be synchronized, analogous to the com-

putational concept of synchronization through events in programming. 

Finally, the sound has a series of parameters that can be digitized and rep-

resented by variables when programming music.

Since the foundational article of Michael Edwards in 2011, entitled 

“Algorithmic Composition: Computational Thinking in Music,” many 

papers have been published on how music can motivate and promote CT 

development, and vice versa. For example, we find experiences in primary 

and secondary schools using block- based programming languages such as 

Blockly (Baratè et al. 2017), AgentCubes (Hug et al. 2017), TunePad (Gor-

son et al. 2017), or Scratch (Ruthmann et al. 2010) to compose music. 

From a different approach and aimed at high school students, Atherton 

4.7 Flow control through repetition structures for composing music (Baratè et al. 2017).
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and Blikstein (2017) present Sonification Blocks, “a programming lan-

guage for data sonification, the process of creating audio algorithms and 

controlling them with streams of data” (733). At last, other authors pro-

pose to enrich musical CT with tangible devices/interfaces that must be 

physically manipulated by the kids, for example, LEGO bricks (Baratè, 

Ludovico, and Malchiodi 2017) or Algo.Rhythm, a tangible computational 

drum kit with programmable behaviors (Peng 2012), which borders on 

the next intelligence (bodily- kinesthetic).

CoMPUtAtIonAl tHInKIng In bodIlY- KInestHetIC PRobleMs

Bodily- kinesthetic intelligence involves the ability to use parts of the 

body, or its totality, to solve problems or create products. It is evident that 

dancers, actors, or athletes stand out for their high body- kinesthetic intel-

ligence. Nevertheless, this type of intelligence also excels in artisans, sur-

geons, laboratory technicians, mechanics, and other technical professions 

(Gardner 1983, 1999).

Somehow, when developing CT in a kinesthetic manner, we assume the 

fundamentals of so- called “embodied cognition” theory (Shapiro 2019), 

which states that cognitive processes are shaped and enhanced by body 

activity and movement. We find in literature three main approaches to 

address CT in a kinesthetic way at K– 12 school levels. First, CT is being 

developed by means of tangible devices and interfaces, which can be pro-

grammed through physical object manipulation (figure 4.8, left) (e.g., Aggar-

wal, Gardner- McCune, and Touretzky 2017; Melcer 2017; Wang, Wang, and 

Liu 2014). Second, we find several experiences where CT is fostered through 

dance. In this case, computational concepts and practices are applied while 

programming choreography that is subsequently danced by the students 

(figure 4.8, middle) (e.g., Daily et al. 2014; Owen et al. 2016). Finally, among 

the CT community there is a growing agreement on and commitment to 

teaching computational concepts and practices through unplugged activi-

ties (UA). These activities do not use digital devices and, therefore, typically 

imply some kind of physical movement in the participants. For example, 

in figure 4.8 (right) we can see a picture of primary school kids learning 

about sorting networks through one of the UA published in the relevant 

site (https:// csunplugged . org / ). It is worth noting that there is increasing 
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empirical evidence on the effectiveness of the unplugged approach to 

develop CT in K– 12 (e.g., Brackmann et al. 2017; Rodriguez et al. 2017).

CoMPUtAtIonAl tHInKIng In vIsUAl- sPAtIAl PRobleMs

Visual- spatial intelligence is defined as the ability to recognize and manip-

ulate spatial patterns, either in large spaces (e.g., as pilots or navigators 

do) or in small spaces (e.g., as sculptors, chess players, graphic design-

ers, or architects do). Therefore, visual- spatial intelligence is used to solve 

problems such as navigation and map usage, visualization of objects seen 

from different angles, or distribution of objects in a given space, among 

others (Gardner 1983, 1999).

Visual elements have played an essential role within the recent spread 

of CT and computer programming across K– 12 education. On the one 

hand, block- based languages such as Blockly or Scratch provide visual ele-

ments/clues that scaffold children’s learning of programming since early 

ages (even before learning to read or write, in the case of ScratchJr); these 

visual elements are fundamental to characterize the aforementioned lan-

guages as “low floor” (Weintrop and Wilensky 2017). On the other hand, 

many platforms and applications for kids aimed at teaching/learning to 

code pose visual puzzles in this regard, such as mazes or graphic/geometric 

patterns to be drawn (e.g., Kodable, LightBot, Code . org) (Kalelioğlu 2015). 

An example of a visual language used for solving a visual problem can be 

seen in figure 4.9. Finally, some authors report how visual thinking and 

visual techniques, such as mind maps or diagrams, can support CT devel-

opment (e.g., Fronza, El Ioini, and Corral 2016; Jamil 2017).

4.8 Examples of “embodied CT”: Tangible devices (left), dancing and programming 

(middle), and learning about sorting networks by means of an unplugged activity (right).
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In another vein, we find two main ways in which CT has been pro-

jected to face visual- spatial problems. First, within the context of algo-

rithmic art (i.e., graphic design through computer algorithms; see Orr 

2009). Second, CT and computer programming have been used in K– 12 

schools to create 3- D models, scenarios, and architectures (figure 4.10), 

often within the context of game- design (e.g., Bauer, Butler, and Popović 

2017; Pinto- Llorente et al. 2018; Repenning et al. 2014).

CoMPUtAtIonAl tHInKIng In InteRPeRsonAl PRobleMs

Interpersonal intelligence refers to the ability of people to understand and 

interpret the intentions, motivations, and desires of others and conse-

quently to their ability to work effectively with other people. Therefore, 

interpersonal intelligence is built on the nuclear ability to discriminate 

differences between others (in particular, to feel contrasts in their moods, 

4.9 Visual language for solving a visual problem (https:// studio . code . org / s / express - 2019 

/ stage / 19 / puzzle / 6).

4.10 Architectural design by means of computer programming (Bauer, Butler, and 

Popović 2017).
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temperaments, motivations, and intentions). At its highest level, this intel-

ligence allows the individual to capture the intentions and desires of oth-

ers, even if those have been hidden. Interpersonal intelligence manifests in 

an outstanding and sophisticated way in political and religious leaders, in 

teachers, in doctors and therapists, or in sellers and traders, among other 

occupations (Gardner 1983, 1999).

Computational concepts and practices are being applied within inter-

personal problems and contexts, mainly by means of programming con-

versational interfaces, such as chatbots (Klopfenstein et al. 2017). Focusing 

on K– 12, some experiences are found in this regard. For example, Benotti, 

Martnez, and Schapachnik (2018) have recently presented Chatbot (figure 

4.11), a platform “designed to introduce high school students to Computer 

Science (CS) concepts in an innovative way: by programming chatbots. 

A chatbot is a bot that can be programmed to have a conversation with 

a human or robotic partner in some natural language such as English or 

Spanish. While programming their chatbots, students use fundamental CS 

constructs such as variables, conditionals and finite state automata, among 

others” (Benotti, Martnez, and Schapachnik 2018, 179). These authors also 

report that girls’ engagement with Chatbot was higher than boys’ for most 

indicators, which is consistent with the textual- linguistic features of its 

interface.

For a conversational interface to be fully functional within an interper-

sonal context (i.e., to be “interpersonally intelligent”), it must recognize 

(or even infer) and adaptively react to a wide range not only of cogni-

tive states of the interlocutor (i.e., intentions, expectations, desires) but 

also of emotional states (Zhou et al. 2018). To address that challenge, 

classic rule- based programming (i.e., top- bottom approach) is inefficient 

and definitely not enough. Instead, bottom- up approaches, such as build-

ing models from data through machine learning (ML) techniques, are 

much more powerful and promising for this type of problem. In this vein, 

we have recently published several experiences in primary and second-

ary schools (Rodríguez- García et al. 2019), in which a text recognition 

model is built and trained with sample data through ML techniques 

(using the tool Machine Learning For Kids [ML4K], available at https:// 

machinelearningforkids . co . uk / ) and subsequently implemented as a vir-

tual home assistant in Scratch (figure 4.12). It is worth noting that ML4K 
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4.11 Chatbot (Benotti, Martnez, and Schapachnik 2018): K– 12 students learn condi-

tionals and variables (top), among other computational concepts, while programming a 

conversational interface (bottom).
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4.12 Virtual home assistant built with ML techniques and implemented in Scratch 

(Rodríguez- García et al. 2019).
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allows students to build and train models not only from textual data but 

also from images or sounds.

CoMPUtAtIonAl tHInKIng In IntRAPeRsonAl PRobleMs

Intrapersonal intelligence involves the ability to understand oneself 

(one’s desires, fears, expectations, abilities) and to use this information to 

effectively regulate one’s life. Thus, intrapersonal intelligence consists in 

the knowledge of the internal aspects of oneself (emotions, motivations, 

cognitions, or expectations) and in the ability to label and discriminate 

between them to finally interpret and guide one’s own behavior (Gardner 

1983, 1999). Typical products derived from intrapersonal intelligence are 

diaries, agendas, or personal schedules.

Looking inside scientific literature, we only find some tangential pub-

lications that relate computational concepts or practices to solving prob-

lems of one’s life. (For example, Gärling, Kwan, and Golledge published 

in 1994 a paper entitled, “Computational- Process Modelling of House-

hold Activity Scheduling.”) Nevertheless, common sense and informal 

observation lead us to suggest that nowadays more and more people 

organize their own lives in computational or algorithmic terms (“la vie 

algorithmique” in French terms of Éric Sadin [2015]). Indeed, if we have a 

look inside grey literature, some relevant testimonials in this regard are 

found. For example, the computational visionary Stephen Wolfram has 

recently published in his blog the post entitled, “Seeking the Productive 

Life: Some Details of My Personal Infrastructure” (Wolfram, February 21, 

2019), in which he says:

I’m a person who’s only satisfied if I feel I’m being productive. I like figuring things 
out. I like making things. And I want to do as much of that as I can. And part of 
being able to do that is to have the best personal infrastructure I can. Over the years 
I’ve been steadily accumulating and implementing “personal infrastructure hacks” for 
myself. Some of them are, yes, quite nerdy. But they certainly help me be productive. 
And maybe in time more and more of them will become mainstream, as a few already 
have ( . . . ) At an intellectual level, the key to building this infrastructure is to struc-
ture, streamline and automate everything as much as possible— while recognizing both 
what’s realistic with current technology, and what fits with me personally. In many 
ways, it’s a good, practical exercise in computational thinking, and, yes, it’s a good 
application of some of the tools and ideas that I’ve spent so long building.
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In any case, it is essential that the new generations learn how to orga-

nize their own lives in computational terms (i.e., to use the currently 

ubiquitous and pervasive algorithms for taking better personal decisions). 

Otherwise, there is a serious risk regarding how these algorithms can con-

trol people’s lives without their consent or awareness. In terms of Douglas 

Rushkoff (2010), it is a matter of “programming or being programmed.” 

This motto could be the synthesis of the present subsection, expressed in 

sociocritical terms.

From a different and emerging cognitive perspective, CT can finally 

be linked to intrapersonal intelligence through so- called “executive func-

tions” (EF). Following Robertson et al. (2020, 36), “EF is an umbrella term 

for higher order cognitive functions linked with the frontal lobes of the 

human brain and include abilities such as inhibiting impulsive responses, 

the ability to hold and simultaneously manipulate information in mind 

(known as working memory), attention shifting (or cognitive flexibility), 

planning and risk taking.” On the one hand, we find recent exploratory 

studies in which CT correlates with EF (Robertson et al. 2020) and some 

other experimental research that demonstrates positive effects of coding 

on primary children’s EF, specifically on planning and response inhibition 

skills (Arfé et al. 2019; Arfé, Vardanega, and Ronconi 2020). On the other 

hand, Gardner himself has also recognized “the connection of EF strategies 

to intrapersonal intelligence, which processes information relative to the self” 

(Moran and Gardner 2018, 25). The conclusion seems evident: CT can be 

developed mainly by means of coding tasks, which may enhance EF that 

could subsequently serve to better regulate one’s cognition and behavior, 

that is, to be more “intrapersonally intelligent.”

CoMPUtAtIonAl tHInKIng In nAtURAlIstIC PRobleMs

Naturalistic intelligence refers to the ability to recognize and classify the 

different natural species (Gardner 1999), either animal or plant species. 

One clear example of mastery within this intelligence was Carl Linnaeus, 

pioneer and father of biological taxonomies. From another perspective, 

naturalistic intelligence involves the ability to describe and understand the 

structure and evolution of biological systems (i.e., living being systems); 

for example, to understand what factors (and how) affect the evolution 
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of a given population of animals in a particular ecosystem. One essential 

characteristic of biological ecosystems is that they are complex (i.e., non-

linear and dynamic), so they require multilevel explanations (Wilensky 

and Reisman 2006).

In this vein, Rubinstein and Chor (2014) have presented an excellent 

and comprehensive proposal on how to integrate CT in life science edu-

cation. Moreover, focusing on K– 12, we find several experiences in which 

the biological core concept of “natural selection” has been addressed 

in computational terms. In the first experience, Dickes and Sengupta 

(2013) “investigate how elementary school students develop multi- level 

explanations of population dynamics in a simple predator– prey ecosys-

tem, through scaffolded interactions with a multi- agent- based computa-

tional model (MABM)” (921), by means of computer programming and 

modeling with the tool NetLogo (figure 4.13). In another experience, 

secondary students used computational concepts and practices to build 

algorithmic explanations of the natural selection process through sev-

eral unplugged activities (Peel, Sadler, and Friedrichsen 2018). At a higher 

level of complexity and aimed at high school students, Wilensky and 

4.13 Wolf- Sheep predation model in NetLogo (Dickes and Sengupta 2013, Wilensky 

and Reisman 2006).
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Reisman (2006) describe a “computation- based approach that enables 

students to investigate the connections between different biological lev-

els. Using agent- based, embodied modeling tools (‘NetLogo’), students 

model the microrules underlying a biological phenomenon and observe 

the resultant aggregate dynamics” (Wilensky and Reisman 2006, 171) 

(figure 4.13).

COMPUTATIONAL THINKING ASSESSMENT BATTERY (CTAB):  

A PROOF- OF- CONCEPT

In the previous section, we have reported a sufficient number of studies, 

experiences, and testimonials that show how CT can be used to address each 

and every one of the types of problems stated by Howard Gardner (1983, 

1999). That is, we have gathered enough preliminary hints and traces to 

ground our Theory of Multiple Computational Thinkings. At this point, 

the next step is to wonder and to anticipate how to empirically contrast the 

aforementioned theory. A way to confirm it could be to conduct empirical 

CT assessments/measurements on representative and large enough samples, 

whose results should reflect the hypothesized multifactorial structure of the 

construct (i.e., of CT).

To date, one of the most relevant assessment tools to measure CT at 

K– 12 school levels is the Computational Thinking Test (CTt). The CTt is 

a multiple- choice test of 28 items, which has been designed from a psy-

chometric approach and has been demonstrated to be reliable for kids 

between ten and sixteen years old. Furthermore, there is a great deal of evi-

dence regarding the content (Román- González 2015), criterion (Román- 

González, Pérez- González, and Jiménez- Fernández 2017; Román- González 

et al. 2018a), predictive (Román- González et al. 2018b), and instructional 

(e.g., Brackmann et al. 2017; Rose, Habgood, and Jay 2019; Zhao and 

Shute 2019) validities of the CTt, which is currently available in Spanish, 

English, French, Portuguese, and German. Nevertheless, and regarding its 

structural/factorial validity, results coming from different and indepen-

dent studies show that the CTt is unidimensional (e.g., Guggemos, Seufert, 

and Román- González 20211; Román- González 2016; Wiebe et al. 2019). 

We consider the following arguments to explain this unidimensionality 

of the CTt:
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• Following the psychometric notion of Fischer (1973), the items of a 

unidimensional construct may be linearly decomposed into problem- 

solving steps. Precisely, the items of the CTt can be linearly broken 

down into a series of computational concepts that are progressively 

incorporated and nested along the test (sequences, “repeat times” 

loops, “repeat until” loops, “if- then” conditionals, “if- then- else” con-

ditionals, “while” conditionals, and simple functions).
• All the items of the CTt demand the subject to solve visual- spatial prob-

lems, such as mazes or graphic designs (figures 4.1 and 4.14). That is, 

the CTt only presents a single type- modality of problems (i.e., visual- 

spatial), among the eight proposed by Gardner. Then, the CTt may be 

unidimensional because of its single/exclusive visuospatial conception 

and design.

Consequently, the CTt seems to be insufficient and biased to empiri-

cally contrast our Theory of Multiple Computational Thinkings. An exclu-

sive assessment instrument cannot be used to confirm an inclusive theory. 

Therefore, the CTt should be extended to a Computational Thinking 

Assessment Battery (CTab) of tests, which should address the same afore-

mentioned computational concepts but through an inclusive set of items 

that comprises the eight types of problems stated by the theory. Then, the 

4.14 A visuospatial item for the upcoming CTab.
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CTab could be an adequate instrument to verify the hypothesized multi-

dimensionality of CT.

A proof- of- concept (and very preliminary) design of a couple of items 

for the CTab can be seen in the next two figures. Figure 4.14 shows item 22 

from the original CTt, which addresses a visual- spatial problem through 

“repeat” loops and “while” conditionals. Meanwhile, figure 4.15 trans-

lates and extrapolates that problem to a verbal- linguistic modality. To fully 

design the CTab, the same should be done with all the computational con-

cepts involved and throughout all the types- modalities of problems.

DISCUSSION AND IMPLICATIONS

Here we discuss several implications of validating the multifactorial struc-

ture of the CTab and, consequently, of confirming our Theory of Multiple 

Computational Thinkings.

First, if the CTab were validated, then it would be possible to establish 

a personalized CT profile for any assessed person. Given that each of the 

multiple computational thinkings is supposed to be relatively independent 

of the others, it would be relevant to determine, for all students, in which 

modality of CT they are most capable and then to design a personalized 

4.15 A verbal- linguistic item for the upcoming CTab.
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CT educational intervention taking into account their strengths in this 

regard.

Second, if the theory is not only empirically confirmed but also accepted 

by the community of researchers, practitioners, and policy- makers, then 

the subsequent CT curricula and interventions would probably become 

more diverse and inclusive. CT education will be more equitable if a more 

diverse set of problems to be computationally solved are offered within 

K– 12 scenarios.

Finally, confirming our Theory of Multiple Computational Thinkings 

could also reinforce Gardner’s TMI. Throughout the last decades, TMI has 

been often harshly criticized because of its insufficient and inadequate 

empirical supporting evidence (e.g., Visser, Ashton, and Vernon 2006a, 

2006b; Waterhouse 2006). In this vein, Visser, Ashton, and Vernon (2006a, 

2006b) reported that administering their battery of tests, which suppos-

edly encompassed the eight intelligences of Gardner, resulted in a large 

common factor (general or “g” factor) that clearly contradicted and dis-

carded TMI principles. Gardner (2006) replied that most of the tests used 

in Visser’s battery were heavily and exclusively loaded with verbal and 

logical information and were presented through typical school- like tasks, 

all of which derived in obtaining that single “g” factor. In other words, Gard-

ner claims that TMI requires to be fairly contrasted with a more diverse and 

contextualized set of tests/tasks, but at the same time Gardner recognizes 

the difficulty of building an assessment battery with such a heterogeneous 

set of abilities/intelligences to be measured. Therefore, to be effectively con-

trasted, TMI could lack an anchor that provides it with a minimum stability 

and homogeneity. We consider that CT might be the anchor that Gardner’s 

theory needs. It is a risky conclusion but also a suggestive and beautiful idea 

for future research.

NOTE

1. Manuscript under review.
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INTRODUCTION

Societies and industries have changed significantly in recent decades. The 

emerging innovation society has resulted in the technological, sociological, 

and cognitive development of society. Our professional lives are highly 

digital, but K– 12 education (both teaching and learning) is still taking its 

first steps in a digital transformation. To understand and become an active 

member of society, students have to learn to understand the technol-

ogy behind digitalization. Understanding algorithms, such as procedural 

thinking, reasoning, and decision- making mechanisms, helps students 

understand technology and how it works. However, in addition to under-

standing algorithms and computational thinking (CT), students should be 

able to utilize them in their personal and collaborative thinking, problem- 

solving, and creative pursuits.

Modern society relies on advanced technologies, such as artificial intel-

ligence (AI) and data analytics. To understand the automatic decision- 

making of online services and social media, students need CT skills. 

Moreover, the role of information that is processed and analyzed by AI 

is increasingly important in our everyday lives. For example, while bank-

ing or shopping, a customer receives information determined by the ads 

and customized services they see based on automatic decision- making 

5
LEARNING COMPUTATIONAL 
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by AI. When using a search engine or reading a newspaper online, the 

user is targeted by personalized content and ads based on the motives 

and content interests of service providers. Learners should be aware that 

the internet’s search engines and social networking tools rate and censor 

search results and information based on various commercial and political 

motives.

The major challenge for the K– 12 educational system globally is to help 

students develop critical thinking skills and creative capabilities, espe-

cially related to understanding computational processes and mechanisms. 

In the digital world in which we live, CT skills are a prerequisite for critical 

thinking. How can we ensure that K– 12 educational systems are capable 

of helping students develop these skills? What methods do we need to use 

to learn and teach these skills? What wider changes in the organization of 

teaching and learning in educational institutions are needed?

CoMPUtAtIonAl tHInKIng As A tWentY- FIRst- CentURY sKIll

Various definitions and frameworks for twenty- first- century skills (Trill-

ing and Fadel 2009) have been used as a base for K– 12 curricula to define 

transversal competencies and goals for education. Widely used frameworks 

in K– 12 education usually include such competencies as collaboration, 

communication, citizenship, creativity, critical thinking, and character 

building. Most twenty- first- century skills frameworks are focused on so- 

called soft skills (Bereiter and Scardamalia 2012) and neglect, to a large 

extent, the importance of logic and mathematical or algorithmic rea-

soning. Wing (2006) introduced the idea of CT as a fundamental skill 

for everyone; nevertheless, none of the widely used frameworks have 

adopted it. Very often, CT is only linked to computer science or STEAM 

(science, technology, engineering, arts, and mathematics) education and 

is narrowly understood to only include coding or ready- made mathemat-

ical algorithms.

A common mistake is to talk about coding when we should talk about 

CT. Coding is often used as a generalized term for programming or, even 

more often, misused to describe some ill- defined activities with comput-

ers. To understand how to program, it is necessary to comprehend CT and 

system design. CT is not a new concept but has been studied and discussed 
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mainly by computer scientists (Denning 2009; Tedre and Denning 2016; 

Wing 2006). However, it should be more extensively investigated by edu-

cational researchers and learning scientists when designing K– 12 curri-

cula and educational practices.

The importance of CT was introduced by Wing (2006) and more widely 

studied by Denning and Tedre (2019). Primitive forms of CT have existed 

in the form of mathematics and calculation throughout history, even 

in the time before computers. In modern terms, CT may be defined as 

cognitive skills and practices for designing computation and computing 

systems and for explaining and interpreting the world in terms of com-

plex information processes (Denning and Tedre 2019). Wing (2008) has 

defined CT more compactly as analytical thinking utilizing abstractions, 

as she defines computing to be the automation of abstractions. However, 

CT is not only important for computing or for learning programming but 

it is also a highly generalized cognitive skill needed for critical thinking, 

media literacy, and knowledge production, as well as for comprehending 

ethical issues related to data- driven society and various aspects of AI and 

its ethically sustainable use.

LEARNING AND TEACHING COMPUTATIONAL THINKING  

IN MODERN K– 12 EDUCATION

The utilization of CT in K– 12 education is anchored in our conceptions 

of emerging digital technology, theories of learning, and technology- 

mediated practices of learning and teaching. It appears to us that CT 

requires a new level of epistemic fluency (Markauskaite and Goodyear 

2017), interconnecting abstract and real- life phenomena by learners and 

teachers. When considering pedagogical applications of CT in K– 12 edu-

cation, it is not enough to address mere programming or coding. Pro-

gramming in K– 12 education is sometimes even simplified to routine 

procedures of giving directions to a computer or to a robot through 

individual commands. Coding does not equal CT (Wing 2006, 2008) 

or adequate computing skills; a wider approach than coding is needed 

for learning and understanding the computational aspects of problem- 

solving and analyzing, modeling, and automating abstractions (see fig-

ure 5.1). The focus should be on modelling and understanding real- world 
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phenomena by designing, creating, and utilizing abstractions and by creat-

ing algorithms and simulations. In addition, the focus of learning should 

be on systemic thinking, as in system theories or system design.

CT skills cannot be adequately learned in a decontextualized setting 

of programming or designing algorithms without a connection to real- 

world phenomena and their modeling. We argue that epistemic flexibility 

is essential to comprehending relations between the real- world pheno-

mena (problems to be solved) and the abstractions (computational mod-

els or algorithms) that are used for problem- solving. The goal of learning 

should be a systemic understanding of the entire computational system, 

including real- world phenomena, computing, and human information 

processing.

The use of modern information technology and modern computing 

are fundamentally culturally mediated cognitive skills. CT (Wing 2006, 

2008) can be associated with metacognitive skills and the sophisticated 

use of a repertoire of cognitive strategies. Using algorithms as a mental 

tool augments the power of human cognitive capacity and fosters the 
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5.1 Framework for learning computational thinking in K– 12 education, consisting of 

the computational system and human information processing.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024



CoMPUtAtIonAl tHInKIng In PHenoMenA- bAsed Co- CReAtIon PRoJeCts 107

development of cognitive strategies. Simultaneously, computing and com-

puters are used as tools for complex physically distributed cognition (Pea 

1985; Salomon 1993). Computational power and computers are often used 

to solve problems that would be difficult or virtually impossible to solve 

with a human’s information- processing capacity. A computational system 

consists of human cognitive processes, distributed cognition, and informa-

tion processing on a computer (e.g., Pea, Kurland, and Hawkins 1985; Salo-

mon, Perkins, and Globerson 1991), all embedded in the social practices 

of human communities (e.g., Ritella and Hakkarainen 2012). Human cog-

nition and computer processing can be seen as intertwined agents of the 

cognitive system used for complex problem- solving. Moreover, the socially 

shared cognition mediated by computers boosts these intertwined agents 

of the cognitive systems that jointly may provide a crucial platform for cre-

ating novelty and innovations.

Ideally, when learners are provided with opportunities for cultivating 

CT skills in K– 12 education, they should have generalizable capabilities 

for organizing, reorganizing, modeling, analyzing, utilizing, and comput-

ing information to problem- solve in any subject domain. This raises a 

pedagogical challenge for K– 12 educational systems: How should CT be 

taught so that students gain adequate skills?

CT cannot be learned by reading books, by listening to teachers’ lectures, 

or even by coding. Sociodigital processes combined with co- computational 

thinking are needed. The best way to ensure a holistic understanding of 

CT (see figure 5.1) is to connect it to a real- world phenomenon and to pur-

sue complex projects that require the interrelation of concrete experiences 

with abstractions and associated formal languages. To learn novel skills 

needed for the future, such as CT and creativity skills, new epistemologies 

(see table 5.1) and metaphors for learning are needed. Beyond knowledge 

acquisition, these emerging metaphors of learning highlight the impor-

tance of learning through computational participation (Kafai 2016) and 

collaborative knowledge creation (Paavola and Hakkarainen 2005, 2014). 

Hence, co- creation and co- innovation are seen as crucial for learning CT 

and creativity.

Rather than merely digitalizing traditional acquisition- oriented and 

teacher- centered instructional practices (surface learning), it is critical 

to cultivate technology- enhanced practices of learning and instruction 
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that provide opportunities for social participation and collaborative cre-

ation of knowledge (Hakkarainen 2009; Paavola and Hakkarainen 2014). 

To appropriate sociodigital instruments as tools of everyday activity, it is 

necessary to transform everyday practices of learning and instruction as 

well as change the operational culture of schooling (Ritella and Hakkara-

inen 2012). Educational transformation is a systemic change and requires 

strong institutional support to succeed (Fullan 2016; Fullan and Quinn 

2015). It is particularly important to develop novel epistemologies of learn-

ing and teaching, such as the phenomena- based approach, to integrate the 

entire community of the school and to promote the pedagogic transforma-

tions that the effective learning of CT will call for.

In addition to CT, we propose that computational creativity skills 

should be a goal of K– 12 curricula. We cannot train our children to be 

merely computer players or even programmers in the future; we will have 

to train them to become computer composers with real computational 

creativity skills. To use a musical metaphor, it is not merely about press-

ing a piano’s keys but about being able to interpret, compose, and create 

music. Computational creativity skills are not focused on the automation 

of existing processes or abstractions of the real world but rather on inno-

vating and creating novel solutions, abstractions, and epistemic artifacts 

that may not yet exist. Computational creativity skills are used to create 

Table 5.1 The epistemic approach for learning the traditional and new skills needed 

in a highly digitalized working life and in modern AI-  and data- driven societies

Surface learning Deep learning
Phenomena- based 
learning

Goal Recalling facts Understanding Creating new solutions

Outcome Capability to apply 
information only in a 
narrow context, if at all

Capability to apply 
knowledge in 
various situations

Capability to create 
new solutions for 
various new situations

Methods Information acquisition Collaborative 
knowledge building

Co- creation and 
co- innovation

Focus Facts Knowledge Thinking skills and 
strategies as well as 
innovation practices
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art and design artifacts, processes, and innovations by using computing, 

digital fabrication, and shared sociodigital processes.

PHENOMENA- BASED LEARNING AND CO- CREATION PROJECTS 

AS AN APPROACH TO LEARNING COMPUTATIONAL THINKING 

AND COMPUTATIONAL CREATIVITY SKILLS EDUCATION

Phenomena- based learning can be described as multidisciplinary inquiry 

learning in which teaching and learning, as well as curriculum, are based 

on holistic and authentic topics— not on traditional school subjects or 

decontextualized exercises. The key dimensions of phenomena- based learn-

ing are presented in table 5.2.

The basis of phenomena- based teaching and learning can be found 

in constructionism, which sees learners as active builders and creators of 

knowledge and artifacts. Knowledge is constructed as a result of problem- 

solving and creative production through the integration of little pieces into 

a comprehensive whole according to the situational needs and the infor-

mation available at the time. When phenomena- based learning occurs in a 

Table 5.2 Key dimensions of phenomena- based learning

Holism The topics and concepts to be learned are chosen for 
their relevance in the real world, and a 360- degree 
perspective is offered through the integration of 
traditional school subjects.

Authenticity The methods, tools, materials, and cognitive practices 
used in learning situations should correspond to ones 
in the real world: for example, in professional life.

Contextuality Learners learn new things in their natural context and 
learn to move fluidly between contextualization and 
abstraction.

Problem- based inquiry 
learning

Learning and collaborative knowledge building are based 
on the questions and problems posed by learners, and 
solutions are created by them as well, allowing them to 
take an active role in designing the curriculum.

Learning as a nonlinear 
process

Learning is seen as a nonlinear process, which is 
activated, guided, and facilitated by open learning 
challenges and supporting structures.
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collaborative setting (when the learners work in teams, for example), it sup-

ports the socioconstructivist and sociocultural learning theories, in which 

knowledge is not merely an internal element of an individual. Instead, 

knowledge is formed in a social context. Sociocultural learning theories 

focus on cultural artifacts (e.g., systems of symbols, such as language, math-

ematical calculation rules, and different kinds of thinking tools). Learning 

relies on the knowledge and tools that are transmitted by cultures, which 

are used generatively in novel contexts and for novel purposes.

Phenomena- based learning begins with the shared observation of holis-

tic, genuine real- world phenomena in the learning community. The phe-

nomena are studied as complete entities in their real context, and the 

knowledge and skills related to them are studied by crossing the bound-

aries between school subjects. Phenomena- based integrative study units 

frequently represent such holistic topics as climate change, the water cycle, 

and health and nutrition. This differs from traditional school culture, 

which is divided into subjects, where the things studied are often split 

into relatively small, separate, and decontextualized parts.

In phenomena- based teaching, understanding and studying the phe-

nomenon start by asking a question or posing a problem (e.g., Why does 

an airplane fly and stay up in the air?). At its best, phenomena- based 

learning is cyclic inquiry learning, where the learners ask questions or 

pose problems about a phenomenon that interests them and then dis-

cover answers and find solutions together. The problems and questions 

are posed by the learners together— they are things the learners are genu-

inely interested in. Learners play a central role in creating and solving the 

learning challenges being pursued.

The observation is not limited to a single point of view; instead, the 

phenomena are studied from various points of view, crossing the bound-

aries between school subjects naturally and integrating subjects like 

mathematics, history, foreign languages, and psychology with a variety 

of themes. Phenomena- based structure in a curriculum actively creates 

better opportunities for integrating CT in various subjects and themes 

and for the systematic use of pedagogically meaningful methods, such 

as collaborative knowledge building (Scardamalia and Bereiter 2006), 

flipped classrooms (see, e.g., Bergmann and Sams 2012), and computa-

tional participation (Kafai 2016). The phenomena- based approach is also 
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key to the versatile utilization of various digital learning environments 

(e.g., diversifying and enriching learning while using online learning 

environments).

In the learning process, new knowledge and skills are always applied 

to the phenomenon or the problem at hand, which means that the con-

cepts, knowledge, and skills have immediate utility value that is evident 

in the learning situation. To absorb new knowledge and skills, it is very 

important that learners apply and use the knowledge and skills, such as 

CT, during the learning situation. Information learned only at the level of 

reading or theory (such as memorized physics formulas and calculation 

rules without real context or related problems) often remain superficial 

and separate details for the learners. They are unable to gain a comprehen-

sive understanding and deeper knowledge of the real- world phenomenon 

and unable to internalize its meaning. Often it has been said that “you 

cannot learn to drive a car by using pen and paper” or that “cloze tests 

only teach how to answer cloze tests— there are no cloze tests in real life 

or professional life.” Beyond encapsulated schoolwork, there are real com-

munication situations where knowledge must be applied and messages 

must be transmitted clearly and comprehensively to another person.

The phenomena- based approach can significantly increase the authen-

ticity of learning. This authenticity culminates in making the learner’s 

cognitive processes and practices authentic. In a learning situation, the 

learner’s cognitive processes, therefore, correspond to the cognitive prac-

tices required in the actual situation in which the knowledge and skills 

would be used. Toward that end, it is important to engage learners in cre-

ative activities that guide them to adopt the practices and epistemic games 

(Shaffer and Gee 2007) of computer scientists, designers, engineers, and 

scientists. In this authentic learning, the aim is to bring genuine practices 

and processes into learning situations in a pedagogically structured way 

when applicable, which allows the learner to participate in the expert 

culture of the field. Authenticity is a key requirement for the transfer and 

practical application of knowledge.

The new phenomena- based approaches for teaching and learning com-

putational creativity skills are fostered by the novel affordances of sociodig-

ital technologies that provide sophisticated professional- level tools for 

creative production. Associated practices involve, for instance, students 
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learning by designing and building robots or utilizing 3- D HoloLens, 3- D 

printers, and sensors in their creative projects. The phenomena- based proj-

ects emphasize a way of thinking in which students solve authentic design 

challenges thorough various collaborative design activities, apply CT, and 

do actual coding, depending on the nature of the project.

Many Finnish schools are building educational makerspaces (see e.g., 

Peppler, Halverson, and Kafai 2016) by integrating arts and crafts, tech-

nology education, and science laboratories into other school subjects. 

Schools in Helsinki have organized codesign and co- invention projects 

that engage learners in designing complex artifacts that spark intellec-

tual, engineering, and aesthetic challenges at lower and upper primary 

schools (Seitamaa- Hakkarainen and Hakkarainen 2017). Students work in 

small teams to solve an open- ended invention challenge using traditional 

craft and digital fabrication technologies. Their projects, in which they 

create various prototypes and products that assist in modeling the phe-

nomenon, test and develop the learners’ hypotheses and working theo-

ries. The challenge, which is co- configured with learners, might be, for 

example, to “design an intellectually challenging, aesthetically appeal-

ing, and personally meaningful complex artifact that makes daily tasks 

easier.” It could be a new or an improved invention, and it should inte-

grate both physical and digital (e.g., circuits or robotic) elements.

The role of teachers is not merely to facilitate learning but also to acti-

vate students’ CT and learning processes. Toward that end, the learning- by- 

making activities are structured according to several stages, including skill 

building (e.g., working with microcontroller or other circuit boards), orien-

tation (guided analysis of existing artifacts), and brainstorming with design 

challenges (in the classroom and at home with parents). They analyze 

design constraints (task requirements and resources), cluster design ideas, 

identify promising ones, and decide on their teams’ design project. They 

share design ideas in the classroom, get feedback, seek knowledge (e.g., by 

visiting technical or design museums), experiment with design solutions, 

and construct prototypes of the design to arrive at their final solutions. It is 

also very important to organize exhibitions where teams can present their 

co- inventions to other students and parents. The analysis of Sinervo et al. 

(2020) of the designs of thirteen fifth- grade students (aged eleven to twelve 

years old) revealed that the details of their innovations varied considerably. 

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024



CoMPUtAtIonAl tHInKIng In PHenoMenA- bAsed Co- CReAtIon PRoJeCts 113

We categorized the teams’ co- inventions according to their main function, 

such as improving cleanliness, providing reminders, or addressing hygiene, 

health, and nutrition issues. The inventions also reflected issues related to 

user values (health- related inequality, inclusion, or personalization), usage 

values (helping to resolve problematic situations), and environmental val-

ues (Sinervo et al. 2020).

Most of the teams’ co- inventions were considered appropriate and 

promising, and only two co- inventions were not explicated clearly enough 

and could be considered quasi- creative and infeasible. Some very original 

ideas for known problems were found— for example, how to vacuum a 

carpet and the creation of a new gel comb for styling hair, even though 

these teams were not able to construct fully functional solutions. The gel 

comb team had a hard time figuring out how to get the gel out of the con-

tainer. Some of the co- inventions were based on an already existing idea 

or product that was used in another context— for example, a pump bottle 

that was extended to help brush teeth with toothpaste more easily. In some 

cases, the co- invention was based on the adaptation of existing artifact 

designs by slightly modifying an existing product— for example, an auto-

matic garbage container with an alarm that sounds when it is almost full. 

This long- term, open- ended invention project provided valuable learning 

opportunities for iterative problem- solving, shared meaning making, and 

collaboration that required a division of labor, organization, and personal 

responsibility. Phenomena- based learning empowers students to partici-

pate in the co- creation and co- innovation processes that are needed to 

learn CT skills and computational creativity skills. By using co- creation and 

co- innovation as learners’ activities, the learning process is more insightful 

and inspiring. The role of the learner is not that of an object but that of an 

active subject of learning.

A more demanding example of a phenomena- based co- invention pro-

ject was conducted with one class of seventh- grade students (aged thir-

teen to fourteen years). The project was initiated by the craft and visual 

arts teachers and involved the participation of mathematics, physics, 

chemistry, and information technology (IT) teachers, who provided their 

expertise to the inventors when needed. Eighth- grade digital technol-

ogy students who had done a similar project the year before also helped 

the inventors during the project. The project started with two warm- up 
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sessions for skill building. In the first session, the students built electric 

circuits using cards with copper tape, simple LEDs, and a coin cell battery. 

The aim of this warm- up session was to familiarize the students with basic 

electric circuits so that they would be able to use them in their inventions. 

The second warm- up session was organized by the eighth- grade students; 

they planned and held a workshop for the seventh graders about micro-

controllers, basic programming with block- based coding, sensors, and DC 

motors. Many of the students had only done very simple Scratch program-

ming tasks before this. After that, the actual collaborative invention proj-

ect was initiated, and it ran for eight to ten weekly two- hour sessions. Also, 

in this project, the collaborative invention challenge was open ended: 

“Invent a smart product or a smart garment by relying on traditional and 

digital fabrication technologies, such as microcontrollers and 3D CAD.” 

At the end of the project in May, the teams presented their inventions in 

an open invention exhibition held at the University of Helsinki.

This project proceeded much as the previous example had; it was ini-

tiated and led by the student teams. The teachers and tutors provided 

help when needed, but the project teams took most of the responsibility 

for the design and the construction. As the challenge required, student 

teams needed to use various digital technologies. It was also typical of the 

teams’ processes that while ideating and experimenting, they confronted 

many phenomena related to physics, such as mechanics, electronics, and 

light and optics. Thus, they were exposed to numerous physics principles 

without being necessarily conscious of it. For example, one team (the 

banana light team) invented a banana- shaped LED light that attaches to 

a laptop lid and lights up the keyboard area. The features of their lamp 

included an RGB LED controlled by a microcontroller and a bendable 

structure that allowed the light to be directed to the keyboard.

During their design process, the team produced sixty- three design ideas 

in total, which can be divided into seven themes: (1) aesthetic features 

and name of the project; (2) materials; (3) light controls; (4) mounting 

to the laptop; (5) electrical connections; (6) directing light; and (7) other 

functions. The banana light team’s invention process had many science- 

intensive steps. For example, when the team designed the structure of 

the lamp, some concepts of mechanics became relevant. With the joints, 
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they experimented intensively with 3- D models and concrete prototypes. 

While the team searched for ways to attach the lamp to the lid of the 

laptop, the concept of friction came up. Furthermore, as the light was the 

main functionality of their invention, they spent a lot of time designing 

it and, thus, light and optics concepts were studied many times during 

the team’s work. The microcontroller was used to operate the LED lights 

of the invention, and they tested several different options for controlling 

them, especially for turning them on and off. Understanding classical IF 

logic was particularly significant in these experiments in terms of learn-

ing programming and basic CT. Figure 5.2 shows a sketch and prototype 

of the banana light.

Furthermore, the team continued by testing different methods of turn-

ing the light on and off with predetermined event functions of the micro-

controller, such as tapping the microcontroller twice or clapping their 

hands to create a loud sound. In the second prototype, they ended up 

using a simple button that they determined would be the most reliable 

when presenting the lamp to an audience in a noisy environment. Later, 

they decided to take their programming a bit further and added a function-

ality to control the brightness of the LED with the board’s second button. 

The team was able to design a fully functional prototype meeting their 

specifications. These and other extensive maker- centered learning projects 

allow students to build epistemic flexibility in terms of interrelating con-

crete and abstract phenomena and, thereby, provide ample opportunities 

for system design and learning computational creativity and CT skills.

5.2 Illustrating, designing, and making a prototype of the banana light invention.
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DISCUSSION

The activities of CT and programming are not equivalent to a human giv-

ing commands to a computer or a robot. Instead, they involve problem- 

solving and creativity, enhanced with computational tools and languages. It 

is not a matter of mastering certain commands or coding procedures but of 

engaging a designing system and creating digitally enhanced artifacts. How 

can we transform the educational system to help transform children from 

computer players to digital makers with real computational creativity skills?

To succeed in modern society, students should have advanced sociodig-

ital and CT skills when they complete their K– 12 education. These essen-

tial skills are needed across all fields of study, from the humanities to the 

sciences, including productive participation in knowledge- intensive work, 

and for becoming an active citizen in data-  and AI- driven digital societ-

ies. CT cannot, however, be learned incidentally, for example, by playing 

computer games or by coding at home. Although informal interest- driven 

and creative participation is important for overcoming digital divides, for-

mal education that deliberately cultivates innovative pedagogy and the 

associated teachers’ expertise and guidance are urgently needed as well. 

The best way to provide CT skills and computational creativity skills for 

all students is to integrate them into K– 12 education in curricula and in 

everyday teaching and learning practices in the form of phenomena- based 

co- creation projects. As we live in highly digital societies, we should also 

start discussing twenty- second- century skills, which will be focused on the 

innovation skills needed in an emerging innovation- driven society that is 

thoroughly based in AI and the smart use of big data. CT and computa-

tional creativity skills are the key competencies of such a society’s citizens.

PRACTICAL IMPLICATIONS FOR CURRICULUM DESIGN  

AND FOR EDUCATIONAL INSTITUTIONS

Learning CT should begin from early childhood (e.g., in the form of cog-

nitive games, songs, and plays) and continue across the whole span of 

education. Digital technologies develop expansively and continuously, 

so the process of learning CT and computational creativity skills should 

also be a sustaining, lifelong learning process. A significant challenge of 
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teacher education is to help teachers develop digital and CT skills that 

they did not have the opportunity to learn during their own childhood 

education. Only by acquiring computational skills and practices can 

teachers work as builders of children’s futures. To teach CT and creativity 

skills in K– 12 education, both competent and educated teachers and the 

context and time for cultivating such competencies in teaching and learn-

ing are urgently needed. This creates a challenge for teachers’ in- service 

training. How can teachers be trained in pedagogical skills and methods 

that will scaffold students’ CT and computational creativity skills? Our 

experiences indicate that novel professional competencies become acces-

sible when teachers are encouraged to collaborate with their colleagues 

and negotiate challenges through co- teaching. Teacher training should 

be thoroughly participatory and should engage teachers in co- creation 

and co- invention projects similar to those of young learners.

Traditional computer science and programming education do not offer 

ready- made solutions for learning CT or computational creativity skills in 

K– 12 education. Instead, new practices and innovations require new peda-

gogical considerations in educational institutions on the level of the cur-

riculum. An optimal impact on CT with phenomena- based learning and 

co- creation projects can be achieved by implementing the change compre-

hensively throughout the school’s operating culture and by ensuring that 

CT and phenomena- based learning are integrated into the holistic reform 

of teaching and learning. The challenge is to implement the pedagogical 

change coherently and simultaneously at all levels (teaching, leadership, 

learning, technology, and curriculum). According to Fullan (2016), system 

improvement will result from a deep change in the culture of learning, local 

ownership of the learning agenda, and a system of continuous improve-

ment and innovation that is simultaneously bottom- up, top- down, and 

sideways. Through systemic developmental efforts that integrate all levels, 

a permanent change in the operating culture can be achieved.
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COMPUTATIONAL EMPOWERMENT: A CRITICAL COUNTERPART

In this chapter, we outline and position computational empowerment 

as an approach to digital technology in education. We trace the origin of 

computational empowerment through the participatory design tradition 

and discuss how it intersects with established ideas within computational 

thinking (CT). We use examples from teaching practice to illustrate how 

computational empowerment may be operationalized, and, on the level 

of curricula, we discuss the curriculum for the newly developed course, 

Technology Comprehension, for Danish primary and lower secondary 

education.

We define computational empowerment as a concern for the method 

used by students, as individuals and groups, to develop the capacity to 

understand digital technology and its effect on their lives and society at 

large and their ability to engage critically and curiously with the con-

struction and deconstruction of technology (Dindler, Smith, and Iversen 

2020). While this concern overlaps with the fundamental issues addressed 

within some parts of the CT literature, it also signals a critical approach 

that reaches beyond what is typically addressed in mainstream CT. Before 

unfolding the principles of computational empowerment in more detail, 

we trace the origin of the concept in the participatory design tradition.

6
COMPUTATIONAL EMPOWERMENT

Christian Dindler, Ole Sejer Iversen, Michael E. Caspersen, 
and Rachel Charlotte Smith
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A PARtICIPAtoRY desIgn bACKgRoUnd

The participatory design tradition grew out of a series of projects in Scan-

dinavia in the 1970s and 1980s, in which researchers and unions engaged 

in collaborative efforts to explore ways of democratizing the introduction 

of technology and ensuring quality of work and products for workers 

(Bjerknes et al. 1987). This fundamentally political commitment formed 

the backdrop of the practices of active user participation in technological 

development, using ethnographic methods to understand work practices 

and collaboratively constructing mock- ups of future technologies (Green-

baum and Kyng 1991) that have since proliferated beyond Scandinavia. 

The political commitment to empower people to understand and pose 

demands for technology also remains a topic in contemporary participa-

tory design (Simonsen and Robertson 2013).

The notion of computational empowerment builds explicitly on the 

political, democratic ideas from participatory design and draws on the 

participatory practices that are used to realize these ideas. While the Scan-

dinavian workplace of the 1960s and 1970s might seem an odd compari-

son to the challenge of educating young people in computing, we believe 

that there are parallels and that several principles from Scandinavian 

participatory design are more relevant than ever. In the early participa-

tory design projects, unions and workers were fundamentally faced with 

a situation where they lacked the knowledge, organization, and power 

needed to understand and pose demands for technology. Similarly, the 

challenge facing many young people today is that they, generally speak-

ing, have limited understanding of technology and computing, not only 

in terms of its construction but how it affects their lives. Hence young 

people have very limited capacity to pose demands for technology, make 

informed choices about technology in their lives, and take part in the 

development of technology and the cultures that surround it. Through 

the years, participatory design has developed several principles and prac-

tices for promoting democratic approaches to technology design, qual-

ity of products, and for empowering people to make informed decisions 

about technology. Here we draw out three principles from the participa-

tory design tradition that have played a particularly prominent role in 

formulating the idea of computational empowerment.
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The first is a concern for providing people with firsthand experience of 

technology in terms of how it is constructed and the consequences that 

it has. This concern has been evident throughout the history of participa-

tory design, manifest in the archetypical participatory workshop, where 

users, designers, and stakeholders collaboratively explore technology and 

discuss its consequences and potential.

The second is a commitment to technology in use. This concern main-

tains that we need to understand technology not only as a technical issue 

but also through its consequences for people’s everyday lives. In partici-

patory design, this concern has been manifest in a long- standing tradi-

tion for using ethnographic methods to gain a detailed understanding of 

the practices for which technology was designed. Also, it is manifest in 

a critical stance toward how technologies shape work practices and the 

values inherent in these technologies.

The third is co- designing future technology. This concern reflects the 

view that people should not only be considered users and recipients of 

technology but also be invited to play an active role as co- designers. This 

concern may be traced in participatory design’s catalog of methods (Han-

sen et al. 2019) and tools that invite future users to express their ideas and 

understanding in mock- ups and participation in prototyping activities.

The common goals of these (and other) participatory design principles 

have historically been to promote the agenda of democracy, quality of 

life, and empowerment of people to take an active role in technological 

development.

FRoM PARtICIPAtoRY desIgn to CoMPUtAtIonAl 

eMPoWeRMent

The three principles outlined previously make up the background for 

computational empowerment. However, it is evident that the societal and 

technological landscape today is very different from the one in which 

participatory design emerged. So computational empowerment needs a 

contemporary articulation, which is the focus of this section.

Whereas the notion of “empowerment” in early participatory design 

was tied to empowering workers to have a say in the introduction of 

technology at the workplace, empowerment in the context of computing 
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education is somewhat different. In education, the concepts itself carries 

with it a long history (Lawson 2011). Despite the fact that empowerment 

is explicitly mentioned as an objective in many contemporary papers 

based on computing education research, recent literature studies reveal 

that no clear definition of the term is provided in computing education 

research (Musaeus et al. 2021) nor in child computer interaction research 

(Van Mechelen et al. 2021). What comes closest to a definition is Shneider-

man’s manifesto entitled “Human Values and the Future of Technology: 

A Declaration of Empowerment,” highlighting the need for empower-

ment at the intersection of human values and future technology. Here, 

Shneiderman (1990) argues that we, as researchers, designers, managers, 

implementers, and testers, must “recognize the powerful influence of our 

science and technology” and must commit ourselves to “studying ways to 

enable users to accomplish their personal and organizational goals while 

pursuing higher societal goals and serving human needs.” This interpreta-

tion resonates well with that of computational empowerment. Here the 

term empowerment refers to a concern for providing students with the intel-

lectual and practical capacity to understand and engage with technology. 

This may be fleshed out in three pillars of computational empowerment 

that are, effectively, contemporary articulations of the three participatory 

design principles mentioned in the previous section.

First, students should be provided with the means for engaging critically and 

curiously with the design of technology. This pillar reflects the idea that it is 

necessary for students to gain firsthand experience with technology, not 

only as something they use but also as a material that can be molded 

and used to build and construct things with. To some extent, this pillar 

resonates with the current focus on teaching students the basics of algo-

rithms, programming, decomposition, and modeling. However, our con-

cern is with the broader concept and approach of “designing” technology, 

which entails more than technical construction and modeling. Broadly 

speaking, design covers the entire iterative process including framing a 

problem, doing research, generating design ideas, constructing, and test-

ing. Thus, this includes knowledge of how, for example, user research is 

done, and it requires knowledge of techniques for idea generation.

Figure 6.1 depicts a design process model developed through our work 

on computational empowerment (Iversen, Smith, and Dindler 2018) 
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embodying the first pillar of computational empowerment. In some 

respects, the model is similar to other process models as it includes well- 

described activities such as research, ideation, and construction. How-

ever, it differs in at least two ways, and these reflect that the model is 

made in the interest of educating students in technology. First, besides 

well- known activities, it also includes “argumentation” and “reflec-

tion.” These are deliberately included to make sure that design and 

construction in the interest of education are not only about making 

digital products but also about understanding how and why products 

are made to fit particular people and situations and encouraging stu-

dents to reflect on what they learn by engaging themselves in design 

and construction. Second, the model is circular, suggesting that the goal 

is not a finished product (as is the case in most design models) but for 

Design
brief

Research

Argumentation

Construction

Ideation

Reflection

6.1 Process model for engaging students in research, ideation, construction, and reflec-

tion upon technology.
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students and teachers to iterate through the activities and develop their 

skills and knowledge.

This first pillar and the model inherently include knowledge and skills 

that are central to CT, such as programming and modeling. These are 

most clearly related to the “‘construction” activity. These skills are an 

indispensable part of gaining firsthand experience with technology as a 

material that can be used to solve problems and shape our surroundings. 

As such, CT and computational empowerment are not competing ideas 

about engaging students in technology; they are complementary ideas. 

Next we provide a brief example of how the model can be used to scaffold 

teaching practice.

This example was centered on a project in which the task was to rede-

sign an urban space in Aarhus, Denmark, to develop proposals for the 

city’s upcoming year as EU Capital of Culture (2017). The design brief 

challenged the students to redesign a public park in accordance with the 

city council’s aim of developing a more recreational space in the area for 

everyday leisure and social activities. The students had no prior experi-

ence with design processes or constructing with digital technology. The 

brief contained two important components to engage the students in the 

design process, namely authenticity and closeness, in terms of the local 

urban setting and neighborhood, to give the students an intrinsic moti-

vation to engage in the design work. In the research phase, the pupils 

in groups explored the park and its visitors from different themes using 

observations, interviews, photo journeys, and mapping. Based on the 

design brief, their materials, and insights, the students worked to frame 

their unique challenges and collaborative ideation. Rather than devel-

oping specific technological artifacts, the design process emphasized an 

exploratory process, working with technology as a flexible and creative 

means. The role of the technology was downplayed in the initial activi-

ties and introduced during the ideation phase as students were able to 

work with and integrate relevant technologies into their projects in the 

construction activities. The availability of different technologies, such as 

Arduino, Makey Makey, and various software platforms, as flexible tools 

and materials to be integrated into the process with physical mock- up 

materials shifted the students’ perceptions of technology from something 

involving fixed objects to digital means for creating their own alternative 

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024



CoMPUtAtIonAl eMPoWeRMent 127

opportunities and solutions. This strategy was chosen to support the stu-

dents in developing their own reflective stance toward designing with 

technology, which could form the basis of presentation and critical 

feedback in argumentation, as well as common discussions of the impact 

of technology and learnings from the process in reflection. The students 

designed a series of concepts for the park that they presented to visitors from 

the municipality, including automated bicycle stands to tidy up the park’s 

many littered cycles, to new spaces for social activities and film screenings, 

and interactive waste bins that would nudge visitors to help create a more 

inviting public space. Students found the process challenging but exciting 

with its emphasis on problem- solving and technology design.

Second, students should be provided the means to analyze and reflect on 

how technology affects our lives as individuals, groups, and society. While the 

first pillar is concerned with how students can engage actively in the 

processes of researching, constructing, and reflecting on their designs, 

this second pillar is concerned with how students are equipped to engage 

with the technology that has been designed for them by others. This is 

a re- articulation of the central participatory design idea that technology 

shapes work practices and carries with it values embedded by those who 

designed the technology. It is a fundamentally analytical and reflective 

activity. Whereas the process described previously (figure 6.1) is concerned 

with design and construction, this second pillar is concerned with decon-

struction. Figure 6.2 depicts the DORIT model developed for analysis and 

deconstruction. DORIT is short for “Do your Own Research In Technol-

ogy.” The model depicts six areas that each represent an individual ana-

lytical focus: technology prompts us to ask questions about the physical 

and digital materiality of the particular technology that we are analyzing. 

Say we are analyzing a smart watch, the technology area concerns the 

materials that have gone into the watch, the sensors and components 

used, and the programs running on the watch. If we move the focus to 

the purpose area, we ask questions concerning the purpose of the tech-

nology: What is the design meant to be used for; how is the interface 

arranged to support people in discovering the functionality? Moving to 

the area of use, we explore how the technology is actually used by people 

in a given situation. This will likely require observing people and perhaps 

interviewing them about their experience with the particular technology. 
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The next two areas, value and impact, are concerned with exploring the 

kinds of values that a particular technology reflects and the impact that 

the technology has. Finally, the area of argumentation asks us to look at 

the kinds of argument that the producer or the design itself provides for 

why we should use it. In sum, the six areas provide a structured way of 

analyzing, critiquing, and reflecting on the nature, use, and impact of 

technology.

Our example here is from a day in a Danish lower secondary school. 

Here, students worked with aspects of the idea of quantified self, using Gar-

min Connect watches during a whole school day. Based on the teacher’s 

presentations of Garmin’s website and the promotions of the product, the 

students were asked to analyze and reflect upon the artifact based on four 

dimensions of the model: argumentation, technology, value, and use. Small 

Value

Use

Argumentation

Technology

Purpose

Impact

6.2 The DORIT model for engaging students in analyzing and reflecting on the techni-

cal construction, purpose, use, value, and impact of technology.
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tasks included the categorization of statements concerning the aims, values, 

and intentions promoted by Garmin through their online communication 

and hence related to the area of “argumentation.” Unboxing the watches, 

pupils explored data settings and submission of personal data (e.g., weight, 

height, age) to Garmin’s system and did competitive running exercises 

around the school to carry out a simple analysis of use from a consumer 

perspective. Returning to the technology, students worked with the tech-

nical aspects of the watch by actively building a pedometer using simple 

Micro:bits (using MakeCode). This spurred a general discussion about the 

technical aspects of tracking movement and the technologies this could 

involve. Using screenshots of the Garmin watches’ interfaces, the students 

were asked to analyze aspects of interactivity relating to the artifacts’ com-

position and types of input/output data, before creating ideas for redesigns 

of new interfaces to suit their own everyday lives, values, and preferences. 

Such activities formed the foundations for discussions relating to impact, 

in which students were asked to critically reflect upon various aspects and 

layers of complexity in the digital artifact, from data privacy, intentionality, 

and system design to the personal and societal consequences of a device, 

such as a smartwatch, becoming part of our culture.

In this example, the teaching activities were arranged so as to move 

between the different areas in the model to include both technical explora-

tion and design (building a pedometer) and more reflective task, including 

a discussion of the use, value, and impact of fitness tracker technologies.

The third and final pillar of computational empowerment is the idea of pro-

moting democratic practices in the design and redesign of technology. In many 

respects, this pillar sums up the first two pillars. The prerequisite for taking 

part in technological development is an understanding of what technol-

ogy is and how it is produced and a well- developed language for posing 

demands for technology. Democratization may, in this context, be under-

stood at a number of levels. At the individual level, learning about design 

and construction as well as being able to critically analyze existing tech-

nologies provides students with the capacity to make informed decisions 

about their own use of technology. Moreover, it allows them to configure 

and perhaps redesign the technology of their everyday life. At the collec-

tive level, future generations that are well educated in terms of creating and 

assessing technology stand a better chance of making their voices heard 
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when decisions are made about how technology is introduced and used 

and how it shapes our culture. This third pillar thus concerns the potential 

implications of the practices described in the first two pillars and hence it 

points to the larger aims of working with computational empowerment.

Taken together, the three pillars form the basis of computational 

empowerment. They also define two archetypal roles that students may 

assume in their engagement with technology. In the first role, students 

may engage in processes in which they design and construct technology 

for other people. These processes primarily concern the first pillar and 

include students researching, constructing, and reflecting on technology 

that they themselves create. In the second role, students may assume the 

role of analyzing and discussing the technology that others have designed 

for them. These processes relate primarily to the second pillar and the 

processes of analyzing the physical and digital construction, purpose, and 

actual use of a given technology. Figure 6.3 provides a simple depiction of 

these roles: the arrows at the top (moving left to right) illustrate processes 

of design and construction and the arrows at the bottom (moving right 

to left) illustrate processes of analyzing the technology made by others.

While computational empowerment is, in essence, different from clas-

sical articulations of CT, it shares concerns with a body of contributions 

Others
Students

6.3 Students design and construct technology for others (arrows left to right), and stu-

dents analyze and critique technology that others have designed for them (arrows right 
to left). (Adapted from Iversen, Dindler, and Smith 2019.)
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within the field. In the next section we briefly review this literature to 

unveil the overlaps and points of resonance.

COMPUTATIONAL EMPOWERMENT AND  

COMPUTATIONAL THINKING

A concern for a broader framing of CT, including a more humanistic and 

critical approach to computing education, is present not only in the com-

putational empowerment approach presented above but also in a series 

of recent contributions.

In their frameworks for studying and assessing the development of 

CT, Brennan and Resnick (2012) expanded the traditional conceptual 

understanding of CT to also include computational practices (the practices 

designers develop as they engage with the concepts, such as debugging 

projects or remixing others’ work) and computational perspectives (the 

perspectives designers form about the world around them and about them-

selves). Brennan and Resnick (2012) combine CT, practices, and perspectives 

in their framework and thereby expand the scope of computing education 

to also include collaborative efforts in the design process as well as students’ 

reflective understanding of digital technology.

This conceptual framework is also traceable in the realization of CT 

through making presented by Rode et al. (2015). Here, the authors envi-

sion competences related to aesthetics, creativity, and construction, visu-

alizing multiple representations and understanding materials as integral 

parts of computing education. Rode et al. (2015) emphasize the impor-

tance of integrating arts in the science, technology, engineering and math 

focus, placing the “A” in STEAM.

Other prominent approaches include computational participation (Kafai 

and Burke 2013), focusing on creative engagement with computing and 

on moving beyond the individual to embrace wider social networks, and 

computational fluency (Resnick 2017), focusing on children expressing 

themselves through technology and becoming computational creators.

Wilensky, Brady, and Horn (2014) make the case for treating computa-

tion “as a core component in a broad- based cultural literacy” and express 

this concern through the notion of computational literacy.
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The connection between computing and culture is also present in Tissen-

baum, Sheldon, and Abelson’s (2019) conception of computational action, 

in which they argue that learners have the capacity to have authentic 

impact in their lives through computing. They outline two key dimensions 

of computational action: computational identity and digital empowerment. 

Computational identity is a person’s recognition that they can use comput-

ing to have an impact in their lives and may have a place in the larger com-

munity of computational problem solvers. Digital empowerment involves 

instilling in them the belief that they can put their computational identity 

into action in authentic and meaningful ways. They further argue that by 

focusing on computational action in addition to CT, computing educa-

tion can become more inclusive, motivating, and empowering for young 

learners.

These approaches and characterizations are not conflicting; instead, 

they may be seen as focusing on different key aspects of CT. Nor does 

computational empowerment, as proposed in this chapter, take issues 

with the technical, creative, and cultural aspects of CT that are expressed 

in the work presented previously.

Computational empowerment accentuates two aspects in particular 

that contribute to the perspectives presented earlier. First, as noted in 

the second pillar earlier in this chapter and represented in model 3, we 

suggest that it is essential that children are provided with the means to 

analyze and reflect on the technology that surrounds them and makes 

up a central part of their everyday life. Engaging children in construction 

is not sufficient. Critical and curious deconstruction aided by model for 

analysis (such as the DORIT model) are necessary. In this sense, compu-

tational empowerment accentuates the balance and potential interplay 

between construction and analysis. A similar concern is also expressed by 

Kafai, Proctor, and Lui (2019), who suggest that CT should also include 

“‘pulling back the curtain’ of the technological mechanisms underlying 

our existing computational systems in order to understand how these 

may cause inequities in and of itself” (104).

Second, computational empowerment accentuates the notion of design 

as the activity in which children, in addition to construction, do research, 

ideate, and reflect. Design is central to computational empowerment: it 
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embodies the idea that technology is always imbued with values, it is always 

the product of choices, and these choices come with consequences for oth-

ers and for ourselves. This concern has been inherited from participatory 

design and is fleshed out in the design model described earlier (figure 6.1).

COMPUTATIONAL EMPOWERMENT IN THE CURRICULUM

As noted earlier, we believe that CT and computational empowerment 

may complement each other to form the basis of an integrated approach to 

educating coming generations for a digitalized society. The two examples 

provided earlier demonstrate teaching activities that incorporate technical 

and reflective elements. To demonstrate how such an integration of CT 

and computational empowerment may be realized at the curricular level, 

we turn to the development of the new “Technology Comprehension” 

curriculum in Denmark.

An approach to embrace digital empowerment was present already in 

the Danish upper secondary Informatics curriculum developed in 2009 and 

2010 and made permanent in 2016. One of six key competence areas was 

use and impact of digital artifacts on human activity. The purpose of this com-

petence area was that students should understand that digital artifacts and 

their design have a profound impact on people, organizations, and social 

systems. Design of a system is not just design of the digital artifact and its 

interface, it is also design of the use and workflow that unfolds around the 

artifact. The purpose is that the students understand the interplay between 

the design of a digital artifact and the behavioral patterns that intention-

ally or unintentionally unfolds (Caspersen and Nowack 2013).

The curriculum for technology comprehension for primary and lower 

secondary education was developed by mandate of the Danish Minis-

try of Education in 2018 and is currently running on trial in forty- six 

schools for three years in Danish primary and lower secondary educa-

tion. A committee of twenty- five appointed experts within education and 

research took part in the development of the curriculum. Based on pre-

vious research and impact of projects in both computational empower-

ment and CT (Caspersen et al. 2019; Smith and Iversen 2018), the authors 

of this chapter were invited to be centrally involved in the process: two 
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of the authors acted as co- chairs for the working group, while a third 

author was involved in developing the content of the curriculum. In the 

choice of chairs, the Minister of Education signaled the importance of 

integrating humanistic and computer science approaches to computing 

education. Also, it was specified that the curriculum should embrace both 

technical as well as critical and design- oriented content.

The technology comprehension curriculum is based on four compe-

tence areas depicted in figure 6.4 (Danish Ministry of Education, n.d.).

Digital empowerment1 refers to the critical and constructive exploration 

and analysis of how technology is imbued with values and intentions 

and how it shapes our lives as individuals, groups, and a society. It is con-

cerned with the ethics of digital artifacts and promotes an analytical and 

critical approach to digital transformation.

Digital design and design processes refer to the ability to frame problems 

within a complex problem area and, through iterative processes, generate 

new ideas that can be transformed into form and content in interactive 

prototypes. It focuses on the processes through which digital artifacts are 

created and the choices that designers have to make in these processes, 

highlighting students’ ability to work reflectively with complex problems.

6.4 The four competence areas in the technology comprehension curriculum.

Digital empowerment

Analysis of technology—intention and use  |  Evaluation  |  Redesign

Critical, reflexive, and constructive examination and understanding of
possibilities and consequences of digital artifacts.

Computational thinking

Data  |  Algorithms  |  Structuring  |  Modeling

Analysis, modeling, and structuring of data and data processes
for automatic execution by a computer.

Technological knowledge and skills

Programming  |  Computer systems  |  Networks  |  Security

“Mastery’’ of digital technologies (computer systems and networks),
associated languages and programming.

Digital design and design processes

Problem framing  |  Ideation  |  Prototyping  |  Argumentation

Organization and implementation of iterative and incremental design
processes considering the context of future use.
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Computational thinking (CT) concerns the ability to translate a framed 

problem into a possible computational solution. It focuses on students’ 

ability to analyze, model, and structure data and data processes in terms 

of abstract models (e.g., algorithms, data models, and interaction models).

Technological knowledge and skills concern knowledge of computer sys-

tems, digital tools and associated languages, and programming. They 

focus on the students’ ability to express computational ideas and mod-

els in digital artifacts. This includes the ability to use computer systems 

and the associated language and to express ideas through programming. 

Working within this area aims at providing students with the experience 

and abilities needed to make informed choices about the use of digital 

tools and technologies.

Together, the four competence areas clearly integrate aspects of CT and 

computational empowerment as outlined earlier. The lineage from com-

putational empowerment and participatory design is particularly evident 

in the areas of digital empowerment and digital design and design processes. 

It is, however, also evident when looking at the overall aim of the cur-

riculum where the needs for skills to proactively engage in the digitiza-

tion of society are accentuated: “In Technology Comprehension students 

gain skills to understand the capabilities of digital technologies and the 

implications of digital artifacts in order to strengthen students’ capacity 

for understanding, creating and acting meaningfully in a digitized society 

where digital technologies and digital artifacts are catalysts for change” 

(Danish Ministry of Education, n.d., 1).

Moreover, technology comprehension is articulated as a support for 

intellectual freedom and a democratic citizenship among students in the 

Danish school system: “Freedom of spirit and democratic citizenship are 

widely cultivated in digital environments, which is why a well- founded 

understanding of technology is a prerequisite for being able to contribute 

constructively and actively in the development of relationships, commu-

nities and societies” (Danish Ministry of Education, n.d., 8).

These concerns for students’ active engagement in technology devel-

opment, democratic citizenship, and freedom of spirit run through the 

Technology Comprehension curriculum and can be traced throughout the 

four competence areas. Design and design process is participatory, empha-

sizing user studies as a prerequisite for new design; digital empowerment 
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provides students with skills for analyzing and reflecting on the values, 

intentionality, and impact of digital technologies in our everyday lives. 

The areas of computational thinking and technological knowledge and skills 

represent core aspects of computing. Importantly, however, the four areas 

are not simply envisioned as separate entities that are positioned next to 

each other. In the very first sentence of the curriculum it is stated, “There 

is in the description a balance between the four competence areas that in deci-

sive ways enrichen each other and act as the premise for each other” (Danish 

Ministry of Education, n.d., 1).

The integration of computational empowerment and CT form a bal-

anced view and approach to computing education that is not found in 

other national curricula worldwide. Hence, it would appear that this cur-

riculum is an ideal example of a balanced integration of computational 

empowerment and CT.

There are, however, a series of challenges and uncertainties relating to 

the development and implementation of the curricula in practice that 

are far from novel. The challenges include implementation in an exist-

ing national curriculum without educators’ competences or resources, 

implementation of pipeline from preschool to higher education, and 

navigation of changing politics and priorities of education. These will, 

over time, determine whether the integration of computational empow-

erment and CT will endure in Danish primary and secondary education.

CONCLUSION

In this chapter, we make the case for computational empowerment— based 

on the legacy of participatory design— as a critical counterpart to main-

stream CT. We envision computational empowerment as concern for how 

coming generations can develop the capacity and skills to make informed 

choices about technology and act critically and constructively as citizens 

in a digitized society. As such, the computational empowerment objectives 

resonate well with contemporary research efforts exploring computational 

practices and computational perspectives in computing education litera-

ture. However, as described in this chapter, computational empowerment 

accentuates the balance between construction and critical analysis of tech-

nology and the importance of engaging with the process of design.
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We have illustrated how computational empowerment can be intro-

duced into classroom teaching and how it has been adapted and intro-

duced in the curriculum at a national scale. Our example from the Danish 

curriculum underpins how computational empowerment and CT can be 

tightly connected and mutually beneficial in the Technology Compre-

hension curriculum.

It could be argued that the Danish school system is relatively unique 

in terms of its statutory concern for critical perspectives on societal mat-

ters. However, we suggest that many school systems around the world 

could find inspiration in the Danish concern for computational empow-

erment to secure a conscientious digitization of our societies, in which 

future generations are provided with the educational means to engage 

actively and critically as citizens in an increasingly digital democratic 

society.

NOTE

1. In the Danish curriculum, “digital empowerment” is used independently of and 
with a different meaning than the term as used by Tissenbaum, Sheldon, and Abel-
son (2019).
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Artificial intelligence (AI) is a new, general- purpose technology that will 

impact most, if not all, aspects of both our society and our personal every-

day life. AI technology has enabled applications such as speech interfaces, 

vision- based object recognition, and machine translation. AI technology 

also makes recommendations about music, books, and movies for you, 

decides whether you will get a bank loan, and controls what posts you see 

on social media, all of which can have a major impact on your life. It is 

clear that AI technology will play a central role for most aspects of our pro-

fessional and private lives, as well as society at large. Kevin Kelly predicts, 

“The business plans of the next 10,000 startups are easy to forecast: Take X 

and add AI” (2016). Andrew Ng says that AI is the new electricity— it is a 

fundamental part of almost all things (Lynch 2017).

Considering its expected impact, raising the awareness of what AI is 

and what it is not, as well as understanding some of the ramifications, 

are very important. Taking an educational perspective, it raises questions 

such as these: What does this mean for the need for competences, and 

what demands does it put on education? How can education retake its 

position as a positive force to provide individuals with the knowledge, 

skills, and attitudes they need to be constructive and critical actors in the 

major transformation that we are in? What competences are needed to 

effectively be able to use AI as the powerful tool it is?

7
THE COMPUTATIONAL THINKING AND 
ARTIFICIAL INTELLIGENCE DUALITY

Fredrik Heintz
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The starting point is that people and AI complement each other. It is 

humans and AI, not humans or AI. It is clear that computers are significantly 

better than we are at well- defined tasks such as mathematical calculations, 

remembering huge numbers of facts, and repeating precise instruction over 

and over again exactly the same way. It is equally clear that people are 

significantly better than computers at understanding social interactions, 

making decisions from a holistic perspective, and dealing with vague or 

ambiguous situations. What is not clear is whether the progress of AI will 

eventually make computers better than humans at all these things. For the 

conceivable future, it is likely that humans will be better at some things and 

computers will be better at other things, and most things can be done better 

in collaboration than in isolation.

This means that we need to become better at solving problems together 

with computers powered by AI technology. Those who know how to do 

this effectively will have the best opportunities. The single most impor-

tant competence to achieve this will most likely be computational think-

ing (CT): solving problems using concepts and techniques from computer 

science in such a way that computers can assist (Wing 2006).

AI and CT can actually be seen as duals with respect to problem- 

solving by computers and humans. AI is about providing computers with 

the ability to think like humans, while computational thinking is about 

improving the problem- solving capability of humans by leveraging the 

way a computer “thinks” when it solves problems.

Humans have developed increasingly powerful tools. Artificial intel-

ligence is the latest— perhaps the ultimate— tool. AI is about under-

standing what intelligence would be sufficient to create intelligence in a 

computer or robot. A major challenge with this definition is that there is 

no commonly accepted definition of human intelligence (Legg and Hut-

ter 2007). A computer can often do things that we assume requires intel-

ligence without any effort, like solving difficult mathematical problems. 

At the same time, computers often are very poor when it comes to doing 

what appears to be really simple things, like learning a new concept from 

abstract descriptions, for example, the idea that a zebra is a horse with 

black- and- white- striped hair.

AI can also be described as systems taking input, analyzing the data, 

making decisions, and then acting based on these decisions. This approach 

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024



tHe CoMPUtAtIonAl tHInKIng And ARtIFICIAl IntellIgenCe dUAlItY 145

is often called the Sense- Plan- Act approach (Russell and Norvig 2016). In 

many cases these systems learn to improve their performance over time 

from data collected (or given). These systems are often called agents, as they 

have a sense of agency that differentiates them from other computer pro-

grams. This also gives rise to a cognitive and social view on computation.

Machine learning is currently seen as the most interesting part of AI, 

both because many consider it an essential part of intelligence and because 

it allows computer programs to improve over time based on experience. 

This is important because it is hard for people to specify exactly what we 

want a system to do. Instead the machine can partly learn what to do and 

how to do it, as well as improve over time, by collecting data and modify-

ing its behavior (Brynjolfsson and Mitchell 2017).

The scientific field of AI has many subfields, which study different 

aspects of intelligent behavior and cognition. Common topics at the main 

AI conferences include machine learning, knowledge representation and 

reasoning, heuristic search, planning and scheduling, natural language pro-

cessing, computer vision, robotics, and multiagent systems. All of these 

topics have been studied since the 1950s. Most of them were in fact 

discussed already at the seminal Dartmouth conference in 1956.

Two of the most important subfields are machine learning and knowl-

edge representation and reasoning. Knowledge representation and reason-

ing is the scientific study of how to represent knowledge in a computer and 

how to reason with this knowledge to draw valid conclusions. Machine 

learning is the scientific study of how a computer can learn things such as 

finding patterns, recognizing objects, and acting to achieve specific goals. 

Machine learning is mostly based on statistics and correlations (black box 

models), while knowledge representation and reasoning is mostly based on 

explicitly modeling cause and effect (white box models).

Currently, most of the attention is focused on machine learning, while 

knowledge representation and reasoning were the focus in the 1980s and 

1990s, often in the form of expert systems. The next big step is likely 

the combination and integration of reasoning and learning, maybe in 

a similar manner as we humans do it with type, separate but somehow 

connected systems (Kahneman 2011). System I is the fast, automatic, and 

opaque system for perception and intuition with very limited introspec-

tion, which shares many similarities with data- driven machine learning 
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approaches. System II is the slow, deliberate, and explicit system for ana-

lytical thinking and planning with a high degree of introspection, which 

corresponds roughly to formal, symbolic reasoning- based approaches.

Another significant trend is to study the implications of AI and to make 

sure that AI is developed in a way that benefits all. The EU is for example 

putting its weight behind the concept of Trustworthy AI, which requires 

AI systems to follow the applicable rules and regulations, live up to four 

ethical principles, and have a robust and safe implementation (High- Level 

Expert Group on AI 2019). A consequence of this is that the field of AI is 

broadening and today includes researchers from a wide variety of scientific 

disciplines, not only computer scientists.

Even if the goal is to make computers learn new things and act intelli-

gently, it is important to remember that AI is still a tool. A tool is something 

people use to augment our capabilities (e.g., remember, move around, lift 

things, count) and to give us completely new capabilities (e.g., fly, travel 

in space, control processes in real- time, see in x- ray vision). Through digi-

talization, the effect and improvement rate of tools can grow exponen-

tially, according to Moore’s law. If these tools are connected in networks, 

their value can increase further because of the network effects.

We have seen a long history of automation in agriculture and manu-

facturing. Machines have taken over much of the work previously done 

through manual labor. Today, AI- based tools are enabling us to start auto-

mating tasks that require cognitive skills (Brynjolfsson and McAfee 2017). 

The development is still in a very early stage, but the trend is clear. More 

and more tasks are being automated. Automation often increases the effi-

ciency, but it is rare that complete processes are automated. Rather, parts 

of the processes are automated, making people part of the resulting semi-

automated processes.

An interesting question then becomes how this influences the role 

of humans. Humans and computers are fundamentally good at different 

things, which makes humans and computers complementary. Instead of 

complete automation, where we hand over the control completely to the 

computer, it is better if humans and computers solve problems together. 

Even if a computer is good at recognizing objects and classifying images, 

humans are still many times better at these tasks and definitely better at 

generalizing to other similar tasks. The role of humans then becomes to 
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train and teach AI algorithms to do different tasks and monitor that they 

are actually doing the correct thing in an appropriate manner. The train-

ing most likely never will be completely finished, but rather incremental 

and continuous as new concrete examples of incorrect decisions and situ-

ations where the computer does not know what to do are collected. In 

these cases, we humans have to take over and provide the correct answer. 

A challenge for us humans then becomes what we think is correct, given 

our different perspectives and backgrounds.

Does this mean that the role of humans is determined by the ability of 

AI? Partly, but we are developing AI techniques to complement our selves 

and to do things that we find hard, like dealing with combinatorial prob-

lems and problems, which require detailed knowledge of vast amount of 

data. Similarly, humans are enabled to do what we are good at and what 

AI systems find hard, like understanding context and judge what is right 

or wrong from a societal or psychological perspective.

Does this mean that humans will eventually be marginalized? Prob-

ably not. First, by leveraging AI tools, humans will be able to do more and 

solve harder and more complex problems. Second, even if a computer 

could do the same things as a human, it is not necessary that it is cheaper, 

better, or even desired.

An interesting example is chess. We humans have no chance against 

the best chess computers and have not had a chance for over twenty 

years (Siegel 2016). At the same time, the quality of human chess playing 

is increasing, as we are practicing together with chess computers. Some 

claim that Magnus Carlsen is the best chess player in the world since he 

is the human who is the best at playing like a computer. This is natural to 

him as he has been practicing against the computer since he was a small 

child. What is even more interesting is that if you combine humans and 

chess computers in a team, called a centaur, they become better than 

both the best humans and the best computers. It is even the case that the 

team becomes even better if you include several people (Kasparov 2017). 

This is a concrete example of how the result improves when humans and 

computers collaborate to solve complex problems.

There is no dichotomy between humans and computers; it is not a 

question of either or, but rather humans and computers. Simplified, com-

puters are good at doing, while humans are good at what should be done 
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and why. We are good at asking questions, and computers are good at 

answering them. Examples are question- answering systems that are great 

at answering questions and planning systems that can generate elaborate 

detailed plans for how to achieve goals, but the questions and the goals 

have to be provided to the systems by human users.

An important observation is that it is a different skill to play chess with 

a computer compared to playing chess on your own. This means that 

even if you are an expert and are provided with the best possible tool, the 

result does not necessarily improve significantly from your performance 

without it. You might still perform worse than a person who is less of an 

expert in the subject but more of an expert on using the tool effectively.

To really leverage the computational power we need to both educate 

people in solving problems with AI tools and adapt the way we work to 

truly leverage the tools. Thus, relevant education, changed ways of work-

ing, and new organizational forms are required. A central capability is to 

transform business problems into computational problems. That is, to 

formulate problems in such a way that computers or computer tools can 

assist (Brynjolfsson and Mitchell 2017).

CT captures this general skill of solving problems in a way that com-

puters can assist (Wing 2011). For computers to help us, we have to be 

better at understanding how a computer solves problems. Thus, CT is 

to a large extent about learning to understand how a computer “thinks” 

when it solves a problem.

When you solve problems with a computer, it is often about describ-

ing to the computer what should be done, rather than doing it yourself. 

Programs are descriptions of how to solve something that a computer 

understands. Traditionally, humans have to describe every step of the 

process in great detail. AI actually reduces this by enabling the computer 

to fill in some of the details.

CT is becoming a general basic skill (Wing 2006). We also need to 

teach about AI and how AI can be applied to different fields and prob-

lems. To do this well, you need to understand both the domain and the 

technology sufficiently well to make the right design choices or procure 

the right solutions. This leads to a challenge for all those school systems 

where subjects are taught independently. In the same way that AI breaks 

down the silos in organizations, AI requires different ways of teaching in 
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school. Instead of treating each subject independently, there is a need to 

study both the subject matter and the AI tools and techniques used to 

help solve the subject matter problems.

AI and CT can actually be seen as two sides of the same coin. AI is about 

enabling the computer to solve problems we consider to require intelli-

gence, or casually speaking, to enable computers to “think.” CT turns this 

around and asks the question: How can people become better at solving 

problems by learning from how computers do?

We can now compare AI to the main CT activities.

AI tries to avoid step- by- step instructions through either (1) declarative 

programming, such as logic programming, in which an engine interprets 

declarative programs, stating what should be done and figuring out how to 

achieve this, or (2) through machine learning, which could also be called 

programming by example, in which a large set of examples together with 

an objective function are used to define what the program should do.

Breaking down problems into smaller problems, or to divide and con-

quer, is a classical problem- solving technique used, for example, in AI to 

provide dynamic programming solutions to optimization problems or as 

part of reinforcement learning (Sutton and Barto 2018). It can be ques-

tioned whether the computer really breaks down the problem itself, but 

in reinforcement learning the computer has the choice about what parts 

of the state space to explore, providing some freedom to select how to 

break down a problem.

Finding patterns is the main strength of deep learning neural network- 

based approaches (Goodfellow, Bengio, and Courville 2016; LeCun, Ben-

gio, and Hinton 2015). Given sufficient (often large) amounts of relevant 

examples, these methods are able to find patterns in the data that are 

beyond what humans can do.

Abstraction is an area where AI- based approaches have had mixed 

success. On one hand, it could be argued that all approaches to repre-

sentation learning are doing exactly this (Bengio, Courville, and Vincent 

2013). On the other hand, the abstractions found are usually much more 

limited than the type of abstractions we humans create.

Designing algorithms to solve specific problems is an important part 

of CT. One way of characterizing AI, at least some parts, such as reinforce-

ment learning and planning, is as a form of automated programming. 
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Some people even define AI as solving problems without being explicitly 

programmed (Brynjolfsson and Mitchell 2017).

The focus of traditional computer science, and CT, is to develop algo-

rithms and programs that describe how to solve specific classes of problems 

with some guarantees. This usually involves understanding the problem 

in detail and then developing step- by- step instructions that allow a com-

puter to solve problem instances repeatedly and with great precision.

The focus of modern AI is to develop algorithms and programs that 

can extract, or learn, general models or programs, from data where the 

problem is not really well defined. It is very hard to specify precisely what 

a cat or chair looks like, but it is relatively straightforward to create large 

collections of images with and without cats or chairs. The same is true for 

natural language.

By developing methods that do not require detailed specifications but 

rather can extract the underlying phenomenon from positive and nega-

tive examples, we increase the range of problems that can be addressed by 

computers. This is also significant for the skills required to leverage these 

techniques. Maybe there is a need for data thinking or machine learning 

thinking to capture the cognitive skills that highly skilled data science 

and machine learning engineers use to solve problems through data?

By studying AI and CT, we will learn more about both thinking and 

human intelligence, how to effectively solve problems with computers, 

and most importantly, how we humans can solve large scale complex prob-

lems together with AI. In consideration of the major challenges human-

ity is facing, such as providing everyone on the planet with food, energy, 

sustenance, and belonging in a long- term sustainable manner for both the 

climate and ourselves, this is absolutely essential.
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HISTORY OF THE FIVE BIG IDEAS IN ARTIFICIAL INTELLIGENCE

The “Five Big Ideas in AI” were inspired by the 2017 CSTA (Computer 

Science Teachers Association) Computer Science Standards, which are 

organized around five big ideas in computing. Those five big ideas are: 

(1) algorithms and programming, (2) computing systems, (3) data and 

analysis, (4) impacts of computing, and (5) networks and the internet. 

Unfortunately, although artificial intelligence (AI) is an important branch 

of computer science, the standards contain only two sentences about AI, 

both in the eleventh-  and twelfth- grade band, as shown in figure 8.1. 

Until recently, AI was considered too advanced for younger students.

The Five Big Ideas in AI are a way to introduce teachers, parents, and 

students to the essential concepts and major issues of a field often con-

fused with science fiction (Touretzky et al. 2019). We argue here that 

studying AI can teach students about more than technology; it can help 

them better appreciate the complexity of humanity.

Each of the Five Big Ideas is described by a key phrase and a one- 

sentence statement; see figure 8.2. In a poster we published in 2019, each 

statement was unpacked in a paragraph of explanatory text. This poster 

has since been translated into fourteen languages, including Chinese, 

Korean, Hindi, Spanish, Portuguese, Hebrew, and Arabic, all available on 

8
ARTIFICIAL INTELLIGENCE THINKING 
IN K– 12

David S. Touretzky and Christina Gardner- McCune
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Describe how artificial intellgence 
drives many software and 
physical systems.

>

> Algorithms &
Programming

Algorithms &
Programming

Algorithms Communicating

CreatingAlgorithms

Implement an artificial intelligence 
algorithm to play a game against 
a human opponent or solve a 
problem.

8.1 References to AI in the 2017 CSTA Computer Science Standards.

8.2 The Five Big Ideas in AI graphic from AI4K12 . org.
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the Artificial Intelligence for K– 12 Students website (https:// www . AI4K12 

. org). In the guidelines, each Big Idea is broken down into a set of con-

cepts and skills that form the rows of a table called a grade band progres-

sion chart. The columns are the four grade bands, and the cells define 

what students in that grade band should know about and be able to do 

with that concept or skill. At the time of this writing, the draft grade 

band progression chart for the first Big Idea, perception, has been released 

for public comment and is currently undergoing revision. An excerpt is 

shown in figure 8.3. The draft for the third Big Idea, learning, has also 

been released.

The ordering of the Five Big Ideas progresses from narrow areas of low- 

level processing (perception) to broad, high- level topics (societal impact). 

But they are not meant to be covered in sequence. Some curriculum 

developers have done this, such as ReadyAI’s “AI + ME” overview (ReadyAI 

2019). But there are many other ways to survey AI, such as by examining 

different application areas. A module on self- driving cars could touch on 

all five of the Big Ideas.

BIG IDEA #1: PERCEPTION

Big Idea #1, perception, says, “Computers perceive the world using sen-

sors.” The initial guidelines for Big Idea #1 start with a discussion of 

computer sensors, which connects with the computer science standards 

for computer hardware (under Computer Systems), and a discussion of 

human sensory capabilities, which naturally connects with human biology. 

But sensing isn’t what this Big Idea is about.

The first major insight we want students to have is that perception is 

more than sensing. Specifically, perception is the extraction of meaning 

from sensory signals, using knowledge. An automatic door at a supermar-

ket has a sensor, but it does not perceive anything. The signal from the 

pressure pad or ultrasonic transducer is too impoverished to carry much 

information, and the response of the door too simplistic to require any 

“meaning” beyond the raw signal. We want students to understand that 

not all devices exhibit intelligence. We would not be enjoying YouTube 

videos of wildlife wandering through supermarket aisles if their auto-

matic doors could properly perceive who (or what) was entering.
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If the extraction of meaning from sensory signals requires knowledge, 

what does that knowledge look like? In the case of speech perception, this 

question leads to an examination of the many levels of language, starting 

with articulatory gestures (the motions made by the tongue, lips, and vocal 

tract), and progressing to phonology (sounds), morphology (word stems, 

prefixes, and suffixes), prosody (stress and intonation), syntax (grammar), 

and semantics (meaning). These are sophisticated concepts, but even young 

children can discuss the phonetic inventory of their native language and 

can understand why an intelligent agent like Siri or Alexa might have trou-

ble understanding different accents or speech patterns.

The second major insight into perception we want students to come 

away with is what we call the abstraction pipeline: the transformation from 

signal to meaning takes place in stages, with increasingly abstract fea-

tures and higher level knowledge applied at each stage. In the case of 

speech this progression is inherent in the structure of language, and early 

speech- recognition systems actually implemented the pipeline as a col-

lection of distinct modules proceeding from the raw acoustic signal to 

phonemes, words, phrases, and meaning. In more recent systems based 

on deep neural networks there are many more stages of processing, and 

different types of knowledge co- exist across multiple levels. But even in 

these messier neural net implementations there is a general progression 

from more local, signal- based information to more global, meaning- based 

information as one moves through the layers.

Visual perception differs from speech perception in that language is 

something produced by humans for the purpose of transmitting meaning, 

while vision is concerned with constructing, meaning by sensing natural 

phenomena such as reflection and occlusion. The abstraction pipeline for 

vision starts with pixels and ends with 3- D scenes, but what lies between 

is a complex mix of edges, contours, boundaries, surfaces, parts, shad-

ows, reflections, and objects. Marr (1982) called this the 2½- D sketch. The 

knowledge required to derive these representations is innate in humans 

and not easily articulated explicitly in a computer program.

The abstraction pipeline is a wondrous thing. Information flows back-

ward as well as forward: for example, knowledge of the vocabulary of a 

language can influence the perception of ambiguous sounds, and knowl-

edge about the shapes of objects can influence the interpretation of edges 
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in a scene. Human perceptual processes are far from fully understood at 

present. Studying how AI attempts to mimic these processes offers a new 

route to appreciation of human perception.

How much of this can be conveyed in K– 12 is still an open question, 

but at least the early stages of the pipeline can be exposed to students 

through interactive demos. Low- level vision can be illustrated by showing 

the real- time output of vertical and horizontal edge detectors (figure 8.4) 

applied to webcam images. Low- level auditory perception can be shown 

with real- time spectrograms (figure 8.5) and pitch trackers.

BIG IDEA #2: REPRESENTATION AND REASONING

Big Idea #2 states that “Agents maintain representations of the world and 

use them for reasoning.” In computer science terms, representations are 

data structures, and reasoning is performed by algorithms. But how can 

the concept of representations be explained to children in the lower grades 

who are not yet familiar with data structures? Maps are a good place to 

8.4 Edge detection is one of the first stages of computer vision. Vertical and horizontal 

edges are detected by convolving 3×3 kernels with the image.
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start. Even young children can grasp the concept of a map being a repre-

sentation of a place. They understand that the map is not the territory, that 

maps abstract away many details, and that maps follow certain notational 

conventions, such as the way that roads or buildings are depicted. Having 

children construct a map of their house, their school, or their neighbor-

hood brings these ideas home. Children can also appreciate that using a 

map to plan a route is a kind of reasoning and that a self- driving car must 

be doing a similar kind of reasoning. Thus, using maps, representation, and 

reasoning can be made accessible even in K– 2.

A good next step in exploring representation and reasoning, appropriate 

for grades 3 through 5, is the decision tree. This can be introduced via the 

“guess- the- animal” game, where the goal is to guess the animal a person 

is thinking of by asking a series of yes- or- no questions, such as, “Does it 

swim?” or “Does it fly?” The questions form the nonterminal nodes of a 

binary tree, and the terminal nodes are the animals (figure 8.6). In playing 

8.5 Real- time spectrogram of the first author saying, “Every child deserves to learn 

about artificial intelligence.” The vertical axis is frequency; the horizontal axis is time; 

shading indicates the amount of energy in that frequency band. (Created with https:// 

creatability . withgoogle . com / seeing - music . )
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this simple game children encounter fundamental concepts in represen-

tation and reasoning that they will be exploring further for years to come. 

First, the decision tree is drawn on the board so that everyone can fol-

low the reasoning process. This introduces students to the notion of tree 

structures and serves as a simple formalism for encoding knowledge. Sec-

ond, the procedure for playing the game is formalized. One always starts 

at the root node. Upon arriving at any nonterminal node, the student 

must ask that node’s question and then follows either the “yes” or “no” 

branch to reach the next node. Upon arriving at a terminal node, one 

states the animal associated with that node and waits to see if the guess 

is correct. Asking students to explain this procedure in their own words 

prompts them to think about how the reasoning algorithm works.

Another valuable aspect of the guess- the- animal game is the proce-

dure for growing the tree. If one reaches a terminal node and guesses 

8.6 Decision tree learning. (AI+ME: Big Idea 2— Representation & Reasoning: How AI 
Makes Choices. AI + Me Series. Pittsburgh, PA: ReadyAI, 2020. Used with permission.)

First question

“Does it swim?”

Next question

“Does it have scales?”

New question

“Does it have 
feathers?”

Yes

Yes Yes

Yes

NoNo

No

No

Next question

“Does it fly?”

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024



ARtIFICIAl IntellIgenCe tHInKIng In K– 12 161

“penguin,” but the correct answer is “octopus,” one has to obtain two 

pieces of information: (1) what question distinguishes between a penguin 

and an octopus, and (2) what is the correct answer for an octopus. The 

decision tree can then be updated by replacing the “penguin” terminal 

node with a nonterminal node containing the new question, “Does it 

have feathers?” Penguin and octopus become its two children. Following 

this procedure, especially when they choose the animals and questions 

themselves, gives children a feeling for how human knowledge can be 

encoded in a data structure, and how computers can learn.

A key insight we want students to have about this Big Idea is the inter-

dependence of representation and reasoning. Reasoning algorithms need 

something to reason with, and representations are pointless if we have no 

way to put them to use. Consider the map example from earlier: the map 

representation needs a path- planning algorithm to find a route between 

two locations. It’s also important to understand that representations are 

not just the input to an algorithm, they may also be constructed by the 

algorithm. The route constructed by the path planning algorithm is another 

representation. Likewise, game playing programs need another common AI 

representation, the search tree, to keep track of alternative moves as they 

search for the move that will lead to a winning game. The search tree is 

neither an input nor an output. It is constructed by the search algorithm 

as it searches. We express the representation/reasoning duality as follows: 

“Representation drives reasoning, and reasoning algorithms manipulate 

representations.”

Older students can be introduced to a taxonomy of reasoning types to 

help them understand the variety of ways AI is used to make decisions. 

Classification and prediction (regression) problems are the most com-

mon applications of neural networks, although these problems can also 

be approached symbolically. Combinatorial search is one of the oldest 

parts of classical AI and still very important. Other reasoning approaches 

include logical deduction and theorem proving, constraint satisfaction, 

task planning, and numerical optimization. Some of these topics are too 

advanced for K– 12, but it may be possible to provide a taste. For example, 

doing inference by resolution theorem proving using first- order predicate 

calculus is a topic for undergraduates, but we might give students in 9– 12 

a taste of logical inference by looking at how a computer can handle 
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syllogisms, such as the classic “all men are mortal; Socrates is a man; 

therefore Socrates is mortal.”

sYMbolIC vs. FeAtURe veCtoR RePResentAtIons

While much of the recent progress on the difficult problems of speech 

recognition, computer vision, and machine translation has resulted from 

advances in neural network technology, symbolic representations remain 

important, as evidenced by the resources Google and other large corpora-

tions have devoted to constructing knowledge graphs (Noy et al. 2019). 

The knowledge panel displayed on the right hand side of the screen in a 

Google search for “Thomas Jefferson” or “kiwi fruit” is generated from the 

Google knowledge graph. Hand- crafted symbolic representations used in 

classical AI are certainly easier to explain to children than the feature vec-

tor representations constructed by neural networks. But what should they 

understand about feature vector representations? In the remainder of this 

section we offer some speculation on how feature vector representations 

may influence students’ views about word meanings.

Dictionaries and thesauruses are our traditional codifications of the 

meaning of words. With six hundred thousand words spanning one thou-

sand years of usage, the Oxford English Dictionary (OED) is a landmark intel-

lectual achievement, billing itself as “the definitive record of the English 

language” (Oxford University Press 2020). Dictionaries typically include 

usage examples— often famous quotations— that help put words into con-

text. The OED contains 3 million quotations. All of this material was com-

piled over many years by committees of scholars. Similar efforts exist for 

other languages: for example, a special commission composed of mem-

bers of the Académie Française produces the Dictionnaire de l’Académie 

Française, endorsed by the French government. Dictionaries are important 

cultural artifacts and are the original hand- crafted symbolic representa-

tions of words. But it is not easy for a computer to reason with this type of 

representation.

Computing technology has offered our culture a new type of word repre-

sentation that now powers many natural language applications. This feature 

vector encoding, also known as a word embedding, represents each word as a 

point in a high- dimensional abstract space. To understand this encoding it 
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is helpful to first consider a less abstract example. The following is inspired 

by the description of the word2vec family of models in Mikolov et al. (2013).

Suppose we want to represent the words “man,” “woman,” “boy,” “girl,” 

“king,” “queen,” “prince,” and “princess.” Imagine a 3- D space where the 

x coordinate encodes gender, the y coordinate encodes age, and the z coor-

dinate encodes royalty (figure 8.7). Each of our eight vocabulary words can 

be mapped to a unique point in this space: for example, “man” might be 

(0,1,0), and “princess” might be (1,0,1). Euclidean distance in this space 

can serve as a heuristic for semantic similarity, allowing us to infer that 

“man” is semantically closer to “woman” than to “princess.” We can go 

on to embed additional words in this space, even without adding more 

dimensions. “Son” would likely be close to “boy,” although less definitive 

as to age, so perhaps its coordinates would be (0, 0.3, 0). “Parent” is gender 

neutral but an adult, with no implication of royalty, so it might map to (0, 

0.5, 0), and so on.

8.7 Representations of words as points in a 3- D semantic space.
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Mikolov et al. (2013) showed that in addition to providing a similarity 

heuristic, feature vector encodings admit a simple type of analogical reason-

ing by vector arithmetic. Subtracting the vector for “queen” (1,1,1) from the 

vector for “woman” (1,1,0) yields a vector (0,0,- 1) that removes the royalty 

attribute from a word. Adding this vector to “prince” (0,0,1) yields “boy” 

(0,0,0). Adding it to “king” (0,1,1) yields “man” (0,1,0). Similarly, subtract-

ing “man” from “boy” and adding the result to “parent” yields (0.5,0,0), 

which is a plausible encoding for “child.”

Representing a larger vocabulary requires a higher- dimensional feature 

space. Rather than designing those features by hand, they can be created 

using machine learning, specifically neural networks. We don’t have a 

convenient way to train the network directly on word meanings, but since 

words with similar meanings tend to occur in similar contexts, it turns out 

that training the network to predict what words are likely to co- occur with 

a given word is an effective proxy for meaning. This approach captures 

more than pure syntactic and semantic features; it also captures informa-

tion about usage: for example, which adjectives are typically applied to 

which nouns.

Unlike the carefully constructed dictionary definitions produced by 

human experts, feature vector representations are somewhat arbitrary. They 

depend on parameters such as the size of the context window (the number 

of words before and after the word whose features are being learned), the 

vocabulary set, the dimensionality of the feature space (number of units 

in the neural network’s hidden layer), and the training corpus. Even if all 

these parameters are held constant, two separate runs of the learning algo-

rithm will produce different representations because of the randomness of 

the network’s initial weights. Heuristics used for speed training also influ-

ence the vector representation. And these vectors are not easily interpre-

table by humans, although one can sometimes find correlations between 

vector elements and semantic attributes by comparing the representations 

of several words, as in figure 8.8.

Despite their lack of definitiveness, statistical feature vector represen-

tations have significant practical uses. For example, they can be used to 

disambiguate homophones during real- time speech recognition. Tell a 

chatbot you want “two coffees, not too hot, to go” and it will get every 

word right. Neural machine translation systems use feature vectors as their 
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input and output encodings, as do some question answering systems such 

as Siri, and machine translation applications such as Google Translate.

There are already simple online demos that allow people to explore word-

2vec vocabularies and experiment with the analogy via vector arithmetic. 

Demos that are friendlier to K– 12 users will surely follow. eCraft2Learn, 

a children’s AI programming framework built on top of Snap!, recently 

added blocks for working with feature vectors (Kahn and Winters 2020). 

Allowing students to experiment on their own with feature vector repre-

sentations is the twenty- first- century version of teaching them to explore 

a dictionary: it will enrich their appreciation of language. It will also give 

them insight into the workings of the AI systems they interact with in their 

daily lives.

BIG IDEA #3: LEARNING

Big Idea #3 says “Computers can learn from data.” It’s important to dis-

tinguish human learning from what the computer is doing, so the guide-

lines begin with a comparison. Machine learning mostly follows one of 

two approaches: finding patterns in data, or optimizing behavior based 

on trial and error. Humans do those things too, but they also learn in 

other ways, such as by being told, by observing others, by asking ques-

tions, by experimenting, and by making connections to past experience. 

Human learning, because it is part of a larger cognitive architecture, is 

8.8 Feature vector representations of words in word2vec. (Figure modified from Alam-

mar 2019.)
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general and flexible, while machine learning is accomplished by special-

ized algorithms and focuses on performing a specific task.

Arthur Samuel, author of the first AI checkers playing program, is cred-

ited with coining the term machine learning in 1959. A definition often 

attributed to Samuel is that machine learning is a “field of study that gives 

computers the ability to learn without being explicitly programmed.” He 

didn’t actually write those words, but they convey the gist of his think-

ing.1 Our take on this for the K– 12 audience is: “Machine learning allows 

a computer to acquire behaviors without people explicitly programming 

those behaviors.” Another way to think about it is that machine learning is 

a way to construct a reasoner. So humans program the learning algorithm, 

the learning algorithm constructs a reasoner with the desired behavior, 

and the reasoner is then employed in some task such as recognizing cats 

in images or deciding whether an email is spam.

One of the things we want students to be able to do is construct a rea-

soner themselves. Several tools allow children to train an image classifier 

on small numbers of examples using deep neural networks and transfer 

learning. Probably the best known tool is Google’s Teachable Machine, 

which conveniently runs in the browser. The demo can use images cap-

tured from a laptop’s camera and doesn’t require any programming. Simi-

lar capabilities now exist in children’s programming frameworks, such as 

App Inventor, Cognimates (based on Scratch), and eCraft2Learn (based 

on Snap!). Using a tool like Teachable Machine, students can train a clas-

sifier to recognize a thumbs- up gesture, a peace sign, and a “no gesture” 

condition. They can then measure its accuracy on new images and exper-

iment with adding more varied training examples to help it perform bet-

ter. This makes a compelling educational experience for adults as well as 

children. It’s a great way to approach machine learning, but it has some 

limitations, which must be addressed through other activities.

To enhance their understanding of machine learning, we would like 

students to experience what it feels like to acquire a concept by finding 

patterns in data. The problem with training Teachable Machine to recog-

nize cats or thumbs- up gestures is that we start out already knowing those 

concepts, even if the machine does not. Training a classifier on famil-

iar concepts cannot help one experience what it’s like to be the trainee. 
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To address this, the guidelines have students play the role of machine 

learner for concepts they don’t already know.

This exercise can be done as early as in grades K– 2 by showing labeled 

examples of cartoon creatures and asking students to figure out a rule 

that predicts the labels. For example, the images could be of cartoon fish 

of various colors, with different shaped heads, bodies, fins, and tails. 

The labels could be “eats seaweed” and “doesn’t eat seaweed.” Labeled 

instances would be presented one at a time, and after seeing a sufficient 

number the students could begin positing what the pattern is that pre-

dicts a fish eating seaweed. A simple case would be that it’s the purple 

fish that eat seaweed. More challenging cases may involve a conjunction 

of features (only purple fish with pointy heads eat seaweed), or for older 

students, a negated value (purple fish except those with small tails), a 

disjunction of conjunctions (purple fish with pointy heads or orange fish 

with small tails), or something even more complex.

In later grade bands, students are asked to simulate learning algorithms 

in more detail. For example, in grades 3– 5, instead of verbally stating a 

classification rule, they may be asked to construct a decision tree, where 

each node tests a single feature such as color or head shape. In 9– 12 they 

may be asked to train a classifier or predictor to fit a set of noisy training 

points by turning knobs to adjust parameters, eyeballing the quality of the 

fit. Such a model may predict a person’s height given their age, or the price 

of a used car given its mileage. For a linear model y = mx + b, they would 

adjust the slope (m) and intercept (b), but they could also train nonlinear 

models such as logistic functions or cubic polynomials the same way.

CHAnges In InteRnAl RePResentAtIons

Another insight we want students to have is, “Learning of new behaviors 

is brought about by changes in internal representations.” In other words, 

what the learning algorithm is doing is not magic; it is simply adjusting 

a data structure. This is the second drawback to Teachable Machine and 

similar transfer learning tools: they are black box demos whose internal 

representations are unobservable. Given the complexity of deep neural 

network representations, even if there were a practical way to display 
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them, it’s not clear how their hidden layer activations could be made inter-

pretable by non- experts. There is, however, interesting work on giving 

qualitative insights into what these networks are doing, such as displaying 

which areas of a scene a network is attending to, or finding the optimal 

stimulus for triggering a learned feature detector. As our methods for ana-

lyzing deep neural networks improve, the way we teach them will evolve.

For now, we advocate approaching “changes to internal representa-

tions,” using hand simulations of symbolic learning applications. We can 

help students recognize that the decision trees they built in grades 3– 5 

or the parameter values they adjusted in grades 9– 12 are the internal rep-

resentations that learning algorithms manipulate. We can also draw on 

some “glass box” machine learning tools that disclose their representa-

tions. For example, MachineLearningForKids allows students to construct 

a classifier using decision tree learning, and a recent enhancement added 

the ability to draw the decision tree. While the tree can be very complex 

for multivariate datasets, such as the Titanic survivor data used as one of 

the illustrative examples, for simpler data the tree is easily interpretable.

For exploring changes in neural net representations, Google’s Tensor-

Flow Playground is an ideal tool. It allows students to train small feed- 

forward neural networks that are graphically displayed in the browser. 

Every connection is explicitly represented and gets thicker or thinner as 

the magnitude of the weight increases or decreases; the sign of the weight 

determines its color. By hovering over a connection, students can read 

the exact weight value. What we want students to appreciate is that the 

weights constitute an internal representation of a set of feature detectors 

that the learning algorithm (backpropagation) is incrementally adjust-

ing. Exactly how those adjustments are calculated can be left to more 

advanced classes. In deep neural networks, these feature detectors are 

complex and hard to interpret, but for the shallow networks and simple 

2- D input patterns supported by TensorFlow Playground, it is possible to 

exactly visualize what each feature detector is doing.

tYPes oF leARnIng

“Finding patterns in data” is a broad concept that encompasses both super-

vised learning, where the data are labeled, and unsupervised learning, 
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where they are not. It can be used to produce both classifiers and predic-

tors. Classification is a special case of prediction in which the output is 

drawn from a discrete set (the class labels) rather than a continuous range. 

The other type of machine learning covered in Big Idea #3, “learning from 

experience,” involves something radically different.

In supervised learning the algorithm is provided with the correct answer 

(the label) for every training example. All it has to do is adjust the internal 

representations to make the model more likely to produce this answer. In 

learning from experience, known as reinforcement learning, the algorithm 

is only provided with a scalar value, the reinforcement signal, which indi-

cates how well things are going. It is not told what it should do differently 

to make things go better; it has to figure that out for itself.

The other reason reinforcement learning is radically different is that 

reinforcement learning is used for sequential decision problems. While 

classification and prediction are one- shot problems where a single input 

is mapped to a single output, sequential decision problems involve a 

series of action choices, where each action affects the choices available 

in the next step. An example would be playing a game like chess, where 

each move constrains the choices available for the next move. We want 

students to appreciate two things about reinforcement learning. First, 

the computer is not being trained by a teacher; it is generating its own 

data by making a choice at each step and seeing where that choice leads, 

that is, how much reinforcement it ultimately receives. Computers that 

have become expert game players through reinforcement learning gener-

ated their training data by playing against themselves. Second, because 

we are not required to provide the algorithm with the correct answer at 

each step, it is possible for the algorithm to discover solutions to prob-

lems in which we don’t know ourselves what would be the best choice 

to make.

Reinforcement learning is worth teaching in K– 12 because it has led 

to some significant achievements for AI, such as AlphaGo’s 2016 defeat 

of world champion Go player Lee Sedol. But like deep neural networks, 

the details of reinforcement learning algorithms are too complex for all 

but the most advanced high school students. Hand- simulating the algo-

rithm would be tedious because of the large number of trials required 

even for simple tasks. But tiny grid world simulations with only a handful 
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of states and actions can provide a glimpse into how reinforcement learn-

ing works.

Some other topics covered in Big Idea #3 are the design of feature sets, 

development and use of large datasets, and sources and effects of bias in 

training data.

BIG IDEA #4: NATURAL INTERACTION

Big Idea #4 covers a range of topics relating to how computers interact with 

people. The one- sentence description reads: “Intelligent agents require many 

kinds of knowledge to interact comfortably with humans.” The major top-

ics that make up this Big Idea are natural language understanding, common 

sense reasoning, affective computing, and consciousness/theory of mind.

Natural language understanding includes making sense of human requests 

to intelligent agents, extracting information from text, and translating from 

one language to another. Language is often syntactically ambiguous, so 

finding the most likely meaning of a text requires some semantic analysis. 

For example, “John saw the man from the restaurant” could mean either 

that John was gazing out from the restaurant when he saw the man, or that 

John saw the man who had some previous connection to the restaurant. 

Further context is necessary to decide which meaning the speaker intended.

Speaking with an intelligent agent incapable of common sense reason-

ing would be tedious because everything would have to be spelled out in 

detail. Common sense reasoning includes naive physics: understanding 

the properties of solids and liquids and how they behave in response to 

forces such as gravity. Winograd schema sentences such as, “The trophy 

would not fit in the suitcase because it was too [large/small],” illustrate 

how an understanding of naive physics, in this case volume and physical 

containment, determines whether “it” refers to the trophy or the suitcase.

Another requirement for common sense reasoning is knowledge about 

the world: for example, knowing that cats are living things, or what chairs 

are used for. This also includes sociocultural knowledge, such as when to 

pay at a restaurant, or what makes a good gift for a child.

Today’s AI systems show little common sense reasoning ability. Google 

can translate text into over one hundred languages but can’t answer ques-

tions about a short story that a five- year- old would find trivial. AI systems 
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try to make up for this deficiency by focusing on retrieval from huge 

knowledge bases. But retrieval is not the same as inference. For example, 

ask Google how much an alligator weighs, and it will answer five hundred 

pounds. Ask how much an ostrich weighs, and it will say 250 pounds. But 

ask it, “Does an alligator weigh more than an ostrich?” and, as of April 

2021, it doesn’t even understand the question. Retrieval alone doesn’t 

cut it— usually. Sometimes it does. Ask Google, “Is Microsoft bigger than 

IBM?” and it finds articles where people have discussed that question. 

But ask it, “Is Intel bigger than Pfizer?” and it falls apart, despite the fact 

that it can retrieve the number of employees and market capitalization 

of these companies, either of which could be used to compare their size.

To achieve human- like common sense reasoning would require some-

thing called Artificial General Intelligence, or AGI. One of the essential 

understandings we want children to come away with is the difference 

between the narrow AI reasoners we have today and the broad AGI reason-

ers depicted in science fiction. One way to drive this idea home is to try to 

have a conversation with an intelligent agent such as Alexa or Siri. At pres-

ent they do not maintain context from one utterance to another, so one 

can’t have a meaningful discussion with them. AI developers are currently 

working on this. Chatbots, which are more specialized than “agents” such 

as Alexa, address the problem by relying on templates for common inter-

actions such as inquiring about the availability of a product, or placing an 

order. But if the conversation veers outside the anticipated scenarios, the 

chatbot is lost. We want children to be aware of these limitations so that 

they do not attribute more intelligence to an AI agent than it deserves.

A third topic in Big Idea #4 is affective computing, or recognizing and 

dealing with human emotional states. This includes sensitivity to tone 

of voice, facial expressions, and body language, and the ability to adjust 

interaction style to effectively respond to indications of frustration, bore-

dom, or excitement. If robot companions were as responsive as dogs to 

our emotional states, they might truly capture our hearts.

The final topic in Big Idea #4 is consciousness and theory of mind. These 

terms are normally addressed in university- level philosophy courses. But 

because today’s children are growing up with intelligent agents, and in 

a culture filled with fictional robots with human- like personas, they are 

primed to appreciate questions about whether computers really do have 
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minds, or could in principle have them. Concepts such as the Turing Test, 

or Searle’s hypothetical Chinese room, can be introduced in high school, 

and should be.

MoRe PlAYIng WItH lAngUAge

We both enjoyed learning about sentence diagramming in school. In this 

section we draw a connection between sentence diagramming and AI, spe-

cifically the question of how a natural language understander begins to 

make sense of a sentence. We speculate that playing with AI language tools 

may instill in future generations of students an appreciation for the formal 

structure of language that we got from experimenting with diagramming.

Sentence diagramming was invented in the 1840s by Stephen W. Clark, 

a rural New York schoolmaster, as a means of helping students learn to 

“parse” (grammatically analyze) sentences (Florey 2012). The notation 

was refined by Alonzo Reed and Brainerd Kellogg in 1877 into a form 

that became widely used in nineteenth-  and twentieth- century middle 

and high schools. Diagramming is less frequently taught today and is not 

included in the Common Core (Thomas 2014). English teachers argue 

and research has shown that isolated direct grammar instruction does 

not help students become more effective writers. Nonetheless, readers of 

a certain age may have fond memories of learning to diagram sentences 

(Florey 2006), perhaps because they were a first exposure to formal repre-

sentations. Diagrams are also something like data structures, a fundamen-

tal concept in computer science.

Sentence diagrams are a simplified version of the syntax trees used in 

modern linguistics to represent the syntactic structure of sentences. Dia-

grams use only a few graphical devices, mainly horizontal, vertical, and 

diagonal lines, as in figure 8.9. Some of these devices serve multiple roles, 

whereas syntax trees label every node with an unambiguous grammatical 

class.

Some linguistic theories are phrased in terms of transformations on 

tree structures: for example, a sentence in the active voice can be trans-

formed into the passive voice by switching the subject and direct object 

subtrees and modifying the verb phrase, so “John saw Mary” becomes 
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“Mary was seen by John.” Ambiguous sentences such as “John saw the 

man with a telescope” are compatible with multiple tree structures, for 

example, one in which “with a telescope” is attached to “saw,” and one 

in which it is attached to “man.”

AI systems must parse sentences in order to understand them. While 

syntactic analysis is only one part of language understanding, it is an essen-

tial component. The widespread availability of natural language parsers 

presents an opportunity to introduce students to grammar in a new way: 

by having them experiment with automated parsers. Figure 8.10 shows 

a parse tree provided by the online demo page for the Berkeley Neural 

Parser.2

Figure 8.11 shows the same parse in traditional syntax tree notation.

Students could learn to draw syntax trees by comparing their efforts to 

computer- constructed syntax trees like the ones shown here. They could 

explore the topic of syntactic ambiguity by constructing sentences and see-

ing if the parser generates more than one parse tree. And they could learn 

to write simple rules in a phrase structure grammar and see those rules used 

to generate parse trees (whose terminal nodes form sentences) by iterative 

expansion of nonterminal nodes. With a well- designed graphical interface 

to manage the rules, and automatic generation of many examples from 

8.9 Diagramming a sentence. (Courtesy of Pop Chart Labs.)

As Gregor Samsa awoke one morning from uneasy dreams
he found himself transformed in his bed into a monstrous vermin.

Kafka, Metamorphosis

he found himself

As

transformed

Gregor Samsa awoke bed

vermin

dreams

fromm
orningone uneasy

his

in
into

m
onstrous

a
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8.10 Parse tree produced by the Berkeley Neural Parser (https:// parser . kitaev . io). NP 

indicates a noun phrase, VP a verb phrase, and PP a prepositional phrase.

Gregor Samsa awoke one morning from uneasy dreams

awoke one morning from uneasy dreams

from uneasy dreams

from uneasy dreams

uneasy dreams

S

VPNP

NNP NNP NP

NPINNNCD

JJ NNS

PPVBD

Gregor Samsa

Gregor Samsa awoke one morning

morningone

8.11 Traditional syntax tree notation, also from the Berkeley Neural Parser.

morningone

S

NP

NNP
Gregor Samsa awoke

CD NN IN NP

JJ NNS

NNP VBD NP PP

VP

from

uneasy dreams
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the current rule set, students would have a grammar “sandbox” in which 

to explore syntax and the relationship between parsing and generation.

The linguist Mark Liberman has remarked that because of diagramming 

instruction, “grammar- school children of the 19th century learned more 

about linguistic analysis than most graduate students in English depart-

ments do today” (Liberman 2012). Interactive language tools designed spe-

cifically for K– 12 could remedy that.

What about semantics? Modern AI has leveraged statistical learning 

over large datasets to construct practically useful natural language tools 

for tasks such as machine translation or text summarization. These tools 

use heuristics to resolve ambiguity from local context. The approach is a 

powerful one but does not achieve true “understanding” in the human 

sense, as evidenced by the limitations these systems still exhibit. For exam-

ple, given “John saw the man with binoculars,” the Berkeley Neural Parser 

attaches “with binoculars” to “man,” while most humans would prefer 

“saw.” But given “John easily saw the man with binoculars,” the Berkeley 

Neural Parser attaches “with binoculars” to “saw.” It’s not just the presence 

of “easily” that changes the attachment, because given “John easily saw 

the man with groceries,” the prepositional phrase attaches to “man,” as it 

should. The interaction of the noun with the adverb to influence attach-

ment is not the result of some explicitly formulated rule, nor is it the result 

of commonsense reasoning. Rather it reflects the statistics of the corpus 

the model was trained on, captured in a deep neural network. Another 

example is the parser makes different but plausible attachment choices for 

“John saw the man with one eye” (attached to “saw”) versus “John saw the 

man with one leg” (attached to “man”). But it does not do so well on “John 

saw the man with one ear.” Statistics can only get you so far.

One way students can explore machine understanding of language 

is by comparing how AI parsers resolve ambiguous sentences with their 

own preferred interpretations of those sentences, as we’ve done above. 

It’s even more fun than sentence diagramming.

BIG IDEA #5: SOCIETAL IMPACT

Big Idea #5 is that “AI can impact society in both positive and negative 

ways.” We want students to be aware of these potential impacts, especially 
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since there is so much apprehension today about AI putting people out 

of work, enabling unprecedented levels of government surveillance, or 

unleashing killer robots on the world. All of those things are likely to hap-

pen to some extent. But there are also many benefits to be realized from AI, 

such as improved medical diagnoses and treatment, faster drug discovery, 

robotic assistance for disabled or elderly persons, increased productivity 

in industry, and personalized instruction for learners of all ages. Students 

need to be shown a balanced picture.

We’ve listed four subtopics for this Big Idea: (1) ethics of AI making 

decisions about people, (2) economic impacts of AI technology, (3) AI and 

culture, and (4) AI for social good.

A great deal of attention has been paid to bias in AI- powered systems. 

One source of bias results from training a system on an unrepresenta-

tive dataset: for example, a face- recognition engine expected to work for 

everyone but that was trained primarily on Caucasian faces. A trickier 

problem is automated decision- making systems found to treat different 

groups of people unequally based on criteria we do not consider appro-

priate. People don’t set out to build systems that discriminate based on 

race or gender. They may even withhold that information from the AI 

system in an attempt to ensure neutrality. But race and gender correlate 

with other variables and so can be implicitly present. The problem is that 

machine learning systems trained on data that are unbalanced for histori-

cal reasons can acquire biases that perpetuate these imbalances because 

they want to correctly predict the training data. A famous example is 

Amazon using information from past technical hiring decisions to train 

a system for screening resumes only to find that it had learned to assign 

negative values to keywords that correlate with being female (Dastin 

2018).

An important message for students to hear is that it is possible to take 

steps to mitigate the negative impacts of technology. Face recognition 

engines can be required to undergo testing to ensure that they perform 

equally well for all populations. Automated decision- making systems, 

whether AI- powered or not, can be required by regulation to be transpar-

ent in their reasoning and can be explicitly tested for disparate treatment 

of protected groups based on inappropriate criteria.
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ARtIFICIAl IntellIgenCe And CUltURe

Until recently, AI’s contributions to popular culture have been entirely 

through science fiction. Speculation about possible futures remains an 

engaging pastime: will we be happily coexisting with R2D2 and Lieuten-

ant Data, or fleeing the Terminator? Instilling a basic understanding of 

AI helps students recognize that neither scenario is imminent. But now, 

actual AI applications are appearing in popular culture. Intelligent assis-

tants modeled after Siri and Alexa are showing up in commercials and TV 

show episodes. Radio station promos advise listeners to “tell Alexa to play 

your favorite AM station.” Meanwhile, children’s interactions with Alexa 

have sparked a debate about whether they should be taught to treat intel-

ligent agents with politeness (Elgan 2018). As Elgan observes, “Preparing 

kids for the future means more than mere manners. It means teaching 

them to appreciate the difference between real human people and mere 

machines designed to create the illusion of humanity.”

We will soon have many more humble robots in our lives. Shelf- 

scanning robots are appearing in department stores and supermarkets, 

small- item delivery robots are trundling the halls of hospitals and high- 

end hotels, and food and package delivery robots are beginning to share 

the sidewalk with pedestrians. There is already a new genre of YouTube 

videos showing mishaps with self- driving cars. Today’s children will grow 

up in a culture where we routinely share our living space with machines 

that, although not very bright, can navigate effectively through the world. 

iRobot founder Colin Angle reported that 90% of Roomba owners named 

their vacuums (Barker 2018). How will they respond to robots that can 

see and hear?

CONCLUSION

In recent years there have been concerted efforts to introduce children 

to “computational thinking” (Wing 2006), including its four cornerstone 

concepts of problem decomposition, pattern recognition, abstraction, 

and algorithms. ISTE (the International Society for Technology in Edu-

cation) and CSTA offer a joint operational definition of computational 

thinking (CT, ISTE 2011) that includes five dispositions or attitudes: 

(1) confidence in dealing with complexity, (2) persistence in working 
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with difficult problems, (3) tolerance for ambiguity, (4) ability to deal with 

open ended problems, and (5) ability to communicate and work with oth-

ers to achieve a common goal or solution.

AI thinking implicitly draws upon the core concepts and dispositions 

of CT. The Big Ideas of perception, reasoning, and learning are all realized 

as algorithms, while representations are examples of abstraction. And 

introducing students to AI topics such as the richness of language or the 

subtleties of visual understanding asks them to grapple with problems 

that are complex, difficult, ambiguous, and open ended. But AI thinking 

also goes beyond classical CT in this sense: it asks students to consider that 

computation can actually be thinking. Not in the fully human, “strong 

AI” sense that Turing envisioned in his seminal paper on machine intel-

ligence (Turing 1950), but at least in the specialized, narrow form known 

today as “weak AI.” CT is exactly what humans need when they try to 

understand how machines can think.

These are the early days of K– 12 AI education. It’s a dynamic area that 

is developing rapidly. Here is what we see at the frontier:

• New tools and demos are coming online, making it easier to give stu-

dents hands- on experiences with AI technologies. Since many of these 

tools run in the browser, they are accessible even to low- resource schools.
• As more states adopt standards mandating computing instruction 

for all K– 12 students, programming is making its way into the lower 

grades, which means students will be more computationally sophisti-

cated when they learn about AI.
• AI professional development opportunities for teachers will begin to 

have an impact. Computer science in general is poorly represented in 

the schools: many computing teachers have no formal computer sci-

ence training. Even so, they at least understand how a digital computer 

works and have elementary programming skills. But few of these teach-

ers claim to know anything about AI, or can even define it. Over the 

next few years we hope to see AI become more integrated into comput-

ing curricula and teachers become more confident about introducing AI 

topics in their classes.
• AI technologies continue to progress. Intelligent agents are becom-

ing better conversationalists. Robot companions that are not vacuum 

cleaners will find a niche where they can be successful, while robots in 
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the workplace become common. Fully autonomous, go- anywhere self- 

driving cars are probably still two decades away, but less demanding 

applications such as freight hauling or fixed- route shuttle services are 

already being deployed. As AI becomes a larger part of our lives and 

culture, the need to demystify AI in K– 12 will be widely recognized.

NOTES

1. See https:// datascience . stackexchange . com / questions / 37078 / source - of - arthur - sam
uels-definition-of-machine-learning .

2. Try the Berkeley Neural Parser at https:// parser . kitaev . io /  .
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“How many of you watch YouTube every day?”

A sea of eleven- year- old hands shot up. Every student in our summer 

artificial intelligence (AI) workshop had not only heard of YouTube but 

used it daily.

Although a bit jarring, this makes sense. In the 2019 Common Sense 

Media Report, 56 percent of tweens (ages eight to twelve years) reported 

watching online videos daily, and 76 percent reported regular usage of You-

Tube specifically. These statistics have almost doubled from 2015, suggest-

ing that children’s online video consumption is on the rise. At the same 

time, we see TV consumption declining, with children watching about a 

half- hour less television than four years ago (Rideout and Robb 2019).

We asked the same group of students, “Who uses AI every day?”

The answer looked a bit different, with about half of hands hesitantly 

going up. It became clear that students were not aware that some of their 

favorite technologies, like YouTube or Snapchat, are powered by artifi-

cially intelligent systems. Without knowing how these AI systems work, 

students are unable to make choices about how they would like to inter-

act with them. AI is very much part of children’s technology landscape, 

and it has implications for how they navigate their digital world. If chil-

dren are able to use AI, they must be able to identify it, know how it 

works, and understand that they have the agency to change it. We need 

9
PREPARING CHILDREN TO BE 
CONSCIENTIOUS CONSUMERS AND 
DESIGNERS OF AI TECHNOLOGIES

Daniella DiPaola, Blakeley H. Payne, and Cynthia Breazeal
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to give students these skills so that they are empowered to decide how 

they would like AI to fit into their lives.

To meet this need, we developed a curriculum with three primary goals:

1. Students should be conscientious consumers of AI.

2. Students should be ethical designers of AI.

3. Students should be able to participate in democratic discussions 

around AI.

CONSCIENTIOUS CONSUMERS OF ARTIFICIAL INTELLIGENCE

If children are touching AI- powered systems every day, they really should 

be aware of it. For example, our middle schoolers shared that they often 

rely on YouTube’s recommendation algorithm to determine what videos 

to watch. According to YouTube, the recommendation algorithm uses the 

consumer’s viewing history as one of the main factors for determining 

which videos to recommend (Covington, Adams, and Sargin 2016). By 

recommending videos based on what the user has previously watched, 

YouTube hopes that the user will stay on the site for longer. The longer 

viewers watch content, the more ads will sell. For the most part, YouTube 

is successful in this endeavor. In 2018 Neal Mohan, YouTube’s chief prod-

uct officer, reported that the recommendation algorithm accounted for 

70 percent of watch time on the platform (Solsman 2018).

In February of the same year, the Wall Street Journal published an arti-

cle entitled, “How YouTube Drives People to the Internet’s Darkest Cor-

ners,” which recounted an investigation the publication had done into 

YouTube’s recommender system (Nicas 2018). The recommender system 

seemed to suggest increasingly conspiratorial or extreme content to its 

users, regardless of whether the user was searching for it. The article shows 

screenshots of “suggested videos” that were recommended to a brand- new 

user with no previous viewing history. When the new user searched for 

“the pope,” suggestions included videos containing conspiracy theories 

around the Pope (“How Dangerous Is the Pope?”). When the user searched 

for “lunar eclipse,” videos implying that the Earth is flat (“Lunar Eclipse 

Doesn’t Work on Your Globe!”) were suggested (Nicas 2018). Viral conspir-

acy videos become even more of an issue when popular teen You  Tubers 

spread these theories, like a popular YouTuber, Logan Paul, uploading 
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a video trailer promoting the Flat Earth theory in early 2019 (Schoenberg 

2019).

YouTube is one example of the many systems that children use. Snap-

chat, Instagram, Amazon Alexa, and Google Search are other common 

examples of AI that children touch every day. These systems make deci-

sions, like recommending content, and children are often not aware of 

the mechanics by which the systems make such decisions. AI education is 

essential in raising conscientious consumers of these systems.

FUTURE ETHICAL DESIGNERS OF ARTIFICIAI INTELLIGENCE

Given the pervasive impact AI is having on the global economy and soci-

ety, for good or for bad, it is imperative to educate an AI literate citizenry. 

If we’re to educate and train the next generation of AI makers, we need to 

empower them with the tools and conceptual frameworks to design these 

systems ethically. Present- day technologists and designers are beginning 

to realize the long- term societal consequences of the AI- powered systems 

that they create. Major AI tech companies have been criticized when their 

products did not work as intended or behave equitably for everyone. Ama-

zon’s facial recognition technology has been shown to have high error 

rates for darker- skinned minorities (Vincent 2019). Uber’s self- driving car 

neglected to account for pedestrians who jaywalked (Marshall and Davies 

2019). Google has been called out for search algorithms that perpetu-

ate harmful stereotypes (Manjoo 2018). AI can do tremendous good, but 

these stories are a call to action for the technology community. Software 

developers need to adopt ethical practices in the design and development 

of AI systems. Classrooms that are introducing AI for the first time are a 

great place to start.

It’s not enough for students to be conscientious consumers of AI; they 

must become ethical designers of it as well. Universities teach computer 

science and are preparing students to enter a workforce that develops AI 

systems. AI has already had an incredible impact on fields like medicine 

and renewable energy, and we want future generations to continue to 

make positive contributions to society through AI. If computational think-

ing (CT) is starting to enter K– 12 education, what about learning about AI? 

In 2018 the David E. Williams Middle School in Coraopolis, Pennsylvania, 
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became the first school to integrate AI into its curriculum. Students in 

grades 5 through 8 are learning about and designing their own AI systems 

through courses such as Introduction to Pattern- Finding through Gaming 

and Recognizing Computer Patterns Virtually and Through Algorithms. 

AI education has been integrated into their elective courses, and there is 

interest in integrating AI literacy into their core curriculum, too (Aglio 

2018).

K– 12 AI literacy is in its infancy but gaining momentum. Schools like 

David E. Williams are early adopters of AI curriculum. Traditional STEM 

programs such as iD Tech summer camps are beginning to offer AI courses, 

and new programs such as ReadyAI and Technovation are creating new 

spaces for this content to emerge (Artificial Intelligence Summer Camp: 

Machine Learning for Teens 2020; Empowering All Students to Improve 

Our World with AI 2019). The AI4K12 initiative, jointly sponsored by 

Association for the Advancement of Artificial Intelligence (AAAI) and the 

Computer Science Teachers Association (CSTA), is working toward national 

guidelines for AI K– 12 education akin to national K– 12 computer science 

standards. As these groups set the precedence for AI education, we must 

make sure that they include ethical design tools and practices.

TOMORROW’S DEMOCRATIC, AI- LITERATE CITIZENS

Even students who will not grow up to be future technologists should be 

responsible users and conscientious consumers of AI. AI isn’t only affect-

ing our personal technologies and online circles. It’s entering our com-

munities as well, and citizens should be able to make informed decisions 

about its use. Consider the case where facial recognition technology is 

being used by law enforcement to detect criminal suspects. Many have 

expressed concerns that this technology, which is known to consistently 

misidentify darker- skinned faces, could further exacerbate racial inequal-

ity or could increase the amount of surveillance within communities. In 

June of 2019 the residents of Somerville, Massachusetts, a town located 

near Harvard University and MIT, passed legislation placing a morato-

rium on facial recognition technologies in the city. The city councilor 

of Somerville, Ben Ewen- Campen, credits the bill to the technocentric 
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community. The residents of Somerville know enough about the technol-

ogy to believe that it is not yet ready to be given authority in the legal 

system. Cities around Silicon Valley are beginning to ban the technology 

as well (Wu 2019).

As AI continues to enter and alter our cities, it is important that young 

people grow up being well equipped to handle these democratic pro-

cesses. Like the constituents of Somerville, we want our students to have 

the knowledge and skills to be able to make informed decisions in their 

own communities.

CURRICULUM DESIGN

For these reasons, we have developed, piloted, and evaluated a hands-

 on AI and ethics curriculum for middle school that can be integrated 

into formal or informal learning contexts. The second author, Blakeley 

H. Payne, developed the curriculum and teacher training guide as part 

of her master’s thesis. The curriculum has three major goals. The first is 

to teach young people how to be conscientious consumers when using 

their own devices powered by AI. The second is to give students knowl-

edge and perspective so that they can participate in democratic discus-

sions around these technologies. Finally, we want to empower them to be 

ethical designers as they begin to build these systems themselves. Three 

principles inform the design of this curriculum: the idea that ethics edu-

cation should be integrated alongside technical education; the value of 

“unplugged” activities as a complement to those that use technology; 

and the value of peer collaboration and discussion with opportunities for 

creative learning.

First and foremost, this curriculum sought an integrated approach to 

ethics and AI topics. Although integrated approaches are beginning to 

gain traction at the collegiate level (Grosz et al. 2019; Saltz et al. 2019; 

Skirpan et al. 2019), research shows that most university machine learn-

ing courses do not teach ethics issues at all or relegate ethics as its own 

class (Saltz et al. 2019). Within the K– 12 setting, almost all activities that 

mention ethics do so as the last module of a larger unit (Lissitsa 2019). 

Such approaches are problematic because research suggests that isolating 
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ethics from technical content often leads students to perceive ethics as 

unrelated to their technical studies (Davis and Walker 2011; Spradling, 

Soh, and Ansorge 2008). To offer a more holistic educational experience, 

we introduce ethics concepts as frequently as technical ones, anchored in 

familiar scenarios that are meaningful to students. For example, when we 

teach students how machines learn to classify objects, we make sure to 

have a discussion about how classifiers can encode biases, and the poten-

tial consequences for society when such systems are used to make impor-

tant decisions, such as the use of facial recognition technology in policing.

We intentionally designed our AI and ethics curriculum to be low cost 

and accessible to students and schools from all economic backgrounds. To 

truly democratize AI, it is important to remove as many barriers as possible 

that may hinder or prevent low- income and minority students— students 

who are most likely to be negatively affected by these technologies— from 

understanding how AI works, the current impact AI has on society, and 

the impact AI could have on society in the future. For these reasons, our 

curriculum is largely unplugged (requiring only pencil and paper; two 

lessons require access to the Chrome web browser) and is open source for 

noncommercial use (CC- BY- NC; https:// creativecommons . org / licenses / by 

- nc / 4 . 0). Furthermore, our unplugged activities are designed to engage stu-

dents in highly kinesthetic or creative activities with a sense of playful-

ness (Bell et al. 2009). Many of the activities throughout the curriculum 

follow a constructivist approach in which the teacher acts as a facilitator. 

Instead of lecturing students, we leverage topics that middle schoolers are 

comfortable with, like YouTube, and allow them to shape classroom dis-

cussion. We found that students were often expert users when it came to 

these technologies and were able to apply their learning to their everyday 

life. We learned a lot from their experiences and observations.

We piloted the complete curriculum, comprising two plugged and 

six unplugged activities, in a week- long workshop with twenty- eight 

middle school students (eight female students) in the summer of 2019 

(see figure 9.1). We recruited participants under an approved IRB proto-

col through a local science, technology, engineering, and mathematics 

(STEM) enrichment program, Empow Studios. Students were divided into 

two groups, fifth through seventh graders (led by the Blakeley H. Payne) 

and seventh through ninth graders (led by Daniella DiPaola). Each group 
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also had a mentor from Empow Studios who assisted in classroom facili-

tation and was trained in the workshop material. These students had a 

wide range of previous computer science experience, ranging from no 

prior experience to more than seven years. Very few had ever formally 

learned about AI. Given this varied background, we first had to answer 

the challenge of how to bring middle schoolers from being uninitiated 

to ethical designers of AI. In the remainder of this chapter, we highlight 

three different modules to show the range of activities and how middle 

school students engaged with them.

WHAt Is ARtIFICIAl IntellIgenCe?

The first activity in the curriculum is designed to help students identify 

AI systems in their everyday lives. For simplicity, we ask students to look 

for three components in an AI system: a dataset, learning algorithm, and 

9.1 A group of fifth through seventh grade AI designers in front of their “Hopes + 

 Concerns about AI” mural.
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a prediction. When students propose a technology that may be powered 

by AI, we walk them through the following questions:

1. Is your system trying to predict something? If so, what?

2. What data does the system use to predict this?

At first, students were focused on the embodied examples of AI, such 

as Amazon Alexa or a self- driving car. We nudged them to think about 

more software or web systems, such as a spam filter on their email.

Once students were able to identify the parts of an AI system, we went 

into a more detailed explanation of algorithms themselves, and how 

specific objectives can be designed into them. Students learn that, like a 

recipe, an algorithm is made up of a specified input transformed by many 

specific steps to achieve a desired outcome. In introductory computer sci-

ence courses, students are commonly asked to write the steps to make a 

peanut butter and jelly sandwich as a way to learn the specificity required 

to construct a useful algorithm. We had our students do the same exer-

cise, but instead of writing instructions for a regular PB&J, we asked them 

to find a partner and write instructions for the best PB&J.

After the activity, we had students reflect on their recipes. We asked, 

“If you could replace the word best with another word, what would you 

choose?” A pair of students said the word best meant the most sugar, 

and they added hazelnut spread, sprinkles, and marshmallows to a classic 

PB&J. Another pair decided that best meant “most allergy- friendly” and 

decided to omit the peanut butter from their recipe. Not surprisingly, 

none of the students said the word “healthy” or “cost- effective,” but we 

did brainstorm what that might look like, including a “healthy” PB&J 

with bananas instead of bread.

Students could clearly see that, based on their definition of best, their 

algorithms had very different outcomes from their peers. Once an algo-

rithm tries to optimize, it is essentially encoding an opinion about what is 

important to prioritize. To quote the well- known AI ethicist, Cathy O’Neil, 

“Algorithms are opinions embedded in code” (O’Neil 2017). In the same 

way, AI and machine learning algorithms used in commercial products are 

optimized for different objectives based on who creates them— in fact, they 

are not as objective as we would like to think. Words like best are words that 
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we commonly see used with software solutions, but it may mean very differ-

ent things from algorithm to algorithm. For example, Google search strives 

to give the “most relevant” results, although relevant is not clearly defined. 

Is “most relevant” the link that I will most likely click on? Is it what will 

make Google the most money? Is it what will give me the answer I was hop-

ing for? Whatever it is, it is referred to as what the search engine optimizes 

for. Just as Google gets to decide what their search engine optimizes for, 

our middle schoolers got to decide what their PB&J sandwiches optimize 

for. Words such as relevant and best are not neutral, and their definitions 

change based on who is creating them. Algorithms hold the opinions of 

their creators.

Then we pose the following challenge to students: How do we decide 

what our peanut butter and jelly algorithms should optimize for? To aid in 

decision- making, we introduced students to a tool called the ethical matrix. 

Originally a tool used in bioethics, Cathy O’Neil has written about how 

it can be used in the context of AI (O’Neil and Gunn forthcoming). An 

ethical matrix is a 2- D table where stakeholders are listed on the y axis and 

the values those stakeholders hold in the system are listed on the x axis. 

Designers can then go row by column and identify where stakeholders’ 

values align and where they conflict. Designers can also identify which 

conflicts in values may produce the most harm for any of the stakeholders 

involved. In filling out the matrix, designers are forced to empathize with 

multiple perspectives of a diverse set of stakeholders.

Our students brainstormed various stakeholders and values for PB&J 

sandwiches and practiced creating ethical matrices of various sizes. Stu-

dents identified stakeholders such as kids, parents, doctors, and supermar-

kets with values such as taste, health, cost, and efficiency. They compared 

all stakeholder- value pairs to determine which stakeholders care about 

various values (see example, figure 9.2). After they had laid out the matrix, 

we asked them to decide on which value they should optimize for, after 

reflecting on how stakeholders and values relate within the system. They 

saw that depending on the particular stakeholders and values that they 

accounted for, there were varied results. For example, a matrix with stake-

holders like parents, doctors, and dentists may value health more than one 

with kids, teenagers, and supermarkets.
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sUPeRvIsed MACHIne leARnIng And AlgoRItHMIC bIAs

In the PB&J activity, students learn that algorithms can be optimized 

toward subjective goals. Building on their learning, this activity shows 

another way in which algorithms can produce nonneutral outcomes. In 

an example of a “plugged” activity, we focused on a specific class of AI 

algorithms called supervised machine learning. Supervised machine learn-

ing finds patterns by being shown labeled examples of data points. For 

instance, a supervised ML algorithm may be given examples of emails 

labeled as “spam” or “not spam” with the goal of classifying unseen emails 

as “spam” or “not spam” in the future. Recent studies have shown that 

many of these supervised machine learning systems— from facial recogni-

tion to hiring algorithms, to advertising algorithms— tend to predict worse 

outcomes for members of minority groups. This phenomenon is called 

algorithmic bias. A common reason for these biases comes from the data 

that trains the algorithms. If a dataset underrepresents or incorrectly char-

acterizes a certain group, the algorithm will also mischaracterize that group 

(Barocas and Selbst 2016). For example, it is known that many commercial 

facial recognition algorithms meant to classify faces as male or female will 

misidentify darker- skinned female faces as male faces because of the fact 

that these algorithms were trained primarily on lighter- skinned male faces 

(Buolamwini and Gebru 2018). In this way, classification systems that are 

9.2 An example of a completed ethical matrix for PB&J with child, parent, and doctor 
as the stakeholders.
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trained on historical data that encode societal biases will perpetuate those 

same biases.

Often these supervised machine learning classifiers are referred to as 

“neural networks.” To demonstrate how a neural network is trained, how it 

works, and how it can lead to algorithmic bias, we utilized Google’s Teach-

able Machines platform. Teachable Machines has an easy user interface that 

allows students to train a deep neural net classifier by taking or uploading 

photos or audio. Without any code or even any typing, students can train 

an algorithm in a matter of minutes. This opens up the possibility for many 

more students to play with the pieces of a machine learning algorithm, 

manipulate them, and see how they impact the performance of the code.

During the workshop, we had students create their own classifier sys-

tem using a training set of provided cat and dog images. The goal of the 

classifier was to distinguish between pictures of cats and pictures of dogs. 

However, unknown to the students, the provided training dataset was 

biased. It contained more images of cats than dogs, and the images of cats 

contained a greater variety of breeds than did the images of dogs. After the 

training period, we gave students a new collection of cat and dog images 

to test out their classifier. After testing out each image of a cat or dog, the 

students recorded whether the algorithm correctly classified the image, 

and at what confidence level their classifier performed (figure 9.3). From 

this data, students quickly realized that their systems worked much better 

on cats than dogs. They were then tasked with re- curating their train-

ing datasets to produce fairer outcomes between cats and dogs. Students 

decided to include an equal number of more diverse cats and dogs and 

found that their algorithms worked much better.

Next, we showed the students a video about Joy Buolamwini’s “Gender 

Shades” work on algorithmic bias in facial recognition systems (MIT Media 

Lab 2018). Buolamwini explains that many facial recognition systems work 

better on pale skin and male faces and work especially poorly on darker- 

skinned female faces. We asked the students what they would do if they 

were in charge of improving the system. Many students responded that 

they would create a dataset that was much more representative of all skin 

tones and gender. They were able to make the connection between the 

simple cat and dog classifier and the advanced face recognition systems 

used in commercial settings. If the system works better for one group than 
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another group, changing the training data to be more representative is one 

method designers can use to improve the system to make it behave more 

equitably.

The importance of this topic became deeper for the students as they 

watched live as Buolamwini testified before Congress, which serendipitously 

aired on C- SPAN during the workshop. Buolamwini answered questions on 

how facial recognition systems worked and why they were biased toward 

specific groups of people. Students were not surprised by her answers, but 

they were surprised that members of Congress were not aware of the impact 

of these technologies. Our students were able to see that what they were 

learning in our workshop had real implications for what was happening in 

the world around them. At the end of the day, one child reflected on what 

they had learned: “I still think that facial recognition is not fair, because they 

still— these companies have not changed the fact that . . .  it only works properly 

for adults that are males and are pale white. And it’s not fair to people with col-

ored skin or like younger people or people who are girls.”

9.3 A group of students test their classifiers and record the confidence level for each 

item of test data.
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RedesIgnIng YoUtUbe

In the last days of the workshop, the final activity is a collaborative paper- 

prototyping project where students are tasked with redesigning the You-

Tube recommendation algorithm. Working in pairs, students were asked 

to first identify stakeholders invested in YouTube’s recommendation algo-

rithm and the values those stakeholders hold. Next, they created an ethi-

cal matrix for their own system design, similar to those for PB&J at the 

beginning of the week. After creating a matrix, students were asked to 

discuss it and use their conversation with other student pairs to identify 

the goal of their new system and provide a rationale for that goal. Some 

examples of these matrices can be found in figure 9.4.

This work guided students in paper- prototyping their new YouTube 

design. In the same pairs, students were provided craft supplies and 

worked together to draw out a new version of YouTube with features that 

served their identified goal. They used these initial drawings to get feed-

back from other classmates. Peer feedback guided changes made for the 

final paper prototypes (figure 9.5).

Stakeholder- value pairs from the ethical matrices were recorded and 

summed across all students. The stakeholder- value pairs that guided the stu-

dents’ redesigns were YouTube- money (9), kids- entertainment (7),  You Tubers- 

money (6), YouTube- entertainment (6), and Youtubers- entertainment (6). 

These responses are visualized in figure 9.6. These pairs were used to deter-

mine the goals for the recommendation algorithm. The most common 

goals for the system were entertainment (6) and profit (2). Most students 

chose goals that aligned with the most stakeholder- value pairs: “because the 

most stakeholders have the value of entertainment.” Others took a more 

nuanced path, such as one group that justified their decision to optimize 

for profit: “YouTube and YouTubers can use the profit to increase the qual-

ity of the site and videos.” Many students identified more than one goal 

for their system, such as being entertaining while also being kid- friendly: 

“[our design will have] all kid- friendly videos that will make you laugh and 

any inappropriate content will be deleted.”

Next we spotlight three examples of student projects.
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top decided to optimize for “good content,” and the image on the bottom chose to 

optimize for “profit.”
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9.5 Student drawing out a paper prototype for the YouTube Redesign Project.

9.6 A heatmap of stakeholder- value pairs for the YouTube Redesign project. Darker 

and larger shapes denote pairs that were used most often.
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PROJECT 1: OPTIMIZING FOR PROFIT

This rising seventh grader and eighth grader decided that YouTube should 

maximize profit. They identified YouTube, YouTubers, viewers, and adver-

tisers as their stakeholders with the values of profit, quality of videos, 

recommendations, and appropriateness. Like previously mentioned, stu-

dents chose this goal because “YouTube and YouTubers can use the profit 

to increase the quality of the site and videos.” Their paper prototype, seen 

in figure 9.7, shows features including additional ads in the sidebar or the 

inability to skip through ads in videos.

PROJECT 2: OPTIMIZING FOR ENTERTAINMENT

This pair of rising fifth graders decided to optimize their new version 

of YouTube around entertainment. Students identified YouTube, kids, 

parents, and advertisers as their stakeholders along with the values of 

money, educational, good content, and fun, where most stakeholders 

were interested in “good content.” The students wrote, “We decided on 

this goal because having fun is very fundamental but being appropriate 

9.7 Student shows her “profit- maximizing” YouTube prototype.
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is also needed.” When asked how they would achieve this goal, the stu-

dents wrote, “We would also teach it to give us clean content or videos 

that don’t have swears. It will have a child safety mode to make sure 

there are no swears or inappropriate content.” Their paper prototype is 

pictured in figure 9.8 and includes features like a slider, where users can 

choose levels of “rudeness” that appear in their videos and a child safety 

setting.

PROJECT 3: OPTIMIZING FOR TIME WELL SPENT

This pair of rising eighth graders decided to optimize for a version of 

YouTube that was less addictive or as the students wrote, “[Users] are also 

aware of how long they spend on the platform.” This group identified 

a number of non- AI features that could help achieve this goal, such as 

“screen pops up after an hour of usage” or “can set a time limit.” Their 

paper prototype appears in figure 9.9.

9.8 An example of “Entertainment” YouTube. Students put filters on the left side of 

the webpage to help the user tweak what they would like to see.
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9.9 An example of “Time Well Spent” YouTube. The first image shows a pop- up win-

dow that lets the user know how long they have been on YouTube. The second picture 

shows the home page. The bottom right sticky note reads, “This shows a history of 

recently watched videos and time spent on YouTube session.”
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SOCRATIC SEMINAR

During the week of our workshop, the Wall Street Journal published an 

article about the children’s content on YouTube. With so many known 

consumers being minors, the FTC was pushing for YouTube to create a 

separate app to house all kids’ content to be compliant with federal laws 

such as the Children’s Online Privacy Protection Rule, commonly known 

as “COPPA.” This new, hypothetical app would collect less data, remove 

ads, and remove the AutoPlay feature.

We abridged the article and read it out loud with our students. Since 

the results from this case could very well change the way that they use 

YouTube, we were curious about their reactions and how they might 

apply their ethical design skills to this real- world situation. We opened 

up the conversation by asking about the various stakeholders involved 

with the article. Kids were able to identify many stakeholders, includ-

ing Google executives, Google as a company, kids, parents, consumers of 

YouTube, and advertisers. When we asked them whom the most impor-

tant stakeholder was, many said the kids impacted by the FTC’s ruling: 

“Because it’s a lot about the safety of kids and what they watch because kids get 

easily influenced. So when they see something’s happening around them, they 

obviously think, ‘Oh, they’re more experienced; we should copy whatever they’re 

doing.’ So, it could be really bad; that’s why they take a long time to make sure 

everything’s cautious and there’s no bad content that could get released into the 

world of children.”

One student mentioned that Google is a big stakeholder as well. “I 

think Google would be like one of the major ones because, for one thing, 

it’s making lots of money on YouTube.”

We asked the students if they thought that YouTube should move 

forward and move all of the content. The majority of students thought 

yes, they should. One student thought that kids’ safety was a reason to 

move it, “because then even if YouTube doesn’t make as much money as 

they used to, it’s still important that kids don’t watch grown- up stuff.” 

Another thought that YouTube would actually lose viewers and money 

if they didn’t move their content over: “It’s good to have a separate app, 

because less people might start watching it, if they don’t.”
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One student thought YouTube should keep things the way that they 

are because they might lose money if they moved everything to another 

platform. This student thought that there was a problem with content, 

but recommended an alternative fix: “I think this would be a bad thing. 

Because, YouTube would be losing a lot of money. And the way that they could 

fix it is add a different setting. Maybe find a better way to do the restrictive 

mode, or something like that. Or add another setting that would help restrict, 

like a child mode setting that will only have, that would send them to a different 

part which is all kids’ videos.”

Regardless of their view on the situation, we asked students how they 

would feel if their parents forced them to use the YouTube Kids app 

instead of the regular app. Many expressed frustrations and felt like they 

could maturely handle the content on the app as it was: “I would feel like, 

‘Shucks.’ Because, I’ve been using YouTube a very long time. And I didn’t even 

know what YouTube Kids was until a couple weeks ago . . .  And so it’s like I 

don’t know. People just totally . . .  now you have to go to this new app called 

YouTube Kids now. I’d be very confused. I also, if I didn’t know that at first, 

I’d just be looking around YouTube for my favorite channels and videos that I 

watch, and be like, ‘Where’d they all go?’”

Perhaps one of the most important parts of the discussion happened 

when children were able to identify the different outcomes of new poli-

cies and features: “I would remove AutoPlay because it was, when it first came 

out . . .  People’s definition of what’s mature and what’s not mature is different. 

It would feel like a more . . .  Well, I’m kind of split on the issue. It would be a 

much more simple and easier decision to just remove the AutoPlay. That way, a 

kid and parents could choose at will what they want to watch. But then, again, 

moving it all to a safer site will generally be more secure. You feel more secure.”

This discussion allowed students to apply what they had learned to a 

concrete, timely, and relatable societal issue. Students had studied how 

the AutoPlay feature worked, how to identify the stakeholders and their 

values related to YouTube, and how to modify a design to change those 

stakeholders’ interactions with the system.

A few months after the workshop Google and YouTube settled the 

lawsuit for 170 million dollars and an agreement that they would no 

longer collect data for videos labeled for children (“Google and YouTube 

Will Pay Record $170 Million for Alleged Violations of Children’s Privacy 
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Law,” Henderson 2019). Some of the students’ concerns were addressed 

in the lawsuit, such as feeling safer that they will not get content that is 

too mature for them, yet still accessing videos through the familiar You-

Tube site. Other student concerns, such as the impact of these changes 

on content creators, remain hotly debated (Ray 2019). We are interested 

in following up with students to understand their perspectives on this 

recent change.

CONCLUSION

The first day of our workshop, some students came in with high- level ques-

tions such as, “What is AI? How does it work?” and “What are examples of 

AI that we use in everyday life?” The students who had more specific defi-

nitions of AI often included science fiction references, such as the charac-

ters Hal from 2001: A Space Odyssey and Jarvis from the Iron Man franchise. 

Their understanding of AI was limited to far- off dystopian narratives, yet 

they were using these technologies daily. Through the workshop, we were 

able to help them identify AI, understand how it works, and give them the 

tools to design it to be more equitable.

AI can be complex, but we chose activities and technologies that the 

students were already familiar with, like YouTube. It was evident that when 

students arrived, even though they knew little about AI, they held exper-

tise on the topic of YouTube. Students could name their favorite content 

creators and name ways in which YouTube’s recommendation algorithm 

either assisted their favorite content creators or disadvantaged them. How-

ever, many students did not realize that the recommendation algorithm 

was a form of AI.

Once we redirected them to talk about AI technologies in terms of a 

system that they were familiar with, their conversations about ethics of 

AI were much more focused and realistic, and at times quite nuanced. As 

they were exposed to the curriculum, we saw their conversations transi-

tion into discussions around fairness and equity in their daily technical 

tools and that they were capable of empathizing with a broader set of 

stakeholders.

We observed increasingly more questions about agency as the students 

became confident in their ability to identify the positives and negatives 
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of various AI systems. They expressed interest in systems that would ben-

efit many stakeholders: “I hope AI benefits everybody, not just one or two 

groups of people.” They began to question others’ knowledge of these sys-

tems as well. One student reflected on watching Congressional hearings 

and asked, “Why does Congress not know about today’s modern tech?”

As students reflected on their week at the workshop, we saw their new 

understanding of AI and its impact on society change their feelings of 

agency over the AI- enabled technologies they use. Many students expressed 

interest in presenting their ideas to various stakeholders, especially when 

it came to their YouTube redesign project. Our activities throughout the 

week became a means for them to question, vocalize, and create the socio-

technical systems that they would like to see. One student commented, “I 

wonder if my parents will like my YouTube redesign,” while another ques-

tioned, “Will YouTube pay attention to our ideas?”

Our students came in with a wide range of exposure to technical con-

cepts as well as practical experience with coding. For some students, the 

prospect of enrolling in an AI course with no prior knowledge was intimi-

dating. The parents of one student, Sarah, approached the instructors at 

the beginning of the week to say, “I want you to know my child is a 

little nervous about having no coding experience. She thinks she’ll be 

behind, but she is excited about the societal impact of things.” However, 

the curriculum was designed in a way that any child, regardless of back-

ground, could understand and contribute to the activities. The activities 

were also designed to work with a variety of learning styles and interests, 

including some that used computers and others that relied on creative 

writing or drawing. We feel that the students not only could grasp the 

material we were teaching, both ethical and technical, but were able to 

apply it to the technologies they use every day. This was evident during 

the last day of the workshop, where students presented their YouTube 

Redesign projects to their parents and members of the MIT community, 

often highlighting the processes they took to get to their final product. 

The YouTube Redesign Activity was successful because students were able 

to create a prototype based on what they had learned. We recommend 

including more hands- on, project- based activities in future iterations of 

this curriculum. While the unplugged nature helped students to initially 
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grasp concepts, many students were excited by the idea that they could 

continue to learn about AI through a more technical course. At the end 

of the course, Sarah’s parents returned to say, “She loved it and wants to 

sign up for a more technical course next time, especially something that 

might involve web programming.”

As students build on their knowledge of AI through technical courses, 

we encourage educators and education policymakers to ensure that ethics 

is embedded in the course requirements. We saw the impact of a focus on 

ethics in our final YouTube projects, where students’ outcomes took mul-

tiple perspectives into consideration. The implications of doing this kind 

of work is not only to make children more AI literate but also to change 

the norms and culture associated with the technology industry. Educa-

tion practices that promote perspective taking and thinking about con-

sequences will lead to expectations by the public that industry designers 

and engineers will draw on these same skills.

The shift in students’ thinking from being consumers to conscientious 

users of AI- enabled apps and services brought with it a new level of opti-

mism around the future of AI. Through our activities, we were able to have 

deeper conversations about philosophical topics such as fairness, bias, 

and perspective taking. AI became a tool for us to ask the question, “What 

kind of world do we want to make?” Students were able to reflect on the 

world as it is and were given the tools to design it to be what they wanted 

it to be. They were not only capable of understanding the larger implica-

tions of AI, but they had excellent ideas on how to improve it to make a 

more inclusive and just world.

For your own use, the materials used in this workshop can be found at 

bit . ly / mit - ai - ethics .
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ROBOTICS PROBLEM SPACES

Computational thinking (CT) is an integral aspect of learning and work 

in the science, engineering, technology, and mathematics (STEM) fields 

(Lee et al. 2020). Indeed, the Next Generation Science Standards (NGSS) 

(2013) have defined mathematics and CT as one of the eight core disci-

plinary practices of science activity. Robotics is a robust learning environ-

ment that supports the development of CT and science literacy (Sullivan 

2008; Sullivan and Heffernan 2016). Foundational to robotics learning is 

integrated interaction in the three problem spaces typical of all robotics 

learning environments, including the device itself, the screen- based pro-

gramming environment, and the actual physical environment in which stu-

dents are testing their robotic device. This chapter begins with a description 

of each of the problem spaces, individually, and proceeds with examples of 

student learning drawn from fifteen years of research on the topic. Specifi-

cally, I discuss student engagement in both science literacy practices (e.g., 

systems thinking, inferential reasoning) and CT practices (e.g., abstraction, 

creative problem solving, and algorithmic thinking) as both are supported 

by engagement in robotics learning. The chapter concludes with thoughts 

for future research directions. These observations derive from both cogni-

tive and sociocultural viewpoints, with early work grounded in task analysis 

10
EXAMINING THE MULTIDIMENSIONAL 
LEARNING AFFORDANCES OF 
ROBOTICS FOR COMPUTATIONAL 
THINKING AND SCIENCE INQUIRY

Florence R. Sullivan
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and mental representations (Roth 2001), and later work grounded in a 

socio- cultural framework (Vygotsky 1978).

tHe FIRst PRobleM sPACe: tHe RobotIC devICe

We have focused primarily on using the LEGO Mindstorms robotics kit 

with students. Therefore, in this chapter, I describe this device as the first 

problem space. However, any robotic device that includes the same ele-

ments as the LEGO kits will support student learning in the same way. A 

micro- computer, called a brick, is at the heart of the LEGO Mindstorms 

kit; the brick was developed at the MIT Media Lab in the mid- 1990s (Resn-

ick et al. 1996). This brick, which is in its third iteration, is currently called 

the EV3. The EV3 is a device that can fit into the palm of an adult’s hand 

(see figure 10.1). The brick has four ports in which output devices, such as 

servo motors, can be plugged in with connecting wires, and another four 

ports in which input devices, such as digital sensors, can be connected. 

There are three motors that come with the kit, two large motors and 

one small motor. The larger motors are typically used when children are 

building a vehicular robot. Once the vehicular robot is constructed, the 

motors are attached to wheels, and as the motor spins, so do the wheels. 

The third, smaller motor can be used to operate a robotic arm that may 

be affixed to the vehicular robot. While building a robotic vehicle is a 

popular approach, many other types of machines can be built with the 

materials.

In addition to the brick and the motors, each robotic kit comes with 

several digital sensors, including a color sensor, a touch sensor, and an ultra-

sonic sensor. These sensors can be used in one of two ways (both of which 

are important for science inquiry and are discussed in greater detail later). 

The first mode is a data collection and display mode; the second is a wait- 

for mode that can trigger a specific event, once a threshold has been met 

or crossed. The kit also includes a number of LEGO pieces, called Technics, 

which fit together around the brick and the motors to create any number 

of structures or vehicles.

The design of the robotic device is dictated by the challenge that stu-

dents are attempting to solve. As noted previously, often a robotic vehicle 
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is constructed and sensors are then added to the vehicle to aid in navi-

gation. For example, the ultrasonic sensor measures the distance between 

the sensor and objects in its path; using this sensor, a program can be 

written that will allow the robot to circumnavigate obstacles in the room. 

The design of the robot as a problem space revolves around accurate design, 

physical construction, and correct wiring of the motors and the sensors. 

While students may initially develop a robotic device that they think is 

adequate, through the process of working out a solution to the given chal-

lenge, students will often need to revise their design. So, while we may 

think of the design of the device as the first problem space, it is a prob-

lem space that is returned to throughout the duration of problem- solving 

activity.

10.1 The LEGO Mindstorms EV3.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024



212 F. R. sUllIvAn

tHe seCond PRobleM sPACe: tHe sCReen- bAsed 

PRogRAMMIng envIRonMent

At this point, several types of software can be used to program the 

LEGO EV3 robot: the actual software created by LEGO called LabVIEW 

for LEGO MINDSTORMS (LVLM); an extension that can be used in the 

2- D anima tion and game programming environment, Scratch (Scratch, 

n.d.); EV3 python; RobotC; and other programming environments (LEGO 

Engineering, n.d.). For the purposes of this chapter, I focus our discussion 

by drawing examples from LVLM. LVLM (see figure 10.2) is designed as a 

drag- and- drop, block- based programming environment. It provides action 

blocks for programming output devices (motors, sound, display, and/or the 

brick light), flow control blocks for programming wait for loops and sen-

sor triggered events, sensor blocks for additional programming of sensors 

10.2 The LabVIEW for LEGO Mindstorms (LVLM) programming environment.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024



RobotICs FoR CoMPUtAtIonAl tHInKIng And sCIenCe InQUIRY 213

including data collection, data operations blocks for working with data 

that have been collected, advanced blocks (including message blocks, and 

Bluetooth- enabled operations), and finally a “My Blocks” section, where 

users can create their own blocks.

In addition to the programming blocks, the software includes a utility 

in the bottom right- hand corner of the interface that, when the EV3 is 

connected to the laptop, allows the user to quickly verify which ports the 

motors are connected through, which port a sensor is connected to, and 

whether that sensor is actually reading environmental data. This, along 

with a context- sensitive help utility, which can be selected from a drop- 

down menu, allows students to learn about the programming environ-

ment and also verify that all parts of the robot are functional.

tHe tHIRd PRobleM sPACe: tHe PHYsICAl envIRonMent

For the purposes of this chapter I describe a specific environment, devel-

oped by the FIRST LEGO League, which is an international, nonprofit orga-

nization that publishes a thematic robotics challenge and holds regional 

robotics events each year in which children participate. While this is a spe-

cific physical environment, the reader should bear in mind that robotics 

environments can be created in any room, and/or one could do robotics 

outdoors. Indeed, any physical space could be a potential robotics envi-

ronment. The FIRST LEGO League challenge map is four feet wide by eight 

feet wide, which can be laid on the floor or set on a table with similar 

dimensions. The challenge map comes with specific pieces that are placed 

in specific spots on the map. For the purposes of this chapter, I provide 

an image of one such challenge map created by the FIRST LEGO league 

(2011). This challenge map was used in 2011 and is known as the Food 

Factor Challenge (see figure 10.3). In this challenge, children were tasked 

with completing specific large- scale food production robotic tasks on the 

challenge board, while considering the environmental effects of such pro-

duction (e.g., the long- term effects of over- fishing). The board consists of 

fifteen different challenges. All of the challenges include a description of a 

real- world problem that the challenge attempts to solve.
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LEARNING IN THE MULTIDIMENSIONAL PROBLEM SPACE

From a Vygotskyan (1978) perspective, students learn in the robotics 

environment through interaction with the tools and dialogue with each 

other and the teacher. It is important to note that the learning outcomes 

described in the following pages are made possible through a pedagogical 

approach that affords open- ended, collaborative learning. It is children’s 

free movement within the space that also contributes to their learning 

(Dewey 1938/1997). In other words, while children should be given a 

specific challenge to solve, within the activity itself, children should have 

freedom to explore various solutions and various approaches. It is through 

collaborative exploration that children are able to engage in practices 

that support their learning. In our research, we have found support for 

student learning and growth in the following areas: systems learning, sci-

ence literacy, inferential reasoning, abstraction, creative problem- solving 

(including the role of play), problem- solving strategy development, and 

computational concepts (Sullivan 2008, 2011; Sullivan and Keith 2018; 

Sullivan and Lin 2012; Sullivan, Söken, and Yildiz 2019). This learning 

and growth are supported by the design affordances of the multidimen-

sional robotics environment. I address each aspect of learning with robot-

ics in turn.

sYsteMs leARnIng

A system is defined as a collection of parts or processes (Penner 2000). 

Hmelo- Silver, Holton, and Kolodner (2000) define a complex system as 

10.3 The Food Factor Challenge Board by FIRST LEGO League.
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one in which part of a system interacts with other systems; to understand 

a complex system, students must engage with the “causal interactions and 

functional relations” (p. 248) among systems. The three problem spaces 

that make up the robotics learning environment function as a complex 

system (Sullivan 2008). This is so because each problem space can be seen 

as a system in its own right. And, while the problem spaces are tightly 

coupled to create the learning environment, one must often master and 

troubleshoot errors in each system, as well as across the complex system, 

to solve challenges. For example, students often build a vehicular robot 

with the LEGO pieces and wheels when they are working with robot-

ics. If the vehicle is constructed poorly, it will affect the performance of 

the entire system. Therefore, students would need to work on fixing the 

building error to continue with any challenge solution.

Meanwhile, the program may contain an error that prohibits it from 

executing when transferred to the robot. In this instance, the feedback 

students receive is simply no feedback: the robot will not execute the pro-

gram, it will not move. Students then must return to the programming 

space to puzzle through the error. Importantly, students are learning about 

the robotic system through these debugging activities. In this way, it is 

easy to see how learning to think computationally (debugging a robotics 

problem) is connected to science inquiry (learning about systems). In our 

prior research, we found that students’ understanding of systems improved 

after a long summer course in robotics. A total of twenty- six fifth- grade stu-

dents, ages ten to twelve years, worked in a three- week, 105- hour robotics 

course. Results on a systems thinking test created by Cooper (2004) indi-

cated that students’ ability to think about systems improved significantly 

from before to after (Sullivan 2008).

sCIenCe lIteRACY

Science literacy has been variously defined as the ability to engage in the 

activity of inquiry, including “making observations, posing questions, plan-

ning investigations, reviewing what is already known in light of experimen-

tal evidence, using tools to gather, analyze, and interpret data, proposing 

answers, explanations, and predictions; and communicating the results” 

(National Research Council [NRC] 1996, 23). Science literacy as defined by 

the Next Generation Science Standards (NGSS 2013) includes knowledge of 
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disciplinary core ideas (specific to each area of science), science and engi-

neering practices (including the practices identified previously by the NRC), 

and cross- cutting concepts (including concepts that apply to all domains of 

science). In robotics learning environments, students have the opportunity 

to engage in many of the practices defined by the NRC and the NGSS. In 

our prior research (Sullivan 2008), we identified some of the cross- cutting 

concepts students engage with, including cause and effect, systems and sys-

tem models, and structure and function. For example, we found that the 

feedback loop created by the activity of writing and executing programs on 

the robotic device (problem spaces one and two) support student engage-

ment with cause and effect, whereas building a robotic device to carry out 

specific tasks in a specific environment (problem spaces one and three) sup-

ports engagement with the concepts of structure and function. Finally, as 

noted earlier, students engage with and improve their understanding of the 

concept of systems as they work in the robotics learning environment (Sul-

livan 2007, 2008).

The NGSS (2013) refers to science and engineering practices as includ-

ing observing, questioning, and planning, as well as designing, testing 

designs, analyzing results, and modifying the design accordingly. Impor-

tantly, these practices fall well within the CT construct as defined by other 

researchers (Barr and Stephenson 2011; International Society of Technol-

ogy in Education and the Computer Science Teaching Association 2011). 

For example, planning is an aspect of problem- solving; designing is an 

aspect of programming activity; and testing designs, analyzing results, 

and revising designs constitute debugging activity.

In prior research, I identified a very regular set of activities that stu-

dents engage in while working with robotics, which I have termed the 

troubleshooting cycle (TSC) (Sullivan 2011). The TSC consists of designing 

and building the robotic device, writing a program for the device, testing 

the program, diagnosing errors, debugging the program, and/or revising 

the design of the device, and retesting the program. This iterative practice 

encompasses action and interaction across the three problem spaces. The 

duration of a TSC is variable, it can last a few minutes, several minutes, or 

longer. However, the actual troubleshooting activity is very stable, it always 

consists of these six activities, and so it is an excellent unit of analysis 

for educational research; it can also serve to organize and support student 
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learning and activity. For example, in one curricular implementation we 

studied, the teacher developed a note- taking worksheet that prompted stu-

dents to record their trials, including what the students did, the problems 

they encountered, and their solutions to the problem. This worksheet is 

akin to a researcher’s journal (Sullivan 2007). The troubleshooting cycle is a 

computational activity that is clearly an aspect of science and engineering 

practice as identified by the NGSS.

InFeRentIAl ReAsonIng

As noted in the NGSS, “cause and effect” is a cross- cutting concept in sci-

ence. In our research, we have found that interaction across the three prob-

lem spaces of robotics supports both hypothesis development, through 

debugging activity (Sullivan 2008), and inferential reasoning with data 

collected by sensors attached to the robotic device (Sullivan, Söken, and 

Yildiz 2019). Indeed, we have found that the sensors play an instrumental 

role in supporting student engagement in science and engineering prac-

tices in the robotics setting. The sensors are designed to monitor and/or 

collect data in the physical environment (the third problem space). The 

robotic device can be programmed to respond to a specific result when 

sensors are used to monitor the environment. The device can also be used 

as a means of collecting, storing, and then transmitting data to another 

device. In this way, the device, equipped with a programmed sensor can 

function as a scientific instrument for data collection.

We conducted a study in a sixth- grade science classroom, in which 

we followed a focal group of students as they worked to solve challenges 

that centered on heat and light energy topics (Sullivan, Söken, and Yildiz 

2019). The students in the study were twelve years old; they were work-

ing with the second LEGO iteration of the brick (called the NXT) and a 

programming environment created at Tufts University called Robolab. 

Robolab is equipped with science investigation utilities, including a data 

graphing capability that allowed students to interpret the data numeri-

cally or through creating various graph- based visualizations of the data 

(see figure 10.4). The challenge the students were solving in this class 

was called Cave Explorer. This challenge asked students to explore three 

simulated cave environments to find out which one may be the most 
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comfortable to sleep in; the three simulated caves were actually three 

cardboard boxes, prepared with varying levels of light and heat inside. 

Students designed their robots with light, heat, and touch sensors and 

programmed them to navigate into the caves, collect data, and navigate 

back out. Table 10.1 presents a conversation among the students as one 

of them makes an inference from the data collected by the light sensor 

for one of the caves.

As can be seen in table 10.1, S makes an observation related to the 

differences in the numerical readings and then she makes an inference 

about where the data was collected. In line one, S has decided that the last 

three collected readings were collected outside of the cave, because of the 

numerical difference in the first three numbers as compared to the rest of 

the numbers in the data readout. Each of the “caves” was darker than the 

actual classroom itself. So, she infers that the light readings that were sig-

nificantly higher in number were collected outside of the cave. Meanwhile, 

J interprets the last two readings as being outside the cave. In line seven, S 

notes that it is not just the last three but also the first light reading that was 

taken outside of the cave. In line 12, S begins to explain her reasoning to I 

(the third student in the group). While S is consistently interrupted by J, we 

10.4 Screenshot of the Robolab Datalogger.
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Table 10.1 School A student discussion— Making inferences from numerical data

Line Speaker Utterance Researcher interpretation

1 S: The, the last three [readings] 
are from outside.

Sara reads a numerical 
presentation of the collected 
light data and makes an 
inference based on it.

2 J: What? Javier asks Sara to repeat 
herself.

3 S: The last three make, I think 
they’re from outside because 
you know how when they 
came out there was two 
separate readings?

Sara repeats the comment 
and expands with some 
reasoning.

4 J: No, the last two. Javier interprets the data 
slightly differently.

5 S: The last three. Sara repeats claim.

6 J: The last two. Javier repeats claim.

7 S: Three and then the first. Sara continues to read the 
displayed data and interpret.

8 J: Mister we got five hundred and 
two readings, why?

Javier asks the teacher a 
question about the printout.

9 S: Yeah. Sara affirms question.

10 T: Oh, you got (?) Teacher remark is partly 
unintelligible.

11 J: You do it go and do it. Javier instructs Sara to 
continue.

12 S: Yeah, you know you’re inside 
you’re inside look, look he 
came out Ilana this . . . 

Sara interprets the readings 
for Ilana.

13 J: No don’t (show it her) cause 
she’s gonna say that’s not 
gonna work.

Javier interferes with Sara’s 
interpretation to Ilana.

14 S: Look at this look at the light. Sara continues interpreting.

15 J: It’s not gonna work. Javier continues to interfere.

16 S: These two are from outside. Sara continues interpreting.

17 J: It’s not gonna work. Javier continues to interfere.

(continued)
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can see that in lines 12, 14, 16, and 22, S points out to I how the amounts 

of reflected light are different and how that indicates where the readings 

were taken. In this example, it is possible to see that S is making inferences 

from the data. She is engaged in deductive reasoning from the data, and 

she is engaging in the cross- cutting concept of cause and effect— since the 

device is outside of the box, the light readings are higher. This is a powerful 

learning moment for these students that included both CT and science lit-

eracy elements. It is made possible by virtue of working in the multidimen-

sional problem space of robotics; each of the problem spaces mattered in 

this interpretation, the designed device, the data read- out (part of problem 

space two), and the physical “cave” in which the robot collected data.

AbstRACtIon

In addition to supporting systems thinking and science literacy practices, 

the multidimensional problem space and iterative nature of robotics sup-

port the process of abstraction. Abstraction is an important computational 

concept. Abstraction refers to the stripping away of detail to reduce the 

complexity involved in a problem. The goal in abstraction is to identify 

the generalizable elements of a problem, which may be seen as founda-

tional. It is when the foundational elements are clear that new represen-

tations of the problem can be developed, and these new representations 

can help lead to solutions. The three problem spaces of the robotics learn-

ing environment support abstraction in an after the fact mode. This is so 

Table 10.1 (continued)

Line Speaker Utterance Researcher interpretation

18 S: And then . . . Sara continues interpreting.

19 J: It’s not gonna work. Javier continues to interfere.

20 I: So, we got to do it all over 
again?

Ilana expresses confusion 
between Sara and Javier’s 
comments.

21 J: No. Javier continues to interfere.

22 S: And then these last these last 
three are from outside, and so 
feels right.

Sara continues interpreting 
and suggests the last cave 
“feels right.”
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because the physical robot and physical environment constitute 3- D rep-

resentations of the problem, and the 2- D programming space offers an 

abstract representation of the 3- D movement of the robot. While work-

ing in the troubleshooting cycle, students move back and forth between 

the 3- D challenge environment and the 2- D programming environment. 

As they do so, they reason about the program they have written and the 

movement of the robotic device. In this way, the shift in attention, back 

and forth between the 2- D representation to the 3- D representation, sup-

ports students’ model development and abstract thinking ability. Since 

the 2- D environment is provided to students, they do not have to create 

the abstraction (hence the after- the- fact mode). However, they do need to 

learn how to interpret the abstraction, and this work is supported by the 

3- D aspects of the activity.

We have observed this behavior over and over again in our work. 

To demonstrate the phenomenon, we provide a vignette from a recent 

study (Sullivan and Keith 2018). Seventeen girls (ages eight to fourteen) 

participated in this case study. The case study focused on girls learning 

robotics in a one- day introduction to the FIRST LEGO league. Students 

worked collaboratively in groups of two or three to solve the challenges 

provided. Table 10.2 presents a short vignette featuring a conversation 

that one focal group of students had as they worked to solve a challenge. 

The conversation begins at the challenge board (lines 1 to 8), as the group 

observes the functioning of the robot, and continues as they move back 

to their worktable, where they were programming their robot.

As can be seen in table 10.2, the vignette begins with the students test-

ing their robot. It does not work completely (lines 2– 8), so they diagnose 

the problem, and then they move back to the 2- D representation and, as 

can be seen in line 17, L gesture and talk through what each icon programs 

the robot to do. While they are talking through the program, they are 

thinking back to what they just saw happen on the 3- D challenge board. 

In line 18, F pinpoints the block she believes should be programmed dif-

ferently. It is this same activity that supports the students’ ability to think 

more abstractly about the problem— each time the students execute the 

program, they must re- examine the icons used to program the robot to 

gain a better understanding of how to revise the program. This constant 

interplay between the 2- D and 3- D aspects of the activity provides students 
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Table 10.2 Abstraction dialogue

Line Student Utterance Location
Researcher 
interpretation

1 L: Okay, try that, I think 
that might have been 
what we have.

Challenge 
Board

Three students stand 
around the game board 
to test their executable 
program.

2 F: Yeah, I think we just 
need to make that 
distance longer. What? 
Okay.

Challenge 
Board

Possible solution is 
forwarded by F.
F is surprised by the 
robot’s movement.

3 L: Well . . . Challenge 
Board

L makes an utterance 
while watching the 
robot.

4 F: No. Challenge 
Board

F articulates the failure 
of the program.

5 S: It’s crashing. Challenge 
Board

S narrates the 
movement of the robot.

6 F: Alright let’s fix that. Walking 
toward work 
table

F suggests group 
activity.

7 L: Okay, what do we 
need to switch?

Challenge 
Board

L asks aloud what needs 
to be done.

8 S: Okay, we need to make 
things that when 
it goes that way it’s 
longer.

Challenge 
Board

S offers a potential 
solution.

9 F: Yeah, we need one of 
the distances to be 
longer.

Walking 
toward 
worktable

F agrees with S’s 
analysis.

10 S: Haba Worktable S tries to sit in F’s chair.

11 F: S! Worktable F asks S to move 
(with tone implies S 
should quit fooling 
around).

12 L: S! Worktable L agrees with F.

13 S: Sorry. Worktable S apologizes for lack of 
focus.
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with strong supports for developing the ability to program and to think 

abstractly about the movement of the robot. Essentially, the 3- D activity 

of testing the executable program on the challenge board transforms stu-

dent understanding of the 2- D programming icons. In this way, the three 

problem spaces work together to support learning about abstraction.

CReAtIve PRobleM- solvIng

In addition to supporting engagement in CT and science literacy prac-

tices, other modes of learning are strongly supported by robotics. These 

modes include play and creativity. Both of these modes of interaction sup-

port student engagement in problem- solving and learning with robotics. 

I argue that robotic devices are inherently playful; typically, the robotic 

device spurs student curiosity, and observing the movement of the device 

immediately raises a number of questions in students’ minds about what 

the robot is and how it is doing what it does. Anecdotally, I have witnessed 

many students become intrigued with the device and express a desire to 

play with it; this desire to play with the robot serves as a means for learn-

ing more about it.

Table 10.2 (continued)

Line Student Utterance Location
Researcher 
interpretation

14 F: Come on. Worktable F asks S to refocus.

15 S: Okay, so what are we 
doing?

Worktable S refocuses.

16 F: Uh . . . Worktable F begins a verbalization.

17 L: So it goes forward, 
turns, forward, turns 
when, when does it go 
wrong?

Worktable L (looking at the 
computer screen) thinks 
aloud and moves her 
hands as if they were 
the robot moving across 
the table.

18 F: I think it was that 
one.

Worktable F (pointing at the 
screen) points at the 
block that needs to be 
programmed differently.
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Playfulness can lead to resourcefulness when students are attempting to 

solve a robotics challenge. In a study conducted with students in a sixth- 

grade science classroom (Sullivan 2011), I used a Bakhtinian (Bakhtin 

1986, 1981) lens to identify the reified and spoken voices that influenced 

students’ collaborative development of a creative idea to solve a particular 

challenge. Integral to this analysis is the notion that the designed device 

itself embeds the intentions of the designers and affords certain types of 

interactions. Resnick (2003, 2006, 2014) has often discussed the role of 

play at the heart of the technologies he develops, such as the LEGO brick. 

This is in line with Papert’s (1993) strong support for the idea of tinker-

ing with technologies to learn more about them, but also to make them 

one’s own. Moreover, the manipulative nature of the robotic device (i.e., 

one can hold it in one’s hands), coupled with the fact that the device can 

be designed to roam around a room as a wheeled vehicle, affords a high 

degree of student interaction and provides an opportunity for students 

to think creatively about how to use the physical environment (the third 

problem space) to help them solve challenges.

In this particular study (Sullivan 2011), the students repurposed an 

item from the LEGO materials not used in the creation of the robotics 

device to help them solve the challenge. The repurposing of the item was 

an instance of bricolage (Lévi- Strauss 1966). Bricolage is the idea that one 

should use what is “ready- to- hand” to address current problems, regard-

less of the intended use of an object. This type of practice leads students 

to develop environmentally influenced problem- solving strategies and 

algorithms to solve robotics challenges.

In addition to creating environmentally influenced problem- solving 

strategies, we have also found that students developed strategies that entail 

the use of the device itself. For example, in a case study conducted with 

twelve students attending the three- week, 105- hour robotics camp refer-

enced earlier in the chapter, we identified a problem- solving strategy we 

termed “simulating the movement of the robot” (Sullivan and Lin 2012). 

This strategy includes holding the robot (the first problem space) and mov-

ing it about the physical environment that constitutes the challenge space 

(the third problem space). We observed that, as students engaged in this 

activity, they often verbalized the program that needed to be written to 

solve the challenge. Here, one can recognize this activity from Vygotsky’s 
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(1978) perspective as the role of externalized verbalizations and the use of 

tools in mediating student learning in the robotics environment.

Finally, in addition to engagement in problem solving, our research has 

indicated that students engage in a number of activities that emphasize 

computational concepts while working across the three problem spaces that 

make up the activity of learning with robotics. In our early work (Sullivan 

and Lin 2012), we examined the computational concepts that fifth- grade 

children engaged with while solving robotics challenge. For example, we 

have found that children had the opportunity to engage with conditional 

reasoning, program control and flow elements, and the basic idea of input/

process/output. In our later work (Sullivan and Keith 2018; Sullivan, Söken, 

and Yildiz 2019), we developed a computational concepts coding scheme 

to assist in the analysis of student problem- solving conversations and activ-

ities across two different studies. In each of these studies we collected video 

data of focal student groups solving robotics challenges. We transcribed 

these data and analyzed student talk at the level of the utterance.

Our computational concepts coding scheme was both data driven and 

theoretically influenced from the literature (Barr and Stephenson 2011; 

Grover and Pea 2013; Wing 2006). The scheme includes five CT codes 

as follows: analysis, algorithmic thinking operations, algorithmic think-

ing variable, designing, and debugging. We split the algorithmic thinking 

code in two because of the relative sophistication of setting the variable 

parameter of a coding block (algorithmic thinking variable) versus sim-

ply selecting a coding block to use in the program (algorithmic thinking 

operation). In two different case studies, we observed students intensely 

involved in computational discussions regarding designing (problem 

space one), algorithmic thinking (problem space two), and analysis and 

debugging (problem spaces one, two, and three). Characteristic of stu-

dent involvement was a relationship between the difficulty of the chal-

lenge attempted and the sophistication of the solution. In this way, we 

observed a phenomenon originally discussed by Dorst and Cross (2001) 

regarding the co- evolution of the problem definition and the designed 

solution; as students became more familiar with the problem spaces in 

which they were working, the more sophisticated the designed solutions 

became, both at the building level (problem space one) and the program-

ming level (problem space two).
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CONCLUSION

In summation, robotics is an integrated learning system comprising three 

interwoven, multidimensional problem spaces. Interaction within and 

among these problem spaces supports students’ development of CT and 

their science inquiry abilities. A future research direction derived from our 

research is further investigation of the intersection of CT and disciplin-

ary practices. As Lee et al. (2020) have pointed out, there are a number of 

newer areas of inquiry in STEM that blend computation and science: for 

example, computational biology. Future CT research should seek to further 

explicate the interdisciplinary relationships endemic to these new areas, 

such that powerful curriculum and pedagogical practices can be developed 

to support students’ learning.
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INTRODUCTION

Programming is important for pupils to develop computational thinking 

(CT) skills (Kennisnet 2016; Serafini 2011). CT comprises the thought 

processes that play a role in formulating and solving problems so that 

the solutions are presented in a form that can be effectively conducted 

making use of computer science concepts (Wing 2006). CT encompasses 

a range of analytic and problem- solving skills, dispositions, habits, and 

approaches used, such as the ability to break down complex tasks into 

simpler components, pattern recognition, pattern generalization, paral-

lelization, and abstraction (Silk, Schunn, and Shoop 2009; SLO 2017; Toh 

et al. 2016). Using CT in search for solutions also means gaining insight 

into the design of algorithms (Fanchamps et al. 2019).

Programmable robots provide excellent opportunities to develop CT 

skills as they combine the production of code with immediate tangible 

results and feedback (Catlin and Woollard 2014; Slangen 2016). More 

specifically, such a robotic programming environment can ensure that 

programming actions and their results are immediately perceptible by 

pupil and teacher (Sapounidis, Demetriadis, and Stamelos 2015). When 

pupils can immediately test the response of their programming action 

against the effect in reality, they will be better able to judge the effect of 

11
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their programming action(s) (Wang, Wang, and Liu 2014). In this way, 

robotic environments function as direct manipulation environments 

(DMEs), which make it possible to obtain direct feedback on the effect of 

the programming operation (Jonassen 2006; Rekimoto 2000).

A robot that needs to anticipate changes in its environment requires a 

different program than one carrying out an unchanging, predictable task. 

By making use of sense- reason- act (SRA) programming, a robot can react to 

changes in its surroundings (Slangen 2016). To enable the construction of 

such SRA programs, a variety of encoding components are available. SRA 

programming is the skill of using encoding components in such a way that, 

by its program, a robot can anticipate and react autonomously to changes 

in the environment. Selecting and using the proper encoding components 

in a robotic problem environment require understanding variable solution 

strategies and the deployment of powerful cognitive skills, which we here 

define as SRA thinking. SRA thinking is characterized by the deployment 

of cognitive skills such as analyzing, synthesizing, elaborating, imagin-

ing, parallel thinking, cause- effect reasoning, and problem decomposition 

(Slangen and Sloep 2005). Moreover, the application of these cognitive 

skills is closely related to principles of CT (Yadav et al. 2017). Therefore 

it seems logical to operationalize these SRA characteristics in the learning 

of CT skills. In addition, the perception of the type of execution of the 

robot’s programming task appears to make a difference. A different level 

of abstraction occurs when a physically present and concretely observable 

robot executes programming commands than when the execution of the 

programming task only occurs on a screen (Weintrop and Wilensky 2015).

The timing and kind of teacher interventions also contribute to pupils’ 

decision- making skills when learning how to solve robot programming 

problems (Valcke 1985). Teacher support can help or hinder (Slangen 

2016). For teachers it seems to be difficult to be sufficiently reticent at 

crucial moments (Sentance and Csizmadia 2017). Instead of exercising 

a certain restraint, teachers often intervene to inform pupils when dif-

ficult problems must be solved or when misconceptions are likely to arise 

(Petrou and Dimitrakopoulou 2003). In addition to providing support and 

guidance, teacher interventions can also disrupt pupils’ ongoing think-

ing and can interfere with learning processes (Dekker and Elshout- Mohr 
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2004). Therefore the reticence of the teacher is an important condition 

to enable pupils to develop programming problem- solving skills through 

the route of inquiry- based learning and problem- solving action (Yadav 

et al. 2017).

McWhorter (2008) has found positive effects of programming robots 

on pupil motivation, their use of learning strategies, and their agency 

in selecting learning objectives, mediated by self- regulation skills, auton-

omy, and competence of the pupils. Pupils’ autonomy appears to increase 

motivation and performance and is one of the basic psychological needs, 

together with the need for building relationship and competence (Baard, 

Deci, and Ryan 2004). The attention for these basic needs is an underly-

ing cause of a number of quality differences between intrinsic and extrin-

sic motivation. Moreover, learning to program from meaningful contexts 

where one has a sense of control can influence the autonomy and com-

petence development of the learner (Rovai, Wighting, and Lucking 2004).

Previous research conducted by Fanchamps et al. (2019) has shown 

that primary school pupils are capable of arriving at a certain level of SRA 

programming but that pupils often do not apply SRA independently, even 

when they have previously experienced the benefits of the SRA approach. 

This research also anticipated that the instruction method used by the 

teacher (a scaffolding- based approach versus direct instruction) would 

show a characteristic difference on the development of self- efficacy, but 

this could not be demonstrated.

Elaborating on the findings set out previously, our overarching research 

proposal sets out to examine if the type of programming problem and task 

design have an impact on evoking SRA thinking and to what extent the 

influence of teacher interventions are of importance. We also want to exam-

ine whether these variables affect the effectiveness of the interventions.

THEORETICAL FRAMEWORK

From our literature review and previous research, we are generally inter-

ested in the question of whether the type of programming environment 

and task design can evoke SRA thinking and therefore strengthen the 

development of CT. We also specifically want to know if the instruction 
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variant used influences SRA thinking and indicates the level of the effec-

tiveness of the intervention.

From prior research we know that primary school pupils, when pro-

gramming robots, primarily use linear programming structures, even 

when they have previously experienced the benefits of parallel program-

ming and sensor use (Slangen 2016). In the pupils’ linear approach, all 

commands are invariably sequenced in long strings, without several 

handling routines being operational at the same time (Wyeth, Venz, and 

Wyeth 2003). We also showed that pupils have considerable difficulties 

in understanding and applying SRA programming and find it challenging 

to use sensors or sensor programming (Slangen, van Keulen, and Grave-

meijer 2011). In an SRA program, there is always a conditional encoding 

component, based on sensing (i.e., detection of change), that necessarily 

influences the handling of the program. This is different from straight- 

line programming, in which each encoding component is a stand- alone 

command that is arranged in the correct sequence (Wyeth, Venz, and 

Wyeth 2003). SRA programming has its origins in the robotics world and 

connects physical reality with the virtual world based on observation, 

decision- making, and action. Understanding SRA programming means 

that pupils can explicitly relate processes in which a robot: (1) records 

observations based on sensor use (sense), (2) compares these observations 

with internal values of the external situation and decides which path to 

follow (reason), and (3) reacts according to a subsequent process in which 

the program “tells” the robot what action to take (act). SRA programming 

involves complex elements, such as the “if-then- else,” the “nested loop,” 

“when,” “while,” “wait- until,” “event handling,” and “simultaneous run-

ning parallel routines” that pupils find difficult to understand (Gregg et al. 

2012). Understanding the functionality of the use of sensors also appears 

to be an abstract task.

A functional application of SRA when programming robots, whether 

combined with the applicability of sensory input, requires pupils to apply 

logical reasoning in programming environments (Pea and Kurland 2007), 

which we define here as SRA thinking. These insights enable pupils to 

program a robot that can anticipate changes in its environment through 

its program. In other words, it requires system thinking— the understand-

ing of the interactions and interdependencies between programming and 
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the sensors and actuators used (Slangen, van Keulen, and Gravemeijer 

2011).

CT is the process- based (re)formulation of a problem in such a way that 

it becomes possible to solve the problem with computer technology (Barr, 

Harrison, and Conery 2011; Wing 2006). CT instrumentalizes an iterative 

process based on three phases: (1) problem definition, (2) solution expres-

sion, (3) implementation and evaluation (Wong 2014; Yadav, Hong, and 

Stephenson 2016). CT also refers to skills such as problem decomposi-

tion, pattern recognition, data formation, generalization, abstraction, and 

algorithmization (Voogt and Roblin 2010).

SRA programming with functional sensor use can be applied in differ-

ent programming contexts and can be regarded as a smart way of pro-

gramming (Gregg et al. 2012). However, our previous research shows that 

if pupils are still able to use linear programming structures, they do not 

recognize the added value of SRA programming (Fanchamps et al. 2019; 

Wyeth, Venz, and Wyeth 2003). This seems to be caused by the fact that 

when a programming task is based on the use of an unchanging, static 

environment, in which pupils are not confronted with changing events 

that must be anticipated, they maintain a predictable approach to the 

programming task (Slangen, van Keulen, and Gravemeijer 2011). How-

ever, if the programming environment in which a robot has to perform 

its tasks is dynamic in nature, and therefore unpredictable because the 

environment is constantly changing, then the solution requires the use 

of SRA programming in which sensors, conditionals, and routines must 

be used to successfully solve the programming problem (Demetriou 2011; 

Dragone et al. 2005).

SRA programming requires a degree of abstract thinking. It means 

being able to analyze the robotic task environment— being able to rec-

ognize the conditional and iterative conditions and translate them into 

the correct application of programming instructions (Caci and D’Amico 

2002; Pea and Kurland 2007). If pupils understand that the reasoning 

process of a robot is based on principles of logic, conditional, causal, and 

iterative reasoning and thinking in parameters and variables, this would 

be recognizable in their created programs (Slangen and Rohaan 2018). 

Code that is produced according to SRA principles contains such complex 

principles of programming, conditionals, and loop structures. Analyzing 
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pupils’ code reveals information about pupils’ SRA thinking skills such 

as efficiency, creativity, higher- order reasoning, analyzing, synthesizing, 

and judgment.

DMEs are innovative learning tools that combine ICT (information and 

communications technology) control technology and programmable logic 

controllers with the construction of a concrete, material model (mov-

able structures linked to motors, actuators, and sensors) (Jonassen 2006; 

Rekimoto 2000). Characteristic for DMEs is the “direct” feedback from 

the technology that provides pupils with feedback on their thinking and 

actions (Slangen, van Keulen, and Gravemeijer 2011). Examples of such 

tools are TechnoLogica, VEX IQ, Arduino Makeblock, and LEGO Mind-

storms EV3, with which pupils can build a working robot or machine that 

must then be programmed to carry out predefined assignments (Jonas-

sen 2000; Slangen, Fanchamps, and Kommers 2008; Slangen, van Keulen, 

and Gravemeijer 2011; Slangen, van Keulen, and Jochems 2009). The use 

of DMEs imposes requirements on the environment and the task and the 

type of guidance and is very suitable for inquiry- based learning and a 

problem- solving approach.

Self- efficacy is an important requirement for pupils to be able to work 

on a robotic programming task in a creative, targeted manner independently 

of the teacher (Dignath and Büttner 2008; Spin 2015). It is the teacher’s 

task to create and support opportunities and possibilities in which pupils 

can conduct their assignment in a self- effective way (Dignath- van Ewijk 

and Van der Werf 2012). This asks for learning contexts in which learners 

can make their own choices and decisions and in which there are pos-

sibilities for direct feedback. As mentioned previously, DME robotics pro-

gramming environments seem to be suitable for solving programming 

tasks in a self- effective way.

According to Stevens (2004) and Broeck et al. (2010), pupils’ self- 

effectiveness is built on competence, autonomy, and relationship. Com-

petence refers to the feeling and belief in one’s own ability. To let pupils 

experience what they are capable of requires challenge and motivational 

strengthening elements. A combination of high (but realistic) expecta-

tions and the availability of help and support are necessary for develop-

ing a strong sense of competence. Autonomy is having the confidence to 
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be independent in such a way that pupils can make their own decisions 

and choices. It is pupils feeling that they are capable of doing a task on 

their own. Autonomy is only possible if tasks and instrumentation are 

carefully aligned to the potential and needs of pupils. Relationship is the 

feeling of belonging and being part of a community. Pupils need relation-

ships, both with their teacher and with other pupils, based on providing 

safety, space, guidance, and support. Pupils and the teacher should collec-

tively feel responsible for a good atmosphere in the classroom, and pupils 

should feel they can count on the support and guidance of the teacher 

(Rovai, Wighting, and Lucking 2004).

Apart from the coaching and instruction of the supervising teacher, 

the pedagogical needs of the learner play an important role (Vosniadou 

et al. 2001). Our previous research showed that, when working with pro-

grammable robotics contexts in which pupils have to solve programming 

problems with LEGO robots, the type of instruction offered (scaffolding- 

based versus direct instruction) does not make a significant difference in 

relation to the yield, solution, and efficiency of the constructed program 

(Fanchamps et al. 2019). However, the teacher should adapt the pedagog-

ical offer to the pupils’ characteristics and associated pedagogical needs 

in such a way as to achieve maximum learning efficiency (Alfieri, Brooks, 

and Aldrich 2011).

Interventions by teachers can influence pupils’ final learning effi-

cacy outcomes in robot programming (Slangen 2016). Some pupils may 

learn best when they perform all actions and thinking processes them-

selves with minimal coaching from the teacher, while other pupils may 

learn most when the teacher explains everything fully (Fanchamps 

2016).

Direct instruction can be defined as targeted actions of the teacher with 

the aim of supporting pupils’ learning activities to structure them in a 

desired direction (Veenman 2001). The starting point for direct instruction 

is that there are moments in an educational learning process when knowl-

edge, insights, and skills that are considered meaningful and functional 

within a context can be taught to pupils most effectively, purposefully, 

and directly (Kirschner, Sweller, and Clark 2006). Direct instruction is 

particularly appropriate when a well- structured set of knowledge, insights, 
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and skills must be mastered by pupils (Leenders, Naafs, and van den Oord 

2010).

Indirect instruction can be defined as an approach that allows pupils 

to learn more autonomously— where the teacher’s help is temporarily 

adapted to the needs of pupils’ learning. It is a method to acquire the 

desired prior knowledge and to encourage the use of strategic approaches 

(Kawalkar and Vijapurkar 2011). In case of indirect instruction, the 

teacher coaches pupils if they are unable to continue independently 

or when the teacher notices that pupils are heading in a direction that 

would result in them becoming stuck. In principle, the open problem is 

structured in such a way that it is expected that pupils will be able to carry 

out most of the learning activities independently (Hmelo- Silver, Duncan, 

and Chinn 2007). The teacher must resist direct instruction but can apply 

verbal guidance techniques that ensure that the thinking process mainly 

remains with pupils (Hogan and Pressley 1997).

Building on the theoretical exploration mentioned previously, we pre-

sume a correlation between the environment, the task design, and the 

type of instructional method used will have an impact on the level of 

self- efficacy and on the evocation of SRA thinking specifically and CT 

more generally. Our conceptual model in figure 11.1 gives an overview 

of supposed relationships between independent and dependent variables 

that must be investigated further. Based on this conceptual model and 

our preliminary research, a number of research questions arise that are 

elaborated in the following research agenda.

11.1 Schematic representation of the conceptual model.

Computational
thinking

Evocation of
SRA-thinking

Type of instructional
method

identifies Self-effectiveness

impacts

Task design

influencesproduces

influences influences
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TOWARD A SENSE- REASON- ACT RESEARCH AGENDA

In our previous research (Fanchamps et al. 2019), we investigated the rela-

tionship between the pedagogical environment and the development of 

algorithmic thinking and SRA programming skills. We found some indi-

cations that it doesn’t matter which type of teacher guidance is used for 

pupils to apply SRA programming. But we do have some indications that 

pupils with experience in SRA programming are better capable of solving 

mathematical problems based on algorithms. It also seems that the level 

of self- efficacy is not influenced by the type of research design. Elaborat-

ing on these findings and our conceptual model, we want to investigate 

which aspects can be decisive for better solving programming tasks and an 

improvement of CT skills. In a broad sense, we assume that it is important 

to look at the nature of the task design, such as a static/dynamic program-

ming environment and a visual/tangible programming environment.

This brings us to a first research direction of examining whether and 

how the nature of the programming task and the programming environ-

ment affect what pupils can learn from it. From our research and further 

theoretical exploration we know that pupils, when programming robots, 

tend to look for solutions based on linear thinking and sequential pro-

gramming, even though they have been instructed how to use SRA 

programming (Fanchamps et al. 2019; Slangen 2016). This is striking, 

because these pupils have an earlier experience that showed that SRA pro-

gramming is more efficient in certain programming situations. Instead, 

when children program robots, they predominantly choose the most obvi-

ous way that leads to an apparent good solution. Although pupils are not 

inclined to use SRA programming, we assume that the problem situation 

and task design are of significant relevance. To find out whether pupils are 

indeed able to apply SRA programming when they find themselves in a 

situation where a linear solution is no longer possible, we plan to develop 

an experimental setting in which a dynamic task design will be used. The 

assumption is that when the task is dynamic in nature, and the use of lin-

ear commands is no longer possible/sufficient, pupils have to apply SRA 

programming. We expect this can be achieved by designing a dynamic task 

environment (in opposite to a static task environment) in which the pro-

gramming task is unpredictable.
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Our second direction of research is distilled from theoretical exploration 

and practical experience, from which we know that pupils seek support by 

immediately reflecting the outcome of their programming assignment as 

feedback to the task at hand. Classroom programming can be characterized 

in three ways: unplugged programming, textual programming, and visual 

programming. Unplugged programming introduces pupils to how com-

puters and related technology works without the concrete use of this tech-

nology (Brackmann et al. 2017). Textual programming refers to the use of 

a programming language by the application of written commands, specific 

syntax, and abstract variables (Maloney et al. 2010). Visual programming 

involves combining icon- based command blocks with predefined param-

eters, variables, and syntax that can be manipulated on the screen (Kork-

maz 2018; Sapounidis, Demetriadis, and Stamelos 2015; Weintrop and 

Wilensky 2015). Each of these different programming environments can 

have either a visual and/or a tangible output. Programming robots can be 

defined as tangible output, while a representation of a tangible world on a 

screen display can be seen as visual output. It seems enlightening to inves-

tigate whether the type of programming paradigm and the output of a pro-

gramming environment influence the development of aspects of CT and 

the use of SRA approaches. Korkmaz (2018) compares the use of Scratch 

and LEGO Mindstorms robots and describes a more positive contribution 

to thinking skills with the latter. Sapounidis, Demetriadis, and Stamelos 

(2015) claim that in a tangible programming environment, children were 

more involved, created more complicated programs, and investigated dif-

ferent commands and parameters more actively. We therefore expect that a 

more tangible output will lower the degree of abstraction and lead to more 

understanding about programming. We propose to investigate if there is a 

difference in the increase of CT skills when pupils apply SRA programming 

with a visual output compared to a physically perceivable output.

A third research direction should identify whether there is a differ-

ence in yield in the development of CT skills when pupils program in 

a visual, screen- oriented programming environment either with an SRA 

approach or with an linear approach, respectively with or without the 

use of sensor- based information, loops, conditionals, functions, and rou-

tines (Korkmaz 2018; Sapounidis, Demetriadis, and Stamelos 2015). We 

expect that pupils who work with the visual SRA approach will show a 

greater development of CT skills in comparison with pupils who work 
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with the visual linear approach. In a visually oriented programming envi-

ronment, pupils compose and construct functioning programs by merg-

ing programming commands in the correct order, and they receive only 

visual feedback to inform them whether a particular constructed program 

is valid (Weintrop and Wilensky 2015).

A fourth direction for research concerns the relationship of pedagogi-

cal aspects, such as teacher interventions and self- efficacy, and the use 

of SRA programming and its effect on the development of CT skills. It 

is reasonable that teachers will need to guide and supervise pupils while 

programming (Hogan and Pressley 1997) and that the teacher has influ-

ence (directly/indirectly) on the pupils’ learning processes in acquiring 

CT skills (Buitrago Flórez et al. 2017; Lye and Koh 2014). The type of teacher 

support and number of teacher interventions also have a direct influence 

on the level of self- efficacy of the learner (Liu, Lin, and Chang 2010; Rama-

lingam, LaBelle, and Wiedenbeck 2004). We assume that if pupils have to 

find a solution to a particular programming problem by themselves, this 

will lead to more in- depth learning than if the teacher presents everything 

and pupils simply follow along (Igbaria and Iivari 1995; McWhorter 2008). 

Therefore it is relevant to investigate to what extent the constructed SRA 

solutions are related to the type and number of interventions of the teacher. 

The instructional needs of respondents should also determine, to a large 

extent, which form of guidance the teacher can best use to enable growth in 

CT skills through the use of SRA programming. This paves the way to create 

a pedagogical programming environment in which the teacher, through a 

joint understanding with pupils, does not always provide direction but is 

available for help, support, and guidance. The teacher, as a reflective prac-

titioner, can have an indispensable role in creating meaningful learning 

experiences and in extending their pupils’ computational skills and practi-

cal knowledge.

RECONSIDERING COMPUTATIONAL THINKING

With these directions for future research, we want to contribute to a 

further development of the construct of CT. Our perspective is that SRA 

thinking is an underexposed characteristic of CT. We propose that study-

ing SRA programming can provide fruitful directions for a more generic 

development of CT.
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INTRODUCTION

Computational thinking (CT) allows students to think critically, system-

atically, and algorithmically to solve problems that are either ordinary 

or intricate. Hence, it is important to integrate computational ideas into 

other subjects in school so that students can comprehend, define, and 

seek appropriate solutions with a wider array of knowledge from various 

disciplines. This interdisciplinary instructional approach has been widely 

practiced with science, technology, engineering, arts, and mathematics 

(STEAM), robots, and maker education.

The key educational matters are the principles and strategies to design 

a well- rounded curriculum, to conduct dynamic learning activities, and 

to evaluate students’ performance in the physically and socially active 

learning scenario. This chapter attempts to tackle these issues by present-

ing a purpose- built robotic game, <STEMport>, along with a conceptual 

framework that illustrates the following four components:

1. The synergic relationship between CT and interdisciplinary activity. 

In the section “Computational Thinking with Interdisciplinary Learning,” 

we posit the existence of situative CT that links specific CT and generic CT 

to contextual interdisciplinary domain learning.

2. The innovative design of the instructional paradigm. In the section 

“Computational Thinking with Robotic Games,” we provide justifications 

12
COMPUTATIONAL THINKING IN THE 
INTERDISCIPLINARY ROBOTIC GAME
THE CHARM OF STEAM

Ju- Ling Shih
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for the innovation of the particular instructional paradigm using visual 

programing to perform agent- based computation to facilitate game- based 

learning.

3. The creation of an interdisciplinary robotic game. In the sections 

“Educational Implementation” and “Pedagogical Benefits of the CHARM 

of STEAM,” we outline the rationale of the learning game <STEMport> 

and the pedagogical underpinning of the extended curriculum in which 

modules are amenable to users’ needs, but at the same time illustrate the 

core value, the breadth, and the generality of our approach. The <STEM-

port> learning environment: (a) supports students regardless of their 

levels of competences; (b) initiates and motivates students to engage with 

programming; (c) intrigues students to pursue further domain learning; 

and (d) elevates students’ strategic thinking in a constructive fashion.

4. The development of various means of student evaluations. In the sec-

tion “Evaluations of Students’ Computational Thinking Performances,” 

we elaborate the possibilities of multiple assessments that encompass cog-

nitions, affects, and skills of CT, and present preliminary research results.

Finally, in the section “Discussion and Conclusion,” we use empirical 

evidence to sustain the effectiveness of our proposed conceptual frame-

work and the creation of a student- centered learning environment.

This game encompasses more than simple programming skills and is 

intended to strengthen knowledge of multiple disciplines as well as to 

promote social interactions that are central to the twenty- first- century 5C 

skills— communication, collaboration, critical thinking, creativity, and 

complex problem- solving. <STEMport> can be used as a targeted course 

with specific purposes or as a mixed- age group activity that serves as an 

extracurricular event. It can be an activity at the beginning of a curricu-

lum to spark students’ learning motivation; a central unit of learning that 

guides students to construct knowledge; or be the concluding activity of 

a curriculum that demonstrates students’ learning outcomes. The follow-

ing sections will set forth a general practice of the CT- based robotic game 

<STEMport> followed by the demonstrations of the extended use of the 

course to serve diverse needs of age, goals, proficiency level, personality 

traits, or various instructional conditions.
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CONCEPTUAL FRAMEWORK

CoMPUtAtIonAl tHInKIng WItH InteRdIsCIPlInARY leARnIng

CT is a concept originating from computer science in which computer lan-

guage is used to manipulate computers to solve daily life problems (Wing 

2006). CT can be divided into specific CT— the composition of computer 

programming language (e.g., loop, if- else)— and generic CT— the cognitive 

abilities to apply problem- solving methods in ways that a computer could 

execute (Wing 2014). These can be understood as “CT as programming” 

and “CT as problem- solving,” respectively.

Specific CT is more widely practiced in education, with such examples 

as code . org, or Scratch. The goal is to learn the principles of programming 

and to use programming to execute the functions of computers or robots. 

The use of generic CT in education is a bit more complex and abstract 

to design for, since it involves the problem- solving process that requires 

thinking abilities other than programming skills. In generic CT, comput-

ers may not be needed because the computation process happens within 

human brains rather than in the computers. Wing (2008) said that humans 

process information; humans compute. Generic CT is an approach to 

designing systems and understanding human behavior that draws on 

concepts fundamental to computing. It is a model and a process of think-

ing that uses the basic concepts of computer science to solve problems 

(Wing 2006). CT is a type of analytical thinking that employs mathemati-

cal and engineering thinking to understand and solve complex problems 

within the constraints of the real world (Voskoglou and Buckley 2012). 

Therefore, the practice of CT combines logical, arithmetic, efficiency, sci-

entific, and innovative thinking together with qualities such as creativ-

ity and intuition (Curzon et al. 2009). Generic CT can be applied to the 

use of information technology, coding, and robotics (Rogers and Ports-

more 2004). For example, Atmatzidou and Demetriadis (2016) showed 

their educational results in teaching kids programming to mobilize LEGO 

NXT robots for specific functions or to carry out tasks. Other schools may 

teach robots to move, line trace, carry balls to certain points, or place bump 

sensors.

The benefits of using STEM and robotics for generic CT education are 

manifold. A guided instruction approach using robots facilitates teamwork 
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(Chambers, Carbonaro, and Rex 2007), develops conceptual understand-

ing, enhances critical thinking (Blanchard, Freiman, and Lirrete- Pitre 2010), 

promotes higher- order learning in the domains of mathematics and science 

(Petre and Price 2004), allows the students to develop procedural thinking 

through programming (Nourbakhsh et al. 2005), and encourages ways of 

algorithmically solving problems and the acquisition of technological flu-

ency (Papert 1980). Related research (e.g., Bers et al. 2014) obtaining positive 

research outcomes on CT and STEM demonstrates that children between 

four and six years old can build simple robotics projects. STEM is a cohesive 

learning paradigm that is not limited to certain subjects but includes other 

domains such as social studies, English language arts, visual art, and more 

(Breiner et al. 2012). It uses an interdisciplinary approach (Barak and Assal 

2018) by breaking down the discipline- independent teaching and making 

connections to the context of the real world (Breiner et al. 2012; Honey, 

Pearson, and Schweingruber 2014).

Nevertheless, Frymier, Shulman, and Houser (1996) explained that, in 

a classroom context, students usually have little power to determine the 

activities to be conducted, which teachers typically control. The same is 

true for many robotics curricula that guide students to code for uniform 

tasks or simply learn coding functions. For example, in the program by 

Chen et al. (2017), students were taught to program robots to do actions 

such as wave and sit down.

We take a step further and have attempted to create a learning environ-

ment where CT is applied in conjunction with interdisciplinary learning. 

When CT thus becomes situative, it has features that are distinct from 

generic CT: (1) It uses specific CT and generic CT in combination, writing 

programming and solving problems at the same time. (2) It is practiced 

in a contextual situation, normally a theme- based scenario that empha-

sizes domain knowledge correspondence. (3) Problems in the situation 

are fluid and dynamic; instead of conducting uniformed tasks, students 

have to respond to spontaneous situations in context. (4) CT is no longer 

the learning goal but the tool (figure 12.1). In a situative CT learning sce-

nario, students solve contextual problems by accessing the appropriate 

resources and strategies to be used.

For those CT curricula in which students are encouraged not just to 

routinely follow instructions but to creatively find novel approaches to 
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the activities (e.g., Brennan and Resnick 2012; Deschryver and Yadav 2015; 

Voogt et al. 2015), students are more empowered in the learning process. 

Four empowerment components can increase the likelihood of successful 

task completion: (1) viewing the purpose of a programming task as mean-

ingful, (2) seeing impact from completing the tasks, (3) believing they can 

creatively complete them, and (4) perceiving their competence to complete 

them (Kong, Chiu, and Lai 2018).

CoMPUtAtIonAl tHInKIng WItH RobotIC gAMes

Robotics provides a very rich and attractive learning environment for STEM 

education (Barak and Assal 2018) and provides a fun and exciting learning 

environment because of its hands- on nature and the integration of technol-

ogy (Afari and Khine 2017). Robotics has the inclusive nature to achieve 

what situative CT needs, while it creates an environment where children 

can interact with the context and work with real- world problems.

To activate the curriculum further and enrich the hands- on construc-

tionism of Papert (1980) and Vygotsky’s sociocognitive interactions, game- 

based learning (GBL) is an appropriate means to help students transform 

from passive to active learners, constructing new knowledge by collabo-

rating with their peers and developing essential mental skills by acting as 

researchers.

12.1 The conceptual framework of CT with interdisciplinary learning.

Contextual situation

Problem-solving

Algorithm Evaluation Decomposition Abstraction Generalization

Situative CT

Generic CT

Specific CT
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GBL refers to an educational system that implements games or game 

elements as a motivational driver for students (Park et al. 2019). It is per-

ceived as a potentially engaging form of supplementary learning that 

could enhance the educational process and has been used at all levels of 

education, including primary education. Motivation is a learners’ willing-

ness to make an extended commitment to engage in a new area of learn-

ing (Gee 2003), so many teachers now incorporate GBL to embed learning 

with carefully designed curriculum so that students learn spontaneously 

and repeatedly.

The spirit of GBL is not only to allow learning to happen in a fun process 

(Perrotta et al. 2013) but also to challenge and stimulate higher level learn-

ing. Students actively explore the issues assigned by teachers from various 

perspectives, work with peers to find answers, and then develop the skills 

to communicate, coordinate, and engage in creative thinking and problem- 

solving. Within those problem- solving spaces and challenges, students gain 

the sense of achievement (Qian and Clark 2016). The experiential activities 

allow students to be more immersed in the learning scenarios, enhancing 

learning effectiveness and encouraging students to get wider and deeper 

knowledge and skills. Students learn infinitely more by accessing extended 

sources, creating strategies for overcoming obstacles, and understanding 

complex systems through experimentation. GBL also promotes learning in 

an engaging and entertaining manner to underpin the skills and attitudes 

of CT (Apostolellis et al. 2014).

EDUCATIONAL IMPLEMENTATION

desIgn oF tHe RobotIC gAMe <steMPoRt>
<STEMport> was designed by our research team based on the historical con-

text of the Great Voyage (Shih et al. 2017). It is an interdisciplinary game 

that embeds STEM educational concepts and computational practices. In the 

game, a large world map (600 by 400 cm) shows the geographical area from 

Europe eastward to Asia, presenting the territorial scope of the European 

Age of Discovery in the seventeenth century (figure 12.2). Colonies owned 

by respective countries are identified by colored symbols on the map, along 

with specific spices produced in the locations. Students are distributed into 

five groups, each role- playing one of the European countries— England, the 
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Netherlands, Portugal, Spain, and France. Robots represent their ships, iden-

tified with matching color lights. Since each country has different political 

and economic status in history, all the ships come with predefined para-

meters showing discrete strengths and weaknesses. The Dutch ship is faster, 

the English stronger, the Spanish bigger, and the Portuguese has the most 

available ports.

Roles in each country group such as navigator, captain, trader, and 

warrior are decided by the students, so they all have responsibilities in the 

game. The navigator is the only one who can step onto the large map to 

physically measure the distance from one point to another; the captain 

handles the coding job; the trader manages the spice trading processes; 

the warrior is responsible for robot competitions. The groups take turns 

to sail their robotic ships by writing block coding, going to designated 

colonies to perform tasks. The first country to complete its tasks wins the 

game (figure 12.3).

We initially chose the mBot robotics platform simply out of random 

convenience. However, we found that its features led to its exclusive use 

12.2 Game design of <STEMport>.
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with <STEMport>. First, mBot robots are on wheels; unmovable robots are 

not possible, legged robots inappropriate, and those with sails not con-

venient. Second, its size is appropriate in comparison with the map, and 

sailing routes are in a workable range. Third, the robots can be assembled 

from parts, so an engineering course can be optionally included. Fourth, 

accessories can be attached to most so that the students can aggregate 

them as weapons. Fifth, it comes with its own programming software, 

mBlock, that can easily connect to the robot. Finally, it is in an affordable 

price range and widely known on the market, so students can extend 

their learning after class.

12.3 Game play of <STEMport>.

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024



CoMPUtAtIonAl tHInKIng In tHe InteRdIsCIPlInARY RobotIC gAMe 253

CoMPUtAtIonAl PRACtICes

In the game, the students choose their target destinations, estimate the 

distances from the starting points to the destinations, use limited game 

points to move their robots in terms of seconds of moving time, and 

decide on actions to take, either trading or going into battles to obtain 

spices. While the students are completing all of these game tasks, they are 

applying problem- solving CT skills.

Selby, Dorling, and Woollard (2014) defined five core concepts of CT: (1) 

Algorithm is to the ability to develop rules that can solve similar problems 

step by step and be implemented repeatedly. (2) Evaluation is the process of 

ensuring an algorithmic solution is a good one. (3) Decomposition is a way 

of thinking about problems, algorithms, artifacts, processes, and systems 

in terms of their parts. The separate parts can then be understood, solved, 

developed, and evaluated separately. This makes complex problems easier 

to solve and large systems easier to design. (4) Abstraction is another way 

to make problems or systems easier to think about. It simply involves hid-

ing details and removing unnecessary complexities. (5) Generalization is a 

way of quickly solving new problems based on previous problems solved— 

taking an algorithm that solves specific problems and adapting it to solve a 

whole class of similar problems.

The problems of the <STEMport> game are situated in the contextual 

scenario, which are complex and immersive. The students first “decom-

pose” the task requirements with the game rules and try to complete the 

tasks in predefined parameters and in limited rounds. Then, they apply 

“algorithm” skills to calculate the distance, angle, speed of the naviga-

tions; define the navigation routes; and do “abstraction” to transform 

the measurements into computer programming codes. After they take 

actions, the students “evaluate” their programming performances by ana-

lyzing the differences between the predicted paths and the actual paths of 

the robots, and adjust their following actions. As the students solicit the 

main strategies for the game, they “generalize” the conceptual patterns 

for the subsequent rounds. The process of game also matches the general 

problem- solving stages such as defining problems, searching for solu-

tions, implementing solutions, and evaluating results. The students are 

immersed in the scenario, identifying with their country’s strengths and 

weaknesses, managing the resources around them, including knowledge, 
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peers, and strategies to search for solutions, then reviewing the effects of 

the strategies after actions. These are the essential logistic and creative 

skills of CT.

With the instructional design for game- based learning, the game offers 

coding- based and problem- solving- oriented CT practices at the same time. 

As Kong, Chiu, and Lai (2018) described for CT education, the program-

ming environment should be created to achieve the instructional goal to 

cultivate students’ CT abilities during programming activities by enabling 

them to concentrate on the problem- solving process as they learn. The 

robotics platform also offers a wide range of challenges and opportunities 

for learners to develop disruptive thinking, innovative ideas, and other 

learning skills needed both in the classroom and outside the school.

For elementary- level learners, the coding interface is preconfigured, 

showing only the needed functions while hiding the rest, and making 

ready needed functions while leaving only the parameters for them to fill 

in. For higher- level learners, different categories of coding functions and 

higher levels algorithm can be taught. Coding functions such as motion, 

sensing, control, event, operators, data chart, and so on would provide 

students more options to manipulate and create gaming environments.

The game can also be transformed using several levels of difficulties 

and various forms for different purposes, using game mechanisms. A 

higher level of programming skills can be reinforced by changing the 

game rules that require the players to use commands such as loop, if- 

then, else, and so on. For example, obstacles can be added, such as pirate 

ships or storms, so that the players would have to code the robots to go 

around them when encountered. Or, when the ships encounter ocean 

currents, their ships would be accelerated or decelerated when they are 

proceeding with or against the flows. Hence, the students have to come 

up with new strategies to cope with the emergent situations. The process 

of getting to know the geographic variables and their influences on the 

ships, and to recognize the patterns of change, is the process of model-

ing in which relationships between the object, agent, and variables are 

established.

For increasing game complexities, each country can choose ship parts 

such as hull, oar, mast, and weapons, which would comprise their total 
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ship parameters, including propulsion power, cargo capacity, decelera-

tion, firing distance, arm force, and sailing duration.

Gaming strategies that link programming with contextual problems 

that require both generic and specific CT skills are inseparable in this 

game. The robot is a tool to carry on tasks and solve problems. Robots are 

the avatars of the students, with which they take actions. In this way, CT 

skills become explicit actions that are observable and evaluable.

PEDAGOGICAL BENEFITS OF THE CHARM OF STEAM

This robotic game- based activity is unlike others where students code for 

uniform tasks to compete for higher efficiency, speed, or design of robots. 

Instead, <STEMport> opens up an exploratory environment in which stu-

dents start with unequal powers and distinct goals between groups and 

apply critical thinking skills to find appropriate methods to achieve those 

goals. In the game, each country has tasks to obtain three spices. The first 

spice can be accessed by all countries, the second spice can be obtained 

by single country, and the third spice is owned by the other countries 

from the single one. With that condition set up, students have to cooper-

ate or compete with each other to obtain the spice from other countries. 

They can choose to trade, build coalitions, or attack, fight, and battle for 

the spices. The game encourages the students to have creative solutions 

in terms of route, communication, negotiation, and competition. In this 

way, the twenty- first century 5C skills are induced and nurtured.

Coopetition (cooperation and competition) is a common social phe-

nomenon and a rule for achieving success. In the teaching environment, 

teachers often use competitive psychology to stimulate students’ learning 

motivation to enhance their learning effectiveness (Lin et al. 2017). Thus, 

<STEMport> has adopted the strategic game mechanism that allows learn-

ers to cooperate and compete with other players to successfully carry on 

their tasks.

Along with the game, we have prepared a curriculum for students’ 

knowledge and skill extensions, such as unplugged coding, coding with 

a block editor, coding for robots, making and crafting the robotic ships, 

as well as an advanced issue- based version, the summit game. This is a 
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curriculum of STEAM, the science- oriented disciplines, connected to the 

humanity- oriented disciplines, CHARM, which includes culture, humanity, 

adventure education, reading, and maker. The CHARM of STEAM implies 

that the spirit of interdisciplinary learning is humanity. By providing the 

geographical context and historical content, the students are also nurtured 

with the social scientific and humanistic spirit. It is to our understanding 

and experience that the humanistic context has a large influence on stu-

dents’ attention, extension, and creation in the learning of CT, robotic edu-

cation, and interdisciplinary contents.

The game transforms the usual lecture- type teaching into an interest-

ing learning scenario. In accord with educational theories such as situated 

learning, social cognition, and constructivism, we aimed at turning passive 

classroom learning into one that embraces interaction, participation, explo-

ration, and knowledge construction. The four learning modes—namely, 

narrative, investigative, strategic, and explorative— are implemented. Inter-

disciplinary learning is defined in this game to refer to “doing something 

that requires knowledge and skills from various subjects.” Instead of distrib-

uting the tasks into classes of different subjects, the students are doing one 

thing to learn many things.

The game is based on sociocultural constructivism, with which stu-

dents are situated in contextual learning scenarios. It is different from vir-

tual scenarios such as simulation. The physical world of learning creates 

a real community of practice, in which collaboration and healthy com-

petition are encouraged. In the gaming process, students work together, 

play their parts, construct meaning of their own, experience increased 

motivation, and are stimulated to pursue extended learning that goes 

beyond the game. They change their habits of treating complex problems 

and change their way of looking at the world. With the practice of CT and 

problem- solving, they learn systematic thinking and analytical thinking.

EVALUATIONS OF STUDENTS’ COMPUTATIONAL  

THINKING PERFORMANCES

There are many methods to look at students’ CT performances. CT- related 

evaluations can include knowledge testing, motivation scales, gender dif-

ferences, group dynamics, and personality traits. In this section, a few 
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tools that we used in previous studies are introduced with brief report of 

their results followed by extended discussions and implications.

CoMPUtAtIonAl tHInKIng QUestIonnAIRe

A CT questionnaire can be used before and after the game- based learn-

ing course as the pre- test and post- test. The results of the questionnaires 

can be tested through statistical means to evaluate the differences after 

the instructional intervention. To see whether students’ CT skills would 

influence their gaming results, cross- analyses were done with the stu-

dents’ gaming outcomes.

The CT questionnaire used in our previous studies (Huang, Huang, et 

al. 2019) was designed based on the relevant literature (e.g., Atmatzidou 

and Demetriadis 2016; Curzon et al. 2014; Dagiené, Sentence, and Stupu-

riené 2017; Selby, Dorling, and Woollard 2014) and taking the principles 

of the Bebras International Challenge on Informatics and Computational 

Thinking as the main reference. To produce a reliable questionnaire, two 

academic researchers specializing in education validated the items twice 

(Chu, Liang, and Tsai 2019). The questionnaire includes the five dimen-

sions of computational thinking: algorithm, evaluation, decomposition, 

abstraction, and generalization. Each dimension composes five questions 

with total of twenty- five questions in the questionnaire. Questions include: 

“I will try to dissect the big problems into small parts” to test the students’ 

perception to the decomposition skills; “I will try to think of the most effi-

cient way to solve the problems” to test their perception to the evaluation 

skills; “I will figure out the detailed steps for problem- solving” for the algo-

rithm skills; “I will try to find out the key factor of the problem” and “I will 

try to use previous experience to solve new problems” for the abstraction 

and generalization skills, respectively. The total correlation analysis showed 

that the correlation coefficients of the overall divergence ranged from 0.42 

to 0.61 and both reached significant (p < .01), which was a medium- high 

correlation, indicating that each dimension has a certain degree of correla-

tion. The reliability Cronbach’s alpha of this scale is 0.91. The reliabilities 

for the five dimensions ranged from 0.74 to 0.83. The pattern coefficient of 

all dimensions is above 0.4. It shows that the questionnaire has good reli-

ability and validity.
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In one of our studies, fifth- grade students in an elementary school in 

southern Taiwan were invited. There were sixty- five boys and thirty- four 

girls with a total of ninety- nine students participating in the GBL. It is 

found that students’ algorithmic skills can best predict their learning out-

come (Huang, Huang, et al. 2019); therefore algorithmic skill was used as 

the main predictor to categorize students into high algorithmic (HA) and 

low algorithmic (LA) groups (tables 12.1 and 12.2).

CoMPUtAtIonAl tHInKIng sKIlls

To know what CT skills are important and required in which stage of the 

game, and how the CT skills influenced the students’ gaming outcome, 

regression analysis was conducted using the five dimensions of the CT skills 

as predictors in our previous study (Huang et al. 2019; tables 12.1 and 12.2).

The analysis result showed that in the beginning round, decomposi-

tion skill was essential because the students need to know how to dis-

sect the navigation routes into small portions for the coding purposes. In 

the second and third rounds, generalization skill takes effect— students 

needed to refer to their previous strategies to progress in the game. In 

the end round of the game, decomposition skill was no longer impor-

tant because the students were supposed to be very familiar with the 

game mechanism and programming. On the other hand, evaluation skill 

showed positive effect, indicating that the students learned the strengths 

and weakness of various strategies and were able to choose appropriate 

ones for their victories.

The correlation test results also showed that the students’ skills of 

decomposition and evaluation were closely correlated to their gaming 

outcomes. Students with high algorithm skill performed better than those 

with lower algorithm skill. Since algorithmic thinking is the core con-

cept of CT, the fundamental education should place more focus on algo-

rithmic thinking so that students can have stronger problem- solving and 

strategic- thinking abilities.

steM AttItUde QUestIonnAIRe

We were curious to see if there were other factors that might influence stu-

dents’ gaming outcome other than CT. We explored students’ awareness 
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of the importance of STEM learning and attitudes to STEM learning. The 

STEM attitude questionnaire could be implemented before or after the 

game. In the study (Huang, Shih, et al. 2019), the STEM questionnaire 

was distributed with the post- test of CT, and the results of the question-

naires were cross- analyzed with Pearson Correlation Coefficient method.

The STEM attitude questionnaire was designed based on the relevant 

literature (e.g., Lou et al. 2009; Unfried et al. 2015). The questionnaire 

includes three dimensions, namely mathematics, science, and ET (engi-

neering and technology). There are nine questions in the mathematics 

dimension, nine questions in the science dimension, and twelve ques-

tions in the ET dimension with total of thirty questions in the question-

naire. The questionnaire includes questions such as, “In the future, I could 

do harder math problems” to test the students’ attitude to mathematics; 

“Science will be important to me in my future work” to test the students’ 

attitude to science; “I am good at building and fixing things” and “I 

Table 12.1 The first- round coefficients of each CT dimension with regression 

analysis

Model

Unstandardized coefficients
Standardized 
coefficients

tB Std. error Beta

HA Algorithm – 6.09 4.379 – .21 – 1.39

Evaluation – 3.28 3.377 – .14 – .97

Decomposition 7.99 2.700 .45 2.96*

Generalization – 5.81 2.990 – .30 – 1.94

Abstraction .391 3.572 .02 .11

LA Algorithm – 9.29 8.34 – .24 – 1.11

Evaluation .313 6.94 .01 .05

Decomposition 1.58 4.53 .08 .35

Generalization – 3.51 4.49 – .18 – .78

Abstraction 4.29 5.37 .22 .79

*p < .01

Source: Huang et al. (2019).
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would like to use creativity and innovation in my future work” to test the 

students’ attitude to ET. The reliability Cronbach’s alpha of these three 

dimensions scale ranged from .568 to .897. The value is above .5.

In the study, a t- test was used to analyze the STEM attitude question-

naire results between high algorithm (HA) and low algorithm (LA) groups. 

It showed that the students with high algorithmic skills have better STEM 

attitude than those with lower algorithmic skills. It also showed that the 

interdisciplinary robotic game is significant for HA students’ CT skills in 

the aspects of decomposition, abstraction, and generalization. Although 

the LA students’ STEM attitudes are not related to CT, the gaming results 

show that the robotic game could raise their learning motivations. In par-

ticular, the LA students were highly motivated in their problem- solving 

tasks even without extrinsic rewards and scores.

Further exploration into the relationship of students’ CT skills and 

STEM attitudes (table 12.3) has shown that all STEM aspects are correlated 

Table 12.2 The fourth- round coefficients of each CT dimension with regression 

analysis

Model

Unstandardized coefficients
Standardized 
coefficients

tB Std. error Beta

HA Algorithm 3.82 4.39 .14 .87

Evaluation 7.60 3.39 .35 2.25*

Decomposition – 9.18 2.65 – .54 – 3.46**

Generalization 3.09 3.19 .17 .97

Abstraction – 4.12 3.51 – .19 – 1.18

LA Algorithm – 5.15 7.48 – .18 – .69

Evaluation – .38 5.99 – .02 – .06

Decomposition 6.58 4.26 .47 1.54

Generalization – 5.96 4.63 – .43 – 1.29

Abstraction 3.53 5.21 .28 .68

*p < .05, **p < .01

Source: Huang et al. (2019).
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with decomposition and generalization skills. ET are correlated with only 

the algorithm skill. It indicates that the interdisciplinary robotic game is 

significant for students’ CT skills in decomposition, abstraction, and gen-

eralization. The students were highly motivated in their problem- solving 

tasks even without extrinsic rewards and scores.

nAvIgAtIon RoUte AnAlYsIs

The students’ CT skills are not only evident from the questionnaires but 

also demonstrated in their performances in the game. In each round of 

the game, all the groups have to predict their navigation routes and place 

markers on the map as the targeted destinations. After they take actions 

to mobilize the robots, their actual destinations are recorded for com-

parison. The students’ predicted path and actual path of the navigation 

routes are documented to assess their spatial concepts, judgments of dis-

tances and angles, calculation of the robots’ speeds, and the students’ 

programming skills (figure 12.4).

Table 12.3 Correlations between CT and STEM

Fact N STEM Pearson correlation Sig. (2- tailed)

Abstraction 94 Math

Science

ET

.147

.165

.142

.157

.111

.171

Algorithm 94 Math

Science

ET

.148

.189

.261*

.154

.067

.011

Evaluation 94 Math

Science

ET

.113

.082

.081

.279

.431

.436

Decomposition 94 Math

Science

ET

.356**

.213*

.356**

.000

.039

.000

Generalization 94 Math

Science

ET

.319**

.223*

.272**

.000

.031

.008

*p < .05, **p < .01

Source: Huang, Shih et al. (2019).
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The formula of the Pythagorean theorem is used to calculate the dis-

tance between the student’s predicted destination and the actual destina-

tion of every navigation. The formula is as in figure 12.5.

In the study (Huang, Huang, et al. 2019), students took four rounds 

to complete the tasks in the game (figure 12.6). Round 1 involved mostly 

straight lines to reach the destinations, so the students performed fair and 

similarly to each other. Round 2 involved making turns, so the measure-

ment and calculation to angles had added complexity. Therefore, the differ-

ences between their predicted destinations and actual destinations become 

larger; the varieties of students’ CT abilities were shown. In round 3, stu-

dents seemed to be more familiar with the measuring and coding processes, 

and the distances were greatly reduced. Their performances reached peaks 

at this stage. Thereafter in round 4, their performances remained consistent 

and stable since the tasks become a routine. From the overall results, it can 

12.4 Comparison of the predicted destination and actual destination of the mBot 

navigation.

Predicted path

Actual path

Predicted destination

Actual destination
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be seen that all groups had obvious improvements along the game and they 

all reached the expected learning outcomes at the end of the game. The 

students’ predicted paths almost match the actual paths of the navigation 

routes. The game allowed them to continually improve CT skills to the last 

round.

DISCUSSION AND CONCLUSION

A FRAMeWoRK FoR sItUAtIve Ct

The game <STEMport> normally runs for sixty to ninety minutes, depend-

ing on the level of students’ prior knowledge in all aspects. However, the 

extended curriculum can range from a few hours to a few months. It 

can be implemented in a short- term student club or camp; it can also be 

implemented within the structure of formal education as theme- based 

12.5 The distance between predicted destination to actual destination.

The distance between predicted path to actual path:

D = Distance, AP = Actual Path, PP = Predicted Path

D = √|PA 2 – PP 2|
–––––––––––

12.6 The distance between the predicted path and the actual path (Huang, Huang et al. 

2019).

80.00

70.00

60.00

50.00

40.00

30.00

20.00

10.00

0.00

France

Spain

Netherland

England

Portugal

1

37.34

15.00

0.00

15.00

33.00

2

8.60

5.00

75.66

18.25

30.00

3

0.00

18.00

5.83

15.00

12.81

4

4.24

8.00

10.00

12.21

11.18

×
×+

× × × ×

×+ ×+

×+ ×+

Downloaded from http://direct.mit.edu/books/book-pdf/2243178/book_9780262368971.pdf by guest on 03 October 2024



264 J.- l. sHIH

curriculum or be mentally linked to the curriculum of all subjects. Pap-

ert (1980) argued that robotics activities have tremendous potential to 

improve classroom teaching. Although the classroom teaching he referred 

to might mean a very different education system from those practiced in 

Asian countries, what brought us to the same conclusion is that learning 

is most effective when students are experiencing and discovering things 

for themselves. Either inside or outside of formal education system, the 

robotic activities have positive impacts on both specific CT and generic 

CT abilities.

To construct an effective situative CT learning environment, a few sug-

gestions are given to the instructional designer. One has to set up narrative 

scenario, provide dynamic context and open tasks for problem- solving, 

encourage creative solutions, create the demand of negotiations and use 

of algorithms, and make links to content or skills taught in other domain 

specific classes.

InteRPRetAtIon to PRevIoUs stUdIes

Our previous studies concluded that students in the game can learn and 

practice the spatial concepts; measure the angles, distances, and speed; 

as well as solve the navigation problems, all of which increased students’ 

CT skills. However, particular CT dimensions can better predict students’ 

gaming outcomes, especially algorithm. Therefore, it is necessary for us 

to help the students to increase their algorithm skills so that they can 

accomplish more in the strategic game and problem- solving tasks and 

can have better learning performance in general. More dimensions of CT 

skills should be reinforced in our pre- activity training, such as decom-

position of problems, abstraction for concept searching and solutions, 

and generalization of strategies to other situations. Thus, it is critical to 

sharing the elements of CT with other disciplines and prepare students 

for the future.

One of our major contributions is the proposal of an interdisciplin-

ary robotic game- based learning approach that guides students to face 

dynamic problem situations in an effective and enjoyable manner. From 

students’ feedback, they were generally excited and immersed in playing 

<STEMport>, which stimulated their interests in related domain learning. 
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It is a joyful mode of learning that also advances their collaboration, cre-

ativity, and self- confidence as they work together in the group for the 

common goals.

eXtendIng leARnIng Into tHe FUtURe

From other research (e.g., Domínguez et al. 2013), we see that students 

completed the gamified experience and got better scores in practical 

assignments and in overall performances. To nurture our next genera-

tions with CT competencies, many countries have started spiral interdis-

ciplinary curriculum for students at young ages (e.g., Apostolellis et al. 

2014; Bocconi et al. 2016; Shih et al. 2017). Taiwan is no exception and 

introduced CT in the new curriculum plan to be implemented beginning 

in August 2019, believing a high- quality computing education can guide 

the students to understand and change the world just as proposed in the 

United States (U.S. Office of Educational Technology 2016).

In our study, games helped students to integrate and reinforce exist-

ing knowledge and skills in an interdisciplinary way. Just like Barak and 

Assal (2018) said, this robotic learning environment and the pedagogical 

approach of involving the students in rich assignments of growing com-

plexity were among the major factors that contributed to students’ con-

tinuation in learning. Robotics is a learning tool that enhances students’ 

experience through hands- on, mind- on learning that, when combined 

with project- based and goal- oriented learning experiences, has long- 

lasting impacts on students’ learning and motivation for further explor-

ing in STEM- related fields (Eguchi 2010).

Since all the previous studies were short- term activities, it would be 

meaningful to know whether the students experience better performance 

in their formal classes after playing the game. Thereafter, linking more 

content into the regular formal curriculum and doing long- term observa-

tion and investigation will be our next step. This game and the related 

curriculum have successfully been adopted and transformed in several 

mutations in many elementary schools in Taiwan. We are ready to take 

the anthropological perspective to look into students’ behavioral changes 

in this innovative and student- centered classroom and to analyze how 

their personality traits would influence how they take on the role- play 
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and their actions. The humanistic approach for instructional and learning 

analytics would help us to understand, respect, communicate, and work 

with others better and to comprehend different individuals and cultures. 

The understanding of empowered education would sustain students for 

lifelong learning and would help us to be connected to the “worlds,” to 

adapt to the “differences,” and to make positive changes either in educa-

tion or life.
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