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This book provides teachers with a dynamic learning experience using computational 
thinking, computer programming, and unplugged activities that are grounded in different 
learning theories and pedagogical strategies to help students gain twenty-first-century skills.

It is generally accepted that there is an urgent need to introduce computer science 
concepts and skills into the K–12 curriculum of the United States (Barr and Stephenson 
2011; Cuny 2011; Grover and Pea 2013; Kafai and Burke 2014; Nager and Atkinson 
2016; Walser 2008; Wilson et al. 2010; Wing 2006, 2008, 2016). As digital technology 
becomes more ubiquitous around the world, the need for professionals with comput-
ing skills is expected to increase. Even those employed in other fields will need to learn 
about the capabilities and limitations of computers, data networks, and mobile devices. 
One might also argue that all citizens need to be able to respond to the political and 
ethical issues that advances in digital technology bring to the forefront (e.g., trade-offs 
between personal privacy and convenient data access, copyright protection vs. fair use, 
and the security of the nation’s data infrastructure, including the integrity of electronic 
voting). We believe that the solutions to these problems encompass policy, cultural, 
and educational change. Our book focuses on the latter. As more schools add computer 
science to their curricula, more teachers will need to learn about computational think-
ing to provide a solid foundation for incorporating computer science principles and 
applying programming skills. Our book offers a way to present these concepts to all 
middle and high school teachers and students.

In brief, we integrate a variety of pedagogical practices, across content and cur-
ricula, to demonstrate how computational thinking is a fundamental skill that we all 
(not just computer scientists) use. We believe that computational thinking enhances 
every student’s learning of the core content subjects as well as every child’s repertoire 
of reading, writing, and arithmetic. We concur with Jeanette Wing’s (2006) views that 
computational thinking teaches students critical thinking skills: how to think algo-
rithmically (i.e., how to solve problems using a progression of logical steps) and how 
to create useful and artistic artifacts with digital technology. Just as the printing press 
facilitated the spread of the “three Rs” (reading, writing, and arithmetic) during the 
Renaissance, computing and computers facilitate the spread of computational thinking 
and complex problem-solving abilities.

Since computational thinking is derived from human thought processes, it is vital 
to demonstrate its relevance to every student and every teacher. Children naturally 
learn algorithms (e.g., the sequence of steps required to tie their shoes) as well as logi-
cal systems (e.g., the rules of a game). Likewise, computational thinking can be inte-
grated into many different contexts. Our book demonstrates ways for middle and high 
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viii	 Preface

school teachers to incorporate computational thinking through the incorporation of 
computer science principles and programming skills into a broad range of subjects. For 
example, we show how art teachers can develop lessons on algorithmic art (also called 
generative art). By writing programs in Scratch or Codesters, students learn how to 
apply algorithms and geometric properties to create interesting and artistic computer 
images. Likewise, our book shows how English language arts students can use topologi-
cal graphs to analyze the social networks that explicitly connect fictional characters in 
a given literary work. Social studies teachers see how to include algorithms in their les-
sons to help students generate Cretan, Roman, and medieval labyrinths using a simple 
algorithm.

With our combined 60 years of teaching mathematics, coding, and educational 
topics across the K–20 spectrum, we have found that a variety of open-ended problem-
solving tasks, project-based inquiries, and paper-and-pencil activities enable students 
to develop a concrete understanding of the abstract principles needed for creating code 
and other digital artifacts. We employ a low-threshold, high-ceiling pedagogical prac-
tice for the activities and rich tasks we include for computational thinking. The activi-
ties and rich tasks we present in this book grew out of our experience teaching students 
in grades 5–12 during after-school programs (e.g., Girls Who Code) and summer camps 
(e.g., Governor’s Institutes and Code Camp). We present our activities and rich tasks in 
broad strokes because it is our intent to give teachers flexibility and choice in how to 
present the material to their students rather than being too prescriptive with timing, 
organization, and procedural steps. We believe all teachers are smart, industrious, and 
continuous learners, but some may not currently have an understanding of computa-
tional thinking and are seeking ways to transform their teaching practice. We under-
stand that not everyone will be able to use these activities as they are provided, but we 
are confident in teachers’ professional ability to choose and adapt activities that work 
for them in their context.

In creating this book, we are motivated by our belief that computational thinking, 
like written and oral communication and basic numeracy, is too important to relegate 
to a single subject. By inserting computational thinking into many different contexts, 
students will learn well before high school that computer science and programming has 
broad relevance. Distributing these “seeds” early and widely should generate greater 
interest in the need for studying computer science in high school and college. Broad 
coverage of computer science across K–12 education enables students from underrepre-
sented groups to access information and experiences they may not have had at home 
or after school. Moreover, by recruiting teachers to add computational thinking strate-
gies (and possibly coding) to their curricula, we may be able to gradually increase the 
number of students interested in computer science as a career or their ability to use 
these strategies and skills in other careers of interest.

We also wish to emphasize that this book is designed to help all teachers see how 
to include computational thinking and computer programming in a wide range of 
subjects, including literature, history, physical sciences, social sciences, and the visual 
arts. Though our primary focus is on middle and high school grades, some ideas can be 
used in the elementary grades. As awareness of the importance of computer science in 
education increases, we hope that this curriculum-integration model will be replicated 
across a variety of learning spaces.

Maureen D. Neumann 
Lisa Dion 

Robert Snapp
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Introduction

In this chapter, we advocate for introducing computational thinking into traditional con-
tent areas taught across a spectrum of middle and high school classes, including art, English 
language arts, social studies, and the physical and social sciences.

Our society has been reshaped by technological innovations that were unforeseen a 
decade ago. These breakthroughs have altered our patterns of living, working, and 
learning. While today’s adolescents are highly dependent on the use of technology 
for their entertainment (video streaming and gaming), social lives (social media), and 
learning (Google and Apple apps for learning), these digital natives are only using tech-
nology that has already been planned, tested, and marketed by others (Simpson and Clem 
2008). Though technology may be ever-present in our lives, only a narrow and select 
band of our population has the skills and knowledge needed to program the devices 
that are enmeshed in our society (Hill, Corbett, and St. Rose 2010; Rideout, Foehr, and 
Roberts 2010), knowledge and skills that are sorely needed for the twenty-first century.

Successful workers in the twenty-first century will need to demonstrate creativity, 
flexibility, perseverance, and information fluency in a technology-rich society (Dede 
2010; Saavedra and Opfer 2012). Consequently, schools and educators are being pressed 
to redesign traditional learning environments as ones that inspire innovation, accept 
complexity, and foster students’ development of dynamic, creative, and critical think-
ing skills that are essential for thriving in the complex life and work environments of 
today (Barrios et al. 2004; Jacobs 2010; Jacobs and Alcock 2017). Students who acquire 
these skills—such as an ability to solve problems, communicate, persevere, work as a 
team, and learn from mistakes—are applying some of the fundamental components of 
computational thinking.

Computational thinking has been defined in many ways in the educational lexi-
con. We see computational thinking as a set of mental and cognitive skills that are 
applied to the problem-solving process to help individuals discover and apply differ-
ent strategies and algorithmic solutions to challenging and complex problems. We 
echo Jeannette Wing’s view that “the essence of computational thinking is abstrac-
tion” (the mental tools of computing), that computational thinking is everywhere and 
for everyone, and that computational thinking is a human endeavor that represents 
a cross-disciplinary skill set that should be taught before college (Wing 2008, 3717). 
Computational thinking involves defining and understanding the core components of 
a complex problem (Grover and Pea 2013; Lu and Fletcher 2009) and uses a reflection 
process to analyze the appropriateness of the strategies used to solve the problem (Lee 
et al. 2011).

1
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2	 Chapter 1

Computer programming, computer science principles, and computational think-
ing are often intertwined in the literature, but they are not equivalent concepts. 
Programming provides a context that enables us to practice and incorporate compu-
tational thinking and computer science principles. Computer science principles entail 
creativity with computing, abstraction to reduce information to its relevant concepts, 
processing data and information, algorithm applications to solve problems, developing 
computer programs for new knowledge and creative expression, and appreciating the 
power of the internet and the global impact computing has had on our world (College 
Board 2017). Computational thinking includes the general principles of computer sci-
ence in its repertoire; however, it also applies a thought process that enables students to 
unpack and solve challenging complex problems by leveraging the use of abstraction 
with the capabilities of computers to develop and test solutions (Aho 2012; ISTE 2016).

Many disciplines require, promote, and teach problem-solving skills, logical think-
ing, or algorithmic thinking without computers (Bell et al. 2009; Denning 2017b). 
Computational thinking shares many elements with scientific, mathematical, and 
engineering thinking strategies and draws on a rich legacy of related complex thinking 
and problem-solving frameworks (Boulden et al. 2018; Bundy 2007; Henderson et al. 
2007; Nardelli 2019; Weintrop et al. 2016). However, in addition to scientific thinking 
and scientific modes of inquiry, researchers can employ computational thinking to 
process and analyze large amounts of data to find answers to questions or to model 
or simulate situations that in the past, without computing power, were unattainable 
(Denning 2017a; Nardelli 2019; NRC 2012).

Computational thinking is integrally linked to critical investigations in medicine, 
environmental science and sustainability, manufacturing, automation, commerce, 
and communication. It is central to the creativity involved in the arts, such as movie 
special effects, music, and visual art, and facilitates communication and information 
gathering through social media and web searches (Kafai and Burke 2014; Margolis et al. 
2008; Margolis and Fisher 2002; Wing 2008). As a result, several different entities across 
education, industry, government, and professional organizations are aligning toward 
making computational thinking part of the everyday school curriculum (ISTE 2016; 
NCSS 2017; NCTM 2014; NGSS Lead States 2013; Wing 2016), but knowing how to 
help students think computationally in the K–12 classroom has not been clearly laid out 
for teachers (Angeli et al. 2016).

The ability to use technology does not necessarily lead to a literate technology user, 
just as the ability to read a word does not lead to its comprehension. Within the con-
text of technology, technological literacy is often seen and taught in unsophisticated 
ways (e.g., using apps or downloadable programs that have been created by someone 
else) that are divorced from a social or historical context rather than seen as creative, 
interactive, or reflective work (Vee 2013). We believe that employing computational 
thinking and computer science principles, along with creating computer programs, can 
lead to more fully literate technology users.

We discuss how to integrate computational thinking into instructional practice, 
and why, through integrated classroom activities and rich tasks that cross a variety 
of content areas using computer programming (e.g., Scratch, Codesters, and Python) 
and follow a low-threshold, high-ceiling, wide-wall learning format. Along with coding 
experiences, each chapter in this book includes activities that do not rely on the use of 
digital technology. We integrate computational thinking into a broad range of content 
areas in the middle and high school curricula (e.g., art, social studies, physical and 
environmental sciences, English language arts, and mathematics), and the activities 
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Introduction	 3

and tasks described connect directly to national standards. In the middle and high 
school grades, computational thinking can be applied either by using computers or 
with pencil-and-paper activities. We include each of these types of activities incor-
porating problem solving, abstraction, and teamwork, and we differentiate the learn-
ing experiences for students by including embodied learning activities, group work 
experiences, and varying student products or processes of learning. We also show how 
students can code solutions to different questions by using open-source programming 
environments.

1.1  Learning for the Twenty-First Century

During the early 1900s, public schools were designed to transfer skills (in reading, writ-
ing, and basic mathematics) to a burgeoning population of immigrant children. Public 
education became a means to assimilate and acculturate a diverse population of young 
people to work in American factories and industries (Jacobs and Alcock 2017; Labaree 
1997; Tyack and Cuban 1995). In this earlier environment, recall and memorization 
were valued skills. A hundred years later, schools are being summoned to prepare peo-
ple for a very different world, one that focuses on the process of knowing rather than 
the recall of facts.

The goal of education in the twenty-first century is for students to experience an 
active learning environment and to metacognitively understand how, as students, they 
acquire and process new knowledge in addition to learning new information and facts. 
Twenty-first-century learning therefore has students engaging in solving and discuss-
ing rich tasks that are situated in real-life contexts and interacts with students’ prior 
understanding (Bransford, Brown, and Cocking 2000; Delpit 2006; Tomlinson 2017). 
Twenty-first-century skills represent the ability to think, learn, reason, and solve com-
plex problems; to overcome struggles, work through barriers, and learn from mistakes; 
to communicate, collaborate, and contribute effectively in a team setting; and to adapt 
and apply knowledge in new situations (Boaler 2015, 2016; Dweck 2006; Hattie 2009; 
Johnson and Johnson 2010). These twenty-first century skills enables people to con-
tinually learn, adjust, and respond to an ever-changing world and environment (Kay 
2010). With this form of knowledge, more students will be empowered to ask questions 
or complete complex tasks that they could not have done without using technology 
(Muir 2006; Puentedura 2014). The attributes for twenty-first-century learning span 
many disciplines, but in this book we are going to focus on how these skills intersect 
with computational thinking.

To Situate Learning in Real-Life Contexts and Rich Tasks
Learning is based on the presupposition that knowledge is actively constructed by the 
individual through experiences and is not the result of knowledge passively received 
from an outside source (Brooks and Brooks 1999; Cathart et al. 2016; Fosnot and Perry 
1996; von Glasersfeld 1990). When creating rich tasks, teachers draw from the con-
texts, culture, conditions, and language of their students’ lived experiences, or they 
can provide a common experience from which their students’ work originates (Gut-
stein and Peterson 2013; NCTM 2014; NRC 2012), thus ensuring that all students 
have the opportunity to engage in high-level thinking. Diverse, rich tasks engage stu-
dents in meaningful learning through individual and collaborative experiences that 
promote the students’ ability to make sense of the content they are learning. Students 
feel empowered to ask questions and solve problems with technology and to modify 
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4	 Chapter 1

and adapt technology to meet their interests and needs (Brennan and Resnick 2012). 
A rich task

■	 is accessible for a wide range of learning abilities and has multiple entry points (low 
threshold);

■	 provides opportunities for extended learning and challenges advanced learners 
(high ceiling);

■	 incorporates a variety of approaches and representations (wide walls);
■	 is grounded in real-life experiences;
■	 encourages collaboration and discussion;
■	 engenders interest and engagement with the topic;
■	 sparks students’ curiosity and promotes decision-making; and
■	 fosters creativity, individuality, and variety in the application of that knowledge

(Ahmed 1987; Boaler 2015; Grover and Pea 2013; NCTM 2014; Papert 1980; Piggott 
2011; Repenning, Webb, and Ioannidou 2010; Resnick 2016; Tomlinson 2017; Turchi 
and Malizia 2016; Wolf 2015).

Authentic activities allow students to view the skills they are learning as tools that 
they can then apply and adapt in future settings, and the understandings and percep-
tions that result from these experiences lead to increased competence for transferring 
learning to new situations (Boaler 2015). When rich tasks are more closely connected 
to students’ personal interests and real-life contexts, students are more likely to engage 
in and become curious about completing the task, thereby increasing their motivation 
and knowledge of the content (Aguirre, Mayfield-Ingram, and Martin 2013; Gutstein 
and Peterson 2013; Hogan 2008; ISTE 2016; Jansen and Middleton 2011; NCTM 2014; 
NRC 2012). Rich tasks that focus on having students develop the processes and skills of 
problem solving and reasoning result in learning strategies that apply and transfer to a 
myriad of other contexts and disciplines (Boaler 2000, 2016).

To Think, Learn, and Reason through Problem Solving
Thinking, learning, reasoning, and growth are the fundamental aspects of an educa-
tion. Twenty-first-century learning engages students in solving and discussing rich 
tasks that promote adaptive reasoning (i.e., the capacity to think logically and to jus-
tify one’s thinking) and strategic competence (i.e., the ability to formulate, represent, 
and solve problems) (Kay 2010; NCTM 2014). Applying computational thinking is an 
active process, in which each student builds their knowledge from personal experi-
ences, coupled with feedback from peers and teachers through engaging and real-life 
problems (Angeli et al. 2016; Bransford, Brown, and Cocking 2000; Cuny 2011; Mayer 
2004; Wing 2016).

Brains are not fixed or static; our ability to think and learn expands over time and 
from experience (Boaler 2016; Sousa 2016). Being computer literate or being able to 
code is “not a binary state of there or not there at a single point in time” (Brennan and 
Resnick 2012, 23). Any approach to teaching computational thinking that includes 
computer science principles and coding needs to encourage a growth mindset (that 
ability and proficiency are developed through experience) rather than a fixed mindset 
(some people have the “genes” for using computers and programming code and others 
do not). A growth mindset values all students’ thinking; it uses pedagogical practices 
such as differentiated tasks, mixed-ability groupings, and public praise for contribu-
tions and perseverance when working through complex problems (Boaler 2011, 2016). 
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By providing multiple approaches to learning the content, either by varying the pro-
cess through which a student learns or varying the product in which a student demon-
strates that knowledge, students are better able to learn the content and demonstrate 
their knowledge (Tomlinson 2017). Not all students in the same grade learn in the 
same way, nor are they alike in their interests, personalities, or hobbies. When using 
computational thinking to solve complex problems, a variety of strategies or solutions 
may be possible. The key is how the students explain and justify the choices they made.

All students can learn, and develop knowledge, from experiences (Boaler 2011, 
2015, 2016; Tomlinson 2017). The greatest amount of learning takes place in class-
rooms where tasks and activities consistently encourage high-level student thinking 
and reasoning (Boaler and Staples 2008; Hattie 2009, 2017). A modern take on the 
work of leading learning theorists of the twentieth century (e.g., Dewey 1916, 1938, 
1964 [1899]; Piaget 1954, 1973, 1977; Vygotsky 1997 [1978]) reflects a constructed, 
hands-on, real-life approach to learning that is articulated and shared. These learning 
theorists argued that learning and understanding take place when learners are actively 
engaged in constructing meaning about their lives and the world around them through 
hands-on experiences and social interactions that challenge their preconceived notions, 
resulting in an extension and/or refinement of their initial thinking.

Vygotsky (1997 [1978]) argued that knowledge is socially constructed through 
social interaction with peers and teachers. As students explain their ideas for solving a 
problem and evaluate each other’s strategies, they develop a deeper understanding of 
their thinking and thereby engender learning (Boaler 2015; Sherin, Mendez, and Louis 
2000). When students share their thinking with their peers and justify their reasoning 
and strategies for how and why they coded a certain way, they develop the cognitive 
skills needed to verbalize how they constructed their understanding of the problem. 
Sharing programs and coding strategies also enables other students in the classroom 
to become flexible thinkers because the students become aware of other strategies that 
may be more efficient, easier to perform, or more understandable for them (Lee et al. 
2011; Jacobs and Ambrose 2008). Furthermore, when students have a misconception 
that may be highlighted by explaining their reasoning, they experience a disequilib-
rium that challenges their initial beliefs or perceptions about a topic in order to change 
their initial perceptions, and sharing and justifying thinking can provide that equilib-
rium (Piaget 1954, 1973, 1977).

To Struggle Productively and Learn from Mistakes
In the twenty-first century, students need to learn how to persist when answers do 
not come easily, to experience productive struggle, and to see mistakes not as a point 
of failure but as an experience from which to learn and grow (Bray 2013). Having 
students experience productive struggle helps them gain a deeper understanding of 
a topic, making learning engaging and therefore a worthwhile effort. After a student 
productively overcomes a struggle point, they feel empowered and proud of what they 
accomplished (Boaler 2015; NCTM 2014; Warshauer 2015). When students make a mis-
take, understand how and why they made that mistake, and learn from it, connections 
are made within their brains that enhance the memory of that learning (Boaler 2015; 
Sousa 2016). However, too much complexity in a problem or task without the requisite 
knowledge or problem-solving skills leads to frustration and feelings of inadequacy, 
whereas too easy a problem or task leads to boredom and disengagement (Boaler 2016; 
Dweck 2006; Lemke 2010). Sousa (2016) underscored how the learner’s emotions can 
impact learning either positively or negatively and how the learning context affects the 
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6	 Chapter 1

ability to retain and transfer new learning. Struggle that creates frustration and leads to 
a mental shutdown is not an effective learning experience. Teachers can create oppor-
tunities for students to experience productive struggle by balancing the complexity 
of a task with the students’ current repertoire of knowledge and strategies (ISTE 2016; 
NCTM 2014; NRC 2012).

Some forms of computer programming can enable students to learn persistence in 
problem solving and turn mistakes into a successful learning experience. During the 
process of testing and debugging their code, students are applying higher-order think-
ing skills and persevering through a struggle point (Lee et al. 2011). The systematic 
steps to find the mistake in a nonworking coded program, understand why the code 
is not working, and then fix it demonstrate perseverance, problem solving, content 
knowledge application, and productive struggle, and exemplify applying computational 
thinking.

To Contribute, Communicate, and Collaborate in a Team Setting
Twenty-first-century skills and computational thinking are grounded in the realization 
that in real life most problems are too complex to be solved by a single person but are 
solvable when many minds work on the problem together. The ability to collaborate, 
communicate, and work together as a team has been fundamental for successful learning 
and achievement in any century (ABET 2018; Lingard 2010). Collaboration or working 
together as a group in order to achieve a shared goal or a specific task (by members con-
tributing, communicating, and adding their ideas to the group) enhances learning for all 
students (Cohen 1994; Johnson and Johnson 2010). Discussion, cooperation, and col-
laboration within groups promote more frequent summarizing, explaining, and elabo-
rating of what we know. They enhance our ability to listen, question, process, discern, 
and learn the perspectives of other people in the group. Collaboration also has the added 
benefit of getting input from peers as well as getting their critical feedback (Johnson and 
Johnson 1992).

Effective group work skills are not an innate ability but rather are taught. Two com-
mon problems that inhibit effective group work are the status ordering within a group 
and the group dynamics that are created by status ordering. Elizabeth Cohen describes 
status ordering as “an agreed upon social ranking where everyone feels it is better to have 
a higher rank within the status order rather than a lower rank” (Cohen 1994, 27). Status 
characteristics are general expectations for competence that are perceived by other peo-
ple. A person’s status is often determined by their race, social class, gender, education, 
attractiveness, and athleticism (Cohen and Lotan 1995, 1997). In the K–12 classroom, a 
student’s status is often determined by their reading ability, mathematical knowledge, 
and artistic ability. The status of the students has a direct impact on the effectiveness of 
a group and their ability to work together (Lotan 2006). Understanding status ordering 
and how it plays out is important when using group work with technology.

The person with the strongest technology skills is often working the keyboard and 
mouse, deciding which technology is used, and dominating the learning experience. 
The other members of the group or pairing are passive learners—leaving decisions to 
be made by the person with stronger technology skills (higher status). Effective group 
work strategies can address some of these status issues that occur in the classroom and 
reduce status ordering in the group. One way to mediate status domination is to assign 
students roles and responsibilities in their group and have those roles and responsi-
bilities change or rotate as the lesson or unit proceeds. Another teaching strategy is to 
notice the contributions and skills of students who are not high on the social status 
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ladder and highlight areas of contribution they made. By providing opportunities for 
classroom discourse and social interaction that leverage students’ strengths, they learn 
about the contributions that everyone brings to the classroom (Cohen 1994; Cohen 
and Lotan 1995; Lotan 2006; Tomlinson 2017).

To Adapt and Apply Previous Learning in New Situations
A twenty-first-century learner must possess not only basic skills but also the capability 
of acquiring and adapting new ones (Tyson 2012; Jacobs and Alcock 2017). A Twitter 
tweet by Neil deGrasse Tyson characterizes learning in the twenty-first century: “Know-
ing how to think empowers you far beyond those who know only what to think” 
(@neiltyson, May 19, 2012). A fluid intelligence reflects a person’s ability to use their 
knowledge and skills to analyze complex relationships, to infer and deduce commonal-
ities, and to transfer previous knowledge and skills to solve novel problems (Bransford, 
Brown, and Cocking 2000; Sousa 2016).

Interdisciplinary approaches to learning require that students and teachers con-
nect, transfer, and apply concepts flexibly across the curriculum in various contexts 
(Drake and Burns 2004). Knowledge that is taught in multiple contexts and across 
disciplines is more likely to support flexible transfer than is knowledge taught in a 
single context (Bransford, Brown, and Cocking 2000). According to Fuchs et al., “The 
broader the schema, the greater the probability that individuals will recognize connec-
tions between familiar and novel problems and will know how to apply the solution 
methods they have learned” (Fuchs et al. 2004, 419). Computational thinking repre-
sents a problem-solving skill set that engages students in learning and extends beyond 
computer science classes into a broad range of content areas (Voogt et al. 2015; Yadav, 
Hong, and Stephenson 2016).

To Empower More Students to Be Proficient in Technologically  
Prolific Environments
A growing body of research (e.g., Hattie 2009; Manchester, Muir, and Moulton 2004; 
Muir 2006; Solomon and Shrum 2007) asserts that technology can produce positive aca-
demic outcomes when properly integrated into school content. Its influence depends 
heavily on the purpose and context of the integration (Barrios et al. 2004; Florida Cen-
ter for Instructional Technology 2017; Puentedura 2009). Some of the biggest educa-
tional technology initiatives in the United States are based in the middle grades, largely 
because adolescents are among the most avid computer users and find technology par-
ticularly engaging (Rideout, Foehr, and Roberts 2010; Simpson and Clem 2008). Most 
adolescent students acquire a sense of themselves as being strong or weak in certain 
areas, such as math, science, humanities, or computers, and develop a fixed mindset 
about their abilities during middle school (Boaler 2016; Margolis and Fisher 2002). One 
reason why so few students study computer science (CS) and information computing 
and technology (ICT) is the disconnection between students’ understanding of these 
fields and the opportunities available to them in intermediate and secondary schools 
(Barr and Stephenson 2011; Wilson et al. 2010).

In addition to using different computer applications, today’s digital natives should 
know how to write and modify computer programs. People who are technologically 
illiterate in the twenty-first century will increasingly find themselves marginalized 
socially and economically. Currently, few students, especially women and minorities, 
pursue CS majors or ICT careers (Hill, Corbett, and St. Rose 2010; Logan and Crump 
2007; Margolis and Fisher 2002; Margolis et al. 2008; National Center for Education 
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Statistics 2016; Whitney and Taylor 2018). This is clearly a problem, since women and 
people of color provide diverse perspectives, voices, and knowledge in the STEM (sci-
ence, technology, engineering, and mathematics) workplace (Belenky et al. 1996; Fox, 
Sonnert, and Nikiforova 2009). These diverse voices and perspectives must be part 
of the computer hardware and software design teams within different STEM fields, 
because technology devices and software applications are reshaping our world and we 
want it reshaped to fit all its people (Margolis and Fisher 2002; Margolis et al. 2008; Sax 
et al. 2017; Wilson et al. 2010).

The stereotype of computer majors as geeks or computing as a male-dominated 
profession pervades our social media and societal biases. This stereotype is particularly 
damaging to young women and students of color because it leaves them thinking that 
a computing profession is not welcoming to them (Blickenstaff 2005; Greenwald et al. 
2002; Hill, Corbett, and St. Rose 2010; Margolis and Fisher 2002; Margolis et al. 2008; 
Whitney and Taylor 2018). Positive computer experience in the early years of educa-
tion has been shown to influence all students’ future interest in computer-related fields 
(Margolis and Fisher 2002; Margolis et al. 2008; Sax et al. 2017). These positive expe-
riences include age-appropriate, hands-on technology activities or working on issues 
that have a positive social impact in students’ communities. Also, working on a project 
with a partner (pair programming) or group enables students to see computing as not 
just an individualistic enterprise (Klawe, Whitney, and Simard 2009; Sax et al. 2017). 
When women and students of color see computing as a tool to positively influence 
society or address social justice issues, they are more likely to be interested in computer 
science fields as a major or profession (Riegle-Crumb et al. 2012).

Experiences within middle and high school classrooms play an important role in 
determining what students choose as a college major and/or future career. In some 
schools, coding experiences are already occurring by accessing different free websites 
(such as Hour of Code, Scratch, and Codesters), but it is often separate or an add-on to 
the content instruction. Moreover, many schools cannot afford or don’t have access 
to a computer science teacher (Wilson et al. 2010), so computational thinking becomes 
part of an added after-school experience (e.g., Lego Robotics, Girls Who Code, Black 
Girls Code). If a computer science class is taught, it is usually a high school elective 
or advanced placement course. Both demonstrate examples where only a select few 
students can access the experience (Boulden et al. 2018). By integrating computational 
thinking within your content area, you are transforming the lives of your students by 
bringing digital equity to your classroom and school, thereby opening more future 
career paths for them.

1.2  Computational Thinking in Practice

Papert (1980) pioneered the idea that programming can influence how children learn 
to think conceptually about mathematical topics. Papert had students direct the move-
ments of a turtle by coding commands in BASIC in the LOGO environment. During 
these lessons, he observed children engaging in “animated conversations about their 
own personal knowledge as they try to capture it in a program to make a Turtle carry 
out an action that they themselves know very well how to do” (Papert 1980, 28). He 
argued that in becoming a programmer, the child “acquires a sense of mastery over a 
piece of the most modern and powerful technology and establishes an intimate con-
tact with some of the deepest ideas from science, from mathematics, and from the 
art of intellectual model building” (Papert 1980, 5). Writing a computer program that 
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works is an incremental and iterative process that begins and advances in small steps, 
sometimes changing direction and sometimes returning to previous spots. It is not 
a clean and sequential process; rather, it is an interactive and adaptive process that 
takes many revisions, such as a written piece of work (Brennan and Resnick 2012; Vee 
2013). It is critical that programmers develop strategies for figuring out, dealing with, 
or anticipating problems. Programmers need to learn how to test and debug their 
code in the same way writers edit their texts. Reading through what the code actually 
does—not what the author thinks it does—is a skill that enhances learning (Brennan 
and Resnick 2012, 7).

Skills Needed for Programming
Modern technological advances exploit the fundamental computer science skills of 
abstraction, sequencing, loops, events, modularizing, conditionals, algorithmic pro-
cesses, data usage, and scalability (Brennan and Resnick 2012; College Board 2017; Har-
low et al. 2016) that form the foundation of requisite coding knowledge. In addition to 
these skills, we add two processing skills (transference of skills and comprehending the 
code) to supplement this list.
Abstraction  Abstraction is “the process of generalizing from specific instances” (Lee 
et al. 2011, 32). “Abstraction reduces information and detail to facilitate a focus on 
relevant concepts” (College Board 2017, 14) to understand and solve problems. In 
problem solving, abstraction may take the form of stripping down a problem to what 
are believed to be its bare essentials. Abstraction is also commonly defined as captur-
ing the common characteristics or actions into a set of instructions that can be used 
to represent all other instances, thus leading to the automation of the task (Lee et al. 
2011, 33).
Sequencing  A fundamental concept in coding is the ordered list of individual steps or 
instructions to be executed by the computer for a particular activity or task. Sequenc-
ing puts “commands in the correct order so that the computer accomplishes a specific 
task” as required (Harlow et al. 2016, 340). “Like a recipe, a sequence of programming 
instructions specifies the behavior or action that should be produced” (Brennan and 
Resnick 2012, 3).
Loops  Loops enable the same sequence of steps or instructions to be run multiple 
times—that is, a piece of code that can be repeated a specific number of times (Brennan 
and Resnick 2012; Harlow et al. 2016). The speed of a computer allows this repeated 
set of instructions to be executed in nanoseconds. With automation, the computer is 
instructed to execute a set of repetitive tasks quickly and efficiently compared to the 
processing power of a human, thereby enabling a labor-saving process.
Events  An event is one thing that causes another thing to happen. It is an essential 
component of interactive programming (Brennan and Resnick 2012). Event-driven 
programming is different from call functions or subroutines because it is always listen-
ing for interruptions (e.g., keyboard or mouse input) instead of having a set order of 
executable statements.
Modularizing  Modularizing is the ability to build something large by putting together 
collections of smaller parts; these smaller parts are often called subroutines or functions 
and can be called up several times with a sequence of instructional steps (Brennan and 
Resnick 2012).
Conditionals  Conditionals in code (e.g., statements such as if-then-else or when) tell 
the computer to make decisions based on certain conditions. Conditionals support the 
expression of multiple outcomes. For example, when the green flag is clicked, the game 
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begins, or if the left arrow is pressed, then an object moves one step to the left (Brennan 
and Resnick 2012; Harlow et al. 2016).
Algorithmic processes  Algorithms are a step-by-step set of instructions that can be 
applied more generally—not just to one specific computational problem that you are 
working on at the moment. Algorithms are tools for developing and expressing solu-
tions to computational problems (College Board 2017). Within algorithms, there may 
be operators that support mathematical, logical, and/or string expressions and that 
enable the programmer to perform numerical and/or string manipulations (Brennan 
and Resnick 2012).
Data usage  Defining variables involves storing, retrieving, and updating data values 
(such as keeping score in a game or updating the value of a variable) (Brennan and 
Resnick 2012). Data usage is widely applicable in coding because you have to store val-
ues for many different variables that can be retrieved later in the program. Data usage 
might help you keep track of the value in order to determine a mathematical calcula-
tion or know where to draw the next line in a pattern.
Scalability  Scaling up is the ability to take what you have done with a smaller set of 
data and see if it works with a larger set of data. With scalability, the same code can 
handle data of different sizes and/or variables of different values. A common problem 
with scalability is that your program may run in a reasonable amount of time with a 
small set of data but when you scale up your program it may take far too long so it is 
no longer useful.
Transfer of skills to new situations  To grab code, apply it in other programs, and use 
it appropriately in new situations is a skill set that requires a deeper knowledge of code 
usage. It is one thing to write code that works; it is another to select and/or employ 
the same concepts or adapt pieces of code in a new context. That transference of skills 
shows deeper levels of understanding of the coding concepts and demonstrates a flu-
ency for coding. The analysis of code to examine how and why it works is a reflective 
metacognitive practice that validates whether the code adaptations, in a new context, 
were correct (Lee et al. 2011). A programmer who is able to explain what a particular 
piece of code does but is unable to meaningfully use it in a new context does not fully 
understand or is unable to transfer the concept that grounds the piece of code (Bren-
nan and Resnick 2012). To transfer coding language and usage to a new situation dem-
onstrates students’ comprehension of the coding concepts.
Reading, understanding, and updating previously written code  When working in the 
computer industry, learning how to read, understand, and build on other people’s code 
is an important skill. Brennan and Resnick (2012) found that when middle school stu-
dents interacted with, reused, and remixed code available to the Scratch online com-
munity, they developed “critical code reading capacities” (Brennan and Resnick 2012, 
8) and enabled students “to explore different ways of knowing, such as critiquing, 
extending, debugging, and remixing as well as fluency with different concepts and 
practices” (Brennan and Resnick 2012, 21). Many students see little reason to revise 
their code if the program is working, but by sharing different strategies for coding, they 
begin to see ways to make their program more efficient. Brennan and Resnick (2012) 
found that when creating programs in Scratch and then sharing them with their peers 
(an authentic audience), they valued “that others were engaging with and appreciating 
their creations, whether by entertaining others, engaging others, or educating others” 
(Brennan and Resnick 2012, 11). Sharing their written code provides students with an 
external motivator to focus on revising their code to be more efficient or more easily 
understood (Lee et al. 2011).
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Teaching computer programming skills to all middle and high school students has 
been facilitated by the development of graphical user interface programming environ-
ments that allow students to code by clicking, dragging, and dropping block commands 
into a coding area, thereby making it easier for all students to try programming and feel 
successful doing it (Harlow et al. 2016; Kafai and Burke 2014). Computer programming 
can exercise creative thinking, innovation, and design skills that transcend disciplines. 
However, we must be wary of learning to code for coding’s sake; simple coding does 
not require computational thinking. As Voogt et al. put it, “To focus on programming 
as the primary instantiation of computational thinking, and to expect programming 
alone to result in more refined thinking . . . ​would be a mistake both conceptually and 
pedagogically. The focus [of computational thinking] should be on the higher-level 
concepts being learned and the multiple domains in which they can be applied” (Voogt 
et al. 2015, 718). Computer scientists (e.g., Bell et al. 2009; Cuny 2011; Wing 2008) 
believe that learning to code should be combined with instruction in computational 
thinking. By having students apply computational thinking when programming, we 
can engage students in solving authentic and complex real-world problems.

1.3  Integrating Computational Thinking into the Classroom

We understand the pressures you are under as teachers—the need to increase students’ 
test scores, match student learning objectives to state and national content standards, 
provide support and structure to students who are experiencing trauma or anxiety, 
enable healthy social and emotional growth, and produce educated citizens for a fully 
functioning democratic society—so we do not want you to see this as an additional 
task. We want the activities related to computational thinking to be value-added for 
you and your students. We want to help you think about ways you can integrate com-
putational thinking into what you are already doing.

In the 1990s and early the following decade, students often learned the Microsoft 
Office suite (Word, Excel, and PowerPoint) as a separate course. Now, those word pro-
cessing, spreadsheet, and presentation skills are an integrated component of teaching 
and learning. We believe that just as the Google platform has transformed how and 
what students are learning and producing in their classrooms, the integration of com-
putational thinking will likewise be a common experience for students of all ages. We 
also believe that computational thinking and coding is too large a skill and concept to 
be left to the computer science teacher or as a stand-alone class. As we think about inte-
grating computational thinking into our teaching, it is good to familiarize ourselves 
with the different ways to integrate content.

Drake and Burns (2004) describe an integrated curriculum as one that makes con-
nections that cross disciplines and experiences. There are three approaches to integrating 
your content: multidisciplinary, interdisciplinary, and transdisciplinary. The essential 
difference between the three approaches is the degree to which the various disciplines 
remain separate entities.

■	 A multidisciplinary integrative approach focuses the subject matter around a central 
theme. This is often seen in a combined English and social studies or science and 
mathematics themed lesson. For example, students may read books or stories writ-
ten during the Great Depression of the 1930s while the social studies teacher talks 
about the major historical events during that time, or students may learn about 
volume and mass during science class by using different materials and formulas, 
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while during math class the focus is on their derivation and computation. In these 
examples, the content is still distinct and separate but there are connections that are 
specific to each subject area.

■	 An interdisciplinary integrative approach primarily organizes the curriculum around 
common learning across the content. Common skills and concepts from the disci-
plinary standards are embedded to emphasize the interconnectedness of the learn-
ing. For example, in section 2.2 of chapter 2, on Andrade-style art, a student would 
need to understand the mathematical concepts of the degrees of a circle, angle mea-
sure, and coordinate plane within the context of the artist’s style in order to generate 
that form of art.

■	 A transdisciplinary integrative approach crosses many disciplinary boundaries, with 
the learning experience or the curriculum organized holistically around students’ 
questions and concerns. Many teachers may see this materialize in personalized 
learning or student-negotiated project-based learning that transcends disciplinary 
boundaries. For example, a student might be interested in investigating the effects 
of global warming trends. The teacher, in collaboration with the student, maps out a 
learning plan that could include the different topics within science, math, literature, 
and history that are involved in the investigation. The exploration of the effects of 
global warming could not be separated into discrete content areas, for the informa-
tion that is to be gathered, explored, and worked on informs and builds on itself.

These three categories of curriculum integration form a continuum from multidisci-
plinary integration, representing the most discrete way to integrate content, to trans-
disciplinary integration, representing a complete holistic unification of content that is 
student driven. Teachers can incorporate any of these approaches to integrate content, 
whether in a classroom or across a team, and they can be used across the K–12 curricula 
(Drake and Burns 2004).

1.4  Book Preview

This first chapter of our book presents the research that grounds and supports the activi-
ties and rich tasks that are provided in chapters 2–6. Going forward, each chapter presents 
learning activities and rich tasks that promote computational thinking across different 
content areas in the middle and high school curricula. We included examples of learning 
tasks that enable any beginner to create a working program (low threshold) but are flex-
ible enough to satisfy the needs of advanced programmers (high ceiling and wide walls).

We provide examples of coded programs and suggestions for related activities that 
do not require the use of digital technology to explore different real-life issues and 
authentic experiences. We have found that hands-on learning and paper-and-pencil 
activities enable students to develop a concrete understanding of the abstract princi-
ples needed for creating code and other digital artifacts. We incorporate learning theory 
and apply pedagogical strategies to help engage students in meaningful and develop-
mentally appropriate low-threshold/high-ceiling activities and rich tasks. These learn-
ing experiences are characterized by relevant and integrative curricula that are taught 
and assessed in a variety of ways. The activities and tasks in this book are applicable 
to different grade levels and connect directly to professional organizations’ content 
standards. Although the activities we present are tested and ready for use in classrooms, 
we prefer to think of them as seeds for further curricular development. The following 
paragraphs describe the foci of chapters 2–7.
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Chapter 2: Creating Algorithmic Art  In this chapter, middle and high school students 
learn to create algorithms that generate expressive abstract images in the styles of Vic-
tor Vasarely, Josef Albers, Edna Andrade, and Wassily Kandinsky. As artists, they cele-
brated the power of simple shapes, geometrical properties, and abstraction within their 
art. Here, principles of algorithmic art are introduced within rich tasks that integrate 
computer programming with visual art and geometry. We also present the distinctions 
between algorithms, programs, and artifacts, as well as the concept of abstraction in the 
contexts of art, geometry, and computer science. We demonstrate how students can use 
the Codesters or Scratch languages to draw these geometrical works of art.
Chapter 3: Applying Graph Theory to Analyze Literature and Social Networks  Here, 
students learn how to construct topological graphs that clarify the relationships 
between characters in different novels and the patterns of disease propagation. This 
chapter is based on Moretti’s (2011) essay “Network Theory, Plot Analysis,” in which 
graph theory clarifies the interactions between characters in Shakespeare’s Hamlet, King 
Lear, and Macbeth. Moretti represents each character from a work of literature by a 
point (or vertex), and characters that share a social relationship are connected by a 
curve (or edge). We use his idea of graph theory to analyze a character’s social network 
in different works of literature, such as J. K. Rowling’s Harry Potter series. This activity 
also helps students understand abstract models (a graph) through the organization of 
information into a discrete structure. The chapter includes examples of how this lesson 
can be used with different literary texts and how the concept of graph theory transfers 
across contexts and content to be used to understand social networks, disease propaga-
tion, and other complex phenomena.
Chapter 4: Using Abstraction, Iteration, and Recursion in Labyrinths and Mazes  In 
this chapter, we describe and show how labyrinths and mazes are different in structure. 
Students learn an iterative algorithm for generating a Cretan-style labyrinth. Then, 
using paper and pencil, students create their own labyrinths of different sizes. These 
hands-on activities include background information on labyrinths in different areas of 
the ancient world, their use and meaning during medieval times, and the development 
of multicursal mazes during the Italian Renaissance. Students learn to apply abstrac-
tions in order to graph mazes and create new ones, and then to solve them using a 
recursive depth-first search algorithm.
Chapter 5: Simulating the Different Laws of Physics in Video Games  Students apply 
Newtonian physics (e.g., laws of motion, universal gravitation) along with the law of 
reflection to create different computer games. Using team-based programming with 
Codesters and/or Scratch, students create games that simulate the motion of objects or 
projectiles within a confined space or near the earth’s surface.
Chapter 6: Critically Examining and Analyzing Data  In this chapter, students and teach-
ers learn how to locate, analyze, and present empirical data pertaining to critical issues 
affecting our society today. The chapter specifically focuses on using a primary data 
source to investigate questions about local temperature trends. Students download 
data files from a US government website (e.g., www​.ncdc​.noaa​.gov​/cdo​-web​/) and then 
use Google Sheets and/or Python to manage, process, analyze, and interpret the data.
Chapter 7: Incorporating Computational Thinking into the Classroom  We conclude 
in chapter 7 with examples from teachers who incorporated computational thinking 
into their classrooms based on the ideas presented in this book.

We also discuss how you can access different resources to include computational 
thinking in your own teaching. For example, Scratch is a free, online, visual program-
ming language designed for users of all ages that allows them to create their own games, 
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interactive stories, or animations (see www​.scratch​.mit​.edu) and share those creations 
with an online community. In Scratch, users form interactive computer programming 
scripts by dragging and dropping program blocks that link together like puzzle pieces. 
Codesters, another online programming language (see www​.codesters​.com), has all the 
same benefits as Scratch programming environments. It uses a Python-based text edi-
tor instead of blocks, so users can type the lines themselves and use Python commands 
outside the drag-and-drop options. There is also interest in promoting computational 
thinking without computers. Tim Bell and his colleagues from the University of Can-
terbury in Christchurch, New Zealand, have created the CSUNPLUGGED website (see 
www​.csunplugged​.com). They offer some great suggestions for lessons that help pro-
mote computational thinking and computer science principles without using comput-
ers. We also have a supplemental website (teachingcomputationalthinking.com) that 
contains the executable programs that we discuss in our chapters.

1.5  Going Forward

At its essence, computational thinking is a humanistic process. We solve problems in 
our lives every day. We design methods that enable us to organize, manage, and recall 
information for efficiency. We look for patterns in our problems as a strategy for scaling 
up to solve larger and/or more complex problems. Computational thinking employs 
many of those methods in systematic ways. It is a set of thinking skills, habits, and 
approaches that are integral to solving complex problems that rely on abstractions 
and algorithmic processes (Wing 2008), as well as a reflective process for analyzing the 
appropriateness of those methods. But, like communication, numeracy, and critical 
thinking skills, computational thinking is too important to relegate to one specific 
content area or class. Moreover, we contend that students will understand and value 
computational thinking most when its relevance is demonstrated across the widest 
possible range of subjects within learning experiences that are developmentally respon-
sive, authentic, challenging, and empowering. Whether you take small steps or large 
ones to integrate computational thinking, it is something that can transform students’ 
learning experiences in schools.
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In this chapter, we discuss how students can create algorithms that generate original art-
work using the Scratch and/or Codesters environments. Practical tasks are designed to con-
nect students with abstract and conceptual art in the style of Wassily Kandinsky, Edna 
Andrade, Josef Albers, and Victor Vasarely.

Art takes many shapes and forms, and it is a way to express emotions and beauty. 
Abstraction involves interpreting, understanding, and processing something in a way 
that exposes its core concepts and truths. In art, abstraction can mean using geomet-
ric shapes and figures to represent more complex objects, feelings, and emotions. In 
coding, abstraction can mean taking a task and breaking it down into executable, 
algorithmic steps to communicate an idea to the computer in a way that it can under-
stand. These two definitions of abstraction do not seem related at first glance, but in 
this chapter we encourage students to study abstract art styles in a way that allows 
them to transfer those ideas into coded masterpieces. Our perspective is that computa-
tional thinking represents a formalization of human creative expression. By abstract-
ing in the coded sense, students will exercise computational thinking methods and 
better understand abstraction and algorithmic processes in the art sense—abstract 
algorithmic art.

Some artists use geometric shapes and patterns (e.g., circles, rectangles, grids) to 
form their art. Wassily Kandinsky, a Russian painter in the early 1900s, had overlapping 
geometric shapes in his art. One of his most well-known pieces is a grid of concentric 
circles. Edna Andrade, an American artist, was one of the first to create optical illu-
sion art, in the 1960s. She was one of the pioneers of the Op Art movement and used 
many circles, or what appeared to be circles, in her works. Josef Albers, a German-born 
American artist and educator, used shades and hues to color his abstract art. He helped 
develop modern art education in the 1900s. Victor Vasarely, a Hungarian-French artist, 
was another Op Art pioneer, known for stretching the lines in a grid to create the illu-
sion of other shapes. In this chapter, we are going to imitate these artists’ styles in both 
unplugged and computer-based activities.

Art created on a computer is different from other art media in two major ways: 
the computer uses code to create art, and the art is displayed mainly via light from a 
computer screen. Throughout history, artists have used different media, such as paint, 
watercolor, pastel, pencil, and ink. In the digital age, light from a screen is used to cre-
ate art. Think about how the screen on your computer or phone shines in the darkness. 
Your screen is made up of thousands of tricolored lights called pixels. You will program 
these lights to turn on and off to display your art on the screen.

2 Creating Algorithmic Art
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Learning Activity 2.1: Codesters and Scratch Programming Languages

In this chapter, we are going to be demonstrating code using Codesters1 and Scratch. If 
you have never coded in either of these languages, check out the Scratch coding tutorial 
at scratch​.mit​.edu or the Codesters tutorial at codesters​.com for how to program in these 
languages. You can create a free account through their websites and complete their tutorials 
to become acquainted with the platform. An hour or two of going through their tutorials 
will increase your ease with programming in these languages. We also recommend try-
ing out the different Hour of Code coding modules at hourofcode​.com to learn beginning 
computer programming content and to build muscle memory for computational thinking.

We also have unplugged tasks that use other media (such as construction paper, 
colored pencils, markers, and paint) to create these art forms. The algorithms and com-
putational thinking concepts will be the same, and the results will look similar. The 
difference is that these unplugged activities do not use code and are not displayed in a 
digital format, but with either plugged or unplugged media, guiding students through 
the thought process behind the creation of these art forms is at the heart of compu-
tational thinking. The following questions outline the process of interpreting, under-
standing, and creating algorithmic art.

Students interpreting the art:
■	 What do students notice as they look at the art?
■	 What processes did the artist employ to create the art?
Students’ understanding of creating the art:
■	 How would the student create the art?
■	 What steps are repeatable when creating the art?
Students creating the art:
■	 What tools are needed to create this art form?
■	 What steps would the students take to replicate this art form either with art supplies 

or with a computer?

Each of the artistic styles discussed in this chapter takes you through an example of 
interpreting, understanding, and creating the art by using computational thinking.

2.1  Kandinsky Art

Kandinsky’s art style involves a bunch of geometric shapes that overlap each other. If we 
can create lines of code that will draw one shape, we can reuse that code to draw many 
shapes. We want to use different colors, sizes, and positions so that the shapes will scatter 
across the screen. We will use commands to randomize for these values, which means 
the computer will choose where the shape is placed. The code will be creating the art.

To simulate Kandinsky’s style, we will use

•	 loops to draw many shapes and
•	 sequencing to choose different colors, sizes, and locations for each shape.
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Learning Activity 2.2: Kandinsky Unplugged

In this activity, students create their own version of a Kandinsky work of art. Let your stu-
dents pick or create their own shapes of different colors. Using construction paper, paint, 
magazine cutouts, markers, and other items, have the students place the shapes randomly 
on a canvas (e.g., a piece of paper, a poster board), or as a group project you could choose to 
create a class mural on which students randomly place a shape of their choosing.

First, let’s design the algorithm (see algorithm 2.1). We want to have lots of shapes 
placed on the canvas in various colors, locations, and sizes, and we can have steps that 
choose these colors, locations, and sizes. From these three pieces of information, we 
can draw a shape. If we repeat those instructions X times (choosing new random values 
with each repetition), then we will have made Kandinsky-style art.

Algorithm 2.1: Kandinsky Art Algorithm

repeat X times:
choose a random color
choose a random location
choose a random size
create a shape of that size in that location with that color

In figure 2.1, you can see the algorithm in the Scratch environment. We set the 
sprite to a ball, which you can see in the example output in figure 2.2. A sprite is a 
character within the Scratch environment that you can program to move and draw, 
among other functionalities. Your students can play around with the editable fields of 
this environment in the following ways:

■	 Changing the number in the repeat block will determine the number of balls 
drawn.

■	 Changing the sprite to a different object will modify how the art is seen. In this 
program, the sprite is a ball.

■	 The go to block covers the entire drawing area. By shrinking the range of the num-
bers in this command, your students can restrict the balls to appear in only part of 
the screen.

■	 The change color effect block has a drop-down menu for the different colors, 
which allows students to change the transparency, brightness, pixelation, mosaic, 
and other fun effects instead of color. Changing the numbers in this line will affect 
how much each ball can differ from the one previously drawn.

■	 The change size block makes the ball bigger or smaller, so changing the numbers 
there will affect how much the sprite can grow or shrink.

The clear and stamp commands are what erase and draw the balls, respectively. Note 
that the clear command is outside the repeat loop so that it only erases once, at the 
beginning of the program, whereas the stamp command is inside the loop so that 
the ball is drawn each time it is moved and modified.
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Now we will code this algorithm in the Codesters environment, a Python-based 
animation language, to draw 100 random squares. Later in this section, we will discuss 
how you can modify the algorithm to draw other shapes.

We need to look at how the program stores the pieces of information we need. 
Location is stored as a coordinate pair (x, y). You can think of the coordinates as in the 
game Battleship: when you state a location such as B5 in Battleship, you are using two 
coordinates (a letter and a number) to specify the horizontal and vertical placement 
of a location. It works the same way in Codesters, except we use two integers: the first 
coordinate (called x) is the horizontal placement and the second coordinate (called y) 
is the vertical placement. The location (0, 0) is in the center of the drawing area, and x 
and y can range from −250 to 250. Figure 2.3 shows the coordinate grid that Codesters 
uses. It includes a square centered at location (125, 125), a circle at (125, −125), a star at 
(−125, −125), and a triangle at (−125, 125). The size of the square is stored as an integer 
representing the length of each side. Color is a bit more complicated, so let’s investigate 
what it entails.

Figure 2.2
An example of the output from the Kandinsky-style Scratch algorithm.

Figure 2.1
The Kandinsky-style Scratch algorithm.
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In coding, colors are separated into red, green, and blue parts. If all three parts 
are shining their fullest, the pixel appears white. If all are turned off, the pixel appears 
black. All the colors you can imagine can be represented as a combination of these three 
light parts. For example, combining red and green makes yellow. This is the opposite 
of combining paint colors: the more paint colors you mix together, the closer to brown 
and black you get; the more light colors you add together, the closer to white you get.

We choose how much red, green, and blue go into each pixel by choosing a num-
ber for each one. The numbers are represented in hexadecimal form for the Codesters 
project. This is base 16, so each digit can be represented as 0–9 or a–f (for 10–15, where 
a represents 10 and f represents 15). Each of the red, green, and blue parts is repre-
sented with two hexadecimal digits, as low as 00 and as high as ff. We write all three 
parts consecutively with a pound sign at the beginning, so the color #000000 is black 
and #ff0000 is red. What colors would #0000ff, #ffff00, and #888888 represent? 
(Answers: blue, yellow, and gray.)

Program 2.1 gives the Codesters algorithm to create Kandinsky-style squares and 
figure 2.4 gives an example output from the program.
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Figure 2.3
An example of a coordinate grid with coordinates from −250 to 250 on the x and y axes. 
Image: Courtesy of Codesters.
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Program 2.1: Kandinsky-Style Codesters Art

# lines that start with a pound sign are comments
# import the random number generator library module 
import random
# define a list of digits possible for hexadecimal
# colors with a variable named chars
# the next list should be on one line of code
chars = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 
'c', 'd', 'e', 'f']
# create a loop that runs 100 times
# the variable i will hold values 0–99
for i in range(100):

	 # create a variable named color
	 color = "#"
	 # create a loop that runs 6 times
	 # the variable j will hold values 0–5
	 for j in range(6):
	 # the color variable is updated to add
	 # random digits from our chars list
	 color += chars[random.randint(0, 15)]
	 # call up square module or subroutine with

Figure 2.4
An example of the output from the Kandinsky-style Codesters algorithm. Image: Courtesy 
of Codesters.
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	 # sprite = codesters.Square(x, y, width, color)
	 # the next command should all be on one line
	 sprite = codesters.Square(random.randint(-250, 250), random.randint(-250, 

250), random.randint(1, 50), color)

The first line of executable code (import random) allows us to use the Python 
random library, which helps us choose random numbers for the location, size, and 
color of each square. The second line (chars =  . . . ) defines a list, named chars, 
of digits possible for our hexadecimal colors. Then comes a for loop that executes 100 
times. You can have your students change the 100 to a different number to see more 
or fewer squares appear. Note that the rest of the lines after this are indented. This is 
important because it means that these lines are inside the loop (i.e., these lines are 
executed 100 times).

Learning Activity 2.3: Counting Possibilities

How many different pieces of art can the Kandinsky-Style Codesters Art program produce?
If there are 100 shapes on the screen, each with a random color (the red, green, and blue 
parts will each have 16 × 16 = 256 options because they are represented as two hexadecimal 
digits), at a random location on a 500 × 500 coordinate grid (going from −250 to 250 on the 
x axis and −250 to 250 on the y axis), with a width between 1 and 50, that is 100 × 256 × ​
256 × 256 × 500 × 500 × 50 = 20,971,520,000,000,000 possibilities! That’s almost 21 quadril-
lion possibilities, or about 2.1 × 1016.

For the next line, inside the for loop, we create our random hexadecimal color. 
We start by declaring a variable named color and setting it to be a string containing 
the pound sign. This variable will eventually store the entire hexadecimal color. With 
Codesters, as with its base language, Python, a # at the beginning of the line starts a 
comment, a # inside quotation marks makes it a string variable (a sequence of char-
acters), and we are defining a string that stores a hexadecimal value representing the 
color. To create a random color, we loop six times and choose a random digit each time 
from our chars list to add to our color variable. The computer randomly chooses 
an integer from 0 to 15 and uses it to index into the list, where the integers 0–9 will 
index to their corresponding characters, 10 will index to a, and 15 will index to f. It 
adds that character to the end of the color string variable. Your students should not 
change the 6 in the loop, because hexadecimal colors need to be exactly six digits long, 
but they can play with the options for the randomized color. All the options should 
be between 0 and 15, and the first number should be less than the second number (to 
produce a valid range from low to high). For example, if they change the number 
0 to 10 in the line color += chars[random.randint(0, 15)], then the characters 
chosen can only be in the a–f range (which are high values). This will produce lighter 
colors. Conversely, if the students change the second number from 15 to 5 (color += 
chars[random.randint(0, 5)]), then this will produce darker colors.
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Learning Activity 2.4: Beyond Squares

Codesters has a button on the left pane called Shapes, which produces a list of options. 
Drag and drop the Circle command into the text window to create a circle. If you replace 
the Square command with the Circle command, then the art will show all circles instead of 
squares. Your students can then explore how they could randomly choose either circle 
or square for each of the 100 iterations of the loop. Let them send jpegs or screen captures 
of their art to share with their peers and discuss some of the choices they made in the 
art. Together you can look into using those jpegs to display on school monitors between 
announcements or on the computer labs’ computers as a screen saver.

The last command in the algorithm is to create a square. As seen in the comment 
that starts with the # symbol, the inputs to create a square are the x and y coordinate 
values at the center point of the shape, the width (or side length), and the color. If you 
move your cursor over the drawing area of the Codesters program, you will see the 
coordinate points update in the upper-right corner. The middle of the drawing area is 
the location (0, 0), and both axes range from −250 to 250 from left to right and from 
bottom to top. This is why the random integer we choose for the x and y coordinates 
has that range. Your students can change the first digit in both ranges from −250 to 0 
to see all the squares appear in the first (upper-right) quadrant. The width is set to a 
value between 1 and 50. You can have your students change that range as well to see 
the effects of larger or smaller squares.

Learning Activity 2.5: Kandinsky Circles

Kandinsky’s most well-known art piece is a grid of concentric circles. For this coded activ-
ity, let students explore how to create concentric circles in Codesters. Hint: You can keep 
the colors random, but you will want to manually set the values for size and location. See 
figure 2.5 as an example of what it should look like.

You can run the program multiple times without changing the code and it will 
produce different output. This is because it’s coded art.

2.2  Andrade Art

One of Edna Andrade’s well-known styles of optical illusion is to make you see circles 
when there are none. If you do an online search for Edna Andrade’s images, you will see 
examples of these Op Art pieces. Show them to your students and ask them to draw an 
imitation of this style. Some of them may draw a bunch of lines going out in a circle for 
a small radius, then a ring of lines tilting the other way outside it, then another ring of 
lines tilting at a different angle, and so on. Other students may draw a zigzagging line 
from the center to the edge and repeat it at different angles. Have your students share 
their drawings with each other and talk about the different approaches. If you were to 
code this, what would the steps be? What information would you need to know before 
you could start drawing? What set of directions can you give someone else that would 
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allow them to draw it? This is the computational thinking process of abstraction, to 
transform the observation and understanding of the art into a series of steps that can 
form an algorithm.

We choose to code Andrade’s style by drawing zigzagging line segments that all 
originate from the center point. The zigzags are identical copies of each other but posi-
tioned to point at a different angle from the center. You can think of this as applying 
rotational geometry, or as fanning out from an initial position. The result is that if you 
connect the corresponding elbows of all the zigzag lines, they would form a circle. In 
fact, from afar you may think that the drawing does have circles included; it is only on 
closer inspection that you can see that they are really lines radiating out from a central 
point.

To simulate Andrade’s style, we will use

•	 abstraction to interpret Andrade’s style as zigzags;
•	 data usage to store angles and distances for the zigzags;
•	 scalability to choose how many zigzags to draw; and
•	 loops and sequencing to draw the zigzags.

To develop an algorithm to draw such an art piece, we start in the center of the 
screen and draw identical zigzagging lines outward, each starting at a different angle. 
In order to draw one zigzag line, we need to know the direction and length of each 
leg. This should be the same for all the lines, so it needs to be decided at the begin-
ning of the program. We use randomness to calculate this, so the program will create 
a different piece of art each time it runs. Algorithm 2.2 gives the pseudocode for the 
algorithm.

Figure 2.5
Kandinsky-style concentric circles. Image: Courtesy of Codesters.
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Algorithm 2.2: Andrade Art Algorithm

choose random angles and distances for the zigzag
choose X number of lines
repeat X times:

start at the center of the screen
turn to face a new direction
loop through the angles and distances to draw the zigzag line

Learning Activity 2.6: Zigzag Art

Take construction paper and let your students cut out a zigzag pattern. Then have them 
make identical copies of that zigzag until they have enough to spread out in a circle (all 
the pieces starting from the center point). Have them glue all the zigzags in place. Then tell 
them to step back and look at the piece from across the room. Can they see the concentric 
circles? To demonstrate why they see it, let them use a geometry compass to measure the 
distance from the center to one of the zigzag elbows and trace a circle at that radius. The 
circle should go through the elbows of all the other zigzags, too. This is the circle they see 
from afar.

In the turn to face a new direction step, we want all the lines to be spaced 
evenly. This will produce the best optical effect. In Codesters, angles are measured in 
degrees (where 360 degrees is a full circle), so we make two decisions: we choose a num-
ber of lines that is evenly divisible by 360, and we calculate the starting angle to be in 
increments of (360 / number of lines). This increment needs to be an integer with no 
decimal part so there will be no rounding errors in our program.

You can see the Scratch code in figure 2.6. Program 2.2 is the Codesters version of 
the algorithm and an example output is seen in figure 2.7.

Program 2.2: Andrade-Style Codesters Art

# import the random number generator from library
import random
# set the background color to blue
stage​.set_background_color("blue")
# create a default sprite to draw with
sprite = codesters.Sprite()
# hide the sprite so you can see where it draws
sprite.hide()
# set the pen width to 4 pixels
sprite​.pen_width(4)
# set the number of lines to draw to 24
num_lines = 24
# create a list of random angles
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The first executable line imports the random number generator from the library 
so that the program will be able to choose random numbers. Then we set the back-
ground of the screen to blue. You can have your students change that to a different 
color if they want, or the line can be excluded to leave the default background. The 
next two lines create a default sprite (sprite = codesters.Sprite()) and hide it 
(sprite.hide()). The default sprite looks like the Codesters logo, which you will 
notice appears for a split second when you run the program. That is because when 
the sprite is created, but before it is hidden, it shows up on the screen. It appears so 
fast you may not even see it—that is how quickly the program executes the lines of 
code. We hide the sprite because we want to see the lines being drawn as it moves 
around. To see that the program draws underneath the center of the sprite, you can 
comment the line that hides the sprite by adding a pound (#) symbol at the begin-
ning of the line.

# the next command should all be on one line
angles = [random.randint(25, 75), random.randint(-75, -25), random.randint(25, 75),  
random.randint(-75, -25)]
# set total_angles to the sum of the angles list
total_angles = sum(angles)
# create a list of random distances
# the next command should all be on one line
distances = [random.randint(50, 100), random.randint(50, 100),random.randint(50, 
100), random.randint(50, 100)]
# create a loop that runs num_lines times
# the variable i will hold values 0-(num_lines-1)
for i in range(num_lines):

  # make sure we don't draw
  sprite​.pen_up()
  # move to the center of the drawing area
  sprite.go_to(0, 0)
  # turn to draw a new line
  sprite.turn_right((360 / num_lines))
  # ready to draw
  sprite​.pen_down()
  # loop for each angle in the angles list
  # the variable index will hold values 0–3
  for index in range(len(angles)):
      # turn the angle stored in the angles list
      sprite.turn_right(angles[index])
      # move the distance from the distances list
      sprite​.move_forward(distances[index])
  # return to the starting angle
  sprite.turn_left(total_angles)
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Learning Activity 2.7: When the Number of Lines Is Not Divisible by 360

In this coded activity, students are asked to explore what happens to the spacing between 
the lines when they use a number that is not divisible by 360.

Set the number of lines to 19. What do you notice about the difference in the spacing? 
Why is that? What happens when the number of lines is set to 7 as compared to 19? How 
does the spacing between the first and last lines change?

Figure 2.6
The Andrade-style Scratch algorithm.
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The next line sets the width of the sprite pen to 4. You can have your students play 
with the thickness of the zigzag lines by making this number larger or smaller. Then 
we set the number of lines to 24, which your students can change to another positive 
whole number that evenly divides into 360. If the number does not evenly divide into 
360, the program will still run, but there will be a gap between the first and last lines 
drawn that is larger than the gaps between the other lines. This is because there was a 
large remainder left after dividing the number of lines into 360, and that remainder is 
the number of extra degrees between the first and last lines drawn.

Learning Activity 2.8: More Codesters Fun

Besides changing the values in the code given, you can have your students add code to 
make their program unique. Have them try one or all of the following tasks:

•	 Choose a color pen to draw with in the Andrade-Style Codesters Art code. It defaults to 
black, but use a command like sprite​.set_color("green") to draw in a different 
color. How would you make every other line alternate colors? (Hint: Remember that i 
is a counter variable. If i is even, use one color; if i is odd, use the other color.) How 
would you choose a random color? (Hint: Review section 2.1 on Kandinsky art.)

•	 Add or remove angles and distances. If you add more of each, with a lower range of 
distances, then there will be shorter lines with more zigzag turns.

•	 Share the output with each other or with the class. Explain what you did, why, and 
what you learned by changing the code.

Figure 2.7
An example of the output from the Andrade-style Codesters algorithm. Can you see the 
circles? Image: Courtesy of Codesters.
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Next, we create the angles that determine the structure of the zigzag lines. These 
angles will be an array of four values. An array is a list of values and is used so that we 
can capture multiple pieces of information with one variable name. Each has a range 
of 25–75 degrees, where the program will choose a random integer within that range. 
The values alternate between positive and negative, which enforces the zigzag behav-
ior. When you turn right at a positive angle, you are turning clockwise; when you turn 
right at a negative angle, you are really turning left (counterclockwise). Since we are 
using a loop to make our code cleaner and more efficient and scalable, we need to use 
the same command for both types of turns. This is why we turn right all the time, at 
positive and negative angles, instead of alternately turning left and right. You can have 
your students modify the ranges and/or the signs of these values to see the effects. We 
want to know the total of all the angles at which we turn because we want to return 
to the center of the screen and reset our angle to where we started. This way we can 
build from there to draw the next line. We then set a total_angles variable to the 
sum of the angles in the list. Even though there is a mixture of positive and negative 
angles, adding them together will correctly calculate the angle away from the initial 
direction. We then create a similar array of distances. Distances cannot be negative, so 
all four values are set to be within a range of 50–100. This is an arbitrary range that your 
students can play around with; it is large enough to be visible and take up most of the 
drawing area but small enough that it does not go far off the drawing area. Note that 
the number of angles and number of distances should match (in this case, there are 
four of each). If they are unbalanced, your program may not run properly.

Now we enter a loop that runs for each line that is drawn. The variable i is a counter 
that automatically increments with each line drawn. For the first line, i will have value 
0. For the last line, i will have value num_lines—1 (which in our case will be 24−1, so 
the loop for our program will run with i values from 0 to 23, or a total of 24 times).

Inside the loop, before we start drawing the line, we need to make sure we are posi-
tioned correctly. The way Codesters works is that you can move your sprite at any time. 
If the pen is down while you move, it will draw a line following your movement. If the 
pen is up, nothing will be drawn. So, the first thing we do is lift the pen and make sure 
the sprite is in the center of the screen (at location (0, 0)). We then turn right (rotate 
clockwise) for our increment of 360 / num_lines (calculated earlier in this section) to 
get to the angle where our line should begin.

Now we are finally ready to draw the line, so we put down our pen. Then, for each 
angle and distance we randomly set, we turn right and move forward. After we have 
finished drawing the line, we turn left to undo all the right turns, so we have reset our 
zigzag angles and are ready for the next line to be drawn.

To see the randomness effect of drawing different angles and distances, your stu-
dents can run the program multiple times without changing the code.

2.3  Albers Art

Josef Albers liked to create concentric squares where each square had a different color 
hue. Together, the colors created a tasteful palette that earned Albers his fame. To create 
an art program in his style, we draw concentric squares and use patterns with hexadeci-
mal colors described in section 2.1 to create the color hues. We will employ computa-
tional thinking to explore and observe different patterns of colors and placements of 
squares to better understand Albers’s abstract art.
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To simulate Albers’s style, we will use

•	 data usage to store information about the colors;
•	 loops to draw the concentric squares; and
•	 abstraction to interpret the pattern of color hues and square locations and sizes.

In order to imitate Albers’s style of art, we want the squares to be overlapping, with 
the smaller inside squares having their centers located lower than the larger ones. Since 
they are overlapping, and the last one drawn appears on top, we need to draw the larg-
est square first. We have all the squares centered left to right on the screen, but their 
widths decrease as we go along. For our example code, we chose to have six squares, 
with the largest having a side length of 480 and each square shrinking in decrements 
of 80 units.

Learning Activity 2.9: Albers Art Unplugged

In this activity, students create their own form of Albers-style art.
Hand out printer paper to your students. Ask them to cut out five rectangles of differ-

ent sizes. Then let them choose three colored markers or pencils and color all five rectangles 
(each one differently) using those three colors. Some rectangles will need to be a mixture 
of two or more colors. The students then glue the rectangles on top of each other, with 
the largest at the bottom and the smallest on top. Each student’s work will look differ-
ent because each chose different colors, but each work will have some continuity of color 
within itself because all the rectangles were colored with three markers.

We also want the colors to change for each square, but unlike in the Kandinsky 
example earlier in the chapter, we do not want to choose completely random colors 
for each shape. Instead, we want there to be a pattern to the colors, a way to connect 
them from smallest to largest. To create this effect, remember that hexadecimal colors 
are represented in the format #1234ab, where the six digits have values in the range 
0–9 and a–f (i.e., 10–15) and the first two digits represent the red part, the middle 
two represent the green part, and the last two represent the blue part. We will use 
the same character list as in the Kandinsky example to show the color options. For 
each of the red, green, and blue parts, we will choose a starting character and a delta. 
A delta is a change in the value. For example, if a value was set to 10, a delta of 2 
would make it 12 and a delta of −3 would make it 7. The starting character is in the 
0–9 range, and the delta will have options 0 (no change), 1 (incremental change), 
or −1 (decremental change). As an example, if the red part started at 8 and had an 
incremental change of 1, it would show the pattern 88, 99, aa, bb, cc, dd in the six 
rectangles drawn.

We set the starting range to be 0–9 for the red, green, and blue colors, not the full 
spectrum of hexadecimal digits. This is because we do not want the colors to go past 
f (the largest digit). In the highest case, the color part will start at a (10) and increment 
to f (15). We start at 0 because the numbers above and below zero are valid indexes 
into a list. In Codesters, you can use negative numbers to index from the back of the 
list: an index of −1 is the last thing in the list, −2 is the second-to-last thing in the list, 

Downloaded from http://direct.mit.edu/books/book-pdf/2259273/book_9780262366144.pdf by guest on 03 October 2024



30	 Chapter 2

and so on. In our case, decrementing from 0 will land you at f. If a color started at 2 
and decreased, its six colors would be 22, 11, 00, ff, ee, dd.

Program 2.3 gives the Codesters code for the Albers-style art. The Scratch version is 
shown in figure 2.8. Note that Scratch does not have an easy way of drawing a filled-in 
shape, so we create a variable for pen width and draw lots of squares inside each other.

Figure 2.8
The Albers-style Scratch algorithm.

Program 2.3: Albers-Style Codesters Art

# import the random number generator library module
import random
# define a list of digits possible for hexadecimal
# color with a variable named chars
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The first executable line includes the random number generating library so that 
we can compute random numbers. Then we define a list of chars made up of the 16 
hexadecimal digits. The next six lines set the red, green, and blue starting values and 
deltas, as described. We compute the deltas here (as opposed to later inside the loop) so 
that the color changes an equal amount for each box drawn. This produces the smooth 
pattern of color hues as the squares get smaller.

Then we start a loop that will execute six times. We set i to be a loop variable that 
holds the values of 6, 5, 4, 3, 2, and 1, for each iteration of the loop. Notice that the 
range looks different here: it has three numbers in the parentheses instead of the usual 
two. The first is the starting number, the second is just after the ending number, and 
the third is the increment, so it will start at 6, stop before 0, and decrease by 1 for each 
iteration. We needed to set it up this way because the width of the squares is dependent 
on this number and, as described earlier, we need to draw the largest square first, so we 
want the loop to start with the largest number.

Inside the loop, we create our color by forming a hexadecimal string. We calculate 
the red, green, and blue parts based on the starting value and delta of each, using i to 
make sure the value is different for each iteration. We then multiply it by 2 so that we 
have duplicate digits. This works because in Codesters you can multiply a string by an 
integer to repeat it: "hello" * 2 becomes "hellohello", and in our case "3" * 2 
becomes "33".

The last line in the program draws the square. The center of the square is at x coor-
dinate 0, which means it’s centered on the drawing’s complete area. The y coordinate of 
the center point becomes lower with each square drawn, so it is based on the i variable. 
The width of the square is also based on i, because our squares should get smaller each 
time through the loop. The last input is the color we calculated.

# the next list should be on one line of code
chars = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 
'e', 'f']
# set the start value for the color's red part
red_start = random.randint(0, 9)
# set whether red will get darker, lighter, or stay the same
red_delta = random.randint(-1, 1)
green_start = random.randint(0, 9)
green_delta = random.randint(-1, 1)
blue_start = random.randint(0, 9)
blue_delta = random.randint(-1, 1)
# create a loop that will have i values from 6 to 1
for i in range(6, 0, -1):

  # set the color based on the variables above
  color = "#" + chars[red_start + (i * red_delta)] * 2
  color += chars[green_start + (i * green_delta)] * 2
  color += chars[blue_start + (i * blue_delta)] * 2
  # draw a square of the color calculated
  sprite = codesters.Square(0, (6—i) * -20, i * 80, color)
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Learning Activity 2.10: Albers Coding Extended

In our example code, our pattern with the colors is to have each of the red, green, and 
blue parts duplicate their digits and incrementally change. What other patterns can your 
students come up with?

Ask your students to experiment with their own hues and see what they create. They 
can share their creations. Later, ask them: How did you decide on these colors? Did you 
decide on random colors? Why? How did you code that? Were the hues purposely selected? 
What problem-solving strategies did you use to determine the hues?

You may notice when you run the program multiple times that the colors change. 
For the most part, the squares form a spectrum of hues. You may also notice that occa-
sionally you get one solid square. That happens when all three colors have deltas set to 
0, which should have a 1 in 27 (1/27) chance of happening. This is because there is a 1 
in 3 (1/3) chance of getting a delta of 0 and it happened for all three color parts, which 
is a 1 in 3 times 1 in 3 times 1 in 3, equaling a 1 in 27, chance (1/3 × 1/3 × 1/3 = 1/27). 
You will also occasionally see a sharp difference in color between two rectangles. In 
figure 2.9, there is a clear difference between the three largest and three smallest rect-
angles. This happens when one or more of the color parts wrap around from the low 
end of the spectrum (0) to the high end (f).

Figure 2.9
An example of the output from the Albers-style Codesters algorithm. Image: Courtesy of 
Codesters.
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2.4  Vasarely Art

Victor Vasarely was well known for taking parallel lines and curving them into other 
shapes. To imitate his style, we will take a grid of colors and use Bézier curves to give 
the illusion of a circle.

A Bézier curve connects two endpoints by using two control points. Each endpoint 
starts off pointing to one of the control points and then curves to meet the other end-
point. So, if the control points move farther away from the endpoints, the line will be 
more curved. If the control points are on opposite sides of the direct path between the 
endpoints, the curve will be S shaped.

Learning Activity 2.11: Vasarely on Paper

To simulate Vasarely’s style of art on paper, have your students take construction paper and 
use a graphing compass to draw a circle on it. Then have them draw grid lines surround-
ing (but not inside) the circle. To connect the lines through the circle, have them use yarn 
that starts at the two disconnected edges of the circle and use a cup to bend the yarn into a 
curve through the circle. Then have them glue the yarn in place. Then have them glue yarn 
over the grid lines on the outside of the circle as well to finish their Vasarely masterpiece.

To create the illusion of grid lines being bent, we will need to draw three sets of 
lines: the curves that make up the circle illusion; the lines that extend from the end-
points of the curves to the edge of the drawing area; and the grid lines outside the 
curves’ reach.

To simulate Vasarely’s style, we will use

•	 abstraction to interpret Vasarely’s style as a grid with the grid lines curved in places 
and to recognize that this will involve drawing three sets of lines;

•	 data usage to store information about the curves and lines;
•	 subroutines to draw three logically different sets of lines; and
•	 modularization to use symmetries to draw many lines from few inputs and to reuse 

code to draw logically different sets of lines.

Algorithm 2.3 shows how we will draw each of the three sets of lines.

Algorithm 2.3: Vasarely Art Algorithm

choose random circle and curve parameters
choose a random scale for the grid lines
repeat for the circle's range:

draw the curve lines
draw the grid lines that connect to the curves

repeat for the range outside the circle:
draw the grid lines
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The first two lines of the algorithm involve choosing random values so that the 
sizes of the grid lines, circle, and curves are determined by the computer. This way, you 
will see something different each time you run the program.

The two other parts of the algorithm loop through two ranges: the area inside the 
circle’s radius and the area outside it. We split these parts into separate loops because we 
have to perform different actions: inside the circle’s range, we need to draw the Bézier 
curves inside the radius and the partial grid lines outside the radius; outside the circle’s 
range, the grid lines run all the way across the screen.

Now we are ready to write the algorithm in Codesters (Scratch does not have a 
built-in way to draw curves, so we will not use it for this activity). Program 2.4 gives the 
code for the Vasarely-style art, and figure 2.10 shows an example of the output that is 
drawn on the computer screen.

Program 2.4: Vasarely-Style Codesters Art

# import the math library module
import math
# import the random number generator from library module
import random
# set a random radius
radius = random.randint(5, 25) * 10
# set the distance between grid lines
scale = random.randint(1, 5) * 10
# set the sharpness of the curve
curve = random.randint(1, 5) * 10
# set the height of the curve
fraction = random.randint(2, 8)
# set the coordinates within range of the circle
coords = range(int(-scale / 2), -radius, -scale)
# create a function called draw_lines
def draw_lines(x, y1, y2, c):

  # draw the four lines using the subroutine
  # codesters.Line(x1, y1, x2, y2, color)
  sprite = codesters.Line(x, y1, x, y2, c)
  sprite = codesters.Line(-x, y1, -x, y2, c)
  sprite = codesters.Line(y1, x, y2, x, c)
  sprite = codesters.Line(y1, -x, y2, -x, c)

# loop through the coordinates
for coord in coords:

  # set coord2 so it is on the circle's edge
  coord2 = math.sqrt(radius * radius—coord * coord)
  # calculate the height of the curve
  height = -radius + ((radius + coord) / fraction)
  # draw four Bézier curves using subroutine
  # codesters.Curve(x1, y1, cp1x, cp1y, cp2x, cp2y, x2, y2, fill, color)
  # the next command should be on one line
  sprite = codesters.Curve(coord, coord2, height, curve,

height, -curve, coord, -coord2, None, "red")
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Note that the indentation in the program is essential for it to run correctly in 
Codesters. Code that is part of a function (def), a loop (for), or a conditional (if) 
statement needs to be indented. Space at the beginning of a line is how the computer 
can tell where a function, loop, or condition begins and ends, so the spaces that you 
add can change when and how many times that line of code executes.

–250, 250

Figure 2.10
An example of the output from the Vasarely-style Codesters algorithm. Image: Courtesy of 
Codesters.

  # the next command should be on one line
  sprite = codesters.Curve(-coord, coord2, -height, curve,

-height, -curve, -coord, -coord2, None, "red")
  # the next command should be on one line
  sprite = codesters.Curve(coord2, coord, curve, height,

-curve, height, -coord2, coord, None, "red")
  # the next command should be on one line
  sprite = codesters.Curve(coord2, -coord, curve, -height, -curve, 

-height, -coord2, -coord, None, "red")
  # call the function above to draw grid lines
  draw_lines(coord, -coord2, -250, "green")
  draw_lines(coord, coord2, 250, "green")

# loop through the area outside the circle
for x in range(coords[-1]—scale, -250, -scale):

  # call the function above to draw grid lines
  draw_lines(x, -250, 250, "blue")
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The first two lines of the Codesters algorithm import math and random libraries. 
The imported random library allows us to use the computer’s random number genera-
tor. The math library allows us to take the square root of a number, among several other 
math functions. To find the square root of a number, you call a function sqrt and the 
computer runs the already written code to find the square root.

Then we create some variables (e.g., radius, scale, curve, fraction, and 
coords) and give them values. We set the variable radius to a random multiple of 10 
between 50 and 250. This will be the radius of the circle area. We make the variables 
scale and curve a random multiple of 10 between 10 and 50 so that the computer 
sets the size. The variable scale is the distance between grid lines, so the larger the 
scale, the fewer grid lines there will be. The variable curve is the distance between 
the control point and the center of the endpoints, so the larger the curve, the more 
rounded the arc will be. The range of the variables radius, scale, and curve is some-
thing that your students can change. We then set a fraction variable to a random 
integer between 2 and 8. The height of the curves is somewhere between that of the 
endpoints and the far edge of the circle, and the fraction variable will determine 
where in that range the arc will stretch.

Next, we create a list of coordinates within the circle. Remember that (0, 0) is the 
center of the drawing area. We decided to draw the grid lines to straddle the center of 
the drawing area because having lines down and across the middle of the screen would 
complicate the curvature within the circle’s radius (either making it unsymmetrical or 
requiring two curves for each center line), so we start at half the scale value and move 
scale units until we reach the value of the radius. For example, if the scale variable 
is set to 10 and the radius variable is set to 50, coords would be [5, 15, 25, 35, 45].

Next, we create a function called draw_lines. A function is a set of commands 
that can be executed from anywhere after the function is defined in your code and can 
be executed any number of times. The function we create is to draw lines. Since our 
circle is centered at (0, 0), our grid pattern is going to be symmetrical around the x and 
y axes. So, given three coordinates, x, y1, and y2, we can create four lines: the vertical 
line between (x, y1) and (x, y2); the vertical line between (−x, y1) and (−x, y2); and 
the two horizontal lines formed when those x and y coordinates are swapped. Later 
in the code, this will allow us to call this function with three coordinate numbers and 
will draw four lines based on those numbers. Figure 2.11 shows the four lines formed 
from the x coordinate 20 and y coordinates 30 and 60. The vertical lines are from (20, 
30) to (20, 60) and (−20, 30) to (−20, 60), and the horizontal lines are from (30, 20) to 
(60, 20) and (30, −20) to (60, −20). The x and y axes are also drawn, so that you can see 
how the lines are oriented.

The last input to the draw_lines function is the color of the line drawn. The 
input is named c, but we will be passing colors (“red,” “green,” or “blue”) to this func-
tion so it is able to draw in whatever color we pass to it.

Learning Activity 2.12: Vasarely Colors

Ask your students how they could use the Kandinsky logic to make each line and curve 
drawn with a random color, or use Albers logic to create different hues of colors.
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Now comes the loop. We go through each coordinate point (named coord) in our 
coords list and use the equation of a circle (r2 = x2 + y2 )  to solve for the other coordi-
nate (coord2). Since we have a radius variable (r) and a coord (x), we can use r2 − x2  
to calculate the y variable. We then use those two coordinates to draw four curves. The 
logic behind having four of them is the same as for the lines: the symmetries along the 
axes allow us to switch the x and y signs and coordinates to draw more than one curve 
for each coordinate point. Two of the curves will be reflections of each other across 
the x axis, like looking at a reflection in calm water; the two other curves are formed if 
you rotate those curves 90 degrees. Figure 2.12 shows an example of four curves drawn 
from one pair of coordinates. The Codesters Curve function takes the following format:

sprite = codesters.Curve(x1, y1, cp1x, cp1y, cp2x, cp2y, x2, y2, fill, 
"color")

The two endpoints of the curve are (x1, y1) and (x2, y2). The control points are 
(cp1x, cp1y) and (cp2x, cp2y). We set the fill (the color of the area under the curve) to 
None, but it can be set to a color. The last input is the color of the line.

The endpoints are always some variation of coord and coord2 (with the order and 
sign taking care of the symmetries), and our control points are always a variation of 
height and curve (again with the symmetries). This is because we want the endpoints 
to be on the edge of the circle and want the curve to lean away from the center of the 
circle. Changing the order or sign of the variables curve and coord2 and/or changing 

–250, 250

Figure 2.11
The four lines drawn with x coordinate 20 and y coordinates 30 and 60. Image: Courtesy of 
Codesters.
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the values of height and curve will create different patterns of curves. This will often 
make the curves intersect each other and can possibly go outside the bounds of the 
circle. For example, changing all the instances of height to curve will make the pat-
tern look like a grid that was pushed out of the circle, and changing all instances of 
curve to height will cause loops that look like drawn curtains. Your students can play 
with these values, as tweaking them can create a fun Spirograph effect.

After the curves are drawn, there are two calls to our draw_lines function to draw 
the lines from the curve endpoints to the edge of the drawing area.

Finally, there is a separate loop that goes through all the coordinate points not used 
by the circle (since the circle’s radius can be as small as 50 units, there may be plenty 
of extra space). It calls draw_lines to create the lines that cross the full drawing area.

Note that we used three different colors for the three sets of lines drawn (the curves, 
the grid lines that connect to the curves, and the grid lines that don’t touch the curves). 
This is so that you can see which parts of the code draw which lines in the drawing 
window. Encourage your students to change the colors even more by making each of 
the four curves a different color or everything one color.

–250, 250

Figure 2.12
The four curves drawn from one iteration of the Vasarely loop. Image: Courtesy of Codesters.
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Learning Activity 2.13: Combining Artists’ Styles

After going over two or more of these Op Art artists (Kandinsky, Andrade, Albers, and/or 
Vasarely) with your students, have them combine art styles from different artists into new 
masterpieces, letting them choose what aspects they want to implement from each artist 
and how they will combine them. This can lead to a deeper understanding of both the art-
ists’ styles and the code that mimics them, and requires computational thinking to transfer 
knowledge from multiple sources into a novel work of art.

2.5  Summary

In this chapter, you have seen four different Op Art artists’ styles simulated with com-
puter programs. You can see how their different styles were transformed into code and 
how randomness was used to allow the computer to be creative. These are examples 
of how your students can apply computational thinking to observe artists’ styles and 
characteristics of their art pieces that can translate into algorithms and code. People can 
program computers to create art, and these activities are aimed to spark your students’ 
interest in both the art styles and the programming tools they can use to create art.
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3 Applying Graph Theory to Analyze Literature  
and Social Networks

In this chapter, we introduce topological graphs as a way to incorporate abstraction in the 
analysis of literary works. By using graphs to visualize the relationships between characters 
in the text, we provide practical tasks that offer new ways to interpret plays, short stories, 
and novels. Likewise, we show how graphs can describe social networks that in turn reveal 
how ideas, as well as communicable diseases, are spread through society.

Within the liberal arts classroom, computational thinking occurs in how we gather 
information from the text, how we make connections within the text (whether they 
be between the characters in the story or the interactions of historical figures within 
a period of history), how we draw conjectures or predictions, or how we represent 
the information we have learned from the text. Interpreting works of literature, his-
torical events, or social interactions employs critical thinking skills, decision-making 
processes, and drawing connections or conjectures. Many different perspectives can 
coexist in the interpretation of the text or historical event, just as there exist many 
mathematical and computational strategies to help you achieve a solution to a prob-
lem. We provide examples of using computational thinking to gather and digest infor-
mation in ways that can be abstracted into a visual aid (namely, a topological graph) 
that leads to analyzing the resource to produce a more nuanced and deeper under-
standing of the material.

Topological graphs represent the connections or relationships between pairs of 
objects (see figure 3.1 as an example). They can be used to visually represent the rela-
tionships between characters in a story, to connect characters with places and events, 
to keep track of known evidence and information in a mystery plot, and much more. 
Topological graphs are made up of two parts: points and the lines connecting them. 
The points, called vertices (singular: vertex), represent the elements in the set. The lines, 
called edges, represent relationships between vertices. If the relationship is mutual, then 
the edge is undirected (meaning it is not an arrow). This is the structure for a social 
media site like Facebook, where two people have to mutually agree to be friends in 
order to view each other’s posts. If the relationships are not mutual, then the edges are 
directed (meaning they point from one vertex to another). The structure for Twitter’s 
social media site is not mutual, because you can follow one user and see their posts 
without their having to follow you back. Ask your students how a different social media 
platform would be represented in a graph. For example, Snapchat’s structure (at the time 
of this writing) is a combination of directed and undirected edges, because friends are 
established mutually (undirected) but subscriptions are directed.

Topological graphs can hold additional information. Edges could be assigned a 
numerical weight (such as the capacity of a pipe or the amount of energy needed to get 
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from one location to another) or color coded (such as distinguishing between friends 
and adversaries). Vertices could be sized according to a scale (such as the number of 
albums sold) or have special distinctions (such as a double-walled vertex signifying a 
killed character).

In this chapter, we show examples of these graphs and the logical conclusions about 
the story that you can draw from them. We also use topological graphs to describe how 
to track the spread of diseases through a population and the spread of ideas through 
the structure of social networks.

Learning Activity 3.1: A Spider’s Web Morning Greeting

A Spider’s Web Morning Greeting is an example of a topological graph.

•	 Holding a ball of yarn, a student greets someone across the circle and gently rolls the 
ball to that person while firmly holding onto the end of the yarn.

•	 The student who receives the ball of yarn greets another student across the circle and 
rolls the ball to that student, making sure to hold onto the unraveling strand with one 
hand.

•	 This continues until everyone has been greeted and the yarn has created a web across 
the circle.

Each person is a vertex in this graph, and the yarn represents the edges between the ver-
tices. This activity is a great visual to demonstrate vertices and edges for students. Take a 
moment to ask the students who they are connected to in this graph, how many edges are 
connected to them, and how this relates to who they greeted.

•	 To unravel the web, students greet each other in the reverse order until the ball of yarn 
is wound up again.

� (Responsive Classroom 2013)

Alice Bob

Carlos

Figure 3.1
An example of a topological graph. Alice has edges to Bob and Carlos, but Bob and Carlos 
are not directly connected to each other.
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3.1  Graph Example: Harry Potter and the Sorcerer’s Stone

In this section, we use the first book in J. K. Rowling’s Harry Potter series as an example 
of how to analyze a work of literature with topological graphs. These activities are 
adapted from Moretti’s (2011) essay “Network Theory, Plot Analysis,” in which he used 
graph theory to clarify the interactions between different characters in Shakespeare’s 
Hamlet, King Lear, and Macbeth and in Dickens’s Our Mutual Friend. In this essay, each 
character from these works of literature is represented by a point (or vertex), and char-
acters who share a social relationship are connected by a curve (or edge).

Algorithm 3.1 shows the steps we will take to analyze the book by using a graph.

Algorithm 3.1: Creating a Graph from a Book

1.		 Read through the book and log the interactions between the characters.
2.		 Make decisions to define the interactions you want to graph, and tally the number 

of those interactions between each pair of characters.
3.		 Create a vertex for each character who has at least one interaction, and connect the 

pairs of interacting characters with an edge.
	 a. � This can be done manually on paper or can be created in a presentation program 

(such as Microsoft PowerPoint, Apple Keynote, or Google Slides).
	 b. � You may want to store more information in the vertices and/or edges of the 

graph. We give examples and discuss these options later in this section.
4.		 Make observations about the graph. Use it to raise new questions and search the 

text for answers. Use its data as evidence to support a claim. Use it to analyze the 
complex structure of the relationships between the characters in the book.

You can perform these steps many times with the same text, making different deci-
sions each time to visualize new data and varying aspects of the book. In this section, 
we use Harry Potter and the Sorcerer’s Stone (Rowling 1998) to create several examples of 
different graphs and a glimpse into the analyses you can write about them.

To create a graph from literature, we will use

•	 abstraction to focus on certain aspects of the text that we want to represent visually;
•	 data usage to gather information from the literature to display visually in the graph;
•	 sequencing (concept) to perform a series of instructions to gather data from the litera-

ture and display it in a graph; and
•	 conditionals (concept) to decide whether an interaction qualifies as something that 

should be displayed in the graph.

Creating a Graph
First, we go through Harry Potter and the Sorcerer’s Stone and mark when characters inter-
act with each other. Here is an excerpt of the interactions recorded from chapter 11 of 
the book:
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Harry Potter and the Sorcerer's Stone Chapter 11 Log

Madam Hooch spoke to the Quidditch teams.
Lee spoke to the crowd.
McGonagall spoke to Lee.
Hagrid spoke with Ron and Hermione.
Fred spoke to Harry.
Dean spoke with Ron and Hagrid.
Lee spoke to the crowd.
McGonagall spoke to Lee.
Hagrid spoke to Seamus.
Ron spoke with Hermione.
Ron and Hermione saw Snape.
Hermione knocked Quirrell over.
Hermione set Snape’s robes on fire.

The next step is to tally how many interactions each pair of characters have with 
each other. There are some subjective decisions that need to be made, which can pro-
duce productive discussion and/or creative license for your students. Below are examples 
of decisions that we made for this particular example. You may find that you need to 
answer similar questions with your story and that your decisions may differ from ours.

■	 What defines an interaction between two characters? We defined it as speaking (dia-
logue) with each other. This means that if a character was present in a scene but did 
not speak, they were not included. If nonverbal interactions took place (e.g., seeing 
a character from afar, listening to a conversation from behind a door, or knocking 
someone over), they were not included.

■	 What will the edge weights (the thickness of the line) represent? We kept track of the 
number of conversations between the characters and used that as the edge weight. 
In figure 3.2, you will notice that Harry and Ron converse the most in the book 
(their edge is the thickest), whereas Harry and Dumbledore only converse thrice. 
The length of the conversation has no bearing, so even though Ron and Harry have 
many shorter conversations and Harry and Dumbledore have fewer but longer dia-
logues, the graph will show the total number of conversations. One could choose to 
count in sentences or words if the context made that sensible.

■	 What if more than two people are conversing at once? This is a bit tricky because 
an edge cannot connect more than two vertices in a topological graph. We used the 
context of the conversation to decide. For example, when Harry, Ron, and Hermione 
are speaking together, we added all three pairwise edges between them, but when 
Harry and Ron are pressing for information from Hagrid and Hermione is present 
but silent, we only added edges between Hagrid and Harry and between Hagrid and 
Ron. Harry, Ron, and Hermione were not talking with each other in this context, 
even though all were present and a conversation was taking place.

■	 What if there is dialogue without a clear recipient? We excluded these from the 
graph. For example, when Dumbledore is addressing everyone in the Great Hall, 
when Percy is addressing all the first-year students, or when Vernon Dursley over-
hears the exclamations of an unnamed wizard, we do not include these speaking 
parts in the graph.
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You may have additional questions that come up for a different piece of literature. This 
process includes a lot of computational thinking as you decide what data makes the 
most sense to abstract (and visualize) in a graph or try out different restrictions and rules 
to graph and see how each one affects the graph and reveals something different to 
analyze about the text.

The excerpt of the chapter 11 interactions, with our decisions, ends up being 
counted as follows:

Harry Potter and the Sorcerer's Stone Chapter 11 Tally

McGonagall and Lee: 2
Hagrid and Ron: 1
Hagrid and Hermione: 1
Fred and Harry: 1
Dean and Ron: 1
Dean and Hagrid: 1
Hagrid and Seamus: 1
Ron and Hermione: 1

This may be easier for your students to record in a spreadsheet, although it is 
doable on paper. After all interactions have been tallied, it is time to make the graph. 
Each character will be a vertex, and each pair of characters in the tally will have an edge 
between them. The tally count will be the edge weight. We chose to show the edge 
weight as the thickness of the line drawn. One could also label each edge with a num-
ber, as we will demonstrate later in this section. The complete graph is in figure 3.2.

You may ask your students for their reactions as they look through the graph. For 
example, it may be surprising that Professor Snape and Draco Malfoy never speak to 
each other in the book, even though it is a well-known fact that Draco is Snape’s favor-
ite student. It may also be a surprise that Professor Snape does not have a speaking part 
with any professors except Quirrell. Another surprise may be the absence of characters: 
Crabbe and Goyle are with Draco most of the time, but they never have a speaking part 
and therefore are not represented in this graph.

One way to analyze this graph is to look at the number of edges connected to 
a vertex. This is called the degree of a vertex. Harry is the most connected character 
with degree 27, followed by Hagrid with 17, Ron with 13, and Professor McGonagall 
with 11. These numbers can signify many things. The higher numbers mean more 
developed characters, as we get to see how they behave with different groups of peo-
ple (for example, Professor McGonagall speaks very differently with Dumbledore than 
with Neville). The numbers can also point to power dynamics: Professor McGonagall 
has more interactions with the students than other professors not because she is their 
favorite but because she is their head of house and is Dumbledore’s right-hand woman. 
You can have your students use this graph of degrees to help analyze the book. For 
example, this graph can point to some interesting similarities between Professor Snape 
and Neville (e.g., both have a respectable graph degree of 7, both are indirectly involved 
in many events and conversations between Harry, Ron, and Hermione, and both have 
caught the three sneaking around the castle and have tried to stop them).
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Learning Activity 3.2: Graph Essay

Ask your students to write an essay about either (1) how the graph does not accurately 
represent the relationship between two characters or (2) how the graph illuminated an 
unexpected relationship between two characters. For example, a student could make an 
argument that Hagrid is a more important part of the book (and Harry’s life) than Harry’s 
best friend, Ron.

Cleaning a Graph
You will notice that the graph is quite messy. To clear things up a bit, we created a sec
ond graph, made up of only the edges that have weight greater than 1 (i.e., when char-
acters had more than one conversation with each other). This excluded a few secondary 
characters from the graph (such as Parvati Patil and Pansy Parkinson). The result is 
shown in figure 3.3. This more clearly shows the important characters in the book and 
the relationships between them. Harry is clearly the main character, having the most 
connections of anyone. There are many characters who converse more than once only 
with Harry, and then there are two more interconnected subgraphs: sets of characters 

Harry

Dumbledore

McGonagall

HagridDudley

Vernon

Petunia

Quirrell

Draco

Ollivander

Mrs.
Weasley

Fred

George

Ron

Hermione

Neville

Percy

Sir Nick Seamus

Peeves

Snape

Wood

Lee

Firenze

Voldemort

Madam
Pomfrey

Filch

Ginny

Bane

Ronan

Dean

Flitwick

Parvati

Pansy

Griphook

Madam
Hooch

Figure 3.2
A graph of the conversations in Harry Potter and the Sorcerer’s Stone.
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and the conversations between them. One is among Dudley, Hagrid, Harry, Petunia, 
and Vernon. This is Harry’s Muggle family, whom you get to know in chapters 2–4 of 
the book, and Hagrid is the only wizard who interacts with the family (much to their 
chagrin). The other, more prominent subgraph is among Draco, Hagrid, Harry, Her
mione, Neville, Professor McGonagall, and Ron. This subgraph is also where the thickest 
lines (most conversations) reside, so one could argue that these characters are the most 
important ones in the book. The three thickest lines form a triangle between Harry, 
Hermione, and Ron, which gives a visual representation to the three main characters, 
who are best friends. Hagrid is the other character with multiple thick line connections, 
showing how the three main students befriend and confide in him more than they do 
with their professors or roommates.

These graphs have illuminated and visualized relationships between the charac-
ters. Using abstraction and algorithmic design, your students can also create these 
visual aids to help their analysis and interpretation of literary works.

Harry

Dumbledore

McGonagall

Hagrid

Dudley

Vernon

Petunia

Quirrell

Draco

Ollivander

Mrs.
Weasley

Fred

George

Ron

Hermione

Neville

Percy

Sir Nick Seamus

Peeves
Snape

Wood

Lee

Firenze

Voldemort

Madam
Pomfrey

Filch

Ginny

Figure 3.3
A graph of characters with more than one conversation in Harry Potter and the Sorcerer’s Stone.
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Learning Activity 3.3: Cultivating Curiosity

It is likely that once your students really dig into the topological graphs, they will end up 
with more questions about the text than they had previously. To help answer some of their 
questions, encourage them to reference the text to answer them and/or to revisit the deci-
sions they made to create the graph. You can also have them explore other related works 
(e.g., they may be curious about how the movie adaptation of the book would line up with 
the text if graphed in the same way, or whether there are common characteristics of graphs 
produced from different works by the same author).

Graph by Chapter
If you separate the graph by chapters, you will see the character arcs more clearly. For 
example, Harry, Vernon, Petunia, and Dudley engage in all the interactions in chap-
ters 2–3, so they would be the only vertices in a graph for those chapters of the book. 
During the transition chapters when Harry is introduced to the wizarding world, he 
interacts with many new characters (and often for the only time). This graph would 
have more vertices, but the edge weights would be smaller. Isolating chapters or groups 
of chapters like this can help you to visualize the plot structure (exposition, conflict, 
rising action, climax, falling action, and resolution) and the differences in writing style 
among various phases of the book.

By separating the topological graphs by chapter, you may also be able to catego-
rize characters. For example, bookend characters, who only appear in the beginning 
and ending chapters, would include the Dursleys and Dumbledore; exponential charac-
ters, who have a slow start but gradually become more important, include Hermione; 
full-arc characters, who have an important role throughout the novel, include Hagrid, 
Harry, Professor McGonagall, and Ron. This is a different way to visualize the character 
arcs in the book.

As an example of graphing by chapter, figure 3.4 shows a graph of the words spo-
ken in chapter 1. You will notice that the graph has two disconnected subgraphs, called 
components: Vernon and Petunia talk to each other but to no one else; Hagrid and Pro-
fessors Dumbledore and McGonagall speak among each other, and Dumbledore speaks 
briefly to Harry. The edges in this graph are directed, so there can be more than one 
edge between two characters. In mathematics, this is called a digraph (i.e., a graph that 
has directed edges between the vertices). For example, Vernon and Petunia have two 
edges between them, pointing in different directions. The edge pointing from Vernon 
to Petunia represents that Vernon speaks to Petunia in the chapter. The edge weights in 
this graph are the number of words spoken by each character.

There is some interesting analysis to be done in this graph. It is only an introduc-
tion to the book and a snapshot in the timeline of the story, but it is quite revealing:

■	 Vernon speaks more than four times as many words to Petunia as she speaks to him. 
This may reveal some stereotypical big-ego personality traits of a person barking 
orders and always having the last word.

■	 Look at the edges among Dumbledore, McGonagall, and Hagrid. Dumbledore and 
McGonagall speak about 10 times more words to each other than to Hagrid. This 
raises a question: why did J. K. Rowling have Hagrid enter the conversation so late? 
Let’s brainstorm:

Downloaded from http://direct.mit.edu/books/book-pdf/2259273/book_9780262366144.pdf by guest on 03 October 2024



•	 It could signify that Hagrid is a minor character. But we know from the other 
graphs of the book that this is a false proposition.

•	 It could mean that there is a power dynamic involved. Sure enough, if you look at 
the dialogue, you will notice that Hagrid addresses Dumbledore as “sir,” whereas 
McGonagall addresses him as “Dumbledore.” This confirms the presence of a 
power dynamic where Hagrid is submissive in the presence of Dumbledore and 
McGonagall.

■	 Looking at the number of words spoken between Dumbledore and McGonagall can 
lead to various interpretations. McGonagall speaks almost 200 more words to Dum
bledore in the chapter. This could be interpreted as gender based (where McGonagall 
gossips about different rumors flying around) or power based (where Dumbledore 
holds all the cards and reveals them only on a need-to-know basis). Perhaps looking 
at conversations between these two characters in other chapters of the book would 
shed more light and supply evidence for one interpretation or the other.

You can have your students create similar graphs and analyses for other chapters in the 
Harry Potter book and other literary works.

Harry

Dumbledore McGonagall

Hagrid

Vernon Petunia

3

67

14

535

355

22

32

65

42

Figure 3.4
A word count graph of chapter 1 of Harry Potter and the Sorcerer’s Stone.
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Learning Activity 3.4: Literature Graph

Ask your students to create a graph of the literary work they are studying. Each vertex could 
be a character in the story, a location, a point of time, or some other aspect of the work. 
Let the students decide what the edges will represent, whether they will be directed, and so 
on. The graph could be a map of a family tree, a friendship map, a timeline, a travel log, or 
something else.

Learning Activity 3.5: Other Resources to Use for Topological Graphs

Here are some ideas for other books or resources (besides the one we already mentioned) 
to use in which topological graphs can help students analyze the text to make connections 
between characters in the story or between people in history, or to help follow the plot 
points of a story or historical event:

•	 The Westing Game by Ellen Raskin
•	 Percy Jackson and the Olympians by Rick Riordan
•	 Romeo and Juliet or Julius Caesar by William Shakespeare
•	 Eyes on the Prize: America’s Civil Rights Years, 1954–1965 by Juan Williams
•	 All the President’s Men by Carl Bernstein and Bob Woodward

Evidence Graphs
So far, we have looked at the relationships between characters and the importance 
of characters in a literary work, but a mystery novel will often contain plot points of 
evidence leading to a climax where the mystery is solved and all the evidence falls into 
a coherent timeline. We can use a graph to keep track of these plot devices to help us 
make an educated decision before reading the climax.

A good way to approach this graph is to list the big questions as they arise in the 
book: what mystery are we trying to solve? In Harry Potter and the Sorcerer’s Stone, there 
are three questions that end up connected in the end:

■	 What was in the Gringotts safe that was almost robbed?
■	 What is Fluffy guarding in Hogwarts?
■	 Who is trying to hurt Harry?

These make up the first column of blocks in figure 3.5. Connected to these are the 
items in the second column: events and evidence that give clues to the answers. Harry 
was with Hagrid in Diagon Alley on the day of the attempted robbery, so he may have 
seen the would-be thief. On Halloween, a troll was set loose in Hogwarts, which was 
later discovered to be a mechanism to distract attention from an attempted robbery 
of whatever Fluffy is guarding. During a Quidditch match, Harry’s new broomstick is 
bewitched to try to throw him off. These are examples of the events listed in the second 
column of the figure.

Lastly, the third column lists all the people present and involved with the events. 
Let us examine the degree of each character (i.e., the number of edges connecting the 
character to the second column). The two characters with the highest degree, degree 5, 
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are Harry and Quirrell. In fact, they are the only two characters who are connected to 
events leading back to all three mystery questions. The main suspect in the novel is 
Snape, but the major difference is that we know Quirrell was in Diagon Alley on the day 
of the attempted bank robbery (whereas we don’t know this information about Snape). 
This is a plot point that Harry realizes after he finds Quirrell in the climactic scene in 
Hogwarts; it is easy to forget it when reading the novel, but the evidence becomes clear 
when it is displayed in a graph.

Learning Activity 3.6: Applying Computational Thinking to a Mystery

If you teach a mystery novel, have your students create a graph like the ones in figure 3.5 
(digital) or figure 3.6 (unplugged) as they are reading. Then, before they reach the climax of 
the book, have them analyze the graph and guess what the conclusion will be. By abstract-
ing the known facts of the mystery into a topological graph, your students can produce a 
visual aid that helps them think critically about the book and work past the misleading 
stumbling blocks that the author uses to keep the climax a surprise (e.g., subjective points 
of view that inject emotion to cloud judgment) and potentially push them in the right 
direction to conclude the correct resolution from the clues in the book.

Questions Evidence/Events People

What was in the Gringotts
safe that was almost robbed?

What is Fluffy guarding in
Hogwarts?

Who is trying to hurt Harry?

Attempted Gringotts theft
July 31

People in Diagon Alley
July 31

Professors’ protection

Troll loose
October 31

Knows what is hidden in
Hogwarts

Quidditch game: Harry’s
broomstick bewitched

Forbidden Forest:
Bleeding unicorn

Snape

Harry

Hagrid

Quirrell

Draco

Griphook

Ollivander

Hermione

Ron

McGonagall

Dumbledore

Nicolas Flamel

Sprout

Flitwick

Firenze

Figure 3.5
A graph of the mystery plot points in Harry Potter and the Sorcerer’s Stone.
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3.2  Social Networking

These topological graphs can serve not only as visual aids for analyzing pieces of litera-
ture but also as models for social networks, disease propagation, or the influence of a 
powerful family such as the Medici family from Florence, Italy, during the Renaissance 
or the Koch brothers in modern US politics. The notion that there are six degrees of 
separation between any two people on earth is in essence a social networking problem: 
if you graphed each person as a vertex and friendships or acquaintances as edges, then 
there would be a path of at most six edge lengths between any two vertices. This reveals 
the smallness of the world and how interconnected everyone has become in this age 
of technology.

Graphs can be useful tools for creating a visual representation of information. If 
you have a team-based assignment, have each student record the number of hours 
they work, which tasks they accomplish, and which teammates they work with to 

Figure 3.6
An example of the mystery plot points made with pins and string on a bulletin board.
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accomplish the task. Then have them graph the team, where the vertices are people 
(the size of the vertex is proportional to the amount of time worked on the project) and 
edges connect pairs who worked together on a task (weighted by the number of tasks or 
some other metric). What do you want a graph like this to look like? Probably vertices 
of similar size that are very interconnected. Then think about the problem teams you 
have had: What do their team dynamics look like in a graph? Is one person refusing 
to work with teammates and disconnecting themselves from others (socially in life 
and literally in the graph)? Is one person dominating the time and effort put into the 
project? This can be an interesting way to visualize team dynamics, spot when things 
go wrong, and show students what is expected of them.

In the case of disease propagation, graphs are used to track the spread of a virus. If 
vertices represent people (marked as infected by the disease or not) and edges represent 
pairwise contact between people, you can do several calculations with this:

■	 observe how the graph changes over time, from a single infected individual to an 
outbreak;

■	 see who is most likely to become infected next based on how many connections/
edges they have with infected individuals;

■	 take known infections and use their common connections to trace the infection 
back to its source; or

■	 experiment with how the properties of the graph (e.g., number of vertices, number 
of edges, average degree of a vertex) influence how quickly the disease spreads.

An application of the disease propagation problem is Conway’s Game of Life.1 A popu-
lation is represented on a grid, where each square/cell is marked as alive (black) or 
dead (white). The eight squares surrounding each cell are considered its neighbors. The 
following rules are applied to the population to see whether the death spreads over 
time:

■	 Underpopulation  Any cell with one or zero live neighbor(s) dies.
■	 Surviving  Any cell with two or three live neighbors lives on to the next generation.
■	 Overpopulation  Any cell with more than three live neighbors dies.
■	 Reproduction  Any dead cell with exactly three live neighbors becomes alive.

Given these four rules and a starting state of the population, you can see the popu-
lation change over simulated generations of time. An example of a transition from one 
generation to the next is given in figure 3.7. There are known patterns that are classi-
fied as still lives (unchanging), oscillators (two or more patterns that rotate), and space-
ships (move in a direction across the grid/world). You can simulate Conway’s Game of 
Life yourself: allow your students to set the original state by choosing which cells in a 
grid are alive and dead; have them move to the next generation of the simulation by 
looking at each cell in the grid and using the preceding four rules to determine whether 
it is alive or dead in the next generation; and keep calculating new generations to see 
how the pattern of live and dead cells changes over time. What characteristics of the 
starting grid cause the population as a whole to die, flourish, or migrate?

As you can see, there are lots of applications of topological graphs. Every field of 
study and class that you teach has data that can be represented in a graph, analyses 
that can be observed from the graph, and conclusions that can be drawn from the 
graph that wouldn’t have been exposed as clearly outside a graph format. Collecting 
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(a)

(b)

(c)

Figure 3.7
An example of how Conway’s Game of 
Life works. (a) An initial configuration 
of live (black) and dead (white) cells. 
(b) The changes according to Conway’s 
rules: the blue cells are added and the 
red cells die. (c) The resulting configura-
tion after one generation.
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and abstracting information from a piece of literature, a spreadsheet, or another source 
often brings clarity to something that could otherwise be overwhelming or messy.

Learning Activity 3.7: TeleGraph

Play a game like Telephone but allow students to share the message with more than one of 
their classmates. You start by telling one student a one-sentence message, which they then 
spread to other students, who can then spread it to more students, until everyone in the 
class has heard at least a version of it. Have the students write down on a piece of paper 
what they heard and who they heard it from. You can now draw a graph of the path of the 
message through the classroom and pinpoint where the message changed along the way. 
You can do this in two different ways: you can have the students tape their message and 
who they heard it from on flip chart paper or type the message and who they heard it from 
in a Google Sheets file. If a student hears two different messages from two different people, 
then there will be two edges pointing to that student’s vertex.

3.3  Summary

Creating algorithms or moving ideas into abstraction is an important aspect of many 
problem-solving skills because it helps us visualize the relationships between the char-
acters in a book, provides an objective perspective on the data, and transfers this skill 
to analyses of other books. It applies computational thinking to literary works to help 
students think critically about the work and achieve a deeper understanding of its plot, 
character relationships, and character development.

In this chapter, we presented algorithms for analyzing different parts of Harry Pot-
ter and the Sorcerer’s Stone and produced topological graphs from the output of these 
algorithms.
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4 Using Abstraction, Iteration, and Recursion  
in Labyrinths and Mazes

In this chapter, we include activities and algorithms to create labyrinths. These hands-on activ-
ities include background information on labyrinths in different areas of the ancient world, 
their use and meaning during medieval times, and the development of multicursal mazes 
during the Italian Renaissance. Students learn to apply abstractions in order to graph mazes 
and create new ones, and then solve them using a recursive depth-first search algorithm.

This is part of a maze of twisty little passages, all alike.
There is an emerald here the size of a plover’s egg!

—Will Crowther’s computer game Adventure

Examples of labyrinths and mazes can be found in diverse corners of the world, span-
ning the course of history from the late Bronze Age to the modern era. Most people use 
the words labyrinth and maze interchangeably to mean a devilishly confusing network 
of passages. The word labyrinth likely refers to the Minoan civilization on the Greek 
island of Crete. Matthews (1922) notes that the prefix labrys denotes the double-edged 
axe used by the Minoans as a tool, weapon, and religious symbol. Double-edged axes 
were also discovered by archaeologists amid the ruins of the Palace of Knossos (con-
structed in 1900 BCE). The suffix inth refers to a place. Thus, labyrinth might refer to the 
Palace of Knossos, the “Palace of the Double-Edged Axe.” The word maze can be traced 
back to the thirteenth-century English word mæs, which means something that causes 
confusion or deception.

Following the taxonomy of Kern (2000), we define a labyrinth as a unicursal, cir-
cuitous path or passage. Here, unicursal means that only one path can be followed; no 
branches to other paths exist. The word circuitous means that the one path orbits around 
the central goal in an irregular fashion, making it difficult for a traveler to predict the 
direction of the next turn. Three distinct styles of labyrinths are Cretan (figure 4.1), 
Roman (figure 4.11), and Christian (figure 4.12). All are unicursal, but they are concep-
tually more interesting than either regular spirals (figure 4.2), where the turns follow 
consistently in the same direction, or periodic meanders, which appear in some classical 
frieze patterns (figure 4.3). “Threading” a unicursal path is an easy task: one enters the 
labyrinth and advances forward. Though the path twists and turns, the persistent walker 
inevitably reaches the goal without making a single decision.

In contrast, we define a maze as a network of paths that contains at least one junc-
tion: a location where three or more paths join. Figure 4.4 depicts the plan of the hedge 
maze at Hampton Court, which contains eight junctions (can you find them?). At each 
junction, the maze walker must decide which branch to follow: some branches might 
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lead to other junctions, some to dead ends, and one or more to the goal. Solving a maze 
usually requires following an initial path, backtracking at dead ends, and then explor-
ing alternative paths until the goal is discovered. Because more than one course can be 
followed, a maze is said to be multicursal. It is desirable to avoid retracing the same path 
over and over again. Later, we will describe some algorithms that enable one to thread 
any maze efficiently.

We use this nomenclature to explore how these designs and puzzles intersect dif-
ferent curricular subject areas. We will demonstrate how labyrinths, mazes, and other 
computational puzzles can introduce computational thinking principles into lessons in 
art, world history, mythology, literature, and mathematics.

Figure 4.1
A Cretan labyrinth. Figure 4.2

A spiral is not a labyrinth.

Figure 4.3
A frieze is not a labyrinth.

Figure 4.4
The maze at Hampton Court.
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4.1  Cretan Labyrinths

The Cretan labyrinth (figure 4.5) is a ubiquitous cultural symbol. Schuster and Carpen-
ter (1996) and Kern (2000) document the migration of this design around the globe. 
The earliest example that can be accurately dated appears on a clay tablet (c. 1200 BCE) 
that was unearthed from the ruins of a Mycenaean palace in Pylos, Greece. Petroglyphs 
of similar design found in Galicia (Spain), Sardinia (Italy), and Cornwall (England) may 
be older, but they are more difficult to date reliably. Rock carvings of Cretan labyrinths 
belonging to the Iron Age are distributed through the Mediterranean region (from 
Syria and Turkey to Spain and Portugal) and up to the British Isles. Cretan labyrinths 
are abundant in artifacts that date from the golden age of Greece (500–300 BCE). For 
example, the British Museum displays a collection of post-Minoan bronze and silver 
coins that were recovered from the Palace of Knossos, many of which were embossed 
with Cretan labyrinths. The conquests of Alexander the Great (in 327 BCE) may have 
delivered the design to India, if it was not already there. Kern (2000) catalogs numerous 
examples of Cretan labyrinths in Indian manuscripts, rock carvings, and temple reliefs. 
It appears that these designs migrated farther east, as labyrinthine patterns decorate 
Batik fabrics and Sumatran buildings. In the Middle Ages, northern Europeans con-
structed large labyrinths within their landscapes. The British cut turf labyrinths up to 
20 meters in diameter into fields of grass, and Scandinavians created “Troy towns” by 
aligning boulders to follow the contours of the Cretan design. Although evidence of 
labyrinths in the Americas is limited, petroglyphs that depict Cretan labyrinths were 
carved into rock walls by the Pueblo tribes of Arizona and New Mexico. (Cretan lab-
yrinths also appear on traditional baskets woven by the Pima tribe.) An intriguing 
mystery concerns the age and origin of these North American “Cretan” petroglyphs 
(Schuster and Carpenter 1996). Did knowledge of the Cretan labyrinth travel across 
the Pacific from Asia or across the Atlantic from European explorers? Or did these 
tribes independently discover the Cretan design, perhaps long before the arrival of the 
European explorers?

Figure 4.5
The earliest depictions of Cretan labyrinths had a rectangular form. This includes the laby-
rinth found in Pylos, as well as those found on Cretan coins minted before 200 BCE (Schus-
ter and Carpenter 1996).
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Although the designs of Cretan labyrinths did not change over time and region, 
their cultural significance did. For the Greeks, the labyrinth symbolized the inventive-
ness and skill of Daedalus, the legendary engineer who built for King Minos of Crete 
the life-sized labyrinth that concealed and caged the Minotaur. In the Greek legend, 
Theseus of Athens, the son of King Aegeus, sails to Crete in order to slay the Minotaur.1 
After landing on Crete, Theseus wins the heart of Ariadne, King Minos’s daughter, who 
gives her lover a clew (or ball) of golden thread. With this device, Theseus enters Daeda-
lus’s labyrinth without fear of getting lost. He consequently “threads” the labyrinth to 
its center, slays the Minotaur, and then traces the thread back to the entrance, without 
becoming eternally lost.

Learning Activity 4.1: Internet Labyrinth Hunt

Organize an internet scavenger hunt for websites that display images of labyrinths found 
around the world. Important labyrinths to seek are

•	 the Pylos labyrinth, Greece;
•	 the Hollywood Stone, Ireland;
•	 Holmengrå, Norway;
•	 Oraibi, Arizona;
•	 Pompeii, Italy;
•	 Boscastle, England;
•	 Troy towns in Scandinavia;
•	 Pansaimol, India; and
•	 Purmatang Purba, Sumatra.

Describe the similarities or differences across the different labyrinth images.

What cultural meanings might these labyrinths hold for the people who created them?

Although the word labyrinth is rooted in the history of Crete, the ancient Greeks 
used it to refer to other buildings with complex networks of passages. The Greek histo-
rian and traveler of the ancient world Herodotus (484–425 BCE) describes in The Histo-
ries his visit to the temple of Amenemhet III in northern Egypt and refers to this edifice 
as a “labyrinth” (λαβ ′υ ρινθος ).2 Though this structure is believed to have been reduced 
to ruins during the Roman era, independent reports from other classical authors, such 
as Strabo (c. 23 CE), Diodorus (c. 30 BCE), and Pliny (c. 79 CE), confirm the former 
existence and complexity of this ancient monument (Matthews 1922).

An apparent paradox, however, is how the unicursal passage shown in figure 4.1, 
in which it is impossible to become lost, became associated with the confusion of 
the Egyptian labyrinth and Daedalus’s creation, both of which are clearly implied to 
be multicursal. There are competing theories here. Kern (2000) suggests that the uni-
cursal design conforms to the steps of an intricate ancient dance that might in turn be 
inspired by the apparent wanderings of the planets in the sky. (The word planet actually 
means “wanderer.”) Another theory is that the unicursal labyrinth, with its surprising 
twists and turns, is a metaphor for the confusing passageways found in the Egyptian 
temple and the Palace of Knossos, and more abstractly for the unpredictability of one’s 
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future. Thus, the Cretan labyrinth may be the simplest possible two-dimensional rep-
resentation of indeterminacy and uncertainty.

The design of the Cretan labyrinth was also celebrated in ancient India. The epic 
poem “Mahabharata,” perhaps the longest poem ever written, describes an ancient 
war between two families: the Pandavas and the Kauravas. The narrative mentions a 
specific military formation, called a chakravyuha, in which soldiers arrange themselves 
in a spiral around their leader for his protection. The chakravyuha is depicted in much 
Indian art as a modified Cretan labyrinth that is augmented with a spiral around the 
center. The shape is also placed at the entrances of houses as a charm to repel evil spir-
its. The Cretan labyrinth also appears in Indian manuscripts as a charm to reduce the 
pain associated with childbirth (Kern 2000).

Learning activity 4.1 provides an opportunity for students to use technology to 
discover the distribution of Cretan labyrinths around the world, and their cultural 
significance in different historical eras. For secondary classrooms, the books by Kern 
(2000) and Matthews (1922)3 are valuable supplements.

Algorithms That Generate Cretan Labyrinths
Learning activity 4.2 is more challenging than it first appears.4 Why is it easier to recall 
a spiral (see figure 4.2) or a set of a dozen concentric circles than the Cretan labyrinth 
(see figure 4.1)? The answer may be that the labyrinth has a greater degree of complex-
ity than the other objects, and simpler things are easier to memorize than complex 
ones. (For example, it is easier to memorize a five-digit zip code than the first 15 digits 
of π.) Information storage and retrieval is a common and important computational 
task for both humans and machines. Although memorization by rote alone does not 
promote conceptual understanding (Hilgard, Irvine, and Whipple 1953; Katona 1940; 
Simon and Newell 1971), the challenge to memorize may inspire students to discover 
patterns, concepts, and abstractions. For example, the task of memorizing a 12-by-12 
multiplication table with 144 entries is initially daunting. However, once students dis-
cover patterns in the values (e.g., the symmetry induced by the commutative property, 
the simple rules for multiplying numbers by 1, 2, 5, 9, and 10), the task becomes fea-
sible. Conceptual abstraction is an important step in learning (Bransford, Brown, and 
Cocking 2000; Papert 1980; Sousa 2016).

Learning Activity 4.2: Redrawing the Labyrinth—Take 1

This activity helps demonstrate the need for an algorithm in order to create this labyrinth.

•	 Give each student a sheet of unruled paper.
•	 Project an image of the Cretan labyrinth (see figure 4.1) for one minute.
•	 Invite your students to study and remember the labyrinth’s shape, without writing 

notes, in order to redraw it.
•	 Then turn off the projector. Ask your students to replicate the design from memory.
•	 Afterward, ask your students the following questions: “What strategy did you apply to 

redraw the labyrinth?,” “Was it successful or not, and why?,” and “What was difficult 
about redrawing the figure?”
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Abstraction is also an essential component of computational thinking (Wing 2006, 
2008). It can be a filtering process, where one selectively discards bits of information 
deemed to be irrelevant for the task at hand. Only essential information is retained. For 
example, Roger Tory Peterson developed a system for identifying birds and other forms 
of wildlife that uses a minimal set of field marks that distinguish each animal species 
from the others (Peterson 2008). Alternatively, abstraction can be a recognition pro-
cess, where one discovers common features and the relationships between them. (We 
will return to this approach when we study mazes later in the chapter.) Abstraction can 
also lead to algorithmic representations, which are often simple to recall. An example 
of the latter is the algorithm used to tie one’s shoelaces. Collectively, these different 
views of abstractions are conceptual precursors to the data structures and algorithms on 
which computer programs are based. However, they are also valuable problem-solving 
tools in their own right.

We now apply these ideas to show how to draw a Cretan labyrinth on demand. 
The easiest method reduces the Cretan labyrinth to a small set of features, a kernel. The 
full design then emerges from the kernel as one applies a simple algorithm, demon-
strated in algorithm 4.1. Schuster and Carpenter (1996) speculate that different cul-
tures around the world have used it for millennia.

Algorithm 4.1: How to Draw a Cretan Labyrinth

Procure a blank sheet of paper and a pencil.
	 1. � Below the center of the page, draw the seed, or kernel, of the labyrinth, as shown 

in step 1 in figure 4.6. The kernel consists of a cross, four quarter circles (each 
placed in a quadrant of the cross), and four points, each placed in the center of 
each quarter circle. (You should practice so you can draw the kernel from mem-
ory.) The latter four points, plus the four endpoints of the cross and the eight 
endpoints of the quarter circles, define 16 features that will serve as anchor points 
for eight arcs, which are drawn in steps 3 through 9.

	 2. � Connect the upper end of the cross with the upper-right endpoint of the upper-
left quarter circle, as shown by the small red “frown” in step 2 of figure 4.6.

3–9. � For each remaining step, identify the uppermost pair of unused anchor points, 
one from the right side of the figure and one from the left side, and then connect 
each pair with a circular arc that extends above the drawing, shown as a red arc 
in each step of figure 4.6.

Note that the kernel (step 1 in figure 4.6) is easy to remember because of its four-
fold symmetry. Because steps 3–9 are iterated in sequence, one arc being drawn after 
the other, this kind of algorithm possesses what is called an iterative structure. Once 
your students have practiced the algorithm and memorized the kernel, they can be 
asked to draw the “seven-circuit” labyrinth, as described in learning activity 4.3. The 
relative ease of this second effort should be a compelling justification for the use of 
abstraction as a cognitive method. The appendix includes a computer program, written 
in Processing, that draws a seven-circuit Cretan labyrinth on a computer screen (see 
appendix A.1). The program draws the elements of the labyrinth in a different manner, 
after the design has been decomposed into a family of semicircles, quarter circles, and 
the central cross.
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1.

2.

3.

4.

5.

6.

7.

8.

9.

Figure 4.6
A nine-step algorithm for generating a Cretan labyrinth with pencil and paper. The new 
elements to be drawn in each step are highlighted in red (Schuster and Carpenter 1996).
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Learning Activity 4.3: Redrawing the Labyrinth—Take 2

After practicing this algorithm with your class, you can then ask them to draw the Cretan 
labyrinth and to reflect on the application of the algorithm. Why was the second attempt 
more successful?

The result of this process is technically called a “seven-circuit” Cretan labyrinth 
because the maze walker crosses the labyrinth’s medial axis5 seven times while walking 
from the entrance to the goal (see figure 4.7). In summary, the Cretan labyrinth is a 
simple design described by a kernel with fourfold symmetry followed by the construc-
tion of eight parallel arcs. A fundamental principle of computer science is that no 
object, or dataset, is more complex than the simplest algorithm that generates it.6

The drawing algorithm 4.1 can be modified in several interesting ways. First, if in 
step 2 one connects the upper endpoint of the cross with the upper endpoint of the 
upper-right quarter circle, then, after following the remaining steps, one generates the 
mirror image of figure 4.1. Alternatively, by omitting the four quarter circles in step 1, 
the subsequent steps generate a three-circuit Cretan labyrinth. Next, for variety, add an 
extra set of quarter circles to the kernel in step 1 to obtain an 11-circuit Cretan labyrinth 
(see figure 4.8). Finally, replacing the original quarter circles by right angles, with sides 
parallel to the arms of the cross, yields the rectangular Cretan labyrinth (see figure 4.5). 
Learning activity 4.4 helps students learn this algorithm in greater depth.

Learning Activity 4.4: Drawing Different Labyrinths

Ask your students to draw the labyrinths using the seven-circuit algorithm but with differ-
ent starting kernels:

Do all kernels work? How does the design of the kernel determine the appearance of the 
final drawing? Try to find a kernel that produces a nine-circuit labyrinth.

The 9-step algorithm for constructing the labyrinth provides a scaffold for building 
it. Scaffolds are pedagogical techniques used to teach children to build on knowledge 
from an already created schema, such as adding multidigit numbers using their addi-
tion facts, tying their shoes, or pronouncing new multisyllable words by using pho-
netic recall of simpler words. Simplifying a complex problem by breaking it into pieces 
or steps stands on its own as an important principle of computational thinking, called 
divide and conquer. Usage of divide and conquer accelerates the completion of many 
tasks, especially those that involve large amounts of data. Another everyday applica-
tion occurs when one presorts the pieces of a jigsaw puzzle into separate heaps accord-
ing to the pattern printed on the piece or by the presence of a straight edge, indicating 
that it belongs on the boundary of the assembled puzzle.
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Figure 4.7
A seven-circuit Cretan labyrinth with passages numbered as they are visited. The kernel of 
the labyrinth is highlighted in red.
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Figure 4.8
An 11-circuit Cretan labyrinth, with the kernel highlighted in red.

Path Length Estimation
The next activity focuses on how to measure the length traversed in a labyrinth. All that 
is required is a meter stick and some yarn. Measuring the lengths of straight line seg-
ments with a ruler or meter stick appears in the second-grade Common Core State Stan-
dards for Mathematics (CCSSI 2010); computing the circumference of a circle appears 
in the seventh-grade standards. Length estimation and measurement are important 
practical applications of mathematical knowledge. The extension of these concepts to 
curved paths (and trajectories) is a challenging topic that many students will encounter 
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in calculus and physics. The seventh-grade Common Core requirements can be aug-
mented with methods for measuring the lengths for different paths. In this context, we 
are interested in measuring the path length of the Cretan labyrinth. We present several 
direct and indirect methods for doing this:

1.	 Inspired by the myth of Theseus and Ariadne, one might place one end of a strand 
of yarn at the labyrinth’s entrance, curl it through the design, and mark the point 
on the yarn that touches the center. (It might help to pin the drawing to a corkboard 
and use additional pushpins to fix each turn of the yarn.) Then remove the yarn and 
use a meter stick to measure the linear distance between the beginning of the strand 
and the mark that corresponds to the labyrinth’s center. A similar method might be 
used to measure the circumference of a circle.

2.	 The drawing of the Cretan labyrinth in figure 4.1 was generated by assembling the 
central cross, 10 semicircles, and 10 quarter circles of various radii with respect to 
five different centers: the four points that belong to the kernel and the center of the 
goal. Using the formula for the circumference of a circle (C = 2πr), students can deter-
mine the lengths of the walls that delineate the path through the labyrinth. (Don’t 
neglect the lengths of the central cross.) Once the dimensions of the walls have been 
computed, the distance of the path will be bounded between two lengths: the sum of 
the lengths of inner walls around each twist and turn and the sum of the lengths 
of the outer walls. One can then estimate the path length by computing the aver-
age of these two numbers.

3.	 An alternative indirect method estimates the same length as a ratio of the total area 
of the labyrinth to the passage width. This “area method” is best understood with the 
aid of a rectangular Cretan labyrinth drawn on graph paper, as shown in figure 4.9. In 
this figure, the labyrinth is 13 units high and 15 units wide, so the area of the smallest 
enclosing rectangle equals A = 13 × 15 = 195 square units. A maze walker would need 
to step through all but seven of the enclosed squares to reach the center. (We ignore 
this discrepancy for now.) If the total area A is divided by the path width of w = 1 unit 
distance (u.d.), we obtain an estimate of the total path length: 

L = A
w

= 195 (u.d.)2

1 u.d.
= 195 u.d.

(The actual path distance traveled also depends on the widths of the turns taken 
by the maze walker around each corner. Here we assume each corner turn proceeds 
through the path center.)

This value can also be verified by counting the squares inside the labyrinth: each 
interior square contributes 1 unit distance to the path length. (This estimate is actu-
ally 7 units too large, because of the difference in area between the smallest enclosing 
rectangle and the area enclosed by the labyrinth, shaded in orange in figure 4.9.) This 
method can also be applied to labyrinths with different geometries.

For a circular version of the Cretan labyrinth, one might attempt to circumscribe 
the design by the smallest enclosing circle. The construction in figure 4.10 suggests 
that the diameter D of the enclosing circle is approximately 15 path widths; that is, 
D ≈ 15w. Thus, the area of the pink circle is approximately

A = π D
2

⎛
⎝⎜

⎞
⎠⎟
2

= π 225w2

4
≈177w2.
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If we neglect the area of the portion of the pink circle that lies outside the laby-
rinth (near the entrance), the area enclosed by the path, A = wL, should equal that 
of the circle. Hence,

L ≈ A
w

= 177w.

However, because we did not subtract the area near the entrance and did not 
account for the nonuniform width of the path around the central cross, this esti-
mate should be regarded as an upper bound of the actual path length.

4.	 For a life-size example, construct a Cretan labyrinth on the playground and apply 
learning activity 4.5.

4.2  Roman Labyrinths

Students of European history learn that the Roman civilization celebrated many of 
the same gods and heroes as the ancient Greeks, including the legend of Theseus, 
Ariadne, and the Minotaur. In Roman art, however, Daedalus’s labyrinth was most 
often presented in square or rectangular form, on a larger scale. Approximately 50 
examples survive to the present day (Kern 2000, 85). Most exist as decorative floor 
mosaics distributed throughout the Mediterranean region, Gaul (France), and Great 
Britain. Although they are inlaid into floors, the passage widths are usually too narrow 

15

13

Figure 4.9
Estimating the path length of a rectangular Cretan labyrinth.
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for human traffic. Figure 4.11 depicts a typical unicursal Roman design copied from 
a mosaic in Cremona, Italy, c. 50 CE. (The original mosaic depicts a heroic image of 
Theseus slaying the Minotaur in the labyrinth’s center.) Most Roman labyrinths are 
subdivided into four quadrants, like this one. Here, the entrance leads directly into the 
first quadrant. Only after the path has covered every unit of area in the first quadrant 
does it progress to the second and so on.

The designs of the second and third quadrants are nearly rotational copies of the 
first. The fourth quadrant, however, breaks the symmetry with a subtle twist that is 
required for the path to reach the center. (Ask your students to find it.)

Figure 4.10
The “area method” for path length estimation, applied to a circular, seven-circuit Cretan 
labyrinth. The pink region indicates the smallest circle that encloses the labyrinth. The area 
of the circle is approximately the same as the total area enclosed by the path. The latter can 
be represented as an elongated rectangle of width w and length L, shown in the lower figure.
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Learning Activity 4.5: Drawing a Large Labyrinth and Estimating Its Path Length

Take your class outside with a box of sidewalk chalk.
As a group, construct a large, seven-circuit Cretan labyrinth (e.g., about 30 feet in 

diameter) with passages wide enough to walk through. Ask the students to predict how 
many steps are required for a designated maze walker to reach the center and invite them 
to take turns traversing the path.

Although less common, there exist examples of Roman labyrinths that are con-
tained within circular boundaries. These designs were also usually based on four quad-
rants, with the unicursal path running from one quadrant to the next in essentially the 
same manner.

Labyrinths played other roles in Roman culture. In The Aeneid,7 the poet Virgil 
describes an elaborate sequence of games that Aeneas hosts on the island of Sicily in 
memory of his deceased father, Anchises. The final game consists of a mock battle 
between the sons of the nobility, mounted on horseback:

So complex the labyrinth once in hilly Crete, they say,
where the passage wove between blind walls and wavered on
in numberless cunning paths that broke down every clue,
with nothing to trace and no way back—a baffling maze.
Complex as the course the sons of Troy now follow, weaving
their way through mock escapes and clashes all in sport
as swiftly as frisky dolphins skim the rolling surf,
cleaving the Libyan or Carpathian seas in play.

Virgil (2006), The Aeneid, book V, lines 649–654

This Lusus Trojae, or Trojan ride, was a traditional rite of passage for the sons of Roman 
nobles that was practiced as early as c. 80 BCE, as confirmed by other Roman works, 
such as Suetonius’s The Lives of the Caesars (Doob 1990). Kern (2000) speculates that 
the ceremony was precisely choreographed so that each horse and rider followed a 
prescribed labyrinthine path that was traced on the ground.

4.3  Christian Labyrinths

A remarkable change in labyrinth design occurred in the ninth century as labyrinths 
were adopted as a Christian symbol. The “Jericho labyrinth” depicts a seven-circuit, 
square Cretan labyrinth symbolizing the Battle of Jericho. Perhaps the seven circuits 
of the design provided a meaningful symbol for the seven laps that were taken around 
this city:

And it came to pass on the seventh day, that they rose early at the dawning of the day, and 
compassed the city after the same manner seven times; only on that day they compassed the 
city seven times. And it came to pass at the seventh time, when the priests blew with the horns, 
that Joshua said unto the people: “Shout; for the Lord hath given you the city.”

Joshua 6:15–16

Prior to the ninth century, Cretan labyrinths appeared in stone, floor mosaics, and on 
the backside of coins. The “Jericho labyrinth,” however, was drawn with pen and ink 
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on parchment. This labyrinth was actually drawn on one page of a larger devotional 
book called a computus (Latin for computation), in which priests would compute the 
dates for Easter in the current and future years. Parchment was a scarce resource, so 
computuses often contained more than just computations; priests also used them to 
pen devotional writings, annals, and occasionally a labyrinth, which became a Chris-
tian symbol.

During the ninth century, the design of labyrinths that were drawn in compu-
tuses evolved to become the circular, 11-circuit design that appears in figure 4.12. The 
earliest known example might be a drawing in a computus found in the monastery 
of St.-Germain-des-Prés in Paris, which places Satan, instead of the Minotaur, in the 
labyrinth’s center (Kern 2000, 112). Like Roman labyrinths, its design is partitioned 
into quadrants. However, the path enters and exits each quadrant before all 11 circuits 
are encompassed. The lower two quadrants are actually visited three times during the 
entire traversal, while the upper two are each visited four times. Although the mean-
derings appear chaotic, there is a subtle symmetry present: the first half of the traversal 
is an inversion of the second half. Consequently, the turns taken when leaving the 
labyrinth from the center are taken in exactly the same order and direction as when 
entering the labyrinth from the entrance.

The passing of the first millennium was accompanied by a fervent rise in religiosity 
that is reflected in the erection of elaborate cathedrals in the High Gothic style. The 
flying buttress as an architectural innovation enabled towering structures. The loads 
were transferred laterally, so the supporting walls could now include large windows 

Figure 4.11
The layout of the Roman labyrinth found in the Villa Cadolini in Cremona, Italy, c. 50 
CE. Here, the passages are colored to help visualize the order in which each quadrant is 
visited—(1) blue, (2) green, (3) yellow, (4) pink—and the approximate symmetry of the first 
three quadrants. Note that paths in the darker shade are traversed before the lighter ones. Note 
also that the structure of the fourth quadrant differs significantly from the preceding three.
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of stained glass. The architects of the age were likely proud of their achievement, and 
some incorporated labyrinths into their designs, perhaps with association to Daeda-
lus. These church labyrinths often were inlaid into the pavement. Surviving examples 
can be found in France (Arras, Bayeaux, and Chartres) and Italy (Lucca and Ravenna). 
Fascinating information about the history and significance of Christian labyrinths is 
presented in Wright (2001).

Learning Activity 4.6: Estimating Path Lengths (continued)

Apply the area algorithm to estimate the path length of the Cremona labyrinth (see fig-
ure 4.11) and the Chartres labyrinth (see figure 4.12).

4.4  Mazes

The earliest known examples of multicursal mazes are three drawings on parchment by 
Giovanni Fontana, a Venetian doctor, c. 1420 (Kern 2000, 138–139). Two display a cir-
cular design, one with seven circuits and the other with 10; the other maze is rectangu-
lar. What distinguishes these drawings is the innovative use of junctions (or branches). 
Moreover, the inscriptions on some of the drawings suggest that the purpose of each 
drawing was for entertainment. Fontana may well be the inventor of the maze as a 
puzzle. Mazes subsequently became more secular, appearing in drawings, woodcuts, 
and formal gardens.

Figure 4.12
A Christian labyrinth based on the design at Chartres Cathedral. Each quadrant is colored in 
a manner similar to that in figure 4.11.
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In subsequent subsections, we will explore how principles of computational think-
ing can be used to thread mazes of arbitrary complexity. Before proceeding, it is helpful 
to note that each maze we consider includes the following features:

1.	 A single entrance.
2.	 A single goal.
3.	 One or more junctions, where three or more paths merge.
4.	 An arbitrary number of dead ends.

Learning Activity 4.7: Maze Recognition

Ask your students to label a variety of mazes (see figure 4.20) using the four-color scheme 
used in figure 4.13. This exercise will help them develop pattern recognition skills and will 
aid in subsequent activities.

(It is certainly possible to design mazes with multiple goals and entrances, and the meth-
ods that we describe can be applied to these variations. However, to simplify the discus-
sion, we do not consider them here.) Figure 4.13 identifies each type of feature by using 
colored circles. Note that this maze has eight junctions (labeled in blue) and six dead 
ends (labeled in red). It is important that students be able to recognize these features in 
other mazes before proceeding.

We view the process of threading the maze as a computational process. In this con-
text, each feature represents a decision point in the computation. By this, we mean that 
a certain action must be taken when the “maze walker” (or agent) arrives at each fea-
ture. Specifically, the entrance (marked with a green circle) in figure 4.13 represents the 
initial state of the computation. Here, the decision is whether to begin or wait. Once 
the computation begins, the agent enters the maze and proceeds along the initial pas-
sage to the next decision point. Marching forward, the agent reaches the first junction 
(labeled with a blue circle immediately above the entrance). Junctions are the most 
important decision points. At each junction, the agent must decide which branch to 
follow next. The number of choices corresponds to the number of paths that meet. 
We will call this number the degree of the junction. In this example, the current junc-
tion has degree 3, and thus the agent can either (1) turn left, (2) turn right, or (3) turn 
completely around and exit the maze. If the agent were to turn left, it would follow 

Figure 4.13
The maze at Hampton Court, with prominent features (decision points) highlighted: the 
entrance in green, junctions in blue, dead ends in red, and the goal in gold.
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a twisty path and arrive at a new junction, also of degree 3. If instead the agent turns 
right, then it follows a curved path along the lower edge of the maze. This path leads to 
a dead end, indicated by a red circle. Each dead end is also a decision point: either the 
agent turns around and backtracks to the previous junction or remains there. The last 
type of decision point is the goal. Here the agent stops (or celebrates) and the computa-
tion terminates.

Thus, the act of solving every maze (indeed every puzzle under the sun) is akin to 
executing a computer program. Let’s explore different algorithms for threading a maze.

Random Walk
The random walk (algorithm 4.2) is the simplest algorithm for solving any finite maze. 
By the laws of probability, it is guaranteed to deliver the agent to the goal.

Algorithm 4.2: Random Walk

Perform the following actions until the goal is reached:
1.		 If the agent is at the entrance, then enter (or reenter) the maze and proceed until 

the next decision point is reached.
2.		 If the agent arrives at a dead end, then turn around and return to the previous deci-

sion point.
3.		 If the agent arrives at a junction, choose a branch at random and proceed to the 

next decision point.

Learning Activity 4.8: Threading a Maze with a Random Walk

Ask your students to apply the random walk algorithm to the Hampton Court maze, using 
a board game token to indicate the current location of the agent. The roll of a six-sided die 
can simulate the random choice in step 3: for example, for junctions of degree 3, let the 
agent turn left if the roll is 1 or 2; turn right if the roll is 3 or 4; and turn completely around, 
returning to the previous decision point, if the roll is 5 or 6. With one token for each stu-
dent, the simulation turns into a competitive race game.

Unfortunately, the random walk algorithm is not very efficient, as it may send the 
agent back and forth along the same paths many times before deciding to discover an 
unexplored region of the maze.

Wall Following
Wall following is a simple computational process: the only interesting decision occurs 
in step 1. The act of following a wall around a dead end performs the desired action of 
turning the agent around and backtracking. Also, the algorithm (algorithm 4.3) ensures 
that no path is traversed more than once in the same direction, an efficiency improve-
ment over the random walk algorithm. However, wall following is only guaranteed to 
succeed for a certain type of maze. To see this, let’s examine the counterexample shown 
in figure 4.14. If the agent were to follow the right wall as it entered the maze, then it 
would follow a counterclockwise circuit along the rectangular boundary of the maze, 
return to the entrance, and then exit the maze before discovering the goal. (What 
would happen if it followed the left wall instead?)
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Algorithm 4.3: Wall Following

Perform the following actions until either the goal is reached or the agent exits the maze:
1.		 Pick a side: left or right.
2.		 As the agent enters the maze, it touches the wall corresponding to the side chosen 

in step 1.
3.		 The agent proceeds forward, always touching the wall on the chosen side.
4.		 At every decision point, the agent selects the branch along which the wall contin-

ues, without losing touch with the wall, and proceeds forward to the next decision 
point.

Learning Activity 4.9: Threading a Maze by Wall Following

Ask your students to apply the wall following algorithm to the Hampton Court maze. Does 
the algorithm work for this maze? How does the algorithm differ if the right wall is followed 
rather than the left?

The maze in figure 4.14 is an example of what we might call a disconnected maze: 
one in which it is possible to draw a closed loop that contains some passages but does 
not intersect any walls. If a maze is disconnected, then wall following may not work. 
Figure 4.15 demonstrates that the maze in figure 4.14 is disconnected, as the blue 
dashed loop separates the goal from the entrance without crossing any interior walls.

Figure 4.14
A maze that stymies the wall following algorithm, where the $ symbol is provided to repre-
sent the goal of the maze.

Learning Activity 4.10: Maze Classification

Ask your students to answer the following question: “Is the Hampton Court maze con-
nected or disconnected?” It turns out that it is indeed disconnected, but wall following 
works anyway because both the goal and the entrance are exterior to the loop that discon-
nects this maze. Thus, wall following works sometimes if a maze is disconnected.
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Trémaux’s Algorithm
An efficient algorithm that will enable an autonomous agent to thread any maze 
is a valuable tool. According to Édouard Lucas (1891), an answer was discovered by 
Charles Pierre Trémaux, a nineteenth-century French engineer. In order to apply this 
algorithm (algorithm 4.4), we assume that the agent can place marks or labels in the 
maze. Since the junctions represent the significant decision points in solving the puz-
zle, we should only need to mark the ends of the passages where they meet a junction.

Here we follow Even (1979) and adopt two distinct symbols: N for new and X for 
exit. Labels are applied at a junction only by the agent, as the junction is visited. It is 
important to stress that when applying the algorithm, every junction that is visited will 
have exactly one path that is labeled with an X; no more, no less. Junctions that have 
no labels are said to be new; those with two or more labels are said to be old (as seen 
in figure 4.16). In addition to the labels, the agent is required to maintain one bit of 
memory: it must remember whether it is advancing or backtracking.

Figure 4.15
The dashed loop demonstrates how the maze in figure 4.14 is disconnected.

(a) New junction (b) Old junction

N

N X

Figure 4.16
(a) Since this five-way junction has no labels on its threshold, it has not yet been visited. It 
is therefore classified as a new junction. (b) This five-way junction has been visited twice, 
as is evident by the presence of two Ns on its thresholds. It is therefore classified as an old 
junction. Note also that every old junction contains exactly one threshold with an X, which 
denotes the path by which the agent arrived during its initial visit.
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N N N
X X

(b) Advancing into a old junction

N N
NXX

(d) Backtracking, with some unlabeled paths

(c) Advancing into an dead end

N N N
NN

N
NN

X X

(e) Backtracking, with no unlabeled paths

N
X

Before After

(a) Advancing into a new junction

Figure 4.17
Applying the labels at path thresh-
olds by using Trémaux’s algorithm. 
In each pair of illustrations, the 
left drawing displays the state of 
the junction immediately before 
the agent has arrived and the right 
drawing shows the state immedi-
ately after the agent has moved 
onward. Green arrows indicate 
where the agent is advancing; red 
arrows indicate where the agent is 
backtracking.
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Algorithm 4.4: Trémaux’s Algorithm

	1.	Enter the maze and advance to the next decision point.
	2.	Until the goal is reached, perform the following actions at each decision point:

a.	If the agent advances into a new junction, then
	 i.	Place an X at the end of the current passage;
	ii.	Select a new path; place an N at its entrance; and
	iii.	Advance to the next decision point (figure 4.17(a)).

b.	If the agent advances into an old junction, then
	 i.	Place an N at the end of the current passage;
	ii.	Turn around; and
	iii.	Backtrack (figure 4.17(b)).

c.	If the agent advances into a dead end, then
	 i.	Turn around; and
	ii.	Backtrack (figure 4.17(c)).

d.	If the agent backtracks into an old junction with one or more unlabeled paths, 
then
	 i.	Select a new (unlabeled) path;
	ii.	Place an N at its entrance; and
	iii.	Advance to the next decision point (figure 4.17(d)).

e.	If the agent backtracks into an old junction with no unlabeled passages, then
	 i.	Select the path that is labeled with an X.
	ii.	Backtrack (figure 4.17(e)).

f.	 If the agent exits the maze through the original entrance, then give up. The goal 
cannot be reached.

Trémaux’s algorithm takes some practice to learn and requires care and discipline. 
Consequently, we present a variety of learning activities here. Be aware that if the algo-
rithm is not followed exactly, then, at best, extra exploration may be required. At worst, 
the goal will not be found. The essential steps are shown in figure 4.17. In each part, the 
left drawing shows the state of a decision point (junction or dead end) immediately before 
the agent arrives; the right drawing shows the state of the decision point immediately 
after the required actions are executed. Green arrows (vectors) indicate the location and 
orientation when the agent is advancing (marching in the direction of the arrow) and red 
arrows show the same when the agent is backtracking. As noted, two kinds of marks are 
used to record the decisions made so far. (The marks enable the agent to avoid unneces-
sary traversals. At a maximum, each path is traversed once in each direction.) Each old 
junction (one that was visited earlier in the process) has exactly one threshold labeled 
with an X and one or more labeled with an N. Steps 2a, 2c, 2d, and 2e are usually easy to 
learn. Step 2b, however, is tricky, and many students have difficulty adhering to it because 
the temptation to select an unlabeled path is, unfortunately, strong. Another common 
error is to place a second X at the exit of the current path instead of an N. Remind your 
students that exactly one X is allowed at each junction.

Steps 2a and 2d require that the agent select an unlabeled path for subsequent 
exploration. Since the choice of this path is arbitrary so long as it is unlabeled, there are 
often many orders in which the different parts of a maze can be visited. In certain cir-
cumstances, one might desire that the maze be explored in a consistent way. In order to 
accomplish this, we define an agent to be right bearing if it always selects the rightmost 
choice that is available. Similarly, we define an agent to be left bearing if it always selects 
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the leftmost option available. Figure 4.19 shows the markings that a right-bearing agent 
inscribes at each threshold as it begins threading a given maze with Trémaux’s algo-
rithm. Because of space limitations, only marks for the first half of the algorithm are 
shown. A complete history is presented in a more compressed form in figure 4.18.

We recommend that the algorithm be learned in phases, first with paper and pen-
cil exercises (learning activity 4.11) and then in a gymnasium or on a playground using 
mazes constructed with painter’s tape or sidewalk chalk (learning activity 4.12). Finally, 
if possible, we recommend that you take your class on a field trip to a life-size or corn 
maze in your area (learning activity 4.13).

Learning Activity 4.11: Trémaux with Paper

Practice Trémaux’s algorithm in small groups, with mazes on paper and colored mark-
ers. Additional examples of mazes are available in the online resources. For extra practice, 
encourage your students to create their own mazes and then trade copies of them with 
other students.

Learning Activity 4.12: Threading Minimazes

Minimazes (seen in figure 4.20) are mazes with a small number of decision points but 
are still interesting for practicing algorithm 4.4. Each minimaze can be re-created on a 
gymnasium floor with painter’s tape or outside using sidewalk chalk. Each maze can fit in 
a 12 foot × 12 foot area with passages 2 feet wide. Snapp and Neumann (2015) describe a 
simple game that students can play to help them learn the finer points of Trémaux’s algo-
rithm using embodied learning.

Learning Activity 4.13: Field Trip to a Life-Size Maze

Practice Trémaux’s algorithm in a life-size maze (such as a corn maze). Here, marks can be 
inscribed into the earth at the path ends by using a stick or sharp rock. It is helpful for you 
to divide your class into groups of four to six. To minimize confusion, each group should 
choose a unique pair of marks to use in place of N and X.

Trémaux’s algorithm is an example of what computer scientists call a depth-first 
search. In the following subsection, we will see that this algorithm can be applied to a 
wide variety of puzzles and other problems, not just mazes.

Other Algorithms
There are two other maze-threading algorithms to use:

■	 Tarry’s (1895) algorithm is a variant of Trémaux’s algorithm that relies on three sym-
bols instead of two. It can be elegantly implemented using pebbles.

■	 The breadth-first search algorithm developed by Moore (1959) extends the work of 
Bellman (1958) and Ford (1956) to find the path through the maze that uses the 
fewest junctions or the shortest path length.
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(a)

(b)

Figure 4.18
A demonstration of Trémaux’s algorithm on a challenging maze, where the $ marks the goal 
of the maze.

(a)	 The path followed by a right-bearing agent is represented by a sequence of colored 
arrows: green arrows correspond to forward movement, red arrows to backtracking. 
Each decision point is labeled with a letter a through e inside a circle, in accordance 
with the case applied in step 2 and illustrated in figure 4.17. The symbols that the agent 
draws in each threshold (X and N) are also shown.

(b)	 After the agent has arrived at the goal, it can efficiently return to the entrance by select-
ing the path labeled with an X at each junction.

4.5  Graph Theory

In chapter 3, graphs were introduced as an abstraction for representing social networks 
and analyzing the relationships of characters in fictional works. In this section, we 
develop this abstraction further in the context of mazes and combinatorial puzzles. 
Expressing mazes in the language of graphs enables one to extend Trémaux’s elegant 
algorithm, also known as a depth-first search, to a wide range of problems. Variations of 
this algorithm are employed by Google for crawling through the World Wide Web as 
indexes of websites are constructed and ranked for their search engine.
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(e)

(f )

(g)

Figure 4.19
An example of Trémaux’s algorithm with a 
right-bearing agent. A $ symbol is provided to 
represent the goal of the maze.

(a)	 The agent enters the maze and applies 
step 2a.

(b)	 Step 2a is applied at the six-way 
junction.

(c)	 Step 2a is applied three more times.
(d)	 Step 2c is applied at the first dead end 

encountered.
(e)	 Step 2d is applied, as one path was 

unlabeled.
(f)	 Steps 2a, 2c, and 2d are repeatedly 

applied to help solve the maze.
(g)	 Step 2b is applied, turning the agent 

around and backtracking.

Downloaded from http://direct.mit.edu/books/book-pdf/2259273/book_9780262366144.pdf by guest on 03 October 2024



Labyrinths and Mazes	 81

In order for this section to be self-contained, we restate the essential definitions 
and concepts. Computation depends on data, meaning information, which can appear 
in many forms. For efficiency and ease of interpretation, it is helpful to collect this 
information in a few standard structures, or “containers.” The simplest structure is 
a set, which mathematicians define as a collection of objects without any order and 
without repetition. Sets containing numbers are common in mathematics. Small sets of 
numbers are denoted using curly braces. For example, the set of odd natural numbers 
less than 6 can be written as {1, 3, 5}. The values 1, 3, and 5 are called the elements, or 
members, of this set. Since a set is an unordered collection, the same set could be written 
as {3, 5, 1}, {5, 3, 1}, and other combinations. The collection {1, 1, 3, 5, 5} is not a set, 
because the elements 1 and 5 are repeated. (Such a collection is called a multiset.) Sets 
are valuable because they are abstract. A set can be an unordered collection of anything: 
points on a plane, fictional characters, US presidents, countries, cities, postage stamps, 
pizza toppings, ice cream flavors, soft drink brands, chess pieces, English words, and 
so on. We often use a capital letter to denote a set, such as A = {1, 3, 5}, and the notation 
5∈A to indicate that “5 is an element of A.” The number of elements contained in a 
set is called its size, or cardinality, which is denoted using two vertical bars; for example, 
|A| = 3, because A contains three elements. The set with zero elements, denoted by ∅ 
or { }, is called the empty set. Computer scientists and mathematicians use symbols in 
blackboard bold font to describe sets of basic numbers:  = {0, 1, 2, . . . } denotes the 
natural numbers,8 Z = { . . . , −1, 0, 1, . . . } the integers,  = {n/d : n, d ∈ Z, d ≠ 0 } the ratio-
nal numbers, and R, the real numbers.

Figure 4.20
Seven different “minimazes” for practicing Trémaux’s algorithm. See learning activity 4.12.
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Learning Activity 4.14: Learning about Graphs

Each student is given plain paper and a box of crayons or colored pencils. Ask the students 
to perform the following sequence of actions:

1.	 Draw a red vertex (dot) somewhere on your paper.

2.	 Draw a green vertex, a brown vertex, and a blue vertex.

3.	 Connect the green vertex and the blue vertex with an orange edge.

4.	 Connect the blue vertex and the red vertex with a purple edge.

5.	 Connect the green vertex and the brown vertex with a black edge.

6.	 Compare your paper with your neighbor’s. How are they similar? How are they different?

Sets are an important building block for other useful data structures. As an exam-
ple, we define a graph as a pair of two sets (V, E). Here V denotes a set of vertices 
(e.g., points that represent an abstract set) and E denotes a set of edges (also called links 
or arcs) that connect pairs of vertices belonging to V. A simple example is shown in 
figure 4.21, where V consists of the four vertices v1 through v4, shown in figure 4.21(a), 
and E consists of the four edges, shown in figure 4.21(b), that connect the pairs (ν1, 
ν2), (ν2, ν3), (ν2, ν4), and (ν3, ν4). In this figure, the vertices and edges are abstract; they 
can mean almost anything. All that we have here are four things (represented by the 
vertices) and four relationships between pairs of things (represented by the edges). 
Each edge in particular defines an adjacency between a pair of vertices. Thus, in figure 
4.21(b), vertices v1 and v2 are said to be adjacent because there exists an edge (i.e., e1) 
that links them; likewise, v1 and v4 are not adjacent. An edge that connects to a certain 
vertex is said to be incident to that vertex. Likewise, the latter vertex is said to be inci-
dent to that edge. Thus, in figure 4.21(b), edge e1 is incident to vertices v1 and v2, and 
vertex v2 is incident to the edges labeled e1, e2, and e3. The number of edges that are 
incident to a vertex defines its degree. Thus, the degree of v2, written d(v2), equals 3. 
When drawing a graph, edges can be curved and can intersect at arbitrary points. If a 
graph can be drawn on a piece of paper such that its edges only meet at vertices, then 
that graph is said to be planar.

(a) (b)

Figure 4.21
A depiction of a graph G = (V, E) that consists of four vertices and four edges.

(a)	 A set V = {v1, v2, v3, v4} of four vertices.
(b)	 The graph G = (V, E) consists of a set V (see (a)) with a set of edges E. Here, E = {(v1, v2), 

(v2, v3), (v2, v4), (v3, v4)}.
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Because graph theory is so fundamental to computer science, we recommend that 
it be introduced in the earliest possible grade. Gibson (2012) provides a range of gradu-
ated activities geared to children from ages 5 through 17. Based on his study, we offer 
learning activity 4.14 as an introductory classroom exercise for learning about graphs 
as abstract structures.

Let’s return to the maze at Hampton Court (see figure 4.13). We defined the con-
cept of a decision point: a location in a maze where the agent determines what course 
to take next. Since the computational events are confined to these decision points, the 
shape and length of the intervening passages are irrelevant. Algorithm 4.5 presents an 
iterative procedure that converts a maze into an equivalent graph and learning activ-
ity 4.15 has students practice converting between a maze and a graph. Figure 4.22(a) 
shows the plan of the Hampton Court maze, which we assume is given.

Algorithm 4.5: Abstracting the Graph from a Given Maze

	1.		Identify each decision point in the maze (the entrance, the goal, the junctions, and 
the dead ends) and represent each by a vertex. (See figure 4.22(b).)

	2.		Decision points that delineate a common passage are said to be adjacent. Connect 
each pair of adjacent decision points with an arc (or edge) that conforms to the 
geometry of each passage. (See figure 4.22(c).)

	3.		Either erase the walls or imagine that they have disappeared. What remains is a 
graph where the decision points are its vertices and the twisty arcs are its edges. (See 
figure 4.22(d).)

	4.		Redraw the graph with simpler edges but such that all vertices and connections are 
preserved. (See figure 4.22(e).)

Learning Activity 4.15: Reducing Mazes to Graphs

Ask your students to reduce the maze in figure 4.18 to a graph. Conversely, give them a 
graph (e.g., figure 4.22(e)) and ask them to construct an equivalent maze.

The outcome of step 1 can depend on one’s interpretation of the maze. For exam-
ple, figure 4.23 shows a maze where four paths meet. The presence of the gap between 
each pair shown in (a) invites two possible interpretations: either this represents a pair 
of junctions, each of degree 3 (b), or a single junction of degree 4 (c). In the end, it may 
not matter, because the two interpretations are topologically distinct. In performing 
step 4, we chose to orient the edges relative to each vertex to parallel the orientation 
of the passages in the original maze relative to each junction. This is not necessary, but 
as we will see, doing so helps one visualize how paths in the graph (figure 4.22(e)) cor-
respond to those in the maze (figure 4.22(c)).

Once the maze has been reduced to a graph, Trémaux’s algorithm can be used to find 
a route from the entrance to the goal. The only difference is that the labels (X and N) 
that were placed on the threshold of each path are now placed near the ends of each 
edge. Figure 4.24 illustrates the outcome of Trémaux’s algorithm when it is applied to 
the graph in figure 4.22(e) by both a left-bearing (figure 4.24(a)) and a right-bearing 
(figure 4.24(b)) agent. In this case, the left-bearing agent is slightly more efficient.
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(a)

(b)

(c)

(d)

(e)

Figure 4.22
Constructing the graph that is 
equivalent to the (a) Hampton 
Court maze is a four-step pro-
cess. First (b), the decision points 
are identified (see figure 4.13). 
Then (c), pairs of adjacent deci-
sion points are connected by arcs 
defined by the passages. After the 
walls are removed (d), the arcs are 
simplified to obtain the equiva-
lent graph in (e).

(a)	 Step 0: A given maze.
(b)	 Step 1: Label the decision 

points.
(c)	 Step 2: Connect adjacent 

decision points.
(d)	 Step 3: Remove the walls.
(e)	 Step 4: Normalize the graph.
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(a)

(b)

(c)

Figure 4.23
A junction with four or more passages can sometimes be interpreted in different ways.

(a)	 One or two junctions?
(b)	 Two-junction interpretation.
(c)	 One-junction interpretation.

(a)

(b)

Figure 4.24
Two applications of Trémaux’s algorithm to the graph of the Hampton Court maze.

(a)	 Labels generated by a left-bearing agent.
(b)	 Labels generated by a right-bearing agent.
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It may not be obvious, but the application of Trémaux’s algorithm (or any maze 
algorithm) to a graph is a moment of revelation: we have shown that an algorithm 
that solves a maze also solves its graph. Since the graph is an abstraction of the maze, 
solving the problem in the context of the graph is significantly more powerful, because 
it turns out that there are many similar problems that we would like to solve that can 
be reduced to graphs from contexts other than mazes. We illustrate this in section 4.6 
with a famous example.

4.6  Solving Combinatorial Puzzles with Trémaux’s Algorithm

Propositio de lupo et capra et fasciculo cauli:
Homo quidam debebat ultra fluvium transferre lupum, capram, et fasciculum cauli. Et 

non potuit aliam navem invenire, nisi quae duos tantum ex ipsis ferre valebat. Praeceptum 
itaque ei fuerat ut omnia haec ultra illaesa omnino transferret. Dicat, qui potest, quomodo 
eis illaesis transire potuit.

Alcuin, Propositiones ad acuendos juvenes (c. 799)

So reads problem 18 (of 53) written by eighth-century Catholic monk and educator 
Alcuin of York, from his book of mathematical exercises, Propositions to Sharpen the 
Young. After his distinguished service as a scholar, pedagogue, and deacon, Alcuin was 
invited by Charlemagne in 781 to teach in a palace school in Aachen, and this book of 
problems is believed to be a textbook used for this purpose. Alcuin revived the instruc-
tion of liberal arts in Western education and was influential in developing the curricu-
lum for the earliest European universities.

But let’s return to problem 18 (of 53), which Hadley and Singmaster (1992) trans-
late as

Proposition of a wolf, a goat and a bunch of cabbages:
A man had to take a wolf, a goat and a bunch of cabbages across a river. The only boat 

he could find could only take two of them at a time. But he had been ordered to transfer all 
of these to the other side in good condition. How could this be done?

Here, the implication is that if the wolf and goat are left on the same side of the river and 
the man is on the other side, then the hungry wolf will devour the goat, and the game 
is lost. Likewise, the goat cannot be left unattended on the same side of the river as the 
cabbages because it will eat the cabbages. The puzzle can be solved empirically. Students 
might visualize the steps using five objects, to represent the man, the wolf, the goat, the 
cabbages, and the boat. However, we will demonstrate how the principles of computa-
tional thinking that we have developed provide a systematic solution to the problem.

First, we use logic to simplify the problem slightly: since the boat can only be navi-
gated by the man, we can always assume that the boat and the man are always on the 
same side of the river. Thus, there are only four independent entities here: the man (M), 
the wolf (W), the goat (G), and the cabbages (C).

Every feasible computation we perform is a process that is defined over a set of 
discrete states. In the example of a maze, the states are defined by the decision points, 
which in the previous section were eventually mapped to vertices in a graph. Every 
problem that can be approached by computational thinking must be reducible to a 
discrete set of states. The set of all states is usually called the state space. As section 4.4 
reveals, abstraction is the computational thinking method that leads to the discovery 
of the state space within a given problem context. Since every problem is different, 
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students will learn abstraction best if the process is practiced over a variety of exercises 
in different contexts. (For additional examples, see Averbach and Chein 2000; Levitin 
and Levitin 2011; Wells 1992.) In Alcuin’s puzzle, each decision is made by the man 
immediately before he embarks across the river: does he cross alone or select an avail-
able item to cross with him? These choices are constrained by what is present on his 
side of the river. The moments at which each selection is made constitute the decision 
points of this puzzle. The acts of propelling the boat across the river and unloading 
its contents are ancillary. Thus, the states are distinguished by the side of the river the 
man is on and which of his possessions are within his reach. It is always constructive 
to ask, “How many states are there?” And it is easiest to answer this question before we 
consider which states need to be avoided (i.e., those that allow the wolf to eat the goat 
or the goat to eat the cabbages).

It is often helpful to represent states by using a data container called a list. A list 
defines an ordered collection of objects that allows elements to be repeated. The size of 
a list is called its length. In a sense, a list is the opposite of a set (defined in section 4.5), 
which is unordered and does not allow repetitions. Lists are often delineated using 
pairs of parentheses, for example (waffle cone, chocolate, vanilla), which is a list of 
length 3 that might describe an ice cream cone that is assembled by placing a scoop of 
chocolate on a waffle cone, followed by a scoop of vanilla on top. Lists are a flexible 
data structure that we often use without formality. Common examples are shopping 
lists or lists of chores, where the order in which items appear is significant. In math-
ematics, students encounter lists as ordered pairs, for example (x, y), where x, y ∈ R, 
which label points on the two-dimensional Cartesian plane.9

We are now ready to build the state space for Alcuin’s puzzle. In principle, each 
item can be on either the initial (I) or final (F) side of the river, independent of the oth-
ers. We apply iteration and first consider only the man, representing his state by a list 
of length 1: (I) denotes that the man is on the initial bank and (F) that he is on the final 
bank. There are thus only two possibilities, at least so far.

Next, we incorporate the location of the wolf. The locations of the man and wolf 
together can be represented by a list of length 2, of the form (M, W), where the value 
of M corresponds to the side of the river on which the man stands and likewise W for 
the wolf. Since each entity has two possible states, we obtain that there are four possible 
joint states defined by the lists (I, I), (I, F), (F, I), and (F, F), as shown in figure 4.25.

By iteration, we next incorporate the location of the goat, using a combined list 
of length 3, of the form (M, W, G), where again each symbol can assume the value I or 
F independent of the others. Eight possible assignments can be discovered, which are 
shown in figure 4.26.

Finally, we incorporate the location of the cabbage, using a list of length 4, of the 
form (M, W, G, C). Now 16 possible assignments are discovered, which are tabulated 
in figure 4.27.

The preceding enumeration could have been shortened by relying on a useful com-
binatorial concept called the multiplication principle. The number of ways that a list of 
length k, x1, x2 , ⋅ ⋅ ⋅ , xk( )  can be constructed equals the product n1 × n2 × ⋅⋅ ⋅ × nk, where  
n1 represents the number of choices for the first item in the list, x1; n2 the number of 
choices for x2, and so on, with the proviso that the number of choices available at 
each step is independent of the choices made so far. Since each of the four items in 
the puzzle can be in two possible locations (I or F), the size of the state space equals 
2 × 2 × 2 × 2 = 24 = 16.
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We can now count the number of dangerous or lethal states: those in which 
either the wolf can eat the goat or the goat can eat the cabbage. The man can be 
separated from all three of his possessions in two ways: (F, I, I, I) or (I, F, F, F). Alter-
natively, each predator-prey pair can be isolated from the man and the odd object in 
four ways: (F, I, I, F), (I, F, F, I), (F, F, I, I), and (I, I, F, F). Thus, there are a total of six 
lethal states that must be avoided, and therefore the remaining 16 − 6 = 10  states are 
deemed to be safe.

Note that the puzzle starts in the initial state, (I, I, I, I), and proceeds to the goal 
state, (F, F, F, F).

The next step is to construct a graph that assigns one vertex to each of the 16 
states of the puzzle. In analogy with our graphs for mazes, we can color the initial 
vertex green, the goal vertex gold, the lethal states red (they are effectively dead ends 
because no successful solution can travel through them), and the remaining states blue. 

Wolf

Man

I

I (I, I ) (I, F )

(F, I ) (F, F )

F

F

Figure 4.25
The state space of the puzzle with only the man and wolf under consideration.

WolfGoat = I

Man

I

I (I, I, I ) (I, F, I )

(F, I, I ) (F, F, I )

F

F

WolfGoat = F

Man

I

I (I, I, F ) (I, F, F )

(F, I, F ) (F, F, F )

F

F

Figure 4.26
The state space of the puzzle with the man, wolf, and goat under consideration yields eight 
distinct states.
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WolfGoat = I

Cabbage = I

Man

I

I (I, I, I, I ) (I, F, I, I )

(F, I, I, I ) (F, F, I, I )

F

F

WolfGoat = F

Man

I

I (I, I, F, I ) (I, F, F, I )

(F, I, F, I ) (F, F, F, I )

F

F

WolfGoat = I

Cabbage = F

Man

I

I (I, I, I, F ) (I, F, I, F )

(F, I, I, F ) (F, F, I, F )

F

F

WolfGoat = F

Man

I

I (I, I, F, F) (I, F, F, F)

(F, I, F, F) (F, F, F, F )

F

F

Figure 4.27
The state space of the puzzle with the man, wolf, goat, and cabbage under consideration 
yields 16 distinct states.
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(F, I, F, I )

(I, I, I, I )

(F, F, I, I ) (F, I, I, I ) (F, I, I, F)

Figure 4.28
The first four possible transitions in the state-transition graph.

(I, F, I, I )

(I, F, I, F )

(F, I, F, I )

(F, F, I, F )

(F, F, F, F )

(I, I, I, F )

(I, I, I, I )

(F, I, F, F )(F, F, F, I )

(I, I, F, I )

(I, F, F, F )

(I, I, F, F )(I, F, F, I )

(F, I, I, I )

(F, F, I, I ) (F, I, I, F )

Figure 4.29
The state-transition graph for Alcuin’s man, wolf, goat, and cabbage problem.
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X
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X

X

X

X

X

X

Figure 4.30
Trémaux’s algorithm applied to the man, wolf, goat, and cabbage problem by a left-bearing 
agent.

Two vertices are connected by an edge whenever a legal transition (i.e., river crossing 
in the boat) facilitates the corresponding change of state in the original puzzle. Since 
the vertices of the graph represent states of a computation and the edges the possible 
transitions between the states, the graph under construction is called a state-transition 
graph. We construct it by beginning with the initial state and then systematically con-
struct every possible transition. Begin with a blank sheet of paper and draw the green 
vertex that corresponds to the initial state (I, I, I, I). Then note that since the man can 
cross with either the wolf, the goat, the cabbages, or alone, there are four initial pos-
sible transitions, as shown in figure 4.28. One should then expand each of the four 
new states (if possible) until every possible transition to every possible state has been 
revealed. Don’t be discouraged if the edges cross or the diagram produced resembles a 
messy tangle. Repeat the process and try to discover whether the graph can be drawn 
in a form that is easy to interpret. With care, you might obtain a state-transition graph 
that resembles figure 4.29.

Our aim is to construct a structure for which Trémaux’s algorithm can be applied to 
discover an efficient solution to the original puzzle. Because the graph involves only 16 

Downloaded from http://direct.mit.edu/books/book-pdf/2259273/book_9780262366144.pdf by guest on 03 October 2024



92	 Chapter 4

states (vertices) and 20 transitions (edges), it is not difficult to discover the two optimal 
solutions. Two paths, each requiring seven steps, pop out:

(I, I, I, I) – (F, I, F, I) – (I, I, F, I) – (F, I, F, F) – (I, I, I, F) – (F, F, I, F) – (I, F, I, F) – 
(F, F, F, F);
and

(I, I, I, I) – (F, I, F, I) – (I, I, F, I) – (F, F, F, I) – (I, F, I, I) – (F, F, I, F) – (I, F, I, F) – 
(F, F, F, F).

However, we can also apply Trémaux’s algorithm as originally planned, where we 
backtrack whenever a lethal state is visited during the search (figure 4.30). With a left-
bearing agent, Trémaux’s algorithm produces a search path with 22 state transitions 
(several states are visited multiple times). Three of the lethal states are also visited. 
However, once the agent reaches the goal, it can efficiently backtrack to the initial state 
by following the edges labeled with an X. Reversing this sequence yields the first of the 
preceding seven-step solutions.

4.7  Summary

In this chapter, we discussed the difference between labyrinths and mazes, and their 
historical origins. We explored how to make labyrinths of different circuits and deter-
mine their lengths and areas. We also examined how to solve mazes with different 
algorithms and how to represent these mazes by using graphs. We concluded by solv-
ing combinatorial puzzles with Trémaux’s algorithm.

Downloaded from http://direct.mit.edu/books/book-pdf/2259273/book_9780262366144.pdf by guest on 03 October 2024



5 Simulating the Different Laws of Physics in Video Games

In this chapter, we examine how the different laws of physics are used in the coding of 
video games and their relation to real-life experiences.

Newton’s laws of motion and other physics concepts are abundant in popular video 
games, from gravitational forces in Angry Birds to friction, inertia, and dynamics in car 
racing games. By building coded video games and experiencing the unplugged activi-
ties in this chapter, students can learn a subset of foundational physics concepts. In the 
games they create, students can tweak different parameters in the code to learn how 
the laws of physics affect the game. Through these activities, students will gain a better 
understanding of how the laws of physics shape our everyday lives, our planet, and our 
solar system.

We have set up this chapter to use collaborative group work in either the unplugged 
or coding tasks. Collaborative group work helps students achieve a shared goal—a 
working video game or physics lab experiment. In the realm of computer program-
ming, programs are often too large for one person to do it all. They are usually broken 
down into smaller units (such as subroutines or modules) that are called up and used 
within a larger program. When coding in a group setting, people need to know

■	 which variables are being used (e.g., what variable names you are defining);
■	 how they are being used (e.g., whether your units are in meters per second or feet 

per second); and
■	 how they are being called up in the larger program.

These questions need to be resolved within the group so that the final program can 
work properly.

5.1  Newton’s Laws of Motion

The motions of objects (e.g., particles, cars, basketballs, the rotation of our planet 
around the sun) influence our lives every day. The study of motion and the related 
concepts of force and energy make up the field of mechanics. Mechanics is divided 
into two parts: kinematics and dynamics. Kinematics describes how objects move, and 
dynamics explains why objects move as they do (Giancoli 2005, 19). In this section, 
we investigate Newton’s different laws of motion and apply them in unplugged and 
computer-based programming activities and rich tasks.
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Newton’s First Law of Motion: The Law of Inertia
The first of Newton’s laws falls on the kinematics side of mechanics, describing the 
behavior of all objects in ways that we can observe, control, and code.

Newton’s first law of motion states that an object at rest stays at rest until an outside force 
acts on it and that an object in motion stays in motion in a straight line at a constant 
speed until acted on by an outside force.

We experience force as any kind of push or pull on an object (Giancoli 2005, 72). The 
tendency of an object to maintain its state of rest or uniform motion in a straight line 
is called inertia (Giancoli 2005, 74). Inertia is the tendency for an object to stay at rest or 
stay in motion until an outside force acts upon it. Inertia also indicates the mass of an 
object (Giancoli 2005, 75). For example, a blimp or dirigible airship, has an enormous 
mass that requires a large force to change its speed and/or direction, yet it is considered 
weightless.

Speed is a scalar concept that tells us how fast an object is moving, but it does not 
provide direction. The average speed of an object is determined by finding the total dis-
tance traveled, Δx = x2 − x1 , divided by the time taken to travel the distance, Δt = t2 − t1: 

average speed = distance traveled
time elapsed

= Δx
Δt

= x2 − x1
t2 − t1

. 

Learning Activity 5.1: Newton’s First Law with a Skateboard

In this activity, students experience Newton’s first law of motion by standing on a skate-
board (with all skateboard activities the student on the skateboard should wear a helmet 
for protection).

•	 If there are no forces acting on them, the student does not move.
•	 Now have another student (acting as the outside force) push the student on the 

skateboard.
•	 The act of pushing is an outside force, so now the student on the skateboard is in 

motion and will stay in motion until acted on by another force (such as a third student 
stopping him/her/them or friction—also an outside force—that slows down the wheels 
of the skateboard).

•	 Ask the students to describe how these actions on the skateboard are examples of New-
ton’s first law of motion.

In figure 5.1, the example particle is moving in one direction, horizontally (the x 
direction). This is an example of translational motion. The code in figure 5.2 shows an 
example of Newton’s first law of motion. When an object moves along a diagonal or 
along a path in two dimensions (the change is in both the x and y directions), you need 
to consider the x direction and the y direction separately.

Vectors: Direction and Magnitude
In our everyday language, velocity and speed or distance and displacement are used inter-
changeably, but these different terms have very distinct meanings in physics and math-
ematics (Giancoli 2005, 20–21). Speed and distance are scalar quantities that measure 
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magnitude only. These scalar quantities do not take into consideration the direction 
associated with them, whereas both velocity and displacement take direction into 
consideration. For example, if you say a person ran 5 miles, then that is the distance 
traveled, but there is no information about the direction. Or if a person is walking at 
3 miles per hour, 3 miles per hour is the speed, but no direction was involved. How-
ever, displacement has to consider the direction and distance that a person travels, and 
velocity has to take into consideration the direction and speed (or magnitude) traveled. 
Speed is only the magnitude of the velocity. For example, if a person is walking east at 
4 miles per hour against the direction of the moving walkway going west at 5 miles per 
hour, their velocity is going west at 1 mile per hour.

On a diagram, we indicate displacement or velocity as a vector. Vectors are quanti-
ties that have direction as well as magnitude. Each vector is represented by an arrow; 

Figure 5.1
An example of a particle moving horizontally.

Figure 5.2
An example of the code for showing a particle moving in the horizontal (x) direction once 
a force is acting on it (the glide command). The particle starts at the far left-hand side of the 
screen (−240, 0) and moves across it to the end of the screen on the right-hand side (240, 0). 
What is the average speed of the particle going across the screen if it starts gliding at −240 
and ends at 240 over 3 seconds?
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without an arrowhead at the end it represents just a line. Whether on paper or coded 
for the computer, the arrow is always drawn so that it points in the direction of the 
vector (Giancoli 2005, 46).

When vectors are going in the same direction horizontally (left or right along the 
x axis), you can add them algebraically, or when vectors are going the same direction 
vertically (up or down along the y axis), you can add them algebraically. For example, 
if a person biked 80 miles east, 

!
D1, on the first day and 60 miles east, 

!
D2, on the second 

day, the resultant displacement, 
!
Dr , traveled in those two days was 140 miles east. If a 

person then biked 100 miles west, 
!
D3, on the third day and 40 miles west, 

!
D4, on the 

fourth day, the resultant new displacement, 
!
Dnr , is 0 miles. However, the scalar distance 

traveled was 280 miles in total.

■	 The displacement of the bike over the first two days is

!
D1 +

!
D2 =

!
Dr  

80 mi + 60 mi = 140 mi where the positive numbers represent an eastward direction.

■	 As seen in figure 5.3, the displacement of the bike over four days is

!
D1 +

!
D2 +

!
D3 +

!
D4 =

!
Dnr

80 mi + 60 mi + (−100 mi) + (−40 mi) = 0 mi where the negative numbers represent a 
westward direction.

40
West

80 60

100
East

Figure 5.3
Demonstration of vector addition for the bike problem in one dimension.

If the two vectors are not along the same line, then you cannot use simple arith-
metic to resolve the resultant vector. You will need to use either trigonometry or the 
Pythagorean theorem to find the resultant vector. For example, if you have a person 
walking 4 paces east and 3 paces north, the resultant displacement is represented by an 
arrow labeled 

!
Dr, which is resolved by using the Pythagorean theorem. The resultant 

displacement 
!
Dr  = 5 paces north of east. The resultant vector is drawn from the tail of the 

first vector to the tip of the last vector added. If you have two vectors, one in the x direc-
tion and the other in the y direction, then the resultant displacement is the hypotenuse 
of a right triangle and can be determined by using the Pythagorean theorem (Giancoli 
2005, 46–47). Program 5.1 gives an example of this that can be created in Codesters.

In general, a resultant vector 
!
V  that lies in a plane can be expressed as the sum of 

the two perpendicular components that form the vector. The components are usually 
chosen to be along the perpendicular directions of the x and y axes. We call this process 
of finding the components, “resolving the vector into its components” (Giancoli 2005, 
49). The vector components are usually written as 

!
Vx  and 

!
Vy  and are added by drawing 

from the tail of 
!
Vy to the tip of 

!
Vx . The resultant vector is written as 

!
Vx +  

!
Vy =  

!
V .
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Program 5.1: Velocity in Codesters

stage​.set_background("grid")
x_arrow = codesters.Arrow(0, 0, 125, 0, False)
x_arrow​.set_color("blue")
y_arrow = codesters.Arrow(125, 0, 125, 125, False)
y_arrow​.set_color("red")
velocity = codesters.Arrow(0, 0, 125, 125, False)
velocity​.set_color("purple")

The output of this program is shown in figure 5.4. The resultant velocity is shown 
by the arrow (in purple) that points from the origin of the grid to the point (125, 125). 
This arrow represents velocity by pointing in a direction with a certain length. The x part 
is shown as an arrow (in blue) that points along the x axis from the origin to (125, 0). The 
y part is shown as an arrow (in red) that points from the end of the first arrow up, parallel 
to the y axis. The three arrows together form a triangle, showing how the combination 
of the arrow pointing right and the arrow pointing up can end at the same spot (and 
represent the same velocity) as the arrow pointing diagonally. Using the Pythagorean 

200

0 , 0

200

150

150

100

100

50

50

0 x

0

–50

–50

–100

–100

–150

–150

–200

–200x =

=

y y

Figure 5.4
The output from the Codesters vector program. Image: Courtesy of Codesters.

Downloaded from http://direct.mit.edu/books/book-pdf/2259273/book_9780262366144.pdf by guest on 03 October 2024



98	 Chapter 5

theorem a2 + b2 = c2, we can compute the velocity from the horizontal and vertical parts. 
These two arrows each have a length of 125 (which we do not have to compute, because 
only one coordinate is changing between their endpoints so that change is the arrow’s 
length). We use those lengths for the a and b values in the equation, so 1252 + 1252 = c2, 
where c is the velocity of the diagonal vector. By solving for c, we get c ≅ 177. That 
means the arrow’s velocity is about 177 in the upper-right direction.

To demonstrate how displacement can be broken up into x and y vector parts, we 
can create a Scratch program. If the displacement is the distance and direction from the 
center of the drawing area to the cursor, then we draw two arrows to represent the x and 
y parts of the displacement vector. The output of the program can be seen in figure 5.5, 
the code for the x part is in figure 5.6, and the code for the y part is in figure 5.7. The x 
part is represented with a horizontal arrow sprite and will always face right or left (point-
ing along the x axis from the center of the drawing area). It will reach to the x coordinate 
of the mouse and will move with the mouse. The same is true for the y part, which is 
represented with a vertical arrow sprite facing up and down along the y axis. Have your 
students move their mouse left and right and see how the arrow follows it.

In the Scratch vector program, we will use

•	 variables to keep track of the mouse position;
•	 loops to update the sizes of the arrows; and
•	 conditionals to change the direction of the arrows.

The coded example in program 5.1 shows coordinates that are hard coded to be 
(125, 125). This is an example of a program that does not have variability; the user 
would need to edit the code each time they wanted to change the vector positions. In 
contrast, the code in figures 5.6 and 5.7 has variability because the vector lengths and 
components are dependent on where the cursor is on the screen and will update when 
the mouse moves.

Figure 5.5
An example of the output from the Scratch vector program.
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Newton’s Second Law of Motion: The Law of Dynamics
Let us switch gears to another law of mechanics, the law of dynamics. The root word 
“dyn” means force, so this topic focuses on the interaction of forces on a mass. Dynam-
ics explain the causes of motion. Now that we understand how objects move, we can 
look at the second of Newton’s laws, which explores the question of why. What vari-
ables are in play to determine the motion of an object?

Newton’s second law states that the acceleration of an object depends on the net 
force acting on the object and is inversely proportional to its mass. The direction of the 
acceleration is the same as that of the net force acting on the object and is represented 
by Σ

!
F = m

!a  (Giancoli 2005, 75). This means that if you get pushed while sitting on a 
chair with wheels, the greater the force used to push you, the greater the acceleration. 
And the more massive you are, the lesser the acceleration. Have you ever noticed that 
a large tractor-trailer truck takes longer to get up to the speed limit than a smaller car? 
This is because the truck has more mass, causing the effect of acceleration to be smaller.

When there exists a balance of forces on a stationary object, the object remains at 
rest. When there is a balance of forces on a moving object, there is no acceleration; the 
object goes at constant speed with the inertia described in Newton’s first law.

Conversely, an imbalance of forces causes a mass to accelerate (or decelerate). Say 
you are in a car stopped at a traffic light and the light turns green. If the driver steps 
hard on the gas pedal, the car is going to go faster and faster until they let up on the gas. 
When wind resistance and car speed are in balance or the driver presses the gas pedal 
at a constant pressure, the car will go at a constant speed.

Figure 5.6
The code for the x-displacement arrow in the Scratch vector program.
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Learning Activity 5.2: Newton’s Second Law with a Skateboard

In this activity, students experience Newton’s second law of motion.
Ask student A to stand on a skateboard and have another student C hold student A 

in place. Give student A one end of a coiled spring and hand the other end to student B. 
Tell student B to pull on the coiled spring until it is stretched out. Student A and student C 
should feel the force of the coiled spring pulling them. Since student A is being held back by 
student C, there is a balance of forces and no acceleration. Have student C let go of student 
A at the same time that student B (still holding the coil) starts walking away from student A. 
What happens? Why? Have students draw vector diagrams to describe the forces in play in 
this activity. Have students vary how long the coil elongates. How does the elongation of the 
stretched spring affect the acceleration? Students should notice that the greater the spring is 
stretched, the greater the force and the greater the acceleration.

Newton’s Third Law of Motion: The Principle of Action-Reaction Pairs
Forces always occur in pairs. If the two forces are of equal strength but in opposite direc-
tions, the object goes nowhere. Newton’s third law is defined as an “action-reaction” 
principle (Young and Freedman 2000, 107). Newton’s third law of motion states that 
for every action there is an equal and opposite reaction in a closed system. For example, 
if you let air out of a balloon—whatever path the balloon takes—the exiting air is 
going in the opposite direction. In a rocket launch, the exiting engine fuel burns down, 
which forces the rocket to go up. In these examples, the balloon and the enclosed air 
are a closed system. The rocket and its enclosed fuel are a closed system.

Figure 5.7
The code for the y-displacement arrow in the Scratch vector program.
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Learning Activity 5.3: Newton’s Third Law with Two Skateboards

Have two students face each other, each standing on a separate skateboard, close enough to 
touch hands. Tell them to push off each other. The push should cause both students to roll 
away from each other in opposite directions. In this closed system, the student with greater 
mass rolls away more slowly than the student with lesser mass. Conversely, the student 
with lesser mass has greater acceleration in the opposite direction.

Learning Activity 5.4: Newton’s Third Law with a Skateboard and a Fan

Put a rotating-blade fan on a skateboard. It acts like a ship at sea, the fan blowing the air 
in one direction and the skateboard moving in the opposite direction. If you attach a piece 
of cardboard to the skateboard and place it in front of the fan, what happens and why? 
The skateboard, fan, and the cardboard screen are a closed system, so the skateboard stays 
stationary. This is an example of Newton’s third law: the action-reaction principle. If you 
remove the cardboard screen, the skateboard starts to move because of an imbalance of 
forces and therefore accelerates, obeying Newton’s second law.

Remember from Newton’s second law that mass affects the consequences of the 
force. If two objects of different sizes collide, the bigger (mass) object rolls in its original 
direction but slower, and the smaller (mass) object rolls away in the opposite direction.

Let us build a Codesters program called Bumper Rocks (see appendix A.2 for full 
program) that will have an asteroid and a rock continually move, reflecting off the 
walls of the computer screen and colliding with each other.  We will split the program 
into smaller subroutines (as seen in programs 5.2–5.6) that enable you to use differ-
ent computer science skills and incorporate some Newtonian principles. As the rock 
and asteroid collide, we can determine the angles and forces resulting from a collision 
(which will allow the objects to bounce off each other). We will take the objects’ masses 
and velocities into account to compute the new paths. The program will also allow you 
to change the mass of the rock to observe the effects on the forces in play.

In the Codesters Bumper Rocks collision program, we will use

•	 variables to keep track of the objects and values needed to compute velocities;
•	 functions and events to react to keyboard inputs and collisions;
•	 conditionals to determine whether an object is at the screen’s edge; and
•	 loops to move the objects.

Start by choosing a background image and two sprites. We want the sprites to start 
in different locations and to be moving in different directions. As an example, we have 
the algorithm to create an asteroid and a rock in a space background, a screenshot of 
which can be seen in figure 5.8.
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Figure 5.8
A still frame of the rock and asteroid (with Jupiter in the background) from the Bumper 
Rocks Codesters program. Image: Courtesy of Codesters.

Program 5.2: Bumper Rocks Setup in Codesters

# set the background image
stage​.set_background("jupiter")
# create the rock with initial size and speed
rock = codesters.Sprite("rock")
rock​.set_size(0.5)
rock​.set_x_speed(2)
rock​.set_y_speed(-3)
# create the asteroid with initial size, position, and speed
asteroid = codesters.Sprite("asteroid")
asteroid​.set_size(0.5)
asteroid.go_to(-200, 0)
asteroid​.set_x_speed(-1)
asteroid​.set_y_speed(4)

The rock and the asteroid start at the same size. In order to see how difference in 
mass affects collision, we write two functions (program 5.3) so that we can make the rock 
get bigger or smaller. In our example, we choose to use the “s” key to shrink the rock and 
the “w” key to grow it. It is good usability for the functions like this to be complemen-
tary, so that if you press “s” once and “w” once, the rock should be back to its original 
size. That is why we set the growth to a fraction.
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Program 5.3: Bumper Rocks Keyboard Functions in Codesters

# create a function for the 's' key to make the rock smaller
def s_key():

  # make the rock smaller
  rock​.set_size(0.8)

# this line makes the code listen for the 's' key
stage.event_key("s", s_key)
# create a function for the 'w' key to make the rock larger
def w_key():

  # make the rock bigger
  rock​.set_size(1 / 0.8)

# this line makes the code listen for the 'w' key
stage.event_key("w", w_key)

For the next subroutine that is part of the larger Bumper Rocks program, we code 
the collision function using elastic collisions. In this program, we claim that both 
momentum (

!
p =m

!
v) and kinetic energy (KE = ½mv 2 ) are conserved. This means the 

objects will not be slowed by forces such as friction and kinetic energy will not be 
absorbed or converted into heat during the collisions. Remember that momentum is a 
vector event with magnitude and direction, and energy is a scalar event with only mag-
nitude. The effect in the program is that the total amount of energy will be constant, so 
the rocks will never stop completely.

The equation used for elastic collision in program 5.4 is derived from the equations 
for the conservation of total kinetic energy and the conservation of momentum (Young 
and Freedman 2000, 241). The equation for the conservation of total kinetic energy is 
written as

total Kinetic Energy before = total Kinetic Energy after 

(a)
 
1
2m1(ν1)2 + 1

2m2(ν2 )2 = 1
2m1( ′ν1)2 + 1

2m2( ′ν2)2

where m1 is the mass of object one, v1’  is object one’s new velocity, v1 is its old veloc-
ity, and m2 is the mass of the other object (object 2), v2’ is the second object’s new 
velocity, v2 is its old velocity. The conservation of momentum equation is written as

(b) m1
!
v1 +m2

!
v2 =m1

!
′v1 +m2

!
′v2.

By manipulating these two equations (a) and (b) algebraically, we can derive the 
equation1 for calculating the new velocities in both the x and y directions to be used in 
program 5.4. The elastic collision equation is therefore given as

′v1 = v1 −
2m2

m1 +m2

v1 − v2 , c1 − c2
!c1 − c2 !2

(c1 − c2 ) ,

where, in addition to the variables previously defined, c1 is the center coordinate 
of one object, and c2 is the center coordinate of the other object. The angle brackets 
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mean dot product and the double vertical bars mean that we calculate the distance 
between the two points. We will complete the collision calculations in separate x 
and y components and look at each dimension individually, because that is how 
Codesters is set up and it corresponds to the vector component concept we described 
previously.

Codesters has built-in functions for x_speed and y_speed, but these are really 
velocities and not speeds, because they include a direction: the x_speed is the velocity 
in the x direction (right) and the y_speed is the velocity in the y direction (up). If these 
velocities are negative, that signifies left or downward movement, respectively.

We have to compute the x_speed and y_speed separately for each of the two 
objects that are colliding, so we will use the preceding equation four times. Let us 
examine the equation for the x_speed of the rock as an example. In this case:

■	 v1 is the current x velocity of the rock.
■	 m2 is the size (mass) of the asteroid.
■	 m1 is the size (mass) of the rock.
■	 v1 − v2 , c1 − c2  needs some unpacking:

•	 v1 – v2 is the rock’s velocity minus the asteroid’s velocity. We subtract the x and y 
parts separately, so we will have two values. For example, if the rock has x veloc-
ity = 6 and y velocity = −3 and the asteroid has x velocity = −2 and y velocity = 4, 
then v1 − v2 will be 6 − (−2) and (−3) − 4, which simplifies to 8 and −7 for the x and 
y parts, respectively.

•	 c1 – c2 is the rock’s center point minus the asteroid’s center point. Again, we sub-
tract the x and y parts separately. For example, if the rock is centered at the point 
(100, 50) and the asteroid is centered at the point (105, 47), then c1 – c2 will be 
(100 − 105, 50 − 47), which simplifies to (−5, 3).

•	 The angle brackets,      , signify the dot product of the two vectors. To determine 
the dot product, you multiply the corresponding parts and sum those products 
together. This means we take the two x parts (velocity and position) and multiply 
them. Then we take the two y parts (velocity and position) and multiply them. 
Finally, we add those two products together.

In our case, we get ((the rock’s x velocity − the asteroid’s x velocity) ∙ (the rock’s 
x position − the asteroid’s x position)) + ((the rock’s y velocity − the asteroid’s y 
velocity) ∙ (the rock’s y position − the asteroid’s y position)). To use the preced-
ing example velocities and center points, the dot product of 8, −7( ), −5, 3( )  is 
expressed as (8 ∙ (−5)) + ((−7) ∙ 3) = −40 + (−21) = −61.

■	 ||c1 – c2|| is the distance between the center points of the two objects. This may seem 
like an odd thing to compute, since the objects are colliding so they must be close 
enough to touch, but the distance can actually vary depending on the angle of col-
lision and the shape and size of each object.

■	 c1 – c2 is the rock’s x position minus the asteroid’s x position.

Program 5.4 uses the equation in Codesters to calculate the new velocities of the objects 
after they collide.
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Program 5.4: Bumper Rocks Collision Function in Codesters

# create a function for collision of the objects
def collision(sprite, hit_sprite):

  # set variables
  size_sum = rock​.get_size() + asteroid​.get_size()
  x_vel_1 = sprite​.get_x_speed()
  x_vel_2 = hit_sprite​.get_x_speed()
  y_vel_1 = sprite​.get_y_speed()
  y_vel_2 = hit_sprite​.get_y_speed()
  rock_x = rock​.get_x()
  rock_y = rock​.get_y()
  asteroid_x = asteroid​.get_x()
  asteroid_y = asteroid​.get_y()
  # calculate new velocities for 2-dimensional
  # elastic collisions
  # the next seven lines should be on one line
  sprite​.set_x_speed(x_vel_1 –

((2*asteroid​.get_size())/size_sum) *
((x_vel_1—x_vel_2)*(rock_x—asteroid_x) +
(y_vel_1—y_vel_2)*(rock_y—asteroid_y)) /
((rock_x—asteroid_x)*(rock_x—asteroid_x) +
(rock_y—asteroid_y)*(rock_y—asteroid_y)) *
(rock_x—asteroid_x))

  # the next seven lines should be on one line
  sprite​.set_y_speed(y_vel_1 –

((2*asteroid​.get_size())/size_sum) *
((x_vel_1—x_vel_2)*(rock_x—asteroid_x) +
(y_vel_1—y_vel_2)*(rock_y—asteroid_y)) /
((rock_x—asteroid_x)*(rock_x—asteroid_x) +
(rock_y—asteroid_y)*(rock_y—asteroid_y)) *
(rock_y—asteroid_y))

  # the next seven lines should be on one line
  hit_sprite​.set_x_speed(x_vel_2 –

((2*rock​.get_size())/size_sum) *
((x_vel_2—x_vel_1)*(asteroid_x—rock_x) +
(y_vel_2—y_vel_1)*(asteroid_y—rock_y)) /
((rock_x—asteroid_x)*(rock_x—asteroid_x) +
(rock_y—asteroid_y)*(rock_y—asteroid_y)) *
(asteroid_x—rock_x))

  # the next seven lines should be on one line
  hit_sprite​.set_y_speed(y_vel_2 –

((2*rock​.get_size())/size_sum) *
((x_vel_2—x_vel_1)*(asteroid_x—rock_x) +
(y_vel_2—y_vel_1)*(asteroid_y—rock_y)) /
((rock_x—asteroid_x)*(rock_x—asteroid_x) +
(rock_y—asteroid_y)*(rock_y—asteroid_y)) *
(asteroid_y—rock_y))
# this line makes the program detect collision and
# call the function above
rock.event_collision(collision)
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We do not want the objects to leave the visible drawing area, so we have them 
bounce off its four containing sides. Codesters does this automatically but lets us code 
it so that we know what is really happening (see program 5.5). If it hits a left or right 
wall (when the x coordinate gets too high or low), we change the x velocity of the 
object to move in the other direction. If it hits a top or bottom wall (when the y coordi-
nate gets too high or low), we change the y velocity of the object to move in the other 
direction. This keeps the object moving and on screen at all times and appears visually 
as the objects bouncing off walls.

Program 5.5: Bumper Rocks Movement Function in Codesters

# create a function to move the objects and
# bounce off walls
def move(sprite):

  sprite​.move_forward(1)
  if sprite​.get_x() >= 250 or sprite​.get_x() <= -250:
      sprite​.set_x_speed(​-sprite​.get_x_speed())
  if sprite​.get_y() >= 250 or sprite​.get_y() <= -250:
      sprite​.set_y_speed(​-sprite​.get_y_speed())

Finally, we want the objects to move forever, bouncing off the walls and each other 
until the user manually stops the program. To accomplish this, we use a while loop 
and set the condition to always be true (see program 5.6). This is the Codesters version 
of a forever loop. In the loop, we call our move function for each object.

Program 5.6: Bumper Rocks Engine in Codesters

# have the program run forever
while True:

  move(rock)
  move(asteroid)

Now that we have gone over each part of the program, ask your students to play 
around with it.

■	 Ask your students how the collisions between the two objects are different from 
those of the objects bouncing off the walls.
•	 Answer: The objects bounce off the walls at the same angle at which they 

approached it, but collisions change the angle of the objects’ velocities.
■	 Use the “s” and “w” keys to make the rock larger or smaller. How does this affect 

collisions?
•	 Answer: The larger object will have more force to push the smaller one away.

■	 Which object has the higher velocity coming out of a collision, the bigger one or the 
smaller one?
•	 Answer: The smaller one.
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■	 Your students may notice that sometimes the objects will bounce off each other 
more than once when they collide, causing what looks like a glitch. Why does this 
sometimes happen?
•	 Answer: Sometimes after a collision, the new velocities do not move the two 

objects far enough away from each other for them to no longer overlap, causing 
the collision function to be called again.

Learning Activity 5.5: Creating Video Games

Using Scratch, Codesters, or a programming language of their choice, groups of two to 
four students can create their own video games that incorporate Newton’s laws of motion. 
Students can decide what they want their game to be and how they are going to use New-
ton’s laws. They will need to storyboard what their video game will look like and do, then 
divide up and assign work to be completed. Assigning group roles will help facilitate man-
agement of the project. In order to finish the project, collaboration will be vital. Since 
each person will be responsible for a subset of the code, they’ll need to determine which 
variables are needed by which subroutines and where their part fits in the larger program. 
At the end of the project, let the students describe their finished product and share it with 
their peers.

5.2  Newton’s Law of Universal Gravitation: Law of Mass Attraction

In this section, we define Newton’s law of universal gravitation and use it in unplugged 
and computer-based activities.

Newton’s law of universal gravitation states:

Every particle in the universe attracts every other particle with a force that is proportional 
to the product of their masses and inversely proportional to the square of the distance 
between them. This force acts along the line joining the two particles.

Newton’s law of universal gravitation answers the question of why an object falls to 
the ground when it is released. Every object on the earth’s surface feels the force of 
gravitation that draws the object toward the center of the earth (Giancoli 2005, 117). 
The force of mass attraction is what attracts the object to the earth. It is an example 
of a force acting through a distance without physical contact (Giancoli 2005, 118). An 
object falling to the earth is an example of uniform acceleration. All objects, light or 
heavy, fall at the same rate of acceleration in the absence of resistance such as the air 
(Giancoli 2005, 32).

The universal law of gravitation also explains why the earth and the planets in our 
solar system are attracted to the sun and why the moon is attracted to the earth. But for 
the purposes of the following subsection, we will focus on objects falling to the earth 
and use a Codesters program to look at the effects of forces due to gravitation. Remem-
ber gravitation is a force and gravity (i.e., uniform acceleration) is a consequence of 
that force. There is a fine distinction between these two concepts (Young and Freedman 
2000).
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Kinematic Equations: Displacement, Velocity, and Acceleration
Kinematics describes the motion of an object; the root “kine” in kinematic means 
motion. In this subsection, we outline the principles behind equations for displace-
ment, velocity, and acceleration and use them in unplugged and computer-based activ-
ities. We have already delineated that displacement and velocity have magnitude and 
direction. The kinematic equations that govern objects in motion in two dimensions 
are as follows:

1.	 displacement at any point, da = do + vot + 
1
2

at2 (do = original displacement, vo = original 

velocity, a = constant acceleration, t = time in seconds);
2.	 velocity at any point, va = vo + at;
3.	 acceleration due to gravity (in metric g = 9.8m/s2 or in imperial g = 32ft/s2).

Learning Activity 5.6: Water Balloon Drop

With two water balloons starting at the same height and the same time, throw one balloon 
horizontally and drop the other balloon.

Which water balloon will hit the ground first and why?

Answer: Both balloons will reach the ground at the same time because there is no accelera-
tion in the horizontal direction. The horizontal velocity remains constant and equal to the 
original velocity from the throw. 

Now we will write a Codesters program that will apply our knowledge of displace-
ment, velocity, and acceleration due to gravity in the coding of a basketball program. 
The path of the basketball is a two-dimensional trajectory, with both horizontal and 
vertical components that are independent of each other. You can see the full basketball 
program in appendix A.3, but we will split it up into smaller subroutines (see programs 
5.7–5.9) to better understand the different aspects of game and kinematic principles. 
To set the scene, we first use a basketball court background, place a basketball net, and 
create a player holding a basketball (program 5.7).

In the Codesters basketball program, we will use

•	 variables to keep track of the ball and net;
•	 functions to shoot the ball and prompt for user input; and
•	 conditionals to determine whether the ball scored.

Program 5.7: Basketball Setup in Codesters

# set gravity's strength
stage​.set_gravity(10)
stage​.set_background("halfcourt")
net = codesters.Sprite("basketballnet", 200, 100)
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# we do not want the net to fall
net​.set_physics_off()
net​.set_gravity_off()
player = codesters.Sprite("player3", -180, -130)
# we do not want the player to fall
player​.set_physics_off()
player​.set_gravity_off()
ball = codesters.Sprite("basketball", -150, -130)
# we do not want the ball to fall yet
ball​.set_physics_off()
ball​.set_gravity_off()
# create a rectangle along the floor
floor = codesters.Rectangle(0, -250, 500, 10, "red")

Now let’s create a function to shoot the ball (program 5.8) by changing the x and 
y velocities. Figure 5.9 shows a screenshot of what this looks like. We prompt the user 
for these two inputs, so you can run the program as many times as you want and give it 
different original velocities to see what changes will occur. After we get the inputs, we 
allow gravity to affect the ball and call the function we just created to shoot the ball.

Figure 5.9
A still frame of the basketball shot in a Codesters program. Image: Courtesy of Codesters.
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Learning Activity 5.7: The Effects of Gravitation

Have one student use a slingshot or shoot a basketball at a target. If they don’t hit the target 
the first time, let the other students in the class observe and give feedback on what went 
wrong and what they can change to fix it. Look for specific advice, such as “You need to 
pull the slingshot back past your elbow” or “You need to throw the ball higher in the air.” 
Connect these pieces of advice to the x and y components of the velocity vectors. If the 
ball landed between the student and the target, they need to increase the magnitude of the 
horizontal and/or vertical components of the velocity. If they shot too high or low, they 
may need to adjust the vertical component of the velocity.

Program 5.8: Shooting the Ball in Codesters

# create a function called shoot
def shoot(x_speed, y_speed):

  # set the ball's speed to make it move
  ball​.set_x_speed(x_speed)
  ball​.set_y_speed(y_speed)

# prompt the player for inputs
x_vel = int(player​.ask("Enter an x-velocity:"))
y_vel = int(player​.ask("Enter a y-velocity:"))
# now we want the ball to fall
ball​.set_physics_on()
ball​.set_gravity_on()
# this calls the function above
shoot(x_vel, y_vel)

How will we know if we have scored? We can use Codesters’s built-in collision-
detection function to detect whether the ball hits any other sprites (see program 5.9). 
This will detect whether the ball’s bounding box overlaps with the bounding box of 
another sprite. While this is great for detecting whether the ball hits the floor, it doesn’t 
behave the way we want for the basketball net. This is because the net sprite includes 
the backboard, meaning the bounding box is much larger than the net itself. To give a 
truer answer, we hard-code the coordinates of a smaller box right at the top of the net. 
We also check that the ball is moving in a downward trajectory, because shooting a ball 
up through the net should not count as a score.

If the ball scores, we print a winning message to the screen. If the ball hits the floor, 
we print a losing message to the screen. In either case, we also stop the ball. The user 
will need to restart the program to shoot the ball again.

Program 5.9: Detecting a Score in Codesters

# create a function for collisions
def collision(sprite, hit_sprite):

  # check for a score
  # the next two lines should be on one line
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Which inputs will shoot the ball into the net? How many attempts does it take 
your students to score? If you change the value of gravity on the first line of the pro-
gram, how will that affect the ball? How will you adjust your inputs?

The basketball program gives students a way to see how the acceleration due to 
gravity affects an object as it falls. It also gives them the ability to consider how the 
x and y parts of a velocity will be affected by gravitation’s pull. We use functions and 
built-in collision detection to determine whether the ball scored.

5.3  Reflection

In this section, we discuss reflection and use it in unplugged and computer-based 
activities. The law of reflection states that the angle of reflection is equal to the angle 
of incidence with respect to the surface or the perpendicular normal (Giancoli 2005, 
633).

Learning Activity 5.8: Air Hockey

Air hockey tables minimize the friction between the puck and the table’s surface, so the 
collisions the puck makes with the walls and paddles are elastic. This means it does not lose 
any kinetic energy, so it will bounce off at the same angle and with the same speed as it had 
before the collision. Note that when the puck bounces off the walls, it changes velocity but 
not speed (because it changes direction). This is another example to distinguish velocity 
from speed.

To demonstrate reflection, we can code the classic ping-pong game in Codesters. 
The complete program is located in appendix A.4. The ball has to reflect off the players’ 
paddles and the top and bottom of the screen in order for the game to work. We can 

if sprite​.get_x() >= 165 and sprite​.get_x() <= 215 and sprite​.get_y() >= 75 
and sprite​.get_y() <= 100 and sprite​.get_y_speed() < 0:

       # stop the ball
       sprite​.set_x_speed(0)
       sprite​.set_y_speed(0)
       sprite​.set_physics_off()
       sprite​.set_gravity_off()
       # create a win message
       message = codesters.Text("You scored!", 0, 0, "white")
  # check if the ball hit the red floor
  elif hit_sprite​.get_color() == "red":
       # stop the ball
       sprite​.set_x_speed(0)
       sprite​.set_y_speed(0)
       sprite​.set_physics_off()
       sprite​.set_gravity_off()
       # create a lose message
       message = codesters.Text("Try again!", 0, 0, "white")

ball.event_collision(collision)
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split the Codesters program into subroutines (see programs 5.10–5.12) so that your stu-
dents can work together to complete it:

■	 One student can get the ball to move at a random angle. If it hits the left or right 
walls of the screen, it ends the game.

■	 Another student can get the two paddles to move at the touch of keyboard keys. We 
do not want the paddles to leave the screen.

■	 The students will need to work together to get the ball to bounce off the paddles.

In the Codesters ping-pong program, we will use

•	 variables to keep track of the paddles and the ball;
•	 functions and events to detect collision and react to key presses; and
•	 conditionals to determine whether the ball hit the paddle.

Program 5.10 gives the code for the ball for the first subroutine of the ping-pong 
program.

Program 5.10: Ping-pong in Codesters—the Ball

# import the random number generator library module
import random
# set a list of speeds that we will choose from
speeds = [-4, -3, 3, 4]
# create the ball and set initial values
ball = codesters.Circle(0, 0, 50, "green")
ball​.set_size(0.5)
# set the ball velocity in x and y components
# len(speeds) gets the number of items from the speeds 
# list so if students change the number of values in that 
# list they do not need to recode the next line
ball​.set_x_speed(speeds[random.randint(0, len(speeds)-1)])
ball​.set_y_speed(speeds[random.randint(0, len(speeds)-1)])
# create rectangles against left and right walls
left_wall = codesters.Rectangle(-250, 0, 10, 500, "red")
right_wall = codesters.Rectangle(250, 0, 10, 500, "red")
# create a function to detect collision
def collision(sprite, hit_sprite):

  # check if ball hit the left or right wall
  if hit_sprite​.get_color() == "red":
      # stop the ball
      ball​.set_x_speed(0)
      ball​.set_y_speed(0)
      if hit_sprite​.get_x() < 0:

        # ball hit left wall
        msg = codesters.Text("Player 2 wins!", 0, 0, "red")

      else:
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        # ball hit right wall
        msg = codesters.Text("Player 1 wins!", 0, 0, "red")

# make the program listen for collisions
ball.event_collision(collision)

In the first line of code, we import the random number generator library module 
so that we can set the ball moving in a random direction. We then make a list of speeds 
to choose from, which your students can edit to make the ball move differently. Next, 
we create a green ball in the center of the drawing area and initialize the size and speed 
of the ball. The velocity is split into its x and y components, and each part is set to a 
value randomly chosen from the speeds list.

The following two lines of code create red rectangles that sit on the far left and 
right sides of the screen, stretching from the top to the bottom of the drawing area. 
We will use these red walls in our collision detection function, which comes next. 
This collision detection function will only be called if the ball collides with another 
sprite. Inside the function, we check to see whether the ball hits one of the two red 
rectangles. If it did, that means it got past a paddle and the game is over. When that 
happens, we stop the ball and determine who has won the game; that decision is based 
on which of the two red rectangles the ball hit. If the ball hits the left wall, we print 
a message saying that player 2 has won; if it hits the right wall, we print a message 
saying that player 1 has won. The last line of code attaches the collision function to 
the ball sprite.

Another aspect of the ping-pong game is creating the paddles. Program 5.11 pro-
vides the code for the paddles for the second subroutine.

Program 5.11: Ping-pong in Codesters—the Paddles

# create rectangles for the paddles
player1 = codesters.Rectangle(-230, 0, 10, 50, "yellow")
player2 = codesters.Rectangle(230, 0, 10, 50, "gray")
# create a move up function for when w is pressed
def w_key():

  # make sure there is room to move up
  if player1​.get_y() < 220:
      player1​.move_up(20)

# create a move down function for when s is pressed
def s_key():

  # make sure there is room to move down
  if player1​.get_y() > -220:
      player1​.move_down(20)

# create a function for when the up arrow is pressed
def up_key():

  # make sure there is room to move up
  if player2​.get_y() < 220:
      player2​.move_up(20)
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Program 5.11: Ping-pong in Codesters—the Paddles (continued)

# create a function for when the down arrow is pressed
def down_key():

  # make sure there is room to move down
  if player2​.get_y() > -220:
      player2​.move_down(20)

# make the program listen for the keys
stage.event_key("w", w_key)
stage.event_key("s", s_key)
stage.event_key("up", up_key)
stage.event_key("down", down_key)

In program 5.11, we create two paddles to represent the two players in the game. 
Player 1 is on the left side of the drawing area and player 2 is on the right. Each paddle 
is drawn as a rectangle. We want the players to be able to move up and down, so we 
create four keyboard functions. We use the “w” and “s” keys to move player 1 up and 
down, respectively, and the up and down arrow keys to move player 2. In each func-
tion, we call the Codesters built-in move_up or the move_down event on the player to 
move their rectangle, but only if there is still space on the screen for them to move in 
that direction. The conditional statement if checks to make sure the player won’t go 
off the drawing area. The last four lines of code in program 5.11 ensure that the pro-
gram is listening for the four keyboard keys and knows to react to them by calling the 
functions we wrote.

Now your students are ready to combine their programs. The part they will need to 
complete together is the logic for the ball to bounce off the paddles. Conveniently, in 
the first subroutine, your student already set up a collision function to detect when the 
ball collides with any other sprites. Using program 5.12, we can add this line of code 
at the beginning of that function (before it checks whether the ball hit the right or left 
wall) to make the ball bounce off the upper and lower walls.

Program 5.12: Ping-pong in Codesters—Bouncing Off Paddles

ball​.set_x_speed(​-ball​.get_x_speed())

By negating the x_speed of the ball, we are reversing the direction in which it 
moves along the x axis. This has the effect of changing it from moving left to moving 
right and vice versa. Note that we are not changing the y_speed at all, so if the ball is 
moving down or up it will continue to do so.

Note that, for the program to work, the two students must communicate the fol-
lowing points:

■	 The two rectangles on the border walls will be the only red sprites in the program. 
(This enables the end-of-game detection.)

■	 Player 1 will control the left paddle and will use the keys on the left of the keyboard, 
and player 2 will control the right paddle and will use the keys on the right of the 
keyboard. (This enables the end-of-game messages.)
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■	 The students must agree on the relative speeds of the ball and the paddles. (If the 
paddles are too slow, they may not be able to block the ball in time.)

5.4  Summary

This chapter used unplugged activities and coded programs in Scratch and Codesters 
to explore physics concepts such as inertia, acceleration due to gravity, reflection, and 
collision. It included a group programming project that split the work between the 
students while encouraging communication and collaboration. The activities and 
exercises empower students to actively learn these foundational concepts of Newto-
nian physics, and by understanding the physics behind the game, students will better 
understand the concepts and be able to create a more realistic game.
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6 Critically Examining and Analyzing Data

In this chapter, we discuss how to identify manipulated data, and we demonstrate how to 
retrieve primary source data from the internet and use algorithms to analyze it.

To be informed citizens in a democratic society, we need to be educated consumers 
of the information we absorb and use. The electorate’s ability to critically examine, 
analyze, and use data to make good judgments and decisions is paramount to the 
health of any nation. At the heart of computational thinking is the ability to apply a 
problem-solving process using different strategies and algorithmic solutions to com-
plex problems. There is nothing more complex and in need of solution than some of 
the hot topic issues of our day, including questions related to global warming,1 spe-
cies extinctions,2 immigration,3 school funding,4 gun violence in the United States,5 
food insecurity,6 the spread of infectious diseases,7 and unequal wealth distribution,8 
to name a few. In this chapter, we apply computational thinking to begin to ask ques-
tions, critically examine data, and seek answers to one of these complex issues—global 
warming trends.

We focus our attention on analyzing weather data, but the skills that we apply 
here can be used to investigate other important issues that currently affect our world. 
For our example, we gathered primary source data from the US National Oceanic and 
Atmospheric Administration’s (NOAA) National Climatic Data Center (NCDC) web-
site (www​.ncdc​.noaa​.gov​/cdo​-web​/) to examine temperature trends in Burlington, Ver-
mont. Primary source data are publications or data that come from the originating 
source. Students can download data files from this site, then use a spreadsheet app 
and/or the Python programming language to process and display the data so they can 
analyze and interpret the findings. Along the way, students learn the skills necessary 
to identify credible sources and manipulated presentations of data, and to process and 
analyze numerical data.

6.1  Elements of a Data Investigation or Inquiry

The elements of a data investigation include

■	 formulating a question;
■	 collecting, processing, and displaying the data;
■	 analyzing, describing, and discussing the results; and
■	 making inferences and predictions based on the data that help answer the question 

(Creswell 2012; NCTM 2001; NGSS 2013).
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Pose a question of interest  Before starting an investigation, one needs to decide what 
topic they are going to research (NRC 2012). This decision can be based on many fac-
tors, but they should be grounded in a person’s interests and/or passions. What topics 
are important and in need of answers? What issues are affecting people? A research 
question helps focus the nature of the researcher’s work, but what all questions have in 
common is that data must be collected to answer the questions posed (Creswell 2012; 
Fraenkel, Wallen, and Hyun 2015; NCTM 2001; NGSS 2013; YPAR 2015).

Determine what data is to be collected for analysis and gather the information  To 
decide what data to collect, start by doing a background investigation into the issues 
that surround the question. When students are looking for information that relates 
to their question, use valid and reliable websites. To determine whether the data on 
a website is reliable, it should satisfy the currency, relevance, authority, accuracy, and 
purpose (CRAAP) test (Blakeslee 2004, 2010) (see http://libguides​.csuchico​.edu​/c​.php​
?g=414315​&p=2822716).

What data you decide to collect depends on the questions you are trying to answer 
(Creswell 2012; NCTM 2001; NGSS 2013). There are five steps to consider when collect-
ing data: (1) determining which participants or data sources will be part of the study, (2) 
obtaining permission from these individuals or organizations, (3) considering the types 
of information to collect from the different sources available, (4) locating and selecting 
instruments to use that capture useful information for the study, and (5) administering 
the data collection process (Creswell 2012, 141). If your students decide to collect their 
own data, have them ensure that it is unbiased and that it enables them to answer the 
questions they are asking. The Youth-Led Participatory Action Research (YPAR) web-
site (http://yparhub​.berkeley​.edu​/investigate​-curriculum​/) discusses steps students can 
follow to collect their own data, ensure it is unbiased, and work toward answering 
their question. When looking for relevant downloadable data that has already been 
collected, government agencies, nonprofit organizations, nongovernmental organiza-
tions, and research groups are a good place to start, as opposed to media outlets or blogs 
that report their interpretation of the data. Also make sure these agencies, associations, 
and research groups satisfy the CRAAP test.

Process the data and perform needed calculations  During this step, students deter-
mine which mathematical calculations or models to apply that help analyze the data 
and thereby enable them to find answers to the questions they are asking (NCTM 2001; 
NGSS 2013). Calculations such as mean (or average), median, minimum value, maxi-
mum value, standard deviation, standard error, confidence interval, and linear regres-
sion, for example, help tell a story of what is happening numerically with the data.

Display and analyze the results  Displaying the data visually can help the researcher 
and the audience understand and interpret the data and the results of the data calcu-
lations. Tables, bar graphs, histograms, line graphs, scatter plots, pie charts, box-and-
whisker plots, and other formats help the researcher analyze and interpret the data. 
They also enable the audience to understand the results more easily. However, it is 
important to present the data such that it is easily readable by the audience and does 
not bias the results or lead to their misrepresentation. The results from the data calcula-
tions also provide information about the data for you to analyze to find its meaning.
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Discuss and describe the results  After deciding which calculations and/or graphs make 
the most sense to use with your data, the burden is on using the results to identify and 
justify the answer to your data investigation question. You will need to develop infer-
ences and predictions based on the analysis of data processing results (NCTM 2001). 
Guide your audience through the steps taken from interpreting the data to answering 
the research question. You need to convince not only yourself but the audience that the 
conclusions are logically sound and justified. Based on the results of your initial ques-
tion, you may decide that more information is needed and that the conjectures and 
inferences made for the initial question lead to other questions for investigation.

Learning Activity 6.1: A Classroom Weather Station

•	 Collect weather data at your school for one month at the same time every day. This 
weather data could include, for example, temperature, precipitation, sky condition 
(e.g., sunny, cloudy), and barometer reading.

•	 Graph the data to see the daily variation in your weather readings. What was the cal-
culated mean for temperatures for each week and for the month? What was the calcu-
lated mean for rainfall for the week and the month? Was there a relationship between 
the rainfall and barometric readings?

•	 What inferences could be made based on the other weather data you collected? How 
close were your predictions to the actual results, and why?

6.2  Identifying Manipulated Data

In this section, we provide strategies to identify manipulated data sources sometimes 
seen in the media. We want students to understand how data can be manipulated to 
propagate misinformation that confirms a preconceived notion or bias. Unfortunately, 
some media outlets or political factions misrepresent data to serve their personal inter-
ests and agendas. Rather than giving an accurate, robust report on the data, they fall 
into common traps of omitting information, representing data out of context, exag-
gerating or minimizing data results, or drawing unjustified conclusions. Alberto Cairo’s 
2019 book How Charts Lie: Getter Smarter about Visual Information is a great resource 
for understanding how visual displays can be manipulated to give misinformation. 
Learning activity 6.2 investigates some common ways that information can be misrep-
resented to draw incorrect inferences.

Learning Activity 6.2: Hunting for Data Misrepresentation

Ask your students to look at examples of data they have seen on different media sources 
(this can be on social media, websites, newspapers, magazines, video news footage, social 
networking sites, and so on) and determine whether the source is representing the data 
accurately and why. Did the manipulated data presentations fit one of the categories of 
misrepresentation we discussed?
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Sampling procedures  One way to manipulate the data is in how the sample is selected—
that is, who or what data is in the sample and what data or participants are omitted. A 
sample is a subset of the data or participants selected from a larger set or population and 
is chosen to represent the whole. However, the size of the sample, the location that the 
sample is selected from, and the characteristics of the respondents or data can directly 
impact the validity of the inferences being made and lead to biased results. Using a lim-
ited, nonrepresentative, or biased sample detrimentally affects the generalizations made 
to a larger population and leads to inaccurate inferences.

The 1948 US presidential election between candidates Harry S. Truman and Thomas 
Dewey is an example of a sampling technique failure that led to an inaccurate predic-
tion. Prior to the election, the Crossley, Gallup, and Roper polls predicted Dewey would 
win the presidency, leading the Chicago Daily Tribune to publish the erroneous headline 
calling the election for Dewey before all the votes were counted (figure 6.1). However, 
Truman ended up winning the election instead. The reason for the polls’ erroneous 
conclusion was that they used a quota sampling technique to select registered voters to 
ask who they were voting for. Quota sampling requires that the sample represent dif-
ferent cross sections of the population by having the important characteristics of the 
population (e.g., income, gender, race, religion, age, region) proportionally represented 
in the sample (Dodge 2003; Nardi 2006). However, this sampling technique did not 
enable pollsters to get an accurate representative sample of US voters because there 
were many characteristics that were not considered or included in their sample and in 
the end biased the results. In this situation, the sampling technique caused an inaccu-
rate prediction for the 1948 presidential race.

Figure 6.1
President-elect Harry Truman holds up a newspaper that incorrectly declares his defeat. This 
media is made available by the holdings of the National Archives and Records Administration.
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Using one data point to generalize to a larger population  Sometimes people draw 
false conclusions from legitimate pieces of data. For example, an argument was made, 
by several elected officials in 2019, that global warming was not occurring because 
Minnesota was experiencing some of the coldest days on record (Pierre-Lois 2019). 
This illustrates a couple of problematic issues. For one, it mistakes weather for climate. 
Weather is the short-term meteorological and atmospheric conditions that we experi-
ence day to day in our environment. Climate describes weather trends over a long 
period of time. Questions about global warming should examine data that would illu-
minate climate trends over time, whereas weather data can only provide a snapshot of 
the climate in a certain area (i.e., the US Midwest) for a certain amount of time (i.e., one 
day in winter). Second, it is true that the US Midwest has had some of the coldest days 
on record in the contiguous 48 states, but a small data sample of one geographical area 
does not allow a generalization to be made about the whole globe.

Not conducting the full gamut of needed data calculations  This is when the data is 
being processed when not all the calculations needed to tell the complete story have 
been conducted. One example of this occurs when calculating the data sampling error. 
The difficulty with using sampling techniques is that a sample dataset is unlikely to be 
identical to the larger population that it represents, and no two samples are ever going to 
be the same in all their characteristics; there will be some variation (Fraenkel, Wallen, and 
Hyun 2015, 221). Therefore, data collection samples come with a sampling error because 
we are looking at a subset of the population under study. The sampling error tells you the 
probable range of outcomes of the larger population based on the bias in the sample data. 
By calculating and presenting the sampling error, you enable the reader to get a fuller 
sense of the data.

For example, if the calculated means of two variables are 34 and 48, that seems like 
a definitive difference. But if the sampling error was ±30, this suggests that the calcu-
lated mean of the first variable can be anywhere in the range of 4–64 and the calculated 
mean of the second variable can be in the range of 18–78, which overlaps by 46 units 
and is therefore inconclusive as to which is definitively the larger value. It might make 
you think twice about the reported results about the differences in means.

Using raw data without grounding it in context  Sometimes raw data can be mislead-
ing. At first thought, this sounds counterintuitive, because raw data is supposed to be 
objective and reliable, the foundation for our claims of scientific truth. However, when 
raw data is not grounded within a context, it can give a misleading impression.

Take figure 6.2 as an example. The first graph (figure 6.2(a)) is the raw data for the 
number of white and black people killed by police in the United States between 2013 
and 2018.9 Looking at this graph, notice that there were almost twice as many white 
people killed as black people. But why is it a mistake? Because the raw numbers are not 
put in the context of the overall US population. If the white and black populations 
in the United States were of equal size, then the data would be valid. However, there 
were more than five times as many white people in the United States as black people 
in 2013–2018.10 Graphing the number of killings as a proportion of the population for 
each of these races produces the graph in figure 6.2(b). This presents a very different 
and more accurate picture, where the black population is being killed at more than 
three times the rate of the white population. The additional calculation of finding the 
proportion of the populations more accurately represents the data because it puts the 
raw data values into the context of the US population. Data like that in figure 6.2(a) 
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can mistakenly be used to disregard the argument that black Americans are being killed 
more frequently than white Americans.

Limiting the amount of data presented  Another way to manipulate the data presen
tation is to shorten the length of the x axis (horizontal axis) or shorten the interval 
for collecting data. For example, consider the graphs in figure 6.3, which show the US 
murder and nonnegligent manslaughter rate by year.11 The graph in figure 6.3(a) has 
the horizontal axis going between 1999 and 2014 and shows the steady decline of 
the murder and nonnegligent manslaughter rate since 2006, but that claim would be 
an error if more recent data was included. When the data for the years 2015–2018 is 
included in the graph (the most recent data to date; figure 6.3(b)), we see the murder 
rate bump up again. This requires that new inferences be made. The conclusion from 
the analysis changes from the claim that the murder and nonnegligent manslaughter 
rate has been in a steady decline since 2006 to the claim that it has decreased since 
2006. Or you could say that the murder and nonnegligent manslaughter rate was in 
a steady decline from 2006 to 2014, then rose in 2015 and 2016, but is now on the 
decline again.

Exaggerated or minimized data displays on the vertical axis  In addition to omitting 
data from the x axis, a graph can also be manipulated on its y axis. The findings from 
a set of data can be stretched and hyperbolized or shortened and dismissed without 
technically lying. The most common method of showing an exaggeration or reduction 
of the data is in how the data is displayed in graphs. The following examples show 
different ways that the vertical axes can be manipulated to tell different stories with 
the data processing results. The first example (seen in figure 6.4) shows how truncating 
the y axis can mislead the reader to draw an incorrect conclusion. The Center for 
Responsive Politics reported that female winners in primary elections for the US House 
of Representatives raised $1,400,000 on average, whereas male House primary winners 
raised $1,585,000 on average.

By changing the y-axis data range to be from $1,300,000 to $1,600,000, it looks 
like the male candidates raised more than twice as much as the female candidates on 
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Figure 6.2 
(a) The raw numbers of white and black people killed by US police in 2013–2018. (b) The 
proportion of white and black US populations killed by police in 2013–2018.
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average, but in reality, the male candidates only raised about 13.2 percent more than 
the women on average. A more accurate graph of the data is seen in figure 6.5.

The next example shows how truncating the vertical axis can lead readers to think 
there is wider variation in the data than really exists. By providing the full range of data, 
in the vertical axis in figure 6.6(b), it looks as though the data is not fluctuating as much.

On the other end of the spectrum, you can enlarge the vertical axis to make the 
data look not as consequential or not as variable. In figure 6.7(a), the average January 
temperatures for Burlington, Vermont, look like they fluctuate a little bit but generally 
align, but in figure 6.7(b) the y axis is set to the data value range and you can see much 
more fluctuation in the temperatures.

An analogy of exaggerated or minimized data would be like standing in front of a 
warped mirror: technically it is still your reflection, but it isn’t an accurate reflection 
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Figure 6.3 
(a) A graph of the US murder and nonnegligent manslaughter rate from 1999 to 2014. It 
omits the data from more recent years. (b) A graph of the US murder and nonnegligent man-
slaughter rate from 1999 to 2018, with 2018 being the most recent data available.
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of what you really look like. Watch out for these misrepresentations in media, research 
reports, and slide presentations.

Drawing unjustified conclusions  The scenarios we previously discussed have led 
researchers and others to draw unjustified conclusions, whether they be from faulty 
sampling techniques, not performing all the calculations needed to analyze the data, 
or misrepresenting the data in a visual. The Youth-Led Participatory Action Research 
(YPAR) website (http://yparhub​.berkeley​.edu​/define​-issue​/bias​/) provides additional 
resources on ways to detect bias in the media and for learning ways to present unbiased 
research results.

6.3  Using Data to Analyze Temperature Trends

Global warming and climate change has been one of the most controversial topics 
argued in US politics in recent years. Arguments have been made that the earth is not 
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Example of exaggerating the difference in values using data on House primary winners.
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warming, that we are experiencing normal weather fluctuations, or that the science on 
global warming indicators is not conclusive. Yet, there is publicly available data that 
has been gathered and can be analyzed. Currently, the US NOAA’s NCDC has several 
decades of weather data available on their website (https://www​.ncdc​.noaa​.gov​/cdo​
-web​/) for the public to download. By having students analyze this primary data source, 
you can empower them to determine whether average temperatures have increased 
around the world over the last several decades.

Next, we provide an example of using a primary data source to answer the ques-
tion: Has the average (or mean) temperature for Burlington, Vermont, changed over the last 
78 years and, if so, by how much?12 We went to NOAA’s NCDC website to download the 
data needed to determine our answer.

On the Climate Data Online website, click on Search Tool (as seen in figure 6.8) and 
choose the data you want to download. We chose the dataset “Global Summary of the 
Month”; selected the date range from December 1, 1940, to December 1, 2019; searched 
for “Stations”; and entered the search term “Burlington, VT” (as seen in figure 6.9). We 
chose “Global Summary of the Month” because we wanted to look at monthly averages 
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Figure 6.6 
(a) A graph of 30-year fixed-rate mortgage rates with the y axis scaled to emphasize the fluc-
tuation and (b) a graph of the same mortgage rates with the y axis starting at 0 to show the 
true fluctuation. Source: http://www​.freddiemac​.com​/pmms​/pmms30​.html​.
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over the last 78 years and not the weekly or daily temperatures during this time. You 
can replace these choices, especially the location, with other variable options that reflect 
your areas of interest and/or questions you want to investigate.

This leads to a webpage with a map that shows your area of interest with the differ-
ent weather stations pinned. We selected the Burlington International Airport, VT, US 
weather station dataset and added it to the cart. When you view the items in the cart, 
choose the option to download a .csv file (as seen in figure 6.10), as opposed to a .pdf 
document, because the different spreadsheet programs and Python language read the 
data in a comma separated value (csv) file format.

After you select .csv files and click Continue, on the next page it will give you more 
data options that you can select. Based on our research question, we chose “Average 
Temperature (TAVG)” under “Air Temperature” (shown in figure 6.11), but there are 
many other options for data variables if you want to look at those data points to answer 
other questions.

Click Continue to see a summary of the requested data for you to review before 
clicking the Submit Order button (as shown in figure 6.12). Enter your email address 
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Figure 6.7 
(a) Temperatures graphed with an exaggerated y axis. (b) Temperatures graphed with a y axis 
that matches the range of y values.
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Figure 6.8
NOAA’s Climate Data Online website.

Figure 6.9
Input of data variables for downloaded file from NOAA’s Climate Data Online website.
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Figure 6.10
Selecting the format of a downloaded data file from NOAA’s Climate Data Online website.

Figure 6.11
Selection of specific data variables from NOAA’s Climate Data Online website.
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and submit the request. It sends a confirmation email right away and within minutes 
sends the link to download the data.13 This is the primary source data that we analyzed 
for this example.

By looking at temperatures over a 78-year span at one weather station, we can 
analyze the temperature trends in that area over time rather than the short-term (daily 
or weekly) fluctuations. If we were to look at different weather stations around the 
world concurrently, we could begin to make inferences that were beyond Burlington, 
Vermont. If you add multiple weather stations to your dataset, be careful to look at 
the trends within one station and not across stations. The latitude and longitude of the 
location will influence the range of temperatures that appears. To keep the data sample 
consistent, analyze the data in each area separately and then determine the trends over 
time to see whether the temperatures are changing over the long term in the other 
areas, too.

To analyze the data that we have collected, we created an algorithm (algorithm 6.1) 
to process the data that applies to any program you are using.

Algorithm 6.1: Analyzing Temperature Data

Access the .csv data file
Isolate the data to specific rows of data that correspond to your 
question
Find the specific columns of data that relate to your question
Perform calculations to answer your question
Graph the relevant data and calculations in a readable form

For our example, we used Google Sheets and the Python programming language to 
read the data from the file and then process and graph it.

Figure 6.12
Verifying data to receive from NOAA’s Climate Data Online website.
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To analyze the data, we will use

•	 data usage to collect and use raw data;
•	 conditionals to determine which rows and columns of information are relevant to the 

question;
•	 abstraction to visually present the numerical data to be analyzed; and
•	 scalability to understand what the larger data calculations are saying by looking at 

subsets of the data.

The algorithm to process the data begins with accessing the information in the .csv 
file. The file can contain a lot of data, so having a data investigation question helps 
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Figure 6.13
Line graph (a) and scatter plot (b) of the average monthly temperatures for Burlington, Ver-
mont, from 1941 to 2019.
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you narrow the focus of your data processing. The computer can process large amounts 
of data, but too much data in a graph or table can be overwhelming for the researcher 
and for the audience. Sometimes visual representations, rather than the numerical data 
alone, can better explain what is happening with the data, but not always.

Figure 6.13 shows a line graph (a) and a scatter plot (b) for data from December 1941 
to December 2019. It is crowded and messy, which makes it very difficult to analyze with 
a graph alone. All we can tell is that there is a lot of variation in the data (which makes 
sense because average temperatures in Burlington, Vermont, can range from 3.6°F in the 
winter to 76°F in the summer). The computer can process large datasets with the differ-
ent software programs available, but what do the calculations do and mean?

As an exercise to illustrate what is happening in the processing of the larger set of 
data, we chose to process and graph a subset of the data. We choose one month’s (Janu-
ary’s) average temperature as the subset to process, graph, and display with a trend line 
(or line of best fit) included. In exploring the subset data, we seek to answer the ques-
tion: Did the average January temperature in Burlington, Vermont, change over 78 years and, 
if so, by how much? The line of best fit is the best approximating straight line through 
the data points that can illuminate trends in the data over time and will enable us to 
determine whether, on average, the temperature changes.

Once we understand how the data is processed on a smaller scale, we can go back 
to the complete larger set of data and process it on a larger scale, and make inferences 
appropriately. Later in this chapter, we come back to our original research question 
about average temperatures in Burlington, Vermont.

Using Spreadsheet Programs to Process the January Average  
Temperature Data Sample
Open the downloaded .csv file in Google Sheets. In our spreadsheet file, we see 78 years 
of weather data in rows for each month with the following column titles: STATION, 
NAME, DATE, and TAVG (as seen in figure 6.14).

Now that the data is in Google Sheets format, there are many ways to process and 
display it. We begin by describing a way to process the data such that any student with 
minimal spreadsheet knowledge could analyze and graph it. We also provide steps to 
process the data using more complicated Google Sheets commands.

One way to process the data is to group the rows so that only the January data for 
each year is showing (see figure 6.15); data for February through December are hidden 
within the grouping. To do this, highlight rows 3 through 13, go to the Data tab, and 
select Group rows 3–13. Then click the box with a “–“ in it, and rows 3–13 will be hid-
den from view (see figure 6.15). Once only the January data is showing, graph the data 
by highlighting columns C and D and clicking the Insert Chart icon. Within the Chart 
Editor, you can select how you want your graph to look. We selected a line chart to show 
the yearly variation in temperature for the month of January. In the Custom section of 
the Chart Editor, on the Series tab we selected Trend Line (aka line of best fit or linear 
regression) and to have the trend line equation printed on the graph. A best-fit line 
(or trend line) is used to illuminate a data pattern over time. The best-fit line may pass 
through some points, no points, many points, or all points.

The best-fit line, or regression line, is a complicated equation that is best used with 
computer automation. The best-fit line uses the least-squares regression line formula 
to determine the best-fitting line that would minimize the distance between the data 
points and the regression line. It is found by calculating the sum of the squares of the 
vertical distances between the data points and the points on the line and makes it as 
small as possible.
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The best-fit line or trend line is defined by y = bx + a, where a is the y intercept and 
b is the slope of the regression line. The slope of a trend line b indicates the predicted 
rate of change on the calculated best-fit line. The trend line for our January average 
temperatures from the 1941–2019 dataset is y = 0.0574x + 15.8, where y is the predicted 
average January temperature (°F) over the last 78 years and x is the number of months 
since the base year of 1941.

Based on the trend line, we can answer our question about whether the average 
January temperature in Burlington, Vermont, had increased over the last 78 years and, 
if so, by how much: yes, by about 4.5°F since 1941, as the following shows:

January 1941 January 2019

y = 0.0574(1941–1941) + 15.8 y = 0.0574(2019–1941) + 15.8

y = 0.0574(0) + 15.8 y = 0.0574(78) + 15.8
y = 15.8°F y = 20.3°F

Figure 6.14
Downloaded temperature data for Burlington, Vermont, in a spreadsheet.
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Based on this trend line, can we project what the average temperature in January will 
be for 2025? (Answer = 20.6°F.) Further statistical analysis calculations can tell you 
whether this average change in temperature as determined by the best-fit line is statis-
tically significant.

Another way to process the data is to use the initial spreadsheet (see figure 6.16) 
and have the spreadsheet program grab the data that you are most interested in to help 
automatize the work. Figures 6.17 and 6.18 show in the command line how to grab 
the initial data and put it in a new sheet to process and perform statistical calculations. 
The INDEX(reference, [row], [column]) command allows you to return the content of 
a cell, specified by row and column number. In this case, we are pulling out January’s 
date and average temperature. For figure 6.17, the INDEX command is highlighted in 
cell A3, the reference is the sheet named 2009269, and C2:D948 is the array on sheet 
2009269 from which you are pulling the data. The $ sign tells the spreadsheet program 
to keep array parameters constant as you copy and paste this command down the rows. 
The [row] variable 12*row(A1) + 1 allows you to go through the 2 × 947 array of data 
from C2:D948 and grab every twelfth row + one line of data for each subsequent cell as 
you copy and paste down the A column. The [column] is only selecting from the first 
column (Date) in our 2 × 947 array, so you put a 1 there.

The index command highlighted in figure 6.18 pulls data from cells C2:D948 of the 
sheet named 2009269, creating another 2 × 947 array. The [row] variable 12*row(B1) + 1 
allows you to go through the 2 × 947 array and grab every twelfth row + one line of data 
for each subsequent cell as you copy and paste down the B column. The [column] is 
only selecting from the second column, Average Temperature, so you put a 2 there.

Figure 6.15
Grouping temperature data for Burlington, Vermont, with only January’s temperatures 
showing.
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Almost any spreadsheet app makes processing and graphing data doable with a 
couple of commands, but what do the graphs mean? How do you process the data so 
that you can accurately analyze it? Remember to avoid the ways of manipulating data 
outlined earlier in this chapter and that you (not the computer program) are ultimately 
in control of answering these questions.

Learning Activity 6.3: Using Primary Source Data to Ask and Answer Questions

Have your students pose a question (or multiple questions) that can be answered by analyz-
ing data from a legitimate primary data source. Given the dataset, have them process the 
data and graph the results to help them answer their question(s). Then write or talk about 
the results. What did they learn about their topic of interest through this data analysis? Do 
their findings agree with publicly presented knowledge on the subject?

Using the Python Programming Language to Process the Data
Python is a popular programming language (and is the foundation of the Codesters 
platform used in the earlier chapters). It is used at many large and small companies and 
schools for anything from back-end web development, to scripting, to data processing. 
We are using it for the latter, as some of Python’s strengths include reading in data from 
files and producing graphs.

We used Idle to run Python scripts, though there are many Python integrated 
developer environments available. We also used Python 3.7.4 when we ran our exam-
ple code. For this program to work, you need to install some Python packages such as 
the following.

Figure 6.17
Grabbing DATE information from the initial sheet to insert into column A of a new sheet.
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■	 Matplotlib is a good library module for creating graphs in Python.
■	 Numpy is a library module for doing complex calculations. We used it to calculate the 

best fit to a line with our data and print the slope of the regression line.

Open a command line interface (typically CMD on Windows machines and Terminal 
on Linux and Mac machines) and run the commands pip3 install matplotlib 
and pip3 install numpy. To see whether it installed, you can create a new Python 
(.py) file with the lines import matplotlib and import numpy and try to run it. If 
it runs without error, you installed both packages successfully.

Based on algorithm 6.1, we need to map out the program (program 6.1). First, we 
want to read in the data from the file (program 6.2). The file contains a lot of data, so 
to narrow it down to our initial questions of Has the average temperature in January for 
Burlington, Vermont, changed over the last 78 years and, if so, by how much?, we need to 
choose one month and graph (program 6.3) the average temperature of that month 
for each year in our dataset. We use January in this example, but we created a variable 
called month_string in our code so that anyone can quickly change the month they 
want to look at and print out the graph.

Program 6.1: Python Setup

# import the .csv library so we can read in from a .csv file
import csv
# import matplotlib so we can graph the data
import matplotlib​.pyplot as plt
# import numpy so we can fit a line to the data
from numpy.polynomial.polynomial import polyfit
# use January as the month to graph
month_string = '01'

Figure 6.18
Grabbing TAVG data from the initial sheet to insert into column B of a new sheet.
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Next, we open the .csv file. You will want to substitute 'BurlingtonVTData​.csv' 
with your file name with the .csv extension on it. Make sure it is in the same folder as 
this Python file on your machine because that is where Python looks for it when the 
program runs. If your .csv file is in another folder, you can either copy or move it to 
the folder with the Python file or change this line to have the absolute file path. Once 
the .csv file is open, we create a reader variable from the csv library. This line makes 
sure that it reads the data correctly by stating that commas separate each piece of data.

Now we declare two lists: one named years, to hold the years (which will be the x 
values of the graph), and one named graph_temps, to hold the average January tem-
peratures (which will be the corresponding y values of the graph).

Then we skip the first line of the file (the one with the headers for all the columns) 
with a call to the next function. For each row of data in the .csv file, we check whether 
it is January data and, if so, store the year and temperature into the years and graph_
temps lists. Each row in the file is a list of all data in that line. For example, the first 
line of data would be the list

['USW00014742', "BURLINGTON INTERNATIONAL AIRPORT, VT US", '1940–
12', '22.9']

We can access one value from this list by using square brackets and an integer index: 
row[0] would give us the first piece of data in the line (in this case, 'USW00014742'), 
row[1] would give us the second piece of data in the list, and so on. Indexing in Python 

Program 6.2: Read from Data File in Python

# open the filename​.csv file
with open('BurlingtonVTData​.csv') as csv_file:

  # use the reader from the csv library
  reader = csv​.reader(csv_file, delimiter=',')
  # declare empty lists to hold what will be the x and y values to graph
  years = []
  graph_temps = []
  # skip the header line
  next(reader)
  # for each line of data in the file
  for row in reader:
      # if the month matches the month to graph
      if row[2][-2:] == month_string:

        # add the year and the average temperature to the lists to graph 
        years.append(int(row[2][0:4]))
        graph_temps.append(float(row[3]))

The first three lines of code (not including the comment lines that start with #) 
import the library module we will need to get the data from the .csv file and graph it. 
Then we create a variable month_string for the month we want to graph and set its 
value to 01 for January. If instead you want to graph the average temperature for a dif-
ferent month (say June), then you would have to change this value (to 06 in this case) 
and update some of the graph labels later in the program.
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can also use negative values to get items from the back of the list: row[-1] would give 
us the last piece of data in the line (in this case, '22.9'), row[-2] would give us the 
second-to-last piece of data in the line, and so on. Everything in the list is represented 
as a string by default (which is why everything in the list is surrounded by quotation 
marks), even if it has numeric data. In our .csv file, it is the value at index 2 (or −2) that 
holds the year and month, formatted as YYYY-MM (e.g., 1940-12 for December 1940). 
We want to isolate the month part, so we use our square-bracket indexing again to grab 
the last two digits of the string: [−2:]. We compare row[2][-2:] to the month_string 
variable to tell whether this row contains January data. If it does, then we need to store 
two pieces of information from it: we add the year (row[2][0:4]) as an integer to the 
years list, and we add the average temperature from the column at index 3 (row[3]) as 
a floating-point number to the graph_temps list. We use the append function to add it 
to the end of the list.

Program 6.3: Graphing Data in Python

# use matplotlib to graph the data
ax = plt​.subplot(111)
ax​.plot(years, graph_temps)
# only print every tenth year on x-axis
ax​.xaxis​.set_major_locator(plt.MaxNLocator(10))
# make sure y-axis starts at 0
ax​.set_ylim(bottom=0)
ax.hlines([5, 10, 15, 20, 25, 30], 1940, 2019)
# label graph and axes
plt.gcf()​.canvas​.set_window_title('BVT January Temperatures')
plt.title('Average January Temperatures for Burlington, VT')
plt.xlabel('Year')
plt.ylabel('Average January Temperature (F)')

Once we are finished reading in from the file, we can construct our graph. Note 
that these lines of code are no longer indented, because they will be executed after the 
file-reading loop ends. The first thing we do is use the matplotlib subplot function 
to set up the graph. We give it the number 111 because we have one set of x values, one 
set of y values, and we are starting with the first data in the set. Next, we use the plot 
function and give our x values (the years list) and our y values (the graph_temps list) 
for it to graph.

Next, we change some settings. By default, it will print every x value. With 78 
years, that would overflow the x axis. So, using the xaxis​.set_major_locator func-
tion, we set it to print only every tenth year. Also, by default, it will calculate the y 
range based on the data. We always want the y axis to start at 0, so we set that manually 
with the set_ylim function. Note that if you have data that goes into negative values, 
you may be okay with the default behavior. We also want to have horizontal bars across 
the y axis every 5°, so we use the hlines function to specify the y values and x range of 
these lines (you will need to adjust these values for your dataset). These functions are 
available from the matplotlib library.

Next, we want to label our graph and axes. These four lines use different func-
tions to set the window title (which shows up in the top bar of the window that pops 
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up), the title of the graph (which prints above the graph), the x-axis label, and the 
y-axis label.

The last thing we want to do before we display the graph is to calculate the line 
that best fits the data (program 6.4). We let numpy do the calculation for us, giving its 
polyfit function the list of years, the list of average monthly temperature values, and 
a 1 to signify that we want a first-degree (linear) function. This function returns the 
slope and y intercept, which we store in m_graph and b_graph variables, respectively. 
We can use these to calculate the best-fit monthly temperatures for each year in our 
dataset (using the equation of a line y = mx + b), which we do in a for loop for the 
graph. Then we plot the graph line using another call to matplotlib’s plot function. 
For all data, we print the slope of the line and the first and last best-fit monthly tem-
perature values from the range of our dataset.

Program 6.4: Best-Fit Line in Python

# use numpy to calculate the best fit line to graph
b_graph, m_graph = polyfit(years, graph_temps, 1)
# calculate coordinates from the line’s y and b values
line_y_values = []
for value in years:

  line_y_values.append(value * m_graph + b_graph)
# plot the line on the graph
plt​.plot(years, line_y_values, '-')

Finally, we display the graph (program 6.5) by using the show function. When you 
run the program, you will see the graph pop up on your screen.

Program 6.5: Display the Graph in Python

# display the graph in a new window
plt​.show()

The graphs from the Google Sheets (see figure 6.16) and Python (see figure 6.19) pro-
grams are exactly the same, and the values for the best-fit lines are equal.

6.4  Revisiting the Large Dataset

Now that we have graphed the January data and gained a better understanding of what 
the best-fit line represents with our dataset, let’s revisit the full dataset and compute 
the best-fit line for all the months. If you used the Google Sheets method, click on an 
empty cell in the spreadsheet of the initial dataset that you downloaded and use the 
LINEST command (short for line estimate): =LINEST(D2:D949). This produces two cells 
of data, the first cell being the slope of the best-fit line b = 0.00397 and the second cell 
being the y intercept a = 43.4. This means the trend line for the dataset of monthly aver-
age temperatures from December 1940 to November 2019 in Burlington, Vermont, is 
y = 0.00397x + 43.4, where y is the predicted average monthly temperature (°F) over the 
last 78 years and x is the number of months after December 1940.
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Based on the trend line, we can answer our question, Has the average temperature for 
Burlington, Vermont, changed over the last 78 years and, if so, by how much? Yes, the aver-
age temperature has increased in Burlington, Vermont, because the slope of the best-fit 
line is positive. How much has it increased? Let’s plug our first and last months into the 
equation to get the difference in temperature:

December 1940 November 2019

y = 0.00397(0) + 43.4 y = 0.00397(947) + 43.4

y = 0 + 43.4 y = 3.76 + 43.4
y = 43.4°F y = 47.2°F

Note that for November 2019 we plugged in 947 for the number of months since 
December 1940. This is because we have 948 rows of data, and the first row is December 
1940, which is 0 months away from the start month, so the last row of November 2019 
must be 947 months away from the start month. Now that we have the temperatures 
of our best-fit line for the first and last months, we find that the difference in value is 
47.2 – 43.4 = 3.8°F, so the temperature in Burlington, Vermont, increased by 3.8°F on 
average over the last 78 years. The next interesting question is whether the change in 
temperature is statistically significant.

Now let’s perform the same computation in our Python program. You will need to 
add the code in program 6.6.
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Figure 6.19
Graph of January average temperatures (F) for Burlington, Vermont, and best-fit line using 
the Python programming language.
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We add a list named avg_month_temps to store all the average temperature data 
from the file. Then, in the for loop, when we go through each row in our .csv file, we 
add the monthly average temperature to the avg_month_temps list. It is the fourth 
column of the dataset, so we index into our row list at index 3 (because indexing starts 
at 0).

Then, to find the best-fit line, we will use the polyfit function again. We give 
the function three inputs: the list of integers [0, 1, 2, . . . , 947] to keep track of the 
number of months since the beginning of the dataset, computed using the len and 
range functions to get the number of months and the list of integers in that range, 
respectively; the avg_month_temps list; and the value 1, because we still want a linear 
slope. We store the intercept and slope return values as b_all and m_all variables.

Next, we calculate and print the average temperature values of our best-fit line for 
our first and last months, as well as the slope of the best-fit line. We use the equation of 
a line (y = mx + b) with our variables (y = m_all*x + b_all), and the x values of the first 
(0) and last (947) months. The slope of the line (0.00397) and the first and last values 
(43.4°F and 47.2°F) that the Python program prints into the Shell window also exactly 
match the results from the Google Sheets program. The Python program has therefore 
helped us answer both our questions: yes, the temperature in Burlington, Vermont, has 
changed over the last 78 years, and it has increased by about 3.8°F.

With the answering of our research question and subquestion, several other ques-
tions started to pique our interest. How does the average temperature change affect the 
local ecosystem? How does this change in temperature affect the local economy? We 
also noticed a curious thing in the January average temperature dataset as we were pro-
cessing it: there appeared to be a change in the upper and lower average temperatures 
after 1989. Why was that? What were the carbon dioxide levels during this time? How 
have the ocean temperatures changed during this time? Sometimes answering a ques-
tion leads to more questions and opens more areas of interest.

Program 6.6: Best-Fit Line of All Data in Python

# declare an empty list to store all the temperature data
# add this line where you declare the years list
all_avg_month_temps = []
# add the average temperature to the list
# put this line in the "for row in reader" loop
all_avg_month_temps.append(float(row[3]))
# now add the rest to the end of the program
# use numpy to calculate the best fit line on all the data
b_all, m_all = polyfit(range(len(all_avg_month_temps)), all_avg_month_temps, 1)
# calculate the temperatures of the first and last month
print('First month temp (F):', b_all)
print('Last month temp(F):', (len(all_avg_month_temps)-1) * m_all + b_all)
print('Slope of best fit line:', format(m_all,'.5f'))
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6.5  Transferring Skills to Process Different Datasets

Now that we have experience processing data from .csv files, we can apply it to answer 
other research questions and other sets of data.

■	 What if we want to graph the amount of snowfall, amount of sunlight, maximum 
temperature, or minimum temperature instead of average temperature? We would 
go back to the NOAA NCDC website and from the Data Types for Custom Output 
webpage we would select the different data that we need (see figure 6.20) and per-
form the needed calculations and graphs.

■	 We could change the row index that we store in our graph_temps list (as well as 
the list name). Even better, we could create a variable for this index like the variable 
we created for the month and use the variable to index into the row. This is more 
readable and will be easier to change in the future.

Figure 6.20
Other climate data types to be downloaded.

Downloaded from http://direct.mit.edu/books/book-pdf/2259273/book_9780262366144.pdf by guest on 03 October 2024



Critically Examining and Analyzing Data	 143

■	 What if the pattern of the scatter plot or line graph was more curved than straight? 
A best-fit line would not be the best solution. For this, we would need to change the 
polyfit function. Besides the coordinate values, the function also takes the degree 
(or number of coefficients in the equation) of the best-fit curve. We could change 
the polyfit function to be second degree (quadratic curve) by changing the last 
argument from a 1 to a 2 (or third degree by changing it to a 3 if the graphed data 
pattern more closely matched y = x3, etc.). Then the function will return more vari-
ables to represent the coefficients of the quadratic equation.14 For example, if you 
wanted to fit a cubic curve to your data, you would pass a 3 as the last argument to 
the polyfit function and would get four variables returned, representing a through 
d in the equation y = ax3 + bx2 + cx + d.

In our example, we asked the question, Did the average temperature in Burlington, 
Vermont, change over 78 years and, if so, by how much? What other questions can you 
answer with this data? What other questions do you have, and what data can you find 
to answer them?

It is also important to note what questions this information doesn’t answer. We did 
not collect information from any other city on earth, so we cannot make any claims 
about global temperature change. We also did not explore the different factors affect-
ing the rise in temperature and therefore could not conclude from our dataset whether 
humans are causing temperatures to rise more than they naturally would (as climate 
change would suggest). Be careful not to claim more results than your analysis of the 
data supports.

Learning Activity 6.4: Debating Data Results

Have students demonstrate how data can be used or manipulated to say different things or 
argue opposing facts with the same set of data.

1.	 Have your students determine, as a class, which topic they want to investigate or debate 
that has controversial and opposing sides. It could be a school, town or city, state, or 
national issue and could be related to issues they’ve heard about on the news, social 
media, or discussed among themselves.

2.	 Decide what questions or points of view exist for each side to investigate.

3.	 Create two teams in your classroom that will analyze and discuss the different sides of 
the question or argument.

4.	 Gather the same set of data information for the two teams to analyze, display, and dis-
cuss. This can be from 

•	 data the students collected on their own (e.g., surveys) or
•	 data from a reputable database that they find on the internet. A reliable web-

site satisfies the CRAAP test (see http://libguides​.csuchico​.edu​/c​.php​?g=414315​
&p=2822716).

5.	 Create manipulated data displays to support their side of the argument using only this 
one dataset, so they are using the same set of data to draw conclusions.

6.	 Present the arguments from the data displays. As team 1 presents their argument, have 
team 2 try to figure out the data manipulations that team 1 uses (and vice versa).

7.	 Report and debrief on the data manipulations that each team found and used. How did 
the manipulation of the data results and displays help each side of the argument? What 
did each team pay attention to in order to figure out the data manipulations?
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6.6  Summary

By collecting, processing, and analyzing data downloaded from reputable internet 
sites, students can begin to ask questions and address issues that are pertinent to their 
real lives. They can help elevate issues and find solutions to pressing problems in our 
society today. Encourage your students to stay informed, identify biases and misinfor-
mation, and strive to solve the questions themselves by going directly to the primary 
source of the data.
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7 Incorporating Computational Thinking into the Classroom

In this chapter, we discuss how you can do this on your own with the content that you 
teach in order to integrate and embed computational thinking into your classroom content.

We know teachers worry, “How do I do all this on top of everything else I need to do?!” 
It is true that you have a lot to teach and students have a lot to learn. We advocate that 
you take small steps in the beginning, starting off small and taking on more as you are 
able. Change is a process that takes time and persistence. As you progress through a 
process to include computational thinking and/or programming in your instructional 
practices, you will need support in that process by gathering all the resources you can, 
collaborating with different people, persevering through roadblocks and obstacles, and 
learning from your mistakes.

In this chapter, we hear from teachers who used computational thinking in their 
classrooms. The first two stories come from teachers who incorporated computational 
thinking as part of a culminating unit project. The third story comes from a technol-
ogy teacher whose goal was to teach loops and how to use random number generators, 
and who incorporated ideas from sections 2.1 (Kandinsky art) and 2.3 (Albers art) of 
chapter 2 to do it. In the fourth story, the teacher used embodied learning experiences 
to help her students overcome a misconception when drawing squares and equilateral 
triangles. The last episode is from an art teacher whose students designed and built 
an art installation over three months that included several aspects of computational 
thinking.

The practice of teaching is a complex enterprise. We understand the varied con-
text every individual teacher is in, so we wrote the book with the belief that teachers 
are professionals who know their students’ needs best. We believe that teachers are 
smart, industrious, and continuous learners who can take the information in this book 
and adapt it to fit their situations. We intended to give teachers flexibility and choice 
in how they present the material to their students rather than being too prescriptive 
regarding timing and organization. Different teachers we worked with confirmed this 
belief. One teacher commented, “I like how the book took it. It wasn’t a lesson; it was 
outlining how to do this one problem and all the different parts of it. [It] made it easy 
to figure out a cool lesson plan. If a textbook has a lesson and I don’t like parts of it, I 
discard it easily. I like that I could look at this and choose different pieces that I wanted 
to use.” Another teacher commented that she could take the topology graph from 
chapter 3 and “use it for a unit on food chains . . . ​to examine what happens when a 
rabbit population tanks . . . ​to look at the different influencing factors. I won’t use it for 
Harry Potter, it wouldn’t make sense for my kids.” For us, these comments verified that 
teachers are professionals who choose activities that work for them in their context.
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7.1  Start Small: Have a Final Project That Contains Computational Thinking

Wiggins and McTighe (2005) argue that we should plan our lessons or units with a spe-
cific desired learning result in mind and then design the learning tasks such that students 
are able to demonstrate what they know and are able to do as a result of that learning at 
the end. Students can demonstrate what they know and are able to do through a perfor-
mance task rather than a paper-and-pencil test. Wiggins and McTighe defined a per-
formance task as an authentic task that uses a student’s knowledge to effectively act or 
bring to fruition a complex product that “assesses the student’s ability to efficiently and 
effectively use a repertoire of knowledge and skill to negotiate a complex and multistage 
task” (Wiggins and McTighe 2005, 154). These performance tasks incorporate compu-
tational thinking in that they require the breakdown of a complex and multistage task 
into its core components given the students’ knowledge and understanding from the 
unit’s big ideas, the transfer of learning to a new situation, and the creative displaying 
of that knowledge.

As the teacher, you decide how students demonstrate their knowledge to you, to 
their peers, and to the world. You could empower students to choose the means by 
which they demonstrate their mastery of the learning goals (e.g., do they want to pre
sent a slideshow or PowerPoint presentation, write a paper, create a video, write a song, 
or make a computer program).

For example, in a sixth-grade classroom, students had to discuss a significant event 
in a story and how it changed the trajectory of the characters’ story arc from a book 
they were reading, drawing on specific details in the text. They were given the option, 
among many others, to create an animated program with the Scratch programming 
environment. A couple of boys took up their teacher’s offer to use Scratch. They used 
the think and say commands to highlight important dialogue passages from the 
book. They created a different backdrop that reflected where some of the important 
scenes in the book took place. Students used the move, glide, and turn commands 
to highlight some key actions in the book. Creating an animated presentation of their 
knowledge about a book enabled the students to demonstrate their knowledge of the 
CCSS-ELA standards being assessed and incorporated computational thinking. The 
teacher created a rubric that outlined the key requirements for the assessment to ensure 
that the content was not lost in the creativity that the Scratch animation provided.

In another example, a sixth-grade social studies teacher gave the option of using 
Minecraft to create a digital diorama of Plimoth Plantation. The students had to satisfy 
the same NCSS standards as those who created a three-dimensional diorama. Just as 
the students had to gather information, plan their environment, solve problems, and 
persevere in making their three-dimensional models, students in the Minecraft envi-
ronment had to apply those same computational thinking skills in the technology 
environment.

7.2  Scale Up: Create Lessons or Units of Learning That Include Computational 
Thinking Based on What Your Students Need to Know and Do

To create a lesson that includes rich tasks that integrate computational thinking with 
your content area, look at a standard you need to teach. What do the students need to 
know and do? What are the essential questions for your lesson or unit? After you have 
defined them, begin to think about the essential components of computational think-
ing that support learning the content standards or essential questions of your unit. 
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Are there ways that students can learn this content standard by including problem 
solving, collaboration, abstraction, and/or algorithmic processes? Then think about 
ways you can differentiate the learning with rich tasks that allow all students multiple 
entry points into the learning activity so that it is accessible to a wide range of learn-
ing abilities (low threshold); provides opportunities for extended learning and chal-
lenges advanced learners (high ceiling); incorporates a variety of approaches and allows 
diverse representations (wide walls); engenders interest in and engagement with the 
topic and is grounded in real-life experiences; encourages collaboration and discussion; 
sparks students’ curiosity and promotes decision-making; and fosters creativity and 
individuality. As you think about including computational thinking in your lessons, 
always keep in mind the desired results and learning goals for your students.

One middle school technology teacher created a lesson based on sections 2.1 and 
2.3 in chapter 2. She started the lesson by displaying a Kandinsky art image on the 
screen (similar to figure 2.2) with an opening prompt on the board that read, “What do 
you notice about this picture? Describe it. Describe how you could code it.” She passed 
out paper and pencils and had students write for one minute. Using a think-pair-share 
pedagogical strategy, she had students turn and talk with a neighbor about their think-
ing. Afterward, she asked the class what they discussed and wrote down some of their 
ideas:

■	 “The circles change color when they overlap.”
■	 “It looks like eyeballs floating in the ocean.”
■	 “Some circles have a border.”
■	 “You need a random circle generator.”

She then prompted them for their coding ideas. They talked about the need for ran-
domness for the colors and, after some prompting, mentioned loops to repeatedly draw 
the circles. Then the teacher had the students log into the computers and Google image 
search the artists Kandinsky and Albers, telling the students they could create a com-
puter program in Scratch or Codesters that mimicked either artist’s style or a combina-
tion of both. After about 40 minutes and walking around and working with different 
students, she displayed different students’ projects on the screen.

■	 One student (working in Codesters) had static squares, circles, and triangles that 
were red, blue, yellow, orange, purple, and green (see figure 7.1).

■	 One student (working in Scratch) had squares of all different bright colors that were 
randomly moved and placed so the art looked like a whirlwind.

■	 One student (working in Codesters) took a picture of a Kandinsky picture and set it 
as the background image, then had different shapes appear on top of it.

■	 One student (in Scratch) created different squares and moved them so that they 
were concentric and in rainbow order.

After the lesson, the teacher reflected on her experience: “It was cool with how much 
range there was with what they could do. . . . ​I was worried that covering loops and hexa-
decimal and random at the same time would be too much, but it wasn’t. They caught up 
with random quickly. There was a lot of stuff they could incorporate, [if they were done 
early] it was easy to think of other things they could do.” She did learn that this was 
“easier on Codesters than Scratch, because in Scratch you have to have a lot of sprites . . . ​
but it was good.” The comment that made the teacher smile most was from a student 
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named Duncan, who told her, “I can’t do art, but on the computer, I guess I’m not so 
bad.” The teacher added that “it was cool for him to see that he can be an artist too. You 
say that the program is art, and now they know they can do art.”

7.3  Learn All That You Can

Computational thinking is a way of thinking that is not new to a lot of people. Many 
people recognize the different components in the language of their content areas. 
However, integrating coding into your teaching is the newest piece of learning for 
many teachers. It takes time to learn new things. Cadieux Boulden et al. (2018) found 
that teachers’ lack of time for learning how to code was the primary barrier to integrat-
ing computational thinking and coding into their teaching. Many teachers did not 
feel comfortable including coding in their lessons because they believed they lacked a 
background in computer programming. Structured time to learn new things may not 
be available at your school or in your school district, so you may need to start learning 
it on your own. There are a number of routes for overcoming this obstacle:

■	 Read some books about programming and its connection to teaching in the twenty-
first century.

■	 Try out the different Hour of Code modules.
■	 Explore the Scratch, Codesters, or Python tutorials.
■	 Watch video tutorials on the internet about these coding languages. It does not have 

to be these languages specifically; there are a variety of programming languages out 
there you could learn.

■	 Have a tech-savvy friend or family member teach you about coding.

There are lots of resources available to learn how to code, and soon enough you can be 
a resource for other users.

Figure 7.1
An example of the output from a student’s simulation of Kandinsky’s art style. Image: Cour-
tesy of Codesters.
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For example, a sixth-grade mathematics teacher, after completing the Hour of Code 
Learning Course E, which included a lesson called “Drawing with Loops” (https://studio​
.code​.org​/s​/coursee​-2019), thought the lesson would be a good review for her students 
and would provide an opportunity for them to apply their understanding of different 
geometrical properties. As she watched her students in the computer lab one December 
day, she noticed them struggling to draw the different shapes with the move forward 
100 pixels and turn left and turn right commands. In particular, she noticed 
them struggle with drawing the rocket’s square window (https://studio​.code​.org​/s​/coursee​
-2019​/stage​/2​/puzzle​/5) and the equilateral triangle at the top of a rocket (https://studio​
.code​.org​/s​/coursee​-2019​/stage​/2​/puzzle​/6). She knew her students understood the prop-
erties of a square and an equilateral triangle, yet they struggled to draw the rocket’s win-
dow or top with the turn left or turn right code commands. They coded the sprite 
to turn the incorrect number of degrees or to turn in the wrong direction.

The teacher did, however, love watching her students collaborate in trying to fig-
ure out how to draw the rocket top correctly. When a student found the solution to a 
problem, the solution ran through the classroom like wildfire. The teacher did question 
whether her students understood what they were copying from each other. Their time in 
the computer lab ended with only a couple of students having completed the “Drawing 
with Loops” lesson. The teacher decided that when they got back to the classroom, they 
were going to talk about the actions the sprite was taking on the screen based on the code 
the students wrote. Before the students shut down their computers, she asked them to 
screen capture their code and send her the pictures.

When her students came back to her the following day, she first had them share 
their understanding of the properties of a square and equilateral triangle, which she 
recorded on flip chart paper. Then she handed out a couple of examples from their 
screenshots from the day before that exemplified their struggles with why the code was 
not working as they wanted. In groups of three, she asked them to act out the action 
in the code—to be the sprite drawing the roof. From that experience, students realized 
that the direction the sprite was facing or where the sprite was located on the screen 
influenced how the next piece of code should be placed. The next time they went 
into the computer lab to work on their Hour of Code lesson, they had a deeper under-
standing of what they were doing when drawing the square and the triangle, and they 
applied that learning to draw the other shapes in the lesson.

7.4  Collaborate with Colleagues across Disciplines, Schools, and/or States

Sometimes you may be the only person in your school or district who is interested in 
integrating computational thinking and coding into your teaching, but you are not 
alone. There are other people who are interested in doing the same thing you are and 
are interested in working together. Send that cold email to find someone in your school, 
district, or community who is interested in transforming their practice to include more 
computational thinking in their teaching. Team up. Send out another email, asking to 
create a user group for teachers.

If you decide to include computer programming in your teaching, know that you 
do not have to be an expert coder to do this. There is an amazing online community 
that helps each other out. The Scratch, Codesters, and Python programming environ-
ments have an online help and share community that talks about problems with their 
programs. You can access that community for help and in the process teach your kids 
the skill of how to access help online safely.
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For example, a middle school art teacher created with her seventh- and eighth-
grade students an interactive, hands-on garden installation that incorporated major 
aspects of the Claude Monet garden in Giverny, France. She began her journey of 
incorporating computational thinking and coding into her teaching with one small 
flower that incorporated LED lights and sound. She made the flower as part of a course 
on creative maker spaces and using Arduinos. After she successfully crafted one small 
flower, she began to think about building a garden of flowers with lights and sound 
that worked independently of each other but wasn’t sure where to begin.

Through her discussions and collaborations with a local technology education 
consultant and a technology specialist, the teacher learned of a garden created by MIT 
students that was used to teach coding. That information, in addition to the original 
flower prototype and her passion to integrate art with technological innovation, was 
enough to propel her. She proposed to her seventh-grade students that they make a gar-
den of their own for their spring Fine Arts Festival. As part of this three-month unit, she 
introduced them to the artwork of French Impressionist Claude Monet and his garden 
in Giverny, France. Together, the teacher and her students identified three major areas 
of Monet’s garden: the Japanese footbridge with pond, the willow tree, and the formal 
gardens. Through discussion and collaboration, the students also decided they wanted 
to create an arbor to welcome guests to their garden.

This teacher had never undertaken a project of this magnitude with her middle 
school students, yet the teacher and her students were invested in this art installation, 
and together they were determined to create their garden. The teacher assigned project 
managers (students whose primary role was to update their task lists and help others 
identify their next task to be completed) to help manage the time and the tasks.1

As the students began constructing their garden, the teacher realized she did not 
have all the answers to the many questions they asked. However, she saw this as an 
opportunity to teach her middle school students how to tackle unknown issues and 
devise solutions to their obstacles. She would say things like “I have no idea how we 
can make that. Let’s do some research” or “Sounds like we need to build a prototype 
first.” She was very transparent with her students regarding what she knew and didn’t 
know. In order for the students to complete their project, they had to realize that their 
teacher did not have all the answers, nor could she do the project alone. As a collective 
unit, the students and teacher worked together collaboratively to complete their art 
installation.

Across multiple classes during their school day and various groups of students 
staying after school, they all pulled together to create their version of Monet’s garden. 
In those three months, students learned to solder, create flowers with clay, and code. 
They painstakingly made over 80 LED flowers by hand and wired them to three bread-
board Arduinos. There was even an interactive touch component to their garden, using 
Makey-Makey; guests of all ages were able to touch the art in order to hear different 
recorded sounds. This journey of teaching and learning resulted in an art installation 
that was a big success at the Fine Arts Festival. The teacher wrote, “I was proud of the 
final project, but what made me the happiest was the pride [the students] had in their 
artwork and their new skills. People from around the district were so impressed and 
my kids felt like rock stars. . . . ​It was an amazing experience, and I am so grateful for 
the support I received throughout the process but most importantly the hard work and 
investment of my students.” After the Fine Arts Festival, the teacher and a small group 
of her students were invited to present their garden at Dynamic Landscapes, a technol-
ogy education conference (personal communication, November 26, 2018).
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This teacher’s experience integrating computational thinking into her art class 
began with an initial idea, an interest, and a question, and it blossomed from there. 
The school year concluded with the students, the teacher, and the community seeing 
real-life learning take place in that classroom. Since then, it has led to a new idea, a new 
interest, and a new question—the cycle of inquiry built on this prior experience has 
become part of this teacher’s teaching practice.

7.5  Keep Calm and Struggle On

Productive struggle is a good thing, not a bad thing, and not something you should 
shy away from. When you are trying out something new, you are going to struggle, and 
your students are going to struggle. It is totally normal. The part that can be destruc-
tive is when that struggle becomes frustration. If you are new to programming, let your 
students see how you troubleshoot and solve problems that arise.

As teachers, we can help equip our students with an awareness of the different 
phases and processes that occur in solving problems. Acknowledging and discussing 
students’ emotional responses—both negative and positive—can help them realize that 
what they are experiencing is normal (Boaler 2015; Sousa 2016). We want students to 
experience productive struggle so that they can learn to persevere through problem-
solving situations. One of the best ways for students to learn to overcome struggle 
productively is to watch their teachers learn from their own mistakes and get beyond 
their struggle points.

We have no doubt that a teacher’s ability to incorporate computational thinking 
with unplugged activities is strong. Where we have witnessed teachers struggle is with 
the coding. When teachers experience struggle, it is often because the outcome of the 
code is not the outcome that they wanted, or a mistake was made. We want everyone to 
know that this is normal. When the code is not doing what you thought it was doing, 
go through the code line by line and figure out where the logic went awry. When you 
are debugging code, acting out the action in the code exactly as it is written often 
helps you find the errors. Also, don’t be afraid to make mistakes when you are trying 
something new; use them as opportunities to learn and grow as an educator. Loucks-
Horsley et al. (2009), Darling-Hammond et al. (2015), and Shulman (1986) argued that 
effective teaching requires a recursive process of planning, teaching, and reflecting on 
one’s practice.

7.6  Summary

In making all of you aware of the ubiquity of computational thinking and computer 
science principles that drive twenty-first-century life, we hope that you see how it 
exists within every content domain and that it is accessible to all within the different 
content topics. By adapting the learning experiences in your classroom, you can inspire 
innovation in your students and help them rise to the challenge of being comfortable 
with facing and addressing challenging and complex problems. Computational think-
ing fosters skill development that is dynamic, creative, and applies critical thinking, 
productive struggle, perseverance, learning from mistakes, team building, and valuing 
the work of others. We hope that you will take the activities and rich tasks provided in 
these chapters and try some of them out with your students.
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This chapter contains full versions of programs that appear throughout the text. Programs 
are presented in Processing (see www​.processing​.org), Codesters, and Python.

A.1  Drawing Cretan Labyrinths

The following Processing program draws a seven-circuit Cretan labyrinth on a com-
puter screen, as shown in figure 4.7.

// file: labyrinth.pde
// Draws a seven-circuit Cretan labyrinth in two colors.
// Author: Robert R. Snapp

float t = 0;
float dt = 0.5;
Pvector last1;
Pvector last2;
Pvector pv1;
Pvector pv2;

void drawCross() {
    line(10, −80, 10, 0);
    line(−30,−40, 50, −40);
    arc(50,0,40,40, radians(180), radians(360));
    arc(−30,0,40,40, radians(180), radians(360));
    arc(−30,−80,40,40, radians(−90), radians(90));
    arc(50,−80,40,40, radians(90), radians(270));
}

void drawUpperArc(float r) {
    arc(0,0,r,r,0, radians(180));
}

void drawSWQuarter(float r) {
    arc(−30, 0, r, r, radians(180), radians(270));
}

Appendix: Computer Programs
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void drawSEQuarter(float r){
    arc(50, 0, r, r, radians(270), radians(360));
}

void vbranch(float t, Pvector pv) {
    float rad = radians(t);
    if (t <= 0) {
        pv.x = 50;
        pv.y = 0;
    } else if (t <= 180) {
        pv.x = 50*cos(rad);
        pv.y = 50*sin(rad);
    } else if (t <= 360) {
        pv.x = 20*cos(rad)−30;
        pv.y = 20*sin(rad);
    } else if (t <= 540) {
        pv.x = −10*cos(rad);
        pv.y = 10*sin(rad);
    } else if (t <= 630) {
        pv.x = 10.0;
        pv.y = −40.0*(t–540)/90.;
    } else if (t <= 720) {
        pv.x = 10.0;
        pv.y = −40*(t–630)/90.–40;
    } else if (t <= 810) {
        pv.x = −30 + 40*cos(rad);
        pv.y = −80–40*sin(rad);
    } else if (t <= 900) {
        pv.x = −30 + 120*cos(rad);
        pv.y = −120*sin(rad);
    } else if (t <= 1080) {
        pv.x = 150*cos(rad);
        pv.y = −150*sin(rad);
    } else if (t <= 1170) {
        pv.x = 50 + 100*cos(rad);
        pv.y = −100*sin(rad);
    } else if (t <= 1350) {
        pv.x = 50 + 20*cos(rad);
        pv.y = −80–20*sin(rad);
    } else if (t <= 1440) {
        pv.x = 50 + 60*cos(rad);
        pv.y = 60*sin(rad);
    } else if (t <= 1620) {
        pv.x = 110*cos(rad);
        pv.y = 110*sin(rad);
    } else if (t <= 1710) {
        pv.x = −30 + 80*cos(rad);
        pv.y = 80*sin(rad);
    } else {

Downloaded from http://direct.mit.edu/books/book-pdf/2259273/book_9780262366144.pdf by guest on 03 October 2024



Computer Programs	 155

        pv.x = −30;
        pv.y = −80;
    }
}

void hbranch(float t, Pvector pv) {
    float rad = radians(t);
    if (t <= 0) {
        pv.x = −30;
        pv.y = 0;
    } else if (t <= 180) {
        pv.x = −30*cos(rad);
        pv.y = 30*sin(rad);
    } else if (t <= 360) {
        pv.x = 20*cos(rad) + 50;
        pv.y = 20*sin(rad);
    } else if (t <= 540) {
        pv.x = 70*cos(rad);
        pv.y = 70*sin(rad);
    } else if (t <= 630) {
        pv.x = 40*cos(rad)–30;
        pv.y = 40*sin(rad);
    } else if (t <= 720) {
        pv.x = 40*(t–630)/90.–30;
        pv.y = −40;
    } else if (t <= 810) {
        pv.x = 40*(t–720)/90.+10;
        pv.y = −40;
    } else if (t <= 900) {
        pv.x = 50–40*cos(rad);
        pv.y =–40*sin(rad);
    } else if (t <= 1080) {
        pv.x = −90*cos(rad);
        pv.y = −90*sin(rad);
    } else if (t <= 1170) {
        pv.x = −30–60*cos(rad);
        pv.y = −60*sin(rad);
    } else if (t <= 1350) {
        pv.x = −30–20*cos(rad);
        pv.y = −80 + 20*sin(rad);
    } else if (t <= 1440) {
        pv.x = −30–100*cos(rad);
        pv.y = 100*sin(rad);
    } else if (t <= 1620) {
        pv.x = −130*cos(rad);
        pv.y = 130*sin(rad);
    } else if (t <= 1710) {
        pv.x = 50–80*cos(rad);
        pv.y = 80*sin(rad);

Downloaded from http://direct.mit.edu/books/book-pdf/2259273/book_9780262366144.pdf by guest on 03 October 2024



156	 Appendix

    } else {
        pv.x = 50;
        pv.y = −80;
    }
}

void setup(){
    size(900,900);
    frameRate(480);
    smooth();
    background(240);

    last1 = new PVector(0,0);
    last2 = new PVector(0,0);
    pv1 = new PVector(0,0);
    pv2 = new PVector(0,0);
    vbranch(1710, last1);
    hbranch(1710, last2);
    vbranch(1710, pv1);
    hbranch(1710, pv2);
}

void draw() {
    translate(width/2, height/2);
    scale(2.5,−2.5);

    vbranch(1710−t, pv1);
    hbranch(1710−t, pv2);

    strokeWeight(3);
    stroke(200,0,0);
    line(pv1.x, pv1.y, last1.x, last1.y);
    last1 = pv1;

    stroke(150, 150, 255);
    line(pv2.x, pv2.y, last2.x, last2.y);
    last2 = pv2;

    t += dt;
}

A.2  Bumper Rocks

The following program is coded in Codesters to simulate elastic collision, as seen in 
figure 5.8.

# Author: Lisa Dion
# set the background image
stage.set_background("jupiter")
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# create the rock with initial size and speed
rock = codesters.Sprite("rock")
rock.set_size(0.5)
rock.set_x_speed(2)
rock.set_y_speed(−3)

# create the asteroid with initial size, position, and speed
asteroid = codesters.Sprite("asteroid")
asteroid.set_size(0.5)
asteroid.go_to(−200, 0)
asteroid.set_x_speed(−1)
asteroid.set_y_speed(4)

# create a function for the "s" key to make the rock smaller
def s_key():
    # make the rock smaller
    rock.set_size(0.8)
# this line makes the code listen for the "s" key
stage.event_key("s", s_key)

# create a function for the "w" key to make the rock larger
def w_key():
    # make the rock bigger
    rock.set_size(1 / 0.8)
# this line makes the code listen for the "w" key
stage.event_key("w", w_key)

# create a function for collision of the objects
def collision(sprite, hit_sprite):
    # set variables
    size_sum = rock.get_size() + asteroid.get_size()
    x_vel_1 = sprite.get_x_speed()
    x_vel_2 = hit_sprite.get_x_speed()
    y_vel_1 = sprite.get_y_speed()
    y_vel_2 = hit_sprite.get_y_speed()
    rock_x = rock.get_x()
    rock_y = rock.get_y()
    asteroid_x = asteroid.get_x()
    asteroid_y = asteroid.get_y()
    # calculate the new velocities for 2-dimensional elastic collisions
    # the following 4 command lines are each on their own line
    sprite.set_x_speed(x_vel_1—((2*asteroid.get_size())/size_sum) * 
((x_vel_1— x_vel_2)*(rock_x—asteroid_x) + (y_vel_1— y_vel_2)*( rock_y— 
asteroid_y)) / ((rock_x—asteroid_x)*(rock_x—asteroid_x) + (rock_y—​
asteroid_y)*(rock_y—asteroid_y)) * (rock_x—asteroid_x))
    sprite.set_y_speed(y_vel_1—((2*asteroid.get_size())/size_sum) * 
((x_vel_1—x_vel_2)*(rock_x—asteroid_x) + (y_vel_1— y_vel_2)*(rock_y—​
asteroid_y)) / ((rock_x—asteroid_x)*(rock_x—asteroid_x) + (rock_y—​
asteroid_y)*(rock_y—asteroid_y)) * (rock_y— asteroid_y))
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    hit_sprite.set_x_speed(x_vel_2-((2*rock.get_size())/size_sum) *  
((x_vel_2—x_vel_1)*(asteroid_x—rock_x) + (y_vel_2— y_vel_1)*(asteroid 
_y—rock_y)) / ((rock_x—asteroid_x)*(rock_x—asteroid_x) + (rock_y—​
asteroid_y)*(rock_y—asteroid_y)) * (asteroid_x—rock_x))

hit_sprite.set_y_speed(y_vel_2−((2*rock.get_size())/size_sum) * ((x 
_vel_2—x_vel_1)*(asteroid_x—rock_x) + (y_vel_2— y_vel_1)*(asteroid_y—​
rock_y)) / ((rock_x—asteroid_x)*(rock_x— asteroid_x) + (rock_y—asteroid 
_y)*(rock_y—asteroid_y)) * (asteroid_y—rock_y))

# this line makes the program detect collision and
# call the function above
rock.event_collision(collision)

# create a function to move the objects and bounce off walls
def move(sprite):
    sprite.move_forward(1)
    if sprite.get_x() >= 250 or sprite.get_x() <= −250:
        sprite.set_x_speed(-sprite.get_x_speed())
    if sprite.get_y() >= 250 or sprite.get_y() <= −250:
        sprite.set_y_speed(-sprite.get_y_speed())

# have the program run forever
while True:
    move(rock)
    move(asteroid)

A.3  Basketball

The following program is coded in Codesters to simulate the physics involved in shoot-
ing a basketball, as seen in figure 5.9.

# Author: Lisa Dion
# set gravity's strength
stage.set_gravity(10)
stage.set_background("halfcourt")
net = codesters.Sprite("basketballnet", 200, 100)
# we do not want the net to fall
net.set_physics_off()
net.set_gravity_off()
player = codesters.Sprite("player3", −180, −130)
# we do not want the player to fall
player.set_physics_off()
player.set_gravity_off()
ball = codesters.Sprite("basketball", −150, −130)
# we do not want the ball to fall yet
ball.set_physics_off()
ball.set_gravity_off()
# create a rectangle along the floor
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floor = codesters.Rectangle(0, −250, 500, 10, "red")
# create a function called shoot
def shoot(x_speed, y_speed):
    # set the ball's speed to make it move
    ball.set_x_speed(x_speed)
    ball.set_y_speed(y_speed)

# create a function for collisions
def collision(sprite, hit_sprite):
    # check for a score
    # the next two lines should be on one line of code
    if sprite.get_x() >= 165 and sprite.get_x() <= 215 and sprite.
get_y() >= 75 and sprite.get_y() <= 100 and sprite.get_y_speed() < 0:
        # stop the ball
        sprite.set_x_speed(0)
        sprite.set_y_speed(0)
        sprite.set_physics_off()
        sprite.set_gravity_off()
        # create a win message
        message = codesters.Text("You scored!", 0, 0, "white")
    # check if the ball hit the red floor
    elif hit_sprite.get_color() == "red":
        # stop the ball
        sprite.set_x_speed(0)
        sprite.set_y_speed(0)
        sprite.set_physics_off()
        sprite.set_gravity_off()
        # create a lose message
        message = codesters.Text("Try again!", 0, 0, "white")

ball.event_collision(collision)

# prompt the player for inputs
x_vel = int(player.ask("Enter an x-velocity:"))
y_vel = int(player.ask("Enter a y-velocity:"))
# now we want the ball to fall
ball.set_physics_on()
ball.set_gravity_on()
# this calls the function above
shoot(x_vel, y_vel)

A.4  Ping-pong

The following program is written in Codesters to demonstrate reflection, as discussed 
in section 5.3.

# Author: Lisa Dion
# import the random number generator library module
import random
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# set a list of speeds that we will choose from
speeds = [−4, −3, 3, 4]
# create the ball and set initial values
ball = codesters.Circle(0, 0, 50, "green")
ball.set_size(0.5)
# set the ball velocity in x and y components
ball.set_x_speed(speeds[random.randint(0, len(speeds)−1)])
ball.set_y_speed(speeds[random.randint(0, len(speeds)−1)])
# create rectangles for the paddles
# sprite = codesters.Rectangle(x, y, width, height, "color")
player1 = codesters.Rectangle(−230, 0, 10, 50, "yellow")
player2 = codesters.Rectangle(230, 0, 10, 50, "gray")
# create rectangles against the left and right walls
left_wall = codesters.Rectangle(−250, 0, 10, 500, "red")
right_wall = codesters.Rectangle(250, 0, 10, 500, "red")

# create a function for when "w" is pressed
def w_key():
    # make sure there is room to move up
    if player1.get_y() < 220:
        player1.move_up(20)

# create a function for when "s" is pressed
def s_key():
    # make sure there is room to move down
    if player1.get_y() > −220:
        player1.move_down(20)

# create a function for when up is pressed
def up_key():
    # make sure there is room to move up
    if player2.get_y() < 220:
        player2.move_up(20)

# create a function for when down is pressed
def down_key():
    # make sure there is room to move down
    if player2.get_y() > −220:
        player2.move_down(20)

# make the program listen for the keys
stage.event_key("s", s_key)
stage.event_key("w", w_key)
stage.event_key("up", up_key)
stage.event_key("down", down_key)

# create a function to detect collision
def collision(sprite, hit_sprite):
    # make ball bounce off paddles by changing its x-direction
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    ball.set_x_speed(−ball.get_x_speed())
    # check if the ball hit the left or right wall
    if hit_sprite.get_color() == "red":
        # stop the ball
        ball.set_x_speed(0)
        ball.set_y_speed(0)
        if hit_sprite.get_x() < 0:
            # ball hit left wall.
            msg = codesters.Text("Player 2 wins!", 0, 0, "red")
        else:
            # ball hit right wall.
            msg = codesters.Text("Player 1 wins!", 0, 0, "red")
# make the program listen for collisions
ball.event_collision(collision)

A.5  Reading Temperatures from a File

The following program is written in Python to read from a file and graph average Janu-
ary temperatures for Burlington, Vermont, as seen in figure 6.19.

# Author: Lisa Dion
# Import the csv library so we can read in from a csv file
import csv
# Import matplotlib so we can graph the data
import matplotlib.pyplot as plt
# Import numpy so we can fit a line to the data
from numpy.polynomial.polynomial import polyfit

# Use January as the month to graph
month_string = '01'

# Open the csv file
with open('BurlingtonVTData.csv') as csv_file:
    # Use the reader from the csv library
    reader = csv.reader(csv_file, delimiter=',')
    # Declare an empty list for all the months' temps for
    # the best fit line
    all_avg_month_temps = []
    # Declare empty lists to hold what will be the x and y
    # values to graph
    years = []
    graph_temps = []
    # Skip the header line
    next(reader)
    # For each line of data in the file
    for row in reader:
        # Add the average temperature to the list
        all_avg_month_temps.append(float(row[3]))
        # If the month matches the month to graph
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        if row[2][−2:] == month_string:
        # Add the year and the average temperature to the
        # lists to graph
            years.append(int(row[2][0:4]))
            graph_temps.append(float(row[3]))

# Use matplotlib to graph the data
ax = plt.subplot(111)
ax.plot(years, graph_temps)
# Only print every tenth year on x-axis
ax.xaxis.set_major_locator(plt.MaxNLocator(10))
# Make sure y-axis starts at 0
ax.set_ylim(bottom=0)
ax.hlines([5, 10, 15, 20, 25, 30], 1940, 2019)
# Label graph and axes
plt.gcf().canvas.set_window_title('BVT January Temperatures')
plt.title('Average January Temperatures for Burlington, VT')
plt.xlabel('Year')
plt.ylabel('Average January Temperature (F)')

# Use numpy to calculate the best fit line to graph
b_graph, m_graph = polyfit(years, graph_temps, 1)
# Calculate coordinates from the line's y and b values
line_y_values = []
for value in years:
    line_y_values.append(value * m_graph + b_graph)
# Plot the line on the graph
plt.plot(years, line_y_values, '−')

# Use numpy to calculate the best fit line on all the data
# The next command should be on one line
b_all, m_all = polyfit(range(len(all_avg_month_temps)),  
all_avg_month_temps, 1)
# Calculate the temperatures of the first and last month
print('First month temp (F):', b_all)
# The next command should be on one line
print('Last month temp(F):', (len(all_avg_month_temps)−1)  
* m_all + b_all)
print ('Slope of best fit line:', format(m_all,'.5f'))

# Display the graph in a new window
plt.show()
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Chapter 2

1.  At the time of this writing, Codesters is free for teachers but requires payment to create a 
“classroom” for students to access.

Chapter 3

1. ​ The information about Conway’s Game of Life is from http://www.conwaylife.com​
/wiki/Conway’s_Game_of_Life.

Chapter 4

1. ​ These myths are recounted in Plutarch’s Theseus and Ovid’s Metamorphoses.

2. ​ It has twelve roofed courts, with doors facing one another, six to the north and six to 
the south and in a continuous line. One wall on the outside encompasses them all. There 
are double sets of chambers in it, some underground and some above, and their number 
is three thousand; there are fifteen hundred of each. We ourselves saw the aboveground 
chambers, for we went through them and so can talk of them, but the underground cham-
bers we can speak of only from hearsay. For the officials of the Egyptians entirely refused 
to show us these, saying that there were, in them, the coffins of the kings who had built 
the labyrinth at the beginning and also those of the holy crocodiles. So we speak from 
hearsay of these underground places; but what we saw above ground was certainly greater 
than all human works. The passages through the rooms and the winding goings-in and 
out through the courts, in their extreme complication, caused us countless marvelings as 
we went through, from the court into the rooms, and from the rooms into the pillared 
corridors, and then from these corridors into other rooms again, and from the rooms into 
other courts afterwards.

—Herodotus (1987, book II, §148)

3. ​ Matthews (1922) is available online via Project Gutenberg: http://www​.gutenberg​.org​
/ebooks​/46238​.

4. ​ A related exercise is the “telephone challenge,” in which two students are connected by 
telephone or alternatively seated back-to-back. One student, let’s call her Alice, looks at a 
simple design, perhaps figure 4.1; the other student, let’s call him Bob, holds a pencil and a 
sheet of unruled paper. Using only verbal cues, Alice must get Bob to draw a faithful replica 
of the design she is viewing.

5. ​ The medial axis is an upwardly directed ray that emanates from the center of the cross.

Notes
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6. ​ This is essentially the definition of what is known as algorithmic complexity.

7. ​ Doob (1990, chap. 8) suggests that the entire work is designed as a literary labyrinth on 
many levels; for example, the “circuitous wanderings” of Aeneas and his party through the 
Mediterranean Sea mirror the twists and turns of a labyrinth.

8. ​ Computer scientists usually include 0 in the natural numbers, which mathematicians 
sometimes exclude.

9. ​ Interestingly, decimal numbers can also be thought of as lists; for example, 123 repre-
sents the value 3 + 20 + 100, which can be associated with the list (3, 2, 1).

Chapter 5

1. ​ This equation is from http://www​.sciencecalculators​.org​/mechanics​/collisions​/​.

Chapter 6

1. ​ On global warming, see US National Oceanic and Atmospheric Administration (NOAA), 
National Climatic Data Center (NCDC), http://www​.ncdc​.noaa​.gov​/cdo​-web​/, last accessed 
February 1, 2020.

2. ​ On species extinction, see IUCN, The IUCN Red List of Threatened Species, https://www​
.iucnredlist​.org, last accessed February 1, 2020.

3. ​ On immigration trends, see Department of Homeland Security, Immigration Data and 
Statistics, http://www​.dhs​.gov​/immigration​-statistics, last accessed February 1, 2020.

4. ​ On school funding, see US Census Bureau, Public Education Funding: 2017 Public Elementary–
Secondary Education Finance Data, https://census​.gov​/data​/tables​.html, last accessed February 
1, 2020. You can go to https://www​.census​.gov and https://www​.census​.gov​/data​.html to 
gather data on various topics related to census questions.

5. ​ On gun violence in the United States, see Centers for Disease Control and Prevention, 
Web-Based Injury Statistics Query and Reporting System (WISQARS), Fatal and Nonfatal 
Injury Data, https://www​.cdc​.gov​/injury​/wisqars, last accessed February 1, 2020.

6. ​ On food insecurity, see US Department of Agriculture, USDA Economic Research Service, 
Food Security in the US, https://www​.ers​.usda​.gov​/topics​/food​-nutrition​-assistance​/food​
-security​-in​-the​-us​/, last accessed February 1, 2020.

7. ​ On the spread of infectious diseases and other health-related issues, see Centers for Dis-
ease Control, Data and Statistics, https://www​.cdc​.gov​/DataStatistics​/, last accessed Febru-
ary 1, 2020.

8. ​ On wealth distribution, see US Census Bureau, Small Area Income and Poverty Estimates, 
https://www​.census​.gov​/programs​-surveys​/saipe​/data​/datasets​.html, last accessed February 
1, 2020.

9. ​ See Mapping Police Violence, database download, https://mappingpoliceviolence​.org​/s​
/MPVDatasetDownload​.xlsx, last accessed February 1, 2020.

10. ​ US Census Bureau, American Fact Finder, https://factfinder​.census​.gov​/faces​/tableservices​
/jsf​/pages​/productview​.xhtml​?src=bkmk, last accessed February 1, 2020.

11. ​ FBI, Uniform Crime Reporting, Table 1: Crime in the United States by Volume and Rate per 
100,000 Inhabitants, 1999–2018, https://ucr​.fbi​.gov​/crime​-in​-the​-u​.s​/2018​/crime​-in​-the​-u​.s​.​
-2018​/topic​-pages​/tables​/table​-1, last accessed February 1, 2020.
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12. ​ We have 78 years because the data from the weather station we chose in Burlington, 
Vermont, is not available before December 1940. You may want to include a different time 
frame if more data is available from your location.

13. ​ If you are using Safari as a web browser, it may not let you download it as a .csv file, so 
you may need to use another web browser, such as Google Chrome or Firefox, when you 
click the link that NCDC sends you.

14. ​ One note about this (for our dataset) is that the years start at 1940, so that can 
influence the curvature. We recommend changing the years argument in this line to 
range(len(years)) to have it start counting at 0 instead of 1940. This change is also 
needed when the y values are calculated inside the for loop, so that the data remains 
consistent.

Chapter 7

1. ​ To read more about this installation, see https://www​.facebook​.com​/GeneratorVT​/videos​
/monets​-garden​-created​-and​-coded​-by​-mt​-abraham​-union​-middle​-school​-with​-generator​
/805713946294145​/​.
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$ (dollar sign), 133
( ) (parentheses), 87
# (pound) symbol, 21, 25

Abstraction, 13. See also Algorithmic art; 
Labyrinths; Mazes

definition of, 9, 15
as essence of computational thinking, 1–2
in literature graphs, 43
state space and, 86
in temperature graphing, 130

Acceleration. See also Basketball program
equation for, 108
Newton’s law of universal gravitation, 

107
Newton’s second law of motion, 99–101

Action-reaction pairs, principle of, 100–101
Adjacency, 82–83
Advancing, in mazes, 75–78, 76
Adventure, 57
Aeneas (Trojan hero), 69, 164n7 (chap. 4)
Aeneid, The (Virgil), 69
Agents, maze, 72

advancing/backtracking, 73, 75–78, 76
right bearing versus left bearing, 77, 85

Air hockey activity, 111
Albers, Josef, 13, 15, 28
Albers-style art, simulating

Codesters algorithm, 30–31, 32
learning activities, 29, 32
programming skills used in, 29
Scratch algorithm, 29–30, 30

Alcuin of York, 86
Alcuin’s puzzle

description of, 86
state space, 86–88, 88–89
state-transition graph, 90, 91
Trémaux’s algorithm applied to, 91, 91–92

Alexander the Great, 59
Algorithmic art, 13, 15–16

Albers-style, 28–32, 30, 32
Andrade-style, 22–28, 23, 26
combining styles of, 39
Kandinsky-style, 16–22, 18–20, 23
student interpretation of, 16
Vasarely-style, 33–39, 35, 37–38

Algorithmic processes. See also Algorithmic 
art; Maze-threading algorithms

algorithmic complexity, 64, 164n6 (chap. 4)
breadth-first search, 78
definition of, 10
labyrinth generation, 61–64, 63
literature graphs, 43
temperature analysis, 129–131

Amenemhet III, temple of, 60, 163n2
Anchises (Greek legend), 69
Andrade, Edna, 13, 15, 22
Andrade-style art, simulating, 22–28

Codesters algorithm, 24–28, 27
learning activities, 24, 26, 27
programming skills used in, 23
Scratch algorithm, 24, 26

Angry Birds, 93
Append function, 138
Ariadne (Greek legend), 60, 66, 67
Art, algorithmic. See Algorithmic art
Average temperature data, processing.  

See Temperature trend analysis

Backtracking, in mazes, 73, 75–78, 76
BASIC, 8
Basketball program, 108–111, 158–159
Bell, Tim, 14
Bellman, Richard, 78
Best-fit line, temperature trends, 131–132, 

139–141, 140

Index

Note: Page numbers in italics indicate figures.
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Bézier curves, 33, 34
Bookend literary characters, 48
Books, analyzing with graphs. See Literature 

graphs
Breadth-first search algorithm, 78
Brennan, Karen, 10
Bumper Rocks collision program

background and sprites, 101–102, 102
collisions and collision function, 103–105
engine, 106
full program, 156–158
keyboard functions, 103
movement function, 106
programming skills used in, 101
setup, 102

Burns, Rebecca C., 11

Cairo, Alberto, 119
Cardinality of sets, 81
Carpenter, Edmund, 59
Chakravyuha, 61
Chapters, graphing by, 48–50, 49
Charlemagne, 86
Chartres Cathedral labyrinth, 71, 71
Christian labyrinths, 57, 69–71, 71
Circuitous paths, 57. See also Labyrinths
Classroom weather stations, 119
Climate data analysis, 124–139

best-fit line, 131–132, 139–141, 140
classroom weather stations, 119
data processing with Python, 135–139
data processing with spreadsheets,  

131–135, 132–136
line graph and scatter plot of data, 130, 

131
NOAA Climate Data Online dataset, 

downloading, 125–129, 127–129
programming skills used in, 130
temperature analysis algorithm, 129–131
transference of skills to different datasets, 

142–143
Climate Data Online dataset (NOAA),  

125–129, 127–129
Closed systems, 100
Codesters, 2, 8, 14

Albers-style art algorithm, 30–31, 32
Andrade-style art algorithm, 24–28, 27
basketball program, 108–111, 109, 

158–159
Bumper Rocks collision program, 101–107, 

156–158
comments in, 21
coordinate grid, 18, 19

cost of, 163n1 (chap. 2)
hexadecimal colors in, 19, 21, 29, 31
indentation in, 35
Kandinsky art algorithm, 18–22, 19–20
online tutorials for, 16
ping-pong program, 112–115, 159–161
simulating laws of physics in, 13
Vasarely art algorithm, 34–38
velocity in, 97, 97

Coding, learning, 148–150
Collaboration, 93, 149–151
Collection of data, 118
Collision function, 105, 110–111
Collisions

basketball program, 110–111
Bumper Rocks program, 101–107, 

156–158
Colors, hexadecimal, 19, 21, 29, 31
Combinatorial puzzles, solving with  

Trémaux’s algorithm, 85, 86–92, 88–91
Commands. See also Functions

import, 136
INDEX, 133
LINEST, 139
pip3 install matplotlib, 136
pip3 install numpy, 136

Comments, Codesters, 21
Common Core State Standards for  

Mathematics, 65
Communication, computational thinking 

and, 2
Complexity, algorithmic, 64, 164n6 (chap. 4)
Comprehension of code, 10–11
Computational thinking

applications of, 2
characteristics of, 1–3
divide and conquer, 64
integration into classroom, 11–12, 13–14, 

145–151
need for, 1
skills for, 8–11

Computer programming skills.  
See Programming skills

Computer science (CS)
definition of, 2
in intermediate and secondary schools, 

7–8
Computuses, 70
Concentric circles/squares. See Algorithmic 

art
Conditionals, 9–10

in basketball program, 108
in Bumper Rocks collision program, 101
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in literature graphs, 43
in ping-pong program, 112
in Scratch vector program, 98
in temperature graphing, 130

Connected mazes, 74
Context, grounding data in, 121–122,  

122
Conway’s Game of Life, 53–55, 54
Coordinate grid, Codesters, 18, 19
Coordinate pairs, 18
Corn maze activity, 78
Counterexamples, 73
CRAAP test, 143
Creativity

fostering with rich tasks, 3–4,  
146–147

need for, 1–2
Cremona (Italy), labyrinth in, 68, 70
Cretan labyrinths

design of, 57–60, 58–59
drawing algorithms for, 61–64, 63, 

153–156
eleven-circuit, 64, 65
historical examples, 60, 163n2
kernel of, 62
learning activities, 60, 61, 64, 69
path length estimation, 65–67, 67–68
seven-circuit, 62–64, 63, 65
three-circuit, 64

Crowther, Will, 57
CSUNPLUGGED website, 14
.csv library, 136–137
Curriculum integration, 11–12, 13–14, 

145–151
collaboration, 149–151
desired results and learning goals, 

146–147
interdisciplinary approach to, 12
learning to code, 148–150
multidisciplinary approach to, 11–12
performance tasks, 146
productive struggle, 151
transdisciplinary approach to, 12

Curve function, 37
Curves, Bézier, 33, 34

Daedalus (Greek mythology), 60, 67
Data collection, 118
Data investigation/inquiry, 13. See also  

Climate data analysis
elements of, 117–119
learning activity, 119
manipulated data, 119–124

Data misrepresentation, 119–124
data omissions, 122, 123
exaggerated or minimized data, 122–124, 

124–126
false generalizations, 121
insufficient data calculations, 121
learning activities, 119, 143
out-of-context data, 121–122, 122
sampling procedures, 120
unjustified conclusions, 124

Data processing
with Python, 135–139
with spreadsheets, 131–135, 132–136

Data usage, 10
in Albers-style art, 29
in Andrade-style art, 23
in literature graphs, 43
in temperature graphs, 130
in Vasarely-style art, 33

Decimal numbers, 164n9 (chap. 4)
Decision points (mazes), 72, 75, 78, 83, 86
Degree of vertex, 45
Delta, 29, 32
Depth-first search, 78, 79
Dewey, Thomas, 120
Digraphs, 48
Diodorus, 60
Direction, vectors, 94–98
Disconnected mazes, 74, 75
Disease propagation, graphs of, 52–55, 54
Displacement, 94–98, 108
Divide and conquer, 64
Dollar sign ($), 133
Doob, Penelope Reed, 164n7 (chap. 4)
Down_key function, 113
Drake, Susan M., 11
Draw_lines function, 36
Dynamics, law of, 93, 99–100

Edges (graph), 41–43, 82–83
Education, twenty-first century, 4–5

adapting and applying to new situations, 
7

goals of, 3
learning from mistakes in, 5–6
productive struggle in, 5–6
real-life contexts for, 3–4
rich tasks for, 3–4
team settings in, 6–7
technologically prolific environments, 

7–8
Egypt, labyrinths in, 60
Elastic collision, 156–158
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Emotions, impact on learning, 5–6
Empty sets, 81
England, labyrinths in, 59, 67
Equations

acceleration, 108
displacement, 96, 108
elastic collision, 103
path length estimation, 66–67
speed, 94
velocity, 108

Even, Shimon, 75
Events

in Bumper Rocks collision program,  
101

definition of, 9
in ping-pong program, 112

Evidence graphs, 41–42, 50–51, 51–52
Exaggerated data, 122–124, 124–126
Exponential literary characters, 48

Facebook, 41
False generalization, 121
Field marks, 62
Fontana, Giovanni, 71
Food insecurity, need for solutions on,  

117
Force, 94, 99
Ford, Lester R., Jr., 78
France, labyrinths in, 67, 71
Frieze patterns, 57, 58
Frustration, 5–6, 151
Fuchs, Lynn S., 7
Full-arc literary characters, 48
Functions

in basketball program, 108, 109–111
in Bumper Rocks collision program, 101, 

103–106
definition of, 36
in ping-pong program, 112–114
in temperature graphing program, 

137–139
in Vasarely-style art algorithm, 36–37

Generalization of data, errors in, 121
Gibson, J. Paul., 83
Girls Who Code, 8
Glide command, 95
Global warming. See also Climate data 

analysis
data misrepresentation in, 121
need for solutions on, 117
transdisciplinary integrative approach 

to, 12

Google
depth-first search, 79
Sheets, 131–135, 132–136

Graphical user interfaces (GUIs), 11
Graphs

abstracting from mazes, 79–85, 82, 84
graph theory, 13, 79–83
literature. See literature graphs
social network, 41–42, 52–55, 54
state-transition, 90, 92
temperature. See temperature trend 

analysis
Gravitation, 107, 110
Gravity, 107
Group work, 6–7, 93
Gun violence, need for solutions on, 117

Hadley, John, 86
Hampton Court, maze at

abstracting graphs from, 83–85, 84
features of, 57–58, 72, 72
Trémaux’s algorithm applied to, 83–86, 

85
Harry Potter and the Sorcerer’s Stone graphs

algorithm design, 43
cleaning, 46–47
creating, 43–46, 46
digraphs, 48
evidence graphs, 50–51, 51–52
graphing by chapter, 48–50, 49
programming skills used in, 43
subgraphs, 46–47

Herodotus, 60, 163n2
Hexadecimal colors, 19, 21, 29, 31
Histories, The (Herodotus), 60
Hour of Code, 8, 16
House primary winners, fundraising by, 

122–123, 124
How Charts Lie (Cairo), 119

Idle, 135
Immigration, need for solutions on, 117
Import command, 136
Incident, 82
Indentation, code, 35
INDEX command, 133
India, labyrinths in, 59
Inertia, 94, 99
Infectious diseases, need for solutions on, 

117
Information computing and technology 

(ICT), 7–8
Information fluency, need for, 1
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Innovation, inspiring, 1, 11, 151
Integers, 81
Interdisciplinary integrative approach, 12
Investigation, data. See Data investigation/

inquiry
Italy, labyrinths in, 59, 68, 70, 71
Iteration, in labyrinths, 13, 62–64

Jericho labyrinth, 69–71
Junctions (maze), 57–58, 71–72

abstracting graphs from, 83, 84, 84
in breadth-first search algorithm, 78
degree of, 72
in maze at Hampton Court, 72
old versus new, 75, 75

Kandinsky, Wassily, 13, 15
Kandinsky-style art, simulating

algorithm design, 17
circles and concentric circles in, 22, 23
Codesters algorithm, 18–22, 19, 20
learning activities, 17, 21, 22
programming skills used in, 16
Scratch algorithm, 17, 18

Kern, Hermann, 57, 59, 60
Kernels, labyrinth, 62
Keyboard functions

Bumper Rocks program, 103
ping-pong program, 113–114

Kinematics, 93, 108. See also Physics, laws 
of

Knossos, Palace of, 57, 59, 60

Labyrinths, 13. See also Mazes
Christian, 57, 69–71, 71

circuitous nature of, 57
Cretan, 57, 58, 59–69, 59, 63, 65, 67–68, 

153–156
definition of, 57
frieze patterns compared to, 57, 58
historical examples of, 57
learning activities, 60, 71
Roman, 57, 67–69, 70
spirals compared to, 57, 58

Laws of physics. See Physics, laws of
Learning activities

air hockey, 111
Albers-style art, 29, 32
Andrade-style art, 24, 26, 27
Codesters/Scratch languages, 16
data investigation/inquiry, 119, 135, 143
Kandinsky-style art, 17, 21, 22
labyrinths, 60, 61, 64, 69, 71

laws of physics, 94, 100, 101, 108, 110, 
111

literature graphs, 50, 51
mazes, 72, 73, 74, 78, 83, 86
social network graphs, 55
Spider’s Web Morning Greeting, 42
Vasarely-style art, 36, 37
video game creation, 107

Left bearing agents, 77–78, 85
Lego Robotics, 8
Length, lists, 87
Length estimation, labyrinths, 65–67, 67–68
Lethal states, 88
Libraries

.csv, 136–137
math, 36
Matplotlib, 135–136, 138
Numpy, 136
random, 21, 36

Life-size maze activities, 78
LINEST command, 139
Lists

in Albers-style algorithm, 31
decimal numbers as, 164n9 (chap. 4)
definition of, 87
in Kandinsky-style algorithm, 21
in temperature-graphing program, 

137–138
Literacy, technological, 2, 7–8
Literature graphs

algorithm design for, 43
benefits of, 41–42
cleaning, 46–47
creating, 43–46, 46
digraphs, 48
evidence graphs, 50–51, 51–52
graphing by chapter, 48–50, 49
learning activities, 50, 51
literary analysis with, 43–51
programming skills used in, 43
resources for, 50
structure of, 41–42
subgraphs, 46–47

Lives of the Caesars, The (Suetonius), 69
Loops

in Albers-style art, 29, 31
in Andrade-style art, 23–28
in Bumper Rocks collision program, 101, 

106
definition of, 9
in Kandinsky-style art, 16–22
in Scratch vector program, 98
in Vasarely-style art, 37
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Lucas, Édouard, 75
Lusus Trojae, 69

Magnitude, vectors, 94–98
“Mahabharata” (Sanskrit epic), 61
Manipulated data

data omissions, 122, 123
exaggerated or minimized data, 122–124, 

124–126
false generalization, 121
insufficient data calculations, 121
learning activities, 119, 143
out-of-context data, 121–122, 122
sampling procedures, 120
unjustified conclusions, 124

Math library, 36
Matplotlib library, 135–136, 138
Matthews, William Henry, 57
Mazes, 13. See also Junctions (maze);  

Labyrinths; Maze-threading algorithms
abstracting graphs from, 79–85, 82, 84
agents, 72–73, 75–78, 76, 85
computational process, 72
connected/disconnected, 74, 75
decision points, 72, 75, 78, 83, 86
definition of, 57
features of, 72–73, 72
historical examples of, 57, 71
junctions, 57–58, 71–72, 72, 75, 75, 

77–78, 83, 85
learning activities, 72, 73, 74, 78, 82, 85
maze at Hampton Court, 57–58, 72, 

83–85, 84–85
minimazes, 78, 81
multicursal nature of, 13, 58, 71

Maze-threading algorithms
as computational process, 72
random walk, 73
Tarry’s, 78
Trémaux’s, 75–78, 76, 79–81
wall following, 73–74

McTighe, Jay, 146
Mechanics, 93, 94. See also Physics, laws of
Members of sets, 81
Microsoft Office, 11
Minimazes, 78, 81
Minimized data, 122–124, 124–126
Minorities, in STEM, 7–8
Minos, King of Crete, 60
Minotaur (Greek legend), 60, 67–68
Mistakes, learning from, 1, 5–6
Modularization, 9, 33
Month_string variable, 137

Moore, Edward F., 78
Moretti, Franco, 13, 43
Motion, laws of, 93

acceleration, 99–101, 107–108
basketball program, 108–111, 109, 

158–159
Bumper Rocks collision program,  

101–107, 102, 156–158
displacement, 94–98, 108
learning activities, 94, 100, 101, 107, 108, 

110, 111
Newton’s first law, 94, 95
Newton’s law of universal gravitation, 107
Newton’s second law, 99–100
Newton’s third law, 100–101
ping-pong program, 112–115, 159–161
reflection, 111–115
velocity, 94–98, 97, 108

Movement function, 106
Multicursal mazes. See Mazes
Multidisciplinary integrative approach, 

11–12
Multiplication principle, 87
Multisets, 81
Murder and nonnegligent manslaughter 

rates, 122, 123
Mystery novels, evidence graphs for, 50–51, 

51–52

National Oceanic and Atmospheric Admin-
istration (NOAA) climate data, 125–129, 
127–129

Natural numbers, 81, 164n8 (chap. 4)
Neumann, Maureen D., 78
Newton, Isaac, 13, 93

first law of motion, 94, 95
law of universal gravitation, 107
second law of motion, 99–100
third law of motion, 100–101

Next function, 137
North America, labyrinths in, 59
Novels, analysis of. See Literature graphs
Numbers

decimal, 164n9 (chap. 4)
integers, 81
natural, 81, 164n8 (chap. 4)
rational, 81

Numpy library, 136

Office suite, 11
Omission of data, 122, 123
Op Art movement, 15, 22, 39. See also 

Algorithmic art
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Pair programming, 8
Palace of Knossos, 57, 59, 60
Papert, Seymour, 8
Parentheses, delineation of lists with, 87
Path length estimation, 67–68, 71
Performance tasks, 146
Perseverance, 1, 4, 6, 151
Peterson, Roger Tory, 62
Physics, laws of, 13, 93

acceleration, 99–101, 107–111
action-reaction pairs, 100–101
in basketball program, 108–111, 109, 

158–159
in Bumper Rocks collision program,  

101–107, 102, 156–158
displacement, 94–98, 108
dynamics, 99–100
gravitation, 107, 110
inertia, 94, 95
learning activities, 94, 100, 101, 107, 108, 

110, 111
in ping-pong program, 112–115,  

159–161
reflection, 111–115
vectors, 94–98, 97
velocity, 94–98, 108

Ping-pong program, 112–115, 159–161
pip3 install matplotlib command, 136
pip3 install numpy command, 136
Planar graphs, 82
Plays, analysis of. See Literature graphs
Pliny, 60
Plot function, 139
Police killings, data on, 121–122, 122
Polyfit function, 139, 143
Pound (#) symbol, 21, 25
Primary data sources, weather, 13, 125, 135. 

See also Climate data analysis
Problem solving, 1, 4–5
Processing of data. See Data processing
Productive struggle, 5–6, 151
Program listings

Albers-style Codesters art, 30–31
Andrade-style Codesters art, 24–25
basketball program, 108–109, 158–159
Bumper Rocks program, 102–103, 

156–158
Codesters velocity program, 97, 97
Cretan labyrinth, 153–156
Kandinsky-style Codesters art, 20–21
ping-pong program, 112–114, 159–161
temperature-graphing program, 136–139, 

141, 161–162

Vasarely-style Codesters art, 34–38
velocity in Codesters, 97

Programming skills
in Albers-style art, 29
in Andrade-style art, 23
in basketball program, 108
in Bumper Rocks program, 101
description of, 9–11
importance of, 1
in Kandinsky-style art, 16
learning resources for, 148–150
in literature graphs, 43
in ping-pong program, 112
for Scratch vector program, 98
for temperature-graphing program, 130
transference of, 10, 142–143
in Vasarely-style art, 33

Propositions to Sharpen the Young (Alcuin), 86
Python, 2, 14. See also Functions; Libraries

comments, 21
python (.py) files, 136
temperature-graphing program, 135–139, 

161–162
Python (.py) files, 136

Questions, research, 118
Quota sampling, 120

Random library, 21, 36
Random number generator, 25, 31
Random walk algorithm, 73–74, 74
Rational numbers, 81
Raw data, context of, 121–122, 122
Recursion, 13. See also Labyrinths; Mazes
Reflection, 111–115
Resnick, Mitchel, 10
Rich tasks, 3–4, 146–147
Right bearing agents, 78, 85
Roman labyrinths, 57, 67–69, 70
Rowling, J. K., 13, 43, 48

S_key function
basketball program, 103
ping-pong program, 113

Sampling procedures, 120
Scaffolds, 64
Scalablity, 10

in Andrade-style art, 23
in temperature graphing, 130

School funding, need for solutions on, 117
Schuster, Carl, 59
Scientific thinking, 2
Scores, basketball program, 110–111

Downloaded from http://direct.mit.edu/books/book-pdf/2259273/book_9780262366144.pdf by guest on 03 October 2024



184	 Index

Scratch, 2, 13–14
Albers-style art algorithm, 29–30, 30
Andrade-style art algorithm, 26
critical code reading capacities, 10
Kandinsky-style art algorithm, 17, 18
in middle and high school classrooms, 8
online tutorials for, 16
simulating laws of physics in, 13
vector program, 98, 99

Sequencing
in Andrade-style art, 23
definition of, 9
in Kandinsky-style art, 16
in literature graphs, 43

Set_major_locator function, 138
Set_x_speed function, 114
Set_ylim function, 138
Sets, data, 81–82
Seven-circuit Cretan labyrinths, 62–64, 63, 

65
Shapes, in art. See Algorithmic art
Shoot function, 110–111
Show function, 139
Singmaster, David, 86
Skateboard learning activities

Newton’s first law of motion, 94
Newton’s second law of motion, 100
Newton’s third law of motion, 101

Snapchat, 41
Snapp, Robert R., 78
Social interaction, knowledge constructed 

through, 5
Social network graphs, 41–42, 52–55, 54
Sousa, David A., 5
Spain, labyrinths in, 59
Species extinctions, need for solutions on, 

117
Speed, calculation of, 94
Spider’s Web Morning Greeting, 42
Spirals, 57, 58
Spreadsheets, processing temperature data 

with, 131–135, 132–136
Sprites, Bumper Rocks program, 101–102
State space

of Alcuin’s puzzle, 86–92, 88–89
definition of, 86

State-transition graphs, 90, 91
Status ordering, 6–7
STEM (science, technology, engineering, 

and mathematics), women and minori-
ties in, 7–8

String variables, 21
Struggle, productive, 5–6, 151

Subgraphs, 46–47
Subplot function, 138
Subroutines, 9, 93

in basketball program, 108–111
in Bumper Rocks program, 101–107
in ping-pong program, 112–115
in Vasarely-style art, 33–38

Suetonius, 69

Tarry, Gaston, 78
Tarry’s algorithm, 78
Tasks, rich, 3–4, 146–147
Teamwork, 1, 6–7
Technological literacy, 2, 7–8
TeleGraph learning activity, 55
Telephone challenge, 163n4
Temperature analysis algorithm, 129–131
Temperature-graphing program (Python)

best-fit line, 139–141, 140
displaying graph in, 139
full program, 161–162
graphing data in, 138
Python setup, 136
reading from data files in, 137

Temperature trend analysis, 124–139
best-fit line, 131–132, 139–141, 140
classroom weather stations, 119
data processing with Python, 135–139
data processing with spreadsheets,  

131–135, 132–136
line graph and scatter plot of data, 130, 

131
NOAA Climate Data Online dataset, 

downloading, 125–129, 127–129
programming skills used in, 130
temperature analysis algorithm, 129–131
transference of skills to different datasets, 

142–143
Theseus (Greek legend), 60, 66, 67–68
Three-circuit Cretan labyrinths, 64
Transdisciplinary integrative approach, 12
Transference of skills, 10, 142–143
Trémaux, Charles Pierre, 75
Trémaux’s algorithm, 75–78, 76

applying to graphs, 83, 85
solving combinatorial puzzles with, 

85–92, 86–91
threading mazes with, 79–81

Truman, Harry S., 120, 120
Twenty-first century, learning for

adapting and applying to new situations, 7
learning from mistakes, 5–6
problem solving, 4–5
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productive struggle, 5–6
proficiency in technologically prolific 

environments, 7–8
real-life contexts, 3–4
rich tasks, 3–4, 146–147
team settings, 6–7

Twitter, 41
Tyson, Neil deGrasse, 7

Unicursal labyrinths. See Labyrinths
Universal gravitation, law of, 107
Unjustified conclusions, 124
Unordered collections, 81
Unplugged tasks

algorithmic art, 16, 17, 29, 33
evidence graphs, 51
incorporating computational thinking 

with, 151
laws of physics, 107, 108, 111

Up_key function, 113

Variables
in basketball program, 108
in Bumper Rocks collision program,  

101
in ping-pong program, 112
in Scratch vector program, 98
string, 21
in temperature-graphing program,  

137–138, 141
Vasarely, Victor, 13, 15, 33
Vasarely-style art, simulating

algorithm design, 33
Codesters algorithm, 34–38
learning activities, 36, 37
programming skills used in, 33
unplugged tasks, 33

Vectors, 94–98, 97, 99
Velocity

Codesters velocity program, 97, 97
equation for, 108
vectors, 94–98

Vertices, 82–83
definition of, 41–42
degree of, 45
for literature graphs, 43, 44, 48
for social network graphs, 42–43

Video games, laws of physics in, 13, 93.  
See also Motion, laws of

acceleration, 99–101, 107–111
action-reaction pairs, 100–101
basketball program, 108–111, 109, 

158–159

Bumper Rocks collision program, 101–107, 
102, 156–158

displacement, 94–98, 108
dynamics, 99–100
inertia, 94, 95
learning activities, 94, 100, 101, 107, 108, 

110, 111
ping-pong program, 112–115, 159–161
reflection, 111–115
vectors, 94–98, 97, 99
velocity, 94–98, 108

Villa Cadolini (Cremona), labyrinth in,  
68, 70

Virgil, 69
Voogt, Joke, 11
Vygotsky, Lev S., 5

W_key function
basketball program, 103
ping-pong program, 113

Wall following, 73–74, 74
Water balloon drop, 108
Wealth distribution inequality, need for 

solutions on, 117
Weather data analysis. See Climate data 

analysis
Weather stations, classroom, 119
Websites, CSUNPLUGGED, 14
Wiggins, Grant, 146
Wing, Jeannette, 1
Women, in STEM, 7–8

x_speed, 104, 114

y_speed, 104
Youth-Led Participatory Action Research 

(YPAR) website, 124

Zigzagging line art. See Andrade-style art, 
simulating
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