SCHEME OF EXAMINATION

&

SYLLABI

for

Bachelor of Technology Programmes of Studies under the aegis of University School of Information, Communication & Technology offered at Affiliated Institutions of the University

(1st Year Common Scheme and Syllabus and 2nd Year onwards Scheme and Syllabus)

University School of Information, Communication & Technology

Sector 16C, Dwarka, Delhi – 110 078 [INDIA] www.ipu.ac.in

FIRST YEAR

Common Scheme and Syllabus

for

All Bachelor of Technology Programmes of Study under the aegis of University School of Information, Communication & Technology offered at Affiliated Institutions of the University

In light of the eligibility condition specified in the AICTE Process Handbook 2022-23 (Page Nos 89 and 90), the Chemistry Papers BS-121 / BS-120 entitled "Basic Chemistry" shall be offered to students admitted from Academic Session 2022-23 (in the 1st/ 2ndSemester) in lieu of Chemistry Papers BS-103 / BS-104 entitled "Applied Chemistry". This shall be offered only to students who have not studied Chemistry at 10+2 Level and are admitted to the following disciplines only:

- 1) Computer Science and Engineering (CSE)
- 2) Information Technology (IT)
- 3) Computer Science and Technology (CST)
- 4) Information Technology and Engineering (ITE)
- 5) Electronics and Communications Engineering (ECE)
- 6) Electrical Engineering (EE)
- 7) Electrical and Electronics Engineering (EEE)
- 8) Instrumentation and Control Engineering (ICE)
- 9) Computer Science and Engineering (Artificial Intelligence) (CSE-AI)
- 10) Computer Science and Engineering (Artificial Intelligence and Machine Learning) (CSE-AIML)
- 11) Computer Science and Engineering (Data Science) (CSE-DS)
- 12) Computer Science and Engineering (Internet of Things) (CSE-IoT)
- 13) Computer Science and Engineering (Internet of Things and Cyber Security including Block Chain Technology) (CSE-ICB)
- 14) Computer Science and Engineering (Networks) (CSE-Net)
- 15) Computer Science and Engineering (Cyber Security) (CSE-CS)
- 16) Electronics Engineering (VLSI Design and Technology) (EE-VDT)
- 17) Electronics and Communication (Advanced Communication Technology) (EC-ACT)

Note: The corresponding practical paper (BS-155 / BS-156) shall be unchanged. (Addition from AY 2022-23)

		First Semester			
Group	Code	Paper	L	P	Credits
Theory Pag	ers				
		*Any one of the following:			
ES	ES-101	Programming in 'C'	3	-	3
BS	BS-103/BS-121#	Applied Chemistry / Basic Chemistry#			
BS	BS-105	Applied Physics – I	3	-	3
		*Any one of the following:			
ES	ES-107	Electrical Science	3	-	3
BS	BS-109	Environmental Studies			
BS	BS-111	Applied Mathematics – I	4	-	4
		**Group 1 or Group 2 shall be offered:			
HS	HS-113	Group 1: Communications Skills	3	-	3
		OR			
		Group 2:			
HS	HS-115	Indian Constitution***	2		2
HS	HS-117	Human Values and Ethics***	1		1
ES	ES-119	Manufacturing Process	4	-	4
Practical/V	iva Voce				
BS	BS-151	Physics-I Lab	-	2	1
		Any of the following corresponding to the theory			
		paper offered:			
ES	ES-153	Programming in 'C' Lab	-	2	1
BS	BS-155	Applied Chemistry			
ES	ES-157	Engineering Graphics-I	-	4	2
		Any of the following corresponding to the theory			
		paper offered:			
ES	ES-159	Electrical Science Lab	-	2	1
BS	BS-161	Environmental Studies Lab			
Total			20	10	25

*For a particular batch of a programme of study one out of these two papers shall be taught in the first semester while the other shall be taught in the 2nd semester. Students who have to re-appear can only reappear in the odd semester if originally offered to the student in the 1st semester and similarly for the students who study the paper in the second semester. The institution shall decide which paper to offer in which semester.

**For a particular batch of a programme of study either the paper on "Communications Skills" (Group 1), or Group 2: papers ("Indian Constitution" and "Human values and ethics") shall be taught in the first semester while the other group shall be taught in the 2nd semester. Students who have to re-appear can only reappear in the odd semester if originally offered to the student in the 1st semester and similarly for the students who study the paper(s) in the second semester. The institution shall decide which paper group to offer in which semester.

*** NUES: All examinations to be conducted by the concerned teacher as specified in the detailed syllabus of the paper.

#The students who have not studied Chemistry at 10+2 level shall be offered BS-121 in lieu of BS-103, as applicable in applicable disciplines. (Addition from the Academic Session 2022-23)

Group	Code	Paper	L	Р	Credits
HS/MS	HS-352	NSS / NCC / Cultural Clubs / Technical Society / Technical Club*			2

*NUES: Comprehensive evaluation of the students by the concerned coordinator of NCC / NSS / Cultural Clubs / Technical Society / Technical Clubs, out of 100 as per the evaluation schemes worked out by these activity societies, organizations; the co-ordinators shall be responsible for the evaluation of the same. These activities shall start from the 1st semester and the evaluation shall be conducted at the end of the 6th semester for students admitted in the first semester. Students admitted in the 2nd year (3rd semester) as lateral entry shall undergo training or participate in the activities for the period of 3rd semester to 6th semester only

		Second Semester			
Group	Paper Code	Paper	L	Р	Credits
Theory Pa	pers				•
		*Any one of the following:			
ES	ES-102	Programming in 'C'	3	-	3
BS	BS-104/BS-120#	Applied Chemistry / Basic Chemistry#			
BS	BS-106	Applied Physics – II	3	-	3
		*Any one of the following:			
ES	ES-108	Electrical Science	3	-	3
BS	BS-110	Environmental Studies			
BS	BS-112	Applied Mathematics – II	4	-	4
		**Group 1 or Group 2 shall be offered:			
HS	HS-114	Group 1: Communications Skills	3	-	3
		OR			
		Group 2:			
HS	HS-116	Indian Constitution***	2		2
HS	HS-118	Human Values and Ethics***	1		1
ES	ES-114	Engineering Mechanics	3	-	3
Practical/\	/iva Voce				
BS	BS-152	Physics-II Lab	-	2	1
		*Any of the following corresponding to the theory			
		paper offered:			
ES	ES-154	Programming in 'C' Lab	-	2	1
BS	BS-156	Applied Chemistry			
ES	ES-158	Engineering Graphics-II	-	2	1
		*Any of the following corresponding to the theory			
		paper offered:			
ES	ES-160	Electrical Science Lab	-	2	1
BS	BS-162	Environmental Studies Lab			
ES	ES-164	Workshop Practice		4	2
Total			19	12	25

- *For a particular batch of a programme of study one out of these two papers shall be taught in the first semester while the other shall be taught in the 2nd semester. Students who have to re-appear can only reappear in the odd semester if originally offered to the student in the 1st semester and similarly for the students who study the paper in the second semester. The institution shall decide which paper to offer in which semester.
- **For a particular batch of a programme of study either the paper on "Communications Skills" (Group 1), or Group 2: papers ("Indian Constitution" and "Human values and ethics") shall be taught in the first semester while the other group shall be taught in the 2nd semester. Students who have to re-appear can only reappear in the odd semester if originally offered to the student in the 1st semester and similarly for the students who study the paper(s) in the second semester. The institution shall decide which paper group to offer in which semester.
- *** NUES: All examinations to be conducted by the concerned teacher as specified in the detailed syllabus of the paper.

#The students who have not studied Chemistry at 10+2 level shall be offered BS-120 in lieu of BS-104, as applicable in applicable disciplines. (Addition from the Academic Session 2022-23)

BRIDGE COURSES FOR THE B.TECH LATERAL ENTRY STUDENTS

All the Lateral Entry students of B.Tech., who are directly admitted in the 2nd Year / 3rd Semester of the Progarmme of Study, have to pass the following bridge courses.

Paper Code	Paper Name	L/P
BC-181	Bridge Course in Mathematics	3
BC-183	Bridge Course in Programming in C	3

Implementation Rules for Bridge Courses:

- 1. The institutions are required to conduct the classes for the above bridge courses in the 3rd Semester along with the classes of the other courses.
- 2. These papers have to be qualified by the students.
- 3. For these papers examination shall be conducted by the concerned subject teacher as NUES, the same shall be transferred to Examination Division of the University.
- 4. The degree to be awarded to the student only subject to the acquiring qualifying grade/marks in the bridge courses and the minimum credits in the regular courses of the scheme of study as prescribed.
- 5. These Courses shall be qualifying in nature; they shall not be included for calculation of CGPA. The qualifying marks shall be 40 marks in each paper.
- 6. A separate marksheet will be issued by the Examination Division of the University for the Bridge Course.

PaperC	ode: ES	5-101 / I	ES-102	P	aper: Pi	rogramr	ning in	'C'			L	T/P	С
											3	-	3
Markin													
1. Tea	chers C	ontinuo	us Evalu	iation: 2	25 mark	S							
2. Ter	m end 1	Theory E	xamina	tions: 7	5 marks								
			setter:										
1. The	re shoul	d be 9 d	question	s in the	term e	nd exan	nination	s questi	on pape	r.			
			ion shou e line an									ion sh	ould
			n 1 whic									as ne	r the
			t shall h										
			ent shal										
			s may co										
	ghtage o		Jillay Co	,,,ca,,, a	p.co 5 5u	D Parts	, sub qu	200010115	. <u>_</u>	ine sna		, c u	iairis
			o be fra	amed ke	eping ir	n view t	he learr	ning out	comes o	of the c	ours	e / pa	per.
			el of th										
	book.			•									
5. The	require	ement o	f (scien	itific) ca	alculato	rs / log	-tables	/ data	- table	s may	be s	pecifi	ed if
requ	uired.		·										
Course	Course Objectives:												
1:													
	that st	udents	can und	erstand	how to	write a	progran	n, synta	x and lo	ogical e	rrors	in 'C	' .
2:			owledge	about	how t	o imple	ment c	ondition	nal brai	nching,	iter	ation	and
		ion in 'C											
3:			wledge			ays, poi	inters, f	iles, un	ion and	structu	res t	o dev	elop/
			d progra										
4:			wledge a		ow to ap	proach	for divid	ding a p	roblem	into sub	-pro	blems	and
			lem in '	C'.									
		nes (CO											
CO1			elop sim	iple alg	orithms	for arit	hmetic	and log	ical pro	blems a	and i	mpler	nent
		m in 'C								, -			
CO2			ement o										
CO3		to use	arrays,	pointer	s, union	and str	uctures	to deve	elop alg	orithms	and	prog	rams
	in 'C'.												
CO4			ompose			tunctio	ns and s	synthesi	ze a co	mplete	prog	gram ı	using
			nquer ap			(5.5		, .	4 1	0.47	1.		
		nes (CO)	to Prog										
CO/PO CO1	PO01	PO02	PO03	PO04	PO05	P006	P007	PO08	PO09	PO10	PO		2012
CO2		3	2	1	1	-	-	-	2	1	1		3
	3	3	3	1	1	-	-	-	2	1	1		3
CO3	3	3	3	1	1	-	-	-	2	1	1		3
CU4	3	3	3	1		_	-	-		l		l	ა

Introduction to Programming: Computer system, components of a computer system, computing environments, computer languages, creating and running programs, Preprocessor, Compilation process, role of linker, idea of invocation and execution of a programme. Algorithms: Representation using flowcharts, pseudocode.

Introduction to C language: History of C, basic structure of C programs, process of compiling and running a C program, C tokens, keywords, identifiers, constants, strings, special symbols, variables, data types, I/O statements. Interconversion of variables.

Operators and expressions: Operators, arithmetic, relational and logical, assignment operators, increment and decrement operators, bitwise and conditional operators, special operators, operator precedence and associativity, evaluation of expressions, type conversions in expressions.[8Hrs][T2]

Unit II

Control structures: Decision statements; if and switch statement; Loop control statements: while, for and do while loops, jump statements, break, continue, goto statements.

Arrays: Concepts, One dimensional array, declaration and initialization of one dimensional arrays, two dimensional arrays, initialization and accessing, multi-dimensional arrays.

Functions: User defined and built-in Functions, storage classes, Parameter passing in functions, call by value, Passing arrays to functions: idea of call by reference, Recursion.

Strings: Arrays of characters, variable length character strings, inputting character strings, character library functions, string handling functions. [8Hrs] [T2]

Unit III

Pointers: Pointer basics, pointer arithmetic, pointers to pointers, generic pointers, array of pointers, functions returning pointers, Dynamic memory allocation. Pointers to functions. Pointers and Strings Structures and unions: Structure definition, initialization, accessing structures, nested structures, arrays of structures, structures and functions, self-referential structures, unions, typedef, enumerations.

File handling: command line arguments, File modes, basic file operations read, write and append. Scope and life of variables, multi-file programming. [8Hrs][T2]

Unit IV

C99 extensions. 'C' Standard Libraries: stdio.h, stdlib.h, assert.h, math.h, time.h, ctype.h, setjmp.h, string.h, stdarg.h, unistd.h [3Hrs] [T1, R8]

Basic Algorithms: Finding Factorial, Fibonacci series, Linear and Binary Searching, Basic Sorting Algorithms- Bubble sort, Insertion sort and Selection sort. Find the square root of a number, array order reversal, reversal of a string [7Hrs][T1]

Textbooks:

- 1. How to solve it by Computer by R. G. Dromey, Prentice-Hall India EEE Series, 1982.
- 2. The C programming language by B W Kernighan and D M Ritchie, Pearson Education, 1988.

- 1. Programming Logic & Design by Tony Gaddis, Pearson, 2nd Ed. 2016.
- 2. Programming Logic and Design by Joyce Farrell, Cengage Learning, 2015.
- 3. Engineering Problem Solving With C by Delores M. Etter, Pearson, 2013.
- 4. Problem Solving and Program Design in C by Jeri R. Hanly and Elliot B. Koffman, Pearson, 2016.
- 5. Structure and Interpretation of Computer Programs by Harold Abelson and Gerald Sussman with Julie Sussman, MIT Press, 1985.
- 6. How to Design Programs by Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishnamurthi, MIT Press, 2018.
- 7. ANSI/ISO 9899-1990, American National Standard for Programming Languages 'C' by American National Standards Institute, Information Technology Industry Council, 1990 (C89).
- 8. ISO/IEC 9899:1999. International Standard for Programming Languages C (ISO/IEC 9899) by American National Standards Institute, Information Technology Industry Council, 2000 (C99).
- 9. INCITS/ISO/IEC 9899-2011. American National Standard for Programming Languages 'C' by American National Standards Institute, Information Technology Industry Council, 2012 (C11).

PaperCo	ode: BS-	103 / B	S-104	Pape	er: Appl	ied Che	mistry				L	T/P	С
											3	-	3
Marking													
			s Evalua										
2. Terr				ons: 75	marks								
Instruct													
1. Ther													
2. The													
			ents will ightage (answer	any in	KEE par	ts or 5	marks e	eacn.	ınıs	unit
3. Apar						rost of	the nan	or shall	Longie	t of Au	nite a	s nor	tho
			shall ha										
			nt shall										
			may con										
	htage of		•	•		•	•						
4. The													
		d / leve	el of the	questi	ions to I	be aske	d should	d be at	the le	vel of t	the pr	escr	ibed
	oook.												
	The requirement of (scientific) calculators / log-tables / data - tables may be specified if												
	ired.												
Course					1								
1:			the fue				os Also	. to	doreton	d tha i	arana	ction	d
Z:			l phase ications			pticatio	is. Also	, to un	iderstar	ia the p	oropei	ties	and
3:			the me			nake nur	o wate	<u> </u>					
4:			the ch						a hasic	unders	tandi	ng a	hout
''			of Gree						u busic	unacis	cariai	iis u	bout
Course								. , .					
CO1			fuels and	perfor	m energ	gy conve	rsion ca	alculati	ons.				
CO2			e phase							nd the	prope	rties	and
	industi	rial appl	ications	of poly	mers.						•		
CO3			yse wate										
CO4			e chemi					preven	ition. \overline{A}	lso, to ι	ınders	tanc	I the
			n Chemi										
Course													
CO/PO	PO01	PO02	PO03	PO04	PO05	P006	P007			PO10	PO1	1 F	2012
CO1	2	2	3	3	2	-	-	-	1	1	-		1
CO2 CO3	2	2	3	3	2	-	-	-	1	1	-	-	1
CO4	2	2	3	3	2	1	1	-	1	1	+ -	-	1
CU7			ر ا	<u> </u>		<u> </u>				<u>'</u>			

Fuels: Classification and Characteristics of fuels, Calorific values, Comparison between solid, liquid and gaseous fuels, calorific values of fuels, determination of calorific values using Bomb calorimeter, Boy's calorimeter, theoretical calculation of calorific value using Dulong formula and numericals of Calorific values. Types of fuels: - Solid: Coal, proximate and ultimate analysis of coal and numericals, carbonisation of coal in Otto-Hoffman oven with recovery of by-products, metallurgical coke; Liquid: Petroleum products --- refining, cracking-thermal and catalytic, knocking characteristics, Octane and Cetane rating; Gaseous: Natural Gas (NG), CNG, LPG, Coal gas, Oil gas, Producer gas, Water gas; Combustion of fuels numericals. [9Hrs] [T1]

Unit II

Phase rule: Terms used in Gibb's Phase rule, phase diagram and its applications for study of one-component systems: Water and Sulphur and two-component systems: Lead-Silver and Zinc-Magnesium. Polymers: Classification, functionality and their types; Plastics: Synthesis (reactions) and properties of Polyethylene Plastics (Addition polymers) ---low-density polyethene (LDPE), high-density

polyethylene(HDPE), linear low density polyethylene(LLDPE) and ultra-high molecular weight polyethylene (UHMWPE); Vinyl Plastics (Condensation polymers) -Nylons, Phenol-formaldehyde resins(Bakelite) and Glyptal; Speciality Polymers: Engineering thermoplastics, Conducting polymers, Electroluminescent polymers, liquid crystalline polymers and biodegradable polymers. [9Hrs][T1, T2]

Unit III

Water: Introduction, water quality standards, physical, chemical and biological characteristics; hardness of water, disadvantages of hardness, determination of hardness (EDTA method) and related numerical questions. Alkalinity and its determination; Boiler problems with hard water and their prevention: Scale and sludge formation, boiler corrosion, caustic embrittlement, priming and foaming, boiler water treatment -internal or in-situ: carbonate and phosphate conditioning, colloidal and Calgon conditioning; external treatment: (a) Lime soda process and related numericals (b) Zeolite process and numericals, (c) Ion-exchange process. Municipal water supply - its treatment and disinfection using break -point chlorination. Desalination, Reverse Osmosis, Electrodialysis and defluoridation of water.

Unit IV

Corrosion and its Control: Definition, effects, theory (mechanisms): dry/chemical, wet/electrochemical corrosion, Pilling-Bedworth ratio; Types of corrosion: Galvanic corrosion, Soil corrosion, Pitting corrosion, Concentration cell or Differential Aeration corrosion, Stress corrosion; Mechanism of rusting of iron, Passivity. Factors influencing corrosion; protective measures: galvanization, tinning, cathodic protection, sacrificial anodic protection; electroplating and prevention of corrosion through material selection and design.

Green Technology and Green Chemistry

Twelve Principles of Green Chemistry, Zero Waste Technology, Atom economy, Use of alternative feedstock, innocuous reagents, alternative solvents, designing alternative reaction methodology, minimising energy consumption.

Nano Chemistry: Nanomaterials: Properties, synthesis and surface characterization techniques BET and TEM and applications. [9Hrs][T1, T2]

Textbooks:

- 1. Applied Chemistry by Achyutananda Acharya and Biswajit Samantray, Pearson, 2017.
- 2. Engineering Chemistry: Fundamentals and Applications by Shikha Agarwal, Cambridge University Press, 2019.

- 1. Applied Chemistry: A Textbook of Engineers and Technologists by O. V. Roussk and H. D. Gesser, Springer, 2013.
- Engineering Chemistry by Raghupati Mukhopadhyay and Sriparna Datta, New Age Int. (P0 Ltd., 2007.
- 3. Engineering Chemistry by K. Shesha Maheswaramma and Mridula Chugh, Pearson, 2017.
- 4. Basic Engineering Chemistry by S.S. Dara, A. K.Singh, and Abhilasha Asthana, S. Cand and Co., 2012.
- 5. Engineering Chemistry by K. N. Jayaveera, G.V. Subba Reddy, and C. Ramachandraiah, McGraw Hill, 2016.
- 6. Engineering Chemistry by O. G. Palanna, McGraw-Hill, 2017.
- 7. Textbook of Engineering Chemistry by Jaya Shree Anireddy, Wiley, 2017.
- 8. Engineering Chemistry by E.R. Nagarajan and S. Ramalingam, Wiley, 2017.

Pa	perCode: BS-121 / BS-120	Paper: Basic Chemistry	mistry L T/P								
Ye	ar of Inclusion: 2022-23			3 -							
Ma	rking Scheme:										
1.	1. Teachers Continuous Evaluation: 25 marks										
2.	2. Term end Theory Examinations: 75 marks										
Ins	Instruction for paper setter:										

- 1. There should be 9 questions in the term-end examinations question paper.
- 2. The first unit will be compulsory and cover the entire syllabus. This question will have Five subparts, and the students will be required to answer any THREE parts of 5 marks each. This unit will have a total weightage of 15 marks.
- 3. Apart from unit 1 which is compulsory, the rest of the paper shall consist of 4 units as per the syllabus. Every unit shall have two questions covering the corresponding unit of the syllabus. However, the student shall be asked to attempt only one of the two questions in the unit. Individual questions may contain up to 5 sub-parts / sub-questions. Each Unit shall have a marks weightage of 15.
- 4. The questions are to be framed keeping in view the learning outcomes of the course/paper. The standard / level of the questions to be asked should be at the level of the prescribed textbook.
- 5. The requirement of (scientific) calculators / log-tables / data tables may be specified if required.

requ	irea.											
Course (Objectiv	/es:										
1:	To unc	lerstand	the fue	els and t	heir use	es.						
2:						of engi					nent and	d glass
	Also, t	Also, to understand the properties and industrial applications of polymers.										
3:	To unc	To understand the methods used to make pure water.										
4:	To understand the chemical aspects of corrosion.											
Course (se Outcomes (CO):											
CO1	Ability to use fuels and perform energy conversion calculations.											
CO2	Course will impart knowledge about some important engineering materials such as											
	cemen	t and g	lass. It	will als	o enab	le the s	tudents	s to un	derstan	d the p	ropertie	es and
	industi	rial appl	ications	of poly	mers.							
CO3	Ability	to anal	yse wat	er and u	se tech	nologies	to puri	fy it.				
CO4	Studer	ts will b	e able t	o under	stand th	ne chem	ical asp	ects of	corrosi	on and i	ts preve	ntion.
Course (Outcom	es (CO t	o Progr	amme (Outcom	es (PO)	Mappin	g (scale	: 1: low	, 2: Me	dium, 3	: High
CO/PO	PO01	PO02	PO03	PO04	PO05	P006	P007	P008	PO09	PO10	PO11	PO12
CO1	2	2	3	3	2	-	-	-	1	1	-	1
CO2	2	2	3	3	2	-	-	-	1	1	-	1
CO3	2	2	3	3	2	-	-	-	1	1	-	1
CO4	2	2	3	3	2	1	1	-	1	1	-	1

Fuels: Classification and Characteristics of fuels, Calorific values, Comparison between solid, liquid and gaseous fuels, calorific values of fuels, determination of calorific values using Bomb calorimeter, Boy's calorimeter, theoretical calculation of calorific value using Dulong formula and numericals of Calorific values. Types of fuels: - Solid: Coal, proximate and ultimate analysis of coal and numericals, carbonisation of coal in Otto-Hoffman oven with recovery of by-products, metallurgical coke; Liquid: Petroleum products --- mining and refining of petroleum, knocking, numericals based on combustion of fuels (excluding flue gas analysis) . [9Hrs] [T1]

Unit II

Engineering Materials: Portland Cement: manufacturing by Rotary Kiln, role of gypsum, chemistry of setting and hardening of cement. Glass: manufacturing by tank furnace, significance of annealing, types and properties of soft glass, hard glass, borosilicate glass. Polymers: Basic concepts & terminology, classification and functionality of polymers, Properties and applications of (excluding synthesis): polyethylene, polymethacrylate, nylon, bakelite, polycarbonate, conducting polymers, liquid crystalline polymers, biodegradable polymers. [9Hrs][T1, T2]

Unit III

Water: Introduction, water quality standards, physical, chemical and biological characteristics; hardness of water, disadvantages of hardness, determination of hardness (EDTA method) and related numerical questions, Alkalinity of water and related numericals. Boiler problems with hard water and their prevention: Scale and sludge formation, boiler corrosion, caustic embrittlement, priming and foaming, boiler water treatment -internal or in-situ: carbonate and phosphate conditioning, colloidal and Calgon conditioning; external treatment: (a) Lime soda process and related numericals (b) Zeolite process and numericals (c) Ion-exchange process. Desalination, Reverse Osmosis, Electrodialysis. [9Hrs] [T1, T2]

Unit IV

Corrosion and its Control: Definition, effects, theory (mechanisms): dry/chemical, wet/electrochemical corrosion, Pilling-Bedworth ratio; Types of corrosion: Galvanic corrosion, Soil corrosion, Pitting corrosion, Concentration cell or Differential Aeration corrosion, Stress corrosion; Passivity. Factors influencing corrosion; protective measures: galvanization, cathodic protection, sacrificial anodic protection; electroplating. [9Hrs] [T1, T2]

Textbooks:

- 1. Engineering Chemistry: Fundamentals and Applications by Shikha Agarwal, Cambridge University Press, 2019.
- 2. Engineering Chemistry by Jain & Jain, Dhanpat Rai Publication Company, 2021 (Seventeenth Edition).

- 1. Applied Chemistry: A Textbook of Engineers and Technologists by O. V. Roussk and H. D. Gesser, Springer, 2013.
- 2. Engineering Chemistry by Raghupati Mukhopadhyay and Sriparna Datta, New Age Int. (P0 Ltd., 2007.
- 3. Engineering Chemistry by K. Shesha Maheswaramma and Mridula Chugh, Pearson, 2017.
- 4. Basic Engineering Chemistry by S.S. Dara, A. K.Singh, and Abhilasha Asthana, S. Cand and Co., 2012.
- 5. Engineering Chemistry by K. N. Jayaveera, G.V. Subba Reddy, and C. Ramachandraiah, McGraw Hill, 2016.
- 6. Engineering Chemistry by O. G. Palanna, McGraw-Hill, 2017.
- 7. Textbook of Engineering Chemistry by Jaya Shree Anireddy, Wiley, 2017.
- 8. Engineering Chemistry by E.R. Nagarajan and S. Ramalingam, Wiley, 2017.

PaperCode: BS-105	Paper: Applied Physics - I	L	T/P	С
		3	-	3
Marking Scheme: 1 Teachers Continuo	ıs Evaluation: 25 marks			

2. Term end Theory Examinations: 75 marks

Instruction for paper setter:

- 1. There should be 9 questions in the term end examinations question paper.
- 2. The first (1st) question should be compulsory and cover the entire syllabus. This question should be objective, single line answers or short answer type question of total 15 marks.
- 3. Apart from question 1 which is compulsory, rest of the paper shall consist of 4 units as per the syllabus. Every unit shall have two questions covering the corresponding unit of the syllabus. However, the student shall be asked to attempt only one of the two questions in the unit. Individual guestions may contain upto 5 sub-parts / sub-questions. Each Unit shall have a marks weightage of 15.
- 4. The questions are to be framed keeping in view the learning outcomes of the course / paper. The standard / level of the questions to be asked should be at the level of the prescribed textbook.
- 5. The requirement of (scientific) calculators / log-tables / data tables may be specified if

			. (55.5.				,			- ····~, ~	o opec.	
requ	uired.											
Course	Object	ives:										
1:	To unc	lerstand	thermo	dynami	c princi	ples.						
2:	To unc	lerstand	and mo	odel osc	illations	and wa	ives.					
3:	To unc	lerstand	and mo	odel inte	erferenc	e, diffr	action a	nd pola	rization	phenon	nenon.	
4:	To unc	o understand and appreciate relativistic systems and Lasers.										
Course	se Outcomes (CO):											
CO1	Ability	to appl	y therm	odynam	nic princ	iples to	solutio	n of eng	ineering	g proble	ms.	
CO2	Ability	to unde	erstand	and mo	del osci	llations	and wav	es.				
CO3	Ability	to unde	erstand	and mo	del inte	rference	e, diffra	ction ar	nd polar	ization _I	phenom	enon.
CO4	Ability	Ability to understand and model interference, diffraction and polarization phenomenon. Ability to understand and appreciate relativistic systems and Lasers.										
Course	Outcon	nes (CO	to Prog	ramme	Outcor	nes (PO) Mappi	ng (scal	e 1: lov	v, 2: Me	dium, 3	: High
CO/PO	PO01	PO02	PO03	P004	PO05	P006	P007	PO08	PO09	PO10	PO11	PO12

Course	Outcor	nes (CO	to Prog	gramme	Outcor	nes (PO) Mappı	ng (scai	e 1: 10v	∕, ∠: ме	aium, s	: High
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	P007	PO08	PO09	PO10	PO11	PO12
CO1	2	2	3	3	2	-	-	-	1	1	-	2
CO2	2	2	3	3	2	-	-	-	1	1	-	2
CO3	2	2	3	3	2	-	-	-	1	1	-	2
CO4	2	2	3	3	2	-	-	-	1	1	-	2

Unit I

Introduction to Thermodynamics: Fundamental Ideas of Thermodynamics, The Continuum Model, The Concept of a "System", "State", "Equilibrium", "Process". Equations of state, Heat, Zeroth Law of Thermodynamics, Work, first and second laws of thermodynamics, entropy [8Hrs]

Unit II

Waves and Oscillations: Wave motion, simple harmonic motion, wave equation, superposition principle. Introduction to Electromagnetic Theory: Maxwell's equations. work done by the electromagnetic field, Poynting's theorem, Momentum, Angular momentum in electromagnetic fields, Electromagnetic waves: the wave equation, plane electromagnetic waves, energy carried by electromagnetic waves [8Hrs]

Unit III

Interference: Interference by division of wave front (Young's double slit experiment, Fresnel's biprism), interference by division of amplitude (thin films, Newton's rings, Michelson's interferometer), Coherence and coherent sources

Diffraction: Fraunhofer and Fresnel diffraction; Fraunhofer diffraction for Single slit, double slit, and N-slit (diffraction grating), Fraunhofer diffraction from a circular aperture, resolving power and dispersive power of a grating, Rayleigh criterion, resolving power of optical instruments

Polarization: Introduction to polarization, Brewster's law, Malu's law, Nicol prism, double refraction, quarter-wave and half-wave plates, optical activity, specific rotation, Laurent half shade polarimeter.

[12Hrs]

Unit IV

Theory of relativity: The Michelson-Morley Experiment and the speed of light; Absolute and Inertial frames of reference, Galilean transformations, the postulates of the special theory of relativity, Lorentz transformations, time dilation, length contraction, velocity addition, mass energy equivalence. Invariance of Maxwell's equations under Lorentz Transformation.

Introduction to Laser Physics: Introduction, coherence, Einstein A and B coefficients, population inversion, basic principle and operation of a laser, the He-Ne laser and the Ruby laser [12Hrs]

Textbooks:

- 1. Concepts of Modern Physics (SIE) by Arthur Beiser, Shobhit Mahajan, and S. Rai Choudhury, McGraw-Hill, 2017.
- 2. Physics for Scientists and Engineers by Raymond A. Serway and John W. Jewett, 9th Edition, Cengage, 2017

- 1. Modern Physics by Kenneth S. Krane, Wiley, 2020.
- 2. Principles of Physics by Robert Resnick, Jearl Walker and David Halliday, Wiley, 2015.
- 3. Optics by Ajoy Ghatak, McGraw Hill, 2020.

PaperCode: ES-107 / ES-108	Paper: Electrical Science	Ш	T/P	С
		3	•	3

- 1. Teachers Continuous Evaluation: 25 marks
- 2. Term end Theory Examinations: 75 marks

Instruction for paper setter:

- 1. There should be 9 questions in the term end examinations question paper.
- 2. The first (1st) question should be compulsory and cover the entire syllabus. This question should be objective, single line answers or short answer type question of total 15 marks.
- 3. Apart from question 1 which is compulsory, rest of the paper shall consist of 4 units as per the syllabus. Every unit shall have two questions covering the corresponding unit of the syllabus. However, the student shall be asked to attempt only one of the two questions in the unit. Individual questions may contain upto 5 sub-parts / sub-questions. Each Unit shall have a marks weightage of 15.
- 4. The questions are to be framed keeping in view the learning outcomes of the course / paper. The standard / level of the questions to be asked should be at the level of the prescribed textbook.
- 5. The requirement of (scientific) calculators / log-tables / data tables may be specified if required.

Course Objectives:

	,								
1:	To impart knowledge of the basics electrical engineering.								
2:	To impart knowledge of the working of RLC circuits.								
3:	To impart basic knowledge about filters and magnetic circuits.								
۸٠	o impart basic knowledge about electrical machines								

4: To impart basic knowledge about electrical machines.

Course Outcomes (CO):

CO1	Ability to understand and use Kirchpff's Laws to solve resistive circuit problems.								
CO2	Ability to analyse resistive, inductive and capacitive circuits for transient and steady state								
	sinusoidal solutions.								
CO3	Understand the first order filters and magnetic circuits.								
CO4	Understand the design of electrical machines.								

Course	Course Outcomes (CO to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: High											
CO/PO	PO01	PO02	PO03	P004	PO05	PO06	P007	PO08	PO09	PO10	PO11	PO12
CO1	3	3	3	3	3	-	-	-	1	1	1	2
CO2	3	3	3	3	3	-	-	-	1	1	1	2
CO3	3	3	3	3	3	-	-	-	1	1	1	2
CO4	3	3	3	3	3	-	-	-	1	1	1	2

Unit - I

DC Circuits: Passive circuit components, Basic laws of Electrical Engineering, Temperature Resistance Coefficients. voltage and current sources, Series and parallel circuits, power and energy, Kirchhoff's Laws, Nodal & Mesh Analysis, delta-star transformation, superposition theorem, Thevenin's theorem, Norton's theorem, maximum power transfer theorem. Time domain analysis of first Order RC & LC circuits.

[9Hrs] [T1]

Unit - II

AC Circuits: Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), resonance. Three phase balanced circuits, voltage and current relations in star and delta connections. [9Hrs] [T1]

Unit - III

D. C. Generators & Motors: Principle of operation of Generators & Motors, Speed Control of shunt motors, Flux control, Rheostatic control, voltage control, Speed control of series motors.

A. C. Generators & Motors: Principle of operation, Revolving Magnetic field, Squirrel cage and phase wound rotor, Starting of Induction motors, Direct on line and Star Delta starters, Synchronous machines.

[9Hrs [T1]]

Unit - IV:

Transformers: Construction and principle of operation, equivalent circuit, losses in transformers, regulation and efficiency. Auto-transformer and three-phase transformer connections.

Measuring Instruments: Electromagnetism, Different Torques in Indicating instruments, Moving Iron Instruments: Construction & Principle, Attraction and Repulsion type; Moving Coil instruments: Permanent Magnet type; Dynamometer type Instruments.

[9Hrs] [T1]

Textbooks:

1. Electrical Engineering Fundamentals by Vincent Del Toro, PHI (India), 1989

- 1. An Introduction to Electrical Science by Adrian Waygood, Routledge, 2nd Ed. 2019.
- 2. *Electrical Circuit Theory and Technology* by John Bird, Elsevier, 2007.
- 3. Principles and Applications of Electrical Engineering by Giorgio Rizzoni, MacGraw-Hill, 2007.
- 4. Electrical Engineering by Allan R. Hambley, Prentice-Hall, 2011.
- 5. Hughes Electrical & Electronic Technology by Edward Hughes revised by Hohn Wiley, Keith Brown and Ian McKenzie Smith, Pearson, 2016.
- 6. Electrical and Electronics Technology by E. Hughes, Pearson, 2010.
- 7. Basic Electrical Engineering by D.C. Kulshrestha, McGraw-Hill, 2009.
- 8. Basic Electrical Engineering by D. P. Kothai and I.J. Nagrath, McGraw-Hill, 2010.

PaperC	ode:BS-	-109 / B	S-110	Pap	er: Env	ironme	ntal Stu	dies			L	Р	С
											3	-	3
	ng Scheme: achers Continuous Evaluation: 25 marks												
				tions: 7	<u>5 marks</u>								
	tion for												
					term e								
					ompulso							ion sh	ould
					r short								
	t from question 1 which is compulsory, rest of the paper shall consist of 4 units as per the												
	abus. Every unit shall have two questions covering the corresponding unit of the syllabus.												
	rever, the student shall be asked to attempt only one of the two questions in the unit. Vidual questions may contain upto 5 sub-parts / sub-questions. Each Unit shall have a marks												
			s may co	ontain u	pto 5 su	b-parts	/ sub-qu	uestions	. Łach l	Init shal	l nav	e a m	iarks
	ghtage o		- h - £	نالجميد		الحنيسان		والمناج المسالم		£ 4 h =		1	
					eping in								
		ement c	i (scien	tine) c	alculato	rs / tog	g-tables	/ data	- table	s may i	be sp	естте	30 II
	uired.	i											
1:	Object		docianos	l to imp	art basi	م ادم میرا د	odao of	the envi	ironmor	t and it			
2:					art basions								
۷.					d by the			the en	ergy re	sources	and	ı Cui	rent
3:					ut enviro			n rolat	od caso	ctudios	and	mone	ruros
٦.			rol to p			Jillienc	pottutio	ii, ietat	eu case	studies	anu	ilicas	ui C3
4:					fferent a	nnroacl	has of co	ncorvin	a and n	rotectin	a on	/ironr	mont
٦.			t of soci		i ei ei i c	ιρρι υαςι	163 01 00	JIISCI VIII	g and pi	otectiii	gen	/11 0111	Пепс
Course	Outcon			cty.									
CO1				COLIFCA	will pro	vide ne	COSSALV	informa	tion and	l knowle	anha	ahou	t the
					nt, ecos						uge	abou	t tile
CO2					n and ur						ustai	nahle	וויף
202					probler								
	human		211711 011	c.iicat	Problet			.5.0	and	.5.15 (61	"	puc	.5 .0
CO3			In them	to lea	rn about	t enviro	nmental	l policie	s and n	rotocols	S. SO	rial is	SUES
					ation an					. 0 . 0 . 0	, 500	13	.5465
CO4					students					ity of	unde	erstan	nding
			human i							,	J. 100		5
Course					Outcom	es (PO)) Mappii	ng (scal	e 1: low	. 2: Med	dium	. 3: F	ligh)
CO/PO	P001	PO02	PO03	P004	PO05	P006	P007	PO08	PO09	PO10	PO		2012
CO1	-	1	1	-	-	3	3	2	1	1	1		1
CO2	-	1	1	-	-	3	3	2	1	1	1		1
CO3	-	1	1	-	-	3	3	2	1	1	1		1
CO4	-	1	1	-	-	3	3	2	1	1	1		1

Fundamentals: The Multidisciplinary nature of environmental studies: Definition, components, scope and importance, need for public awareness; Natural Resources.

Ecosystems: Concept, Structure and function of an ecosystem, Types, Functional Components, Different ecosystems, biogeochemical cycles.

Biodiversity: Introduction to biodiversity, biogeographical classification, India as a mega diversity nation, endangered and endemic species of India, threats to biodiversity and conservation of biodiversity. Bioprospecting and Biopiracy. [10Hrs] [T1,T2]

Unit III

Environmental Pollution: (a) Air Pollution: Source, Types, effects on biosphere and Meterology, Air Quality, Control. (b) Water Pollution: Types and Sources. (c) Soil Pollution: Types and Control. (d) Noise Pollution: Effect, Control (e) Thermal Pollution. (f) Radiation Pollution (g) Solid waste Management, (h) Pollution Prevention, (i) Disaster Management [10Hrs][T1,T2]

Unit III

Social Issues and Environment: Concept of Sustainable Development; Urban problem related to energy; Water Conservation; Wasteland reclamation; Resettlement and Rehabilitation; Climate Change; Nuclear Accidents; Consumerism and Waste Products; Laws related to Environment, Pollution, Forest and Wild life; Environmental Impact Assessment. [8Hrs] [T1,T2]

Unit IV

Human Population and Environment: Population Growth, Human Rights, Family Welfare Programmes, Environment and Human Health, HIV/AIDS, Women and Child Welfare, Role of IT. [8Hrs] [T1,T2]

Textbooks:

- 1. Environmental Studies by AninditaBasak, Pearson, 2009.
- 2. Environmental Studies: Simplified by Benny Joseph, McGraw-Hill, 2017.

- 1. Environmental Studies by D. L. Manjunath, Pearson, 2007.
- 2. Environmental Studies by Anil Kumar De and Arnab Kumar De, New Age Int. (P) Ltd, Publishers, 2005
- 3. *Companion to Environmental Studies* edited by Coel Castree, Mike Hulme, and James D. Proctor, Routledge, 2018.
- 4. Environmental Studies by Deepa Sharma and Bhupendra Singh Chabbra, New Age Int. (P) Ltd, Publishers, 2007.
- 5. Environmental Studies: Simplified by Raj Kumar Singh, McGraw-Hill, 2012.
- 6. Basics of Environmental Studies by U. K. Khare, McGraw-Hill, 2014.

Marking Scheme: 1. Teachers Continuous Evaluation: 25 marks 2. Term end Theory Examinations: 75 marks 1. There should be 9 questions in the term end examinations question paper. 2. The first (1st) question should be compulsory and cover the entire syllabus. This question should be objective, single line answers or short answer type question of total 15 marks. 3. Apart from question 1 which is compulsory, rest of the paper shall consist of 4 units as per the syllabus. Every unit shall have two questions covering the corresponding unit of the syllabus. However, the student shall be asked to attempt only one of the two questions in the unit. Individual questions may contain upto 5 sub-parts / sub-questions. Each Unit shall have a marks weightage of 15. 4. The questions are to be framed keeping in view the learning outcomes of the course / paper. The standard / level of the questions to be asked should be at the level of the prescribed textbook. 5. The requirement of (scientific) calculators / log-tables / data - tables may be specified if required. Course Objectives: 1: To understand use series, differential and integral methods to solve formulated engineering problems. 2: To understand use Ordinary Differential Equations to solve formulated engineering problems. 3: To understand use vector calculus to solve formulated engineering problems. Course Outcomes (CO): CO1 Ability to use series, differential Equations to solve formulated engineering problems. CO2 Ability to use Inear algebra to solve formulated engineering problems. CO3 Ability to use linear algebra to solve formulated engineering problems. CO4 Ability to use linear algebra to solve formulated engineering problems. CO4 Ability to use Inear algebra to solve formulated engineering problems. CO5 Ability to use Inear algebra to solve formulated engineering problems. CO6 Ability to use Inear algebra to solve formulated engineering problems.	PaperC	ode: BS	-111	Paper	: Applie	ed Math	ematic	s - I				L	T/P	С
1. Teachers Continuous Evaluation: 25 marks 2. Term end Theory Examinations: 75 marks Instruction for paper setter: 1. There should be 9 questions in the term end examinations question paper. 2. The first (1st) question should be compulsory and cover the entire syllabus. This question should be objective, single line answers or short answer type question of total 15 marks. 3. Apart from question 1 which is compulsory, rest of the paper shall consist of 4 units as per the syllabus. Every unit shall have two questions covering the corresponding unit of the syllabus. However, the student shall be asked to attempt only one of the two questions in the unit. Individual questions may contain upto 5 sub-parts / sub-questions. Each Unit shall have a marks weightage of 15. 4. The questions are to be framed keeping in view the learning outcomes of the course / paper. The standard / level of the questions to be asked should be at the level of the prescribed textbook. 5. The requirement of (scientific) calculators / log-tables / data - tables may be specified if required. Course Objectives: 1: To understand use series, differential and integral methods to solve formulated engineering problems. 2: To understand use Ordinary Differential Equations to solve formulated engineering problems. 3: To understand use vector calculus to solve formulated engineering problems. Course Outcomes (CO): CO1 Ability to use ordinary Differential Equations to solve formulated engineering problems. CO2 Ability to use Ordinary Differential Equations to solve formulated engineering problems. CO3 Ability to use Vector calculus to solve formulated engineering problems. CO4 Ability to use Vector calculus to solve formulated engineering problems. CO4 Ability to use Vector calculus to solve formulated engineering problems. CO4 Ability to use Vector calculus to solve formulated engineering problems. CO4 Ability to use Vector calculus to solve formulated engineering problems.												4	-	4
2. Term end Theory Examinations: 75 marks														
Instruction for paper setter: 1. There should be 9 questions in the term end examinations question paper. 2. The first (1st) question should be compulsory and cover the entire syllabus. This question should be objective, single line answers or short answer type question of total 15 marks. 3. Apart from question 1 which is compulsory, rest of the paper shall consist of 4 units as per the syllabus. Every unit shall have two questions covering the corresponding unit of the syllabus. However, the student shall be asked to attempt only one of the two questions in the unit. Individual questions may contain upto 5 sub-parts / sub-questions. Each Unit shall have a marks weightage of 15. 4. The questions are to be framed keeping in view the learning outcomes of the course / paper. The standard / level of the questions to be asked should be at the level of the prescribed textbook. 5. The requirement of (scientific) calculators / log-tables / data - tables may be specified if required.														
1. There should be 9 questions in the term end examinations question paper. 2. The first (1st) question should be compulsory and cover the entire syllabus. This question should be objective, single line answers or short answer type question of total 15 marks. 3. Apart from question 1 which is compulsory, rest of the paper shall consist of 4 units as per the syllabus. Every unit shall have two questions covering the corresponding unit of the syllabus. However, the student shall be asked to attempt only one of the two questions in the unit. Individual questions may contain upto 5 sub-parts / sub-questions. Each Unit shall have a marks weightage of 15. 4. The questions are to be framed keeping in view the learning outcomes of the course / paper. The standard / level of the questions to be asked should be at the level of the prescribed textbook. 5. The requirement of (scientific) calculators / log-tables / data - tables may be specified if required. Course Objectives: 1: To understand use series, differential and integral methods to solve formulated engineering problems. 2: To understand use Ordinary Differential Equations to solve formulated engineering problems. 4: To understand use vector calculus to solve formulated engineering problems. Course Outcomes (CO): CO1 Ability to use series, differential Equations to solve formulated engineering problems. CO2 Ability to use Understand to solve formulated engineering problems. CO3 Ability to use vector calculus to solve formulated engineering problems. CO4 Ability to use vector calculus to solve formulated engineering problems. CO4 Ability to use vector calculus to solve formulated engineering problems. CO6 Ability to use Vector calculus to solve formulated engineering problems. CO7 Ability to use Vector calculus to solve formulated engineering problems. CO7 Ability to use Vector calculus to solve formulated engineering problems. CO8 Ability to use Vector calculus to solve formulated engineering problems.					tions: 7	5 marks								
 The first (1st) question should be compulsory and cover the entire syllabus. This question should be objective, single line answers or short answer type question of total 15 marks. Apart from question 1 which is compulsory, rest of the paper shall consist of 4 units as per the syllabus. Every unit shall have two questions covering the corresponding unit of the syllabus. However, the student shall be asked to attempt only one of the two questions in the unit. Individual questions may contain upto 5 sub-parts / sub-questions. Each Unit shall have a marks weightage of 15. The questions are to be framed keeping in view the learning outcomes of the course / paper. The standard / level of the questions to be asked should be at the level of the prescribed textbook. The requirement of (scientific) calculators / log-tables / data - tables may be specified if required. To understand use series, differential and integral methods to solve formulated engineering problems. To understand use Ordinary Differential Equations to solve formulated engineering problems. To understand use vector calculus to solve formulated engineering problems. To understand use vector calculus to solve formulated engineering problems. Course Outcomes (CO): Ability to use series, differential Equations to solve formulated engineering problems. Ability to use linear algebra to solve formulated engineering problems. Ability to use vector calculus to solve formulated engineering problems. CO2 Ability to use Vordinary Differential Equations to solve formulated engineering problems. CO3 Ability to use vector calculus to solve formulated engineering problems. CO4 Ability to use vector calculus to solve formulated engineering problems. COB PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 PO12 PO12 PO12 PO12 PO12 PO12 PO12														
be objective, single line answers or short answer type question of total 15 marks. 3. Apart from question 1 which is compulsory, rest of the paper shall consist of 4 units as per the syllabus. Every unit shall have two questions covering the corresponding unit of the syllabus. However, the student shall be asked to attempt only one of the two questions in the unit. Individual questions may contain upto 5 sub-parts / sub-questions. Each Unit shall have a marks weightage of 15. 4. The questions are to be framed keeping in view the learning outcomes of the course / paper. The standard / level of the questions to be asked should be at the level of the prescribed textbook. 5. The requirement of (scientific) calculators / log-tables / data - tables may be specified if required. Course Objectives: 1: To understand use series, differential and integral methods to solve formulated engineering problems. 2: To understand use Ordinary Differential Equations to solve formulated engineering problems. 3: To understand use linear algebra to solve formulated engineering problems. Course Outcomes (CO): CO1 Ability to use series, differential and integral methods to solve formulated engineering problems. CO2 Ability to use Ordinary Differential Equations to solve formulated engineering problems. CO3 Ability to use vector calculus to solve formulated engineering problems. CO4 Ability to use vector calculus to solve formulated engineering problems. CO5 Ability to use vector calculus to solve formulated engineering problems. CO6 Ability to use vector calculus to solve formulated engineering problems. CO7 Ability to use vector calculus to solve formulated engineering problems. CO8 Ability to use vector calculus to solve formulated engineering problems. CO9 Ability to use vector calculus to solve formulated engineering problems. CO9 Ability to use vector calculus to solve formulated engineering problems.														
3. Apart from question 1 which is compulsory, rest of the paper shall consist of 4 units as per the syllabus. Every unit shall have two questions covering the corresponding unit of the syllabus. However, the student shall be asked to attempt only one of the two questions in the unit. Individual questions may contain upto 5 sub-parts / sub-questions. Each Unit shall have a marks weightage of 15. 4. The questions are to be framed keeping in view the learning outcomes of the course / paper. The standard / level of the questions to be asked should be at the level of the prescribed textbook. 5. The requirement of (scientific) calculators / log-tables / data - tables may be specified if required. Course Objectives: 1: To understand use series, differential and integral methods to solve formulated engineering problems. 2: To understand use Ordinary Differential Equations to solve formulated engineering problems. 3: To understand use linear algebra to solve formulated engineering problems. 4: To understand use vector calculus to solve formulated engineering problems. Course Outcomes (CO): CO1 Ability to use Ordinary Differential Equations to solve formulated engineering problems. CO2 Ability to use Inear algebra to solve formulated engineering problems. CO3 Ability to use linear algebra to solve formulated engineering problems. CO4 Ability to use vector calculus to solve formulated engineering problems. CO5 Ability to use vector calculus to solve formulated engineering problems. CO6 Ability to use vector calculus to solve formulated engineering problems. CO7 Ability to use vector calculus to solve formulated engineering problems. CO8 Ability to use Vector calculus to solve formulated engineering problems. CO9 Ability to use Vector calculus to solve formulated engineering problems. CO9 Ability to use Vector calculus to solve formulated engineering problems. CO9 Ability to use Vector calculus to solve formulated engineering problems.														
syllabus. Every unit shall have two questions covering the corresponding unit of the syllabus. However, the student shall be asked to attempt only one of the two questions in the unit. Individual questions may contain upto 5 sub-parts / sub-questions. Each Unit shall have a marks weightage of 15. 4. The questions are to be framed keeping in view the learning outcomes of the course / paper. The standard / level of the questions to be asked should be at the level of the prescribed textbook. 5. The requirement of (scientific) calculators / log-tables / data - tables may be specified if required. Course Objectives: 1: To understand use series, differential and integral methods to solve formulated engineering problems. 2: To understand use Ordinary Differential Equations to solve formulated engineering problems. 3: To understand use linear algebra to solve formulated engineering problems. 4: To understand use vector calculus to solve formulated engineering problems. Course Outcomes (CO): CO1 Ability to use Series, differential and integral methods to solve formulated engineering problems. CO2 Ability to use Inear algebra to solve formulated engineering problems. CO3 Ability to use linear algebra to solve formulated engineering problems. CO4 Ability to use vector calculus to solve formulated engineering problems. CO5 Ability to use Vector calculus to solve formulated engineering problems. CO6 Ability to use Vector calculus to solve formulated engineering problems. CO7 Ability to use Vector calculus to solve formulated engineering problems. CO7 Ability to use Vector calculus to solve formulated engineering problems. CO7 Ability to use Vector calculus to solve formulated engineering problems. CO8 Ability to use Vector calculus to solve formulated engineering problems. CO9 PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 PO12 PO12 PO12 PO12 PO12 PO13 PO12 PO13 PO14 PO15 PO14 PO15 PO16 PO17 PO18 PO19 PO19 PO19 PO19 PO19 PO19 PO19 PO19														
However, the student shall be asked to attempt only one of the two questions in the unit. Individual questions may contain upto 5 sub-parts / sub-questions. Each Unit shall have a marks weightage of 15. 4. The questions are to be framed keeping in view the learning outcomes of the course / paper. The standard / level of the questions to be asked should be at the level of the prescribed textbook. 5. The requirement of (scientific) calculators / log-tables / data - tables may be specified if required. Course Objectives: 1: To understand use series, differential and integral methods to solve formulated engineering problems. 2: To understand use Ordinary Differential Equations to solve formulated engineering problems. 3: To understand use linear algebra to solve formulated engineering problems. 4: To understand use vector calculus to solve formulated engineering problems. Course Outcomes (CO): CO1 Ability to use series, differential and integral methods to solve formulated engineering problems. CO2 Ability to use Ordinary Differential Equations to solve formulated engineering problems. CO3 Ability to use linear algebra to solve formulated engineering problems. CO4 Ability to use linear algebra to solve formulated engineering problems. CO5 Ability to use vector calculus to solve formulated engineering problems. CO6 Ability to use Vector calculus to solve formulated engineering problems. CO7 Ability to use Vector calculus to solve formulated engineering problems. CO8 Ability to use Vector calculus to solve formulated engineering problems. CO9 PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 PO11 PO12 CO1 2 3 3 3 3 1 1 2 2 2 CO3 2 3 3 3 3 1 1 2 2 2 CO3 2 3 3 3 3 1														
Individual questions may contain upto 5 sub-parts / sub-questions. Each Unit shall have a marks weightage of 15. 4. The questions are to be framed keeping in view the learning outcomes of the course / paper. The standard / level of the questions to be asked should be at the level of the prescribed textbook. 5. The requirement of (scientific) calculators / log-tables / data - tables may be specified if required. Course Objectives: 1:														
weightage of 15. 4. The questions are to be framed keeping in view the learning outcomes of the course / paper. The standard / level of the questions to be asked should be at the level of the prescribed textbook. 5. The requirement of (scientific) calculators / log-tables / data - tables may be specified if required. Course Objectives: 1: To understand use series, differential and integral methods to solve formulated engineering problems. 2: To understand use Ordinary Differential Equations to solve formulated engineering problems. 3: To understand use linear algebra to solve formulated engineering problems. 4: To understand use vector calculus to solve formulated engineering problems. Course Outcomes (CO): CO1 Ability to use series, differential and integral methods to solve formulated engineering problems. CO2 Ability to use Ordinary Differential Equations to solve formulated engineering problems. CO3 Ability to use linear algebra to solve formulated engineering problems. CO4 Ability to use vector calculus to solve formulated engineering problems. CO5 Ability to use vector calculus to solve formulated engineering problems. CO6 Ability to use vector calculus to solve formulated engineering problems. CO7 Ability to use vector calculus to solve formulated engineering problems. CO8 Outcomes (CO to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: High CO/PO PO01 PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 PO12 CO1 2 3 3 3 3 1 1 2 2 2 CO2 2 3 3 3 3 1 2 2 2 CO3 2 3 3 3 3 1 2 2 2 CO3 2 3 3 3 3 1 2 2 2 CO3 2 3 3 3 3 1														
 4. The questions are to be framed keeping in view the learning outcomes of the course / paper. The standard / level of the questions to be asked should be at the level of the prescribed textbook. 5. The requirement of (scientific) calculators / log-tables / data - tables may be specified if required. Course Objectives: 1: To understand use series, differential and integral methods to solve formulated engineering problems. 2: To understand use Ordinary Differential Equations to solve formulated engineering problems. 3: To understand use linear algebra to solve formulated engineering problems. 4: To understand use vector calculus to solve formulated engineering problems. Course Outcomes (CO): CO1 Ability to use series, differential and integral methods to solve formulated engineering problems. CO2 Ability to use Ordinary Differential Equations to solve formulated engineering problems. CO3 Ability to use linear algebra to solve formulated engineering problems. CO4 Ability to use vector calculus to solve formulated engineering problems. CO4 Ability to use vector calculus to solve formulated engineering problems. CO4 Ability to use vector calculus to solve formulated engineering problems. Course Outcomes (CO to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: High CO/PO PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 PO12 CO1 2 3 3 3 3 1 1 2 2 2 CO2 2 3 3 3 3 1 2 2 2 CO3 2 3 3 3 3 1 2 2 2 CO3 2 3 3 3 3 1 2 2 2 CO3 2 3 3 3 3 1														
The standard / level of the questions to be asked should be at the level of the prescribed textbook. 5. The requirement of (scientific) calculators / log-tables / data - tables may be specified if required. Course Objectives: 1: To understand use series, differential and integral methods to solve formulated engineering problems. 2: To understand use Ordinary Differential Equations to solve formulated engineering problems. 3: To understand use linear algebra to solve formulated engineering problems. 4: To understand use vector calculus to solve formulated engineering problems. Course Outcomes (CO): CO1 Ability to use series, differential and integral methods to solve formulated engineering problems. CO2 Ability to use Ordinary Differential Equations to solve formulated engineering problems. CO3 Ability to use linear algebra to solve formulated engineering problems. CO4 Ability to use vector calculus to solve formulated engineering problems. CO5 Outcomes (CO to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: High CO/PO PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 PO12 CO1 2 3 3 3 3 1 2 2 2 CO3 2 3 3 3 3 1 2 2 2 CO3 2 3 3 3 3 1 2 2 2 CO3 2 3 3 3 3 1 2 2 2 CO3 2 2 3 3 3 3 1 2 2 2 CO3 2 2 3 3 3 3 1 2 2 2 CO3 2 2 3 3 3 3 1													,	
textbook. 5. The requirement of (scientific) calculators / log-tables / data - tables may be specified if required. Course Objectives: 1: To understand use series, differential and integral methods to solve formulated engineering problems. 2: To understand use Ordinary Differential Equations to solve formulated engineering problems. 3: To understand use linear algebra to solve formulated engineering problems. 4: To understand use vector calculus to solve formulated engineering problems. Course Outcomes (CO): CO1 Ability to use series, differential and integral methods to solve formulated engineering problems. CO2 Ability to use Ordinary Differential Equations to solve formulated engineering problems. CO3 Ability to use vector calculus to solve formulated engineering problems. CO4 Ability to use vector calculus to solve formulated engineering problems. CO5 Outcomes (CO to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: High CO/PO PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 PO12 CO1 2 3 3 3 3 1 1 1 2 CO2 2 3 3 3 3 1 1 2 2 2 CO3 2 3 3 3 3 1 2 2 2 CO3 2 3 3 3 3 1 2 2 2 CO3 2 3 3 3 3 1 2 2 2 CO3 2 2 3 3 3 3 1 2 2 2 CO3 2 2 3 3 3 3 1														
5. The requirement of (scientific) calculators / log-tables / data - tables may be specified if required. Course Objectives: 1: To understand use series, differential and integral methods to solve formulated engineering problems. 2: To understand use Ordinary Differential Equations to solve formulated engineering problems. 3: To understand use linear algebra to solve formulated engineering problems. 4: To understand use vector calculus to solve formulated engineering problems. Course Outcomes (CO): CO1 Ability to use series, differential and integral methods to solve formulated engineering problems. CO2 Ability to use Ordinary Differential Equations to solve formulated engineering problems. CO3 Ability to use linear algebra to solve formulated engineering problems. CO4 Ability to use vector calculus to solve formulated engineering problems. CO5 Ability to use vector calculus to solve formulated engineering problems. CO6 Ability to use vector calculus to solve formulated engineering problems. CO7 Ability to use vector calculus to solve formulated engineering problems. CO8 Ability to use Vector calculus to solve formulated engineering problems. CO9 Ability to use Vector calculus to solve formulated engineering problems. CO9 Ability to use Vector calculus to solve formulated engineering problems. CO9 Ability to use Vector calculus to solve formulated engineering problems. CO9 Ability to use Vector calculus to solve formulated engineering problems. CO9 Ability to use Vector calculus to solve formulated engineering problems. CO9 Ability to use Vector calculus to solve formulated engineering problems.			ra / lev	el of tr	ie quesi	tions to	be ask	ea snou	ld be a	t the le	vel of t	ne p	rescr	ıbea
required. Course Objectives: 1: To understand use series, differential and integral methods to solve formulated engineering problems. 2: To understand use Ordinary Differential Equations to solve formulated engineering problems. 3: To understand use linear algebra to solve formulated engineering problems. 4: To understand use vector calculus to solve formulated engineering problems. Course Outcomes (CO): CO1 Ability to use series, differential and integral methods to solve formulated engineering problems. CO2 Ability to use Ordinary Differential Equations to solve formulated engineering problems. CO3 Ability to use linear algebra to solve formulated engineering problems. CO4 Ability to use vector calculus to solve formulated engineering problems. CO5 Outcomes (CO to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: High CO/PO PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 PO12 CO1 2 3 3 3 3 1 1 2 2 2 CO2 2 3 3 3 3 1 2 2 2 CO3 2 3 3 3 3 1 2 2 2 CO3 2 3 3 3 3 1 2 2 2 CO3 2 3 3 3 3 1 2 2 2 CO3 2 3 3 3 3 1 2 2 2 CO3 2 3 3 3 3 1 2 2 2 CO3 2 3 3 3 3 1				£ (i	+:£:-\	.	/ las		/ 4-4-	4-61-			:6:	- 1 :c
Course Objectives: 1: To understand use series, differential and integral methods to solve formulated engineering problems. 2: To understand use Ordinary Differential Equations to solve formulated engineering problems. 3: To understand use linear algebra to solve formulated engineering problems. 4: To understand use vector calculus to solve formulated engineering problems. Course Outcomes (CO): CO1 Ability to use series, differential and integral methods to solve formulated engineering problems. CO2 Ability to use Ordinary Differential Equations to solve formulated engineering problems. CO3 Ability to use linear algebra to solve formulated engineering problems. CO4 Ability to use vector calculus to solve formulated engineering problems. Course Outcomes (CO to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: High CO/PO PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 PO12 CO1 2 3 3 3 3 1 1 2 2 2 CO3 2 3 3 3 3 1 2 2 2 CO3 2 3 3 3 3 1 2 2 2 CO3 2 3 3 3 3 1 2 2 2 CO3 2 2 3 3 3 3 1 2 2 2 CO3 2 2 3 3 3 3 1 2 2 2 CO3 2 2 3 3 3 3 1 2 2 2 CO3 2 2 3 3 3 3 1			ement o	r (scien	tine) ca	acculato	rs / tog	-tables	/ data	- table	s may i	be st	естте	ea ir
1: To understand use series, differential and integral methods to solve formulated engineering problems. 2: To understand use Ordinary Differential Equations to solve formulated engineering problems. 3: To understand use linear algebra to solve formulated engineering problems. 4: To understand use vector calculus to solve formulated engineering problems. Course Outcomes (CO): CO1 Ability to use series, differential and integral methods to solve formulated engineering problems. CO2 Ability to use Ordinary Differential Equations to solve formulated engineering problems. CO3 Ability to use linear algebra to solve formulated engineering problems. CO4 Ability to use vector calculus to solve formulated engineering problems. CO4 Ability to use vector calculus to solve formulated engineering problems. CO4 OVIC OVIC OF PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 PO12 PO12 PO12 PO12 PO13 PO14 PO15 PO16 PO17 PO18 PO19 PO10 PO11 PO12 PO19 PO19 PO11 PO19 PO19 PO19 PO19 PO19			iveet											
engineering problems. 2: To understand use Ordinary Differential Equations to solve formulated engineering problems. 3: To understand use linear algebra to solve formulated engineering problems. 4: To understand use vector calculus to solve formulated engineering problems. Course Outcomes (CO): CO1 Ability to use series, differential and integral methods to solve formulated engineering problems. CO2 Ability to use Ordinary Differential Equations to solve formulated engineering problems. CO3 Ability to use linear algebra to solve formulated engineering problems. CO4 Ability to use vector calculus to solve formulated engineering problems. CO4 Ability to use vector calculus to solve formulated engineering problems. Course Outcomes (CO to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: High CO/PO PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 PO12 CO1 2 3 3 3 1 1 2 2 2 CO2 2 3 3 3 3 1 2 2 2 CO3 2 3 3 3 3 1 2 2 2 CO3 2 3 3 3 3 1 2 2 2 CO3 2 3 3 3 3 1 2 2 2 CO3 2 2 3 3 3 3 1 2 2 2 CO3 2 2 3 3 3 3 1 2 2 2 CO3 2 2 3 3 3 3 1 2 2 2 CO3 2 2 3 3 3 3 1 2 2 2 CO3 2 2 3 3 3 3 1	<u> </u>			d 1166	corios	difforo	ntial a	ad into	aral m	atha da	to solv	, f	- rm l	atad
2: To understand use Ordinary Differential Equations to solve formulated engineering problems. 3: To understand use linear algebra to solve formulated engineering problems. 4: To understand use vector calculus to solve formulated engineering problems. Course Outcomes (CO): CO1 Ability to use series, differential and integral methods to solve formulated engineering problems. CO2 Ability to use Ordinary Differential Equations to solve formulated engineering problems. CO3 Ability to use linear algebra to solve formulated engineering problems. CO4 Ability to use vector calculus to solve formulated engineering problems. CO5 Outcomes (CO to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: High CO/PO PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 PO12 CO1 2 3 3 3 3 1 1 2 2 2 CO3 2 3 3 3 3 1 2 2 2 CO3 2 3 3 3 3 1 2 2 2 CO3 2 2 3 3 3 3 1 2 2 2 CO3 2 2 3 3 3 3 1 2 2 2 CO3 2 2 3 3 3 3 1 2 2 2 CO3 2 2 3 3 3 3 1	1:					differe	iitiat ai	ia inte	grat ine	etrious	to solv	e ic	ormula	ateu
problems. 3: To understand use linear algebra to solve formulated engineering problems. 4: To understand use vector calculus to solve formulated engineering problems. Course Outcomes (CO): CO1 Ability to use series, differential and integral methods to solve formulated engineering problems. CO2 Ability to use Ordinary Differential Equations to solve formulated engineering problems. CO3 Ability to use linear algebra to solve formulated engineering problems. CO4 Ability to use vector calculus to solve formulated engineering problems. CO4 Ability to use vector calculus to solve formulated engineering problems. CO6 Outcomes (CO to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: High CO/PO PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 PO12 CO1 2 3 3 3 3 1 1 2 2 2 CO3 2 3 3 3 3 1 2 2 2 CO3 2 3 3 3 3 1 2 2 2 CO3 2 3 3 3 3 1 2 2 2 CO3 2 2 3 3 3 3 1	2.					Diffor	ontial [Equation	os to s	alva for	mulato	d 0r	orinoc	ring
3: To understand use linear algebra to solve formulated engineering problems. 4: To understand use vector calculus to solve formulated engineering problems. Course Outcomes (CO): CO1 Ability to use series, differential and integral methods to solve formulated engineering problems. CO2 Ability to use Ordinary Differential Equations to solve formulated engineering problems. CO3 Ability to use linear algebra to solve formulated engineering problems. CO4 Ability to use vector calculus to solve formulated engineering problems. Course Outcomes (CO to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: High CO/PO PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 PO12 CO1 2 3 3 3 3 1 1 2 2 2 CO3 2 3 3 3 3 1 2 2 2 CO3 2 3 3 3 3 1 2 2 2 CO3 2 2 3 3 3 3 1 2 2 2 CO3 2 2 3 3 3 3 1 2 2 2 CO3 2 2 3 3 3 3 1	۷.			use (Ji diliai y	Dille	entiat i	-quatioi	15 (0 50	Jive Iui	mulate	u ei	igiliee	rillig
4: To understand use vector calculus to solve formulated engineering problems. Course Outcomes (CO): CO1 Ability to use series, differential and integral methods to solve formulated engineering problems. CO2 Ability to use Ordinary Differential Equations to solve formulated engineering problems. CO3 Ability to use linear algebra to solve formulated engineering problems. CO4 Ability to use vector calculus to solve formulated engineering problems. CO4 Ability to use vector calculus to solve formulated engineering problems. CO4 OVER OUTCOMES (CO to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: High CO/PO PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 PO12 CO1 2 3 3 3 1 1 2 2 2 CO3 2 3 3 3 3 1 2 2 2 CO3 2 3 3 3 3 1 2 2 2 CO3 2 2 3 3 3 3 1 2 2 2 CO3 2 2 3 3 3 3 1 2 2 2 CO3 2 2 3 3 3 3 1 2 2 2 CO3 2 2 3 3 3 3 1	3.			usa lin	aar alge	hra to s	olve for	mulated	d engine	ering n	rohlams			
Course Outcomes (CO): CO1 Ability to use series, differential and integral methods to solve formulated engineering problems. CO2 Ability to use Ordinary Differential Equations to solve formulated engineering problems. CO3 Ability to use linear algebra to solve formulated engineering problems. CO4 Ability to use vector calculus to solve formulated engineering problems. CO4 Ability to use vector calculus to solve formulated engineering problems. CO4 OUTCOMES (CO to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: High CO/PO PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 PO12 CO1 2 3 3 3 1 1 2 2 2 CO3 2 3 3 3 3 1 2 2 2 CO3 2 3 3 3 3 1 2 2 2 CO3 2 2 3 3 3 3 1 2 2 2 CO3 2 2 3 3 3 3 1 2 2 2 CO3 2 2 3 3 3 3 1 2 2 2 CO3 2 2 3 3 3 3 1														
CO1 Ability to use series, differential and integral methods to solve formulated engineering problems. CO2 Ability to use Ordinary Differential Equations to solve formulated engineering problems. CO3 Ability to use linear algebra to solve formulated engineering problems. CO4 Ability to use vector calculus to solve formulated engineering problems. CO4 Ability to use vector calculus to solve formulated engineering problems. CO6 ON PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 PO12 CO1 2 3 3 3 1 1 2 CO2 2 3 3 3 3 1 2 2 CO3 2 3 3 3 3 1 2 2 CO3 2 3 3 3 3 1 2 2					tor can	Lutus to	30176 10	mutate	eu engii	icering p	DIODICII	١٥.		
problems. CO2 Ability to use Ordinary Differential Equations to solve formulated engineering problems. CO3 Ability to use linear algebra to solve formulated engineering problems. CO4 Ability to use vector calculus to solve formulated engineering problems. Course Outcomes (CO to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: High CO/PO PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 PO12 CO1 2 3 3 3 1 1 2 2 2 CO2 2 3 3 3 3 1 2 2 2 CO3 2 3 3 3 3 1 2 2 2					differer	ntial and	d integr	al meth	nds to	solve fo	rmulate	nd er	nginee	ring
CO2 Ability to use Ordinary Differential Equations to solve formulated engineering problems. CO3 Ability to use linear algebra to solve formulated engineering problems. CO4 Ability to use vector calculus to solve formulated engineering problems. Course Outcomes (CO to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: High CO/PO PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 PO12 CO1 2 3 3 3 1 1 2 CO2 2 3 3 3 3 1 2 2 2 CO3 2 3 3 3 3 1 2 2 2	COT			301103,	unicici	iciat and	u iiicegi	at meth	ious to	30176 10	minutace	.u cı	igilico	riiig
CO3 Ability to use linear algebra to solve formulated engineering problems. CO4 Ability to use vector calculus to solve formulated engineering problems. Course Outcomes (CO to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: High CO/PO PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 PO12 CO1 2 3 3 3 1 1 2 2 2 CO2 2 3 3 3 3 1 2 2 2 CO3 2 3 3 3 3 1 2 2 2	CO2			Ordinary	/ Differe	ential Ed	nuations	to solv	e formu	lated er	ngineeri	ng n	robler	ns.
CO4 Ability to use vector calculus to solve formulated engineering problems. Course Outcomes (CO to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: High CO/PO P001 P002 P003 P004 P005 P006 P007 P008 P009 P010 P011 P012 CO1 2 3 3 1 - - - - 1 2 CO2 2 3 3 1 - - - - 2 2 CO3 2 3 3 1 - - - - 2 2												··5 P		
Course Outcomes (CO to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: High CO/PO P001 P002 P003 P004 P005 P006 P007 P008 P009 P010 P011 P012 CO1 2 3 3 1 - - - - 1 2 CO2 2 3 3 1 - - - - 2 2 CO3 2 3 3 1 - - - - 2 2														
CO/PO PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 PO12 CO1 2 3 3 1 - - - - 1 2 CO2 2 3 3 1 - - - - 2 2 CO3 2 3 3 1 - - - - - 2 2	Course	_							•	<u> </u>		diun	n, 3: I	High
CO2 2 3 3 1 - - - - - 2 2 CO3 2 3 3 3 1 - - - - - 2 2														
CO3 2 3 3 3 1 2 2	CO1	2	3	3		1	-	-	-	-	-	1	2	
		2	3	3		1	-	-	-	-	-	2	2	
CO4 2 3 3 3 1 2 2	CO3	2				1	-	-	-	-	-	2	2	
	CO4	2	3	3	3	1	-	-	-	-	-	2	2	

Partial derivatives, Chain rule, Differentiation of Implicit functions, Exact differentials. Maxima, Minima and saddle points, Method of Lagrange multipliers. Differentiation under Integral sign, Jacobians and transformations of coordinates. [8Hrs][T2]

Unit II

Ordinary Differential Equations (ODEs): Basic Concepts. Geometric Meaning of y' = f(x, y). Direction Fields, Euler's Method, Separable ODEs. Exact ODEs. Integrating Factors, Linear ODEs. Bernoulli Equation. Population Dynamics, Orthogonal Trajectories. Homogeneous Linear ODEs with Constant Coefficients. Differential Operators. Modeling of Free Oscillations of a Mass-Spring System, Euler-Cauchy Equations. Wronskian, Nonhomogeneous ODEs, Solution by Variation of Parameters.

Power Series Method for solution of ODEs: Legendre's Equation. Legendre Polynomials, Bessel's Equation, Bessels's functions Jn(x) and Yn(x). Gamma Function [12Hrs][T1]

Unit III

Linear Algebra: Matrices and Determinants, Gauss Elimination, Linear Independence. Rank of a Matrix. Vector Space. Solutions of Linear Systems and concept of Existence, Uniqueness, Determinants. Cramer's Rule, Gauss-Jordan Elimination. The Matrix Eigenvalue Problem.

Determining Eigenvalues and Eigenvectors, Symmetric, Skew-Symmetric, and Orthogonal Matrices. Eigenbases. Diagonalization. Quadratic Forms. Cayley - Hamilton Theorem (without proof)[10Hrs][T1]

Unit IV

Vector Calculus: Vector and Scalar Functions and Their Fields. Derivatives, Curves. Arc Length. Curvature. Torsion, Gradient of a Scalar Field. Directional Derivative, Divergence of a Vector Field, Curl of a Vector Field, Line Integrals, Path Independence of Line Integrals, Double Integrals, Green's Theorem in the Plane, Surfaces for Surface Integrals, Surface Integrals, Triple Integrals, Stokes Theorem. Divergence Theorem of Gauss. [10Hrs][T1]

Textbooks:

- 1. Advanced Engineering Mathematics by Erwin Kreyszig, John Wiley, 10th Ed., 2011.
- 2. Mathematical Methods for Physics and Engineering, by K. F. Riley, M. P. Hobson and S. J. Bence, CUP, 2013. (for Unit I)

- 1. Engineering Mathematics by K.A. Stroud withDexter J. Booth, Macmillan, 2020.
- 2. Advanced Engineering Mathematics by Larry Turyn, Taylor and Francis, 2014.
- 3. Advanced Engineering Mathematics by Dennis G. Zill, Jones & Bartlett Learning, 2018.
- 4. Advanced Engineering Mathematics with MATLAB by Dean G. Duffy, Taylor and Francis, 2017.
- 5. Advanced Engineering Mathematics by Merle C. Potter, Jack L. Lessing, and Edward F. Aboufadel, Springer (Switzerland), 2019.

PaperCode:HS-113 / HS-114	Paper: Communications Skills	L	T/P	С
		3	-	3

- 1. Teachers Continuous Evaluation: 25 marks
- Term end Theory Examinations: 75 marks

Instruction for paper setter:

- 1. There should be 9 questions in the term end examinations question paper.
- 2. The first (1st) question should be compulsory and cover the entire syllabus. This question should be objective, single line answers or short answer type question of total 15 marks.
- 3. Apart from question 1 which is compulsory, rest of the paper shall consist of 4 units as per the syllabus. Every unit shall have two questions covering the corresponding unit of the syllabus. However, the student shall be asked to attempt only one of the two questions in the unit. Individual questions may contain upto 5 sub-parts / sub-questions. Each Unit shall have a marks weightage of 15.
- 4. The questions are to be framed keeping in view the learning outcomes of the course / paper. The standard / level of the questions to be asked should be at the level of the prescribed textbook.

Course Objectives:

1:	To understand the communication system paradigm.								
2:	To understand how language vocabulary can be increased and difference between Indian,								
	British and American English.								
3:	To understand how to write a business letter and make a speech.								
4:	To improve grammar and sentence structure.								

C

(Course	Outcomes (CO):						
	CO1	Ability to Communicate as an Individual and in a Group.						
	CO2	Ability to learn new words, differentiate between Indian, British and American English.						
	CO3	Ability to write business letters and make speeches.						
	CO4	Improved grammar and sentence structure.						

Course	Course Outcomes (CO to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: High												
CO/PO	PO01	PO02	PO03	P004	PO05	PO06	P007	PO08	PO09	PO10	PO11	PO12	
CO1	-	-	-	-	-	-	-	-	3	3	-	3	
CO2	-	-	-	-	-	-	-	-	3	3	-	3	
CO3	-	-	1	-	-	-	-	-	3	3	-	3	
CO4	-	-	-	-	-	-	-	-	3	3	-	3	

Unit I

Role and Importance of Communications, Attributes of Communications, Verbal and Non-Verbal Communications, Verbal Communications Skills, Non-verbal Communication Methods, Body Language, Barriers to Communications, Socio-psychological barriers, Inter-Cultural barriers, Overcoming barriers, Communication Mediums: Characterization and Choice of medium, Effective Communication: Correctness, Clarity, Conciseness, Courtesy, Group Communication: Meetings (types, purpose), Group Discussions, Conduct of Meeting, Participant Role, Making Presentations.

[8Hrs][T1]

Unit II

Spoken and Written English: Attributes of spoken and written communication, Formal & Informal Communication, Variation in between Indian, British and American English. Etiquette and Manners: Personal Behaviour, Greetings, Introductions, Telephone Etiquette. Vocabulary Development: Dictionaries and Thesaurus, Words often confused, generally used one word substitutions, Comprehension. [8Hrs][T1]

Unit III

Letter writing: Planning the message, Planning Content, Structure, Language use, Layout, enquires and replies, asking for or giving quotations, Bargaining letters, Seller's reply, etc.; Complaints and Replies; Memos, Circulars and notices;

Papragraph Writing, Writing Scientific and Technical Reports: Types, Structure, Drafting and Delivering a Speech: Understanding the Environment, Understanding the Audience, Text preparing, Composition, Practicing, Commemorative Speeches, Welcome and Introduction, Farewell and Send-offs, Condolence [8Hrs][T1]

Unit IV

Articles: Indefinite, Definite; Tenses: Present, Past, Future, Perfect (Present, Past and Future), Tenses in conditional sentences; Active and Passive Voice: Formation, conversion; Direct and Indirect Speech, Degrees of Comparison, Common errors, Concepts of Learning and Listening [8Hrs][T1]

Textbooks:

1. English Language Communication Skills by Urmilla Rai, Himalaya Publishing House, 10th Ed., 2010.

- 1. *Technical Communication: Principles and Practice* by Meenakshi Raman and Sangeeta Sharma, Oxford University Press, 2015.
- 2. Communication Skills for Engineers by C. Muralikrishna and Sunita Mishra, Pearson, 2011.
- 3. Effective Technical Communication by M. Ashraf Rizvi, McGraw-Hill, 2018.
- 4. Business Communication: Skills, Concepts, and Applications by P.D. Chaturvedi and Mukesh Chaturvedi, Pearson, 2013.
- 5. Business Correspondence and Report Writing by R.C. Sharma and Krishan Mohan, McGraw-Hill, 2016.
- 6. English for Technical Communications by Aysha Viswamohan, Tata McGraw-Hill, 2008.

PaperCode:HS-115 / HS-116	Paper: Indian Constitution	Ш	T/P	С
		2	•	2

- 1. Teachers Continuous Evaluation: 25 marks
- 2. Term end Theory Examinations: 75 marks
- 3. This is an NUES paper, hence all examinations to be conducted by the concerned teacher.

Instruction for paper setter

- 1. There should be 9 questions in the term end examinations question paper.
- 2. The first (1st) question should be compulsory and cover the entire syllabus. This question should be objective, single line answers or short answer type question of total 15 marks.
- 3. Apart from question 1 which is compulsory, rest of the paper shall consist of 4 units as per the syllabus. Every unit shall have two questions covering the corresponding unit of the syllabus. However, the student shall be asked to attempt only one of the two questions in the unit. Individual questions may contain upto 5 sub-parts / sub-questions. Each Unit shall have a marks weightage of 15.
- 4. The questions are to be framed keeping in view the learning outcomes of the course / paper.

Course Objectives:

To create awareness among students about the Indian Constitution
 To create consciousness among students about democratic principles and enshrined in the Constitution of India

Course Outcomes (CO):

CO1	To understand institutional mechanism and fundamental values enshrined in the
	Constitution of India
CO2	To understand the inter-relation between Centre and State Government
CO3	To understand Fundamental Rights and Duties
	The state of the first of the state of the s

CO4 To understand the structure and functions of judicial systems in the country.

Course Outcomes (CO to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: H											: High	
CO/PO	PO01	PO02	PO03	P004	PO05	PO06	P007	PO08	PO09	PO10	PO11	PO12
CO1	-	-	-	-	-	3	-	2	-	-	-	1
CO2	-	-	-	-	-	3	-	2	-	-	-	1
CO3	-	-	-	-	-	3	-	2	-	-	-	1
CO4	-	-	-	-	-	3	-	2	-	-	-	1

Unit I

Introduction to Constitution of India: Definition, Source and Framing of the Constitution of India. Salient features of the Indian Constitution. Preamble of the Constitution. [6Hrs]

Unit II

Fundamental Rights and Duties: Rights To Equality (Article 14-18). Rights to Freedom (Article 19-22). Right against Exploitation (Article 23-24). Rights to Religion and Cultural and Educational Rights of Minorities (Article 25-30). The Directive Principles of State Policy - Its significance and application. Fundamental Duties - Necessary obligations and its nature, legal status and significance [6Hrs]

Unit III

Executives and Judiciary: Office of President, Vice President and Governor: Power and Functions, Parliament, Emergency Provisions-, President Rule; Union Judiciary: Appointment of Judges, Jurisdiction of the Supreme Court, State Judiciary: Power and functions, Writ Jurisdiction [6Hrs]

Unit IV

Center-States Relation: Is Indian Constitution Federalin Nature, Legislative relations between Union and States, Administrative Relations between Union and States, Financial Relations between Union and States

[6Hrs]

Textbooks:

- 1. Constitutional Law of India by J.N Pandey, Central Law Publication, 2018.
- 2. Introduction to the Indian Constitution of India by D.D. Basu, PHI, New Delhi, 2021
- 3. The Constitution of India by P.M. Bakshi, Universal Law Publishing Co., 2020.

- 1. Indian Constitutional Law by M.P. Jain, Lexis Nexis, 2013
- 2. Constitution of India by V.N. Shukla, Eastern Book Agency, 2014

PaperC	ode:HS-117/HS-118	Paper: Human Values and Ethics	L	Р	С
•		•	1	-	1
Markin	g Scheme:				
1. Tea	chers Continuous Evaluat	cion: 25 marks			
2. Ter	m end Theory Examination	ons: 75 marks			
3. Thi	s is an NUES paper, the e	xaminations are to be conducted by the concerned	teach	er.	
	tion for paper setter:				
		in the term end examinations question paper.			
		be compulsory and cover the entire syllabus. This o		ion sh	ould
		vers or short answer type question of total 15 marks			
		is compulsory, rest of the paper shall consist of 4 μ			
		ve two questions covering the corresponding unit of			
		be asked to attempt only one of the two questio			
		tain upto 5 sub-parts / sub-questions. Each Unit sha	ll hav	e a m	arks
	ghtage of 15.			,	
		ed keeping in view the learning outcomes of the co	urse	/ pape	er.
	Objectives:	- 4h - :- h - h - : - :			
1:		te their behavior in a professional environment as e			
2:		e of the impact of taking non-ethical engineering de	C1S10	ns.	
3:		d and desire control is needed for being ethical.	4		
4:	•	zational culture and to adapt to varying cul	tures	Witr	iout
Course	compromising ethical va	llues			
	Outcomes (CO):	of human values			
CO1	Realize the importance				الاحال
CO2		ve desires of the mind make a person unethical and	resti	ess, w	mile
CO2		ace and professional progress	.i		
CO3		of risks involved in unethical practices. Know var	Tous	mean	s or
CO4	protesting against uneth				:
CU4		restraining from unethical practices like bribe	εıy,	extort	1011,
Course		en politicians and industrialists.	الله	. 2. !	ما بداد

Course	Course Outcomes (CO to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: High											
CO/PO	PO01	PO02	PO03	PO04	PO05	P006	P007	PO08	PO09	PO10	PO11	PO12
CO1	-	-	-	-	-	3	-	3	1	1	-	1
CO2	-	-	-	-	-	3	-	3	1	1	•	1
CO3	-	1	•	-	1	3	1	3	1	1	ı	1
CO4	-	-		-	-	3	-	3	1	1		1

Human Values: Morals, Values, Ethics, Integrity, Work ethics, Service learning, Virtues, Respect for others, Living peacefully, Caring, Sharing, Honesty, Courage, Valuing time, Cooperation, Commitment, Empathy, Self-confidence, Challenges in the work place, Spirituality [3Hrs]

Unit II

Engineering Ethics: Senses of engineering ethics, Variety of moral issues, Types of inquiries, Moral dilemma, Moral autonomy, Moral development (theories), Consensus and controversy, Profession, Models of professional roles, Responsibility, Theories about right action (Ethical theories), Selfcontrol, Self-interest, Customs, Religion, Self-respect, Case study: Choice of the theory

Engineering as experimentation, Engineers as responsible experimenters, Codes of ethics, Industrial standards, A balanced outlook on law, Case study: The challenger [3Hrs]

Unit III

Safety definition, Safety and risk, Risk analysis, Assessment of safety and risk, Safe exit, Risk-benefit analysis

Sefety lessons from 'the challenger', Case study: Power plants, Collegiality and loyalty, Collective bargaining,

Confidentiality, Conflict of interests, Occupational crime, Human rights, Employee rights, Whistle blowing, Intellectual property rights. [4Hrs]

Unit IV

Globalization, Multinational corporations, Environmental ethics, Computer ethics, Weapons development, Engineers as managers, Consulting engineers, Engineers as expert witness, Engineers as advisors in planning and policy making, Moral leadership, Codes of ethics, Engineering council of India, Codes of ethics in Business Organizations [3Hrs]

Textbooks:

1. A Textbook on Professional Ethics and Human Values, by R. S. Naagarazan, New Age Publishers, 2006.

- 1. Professional Ethics and Human Values by D. R. Kiran, McGraw-Hill, 2014.
- 2. Engineering Ethics, by Charles E Harris and Micheal J Rabins, Cengage Learning Pub., 2012.
- 3. Ethics in Engineering, Mike Martin and Roland Schinzinger, McGraw Hill Pub., 2017.
- 4. Unwritten laws of Ethics and Change in Engineering by The America Society of Mechanical Engineers, 2015.
- 5. Engineering Ethics by Charles B. Fleddermann, Pearson, 2014.
- 6. Introduction to Engineering Ethics by Mike W. Martin and Roland Schinzinger, McGraw-Hill, 2010.
- 7. Engineering Ethics: Concept and Cases by Charles E. Harris, Michael S. Pritchard and Michael J.Rabins, Cengage, 2009.
- 8. Ethics in Engineering Practiceand Research by Caroline Whitbeck, Cambridge University Press, 2007.

Marking				. Maria	acturiii	g Proce	,22				L T/	P C
Marking											4 -	4
	g Schem			_								
	chers C					_						
2. Ter				tions: 7	<u>5 marks</u>							
Instruct												
1. Then												
2. The												should
						answer :						
3. Apai												
						ons cove						
						attempt						
	viduai q ghtage c		s may co	ntain u	pto 5 su	b-parts	/ sub-qu	lestions	. Each u	ınıt snat	t nave a	marks
4. The			a ba fra	mod ka	oning ir	a viou t	ha laarr	aina out	comor c	of the co	ourso /	nanor
						be ask						
	book.	id / tev	et or ti	ie quesi	LIOIIS CO	DC d3N	zu silou	id be a	t the te	vet or t	ne pres	cribed
5. The		ment o	f (scien	tific) c	alculato	rs / Ind	-tables	/ data	- table	s may h	e spec	ified if
	uired.		(30,00)	ciric) c	accutaco	13 / (05	tubics	, data	tabte	J may L	oc spec	inca n
Course		ives:										
1:			vill have	basic ı	ındersta	anding o	f variou	s manuf	acturin	proces	ses. Th	e
'						casting p		5	accai iii	5 p. occ.	,505	Č
2:						of join		esses.				
3:						of forg			netal wo	rks.		
4:						oowder					of plast	ic
	compo							3,		· · · · · ·		
Course):									
CO1			sting pr	ocess.								
CO2			ining pr									
CO3					metal v	work.						
CO4						lurgy ar	d manu	facturin	g of pla	stic con	nponent	:S.
Course												
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	P007	PO08	PO09	PO10	PO11	PO12
CO1	2	1	1	1	2	-	-	-	-	-	1	1
CO2	2	1	1	1	2	-	-	-	-	-	1	1
CO3	2	1	1	1	2	-	-	-	-	-	1	1
CO4	2	1	1	1	2	-	-	-	-	-	1	1

Unit I

Definition of manufacturing, Importance of manufacturing towards technological and social economic development, Classification of manufacturing processes, Properties of materials.

Metal Casting Processes: Sand casting, Sand moulds, Type of patterns, Pattern materials, Pattern allowances, Types of Moulding sand and their Properties, Core making, Elements of gating system. Description and operation of cupola.

Working principle of Special casting processes - Shell casting, Pressure die casting, Centrifugal casting. Casting defects. [10Hrs]

Unit II

Joining Processes: Welding principles, classification of welding processes, Fusion welding, Gas welding, Equipments used, Filler and Flux materials. Electric arc welding, Gas metal arc welding, Submerged arc welding, Electro slag welding, TIG and MIG welding process, resistance welding, welding defects. [10Hrs]

Unit III

Deformation Processes: Hot working and cold working of metals, Forging processes, Open and closed die forging process. Typical forging operations, Rolling of metals, Principle of rod and wire drawing, Tube drawing. Principle of Extrusion, Types of Extrusion, Hot and Cold extrusion.

Sheet metal characteristics -Typical shearing operations, bending and drawing operations, Stretch forming operations, Metal spinning.

[10Hrs]

Unit IV

Powder Metallurgy: Introduction of powder metallurgy process, powder production, blending, compaction, sintering

Manufacturing Of Plastic Components: Types of plastics, Characteristics of the forming and shaping processes, Moulding of Thermoplastics, Injection moulding, Blow moulding, Rotational moulding, Film blowing, Extrusion, Thermoforming. Moulding of thermosets- Compression moulding, Transfer moulding, Bonding of Thermoplastics. [10Hrs]

Textbooks:

- 1. Manufacturing Technology: Foundry, Forming and Welding Volume 1, P. N Rao, , McGrawHill, 5e, 2018.
- 2. Elements of Workshop Technology Vol. 1 and 2 by Hajra Choudhury, Media Promoters Pvt Ltd., 2008.

- 1. *Manufacturing Processes for Engineering Materials*, by Serope Kalpajian and Steven R.Schmid, Pearson Education, 5e, 2014.
- 2. Fundamentals of Modern Manufacturing: Materials, Processes, and Systems by Mikell P. Groover, John Wiley and Sons, 4e, 2010 .
- 3. Production Technology by R.K.Jain and S.C. Gupta, Khanna Publishers. 16th Edition, 2001.

PaperCode: BS-151	Paper: Applied Physics - I Lab.	L	Р	С
		-	2	1

- 1. Teachers Continuous Evaluation: 40 marks
- 2. Term end Theory Examinations: 60 marks

Instructions:

- 1. The course objectives and course outcomes are identical to that of (Applied Physics I) as this is the practical component of the corresponding theory paper.
- 2. The practical list shall be notified by the teacher in the first week of the class commencement under intimation to the office of the Head of Department / Institution in which the paper is being offered from the list of practicals below. Atleast 8 experiments must be performed by the students
- 1. To determine the wavelength of sodium light by Newton's Rings.
- 2. To determine the wavelength of sodium light by Fresnel's biprism.
- 3. To determine the wavelength of sodium light using diffraction grating.
- 4. To determine the refractive index of a prism using spectrometer.
- 5. To determine the dispersive power of prism using spectrometer and mercury source.
- 6. To determine the specific rotation of cane sugar solution with the help of half shade polarimeter.
- 7. To find the wavelength of He-Ne laser using transmission diffraction grating.
- 8. To determine the numeral aperture (NA) of an optical fibre.
- 9. To plot a graph between the distance of the knife-edge from the center of the gravity and the time period of bar pendulum. From the graph, find (a) The acceleration due to gravity (b) The radius of gyration and the moment of inertia of the bar about an axis.
- 10. To determine the velocity of ultrasound waves using an ultrasonic spectrometer in a given liquid (Kerosene Oil).
- 11. To verify inverse square law.
- 12. To determine Planck's constant.

Note: Teacher's may use the prescribed books to choose the practicals in addition to above. Total 8 practicals minimum shall be performed by the students, they may be asked to do more. Atleast 4 experiments must be from the above list.

Textbook:

- 1. B.Sc. Practical Physics by C. L. Arora, S.Chand & Co., 2020.
- 2. Practical physics by R. K. Shukla and A. Srivastava, New Age Int. (P) Ltd., 2006.

PaperCode: ES-153 / ES-154	Paper: Programming in 'C' Lab.	L	Р	С
		-	2	1

- 1. Teachers Continuous Evaluation: 40 marks
- 2. Term end Theory Examinations: 60 marks

Instructions:

- 1. The course objectives and course outcomes are identical to that of "Programming in 'C'" as this is the practical component of the corresponding theory paper.
- 2. The practical list shall be notified by the teacher in the first week of the class commencement under intimation to the office of the office of the Head of Department / Institution in which the paper is being offered from the list of practicals below. Atleast 8 experiments must be performed by the students
- 1. Write a program to find divisor or factorial of a given number.
- 2. Write a program to find sum of a geometric series
- 3. Write a recursive program for tower of Hanoi problem
- 4. Write a recursive program to print the first m Fibonacci number
- 5. Write a menu driven program for matrices to do the following operation depending on whether the operation requires one or two matrices
 - a. Addition of two matrices
 - b. Subtraction of two matrices
 - c. Finding upper and lower triangular matrices
 - d. Transpose of a matrix
 - e. Product of two matrices.
- 6. Write a program to copy one file to other, use command line arguments.
- 7. An array of record contains information of managers and workers of a company. Print all the data of managers and workers in separate files.
- 8. Write a program to perform the following operators on Strings without using String functions
 - a. To find the Length of String.
 - b. To concatenate two string.
 - c. To find Reverse of a string.
 - d. To copy one string to another string.
- 9. Write a Program to store records of a student in student file. The data must be stored using Binary File.Read the record stored in "Student.txt" file in Binary code.Edit the record stored in Binary File.Append a record in the Student file.
- 10. Write a programmed to count the no of Lowercase, Uppercase numbers and special Characters presents in the contents of text File.

Note:

- 1. At least 8 Experiments out of the list shall be performed by the students. Teachers may introduce new experiments for the class in addition to above.
- 2. In addition Two Mini Projects based on the skills learnt shall be done by the students. Teachers shall create the mini projects so that the same is not repeated every year. These mini projects may be done in a group not exceeding group size of 4 students.
- 3. Usage of IDE like Visual Studio Community Edition, Codeblocks, etc. are recommended.

PaperCode: BS-155 / BS-156	Paper: Applied Chemistry Lab.	L	Р	С
		-	2	1

- 1. Teachers Continuous Evaluation: 40 marks
- 2. Term end Theory Examinations: 60 marks

Instructions:

- 1. The course objectives and course outcomes are identical to that of "Applied Chemistry" as this is the practical component of the corresponding theory paper.
- 2. The practical list shall be notified by the teacher in the first week of the class commencement under intimation to the office of the office of the Head of Department / Institution in which the paper is being offered from the list of practicals below. Atleast 8 experiments must be performed by the students
- 1. Determination of alkalinity of water sample.
- 2. Determination of hardness of water sample by EDTA method.
- 3. Determine the percentage composition of sodium hydroxide in the given mixture of sodium hydroxide and sodium chloride.
- 4. Determine the amount of oxalic acid and Sulphuric acid in one litre of solution, given standard sodium hydroxide and Potassium Permanganate.
- 5. Determine the amount of copper in the copper ore solution, provided hypo-solution (lodometric Titration).
- 6. Determine the amount of chloride ions present in water using silver nitrate (Mohr's Precipitation Method).
- 7. Determine the strength of MgSO4 solution by Complexometric titration.
- 8. Determine the surface tension of a liquid using drop number method.
- 9. Determine the viscosity of a given liquid (density to be determined).
- 10. Determine the cell constant of conductivity cell and titration of strong acid/strong base conductometrically.
- 11. To determine (a) λ max of the solution of KMnO4. (b) Verify Beer's law and find out the concentration of unknown solution by spectrophotometer.
- 12. Determination of the concentration of iron in water sample by using spectrophotometer.
- 13. Determination of the concentration of Iron (III) by complexometric titration.
- 14. Proximate analysis of coal.
- 15. Determination of eutectic point and congruent melting point for a two component system by method of cooling curve.

References:

- 1. Vogel's Text Book of Quantitative Chemical Analysis by G.H. Jefferey, J. Bassett, J. Mendham, and R.C. Denney, Logmaan Scientific & Technical, 1989
- 2. Essentials of Experimental Engineering Chemistry by S. Chawla, Dhanpat Rai & Co., 2008.
- 3. Experiments in Applied Chemistry by S. Ratan, S.K. KAtaria & Sons, 2003.
- 4. Practical Chemistry by O.P.Pandey, D. N. Bajpai and S. Giri, S.Chand & Co., 2005.
- 5. Engineering Chemistry with Laboratory Experiments by M. S. Kaurav, PHI Learning Pvt. Ltd., 2011.
- 6. Laboratory Manual on Engineering Chemistry by S. K. Bhasin, and Sudha Rani, Dhanpat Rai &Co., 2006.

Note:

1. At least 8 Experiments out of the list shall be performed by the students. Teachers may introduce new experiments for the class in addition to above.

PaperC	ode: ES	-157	Paper	: Engin	eering (Graphic	s-l				L	Р	С
											-	4	2
Marking	g Schen	ne:											
1. Tea	chers C	ontinuo	us Evalu	iation: 4	10 mark	S							
2. Ter	m end 1	Theory E	xamina	tions: 60	0 marks								
Course	Object	ives:											
1:	The st	udents v	vill lear	n the in	troducti	on of Er	ngineeri	ng grapl	nics, vai	rious eq	uipm	ent u	sed,
	variou	s scales,	dimens	sions an	d BIS co	des use	d while	making	drawin	gs for va	ariou	s stre	ams
	various scales, dimensions and BIS codes used while making drawings for various streams of engineering disciplines.												
2:	The st	udents v	vill lear	n theory	of pro	jections	and pro	jection	of poin	ts.			
3:	The st	The students will learn projection of lines and projection of planes.											
4:	The st	udents v	vill lear	n the pr	ojectio	n of soli	d and de	evelopm	ent of s	surfaces	i		
Course	Outcon	nes (CO):	-	-								
CO1	To unc	lerstand	the the	ory of p	rojecti	ons and	project	ion of p	oints.				
CO2	Ability	to do li	ne proj	ections.									
CO3	Ability	to do p	lane pro	jection	s.								
CO4	Ability	to do s	olid pro	jections	and de	velopme	ent of su	ırfaces					
Course	Outcon	nes (CO	to Prog	ramme	Outcon	nes (PO) Mappi	ng (scal	e 1: lov	v, 2: Me	diun	ո, 3:	High
CO/PO	PO01	PO02	PO03	P004	PO05	P006	P007	PO08	PO09	PO10	PO1	1 F	2012
CO1	3	3	3	3	2	-	-	-	1	2	1		2
CO2	3	3	3	3	2	-	-	-	1	2	1		2
CO3	3	3	3	3	2	-	-	-	1	2	1		2
CO4	3	3	3	3	2	-	-	-	1	2	1		2

Introduction: Engineering Graphics/Technical Drawing, Introduction to drawing equipments and use of instruments, Conventions in drawing practice. Types of lines and their uses, BIS codes for lines, technical lettering as per BIS codes, Introduction to dimensioning, Types, Concepts of scale drawing, Types of scales

Theory of Projections: Theory of projections, Perspective, Orthographic, System of orthographic projection: in reference to quadrants, Projection of Points, Projection in different quadrants, Projection of point on auxiliary planes. Distance between two points, Illustration through simple problems.

Unit II

Projection of Lines: Line Parallel to both H.P. and V.P., Parallel to one and inclined to other, Other typical cases: three view projection of straight lines, true length and angle orientation of straight line: rotation method, Trapezoidal method and auxiliary plane method, traces of line.

Unit III

Projection of Planes: Projection of Planes Parallel to one and perpendicular to other, Perpendicular to one and inclined to other, Inclined to both reference planes, Plane oblique to reference planes, traces of planes.

Planes Other than the Reference Planes: Introduction of other planes (perpendicular and oblique), their traces, inclinations etc., projections of points and lines lying in the planes, conversion of oblique plane into auxiliary plane and solution of related problems.

Unit IV

Projection of Solids: Projection of solids in first or third quadrant, Axis parallel to one and perpendicular to other, Axis parallel to one inclined to other, Axis inclined to both the principal plane, Axis perpendicular to profile plane and parallel to both H.P. and V.P., Visible and invisible details in the projection, Use of rotation and auxiliary plane method.

Development of Surface: Purpose of development, Parallel line, radial line and triangulation method, Development of prism, cylinder, cone and pyramid surface for both right angled and oblique solids, Development of surface.

Note: The sheets to be created shall be notified by the concerned teacher.

Textbooks:

1. Engineering Drawing by N.D. Bhatt, 53rd Ed., Charotar Publishing House Pvt. Ltd., Gujarat, 2017.

- 1. Engineering Drawing by P.S. Gill, S.K Kataria & Sons, New Delhi, 2013.
- 2. Technical Drawing with Engineering Graphics by Frederick E. Giesecke, Shawna Lockhart, Marla Goodman, and Cindy M. Johnson, 15th Ed., Prentice Hall, USA, 2016
- 3. Engineering Drawing by M.B. Shah and B.C. Rana, 3rd Ed., Pearson Education, New Delhi, 2009.

PaperCode: ES-159 / ES-160	Paper: Electrical Science Lab.	L	Р	С
			2	1

- 1. Teachers Continuous Evaluation: 40 marks
- 2. Term end Theory Examinations: 60 marks

Instructions:

- 1. The course objectives and course outcomes are identical to that of "Electrical Science" as this is the practical component of the corresponding theory paper.
- 2. The practical list shall be notified by the teacher in the first week of the class commencement under intimation to the office of the office of the Head of Department / Institution in which the paper is being offered from the list of practicals below. Atleast 8 experiments must be performed by the students
- 1. To Design the circuit for a given load and selection of its various Components and instruments from the safety point of view

OR

To study different types of symbols and standard currently being used inelectrical engineering.

- 2. Study and applications of CRO for measurement of voltage, frequencyand phase of signals.
- 3. Connection of lamp by(1)Single Switch Method.(2) Two-way Switch Method.

OR

Performance comparison of fluorescent Tube & CFL Lamp.

3. To Verify Thevenin's & Norton's Theorem

OR

To Verify Superposition & Reciprocity Theorem.

OR

To Verify Maximum Power Transfer Theorem.

- 4. To Measure Power & Power Factor in a Single-Phase A.C Circuit usingThree Ammeters or three Voltmeters.
- 5. To Measure Power & Power Factor in a Balanced Three Phase Circuitusing Two Single Phase Wattmeters.
- 6. To study of Resonance in a series R-L-C or Parallel R-L-C Circuits.
- 7. To perform open circuit and short circuit test on 1-phase transformer.
- 8. Starting, Reversing and speed control of DC shunt Motor
- 9. Starting, Reversing and speed control of 3-phase Induction Motor
- 10. To Study different types of Storage Batteries & its charging system.
- 11. To Study different types of earthing methods including earth leakagecircuit breaker (GFCI)

Note:

1. At least 8 Experiments out of the list shall be performed by the students. Teachers may introduce new experiments for the class in addition to above.

PaperCode: BS-161 /BS-162	Paper: Environmental Studies Lab.	L	Р	С
		-	2	1

- 1. Teachers Continuous Evaluation: 40 marks
- 2. Term end Theory Examinations: 60 marks

Instructions:

- 1. The course objectives and course outcomes are identical to that of "Environmental Studies" as this is the practical component of the corresponding theory paper.
- 2. The practical list shall be notified by the teacher in the first week of the class commencement under intimation to the office of the office of the Head of Department / Institution in which the paper is being offered from the list of practicals below. Atleast 8 experiments must be performed by the students
- 1. Determination of pH, conductivity and turbidity in drinking water sample.
- 2. Determination of pH and conductivity of soil/sludge samples.
- 3. Determination of moisture content of soil sample.
- 4. Determination of Total Dissolved Solids (TDS) of water sample.
- 5. Determination of dissolved oxygen (DO) in the water sample.
- 6. Determination of Biological oxygen demand (BOD) in the water sample.
- 7. Determination of Chemical oxygen demand (COD) in the water sample.
- 8. Determination of Residual Chlorine in the water sample.
- 9. Determination of ammonia in the water sample.
- 10. Determination of carbon dioxide in the water sample.
- 11. Determination of nitrate ions or sulphate ions in water using spectrophotometer.
- 12. Determination of the molecular weight of polystyrene sample using viscometer method.
- 13. Base catalyzed aldol condensation by Green Methodology.
- 14. Acetylation of primary amines using eco-friendly method.
- 15. To determine the concentration of particulate matter in the ambient air using High Volume Sampler.

Note:

- 1. For better understanding of various aspects of environment visits to local areas, depending upon easy access and importance may be planned to any nearby river, forest, grassland, hills and students should write a report based on their observations.
- 2. At least 8 Experiments out of the list shall be performed by the students. Teachers may introduce new experiments for the class in addition to above

- 1. Vogel's Text Book of Quantitative Chemical Analysis by G.H. Jefferey, J. Bassett, J. Mendham, and R.C. Denney, Logmaan Scientific & Technical, 1989.
- 2. dst.gov.in/green-chem.pdf (monograph of green chemistry laboratory experiments).
- 3. Essentials of Experimental Engineering Chemistry by S. Chawla, Dhanpat Rai & Co., 2008.
- 4. Experiments in Applied Chemistry by S. Ratan, S.K. KAtaria & Sons, 2003.
- 5. Principles of Environment Science: Enquiry and Applications by W. Cunningham and M. A. Cunningha, Tata McGraw Hill, 2003.
- Perspectives in Environment Studies by A. Kaushik and C. P. Kaushik, New Age Int. (P) Pub., 2013.

PaperCode: BS-106	Paper: Applied Physics - II	L	T/ P	С
		3	-	3

- Teachers Continuous Evaluation: 25 marks
 Term end Theory Examinations: 75 marks
- Instruction for paper setter:
- 1. There should be 9 questions in the term-end examinations question paper.
- 2. The first unit will be compulsory and cover the entire syllabus. This question will have Five subparts, and the students will be required to answer any THREE parts of 5 marks each. This unit will have a total weightage of 15 marks.
- 3. Apart from unit 1 which is compulsory, the rest of the paper shall consist of 4 units as per the syllabus. Every unit shall have two questions covering the corresponding unit of the syllabus. However, the student shall be asked to attempt only one of the two questions in the unit. Individual questions may contain up to 5 sub-parts / sub-questions. Each Unit shall have a marks weightage of 15.
- 4. The questions are to be framed keeping in view the learning outcomes of the course/paper. The standard / level of the questions to be asked should be at the level of the prescribed textbook.
- 5. The requirement of (scientific) calculators / log-tables / data tables may be specified if required.

requ	ired.											
Course	Objectives:											
1:	To lea	To learn about the quantum nature of reality.										
2:	To lea	rn about	quantu	ım statis	stics and	d its sigr	ificanc	e.				
3:	To unc	lerstand	the str	uctures	of cryst	als.						
4:	To lea	rn about	the ba	nd theo	ry of sol	ids and	propert	ies and	charac	teristics	of dioc	les.
Course	Outcom	es (CO):	;									
CO1	Unders	stand an	d appre	ciate th	e quant	um natı	ire of re	eality.				
CO2	Unders	stand qu	antum	statistic	s and its	signific	ance.					
CO3	Unders	stand Cr	ystalline	Structi	ure.							
CO4	Unders	stand th	e band 1	theory o	f solids	and pro	perties	and cha	aracteri	stics of	diodes.	
Course	Outcom	es (CO t	o Progr	amme (Outcome	es (PO)	Mappin	g (scale	1: low	, 2: Med	dium, 3	: High
CO/PO	PO01	PO02	PO03	P004	PO05	P006	P007	P008	PO09	PO10	PO11	PO12
CO1	2	2	3	3	2	-	-	-	1	1	-	1
CO2	2	2	3	3	2	-	1	1	1	1	-	1
CO3	2	2	3	3	2	-	-	-	1	1	-	1
CO4	2	2	3	3	2	-	-	-	1	1	-	1

Unit I

Quantum Mechanics: Introduction: Wave particle duality, de Broglie waves, the experiment of Davisson and Germer, electron diffraction, physical interpretation of the wave function, properties, the wave packet, group and phase velocity, the uncertainty principle. The Schrödinger wave equation (1D), Eigen values and Eigen functions, expectation values, simple Eigen value problems - solutions of the Schrödinger's equations for the free particle, the infinite well, the finite well, tunneling effect, the scanning electron microscope, the quantum simple harmonic oscillator (qualitative), zero point energy.

[8Hrs][T1,T2]

Unit II

Quantum Statistics: The need for statistics , statistical distributions: Maxwell Boltzmann, Bose-Einstein and Fermi-Dirac statistics, their comparisons, Fermions and Bosons, Applications of quantum statistics: 1. Molecular speed and energies in an ideal gas; 2. The Black body spectrum, the failure of classical statistics to give the correct explanations - Bose-Einstein statistics applied to the Black Body radiation spectrum; Fermi-Dirac distribution, free electron theory, electronic specific heats, Fermi energy and average energy; Dying stars.

[8Hrs][T1,T2]

Unit III

Crystal Structure: Types of solids, Unit cell, Types of crystals, Translation vectors, Lattice planes, Miller indices, Simple crystal structures, Interplaner spacing, Crystal structure analysis: Bragg's law, Laue method, Point defects: Schottcky and Frankel defects. [8Hrs][T1,T2]

Unit IV

Band Theory of Solids: Origin of energy bands in solids, motion of electrons in a periodic potential the Kronig-Penny model (Qualitative). Brillouin zones, effective mass, metals, semi-conductors and insulators and their energy band structures. Extrinsic and Intrinsic semiconductors, doping - Fermi energy for doped and undoped semiconductors, the p-n junction (energy band diagrams with Fermi energy), the unbiased diode, forward and reverse biased diodes - tunnel diodes, zener diode, photo diode its characteristics, LED [8Hrs][T1,T2]

Textbooks:

- Concepts of Modern Physics (SIE) by Arthur Beiser, Shobhit Mahajan, and S. Rai Choudhury, McGraw - Hill, 2017.
- Modern Physics by Kenneth S. Krane, Wiley, 2020.

- Physics for Scientists and Engineers by Raymond A. Serway and John W. Jewett, 9th Edition , Cengage, 2017 **2.** Principle
- Principles of Physics by Robert Resnick, Jearl Walker and David Halliday, Wiley, 2015.
 - Solid State Electronic Devices ,by Streetman and Ben G Prentice Hall India Learning Private Limited; 2006

PaperC	ode: BS	5-112	Paper	: Applie	ed Math	ematics	s - II				L	T/P	С
											4	-	4
	g Schen												
		ontinuo											
		Theory E		tions: 7	<u>5 marks</u>								
		paper											
						nd exam							
						ry and c						ion sh	ould
						answer							
						, rest o							
						ons cove							
						attempt							
			s may co	ontain u	pto 5 su	b-parts	/ Sub-qu	uestions	. Each C	mit snai	ı nav	e a n	iarks
	ghtage (o bo fra	mod ko	ening ir	n view t	ha laari	ning out	comos (of the c	ource	a / na	nor
						be ask							
	book.	iu / tev	et of ti	ie quesi	LIOIIS LO	DC d3N	-u 3110u	ita be a	t the te	vet or i	LITE F	JI CSCI	ibeu
		ement o	f (scier	ntific) c	alculato	rs / log	-tables	/ data	- table	s may l	ne sr	ecifi	ed if
	uired.	inche o	(30.01	iciric) c	accataco	13 / (05	, tubics	, data	tubic	J may ,	<i>-</i> C <i>-</i> J _F	, , , ,	cu
	Object	ives:											
1:	To unc	lerstand	Comple	ex serie:	s metho	ds.							
2:		lerstand											
3:	To und	lerstand	Fourie	and La	place m	ethods							
4:	To unc	lerstand	how to	solve sp	ecific f	ormulat	ed engi	neering	problen	ns using	PDE	meth	ods.
Course	Outcor	nes (CO):										
CO1	Ability	to use	Complex	x series	method	ls.							
CO2	Ability	to use	Complex	x analys	is to sol	ve form	ulated 6	enginee	ring pro	blems			
CO3	Ability	to use	Fourier	and Lap	lace me	ethods to	o solve 1	formula	ted engi	ineering	pro	blems	5
CO4						ngineeri							
				ramme	Outcon	nes (PO) Mappi	ng (scal		v, 2: Me	diun		
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	P007	PO08	PO09	PO10	PO		2012
CO1	2	3	3	3	1	-	-	-	-	-	1	7	
CO2	2	3	3	3	1	-	-	-	-	-	2	7	
CO3	2	3	3	3	1	-	-	-	-	-	2	1	_
CO4	2	3	3	3	1	-	-	-	-	-	2	7	2

Complex Analysis - I: Complex Numbers and Their Geometric Representation, Polar Form of Complex Numbers. Powers and Roots, Derivative. Analytic Function, Cauchy-Riemann Equations. Laplace's Equation, Exponential Function, Trigonometric and Hyperbolic Functions. Euler's Formula, de'Moivre's theorem (without proof), Logarithm. General Power. Principal Value. Singularities and Zeros. Infinity,

Line Integral in the Complex Plane, Cauchy's Integral Theorem, Cauchy's Integral Formula, Derivatives of Analytic Functions, Taylor and Maclaurin Series. [10Hrs]

Unit II

Complex Analysis - II: Laurent Series, Residue Integration Method. Residue Integration of Real Integrals,

Geometry of Analytic Functions: Conformal Mapping, Linear Fractional Transformations (Möbius Transformations), Special Linear Fractional Transformations, Conformal Mapping by Other Functions, Applications: Electrostatic Fields, Use of Conformal Mapping. Modeling, Heat Problems, Fluid Flow. Poisson's Integral Formula for Potentials [10Hrs]

Unit III

Laplace Transforms: Definitions and existence (without proof), properties, First Shifting Theorem (s-Shifting), Transforms of Derivatives and Integrals and ODEs, Unit Step Function (Heaviside Function). Second Shifting Theorem (t-Shifting), Short Impulses. Dirac's Delta Function. Partial Fractions, Convolution. Integral Equations, Differentiation and Integration of Transforms. Solution of ODEs with Variable Coefficients. Solution of

Systems of ODEs. Inverse Laplace transform and its properties.

Fourier Analysis: Fourier Series, Arbitrary Period. Even and Odd Functions. Half-Range Expansions, Sturm-Liouville Problems. Fourier Integral, Fourier Cosine and Sine Transforms, Fourier Transform. Usage of fourier analysis for solution of ODEs. Inverse Fourier transform and its properties. [10Hrs]

Unit IV

Partial Differential Equations (PDEs): Basic Concepts of PDEs. Modeling: Vibrating String, Wave Equation. Solution by Separating Variables. Use of Fourier Series. D'Alembert's Solution of the Wave Equation. Characteristics. Modeling: Heat Flow from a Body in Space. Heat Equation: Solution by Fourier Series. Steady Two-Dimensional Heat Problems. Dirichlet Problem. Heat Equation: Modeling Very Long Bars. Solution by Fourier Integrals and Transforms. Modeling: Membrane, Two-Dimensional Wave Equation. Rectangular Membrane. Laplacian in Polar Coordinates. Circular Membrane. Laplace's Equation in Cylindrical and Spherical Coordinates. Potential. Solution of PDEs by Laplace Transforms. [10Hrs]

Textbooks:

1. Advanced Engineering Mathematics by Erwin Kreyszig, John Wiley, 10th Ed., 2011.

- 1. Engineering Mathematics by K.A. Stroud withDexter J. Booth, Macmillan, 2020.
- 2. Advanced Engineering Mathematics by Larry Turyn, Taylor and Francis, 2014.
- 3. Advanced Engineering Mathematics by Dennis G. Zill, Jones & Bartlett Learning, 2018.
- 4. Advanced Engineering Mathematics with MATLAB by Dean G. Duffy, Taylor and Francis, 2017.
- 5. Advanced Engineering Mathematics by Merle C. Potter, Jack L. Lessing, and Edward F. Aboufadel, Springer (Switzerland), 2019.
- 6. Mathematical Methods for Physics and Engineering, by K. F. Riley, M. P. Hobson and S. J. Bence, CUP, 2013.

PaperC	PaperCode: ES-114 Paper: Engineering Mechanics								L	T/P	С		
											3	-	3
	Marking Scheme:												
1. Tea													
2. Ter	· · · · · · · · · · · · · · · · · · ·												
Instruc	tion for	paper s	etter:										
1. The	1. There should be 9 questions in the term end examinations question paper.												
2. The	The first (1st) question should be compulsory and cover the entire syllabus. This question should												
	be objective, single line answers or short answer type question of total 15 marks.												
	rt from o												
syll	syllabus. Every unit shall have two questions covering the corresponding unit of the syllabus.												
Hov	owever, the student shall be asked to attempt only one of the two questions in the unit.												
	ividual questions may contain upto 5 sub-parts / sub-questions. Each Unit shall have a marks												
	weightage of 15.												
	questio												
	The standard / level of the questions to be asked should be at the level of the prescribed												
	textbook.												
	require	ment o	f (scien	tific) ca	alculato	rs / log	-tables	/ data	- table	s may l	be sp	pecifi	ed if
	uired.												
	Objecti												
1:			_	to solv	∕e prob	lems pe	ertaining	g to for	ce syste	ems, ed	quilit	orium	and
		ıted sys											
2:	To impart knowledge to solve problems of friction and engineering trusses.												
3:	To impart knowledge to deal with the problems of kinematics and kinetics of particle												
4:	4: To impart knowledge to deal with the problems of kinematics and kinetics of rigid bodies.												
Course	Course Outcomes (CO):												
CO1	Ability to solve problems pertaining to force systems, equilibrium and distributed systems.												
CO2	Ability to solve problems of friction and engineering trusses.												
CO3	Ability to deal with the problems of kinematics and kinetics of particle												
CO4								kinetics					
Course	Outcom	es (CO)	to Prog	gramme	Outcor	nes (PO) Mappi	ng (scal	e 1: low	, 2: Me	dium	ı, 3: F	ligh)
CO/PO	PO01	PO02	PO03	PO04			PO07		PO09		PO		2012

CO1

CO3

CO4

Force System: Introduction, force, principle of transmissibility of force, resultant of a force system, resolution of a force, moment of force about a line, Varigon's theorem, couple, resolution of force into force and a couple, properties of couple and their application to engineering problems.

-

-

-

Equilibrium: Force body diagram, equations of equilibrium and their applications to engineering problems, equilibrium of two force and three force members.

Distributed Forces: Determination of center of gravity, center of mass and centroid by direct integration and by the method of composite bodies, mass moment of inertia and area moment of inertia by direct integration and composite bodies method, radius of gyration, parallel axis theorem, polar moment of inertial. [10Hrs]

Unit II

Structure: Plane truss, perfect and imperfect truss, assumption in the truss analysis, analysis of perfect plane trusses by the method of joints, method of section and graphical method.

Friction: Static and Kinetic friction, laws of dry friction, co-efficient of friction, angle of friction, angle of repose, cone of friction, frictional lock, friction in flat pivot and collar bearing, friction in flat belts.

[10Hrs]

Unit III

Kinematics of Particles: Rectilinear motion, plane curvilinear motion, rectangular coordinates, normal and tangential coordinates.

Kinetics of Particles: Equation of motion, rectilinear motion and curvilinear motion, work-energy equation, conservation of energy, concept of impulse and momentum, conservation of momentum, impact of bodies, co-efficient of restitution, loss of energy during impact. [10Hrs]

Unit IV

Kinematics of Rigid Bodies: Concept of rigid body, types of rigid body motion, absolute motion, introduction to relative velocity, relative acceleration (Corioli's component excluded) and instantaneous center of zero velocity, Velocity and acceleration.

Kinetics of Rigid Bodies: Equation of motion, translatory motion and fixed axis rotation, application of work energy principles to rigid bodies conservation of energy.

Beam: Introduction, types of loading, methods for the reactions of a beam, space diagram, types of end supports, beams subjected to couple. [10Hrs]

Textbooks:

1. Engineering Mechanics by A.K. Tayal, Umesh Publications.

- 1. 'Engineering Mechanics' by K. L. Kumar, Tata Mc-Graw Hill
- 2. 'Engineering Mechanics' by S. Timoshenko, D. H. Young, J. V. Rao, Tata Mc-Graw Hill
- 3. 'Engineering Mechanics-Statics and Dynamics' by Irwing H. Shames, PHI.
- 4. 'Engineering Mechanics' by Basudev Bhattacharya, Oxford University Press.

PaperCode: BS-152	Paper: Applied Physics - II Lab.	L	Р	С
		-	2	1

- 1. Teachers Continuous Evaluation: 40 marks
- 2. Term end Theory Examinations: 60 marks

Instructions:

- 1. The course objectives and course outcomes are identical to that of (Applied Physics I) as this is the practical component of the corresponding theory paper.
- 2. The practical list shall be notified by the teacher in the first week of the class commencement under intimation to the office of the Head of Department / Institution in which the paper is being offered from the list of practicals below. Atleast 8 experiments must be performed by the students
- 1. To determine the e/m ratio of an electron by J.J. Thomson method.
- 2. To measure the frequency of a sine-wave voltage obtained from signal generator and to obtain lissajous pattern on the CRO screen by feeding two sine wave signals from two signal generators.
- 3. To determine the frequency of A.C. mains by using Sonometer.
- 4. To determine the frequency of electrically maintained tuning fork by Melde's method.
- 5. Computer simulation (simple application of Monte Carlo): Brownian motion, charging & discharging of a capacitor.
- 6. To study the charging and discharging of a capacitor and to find out the time constant.
- 7. To study the Hall effect.
- 8. To verify Stefan's law.
- 9. To determine the energy band gap of a semiconductor by four probe method/or by measuring the variation of reverse saturation current with temperature.
- 10. To study the I-V characteristics of Zener diode.
- 11. To find the thermal conductivity of a poor conductor by Lee's disk method.
- 12. To study the thermo emf using thermocouple and resistance using Pt. Resistance thermometer.

Note: Teacher's may use the prescribed books to choose the practicals in addition to above. Total 8 practicals minimum shall be performed by the students, they may be asked to do more. Atleast 4 experiments must be from the above list.

Textbook:

- 1. B.Sc. Practical Physics by C. L. Arora, S.Chand & Co., 2020.
- 2. Practical physics by R. K. Shukla and A. Srivastava, New Age Int. (P) Ltd., 2006.

PaperCo	de: ES-	158	Pap	Paper: Engineering Graphics-II							L	Р	С
											-	2	1
Marking	Marking Scheme:												
1. Teac	1. Teachers Continuous Evaluation: 40 marks												
2. Term													
Course Objectives:													
1:	The students will learn sectioning of solid figures.												
2:	The students will understand 3D projections. They will have understanding of isometric												
	and oblique projections.												
3:	The students will have understanding of perspective projections,												
4:	The students will learn computer aided drafting.												
Course (Course Outcomes (CO):												
CO1	Ability	to drav	v secti	onal dia	grams o	of solids							
CO2	Ability	to drav	v 3S pr	ojectio	ns (isom	etric ar	nd obliq	ue).					
CO3	Ability	to drav	v persp	ective	projecti	ions.	-						
CO4	Under	stand ar	nd use	a CAD t	ool (Aut	oCAD).							
Course () Mapp	ing (sca	le 1: lo	w, 2: N	Nediu	m, 3	3: High
CO/PO	PO01	PO02	PO0	PO04	PO05	PO06	PO07	PO08	PO09	PO1	PO1	1	PO12
			3							0			
CO1	3	3	3	3	2	-	-	-	1	2	1		2
CO2	3	3	3	3	2	-	-	-	1	2	1		2
CO3	3	3	3	3	2	-	-	-	1	2	1		2
CO4	3	3	3	3	2	-	-	-	1	2	1		2

Section of Solids: Definition of Sectioning and its purpose, Procedure of Sectioning, Illustration through examples, Types of sectional planes-application to few examples.

Unit II

Isometric Projection: Classification of pictorial views, Basic Principle of Isometric projection, Difference between isometric projection and drawing, Isometric projection of solids such as cube, prism, pyramid and cylinder.

Oblique Projection: Principle of oblique projection, difference between oblique projection and isometric projection, receding lines and receding angles, oblique drawing of circle, cylinder, prism and pyramid.

Unit III

Perspective Projection: Principle of perspective projection, definitions of perspective elements, visual ray method, vanishing point method. Conversion of 3D to 2D figures.

Unit IV

Introduction to CADD: Interfacing and Introduction to CAD Software, Coordinate System, 2D drafting: lines, circles, arc, polygon, etc., Dimensioning, 2-D Modelling, Use of CAD Software for engineering drawing practices.

Note: The sheets to be created shall be notified by the concerned teacher.

Textbooks:

1. Engineering Drawing by N.D. Bhatt, 53rd Ed., Charotar Publishing House Pvt. Ltd., Gujarat, 2017.

- 1. Engineering Drawing by P.S. Gill, S.K Kataria & Sons, New Delhi, 2013.
- 2. Technical Drawing with Engineering Graphics by Frederick E. Giesecke, Shawna Lockhart, Marla Goodman, and Cindy M. Johnson, 15th Ed., Prentice Hall, USA, 2016
- 3. Engineering Drawing by M.B. Shah and B.C. Rana, 3rd Ed., Pearson Education, New Delhi, 2009.
- 4. AutoCAD 2017 for Engineers & Designers by Sham Tickoo,, Dreamtech Press 2016.

PaperC	Code: ES-164 Paper: Workshop Technology								L	P	С		
											-	4	2
Marking	Marking Scheme:												
1. Tea	1. Teachers Continuous Evaluation: 40 marks												
2. Ter													
	Instructions:												
1. The	1. The practical list shall be notified by the teacher in the first week of the class commencement												
und	under intimation to the office of the school in which the paper is being offered.												
Course	Course Objectives:												
1:	The students will learn basics of safety precautions to be taken in lab. / workshop												
2:	The students will have an overview of different machines used in workshop and the												
	operations performed on these machines.												
3:	The students will have understanding of various welding processes.												
4:	The students will have understanding of sheet metals hop and fitting shop												
Course	Outcon	nes (CO):										
CO1	Ability	to safe	ly work	in a Lab	./works	shop.							
CO2	Ability to use machines (lathe, mill, shaper, planer, grinder, drill).												
CO3	Ability	to welc	l.										
CO4													
Course	Course Outcomes (CO) to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: High)												
CO/PO	PO01	PO02	PO03	P004	PO05	P006	P007	PO08	PO09	PO10	PO1	1 P	2012
CO1	2	1	2	2	3	3	-	-	-	-	-		2
CO2	2	1	2	2	3	1	-	-	-	-	-		2
CO3	2	1	2	2	3	1	-	-	-	-	-		2
CO4	2	1	2	2	3	1	-	-	-	-	-		2

Safety, precautions and maintenance: Safety in shop, safety devices, safety and precautions - moving machine and equipment parts, electrical parts and connections, fire, various driving systems like chain, belt and ropes, electrical accidents, an overview of predictive, preventive and scheduled maintenance, standard guidelines to be followed in shop.

Unit II

Introduction to machine shop: Introduction to Lathe, Milling, shaper, Planer, grinder, drilling and overview of operations performed on these machines by making some jobs.

Unit III

Introduction to welding shop: Welding, types of welding, tools and applications, gas welding and arc welding, edge preparation, various joints formation by gas welding and electric arc welding.

Unit IV

Introduction to sheet metal shop: Sheet metal tools and operations, formation of a box using sheet. Introduction to fitting shop: Introduction to fitting, tools and applications, some jobs in fitting shop.

Textbooks:

1. Workshop Technology Vol. 1 and Vol. 2, Hajra Choudhary and Roy, Media Promoters and Publishers, 2018.

- A course in Workshop Technology Vol. 1 and Vol. 2, B. S. Raghuvanshi, Dhanpat Rai and Compnay, 2015.
- 2. Workshop Technology (Manufacturing Processes), Khurmi and Gupta, S. Chand Publication, 2010.