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Preface

The lab exercises for Iowa State University’s EE224 Signals and Systems I course are an evolving

work. In 2021, Andrew Bolstad and Julie Dickerson published the first edition of these exercises

with support from a 2019 Miller Open Education Mini-grant. While this first edition provided a

basic introduction to programming in MATLAB, it presumed existing familiarity with MATLAB

and required substantial supplementary MATLAB recitations to enable student success. There

was a desire to update the lab manuals such that they could “stand on their own” and cover the

full breadth of MATLAB background necessary to succeed.

The labs conducted in the semesters following the first edition’s publication also saw the

integration of new lab equipment into the exercises, including the Cyclone Data Acquisition

Board (CyDAQ), the Digilent Analog Discovery 2 (DAD), and the Realtek RTL2832U Software

Defined Radio (RTL-SDR). Of these, the most substantially integrated component was the

CyDAQ, a hardware exploration platform and configurable filter developed in-house at Iowa

State University. Lab manuals for the CyDAQ integrated lab exercises were drafted by Andrew

Bolstad and Isaac Rex but were distinct in style and did not always align with the first edition’s

lab exercises.

Beginning in 2023, Aaron Fonseca and Julie Dickerson set out to standardize and improve

the EE224 lab exercises in use. The goals of these updates were:

(a) To provide a thorough coverage of the MATLAB concepts needed to complete each exercise.

(b) To incorporate hardware descriptions and explanations into the exercises that had inte-

grated new lab equipment.

In 2024 these updates were completed and the resulting collection of lab exercises was released

as an Open Educational Resource (OER) through the Iowa State University Digital Press as the

Second Edition of the Open Signals and Systems Lab Exercises.
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Open Signals and Systems Laboratory Exercises Second Edition

MATLAB Basics

Introduction to MATLAB

Overview

In this lab exercise, students will be introduced to the MATLAB software. Students will input

commands into MATLAB and record the resulting textual and graphical outputs.

Learning Objectives

By the end of this lab exercise, students will be able to do the following in MATLAB:

1. Evaluate mathematical expressions.

2. Manually construct variables containing vectors and matrices.

3. Generate vectors and matrices consisting of a single repeated value.

4. Generate vectors of sequential values.

5. Retrieve the size or dimensionality of matrices and vectors.

6. Apply functions as a map to each element of a vector or matrix.

7. Construct mathematical expressions containing scalars, vectors, and matrices.

8. Differentiate between element-wise and matrix operations.

9. Contruct plots of functions.

10. Construct figures with multiple constituent subplots.

11. Construct plots depicting multiple functions on the same axes.

12. Indentify errors caused by unintended retention of MATLAB program state.

1.1 Introduction

This lab exercise introduces the MATLAB computing environment. MATLAB is a handy tool

for signals, systems, and many other computing tasks. This exercise briefly introduces funda-

mental concepts of MATLAB, such as vector/matrix initialization and generation and plotting

signals. Future lab exercises will introduce new MATLAB content as necessary. Navigate to
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your start menu and launch MATLAB. After loading the program, you should be greeted with

the MATLAB main window.

1.2 The MATLAB Window

Figure 1.1: The MATLAB Default Screen

Upon launching MATLAB, you will be greeted with the default screen (depicted in Fig. 1.1).

At the top-most portion of the default screen, you will see the Upper Menu. This is a notebook-

style menu with the Editor tab selected. Just below the Upper Menu is the Address Bar.

This gives the path of MATLAB’s current working directory. The left-most portion of the

default screen gives the Current Folder View. This displays the contents of MATLAB’s

current working directory. The center of the default screen gives the Script Editor Window.

If you do not see the Script Editor Window, the keyboard shortcut Ctrl+N should open a new

2



Script Editor Window. Below the Script Editor Window is the Command Window.

Finally, the right-most portion of the default screen gives the Variable Workspace.

Unlike C, C++ and Java—MATLAB is an interpreted language. This means that MATLAB

code does not need to be compiled before it can be run. Instead, MATLAB maintains a program

state, which can be manipulated via commands. These commands are interpreted after each new

line in what is termed a read–eval–print loop (REPL).[1] But this is all still very abstract—let’s

dive right in with some hands-on examples.

1.3 Variables, Results, and Outputs

Navigate to the Command Window and select the input prompt (immediately following '>>')

so that you can begin entering commands. Enter the command:

1 x = 2

MATLAB will return:

1 x =

2

3 2

This command has just assigned the variable x to 2 and MATLAB printed output informing you

it did so. Enter the command:

1 y = x + 2

MATLAB will return:

1 y =

2

3 4

This command evaluated the mathematical expression x + 2 and assigned the result to the

variable y. It then printed output informing you it did so.

Now, let’s do something slightly different. Enter the command:

1 x + 5

3
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MATLAB will return:

1 ans =

2

3 7

This command evaluated the mathematical expression x + 5 and printed the result. Actually,

MATLAB did more than print the result. It also assigned the result to a special variable called

ans. Whenever you tell MATLAB to evaluate an expression and you do not explicitly assign

a variable to the result of that expression, MATLAB will assign the result to the variable ans.

While it is possible to manually assign the value of ans (e.g., ans = 3), it is highly discouraged.[2]

Now enter the following command (note the semicolon at the end of the line):

1 z = y + 3;

MATLAB will return... nothing. Does this mean that the assignment of z to y + 3 didn’t exe-

cute? No! When MATLAB commands are terminated by a semicolon (;) the output MATLAB

produces is suppressed, but the command still executes. We can confirm that the command was

successfully executed by entering:

1 z

Which produces the output:

1 z =

2

3 7

Suppressing output with the semicolon (;) terminator is extremely common as the output of

many MATLAB commands can be quite verbose. The other common use of the semicolon is to

enable multiple commands to be executed on a single line. For example:

1 a = 1; b = 2;

will execute both assignment commands.

Now would be an excellent time to turn our attention to the Variable Workspace. If you’ve

been following along closely, you should see results similar to those depicted in Fig. 1.2. The

4
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Figure 1.2: The Variable Workspace

Variable Workspace gives a listing of the names and values of the variables currently defined

within MATLAB’s program state. We can see all the variables we’ve defined as a consequence

of the commands you’ve entered.

Now enter the command:

1 clearvars;

The Variable Workspace should now be empty. This command, clearvars, clears all the

variables in MATLAB’s program state.

Enter the command:

1 z = y + 3;

Comment on the result.

Rather than clearing the entire variable workspace, individual variables can be cleared using

the clear command. For instance, to clear a variable, y, one would enter:

1 clear y;

To clear more than one variable—for instance, variables y and z—one could type:

1 clear y z;

1.4 Mathematical Operations in MATLAB

In addition to simple variable assignments, MATLAB can also evaluate mathematical expres-

sions.[3] This includes the standard arithmetic operations: addition (+), subtraction (-), multipli-

5
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cation (*) division (/), and exponentiation (^). For example, one could evaluate the expression:

𝑥 = (2 ⋅ 3)2 − 4
2 ,

in MATLAB by entering the command:

1 x = ((2*3)^2 - 4)/2

Note that parentheses are used to indicate precedence for evaluation.

1.4.1 Built-in Functions in MATLAB

MATLAB provides a set of built-in mathematical constants[4] and functions.[5] These include:

• the constant pi,

• the trigonometric functions sin, cos, and tan,

• the inverse trigonometric functions asin, acos, and atan,

• the exponential function exp,

• the natural logarithm function log,

• the base-10 logarithm function log10,

• and many others.

For example, one could evaluate the expression:

𝑦 = 𝑒−2 cos(3 ⋅ 2𝜋),

in MATLAB by entering

1 y = exp(-2) * cos(3*2*pi)

As an exercise to the reader, use MATLAB to evaluate the following expression:

𝑧 = ln(2) ⋅ arctan(𝜋/3).

Provide the MATLAB command and comment on the result in your lab report. Hint: The

natural logarithm function is not called ‘ln’ in MATLAB.

6

https://www.mathworks.com/help/matlab/constants-and-test-matrices.html
https://www.mathworks.com/help/matlab/elementary-math.html


1.4.2 Getting Help for MATLAB Functions

MATLAB also provides many other useful built-in functions that you may encounter when

browsing examples/code online. Should you ever come across a function you do not understand,

use the help command to retrieve documentation for that function.

For instance, say you come across the function gamma and would like to learn what it does.

Entering the command:

1 help gamma

retrieves the documentation for the function.

Using the help command is often more useful than googling a particular MATLAB function.

This is because some functions differ in syntax between different versions of MATLAB and help

will always return the documentation relevant to the version of MATLAB you’re using. This is

not meant to discourage you from googling MATLAB functions in search of information—just

keep in mind that the information you locate online (even through the MathWorks website)[6]

may not apply to your version of MATLAB.

1.4.3 Functions with Multiple Parameters

So far, all the MATLAB functions presented contained only one parameter (input). MATLAB

also supports functions with multiple parameters. Calling functions with multiple parameters is

best explained by example.

Consider the expression:

𝑞 = (6
4), (1.1)

where (6
4) is the 𝑛 = 6, 𝑘 = 4 binomial coefficient (also called 𝑛-choose-𝑘).[7] Clearly, the binomial

coefficient selection function is a function of two parameters. In MATLAB, the binomial coeffi-

cient selection function is called nchoosek. We can evaluate Eq.(1.1) by entering the MATLAB

command:

1 q = nchoosek(6, 4);

In general, multi-parameter functions are called by delimiting each parameter using commas (,).
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1.4.4 Complex Numbers in MATLAB

In addition to real-valued numbers we’ve been working with so far, MATLAB is also capable of

working with imaginary- and complex-valued numbers. MATLAB has the built-in constants: i

and j which are both define to be the
√

−1. For example, the complex number:

𝑎 = 3 + 4j,

can be assigned in MATLAB using the command:

1 a = 3 + 4*j

Newer versions of MATLAB also permit the multiplication sign (*) to be excluded:

1 a = 3 + 4j

Note that if your version of MATLAB supports this syntax, it only applies to coefficients of

i and j. Outside these multiples, MATLAB does not permit any other instance of implied

multiplication. In other words, do not omit '*' anywhere besides in the definition of complex

numbers.

Often, built-in functions that take real-valued parameters can also take complex-valued pa-

rameters as well. We can leverage this fact to enable us to input complex numbers in polar form.

For example, the polar-form complex number:

𝑏 = 2 𝑒1.4j

can be defined in MATLAB by entering the command:

1 b = 2 * exp(1.4*j)

Comment on the output of the above command. Does MATLAB print the result in polar or

rectangular form?
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1.5 Basics of Vectors and Matrices

So far, we’ve been using MATLAB as a glorified calculator. Now, we will introduce vectors and

matrices and begin leveraging MATLAB’s full potential. The primary datatype in MATLAB are

matrices and MATLAB was built and optimized to work with matrices. MATLAB contains a

plethora of built-in routines precisely to manipulate matrices. This lab assumes you are familiar

with vectors and matrices. Still, we will briefly review aspects of them here to establish a shared

understanding and vocabulary.

1.5.1 Review of Vectors

In essence, a vector is an ordered sequence of numbers (real or complex). For instance, we could

define the vector:

x = [3, 5, 9] . (1.2)

In contrast to vectors, single instances of numbers (real or complex) are called scalars.

Vectors are said to have a length that corresponds to the number of elements in the vector.

In the case of x, the length is 3.

In MATLAB, vectors are also said to have an orientation. A vector can be a row vector or a

column vector. In the case of x: x is a row vector because it is illustrated horizontally. Column

vectors, on the other hand, are illustrated vertically. For example:

y =
⎡
⎢
⎢
⎢
⎣

3
5
9

⎤
⎥
⎥
⎥
⎦

(1.3)

is a column vector. The orientation of vectors has implications for algebraic operations between

vectors—but we will not concern ourselves with that now. In the meantime, just know that the

difference in orientation makes two different vectors distinct in MATLAB. In other words, x ≠ y

despite both containing the same ordered sequence of numbers.
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1.5.2 Review of Matrices

A matrix is a two-dimensional, ordered collection of numbers (real or complex). For example,

we could define a matrix:

X =
⎡
⎢
⎢
⎢
⎣

1 2 3
4 5 6
7 8 9

⎤
⎥
⎥
⎥
⎦

. (1.4)

Matrices are said to have a size (or dimensionality). In the case of X in Eq. (1.4), X is said to

have a size of 3 × 3, where the first number is the number of rows the matrix has and the second

number is the number of columns. For X, the number of rows and columns are equal; in such a

case, the matrix X is said to be square.

Matrices need not be square. Consider the matrix:

Y = ⎡
⎢
⎣

−1 0 1 0
0 1 0 −1

⎤
⎥
⎦

. (1.5)

Clearly Y from Eq. (1.5) is not square. Comment on the size of Y in your lab report.

Unlike vectors, matrices do not have a concept of orientation. This concept is already encoded

by the matrix’s size. In fact, it is possible to conceive of an 𝑚-length row vector as a matrix

whose size is 1 × 𝑚, and an 𝑛-length column vector as a matrix whose size is 𝑛 × 1. It is

often beneficial to conceptualize all vectors as matrices; other times, it is benficial to maintain

a mental distinction between the two.

1.5.3 Vectors and Matrices in MATLAB

The matrix X from Eq. (1.4) can be defined in MATLAB with the command:

1 X = [1, 2, 3; 4, 5, 6; 7, 8, 9]

Enter this command. MATLAB will print the output

1 X =

2

3 1 2 3
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4 4 5 6

5 7 8 9

As can be seen in the preceding example:

• the contents of a matrix are defined within square-brackets [ ... ],

• the columns of a matrix are delimited by commas (,) and

• the rows are delimited by semi-colons (;).

Now enter the MATLAB commands to define/initialize:

• the matrix Y from Eq. (1.5),

• the row vector x from Eq. (1.2), and

• the column vector y from Eq. (1.3).

Provide each of these commands in your lab report. Hint: Remember that vectors can be

thought of as one-dimensional matrices.

Matrix definitions in MATLAB are not constricted to only numbers—it is also possible to

evaluate mathematical expressions within matrix definitions. For example, enter the command:

1 X = [2 + exp(0.1), 35; -70, -1 + tan(1.27)]

MATLAB produces the output

1 X =

2

3 3.1052 35.0000

4 -70.0000 2.2236

In addition to the matrix initialization syntax employed thus far, an alternative short-form

syntax exists. This short-form syntax still requires matrix contents be enclosed by square brack-

ets [ ... ], but allows one to substitute spaces to delimit columns and newlines to delimit rows.

For example, enter the command:

1 X = [

2 1 2 3

3 4 5 6

4 7 8 9

5 ]

11



MATLAB will output the expected result:

1 X =

2

3 1 2 3

4 4 5 6

5 7 8 9

Note: Technically, there are additional newlines after the initial ‘[’ and before the closing ‘]’.

These newlines do not delimit a row—they are simply syntactic sugar.[8]

It is also possible to mix and match the short-hand and standard syntax for defining a matrix:

1 X = [

2 1 2, 3

3 4, 5 6;

4 7, 8 9

5 ]

However, the most common form of mixing and matching is to use commas (,) to delimit columns

and newlines to delimit rows. For example:

1 X = [

2 1, 2, 3

3 4, 5, 6

4 7, 8, 9

5 ]

The reason that commas are preferred to spaces is that they are easier to read for matrix

definitions that contain mathematical expressions. Consider how difficult this is to read:

1 X = [

2 2 + exp(0.1) 35

3 -70 -1 + tan(1.27)

4 ]

It is unclear that −70 is a separate expression from the −1 that follows.

As a general rule, use commas whenever your matrix contains mathematical expressions.

Both semicolons (;) and newlines see roughly equal use as the delimiter of rows.

12
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1.5.4 Generating Vectors and Matrices

So far, we’ve looked at initializing vectors/matrices by entering each element individually. This

can become inconvenient for vectors/matrices containing only a single (repeated) value. Consider

the 3 × 7 matrix:

A =
⎡
⎢
⎢
⎢
⎣

3, 3, 3, 3, 3, 3, 3
3, 3, 3, 3, 3, 3, 3
3, 3, 3, 3, 3, 3, 3

⎤
⎥
⎥
⎥
⎦

, (1.6)

which consists entirely of threes—or the vector 100-length vector:

b = [1, … , 1]⏟⏟⏟⏟⏟
100 entries

, (1.7)

consisting entirely of ones. Also consider vectors that are sequences of consecutive numbers such

as:

c = [1, 2, … , 99, 100]. (1.8)

It is impractical to enter the elements of these vectors/matrices manually. Luckily, MATLAB

has many built-in functions capable of generating common vectors and matrices.

Generating Vectors of a Single Value

To generate vectors/matrices consisting of a single (repeated) value, MATLAB offers two con-

venient functions: zeros and ones. Try using the help command for both functions to see how

they are called.

As an example, to create a 3 × 2 matrix of zeroes, enter the command:

1 A = zeros(3,2)

MATLAB yields the output

1 A =

2

3 0 0

4 0 0

5 0 0
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To create a 2 × 4 matrix of ones, enter the command:

1 B = ones(2,4)

MATLAB yields the output

1 B =

2

3 1 1 1 1

4 1 1 1 1

Note that both the zeros and ones commands generate matrices by default. In other words,

calling ones(3) does not produce a 3 × 1 vector! In your lab report, comment on the output of

running the ones(3) command.

To generate a matrix with arbitrary repeated values, one can multiply the desired value (a

scalar) to the ones command. For example, enter the command:

1 C = 5*ones(3,3)

MATLAB yields the output

1 C =

2

3 5 5 5

4 5 5 5

5 5 5 5

In a way, this makes the zeros command redundant (as one could achieve a similar effect using

0*ones(...)). This multiplication syntax leverages the interactions between matrices and scalars

(detailed later in Sec. 1.5.5).

In your lab report, give the MATLAB command to generate A and b from Eqs. (1.6) and (1.7).
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Generating Sequential Vectors

In addition to generating matrices of a single (repeated) value, MATLAB also provides built-in

mechanisms for generating sequential vectors. The most common mechanism for generating is

via the colon operator.[9]

In its most general form, expressions involving the colon operator have the syntax:

x = 𝑗 ∶ 𝑖 ∶ 𝑘 (1.9)

where 𝑗 is the initial value, 𝑖 is the step size (or increment), and 𝑘 is the final value. This will

generate a vector from 𝑗 to 𝑘 at evenly spaced intervals 𝑖. For example, enter the following

command:

1 x = 1:1:5

MATLAB yields the output

1 x =

2

3 1 2 3 4 5

In the scenarios where the step size/increment is one, the 𝑖 in the expression can be omitted

as in the following example; enter the following command:

1 x = 1:5

Does this yield the same result as 1:1:5? Comment on this in your report.

In instances where the step size is not one, the 𝑖 parameter is required. For example, consider

the case where 𝑖 = 2; enter the following command:

1 x = 1:2:5

MATLAB yields the output

1 x =

2

3 1 3 5
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In this example, 𝑖 is set to a fractional amount; enter the command:

1 x = -1:0.5:1

It is also possible to have step sizes/increments that are negative. In this case, one should

ensure that 𝑘 < 𝑗. For example, enter the following command:

1 x = 5:-1:1

Another common scenario that occurs is one in which you wish to generate sequential vectors

for which one knows the initial value, the final value, and the total number of elements in

the vector. While it’s possible to calculate the required step size/increment from these data

points, MATLAB provides a built-in function, linspace, which generates vectors using this set

of parameters. Use the help command to read the documentation for linspace:

1 help linspace

Now for a few examples. To generate a sequential vector from 1 to 2 containing a total of 5

elements, enter the command:

1 x = linspace(1,2,5)

MATLAB yields the output

1 x =

2

3 1.0000 1.2500 1.5000 1.7500 2.0000

Often, an odd number of total elements are preferred. To see this, enter the command:

1 x = linspace(1,2,4)

MATLAB yields the output

1 x =

2

3 1.0000 1.3333 1.6667 2.0000

Here, we can see that an even total number of elements means that the midpoint between the

initial and final values is not contained within the sequence—this is usually not preferred. In
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your lab report, give the MATLAB command that will generate c from Eq. (1.8).

1.5.5 Operations on Vectors and Matrices

Care must be taken when performing arithmetic operations with vectors/matrices. This is

because MATLAB will attempt to conform to the linear algebra definition of mathematical

operation. This can occasionally lead to results you might not expect. Consequentially, we will

discuss the various arithmetic operations between combinations of vectors/matrices and scalars.

Operations Between Vectors/Matrices and Scalars

Let’s detail the arithmetic operations between vectors/matrices and scalars. Our examples will

consist of an example vector a and the scalar 3. We will start with addition (+), enter the

commands:

1 a = 1:4;

2 b = a + 3

MATLAB returns the output:

1 b =

2

3 4 5 6 7

Moving to subtraction (−), enter the command:

1 b = 3 - a

MATLAB returns the output:

1 b =

2

3 2 1 0 -1

Multiplication (∗) works as expected. Enter the command:

1 b = 3 * a

MATLAB returns the output:

17



1 b =

2

3 3 6 9 12

Division (/) does not work as expected. Enter the command:

1 b = 3 / a

What does MATLAB return? Comment on this result in your report.

All of the operations so far: addition (+), subtraction (−), and multiplication (∗) between

a scalar and a matrix/vector have had a technical, mathematical definition in linear algebra.

Unfortunately, dividing (/) a scalar by a vector/matrix does not. However, dividing (/) a

vector/matrix by a scalar is defined, and, consequently, the following command works properly—

enter the command:

1 b = a / 3

MATLAB returns the following result:

1 b =

2

3 0.3333 0.6667 1.0000 1.3333

Returning to the matter of dividing a scalar by a vector—though there may not be a linear

algebra definition, a desirable behavior might be:

a = [1, 2, 3, 4]

3/a = [3/1, 3/2, 3/3, 3/4] .

This behavior is called element-wise division and is defined in MATLAB by the period divide (./)

operator.[10] Enter the command:

1 b = 3 ./ a

Does MATLAB output the expected result? Comment on the result in your report.

Like division, taking a vector/matrix to a scalar power will not operate as you may initially
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expect. Enter the command:

1 b = a ^ 3

What result does MATLAB produce? This result occurs because MATLAB is attempting to

perform the exponentiation as three consecutive matrix products, i.e., a ⋅ a ⋅ a which is not

possible to evaluate for a row vector.

Instead, a desirable behavior for taking a vector/matrix to a scalar power is:

a = [1, 2, 3, 4]

a3 = [13, 23, 33, 43] .

This operation is defined in MATLAB as element-wise power and is defined using the period

caret (.^) operator.[11] Enter the command:

1 b = a .^ 3

Does it behave as expected? Comment on the result in your report.

This choice of behavior may seem frustrating at first, but MATLAB was designed around

linear algebra and will always attempt to implement the rigorous definition of linear algebra

operations unless explicitly told not to. If you continue to use MATLAB throughout your

career, you may begin to appreciate why this choice was made as you grow your experience

writing MATLAB code.

1.5.6 Operations Between Vectors/Matrices

Just as arithmetic operations are defined between a vector/matrix and a scalar, so too are

operations between two vectors/matrices. In the case of addition and subtraction, there is the

added restriction that the two vectors/matrices have the same length/size. For example, type

the following commands:

1 a = 2:4;

2 b = 1:3;

3 c = a + b
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MATLAB will produce the output:

1 c =

2

3 3 5 7

It is also possible to subtract b from a.

What happens if you try to add/subtract vectors of different lengths? Enter the commands:

1 d = 1:4;

2 c = a + d

Comment on the result in your lab report.

Attempting to multiply a and b using the command: c = a * b, will result in an error as

MATLAB will attempt to evaluate the matrix product between a and b—which isn’t possible

for two vectors of the same orientation.

Still, it is desirable to multiply two vectors:

a = [2, 3, 4]

b = [1, 2, 3]

such that a * b = [1 ⋅ 2, 2 ⋅ 3, 3 ⋅ 4] .

This is accomplished by using element-wise multiplication. Enter the command:

1 c = a.*b

Confirm that the result is as you would expect. Given your knowledge so far, explain how the

element-wise division (./) and element-wise power (.^) behave when applied a and b.

A safe rule of thumb for these lab exercises is to use (.*) and (./) as you will rarely need to

use their linear algebra-compliant companions.

1.5.7 Functions applied to Vectors and Matrices

Now that we’ve defined arithmetic operations for vectors/matrices, we will turn our attention

to applying functions to vectors/matrices (in other words, passing a vector/matrix as a function
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parameter). We will begin by exploring functions that require vectors as input. The first class

of functions we will visit are the sizing functions. These consist of: numel, size, and length.

Enter the command:

1 A = ones(5,4);

The numel function will return the total number of elements in A. Enter the command:

1 numel(A)

MATLAB produces the output:

1 ans =

2

3 20

as expected (5 ⋅ 4 = 20).

The size function returns the size (or dimensionality) as a vector. Enter the command:

1 size(A)

MATLAB produces the output:

1 ans =

2

3 5 4

The length command returns the largest dimension. Enter the command:

1 length(A)

MATLAB produces the output:

1 ans =

2

3 5

For vectors, numel and length will produce equivalent results. In your lab report, explain why

this is the case.

Other classes of functions select values from a vector/matrix passed to it; the min and max

functions will return the minimum or maximum value contained with the vector passed as a
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parameter. For example: max([10, 2, 109, 50]) returns 109.

The final class of functions are functions that behave as maps when passed a vector. Map-

ping[12] is a powerful concept that is a foundation pillar of the functional programming paradigm.[13]

The idea of a map is that, for a function, 𝑓(𝑥) which is defined for 𝑥 as a scalar, the extension

to 𝑓(x) for an 𝑛-length vector x is:

𝑓(x) = [𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑛−1), 𝑓(𝑥𝑛)]

In layman’s terms, a function (defined for scalars) is extended to take vectors/matrices by

applying the function to each element within the vector. Functional mapping enables MATLAB

to avoid using explicit for loops and delegate much of this responsibility to functional maps

instead. Some of the functions which behave as maps are:

• the trigonometric functions sin, cos, and tan,

• the inverse trigonometric functions asin, acos, and atan,

• the exponential function exp, and

• the logarithm functions log and log10.

Whenever you encounter a new function and are curious if it can be used as a map, you can

always use the help command or search the MathWorks website[6] for documentation.

1.6 Basic Plotting

Now that we’ve covered how to generate vectors and how vector math works in MATLAB, it’s

time to start doing something more interesting—plotting! Supposed we are asked to plot the

signal:

𝑥(𝑡) = sin(2𝜋𝑡/4) for 0 ≤ 𝑡 ≤ 4.

Here 𝑥(𝑡) is a function of 𝑡 and we are asked to plot it over 0 ≤ 𝑡 ≤ 4. The first thing we need

to do is to create a time vector 𝑡. Enter the command:

1 t = linspace(0, 4, 501);
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Here, we’ve chosen t as a vector spanning the range from 0 to 4 containing 501 intermediate

points. The number 501 is chosen somewhat arbitrarily. We want a sufficiently large number

to provide a plot with reasonable resolution: 500 should be sufficiently large. We opt for 501 as

using an odd number of intermediate points is generally good practice.

Now let’s compute 𝑥(𝑡) given our time vector t. Because sin is a mapping function (as

mentioned in Sec. 1.5.7), we can pass a vector (in this case, a scaled version of t: 2𝜋 𝑡/4) as

a parameter to sin and it will return a vector containing the values of 𝑥(𝑡) for each time in

vector t. Enter the command:

1 xt = sin(2*pi*t./4);

Finally, to plot xt with respect to t, enter the command:

1 plot(t, xt)

MATLAB should produce the graphical out given in Fig. 1.3.

0 1 2 3 4
−1

−0.5

0

0.5

1

Figure 1.3: Graphical output produced by MATLAB.

Use help on the plot function to read about how it works. In our case, the first parameter

corresponds to a vector containing the values for the 𝑥-axis, and the second parameter corre-

sponds to a vector containing the values for the 𝑦-axis. It is also possible to call the plot function

with only one parameter. Enter the command:

1 plot(xt)

MATLAB should produce a slightly different graphic. In your lab report, comment on the

difference in graphical output. Why do you suppose this is?

Return to the version of plot which uses both parameters; enter the command:
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1 plot(t, xt)

We can add labels and a title to the currently opened figure with the following commands; enter

the following commands:

1 title('Sinusoid')

2 xlabel('t')

3 ylabel('x(t)')

MATLAB should produce the graphical out given in Fig. 1.4. Don’t close the window.

Sinusoid

t

x(
t)

0 1 2 3 4
−1

−0.5

0

0.5

1

Figure 1.4: Graphical output produced by MATLAB, now with title and labels.

Notice that the values passed to the title, xlabel, and ylabel commands are enclosed by

single quotes ('). These single quotes tell MATLAB that their contents constitute a character

array[14] (this is roughly analogous to strings in other programming languages). This tells

MATLAB to treat the contents of these commands as plain text rather than attempting to parse

them as MATLAB commands.

You may skip this paragraph if you are not already familiar with strings. For those familiar

with strings in other programming languages, you’ll note that many other languages encode

strings using double quotes ("). MATLAB also has a datatype called strings which are instanti-

ated using double quotes ("). However, you should avoid them (at least initially) as they require

knowledge of advanced topics like cells arrays. A few core MATLAB functions also require their

parameters to be character arrays and will reject strings. It might be hard to kick the habit

of using double quotes (") to denote strings, but be advised that doing so will eliminate some

errors that might pop up otherwise. Yes—it’s strange/frustrating.
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1.6.1 Changing the Viewing Region

Look at the graph in Fig. 1.4. Note that the peaks of the sinusoid touch the edges of the viewing

region. It is often desirable to modify this viewing region. In our case, it would be nice to display

the region between ±1.5 on the vertical axis (rather than the ±1 it is currently set to). This

way, the peaks of the sinusoid will no longer graze the edge of the viewing window.

MATLAB provides the axis function to change the viewing region of the current graph. This

command lets you define the minimum/maximum values visible for the 𝑥- and 𝑦-axis. This

command does not take four parameters to specify the view region. Rather, it takes a single

parameter, a row vector containing four elements. The row vector has the form:

[𝑥min, 𝑥max, 𝑦min, 𝑦max.]

To change the view region so that the 𝑦-axis spans from −1.5 to 1.5, we first note that we want

to keep the 𝑥-axis as it is. From Fig. 1.4 we see that the 𝑥-axis ranges from 0 to 4. The following

command will adjust the viewing region as we desire. Enter the command:

1 axis([0, 4, -1.5, 1.5])

MATLAB should produce the graphical output given in Fig. 1.5.

Sinusoid

t

x(
t)

0 1 2 3 4

−1

0

1

Figure 1.5: Graphical output produced by MATLAB with a more comfortable view.

As an exercise to the reader, provide the MATLAB command that produces the graphical

output depicted in Fig. 1.6. Include this in your lab report.
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Sinusoid
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Figure 1.6: Graphical output produced by MATLAB—alternate view.

1.6.2 Plot-like Functions

For you to truly develop an understanding of what the plot function is actually doing, we are

going to reduce the number of points in the time vector from 501 to 5 and re-initialize xt based

on this new time vector. Enter the commands:

1 t = linspace(0, 4, 5);

2 xt = sin(2*pi*t./4);

3 plot(t, xt)

MATLAB should produce the graphical output given in Fig. 1.7.

0 1 2 3 4
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−0.5

0

0.5

1

Figure 1.7: Graphical output produced by MATLAB—now jagged.

Why is this graph jagged? Isn’t the function 𝑥(𝑡) supposed to be a sinusoid (which is smooth)?

Explain what is happening in your lab report.

Whatever your explanation was for the previous question, one thing is for sure, both our

time vector t and xt have a small number of elements (5 to be precise). Whenever we have
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have small (with respect to the number of elements), it is sometimes useful to use an alternative

plotting function. Functions that produce plots are called plot-like functions.[15] These functions

generally share a similar syntax to plot. One such function is stem. Enter the command:

1 stem(t, xt)

MATLAB should produce the graphical output depicted in Fig. 1.8.

0 1 2 3 4
−1

−0.5

0

0.5

1

Figure 1.8: Graphical output produced by MATLAB.

The stem function is often used to plot signals we wish to denote as discrete time. This

function only works well for short (with respect to the number of elements) signals. To see why,

run the following commands. Enter the commands:

1 t = linspace(0, 4, 501);

2 xt = sin(2*pi*t./4);

3 stem(t, xt)

Comment on the graphic produced in your lab report.

Another common plot-like function is scatter. Enter the command:

1 scatter(t, xt)

Comment on the type of graphic that the scatter function produces in your lab report.

1.7 Utilizing Scripts

Until now, we’ve entered commands directly into the MATLAB Command Window. The

command window is a great way to run a few commands and get some immediate feedback.
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Figure 1.9: The Upper Menu with the Editor tab selected.

However, the Command Window is an inconvenient method for tasks that require more

than a few commands (like plotting signals or completing future lab excercises). Fortunately,

MATLAB has the concept of scripts. A script is a collection of commands executed together

and can be saved and loaded at a later time.

Most of your work from this point forward will take place within a script rather than the

Command Window. Running scripts is generally the preferred method of executing MATLAB

commands. Scripts are edited in the Script Editor Window. You should see an empty script

in that window. If you do not, press the keyboard shortcut Ctrl+N to create a new script.

Select the Script Editor Window and ensure the script is empty. Retype the following

commands to plot the sinusoid graph from Fig. 1.4:

Listing 1.1: plot_sinusoid.m

1 t = linspace(0, 4, 501);

2 xt = sin(2*pi*t./4);

3 plot(t, xt)

4 title('Sinusoid')

5 xlabel('t')

6 ylabel('x(t)')

Ensure that the Editor tab of the upper menu is selected—as in Fig. 1.9. Click the Save Icon

and save the script as plot_sinusoid.m. Ensure that the directory in the Address Bar in

MATLAB (see Fig. 1.1) matches the directory you saved your script. If this is the case, you

should see the plot_sinusoid.m script in MATLAB’s Current Folder View—as in Fig. 1.10.

It should be mentioned that when picking names for scripts, one should make certain not to

choose a name which shadows a built-in MATLAB function! This means you should not name

your scripts things like plot.m, exp.m, or linspace.m etc. Doing so will confuse MATLAB and

cause it to attempt to call your script instead of the MATLAB built-in.
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Figure 1.10: The Current Folder View.

With that out of the way, try running the script. Do so by pressing the Run button in the

Upper Menu. You should see the same graph as depicted in Fig. 1.4.

Now let’s learn about comments. In MATLAB, comments are specified by the percent (%)

symbol. Everything to the right of the percent (%) symbol until the end of the line is considered

a comment and is not executed by the interpreter. Comments are a helpful way to document

what/why your code is doing.

For instance, we could add some comments to our plot_sinusoid.m example:

Listing 1.2: plot_sinusoid.m (commented)
1 t = linspace(0, 4, 501); % generate the time vector

2 xt = sin(2*pi*t./4); % define the signal vector

3

4 % plot the Signal

5 plot(t, xt)

6 title('Sinusoid')

7 xlabel('t')

8 ylabel('x(t)')

There is an important property of scripts that should be mentioned before moving much

further. This property is somewhat unique to MATLAB if you come from languages like C or

Java. This property is best demonstrated through an example. Remove line 1 from Listing 1.2.

This now removes the definition of the time-vector, t. The line immediately below it, where

xt is defined, depends on t. One would imagine that running the script now would throw an

error. Wrong! Run the script again!

The script runs just fine! This is because MATLAB retains program state between script calls.

This means that MATLAB remembers the definition of t from the previous time the script was

29



run. In fact, you can see this definition of t in the Variable Workspace. Remember, a

script is simply a series of commands that get run sequentially—and since MATLAB retains

program state between commands (otherwise, you could never define a variable in the command

line), MATLAB must also retain state between script calls. This is a source for frustrating and

difficult-to-debug bugs. As a consequence, it is best practice to insert the following line

at the beginning of each script:

1 clearvars; close all; clc;

The clearvars command clears all the variable definitions. The close all command closes all

of the plots and figures (trust me, you want this—it prevents a lot of frustrating bugs that crop

up later). Finally, clc clears the command line printout. This ensures that only output your

script produces is visible in the command line—aiding in debugging.

1.8 Advanced Plotting

Until now, we’ve been producing graphical content using plot or the other plot-like functions.

But there is a lot that has been happening under the hood. In this section, we will be introduced

to the three main components of graphical output: figures, axes, and plots.

Actually, we’ve already used all three of these components—the process for instantiating them

was handled for us via the plot command. Now, we will conduct our exploration by invoking

them manually.

1.8.1 Multiple Figures

When MATLAB produces graphical output, the windows that pop up are called figures. Create

a new script called multiple_figures.m and add the following contents:

Listing 1.3: multiple_figures.m

1 clearvars; close all; clc;

2 t = linspace(0,2,501); % time vector

3 x = 0.7*exp(-4.2*t).*sin(6.4*2*pi*t); % an example function x(t)

4 y = exp(-2.5*t).*cos(1.4*2*pi*t); % an example function y(t)
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5

6 figure(1)

Run the script. A blank window should appear; this is a figure. The function figure(1) creates

a new figure with id = 1 and sets the current figure to 1. In the case where a figure with id = 1
already exists, the command figure(1) will refocus the current figure by setting its value to 1.

What is the current figure? MATLAB maintains a reference to the current working figure. This

is the figure that all subsequent graphical operations will apply to.

An axes (not to be confused with axis) is a region within a figure that plots can be added

to. Add the following line to your multiple_figures.m script:

7 axes()

Run the script. You should now see an empty region/grid on the figure; this is an axes. The

axes() function adds an axes to the current figure and sets the current axes to the axes created

by the axes function (unlike figures, axes do not have id numbers).

Now add a plot to the current axis using the plot command. A plot is anything produced by

a plot-like function. In the case of plot, this is the blue curve. Add the following line to your

multiple_figures.m script:

8 plot(t,x);

Run the script. Comment on what you see in your lab report.

Given a plot merely refers to the blue curve we’ve seen in past sections, how was it that the

plot function was able to produce any graphical output before if we hadn’t created a figure and

axes to plot to? Well, in the instance that plot is called and there is no current figure and no

current axes, the plot function (or any plot-like function) will create a new figure and axes for

it to plot onto.

Now let’s make our multiple_figures.m script live up to its name. Add the following lines

to your multiple_figures.m script:

9 figure(2)

10 plot(t,y);

Run the script. Comment what you see in your lab report. Note that we didn’t explicitly add
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an axes command for the second figure; this was handled by plot(t,y).

Your final exercise is to modify the multiple_figures.m script to add titles and label the

𝑥-axis for both figures. The title for the first figure should be “x(t)” and the title for the second

figure should be “y(t).” The 𝑥-axis label for both figures should be “t.” Hint: The title and

xlabel functions apply their result to the current axes of the current figure.

1.8.2 Subplots

It is possible to have multiple axes on a single figure. This is done using the subplot function.

Despite its name, this function is not a plot-like function—instead this function creates axes on

the current figure. The subplot function carves up the current figure in a grid structure, places

an axes in that grid, and sets the current axes to that axes. In the Command Window, use

the help command on subplot to read its documentation.

The subplot command takes three parameters: the total number of rows (𝑚) to divide the

figure into, the total number of columns to divide the figure into (𝑛), and the subplot index (𝑝)

of the axes within the grid to set as the current axes. These 𝑝 indices are assigned beginning at

the top-left of the grid and increase sequentially—first by column, then by row.

This is more easily explained through an example. Suppose you wanted to create four axes

arranged in a 2 × 2 grid on the current figure. You would create the top-left axes with the

command subplot(2,2,1). The first 2 indicates that there are two total rows, the second 2

indicates that there are two total columns and 1 indicates that we are selecting the top-left

axes from that grid. To select the top-right axes, we would call subplot(2,2,2). To select the

bottom-left axis, we would call subplot(2,2,3), and to select the bottom-right, we would call

subplot(2,2,4). This entire configuration is depicted in Fig. 1.11.

32



Axes

𝑝 = 1
Axes

𝑝 = 2

Axes

𝑝 = 3
Axes

𝑝 = 4

Figure

Figure 1.11: Illustration of how 𝑝 indices are assigned for 2 × 2 axes within a figure.

For our example, we will create two axes arranged in a row. Create a new script called

subplots_example.m and add the following contents:

Listing 1.4: subplots_example.m

1 clearvars; close all; clc;

2 t = linspace(0,2,501); % time vector

3 x = 0.7*exp(-4.2*t).*sin(6.4*2*pi*t); % an example function x(t)

4 y = exp(-2.5*t).*cos(1.4*2*pi*t); % an example function y(t)

5

6 figure(1);

7

8 % two axes in a row means we have a total of 1 row, 2 columns

9 % left axes

10 subplot(1, 2, 1) % 1 row, 2 columns, p=1

11 plot(t, x)

12 title('x(t)')

13 xlabel('t')

14

15 % right axes

16 subplot(1, 2, 2) % 1 row, 2 columns, p=2

17 plot(t, y)

18 title('y(t)')

19 xlabel('t')

33



Run the script. MATLAB should produce the graphical output depicted in Fig. 1.12.
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Figure 1.12: Graphical output for two axes/subplots arranged in a row.

As an exercise to the reader, modify the subplot commands in your subplots_example.m

script so that the axes are arranged in a column, rather than in a row. Include this modified

script within your report.

1.8.3 Multiple Plots on the Same Axes

Finally, it is possible to output multiple plots on the same axes. Normally, plot-like functions

overwrite any previously plotted data on the axes. For example, create the script multiple_plots.m

and add the following contents:

Listing 1.5: multiple_plots.m

1 clearvars; close all; clc;

2 t = linspace(0,2,501); % time vector

3 x = 0.7*exp(-4.2*t).*sin(6.4*2*pi*t); % an example function x(t)

4 y = exp(-2.5*t).*cos(1.4*2*pi*t); % an example function y(t)

5

6 figure(1);

7 plot(t, x)

8 plot(t, y) % this plot function will overwrite the previous function

Run the script. You should see only one plot.

We can change this behavior by updating the hold property of the current axes. By default,
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the hold property is off. The hold on command sets the current axes hold property to on.

Modify your multiple_plots.m script so that it reads:

Listing 1.6: multiple_plots.m

1 clearvars; close all; clc;

2 t = linspace(0,2,501); % time vector

3 x = 0.7*exp(-4.2*t).*sin(6.4*2*pi*t); % an example function x(t)

4 y = exp(-2.5*t).*cos(1.4*2*pi*t); % an example function y(t)

5

6 figure(1);

7 plot(t, x)

8 hold on;

9 plot(t, y) % this plot function will overwrite the previous function

10 legend('x(t)', 'y(t)')

Notice that the hold on command has been added after plot(t, x). The legend command tells

MATLAB to add a legend to the current axes: labeling the first plot as “x(t)” and the second

plot as “y(t).” Run the script. MATLAB should produce the graphical output depicted in

Fig. 1.13.
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Figure 1.13: Two plots on the same axes.

It is possible to overlay any plot-like command. As an exercise to the reader, change the

second plot function to scatter. Comment on the result in your lab report.

Now, we will demonstrate the importance of the clearvars; close all; clc; line in scripts.

First, re-run multiple_plots.m (if needed) so that the previous graphical output is visible.

Don’t close the window. Next, modify two lines of multiple_plots.m. First, remove the first
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line (clearvars; close all; clc;). Next, make a slight change to either the definition of x or

y (for instance, change x to x = 0.3*exp(-4.2*t).*sin(6.4*2*pi*t);). Now, re-run the script.

Comment on what happens in your lab report.

This occurs because MATLAB retains program state—because you didn’t close all the figures

at the start of the script. MATLAB remembers that the axes hold property is set to on. When

the script is re-run, MATLAB re-uses the same figure and axes from the previous run. Because

the hold is on, when MATLAB encounters plot(t,x) after the script has been run once, it won’t

overwrite the plot data from the previous run.

1.8.4 Plotting Complex-valued Functions

Let’s combine all the plotting concepts we’ve learned so far. Consider the complex-valued func-

tion,

𝑧(𝑡) = 𝑒−𝑡+j2𝜋𝑡 for 0 ≤ 𝑡 ≤ 5. (1.10)

Plotting complex functions presents a challenge as the values they return contain two separate

components: real and imaginary (or magnitude and phase). There are two common methods

for plotting complex functions:

1. plotting each component separately, or

2. parametric plots.

We will explore both methods for plotting 𝑧(𝑡).
Create a new script: complex_exponential.m and add the standard top line:

Listing 1.7: complex_exponential.m

1 clearvars; clc; close all;

From Eq. (1.10) we should first define our time vector, 𝑡 as:

2 t = linspace(0, 5, 501);

Now let’s define 𝑧(𝑡) based on the definition from Eq. (1.10):

3 zt = exp(-t + 2j*pi*t);

Next, we will extract the real and imaginary components of 𝑧(𝑡) of with the code below:
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4 re_zt = real(zt);

5 im_zt = imag(zt);

Now plot the real and imaginary components of 𝑧(𝑡) over time on the same plot.

6 figure(1);

7 plot(t, re_zt);

8 hold on;

9 plot(t, im_zt);

10 xlabel('t');

11 legend('Re(z(t))', 'Im(z(t))');

Comment on what you see.

Next we are going to plot 𝑧(𝑡) in the complex plane (a parametric plot):

12 figure(2);

13 plot(re_zt, im_zt);

14 xlabel('Re(z(t))');

15 ylabel('Im(z(t))');

16 title('z(t)=exp(t + j2{\pi}t)')

Note: the portion of the title string: {\pi}, tells MATLAB to print the symbol, 𝜋.

Comment on what you see. Explain it in terms of the behavior of the real and complex

exponentials and sinusoids. Be sure to explain why we see a spiral instead of a circle.

1.9 Post-Lab Questions

Q.1
Suppose x is a vector. Which command is used to find the number of elements in x?

Q.2
Suppose X is a matrix. Which command is used to find the size/dimensions of X?

Q.3
• Suppose a student constructs a vector: x = 0:3.

– Write out the contents of x.
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– How many (total) elements are there in x?

• Suppose a student constructs a vector: y = 0:100. How many (total) elements are

there in y?

• In general, for a positive integer 𝑛, how many (total) elements will be in a vector

z = 0:n?

Q.4

A student types the following command: subplot(3, 4, 5);

Which particular axes (row/column) does this select?

Q.5

A student makes a new script and names it plot.m. What’s wrong?

Q.6

A student defines two vectors:

1 a = [1, 2, 3];

2 b = [4, 5, 6];

The student wishes to multiply a and b together to produce the result [4, 10, 18].

The student types:

1 c = a * b;

Does c contain the result the student expects? How can the student obtain the desired

result?

Q.7

In MATLAB, what is the difference between an axis and an axes?

Q.8
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Figure 1.14: Graphical output produced by MATLAB. The entire output is contained within a
single window.

Given that MATLAB graphical output depicted in Fig. 1.14 occurs within a singular win-

dow,

• How many total figure(s) are present?

• How many total axes(es) are present?

• How many total plot(s) are present?

Q.9
A student writes the following script, dual_sinusoids.m, to plot 2 sinusoids:

Listing 1.8: dual_sinusoids.m

1 t = linspace(0,2,501);

2 x = 0.2*cos(2*2*pi*t+0.72);

3 y = 0.6*cos(3*2*pi*t-0.9);

4

5 figure(1);

6 plot(t, x);

7 hold on;

8 plot(t, y);

The student runs their script and realizes they need to update the definition of x. The

student updates x to x = 0.8*cos(2*2*pi*t+0.72) and reruns their script.

However, rather than plotting two sinusoids—something unintended happens. What
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unintended behavior occurred? What can the student add to their script to make it

function as intended?

Q.10

Output
Input

System Response

𝑡

𝑣

0 0.5 1 1.5 2
−0.5

0

0.5

1

Figure 1.15: The MATLAB axes the student wishes to enlarge.

A student produces the axes given by Fig. 1.15, but they wish to enlarge the axes such

that it depicts the region between 1 ≤ 𝑡 ≤ 2 and −0.5 ≤ 𝑣 ≤ 0.5. Which command can

they use to accomplish this?

1.10 Report Checklist

Work with lab partner(s) to create a lab report for this lab exercise. Be sure to include the

names of each person in your group on the report. This report should be a typed document that

outlines the basic procedure of the lab exercise and should include any results you were asked to

obtain. Your report should follow a cohesive narrative—it should always be apparent why you

have presented the results you have. Do not simply insert results without (1) motivating the

problem and (2) providing an analysis of the data. Ensure that your report is grammatically

correct with complete sentences. This does not mean your report must be wordy with filler—in

fact, avoid filler and state your ideas concisely.

The final Post-Lab Questions section does need to be woven into your lab narrative. You may

simply append your answers to each question at the end of your report in an attached answers
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section. Be sure to indicate which question you are answering by referencing the corresponding

question number.

Be sure the following are included in your report:

• Section 1.3: Comment on what happens when the command z = y + 3 is run immediately

after running clearvars.

• Section 1.4.1: Evaluate the expression. Provide both MATLAB code and result.

• Section 1.4.4: Comment on the output of a complex number defined in polar form. Does

MATLAB print the result in rectangular or polar form?

• Section 1.5.2: Give the size (or dimensionality) of the matrix Y from Eq. (1.5).

• Section 1.5.3: Give MATLAB commands to initialize x, y, and Y from Eqs. (1.2)–(1.3),

(1.5).

• Section 1.5.4: Comment on the output of ones(3). Is it a vector or a matrix?

• Section 1.5.4: Give the MATLAB command to generate A and b from Eqs. (1.6)–(1.7).

• Section 1.5.4: Comment on whether 1:1:5 is equivalent to 1:5. Why?

• Section 1.5.4: Give the MATLAB to generate c from Eq. (1.8).

• Section 1.5.5: Comment on MATLAB’s output when one attempts to divide a scalar by a

vector/matrix.

• Section 1.5.5: Comment on the result of using element-wise division (./).

• Section 1.5.5: Comment on the result of applying element-wise power (.^).

• Section 1.5.6: Comment on the result of adding two vectors of different lengths.

• Section 1.5.6: Explain how the element-wise division (./) and element-wise power (.^)

behave when applied to vectors a and b.

• Section 1.5.7: Explain why numel and length produce the same results when passed a

vector.

• Section 1.6: Comment on the difference in graphical output between plot(t, xt) and

plot(xt). Why do you suppose this is?

• Section 1.6.1: Provide the command that adjusts the viewing region depicted in Fig. 1.6.

• Section 1.6.2: Explain why the graph of 𝑥(𝑡) in Fig. 1.7 appears jagged.

• Section 1.6.2: Comment on the graphical output of running the stem command for a signal

consisting of a large number of elements.
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• Section 1.6.2: Comment on the type of plot produced by the scatter function.

• Section 1.8.1: Comment on the result of plotting a function after explicitly instantiating

the figure and axes.

• Section 1.8.1: Comment on what you see after plotting within figure(2).

• Section 1.8.1: Modify multiple_figures.m to add titles and 𝑥-axis labels to each figure.

Include the final version of multiple_figures.m within your report.

• Section 1.8.2: Modify the subplots_example.m so that the axes are arranged in a column

rather than in a row.

• Section 1.8.3: Comment on the result of changing the second plot command to scatter

in multiple_plots.m.

• Section 1.8.3: Comment on what happens when clearvars; close all; clc; is removed

from multiple_plots.m and a slight modification to x or y.

• Section 1.8.4: Comment on the plots of the real and imaginary components.

• Section 1.8.4: Comment on the parametric plot in terms of real and complex exponentials.

Be sure to explain why you see a spiral instead of a circle.

• Post-Lab Questions: Answer each question given.
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Open Signals and Systems Laboratory Exercises Second Edition

Sampled Sounds, Echo and Reverberation

Introduction to Audio Processing in MATLAB and Simulink

Overview

In this lab exercise, students will use MATLAB to load and plot the sampled audio data,

frere_jacques_8k.wav and three_blind_mice_8k.wav (provided in this exercise’s supplementary

materials). Students will be presented with an explanation of the auditory phenomena of echo

and reverberation and how linear, time-invariant systems can model such phenomena. Stu-

dents will be introduced to the Simulink software and use it to modify the echo_system.slx

and reverb_system.slx Simulink projects (provided in this exercise’s supplementary materi-

als). In addition to a typed report, students are asked to submit a completed MATLAB script,

sound_example.m, an audio file, my_round.wav, and a Simulink system, echo2_system.slx.

Learning Objectives

By the end of this lab, students will be able to:

1. Index vectors and matrices in MATLAB.

2. Slice vectors and matrices in MATLAB.

3. Load sampled audio files in MATLAB.

4. Mathematically relate a signal’s sampling period to its sampling frequency.

5. Use sampling frequency to convert between a given number of samples and the correspond-

ing time elapsed.

6. Use MATLAB to generate a time vector for a corresponding sampled signal.

7. Model the sonic phenomena of echo and reverb using discrete-time LTI system equations.

8. Use Simulink to implement discrete-time gain/delay LTI systems such as echo and reverb.
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2.1 Introduction

This lab covers two main topics: working with sampled sounds in MATLAB and simulating

echo and reverb systems in Simulink. First, we will explore how sounds are represented and

played back within MATLAB. To this effort, we will first provide some MATLAB background

on the topic of vector/matrix indexing and slicing followed by an overview of sampling and the

ever-important concepts of sampling periods and sampling frequencies. Next, we will explore

how the sonic phenomena of echo and reverb can be modeled as simple linear time-invariant

systems within the Simulink software.

2.2 MATLAB Background

2.2.1 Indexing and Slicing Vectors/Matrices

We discussed constructing and generating vectors/matrices in the previous lab exercise. In this

lab exercise, we will introduce the concepts of indexing and slicing vectors/matrices. The concept

of indexing and array[1] may already be familiar to you from other programming languages.

However, MATLAB indexes arrays (vectors/matrices) quite differently, so it’s worth covering all

the general cases.

Indexing Vectors

Indexing a vector or matrix allows you to retrieve elements contained within said vector/matrix.

These elements are said to be located at a designated index. Consider the row vector:

x = [10, 9, 8, 7, 6, 5] . (2.1)

Create a new MATLAB session (e.g., clear all the variables, etc.) and navigate to the Command

Window. Enter the following command to initialize x from Eq. (2.1):

1 x = 10:-1:5;
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Suppose we wish to retrieve the element, 10, from the row vector x. This is the first element

of x. In MATLAB, indexing a variable is done with parenthesis ( … ) not brackets and the first

element within a vector/matrix is given the index: 1. These aspects make MATLAB indexing

syntax quite different from languages like C and JAVA. In particular, the practice of indices

beginning at 1 (as opposed to 0) is the source of much frustration.[2] Enter the following command

to retrieve the first element of x:

1 x(1)

MATLAB produces the following output:

1 ans =

2

3 10

To retrieve the value 7 from x, we note that 7 is the fourth element of x. Enter the command:

1 x(4)

MATLAB produces the output:

1 ans =

2

3 7

Imagine a scenario where you wish to retrieve a vector’s final element. In the case of x, we

could note that the length of the vector is 6 and then use the syntax x(6). But what about

the more general problem of retrieving the final element of a vector—no matter the length?

One solution would be to compute the length of the vector using the numel command, as in the

following example. Enter the command:

1 x(numel(x))

MATLAB produces the following output:

1 ans =

2

3 5
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Typing x(numel(x)) is rather tedious, so MATLAB provides the built-in indexing keyword: end.

Enter the command:

1 x(end)

MATLAB produces the following output:

1 ans =

2

3 5

Suppose we wish to retrieve a vector’s second-to-last element. We could accomplish this with

the following command:

1 x(end-1)

MATLAB produces the following output:

1 ans =

2

3 6

2.2.2 Slicing Vectors

We will now cover an extremely powerful extension to indexing offered by MATLAB: slicing.

Suppose we wanted to create a new vector, y, which consisted of the first four elements of x.

The naïve approach would be the following command:

1 y = [x(1), x(2), x(3), x(4)]

Indeed, MATLAB produces the following output:

1 y =

2

3 10 9 8 7

However, MATLAB offers the following slicing syntax:

x(𝑗 ∶ 𝑘)
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where 𝑗 is the index of the initial element of the slice and 𝑘 is the index of the final element of

the slice. For example, to create a vector, y, consisting of the first four elements of x, enter the

command:

1 y = x(1:4)

MATLAB produces the following output:

1 y =

2

3 10 9 8 7

To create a vector, y, consisting of the second through fourth elements of x, enter the command:

1 y = x(2:4)

MATLAB produces the following output:

1 y =

2

3 9 8 7

To create a vector, y, consisting of the elements of x excluding the initial and final elements,

enter the command:

1 y = x(2:end-1)

MATLAB produces the following output:

1 y =

2

3 9 8 7 6

Indexing Matrices

So far, we’ve discussed indexing and slicing vectors in MATLAB. Matrices, are handled similarly,

but with some important nuances.
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Consider the matrix:

A =
⎡
⎢
⎢
⎢
⎣

1, 2, 3, 4
5, 6, 7, 8
9, 10, 11, 12

⎤
⎥
⎥
⎥
⎦

. (2.2)

To create this matrix in MATLAB, enter the command:

1 A = [1:4; 5:8; 9:12];

Indexing matrices in MATLAB is done using the following syntax:

A(𝑗, 𝑘)

where 𝑗 is the row index and 𝑘 is the column index. For instance, to retrieve the element, 1,

from A, enter the command:

1 A(1,1)

MATLAB produces the following output:

1 ans =

2

3 1

To retrieve the element, 2, from A (located in the first row, second column), enter the command:

1 A(1,2)

MATLAB produces the following output:

1 ans =

2

3 2

To retrieve the element, 5, from A, enter the command:

1 A(2,1)

MATLAB produces the following output:

1 ans =
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2

3 5

In your lab report, give the command to retrieve the element, 11, from A.

Slicing Matrices

Slicing matrices functions similarly to slicing vectors with multiple dimensions. Enter the com-

mand:

1 A(1:2, 1:2)

MATLAB produces the following output:

1 ans =

2

3 1 2

4 5 6

Enter the command:

1 A(1:2, 1:4)

MATLAB produces the following output:

1 ans =

2

3 1 2 3 4

4 5 6 7 8

Like vectors, the special end keyword refers to the final index of the current dimension. When

end is used in the row specification, it refers to the total number of rows. For example, enter the

command:

1 A(1:end, 1:2)

MATLAB produces the following output:

1 ans =

2

3 1 2
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4 5 6

5 9 10

When used in the column specification, it refers to the total number of columns. For example,

enter the command

1 A(1:2, 1:end)

MATLAB produces the following output:

1 ans =

2

3 1 2 3 4

4 5 6 7 8

A common task in MATLAB is extracting single rows or columns from a matrix. To retrieve

the first row of A, enter the command:

1 A(1, 1:end)

MATLAB produces the following output:

1 ans =

2

3 1 2 3 4

Typing 1:end for such a common operation becomes tedious. In this case, MATLAB provides

the handy short-form notation:

a single colon (:) is equivalent to 1:end.

Returning to the example of extracting the first row from A. Enter the command:

1 A(1, :)

1 ans =

2

3 1 2 3 4

A common mistake for students who have experience with other programming languages is
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that they will attempt to extract the first row from A by entering the command: A(1). This

does not work in MATLAB. Instead, MATLAB will use linear indexing[3] and select a single

element: 1, from the linear index, 1. Don’t worry about how linear indexing works for now.

In your lab report, provide the MATLAB commands to

• retrieve the second row of A, and

• retrieve the first column of A.

2.3 Processing Digital Audio Files

𝑡𝑠

Figure 2.1: Illustration of the sampling period, 𝑡𝑠, as it relates to a discrete signal.

Discretizing an analog signal is called sampling. Typically, sampling occurs at a regular interval

called the sampling period, denoted, 𝑡𝑠, whose unit is seconds. A simple way to think about

this is that the time between any two consecutive samples is 𝑡𝑠. This relationship is illustrated

in Fig. 2.1. In this figure, there are 13 samples depicted, and the time between samples is 𝑡𝑠.

Therefore, the length of the signal snippet depicted (in seconds) is 13 ⋅ 𝑡𝑠.

Sometimes, rather than being given a sampling period, 𝑡𝑠, you are instead given a sampling

frequency, denoted 𝑓𝑠, whose unit is hertz (Hz). The sampling period, 𝑡𝑠, is simply defined as

the reciprocal of the sampling frequency, 𝑓𝑠:

𝑡𝑠 = 1/𝑓𝑠.

In this way, if you are given 𝑡𝑠, you get 𝑓𝑠 ‘for free’ and vice versa.

On computers, audio signals are represented as discrete-time signals. For the computer to
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correctly playback these audio signals, it must know the sampling period/frequency. Consequen-

tially, audio files store both the signal data and that signal’s sampling frequency. This ensures

proper playback.

2.3.1 Working with Audio in MATLAB

Figure 2.2: Current Folder View with both .wav files visible.

There are two audio files in this lab exercise’s supplementary materials: frere_jacques_8k.wav

and three_blind_mice_8k.wav. Create a new directory on your PC to serve as this exercise’s

project folder. Place frere_jacques_8k.wav and three_blind_mice_8k.wav in this directory.

Create a new MATLAB script called sound_example.m and place it in this same directory.

In MATLAB, check the Current Folder View and ensure that you can see the audio files

frere_jacques_8k.wav and three_blind_mice_8k.wav (as illustrated in Fig. 2.2).

In the contents of sound_example.m add:

Listing 2.1: sound_example.m

1 clearvars; close all; clc;

2

3 [X, Fs] = audioread('frere_jacques_8k.wav', 'double');

4 Ts = 1/Fs;

Notice the command audioread. This command takes two parameters: the first is a character

array containing the path to an audio file to load, and the second is a character array encoding

the datatype to encode the loaded audio signal. The first parameter is 'frere_jacques_8k.wav',

this loads the file frere_jacques_8k.wav. Because this file is in our current working directory

(and is consequentially visible in the Current Folder View, see Fig. 2.2), it is not necessary to

specify a full file path. The second parameter, 'double', specifies that the audio signal should
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be loaded as a double-precision floating-point number.[4] On the final line of Listing 2.1, we

calculate the sampling period, 𝑡𝑠 (called Ts in our script), from the sampling frequency, 𝑓𝑠 (called

Fs in our script).

Notice that on the left-hand side of the audioread function, we see some new syntax: [X, Fs].

This syntax is used for functions that produce multiple return values. This is because the

audioread function doesn’t produce one return value; it produces two. This is confirmed using

the help command on the audioread function. The first return value, which we’ve assigned to

X, contains a matrix consisting of the signal data for each audio channel stored in the file. The

second return value, Fs, is a scalar containing the sampling frequency, 𝑓𝑠, of the audio signal. This

is to be expected, as proper playback requires knowledge of the sampling frequency/period. Keep

in mind that audioread does not return a vector—it returns two return values. Even though

the brackets in [X, Fs] are suggestive of vector initialization, they are completely different

syntactically.

Figure 2.3: Variable Workspace after loading the audio file frere_jacques_8k.wav.

Run the script with your entered code and note the Variable Workspace. It should appear

similar to Fig. 2.3. The Variable Workspace is a valuable tool for inspecting each of the

variables you’ve initialized in your script. For instance, it tells us about the audio data loaded

from frere_jacques_8k.wav. We can see that the sampling frequency, 𝑓𝑠, is 8 kHz. We can also

see that the signal data, stored in X, is a two column matrix with many rows (in my case, the

number of rows is 128, 615; this may be different for you depending on the version of this lab

exercise).

We can inspect the contents of X by double-clicking on the box icon next to X in the Variable

Workspace. This should pull up a Variable Viewer tab. This viewer depicts the contents of

X—formatted as a spreadsheet (as illustrated in Fig. 2.4). Again, we can see that the matrix, X,

consists of two columns with many rows. To understand how to interpret this matrix, use the
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Figure 2.4: Contents of the X matrix. There are additional rows beyond 8 (not pictured).

help command on the function audioread in the Command Window. Inspecting the contents

of variables like this is often a useful way to confirm that you’re producing the results that you’re

expecting. When you’re done inspecting the contents of X you can close the Variable Viewer

tab to return to your script.

The help command explains that audioread loads the audio signal for each channel of the

audio file into a matrix, X, where each column of X contains an individual channel of the audio

signal and the number of rows is the number of samples within each channel. In our case,

frere_jacques_8k.wav is a stereo signal, this means that the audio file contains two separate

audio channels: one for the left ear, and another for the right ear. It is standard for the first

channel within a stereo sound file to denote the left channel while the second denotes the right.

For this lab, we only want to work with a single signal from frere_jacques_8k.wav, so we

will create a new variable, x, which is initialized to the left audio channel from X. In your

sound_example.m script, add a new line that defines a variable, x, to be the first column of X.

You’ll want to include a semicolon (;) to suppress printing the (very long) resultant vector.

5 x = TODO

Replace TODO with your code to initialize x.

Next, we need to generate a companion time vector for x, called t. This time vector should:

• begin at time 0 (seconds),

• contain the same number of elements as x, and

• the spacing between consecutive elements (the step/increment) should be the sampling
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period of the audio file, Ts.

It may be useful to review Sec. 2.3. Here are some hints to help you.

• Do not use the linspace function; it’s easier to use the colon operator (:).

• You can find the number of elements in x using numel.

• A vector generated by the command 0:6 does not contain 6 total elements.

Once you have figured out the proper command, add the definition of t to your sound_example.m

script (don’t forget the semicolon).

6 t = TODO

Replace TODO with your code to initialize t. Run the script and confirm that the total number of

elements in x is the same as the total number of elements in t. You can do this using the numel

function or by looking at the Variable Workspace.

Now, add code to your sound_example.m script to plot x with respect to t.

7 % plot left channel

8 figure(1)

9 plot(t, x)

10 axis([t(1), t(end), -0.15, 0.1])

11 xlabel('t (seconds)')

12 title('Frere Jacques')

Run the MATLAB script.

Frère Jacques

𝑡 (seconds)
0 2 4 6 8 10 12 14 16

−0.15

−0.1

−0.05

0

0.05

Figure 2.5: Plot of the audio signal for the left channel of frere_jacques_8k.wav.

If all goes well, your graph should appear similar to the one depicted in Fig. 2.5. Check that
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you’ve calculated t correctly by comparing the 𝑡-axis in Fig. 2.5 to the 𝑡-axis of your graph.

Finally, we will play the audio signal represented by x through the computer’s speakers. This

is done using the sound function. Remember, for a computer to properly play back a discretized

audio signal, you must provide it with the sampling period or sampling frequency. In this case,

the sound function takes the sampling frequency as a parameter. Add the following code to your

sound_example.m script:

13 % play sound through the computer speaker

14 sound(x, Fs);

Run the script; you should hear the melody to “Frère Jacques” playing through your computer’s

speaker. You may need to change your PC’s audio output device if you do not; This can be

done using the volume mixer from the Windows taskbar.

Include your completed sound_example.m in your submission as an additional attachment

along with your typed lab report.

2.4 Modeling Echo and Reverberation

Echo and reverberation are two types of sonic phenomena that alter how sound is perceived.

These concepts are nicely modeled using linear time-invariant systems. We will briefly introduce

Simulink, a software suite capable of modeling and simulating both phenomena. Reverberation

and echo occur because the listener hears two or more versions of the same sound, where each

version arrives at a slightly different instant.

2.4.1 Echo

𝑥[𝑛]
+

𝑦[𝑛]

𝑧−𝑘
𝑥[𝑛 − 𝑘]

𝐺
𝐺𝑥[𝑛 − 𝑘]

Figure 2.6: Block diagram of a basic echo system.
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Echo is a sonic phenomenon in which a listener perceives multiple, distinct repetitions (in

decreasing volume) of a single sonic event. It occurs when sound rebounds off nearby topological

features and is generally perceivable because the speed of sound is relatively slow (about 400

meters per second). Systems producing echoes can be elegantly modeled by linear, time-invariant

systems.

Keeping with our theme of digitally sampled signals, let 𝑥[𝑛] represent a digitally sampled

audio signal that will serve as the input to an echo-creating system and let 𝑦[𝑛] be the output of

this system. Consider a discrete-time system that takes the input 𝑥[𝑛] and introduces a single

sonic repetition 𝑘-samples later with a gain of 𝐺. Such a system could be modeled by the

following equation:

𝑦[𝑛] = 𝑥[𝑛] + 𝐺𝑥[𝑛 − 𝑘]. (2.3)

Here, 𝑘 is an integer specifying the number of samples to delay 𝑥[𝑛] before the echo/repetition is

sounded, and 𝐺 is a real number specifying the amount of gain/attenuation to apply to the input

𝑥[𝑛]. To achieve a realistic echo effect in which the delayed sound is reduced in volume, the gain,

𝐺 should satisfy |𝐺| < 1. This equation is represented graphically in Fig. 2.6. Here, the 𝑧−𝑘

block denotes the “delay by 𝑘 samples” operation. This notation comes from the 𝑍-Transform,[5]

which is covered in more detail later in the curriculum.

We constructed the echo equation, Eq. (2.3) as a discrete-time system with an integer delay

of 𝑘-samples. However, it is desirable to describe the delay introduced by an echo system in

seconds. In your lab report, describe what piece of information is needed to convert a delay of

𝑘-samples to 𝜏 -seconds and give the equation for doing so (i.e., 𝜏 = ...). Hint: Think back to

Sec. 2.3. What is the relationship between samples and seconds?

The echo system of Eq. (2.3) models a single attenuated delay. However, many echo systems

encountered in the real world contain multiple delays. Additional echoes/delays can be added

by introducing additional gain paths, as illustrated in Fig. 2.7. The key point is that the echo is

derived solely from the input. This type of system is known as a finite impulse response (FIR)

system.
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𝑥[𝑛]

𝑧−𝑘1 𝐺1 +

𝑧−𝑘2 𝐺2

𝑦[𝑛]

Figure 2.7: Block diagram of an echo system with multiple echo paths.

2.4.2 Reverberation

Reverberation is a sonic phenomenon similar to echo. In reverberation, a listener perceives a

sonic event that has had its timbre/quality altered by reflecting off various surfaces. These

surfaces will absorb certain frequencies and have their phases altered. Suppose 𝑥[𝑛] represents

a digitally sampled audio signal that will serve as the input to a reverb system, then the output

of that reverb system, 𝑦 is given by:

𝑦[𝑛] = 𝑥[𝑛] + 𝐺𝑦[𝑛 − 𝑘]. (2.4)

Where 𝑘 is an integer specifying how many samples back to take the previous output, 𝑦[𝑛 − 𝑘],
before it is feedback into the current output, 𝑦[𝑛], and 𝐺 is a real number specifying the amount

of gain/attenuation to apply to the input 𝑥[𝑛]. In reverberation, the output is derived from both

the input and the previous output: This equation is represented graphically in Fig. 2.8. In your

lab report, describe the difference between echo and reverberation.

𝑥[𝑛]
+

𝑦[𝑛]

𝑧−𝑘
𝑦[𝑛 − 𝑘]

𝐺
𝐺𝑦[𝑛 − 𝑘]

Figure 2.8: Block diagram of a reverb system.
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2.4.3 Simulink

Simulink is software that comes bundled with MATLAB. According to MathWorks, “Simulink

is an environment for multidomain simulation and Model-Based Design for dynamic and em-

bedded systems. It provides an interactive graphical environment and a customizable set of block

libraries that let you design, simulate, implement, and test various time-varying systems, includ-

ing communications, controls, signal processing, video processing, and image processing.”[6]

This means Simulink can be used to quickly assemble prototypes and models of systems using

a graphical user interface. Systems can be built by connecting different blocks. These blocks

can be selected from pre-defined “block sets” for a particular application (e.g., communications,

image processing) or can be defined by the user. User-defined blocks can be created by specifying

the mathematical operations performed by the block inputs.

We will not use Simulink extensively in this course, so it will not be covered as in-depth as

MATLAB. There are two Simulink files in this lab exercise’s supplementary materials: echo_system.slx

and reverb_system.slx. Copy these files into your project folder for this lab exercise. The two

audio files frere_jacques_8k.wav and three_blind_mice_8k.wav should be in this same folder.

Launch Simulink by typing simulink in the MATLAB Command Window.

2.4.4 The Echo System

Once Simulink is loaded, launch the file echo_system.slx by double-clicking it.

You should see a window featuring a block diagram to the one depicted in Fig. 2.9. This

block diagram describes the echo system given by Eq. (2.3). Compare this to the block diagram

given in Fig. 2.6. The input to the system is frere_jacques_8k.wav. This is represented by the

Input Block with the text frere_jacques_8k.wav, and A: 8000 Hz, 16bit, stereo.

If you do not see the second piece of text, the .wav file did not load properly. In this case,

double-click the Input Block. A new window will pop up, and there will be an option to browse

for a sound file. Click browse and navigate to and select frere_jacques_8k.wav.

The system’s output is your computer’s speaker, represented by the speaker-shaped Output

Block. The gain, 𝐺 from Eq. (2.3), is represented by the triangular Gain block; currently,

the gain is set to 0.7. Finally, the delay, 𝑘 from (2.3), is represented by the rectangular Delay
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Figure 2.9: Simulink diagram for an echo system.

Block with the text 𝑧−2000—indicating that the delay is set to 𝑘 = 2000 samples. As mentioned

before, the notation, 𝑧−𝑘, comes from the 𝑍-Transform.[5]

Run the model from the upper menu by clicking the Run Simulation button (green arrow).

Verify that you can hear the echo. This model has one input, the sound file frere_jacques_8k.wav,

and two outputs—one to an audio port and one a variable called yout in the MATLAB workspace.

In Simulink, you can click on any block to view and set its parameters.

Modifying the Delay-Time and Gain

Double-click on the Delay Block and change the Delay length to a different value (see Fig. 2.10).

This delay is specified in samples, not in seconds. Recall from Sec. 2.3 that you can convert

between the number of samples and seconds if you have knowledge of either the sampling pe-

riod, 𝑡𝑠, or the sampling frequency, 𝑓𝑠. Fortunately, the input block tells you the sampling

frequency, 𝑓𝑠. Run the model and hear how the effect has changed. Try a few different settings

between 100 and 20, 000 samples.

Double-click the Gain Block and change the Gain to a different value. Run the model and

hear how the effect has changed. Try a few different settings between 0 and 2. Note how the
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Figure 2.10: Parameter configuration dialog of a Gain Block in Simulink.

output changes. Make a table of the gain and delay variables you tried and include it in your

lab report. This table should include at least 5 total entries with at least 3 unique delay values

and at least 3 unique gain values.

Investigate the Delay Block more deeply. In your lab report, estimate the smallest delay

value that allows you to perceive an echo. Investigate the Gain Block more deeply. In your

lab report, describe what happens when the gain value approaches 1 and what happens when

the gain value exceeds 1. Explain what causes the phenomenon you observe.

2.4.5 The Reverb System

Select the Open button from the Simulation tab from the upper menu in Simulink. This will

launch the Open Project Dialog. Locate and open reverb_system.slx from this dialog.

You should see a window similar to the one depicted in Fig. 2.11. This block diagram describes

the reverb system given by Eq. (2.4). Compare this to the block diagram given in Fig. 2.8. As

before, ensure that the second row of text, A: 8000 Hz, 16bit, stereo, is visible on the Input
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Figure 2.11: Simulink diagram of a reverb system.

Block; this ensures that the .wav was loaded correctly. Run the model and verify that you can

perceive the reverb effect.

Modifying the Delay-Time and Gain

Increase the delay on the Delay Block. Run the model and take note of the effect. Try a

few different delay values. Does reverberation require a shorter delay time than echo to be

noticeable? Answer this in your lab report. Provide some reasoning as to why this may (or may

not) be.

Double-click the Gain Block and change the Gain to a different value. Run the model and

hear how the effect has changed. Try a few different settings between 0 and 2. Note how the

output changes. In your lab report, describe the effect of the gain value on the system’s stability.

Give a value for which the system is stable and a value for which the system is unstable.
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2.4.6 Singing Rounds

Reload the original version of reverb_system.slx. Set the input file to frere_jacques_8k.wav

or three_blind_ mice_8k.wav. You can do this by double-clicking the Input Block and clicking

the browse button from the prompt that opens—from here, you can navigate to the .wav file that

you wish to select. Now we will adjust the delay such that the simulation plays as a round.[7]

A round is a type of melody in which multiple people sing in an overlapping manner. The

first person begins singing the melody alone. After a delay, another person will join in—singing

on top of the first. Then, after another delay, another person will join in—and so on. A

popular round that many are familiar with is “Row, Row, Row Your Boat.” The .wav files

provided (“Frère Jacques” and “Three Blind Mice”) are traditionally sung as rounds. Rounds

are typically constructed with a particular time delay in mind. Selecting this time-delay will

make each instance of the melody form a harmony between one another. Usually, this delay

amount corresponds to the time it takes to sing one measure of the melody.

Within the reverb_system.slx, see if you can adjust the delay to maximize how “harmonious”

the round sounds in simulation. While the best delay value is somewhat subjective, the amount

should be at least a few seconds long. Specify the delay amount (in seconds) in your lab.

You can save your output file by adding a To Multimedia File block in the DSP signal

processing toolbox under the subdirectory Sinks. This can be accessed through the Upper

Menu. Ensure that the Simulation tab is selected and click the Library Browser button. In

the dialog that pops up, navigate to DSP System Toolbox-> Sinks (see Fig. 2.12). Once you’ve

found the optimal time delay to create a round, save your audio output as my_round.wav. In

my_round.wav as an additional attachment in your lab submission.

2.4.7 Creating a Realistic Echo Subsystem

Reload echo_system.slx. Now modify this system to create as realistic an echo as possible

(multiple repetitions of decreasing volume). Create additional echo paths using the Simulink

block library in the DSP System Toolbox. Open the Library Browser from the Simulation

tab of the Upper Menu. Select the menu item Library Browser -> Commonly Used Blocks to

find the Gain Block and Delay Blocks. Once you have achieved a result you are satisfied with,
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Figure 2.12: The Block Library Browser.

save your Simulink system as echo2_system.slx. Include echo2_system.slx as an attachment

to your submission. In your lab report, discuss the rationale behind the gain and delay you

chose.

2.5 Post-Lab Questions

Q.1
A student types the following command: y = x(0:3);

Why is this command incorrect?

Q.2
Suppose X is a matrix. How does one assign:

• the vector, p, as the first column of X,

• the vector, q, as the second column of X, and

• the vector, s, as the first row of X?
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Q.3
Mathematically speaking, what is the main difference between echo and reverberation?

Q.4
Why does the slow speed of sound mean that echo can be perceived? What would happen

if the speed of sound was much faster?

Q.5
Consider a discrete-time echo system operating at a sampling rate of 8 kHz. Suppose this

system satisfies the following equation: 𝑦[𝑛] = 𝑥[𝑛] + 0.5𝑥[𝑛 − 1500]. What is the time

duration (in seconds) of the delay introduced by the 𝑥[𝑛 − 1500] term?

2.6 Report Checklist

Work with lab partner(s) to create a lab report for this lab exercise. Be sure to include the

names of each person in your group on the report. This report should be a typed document that

outlines the basic procedure of the lab exercise and should include any results you were asked to

obtain. Your report should follow a cohesive narrative—it should always be apparent why you

have presented the results you have. Do not simply insert results without (1) motivating the

problem and (2) providing an analysis of the data. Ensure that your report is grammatically

correct with complete sentences. This does not mean your report must be wordy with filler—in

fact, avoid filler and state your ideas concisely.

The final Post-Lab Questions section does need to be woven into your lab narrative. You may

simply append your answers to each question at the end of your report in an attached answers

section. Be sure to indicate which question you are answering by referencing the corresponding

question number.

Be sure the following are included in your report:

• Section 2.2.2: Give the command to retrieve the element, 11, from A (given by Eq. (2.2))

• Section 2.2.2: Provide the MATLAB commands to retrieve the second row and first column

of A from Eq. (2.2).

• Section 2.3.1: Include the completed sound_example.m as an additional attachment in your
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submission alongside your typed report.

• Section 2.4.1: Describe what information is needed to convert a delay of 𝑘-samples into

𝜏 -seconds and give the equation for doing so (i.e., 𝜏 = ...).
• Section 2.4.2: Describe the difference between echo and reverberation.

• Section 2.4.4: Create a table of the gain and delay variables. This table should have at

least 5 total entries with at least 3 unique delay values and at least 3 unique gain values.

• Section 2.4.4: Estimate the smallest delay value that allows you to perceive an echo.

• Section 2.4.4: Describe the phenomenon that occurs when the gain approaches, then

exceeds 1. Explain what causes this phenomenon.

• Section 2.4.5: Determine whether reverb requires shorter delay times than echo to be

noticeable. Provide some reasoning as to why this may (or may) be the case.

• Section 2.4.5: Describe the effect of the gain value on a reverb system’s stability. Give a

value for which the stable is stable and a value for which the system is unstable.

• Section 2.4.6: Specify the delay value (in seconds) you chose to create a round. Specify

which .wav file you chose as your input.

• Section 2.4.6: Include the audio file my_round.wav containing your implemention of a round

featuring either “Frère Jacques” or “Three Blind Mice” as an additional attactment in your

submission.

• Section 2.4.7: Include your realistic echo subsystem, echo2_system.slx, as an attachment

to your submission.

• Section 2.4.7: Discuss the rationale behind the gain and delay you chose for your realistic

echo subsystem.

• Post-Lab Questions: Answer each question given.

2.7 Acknowledgments

This lab’s echo/reverb/Simulink section is based on a lab brief originally written by Stewart

Worrall, Simon Henley, and Philip Jackson in co-operation with Texas Instruments.[8]
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Open Signals and Systems Laboratory Exercises Second Edition

Introduction to CyDAQ and DAD

An Introduction to Lab Hardware and an Exploration of its

Limitations

Overview

In this lab, students will be introduced to two pieces of lab equipment, the Cyclone Data Ac-

quisition System (CyDAQ) and the Digilent Analog Discovery 2 (DAD). Students will use the

WaveForms Software (freeware from Digilent) to configure the DAD to act as a signal generator

and an oscilloscope. Students will use the CyDAQ Software configuration tool to configure the

CyDAQ to act as a filter and use the CyDAQ to capture sampled data. In addition to a typed

report, students are asked to submit a completed MATLAB script, plot_filtered_square.m.

Learning Objectives

By the end of this lab exercise, students will be able to:

1. Use the WaveForms Software to configure the DAD’s signal generator.

2. Use the WaveForms Software to configure the DAD’s oscilloscope.

3. Use the CyDAQ Software to configure the CyDAQ’s built-in filter.

4. Use the CyDAQ Software to capture sampled data.

5. Load variables stored in mat files into the MATLAB workspace.

6. Measure the rise time of a signal captured on the DAD’s oscilloscope.

7. Relate the concept of rise time to maximum achievable bit rates.

Materials

(1×) Cyclone Data Acquisition System (CyDAQ)

(1×) Digilent Analog Discovery (DAD)
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3.1 Introduction

This lab will introduce the two pieces of equipment you will use throughout the remaining lab

exercises: the Cyclone Data Acquisition System (CyDAQ) and the Digilent Analog Discovery 2

(DAD). The CyDAQ, depicted in Fig. 3.1a, was originally a senior design project integrated into

many ECpE labs beginning. The CyDAQ is equipped with: 6 on-board filters, 5 input sources,

analog output, and an in-built sampling ability. It is powered by a Zynq Z7 FPGA[1] with an

onboard ARM 667 MHz dual-core Cortex-A9 processor. It is controlled and configured through

the CyDAQ Software. In this and future lab exercises, we will use the CyDAQ to filter signals

and capture data.

The DAD,[2] depicted in Fig. 3.1b, is a USB device which contains two built-in signal gener-

ators and two built-in oscilloscope channels. It is controlled and configured using the WaveForms

software. A full breakdown of the specifications is available through Digilent’s website.[3] In

this and future lab exercises, we will use the DAD as a signal generator and oscilloscope.

(a) The CyDAQ with power
switch visible on the right side.

(b) The Digilent Analog Dis-
covery 2 (DAD).

Figure 3.1: The CyDAQ and DAD devices.

The standard configuration, which we will return to repeatedly in these lab exercises, is

depicted in Fig. 3.2. The signal flow through this configuration is as follows:

1. a signal generated by the DAD is fed into the CyDAQ’s 𝑉in terminal,

2. the CyDAQ will perform a filtering operation to this signal,

3. the signal is fed out the CyDAQ’s 𝑉out terminal and into scope probes on the DAD.
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DAD CyDAQ

Generated Signals

Scope Probes

WaveForms
Software

CyDAQ
Software

PC

Scope
Data

DAD
Config.

Sampled
Data

CyDAQ
Config.

Figure 3.2: Illustration of how the CyDAQ, DAD, and PC connect and interact with one another.

This can be simplified further to: Signal Gen (DAD) ▶ Filter (CyDAQ) ▶ Scope (DAD).
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3.2 Connections and Setup

Now, we will connect the hardware to implement the configuration described in the section

above. First, locate the Waveform Generator 1 (W1) and Ground (GND) jumper wires on the

DAD—see Fig. 3.3b. These constitute the output of the first waveform generator. Locate the

two, male, 𝑉in terminals on the CyDAQ (J9)—see Fig. 3.3a. You should see that the leftmost

terminal is marked negative (-) and the rightmost terminal is marked positive (+). We shall call

these Vin- and Vin+ respectively.

• Connect the DAD’s Waveform Generator 1 (W1) and the DAD’s Ground (GND)

Jumper Wires to the CyDAQ’s 𝑉in Terminals, (Vin+) and (Vin-), respectively.

Next, locate Scope Ch. 1 Negative (CH1-) and Scope Ch. 1 Positive (CH1+) on the DAD.

These constitute the first oscilloscope on the DAD. Locate the two male, 𝑉out terminals on the

CyDAQ. You should see that the lower terminal is marked negative (-) and the upper terminal

is marked positive (+). We shall call these Vout- and Vout+ respectively.

• Connect the DAD’s Scope Ch. 1 Terminals, (CH1-) and (CH1+) to the CyDAQ’s 𝑉out

Terminals, (Vout-) and (Vout+), respectively.

𝑉out

𝑉in

(a) CyDAQ showing ports, 𝑉in and 𝑉out. (b) DAD pin-out.[2]

Figure 3.3: Pin-outs/terminals for CyDAQ and DAD.
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3.3 CyDAQ Software

(a) Main screen. (b) Basic settings screen.

Figure 3.4: CyDAQ configuration software.

As mentioned, these lab exercises will use the CyDAQ to filter signals and capture data.

To learn the basics of the CyDAQ and DAD, we will first configure the CyDAQ to act as a

pass-through filter. This filter passes the input directly to the output—leaving the underlying

signal unchanged. Configuration of the CyDAQ (as well as data capture) is done using the CyDAQ

Software. This software has been installed on each lab machine and can be located by searching

“CyDAQ” in the Windows start menu. Upon launching the software, you should see the Main

Screen—depicted in Fig. 3.4a.

Once on the Main Screen, wait a few seconds and confirm that the CyDAQ connection

indicator is green (●). If it is not green:

• ensure that your CyDAQ is turned on—the power switch is on the right side (see Fig. 3.1a),

• ensure that the 5.5 mm power cable is connected at the back of the CyDAQ, and finally

• ensure that the CyDAQ is connected to the PC via USB.

Once you have confirmed that your CyDAQ is connected, click the Basic Operation button
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to open the Basic Settings Screen—depicted in Fig. 3.4b. For a pass-through configuration,

set:

• Sampling Rate: 48000 Hz

• Input: Analog In

• Filter: All Pass.

Then click the Send Config button at the bottom of the Basic Settings Screen. This will

push these settings to the CyDAQ.

3.4 WaveForms Software

Figure 3.5: WaveForms home page

As mentioned above, these lab exercises will use the DAD as a signal generator and oscil-

loscope. The DAD is controlled via the WaveForms Software. This software is freely available

from Digilent,[4] however, this software has already been installed at each lab station and can

be located by searching “WaveForms” in the Windows start menu.

Upon launching WaveForms, you should see a window similar to the one depicted in Fig. 3.5.

Take a brief look at the options and select Wavegen. This should open a window similar to the

one depicted in Fig. 3.6. This is the Wave Generator tab. Here, we can construct signals that

will be output through the DAD’s output connection (W1). In the Wave Generator, configure

the following signal:
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• Type: Sine

• Frequency: 10 kHz

• Amplitude: 2 V

• Offset: 0 V

• Symmetry: 50%

• Phase: 0∘

Figure 3.6: Wavegen page.

Now press the Run All button (next to the green play arrow) to tell the DAD to start

generating the 10 kHz sinusoid we just configured. Generally, unless we are making changes

to the Wave Generator, we will leave Run All on. Following our signal chain, this 10 kHz

sine travels out the DAD and into the CyDAQ’s input. Then, the CyDAQ outputs the signal

(unaltered) to the scope probes for channel 1 on the DAD.

It is desirable to view the read-out of our channel 1 oscilloscope. To do so, we need to open

a Scope tab. Locate the Welcome tab in the top-left portion of the WaveForms window. You

should see a green plus sign (+). Click this plus sign and select Scope from the drop-down menu.

This will add Scope tab. The contents of the Scope tab should be similar to Fig. 3.7. You

should now have a tab for the Wave Generator and a tab for the Scope in your WaveForms

instance.

In your Scope tab, press the Run button. Let the scope run for a moment, now press the

Stop button. You should see a yellow signal as in Fig. 3.8. This yellow signal corresponds to the
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Figure 3.7: WaveForms Scope Tab.

channel 1 oscilloscope (CH. 1) within the DAD. In other words, the output of the CyDAQ filter

(which is currently a pass-through). You may also see a blue signal. This corresponds to the

channel 2 oscilloscope (CH. 2). You are not using this oscilloscope channel (which is probably

picking up undesirable electromagnetic interference). Remove the blue signal by unchecking the

blue box, labeled Channel 2, on the right-hand portion of the Scope tab.

Time Base

Horizontal Zoom Region

Figure 3.8: Scope with visible CH. 1 signal. The Time Base control and Horizontal Zoom
Region are highlighted.

Now, we will more deeply explore the DAD’s oscilloscope. Adjust the horizontal zoom of
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channel 1 (CH. 1). This can be accomplished either by scrolling the mouse wheel in the

Horizontal Zoom Region or by editing the Time Base (see Fig. 3.8). Double-check to make

sure the oscilloscope is stopped, then zoom in horizontally to a time base of 50 μs/div.

Figure 3.9: Scope for Time Base 50 μs/div. A “glow” surrounds the CH. 1 signal.

Zooming horizontally reveals a translucent yellow glow around the CH.

1 signal, as in Fig. 3.9. This results from stopping the Scope tab before

zooming. This yellow translucent region represents the precision error for the

current oscilloscope channel. The oscilloscopes present on the DAD change

their sampling rates and precision depending on the time base. Hence, the

time base (or ‘horizontal zoom’) isn’t just some trick that WaveForms uses

to scale (in software) data retrieved from a DAD oscilloscope; it’s an actual

setting that gets sent to the DAD, which determines, at a hardware level, the

sampling rates and level of precision the DAD oscilloscope channels operate under. Press the

Run button again. This will send the correct time base to the DAD, which will reconfigure

itself to have better precision at this scale. The plot of CH. 1 should become a lot clearer; see

Fig. 3.10.

In addition to modifying the resolution (or ‘zoom’) of the horizontal (time) axis is possible

to modify the amplitude resolution along the vertical axis. This can be done by either changing

the CH. 1 Range or by moving the mouse into the Vertical Zoom Region and scrolling

(see Fig. 3.10). Try modifying the vertical resolution to get a feel for how this works. Do not

modify the horizontal resolution, keep it at 50 μs/div.

Press the Stop button on the Scope tab and zoom out to a time base of 200 μs/div. Some

of the CH. 1 plot seems to be missing; see Fig. 3.11. Based on your understanding of the DAD,

explain why this is in your lab report.
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CH. 1 Range

Vertical Zoom Region

Figure 3.10: Scope with “glow” removed. The CH. 1 Range control and Vertical Zoom
Region are highlighted.

Figure 3.11: Scope for Time Base 200 μs/div. The signal appears cut off.

80



3.4.1 The FFT View

FFT Toggle

Drop Down

Figure 3.12: Scope with FFT View visible. The FFT Toggle and Drop Down for the FFT
View are highlighted.

Future exercises will discuss signals in terms of their frequency representation rather than

time. An audio equalizer also decomposes signals in terms of some constituent frequencies and

indicates the strengths of these frequencies. We will get a small taste of what a plot of this

‘frequency domain decomposition’ looks like.

Make sure the Run button in your Scope tab is pressed. Navigate to the FFT View Toggle

(see Fig. 3.12) and click it to open the FFT View within the Scope tab. There is an additional

Drop Down for the FFT View (see Fig. 3.12). Click the Drop Down to see the full array of

controls for the FFT View.

Just as with the CH. 1 plot, the Horizontal Zoom Region encapsulates the viewable

region of the FFT plot (see Fig. 3.13). Placing your cursor in this region and scrolling results

in a modification of the horizontal resolution of the FFT. The same effect can be achieved by

modifying the Stop control in the FFT View (see Fig. 3.13). Note that in this case, unlike the

CH. 1 plot, the horizontal axis represents frequency, not time.

The time-domain signal we are working with is a 10 kHz sinusoid. Ideally, the frequency-

domain (FFT) representation should be mostly ‘nothing’ with an impulse-like spike at approxi-

mately 10 kHz. Yet, no matter how you change the horizontal scale amount in the FFT View,
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Stop

Horizontal Zoom Region

Figure 3.13: FFT View enlarged along the horizontal axis. The Stop control and Horizontal
Zoom Region for the FFT View are highlighted.

the lobe about 10 kHz doesn’t get narrower as would be expected. To refine our resolution in

the frequency-domain, we need more cycles of data in the time-domain. This property is called

the problem of conjugate variables and is related to the uncertainty principle.[5] Don’t worry

about that for right now; just know that reducing horizontal resolution in the time-domain (i.e.,

making the time base larger) results in a finer resolution in the frequency-domain.

In the case of Fig. 3.13, the time base is 200 μs/div, changing it to 2 ms/div as in Fig. 3.14

gives a more impulse like spike in the frequency domain. The final point of order is adjusting

the FFT units to afford a more intuitive representation vertically. Change the FFT units (see

Fig. 3.14) to RMS(Ṽ) to obtain a result more in-line with Fig. 3.15. Now, the frequency-domain

representation should appear similar to an impulse at 10 kHz—which is what would be expected

for a 10 kHz sinusoid.
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FFT units

Figure 3.14: FFT View with increased resolution. The FFT Unit control is highlighted.

Figure 3.15: FFT View displayed with unit RMS(Ṽ).

3.4.2 Measuring Tools

Notice the toolbar at the top right of the CH. 1 plot (see Fig. 3.16). It’s really easy to miss but

it contains a handy set of measuring tools to obtain various measurements for the signal visible

in the viewing window. Let’s focus on the first two tools:

L : This button is the L Tool
H : This button is the H Tool

The third/final tool is designed to measure pulse widths. None of the lab exercises make use of

this tool.

The L Tool allows you to place three points in the shape of an ‘L’ while the H Tool does the

same but in the shape of an ‘H’ (see Fig. 3.17). Both tools display the following measurements:

𝑥1: the 𝑥-position of the first point,

𝑐1: the 𝑦-position of the first point,

𝑥2: the 𝑥-position of the second point,
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Measuring Tools

Figure 3.16: Scope with Measuring Tools highlighted.

(a) Scope with measurements
produced by the L Tool.

(b) Scope with measurements produced by
the H Tool.

Figure 3.17: The L and H Tools.

𝑐2: the 𝑦-position of the second point,

Δ𝑥: the distance (𝑥2 − 𝑥1) along the 𝑥-axis, and

Δ: the range (𝑐2 − 𝑐1) along the 𝑦-axis.

Right-clicking anywhere in the Scope Viewing Regions brings up the Scope Menu. This

menu lets you change the background color and add labels. In your lab report, attempt to recreate

the image in Fig. 3.19, complete with color scheme and label.

3.5 Capturing Data with the CyDAQ

Now that we’ve covered many of the basic features of the WaveForms Software, we’ll move into

some more advanced examples with the CyDAQ, such as using it as a filter, using it to capture

84



Figure 3.18: The Scope Menu.

Figure 3.19: Image to reproduce.

data, and importing that data into MATLAB.

Firstly, in WaveForms, return to the Wave Generator (seen in Fig. 3.6) and enter the

settings:

• Type: Square

• Frequency: 2 kHz

• Amplitude: 2 V

• Offset: 0 V

• Symmetry: 50%

• Phase: 0∘

Make sure that the Wave Generator is running then switch back over to the Scope tab. Make

sure that the scope is running. You should see something similar to Fig. 3.20. Adjust your Time

Base and other controls if needed. Notice the harmonics (the additional bumps in the higher

frequencies) present in the FFT View for the square wave.

Now return to the Basic Settings Screen of the CyDAQ Software (as seen in Fig. 3.4b).
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Figure 3.20: A 2 kHz square-wave.

Now, we will configure the CyDAQ to act as a low-pass filter. Enter the following settings:

• Sampling Rate: 48000

• Input: Analog In

• Filter: 6th Order Low Pass

• Mid Corner: 2000

After entering these settings, click Send Config at the bottom of the Basic Settings Screen.

Switch back over to the Scope tab in WaveForms. You should see something similar to

Fig. 3.21. Notice that the square wave has become a sinusoid. Also, notice that the harmonics

that used to be present in the FFT View are now gone.

Switch back to the Basic Settings Screen of the CyDAQ Software. We are now going to

capture some data. Click the Start Sampling button at the bottom of the screen and wait

for sampling to begin. Once sampling has begun, quickly end sampling by clicking once more.

Recall that the underlying signal has its lowest frequency at 2 kHz, which means there are

2000 periods a second. Hence, a tenth of a second contains plenty of information.

Once sampling/data capture has been completed, you will be prompted to save the data.

Be sure to select to save the data as a .mat file. Create a new folder and save your data as

cydaq_square_filtered.mat.

Open MATLAB and create a new script, plot_filtered_square.m, in the same folder as the

.mat file. Both the script and the .mat file should be visible in MATLAB’s Current Folder
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Figure 3.21: A 2 kHz square-wave filtered under a low-pass filter.

Figure 3.22: The Current Folder View.

View (see Fig. 3.22). Put the following contents into the script:

Listing 3.1: plot_filtered_square.m

1 clearvars; close all; clc;

The data we obtained was saved as a .mat file. A .mat file is a collection of MATLAB variables

that will be copied into the Variable Workspace upon loading by the load function. We can

view the variables stored within a .mat file by clicking on the .mat file within the Current

Folder View. This will display the variables in the .mat file below the Current Folder View

in an area called the Current Contents View (see Fig. 3.23).

The contents of the .mat file will contain a single variable, data. This variable is a two-column

matrix with many rows. Add the following line to plot_filtered_square.m:

2 load('cydaq_square_filtered.mat')

This function, load, loads the .mat file (presuming it is in the same folder as the script) and
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Figure 3.23: The Current Contents View.

places the variables residing within the .mat file into MATLAB’s Variable Workspace. Run

cydaq_square_filtered.mat. You should see that data is now in your Variable Workspace.

Examine the contents of data. It should appear similar to Fig. 3.24.

Figure 3.24: The contents of the data variable.

The way that the CyDAQ Software saves captured data is into a .mat file with the variable:

data. The first column of data is the time vector. The second column of data is the signal data

captured at the CyDAQ filter’s output.

Using your knowledge of MATLAB so far, fill in the contents of plot_filtered_square.m

such that it plots approximately three periods of the filtered signal, 𝑦(𝑡), with respect to the time

vector 𝑡. Your plot should include a title and proper axis labels. Embed this plot within your

lab report. Include your completed plot_filtered_square.m script as an attached file in your

submission.

As a hint, your first attempt at plotting will probably appear very cluttered (similar to

Fig. 3.25). This is because you’ve captured way more than three periods’ worth of data. You

likely have thousands or tens of thousands of periods captured. You’ll need to use the axis

command to zoom in on a region of the plot that shows approximately three periods of the
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Figure 3.25: A cluttered MATLAB graph.

filtered square wave.

3.6 Practical Limitations of the CyDAQ

A frequently encountered task in electrical engineering is quickly transmitting a large amount

of data. For instance, the USB 3.0 standard allows for data speeds of up to 5 Gbits/sec.[6]

Digital signals encode bits (ones and zeros) at two distinct logic levels, usually (0 V and 𝑉𝑐𝑐).

Without thoughtful engineering, many wires and other components introduce capacitance at high

frequencies, limiting data speeds. Consequentially, just because protocols like USB 3.0 allow for

data speed of 5 Gbits, the physical properties of the cables or embedded peripherals may prevent

this from being achieved. Often, there is a discrepancy between a system’s theoretical maximum

data speed (based on the clocking of internal components, etc.) and the achievable maximum

data speed (due to capacitance in wires, electromagnetic interference, etc).

We will explore if such a discrepancy exists for the CyDAQ. The maximum sampling rate (and

theoretical maximum data speed) of the CyDAQ is 48 kHz. Assuming a logic low corresponding

to 0 V and a logic high corresponding to 5 V, the theoretical maximum data speed of 48 kHz

implies that the CyDAQ should be able to oscillate between 0 V and 5 V at a rate of 24 kHz.

However, the capacitance of the jumper wires and internal board traces renders this highly

unlikely. We can characterize this capacitance and derive the actual, realizable data speed by

sending a series of 0 V to 5 V pulses at well below half the maximum theoretical data speed (say
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2 kHz) and measuring the rise-time. Generally, rise-time is measured as the time it takes for a

signal to travel from 10% to 90% of its final value.

First, configure the CyDAQ as a pass-through. Return to the Basic Settings Screen of the

CyDAQ Software (as depicted in Fig. 3.4b) and enter the settings:

• Sampling Rate: 48000 Hz

• Input: Analog In

• Filter: All Pass

Then click the Send Config button at the bottom of the Basic Settings Screen.

Go to the Wave Generator tab of the WaveForms Software and enter the settings:

• Type: Pulse

• Frequency: 2 kHz

• Amplitude: 5 V

• Offset: 0 V

• Symmetry: 50%

• Phase: 0∘

Make sure that the Wave Generator is running then switch back over to the Scope tab.

The Pulse setting is very similar to the square except that the pulse starts at 0 V, whereas

Square would’ve started at -2.5 V. Because of this, you will need to adjust the Trigger Level

using either the control or the Trigger Slider (see Fig. 3.26). You may also need to adjust the

Offset using either the control or the Offset Slider. The trigger controls at which 𝑦-intersection

the time, 𝑡 = 0 occurs (googling “oscilloscope trigger” might be helpful if you’re confused).

In the Scope View, change your Time Base to something like 200 ns/div then use the

measuring tools to measure the time it takes the signal to go from 0.5 V to 4.5 V and include

a snapshot of your rise time measurement in your lab report. If your plot looks like it is low

resolution and jittery, make sure your Position is set to 0 s in the horizontal settings (see

Fig. 3.27).

3.7 Post-Lab Questions

For these questions, you may need to refer to the DAD specifications.[3]
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Offset Slider

Offset

Trigger Level

Trigger Slider

Figure 3.26: Scope with the Offset control, Offset Slider, Trigger Level control, and Trigger
Slider highlighted.

Position Slider

Position

Figure 3.27: Scope with the Position control, and Position Slider highlighted.

Q.1

What is the maximum AC amplitude of the function generator on the DAD?

Q.2

What is the maximum sampling rate of the oscilloscope (analog input) on the DAD?
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3.8 Report Checklist

Work with lab partner(s) to create a lab report for this lab exercise. Be sure to include the

names of each person in your group on the report. This report should be a typed document that

outlines the basic procedure of the lab exercise and should include any results you were asked to

obtain. Your report should follow a cohesive narrative—it should always be apparent why you

have presented the results you have. Do not simply insert results without (1) motivating the

problem and (2) providing an analysis of the data. Ensure that your report is grammatically

correct with complete sentences. This does not mean your report must be wordy with filler—in

fact, avoid filler and state your ideas concisely.

The final Post-Lab Questions section does need to be woven into your lab narrative. You may

simply append your answers to each question at the end of your report in an attached answers

section. Be sure to indicate which question you are answering by referencing the corresponding

question number.

Be sure the following are included in your report:

• Section 3.4: Explain why stopping the Scope tab and increasing the time base results in

missing CH. 1 data, as in Fig. 3.11.

• Section 3.4.2: Recreate the graph in Fig. 3.19, complete with color-scheme, label, and

measurements. Include an image of your recreation in your report.

• Section 3.5: Include the plot produced by your completed plot_filtered_square.m scrpit

within your report.

• Section 3.5: Include your completed plot_filtered_square.m script as an attached file in

your submission.

• Section 3.6: Include a snapshot of your rise time measurement in your report.

• Post-Lab Questions: Answer each question given.
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Open Signals and Systems Laboratory Exercises Second Edition

CyDAQ Impulse Responses

Characterizing Systems and Processing Signals With Impulse

Responses

Overview

In this lab exercise, students will capture and utilize the impulse response of various systems.

Students will configure the CyDAQ as a low-pass filter to filter the audio file, noisy_audio.wav,

provided in this exercise’s supplementary materials. Students will then capture the impulse re-

sponse of the CyDAQ’s low-pass filter using the WaveForms software. Students will complete

convolve_audio.m (available in this exercise’s supplementary materials and in Appendix 4.B)

which is used to apply the same filtering to noisy_audio.wav—this time using MATLAB. Stu-

dents will create a new script, auralization.m, which they will use to apply an impulse response

file of their choice from the EchoTheif website to a recording of a human voice from the Euro-

pean Broadcasting Union’s Sound Quality Assessment Material (SQAM). In addition to a typed

report, students are asked to submit two completed MATLAB scripts, convolve_audio.m and

auralization.m.

Learning Objectives

By the end of this lab, students will be able to:

1. Relate the impulse response of an LTI system to its response response to any excitation.

2. Approximate an impulse in WaveForms.

3. Capture a system’s response in WaveForms and export it to a csv file.

4. Use MATLAB to compute the response of an LTI system given an excitation signal and

impulse response signal.
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Materials

(1×) DAD

(1×) CyDAQ

(1×) Hardware Speaker

(1×) 3.5 mm Male-to-Male Aux Cable

(1×) 3.5 mm Male-to-Breakout Aux Cable

(2×) Female-to-Female Jumper Cables

4.1 Introduction

In this lab exercise, you will explore the impulse response which can be used to completely

characterize an LTI system. That is, if you know the impulse response for an LTI system, you

can compute its output for a given input. You will explore this in two ways.

First, you will use CyDAQ to clean up a noisy audio signal and measure the impulse response

of the noise-removal system (CyDAQ). You will then use that impulse response in MATLAB to

clean up the signal in the digital domain.

Next, You will explore an audio processing technique called auralization.[1] Auralization allows

you to model the ‘soundscape’ of a room or space. For instance, you can model a giant music

hall, a long hallway, a wide-open cathedral, etc. Then, you can use your model to process any

audio sample and hear what that audio would have sounded like if it had been played in that

room.

4.2 Characterizing Systems with Impulse Response

The impulse response function, ℎ(𝑡), of a system, 𝐻, is defined as that system’s response to

a Dirac impulse, 𝛿(𝑡). For discrete-time systems, the impulse response, ℎ[𝑛], is defined as

that system’s response to a Kronecker impulse, 𝛿𝐾[𝑛]. The impulse response can completely

characterize the behavior of linear, time-invariant (LTI) systems. In other words, if one knows a

system’s impulse response, one can compute that system’s response (i.e., output) to any input.
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For many first encountering this statement, this is very unintuitive yet astounding. It claims

that one particular response of an LTI system, its impulse response ℎ(𝑡), can be used to compute

the response of that system, 𝑦(𝑡), for any other input, 𝑥(𝑡). Suppose you are given a black box

system, in which all that is known is that the system is linear and time-invariant. If you fed

an impulse function into the system and recorded its response, you could now compute the

response of that black box system for any input. In some sense, you could say that an LTI

system’s impulse response is the system.

This black box thought experiment includes some important caveats. Firstly, it assumes the

internal state of the system is zero. Secondly, it assumes that one can generate (i.e., physically

realize) an input that is an impulse response. This isn’t much of an issue for discrete-time

systems, as Kronecker deltas are digitally realizable. However, Dirac deltas are not physically

realizable and must be approximated. Thirdly, it assumes one could record the impulse response

of a system. Impulse responses are not guaranteed to have an upper-time bound. In fact, any

system with internal feedback will have an impulse response that has an infinite duration. Again,

this may not present a major issue as stable systems have impulse responses that converge to

zero—meaning that after a particular recording duration, one will have obtained a reasonable

approximation of the impulse response. Nevertheless, this recording would still, technically, be

an approximation. Even with these caveats, the underlying concept is still impressive: a single

output of an LTI system (its impulse response) can be used to compute any output of the system.

We could describe this process of obtaining an approximate impulse response of a system and

using it to approximate the response to additional inputs as ‘taking a snapshot of the system.’

The CyDAQ contains a built-in configurable digital LTI filter. This means these filters can

be characterized by a discrete-time impulse response, ℎ[𝑛]. We can configure the CyDAQ to

take input signals from a 3.5 mm Audio Jack, filter the audio signal, and send its output to an

external speaker. Such a configuration is depicted in Fig. 4.1.

x[n]
H

y[n] = h[n] ∗ x[n]

Computer CyDAQ Speaker

Figure 4.1: Block diagram for CyDAQ filter
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To illustrate the process of ‘taking a snapshot’ of an LTI system and using it in place of the

system to compute new responses, we will employ the configuration depicted in Fig. 4.1.

1. First, we will configure the CyDAQ to behave as a low-pass filter.

2. Next, we will demonstrate the ability of this low-pass filter to remove noise from a noise-

corrupted audio file.

3. After this, we will approximate an impulse function and use it to retrieve an approximate

impulse response of the CyDAQ’s low-pass filter.

4. Finally, we will demonstrate that this impulse response serves as a suitable ‘snapshot’ of

the CyDAQ’s low-pass filter by using it to filter the same noise-corrupted file in MATLAB.

4.2.1 Playing Audio with the CyDAQ

To confirm the correct setup, we will first play the noise-corrupted audio file through the CyDAQ

without filtering. The audio file noisy_audio.wav is available in this exercise’s supplementary

materials. You will need to connect the CyDAQ’s input to your computer’s headphone 3.5 mm

Jack, and the External Speaker to your CyDAQ’s output. You must also power the External

Speaker using the CyDAQ’s 5 V sensor terminal. This is accomplished using the following

connections:

• Connect the PC’s Headphone Terminal to the CyDAQ’s 3.5 mm Audio In Termi-

nal (J8), using a 3.5 mm Male-to-Male Aux Cable.

• Connect the CyDAQ’s 𝑉out Terminals (J10) to the Speaker’s 3.5 mm Audio In Ter-

minal, using the 3.5 mm Male-to-Breakout Aux Cable. You will need to use Female-

to-Female Jumper Cables to connect the Male Breakout Terminals to the Male

𝑉out Terminals.

– Connect the Red Breakout Cable to the Positive (+) 𝑉out Terminal (Vout+).

– Connect the Black Breakout Cable to the Negative (-) 𝑉out Terminal (Vout-).

• Connect the Speaker’s Power Connector to the CyDAQ’s 5 V Sensor In Termi-

nal (J11) using the Black/White Wires attached to the speaker.

Refer to Figs. 4.3a and 4.3b in Appendix 4.A for locating the proper terminals.

Next, open the CyDAQ Software and send the following configuration:
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• Sampling Rate: 48 000 Hz

• Input: Audio In

• Filter: All Pass

Note that the input is set to AUDIO In. Be sure to run the CyDAQ configuration after all

the connections have been made. Setting the filter type to “All Pass” is equivalent to ℎ(𝑡) = 𝛿(𝑡).
Using any media player of your choice, play noisy_audio.wav. Make sure that your audio output

device is properly configured to play audio out the headphone jack. The External Speaker has

much less power than typical PC speakers. Hence, you should turn up your system’s volume to

the maximum to be able to hear sound from the External speaker. If everything has been set

up correctly, you should hear a short piano piece play from the external speaker. There should

be noticeable high-frequency interference present in the audio clip.

4.2.2 Filtering with the CyDAQ

Now that you have confirmed that the CyDAQ has been properly configured to play audio, we will

configure a low-pass filter to remove the high-frequency interference present in noisy_audio.wav.

In the CyDAQ Software, send the following parameters:

• Sampling Rate: 48 000 Hz

• Input: Audio In

• Filter: 6th Order Low Pass

• Mid Corner: 6000 Hz

Play the noisy_audio.wav once again from your computer. You should notice that the high-

frequency interference is no longer perceivable; it has been effectively removed.

4.2.3 Measuring the CyDAQ’s Impulse Response

Now that we’ve used the CyDAQ to filter a noisy audio file, we will recreate this process by

taking a ‘snapshot’ of the CyDAQ’s low-pass filter and applying it to the noisy audio file in

MATLAB. We will do this by recording the (approximate) impulse response of the CyDAQ’s

low-pass filter and convolving it with the signal stored in noisy_audio.wav. Recall from Sec. 4.2

that impulse responses are typically challenging to realize. Though the CyDAQ is a digital
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system, there is a difference in clock speeds between the DAD and the CyDAQ as well as the

CyDAQ and the configurable filter that make it difficult to realize an exact Kronecker impulse

response. Instead, we will approximate it by generating a narrow pulse on the DAD.

It should be noted that electrical system impulse responses are not typically measured this

way. Using a chirp[2] or a frequency sweep to measure the system response is much more common.

Mechanical systems, however, are sometimes measured with an approximated impulse. A special

hammer[3] is used to whack the system and measure the resulting vibrations. For our purposes,

due to the simplicity of the filter, a narrow pulse proves to be an adequate substitute for impulse.

We will now reconnect the CyDAQ to receive the impulse approximation from the DAD.

Disconnect the 3.5 mm Male-to-Male Aux Cable from the CyDAQ. Disconnect the 3.5 mm Male-

to-Male Aux Cable from your PC. Completely disconnect all connections between the External

Speaker and the CyDAQ.

• Connect the Waveform Generator 1 (W1) and Ground (GND) Jumper Wires on the

DAD to the CyDAQ’s 𝑉in Terminals, (Vin+) and (Vin-), respectively.

• Connect Scope Ch. 1 Negative (CH1-) and Scope Ch. 1 Positive (CH1+) on the DAD

to the CyDAQ’s 𝑉out Terminals, (Vout-) and (Vout+), respectively.

Now the CyDAQ has been wired to receive input from the DAD’s WaveGen and transmit output

to the DAD’s oscilloscope. However, we still need to tell the CyDAQ to accept input from its

𝑉in terminal rather than its 3.5 mm Audio terminal. Open the CyDAQ Software and send the

following configuration:

• Sampling Rate: 48 000 Hz

• Input: Analog In

• Filter: 6th Order Low Pass

• Mid Corner: 6000 Hz

Note that the input is set to ANALOG In. Next, we will configure the DAD’s WaveGen to

output our approximate impulse function. Launch the WaveForms Software and open a new

Wavegen tab. Enter the following configuration:

• Type: Pulse

• Frequency: 100 Hz

• Amplitude: 5 V
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• Offset: 0 V

• Symmetry: 0.2%

• Phase: 0°

Press the Run button on the Scope tab in WaveForms.

Adjust the oscilloscope in WaveForms to clearly capture the response. It should look similar

to Fig. 4.2. Once you’ve finished adjusting the scope, Stop the oscilloscope. Include a screenshot

of the measured impulse response in your report. Note that the filter is physically implemented

with an inverting amplifier, which has a negative gain, so you are actually measuring −ℎ(𝑡). This

will not affect any of this experiment, but if you wish, you may multiply the impulse response

by −1 in MATLAB to get ℎ(𝑡).
Now, we will export the captured waveform as a .csv so you can load it into MATLAB.

Select the Export button (just below the File/Control/View menu ribbon) in Waveforms to

launch the Export Dialog. Uncheck the comments box, but leave the Headers and Labels

boxes checked. Create a new folder on your PC to serve as your project directory and save the

captured impulse response as impulse_response.csv in that folder.

Figure 4.2: Impulse response of CyDAQ measured on the DAD
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4.2.4 Using the Impulse Response as a Filter

Now that you have captured the (approximate) impulse response of the CyDAQ system, we

can use it to filter any input signal digitally. As before, we will choose our input to be

noisy_audio.wav. Move a copy of noisy_audio.wav into your project directory.

The skeleton of a MATLAB script that applies a captured impulse response (stored in a

.csv file) to an audio file has been provided to you as convolve_audio.m in this exercise’s

supplementary materials as well as in Appendix 4.B. Copy convolve_audio.m into your project

directory and open it in MATLAB. You will need to complete the portions of this file containing

TODO. Note the portion of this code that calls the resample(...) function. To properly convolve

the captured impulse response with the noisy audio, the sampling rates of both signals must

be the same. However, the sampling rate of the DAD (which captured the impulse response)

is much faster than the sampling rate of the audio file. Consequentially, there is some code in

convolve_audio.m which resamples the impulse response from the .csv file, h_old, to have the

same sampling rate as the audio file.

Once you’ve filled in each of the TODO portions of convolve_audio.m, run the script. If done

correctly, you should see two plots, one of the (resampled) captured impulse response and another

of the noisy and filtered audio signals overlaid atop one another. You should also hear the original

noisy_audio.wav play followed by the filtered version. You may need to disconnect the 3.5 mm

Aux cable from your computer if you forgot to do so.

Once you’ve confirmed that you’ve correctly filled in convolve_audio.m, include both plots it

produces in your lab report. Include a copy of your completed convolve_audio.m as an attached

file in your submission. Recall how the filtered audio sounded when you used the physical CyDAQ

as a filter. Does the result sound much different from your implementation in MATLAB? Discuss

this in your report.

4.3 Auralization

The next topic covered in this lab exercise is auralization. Just as impulse responses let us take

‘snapshots’ of LTI electrical systems (like filters), auralization allows us to take ‘snapshots’ of LTI
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sonic/acoustic systems like echo and reverberation. In essence, if someone records the impulse

response of a large hall, cathedral, cave, etc., it is possible to simulate other sounds playing in

that area. EchoThief[4] is a website that collects interesting impulse responses from “unusually

clamorous places” and hosts them free for anyone to use. You will use some of these impulse

responses to make a sound clip sound as though it was recorded in the chosen environment.

Navigate to the EchoThief website[4] and select an impulse response. It should download as a

.wav file. Save the .wav file containing your EchoThief impulse response in your project folder.

We will also need a new sound to use as an input to apply echo/reverb. The human voice is

a great candidate for this task. High-quality recordings of human speech are available for edu-

cational use as part of the European Broadcasting Union’s Sound Quality Assessment Material

(SQAM) package.[5] The Massachusetts Institute of Technology website hosts several of these

SQAM recordings. Navigate to the Massachusetts Institute of Technology’s SQAM webpage[6]

and download the two English speech samples: spfe49_1.wav (female speech) and spme50_1.wav

(male speech). Save spfe49_1.wav and spme50_1.wav in your project folder.

Create a new MATLAB script called auralization.m in your project folder. Since the process

of applying a captured impulse response to an audio file is similar to your task in Sec. 4.2.4,

we can reuse much of the convolve_audio.m. Copy the contents of convolve_audio.m into

auralization.m.

Now we will need to modify the script to work properly for our auralization task. First,

change audio_sample_file to point to either spfe49_1.wav and spme50_1.wav. Next, change

impulse_response_file to point the .wav file you downloaded from EchoTheif.

Working our way through the script, we see that line 17, which loads the input audio file,

still works properly for loading our human speech .wav files. Moving on to line 25, we see that

the impulse response data is loaded using a readmatrix(...) function. This function loads .csv

files and will no longer work for us since our impulse response function from EchoTheif is stored

in a .wav file. Delete lines 25–32 (everything before the resampling command).

In their place we’ll need to insert a few lines of code to properly load the EchoTheif impulse

response. First, we’ll need to load the impulse response data and sampling rate into H and Fs_h,

respectively:
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[H, Fs_h] = audioread(impulse_response_file);

Next, we’ll need to pull out the first channel of the audio file and store it in the variable h_old:

h_old = H(:, 1); % Grab the first (left) channel

Finally, the resample(...) function later in the script requires a time vector, t_h_old, that

corresponds to the signal in h_old:

th_old = (0:length(h_old)-1)./Fs_h;

With these changes, your auralization.m script should now properly apply the EchoTheif im-

pulse response to the human speech audio file.

Run auralization.m and listen to the result. Discuss what you hear in your lab report. In-

clude both plots produced by auralization.m. Include a copy of your completed auralization.m

as an attached file in your submission.

4.4 Report Checklist

Work with lab partner(s) to create a lab report for this lab exercise. Be sure to include the

names of each person in your group on the report. This report should be a typed document that

outlines the basic procedure of the lab exercise and should include any results you were asked to

obtain. Your report should follow a cohesive narrative—it should always be apparent why you

have presented the results you have. Do not simply insert results without (1) motivating the

problem and (2) providing an analysis of the data. Ensure that your report is grammatically

correct with complete sentences. This does not mean your report must be wordy with filler—in

fact, avoid filler and state your ideas concisely.

Be sure the following are included in your report:

• Section 4.2.3: Include the scope capture of the system’s measured impulse response.

• Section 4.2.4: Include the plot of the measured impulse response produced by convolve_audio.m.

• Section 4.2.4: Include the plot of the noisy and filtered audio signals produced by convolve_audio.m.

• Section 4.2.4: Include the completed copy of convolve_audio.m as an attached file in your

submission.

104



• Section 4.2.4: Provide some discussion comparing results of filtering using the physical

filter on the CyDAQ versus the impulse response ‘snapshot’ in MATLAB.

• Section 4.3: Discuss the effect that the EchoTheif impulse response had when applied to

your human speech file.

• Section 4.3: Include the plot of the EchoTheif impulse response produced by auralization.m.

• Section 4.3: Include the plot of the original and filtered audio signals produced by auralization.m.

• Section 4.3: Include the completed copy of auralization.m as an attached file in your

submission.

4.5 Acknowledgments

This lab exercise is based on an exercise drafted by Isaac Rex.
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4.A Hardware Ports

𝑉out

𝑉in

5 V Sensor In

3.5 mm
Audio In

(a) CyDAQ showing, 𝑉in, 𝑉out, 3.5 mm
Audio In and 5 V Sensor In.

(b) DAD pin-out.[7]

Figure 4.3: Pin-outs/terminals for CyDAQ and DAD.

3.5 mm
Audio In

Power
Connector

Figure 4.4: CyDAQ Speaker showing 3.5 mm Audio terminal and Power Connector.
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4.B Convolve Audio MATLAB Script

Listing 4.1: convolve_audio.m

1 clearvars; close all; clc;

2 % Audio Convolution Excercise

3 % Written By: Isaac Rex, 2020

4 % Updated By: Aaron Fonseca, 2024

5

6 % **Fill-in all TODOs**

7

8 % **Make sure that all the files are in the same folder as your MATLAB

9 % working directory**

10

11 impulse_response_file = 'TODO'; % TODO: fill in the filename of your csv

12 audio_sample_file = 'noisy_audio.wav';

13

14 % =====================================================

15 % Load in the impulse response and audio sample data

16 % =====================================================

17 [X, Fs] = audioread(audio_sample_file); % Load the audio sample

18 x = X(:, 1); % Grab the first (left) channel

19

20 % The lines below load the measured impulse response. Because the data is

21 % being processed on a computer, continous time is being approximated by a

22 % a discrete time system. In order to sync up the time t, with the discrete

23 % index n, the sampling rate needs to be adjusted.

24

25 H = readmatrix(impulse_response_file); % Load the impulse response file

26 h_old = H(:, 2); % Amplitude values of h

27 t_h_old = H(:, 1); % Time vector corresponding to h_old

28

29 % Compute Fs_h

30 dt_h = H(2, 1) - H(1, 1); % Get the sample period of the

31 % impulse response.
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32 Fs_h = round(1/dt_h); % Get the sampling frequency.

33

34 % Resample h from old sampling rate, Fs_h, to new sampling rate, Fs

35 [h, �] = resample(h_old, t_h_old, Fs); % Match the sampling rate of impulse

36 % response to audio sample.

37 t_h = (0:length(h)-1)./Fs; % Recalculate the time vector for

38 % the impulse response, h.

39

40 % =====================================================

41 % Plot the resampled impulse response

42 % =====================================================

43 figure(1);

44 clf;

45 plot(t_h, h, 'LineWidth', 2);

46

47 grid on;

48 set(gca, 'FontSize', 18)

49 xlabel('TODO', 'FontSize', 22)

50 ylabel('TODO', 'FontSize', 22)

51

52 % =====================================================

53 % Convolve the audio signal with the impulse response

54 % =====================================================

55 % Use the 'same' argument in conv() so that y is the same length as x.

56 % Type "help conv" in the console for details. Make sure to use the

57 % 'same' option!

58 y = TODO; % fill in with conv

59

60 % Now we need to 'normalize' y. The audioplayer in MATLAB expects y to be

61 % in the range [-1, 1], so it needs to be scaled to match that range.

62 y = y ./ (max(abs(y)));

63

64 % =====================================================

65 % Play the sounds

66 % =====================================================

67 ap_x = audioplayer(x, Fs);
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68 ap_y = audioplayer(y, Fs);

69

70 playblocking(ap_x);

71 playblocking(ap_y);

72

73 % =====================================================

74 % Plot the noisy and filtered audio clips on the same plot

75 % =====================================================

76 t = (0:length(x)-1)./Fs; % Generate time vector

77

78 % plot

79 figure(2)

80 clf;

81 plot(TODO, TODO, 'LineWidth', 1);

82 hold on;

83 plot(TODO, TODO, 'LineWidth', 1);

84

85 grid on;

86 set(gca, 'FontSize', 18)

87 xlabel('TODO', 'FontSize', 22)

88 ylabel('TODO', 'FontSize', 22)

89 legend('TODO', 'TODO')

4.R References

[1] “Auralization,” Wikipedia. (2023), [Online]. Available: http://en.wikipedia.org/w/

index.php?title=Auralization&oldid=1119847521.

[2] “Chirp,” Wikipedia. (2023), [Online]. Available: http://en.wikipedia.org/w/index.php?

title=Chirp&oldid=1174787830.

[3] “Impulse force hammer,” Kistler. (2023), [Online]. Available: http://www.kistler.com/

US/en/impulse-force-hammer/C00000121.

[4] C. Warren. “Echothief.” (2023), [Online]. Available: http://www.echothief.com/.

109

http://en.wikipedia.org/w/index.php?title=Auralization&oldid=1119847521
http://en.wikipedia.org/w/index.php?title=Auralization&oldid=1119847521
http://en.wikipedia.org/w/index.php?title=Chirp&oldid=1174787830
http://en.wikipedia.org/w/index.php?title=Chirp&oldid=1174787830
http://www.kistler.com/US/en/impulse-force-hammer/C00000121
http://www.kistler.com/US/en/impulse-force-hammer/C00000121
http://www.echothief.com/


[5] European Broadcasting Union. “Sound quality assessment material recordings for subjec-

tive tests.” (Oct. 2008), [Online]. Available: https://tech.ebu.ch/publications/sqamcd.

[6] European Broadcasting Union. “SQAM - sound quality assessment material.” (Jun. 2001),

[Online]. Available: https://sound.media.mit.edu/resources/mpeg4/audio/sqam/.

[7] “Analog discovery 2 reference manual,” Digilent. (2018), [Online]. Available: http : / /

digilent . com / reference / test - and - measurement / analog - discovery - 2 / reference -

manual.

110

https://tech.ebu.ch/publications/sqamcd
https://sound.media.mit.edu/resources/mpeg4/audio/sqam/
http://digilent.com/reference/test-and-measurement/analog-discovery-2/reference-manual
http://digilent.com/reference/test-and-measurement/analog-discovery-2/reference-manual
http://digilent.com/reference/test-and-measurement/analog-discovery-2/reference-manual


Open Signals and Systems Laboratory Exercises Second Edition

Frequency Response and System Identification

Measuring the Frequency Response of Systems

Overview

In this lab, students will use the DAD to measure the frequency response of a ‘mystery system’

programmed onto the CyDAQ by the Electronics and Technology Group (ETG). Students will

compute the frequency response using two separate approaches. First, students will conduct

a series of manual measurements using the WaveForms software. Next, students will use the

Loopinator software to automate the process using a frequency sweep. Finally, students will use

MATLAB to produce plots comparing their manual measurements to the results obtained using

the Loopinator software.

Learning Objectives

By the end of this lab exercise, students will be able to:

1. Use the WaveForms software to measure the gain of a sinusoidal excitation.

2. Use the WaveForms software to compute the phase difference of a sinusoidal excitation.

3. Use the Loopinator software to compute the frequency response of a system and export it

into MATLAB.

4. Convert measurements of gain into decibels.

Materials

(1×) DAD

(1×) CyDAQ

(1×) Jumper Splitter
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5.1 Introduction

In this lab exercise, we will use the DAD to measure the frequency response of an unknown system

that has been loaded onto the CyDAQ by Iowa State University’s Electronics and Technology

Group (ETG). Frequency response measurement is a powerful tool for characterizing linear,

time-invariant (LTI) systems and predicting how they will respond to future excitations. The

particular frequency response methodology employed by this exercise involves conducting a series

of manual measurements of the responses to individual sinusoids across a range of frequencies.

It relies on a mathematical relationship that relates the time-domain properties of a sinusoidal

excitation to the system’s frequency response function. After collecting manual measurements,

we will use the Loopinator Software to automate the process and measure the system’s frequency

response via a frequency sweep. The results from the Loopinator Software will then be exported

into MATLAB and used as a comparison against the manual measurements we collected earlier.

5.2 Background on Frequency Response

There are several ways to measure the frequency response of a system, but one of the most

common (and hopefully most intuitive) is to simply apply a sine wave to the input and measure

the response in terms of the gain and phase delay. Sinusoidal excitations are somewhat unique in

that they have a rather direct relationship between the time-domain expression and the frequency

response function. This relationship is illustrated in Fig. 5.1.

cos(ωt) H(jω) |H(jω)| cos(ωt+ ̸ H(jω))

Figure 5.1: Block diagram illustrating the effects of an LTI system on a sinusoidal excitation.

From Fig. 5.1, we can see that the magnitude of the frequency response ∣𝐻(𝑗𝜔)∣ is the ratio

between the final amplitude of the sinusoid and the initial amplitude; in other words, the gain.

We can also see that the phase of the frequency response ∠ 𝐻(𝑗𝜔) is the phase difference between

the output and the input.

Recall that 𝐻(𝑗𝜔) is a complex number and that the magnitude, ∣𝐻(𝑗𝜔)∣, and phase, ∠ 𝐻(𝑗𝜔),
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is the expression of this number in polar form. Typically, graphing 𝐻(𝑗𝜔) entails producing the

two separate plots, one of the ∣𝐻(𝑗𝜔)∣ and one of ∠ 𝐻(𝑗𝜔). Both are plotted with respect to

frequency, 𝜔, across the same range of values (i.e., share the same 𝜔-axis) with a logarithmic

spacing. Sometimes, rather than angular frequency, 𝜔, the plots are produced with respect to

Hertzian frequency 𝑓 (recall that 𝑓 = 2𝜋𝜔). Often, the magnitude is plotted in decibels because

it affords a larger dynamic range. Conversion of ∣𝐻(𝑗𝜔)∣ to dB is using the equation:

∣𝐻(𝑗𝜔)∣dB = 20 log10(∣𝐻(𝑗𝜔)∣) . (5.1)

5.3 System Identification using Frequency Response

We will now use our knowledge of frequency response to identify/characterize a ‘mystery’ system

that has been loaded onto the CyDAQ by ETG. Since you need to connect both the Wavegen

and the Scope to the input of CyDAQ, you will need to attach a Jumper Splitter to the CyDAQ.

Make the following connections:

• Connect the Jumper Splitter to the CyDAQ’s 𝑉in Terminals, (Vin-) and (Vin+).

• Connect the DAD’s Ground (GND) and Scope Ch. 1 Negative (CH1-) Terminals to

the CyDAQ’s Negative 𝑉in Terminal (Vin-), on the Splitter.

• Connect the DAD’s Waveform Generator 1 (W1) and Scope Ch. 1 Positive (CH1+)

Terminals to the CyDAQ’s Positive 𝑉in Terminal (Vin+), on the Splitter.

• Connect the DAD’s Scope Ch. 2 Negative (CH2-) and Scope Ch. 2 Positive (CH2+)

Terminals to the CyDAQ’s 𝑉out Terminals, (Vout-) and (Vout+), respectively.

The pinouts for the CyDAQ and the DAD are given in Fig. 5.6 in Appendix 5.A. Launch the

WaveForms Software and open a new Wavegen tab. Enter the following configuration:

• Type: Sine

• Frequency: 100 Hz

• Amplitude: 5 V

• Offset: 0 V

• Symmetry: 50%

• Phase: 0°
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Once this configuration is entered, click the Run button.

5.3.1 Manual Measurements in WaveForms

Measuring Gain in WaveForms

Launch a Scope tab in WaveForms. Ensure you have both Channels enabled and that both

are visible in the Scope viewport. Recall that a system’s gain, 𝐺, is the ratio of the output

amplitude over the input amplitude:

|𝐻(𝑗𝜔)| = 𝐺 = 𝑉out / 𝑉in. (5.2)

Like standalone hardware oscilloscopes, the WaveForms scope comes equipped with a handy

feature: measurements. Open the Measurements Side View by clicking the Measurements

button on the upper command ribbon. The location of the Measurements button is illustrated

in Fig. 5.2.

Once you’ve opened the Measurements Side View, click the Add button in the side

view and select Defined Measurement. A new dialog window will open that consists of two

columns of expandable lists. The left column will contain a list of oscilloscopes channels. Select

Channel 1 for now. The right column contains all the available measurements for the currently

selected channel. We want to measure the signal amplitude —this is a vertical measurement.

Expand the list node labeled Vertical and select Amplitude from the child list. Click Add to

add the amplitude measurement to the Measurements Side View. Repeat this process for

Channel 2.

Once you’ve added amplitude measurements for both channels, you can Stop the scope

and record their values. From the connections we made in Sec. 5.3, we know that Channel 1

corresponds to our input signal and Channel 2 corresponds to our output signal. We can then

use the amplitude measurements in WaveForms to compute the gain at the current frequency

via Eq. (5.2).
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Figure 5.2: Measuring amplitude with Measurements feature

Measuring Phase in WaveForms

Measuring the phase is slightly more involved–there is no phase-difference measurement. Instead,

you’ll have to measure the time delay from the input signal to the output signal using either the

L-tool or the H-tool (these are discussed in the Introduction to CyDAQ exercise) then convert

that time delay to a phase. The formula to convert a time delay to a phase is:

∠𝐻(𝑗𝜔) = 𝜙∘ = 360∘ ⋅ 𝑓 ⋅ Δ𝑡. (5.3)

where 𝑓 is the signal frequency in Hz and Δ𝑡 is the time delay in seconds. In your report, explain

why Eq. (5.3) is the conversion formula. I.e., explain how you might come up with the formula

if you couldn’t remember it. Hint: Think of 𝑓 ⋅ Δ𝑡 = 1
𝑇 Δ𝑡 as the fraction or percent of a period

by which the signal is delayed.

Fig. 5.3 shows an example of measuring the phase delay. This is only an example and may

not match your values. You may need to change your time base to get an accurate measurement.

In this example, the frequency of the signal is 1 kHz, so 𝜙∘ = 360∘ ⋅ 1 kHz ⋅ 109 µs = 39.2°.
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When measuring the time delay for signals with small amplitudes (sub 100 mV), the DC

offset from the op-amps inside the CyDAQ can cause your Channel 2 voltage to drift above or

below the GND reference. You may need to adjust the channel offset to account for this. When

measuring, ensure that you measure between the same points on the two sine waves (e.g., always

measure from peak to peak or from zero-crossing to zero-crossing as is done in Fig. 5.3).

Figure 5.3: Measuring time delay of output (blue). Phase delay 𝜙∘ = 360∘ ⋅ 𝑓 ⋅ Δ𝑡

5.3.2 Tabulate Your Results

Frequency Gain [Ratio] 𝜙 [Degrees]
100 Hz
1 kHz
10 kHz
100 kHz

Table 5.1: Table of manual measurements

Repeat the steps in Secs. 5.3.1 and 5.3.1 for each frequency value in Table 5.1. Include the

completed table in your lab report. Discuss these results. Based on your measurements, what

type of filter do you believe has been deployed on the CyDAQ.
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5.3.3 Automated Measurements

Now that you’ve completed a series of manual measurements, we will compare your results to

the frequency response calculated using an automated method. Close the WaveForms Software.

The frequency response estimation software we will use is called Loopinator. It is available on

each of the lab computers courtesy of the Electronics and Technology Group (ETG). It can be

located by searching “Loopinator” in the Windows Start Menu. Launch Loopinator. Fig 5.4

depicts the main Loopinator interface.

Figure 5.4: Loopinator Interface

The Loopinator Software won’t work with the DAD while the Waveforms Software is open,

so make sure it is closed before starting. Check the Use DAD checkbox and set the Signal

Generator start and stop frequencies to 100 Hz and 100 kHz respectively. Enter 60 for Points

per decade. Leave the output level at 1 V. Click Start and you should see the frequency

response being plotted on the left. Once it has finished, choose a location to save the data;

check the Open MATLAB checkbox, and click the MATLAB Button. Fig. 5.5 shows an

example setup. MATLAB should open a file containing the swept data.
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Figure 5.5: Loopinator Export Setup

5.4 Comparing Results in MATLAB

The MATLAB script generated by Loopinator is quite long with many lengthy variable defini-

tions. We want to work with this data so we will be modifying this script. The first modification

should be to add:

clearvars; close all; clc;

at the top of the Loopinator script. This will alleviate errors that crop up between successive

runs of the script.

Navigate to the bottom of the script (below all of the variable definitions). Here, add code

that will produce a figure consisting of two subplots: one depicting the magnitude in decibels

and the other depicting the phase in degrees. Both of these should be plotted with respect to

frequency on a semilog axis—the MATLAB plot-like function, semilogx(...) will be useful for

this. All of the variables you need (the magnitude, phase, and frequency vectors) have been

generated by Loopinator; you simply need to locate them in your script. Do not replace any

code generated by Loopinator. Once you’ve added the code to produce this figure, run your

script to confirm that it behaves as expected. Don’t forget to title and label the axis of your

plots.

Now, we will compare our manual measurements of the frequency response to the response

computed by Loopinator. After the Loopinator variables but before the plotting code, create

three vectors containing each of the columns of your Table 5.1. Since the Loopinator magnitude

values we plotted are decibels, you will have to convert your gain measurements to decibels (refer
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to Eq. (5.1)). Use your knowledge of MATLAB to compute the decibel equivalent of your gain

measurements and store them in a new variable.

Modify the plotting section of your script to overlay scatter plots of your manual magnitude

and phase measurements atop the respective Loopinator subplots. You will need to turn hold

on for both subplots so that the scatter(...) function doesn’t overwrite the Loopinator data.

Once you’ve updated your code, run your script to confirm that it works as you would expect.

You may notice that your manual phase measurements seem inverted. This occurs if you had

measured the time delays in Sec. 5.3.1 as positive numbers. If this was the case, it is acceptable

to invert your manual phase measurements in the MATLAB code to better match the Loopinator

values.

Include the final figure of your Loopinator magnitude and phase plots overlayed with your

manual measurements in your lab report. Comment on the results. How close were your manual

measurements to the values computed by Loopinator? What type of filter was deployed on the

CyDAQ?

5.5 Report Checklist

Work with lab partner(s) to create a lab report for this lab exercise. Be sure to include the

names of each person in your group on the report. This report should be a typed document that

outlines the basic procedure of the lab exercise and should include any results you were asked to

obtain. Your report should follow a cohesive narrative—it should always be apparent why you

have presented the results you have. Do not simply insert results without (1) motivating the

problem and (2) providing an analysis of the data. Ensure that your report is grammatically

correct with complete sentences. This does not mean your report must be wordy with filler—in

fact, avoid filler and state your ideas concisely.

Be sure the following are included in your report:

• Section 5.3.1: Explain the Δ𝑡 to 𝜙∘ formula of Eq. (5.3).

• Section 5.3.2: Fill out all the rows of Table 5.1 and include the complete table in your

report. Discuss these results.

• Section 5.3.2: Based on your manual measurements, what type of filter do you believe has
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been deployed on the CyDAQ.

• Section 5.4: Include the final figure of your Loopinator magnitude and phase plots over-

layed with your manual measurements in your report.

• Section 5.4: Discuss the accuracy of your manual measurements compared to the results

calculated by Loopinator. What type of filter was deployed on the CyDAQ?

5.6 Acknowledgments

This lab exercise is based on an exercise drafted by Isaac Rex.

5.A Hardware Ports

𝑉out

𝑉in

5 V Sensor In

3.5 mm
Audio In

(a) CyDAQ showing, 𝑉in, 𝑉out, 3.5 mm
Audio In and 5 V Sensor In.

(b) DAD pin-out.[1]

Figure 5.6: Pin-outs/terminals for CyDAQ and DAD.
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Open Signals and Systems Laboratory Exercises Second Edition

Fourier Series Part I

The Math Behind the Music

Overview

In this lab exercise, students will use a collection of MATLAB scripts (provided in the supplemen-

tary materials for this exercise or Appendices 6.A–6.E) to compute the Fourier Series coefficients

of periodic signals and synthesize signals given a set of Fourier Series coefficients. In addition

to a typed report, students are asked to submit two generated audio files piano_output.wav and

scale_output.wav.

Learning Objectives

By the end of this lab exercise, students will be able to:

1. Concatenate vectors and matrices of compatible sizes in MATLAB.

2. Compute the Fourier Series coefficients of a periodic signal in MATLAB.

3. Synthesize in a signal MATLAB given its Fourier Series coefficients.

4. Compute the negative Fourier Series coefficients of a real function given the positive coef-

ficients.

6.1 Introduction

In this lab exercise, you will learn how to approximate Fourier Series coefficients using MATLAB.

This will allow you to find the Fourier Series for any periodic signal, even if it does not have a

form that can be represented in an equation.
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6.2 MATLAB Background

6.2.1 Matrix Concatenation

In MATLAB it is possible to concatenate two or more matrices whose sizes are compatible. For

instance, consider the matrices:

1 A = ones(2, 3);

2 B = zeros(2, 1);

3 C = 2*ones(2, 2);

It is possible to create a new matrix D consisting of the matrix, A, horizontally concatenated with

the matrices B and C using the following command:

1 D = [A, B, C]

MATLAB produces the following output:

1 D =

2

3 1 1 1 0 2 2

4 1 1 1 0 2 2

This horizontal concatenation is possible because the matrices A, B, and C have the same number

of rows. Attempting to horizontally concatenate matrices without the same number of rows:

1 A = ones(2, 3);

2 B = zeros(1, 3);

3 C = [A, B]

produces an error:

1 Error using horzcat

2 Dimensions of arrays being concatenated are not consistent.

It is also possible to vertically concatenate two or more matrices, permitted that each matrix

has the same number of columns:

1 A = ones(2, 3);
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2 B = zeros(1, 3);

3 C = [A; B]

MATLAB produces the following output:

1 C =

2

3 1 1 1

4 1 1 1

5 0 0 0

6.2.2 Combining Concatenation with Array Slicing

Vector concatenation can be combined with array slicing to concisely generate new matrices

from existing ones:

1 a = 1:3

2 b = [a(3:-1:1), 0, a]

MATLAB produces the following output:

1 b =

2

3 3 2 1 0 1 2 3

6.2.3 Successive Concatenation

It is also possible to successively concatenate a matrix in order to add additional content. For

example, we could add additional entries to a vector x as such:

1 x = [1, 1, 2, 3, 5];

2 x = [x, 8];

3 x = [x, 13, 21]

MATLAB produces the following output:

1 x =

2
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3 1 1 2 3 5 8 13 21

This technique is incredibly inefficient, however, it is often useful for simple tasks and rapid

prototyping.

6.3 Fourier Series and Musical Instruments

Music is just another signal. A musical note could represented by the function, 𝑥(𝑡), and may

be any periodic signal. For a periodic musical note, 𝑥(𝑡), it is possible to approximate 𝑥(𝑡) using

a sum of sinusoids.

6.3.1 Fourier Series Definition

Recall that the Fourier Series represents continuous-time, periodic signals as a sum of sinusoids:

𝑥(𝑡) =
∞

∑
𝑘=−∞

𝑋𝑘 𝑒𝑗𝑘𝜔0𝑡, (6.1)

𝑋𝑘 = 1
𝑇0

∫
𝑇0

0
𝑥 (𝑡) 𝑒−𝑗𝑘𝜔0𝑡 d𝑡, (6.2)

where 𝜔0 = 2𝜋/𝑇0.

From Eq. (6.1), we see that sinusoids are summed for 𝑘 from −∞ to ∞. That is a lot of

summing to do—but most signals can be approximated by only a handful of 𝑋𝑘 coefficients and

sinusoids. For instance, a signal might be approximated using 𝑋𝑘 for 𝑘 from −5 to 5.

6.3.2 Fourier Series of a Triangle Wave

Let 𝑥(𝑡) be a 𝑇0 = 2 periodic triangle wave signal given by:

𝑥 (𝑡) =

⎧{{{
⎨{{{⎩

𝑡 0 ≤ 𝑡 < 1

2 − 𝑡 1 ≤ 𝑡 < 2

Repeat with a period of 2 ∀𝑡

(6.3)
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Such a signal is depicted in Fig. 6.1.

𝑥(𝑡)

𝑡
0 1 2 3 4

0

1

Figure 6.1: Triangle wave with a height of 1 and a period of 𝑇0 = 2.

Manually compute the Fourier Series coefficients 𝑋−5 through 𝑋5 for the triangle wave 𝑥(𝑡)
using the Fourier Series analysis definition from Eq. (6.2) and include both your work and the

solutions in your lab report. It is recommended that one partner work on computing these

coefficients while the other continues forward in the lab exercise. If you are unable to compute

these coefficients in thirty minutes or less—skip this prelab exercise and return to it once you

have completed the remainder of the lab exercise.

Here are some tips for computing 𝑋−5 through 𝑋5:

• The coefficient 𝑋0 must be calculated independent from the others; in other words, you

will need to compute:

𝑋0 = 1
𝑇0

∫
𝑇0

0
𝑥(𝑡) d𝑡.

• Keep meticulous track of your +/− signs; don’t try to simplify too much in one step.

• You will need to use integration by parts for definite integrals; its formula is given as:

∫
𝑏

𝑎
𝑢 d𝑣 = [ 𝑢 𝑣 ]

𝑏

𝑎
− ∫

𝑏

𝑎
𝑣 d𝑢.

When selecting expressions for 𝑢 and d𝑣, you should choose 𝑢 to be an expression that

tends toward zero under repeated differentiation; for example, 𝑢 = 𝑒𝑡 would be a poor
choice since repeated differentiation of 𝑢 does not tend toward zero.
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The notation [𝑢 𝑣]𝑏𝑎 is similar to the syntax for evaluating definite integrals once you have

computed an anti-derivative; for instance, if 𝑢 and 𝑣 are functions of 𝑡, 𝑢(𝑡) and 𝑣(𝑡), then:

[ 𝑢(𝑡) 𝑣(𝑡) ]
𝑏

𝑎
= 𝑢(𝑏) 𝑣(𝑏) − 𝑢(𝑎) 𝑣(𝑎).

• 𝜔0 = 2𝜋/𝑇0 .

• After you have evaluated the integrals, you can use the relation 𝑒−𝑗𝜋𝑘 = (−1)𝑘 to simplify

your expressions.

6.3.3 Relationship to Musical Instruments

Ever wonder why two musical instruments playing the same note can sound so drastically differ-

ent? Each musical note corresponds to a frequency. If two instruments play the same note, their

sound waves oscillate at the same fundamental frequency. They sound so different due to the

varying harmonics between the two instruments. The difference in sound is called the “timbre”

(pronounced tam-ber) of an instrument.

The first harmonic, or fundamental frequency, corresponds to the note being played. This

harmonic must be easily heard when trying to match pitch or tune an instrument.

Musicians often listen to another instrument to tune their own. Since the fundamental fre-

quency is the most important to listen to when tuning an instrument, which of the instruments

from Fig. 6.2 should a musician tune to? Include this instrument and your reasoning in your lab

report. Hint: Look at the value of each harmonic number in the charts below. The amplitude

is the value of 𝑋𝑘 where 𝑘 is the harmonic number.

If the fundamental frequency that an instrument is playing is 440 Hz, then the next harmonics

are at 𝑘 × 440 Hz. Given a fundamental frequency of 440 Hz, compute the frequencies of the

second, third and fourth harmonics and include them in your report.
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(a) Harmonic spectrum of a guitar. (b) Harmonic spectrum of a piano.

(c) Harmonic spectrum of an oboe.

Figure 6.2: Harmonic spectra of a guitar, piano and oboe; reproduced from Bell.[1]

6.3.4 Riemann Approximation of Fourier Series Coefficients

An integral is used when finding the values of 𝑋𝑘 by hand. However, musical notes are nearly

impossible to integrate. So, we will use a method of approximation called a Riemann Sum.

𝑋𝑘 ≈ 𝑇𝑠
𝑇0

𝑇0/𝑇𝑠

∑
𝑛=0

𝑥 (𝑇𝑠𝑛) 𝑒−𝑗𝑘𝜔0𝑇𝑠𝑛. (6.4)

A Riemann Sum approximates the integral by breaking up the area under the graph into

many small rectangles. Then, all the areas of the rectangles are added together. This will give

a good enough approximation of the integral for our purposes. See Fig. 6.3 for reference.

Compare Fig. 6.3 with Eq. (6.4), where 𝑇0 is the fundamental period of the signal, and 𝑇𝑠

is the sampling period which corresponds to the inverse of the sampling frequency (𝑇𝑠 = 1/𝑓𝑠).

The function 𝑥(𝑡) is sampled into a discrete function 𝑥[𝑛] where each n corresponds to a sample

number. Since 𝑥[𝑛] is an array of samples, 𝑇𝑠 is the time between samples. Therefore 𝑥(𝑇𝑠𝑛) =
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Figure 6.3: Riemann sum approximation of an integral; reproduced from Kllogjeri.[2]

𝑥[𝑛]. In other words, Eq. (6.4) takes the value of 𝑇𝑠 ⋅ 𝑥[𝑛] ⋅ 𝑒−𝑗𝑘𝜔0𝑇𝑠𝑛 to find the area of each

rectangle in a Riemann Sum. After the area of each rectangle is found, all the areas are summed

together.

Once the values for 𝑋𝑘 have been found, an approximated signal can be reconstructed. The

truncated Fourier Series synthesis definition:

̃𝑥 [𝑛] =
𝐾

∑
𝑘=−𝐾

𝑋𝑘 𝑒𝑗𝑘𝜔0 𝑛 (6.5)

shows how a signal can be reconstructed. Notice that this equation is very similar to Eq. (6.1)

except for the summation limits. The truncated synthesis definition, Eq. (6.5), recreates (or

synthesizes) 𝑥[𝑛] by summing a set of sinusoids represented by 𝑋𝑘 ⋅ 𝑒𝑗𝑘𝜔0 𝑛 between −𝐾 and 𝐾.

Consequentially, 𝐾 is called the order of the re-synthesis.

6.4 Computing Fourier Series Coefficients using MAT-

LAB

The following scripts are available in this exercise’s supplementary materials (or Appendices 6.A–6.E):

find_Xk.m, find_Xks.m, fsynth.m, gen_square.m, and gen_tri.m. These scripts are auxiliary

MATLAB functions and cannot be run as standalone scripts. You can call and use the help

command on them as you would any other function in MATLAB—provided they are visible
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within your Current Folder View.

Create a new folder that will serve as your project directory and place each of the supple-

mentary MATLAB functions into it. When this lab manual instructs you to create a new script,

do so in this folder and ensure that this directory is the same directory visible in MATLAB’s

Address Bar and Current Folder View.

6.4.1 Approximating the Fourier Series of a Triangle Wave

We will now return to the triangle wave presented in Sec. 6.3.2 and tackle the problem of com-

puting its Fourier Series coefficients, 𝑋𝑘, for −5 ≤ 𝑘 ≤ 5 by employing MATLAB. This section

will help familiarize you with many of the MATLAB functions included in the supplementary

materials and walk you through what they do and how they work.

First, create a new standalone MATLAB script, fs_triangle_wave.m. Our first step is to

recreate the triangle function given by Eq. (6.3). This describes a triangle wave that rises from

0 to a height of 1 and falls back to 0 over a period of 𝑇0 = 2. The gen_tri.m MATLAB script

can generate such triangle waves.

The gen_tri(t, T0) function takes two parameters: a time vector, t, and a scalar representing

the period of the triangle wave, T0. Thus, we are tasked with determining the proper values of t

and T0 to generate a triangle wave that will be used to approximate Fourier Series coefficients.

Determining the value of T0 is straightforward; it is simply the period of the triangle wave, which

is given as 𝑇0 = 2.

Generating an appropriate time vector, t, requires a bit more thought. To accurately approx-

imate Fourier Series coefficients, the triangle wave we generate should:

1. span exactly one period, and

2. consist of a finely sampled set of points such that the Riemann Sum from Eq. (6.4) produces

an accurate approximation of the integral from Eq. (6.2).

This means that our time vector, t, should span from 0 to 2 (the length of one full period of the

triangle wave) and have a very small distance between samples, or sampling period: 𝑇𝑠. A small

sampling period implies that we have a large sampling frequency, 𝑓𝑠 (as these two quantities are

reciprocals). We will select 𝑓𝑠 = 22050 as a sufficiently large value.
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In your fs_triangle_wave.m, enter the following code:

Listing 6.1: fs_triangle_wave.m

1 clc; close all; clearvars;

2

3 T0 = 2; % the period of the triangle

4 T_dur = 2; % the duration of the triangle (we only want a single period)

5 Fs = 22050; % the sampling rate of the triangle wave

6 Ts = 1/Fs;

7

8 % Generate the triangle wave

9 t = 0:Ts:T_dur; % time vector of duration T_dur with sample period of T_s

10 x_tri = gen_tri(t, T0); % call the provided gen_tri script

11

12 % Plot the triangle wave

13 figure(1);

14 plot(t, x_tri)

15 xlabel('t')

16 title('Triangle Wave x(t)')

Run the script. MATLAB should produce a plot of a single period of the triangle wave. Review

the script you’ve written so far and ensure you understand everything. In particular, ensure

that you understand how the time vector, t, was derived and what the values 𝑇𝑠, 𝑇0 and 𝑇dur

represent. An illustration of how each of these values relate to one another is given in Fig. 6.4.

𝑇0

𝑇dur

𝑇𝑠

Figure 6.4: An illustration of what the parameters 𝑇𝑠, 𝑇0 and 𝑇dur from Listing 6.1 represent.
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Note that the illustration given in Fig. 6.4 will not match the plot generated by the MATLAB

script. For one, Fig. 6.4 depicts two periods of the triangle wave while the MATLAB script only

generates one period. Secondly, the illustration depicts a value of 𝑇𝑠 which is much too large for

the Riemann Sum of Eq. (6.4) to offer an acceptable approximation of Eq. (6.2).

Now we will compute the Fourier Series coefficients, 𝑋𝑘, for −5 ≤ 𝑘 ≤ 5. This can be

accomplished using the find_Xks.m MATLAB file. The find_Xks(x, K, Ts) function takes three

parameters: a vector, x, containing a single period of a periodic signal 𝑥(𝑡) that we wish to

compute the Fourier Series coefficients of; a scalar, K, representing the largest/smallest Fourier

Series coefficient to compute; and a scalar, Ts, specifying the sampling period of x. The find_Xks

() function returns a vector, X𝑘𝑠, consisting of the Fourier Series coefficients, 𝑋𝑘, for −𝐾 ≤
𝑘 ≤ 𝐾:

X𝑘𝑠 = [ 𝑋−𝐾 ⋯ 𝑋0 ⋯ 𝑋𝐾 ] . (6.6)

Add the following code to your fs_triangle_wave.m script:

19 % Find the Fourier Series coefficients, X_ks, of the triangle wave

20 K = 5; % The largest/smallest Fourier Series coefficients to compute

21 Xks = find_Xks(x_tri, K, Ts);

Run the MATLAB script. This should approximate the Fourier Series coefficients, 𝑋𝑘, for

−5 ≤ 𝑘 ≤ 5 and store them in the vector Xks.

Now let’s compare the approximated coefficients’ values to those you computed manually in

Sec. 6.3.2. To aid us in this effort, let’s plot the real portion of each coefficient approximated by

MATLAB (if everything was done properly, these coefficients should be “mostly real” anyways,

with any imaginary portion being a product of numerical error or imprecise approximation).

Add the following code to your fs_triangle_wave.m script:

23 k = -K:K;

24 figure(2)

25 stem(k, real(Xks))

26 title('Re(X_k)')

27 xlabel('k')
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Run the script. Compare the results of MATLAB’s approximation to the values you computed

manually. Comment on this in your lab report.

Finally, we will re-synthesize a Fourier Series approximation of the original triangle wave

using our computed Fourier Series coefficients. This can be accomplished with the fsynth.m

MATLAB file.

The fsynth(Xks, T0, Ts, T_dur) function takes four parameters: a vector, Xks, consisting

of the Fourier Series coefficients 𝑋𝑘; a scalar, T0, containing the fundamental period (reciprocal

to the fundamental frequency 𝑓0) we wish to synthesize; a scalar, Ts, containing the sampling

frequency of the synthesized signal; and a scalar, T_dur, containing the total duration of the

sample we wish to synthesize. The fsynth function returns a vector, ̃𝑥(𝑡), containing the Fourier

series approximation of 𝑥(𝑡).

The ability to choose 𝑇0 allows us to synthesize signals with fundamental frequencies differ-

ent from that of the original signal—this comes in handy for say, synthesizing instruments at

different note pitches—but in our case, we will simply re-synthesize the signal using the original

period, 𝑇0 = 2.

The ability to choose 𝑇𝑠 allows us to synthesize signals with sampling periods that differ from

the original signal. In our case, we will continue to use a sampling period of 𝑇𝑠 = 1/22050.

The ability to choose 𝑇dur lets us synthesize signals with total durations that differ from the

original signal. For the sake of example, let’s choose 𝑇dur = 4, equivalent to 2 periods.

Add the following code to your fs_triangle_wave.m script:

30 % Re-synthesize the tri wave

31 T_dur = 4; % now with a duration of 4 sec

32 x_hat = fsynth(Xks, T0, Ts, T_dur);

33 t_hat = 0:Ts:T_dur;

34

35 figure(3)

36 plot(t_hat, x_hat)

37 xlabel('t')

38 title('Re-synthesized x(t)')

Run the script. MATLAB should produce a plot of the Fourier Series approximation of 2 periods
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of a triangle wave. Does it look how you would expect?

6.4.2 Re-synthesizing a Square Wave

Using the fs_triangle_wave.m script as your guide, create a new script, fs_square_wave.m which

uses the gen_square, find_Xks and fsynth functions to generate Fourier Series approximations

of square waves for 𝐾 = 2, 10, and 100. Plot the signals over three periods on the same figure

using separate subplots. Comment on the results. Use the default sampling period 𝑇𝑠 = 1/22050
and default fundamental period 𝑇0 = 1 where needed. When generating a signal, x, to pass to

the function find_Xks(...), ensure that x spans only one period.

Once you have re-synthesized the square waves for 𝐾 = 2, 10, and 100, you’ll notice that

the synthesized signal overshoots the amplitude value 1 and undershoots the amplitude value 0.

Measure the peak values of the square wave overshoot when the signal transitions from 1 to 0

and 0 to 1 for all three cases. Make a table of the values. Describe what you observe. Does this

overshoot/undershoot get better or worse for increasing values of 𝐾?

6.4.3 Re-synthesizing a Piano

In this section, you will create a simplified version of a musical note for a piano. In music,

timbre is the perceived sound quality of a musical note, sound, or tone. Timbre distinguishes

different types of sound production, such as choir voices and musical instruments (strings, wind,

and percussion). The physical characteristics of sound that determine the perception of timbre

include spectrum and envelope (describes how a sound changes over time). In this lab exercise,

we focus on the spectral harmonics and the tonal character of the underlying periodic sound.

Suppose we are given the following Fourier Series coefficients for a piano: 𝑋0 = 0, 𝑋1 = 0.1,

𝑋2 = 0.33, 𝑋3 = 0.06, 𝑋4 = 0.05, 𝑋5 = 0.045, 𝑋6 = 0, 𝑋7 = 0.02, 𝑋8 = 0.005, 𝑋9 = 0.005,

𝑋10 = 0, 𝑋11 = 0.005, 𝑋12 = 0.01. Suppose that we are asked to use these coefficients to

synthesize a piano note which sounds A4 (440 Hz) for 2 seconds, with a sampling frequency of

𝑓𝑠 = 22050.

From the previous sections, we know that we can use the fsynth(...) function to generate

such a signal. We know that to generate a note with a fundamental frequency 𝑓0 = 440, we
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would need to select a fundamental period of 𝑇0 = 1/440. We are also given 𝑇𝑠 and 𝑇dur. There

is still one big problem: we are not given the complete Fourier Series coefficient vector, X𝑘𝑠.

Rather, we are only given the coefficients at positive indices: 𝑋0 through 𝑋12. We are still

missing the negative indices: 𝑋−12 through 𝑋−1.

Luckily, there is a property we can exploit which will give us the values of these coefficients

at negative indices. We know (or rather, we assume) that the time-domain piano signal is real.

Real functions in the time domain are conjugate symmetric in the frequency domain.[3]:204 This

means that if your 𝑥 (𝑡) signal is real (which your piano sound is) and you know 𝑋𝑘 for 𝑘 > 0,

you get the 𝑘 < 0 terms for free—they are given by:

𝑋−𝑘 = conj(𝑋𝑘) for all 𝑘 ≠ 0,

where conj(Xk) refers to taking the complex conjugate[4] of 𝑋𝑘.

Create a new script, synthesize_piano.m, and fill-in the following code:

Listing 6.2: synthesize_piano.m

1 clc; close all; clearvars;

2

3 F0 = 440;

4 T0 = 1/440;

5 T_dur = 2;

6 Fs = 22050;

7 Ts = 1/Fs;

8

9 X0 = 0;

10 X_ks_rh = [0.1, 0.33, 0.06, 0.05, 0.045, 0, 0.02, 0.005, 0.005, 0, 0.005, 0.01];

11 X_ks = [TODO]; % <- fill in the TODO, use vector concatenation and array slicing

12

13 x_hat = fsynth(TODO); % <- fill in TODO

14

15 % we need this so this sound data doesn't exceed +/-1 and clip

16 x_hat = x_hat./max(abs(x_hat));

17

18 plot(x_hat)
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19

20 sound(x_hat, Fs);

21 audiowrite('piano_output.wav', x_hat, Fs)

Complete each TODO portion of the above script. Hint: You can use matrix concatenation and

array slicing to define the vector X_ks.

Once you have completed the script, run it in MATLAB. Adjust the viewing region of the

plot (using the axis command) so that exactly one period of the piano signal is visible. In-

clude the plot of a single period of the piano signal in your lab report. Include the resulting

piano_output.wav as an attached file in your submission.

Synthesizing a Piano Scale

Similar to the previous section, we will use the same Fourier Series coefficients to synthesize a

scale of piano notes using the frequencies in Tab. 6.1 with each note lasting 1 second. Create a

new script called synthesize_piano_scale.m and enter the following code:

Listing 6.3: synthesize_piano_scale.m

1 clc; close all; clearvars;

2

3 noteF0s = [523.25, 587.33, 659.25, 698.46, 783.99, 880.00, 987.77, 1046.50];

4

5 T_dur = 1; % duration of each note

6 Fs = 22050;

7 Ts = 1/Fs;

8

9 X0 = 0;

10 X_ks_rh = [0.1, 0.33, 0.06, 0.05, 0.045, 0, 0.02, 0.005, 0.005, 0, 0.005, 0.01];

11 X_ks = [TODO]; % <- fill in the TODO, use vector concatenation and array slicing

12

13 x_scale = [];

14 x_scale = [x_scale, fsynth(TODO)]; % <- fill in the TODO

15 % repeat 'x_scale = [x_scale, fsynth(TODO)];' 7 more times

16 % for a total of 8 notes in the C-major scale

17 % ...
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18 % ...

19

20 % we need this so this sound data doesn't exceed +/-1 and clip

21 x_scale = x_scale./max(abs(x_scale));

22

23 figure(1);

24 plot(x_scale)

25 xlabel('t')

26 title('C-major scale on piano')

27

28 sound(x_scale, Fs); % play the sound

29 audiowrite('scale_output.wav', x_scale, Fs)

Note Frequency (Hz)
C5 523.25
D5 587.33
E5 659.25
F5 698.46
G5 783.99
A5 880.00
B5 987.77
C6 1046.50

Table 6.1: Note frequencies of a C major scale; reproduced from Suits.[5]

Complete the TODO sections of the code. You will need to use successive concatenation with

the vector x_scale to synthesize a complete scale. Include the resulting scale_output.wav as an

attached file in your submission. Comment on what you hear.

6.5 Report Checklist

Work with lab partner(s) to create a lab report for this lab exercise. Be sure to include the

names of each person in your group on the report. This report should be a typed document that

outlines the basic procedure of the lab exercise and should include any results you were asked to

obtain. Your report should follow a cohesive narrative—it should always be apparent why you
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have presented the results you have. Do not simply insert results without (1) motivating the

problem and (2) providing an analysis of the data. Ensure that your report is grammatically

correct with complete sentences. This does not mean your report must be wordy with filler—in

fact, avoid filler and state your ideas concisely.

Be sure the following are included in your report:

• Section 6.3.2: Using the Fourier series analysis definition in Eq. (6.2), manually com-

pute the Fourier Series coefficients 𝑋−5 through 𝑋5 for the triangle wave signal given by

Eq. (6.3). Provide both the result and your work in the lab report.

• Section 6.3.3: Based on the spectra from Fig. 6.2, determine which instrument is the best

for a musician to tune to. Provide your reasoning.

• Section 6.3.3: Given a fundamental frequency of 440 Hz, compute the frequencies of the

second, third and fourth harmonics.

• Section 6.4.1: Approximate the coefficients of the triangle wave from Eq. (6.3) in MATLAB

using the provided gen_tri and find_Xks functions. Compare this result to the coefficients

you computed manually in the pre-lab.

• Section 6.4.1: Provide a stem-plot of the real valued portion of MATLAB coefficients, 𝑋−5

through 𝑋5, you computed for the triangle wave from Eq. (6.3).

• Section 6.4.2: Re-synthesize an approximation of a square wave for 𝐾 = {2, 10, 100}
and include a figure containing subplots of each re-synthesized signal over three periods.

Comment on the results.

• Section 6.4.2: For each of your re-synthesized square waves (𝐾 = {2, 10, 100}), mea-

sure the peak values of the overshoots and undershoots and make a table of their values.

Describe what you observe.

• Section 6.4.3: Re-synthesize a piano note at 440 Hz with a sampling rate of 𝑓𝑠 = 22050
using the provided coefficients. Provide a plot of a single period of the synthesized piano

note.

• Section 6.4.3: Include the re-synthesized piano note, piano_output.wav, as an attached file

in your submission.

• Section 6.4.3: Include the synthesized notes of a C-major scale, scale_output.wav, as an

attached file in your submission.
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6.A Generate Triangle Wave Function

Listing 6.4: gen_tri.m

1 function x = gen_tri(t, T0)

2 % GEN_TRI generates a T0 periodic balanced triangle wave.

3 % x = GEN_TRI(t, T0) balanced triangle wave with a period of

4 % T0 seconds with respect to time vector t.

5 %

6 % Usage example:

7 % Ts = 1/22050;

8 % t = 0:Ts:10;

9 % x = gen_tri(t, T0);

10

11 % Written By: Julie Dickerson, 2020

12 % Updated By: Aaron Fonseca, 2024

13

14

15 t_falling = T0 / 2;

16 tri_slope = 1 / t_falling;

17

18 tri_func = @(t) ...

19 (t <= t_falling).*(t .* tri_slope) + ...

20 (t > t_falling).*(1 - ((t - t_falling) .* tri_slope));

21

22 x = tri_func(mod(t, T0));

23 end

140



6.B Generate Square Wave Function

Listing 6.5: gen_square.m

1 function x = gen_square(t, T0)

2 % GEN_SQUARE generates a T0 periodic 50 percent duty cycle square wave.

3 % x = GEN_SQUARE(t, T0) generates a 50 percent duty cycle square wave

4 % with a period of T0 seconds with respect to time vector t.

5 %

6 % Usage example:

7 % Ts=.0001; T0=4; Tdur=8;

8 % t = 0:Ts:Tdur;

9 % x = gen_square(t, T0);

10

11 % Written By: Julie Dickerson, 2020

12 % Updated By: Aaron Fonseca, 2024

13

14

15 square_func = @(t) 0.*t + 1.*(t<=T0/2);

16 x = square_func(mod(t, T0));

17 end

6.C Compute Fourier Series Coefficients Function

This function requires the find_Xk.m function (see Appendix 6.D) to run.

Listing 6.6: find_Xks.m

1 function X_ks = find_Xks(x, largestK, Ts)

2 % FIND_XKS Computes the Fourier series coefficients of x between +/-largestK.

3 % X_ks = FIND_XKS(x, largestK, Ts) computes the Fourier seires coefficients

4 % between -largestK and largestK of the signal x, where largestK is a

5 % positive integer, x is a column vector containing a *single* period of a

6 % function and Ts is the sampling period of x.

7
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8 % Written By: Julie Dickerson, 2020

9 % Updated By: Aaron Fonseca, 2024

10

11

12 % Set up the coefficient index vector

13 ks = -largestK:largestK;

14

15 % setup vector for results

16 numK = length(ks);

17 X_ks = zeros(size(ks));

18

19 % loop through all coefficients to compute coefficients

20 for i = 1:numK

21 X_ks(i) = find_Xk(x, ks(i), Ts);

22 end

23 end

6.D Compute Fourier Series Coefficient Function

Listing 6.7: find_Xk.m

1 function X_k = find_Xk(x, k, Ts)

2 % FIND_XK Computes a single Fourier series coefficient via Riemann approx.

3 % X_k = FIND_XK(x, k, Ts) computes the kth Fourier series coefficient of the

4 % signal: x, where x is a column vector containing a *single* period of a

5 % function and Ts is the sampling period of x.

6

7 % Written By: Julie Dickerson, 2020

8 % Updated By: Aaron Fonseca, 2024

9

10

11 % Ensure that x is a column vector

12 [rx, �] = size(x);

13 if (rx==1)
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14 x=x.';

15 end

16

17 % Compute the length of the period, T.

18 T = length(x) * Ts;

19 w0 = (2*pi) / T;

20

21 t = 0:length(x)-1;

22 t = t * Ts;

23

24 % Compute the complex part over all values of t.

25 basis_func = exp(-1j*k*w0*t);

26

27 % The complex part mulitiplied by the function yields the Riemann sum.

28 X_k = (Ts/T) * basis_func*x;

29 end

6.E Synthesize Fourier Series Function

Listing 6.8: fsynth.m

1 function x_hat = fsynth(X_ks, T0, Ts, Tdur)

2 % FSYNTH Synthesizes a time-domain signal given Fourier series coefficients.

3 % x_hat = FSYNTH(X_ks, T0, Ts, Tdur) synthesizes 'Tdur' seconds of a T0

4 % periodic signal, with a sampling period Ts, specified by the Fourier

5 % series coefficients given in X_ks.

6 %

7 % Inputs

8 % X_ks: a 2K+1 length vector of the form:

9 % [X[-K] ... X[-1], X[0], X[1] ... X[K]]

10 % where X[k] gives the kth Fourier series coefficient of the signal

11 % to synthesize.

12 % T0: a scalar specifying the fundamental period of the signal to synthesize.

13 % Ts: a scalar specifying the sampling period of the signal to synthesize.
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14 % Tdur: a scalar specifying the total duration (in seconds) of the signal to

15 % synthesize.

16

17 % Written By: Julie Dickerson, 2020

18 % Updated By: Aaron Fonseca, 2024

19

20

21 if rem(numel(X_ks), 2) �= 1

22 error('numel(X_ks) = %d. The length of the X_ks vector should be odd.', numel(X_ks))

23 end

24 K = floor((numel(X_ks) - 1) / 2);

25 ks = -K:K;

26

27 % Find omega wich is (2*pi)/Period

28 % Frequency is the inverse of the Period

29 % T0 is the fundamental period of the function

30 w0 = (2*pi)/T0;

31

32 % make time vector for evaluation

33 t = 0:Ts:Tdur;

34

35 % Compute the Fourier approximation

36 x_hat = real(X_ks * exp(1j*w0*ks'*t));

37 end
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Open Signals and Systems Laboratory Exercises Second Edition

Fourier Series Part II

The Math Behind the Music

Overview

In this lab exercise, students will use a collection of MATLAB scripts (provided in the supplemen-

tary materials for this exercise or Appendices 7.A–7.E) and a collection of recorded instrument

samples (provided in this exercise’s supplementary materials) to compute the Fourier Series

coefficients of various instruments. Students will then use these Fourier Series coefficients to

re-synthesize instruments playing notes at various pitches and durations. In addition to a typed

report, students are asked to submit four audio files: piano_resynth.wav, two re-synthesized

instruments of their choice, and chrom_scale.wav.

Learning Objectives

By the end of this lab exercise, students will be able to:

1. Repeat/tile matrices along one or more axes in MATLAB.

2. Locate locally periodic regions of instrument recordings.

3. Use MATLAB to compute the Fourier Series coefficients of an instrument recording.

4. Use MATLAB to re-synthesize a recorded instrument at various pitches/durations using

its Fourier Series coefficients.

7.1 Introduction

In this lab exercise, you will cover how to estimate Fourier Series coefficients from instrument

recordings. You will then create a basic music synthesizer.
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7.2 MATLAB Background

In MATLAB it possible to repeat (or tile) a matrix along one or more axes using the repmat(...)

function.[1] For instance, consider the matrix:

A = ⎡
⎢
⎣

−1 0 1
1 2 3

⎤
⎥
⎦

, (7.1)

which is defined in MATLAB using the following command:

1 A = [-1, 0, 1; 1, 2, 3]

Suppose we wanted to create a matrix, B, which consists of the matrix A repeated/tiled three

times horizontally:

B = [A A A] = ⎡
⎢
⎣

−1 0 1 −1 0 1 −1 0 1
1 2 3 1 2 3 1 2 3

⎤
⎥
⎦

. (7.2)

One way to accomplish this would be to use matrix concatenation, but another way to accomplish

this is to use the repmat(...) function.

The repmat(A, m, n) function takes three parameters: the matrix, A, containing the matrix

to be repeated; the scalar, m, containing the number of times to repeat A vertically; and the

scalar, n, containing the number of times to repeat A horizontally.

Initializing B from Eq. (7.2) using MATLAB can be done with the following command:

1 B = repmat(A, 1, 3)

MATLAB produces the following output:

1 B =

2

3 -1 0 1 -1 0 1 -1 0 1

4 1 2 3 1 2 3 1 2 3

Suppose we wanted to initialize a new matrix, C, which consists of the matrix A repeated one

hundred times vertically. Give the MATLAB command (leveraging repmat(...)) to initialize
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such a matrix in your report.

7.3 Background

In the previous lab exercise, we learned about timbre (pronounced tam-ber) and how the timbre

of various instruments is defined by the harmonics present when an instrument sounds a note.

We learned that magnitude and phase of these harmonics are encoded within the Fourier Series

(FS) coefficients 𝑋𝑘. We then derived the FS coefficients for square and triangle waves and

re-synthesized them using a truncated Fourier Series. Finally, we were given the FS coefficients

𝑋𝑘 for 𝑘 ≥ 0 for a piano, which we used to synthesize a C-Major scale.

In this lab exercise, we will focus more on re-synthesizing instruments using truncated Fourier

Series and how to go about obtaining FS coefficients from recordings of instruments. The

supplementary materials for this exercise provide a large collection of instrument recordings.

All of the recordings expect piano.wav sourced from the Music Technology Group (MTG) of the

Universitat Pompeu Fabra in Barcelona as part of the good-sounds.org project.[2] The piano.wav

recording was sourced from TEDAGame’s 88 Piano Keys Pack.[3] The supplementary materials

for this exercise also provide the following MATLAB files: cut_sample.m, find_Xk.m, find_Xks.m,

fsynth.m, and plot_pitch.m. These files are also available in Appendices 7.A–7.E. You should be

familiar with the functions provided by: find_Xk.m, find_Xks.m, and fsynth.m from the Fourier

Series Part I exercises—please refer back to those for reference (if needed). The cut_sample.m

and plot_pitch.m MATLAB files are new to this lab exercise. Note that the plot_pitch.m script

utilizes the pitch(...) function, which is only available if you have the Audio Toolbox (v2019)

add-on[4] installed.

All the MATLAB files included provide functions and cannot be executed as stand-alone

scripts (i.e., you cannot execute them by pressing the Run button). Instead, these MATLAB

files provide functions that can be called so long as they are present in MATLAB’s working

directory (i.e., visible in your Current Folder View).
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7.4 Re-synthesizing Instruments

We have been provided with a collection of different instrument recordings. This exercise will

outline the process of creating synthesizable instrument patches for a subset of these instrument

recordings. These patches are sets of truncated Fourier Series, 𝑋𝑘, which encapsulate the timbre

of individual instruments. This is similar to the process of computing the FS coefficients for the

triangle and square waves of the previous exercise, except this time, rather than basic shapes,

we will be computing the FS for instruments.

7.4.1 Isolating Slices from Recordings

The first step in this process is to isolate a slice of the instrument waveform. A slice is a cut of

the instrumental waveform containing a single ‘period’ of a localized region of the waveform. The

reason period is in quotes is because instrumental recordings are not strictly periodic. When

instruments sound a given note, the total waveform can usually be partitioned into distinct

regions: an attack region, where the instrument swells from silence to its loudest point; a sustain

region, where the instrument maintains a relatively constant volume; and a decay region, were

the instrument fades to silence.

Within the sustain region of an instrument, the waveform data is locally periodic (or close to

periodic). The period in this region, 𝑇0, will be reciprocal to the fundamental frequency, 𝑓0, of

the note the instrument is sounding. To locate a slice, we must first locate the sustain region of

an instrument recording and then isolate a single period from that region.

This is best explained through example. Create a new folder that will serve as your project

directory and place each of the supplementary MATLAB functions into it. Locate piano.wav in

the supplementary materials and place it into your project directory. Launch MATLAB in your

project folder and make sure that all of the supplementary scripts and piano.wav are visible

within the Current Folder view (see Fig. 7.1).

Create a new script in your project folder called piano_slice.m. We will use this script to

explore the process of isolating a slice from piano.wav. To do so, we will leverage the included

plot_pitch(...) function. The plot_pitch(x, Fs, plotTitle) function takes three parameters:
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Figure 7.1: The current folder view showing the included scripts and piano.wav.

the matrix, x, containing the waveform data of the instrument recording; the scalar, Fs, con-

taining the sampling frequency of the instrument recording; and the character array, plotTitle,

containing a title for the figure this function produces. Once called, this function will populate

a figure with two subplots: the first depicting the waveform data of the instrument recording

with respect to the current sample, 𝑛, (e.g., it depicts the audio waveform 𝑥[𝑛]); and the second

subplot depicts the estimated fundamental frequency, 𝑓0, of the waveform with respect to the

current sample, 𝑛. Both subplots share the same 𝑥-axis.

In your piano_slice.m script, enter the following code:

Listing 7.1: piano_slice.m

1 clc; clearvars; close all;

2

3 wav_filepath = 'piano.wav';

4 [x, Fs] = audioread(wav_filepath);

5 x = x(:,1); % grab only the first channel

6

7 figure(1);

8 plot_pitch(x, Fs, 'piano.wav')

Run the MATLAB script. You should see a result similar to that depicted in Fig. 7.2. Note that

in these subplots, the 𝑥-axis is measured by sample number (𝑛), not time (𝑡).
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Figure 7.2: Result of the plot_pitch(...) function for piano.wav; the upper subplot depicts
the waveform data of the piano signal while the lower subplot depicts the estimated pitch of the
fundamental frequency at each sample; both plots share the same 𝑥-axis.

Our goal now is to locate the sustain region of the waveform. This can be done using both

subplots produced by plot_pitch(...). We want to locate a region where:

1. the amplitude (upper subplot) envelope is mostly constant (flat), and

2. the estimated pitch (lower subplot) is mostly constant.

For the piano recording in Fig. 7.2, the estimated pitch remains mostly constant around

217 Hz for 𝑛 < 2.5 × 105 but there isn’t an easily identifiable region of the amplitude waveform

that remains around the same volume (i.e., having a flat amplitude envelope).

Upon closer inspection, the amplitude envelope appears mostly constant around 𝑛 = 5350.

This isn’t directly apparent in Fig. 7.2, but can be seen by zooming in on the graph (I determined

the 𝑛 value by clicking on points on the graph and examining the 𝑥-axis). Consequentially, the

region around 𝑛 = 5350 has a high likelihood of containing our desired slice.

As mentioned earlier, a slice is a small cut of an instrument waveform that is roughly char-

acteristic of localized periodicity. As such, we can define a slice using two parameters: the

sample number at which the slice begins, 𝑛𝑎, and the total number of samples within a slice, 𝑁 .

An illustration of these parameters as they relate to waveform data is given in Fig. 7.3. Once

we’ve determined these two parameters, we can use the cut_sample(...) function to retrieve
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the waveform data of our slice. The cut_sample(x, n_a, N) function takes three parameters: a

matrix, x, containing the waveform data we wish to slice; a scalar n_a, containing the starting

sample of the slice; and a scalar, N, containing the total number of samples in the slice.

𝑁

𝑛𝑎

Figure 7.3: Illustration of the parameters: 𝑛𝑎, representing the starting sample; and 𝑁 , repre-
sentation the total number of samples within a single period of the fundamental frequency, 𝑓0.

Since we’ve identified the region around 𝑛 = 5350 as a likely candidate for where our slice

is located, we will choose 𝑛𝑎 = 5350. To obtain 𝑁 , we will exploit the relationship between

the estimated fundamental frequency, 𝑓0, and the period (in seconds), 𝑇0. We will note from

Fig. 7.2 that the estimated frequency at 𝑛 = 5350 is approximately 217.241 Hz. Therefore, the

approximate fundamental period is 𝑇0 = 1/217.241 sec. Now, we need to determine the number

of samples contained within a 1/217.241 sec. period. Since we know the sampling period of the

instrument recording, we can compute this value by dividing the number of samples per second,

𝑓𝑠, by the fundamental frequency, 𝑓0. To ensure that 𝑁 is an integer number, we must round

the final result. Consequentially, we can compute the total number of samples as:

𝑁 = round(𝑓𝑠/𝑓0) .

In your piano_slice.m script, add the following lines:

Listing 7.2: piano_slice.m (continued)
11 F0 = 217.241; % from the plot_pitch Pitch Graph

12 n_a = 5350; % from the plot_pitch Amplitude/Pitch Graphs

13 N = round(Fs/F0);
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14

15 x_slice = cut_sample(x, n_a, N);

Now, we need to verify that we obtained the proper slice. We can do so by plotting three

repetitions of the slice and inspecting the resultant graph for issues. For example, if we identified

a region of the instrument recording waveform that was not sufficiently flat (our 𝑛𝑎 is wrong), or

the estimated fundamental frequency, 𝑓0, is incorrect, we may see sharp jumps at the boundary

of each repetition, as in Fig. 7.4.

𝑛
0 50 100 150 200 250 300

−0.3

−0.2

−0.1

0

0.1

0.2

Figure 7.4: An example of three repetitions of an improperly isolated instrument slice; note the
sharp edge at the peaks—indicative of an improper estimation of the fundamental frequency, 𝑓0,
or a region of the waveform where the amplitude envelope is not sufficiently flat.

Add the following code to your piano_slice.m script:

Listing 7.3: piano_slice.m (continued)
17 % Plot three periods of x_slice to verify it looks as we expect

18 figure(2);

19 x_slice_repeat = repmat(x_slice, 3, 1);

20 plot(x_slice_repeat)

Run the MATLAB script. You should see a result similar to that depicted in Fig. 7.5.

154



𝑛
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Figure 7.5: An example of three (yes three, not six) repetitions of an instrument slice whose
fundamental frequency, 𝑓0, was improperly estimated. In this case, we see six periods of a
periodic waveform when we had hoped to see three. Hence, the estimated 𝑓0 is half of its true
value.

What happened? Why do we see six periods rather than three? This is a common problem

with the pitch estimation algorithm MATLAB uses—it often lowballs the estimated frequency

by an integer multiple. In this case, we see twice as many periods as we expect. Therefore, our

estimated F0 is half the size it needs. Return to line 11 of Listing 7.2 and multiply our F0 value

by two:

11 F0 = 2*217.241; % from the plot_pitch Pitch Graph

Run the MATLAB script. You should see a result similar to that depicted in Fig. 7.6. This tells

us that we have successfully isolated our slice.

𝑛
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Figure 7.6: Three repetitions of a properly isolated instrument slice derived from piano.wav.
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7.4.2 Re-synthesizing the Instrument

Our next order of business is estimating the Fourier Series coefficients, 𝑋𝑘, for −21 ≤ 𝑘 ≤ 21
for our instrument slice. Remember, we are estimating the coefficients of a single period of

our slice, not the version that was replicated three times. This can be done trivially using the

find_Xks(...) function (refer to the previous lab exercise for usage if needed).

Add the following to your piano_slice.m script:

Listing 7.4: piano_slice.m (continued)
23 % Compute the FS coefficients for a *single* period of x_slice

24 K = 21;

25 X_ks = find_Xks(x_slice, K, 1/Fs);

26 k = -K:K;

Using your knowledge of MATLAB, update your piano_slice.m script to generate a figure

containing two subplots depicting the magnitude and phase (in degrees) of the Fourier Series

coefficients X_ks. Your figure should appear similar to Fig. 7.7. Include this figure in your report.

Piano ∠𝑋𝑘

𝑘
−20 −15 −10 −5 0 5 10 15 20

−180∘
−90∘

0∘
90∘

180∘

Piano |𝑋𝑘|

−20 −15 −10 −5 0 5 10 15 20
0

0.1

0.2

Figure 7.7: The magnitudes and phases (in degrees) of the FS coefficients, 𝑋𝑘, of the instrument
slice derived from piano.wav.

Using your knowledge of MATLAB and the fsynth(...) function, update your piano_slice.m

156



script to re-synthesize a single period of the piano with a period of T0=1/F0 (use the same Fs as

the original instrument recording). Hint: Remember that the T_dur parameter to fsynth(...)

is specified in seconds, not number of samples. Generate a figure that overlays the re-synthesized

signal atop the original slice. Your figure should appear similar to Fig. 7.8. Include this figure

in your report.

Re-synth
Original

Piano

𝑛
0 10 20 30 40 50 60 70 80 90 100

−0.5

0

0.5

Figure 7.8: Comparison between a single period of the original slice from piano.wav and the
re-synthesized slice.

Using your knowledge of MATLAB and the fsynth(...) function, update your piano_slice.m

script to synthesize two seconds of the piano sound at T0=1/F0 (use the same Fs as the orig-

inal instrument recording). Save this signal to a .wav file called piano_resynth.wav. Include

piano_resynth.wav as an attached file in your submission.

7.4.3 Re-synthesize two more Instruments

Signal # File Name 𝑓𝑠 Pitch (𝑓0) Starting Sample
of Cut (𝑛𝑎)

Number of
Samples (𝑁)

1 piano.wav 44.1 kHz 434.482 Hz 5350 102
2
3

Table 7.1: Properties of extracted instruments.

Repeat the process you went through for piano_slice.m for two other instruments of your

choice. For each instrument, create a new script (e.g., oboe_high_slice.m), and fill out Table 7.1

with the filenames, sampling rates (𝑓𝑠), 𝑓0, 𝑛𝑎 and 𝑁 values. Include the magnitude/phase figure

157



and re-synthesized vs. original slice figures in your report for each instrument. Also, include the

two second re-synthesized audio files for each instrument as attached files in your submission.

7.4.4 Synthesize a Chromatic Scale

Note Frequency (Hz)
A4 440.00
A\4 466.16
B4 493.88
C5 523.25
C\5 554.37
D5 587.33
D\5 622.25
E5 659.25
F5 698.46
F\5 739.99
G5 783.99
G\5 830.61
A5 880.00

Table 7.2: Note frequencies of an A-Chromatic scale; reproduced from Suits.[5]

Using your knowledge of MATLAB, select one of the three instruments you re-synthesized

to synthesize the notes of the A-Chromatic scale given in Table 7.2. Each whole note (notes

without the \) should be one second long, while sharp (\) notes should be 0.5 seconds long. Save

this scale to a file called chrom_scale.wav. Include chrom_scale.wav as an attached file in your

submission. Hint: Refer to the previous lab exercise where you synthesized a C-Major scale.

Use the same technique of successive array concatenation.

7.5 Report Checklist

Work with lab partner(s) to create a lab report for this lab exercise. Be sure to include the

names of each person in your group on the report. This report should be a typed document that

outlines the basic procedure of the lab exercise and should include any results you were asked to

obtain. Your report should follow a cohesive narrative—it should always be apparent why you
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have presented the results you have. Do not simply insert results without (1) motivating the

problem and (2) providing an analysis of the data. Ensure that your report is grammatically

correct with complete sentences. This does not mean your report must be wordy with filler—in

fact, avoid filler and state your ideas concisely.

Be sure the following are included in your report:

• Section 7.2: Give the MATLAB command (leveraging repmat(...)) to initialize a matrix,

C, which consists of the matrix A from Eq. (7.1) repeated one hundred times vertically.

• Section 7.4.2: Update piano_slice.m to generate a figure containing two subplots depicting

the magnitude and phase, similar to that depicted in Fig. 7.7. Include this figure in your

report.

• Section 7.4.2: Update piano_slice.m to re-synthesize a single period of the piano. Gener-

ate a figure that overlays the re-synthesized signal atop the original slice (as in Fig. 7.8).

Include this figure in your report.

• Section 7.4.2: Update piano_slice.m to generate two seconds of the piano sound and save

it to a file, piano_resynth.wav. Include piano_resynth.wav as an attached file in your

submission.

• Section 7.4.3: Repeat the process you went through for piano_slice.m for two other in-

struments. Fill in the data for Table 7.1. For each non-piano instrument, include the

magnitude/phase figures, re-synthesized vs. original figures in your report. Also, include

both re-synthesized audio files for each instrument as attached files in your submission.

• Section 7.4.4: Choose an instrument to synthesize the A-Chromatic scale (given in Ta-

ble 7.2). Each whole note should be 1 second long, while each sharp (\) note should be

0.5 seconds long. Save this synthesized scale to the file chrom_scale.wav and include it as

an attached file in your submission.

7.6 Acknowledgements

This lab exercise is based on an exercise drafted by Taylor Burton in co-operation with An-

drew Bolstad.
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7.A Plot Pitch Function

Listing 7.5: plot_pitch.m

1 function plot_pitch(x, Fs, plotTitle)

2 % PLOT_PITCH plots the estimated fundamental pitch/frequency of a signal.

3 % PLOT_PITCH(x, Fs, plotTitle) plots the time-domain signal, x,

4 % sampled at the rate Fs alongside its estimated fundamental frequency

5 % with respect to time. The plot title is specified by plotTitle.

6 %

7 % Inputs

8 % x: a vector containing a time domain signal.

9 % Fs: a scalar specifying the sampling rate of x.

10 % ploTitle: a character array specifying a title for the resulting plot.

11

12 % Written By: Julie Dickerson and Andrew Bolstad, 2020

13 % Updated By: Aaron Fonseca, 2024

14

15

16 [f0, idx] = pitch(x, Fs);

17

18 axTop = subplot(2,1,1);

19 plot(x);

20 ylabel('Amplitude (x[n])');

21 title(plotTitle);

22

23 axBottom = subplot(2,1,2);

24 plot(idx, f0);

25 ylabel('Pitch (Hz)');

26

27 linkaxes([axTop, axBottom], 'x')

28 xlabel('Sample Number (n)');

29 end
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7.B Cut Sample Function

Listing 7.6: cut_sample.m

1 function x_slice = cut_sample(x, n_a, N)

2 % CUT_SAMPLE cuts/slices the sampled signal x.

3 % x_slice = CUT_SAMPLE(x, n_a, N) cuts/slices the sampled signal x at

4 % the offset n_a for N samples.

5 %

6 % Inputs

7 % x: a vector containing a time domain signal.

8 % n_a: a positive integer specifying the offset (in samples) to begin

9 % the cut/slice.

10 % N: a positive integer specifying the total number samples in the

11 % resulting cut/slice.

12

13 % Written By: Julie Dickerson and Andrew Bolstad, 2020

14 % Updated By: Aaron Fonseca, 2024

15

16

17 x_slice = x(n_a:(n_a+N)-1, :);

18 end

7.C Compute Fourier Series Coefficients Function

This function requires the find_Xk.m function (see Appendix 7.D) to run.

Listing 7.7: find_Xks.m

1 function X_ks = find_Xks(x, largestK, Ts)

2 % FIND_XKS Computes the Fourier series coefficients of x between +/-largestK.

3 % X_ks = FIND_XKS(x, largestK, Ts) computes the Fourier seires coefficients

4 % between -largestK and largestK of the signal x, where largestK is a

5 % positive integer, x is a column vector containing a *single* period of a

6 % function and Ts is the sampling period of x.
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7

8 % Written By: Julie Dickerson, 2020

9 % Updated By: Aaron Fonseca, 2024

10

11

12 % Set up the coefficient index vector

13 ks = -largestK:largestK;

14

15 % setup vector for results

16 numK = length(ks);

17 X_ks = zeros(size(ks));

18

19 % loop through all coefficients to compute coefficients

20 for i = 1:numK

21 X_ks(i) = find_Xk(x, ks(i), Ts);

22 end

23 end

7.D Compute Fourier Series Coefficient Function

Listing 7.8: find_Xk.m

1 function X_k = find_Xk(x, k, Ts)

2 % FIND_XK Computes a single Fourier series coefficient via Riemann approx.

3 % X_k = FIND_XK(x, k, Ts) computes the kth Fourier series coefficient of the

4 % signal: x, where x is a column vector containing a *single* period of a

5 % function and Ts is the sampling period of x.

6

7 % Written By: Julie Dickerson, 2020

8 % Updated By: Aaron Fonseca, 2024

9

10

11 % Ensure that x is a column vector

12 [rx, �] = size(x);

162



13 if (rx==1)

14 x=x.';

15 end

16

17 % Compute the length of the period, T.

18 T = length(x) * Ts;

19 w0 = (2*pi) / T;

20

21 t = 0:length(x)-1;

22 t = t * Ts;

23

24 % Compute the complex part over all values of t.

25 basis_func = exp(-1j*k*w0*t);

26

27 % The complex part mulitiplied by the function yields the Riemann sum.

28 X_k = (Ts/T) * basis_func*x;

29 end

7.E Synthesize Fourier Series Function

Listing 7.9: fsynth.m

1 function x_hat = fsynth(X_ks, T0, Ts, Tdur)

2 % FSYNTH Synthesizes a time-domain signal given Fourier series coefficients.

3 % x_hat = FSYNTH(X_ks, T0, Ts, Tdur) synthesizes 'Tdur' seconds of a T0

4 % periodic signal, with a sampling period Ts, specified by the Fourier

5 % series coefficients given in X_ks.

6 %

7 % Inputs

8 % X_ks: a 2K+1 length vector of the form:

9 % [X[-K] ... X[-1], X[0], X[1] ... X[K]]

10 % where X[k] gives the kth Fourier series coefficient of the signal

11 % to synthesize.

12 % T0: a scalar specifying the fundamental period of the signal to synthesize.
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13 % Ts: a scalar specifying the sampling period of the signal to synthesize.

14 % Tdur: a scalar specifying the total duration (in seconds) of the signal to

15 % synthesize.

16

17 % Written By: Julie Dickerson, 2020

18 % Updated By: Aaron Fonseca, 2024

19

20

21 if rem(numel(X_ks), 2) �= 1

22 error('numel(X_ks) = %d. The length of the X_ks vector should be odd.', numel(X_ks))

23 end

24 K = floor((numel(X_ks) - 1) / 2);

25 ks = -K:K;

26

27 % Find omega wich is (2*pi)/Period

28 % Frequency is the inverse of the Period

29 % T0 is the fundamental period of the function

30 w0 = (2*pi)/T0;

31

32 % make time vector for evaluation

33 t = 0:Ts:Tdur;

34

35 % Compute the Fourier approximation

36 x_hat = real(X_ks * exp(1j*w0*ks'*t));

37 end
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Open Signals and Systems Laboratory Exercises Second Edition

Introduction to Digital Images

An introduction to digital imaging in MATLAB

Overview

This lab exercise introduces digital images as a new higher-dimensional signal type. Students

will use the level_slice.m and contrast_stretch.m MATLAB scripts (provided in this exer-

cise’s supplementary materials or in Appendices 8.A–8.B) to manipulate and enhance gray-scale

images.

Learning Objectives

By the end of this lab exercise, students will be able to:

1. Display images in MATLAB.

2. Manipulate image pixel values in MATLAB.

3. Perform level-slicing and contrast-stretching operations on images in MATLAB.

8.1 Introduction

In this lab exercise, you will be introduced to digital images as a higher-dimensional signal type.

You will explore image histograms and use MATLAB to enhance and manipulate images.
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8.2 Images in MATLAB

8.2.1 Monochromatic Images

A monochromatic digital image is a two-dimensional array of pixels (short for picture element)

with a given width, 𝑤, and height, ℎ. Images can be represented as a matrix A:

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑎(1,1) 𝑎(1,2) … 𝑎(1, 𝑤−1) 𝑎(1,𝑤)

𝑎(2,1) 𝑎(2,2) … 𝑎(2, 𝑤−1) 𝑎(2,𝑤)

⋮ ⋮ ⋱ ⋮ ⋮
𝑎(ℎ−1,1) 𝑎(ℎ−1,2) … 𝑎(ℎ−1, 𝑤−1) 𝑎(ℎ−1,𝑤)

𝑎(ℎ,1) 𝑎(ℎ,2) … 𝑎(ℎ, 𝑤−1) 𝑎(ℎ,𝑤)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where each element in the matrix, 𝑎(𝑦, 𝑥) represents the brightness value of that particular pixel—

where 𝑦 specifies the vertical position of a specific pixel (i.e., the row within A) and 𝑥 specifies

the horizontal position of a particular pixel (i.e., the column within A).

Monochromatic images are displayed using black and white and shades of gray, so they are also

called gray-scale images. In this lab exercise, we will consider only sampled gray-scale images.

To encode each element 𝑎(𝑦, 𝑥) within A, an 8-bit, unsigned, integer representation (uint8) is

typically used. With unsigned 8-bit integers, the maximum value would be 28 − 1 = 255, and

there would be 28 = 256 different gray levels for the display, from 0 to 255.[1][2] In such images,

0 corresponds to a completely black pixel while 255 corresponds to a completely white pixel. An

illustration of pixel intensities encoded by an example matrix, A, is given in Fig. 8.1. Here, the

values the values of each pixel 𝑎(𝑦, 𝑥) in A are printed in white.
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Figure 8.1: An illustration of an example image given by the 4 × 4 matrix A; the corresponding
pixel values/intensities are given by the values printed in white.

8.2.2 Displaying and Exporting Images

Most of the checkpoints in this lab exercise will require you to produce one or more output

images. These will need to be incorporated into your report.

Reading Images

You can load an image, myimage.jpg, into MATLAB’s Variable Workspace using the imread(...)

function:

A = imread('myimage.jpg');

This will produce an image matrix, A, of data type uint8.

Displaying Images

You can display the image array A with the following commands:
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1 colormap(gray(256)); % only needed for grayscale image

2 imshow(A)

If A is a gray-scale image, the colormap(...) function is needed to tell MATLAB which color to

display for each possible pixel value.

Writing Images

When producing a lab report document, you should strive to present the best representation of

your output images. Therefore, it is best to export your images to a lossless file format, such

as TIFF or BMP, which can then be imported into your lab report document. You can write the

image array, A, to a file using the imwrite(...) function:

imwrite(A, 'img_out.tif')

Note that if A is of type uint8, the imwrite(...) function assumes a dynamic range of [0, 255],
and will clip any values outside that range. If A is of type double, then imwrite(...) assumes a

dynamic range of [0, 1], and will linearly scale to the range [0, 255], clipping values outside that

range, before writing out the image to a file. To convert the image to type uint8 before writing,

enter the command:

imwrite(uint8(A), 'img_out.tif')

If your image is in color, such as RGB (Red-Green-Blue), then you will need to convert it to

gray-scale using the rgb2gray(...) function in MATLAB:

1 A_rgb = imread('peppers.png');

2 imshow(A_rgb)

3 A = rgb2gray(A_rgb);

4 figure;

5 imshow(A)

8.2.3 An Image of the Moon

Open MATLAB and run the following command:
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moon = imread('moon.tif');

The file, moon.tif, is an example image that comes packaged with the MATLAB image process-

ing toolbox. You should still be able to load it even though it is not explicitly present in your

Current Folder View.

1. What is the size of the image example? 𝑁 × 𝑀 pixels?

2. What is the variable type? (Hint: You can view variable types in the Variable Workspace.)

3. Write out one line of MATLAB code to see the intensity value of any given pixel in the

image. (Hint: How do you index values within a matrix, A?)

8.3 Image Manipulation in MATLAB

The goal of image manipulation is to improve the image in ways that increase the performance

of a system for human viewing or computer vision applications.

8.3.1 Image Histograms

Image histograms are a simple but useful method to analyze images and enhance the quality

of the image (at least for a human observer) by performing point transformations. In gray-

scale images, the histogram looks at the distribution of the intensity values of the image. For

each range of gray-scale values, the number of pixels falling in that range is counted. To see

the distribution of intensities in the image, create a histogram by calling the imhist function.

Generally, a good contrast image will have values spread out across the range of the intensity

values from 0 to 𝑁 . Fig. 8.2 shows the MATLAB image tire.tif and its histogram. Note that

most of the pixels have low values in the range of 0–25 in intensity.
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Figure 8.2: Image of a tire with a histogram of intensity values. Most of the pixels have low
intensities.

8.3.2 Contrast Stretching and Intensity Level Slicing

𝑟

𝑠

0 𝑟1 𝑟2 𝐿 − 1
0

𝑠1

𝑠2

𝐿 − 1

Figure 8.3: Example contrast mapping 𝑠 = 𝑇 (𝑟). The function 𝑇 is applied to each pixel.
Inspired by a figure from Gonzalez and Woods.[2]

Low-contrast images result from poor illumination or lack of response from the imaging sensor.

Contrast stretching aims to increase the dynamic range of the gray levels in the image being

processed. This is implemented by a mapping function, 𝑠 = 𝑇 (𝑟). Fig. 8.3 shows a typical

transformation for contrast stretching. The locations of points (𝑟1, 𝑠1) and (𝑟2, 𝑠2) control the

shape of the contrast function. If 𝑟1 = 𝑟2 and 𝑠1 = 𝑠2, then the transformation is a linear

function. If 𝑟1 = 𝑟2, 𝑠1 = 0, and 𝑠2 = 𝐿 − 1, then the transformation is a thresholding

function. Intermediate values produce different types of spread. The mapping is a piecewise

linear interpolation.[2][3]
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Figure 8.4: Example mapping functions for intensity level slicing. The mapping on the left
brightens pixels with intensities between 𝑎 and 𝑎 (i.e., 𝑎 ≤ 𝑟 ≤ 𝑏). The mapping on the right
performs the same brightening procedure but also zeros out all pixels with intensities below 𝑎
and above 𝑏. Inspired by figures from Gonzalez and Woods.[2]

A related transformation is intensity level slicing, which can highlight or delete a specific

range of gray levels. Applications include enhancing features such as water in satellite images

or the tire in the image above. There are two main approaches: brighten the pixels in the range

and leave the other pixels the same, or brighten the pixels in the range and zero out the others.

Levels can be deleted using a similar approach. Examples are shown in Fig. 8.4.

8.3.3 Histogram Equalization
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Figure 8.5: Tire image after histogram equalization with a histogram of its intensities.

The histogram equalization operation tries to change the pixel distribution to be as close as

possible to a uniform distribution. All gray levels from 0 to 2𝐿 − 1 (where 𝐿 is the number of
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bits) are approximately equally likely. The effect is to widen the effective dynamic range of the

image intensity. The results for this operation are shown in Fig. 8.5 for the tire.tif image.

Compare this to the original image in Fig. 8.2. Note that the histogram extends across most

gray values with approximately equal numbers of occurrences. MATLAB code for this operation

is (X is the original image):

1 Xeq = histeq(X);

2

3 figure;

4 subplot(121);

5 imshow(Xeq)

6

7 subplot(122);

8 imhist(Xeq)

8.4 Isolating Areas of Interest

The supplementary materials for this lab exercise provide MATLAB files: level_slice.m and

contrast_stretch.m (these are also provided in Appendices 8.A–8.B). These files are not stand-

alone MATLAB scripts. You cannot run them by clicking the Run button in MATLAB. Rather,

these are custom MATLAB functions. You can now call and use the help command on them

as you would any other function in MATLAB—provided they are visible within your Current

Folder View. Create a new folder that will serve as your project directory, and place these

scripts in that folder.

1. Navigate to the Iowa State Entomology Image Gallery’s page on periodical cicadas[4] and

save the close-up image. The images on this site have been made available for educational

purposes only and should not be used in any commercial endeavors. In your lab report,

provide a link to the webpage you downloaded the image from and provide proper credit to

the photographer and the Iowa State Entomology Department. Rename the downloaded

image as cicada.jpg. Create a new script, cicada_process.m which loads cicada.jpg into

MATLAB, converts it to gray-scale and computes its histogram. Include the histogram
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and image in your lab report.

(a) What is the range of the pixel intensity values in the original image?

(b) In your cicada_process.m script, use any combination of contrast stretching, level

intensity slicing, and histogram equalization to increase the range of the image in-

tensity. Describe and show the results of the operations in your lab report. Give

details on the ranges for each routine. Does one method work better than the other?

Explain your answer.

2. Navigate to the Science and Plants for Schools photograph of Broad Bean mitosis[5] and

save the image. This particular image has been made available for non-commercial pur-

poses. In your lab report, provide a link to the webpage you downloaded the image

from and provide proper credit to the photographer. Rename the downloaded image as

cell1.jpg. Create a new script cell_process.m which loads cell1.jpg into MATLAB,

and converts the image to gray-scale. Use the methods described in Sec. 8.3 to isolate the

nuclei of the cells in the image in the image by filtering the image intensity. The goal is

to pre-process the image to remove the background so that a machine vision system can

easily count the cells in the slide using their nuclei. In your lab report, describe your steps

to analyze the image and subtract the background. Include your MATLAB script and the

stages of your processing pipeline. Display the image after each processing step.

8.5 Report Checklist

Work with lab partner(s) to create a lab report for this lab exercise. Be sure to include the

names of each person in your group on the report. This report should be a typed document that

outlines the basic procedure of the lab exercise and should include any results you were asked to

obtain. Your report should follow a cohesive narrative—it should always be apparent why you

have presented the results you have. Do not simply insert results without (1) motivating the

problem and (2) providing an analysis of the data. Ensure that your report is grammatically

correct with complete sentences. This does not mean your report must be wordy with filler—in

fact, avoid filler and state your ideas concisely.

Be sure the following are included in your report:
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• Section 8.2.3: Answer the three questions about moon.tif.

• Section 8.4: Include cicada.jpg and its histogram. Provide a link to the image source and

properly credit the photographer and the ISU Entomology Department.

• Section 8.4: Give the range of pixel intensities for cicada.jpg.

• Section 8.4: Increase the range of the image intensity for cicada.jpg using any combi-

nation of contrast stretching, level intensity slicing, and histogram equalization. Does one

method work better than the other? Explain your answer.

• Section 8.4: Create A MATLAB script to isolate the nuclei in cell1.jpeg using any com-

bination of contrast stretching, level intensity slicing, and histogram equalization. Provide

a link to the image source and properly credit Science and Plants for Schools. Include your

script and describe the stages of your processing pipeline. Include images of the interme-

diate results after each stage in your pipeline.

8.A Level Slice Function

Listing 8.1: level_slice.m

1 function Y = level_slice(X, a, b, sliceType)

2 % LEVEL_SLICE Performs intensity level slicing on grayscale image.

3 % Y = LEVEL_SLICE(X, a, b, sliceType) returns an image, Y, where

4 % the pixel values between a and b (inclusive) are set to 255 (white).

5 % Pixels not set to 255 either remain unchanged (default behavior) or

6 % are set to 0 if sliceType is set to 'zero'.

7 %

8 % Inputs

9 % X: a uint8 matrix representing a grayscale image.

10 % a: an integer representing the lower bound of pixel values to set to white.

11 % b: an integer representing the upper bound of pixel values to set to white.

12 % sliceType: a character array specifying the type of slicing operation. If

13 % set to 'zero', all pixels not set to white will be set to 0

14 % (black). If set to any other string, the pixels not set to white

15 % remain unchanged.

16
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17 % Written By: Andrew Bolstad, 2022

18 % Updated By: Aaron Fonseca, 2024

19

20

21 % convert X to double for processing

22 X = double(X);

23

24 Idx = X >= a & X <= b;

25 X(Idx) = 255;

26

27 % check if sliceType == 'zero'

28 if strcmp(lower(sliceType), 'zero')

29 X(�Idx) = 0;

30 end

31

32 % place updated X into Y and convert to uint8

33 Y = uint8(X);

34 end

8.B Contrast Stretch Function

Listing 8.2: contrast_stretch.m

1 function Y = contrast_stretch(X, p1, p2)

2 % CONTRAST_STRETCH performs contrast stretching on a grayscale image.

3 % Y = CONTRAST_STRETCH(X, p1, p2) applies contrast stretching to each pixel

4 % in the image X. Contrast stretching uses a piecewise linear mapping of

5 % input pixels to output pixels. The mapping consists of three linear

6 % segments:

7 % 1. (0,0) to (r1,s1)

8 % 2. (r1,s1) to (r2,s2)

9 % 3. (r2,s2) to (255,255)

10 % where p1 = [r1, s1] defines the first point and p2 = [r2,s2] defines

11 % the second point.
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12 %

13 % Inputs

14 % X: a uint8 matrix representing a grayscale image.

15 % p1: a two-element vector of the form [r1,s1]

16 % p2: a two-element vector of the form [r2,s2]

17

18 % Written By: Andrew Bolstad, 2022

19 % Updated By: Julie Dickerson, 2023

20 % Updated By: Aaron Fonseca, 2024

21

22

23 % Convert image to double for processing.

24 X = double(X);

25

26 % This isn't totally necassary, but it makes the code more human-readable

27 % with very little overhead.

28 r1 = p1(1);

29 s1 = p1(2);

30 r2 = p2(1);

31 s2 = p2(2);

32 M = 255;

33

34 if r2 < r1

35 error('r2 < r1, this is not permitted for this mapping')

36 end

37 if s2 < s1

38 error('s2 < s1, this is not permitted for this mapping')

39 end

40

41 Y = zeros(size(X));

42 if r1 > 0

43 m1 = s1/r1;

44 seg1_eq = @(r) (r < r1).*(m1.* r);

45 Y = Y + seg1_eq(X);

46 end

47 if r2 > r1
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48 m2 = (s2-s1) / (r2-r1);

49 b2 = s1 - (m2*r1);

50 seg2_eq = @(r) (r >= r1 & r <= r2).*(m2.*r + b2);

51 Y = Y + seg2_eq(X);

52 elseif r1 == r2

53 Y = Y + (X == r2).*(s2);

54 end

55 if M > r2

56 m3 = (M-s2) / (M-r2);

57 b3 = s2 - (m3*r2);

58 seg3_eq = @(r) (r > r2).*(m3.*r + b3);

59 Y = Y + seg3_eq(X);

60 end

61 Y = uint8(Y);

62

63 end
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Open Signals and Systems Laboratory Exercises Second Edition

Digital Image Processing

Filtering Digital Images in MATLAB

Overview

In this lab exercise, students will use image filtering routines in MATLAB to process a selection

of images provided in this exercise’s supplementary materials.

Learning Objectives

By the end of this lab exercise, students will be able to:

1. Classify regions of images in terms of their spatial frequency.

2. Compute the spatial period of simple, oscillating images.

3. Manually compute the per-pixel result of a sliding window filter.

4. Apply sliding window masks to source images using MATLAB’s imfilter function.

5. Initialize 𝑁 -dimensional moving-average masks in MATLAB.

6. Assess the efficacy of various filter types to attenuate Gaussian and ‘salt and pepper’ noise.

7. Implement and apply the Canny edge detection algorithm in MATLAB.

9.1 Introduction

In this lab exercise, we introduce linear sliding window filtering of images. The filters work in

two dimensions to enhance images by averaging out noise or emphasizing edges in the image.

9.2 Background

9.2.1 Spatial Frequency

Image analysis deals with techniques for extracting information from images. The first step is

generally to segment an image. Segmentation divides an image into its constituent parts or
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objects. For example, in a military air-to-ground target acquisition application, one may want

to identify tanks on a road. The first step is to segment the road from the rest of the image

and then to segment objects on the road for possible identification. Segmentation algorithms

are usually based on one of two properties of gray-level values: discontinuity and similarity. For

discontinuities, the approach is partitioning an image based on abrupt changes in gray level.

Objects of interest are isolated points, lines, and edges.

An edge is the boundary between two regions with relatively distinct gray-level properties.

The idea underlying most edge-detection techniques is the computation of a relative derivative

operator. The figure below illustrates this concept. The picture on the left shows an image of a

light stripe on a dark background, the gray-level profile of a horizontal scan line, and the first

and second derivatives of the profile. The first derivative is positive when the image changes

from dark to light and zero when the image is constant. The second derivative is positive for the

part of the transition associated with the dark side of the edge and negative for the transition

associated with the light side of the edge. Thus, the magnitude of the first derivative can be

used to detect the presence of an edge in the image, and the sign of the second derivative can

be used to detect whether a pixel lies on the light or dark side of the edge.

Image

Profile of a
horizontal line

First Derivative

Second Derivative

Figure 9.1: Synthetic images with horizontal pixel intensity, first derivative of intensity, and
second derivative of intensity; reproduced from Gonsazlez and and Woods.[1]

9.2.2 Regions of Spatial Frequency

For Fig. 9.2, explain which part of the image has the lowest spatial frequency: specify a corner,

side, or middle of the image.
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Figure 9.2: The surface of Mars, as seen from the Pathfinder lander; reproduced from NASA.[2]

9.2.3 Computing Spatial Period

0 50 100 150 200 250 300 350 400 450 500
0

64

128

192

255

Figure 9.3: Horizontal Oscillation.

Compute the image’s horizontal spatial period of Fig. 9.3 in terms of pixels/cycle. Give a

numerical answer.

9.2.4 Sliding Window Filters

One way of filtering is to filter the rows with a one-dimensional filter and then filter the columns

with a one-dimensional filter. Two-dimensional filters can also be used that use the neighborhood

of pixels to filter a signal. Filtering can help remove noise from an image by averaging out the
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effects of random noise fluctuations. High-pass filters help detect edges and sudden spatial

changes in an image.

The operations occur in the spatial-domain and operate directly on pixel values. The general

form for operations is: 𝑦(𝑖, 𝑗) = 𝑇 [𝑥(𝑖, 𝑗)] where 𝑥(𝑖, 𝑗) is the input image, 𝑦(𝑖, 𝑗) is the filtered

output image, 𝑇 is an operator on 𝑥 defined over a neighborhood of point (𝑖, 𝑗). The operator, 𝑇 ,

defines the size of the neighborhood around each pixel. The neighborhood is usually rectangular,

centered on (𝑖, 𝑗), and is much smaller than the image. This neighborhood is moved around to

each pixel, hence the name sliding window or filter mask. The use of spatial masks (or kernels)

for filtering is called spatial filtering, and the masks can be linear or nonlinear. As a note, the

linear filter is equivalent to a two-dimensional convolution of the image with the filter.

A 3 × 3 linear filter can be written in matrix form as:

H3 =
⎡
⎢
⎢
⎢
⎣

ℎ(1,1) ℎ(1,0) ℎ(1,91)

ℎ(0,1) ℎ(0,0) ℎ(0,91)

ℎ(91,1) ℎ(91,0) ℎ(91,91)

⎤
⎥
⎥
⎥
⎦

.

The output of applying a three-by-three mask to image 𝑥 is given by the two-dimensional

convolution:

𝑦 (𝑖, 𝑗) =
1

∑
𝑘=−1

1
∑
𝑙=−1

ℎ(𝑘,𝑙) 𝑥 (𝑖 − 𝑘, 𝑗 − 𝑙)

= ℎ(1,1) 𝑥 (𝑖 − 1, 𝑗 − 1) + ℎ(1,0) 𝑥 (𝑖 − 1, 𝑗) + ℎ(1,91) 𝑥 (𝑖 − 1, 𝑗 + 1)

+ ℎ(0,1) 𝑥 (𝑖, 𝑗 − 1) + ℎ(0,0) 𝑥 (𝑖, 𝑗) + ℎ(0,91) 𝑥 (𝑖, 𝑗 + 1)

+ ℎ(91,1) 𝑥 (𝑖 + 1, 𝑗 − 1) + ℎ(91,0) 𝑥 (𝑖 + 1, 𝑗) + ℎ(91,91) 𝑥 (𝑖 + 1, 𝑗 + 1) .

This masking process continues until all pixels in the image are covered. The standard practice

is to create a new image with the new values. For pixels near the boundary of the image, the

output may be computed using partial neighborhoods or by padding the input appropriately by

adding in repeated edge rows/columns or by a frame of black or white pixels.

These types of spatial filters are linear and spatially invariant (LSI). They can also be inter-

preted in the frequency domain, as shown in the figure below. Low-pass (LP) filters attenuate
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(or eliminate) high-frequency components characterized by edges and sharp details in an im-

age with the net effect of blurring the image. High-pass (HP) filters attenuate (or eliminate)

low-frequency components such as slowly varying characteristics. The overall effect is a sharp-

ening of edges. Band-pass (BP) filters attenuate (or eliminate) a given frequency range. This is

primarily used for image restoration.[1]

9.2.5 Manually Computing the Value of a Filtered Pixel

Given the filter mask, H, in Fig. 9.4a and the intensity values for the image matrx depicted in

Fig. 9.4b, manually compute the filter output for the pixel at location (3, 3).

H =

-1 0 1

-2 0 2

-1 0 1

(a) The contents of the filter mask, H;
the gray cell indicates the location of
the origin, (0, 0), of the mask.

1 2 3 4 5 6

1 5 25 25 30 20 10

2 20 20 30 60 25 30

3 35 30 40 70 40 40

4 80 80 70 70 60 50

(b) The contents of an image which the filter
mask, H, is being applied; the gray cell in-
dicates the pixel, (3, 3) at which the filter is
being applied.

Figure 9.4: Convolution of a filter mask, H, with an image for the pixel at (3, 3).

9.2.6 MATLAB Background

This lab exercise will make heavy use of the MATLAB routine imfilter(...). In the expression:

Y = imfilter(X, H);, X is the image to be filtered, H is the filter in matrix form, and Y is the

filtered image. A simple example for a 3 × 3 averaging filter is given below:

1 X = imread('moon.tif');

2 H = ones(3, 3) / 9;

3 Y = imfilter(X, H);

There are two things to remember with imfilter(...). First, it returns an image in the same
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format as the input. If the function gets a non-integer value for a uint8 image, it rounds it to

the closest integer. Second, it clips pixel values outside the range [0, 255] to 0 or 255. These

non-linear operations affect whether the LSI operations can be done in any order. For pixels

near the boundary of the image, the output may be computed using partial neighborhoods or

by padding the input appropriately by adding in repeated edge rows/columns or by a frame

of black or white pixels. The default behavior of imfilter(...) is to assume a black border.

Details can be found by reading about padding options on the help page.

9.3 Filtering Images

This portion of the assignment uses image_filt.mat, which is provided in this exercise’s supple-

mentary materials. Create a new folder to use as your project directory and place image_filt.mat

within it. Create a new script in your project directory. In this script, enter the command to

load image_filt.mat. (Refer to previous lab exercises for information on loading .mat files.)

Run your script. You should see three new variables in your Variable Workspace: I, I_g, and

I_sp. These variables each contain matrices representing gray-scale images.

For each checkpoint in this lab exercise, you will be asked to display “before-and-after” filtering

results. Suppose you have just completed a checkpoint and produced a filtered version of the

image, I, called: filtI. There is a convenient function that will allow you to display the original

image, I, alongside the filtered result, filtI, without using subplot(...) commands. This

function is:

imshowpair(I, filtI, 'montage');

You may also need to display a close-up of parts of the image that illustrate the filter effect

well. To do this, it helps display the image with numbered pixels to help select the proper

sub-image. If the imshow(...) function does not do this automatically, then use the following

code to display the image, I:

1 RI = imref2d(size(I));

2 figure(1);

3 imshow(I, RI);
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9.3.1 Low-Pass Spatial Filtering Using a Moving Average Filter

A simple 3 × 3 or 𝑁 = 3 moving-average filter has the form:

H3 =
⎡
⎢
⎢
⎢
⎣

1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9

⎤
⎥
⎥
⎥
⎦

Write out the two-dimensional filter, H5, for a moving-average filter with size 𝑁 = 5. For

this filter style (a subset of low-pass filters), the sum across the matrix elements should equal 1.

In MATLAB, create three moving-average filters with dimensions 𝑁 = {5, 9, 13} and use

them to filter the image I. What is the effect of increasing the filter size in parts of the image

with small details?

9.3.2 High-pass Spatial Filtering

The image filters below respond more strongly to lines of different directions in an image. The

first mask responds very strongly to horizontal lines with a thickness of one pixel. The maximum

response occurs when a line passes through the mask’s middle row. The direction of a mask can

be established by noting that the preferred direction is weighted with a larger coefficient than

the other possible directions.

For the image I, filter the image using the four following filters:

H𝑎 =
⎡
⎢
⎢
⎢
⎣

91 91 91
2 2 2

91 91 91

⎤
⎥
⎥
⎥
⎦

, H𝑏 =
⎡
⎢
⎢
⎢
⎣

91 91 2
91 2 91
2 91 91

⎤
⎥
⎥
⎥
⎦

, H𝑐 =
⎡
⎢
⎢
⎢
⎣

91 2 91
91 2 91
91 2 91

⎤
⎥
⎥
⎥
⎦

, H𝑑 =
⎡
⎢
⎢
⎢
⎣

2 91 91
91 2 91
91 91 2

⎤
⎥
⎥
⎥
⎦

.

(9.1)

Describe your results for each case. Which edges were highlighted in each case? The MATLAB

commands for the first case are given here:

1 H_a = [-1,-1,-1; 2,2,2; -1,-1,-1];
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2 I_a = imfilter(I, H_a);

Display your results by plotting the four output images together. Comment on your results and

what edges were accented in each case.

9.3.3 Filtering Noise

Noise often has a high spatial frequency; this appears as salt and pepper in the picture. Most

objects in the image have lower spatial frequencies, so we can often improve the image by low-

pass filtering with an averaging filter. This technique works well if the noise does not vary much

from the image. Speckle or impulsive noise is a very extreme type of noise that looks like white

or black spots on an image. This section looks at how averaging filters affect the image.

Filtering Noise with Moving-Average Filters

Display the images I_g (the ‘g’ stands for Gaussian noise) and I_sp (the ‘sp’ stands for salt

and pepper noise) in gray-scale. Two different types of noise have corrupted these images. You

will use an averaging filter to remove the noise in this image. Filter each image with 3 × 3 and

7 × 7 moving-average filters. Display the results in image pairs. Discuss the results. Assess the

trade-off between noise reduction and image resolution (how clear objects are in the image?).

Compare the results for filtering different types of noise. Does the filtering work better for

one type of noise? If so, why?

The Effects of High-pass Filters

Using the images I_g and I_sp, filter each image with the high-pass filters, H𝑎 and H𝑐 from

Eq. (9.1). Display the results in image pairs.

Discuss the results: focus on how clear the edges in each direction appear. Does the filtering

work better for one type of noise? If so, why?
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9.3.4 Isolating Edges from Noisy Images

Edge detection is a key processing step for finding objects with computer vision systems. Un-

fortunately, noise can disrupt finding edges, so a commonly used strategy is to first blur the

image to remove noise, then use a high pass filter to find edges. Most practical edge detection

operators use multi-stage algorithms to detect a wide range of edges in images. One example is

Canny Edge Detection, developed by John F. Canny in 1986.[3] The Canny edge detector first

smooths the image to blur the noise to prevent false detections. Then, it uses a set of high-pass

filters to detect edges and estimate their direction. Further processing then filters and thins the

edges. In this section, we implement the first two steps.

Smoothing

Apply a low-pass filtered to smooth the image to remove noise to prevent false detections caused

by noise. The typical filter used by this function is a Gaussian filter mask,[4][5], which smooths

the edges of the filter. Use the filter parameters below to filter the image I_g:

1 H_gauss = [

2 2, 4, 5, 4, 2;

3 4, 9, 12, 9, 4;

4 5, 12, 15, 12, 5;

5 4, 9, 12, 9, 4;

6 2, 4, 5, 4, 2;

7 ] / 159;

Store the result of this filtering in the variable I_g_smoothed. Display I_g_smoothed and comment

on what you see in the image.

Edge Detection

An edge in an image may point in a variety of directions, so the Canny algorithm uses filters

to detect horizontal, vertical, and diagonal edges in the smoothed image. Use the Sobel Edge

Detector filters,[4][5] H𝑥 and H𝑦, on I_g_smoothed (the result from Sec. 9.3.4) to produce two

separate results, called G𝑥 and G𝑦, which contain images filtered in the 𝑥 and 𝑦 directions,
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respectively. The contents of the Sobel edge detection filters are defined as:

H𝑥 =
⎡
⎢
⎢
⎢
⎣

91 0 1
92 0 2
91 0 1

⎤
⎥
⎥
⎥
⎦

, H𝑦 =
⎡
⎢
⎢
⎢
⎣

91 92 91
0 0 0
1 2 1

⎤
⎥
⎥
⎥
⎦

.

Intensity Gradient

Finally, combine the two filtered images, G𝑥 and G𝑦, from the preceding section, to compute

the intensity gradient:[4][5]

G = √G2𝑥 + G2𝑦.

Before utilizing either G_x or G_y to implement the equation above, ensure that they are of the

proper type: double floating-point numbers. If they are not of the proper type, typecast them to

double floating-point numbers using the double(...) MATLAB built-in function. Remember,

in MATLAB, element-wise exponentiation is done using the dot caret (.^) operator.

Display the intensity gradient image, G, using the command imshow(uint8(G)) and comment

on your results from Sec. 9.3.3 above. Are the edges clearer in one case or the other?

Thought Question

What will happen if the order of processing for a linear, spatially-invariant (LSI) low-pass filter,

then an LSI high-pass filter is reversed for edge detection? Explain if order matters or not.

9.4 Report Checklist

Work with lab partner(s) to create a lab report for this lab exercise. Be sure to include the

names of each person in your group on the report. This report should be a typed document that

outlines the basic procedure of the lab exercise and should include any results you were asked to

obtain. Your report should follow a cohesive narrative—it should always be apparent why you

have presented the results you have. Do not simply insert results without (1) motivating the
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problem and (2) providing an analysis of the data. Ensure that your report is grammatically

correct with complete sentences. This does not mean your report must be wordy with filler—in

fact, avoid filler and state your ideas concisely.

Be sure the following are included in your report:

• Section 9.2.2: Describe which region of Fig. 9.2 has the lowest spatial frequency.

• Section 9.2.3: Compute the horizontal spatial period of the image in Fig. 9.3 in terms of

pixels/cycle.

• Section 9.2.5: Manually compute the value of the pixel at (3, 3) for the filter mask and

image matrix provided in Fig. 9.4.

• Section 9.3.1: Write the contents of an 𝑁 = 5 moving-average filter, H5.

• Section 9.3.1: Create three moving average filters of sizes 𝑁 = {5, 9, 13} in MATLAB and

apply them to the image: I. Describe the effect of increasing the filter size.

• Section 9.3.2: In MATLAB, filter the image, I, using the four filters given in Eq. (9.1).

Provide plots of each of the results. Describe the effects for each case; explain which types

of edges were accent/highlighted.

• Section 9.3.3: Filter the I_g and I_sp images using 3 × 3 and 7 × 7 moving-average filters.

Include a figure depicting each of the results where each figure contains before-and-after

shots of the image. Include a discussion comparing the results for filtering different types

of noise.

• Section 9.3.3: Filter the I_g and I_sp images using H𝑎 and H𝑐 from Eq. (9.1). Include

a figure depicting each of the results where each figure contains before-and-after shots of

the image. Include a discussion comparing the results for filtering different types of noise;

focus on how clear the edges in each direction appear.

• Section 9.3.4: Filter I_g using the definition of H_gauss provided and store the result in the

variable I_g_smoothed. Include the before-and-after images and comment on the results.

• Section 9.3.4: Include a plot of the final intensity gradient image, G, and comment on the

results. Compare the results to those produced using Sobel Edge detection in Sec. 9.3.3.

• Section 9.3.4: Consider what would happen if the order of processing for a linear, spatially-

invariant (LSI) low-pass filter, then an LSI high-pass filter was reversed. Would this matter

in terms of the result?
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Open Signals and Systems Laboratory Exercises Second Edition

Pulse-width Modulation and Filter Design

PWM Encoding and Decoding

Overview

In this lab exercise, students will explore pulse-width modulation (PWM). Students will simu-

late a PWM encoder/decoder using the MATLAB script pwm_sim.m (available in this exercise’s

supplementary materials or in Appendix 10.B). Students will breadboard a comparator circuit

using components from their Lab Kit and an LM293 op-amp provided by the Electronics and

Technology Group. Students will use their comparator circuit along with the CyDAQ and DAD

to implement a PWM encoder/decoder and verify its operation by streaming audio from their

PC through the circuit to an external speaker.

Learning Objectives

By the end of this lab exercise, students will be able to:

1. Relate the data points in a message signal to the widths of pulses within a pulse-width

modulation scheme.

2. Compute the pulse width that properly encodes a given data point within a pulse-width

modulation scheme.

3. Relate the process of decoding pulse-width modulation to averaging with a low-pass filter.

4. Compute the cutoff frequency required to successfully decode a band-limited message signal

encoded using a pulse-modulation scheme.

5. Implement and verify the operation of a pulse-width modulation encoder using a compara-

tor circuit.
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Materials

(1×) DAD

(1×) CyDAQ

(1×) Hardware Speaker

(1×) Lab Kit (with Assorted Wires and Breadboard)

(1×) Jumper Splitter

(2×) 3.5 mm Male-to-Breakout Aux Cables

(8×) Female-to-Male Jumper Cables

(1×) LM293 OpAmp

(1×) 0.47 µF Capacitor

(1×) 1 kΩ Resistor (Brown–Black–Red)

(2×) 100 kΩ Resistor (Brown–Black–Yellow)

10.1 Introduction

In this lab exercise, you will explore pulse width modulation (PWM). First, you will implement

and confirm the proper operation of a simple PWM scheme using the CyDAQ and DAD. Next,

you will simulate a more complex PWM scheme in MATLAB. Finally, you will build a compara-

tor circuit using components from your Lab Kit and the Electronic and Technology group. You

will use this circuit in conjunction with the DAD, CyDAQ and external speaker to implement a

hardware PWM encoder/decoder.

10.2 Pulse-width Modulation

Pulse-width modulation (PWM) is an encoding scheme that encodes a bounded message signal

by modulating the pulse widths of a carrier signal. PWM can be thought of as a means of

both sampling a bounded message signal, 𝑥(𝑡), to a set of data points, 𝑥[𝑛], and digitizing it by

restricting its domain to logic levels.
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The exact workings of PWM are best explained through example. Let 𝑥(𝑡) be a message signal

bounded between 0 and 5. Let’s consider a simple case where 𝑥(𝑡) is a constant value 𝑥(𝑡) = 2.

To encode 𝑥(𝑡) as a PWM signal, we need to know two things: (1) the bounds of the message

signal and (2) the pulse period, 𝑇0. Upon first thought, it might seem reasonable to assume

that the bounds of the message signal is simply 2. However, we chose 𝑥(𝑡) = 2 as a contrived

example; the true bounds of the signal were stipulated to lay between 0 and 5. We are free to

choose our own pulse period for this example. Let’s choose 𝑇0 = 1 ms. Sampling 𝑥(𝑡) with a

sampling period of 𝑇0 gives 𝑥[𝑛] = 2.

To encode 𝑥[𝑛] as a PWM signal, we need to compute the pulse widths for each 𝑥[𝑛]. The

width of the 𝑛th pulse, denoted 𝑇on[𝑛], is defined as 𝑇on[𝑛] = 𝐷[𝑛] ⋅ 𝑇0, where 𝐷[𝑛] is the duty

cycle of the 𝑛th pulse. The equation for computing the duty cycles is:

𝐷[𝑛] = 𝑥[𝑛]/𝑉max,

where 𝑉max is the upper bound of the message signal, 𝑥(𝑡).
For our example, 𝑉max = 5. Consequentially, 𝐷[𝑛] = 2/5 = 0.4 and 𝑇on = 0.4×1 ms = 400 µs.

Now that we know the pulse widths, 𝑇on, that encode 𝑥[𝑛], we can construct our PWM signal.

At the beginning of each pulse period, the pulse rises to a height of 𝑉max and remains there for

a duration of 𝑇on after which it falls to 𝑉min stays there for the remainder of the pulse period

𝑇off = 𝑇0 − 𝑇on. The PWM representation of our example is illustrated in Fig. 10.1.

Avg.
𝑥PWM

𝑡

Vo
lts

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
×10−3

0
1
2
3
4
5

𝑇on𝑇0

Figure 10.1: A PWM signal encoding the message signal 𝑥(𝑡) = 2, with a upper bound 𝑉max = 5
and a pulse period 𝑇0 = 1 ms. The signal AVG plots the average value of the PWM signal
during each pulse period 𝑇0.
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The graph in Fig. 10.1 also depicts a signal, ‘AVG’, that plots the average value of the PWM

signal for each pulse period 𝑇0. Notice that this average value tracks with our underlying message

signal. This property suggests a simple mechanism for decoding PWM signals.

10.3 Decoding Pulse-width Modulation

Previous lab exercises have covered the topic of filtering and frequency response, but it is worth

reviewing some of the fundamentals before moving forward. Fig. 10.2 depicts the frequency

response of a first-order, low-pass filter with a cutoff frequency: 𝑓𝑐 = 2 kHz. The cutoff (or

‘mid corner’) frequency is an important characteristic of the filter as it serves as the threshold

before which frequencies are passed and after which frequencies are attenuated. From previous

lab exercises, we know that the CyDAQ can implement this type of filter. However, first-order

filters of this class can be easily realized using an RC circuit, such as the one depicted in Fig. 10.3.

This ease of implementation makes first-order, low-pass filters a fundamental building block in

more complex circuits such as those implementing encoding schemes.
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Figure 10.2: A first-order, low-pass filter with cutoff frequency 𝑓𝑐 = 2 kHz.

A low-pass filter behaves similarly to a moving average. In your lab report, provide some
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Vin

R

C

Vout

Figure 10.3: A first-order, low-pass RC filter circuit.

intuition that explains this behavior. As was alluded to in the previous section, the average value

of the 𝑛th pulse period of a PWM signal corresponds to the discretized message signal, 𝑥[𝑛].
Consequentially, a low-pass filter can be applied to a PWM to obtain a relatively close approx-

imation of the message 𝑥(𝑡). All that is required is that the cutoff frequency of the low-pass

filter is much less than the pulse period 1/𝑇0. In other words, 𝑓𝑐 << 𝑇0.

The WaveForms Software is capable of generating periodic pulses with a custom duty cycle,

and past lab exercises have used the CyDAQ as a customizable filter. Consequentially, it is

possible to use the DAD to simulate a PWM system encoding a custom message and use the

CyDAQ as a decoder. Let’s suppose we want to encode the constant message 𝑥(𝑡) = 1.25 V

using a PWM encoding scheme in which 𝑉max = 3.3 V and 𝑇0 = 10 µs. Compute the duty

cycle, 𝐷, needed to encode 𝑥(𝑡) and record your result and calculations in your lab report.

With these calculations completed, let’s configure the DAD and CyDAQ for this PWM ex-

periment.

• Connect the DAD’s Ground Terminal (GND) and Scope Ch. 1 Negative Terminal

(CH1-) to the CyDAQ’s Negative 𝑉in Terminal (Vin-) using the Jumper Splitter.

• Connect the DAD’s WaveGen Terminal (W1) and Scope Ch. 1 Positive Terminal

(CH1+) to the CyDAQ’s Positive 𝑉in Terminal (Vin+) using the Jumper Splitter.

• Connect the DAD’s Scope Ch. 2 Negative Terminal (CH2-) to the CyDAQS Neg-

ative 𝑉out Terminal (Vout-).

• Connect the DAD’s Scope Ch. 2 Positive Terminal (CH2+) to the CyDAQS Positive

𝑉out Terminal (Vout+).

The pin-outs for the CyDAQ and DAD are given in Appexendix 10.A. Launch the CyDAQ

Software and send the following configuration:

• Sampling Rate: 48000
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• Input: Analog In

• Filter: 1st Order Low Pass

• Mid Corner: 2000

Launch the WaveForms Software and open the Wavegen. Enter the following configuration:

• Type: Pulse

• Frequency: 100 kHz

• Amplitude: 3.3 V

• Offset: 0 V

• Symmetry: Duty Cycle

• Phase: 0°
In the Symmetry field, enter the duty cycle (as a percentage) you computed.

Launch a Scope tab, and compare the input PWM signal to the filtered message. Does this

look how you would expect it to? Include an image of the scope capture in your lab report and

discuss why the filtered message signal looks the way it does.

10.4 Encoding Pulse-width Modulation

Until now, we’ve constructed simple PWM encodings based on a constant message signal. How-

ever, PWM is more than capable of encoding non-constant (but still bounded) messages. Con-

sider a sinusoidal message signal 𝑥(𝑡) = cos(2𝜋𝑓𝑎𝑡) for some frequency 𝑓𝑎. Selecting a sufficiently

small 𝑇0 << 1/𝑓𝑎 will result in a PWM system that can encode 𝑥(𝑡) with relative accuracy.

As mentioned in the previous section, each 𝑛th pulse period encodes a single value “sampled”

value, 𝑥[𝑛], of the message. The word sampled is in quotes because the actual implementation

of the PWM encoder may not be sampling 𝑥(𝑡) in a traditional sense. It is certainly possible

to implement a PWM encoder on an embedded system that samples a continuous message sig-

nal, 𝑥(𝑡), at a constant rate and computes the required pulse width for each pulse period. There

is, however, another common method PWM encoding method that introduces less overhead: a

comparator.

Consider an op-amp configured as a comparator. The output saturates high when the positive

terminal has a greater voltage than the negative terminal, else the voltage saturates low. Suppose
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we feed a message signal, 𝑥(𝑡), into the positive terminal, 𝑉in, of a comparator. If we generate

a sawtooth signal, 𝑉saw, that ranges from 0 to 𝑉max with a period of 𝑇0 and feed this into the

negative terminal of a comparator, the output of the comparator will be the PWM encoding

of the message signal 𝑥(𝑡). This configuration is depicted in Fig. 10.4. While not sampling in

the traditional sense (the spacing between samples may not be constant depending on when

the sawtooth overtakes the message signal), the PWM encoding produced remains relatively

accurate.

Vin +

−Vsaw

Vpwm

Figure 10.4: Diagram of Analog PWM Encoder.

10.4.1 MATLAB Simulation

We will now simulate an analog PWM encoder with a sinusoidal message signal in MATLAB.

The skeleton of a MATLAB script, pwm_sim.m has been provided to you in this lab exercise’s

supplementary materials as well as in Appendix 10.B. Create a new folder on your PC to serve

as your project directory and place pwm_sim.m within it. Launch MATLAB and open pwm_sim.m.

You’ll notice that the last half of the script has been commented out. This was done to allow

you to run the script to confirm that you have completed the first half of the script correctly

before moving on to the next half.

Your task is to fill in each of the TODO portions of the code. The first TODO statement is within

the sawtooth function in the definition of x_saw. Read the comments above this definition to

understand the requirements for the x_saw variable. You must replace the TODO statement with

an expression that satisfies the requirements in the comment. This expression may require

that you use other variables defined earlier in the script, so be sure to investigate the script

thoroughly. Remember that you can use the help command to get help for functions you aren’t

familiar with.

The second TODO statement is within the definition of the message signal, vin. Again, the

requirements that vin should satisfy are specified in a comment above the definition.
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Once you’ve replaced the TODO statements with the proper expressions, run the script to

verify the results. You should see a graph with three overlaid signals: the message signal 𝑉in,

the sawtooth signal, and the PWM output. If you have correctly filled out the script, each of

these signals will be bounded between 0 V and 5 V, and the message signal should span exactly

three periods. Include this copy of this plot in your lab report. Discuss the meaning of each

signal in the plot and explain how they relate to one another.

Once you’ve completed the first half of the script, delete line 63 to uncomment the second half.

This portion of the script deals with decoding the PWM output and comparing the result to the

original input. Recall from Sec. 10.3 that PWM signals are decoded by filtering the output. Each

of the TODO statements in this portion of the script are for configuring this filter as parameters

to the butter(...) function. This function creates a Butterworth filter, a special class of filters

with maximally flat pass and stop bands. Use the help command on the butter(...) function

to learn the format of the parameters that it expects. You will have to select a cutoff frequency

for this filter. It will need to be low enough to be well below pulse frequency but high enough

to avoid attenuating the content of the message signal.

Once you configured the filter, run the script. You should see two more figures appear, one

showing the Bode of the filter and another showing the original message 𝑉in overlaid with the

filtered PWM out. If done correctly, the filtered PWM output should reach a steady state that

is a slightly delayed version of 𝑉in. The peaks and troughs of the filtered PWM signal should

span the same range as the peaks and troughs of 𝑉in. If the peaks/troughs do not span the

proper range, then the message signal has been attenuated by the filter—indicating an incorrect

choice of filter cutoff frequency. Similarly, if high-frequency content not present in 𝑉in is visible

in the filtered PWM output, the filter cutoff frequency has also been chosen incorrectly. Once

you’ve confirmed that the script has been properly completed, include a copy of the 𝑉in/filtered

PWM plot in your lab report. Discuss your choice of cutoff frequency. Why is the filtered PWM

signal delayed from 𝑉in? What is the phase shift (in degrees) from 𝑉in to the filtered output?

Hint: the Bode plot of the filter may be useful here.
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10.4.2 PWM Circuit

Now that you’ve completed a simulation of a PWM encoder, we will proceed to build the real

thing by breadboarding a comparator circuit, that takes 𝑉in and 𝑉saw as inputs and produces

the PWM signal 𝑉pwm. Your PC’s headphone port will provide the message signal (𝑉in), the

DAD will provide the sawtooth function (𝑉saw) and oscilloscope, and the CyDAQ will provide

the filter for decoding the PWM signal 𝑉pwm. Use the components in your Lab Kit, along with

the LM293 op-amp provided in the lab to construct the circuit in Fig. 10.5. You must use the

LM293 op-amp, other op-amps in your Lab Kit cannot be used as substitutes. The pinout for

the LM293 op-amp is given in Fig. 10.6.

Vin

47 µF
100 kΩ

100 kΩ

5V

+

−
LM293

Vsaw

5V

1 kΩ

5V

Vpwm

Figure 10.5: Circuit For PWM Encoder.

4 5

3 6

2 7

1 8

LM293

OUT1
IN1-
IN1+
GND IN2+

IN2-
OUT2
VCC

Figure 10.6: LM293 Pinout

Once you have built the circuit depicted in Fig. 10.5 you will need to connect it to your PC

headphone port, the CyDAQ’s 𝑉in and 𝑉out ports, as well as the DAD’s WaveGen and Scope.

You will need to make the following connections:
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• Connect the CyDAQ’s 5 V Sensor Port (J11) to the Breadboard’s Power Rails

using Female-to-Male Jumper Cables.

– Connect the CyDAQ’s 5 V Sensor Ground Terminal (leftmost terminal of J11)

to the Breadboard’s Ground (Negative Rail).

– Connect the CyDAQ’s 5 V Sensor 5 V Terminal (middle terminal of J11) to the

Breadboard’s 𝑉𝑠𝑠 (Positive Rail).

• Connect the PC’s Headphone Terminal to the Breadboard’s PWM Circuit using

a 3.5 mm Aux Breakout Cable.

– Connect the PC Headphone Ground (Black Breakout Wire) to the Bread-

board’s Ground (Negative Rail).

– Connect the PC Headphone Right Channel (Red Breakout Wire) to the

PWM Circuit’s 𝑉in (see Fig. 10.5).

– The PC Headphone Left Channel (White Breakout Wire) is unused.

• Connect the DAD’s WaveGen Ch. 1 (Sawtooth) to the Breadboard’s PWM Circuit.

– Conect the DAD’s Ground Terminal (GND) to the Breadboard’s Ground (Neg-

ative Rail).

– Connect the DAD’s Waveform Generator 1 (W1) to the PWM Circuit’s 𝑉saw

(see Fig. 10.5).

• Connect the PWM Circuit’s 𝑉pwm to the CyDAQ’s 𝑉in Terminals using Female-to-

Male Jumper Cables.

– Connect the Breadboard’s Ground (Negative Rail) to the CyDAQ’s 𝑉in Nega-

tive Terminal (Vin-).

– Connect the PWM Circuit’s 𝑉pwm (see Fig. 10.5) to the CyDAQ’s 𝑉in Positive

Terminal (Vin+).

• Connect the CyDAQ’s 𝑉out Terminal to the Breadboard using Female-to-Male

Jumper Cables. If a single cable is too short, string together two cables to create

longer Female-to-Male cables.

– Connect the CyDAQ’s 𝑉out Negative Terminal (Vout-) to an Unused Row on

the Breadboard.

– Connect the CyDAQ’s 𝑉out Positive Terminal (Vout+) to an Unused Row on
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the Breadboard.

• Connect the CyDAQ’s 𝑉out (via Breadboard) to the DAD’s Scope Ch. 2.

– Connect the CyDAQ’s 𝑉out Negative Terminal (Vout-) to the DAD’s Scope

Ch. 2 Negative Terminal (CH2-).

– Connect the CyDAQ’s 𝑉out Positive Terminal (Vout+) to the DAD’s Scope Ch.

2 Positive Terminal (CH2+).

• Connect the Speaker’s Power Connector to the Breadboard’s Power Rails.

– Connect the Breadboard’s Ground (Negative Rail) to the Speaker’s Power Neg-

ative Terminal (Black Wire).

– Connect the Breadboard’s 𝑉𝑠𝑠 (5 V) to the Speaker’s Power Positive Terminal

(White or Red Wire).

• Connect the CyDAQ’s 𝑉out (via Breadboard) to the Speaker’s Audio-In using a 3.5 mm

Breakout Cable.

– Connect the CyDAQ’s 𝑉out Negative Terminal (Vout-) to the Speaker’s Audio

Ground (Black Breakout Wire).

– Connect the CyDAQ’s 𝑉out Positive Terminal (Vout+) to the Speaker’s Audio

Right Channel (Red Breakout Wire).

– The Speaker’s Audio Left Channel (White Breakout Wire) is unused.

• Connect the DAD’s Scope Ch. 1 to the Breadboard (for probing).

– Connect the DAD’s Scope Ch. 1 Negative Terminal (CH1-) to the Bread-

board’s Ground.

– Connect the DAD Scope Ch. 1 Positive Terminal (CH1+) to the Probe Location

(whichever part of the circuit you would like to verify).

The pin-outs for the CyDAQ and DAD are given in Appexendix 10.A. Open the Wavegen in

the WaveForms Software and enter the following configuration:

• Type: RampUp

• Frequency: 200 kHz

• Amplitude: 2.5 V

• Offset: 2.5 V

• Symmetry: 100%
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• Phase: 0°
This will generate a sawtooth wave from 0 V to 5 V. Open the CyDAQ Software and send the

following configuration:

• Sampling Rate: 48000

• Input: Analog In

• Filter: 6th Order Low Pass

• Mid Corner: Cutoff

In the Mid Corner field, enter the cutoff you chose in Sec. 10.4.1.

Begin streaming audio from your PC into the circuit. Choose an audio source that is long

in duration, and has a high volume without being distorted. Classical organ or brass pieces

are good candidates to stream. If your circuit was constructed correctly, you should hear your

streamed audio through the external speaker. Using the DAD’s Scope, probe the output of

CyDAQ 𝑉𝑖𝑛 on Scope Ch. 1 and the CyDAQ’s 𝑉𝑜𝑢𝑡 on Scope Ch. 2. Confirm that Scope Ch.

1 depicts a PWM signal while Scope Ch. 2 depicts the decoded audio signal. Take a snapshot

of the WaveForms scope displaying both the PWM and decoded audio waveforms. Include this

image in your lab report and discuss the quality of the decoded audio.

10.5 Report Checklist

Work with lab partner(s) to create a lab report for this lab exercise. Be sure to include the

names of each person in your group on the report. This report should be a typed document that

outlines the basic procedure of the lab exercise and should include any results you were asked to

obtain. Your report should follow a cohesive narrative—it should always be apparent why you

have presented the results you have. Do not simply insert results without (1) motivating the

problem and (2) providing an analysis of the data. Ensure that your report is grammatically

correct with complete sentences. This does not mean your report must be wordy with filler—in

fact, avoid filler and state your ideas concisely.

Be sure the following are included in your report:

• Section 10.3: Explain why a low-pass filter behaves as an averaging function.

• Section 10.3: Include your duty cycle calculations in your lab report.
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• Section 10.3: Include a scope capture of the PWM and filtered message signals. Explain

why the filtered message signal appears the way that it does.

• Section 10.4.1: Include a copy of the 𝑉in/sawtooth/PWM plot produced by the MATLAB

simulation. Discuss the meaning of each of the signals in this plot and explain how they

relate to one another.

• Section 10.4.1: Include a copy of the 𝑉in/filtered PWM output plot in your report. Discuss

your choice of cutoff frequency. Why is the filtered PWM signal delayed from 𝑉in? What

is the phase shift (in degrees) from 𝑉in to the filtered output?

• Section 10.4.2: Include an image of the WAveforms scope displaying both the PWM signal

and decoded audio waveforms. Discuss the audio quality of the decoded PWM signal.

10.6 Acknowledgments

This lab exercise is based on an exercise drafted by Isaac Rex.

10.A Hardware Ports

𝑉out

𝑉in

5 V Sensor In

(a) CyDAQ showing, 𝑉in, 𝑉out, 3.5 mm and
5 V Sensor In.

(b) DAD pin-out.[1]

Figure 10.7: Pin-outs/terminals for CyDAQ and DAD.
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3.5 mm
Audio In

Power
Connector

Figure 10.8: CyDAQ Speaker showing 3.5 mm Audio terminal and Power Connector.

10.B PWM Simulation MATLAB Script

Listing 10.1: pwm_sim.m

1 close all; clearvars;

2 % PWM Simulation

3 % Written By: Isaac Rex, 2020

4 % Updated By: Aaron Fonseca, 2024

5

6 % **Fill-in all TODOs**

7

8 A_saw = 5; % 5V amplitude

9 A_sin = 2; % Amplitude of vin

10 f_saw = 200e3; % Sawtooth frequency. This is the effective sampling rate of

11 % the input signal and will be the same as the PWM frequency

12 f_sin = 20e3; % Sine wave frequency (Hz)

13 N_periods_sin = 3; % Number of sine wave periods to simulate

14

15 %% Generate Sawtooth Wave

16 % How many periods (or samples) to simulate. Simulate enough periods of

17 % the sawtooth to capture three full periods of vin

18 N_saw_cycles = ceil(f_saw/f_sin) * N_periods_sin;

19

20 dt_sim = 1/(f_saw * 100); % This is our simulations time-step. That is, how

206



21 % fine of resolution are we simulating at.

22

23 t = 0:dt_sim:N_saw_cycles/f_saw-dt_sim; % Simulate time vector

24

25 % *************************************************************************

26 % TODO: Fill in the sawtooth() argument, use: `help sawtooth` if needed

27 % *************************************************************************

28 % Generates a sawtooth wave that goes from 0 to A_saw at f_saw frequency

29 x_saw = (sawtooth( TODO ) + 1) * A_saw/2;

30

31 %% Generate vin

32

33 % *************************************************************************

34 % TODO: Fill in the statement. vin should be a sin wave with frequency

35 % f_sin Hz, centered at A_saw/2 with amplitude A_sin (e.g., for A_sin = 2

36 % and A_saw = 5, the sine wave should range between 0.5 and 4.5)

37 % *************************************************************************

38 % Generate and center input (usually input is centered around the sawtooth)

39 vin = TODO;

40

41 %% Simulate the comparator

42 pwm = A_saw * (x_saw < vin);

43

44 %% Plot waveforms

45 figure(1)

46 clf;

47

48 hold on;

49 plot(t, pwm, 'LineWidth', 2);

50 plot(t, vin, 'LineWidth', 2);

51 plot(t, x_saw, 'LineWidth', 2);

52 grid on;

53

54 wf_axis = gca; % Get figure handle for editting plot

55 set(wf_axis, 'fontsize', 22) % Set figure's fontsize

56 set(wf_axis.XAxis, 'Exponent', -6) % Set xlabel exponent to -6 (us)
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57 xlabel('Time (sec)', 'FontSize', 22)

58 ylabel('Volts', 'FontSize', 22)

59 legend('PWM Output', 'V_{in}', 'Sawtooth', 'fontsize', 20)

60 title('V_{in} Input And PWM Output', 'FontSize', 24)

61

62 % Delete the FOLLOWING LINE (LINE 63) to uncomment the following section

63 %{

64 % *************************************************************************

65 % Put in the filter parameters below. You need to choose a cutoff

66 % frequency and filter type. Type 'help butter' for more information

67 % *************************************************************************

68 %% Design output filter

69 filt_order = 6;

70 filt_cutoff_hz = TODO;

71 filt_type = TODO;

72

73 % Get filter's TF coefficents

74 [b, a] = butter(filt_order, 2*pi*filt_cutoff_hz, filt_type, 's');

75 H = tf(b, a); % Generate TF

76

77 %% Make Bode plot of filter

78 % bodeoptions isn't strictly necessary, but is really nice when making

79 % plots for reports (or if you just want frequency units in Hz)

80 P = bodeoptions;

81 P.FreqUnits = 'Hz';

82 P.Grid = 'on';

83

84 figure(2)

85 bode(H, P)

86

87 %% Simulate the PWM signal going through the filter

88 vout = lsim(H, pwm, t); % Filter the PWM signal

89

90 %% Plot the output

91 figure(3)

92 clf;
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93 plot(t, vin, 'LineWidth', 2);

94 hold on;

95 plot(t, vout, 'LineWidth', 2);

96 grid on

97

98 set(gca, 'fontsize', 22)

99 xlabel('Time (sec)', 'FontSize', 22)

100 ylabel('Volts', 'FontSize', 22)

101 legend('V_{in}', 'Filtered Output', 'fontsize', 20)

102 title('V_{in} Input And Filtered Output', 'FontSize', 24)

103 %}

10.R References

[1] “Analog discovery 2 reference manual,” Digilent. (2018), [Online]. Available: http : / /

digilent . com / reference / test - and - measurement / analog - discovery - 2 / reference -

manual.
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Open Signals and Systems Laboratory Exercises Second Edition

Sampling and Aliasing

An Exploration of the Sampling Theorem

Overview

In this lab exercise, students will explore sampling and its implications in the frequency domain.

Students will plot the frequency content of various sampled signals using the plot_spectrum.m

script (available in this exercise’s supplementary materials or in Appendix 11.A). Students will

use the CyDAQ to capture sampled sinusoids at various sampling rates.

Learning Objectives

By the end of this lab exercise, students will be able to:

1. Relate the number of samples in a finite length discrete time signal to the number of

frequency bins in its Discrete Fourier Transform.

2. Plot the frequency spectrum of sampled signals in MATLAB.

3. Infer the apparent frequency of aliased sinusoids.

Materials

(1×) DAD

(1×) CyDAQ

11.1 Introduction

In this lab exercise, you will explore the basic concepts of the sampling theorem and some of

its exploits. First, you’ll sample a signal near the Nyquist frequency and then reconstruct it in

MATLAB, then you’ll see the effects of undersampling a signal in the frequency domain using

the FFT function both on the DAD and in MATLAB.
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11.2 Background

11.2.1 Sampling in the Frequency Domain

Sampling a continuous-time signal, 𝑥(𝑡), at a rate of 𝑓𝑠 can be thought of as multiplying 𝑥(𝑡)
with a delta train whose spacing between deltas is 𝑇𝑠 = 1/𝑓𝑠. Recall that multiplication in the

time domain is convolution in the frequency domain and the Fourier transform of a delta train is

a stretched and scaled delta train. Consequentially, sampling at a rate of 𝑓𝑠 in the time domain

results in scaled, 𝑓𝑠 periodic replications in the frequency domain.

Recall also that signals that are real in the time domain are conjugate symmetric in the

frequency domain. This means that a signal with a bandwidth, 𝐵, has a frequency content

between −𝐵 and 𝐵 hertz. When a signal with bandwidth, 𝐵, is sampled at a rate of 𝑓𝑠, what

used to be negative frequency content between −𝐵 and 0 hertz now also exists from 𝑓𝑠 − 𝐵 to

𝑓𝑠 (and vice versa across multiple of 𝑓𝑠 etc) due to periodic replication. Thus, to ensure that

no unintended interference occurs due to frequency overlap (or aliasing), one should choose the

sampling rate 𝑓𝑠 such that 𝑓𝑠 ≥ 2𝐵. This is the origin of the Nyquist theorem.

A more concrete example of the effect of sampling is given in Fig. 11.1. Here, a 20 Hz sinusoid

is sampled at a rate of 50 Hz. After sampling we can see that additional frequency content has

appeared at ±30 Hz ±70 Hz, etc.
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Mag. Spec. of 20 Hz Sinusoid

𝑓 Hz
920 0 20

0

𝜋

Mag. Spec. of 20 Hz Sinusoid Sampled at 50 Hz

𝑓 Hz
980970 950 930920 0 20 30 50 70 80

0

50𝜋

Figure 11.1: Original spectrum vs. sampled spectrum.

11.2.2 The Discrete Fourier Transform

Digital systems cannot represent continuous-time signals (this would require them to store not

merely an infinite number of points, but an uncountably infinite number of points). Consequen-

tially, digital systems do not (typically) utilize the Fourier transform, as this requires continuous

data. Instead, digital systems employ the Discrete Fourier Transform (DFT). Usually, an effi-

cient algorithm for computing the DFT called the Fast Fourier Transform (FFT) is used so the

two terms are often used interchangeably.

If 𝑥 is an 𝑁 -length vector representing a discrete-time signal sampled at a rate of 𝑓𝑠, then the

Discrete Fourier Transform of 𝑥, DFT{𝑥} is an 𝑁 -length vector giving the sampled frequency

spectrum between 0 and 𝑁−1
𝑁 𝑓𝑠 hertz. As a consequence, we can gain insight into the effects of

sampling at different rates by comparing the DFT spectrums.

11.3 Effects of Sampling

The MATLAB script, plot_spectrum.m has been provided to you in this lab exercise’s supple-

mentary materials as well as in Appendix 11.A. This script takes a vector, x containing a time

domain signal, and a scalar Fs containing the sampling rate of x. Using all the knowledge of
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MATLAB you’ve accumulated throughout the previous lab exercises, create a script in your

project directory called test_5_1k_at_20k.m that does the following:

1. Generates 𝑁 = 5 periods of a 1 kHz sine wave sampled at 𝑓𝑠 = 20 kHz and stores it in the

variable x with associated time vector t.

2. Generates a figure containing a time domain plot of the sine wave, x, with respect to the

time vector, t. The axes of this plot should be properly labeled.

3. Generates a figure containing the DFT spectrum of x using the plot_spectrum(...) func-

tion.

In your lab report, include both the time domain and frequency spectrum plots produced by

test_5_1k_at_20k.m.

Create a new script in your project directory called test_50_1k_at_20k.m and paste the con-

tents of test_5_1k_at_20k.m into it. Modify your new test_50_1k_at_20k.m so that it generates

𝑁 = 50 periods of a 1 kHz sine wave sampled at 𝑓𝑠 = 20 kHz. Include both the time domain

and frequency spectrum plots produced by test_50_1k_at_20k.m in your report. Compare the

frequency spectrums produced by the test_5_1k_at_20k.m and test_50_1k_at_20k.m scripts.

Discuss the effect(s) on the frequency spectrum of increasing the number of periods from 𝑁 = 5
to 𝑁 = 50.

Create a new script in your project directory called test_50_8k_at_20k.m and paste the con-

tents of test_50_1k_at_20k.m into it. Modify your new test_50_8k_at_20k.m script so that is

generates 𝑁 = 50 periods of a 8 kHz sine wave sampled at 𝑓𝑠 = 20 kHz. Include both the time

domain and frequency spectrum plots produced by test_50_8k_at_20k.m in your report. Com-

pare the frequency spectrums produced by the test_50_1k_at_20k.m and test_50_8k_at_20k.m

scripts. Discuss the effect(s) on the frequency spectrum of increasing the frequency of the sine

wave from 1 kHz to 8 kHz.

11.3.1 Sampling Near Nyquist

The Nyquist theorem states that the sampling rate, 𝑓𝑠, should be at least twice the maximum

bandwidth of the signal to be sampled. However, while this mathematically guarantees that

alias will not occur, having a sampling rate close to twice the maximum bandwidth presents
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practical problems as well. In order to reconstruct the original spectrum from a sampled signal,

the periodic replications must be removed via a lowpass filter. An ideal low pass filter would

be a rect function in the frequency domain whose width from 0 Hz is 𝑓𝑠. Why might this be

difficult to realize? In your lab report, discuss why ideal low-pass filters are difficult to realize

and why frequency content close to the edge of the ideal rect function might be more prone to

distortion if imperfect realizations of a low-pass filter are utilized.

We will now conduct experiments on the effects of sampling close to the Nyquist frequency.

The CyDAQ has the ability to capture data at custom sampling rates and save the results to .mat

files. We will use the DAD to generate high-fidelity sinusoids that will then be sampled by the

CyDAQ. Make the following connections:

• Connect the DAD’s Waveform Generator 1 (W1) and the DAD’s Ground (GND)

Jumper Wires to the CyDAQ’s 𝑉in Terminals, (Vin+) and (Vin-), respectively.

Launch the WaveForms Software and open a new Wavegen tab. Enter the following configura-

tion:

• Type: Sine

• Frequency: 1 kHz

• Amplitude: 1 V

• Offset: 0 V

• Symmetry: 50%

• Phase: 0°
Run the Wavegen. Launch the CyDAQ Software and send the following configuration:

• Sampling Rate: 2100 Hz

• Input: Analog In

• Filter: All Pass

Note that the Sampling Rate is a text-entry field in addition to a drop-down menu. You will

need to enter 2100 Hz as a text entry since it is not in the drop-down menu.

Capture about one second of data using the Start Sampling button in the CyDAQ Software.

Save the data as dat_1000_at_2100.mat in your project directory.

Create a new script in your project directory called test_1000_at_2100.m and paste the

contents of test_50_1k_at_20k.m into it. Modify the script so that the contents of the data
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signal, x, and time vector, t are loaded from dat_1000_at_2100.mat. Recall also that the .mat

files generated by the CyDAQ application contain a variable called data, which is a matrix

whose first column contains the time vector, t, and whose second column contains the signal

amplitudes, x. Don’t forget to update the sampling frequency, Fs, in your script to the proper

value of Fs = 2100. Run the script and include both the time domain and frequency spectrum

plots produced in your lab report. Does the time domain waveform look like a 1 kHz sine wave?

You may need to zoom in to get a better view. Does the appearance of the time-domain signal

comport with the content of the frequency spectrum? Discuss this in your lab report.

11.3.2 Upsampling for Reconstruction

We will now reconstruct a (20×) upscaled version of the sampled signal captured by the Cy-

DAQ. Create a new script in your project directory called upsample_1000_at_2100.m and paste

the contents of test_1000_at_2100.m into it. Before the plotting commands, create three new

variables: Fs_up, x_up, and t_up.

Define Fs_up as twenty times Fs. Define x_up as x_up = resample(x, P, Q, b) where 𝑃 = 20,

𝑄 = 1 and 𝑏 = 100. This will upsample x by 20 times. The 𝑏 parameter controls the “effective-

ness” of the reconstruction filter where 100 indicates the reconstruction should be very effective.

The upsampled signal, x_up, will have the following properties:

a. The upsampled signal, x_up, will have 20 times as many samples as the original signal, x.

b. The upsampled signal, x_up, will have a new sampling rate, Fs_up, which is 20 times the

original sample rate Fs.

c. The upsampled signal, x_up, will be the same duration in time (seconds) as the original

signal, x. This might not be intuitive at first (as x_up has 20 times as samples) but

consider that the spacing (in time) between samples (which is related to the sampling rate)

has changed as well.

Once you have generated the upsampled signal, x_up, you will need to generate a new time

vector, t_up, that corresponds to your new sampling rate, Fs_up. This time vector, t_up, should

have the same number of samples as x_up. You can find the number of samples in x_up using

N_up = length(x_up) command in MATLAB. Your t_up vector must be a vector of N_up samples
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beginning at 0 where the difference between consecutive samples is 1/Fs_up.

Once you have defined t_up and x_up modify the plotting commands so that the time domain

figure plots x_up with respect to t_up and the frequency spectrum is taken with respect to x_up

and Fs_up. Verify that what you see makes sense. You may need to enlarge the view region of the

time domain plot to get a proper view. Discuss whether the plots of the upscaled reconstruction

comport with the plots produced by test_1000_at_2100.m.

11.3.3 Aliasing

We will now explore what happens when the sampling frequency, 𝑓𝑠, does not meet the Nyquist

criterion. In the Wavegen in WaveForms, enter the following configuration:

• Type: Sine

• Frequency: 15 kHz

• Amplitude: 1 V

• Offset: 0 V

• Symmetry: 50%

• Phase: 0°

Run the Wavegen. Open the CyDAQ Software and send the following configuration:

• Sampling Rate: 20 000 Hz

• Input: Analog In

• Filter: All Pass

Capture about one second of data using the Start Sampling button in the CyDAQ Software.

Save the data as dat_15k_at_20k.mat in your project directory.

Create a new script in your project directory called test_15k_at_20k.m and paste the contents

of test_1000_at_2100.m into it. Modify the script so that the contents of the data signal, x,

and time vector, t are loaded from dat_15k_at_20k.mat. Run the script and include both the

time domain and frequency spectrum plots produced in your lab report. Describe the apparent

frequency spectrum of the sampled signal. How might this change if the input signal was a

18 kHz sinusoid rather than a 15 kHz sinusoid?

217



11.4 Report Checklist

Work with lab partner(s) to create a lab report for this lab exercise. Be sure to include the

names of each person in your group on the report. This report should be a typed document that

outlines the basic procedure of the lab exercise and should include any results you were asked to

obtain. Your report should follow a cohesive narrative—it should always be apparent why you

have presented the results you have. Do not simply insert results without (1) motivating the

problem and (2) providing an analysis of the data. Ensure that your report is grammatically

correct with complete sentences. This does not mean your report must be wordy with filler—in

fact, avoid filler and state your ideas concisely.

Be sure the following are included in your report:

• Section 11.3: Include both the time domain and frequency spectrum plots produced by

test_5_1k_at_20k.m.

• Section 11.3: Include both the time domain and frequency spectrum plots produced by

test_50_1k_at_20k.m in your report. Compare the frequency spectrums produced by the

test_5_1k_at_20k.m and test_50_1k_at_20k.m scripts. Discuss the effect(s) on the fre-

quency spectrum of increasing the number of periods from 𝑁 = 5 to 𝑁 = 50.

• Section 11.3: Include both the time domain and frequency spectrum plots produced by

test_50_8k_at_20k.m in your report. Compare the frequency spectrums produced by the

test_50_1k_at_20k.m and test_50_8k_at_20k.m scripts. Discuss the effect(s) on the fre-

quency spectrum of increasing the frequency of the sine wave from 1 kHz to 8 kHz.

• Section 11.3.1: Discuss why ideal low-pass filters are difficult to realize and why frequency

content close to the edge of the ideal rect function might be more prone to distortion if

imperfect realizations of a low-pass filter are utilized.

• Section 11.3.1: Include both the time domain and frequency spectrum plots produced by

test_1000_at_2100.m. Discuss whether the appearance of the time-domain signal comports

with the content of the frequency spectrum.

• Section 11.3.2: Include both the time domain and frequency spectrum plots produced

by upsample_1000_at_2100.m. Discuss whether the plots of the upscaled reconstruction
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comport with the plots produced by test_1000_at_2100.m.

• Section 11.3.3: Include both the time domain and frequency spectrum plots produced by

test_15k_at_20k.m in your lab report. Describe the apparent frequency spectrum of the

sampled signal. Discuss how this might change if the input signal was a 18 kHz sinusoid

rather than a 15 kHz sinusoid.

11.5 Acknowledgments

This lab exercise is based on an exercise drafted by Isaac Rex.

11.A Plot Spectrum MATLAB Code

1 function [X,f] = plot_spectrum(x, Fs)

2 % PLOT_SPECTRUM Plots the mangitude spectrum of a signal.

3 % [X, f] = PLOT_SPECTRUM(x, Fs) plots the magnitude spectrum of a signal, x,

4 % sampled at the sampling frequency, Fs.

5 %

6 % Outputs

7 % X: DFT of signal, x

8 % f: Frequency vector of the plot from -Fs/2 to Fs/2 (Hertz)

9

10 % Written By: Isaac Rex, 2020

11 % Updated By: Aaron Fonseca, 2024

12

13

14 % Compute the DFT

15 N = length(x);

16 X = fft(x); % Get the DFT from k = 0:N-1

17 X_shifted = fftshift(X); % Shift the DFT so k = -N/2:(N/2-1)

18 X_mag = abs(X_shifted); % Get the magnitude of X

19

20 % Get the indices and frequencies

21 kk = ceil(-N/2):ceil(N/2-1); % Indices of the DFT. ceil() fixes the
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22 % indices when N is odd

23 f = kk*Fs/N; % Convert to frequencies between -Fs/2 and Fs/2

24

25 % Plot

26 clf;

27 stem(f, X_mag, 'LineWidth', 1.5, 'MarkerFaceColor', 'none');

28 xlabel('Frequency (Hz)', 'FontSize', 12);

29 axis([-Fs/2, Fs/2, floor(min(X_mag)), ceil(max(X_mag))])

30 ylabel('Magnitude Of DFT', 'FontSize', 12);

31 title_str = sprintf(['Mag Spectrum ' ...

32 'sampled at %.1f kHz'], Fs/1e3);

33 title(title_str, 'FontSize', 16)

34 grid on;

35 end
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Open Signals and Systems Laboratory Exercises Second Edition

Demodulation with a Software Defined Radio

An Exploration of Communication Systems

Overview

In this lab exercise, students will use software-defined radios (SDRs) to view, demodulate, and

listen to AM and FM signals. Iowa State University’s Electronics and Technology Group (ETG)

will provide students with RTL-SDR peripherals for each lab station. Students will interact

with the RTL-SDR peripheral using two separate software components: the SDRSharp software

(freeware from AIRSPY) and a collection of MATLAB scripts (provided in the supplementary

materials for this exercise or Appendices 12.A–12.E). Iowa State Amateur Radio Club members

will be present during the lab session to transmit a custom AM message at 150 MHz for students

to decode.

Learning Objectives

By the end of this lab exercise, students will be able to:

1. Use the SDRSharp software to view the spectra of FM radio signals.

2. Demodulate and listen to FM and AM stations using SDRSharp.

3. Demodulate and listen to AM signals in MATLAB.

Materials

(1×) RTL-SDR Receiver

12.1 Introduction

Software-defined radios (SDRs) are customizable radio systems that implement software-configurable

signal processing operations. SDRs can be configured to receive or transmit various modulated

message signals using a software peripheral. These highly configurable systems can be easily
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reprogrammed to implement unrelated modulation schemes, including AM, FM, and more exotic

methodologies. SDRs typically contain a local oscillator whose frequency is tuned to a frequency

of interest. Since radio frequencies operate well beyond the sampling rates necessary for rep-

resenting the demodulated signal, SDRs typically implement a down-conversion process that

represents data using a more manageable sampling rate. In addition to demodulating AM and

FM radio signals, SDRs can be used for all kinds of additional spectrum operations, including

amateur radio,[1] obtaining live airplane position information,[2] receiving satellite imagery from

NASA satellites,[3] and implementing a police scanner.[4]

A wide variety of SDRs can be purchased on the open market. The SDR used in this lab is the

RTL-SDR,[5] an affordable option popular with hobbyists and supported by a large open-source

community. While the RTL-SDR can only receive signals, other SDR models can act as both

transmitters and receivers.

12.2 The SdrSharp Software

The software used to configure the RTL-SDR peripheral is SdrSharp. This software is freely

available for download from the AIRSPY website;[6] however, the software has already been

installed at each lab station by the Electronics and Technology Group at Iowa State University.

Navigate to SDRSharp.exe and launch the program.

12.2.1 Using the Software

The Main Window

Once the software is loaded, it should open into the Main Window, shown in Fig. 12.1. Refer

back to this figure as you complete the following steps.

1. First, confirm that the proper Source Device is selected. The proper device should be

RTL-SDR USB. If not set properly, select RTL-SDR USB from the Source Device drop-down

menu.

2. Now, press the Start/Stop Radio toggle to start the SDR device to begin outputting noise.

You should hear radio static from your PC Speaker (unless you are close to a defined radio
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Start/Stop Radio Configuration Menu Frequency Selector Step Adjuster Zoom Pop-out

Volume Adjuster

Radio Panel

Source Device

Figure 12.1: The SdrSharp Main Window with some of the less prominent features highlighted.

station). The volume of the radio output is controlled via the Volume Adjuster. If you

cannot hear any sound output whatsoever, confirm that your Audio Output Device1 is set

to Speakers.

3. The current tuning frequency the SDR is displayed in the Frequency Selector. This tuning

frequency can be adjusted using either the Frequency Selector or the Step Adjuster controls.

(a) The Frequency Selector is the easier of the two controls. Mouse over the digit in the

Frequency Selector you would like to adjust—and a set of opaque up/down arrows

will appear atop that digit. You can then click either of these arrows to shift the

value of that digit by ±1.

(b) The tuning frequency can also be adjusted using the Step Analyzer control or by

clicking regions within the main spectrum window. This method is less intuitive,

1Click the Speaker Icon in the Windows System Tray (the rightmost section of the taskbar). You should see
a system volume slider and a drop-down available audio devices situated just above it.
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and you are encouraged to experiment with adjusting the tuning frequency using this

method at your leisure.

4. The method/type of demodulation is controlled within the Radio Panel. The different

methods of demodulation available are given the set of radio buttons at the top of the

panel. These buttons are labeled:

• NFM for Normal FM,

• WFM for Wide FM,

• AM for AM,

• DSB for Double Sideband AM,

• LSB for Lower Sideband AM,

• USB for Upper Sideband AM,

• CW for Continuous Wave,

• and RAW for No Demodulation.

5. The bandwidth of the demodulation window is controlled within the Radio Panel in the

Bandwidth selector box. This is only adjustable for certain methods of demodulation.

This covers most of the essential controls visible in the Main Window, but a few remain

tucked away in the Zoom Pop-out panel.

The Zoom Pop-out Panel

This panel is revealed by clicking the Zoom Pop-out toggle in Fig. 12.1. The resulting pop-out

panel is depicted in Fig. 12.2. Note that the control target associated with each slider within the

pop-out panel is given by the label above that particular slider. For instance, the uppermost

slider controls the Zoom control target.

1. The Zoom slider (the uppermost slider) is the most important control in this pop-out

panel. It controls the range of frequencies captured by the SDR; this is essentially the

𝑥-axis of the main spectrum window. Mess around with the slider and see what happens.

2. The remaining controls: Contrast, Range, and Offset—affect the secondary spectrogram

window. Mess around with these and see what happens. These controls are not relevant

to this lab exercise.
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Zoom

Contrast

Range

Offset

Figure 12.2: The controls within the Zoom Pop-out panel; counter-intuitively, each control label
is placed above its associated slider—this diagram offers more explicit labeling.

There remains an additional yet critical control hidden within the Configuration Window.

The Configuration Window

This window is revealed by clicking the Configuration Menu button (the gear icon depicted in

Fig. 12.1). This opens the Configuration Window, depicted in Fig. 12.3.

1. First, ensure that Offset Tuning, RTL AGC and Turner AGC are each unchecked.

2. The gain control (or RF Gain) is a critical control which adjusts the input gain to the

demodulator. Try adjusting this slider and see what happens. When you’ve changed

demodulation methods, you will almost certainly need to adjust this gain.

This covers all the windows and panels within the software relevant to this lab exercise.
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Figure 12.3: The Configuration Window; the gain control (RF Gain) is highlighted in red.

12.3 Demodulating with SdrSharp

12.3.1 FM Demodulation

This portion of the exercise will focus on viewing the spectra of FM signals and using SdrSharp

to demodulate and listen to FM stations. First, select the Wide FM (e.i., the WFM) demodulation

method. Now scan the FM broadcasting Band (88–108 MHz) for FM radio stations.

1. Find at least three FM stations and write down their center frequencies. See if you can

find ISU’s student-run radio station, KURE, or the Iowa Public Radio station, WOI. Feel

free to google a list of local FM radio stations. Fig. 12.4 gives an example of one such FM

station.

2. Describe the shape of the spectrum of the FM signals you found. Does it bend towards the

center frequency like a triangle? Or does it form more of a lump? You will probably need

to increase the gain control (RF Gain) in the Configuration Window to see more than one

FM signal; however, increasing the gain will also increase the noise introduced.

You might notice that some FM stations have spectra that look different from the others.

These stations will have two “boxes” to the left and right of the center frequency. These stations

broadcast an “HD Radio” multicast, allowing additional digital stations to be broadcast between

traditional analog FM stations. Fig. 12.5 gives an example of an HD station. The HD station(s)
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Figure 12.4: Demodulating an FM station in SdrSharp.

Figure 12.5: The Spectrum of an “HD Radio” station. Note the two box-like protrusions in the
spectrum.

receivable in Ames, Iowa might not look nearly as clear as the one depicted in Fig. 12.5. Locate

at least one station that has an HD multicast. In your lab report, record the frequency for this

station. These can be hard to spot, so make your best guess.
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Figure 12.6: Demodulating the in-lab AM station in SdrSharp.

12.3.2 AM Demodulation

AM radio is broadcast in the 540–1,700 kHz band, which is too low in frequency for the RTL-SDR

to pick up. Fortunately, Iowa State Univerity Amateur Radio Club members will be present in

lab to transmit an in-house AM signal in the FM band 150 MHz. Use Single Side Band AM

Demodulation to demodulate the signal:

1. First, select LSB (Lower Sideband AM) demodulation within the Radio Panel of the Main

Window.

2. Next, set the Bandwidth (also located within the Radio Panel) to approximately 5, 400 Hz.

3. Finally, hone in on the 150 MHz broadcast frequency. You will need to align the red (or

right-hand) side of the demodulation window to the center point of the AM station spectra.

Fig. 12.6 gives an example of the correct setup for the in-lab AM broadcast. Describe what you

hear on the in-house AM station using SDRsharp.
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12.4 AM Demodulation with MATLAB

MATLAB’s Communications Toolbox provides an interface to the SDR, allowing us to collect

samples of the RF signal directly into MATLAB. We will now demodulate the in-house AM trans-

mission using two different demodulation strategies, envelope detection and coherent detection,

which are implemented as MATLAB scripts. These scripts can be found in the supplementary

materials for this exercise or Appendices 12.A–12.E. Place each script within a single folder and

open the standalone amSample_coherent.m and amSample_envelope.m scripts in MATLAB. The

remaining coherent_detect.m, envelope_detect.m and sdr_read.m scripts serve as dependen-

cies. Ensure your MATLAB working directory is appropriately set to the folder containing each

of the scripts. Be sure to close SdrSharp before running the MATLAB scripts.

12.4.1 Demodulating using Envelope Detection

We intend to use the scripts to demodulate our signal of interest which lies at about 150 MHz.

Within the standalone MATLAB scripts, the 𝐹center parameter specifies the tuning frequency

while the 𝐹offset parameter specifies to degree to which the obtained spectrum is shifted to

accommodate a reasonable data rate. Notice that sampling this signal would require a sampling

rate of at least 300 million samples per second according to the Nyquist-Shannon sampling

theorem—eight seconds of audio would require over two billion data samples! To make this

more manageable, both scripts down-convert (or frequency shift) the signal retrieved from the

SDR by 𝐹offset before bringing samples into MATLAB.

1. Open amSample_envelope.m in MATLAB.

2. Set 𝐹offset (named F_offset in the script) to a value between 20 and 100 kHz.

3. Run the script. It takes about 8 seconds to run, so be patient.

4. Once it’s complete, it will play the demodulated signal (though it won’t necessarily sound

the greatest) and produce a plot of the spectrum with respect to time (i.e., a spectrogram).

5. Use this spectrogram to locate the center frequency of the AM signal. Remember that it

will be offset by 𝐹center −𝐹offset from the original carrier frequency. Do this for two different

𝐹offset values and capture the resulting plots. Note the center frequencies in both cases.
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12.4.2 Demodulating using Coherent Detection

We can also use coherent detection to recover the message signal. In this case, we multiply the

AM signal, 𝑥(𝑡) = 𝐴(1 + 𝑘𝑎𝑚(𝑡)) cos (𝜔𝑡 + 𝜃), by a local oscillator (LO), 𝑧(𝑡) = cos (𝜔𝑡 − 𝜙).
Generally, the AM signal’s phase angle, 𝜃, is unknown at the receiver since the transmitter and

receiver use different oscillators, and the distance between them is unknown. Thus, the received

signal is:

𝑦(𝑡) = 𝑥(𝑡)𝑧(𝑡)

= 𝐴(1 + 𝑘𝑎𝑚(𝑡)) cos (𝜔𝑡 + 𝜃) cos (𝜔𝑡 + 𝜙)

= 𝐴
2 (1 + 𝑘𝑎𝑚(𝑡)) cos (𝜃 − 𝜙) + 𝐴

2 (1 + 𝑘𝑎𝑚(𝑡)) cos (2𝜔𝑡 + 𝜃 + 𝜙)

The second term, a cosine at twice the carrier frequency, is removed by a lowpass filter, leaving:

𝑦filt(𝑡) = 𝐴
2 (1 + 𝑘𝑎𝑚(𝑡)) cos (𝜃 − 𝜙)

Notice that if 𝜙 ≈ 𝜃, cos (𝜃 − 𝜙) ≈ 1. If 𝜃 and 𝜙 are close to 90∘ apart, cos (𝜃 − 𝜙) ≈ 0, and the

message will be lost.

1. Open amSample_coherent.m in MATLAB.

2. Set LO phase, 𝜙, (named phase_offset in the script) to a value between 0 and 180 degrees.

3. Run the script. It takes about 8 seconds to run, so be patient.

4. Once it’s complete, it will play the demodulated signal (though it won’t necessarily sound

the greatest).

5. Describe the sound you hear. Do this for two different 𝜙 values.

12.5 Report Checklist

Work with lab partner(s) to create a lab report for this lab exercise. Be sure to include the

names of each person in your group on the report. This report should be a typed document that

outlines the basic procedure of the lab exercise and should include any results you were asked to
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obtain. Your report should follow a cohesive narrative—it should always be apparent why you

have presented the results you have. Do not simply insert results without (1) motivating the

problem and (2) providing an analysis of the data. Ensure that your report is grammatically

correct with complete sentences. This does not mean your report must be wordy with filler—in

fact, avoid filler and state your ideas concisely.

Be sure the following are included in your report:

• Section 12.3.1: Write down three FM stations.

• Section 12.3.1: Describe the shape of FM radio spectra.

• Section 12.3.1: Write down one FM station that uses HD Radio.

• Section 12.3.2: Describe what you hear on the in-house AM station using SDRsharp.

• Section 12.4.1: Describe what you hear using envelope detection. Provide copies of the

spectrograms from envelope detection. Run the code for two different 𝐹offset values and

note the change on the spectrogram.

• Section 12.4.2: Describe what you hear using coherent detection. Run the code for two

different phase values and comment on any changes in the signal quality.

12.6 Acknowledgements

This lab exercise is based on an exercise drafted by Connor Ryan in co-operation with An-

drew Bolstad. Hardware support and troubleshooting were provided by Mathew Post in

co-operation with the Electronics and Technology Group.

12.A AM Coherent Demodulation Standalone Script

This standalone script requires the coherent_detect.m function (see Appendix 12.C) to run.

Listing 12.1: amSample_coherent.m

1 clearvars; close all; clc;

2 % Coherent Demodulation Standalone Script

3 % This script acquires the data from the SDR and demodulates it using

4 % coherent demodulation.
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5

6 % Written By: Andrew Bolstad and Connor Ryan, 2022

7 % Updated By: Aaron Fonseca, 2024

8

9

10 F_center = 150e6; % AM carrier frequency, currently at 150 MHz

11 F_offset = 100e3; % User-configurable parameter from 20 to 100 kSpS

12

13 Fs_sdr = 250e3; % Sampling rate of the SDR receiver

14 downsample_ratio = 5;

15 Fs_audio = Fs_sdr / downsample_ratio; % Sampling rate of the demodulated audio

16

17 % Try different phase_offset values to see if you can improve the signal output

18 phase_offset = 0;

19

20 % Read 8 seconds of data from the SDR receiver

21 % (down-converts by F_center - F_offset)

22 sdr_data = sdr_read(8, Fs_sdr, F_center, F_offset);

23

24 % Display spectrum of received signal

25 figure(1);

26 spectrogram(sdr_data, [], [], [], Fs_sdr);

27 title('Spectrum of shifted signal');

28

29 % Demodulate

30 demod_data = coherent_detect(sdr_data, F_offset, Fs_sdr, phase_offset);

31 % Downsampling to a frequency the audio card can handle

32 audio_data = downsample(demod_data, downsample_ratio);

33

34 % Display spectrum of audio signal

35 figure(2);

36 spectrogram(audio_data, [], [], [], Fs_audio, 'centered');

37 title('Spectrum of audio signal');

38

39 % Play audio signal

40 soundsc(audio_data, Fs_audio);
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12.B AM Envelope Demodulation Standalone Script

This standalone script requires the envelope_detect.m function (see Appendix 12.D) to run.

Listing 12.2: amSample_envelope.m

1 clearvars; close all; clc;

2 % Envelope Demodulation Standalone Script

3 % This script acquires the data from the SDR and demodulates it using

4 % envelope demodulation.

5

6 % Written By: Andrew Bolstad and Connor Ryan, 2022

7 % Updated By: Aaron Fonseca, 2024

8

9 F_center = 150e6; % AM carrier frequency, currently at 150 MHz

10 F_offset = 70e3; % User-configurable parameter from 20 to 100 kSpS

11

12 Fs_sdr = 250e3; % Sampling rate of the SDR receiver

13 downsample_ratio = 5;

14 Fs_audio = Fs_sdr / downsample_ratio; % Sampling rate of the demodulated audio

15

16 % Read 8 seconds of data from the SDR receiver

17 % (down-converts by F_center - F_offset)

18 sdr_data = sdr_read(8, Fs_sdr, F_center, F_offset);

19

20 % Display spectrum of received signal

21 figure(1);

22 spectrogram(sdr_data, [], [], [], Fs_sdr);

23 title('Spectrum of shifted signal');

24

25 % Demodulate

26 demod_data = envelope_detect(sdr_data, F_offset, Fs_sdr);

27 % Downsampling to a frequency the audio card can handle

28 audio_data = downsample(demod_data, downsample_ratio);
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29

30 % Display spectrum of audio signal

31 figure(2);

32 spectrogram(audio_data, [], [], [], Fs_audio, 'centered');

33 title('Spectrum of audio signal');

34

35 % Play audio signal

36 soundsc(audio_data, Fs_audio);

12.C AM Coherent Detection Function

This function requires the sdr_read.m function (see Appendix 12.E) to run.

Listing 12.3: coherent_detect.m

1 function audio_data = coherent_detect(rf_data, F_carrier, Fs, phase_offset)

2 % COHERENT_DETECT demodulates AM signals using the coherent detection method

3 % audio_data = COHERENT_DETECT(rf_data, F_carrier, Fs, phase_offset)

4 %

5 % Inputs

6 % rf_data: a vector containing the am modulated signal.

7 % F_carrier: a scalar specifying the carrier frequency.

8 % Fs: a scalar specifying the sampling rate of rf_data.

9 % phase_offset: a scalar specifying the phase offset of the carrier.

10

11 % Written By: Andrew Bolstad and Connor Ryan, 2022

12 % Updated By: Aaron Fonseca, 2024

13

14

15 if (nargin < 4)

16 phase_offset = 0;

17 end

18

19 t = (0:length(rf_data)-1) / Fs;

20 carrier_data = cos(2*pi*F_carrier*t - phase_offset);

21 message_data = rf_data .* carrier_data.';
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22

23 [B, A] = butter(6, F_carrier * 2/Fs);

24 audio_data = filtfilt(B, A, message_data) * 2;

25

26 % might not be necessary

27 audio_data = audio_data - mean(audio_data);

28 end

12.D AM Envelope Detection Function

This function requires the sdr_read.m function (see Appendix 12.E) to run.

Listing 12.4: envelope_detect.m

1 function audio_data = envelope_detect(rf_data, F_carrier, Fs)

2 % ENVELOPE_DETECT demodulates AM signals using the envelope detection method

3 % audio_data = ENVELOPE_DETECT(rf_data, F_carrier, Fs)

4 %

5 % Inputs

6 % rf_data: a vector containing the am modulated signal.

7 % F_carrier: a scalar specifying the carrier frequency.

8 % Fs: a scalar specifying the sampling rate of rf_data.

9

10 % Written By: Andrew Bolstad and Connor Ryan, 2022

11 % Updated By: Aaron Fonseca, 2024

12

13

14 t = (0:length(rf_data)-1) / Fs;

15 rect_signal = rf_data;

16 rect_signal(rect_signal<0) = 0;

17

18 % apply Butterworth filter

19 [B, A] = butter(6, F_carrier * 2/Fs);

20 audio_data = filtfilt(B, A, rect_signal) * 2;

21 end
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12.E SDR Read Function

Listing 12.5: sdr_read.m

1 function data = sdr_read(Tdur, Fs, F_center, F_offset)

2 % SDR_READ reads data from the SDR peripheral

3 % data = SDR_READ(Tdur, Fs, F_center, F_offset) captures Tdur seconds of data

4 % from the SDR peripheral at a sampling rate of Fs with a center frequency of

5 % F_center and an offset frequency of F_offset.

6 %

7 % Inputs

8 % Tdur: a scalar containing the duration (in seconds) of data to capture.

9 % Fs: the sampling rate of the captured data.

10 % F_center: the center frequency to tune the receiver.

11 % F_offset: the offset frequency to configure on the receiver.

12

13 % Written By: Andrew Bolstad and Connor Ryan, 2022

14 % Updated By: Aaron Fonseca, 2024

15

16 rx_frame_size = 2048; % Size of one frame of rx samples

17 F_shift = F_center - F_offset; % Frequency shift (Hz)

18 T0 = rx_frame_size / Fs; % Time length of one sample frame

19 num_rx_frames = round(Tdur / T0); % Number of frames received

20 rx_gain = 7.7;

21

22 % Initialize the SDR object

23 rx_sdr = comm.SDRRTLReceiver('0', ...

24 'CenterFrequency', F_shift, ...

25 'SampleRate', Fs, ...

26 'SamplesPerFrame', rx_frame_size, ...

27 'EnableTunerAGC', false, ...

28 'TunerGain', rx_gain, ...

29 'OutputDataType', 'double');

30 rx_data_full = [];

31 % Stream data from the device
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32 for p=1:num_rx_frames

33 rx_data = rx_sdr();

34 rx_data_full = cat(1, rx_data_full, rx_data);

35 end

36 data = real(rx_data_full);

37

38 % Release the SDR object when finished

39 release(rx_sdr)

40 end
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