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Preface

Aims and Scope

This book is both an introductory textbook and a research monograph on modeling
the statistical structure of natural images. In very simple terms, “natural images” are
photographs of the typical environment where we live. In this book, their statistical
structure is described using a number of statistical models whose parameters are
estimated from image samples.

Our main motivation for exploring natural image statistics is computational mod-
eling of biological visual systems. A theoretical framework which is gaining more
and more support considers the properties of the visual system to be reflections
of the statistical structure of natural images because of evolutionary adaptation
processes. Another motivation for natural image statistics research is in computer
science and engineering, where it helps in development of better image processing
and computer vision methods.

While research on natural image statistics has been growing rapidly since the
mid-1990s, no attempt has been made to cover the field in a single book, providing
a unified view of the different models and approaches. This book attempts to do just
that. Furthermore, our aim is to provide an accessible introduction to the field for
students in related disciplines.

However, not all aspects of such a large field of study can be completely covered
in a single book, so we have had to make some choices. Basically, we concentrate
on the neural modeling approaches at the expense of engineering applications. Fur-
thermore, those topics on which the authors themselves have been doing research
are inevitably given more emphasis.

Targeted Audience and Prerequisites

The book is targeted for advanced undergraduate students, graduate students and
researchers in vision science, computational neuroscience, computer vision, and
image processing. It can also be read as an introduction to the area by people
with a background in mathematical disciplines (mathematics, statistics, theoretical
physics).

Due to the multi-disciplinary nature of the subject, the book has been written so
as to be accessible to an audience coming from very different backgrounds such as
psychology, computer science, electrical engineering, neurobiology, mathematics,
statistics, and physics. Therefore, we have attempted to reduce the prerequisites to
a minimum. The main thing needed are basic mathematical skills as taught in intro-
ductory university-level mathematics courses. In particular, the reader is assumed to
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know the basics of

• univariate calculus (e.g. one-dimensional derivatives and integrals)
• linear algebra (e.g. inverse matrix, orthogonality)
• probability and statistics (e.g. expectation, probability density function, variance,

covariance)

To help readers with a modest mathematical background, a crash course on linear
algebra is offered at Chap. 19, and Chap. 4 reviews probability theory and statistics
on a rather elementary level.

No previous knowledge of neuroscience or vision science is necessary for reading
this book. All the necessary background on the visual system is given in Chap. 3,
and an introduction to some basic image processing methods is given in Chap. 2.

Structure of the Book and Its Use as a Textbook

This book is a hybrid of a monograph and an advanced graduate textbook. It starts
with background material which is rather classic, whereas the latter parts of the book
consider very recent work with many open problems. The material in the middle is
quite recent but relatively established.

The book is divided into the following parts:

Introduction which explains the basic setting and motivation.
Part I which consists of background chapters. This is mainly classic material found

in many textbooks in statistics, neuroscience, and signal processing. However, here
it has been carefully selected to ensure that the reader has the right background for
the main part of the book.

Part II starts the main topic, considering the most basic models for natural image
statistics. These models are based on the statistics of linear features, i.e. linear
combinations of image pixel values.

Part III considers more sophisticated models of natural image statistics, in which
dependencies (interactions) of linear features are considered, which is related to
computing non-linear features.

Part IV applies the models already introduced to new kinds of data: color images,
stereo images, and image sequences (video). Some new models on the temporal
structure of sequences are also introduced.

Part V consists of a concluding chapter. It provides a short overview of the book
and discusses open questions as well as alternative approaches to image modeling.

Part VI consists of mathematical chapters which are provided as a kind of an ap-
pendix. Chapter 18 is a rather independent chapter on optimization theory. Chap-
ter 19 is background material which the reader is actually supposed to know; it is
provided here as a reminder. Chapters 20 and 21 provide sophisticated supplemen-
tary mathematical material for readers with such interests.

Dependencies of the parts are rather simple. When the book is used as a textbook,
all readers should start by reading the first seven chapters in the order they are
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given (i.e. Introduction, Part I, and Part II except for the last chapter), unless the
reader is already familiar with some of the material. After that, it is possible to jump
to later chapters in almost any order, except for the following:

• Chapter 10 requires Chap. 9, and Chap. 11 requires Chaps. 9 and 10.
• Chapter 14 requires Sect. 13.1.

Some of the sections are marked with an asterisk *, which means that they are more
sophisticated material which can be skipped without interrupting the flow of ideas.

An introductory course on natural image statistics can be simply constructed by
going through the first n chapters of the book, where n would typically be between
7 and 17, depending on the amount of time available.

Referencing and Exercises

To keep the text readable and suitable for a textbook, the first 11 chapters do not
include references in the main text. References are given in a separate section at
the end of the chapter. In the latter chapters, the nature of the material requires
that references are given in the text, so the style changes to a more scholarly one.
Likewise, mathematical exercises and computer assignments are given for the first
10 chapters.

Code for Reproducing Experiments

For pedagogical purposes as well as to ensure the reproducibility of the experiments,
the Matlab™ code for producing most of the experiments in the first 11 chapters,
and some in Chap. 13, is distributed on the Internet at

www.naturalimagestatistics.net

This web site will also include other related material.
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Chapter 1
Introduction

1.1 What this Book Is All About

The purpose of this book is to present a general theory of early vision and image
processing. The theory is normative, i.e. it says what is the optimal way of doing
these things. It is based on construction of statistical models of images combined
with Bayesian inference. Bayesian inference shows how we can use prior infor-
mation on the structure of typical images to greatly improve image analysis, and
statistical models are used for learning and storing that prior information.

The theory predicts what kind of features should be computed from the incoming
visual stimuli in the visual cortex. The predictions on the primary visual cortex
have been largely confirmed by experiments in visual neuroscience. The theory also
predicts something about what should happen in higher areas such as V2, which
gives new hints for people doing neuroscientific experiments.

Also, the theory can be applied on engineering problems to develop more ef-
ficient methods for de-noising, synthesis, reconstruction, compression, and other
tasks of image analysis, although we do not go into the details of such applications
in this book.

The statistical models presented in this book are quite different from classic sta-
tistical models. In fact, they are so sophisticated that many of them have been devel-
oped only during the last 10 years, so they are interesting in their own right. The key
point in these models is the non-Gaussianity (non-normality) inherent in image data.
The basic model presented is independent component analysis, but that is merely a
starting point for more sophisticated models.

A preview of what kind of properties these models learn is in Fig. 1.1. The
figure shows a number of linear features learned from natural images by a statis-
tical model. Chapters 5–7 will already consider models which learn such linear
features. In addition to the features themselves, the results in Fig. 1.1 show an-
other visually striking phenomenon, which is their spatial arrangement, or topog-
raphy. The results in the figure actually come from a model called Topographic
ICA, which is explained in Chap. 11. The spatial arrangement is also related to
computation of non-linear, invariant features, which is the topic of Chap. 10. Thus,
the result in this figure combines several of the results we develop in this book.
All of these properties are similar to those observed in the visual system of the
brain.

In the rest of this Introduction, we present the basic problem of image analysis,
and an overview of the various ideas discussed in more detail in this book.

A. Hyvärinen, J. Hurri, P.O. Hoyer, Natural Image Statistics,
Computational Imaging and Vision 39,
© Springer-Verlag London Limited 2009
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2 1 Introduction

Fig. 1.1 An example of the results we will obtain in this book. Each small square in the image
is one image feature, grey-scale coded to that middle—grey means zero, white positive, and black
negative values. The model has learned local, oriented features which are similar to those computed
by cells in the brain. Furthermore, the model uses the statistical dependencies of the features to
arrange them on a 2D surface. Such a spatial arrangement can also be observed in the visual cortex.
The arrangement is also related to computation of non-linear, invariant features

1.2 What Is Vision?

We can define vision as the process of acquiring knowledge about environmental ob-
jects and events by extracting information from the light the objects emit or reflect.
The first thing we will need to consider is in what form this information initially is
available.

The light emitted and reflected by objects has to be collected and then measured
before any information can be extracted from it. Both biological and artificial sys-
tems typically perform the first step by projecting light to form a two-dimensional
image. Although there are, of course, countless differences between the eye and
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any camera, the image formation process is essentially the same. From the image,
the intensity of the light is then measured in a large number of spatial locations,
or sampled. In the human eye, this is performed by the photo-receptors, whereas
artificial systems employ a variety of technologies. However, all systems share the
fundamental idea of converting the light first into a two-dimensional image and then
into some kind of signal that represents the intensity of the light at each point in the
image.

Although in general the projected images have both temporal and chromatic
dimensions, we will be mostly concerned with static, monochrome (grey-scale)
images. Such an image can be defined as a scalar function over two dimensions,
I (x, y), giving the intensity (luminance) value at every location (x, y) in the image.
Although in the general case both quantities (the position (x, y) and the intensity
I (x, y)) take continuous values, we will focus on the typical case where the im-
age has been sampled at discrete points in space. This means that in our discussion
x and y take only integer values, and the image can be fully described by an array
containing the intensity values at each sample point.1 In digital systems, the sam-
pling is typically rectangular, i.e. the points where the intensities are sampled form
a rectangular array. Although the spatial sampling performed by biological systems
is not rectangular or even regular, the effects of the sampling process are not very
different.

It is from this kind of image data that vision extracts information. Information
about the physical environment is contained in such images, but only implicitly.
The visual system must somehow transform this implicit information into an explicit
form, for example by recognizing the identities of objects in the environment. This is
not a simple problem, as the demonstration of the next section attempts to illustrate.

1.3 The Magic of Your Visual System

Vision is an exceptionally difficult computational task. Although this is clear to
vision scientists, it might come as a surprise to others. The reason for this is that we
are equipped with a truly amazing visual system that performs the task effortlessly
and quite reliably in our daily environment. We are simply not aware of the whole
computational process going on in our brains, rather we experience only the result
of that computation.

To illustrate the difficulties in vision, Fig. 1.2 displays an image in its numerical
format (as described in the previous section), where light intensities have been mea-
sured and are shown as a function of spatial location. In other words, if you were to
color each square with the shade of grey corresponding to the contained number you
would see the image in the form we are used to, and it would be easily interpretable.
Without looking at the solution just yet, take a minute and try to decipher what the
image portrays. You will probably find this extremely difficult.

1When images are stored on computers, the entries in the arrays also have to be discretized; this is,
however, of less importance in the discussion that follows, and we will assume that this has been
done at a high enough resolution so that this step can be ignored.
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Fig. 1.2 An image displayed in numerical format. The shade of grey of each square has been
replaced by the corresponding numerical intensity value. What does this mystery image depict?
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Fig. 1.3 The image of Fig. 1.2. It is immediately clear that the image shows a male face. Many
observers will probably even recognize the specific individual (note that it might help to view the
image from relatively far away)

Now, have a look at the solution in Fig. 1.3. It is immediately clear what the
image represents! Our visual system performs the task of recognizing the image
completely effortlessly. Even though the image at the level of our photo-receptors is
represented essentially in the format of Fig. 1.2, our visual system somehow man-
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ages to make sense of all this data and figure out the real-world object that caused
the image.

In the discussion thus far, we have made a number of drastic simplifications.
Among other things, the human retina contains photo-receptors with varying sensi-
tivity to the different wavelengths of light, and we typically view the world through
two eyes, not one. Finally, perhaps the most important difference is that we normally
perceive dynamic images rather than static ones. Nonetheless, these differences do
not change the fact that the optical information is, at the level of photo-receptors,
represented in a format analogous to that we showed in Fig. 1.2, and that the task of
the visual system is to understand all this data.

Most people would agree that this task initially seems amazingly hard. But after a
moment of thought it might seem reasonable to think that perhaps the problem is not
so difficult after all? Image intensity edges can be detected by finding oriented seg-
ments where small numbers border with large numbers. The detection of such fea-
tures can be computationally formalized and straightforwardly implemented. Per-
haps such oriented segments can be grouped together and subsequently object form
be analyzed? Indeed, such computations can be done, and they form the basis of
many computer vision algorithms. However, although current computer vision sys-
tems work fairly well on synthetic images or on images from highly restricted en-
vironments, they still perform quite poorly on images from an unrestricted, natural
environment. In fact, perhaps one of the main findings of computer vision research
to date has been that the analysis of real-world images is extremely difficult! Even
such a basic task as identifying the contours of an object is complicated because
often there is no clear image contour along some part of its physical contour, as
illustrated in Fig. 1.4.

In light of the difficulties computer vision research has run into, the computa-
tional accomplishment of our own visual system seems all the more amazing. We
perceive our environment quite accurately almost all the time, and only relatively
rarely make perceptual mistakes. Quite clearly, biology has solved the task of every-

Fig. 1.4 This image of a cup demonstrates that physical contours and image contours are often
very different. The physical edge of the cup near the lower-left corner of the image yields prac-
tically no image contour (as shown by the magnification). On the other hand, the shadow casts a
clear image contour where there in fact is no physical edge
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day vision in a way that is completely superior to any present-day machine vision
system.

This being the case, it is natural that computer vision scientists have tried to draw
inspiration from biology. Many systems contain image processing steps that mimic
the processing that is known to occur in the early parts of the biological visual
system. However, beyond the very early stages, little is actually known about the
representations used in the brain. Thus, there is actually not much to guide computer
vision research at the present.

On the other hand, it is quite clear that good computational theories of vision
would be useful in guiding research on biological vision, by allowing hypothesis-
driven experiments. So, it seems that there is a dilemma: computational theory is
needed to guide experimental research, and the results of experiments are needed
to guide theoretical investigations. The solution, as we see it, is to seek synergy by
multi-disciplinary research into the computational basis of vision.

1.4 Importance of Prior Information

1.4.1 Ecological Adaptation Provides Prior Information

A very promising approach for solving the difficult problems in vision is based on
adaptation to the statistics of the input. An adaptive representation is one that does
not attempt to represent all possible kinds of data; instead, the representation is
adapted to a particular kind of data. The advantage is that then the representation
can concentrate on those aspects of the data that are useful for further analysis. This
is in stark contrast to classic representations (e.g. Fourier analysis) that are fixed
based on some general theoretical criteria, and completely ignore what kind of data
is being analyzed.

Thus, the visual system is not viewed as a general signal processing machine or
a general problem-solving system. Instead, it is acknowledged that it has evolved to
solve some very particular problems that form a small subset of all possible prob-
lems. For example, the biological visual system needs to recognize faces under dif-
ferent lighting environments, while the people are speaking, possibly with differ-
ent emotional expressions superimposed; this is definitely an extremely demanding
problem. But on the other hand, the visual system does not need to recognize a face
when it is given in an unconventional format, as in Fig. 1.2.

What distinguished these two representations (numbers vs. a photographic im-
age) from each other is that the latter is ecologically valid, i.e. during the evolution
of the human species, our ancestors have encountered this problem many times,
and it has been important for their survival. The case of an array of numbers does
definitely not have any of these two characteristics. Most people would label it as
“artificial”.

In vision research, more and more emphasis is being laid on the importance of
the enormous amount of prior information that the brain has about the structure of
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the world. A formalization of these concepts has recently been pursued under the
heading “Bayesian perception”, although the principle goes back to the “maximum
likelihood principle” by Helmholtz in the 19th century. Bayesian inference is the
natural theory to use when inexact and incomplete information is combined with
prior information. Such prior information should presumably be reflected in the
whole visual system.

Similar ideas are becoming dominant in computer vision as well. Computer vi-
sion systems have been used on many different kinds of images: “ordinary” (i.e.
optical) images, satellite images, magnetic resonance images, to name a few. Is it
realistic to assume that the same kind of processing would adequately represent all
these different kinds of data? Could better results be obtained if one uses methods
(e.g. features) that are specific to a given application?

1.4.2 Generative Models and Latent Quantities

The traditional computational approach to vision focuses on how, from the image
data I , one can compute quantities of interest called si , which we group together
in a vector s. These quantities might be, for instance, scalar variables such as the
distances to objects, or binary parameters such as signifying if an object belongs to
some given categories. In other words, the emphasis is on a function f that trans-
forms images into world or object information, as in s = f(I ). This operation might
be called image analysis.

Several researchers have pointed out that the opposite operation, image synthesis,
often is simpler. That is, the mapping g that generates the image given the state of
the world

I = g(s), (1.1)

is considerably easier to work with, and more intuitive, than the mapping f. This
operation is often called synthesis. Moreover, the framework based on a fixed ana-
lyzing function f does not give much room for using prior information. Perhaps, by
intelligently choosing the function f, some prior information on the data could be
incorporated.

Generative models use (1.1) as a starting point. They attempt to explain observed
data by some underlying hidden (latent) causes or factors si about which we have
only indirect information.

The key point is that the models incorporate a set of prior probabilities for the
latent variables si . That is, it is specified how often different combinations of latent
variables occur together. For example, this probability distribution could describe,
in the case of a cup, the typical shape of a cup. Thus, this probability distribution
for the latent variables is what formalizes the prior information on the structure of
the world.

This framework is sufficiently flexible to be able to accommodate many different
kinds of prior information. It all depends on how we defined the latent variables,
and the synthesis function g.
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But how does knowing g help us, one may ask. The answer is that one may
then search for the parameters ŝ that produce an image Î = g(ŝ) which, as well as
possible, matches the observed image I . In other words, a combination of latent
variables that is the “most likely”. Under reasonable assumptions, this might lead to
a good approximation of the correct parameters s.

To make all this concrete, consider again the image of the cup in Fig. 1.4. The
traditional approach of vision would propose that an early stage extracts local edge
information in the image, after which some sort of grouping of these edge pieces
would be done. Finally, the evoked edge pattern would be compared with patterns
in memory, and recognized as a cup. Meanwhile, analysis of other scene variables,
such as lighting direction or scene depth, would proceed in parallel. The analysis-
by-synthesis framework, on the other hand, would suggest that our visual system
has an unconscious internal model for image generation. Estimates of object iden-
tity, lighting direction, and scene depth are all adjusted until a satisfactory match
between the observed image and the internally generated image is achieved.

1.4.3 Projection onto the Retina Loses Information

One very important reason why it is natural to formulate vision as inference of
latent quantities is that the world is three dimensional whereas the retina is only
two-dimensional. Thus, the whole 3D structure of the world is seemingly lost in the
eye! Our visual system is so good in reconstructing a three-dimensional perception
of the world that we hardly realize that a complicated reconstruction procedure is
necessary. Information about the depth of objects and the space between is only
implicit in the retinal image.

We do benefit from having two eyes which give slightly different views of the
outside world. This helps a bit in solving the problem of depth perception, but it
is only part of the story. Even if you close one eye, you can still understand which
object is in front of another. Television is also based on the principle that we can
quite well reconstruct the 3D structure of the world from a 2D image, especially if
the camera (or the observer) is moving.

1.4.4 Bayesian Inference and Priors

The fundamental formalism for modeling how prior information can be used in the
visual system is based on what is called Bayesian inference. Bayesian inference
refers to statistically estimating the hidden variables s given an observed image I .
In most models, it is impossible (even in theory) to know the precise values of s,
so one must be content with a probability density p(s|I ). This is the probability of
the latent variables given the observed image. By Bayes’ rule, which is explained in



10 1 Introduction

Sect. 4.7, this can be calculated as

p(s|I ) = p(I |s)p(s)
p(I )

. (1.2)

To obtain an estimate of the hidden variables, many models simply find the particu-
lar s which maximize this density,

ŝ = arg max
s

p(s|I ). (1.3)

Ecological adaptation is now possible by learning the prior probability distri-
bution from a large number of natural images. Learning refers, in general, to the
process of constructing a representation of the regularities of data. The dominant
theoretical approach to learning in neuroscience and computer science is the prob-
abilistic approach, in which learning is accomplished by statistical estimation: the
data is described by a statistical model that contains a number of parameters, and
learning consists of finding “good” values for those parameters, based on the input
data. In statistical terminology, the input data is a sample that contains observations.

The advantage of formulating adaptation in terms of statistical estimation is very
much due to the existence of an extensive theory of statistical theory and inference.
Once the statistical model is formulated, the theory of statistical estimation imme-
diately offers a number of tools to estimate the parameters. And after estimation of
the parameters, the model can be used in inference according to the Bayesian theory,
which again offers a number of well-studied tools that can be readily used.

1.5 Natural Images

1.5.1 The Image Space

How can we apply the concept of prior information about the environment in early
vision? “Early” vision refers to the initial parts of visual processing, which are usu-
ally formalized as the computation of features, i.e. some relatively simple functions
of the image (features will be defined in Sect. 1.8 below). Early vision does not yet
accomplish such tasks as object recognition. In this book, we consider early vision
only.

The central concept we need here is the image space. Earlier, we described an
image representation in which each image is represented as a numerical array con-
taining the intensity values of its picture elements, or pixels. To make the following
discussion concrete, say that we are dealing with images of a fixed size of 256-by-
256 pixels. This gives a total of 65 536 = 2562 pixels in an image. Each image can
then be considered as a point in a 65 536-dimensional space, each axis of which
specifies the intensity value of one pixel. Conversely, each point in the space speci-
fies one particular image. This space is illustrated in Fig. 1.5.
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Fig. 1.5 The space
representation of images.
Images are mapped to points
in the space in a one-to-one
fashion. Each axis of the
image space corresponds to
the brightness value of one
specific pixel in the image

Next, consider taking an enormous set of images, and plotting each as the corre-
sponding point in our image space. (Of course, plotting a 65 536-dimensional space
is not very easy to do on a two-dimensional page, so we will have to be content with
making a thought experiment.) An important question is: how would the points be
distributed in this space? In other words, what is the probability density function of
our images like? The answer, of course, depends on the set of images chosen. Astro-
nomical images have very different properties from holiday snapshots, for example,
and the two sets would yield very different clouds of points in our space.

It is this probability density function of the image set in question that we will
model in this book.

1.5.2 Definition of Natural Images

In this book, we will be specifically concerned with a particular set of images called
natural images or images of natural scenes. Some images from our data set are
shown in Fig. 1.6. This set is supposed to resemble the natural input of the visual
system we are investigating. So, what is meant by “natural input”? This is actually
not a trivial question at all. The underlying assumption in this line of research is
that biological visual systems are, through a complex combination of the effects
of evolution and development, adapted to process the kind of sensory input that
they receive. Natural images are thus some set that we believe has similar statistical
structure to that which the visual system is adapted to.

This poses an obvious problem, at least in the case of human vision. The human
visual system has evolved in an environment that is in many ways different from
the one most of us experience daily today. It is probably quite safe to say that im-
ages of skyscrapers, cars, and other modern entities have not affected our genetic
makeup to any significant degree. On the other hand, few people today experience
nature as omnipresent as it was tens of thousands of years ago. Thus, the input on
the time-scale of evolution has been somewhat different from that on the time-scale
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Fig. 1.6 Three representative examples from our set of natural images

Fig. 1.7 Three images drawn randomly from a uniform distribution in the image space. Each pixel
is drawn independently from a uniform distribution from black to white

of the individual. Should we then choose images of nature or images from a modern,
urban environment to model the “natural input” of our visual system? Most work
to date has focused on the former, and this is also our choice in this book. Fortu-
nately, this choice of image set does not have a drastic influence on the results of the
analysis: Most image sets collected for the purpose of analyzing natural images give
quite similar results in statistical modeling, and these results are usually completely
different from what you would get using most artificial, randomly generated data
sets.

Returning to our original question, how would natural images be distributed in
the image space? The important thing to note is that they would not be anything like
uniformly distributed in this space. It is easy for us to draw images from a uniform
distribution, and they do not look anything like our natural images! Figure 1.7 shows
three images randomly drawn from a uniform distribution over the image space. As
there is no question that we can easily distinguish these images from natural images
(Fig. 1.6), it follows that these are drawn from separate, very different, distributions.
In fact, the distribution of natural images is highly non-uniform. This is the same
as saying that natural images contain a lot of redundancy, an information-theoretic
term that we turn to now.
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1.6 Redundancy and Information

1.6.1 Information Theory and Image Coding

At this point, we make a short excursion to a subject that may seem, at first sight, to
be outside of the scope of statistical modeling: information theory.

The development of the theory of information by Claude Shannon and others is
one of the milestones of science. Shannon considered the transmission of a message
across a communication channel and developed a mathematical theory that quanti-
fied the variables involved (these will be presented in Chap. 8). Because of its gener-
ality the theory has found, and continues to find, a growing number of applications
in a variety of disciplines.

One of the key ideas in information theory is that the amount of memory needed
to store an image is often less than what is needed in a trivial representation (code),
where each pixel is stored using a fixed number of bits, such as 8 or 24. This is
because some of the memory capacity is essentially consumed by redundant struc-
ture in the image. The more rigid the structure, the less bits is really needed to code
the image. Thus, the contents of any image, indeed any signal, can essentially be
divided into information and redundancy. This is depicted in Fig. 1.8.

To make this more concrete, consider the binary image of Fig. 1.9. The image
contains a total of 32 × 22 = 704 pixels. Thus, the trivial representation (where the
color of each pixel is indicated by a ‘1’ or a ‘0’) for this image requires 704 bits.
But it is not difficult to imagine that one could compress it into a much smaller
number of bits. For example, one could invent a representation that assumes a white
background on which black squares (with given positions and sizes) are printed. In
such a representation, our image could be coded by simply specifying the top-left
corners of the squares ((5,5) and (19,11)) and their sizes (8 and 6). This could
certainly be coded in less than 704 bits.2

Fig. 1.8 Redundancy in a signal. Some of the memory consumed by the storage of a typical image
is normally unnecessary because of redundancy (structure) in the image. If the signal is optimally
compressed, stripping it of all redundancy, it can be stored using much less bits

2The specification of each square requires three numbers which each could be coded in 5 bits,
giving a total of 30 bits for two squares. Additionally, a few bits might be needed to indicate how
many squares are coded, assuming that we do not know a priori that there are exactly two squares.
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Fig. 1.9 A binary image
containing a lot of structure.
Images like this can be coded
efficiently; see main text for
discussion

The important thing to understand is that this kind of representation is good for
certain kinds of images (those with a small number of black squares) but not others
(that do not have this structure, and thus require a huge amount of squares to be
completely represented). Hence, if we are dealing mostly with images of the former
kind, and we are using the standard binary coding format, then our representation is
highly redundant. By compressing it using our black-squares-on-white representa-
tion, we achieve an efficient representation. Although natural images are much more
variable than this hypothetical class of images, it is nonetheless true that they also
show structure and can be compressed.

Attneave was the first to explicitly point out the redundancy in images in 1954.
The above argument is essentially the same as originally given by Attneave, al-
though he considered a ‘guessing game’ in which subjects guessed the color of
pixels in the image. The fact that subjects perform much better than chance proves
that the image is predictable, and information theory ensures that predictability is
essentially the same thing as redundancy.

Making use of this redundancy of images is essential for vision. But the same
statistical structure is, in fact, also crucial for many other tasks involving images.
Engineers who seek to find compact digital image formats for storing or transmitting
images also need to understand this structure. Image synthesis and noise reduction
are other tasks that optimally would make use of this structure. Thus, the analysis
of the statistical properties of images has widespread applications indeed, although
perhaps understanding vision is the most profound.

1.6.2 Redundancy Reduction and Neural Coding

Following its conception, it did not take long before psychologists and biologists
understood that information theory was directly relevant to the tasks of biological
systems. Indeed, the sensory input is a signal that carries information about the
outside world. This information is communicated by sensory neurons by means of
action potentials.
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In Attneave’s original article describing the redundancy inherent in images, At-
tneave suggested that the visual system recodes the inputs to reduce redundancy,
providing an ‘economical description’ of the sensory signals. He likened the task
of the visual system to that of an engineer who seeks to represent pictures with
the smallest possible number of bits. It is easy to see the intuitive appeal of this
idea. Consider again the image of Fig. 1.9. Recoding images of this kind using our
black-squares-on-white representation, we reduce redundancy and obtain an effi-
cient representation. However, at the same time, we have discovered the structure
in the signal: we now have the concept of ‘squares’ which did not exist in the origi-
nal representation. More generally: to reduce redundancy one must first identify it.
Thus, redundancy reduction requires discovering structure.

Although he was arguably the first to spell it out explicitly, Attneave was certainly
not the only one to have this idea. Around the same time, Barlow, in 1961, provided
similar arguments from a more biological/physiological viewpoint. Barlow has also
pointed out that the idea, in the form of ‘economy of thought’, is clearly expressed
already in the writings of Mach and Pearson in the 19th century. Nevertheless, with
the writings of Attneave and Barlow, the redundancy reduction (or efficient coding)
hypothesis was born.

1.7 Statistical Modeling of the Visual System

1.7.1 Connecting Information Theory and Bayesian Inference

Earlier, we emphasized the importance of prior information and Bayesian modeling,
but in the preceding section we talked about information theory and coding. This
may seem a bit confusing at first sight, but the reason is that the two approaches are
very closely related.

Information theory wants to find an economical representation of the data for
efficient compression, while Bayesian modeling uses prior information on the data
for such purposes as de-noising and recovery of the 3D structure. To accomplish
their goals, both of these methods fundamentally need the same thing: a good model
of the statistical distribution of the data. That is the basic motivation for this book.
It leads to a new approach to normative visual modeling as will be discussed next.

1.7.2 Normative vs. Descriptive Modeling of Visual System

In visual neuroscience, the classic theories of receptive field structure3 can be called
descriptive in the sense that they give us mathematical tools (such as Fourier and

3I.e., the way visual neurons respond to stimulation, see Sect. 3.3.
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Gabor analysis, see Chap. 2) that allow us to describe parts of the visual system in
terms of a small number of parameters.

However, the question we really want to answer is: Why is the visual system
built the way neuroscientific measurements show? The basic approach to answer
such a question in neuroscience is to assume that the system in question has been
optimized by evolution to perform a certain function. (This does not mean that the
system would be completely determined genetically, because evolution can just have
designed mechanisms for self-organization and learning that enable the system to
find the optimal form.)

Models based on the assumption of optimality are often called normative because
they tell how the system should behave. Of course, there is no justification to assume
that evolution has optimized all parts of the organism; most of them may be far from
the optimum, and such an optimum may not even be a well-defined concept.

However, in certain cases, it can be demonstrated that the system is not far from
optimal in certain respects. This happens to be the case with the early cortical visual
processing system (in particular, the primary visual cortex, see Chap. 3 for a brief
description of the visual system). That brain area seems to function largely based
on principles of statistical modeling, as will be seen in this book. Thus, there is
convincing proof that parts of the system are optimal for statistical inference, and it
is this proof that justifies these normative models.

Previous models of the early visual system did not provide satisfactory normative
models, they only provided practical descriptive models. Although there were some
attempts to develop a normative theory, the predictions were too vague.4 The statis-
tical approach is the first one to give exact quantitative models of visual processing,
and these have been found to provide a good match with neuroscientific measure-
ments.

1.7.3 Toward Predictive Theoretical Neuroscience

Let us mention one more important application of this framework: a mode of mod-
eling where we are able to predict the properties of visual processing beyond the
primary visual cortex. Then we obtain quantitative predictions on what kinds of vi-
sual processing should take place in areas whose function is not well understood at
this point.

Almost all the experimental results in early visual processing have concerned
the primary visual cortex, or even earlier areas such as the retina. Likewise, most
research in this new framework of modeling natural image statistics has been on
very low-level features. However, the methodology of statistical modeling can most
probably be extended to many other areas.

4The main theory attempting to do this is the joint space–frequency localization theory leading to
Gabor models; see Sect. 2.4.2. However, this does not provide predictions on how the parameters
in Gabor models should be chosen, and what is more serious, it is not really clear why the features
should be jointly localized in space and frequency in the first place.
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Formulating statistical generative models holds great promise as a framework
that will give new testable theories for visual neuroscience, for the following rea-
sons:

• This framework is highly constructive. From just a couple of simple theoretical
specifications, natural images lead to the emergence of complex phenomena, e.g.
the forms of the receptive fields of simple cells and their spatial organization in
Fig. 1.1.

• This framework is, therefore, less subjective than many other modeling ap-
proaches. The rigorous theory of statistical estimation makes it rather difficult
to insert the theorist’s subjective expectations in the model and, therefore, the
results are strongly determined by the data, i.e. the objective reality. Thus, the
framework can be called data-driven.

• In fact, in statistical generative models, we often see emergence of new kinds of
feature detectors—sometimes very different from what was expected when the
model was formulated.

So far, experiments in vision research have been based on rather vague, qualita-
tive predictions. (This is even more true for other domains of neuroscience.) How-
ever, using the methodology described here, visual neuroscience has the potential of
starting a new mode of operation where theoretical developments directly give new
quantitative hypotheses to be falsified or confirmed in experimental research. Be-
coming theory-driven would be a real revolution in the way neuroscience is done. In
fact, this same development is what gave much of the driving force to exact natural
sciences in the 19th and 20th centuries.

1.8 Features and Statistical Models of Natural Images

1.8.1 Image Representations and Features

Most statistical models of natural images are based on computing features. The word
“feature” is used rather loosely for any function of the image which is to be used in
further visual processing. The same word can be used for the output (value) of the
function, or the computational operation of which computes that value.

A classic approach to represent an image is a linear weighted sum of features.
Let us denote each feature by Ai(x, y), i = 1, . . . , n. These features are assumed to
be fixed. For each incoming image, the coefficients of each feature in an image are
denoted by si . Algebraically, we can write:

I (x, y) =
n∑

i=1

Ai(x, y)si . (1.4)

If we assume for simplicity that the number of features n equals the number of
pixels, the system in (1.4) can be inverted. This means that for a given image I , we
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can find the coefficients si that fulfill this equation. In fact, they can be computed
linearly as

si =
∑

x,y

Wi(x, y)I (x, y) (1.5)

for certain inverse weights W . The terminology is not very fixed here, so either Ai ,
Wi , or si can be called a “feature”. The Wi can also be called a feature detector.

There are many different sets of features that can be used. Classic choices in-
clude Fourier functions (gratings), wavelets, Gabor functions, features of discrete
cosine transform, and many more. What all these sets have in common is that they
attempt to represent all possible images, not just natural images, in a way which is
“optimal”.

What we want to do is to learn these features so that they are adapted to the
properties of natural images. We do not believe that there could be a single set of
features which would be optimal for all kinds of images. Also, we want to use the
features to build a statistical model of natural images. The basis for both of these is
to consider the statistics of the features si .

1.8.2 Statistics of Features

The most fundamental statistical properties of images are captured by the his-
tograms of the outputs si of linear feature detectors. Let us denote the output of
a single linear feature detector with weights W(x,y) by s:

s =
∑

x,y

W(x, y)I (x, y). (1.6)

Now, the point is to look at the statistics of the output when the input of the detector
consists of a large number of natural image patches. Natural image patches means
small sub-images (windows) taken in random locations in randomly selected natural
images. Thus, the feature s is a random variable, and for each input patch we get
a realization (observation) of that random variable. (This procedure is explained in
more detail in Sect. 4.1.)

Now, we shall illustrate this with real natural image data. Let us consider a couple
of simple feature detectors and the histograms of their output when the input consists
of natural images. In Fig. 1.10, we show three simple feature detectors. The first
is a Dirac detector, which means that all the weights W(x,y) are zero except for
one. The second is a simple one-dimensional grating. The third is a basic Gabor
edge detector. All three feature detectors have been normalized to unit norm, i.e.∑

x,y W(x, y)2 = 1.
The statistics of the output are contained in the histogram of the outputs. In

Fig. 1.11, we show the output histograms for the three different kinds of linear detec-
tors. We can see that the histograms are rather different. In addition to the different
shapes, note that their variances are also quite different from each other.
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Fig. 1.10 Three basic filters. a A Dirac feature, i.e. only one pixel is non-zero. b A sinusoidal
grating. c Gabor edge detector

Fig. 1.11 The histograms of the outputs of the filters in Fig. 1.10 when the input is natural images
with mean pixel value subtracted. a Output of Dirac filter, which is the same as the histogram of
the original pixels themselves. b Output of grating feature detector. c Output of edge detector. Note
that the scales of both axes are different in the three plots

Thus, we see that different feature detectors are characterized by different statis-
tics of their outputs for natural image input. This basic observation is the basis for
the theory in this book. We can learn features from image data by optimizing some
statistical properties of the features si .

1.8.3 From Features to Statistical Models

The Bayesian goal of building a statistical (prior) model of the data, and learning
features based on their output statistics are intimately related. This is because the
most practical way of building a statistical model proceeds by using features and
building a statistical model for them. The point is that the statistical model for fea-
tures can be much simpler than the corresponding model for the pixels, so it makes
sense to first transform the data into a feature space.

In fact, a large class of model builds independent models for each of the features
si in (1.5). Independence is here to be taken both in an intuitive sense, and in the
technical sense of statistical independence. Most models in Part II of this book are
based on this idea. Even if the features are not modeled independently, the inter-
actions (dependencies) of the features are usually much simpler than those of the
original pixels; such models are considered in Part III of this book.
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Thus, we will describe most of the models in this book based on the principle
of learning features. Another reason for using this approach is that the most inter-
esting neurophysiological results concern usually the form of the features obtained.
In fact, it is very difficult to interpret or visualize a probability distribution given
by the model; comparing the distribution with neurophysiological measurements is
next to impossible. It is the features which give a simple and intuitive idea of what
kind of visual processing these normative models dictate, and they allow a direct
comparison with measured properties (receptive fields) of the visual cortex.

1.9 The Statistical–Ecological Approach Recapitulated

This chapter started with describing the difficulty of vision, and ended up proposing
one particular solution, which can be called the statistical–ecological approach. The
two basic ingredients in this approach are

• Ecology: The visual system is only interested in properties that are important in
a real environment. This is related to the concept of situatedness in cognitive
sciences.

• Statistics: Natural images have regularities. The regularities in the ecologically
valid environment could be modeled by different formal frameworks, but statisti-
cal modeling seems to be the one that is most relevant.

Thus, we take the following approach to visual modeling:

1. Different sets of features are good for different kinds of data.
2. The images that our eyes receive have certain statistical properties (regularities).
3. The visual system has learned a model of these statistical properties.
4. The model of the statistical properties enables (close to) optimal statistical infer-

ence.
5. The model of the statistical properties is reflected in the measurable properties

of the visual system (e.g. receptive fields of the neurons).

Most of this book will be concerned on developing different kinds of statistical
models for natural images. These statistical models are based on very few theoretical
assumptions, while they give rise to detailed quantitative predictions. We will show
how these normative models are useful in two respects:

1. They provide predictions that are largely validated by classic neuroscientific
measurements. Thus, they provide concise and theoretically well-justified ex-
planations of well-known measurements. This is the evidence that justifies our
normative modeling.

2. Moreover, the models lead to new predictions of phenomena which have not yet
been observed, thus enabling theory-driven neuroscience. This is the big promise
of natural image statistics modeling.

Another application of these models is in computer science and engineering.
Such applications will not be considered in detail in this book: We hope we will
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have convinced the reader of the wide applicability of such methods. See below for
references on this topic.
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tical models, see Simoncelli (2005).
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Shannon (1948), Attneave (1954), Barlow (1961). See also Barlow (2001a, 2001b)
on a discussion on the history of redundancy reduction.
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Chapter 2
Linear Filters and Frequency Analysis

This chapter reviews some classical image analysis tools: linear filtering, linear
bases, frequency analysis, and space-frequency analysis. Some of the basic ideas
are illustrated in Fig. 2.1. These basic methods need to be understood before the re-
sults of statistical image models can be fully appreciated. The idea of processing of
different frequencies is central in the reviewed tools. Therefore, a great deal of the
following material is devoted to explaining what a frequency-based representation
of images is, and why it is relevant in image analysis.

2.1 Linear Filtering

2.1.1 Definition

Linear filtering is a fundamental image-processing method in which a filter is ap-
plied to an input image to produce an output image.

Figure 2.2 illustrates the way in which the filter and the input image interact
to form an output image: the filter is centered at each image location (x, y), and
the pixel value of the output image O(x,y) is given by the linear correlation of the
filter and the filter-size subarea of the image at coordinate (x, y). (Note that the word
“correlation” is used here in a slightly different way than in the statistical context.)
Letting W(x,y) denote a filter with size (2K + 1) × (2K + 1), I (x, y) the input
image, and O(x,y) the output image, linear filtering is given by

O(x,y) =
K∑

x∗=−K

K∑

y∗=−K

W(x∗, y∗)I (x + x∗, y + y∗). (2.1)

An example of linear filtering is shown in Fig. 2.3.
What (2.1) means is that we “slide” the filter over the whole image and compute

a weighted sum of the image pixel values, separately at each pixel location.
Visual inspection of a filter alone is usually not sufficient to interpret a filtering

operation. This is also the case in the example in Fig. 2.3: what does this filtering
operation actually accomplish? For a complete interpretation of a filtering opera-
tion a different type of mathematical language is needed. This language utilizes a
frequency-based representation of images, as explained in Sect. 2.2 below.

A. Hyvärinen, J. Hurri, P.O. Hoyer, Natural Image Statistics,
Computational Imaging and Vision 39,
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Fig. 2.1 The two classical image analysis tools reviewed in this chapter are linear filtering (b–c)
and space-frequency analysis (d–e). a An input image. b An example output of linear filtering
of a; in this case, the filter has retained medium-scaled vertical structures in the image. A more
complete description of what a linear filtering operation does is provided by the frequency repre-
sentation (Sect. 2.2). c An example of how the outputs of several linear filters can be combined in
image analysis. In this case, the outputs of four filters have been processed non-linearly and added
together to form an edge image: in the image, lighter areas correspond to image locations with
a luminance edge. This kind of a result could be used, for example, as a starting point to locate
objects of a certain shape. d–e An example of space-frequency analysis, where the main idea is to
analyze the magnitude of a frequency d at different locations. The end result e reflects the mag-
nitude of this frequency at different points in the input image a. From the point of view of image
analysis, this result suggests that the upper part of the image is of different texture than the lower
part
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Fig. 2.2 Linear filtering is an operation that involves a filter (denoted here by W(x,y)) an input
image (here I (x, y)) and yields an output image (here O(x,y)). The pixel value of the output
image at location (x, y), that is, O(x,y), is given by the linear correlation of the filter W(x,y)

and a filter-size subarea of the input image I (x, y) centered at coordinate (x, y). a A 3 × 3 linear
filter (template) W(x,y). b An image I (x, y) and a 3 × 3 subarea of the image centered at loca-
tion (x, y). c The output pixel value O(x,y) is obtained by taking the pixel-wise multiplication
of the filter a and image subarea b, and summing this product over both x- and y-dimensions.
Mathematically, O(x,y) =∑x∗

∑
y∗ W(x∗, y∗)I (x + x∗, y + y∗)
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Fig. 2.3 An example of linear filtering. a An input image. b A filter. c An output image

2.1.2 Impulse Response and Convolution

The impulse response H(x,y) is the response of a filter to an impulse

δ(x, y) =
{

1, if x = 0 and y = 0,

0, otherwise,
(2.2)

that is, to an image in which a single pixel is “on” (equal to 1) and the others
are “off” (equal to 0). The impulse response characterizes the system just as well
as the original filter coefficients W(x,y). In fact, in frequency-based analysis of
linear filtering, rather than filtering with a filter, it is customary to work with im-
pulse responses and an operation called convolution. This is because the frequency-
modifying properties of the linear filter can be read out directly from the frequency-
based representation of the impulse response, as will be seen below. (In general, this
holds for any linear shift-invariant system, which are defined in Sect. 20.1.)

Based on the definition of filtering in (2.1), it is not difficult to see that

H(x,y) = W(−x,−y) (2.3)

Thus, the impulse response H(x,y) is a “mirror image” of the filter weights
W(x,y): the relationship is simply that of a 180◦ rotation around the center of the
filter. This is due to the change of signs of x∗ and y∗; the impulse response is equal to
one only if x + x∗ = 0, which implies that only at points x∗ = −x we have one and
elsewhere the impulse response is zero. For a filter that is symmetric with respect to
this rotation, the impulse response is identical to the filter.

The convolution of two images I1 and I2 is defined as

I1(x, y) ∗ I2(x, y) =
∞∑

x∗=−∞

∞∑

y∗=−∞
I1(x − x∗, y − y∗)I2(x∗, y∗) (2.4)
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The only real difference to the definition of a filtering operation in (2.1) is that we
have minus signs instead of plus signs. Note that convolution is symmetric in the
sense that we can change the order of I1 and I2, since by making the change in
summation index x′∗ = x − x∗ and y′∗ = y − y∗ we get the same formula with the
roles of I1 and I2 interchanged (this is left as an exercise).

Therefore, we can express the filtering operation using the impulse response
(which is considered just another image here) and the convolution simply as

O(x,y) = I (x, y) ∗ H(x,y) (2.5)

which is a slight modification of the original definition in (2.1). Introduction of
this formula may seem like splitting hairs, but the point is that convolution is a
well-known mathematical operation with interesting properties, and the impulse re-
sponse is an important concept as well, so this formula shows how filtering can be
interpreted using these concepts.

2.2 Frequency-Based Representation

2.2.1 Motivation

Frequency-based representation is a very useful tool in the analysis of image-
processing systems. In particular, a frequency-based representation can be used to
interpret what happens during linear filtering: it describes linear filtering as modifi-
cation of strengths (amplitudes) and spatial locations (phases) of frequencies (sinu-
soidal components) that form the input image. As an example and sneak preview,
Figs. 2.8a–d on page 36 show how the filtering operation of Fig. 2.3 can be inter-
preted as attenuation of low and high frequencies, which can be seen in the output
image as disappearance of large- and fine-scale structures or, alternatively, preserva-
tion of medium-scale structures. This interpretation can be read out from Fig. 2.8d,
which shows the frequency amplification map for this filter: this map, which is called
the amplitude response of the filter, shows that both low frequencies (in the middle
of the figure) and high frequencies (far from the middle) are attenuated; in the map,
higher grey-scale value indicates larger amplitude response.

In what follows, we will first describe the frequency-based representation, and
then demonstrate its special role in the analysis and design of linear filters.

2.2.2 Representation in One and Two Dimensions

Figure 2.4 illustrates the main idea of the frequency-based representation in the case
of one-dimensional data. In the usual (spatial) representation (Fig. 2.4a), a signal is
represented by a set of numbers at each point x = 0, . . . ,N − 1; in this example,
N = 7. Therefore, to reconstruct the signal in Fig. 2.4a, we need 7 numbers. In the
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Fig. 2.4 In frequency-based representation, a signal is represented as amplitudes and phases of
sinusoidal components. a A signal. b A table showing how the signal in a can be constructed
from sinusoidal components. In the table, the number of sinusoidal components runs from 1 to 4
(frequency index u runs from 0 to 3), and the rightmost column shows the cumulative sum of the
sinusoidal components with frequencies ωx,u having amplitudes Au and phases φu. In the fifth col-
umn, the grey continuous lines show the continuous frequency components from which the discrete
versions have been sampled. Here, the frequency components are added in increasing frequency,
that is, ωx,u1 > ωx,u2 if u1 > u2. c A frequency-based representation for the signal in a: the signal
is represented by the set of frequency amplitudes Au, which is also called the amplitude spectrum
(on the left), and the set of frequency phases ψu (on the right) of the corresponding frequencies
ωx,u, u = 0, . . . ,3. Note that the phase of the constant component u = 0 corresponding to fre-
quency ωx,0 = 0 is irrelevant; thus 7 numbers are needed in the frequency-based representation of
the signal, just as in the usual representation a
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frequency-based representation of this signal, we also use 7 numbers to describe the
contents of the signal, but in this case the numbers have a totally different meaning:
they are the amplitudes and phases of sinusoidal components, that is, parameters A

and ψ of signals of the form A cos(ωx + ψ), where ω is the frequency parameter;
see Fig. 2.4c.

The theory of the discrete Fourier transform (treated in detail in Chap. 20) states
that any signal of length 7 can be represented by the four amplitudes and the three
phases of the four frequencies; the phase of the constant signal corresponding to
ω = 0 is irrelevant because the constant signal does not change when it is shifted
spatially. For a family of signals of given length N , the set of frequencies ωu,
u = 0, . . . ,U − 1, employed in the representation is fixed; in our example, these
frequencies are listed in the second column of the table in Fig. 2.4b. Overall, the
frequency-based representation is given by the sum

I (x) =
U−1∑

u=0

Au cos(ωux + ψu), (2.6)

where ωu are the frequencies and Au their amplitudes and ψu their phases.
In the case of images—that is, two-dimensional data—the sinusoidal components

are of the form

A cos(ωxx + ωyy + ψ), (2.7)

where ωx is the frequency in the x-direction and ωy in the y-direction. In order to
grasp the properties of such a component, let us define vector ω = (ωx,ωy), and
denote the dot-product by 〈.〉. Then the component (2.7) can be written as

A cos(ωxx + ωyy + ψ) = A cos
(〈
(x, y),ω

〉+ ψ
)

= A cos

(
‖ω‖︸︷︷︸

“frequency”

〈
(x, y),

ω

‖ω‖
〉

︸ ︷︷ ︸
projection

+ψ

)
, (2.8)

which shows that computation of the argument of the cosine function can be inter-
preted as a projection of coordinate vector (x, y) onto the direction of the vector ω,
followed by a scaling with frequency ‖ω‖. Figure 2.5 illustrates this dependency of
the frequency and the direction of the sinusoidal component on ωx and ωy .

Figure 2.5 also illustrates why it is necessary to consider both positive and nega-
tive values of either ωx or ωy : otherwise, it is not possible to represent all directions
in the (x, y)-plane. However, there is a certain redundancy in this representation. For
example, the frequency pairs ω = (ωx,ωy) and −ω = (−ωx,−ωy) represent sinu-
soidal components that have the same direction and frequency, because ω and −ω

have the same direction and length. So, it can be seen that any half of the (ωx,ωy)-
plane suffices to represent all directions. In practice, it has become customary to use
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Fig. 2.5 In an equation I (x, y) = cos(ωxx + ωyy) of a two-dimensional sinusoidal image, the
frequencies ωx and ωy determine the direction and the frequency of the component. More specif-
ically, if ω = (ωx,ωy), then the length of ω determines the frequency of the component, and the
direction of ω determines the direction of the component. This is illustrated here for three different
(ωx,ωy) pairs; the sinusoidal components are of size 128 × 128 pixels. Notice that in the plots in
the third column, ωy runs from top to bottom because of the convention that in images the y-axis
runs in this direction. See (2.8) on page 31 for details

a redundant frequency representation which employs the whole (ωx,ωy)-plane, that
is, negative and positive parts of both the ωx - and ωy -axis.1

Figure 2.6 shows an example of the resulting frequency representation. Again,
the theory of discrete Fourier transform (see Chap. 20) states that any image of
size 3 × 3 pixels can be represented by five amplitudes and four phases, a total of

1In fact, because cosine is an even function—that is, cos(−α) = cos(α)—the frequency compo-
nents corresponding to these two frequency pairs are identical when A cos[〈(x, y),ω〉 + ψ] =
A cos[−(〈(x, y),ω〉 + ψ)] = A cos[〈(x, y), (−ω)〉 + (−ψ)], that is, when their amplitudes are the
same and their phases are negatives or each other. Therefore, when employing the whole (ωx,ωy)-
plane, the amplitude of a frequency component are customarily split evenly among the frequency
pairs ω and −ω with phases ψ and −ψ .
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Fig. 2.6 An example of a two-dimensional frequency representation. a The grey-scale (left) and
numerical (right) representation of an image of size 3 × 3 pixels. b Amplitude information of
the frequency representation of the image in a: the grey-scale (left) and numerical (right) repre-
sentation of the amplitudes of the different frequencies. Notice the symmetries/redundancies: the
amplitude of frequency ω is the same as the amplitude of frequency −ω. c Phase information of
the frequency representation of the image in a; the axis of this representation are the same as in b.
Notice the symmetries/redundancies: the phase of ω is the negative of the phase of −ω. d Four
examples of the actual sinusoidal components that make up the image in a in the frequency repre-
sentation. In each column, the first row shows the location of the component in the (ωx,ωy)-plane,
while the second row shows the actual component. The leftmost component is the constant com-
ponent corresponding to ω = (0,0). The second component is a horizontal frequency component.
Because of the symmetry in the frequency representation, the third and the fourth components are
identical. Notice that the second component (the horizontal frequency component) is stronger than
the other components, which can also be seen in the amplitude representation in b

9 numbers as in the usual spatial representation; the phase of the constant signal
corresponding to ω = (0,0) is irrelevant as before.

Note on Terminology The square of the amplitude A2 is also called the Fourier
energy or power, and when it is computed for many different frequencies, we get
what is called the power spectrum. The power spectrum is a classic way of charac-
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terizing which frequencies are present and with which “strengths” in a given signal
or image. If the original amplitudes are used, we talk about the amplitude spectrum
(Fig. 2.4c). It should be noted that the terminology of frequency-based analysis is
not very well standardized, so other sources may use different terminology.

2.2.3 Frequency-Based Representation and Linear Filtering

Sinusoidals also play a special role in the analysis and design of linear filters. What
makes sinusoidals special is the fact that when a sinusoidal is input into a linear
filter, the response is a sinusoidal with the same frequency, but possibly different
amplitude and phase. Figure 2.7 illustrates this phenomenon. Furthermore, both the

Fig. 2.7 Sinusoidal components play a special role in the analysis and design of linear systems,
because if a sinusoidal is input into a linear filter, the output is a sinusoidal with the same frequency
but possibly different amplitude and phase. a Two examples of this phenomenon are shown here
in the one-dimensional case, one on each row. The left column shows the input signal, which is
here assumed to be a sinusoidal of infinite duration. The middle column shows a randomly selected
impulse response, and the column on the right the response of this linear system to the sinusoidal.
Notice the different scale in the output signals, which is related to the amplitude change taking
place in the filtering. b An illustration of the two-dimensional case, with a 64 × 64-pixel input on
the left, a random 11 × 11-pixel impulse response in the middle, and the output on the right
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amplification factor of the amplitude and the shift in the phase depend only on the
frequency of the input, and not its amplitude or phase (see Chap. 20 for a detailed
discussion).

For a linear filter with impulse response H(x,y), let |H̃ (ωx,ωy)| denote the am-
plitude magnification factor of the system for horizontal frequency ωx and vertical
frequency ωy , and ∠H̃ (ωx,ωy) denote the phase shift of the filter. Then if the input
signal has frequency-based representation

I (x, y) =
∑

ωx

∑

ωy

Aωx,ωy cos(ωxx + ωyy + ψωx,ωy ), (2.9)

where the sum over ωx and ωy is here and below taken over both positive and
negative frequencies, the response of the linear filter has the following frequency-
based representation

O(x,y) = H(x,y) ∗ I (x, y)

=
∑

ωx

∑

ωy

∣∣H̃ (ωx,ωy)
∣∣Aωx,ωy︸ ︷︷ ︸

amplitude

cos
(
ωxx + ωyy + ψωx,ωy + ∠H̃ (ωx,ωy)︸ ︷︷ ︸

phase

)
.

(2.10)

The amplitude magnification factor |H̃ (ωx,ωy)| is called the amplitude response of
the linear system, while the phase shift ∠H̃ (ωx,ωy) is called the phase response.
The way these quantities are determined for a linear filter is described shortly below;
for now, let us just assume that they are available.

Figure 2.8 shows an example of the insight offered by the frequency representa-
tion of linear filtering (2.10). The example shows how a linear filter can be analyzed
or designed by its amplitude response (the phase response is zero for all frequen-
cies in this example). Notice that while relating the forms of the filters themselves
(Figs. 2.8b and f) to the end result of the filtering is very difficult, describing what
the filter does is straightforward once the frequency-based representation (Figs. 2.8d
and e) is available.

How can the amplitude and phase responses of a linear system be determined?
Consider a situation where we feed into the system a signal which contains a mixture
of all frequencies with unit amplitudes and zero phases:

I (x, y) =
∑

ωx

∑

ωy

cos(ωxx + ωyy). (2.11)

Then applying (2.10), the frequency-based representation of the output is

O(x,y) = H(x,y) ∗ I (x, y)

=
∑

ωx

∑

ωy

∣∣H̃ (ωx,ωy)
∣∣

︸ ︷︷ ︸
amplitude

cos
(
ωxx + ωyy + ∠H̃ (ωx,ωy)︸ ︷︷ ︸

phase

)
. (2.12)
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Fig. 2.8 An example of the usefulness of frequency-based representation in the analysis and de-
sign of linear filters. a An input image. b A filter of size 17 × 17 pixels. c The output of linear
filtering of image a with filter b. d The amplitude response of the filter in b; in this representa-
tion dark pixels indicate amplitude response values close to zero and bright pixels values close
to one. The amplitude response shows that the filter attenuates low and high frequencies, that is,
frequencies which are either close to the origin (ωu,ωv) = (0,0) or far away from it. This can be
verified in c, where medium-scaled structures have been preserved in the image, while details and
large-scale grey-scale variations are no longer visible. The phase response of the filter is zero for
all frequencies. e Assume that we want to design a filter that has a reverse effect than the filter
shown in b: our new filter attenuates medium frequencies. The filter can be designed by specifying
its amplitude and phase response. The amplitude response is shown here, the phase response is
zero for all frequencies. f The filter corresponding to the frequency-based representation e. g The
result obtained when the filter f is applied to the image in a. The results is as expected: the filter
preserves details and large-scale grey-scale variations, while medium-scale variations are no longer
visible. Notice that just by examining the filters themselves (b and f) it is difficult to say what the
filters do, while this becomes straightforward once the frequency-based representations (d and e)
are available

In other words, the amplitude and phase responses of the linear system can be read
from the frequency-based representation of the output O(x,y). What remains to be
determined is what kind of a signal the signal I (x, y) in (2.11) is. The theory of the
Fourier transform states that the image obtained when all frequencies with identical
amplitudes and zero phases are added together is an impulse. Figure 2.9 illustrates
this when image size is 3 × 3 pixels. To summarize, when we feed an impulse into
a linear filter,

• from the point of view of frequency-based description, we are giving the system
an input with equal amplitudes of all frequencies at phase zero
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Fig. 2.9 An image containing all frequencies with unit amplitudes and zero phases is an impulse.
Here, the different frequency components are being added from left to right; the right-most image
is an impulse response

• the linear system modifies the amplitudes and phases of these frequencies accord-
ing to the amplitude and phase response of the system

• the amplitude and phase response properties can be easily read out from the im-
pulse response, since the amplitudes of the input were equal and phases were all
zero.

In other words, the amplitude and phase responses of a linear filter are obtained
from the frequency-based representation of the impulse response: the amplitude
responses are the amplitudes of the frequencies, and the phase responses are the
phases of the frequencies. An example of this principle is shown in Fig. 2.8: the am-
plitude response images (d) and (e) are in fact the amplitudes of the frequency-based
representations of the impulse responses (b) and (f).

2.2.4 Computation and Mathematical Details

Above, we have outlined the nature of the frequency-based representation in the
one- and two-dimensional case, and the usefulness of this representation in the de-
sign and analysis of linear systems. The material presented so far should therefore
provide the reader with the knowledge needed to understand what the frequency-
based representation is, and why it is used.

However, a number of questions have been left unanswered in the text above,
including the following:

• What exactly are the values of the frequencies ω used in the frequency-based
representation?

• How is the frequency-based representation computed?
• What guarantees that a frequency-based representation exists?

The set of mathematical tools used to define and analyze frequency-based rep-
resentations are part of mathematics called Fourier analysis. In particular, Fourier
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transforms are used to convert data and impulse responses to and from frequency-
based representation. There are different types of Fourier transforms for different
purposes: continuous/discrete and finite/infinite data. When working with digital im-
ages, the most important Fourier transform is the discrete Fourier transform (DFT),
which is particularly suited for representation of discrete and finite data in comput-
ers. The basics of DFT are described in Chap. 20. The computational implementa-
tion of DFT is usually through a particular algorithm called Fast Fourier Transform,
or FFT.

The DFT has fairly abstract mathematical properties, because complex numbers
are employed in the transform. The results of the DFT are, however, quite easily
understood in terms of the frequency-based representation: for example, Fig. 2.8d
was computed by taking the DFT of the filter in Fig. 2.8b, and then showing the
magnitudes of the complex numbers of the result of the DFT.

A working knowledge of the frequency-based representation is not needed in
reading this book: it is sufficient to understand what the frequency-based represen-
tation is and why it is used. If you are interested in working with frequency-based
representations, then studying the DFT is critical, because the DFT has some coun-
terintuitive properties that must be known when working with results of transforms;
for example, the DFT assumes that the data (signal or image) is periodic, which
causes periodicity effects when filtering is done in the frequency-based representa-
tion.

2.3 Representation Using Linear Basis

Now we consider a general and widely-used framework for image representation:
a linear basis. We will also see how frequency-based representation can be seen as
a special case in this framework.

2.3.1 Basic Idea

A traditional way to represent grey-scale images is the pixel-based representation,
where the value of each pixel denotes the grey-scale value at that particular loca-
tion in the image. For many different purposes, more convenient representations of
images can be devised.

Consider the three 3 × 2 images f1, f2 and I3 shown in Fig. 2.10. The traditional
pixel-based representations of the images are

f1 =
[

4 0 0
4 0 0

]
,

f2 =
[

0 0 4
0 0 4

]
,
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Fig. 2.10 Three different 3×2 images consisting of vertical lines: a f1; b f2; c I3. Here, black de-
notes a grey-scale value of zero, light grey a grey-scale value of 4, and the darker grey a grey-scale
value of 2

I3 =
[

2 0 2
2 0 2

]
.

These images consist of vertical lines with different grey-scale values. A com-
pact way to describe a set of images containing only vertical lines is to define the
following basis images

B1 =
[

1 0 0
1 0 0

]
,

B2 =
[

0 1 0
0 1 0

]
,

B3 =
[

0 0 1
0 0 1

]
,

and then represent each image as a weighted sum of these basis images. For example,
f1 = 4B1, f2 = 4B3 and I3 = 2B1 + 2B3. Such a representation could convey more
information about the inherent structure in these images. Also, if we had a very
large set of such images, consisting of only vertical lines, and were interested in
compressing our data, we could store the basis images, and then for each image just
save the three coefficients of the basis images.

This simple example utilized a special property of the images f1, f2, and I3,
that is, the fact that in this case each image contains only vertical lines. Note that
not every possible 3 × 2 image can be represented as a weighted sum of the basis
images B1, B2, and B3 (one example is an image with a single non-zero pixel at
any image location). This kind of a basis is called an under-complete basis. Usually
the word basis is used to refer to a complete basis, a basis which—when used in
the form of a weighted sum—can be used to represent any image. For the set of
3 × 2 images, one example of a complete basis is the set of 6 images with a single
one at exactly one image location (x, y). This basis is typically associated with the
traditional pixel-based image representation: each pixel value denotes the coefficient
of the corresponding basis image.

A particularly important case is an orthogonal basis. Then the coefficients in the
basis simply equal the dot-products with the basis vectors. For more on bases and
orthogonality, see Sect. 19.6.
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The use of different bases in the representation of images has several important
areas of application in image processing. Two of these were mentioned already: the
description and analysis of the structure of images, and image compression. Other
important applications are in the domain of image processing systems: different
image representations are central in the analysis of these systems (including the
analysis of the visual system), design of such systems, and in their efficient imple-
mentation.

2.3.2 Frequency-Based Representation as a Basis

Now, we consider how frequency-based representation can be rephrased as finding
the coefficients in a basis. Consider the situation where we want to analyze, in a
given signal, the amplitude A and phase ψ of a sinusoidal component

A cos(ωx + ψ). (2.13)

The key point here is that instead of determining A and ψ directly, we can determine
the coefficients C and S of a cosine and sine signal with (centered) phase zero:

C cos(ωx) + S sin(ωx). (2.14)

To show this, we will demonstrate that there is a one-to-one correspondence between
signals of the form (2.13) and of the form (2.14). First, a given sinusoidal of the
form (2.13) can be represented in form (2.14) as follows:

A cos(ωx + ψ) = A
(
cos(ωx) cosψ − sin(ωx) sinψ

)

= A cosψ︸ ︷︷ ︸
=C

cos(ωx) + A(− sinψ)︸ ︷︷ ︸
=S

sin(ωx)

= C cos(ωx) + S sin(ωx). (2.15)

Conversely, if we are given a signal in form (2.14), the derivation (2.15) can be
reversed (this is left as an exercise), so that we get

A =
√

C2 + S2, (2.16)

ψ = − atan
S

C
. (2.17)

Thus, to analyze the amplitude and phase of frequency ω in a given signal, it suffices
to find coefficients C and S in equation C cos(ωx)+S sin(ωx); after the coefficients
have been computed, (2.16) and (2.17) can be used to compute the amplitude and
phase. In particular, the square of the amplitude (“Fourier power” or “Fourier en-
ergy”) is obtained as the sum of squares of the coefficients.

The formula in (2.16) is also very interesting from a neural modelling viewpoint
because it shows how to compute the amplitude using quite simple operations, since
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computation of the coefficients in a linear basis is a linear operation (at least if the
basis is complete). Computation of Fourier energy in a given frequency thus requires
two linear operations, followed by squaring, and summing of the squares. As we will
see in Chap. 3, something similar to linear Fourier operators seems to be computed
in the early parts of visual processing, which makes computation of Fourier energy
rather straightforward.

How are the coefficients C and S then computed? The key is orthogonality. The
signals cos(ωx) and sin(ωx) are orthogonal, at least approximately. So, the coeffi-
cients C and S are simply obtained as the dot-products of the signal with the basis
vectors given by the cos and sin functions.

In fact, Discrete Fourier Transform can be viewed as defining a basis with such
cos and sin functions with many different frequencies, and those frequencies are
carefully chosen so that the sinusoidals are exactly orthogonal. Then the coefficients
for all the sin and cos functions, in the different frequencies, can be computed as
the dot-products

∑

x

I (x) cos(ωx) and
∑

x

I (x) sin(ωx). (2.18)

The idea generalizes to two dimensions (images) in the same way as frequency-
based analysis was shown to generalize above. More details on the DFT can be
found in Chap. 20.

2.4 Space-Frequency Analysis

2.4.1 Introduction

The frequency representation utilizes global sinusoidal gratings, that is, components
which span the whole image (see, e.g. Fig. 2.5). This is particularly useful for the
analysis and design of linear filters. However, because of the global nature of sinu-
soidals, the frequency representation tells us nothing about the spatial relationship
of different frequencies in an image. This is illustrated in Figs. 2.11a and b, which
show an image and the amplitudes of its frequency representation. The upper part of
the image contains grass, which tends to have a more vertical orientation and sharper
structure than the lower part of the image. The amplitudes of the frequency represen-
tation (Fig. 2.11b) show that many horizontal or near-horizontal frequencies—that
is, frequencies in the vicinity of axis ωy = 0—have a relatively large amplitude,
even at fairly high frequencies. (Notice that structures with vertical lines correspond
to horizontal frequencies.) From the amplitude spectrum there is, however, no way
to tell the spatial location of these frequencies.

The spatial locations of different frequencies can contain important information
about the image. In this example, if we are able to locate those areas which tend
to have more horizontal frequencies, we can use that information, for example, to
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Fig. 2.11 The main idea in space-frequency analysis is to consider the amplitudes/phases of dif-
ferent frequencies at different locations in an image. a An image. Notice how different areas of the
image differ in their frequency contents. b The standard frequency representation: the amplitudes
of the different frequencies that make up the frequency representation of the image in a. Note that
while this representation suggests that fairly high horizontal frequencies are present in the image,
it does not convey information about the spatial location of different frequencies. For purposes of
visibility, the amplitudes of different frequencies have been transformed with logarithmic mapping
before display. c A spatially localized non-negative windowing function. d A localized area of the
image can be obtained by multiplying the image a with the windowing function c. e In this exam-
ple, the amplitude (strength) of this horizontal frequency is analyzed at each point in the image.
f Applying the weighting scheme c–d at each point in the image a, and then analyzing the ampli-
tude of the frequency e at each of these points results in this spatial map of the amplitude of the
frequency. As can be seen, the frequency tends to have larger amplitudes in the upper part of the
image, as can be expected

facilitate the identification of the grass area in the image. How can the spatial loca-
tions of these frequencies be found? A straightforward way to do this is to analyze
the frequency contents of limited spatial areas. Figures 2.11c–f illustrate this idea.
The original image (Fig. 2.11a) is multiplied with a non-negative windowing func-
tion (Fig. 2.11c) to examine the frequency contents of a spatially localized image
area (Fig. 2.11d). For example, for the horizontal frequency shown in Fig. 2.11e,
a spatial map of the amplitude of this frequency is shown in Fig. 2.11f; the map has
been obtained by applying the weighting scheme (Figs. 2.11c and d) at every point
of the image, and analyzing the amplitude of the frequency in the localized image
area. Now, we see that in Fig. 2.11f that the different areas (grass vs. water) are
clearly separated by this space-frequency analysis.
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In the case of space-frequency analysis, the computational operations underlying
the analysis are of great interest to us. This is because some important results ob-
tained with statistical modelling of natural images can be interpreted as performing
space-frequency analysis, so the way the analysis is computed needs to be under-
stood to appreciate these results. Because of this connection, we need to delve a
little deeper into the mathematics.

Before going into the details, we first state the main result: space-frequency
analysis can be done by the method illustrated in Fig. 2.12: by filtering the image
with two different localized sinusoidal filters, and computing the amplitudes and
phases (in this example only the amplitudes) from the outputs of these two filters.
The following section explains the mathematics behind this method.

2.4.2 Space-Frequency Analysis and Gabor Filters

Consider a situation where we want to analyze the local frequency contents of an
image: we want to compute the amplitude and phase for each location (x0, y0).
Alternatively, we could compute a set of coefficients C(x0, y0) and S(x0, y0) as in
Sect. 2.3.2, which now are functions of the location. The analysis is made local by
applying a weighting function, say W(x,y), centered at (x0, y0) before the analysis.

We can simply modify the analysis in Sect. 2.3.2 by centering the signal f around
the point (x0, y0) and weighting it by w before the analysis. Thus, we get a formula
for the coefficient C at a given point:

C(x0, y0) ≈
∑

x

∑

y

I (x, y)W(x − x0, y − y0) cos
(
ωx(x − x0) + ωy(y − y0)

)

(2.19)
and similarly for S(x0, y0). Note that the order in which we multiply the three im-
ages (image f , weighting image w, sinusoidal cos) inside the sum is irrelevant.
Therefore, it does not make any difference whether we apply the weighting to the
image I (x, y) or to the sinusoidal cos(ωx(x −x0)+ωy(y −y0)). If we define a new
weighting function

W2(x, y) = W(x,y) cos(ωxx + ωyy), (2.20)

(2.19) becomes

C(x0, y0) ≈
∑

x

∑

y

I (x, y)W2(x − x0, y − y0). (2.21)

Equations (2.20) and (2.21) show that computation of coefficients C(x0, y0) can be
approximated by filtering the image with a filter that is the product of a sinusoidal
cos(ωxx + ωyy) and the weighting window. Similar analysis applies to coefficients
S(x0, y0), except that in that case the sinusoidal is sin(ωxx + ωyy). Because the
magnitude of the weighting function W(x,y) typically falls off quite fast from the
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Fig. 2.12 An example showing how the spatial map of amplitudes of Fig. 2.11f on page 42 was
computed. a The analyzed image. b The spatial filter (called a Gabor filter) obtained by mul-
tiplying cos(ωxx + ωyy) with the weighting window W(x,y); the filter has been truncated to
a size of 33 × 33 pixels. c The spatial filter obtained by multiplying sin(ωxx + ωyy) with the
weighting window W(x,y). d Coefficients C(x0, y0), obtained by filtering image a with filter b.
e Coefficients S(x0, y0), obtained by filtering image a with filter c. f The spatial amplitude map
A(x0, y0) =√C(x0, y0)2 + S(x0, y0)2
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origin (x, y) = (0,0), computational savings can be obtained by truncating the filter
to zero for (x, y) far away from the origin.

To summarize the result in an example, Fig. 2.12 shows how the amplitude map
of Fig. 2.11f on page 42 was computed: C(x0, y0) and S(x0, y0) were computed
by filtering the image with weighted versions of cos(ωxx + ωyy) and sin(ωxx +
ωyy), respectively, and the amplitude map A(x0, y0) was obtained by A(x0, y0) =√

C(x0, y0)2 + S(x0, y0)2.
The two filters used in the computation of C(x0, y0) and S(x0, y0) are often

called a quadrature-phase pair. This is because sin(x + π
2 ) = cos(x), so the two

filters are W(x,y) cos(ωxx + ωyy) and W(x,y) cos(ωxx + ωyy + π
2 ), that is, they

are otherwise identical expect for a a phase difference of one quarter of a whole
cycle: 2π

4 = π
2 .

When the weighting function is a Gaussian window, which in the one-dimensional
case is of the form

Wσ (x) = 1

d
e
− x2

σ2 , (2.22)

the resulting filter is called a Gabor filter; parameter σ determines the width of
the window, and the scaling constant d is typically chosen so that

∑
x Wσ (x) = 1.

Overall, a one-dimensional Gabor function

Wσ,ω,ψ(x) = Wσ (x) cos(ωx + ψ) (2.23)

has three parameters, width σ , frequency ω and phase ψ . One-dimensional Gabor
functions are illustrated in Fig. 2.13.

In the two-dimensional case, a Gabor filter has a few additional parameters that
control the two-dimensional shape and orientation of the filter. When the sinusoidal
in the filter has vertical orientation the filter is given by the following equation

Wσx,σy,ω,ψ(x, y) = 1

d
e
−( x2

σ2
x

+ y2

σ2
y

)

cos(ωx + ψ); (2.24)

here, σx and σy control the width of the weighting window in the x- and y-
directions, respectively. A Gabor-filter with orientation α can be obtained by ro-
tating the original (x, y) coordinate system by −α to yield a new coordinate system
(x∗, y∗) (this rotation is equivalent to the rotation of the filter itself by α). The equa-
tions that relate the two coordinate systems are

x = x∗ cosα + y∗ sinα, (2.25)

y = −x∗ sinα + y∗ cosα. (2.26)

Substituting (2.25) and (2.26) into (2.24) gives the final form (not shown here).
Examples of two-dimensional Gabor functions were already given in Figs.

2.12b–c; two more will be given in the next section, Fig. 2.15.
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Fig. 2.13 Illustration of one-dimensional Gabor functions. a Construction of the function by mul-
tiplication of the envelope with a sinusoidal function. b Two Gabor functions in quadrature phase.

2.4.3 Spatial Localization vs. Spectral Accuracy

Above, we have outlined a scheme where the frequency contents of an image at a
certain point is analyzed by first multiplying the image with a localized weighting
window, and then analyzing the frequency contents of the weighted image. How
accurate is this procedure, that is, how well can it capture the localized frequency
structure?

The answer is that there is a trade-off between spatial localization and spectral
(frequency) accuracy because the use of a weighting window changes the spectral
contents. Figure 2.14 illustrates this phenomenon by showing how the results of
space-frequency analysis of a pure sinusoidal I (x) = cos( 1

2x) depend on the degree
of spatial localization. The mathematical theory behind this phenomenon goes un-
der the name time-bandwidth product theorem in signal processing, or uncertainty
principle in physics. These theories state that there is a lower bound on the product
of the spread of the energy in the spatial domain and the frequency domain. See the
References at the end of this chapter for more details.

With images, the extra dimensions introduce another factor: uncertainty about
orientation. This parameter behaves just like frequency and location in the sense
that if we want to have a filter which is very localized in orientation, we have to
give up localization in the other parameters. This is illustrated in Fig. 2.15, in which
we see that a basic Gabor which is very localized in space (a) responds to a wider
range of different orientations than the Gabor in (b). The Gabor in (b) has has been
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Fig. 2.14 In space-frequency analysis, there is a trade-off between spatial localization and spec-
tral accuracy. This example shows how the use of a weighting window W(x) (second column)
changes the spectral (frequency) contents of a pure sinusoidal I (x) = cos( 1

2 x), x = 0, . . . ,127.
The rightmost column shows the amplitude spectrum of the localized signal W(x)I (x), which in
turn is plotted in the third column. With no spatial localization (window width σ = ∞; top row),
the amplitude spectrum A(ω) shows a clear peak at the location ω = 1

2 . As window width σ de-
creases, spatial localization increases, but accuracy in the spectral domain decreases: the two peaks
in A(ω) spread out and eventually fuse so that A(ω) is a unimodal function when σ = 1

Fig. 2.15 Uncertainty in two dimensions. Compared with a “basic” Gabor function in a, the Gabor
in b is very localized in orientation, that is, it responds to only a small range of different orienta-
tions. The thin black lines show the orientations of thin lines which still fall on the white (positive)
area of the function: a line which is more oblique will partly fall on the black (negative) areas,
and thus the response of the filter will the reduced. We can see that in b, the range of orientations
producing very large responses (falling on the white area only) is much smaller than in a. This
illustrates that in order to make the basic Gabor function in a more localized in orientation, it is
necessary to make it longer, and thus to reduce its spatial localization
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designed to respond only to a small range of orientations, which was only possible
by making it more extended in space.

2.5 References

Most of the material covered in this chapter can be found in most image-processing
textbooks. A classic choice is (Gonzales and Woods 2002), which does not, how-
ever, consider space-frequency analysis. A large number of textbooks explain time-
frequency analysis, which is the one-dimensional counterpart of space-frequency
analysis, for example (Cohen 1995). Related material can also be found in textbooks
on wavelets, which are a closely related method (see Section 17.3.2 for a very short
introduction), for example (Vetterli and Kovačević 1995; Strang and Nguyen 1996).

2.6 Exercises

Mathematical Exercises

1. Show that convolution is a symmetric operation.
2. Show (2.3).
3. Prove (2.17). Hint: Find two different values for x so that you get the two equa-

tions

A cosψ = C, (2.27)

−A sinψ = S. (2.28)

Now, solve for A and ψ as follows. First, take the squares of both sides of
both (2.27) and (2.28) and sum the two resulting equations. Recall the sum
of squares of a sine and a cosine function. Second, divide both sides of (2.27)
and (2.28) with each other.

Computer Assignments

The computer assignments in this book are designed to be made with Matlab™.
Most of them will work on Matlab clones such as Octave. We will assume that you
know the basics of Matlab.

1. The command meshgrid is very useful for image processing. It creates two-
dimensional coordinates, just like a command such as [5:.01:5] creates a one-
dimensional coordinate. Give the command [X,Y]=meshgrid([-5:0.1:5]); and plot
the matrices X and Y using imagesc.
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2. Create Fourier gratings by sin(X), sin(Y), sin(X+Y). Plot the gratings.
3. Create a Gabor function using these X and Y, simply by plugging in those matri-

ces in the formula in (2.24). Try out different values for the parameters until you
get a function which looks like the one in Fig. 2.12b.

4. Change the roles of X and Y to get a Gabor filter in a different orientation.
5. Try out a Gabor function of a different orientation by plugging in X+Y instead of

X and X-Y instead of Y.
6. Linear filtering is easily done with the function conv2 (the “2” means two-

dimensional convolution, i.e. images). Take any image, import it to Matlab, and
convolve it with the three Gabor functions obtained above.



Chapter 3
Outline of the Visual System

In this chapter, we review very briefly the structure of the human visual system. This
exposition contains a large number of terms which are likely to be new for readers
who are not familiar with neuroscience. Only a few of them are needed later in this
book; they are given in italics for emphasis.

3.1 Neurons and Firing Rates

Neurons The main information processing workload of the brain is carried by
nerve cells, or neurons. Estimates of the number of neurons in the brain typically
vary between 1010 and 1011. What distinguishes neurons from other cells are their
special information-processing capabilities. A neuron receives signals from other
neurons, processes them, and sends the result of that processing to other neurons.
A schematic diagram of a neuron is shown in Fig. 3.1, while a more realistic picture
is given in Fig. 3.2.

Axons How can such tiny cells send signals to other cells which may be far away?
Each neuron has one very long formation called an axon which connects it to other
cells. Axons can be many centimeters or even a couple of meters long, so they can
reach from one place in the brain to almost any other. Axons have a sophisticated
biochemical machinery to transmit signals over such relatively long distances. The
machinery is based on a phenomenon called action potential.

Action Potentials An action potential is a very short (1 ms) electrical impulse
traveling via the axon of the neuron. Action potentials are illustrated in Fig. 3.3.
Due to their typical shape, action potential are also called spikes. Action potentials
are fundamental to the information processing in neurons; they constitute the signals
by which the brain receives, analyzes, and conveys information.

Action potentials are all-or-none, in the sense that they always have the same
strength (a potential of about 100 mV) and shape. Thus, a key principle in brain
function is that the meaning of a spike is not determined by what the spike is like
(because they are all the same), but rather, where it is, i.e. which axon is it traveling
along, or equivalently, which neuron sent it. (Of course, the meaning also depends
on when the spike was fired.)

Signal Reception and Processing At the receiving end, action potentials are input
to neurons via shorter formations called dendrites. Typically, an axon has many
branches, and each of them connects to a dendrite of another neuron. Thus, the axon
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Fig. 3.1 A schematic
diagram of
information-processing in a
neuron. Flow of information
is from right to left

Fig. 3.2 Neurons (thick
bodies, some lettered), each
with one axon (thicker line
going up) for sending out the
signal, and many dendrites
(thinner lines) for receiving
signals. Drawing by Santiago
Ramón y Cajal in 1900

Fig. 3.3 An action potential is a wave of electrical potential which travels along the axon. It travels
quite fast, and is very short both in time and its spatial length (along the axon). The figure shows
the potentials in different parts of the axon soon after the neuron has emitted two action potentials
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could be thought of as output wires along which the output signal of the neuron is
sent to other neurons; dendrites are input wires which receive the signal from other
neurons. The site where an axon meets a dendrite is called a synapse. The main cell
body, or soma, is often thought of as the main “processor” which does the actual
computation. However, an important part of the computation is already done in the
dendrites.

Firing Rate The output of the neuron consists of a sequence of spikes emitted
(a “spike train”). To fully describe such a sequence, one should record the time
intervals between each successive spike. To simplify the situation, most research in
visual neuroscience has concentrated on the neurons’ firing rates, i.e. the number of
spikes “fired” (emitted) by a neuron per second. This gives a single scalar quantity
which characterizes the activity of the cell. Since it is these action potentials which
are transmitted to other cells, the firing rate can also be viewed as the “result” of the
computation performed by the neuron, in other words, its output.

Actually, most visual neurons are emitting spikes all the time, but with a rela-
tively low frequency (of the order of 1 Hz). The “normal” firing rate of the neuron
when there is no specific stimulation is called the spontaneous firing rate. When the
firing rate is increased from the spontaneous one, the neuron is said to be active or
activated.

Computation by the Neuron How is information processed, i.e. how are the in-
coming signals integrated in the soma to form the out-coming signal? This question
is extremely complex and we can only give an extremely simplified exposition here.

A fundamental principle of neural computation is that the reception of a spike at a
dendrite can either excite (increase the firing rate) of the receiving neuron, or inhibit
it (decrease the firing rate), depending on the neuron from which the signal came.
Furthermore, depending on the dendrite and the synapse, some incoming signals
have a stronger tendency to excite or inhibit the neuron. Thus, a neuron can be
thought of as an elementary pattern-matching device: its firing rates is large when
it receives input from those neurons which excite it (strongly), and no input from
those neurons which inhibit it. A basic mathematical model for such an action is to
consider the firing rate as a linear combination of incoming signals; we will consider
linear models below.

Thinking in terms of the original visual stimuli, it is often thought that a neuron is
active when the input contains a feature for which the neuron is specialized—but this
is a very gross simplification. Thus, for example, a hypothetical “grandmother cell”
is one that only fires when the brain perceives, or perhaps thinks of, the grandmother.
Next, we will consider what are the actual response properties of neurons in the
visual system.

3.2 From the Eye to the Cortex

Figure 3.4 illustrates the earliest stages of the main visual pathway. Light enters
the eye, reaching the retina. The retina is a curved, thin sheet of brain tissue that
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Fig. 3.4 The main visual
pathway in the human brain

grows out into the eye to provide the starting point for neural processing of visual
signals. The retina is covered by a more than a hundred million photo-receptors,
which convert the light into an electric signal, i.e. neural activity.

From the photo-receptors, the signal is transmitted through a couple of neural
layers. The last of the retinal processing layer consists of ganglion cells, which
send the output of the retina (in form of action potentials) away from the eye using
their very long axons. The axons of the ganglion cells form the optic nerve. The
optic nerve transmits the visual signals to the lateral geniculate nucleus (LGN) of
the thalamus. The thalamus is a structure in the middle of the brain through which
most sensory signals pass on their way from the sensory organs to the main sensory
processing areas in the brain.

From the LGN, the signal goes to various other destinations, the most important
being the visual cortex at the back of the head, where most of the visual processing
is performed. Cortex, or cerebral cortex to be more precise, means here the surface
of the two cerebral hemispheres, also called the “grey matter”. Most of the neurons
associated with sensory or cognitive processing are located in the cortex. The rest of
the cerebral cortex consists mainly of axons connecting cortical neurons with each
other, or the “white matter”.

The visual cortex contains some 1/5 of the total cortical area in humans, which
reflects the importance of visual processing to us. It consists of a number of distinct
areas. The primary visual cortex, or V1 for short, is the area to which most of the
retinal output first arrives. It is the most widely-studied visual area, and also the
main focus in this book.

3.3 Linear Models of Visual Neurons

3.3.1 Responses to Visual Stimulation

How to make sense of the bewildering network of neurons processing visual infor-
mation in the brain? Much of visual neuroscience has been concerned with measur-
ing the firing rates of cells as a function of some properties of a visual input. For
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Fig. 3.5 A caricature of a typical experiment. A dark bar on a white background is flashed onto
the screen, and action potentials are recorded from a neuron. Varying the orientation of the bar
yields varying responses. Counting the number of spikes elicited within a fixed time window fol-
lowing the stimulus, and plotting these counts as a function of bar orientation, one can construct
a mathematical model of the response of the neuron

example, an experiment might run as follows: An image is suddenly projected onto a
(previously blank) screen that an animal is watching, and the number of spikes fired
by some recorded cell in the next second are counted. By systematically changing
some properties of the stimulus and monitoring the elicited response, one can make
a quantitative model of the response of the neuron. An example is shown in Fig. 3.5.
Such a model mathematically describes the response (firing rate) rj of a neuron as
a function of the stimulus I (x, y).

In the early visual system, the response of a typical neuron depends only on
the intensity pattern of a very small part of the visual field. This area, where light
increments or decrements can elicit increased firing rates, is called the (classical)
receptive field (RF) of the neuron. More generally, the concept also refers to the
particular light pattern that yields the maximum response.

So, what kind of light patterns actually elicit the strongest responses? This of
course varies from neuron to neuron. One thing that most cells have in common is
that they don’t respond to a static image which consists of a uniform surface. They
respond to stimuli in which there is some change, either temporally or spatially;
such change is called contrast in vision science.

The retinal ganglion cells as well as cells in the lateral geniculate nucleus typi-
cally have circular center-surround receptive field structure: Some neurons are ex-
cited by light in a small circular area of the visual field, but inhibited by light in a
surrounding annulus. Other cells show the opposite effect, responding maximally to
light that fills the surround but not the center. This is depicted in Fig. 3.6a.
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Fig. 3.6 Typical classical receptive fields of neurons early in the visual pathway. Plus signs de-
note regions of the visual field where light causes excitation, minuses regions where light inhibits
responses. a Retinal ganglion and LGN neurons typically exhibit center-surround receptive field
organization, in one of two arrangements. b The majority of simple cells in V1, on the other hand,
have oriented receptive fields

3.3.2 Simple Cells and Linear Models

The cells that we are modeling are mainly in the primary visual cortex (V1). Cells
in V1 have more interesting receptive fields than those in the retina or LGN. The so-
called simple cells typically have adjacent elongated (instead of concentric circular)
regions of excitation and inhibition. This means that these cells respond maximally
to oriented image structure. This is illustrated in Fig. 3.6b.

Linear models are the ubiquitous workhorses of science and engineering. They
are also the simplest successful neuron models of the visual system. A linear model
for a visual neuron1 means that the response of a neuron is modeled by a weighted
sum of the image intensities, as in

rj =
∑

x,y

Wj (x, y)I (x, y) + r0, (3.1)

where Wj(x, y) contains the pattern of excitation and inhibition for light for the
neuron j in question. The constant r0 is the spontaneous firing rate. We can define
the spontaneous firing rate to be the baseline (zero) by subtracting it from the firing
rate:

r̃j = rj − r0, (3.2)

which will be done in all that follows.

1Note that there are two different kinds of models one could develop for a visual neuron. First, one
can model the output (firing rate) as a function of the input stimulus, which is what we do here.
Alternatively, one could model the output as a function of the direct inputs to the cell, i.e. the rates
of action potentials received in its dendrites. This latter approach is more general because it can
be applied to any neuron in the brain. However, it is not usually used in vision research because it
does not tell us much about the function of the visual system unless we already know the response
properties of those neurons whose firing rates are input to the neuron via dendrites, and just finding
those cells whose axons connect to a given neuron is technically very difficult.
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Fig. 3.7 Receptive fields of
simple cells estimated by
reverse correlation based on
single-cell recordings in a
macaque monkey. Courtesy
of Dario Ringach, UCLA

Linear receptive-field models can be estimated from visual neurons by employ-
ing a method called reverse correlation. In this method, a linear receptive field is
estimated so that the mean square error between the estimated rj in (3.1), and the
actual firing rate is minimized, where the mean is taken over a large set of visual
stimuli. The name “reverse correlation” comes from the fact that the general solu-
tion to this problem involves the computation of the time-correlation of stimulus
and firing rate. However, the solution is simplified when temporally and spatially
uncorrelated (“white noise”, see Sect. 4.6.4) sequences are used as visual stimuli—
in this case, the optimal Wj is obtained by computing an average stimulus over those
stimuli which elicited a spike. Examples of estimated receptive fields are shown in
Fig. 3.7.

3.3.3 Gabor Models and Selectivities of Simple Cells

How can we describe the receptive field of simple cells in mathematical terms? Typ-
ically, this is based on modeling the receptive fields by Gabor functions, reviewed
in Sect. 2.4.2. A Gabor function consists of an oscillatory sinusoidal function which
generates the alternation between the excitatory and inhibitory (“white/black”) ar-
eas, and a Gaussian “envelope” function which determines the spatial size of the re-
ceptive field. In fact, when comparing the receptive field in Fig. 3.7 with the Gabor
functions in Fig. 2.12b–c, it seems obvious that Gabor functions provide a reason-
able model for the receptive fields.
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Using a Gabor function, the receptive field is reduced to a small number of para-
meters:

• Orientation of the oscillation.
• Frequency of oscillation.
• Phase of the oscillation.
• Width of the envelope (in the direction of the oscillation).
• Length of the envelope (in the direction orthogonal to the oscillation). The ratio

of the length to the width is called the aspect ratio.
• The location in the image (on the retina).

These parameters are enough to describe the basic selectivity properties of simple
cells: a simple cell typically gives a strong response when the input consists of a
Gabor function with approximately the right (“preferred”) values for all, or at least
most, of these parameters (the width and the length of the envelope are not criti-
cal for all simple cells). Thus, we say that simple cells are selective for frequency,
orientation, phase, and location.

In principle, one could simply try to find a Gabor function which gives the best
fit to the receptive field estimated by reverse correlation. In practice, however, more
direct methods are often used since reverse correlation is rather laborious. Typi-
cally, what is computed are tuning curves for some of these parameters. This was
illustrated in Fig. 3.5. Typical stimuli include two-dimensional Fourier gratings (see
Fig. 2.5) and simple, possibly short, lines or bars. Examples of such analyses will
be seen in Chaps. 6 and 10.

3.3.4 Frequency Channels

The selectivity of simple cells (as well as many other cells) to frequency is related
to the concept of “frequency channels” which is widely used in vision science. The
idea is that in the early visual processing (something like V1), information of differ-
ent frequencies is processed independently. Justification for talking about different
channels is abundant in research on V1. In fact, the very point in using Gabor models
is to model the selectivity of simple cells to a particular frequency range.

Furthermore, a number of psychological experiments point to such a division of
early processing. For example, in Fig. 3.8, the information in the high- and low-
frequency parts are quite different, yet observes have no difficulty in processing
(reading) them separately. This figure also illustrates the practical meaning of fre-
quency selectivity: some of the cells in V1 respond to the “yes” letters but do not
respond to the “no” letters, while for other cells, the responses are the other way
round. (The responses depend, however, on viewing distance: stimuli which are low-
frequency when viewed from a close distance will be high-frequency when viewed
from far away.)
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Fig. 3.8 A figure with independent (contradictory?) information in different frequency channels.
a The original figure, b low-frequency part of figure in a, obtained by taking the Fourier transform
and setting to zero all high-frequency components (whose distance from zero is larger than a certain
threshold), c high-frequency part of figure in a. The sum of the figures in b and c equals a

3.4 Non-linear Models of Visual Neurons

3.4.1 Non-linearities in Simple-Cell Responses

Linear models are widely used in modeling visual neurons, but they are definitely
a rough approximation of the reality. Real neurons exhibit different kinds of non-
linear behavior. The most basic non-linearities can be handled by adding a simple
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scalar non-linearity to the model, which leads to what is simply called a linear/non-
linear model.

In the linear/non-linear model, a linear stage is followed by a static non-
linearity f :

r̃j = f

(∑

x,y

Wj (x, y)I (x, y)

)
. (3.3)

A special case of the linear/non-linear model is half-wave rectification, defined by

f (α) = max{0, α}. (3.4)

One reason for using this model is that if a neuron has a relatively low spontaneous
firing rate, the firing rates predicted by the linear model may then tend to be negative.
The firing rate, by definition, cannot be negative.

We must distinguish here between two cases. Negative firing rates are, of course,
impossible by definition. In contrast, it is possible to have positive firing rates that
are smaller than the spontaneous firing rate; they give a negative r̃j in (3.2). Such
firing rates correspond to the sum term in (3.1) being negative, but not so large that
the rj becomes negative. However, in V1, the spontaneous firing rate tends to be
rather low, and the models easily predict negative firing rates for cortical cells. (This
is less of a problem for ganglion and LGN cells, since their spontaneous firing rates
are relatively high.)

Thus, half-wave rectification offers one way to interpret the purely linear model
in (3.1) in a more physiologically plausible way: the linear model combines the
outputs of two half-wave rectified (non-negative) cells with reversed polarities into
a single output rj —one cell corresponds to linear RF Wj and the other to RF −Wj .

The linear/non-linear model is flexible and can accommodate a number of other
properties of simple cell responses as well. First, when the linear model predicts
small outputs, i.e. the stimulus is weak, no output (increase in firing rate) is actually
observed in simple cells. In other words, it seems there is a threshold which the
stimulus must attain to elicit any response. This phenomenon, combined with half-
wave rectification, could be modeled by using a non-linearity such as

f (α) = max(0, α − c) (3.5)

where c is a constant that gives the threshold.
Second, due to biological properties, neurons have a maximum firing rate. When

the stimulus intensity is increased above a certain limit, no change in the cell re-
sponse is observed, a phenomenon called saturation. This is in contradiction with
the linear model, which has no maximum response: if you multiply the input stimu-
lus by, say, 1 000 000, the output of the neuron increases by the same factor. To take
this property into account, we need to use a non-linearity that saturates as well, i.e.
has a maximum value. Combining the three non-linear properties listed here leads
us to a linear/non-linear model with the non-linearity

f (α) = min
(
d,max(0, α − c)

)
, (3.6)

where d is the maximum response. Figure 3.9 shows the form of this function.
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Fig. 3.9 The non-linear
function in (3.6)

Alternatively, we could use a smooth function with the same kind of behavior,
such as

f (α) = d
α2

c′ + α2
, (3.7)

where c′ is another constant that is related to the threshold c.

3.4.2 Complex Cells and Energy Models

Although linear/non-linear models are useful in modeling many cells, there are also
neurons in V1 called complex cells for which these models are completely inade-
quate. These cells do not show any clear spatial zones of excitation or inhibition.
Complex cells respond, just like simple cells, selectively to bars and edges at a par-
ticular location and of a particular orientation; they are, however, relatively invariant
to the spatial phase of the stimulus. An example of this is that reversing the contrast
polarity (e.g. from white bar to black bar) of the stimulus does not markedly alter
the response of a typical complex cell.

The responses of complex cells have often been modeled by the classical ‘energy
model’. (The term ‘energy’ simply denotes the squaring operation.) In such a model
(see Fig. 3.10), we have

rj =
(∑

x,y

Wj1(x, y)I (x, y)

)2

+
(∑

x,y

Wj2(x, y)I (x, y)

)2

,

where Wj1(x, y) and Wj2(x, y) are quadrature-phase Gabor functions, i.e. they have
a phase-shift of 90 degrees, one being odd-symmetric and the other being even-
symmetric. It is often assumed that V1 complex cells pool the responses of simple
cells, in which case the linear responses in the above equation are outputs of simple
cells.

The justification for this model is that since the two linear filters are Gabors in
quadrature-phase, the model is computing the local Fourier “energy” in a particular
range of frequencies and orientations, see (2.16). This provides a model of a cell
which is selective for frequency and orientation, and is also spatially localized, but
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Fig. 3.10 The classic energy model for complex cells. The response of a complex cell is modeled
by linearly filtering with quadrature-phase Gabor filters (Gabor functions whose sinusoidal com-
ponents have a 90 degrees phase difference), taking squares, and summing. Note that this is purely
a mathematical description of the response and should not be directly interpreted as a hierarchical
model summing simple cell responses

does not care about the phase of the input. In other words it is phase-invariant. (This
will be discussed in more detail in Chap. 10.)

The problem of negative responses considered earlier suggests a simple modifi-
cation of the model, where each linear RF again corresponds to two simple cells.
The output of a linear RF is divided to the positive and negative parts and half-wave
rectified. In this case, the half-wave rectified outputs are further squared so that they
compute the squaring operation of the energy model. In addition, complex cells sat-
urate just as simple cells, so it makes sense to add a saturating non-linearity to the
model as well.

3.5 Interactions between Visual Neurons

In the preceding models, V1 cells are considered completely independent units:
each of them just takes its input and computes its output. However, different kinds
interactions between the cells have been observed.

The principal kind of interaction seems to be inhibition: when a cell j is active,
the responses of another cell i is reduced from what they would be without that cell j

being active. To be more precise, let us consider two simple cells whose receptive
fields Wi and Wj are orthogonal (for more on orthogonality, see Chap. 19). Take,
for example, two cells in the same location, one with vertical and the other with
horizontal orientation. Take any stimulus I0 which excites the cell Wj . For example,
we could take a stimulus which is equal to the receptive field Wj itself. Now, we add
another stimulus pattern, say I1, to I0. This simply means that we add the intensities
pixel-by-pixel, showing the following stimulus to the retina:

I (x, y) = I0(x, y) + I1(x, y). (3.8)

The added stimulus I1 is often called a mask or a pedestal.
The point is that by choosing I1 suitably, we can demonstrate a phenomenon

which is probably due to interaction between the two cells. Specifically, let us
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Fig. 3.11 Interaction between different simple cells. a Original stimulus I0 of a simple cell, chosen
here as equal the receptive field of Wj . b Masking pattern I1 which is orthogonal to I0. c Compound
stimulus I . The response to I is smaller than the response to I0 although the linear models predicts
that the responses should be equal

choose a stimulus which is equal to the receptive field of cell i: I1 = Wi . This is
maximally excitatory for the cell i, but it is orthogonal to the receptive field of
cell j . With this kind of stimuli, the typical empirical observation is that the cell j

has a lower firing rate for the compound stimulus I = I0 + I1 than for I0 alone. This
inhibition cannot be explained by the linear models (or the linear/non-linear mod-
els). The mask I1 should have no effect on the linear filter stage, because the mask
is orthogonal to the receptive field Wj . So, to incorporate this phenomenon in our
models, we must include some interaction between the linear filters: The outputs
of some model cells must reduce the outputs of others. (It is not completely clear
whether this empirical phenomenon is really due to interaction between the cells,
but that is a widely-held view, so it makes sense to adopt it in our models.)

This phenomenon is typically called “contrast gain control”. The idea is that
when there is more contrast in the image (due to the addition of the mask), the
system adjusts its responses to be generally weaker. It is thought to be necessary
because of the saturating non-linearity in the cells and the drastic changes in illu-
mination conditions observed in the real world. For example, the cells would be re-
sponding with the maximum value most of the time in bright daylight (or a brightly
lit part of the visual scene), and they would be responding hardly at all in a dim
environment (or a dimly lit part of the scene). Gain control mechanisms alleviate
this problem by normalizing the variation of luminance over different scenes, or
different parts of the same scene. For more on this point, see Sect. 9.5.2

This leads us to one of the most accurate currently known simple-cell models,
in terms of predictive power, the divisive normalization model. Let W1, . . . ,WK

denote the receptive fields of those cells whose receptive fields are approximately
in the same location, and σ a scalar parameter. In the divisive normalization model,

2In fact, different kinds of gain control mechanisms seem to be operating in different parts of
the visual system. In the retina, such mechanisms normalize the general luminance level of the
inputs, hence the name “luminance gain control”. Contrast gain control seems to be done after that
initial gain control. The removal of the mean grey-scale value (DC component) that we do in later
chapters can be thought to represent a simple luminance gain control mechanism.



64 3 Outline of the Visual System

the output of the cell corresponding to RF Wj is given by

rj = f (
∑

x,y Wj (x, y)I (x, y))
∑K

i=1 f (
∑

x,y Wi(x, y)I (x, y)) + σ 2
, (3.9)

where f is again a static non-linearity, such as the half-wave rectification followed
by squaring. This divisive normalization model provides a simple account of con-
trast gain control mechanisms. In addition, it also automatically accounts for such
simple-cell non-linearities as response saturation and threshold. In fact, if the input
stimulus is such that it only excites cell j , and the linear responses in the denomi-
nator are all zero expect for the one corresponding to cell j , the model reduces to
the linear/non-linear model in Sect. 3.4.1. If we further define f to be the square
function, we get the non-linearity in (3.7).

3.6 Topographic Organization

A further interesting point is how the receptive fields of neighboring cells are related.
In the retina, the receptive fields of retinal ganglion cells are necessarily linked to the
physical position of the cells. This is due to the fact that the visual field is mapped
in an orderly fashion to the retina. Thus, neighboring retinal ganglion cells respond
to neighboring areas of the visual field. However, there is nothing to guarantee the
existence of a similar organization further up the visual pathway.

But the fact of the matter is that, just like in the retina, neighboring neurons in
the LGN and in V1 tend to have receptive fields covering neighboring areas of the
visual field. This phenomenon is called retinotopy. Yet this is only one of several
types of organization. In V1, the orientation of receptive fields also tends to shift
gradually along the surface of the cortex. In fact, neurons are often approximately
organized according to several functional parameters (such as location, frequency,
orientation) simultaneously. This kind of topographic organization also exists in
many other visual areas.

Topographical representations are not restricted to cortical areas devoted to vi-
sion, but are present in various forms throughout the brain. Examples include the
tonotopic map (frequency-based organization) in the primary auditory cortex and
the complete body map for the sense of touch. In fact, one might be pressed to find
a brain area that would not exhibit any sort of topography.

3.7 Processing after the Primary Visual Cortex

From V1, the visual signals are sent to other areas, such as V2, V4, and V5, called
extra-striate as another name for V1 is the “striate cortex”. The function of some
of these areas (mainly V5, which analyzes motion) is relatively well understood,
but the function of most of them is not really understood at all. For example, it
is assumed that V2 is the next stage in the visual processing, but the differences
in the features computed in V1 and V2 are not really known. V4 has been vari-
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ously described as being selective to long contours, corners, crosses, circles, “non-
Cartesian” gratings, color, or temporal changes (see the references section below).
Another problem is that the extra-striate cortex may be quite different in humans
and monkeys (not to mention other experimental animals), so results from animal
experiments may not generalize to humans.

3.8 References

Among general introductions to the visual system, see, e.g. Palmer (1999). A most
interesting review of the state of modeling of the visual cortex, with extensive ref-
erences to experiments, is in Carandini et al. (2005).

For a textbook account of reverse correlation, see e.g. Dayan and Abbott (2001);
reviews are Ringach and Shapley (2004), Simoncelli et al. (2004). Classic appli-
cation of reverse correlation for estimating simple cell receptive fields is Jones
and Palmer (1987a, 1987b), Jones et al. (1987). For spatiotemporal extensions, see
DeAngelis et al. (1993a, 1993b). LGN responses are estimated, e.g. in Cai et al.
(1997), and retinal ones, e.g. in Davis and Naka (1980).

The non-linearities in neuron responses are measured in Anzai et al. (1999b),
Ringach and Malone (2007); theoretical studies include Hansel and van Vreeswijk
(2002), Miller and Troyer (2002). These studies concentrate on the “thresholding”
part of the non-linearity, ignoring saturation. Reverse correlation in the presence of
non-linearities is considered in Nykamp and Ringach (2002).

A review on contrast gain control can be found in Carandini (2004). The divisive
normalization model is considered in Heeger (1992), Carandini et al. (1997, 1999).
More on the interactions can be found in Albright and Stoner (2002). For review of
the topographic organization in different parts of the cortex, see Mountcastle (1997).

A discussion on our ignorance of V2 function can be found in Boynton and
Hedgé (2004). Proposed selectivities in V4 include long contours (Pollen et al.
2002), corners and related features (Pasupathy and Connor 1999, 2001), crosses,
circles, and other non-Cartesian gratings (Gallant et al. 1993; Wilkinson et al. 2000),
as well as temporal changes (Gardner et al. 2005). An alternative viewpoint is that
the processing might be quite similar in most extra-striate areas, the main differ-
ence being the spatial scale (Hegdé and Essen 2007). A model of V5 is proposed in
Simoncelli and Heeger (1998).

Basic historical references on the visual cortex include Hubel and Wiesel (1962,
1963, 1968, 1977).

3.9 Exercises

Mathematical Exercises

1. Show that the addition of a mask which is orthogonal to the receptive field, as in
Sect. 3.5 should not change the output of the cell in the linear model.
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2. What is the justification for using the same letter d for the constants in (3.6)
and (3.7)?

Computer Assignments

1. Plot function in (3.7) and compare with the function in (3.6).
2. Receptive fields in the ganglion cells and the LGN are often modeled as a

“difference-of-Gaussians” model in which W(x,y) is defined as

exp

(
− 1

2σ 2
1

[
(x − x0)

2 + (y − y0)
2]
)

− a exp

(
− 1

2σ 2
2

[
(x − x0)

2 + (y − y0)
2]
)

. (3.10)

Plot the receptive fields for some choices of the parameters. Find some parameter
values that reproduce a center-surround receptive field.



Chapter 4
Multivariate Probability and Statistics

This chapter provides the theoretical background in probability theory and statis-
tical estimation needed in this book. This is not meant as a first introduction to
probability, however, and the reader is supposed to be familiar with the basics of
probability theory. The main emphasis here is on the extension of the basic notions
to multidimensional data.

4.1 Natural Images Patches as Random Vectors

To put the theory on a concrete basis, we shall first discuss the fundamental idea on
how natural image patches can be considered as a random vector.

A random vector is a vector whose elements are random variables. Randomness
can be defined in different ways. In probability theory, it is usually formalized by
assuming that the value of the random variable or vector depends on some other
variable (“state of the world”) whose value we do not know. So, the randomness is
due to our ignorance.

In this book, an image patch I is typically modeled as a random vector, whose
obtained values (called “observations”) are the numerical grey-scale values of pixels
in a patch (window) of a natural image. A patch simply means a small sub-image,
such as the two depicted in Fig. 1.4. We use small patches because whole images
have too large dimensions for existing computers (we must be able to perform com-
plicated computations on a large number of such images or patches). A typical patch
size we use in this book is 32 × 32 pixels.

To get one observation of the random vector in question, we randomly select one
of the images in the image set we have, and then randomly select the location of the
image patch. The randomness of the values in the vector stems from the fact that
the patch is taken in some “random” position in a “randomly” selected image from
our database. The “random” position and image selection are based on a random
number generator implemented in a computer.

It may be weird to call an image patch a “vector” as it is two-dimensional and
could also be called a matrix. However, for the purposes of most of this book, a two-
dimensional image patch has to be treated like a one-dimensional vector, or a point
in the image space, as was illustrated in Fig. 1.5. (A point and a vector are basi-
cally the same thing in this context.) This is because observed data are typically
considered to be such vectors in statistics, and matrices are used for something
quite different (that is, to represent linear transformations, see Sect. 19.3 for de-
tails). In practical calculations, one often has to transform the image patches into
one-dimensional vectors, i.e. “vectorize” them. Such a transformation can be done
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in many different ways, for example by scanning the numerical values in the matrix
row-by-row; the statistical analysis of the vector is not at all influenced by the choice
of that transformation. In most of the chapters in this book, it is assumed that such
a transformation has been made.

On a more theoretical level, the random vector can also represent the whole set of
natural images, i.e. each observation is one natural image, in which case the database
is infinitely large and does not exist in reality.

4.2 Multivariate Probability Distributions

4.2.1 Notation and Motivation

In this chapter, we will denote random variables by z1, z2, . . . , zn and s1, s2, . . . , sn
for some number n. Taken together, the random variables z1, z2, . . . , zn form
an n-dimensional random vector which we denote by z:

z =

⎛

⎜⎜⎜⎝

z1
z2
...

zn

⎞

⎟⎟⎟⎠ . (4.1)

Likewise, the variables s1, s2, . . . , sn can be collected to a random vector, denoted
by s.

Although we will be considering general random vectors, in order to make things
concrete, you can think of each zi as the grey-scale value of a pixel in the image
patch. In the simple case of two variables, z1 and z2, this means that you take sam-
ples of two adjacent pixels (say, one just to the right of the other). A scatter plot of
such a pixel pair is given in Fig. 4.1. However, this is by no means the only thing the
variables can represent; in most chapters of this book, we will also consider various
kinds of features which are random variables as well.

The fundamental goal of the models in this book is to describe the probability
distribution of the random vector of natural image patches. So, we need to next
consider the concept of a probability density function.

Fig. 4.1 Scatter plot of the
grey-scale values of two
neighboring pixels. The
horizontal axis gives the
value of the pixel on the left,
and the vertical axis gives the
value of the pixel on the right.
Each dot corresponds to one
observed pair of pixels
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Fig. 4.2 The pdf of a random variable at a point a gives the probability that the random variable
takes a value in a small interval [a, a + v], divided by the length of that interval, i.e. v. In other
words, the shaded area, equal to p(a)v, gives the probability that the variable takes a value in that
interval

4.2.2 Probability Density Function

A probability distribution of a random vector such as z is usually represented using
a probability density function (pdf). The pdf at a point in the n-dimensional space is
denoted by pz.

The definition of the pdf of a multidimensional random vector is a simple gen-
eralization of the definition of the pdf of a random variable in one dimension. Let
us first recall that definition. Denote by z a random variable. The idea is that we
take a small number v, and look at the probability that z takes a value in the interval
[a, a +v] for any given a. Then we divide that probability by v, and that is the value
of the probability density function at the point a. That is,

pz(a) = P(z is in [a, a + v])
v

. (4.2)

This principle is illustrated in Fig. 4.2. Rigorously speaking, we should take the
limit of an infinitely small v in this definition.

This principle is simple to generalize to the case of an n-dimensional random
vector. The value of the pdf function at a point, say a = (a1, a2, . . . , an), gives the
probability that an observation of z belongs to a small neighborhood of the point a,
divided by the volume of the neighborhood. Computing the probability that the val-
ues of each zi are between the values of ai and ai + v, we obtain

pz(a) = P(zi is in [ai, ai + v] for all i)

vn
(4.3)

where vn is the volume of the n-dimensional cube whose edges all have length v.
Again, rigorously speaking, this equation is true only in the limit of infinitely
small v.

A most important property of a pdf is that it is normalized: its integral is equal to
one

∫
pz(a) da = 1. (4.4)
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This constraint means that you cannot just take any non-negative function and say
that it is a pdf: you have to normalize the function by dividing it by its integral.
(Calculating such an integral can actually be quite difficult and sometimes leads to
serious problems, as discussed in Chap. 21).

For notational simplicity, we often omit the subscript z. We often also write p(z)
which means the value of pz at the point z. This simplified notation is rather am-
biguous because now z is used as an ordinary vector (like a above) instead of a
random vector. However, often it can be used without any confusion.

Example 1 The most classic probability density function for two variables is the
Gaussian, or normal, distribution. Let us first recall the one-dimensional Gaussian
distribution, which in the basic case is given by

p(z) = 1√
2π

exp

(
−1

2
z2
)

. (4.5)

It is plotted in Fig. 4.3b. This is the “standardized” version (mean is zero and vari-
ance is one), as explained below. The most basic case of a two-dimensional Gaussian
distribution is obtained by taking this one-dimensional pdf separately for each vari-
ables, and multiplying them together. (The meaning of such multiplication is that
the variables are independent, as will be explained below.) Thus, the pdf is given by

p(z1, z2) = 1

2π
exp

(
−1

2

(
z2

1 + z2
2

))
. (4.6)

A scatter plot of the distribution is shown in Fig. 4.3a. The two-dimensional pdf
itself is plotted in Fig. 4.3c.

Example 2 Let us next consider the following two-dimensional pdf:

p(z1, z2) =
{

1, if |z1| + |z2| < 1,

0, otherwise.
(4.7)

This means that the data is uniformly distributed inside a square which has been
rotated 45 degrees. A scatter plot of data from this distribution is shown in Fig. 4.4a.

4.3 Marginal and Joint Probabilities

Consider the random vector z whose pdf is denoted by pz. It is important to make
a clear distinction between the joint pdf and the marginal pdf’s. The joint pdf is
just what we called pdf above. The marginal pdf’s are what you might call the
“individual” pdf’s of zi , i.e. the pdf’s of those variables, pz1(z1),pz2(z2), . . . when
we just consider one of the variables and ignore the existence of the other variables.
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Fig. 4.3 a Scatter plot of the two-dimensional Gaussian distribution in (4.6). b The one-dimen-
sional standardized Gaussian pdf. As explained in Sect. 4.3, it is also the marginal distribution of
one of the variables in a, and furthermore, turns out to be equal to the conditional distribution of
one variable given the other variable. c The probability density function of the two-dimensional
Gaussian distribution

There is actually a simple connection between marginal and joint pdf’s. We can
obtain a marginal pdf by integrating the joint pdf over one of the variables. This is
sometimes called “integrating out”. Consider for simplicity the case where we only
have two variables, z1 and z2. Then the marginal pdf of z1 is obtained by

pz1(z1) =
∫

pz(z1, z2) dz2. (4.8)

This is a continuous-space version of the intuitive idea that for a given value of z1,
we “count” how many observations we have with that value, going through all the
possible values of z2.1 (In this continuous-valued case, no observed values of z1 are

1Note again that the notation in (4.8) is sloppy, because now z1 in the parentheses, both on the left
and the right-hand side, stands for any value z1 might obtain, although the same notation is used
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Fig. 4.4 a Scatter plot of data obtained from the pdf in (4.7). b Marginal pdf of one of the variables
in a. c Conditional pdf of z2 given z1 = 0. d Conditional pdf of z2 given z1 = 0.75

likely to be exactly equal to the specified value, but we can use the idea of a small
interval centered around that value as in the definition of the pdf above.)

Example 3 In the case of the Gaussian distribution in (4.6), we have

p(z1) =
∫

p(z1, z2) dz2 =
∫

1

2π
exp

(
−1

2

(
z2

1 + z2
2

))
dz2

for the random quantity itself. A more rigorous notation would be something like:

pz1 (v1) =
∫

pz(v1, v2) dv2 (4.9)

where we have used two new variables, v1 to denote the point where we want to evaluate the
marginal density, and v2 which is the integration variable. However, in practice we often do not
want to introduce new variable names in order to keep things simple, so we use the notation in (4.8).
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= 1√
2π

exp

(
−1

2
z2

1

)∫
1√
2π

exp

(
−1

2
z2

2

)
dz2. (4.10)

Here, we used the fact that the pdf is factorizable since exp(a + b) = exp(a) exp(b).
In the last integral, we recognize the pdf of the one-dimensional Gaussian distribu-
tion of zero mean and unit variance given in (4.5). Thus, that integral is one, because
the integral of any pdf is equal to one. This means that the marginal distribution
p(z1) is just the classic one-dimensional standardized Gaussian pdf.

Example 4 Going back to our example in (4.7), we can calculate the marginal pdf
of z1 to equal

pz1(z1) =
{

1 − |z1|, if |z1| < 1,

0, otherwise
(4.11)

which is plotted in Fig. 4.4b, and shows the fact that there is more “stuff” near
the origin, and no observation can have an absolute value larger than one. Due to
symmetry, the marginal pdf of z2 has exactly the same form.

4.4 Conditional Probabilities

Another important concept is the conditional pdf of z2 given z1. This means the pdf
of z2 when we have observed the value of z1. Let us denote the observed value of
z1 by a. Then conditional pdf is basically obtained by just fixing the value of z1 to
a in the pdf, which gives pz(a, z2). However, this is not enough because a pdf must
have an integral equal to one. Therefore, we must normalize pz(a, z2) by dividing
it by its integral. Thus, we obtain the conditional pdf, denoted by p(z2 | z1 = a) as

p(z2 | z1 = a) = pz(a, z2)∫
pz(a, z2)dz2

. (4.12)

Note that the integral in the denominator equals the marginal pdf of z1 at point a, so
we can also write

p(z2 | z1 = a) = pz(a, z2)

pz1(a)
. (4.13)

Again, for notational simplicity, we can omit the subscripts and just write

p(z2 | z1 = a) = p(a, z2)

p(a)
(4.14)

or, we can even avoid introducing the new quantity a and write

p(z2 | z1) = p(z1, z2)

p(z1)
. (4.15)
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Example 5 For the Gaussian density in (4.6), the computation of the conditional pdf
is quite simple, if we use the same factorization as in (4.10):

p(z2|z1) = p(z1, z2)

p(z1)
=

1√
2π

exp(− 1
2z2

1)
1√
2π

exp(− 1
2z2

2)

1√
2π

exp(− 1
2z2

1)

= 1√
2π

exp

(
−1

2
z2

2

)
(4.16)

which turns out to be the same as the marginal distribution of z2. (This kind of
situation where p(z2|z1) = p(z2) is related to independence as discussed in Sect. 4.5
below.)

Example 6 In our example pdf in (4.7), the conditional pdf changes quite a lot as a
function of the value a of z1. If z1 is zero (i.e. a = 0), the conditional pdf of z2 is
the uniform density in the interval [−1,1]. In contrast, if z1 is close to 1 (or −1),
the values that can be taken by z2 are quite small. Simply fixing z1 = a in the pdf,
we have

p(a, z2) =
{

1, if |z2| < 1 − |a|,
0, otherwise

(4.17)

which can be easily integrated:

∫
p(a, z2) dz2 = 2

(
1 − |a|). (4.18)

(This is just the length of the segment in which z2 is allowed to take values.) So, we
get

p(z2|z1) =
{

1
2−2|z1| , if |z2| < 1 − |z1|,
0, otherwise

(4.19)

where we have replaced a by z1. This pdf is plotted for z1 = 0 and z1 = 0.75 in
Figs. 4.4a and b, respectively.

Generalization to Many Dimensions The concepts of marginal and conditional
pdf’s extend naturally to the case where we have n random variables instead of just
two. The point is that instead of two random variables, z1 and z2, we can have two
random vectors, say z1 and z2, and use exactly the same formulas as for the two
random variables. So, starting with a random vector z, we take some of its variables
and put them in the vector z1, and leave the rest in the vector z2

z =
(

z1
z2

)
. (4.20)
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Now, the marginal pdf of z1 is obtained by the same integral formula as above:

pz1(z1) =
∫

pz(z1, z2) dz2 (4.21)

and, likewise, the conditional pdf of z2 given z1 is given by:

p(z2 | z1) = p(z1, z2)

p(z1)
. (4.22)

Both of these are, naturally, multidimensional pdf’s.

Discrete-Valued Variables For the sake of completeness, let us note that these
formulas are also valid for random variables with discrete values; then the integrals
are simply replaced by sums. For example, for the conditional probabilities, we
simply have

P(z2 | z1) = Pz(z1, z2)

Pz1(z1)
(4.23)

where marginal probability of z1 can be computed as

Pz1(z1) =
∑

z2

Pz(z1, z2). (4.24)

4.5 Independence

Let us consider two random variables, z1 and z2. Basically, the variables z1 and z2

are said to be statistically independent if information on the value taken by z1 does
not give any information on the value of z2, and vice versa.

As an example, let us consider again the grey-scale values of two neighboring
pixels. As in Fig. 4.1, we go through many different locations in an image in random
order, and take the grey-scale values of the pixels as the observed values of the two
random variables. These random variables will not be independent. One of the basic
statistical properties of natural images is that two neighboring pixels are dependent.
Intuitively, it is clear that two neighboring pixels tend to have very similar grey-scale
values: If one of them is black, then the other one is black with a high probability, so
they do give information on each other. This is seen in the oblique shape (having an
angle of 45 degrees) of the data “cloud” in Fig. 4.1. Actually, the grey-scale values
are correlated, which is a special form of dependence as we will see below.

The idea that z1 gives no information on z2 can be intuitively expressed using
conditional probabilities: the conditional probability p(z2 | z1) should be just the
same as p(z2):

p(z2 | z1) = p(z2) (4.25)
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for any observed value a of z1. This implies

p(z1, z2)

p(z1)
= p(z2) (4.26)

or

p(z1, z2) = p(z1)p(z2) (4.27)

for any values of z1 and z2. Equation (4.27) is usually taken as the definition of
independence because it is mathematically so simple. It simply says that the joint
pdf must be a product of the marginal pdf’s. The joint pdf is then called factorizable.

The definition is easily generalized to n variables z1, z2, . . . , zn, in which case it
is

p(z1, z2, . . . , zn) = p(z1)p(z2) . . . p(zn). (4.28)

Example 7 For the Gaussian distribution in (4.6) and Fig. 4.3, we have

p(z1, z2) = 1√
2π

exp

(
−1

2
z2

1

)
× 1√

2π
exp

(
−1

2
z2

2

)
. (4.29)

So, we have factorized the joint pdf as the product of two pdf’s, each of which
depends on only one of the variables. Thus, z1 and z2 are independent. This can
also be seen in the form of the conditional pdf in (4.16), which does not depend on
the conditioning variable at all.

Example 8 For our second pdf in (4.7), we computed the conditional pdf p(z2|z1)

in (4.19). This is clearly not the same as the marginal pdf in (4.11); it depends on z1.
So, the variables are not independent. (See the discussion just before (4.17) for an
intuitive explanation of the dependencies.)

Example 9 Consider the uniform distribution on a square:

p(z1, z2) =
{

1
12 , if |z1| ≤

√
3 and |z2| ≤

√
3,

0, otherwise.
(4.30)

A scatter plot from this distribution is shown in Fig. 4.5. Now, z1 and z2 are indepen-
dent because the pdf can be expressed as the product of the marginal distributions,
which are

p(z1) =
{

1
2
√

3
, if |z1| ≤

√
3,

0, otherwise
(4.31)

and the same for z2.
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Fig. 4.5 A scatter plot of the
two-dimensional uniform
distribution in (4.30)

4.6 Expectation and Covariance

4.6.1 Expectation

The expectation of a random vector, or its “mean” value is, in theory, obtained by
the same kind of integral as for a single random variable

E{z} =
∫

pz(z)zdz. (4.32)

In practice, the expectation can be computed by taking the expectation of each vari-
able separately, completely ignoring the existence of the other variables

E{z} =

⎛

⎜⎜⎜⎝

E{z1}
E{z2}

...

E{zn}

⎞

⎟⎟⎟⎠=

⎛

⎜⎜⎜⎝

∫
pz1(z1)z1 dz1∫
pz2(z2)z2 dz2

...∫
pzn(zn)zn dzn

⎞

⎟⎟⎟⎠ . (4.33)

The expectation of any transformation g, whether one- or multi-dimensional, can be
computed as:

E{g(z)} =
∫

pz(z)g(z) dz. (4.34)

The expectation is a linear operation, which means

E{az + bs} = aE{z} + bE{s} (4.35)

for any constants a and b. In fact, this generalizes to any multiplication by a ma-
trix M:

E{Mz} = ME{z}. (4.36)
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4.6.2 Variance and Covariance in One Dimension

The variance of a random variable is defined as

var(z1) = E
{
z2

1

}− (E{z1}
)2

. (4.37)

This can also be written var(z1) = E{(z1 −E{z1})2}, which more clearly shows how
variance measures average deviation from the mean value.

When we have more than one random variable, it is useful to analyze the covari-
ance:

cov(z1, z2) = E{z1z2} − E{z1}E{z2} (4.38)

which measures how well we can predict the value of one of the variables using a
simple linear predictor, as will be seen below.

The covariance is often normalized to yield the correlation coefficient

corr(z1, z2) = cov(z1, z2)√
var(z1)var(z2)

(4.39)

which is invariant to the scaling of the variables, i.e. it is not changed if one or both
of the variables is multiplied by a constant.

If the covariance is zero, which is equivalent to saying that the correlation coef-
ficient is zero, the variables are said to be uncorrelated.

4.6.3 Covariance Matrix

The variances and covariances of the elements of a random vector z are often col-
lected to a covariance matrix whose i, j th element is simply the covariance of zi

and zj :

C(z) =

⎛

⎜⎜⎜⎝

cov(z1, z1) cov(z1, z2) . . . cov(z1, zn)

cov(z2, z1) cov(z2, z2) . . . cov(z2, zn)
...

. . .
...

cov(zn, z1) cov(zn, z2) . . . cov(zn, zn)

⎞

⎟⎟⎟⎠ . (4.40)

Note that the covariance of zi with itself is the same as the variance of zi . So,
the diagonal of the covariance matrix gives the variances. The covariance matrix
is basically a generalization of variance to random vectors: in many cases, when
moving from a single random variable to random vectors, the covariance matrix
takes the place of variance.

In matrix notation, the covariance matrix is simply obtained as a generalization
of the one-dimensional definitions in (4.38) and (4.37) as

C(z) = E
{
zzT}−E{z}E{z}T (4.41)
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where taking the transposes in the correct places is essential. In most of this book,
we will be dealing with random variables whose means are zero, in which case the
second term in (4.41) is zero.

If the variables are uncorrelated, the covariance matrix is diagonal. If they are
all further standardized to unit variance, the covariance matrix equals the identity
matrix.

The covariance matrix is the basis for the analysis of natural images in the next
chapter. However, in many further chapters, the covariance matrix is not enough,
and we need further concepts, such as independence, so we need to understand the
connection between these concepts.

4.6.4 Independence and Covariances

A most important property of independent random variables z1 and z2 is that the
expectation of any product of a function of z1 and a function of z2 is equal to the
product of the expectations:

E
{
g1(z1)g2(z2)

}= E
{
g1(z1)

}
E
{
g2(z2)

}
(4.42)

for any functions g1 and g2. This implies that independent variables are uncorre-
lated, since we can take g1(z) = g2(z) = z, in which case equation (4.42) simply
says that the covariance is zero.

Example 10 In the standardized Gaussian distribution in (4.6), the means of both z1
and z2 are zero, and their variances are equal to one (we will not try to prove this
here). Actually, the word “standardized” means exactly that the means and variances
have been standardized in this way. The covariance cov(z1, z2) equals zero, because
the variables are independent, and thus uncorrelated.

Example 11 What would be the covariance of z1 and z2 in our example pdf in (4.7)?
First, we have to compute the means. Without computing any integrals, we can actu-
ally see that E{z1} = E{z2} = 0 because of symmetry: both variables are symmetric
with respect to the origin, so their means are zero. This can be justified as follows:
take a new variable y = −z1. Because of symmetry of the pdf with respect to zero,
the change of sign has no effect and the pdf of y is just the same as the pdf of z1.
Thus, we have

E{y} = E{−z1} = −E{z1} = E{z1} (4.43)

which implies that E{z1} = 0. Actually, the covariance is zero because of the same
kind of symmetry with respect to zero. Namely, we have cov(y, z2) = cov(z1, z2)

because again, the change of sign has no effect and the joint pdf of y, z2 is just
the same as the pdf of z1, z2. This means cov(y, z2) = E{(−z1)z2} = −E{z1z2} =
E{z1z2}. This obviously implies that the covariance is zero. The covariance matrix
of the vector z is thus diagonal (we don’t bother to compute the diagonal elements,
which are the variances).
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Fig. 4.6 A scatter plot of the
distribution created by the
dependence relation in (4.44)

Example 12 Let’s have a look at a more classical example of covariances. Assume
that z1 has mean equal to zero and variance equal to one. Assume that n (a “noise”
variable) is independent from z1. Let us consider a variable z2 which is a linear
function of x, with noise added:

z2 = az1 + n. (4.44)

What is the covariance of the two variables? We can calculate

cov(z1, z2) = E
{
z1(az1 + n)

}+ 0 × E{z2} = aE
{
z2

1

}+ E{z1n}
= a + E{z1}E{n} = a + 0 × E{z1} = a. (4.45)

Here, we have the equality E{z1n} = E{z1}E{n} because of the uncorrelatedness
of z1 and n, which is implied by their independence. A scatter plot of such data,
created for parameter a set at 0.5 and with noise variance var(n) = 1, is shown in
Fig. 4.6. The covariance matrix of the vector z = (z1, z2) is equal to

C(z) =
(

1 a

a 1

)
. (4.46)

Example 13 White noise refers to a collection of random variables which are inde-
pendent and have the same distribution. (In some sources, only uncorrelatedness is
required, not independence, but in this book the definition of white noise includes
independence.) Depending on the context, the variables could be the value of noise
at different time points n(t), or at different pixels N(x,y). In the first case, white
noise in the system is independent at different time points; in the latter, noise at dif-
ferent pixels is independent. When modeling physical noise, which can be found in
most measurement devices, it is often realistic and mathematically simple to assume
that the noise is white.
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4.7 Bayesian Inference

Bayesian inference is a framework that has recently been increasingly applied to
model such phenomena as perception and intelligence. There are two viewpoints on
what Bayesian inference is.

1. Bayesian inference attempts to infer underlying causes when we observe their
effects.

2. Bayesian inference uses prior information on parameters in order to estimate
them better.

Both of these goals can be accomplished by using the celebrated Bayes’ formula,
which we will now explain.

4.7.1 Motivating Example

Let us start with a classic example. Assume that we have a test for a rare genetic
disorder. The test is relatively reliable but not perfect. For a patient with the disor-
der, the probability of a positive test result is 99%, whereas for a patient without the
disorder, the probability of a positive test is only 2%. Let us denote the test result
by t and the disorder by d . A positive test result is expressed as t = 1 and a neg-
ative one as t = 0. Likewise, d = 1 means that the patient really has the disorder,
whereas d = 0 means the patients doesn’t. Then the specifications we just gave can
be expressed as the following conditional probabilities:

P(t = 1 | d = 1) = 0.99, (4.47)

P(t = 1 | d = 0) = 0.02. (4.48)

Because probabilities sum to one, we immediately find the following probabilities
as well:

P(t = 0 | d = 1) = 0.01, (4.49)

P(t = 0 | d = 0) = 0.98. (4.50)

Now, the question we want to answer is: Given a positive test result, what is the
probability that the patient has the disorder? Knowing this probability is, of course,
quite important when applying this medical test. Basically, we then want to compute
the conditional probability of the form p(d = 1 | t = 1). The order of the variables
in this conditional probability is reversed from the formulas above. This is because
the formulas above gave us the observable effects given the causes, but now we want
to know the causes, given observations of their effects.

To find that probability, let’s try to use the definition in (4.23)

P(d = 1 | t = 1) = P(d = 1, t = 1)

P (t = 1)
(4.51)
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which presents us with two problems: We know neither the denominator nor the nu-
merator. To get further, let’s assume we know the marginal distribution P(d). Then
we can easily find the numerator by using the definition of conditional probability

P(d = 1, t = 1) = P(t = 1 | d = 1)P (d = 1) (4.52)

and after some heavy thinking, we see that we can also compute the denominator
in (4.51) by using the formula for marginal probability:

P(t = 1) = P(d = 1, t = 1) + P(d = 0, t = 1) (4.53)

which can be computed once we know the joint probabilities by (4.52) and its cor-
responding version with d = 0. Thus, in the end, we have

P(d = 1 | t = 1) = P(t = 1 | d = 1)P (d = 1)

P (t = 1 | d = 1)P (d = 1) + P(t = 1 | d = 0)P (d = 0)
.

(4.54)
So, we see that the key to inferring the causes from observed effects is to know

the marginal distribution of the causes, in this case P(d). This distribution is also
called the prior distribution of d , because it incorporates our knowledge of the cause
d prior to any observations. For example, let’s assume 0.1% of the patients given this
test have the genetic disorder. Then before the test our best guess is that a given pa-
tient has the disorder with the probability of 0.001. However, after making the test,
we have more information on the patient, and that information is given by the con-
ditional distribution P(d | t = 1) which we are trying to compute. This distribution,
which incorporates both our prior knowledge on d and the observation of t , is called
the posterior probability.

To see a rather surprising phenomenon, let us plug in the value P(d = 1) = 0.001
as the prior probability of disorder in (4.54). Then we can calculate

P(d = 1 | t = 1) = 0.99 × 0.001

0.99 × 0.001 + 0.02 × (1 − 0.001)
≈ 0.05. (4.55)

Thus, even after a positive test result, the probability that the patient has the disorder
is approximately 5%. Many people find this quite surprising, because they would
have guessed that the probability is something like 99%, as the test gives the right
result in 99% of the cases.

This posterior probability depends very much on the prior probability. Assume
that half the tested patients actually have the disorder, P(d = 1) = 0.5. Then the
posterior probability is 99%. This prior actually gives us no information because the
chances are 50–50, and the 99% accuracy of the test is directly seen in the posterior
probability.

Thus, in cases where the prior assigns very different probabilities to different
causes, Bayesian inference shows that the posterior probabilities of the causes can
be very different from what one might expect by just looking at the effects.
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4.7.2 Bayes’ Rule

The logic of the previous section was actually the proof of the celebrated Bayes’
rule. In the general case, we consider a continuous-valued random vector s that
gives the causes and z that gives the observed effects. The Bayes’ rule then takes the
form

p(s | z) = p(z | s)ps(s)∫
p(z | s)ps(s) ds

(4.56)

which is completely analogous to (4.54) and can be derived in the same way. This
is the Bayes’ rule, in one of its formulations. It gives the posterior distribution of s
based on its prior distribution p(s) and the conditional probabilities p(z|s). Note
that instead of random variables, we can directly use vectors in the formula without
changing anything.

To explicitly show what is random and what is observed in Bayes rule, we should
rewrite it as

p(s = b | z = a) = pz|s(a | b)ps(b)∫
pz|s(a | u)ps(u) du

(4.57)

where pz|s(a|b) is the conditional probability p(z = a|s = b), a is the observed
value of z, and b is a possible value of s. This form is, of course, much more difficult
to read than (4.56).

In theoretical treatment, Bayes rule can sometimes be simplified because the de-
nominator is actually equal to p(z), which gives

p(s | z) = p(z | s)ps(s)
pz(z)

. (4.58)

However, in practice, we usually have to use the form in (4.56) because we do not
know how to directly compute pz.

The prior ps contains the prior information on the random variable s. The con-
ditional probabilities p(z | s) show the connection between the observed quantity z
(the “effect”) and the underlying variable s (the “cause”).

Where do we get the prior distribution p(s)? In some cases, p(s) can be esti-
mated, because we might be able to observe the original s. In the medical example
above, the prior distribution p(d) can be estimated if some of the patients are sub-
jected to additional tests which are much more accurate (thus usually much more
expensive) so that we really know for sure how many of the patients have the dis-
order. In other cases, the prior might be formulated more subjectively, based on the
opinion of an expert.

4.7.3 Non-informative Priors

Sometimes, we have no information on the prior probabilities ps. Then we should
use a non-informative prior that expresses this fact. In the case of discrete variables,
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a non-informative prior is one that assigns the same probability to all the possible
values of s (e.g. 50% probability of a patient to have the disorder or not).

In the case of continuous-valued priors defined in the whole real line [−∞,∞],
the situation is a bit more complicated. If we take a “flat” pdf that is constant,
p(s) = c, it cannot be a real pdf because the integral of such a pdf is infinite (or zero
if c = 0). Such a prior is called improper. Still, they can often be used in Bayesian
inference even though the non-integrability may pose some theoretical problems.

What happens in the Bayes rule if we take such a flat, non-informative prior? We
get

p(s | z) = p(z | s)c∫
p(z | s)c ds

= p(z | s)∫
p(z | s) ds

. (4.59)

The denominator does not depend on s (this is always true in Bayes’ rule), so we see
that p(s | z) is basically the same of p(z | s); it is just rescaled so that the integral
is equal to one. What this shows is that if we have no information on the prior
probabilities, the probabilities of effects given the causes are simply proportional to
the probabilities of causes given the effects. However, if the prior p(s) is far from
flat, these two probabilities can be very different from each other, as the example
above showed in the case where the disorder is rare.

4.7.4 Bayesian Inference as an Incremental Learning Process

The transformation from the prior probability p(s) to p(s | z) can be compared to an
incremental (on-line) learning process where a biological organism receives more
and more information in an uncertain environment.

In the beginning, the organism’s belief about the value of a quantity s is the
prior probability p(s). Here, we assume that the organism performs probabilistic
inference: the organism does not “think” that it knows the value of s with certainty;
rather, it just assigns probabilities to different values s might take. This does not
mean that we assume the organism is highly intelligent and knows Bayes’ rule.
Rather, we assume that the neural networks in the nervous system of the organism
have evolved to perform something similar.

Then the organism receives information via sensory organs or similar means.
A statistical formulation of “incoming information” is that the organism observes
the value of a random variable z1. Now, the belief of the organism is expressed by
the posterior pdf p(s | z1). This pdf gives the probabilities that the organism assigns
to different values of s.

Next, assume that the organism observes another piece of information, say z2.
Then the organism’s belief is changed to p(s | z1, z2)

p(s | z1, z2) = p(z1, z2 | s)p(s)
p(z1, z2)

. (4.60)
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Fig. 4.7 Computation of posterior as an incremental learning process. Given the current prior, the
organism observes the input z, and computes the posterior p(s|z). The prior is then replaced by
this new posterior, which is used as the prior in the future

Assume further that z2 is independent from z1 given s, which means p(z1, z2 | s) =
p(z1 | s)p(z2 | s) (see Sect. 4.5 for more on independence). Then the posterior be-
comes

p(s | z1, z2) = p(z1 | s)p(z2 | s)p(s)
p(z1)p(z2)

= p(z2 | s)
p(z2)

p(z1 | s)p(s)
p(z1)

. (4.61)

Now, the expression p(z1 | s)p(s)/p(z1) is nothing but the posterior p(s | z1) that
the organism computed previously. So, we have

p(s | z1, z2) = p(z2 | s)p(s | z1)

p(z2)
. (4.62)

The right-hand side is just like the Bayes’ rule applied on s and z2 but instead of the
prior p(s) it has p(s | z1). Thus, the new posterior (after observing z2) is computed
as if the previous posterior were a prior.

This points out an incremental learning interpretation of Bayes rule. When the
organism observes new information (new random variables), it updates its belief
about the world by the Bayes rule, where the current belief is taken as the prior, and
the new belief is computed as the posterior. This is illustrated in Fig. 4.7

Such learning can happen on different time scales. It could be that s is a very
slowly changing parameter, say, the length of the arms (or tentacles) of the organism.
In that case, the organism can collect a large number of observations over time, and
the belief would change very slowly. The first “prior” belief that the organism may
have had before collection of any data, eventually loses its significance (see next
section).

On the other hand, s could be a quantity that has to be computed instantaneously,
say, the probability that the animal in front of you is trying to eat you. Then only
a few observed quantities (given by the current visual input) are available. Such
inference can then be heavily influenced by the prior information that the organism
has at the moment of encountering the animal. For example, if the animal is small
and cute, the prior probability is small, and even if the animal seems to behaves in
an aggressive way, you will probably infer that it is not going to try to eat you.
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4.8 Parameter Estimation and Likelihood

4.8.1 Models, Estimation, and Samples

A statistical model describes the pdf of the observed random vector using a number
of parameters. The parameters typically have an intuitive interpretation; for exam-
ple, in this book, they often define image features. A model is basically a conditional
density of the observed data variable, p(z | α), where α is the parameter. The para-
meter could be a multidimensional vector as well. Different values of the parameter
imply different distributions for the data, which is why this can be thought of as a
conditional density.

For example, consider the one-dimensional Gaussian pdf

p(z | α) = 1√
2π

exp

(
−1

2
(z − α)2

)
. (4.63)

Here, the parameter α has an intuitive interpretation as the mean of the distribution.
Given α, the observed data variable z then takes values around α, with variance
equal to one.

Typically, we have a large number of observations of the random variable z,
which might come from measuring some phenomenon n times, and these observa-
tions are independent. The set of observations is called a sample in statistics.2 So,
we want to use all the observations to better estimate the parameters. For example,
in the model in (4.63), it is obviously not a very good idea to estimate the mean of
the distribution based on just a single observation.

Estimation has a very boring mathematical definition, but basically it means that
we want to find a reasonable approximation of the value of the parameter based on
the observations in the sample. A method (a formula or an algorithm) that estimates
α is called an estimator. The value given by the estimator for a particular sample is
called an estimate. Both are usually denoted by a hat: α̂.

Assume we now have a sample of n observations. Let us denote the observed
values by z(1), z(2), . . . , z(n). Because the observations are independent, the joint
probability is simply obtained by multiplying the probabilities of the observations,
so we have

p
(
z(1), z(2), . . . , z(n) | α)= p

(
z(1) | α)×p

(
z(2) | α)×· · ·×p

(
z(n) | α). (4.64)

This conditional density is called the likelihood. It is often simpler to consider the
logarithm, which transforms products into sums. If we take the logarithm, we have

2In signal processing, sampling refers the process of reducing a continuous signal to a discrete
signal. For example, an image I (x, y) with continuous-valued coordinates x and y is reduced to
a finite-dimensional vector in which the coordinates x and y take only a limited number of values
(e.g. as on a rectangular grid). These two meanings of the word “sample” need to be distinguished.
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the log-likelihood as

logp
(
z(1), z(2), . . . , z(n) | α) = logp

(
z(1) | α)+ logp

(
z(2) | α)+ · · ·

+ logp
(
z(n) | α). (4.65)

4.8.2 Maximum Likelihood and Maximum a Posteriori

The question is then, How can we estimate α? In a Bayesian interpretation, we can
consider the parameters as “causes” in Bayes’ rule, and the observed data are the
effects. Then the estimation of the parameters means that we compute the posterior
pdf of the parameters using Bayes rule:

p(α | z(1), . . . , z(n)) = p(z(1), . . . , z(n) | α)p(α)

p(z(1), . . . , z(n))
. (4.66)

In estimating parameters of the model, one usually takes a flat prior, i.e. p(α) = c.
Moreover, the term p(z(1), . . . , z(n)) does not depend on α, it is just for normaliza-
tion, so we don’t need to care about its value. Thus, we see that

p
(
α | z(1), . . . , z(n)

)= p
(
z(1), z(2), . . . , z(n) | α)× const. (4.67)

the posterior of the parameters is proportional to the likelihood in the case of a flat
prior.

Usually, we want a single value as an estimate. Thus, we have to somehow sum-
marize the posterior distribution p(α | z(1), . . . , z(n)), which is a function of α. The
most widespread solution is to use the value of α that gives the highest value of the
posterior pdf. Such estimation is called maximum a posteriori (MAP) estimation.

In the case of a flat prior, the maximum of the posterior distribution is obtained at
the same point as the maximum of the likelihood, because likelihood is then propor-
tional to the posterior. Thus, the estimation is then called the maximum likelihood
estimator. If the prior is not flat, the maximum a posteriori estimator may be quite
different from the maximum likelihood estimator.

The maximum likelihood estimator has another intuitive interpretation: it gives
the parameter value that gives the highest probability for the observed data. This in-
terpretation is slightly different from the Bayesian interpretation that we used above.

Sometimes the maximum likelihood estimator can be computed by a simple al-
gebraic formula, but in most cases, the maximization has to be done numerically.
For a brief introduction to optimization methods, see Chap. 18.

Example 14 In the case of the model in (4.63), we have

logp(z | α) = −1

2
(z − α)2 + const. (4.68)
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Fig. 4.8 The exponential pdf
in (4.71) plotted for three
different values of α, which is
equal 1, 2, or 3. The value of
α is equal to the value of the
pdf at zero

where the constant is not important because it does not depend on α. So, we have
for a sample

logp
(
z(1), z(2), . . . , z(n) | α)= −1

2

n∑

i=1

(
z(i) − α

)2 + const. (4.69)

It can be shown (this is left as an exercise) that this is maximized by

α̂ = 1

n

n∑

i=1

z(i). (4.70)

Thus, the maximum likelihood estimator is given by the average of the observed
values. This is not a trivial result: in some other models, the maximum likelihood
estimator of such a location parameter is given by the median.

Example 15 Here’s an example of maximum likelihood estimation with a less ob-
vious result. Consider the exponential distribution

p(z|α) = α exp(−αz) (4.71)

where z is constrained to be positive. The parameter α determines how likely large
values are and what the mean is. Some examples of this pdf are shown in Fig. 4.8.
The log-pdf is given by

logp(z|α) = logα − αz (4.72)

so the log-likelihood for a sample equals

logp
(
z(1), z(2), . . . , z(n) | α)= n logα − α

n∑

i=1

z(i). (4.73)

To solve for the α which maximizes the likelihood, we take the derivative of this
with respect to α and find the point where it is zero. This gives

n

α
−

n∑

i=1

z(i) = 0 (4.74)
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from which we obtain

α̂ = 1
1
n

∑n
i=1 z(i)

. (4.75)

So, the estimate is the reciprocal of the mean of the z in the sample.

4.8.3 Prior and Large Samples

If the prior is not flat, we have the log-posterior

logp(α | z(1), z(2), . . . , z(n)) = logp(α) + logp(z(1) | α) + logp(z(2) | α) + · · ·
+ logp(z(n) | α) + const. (4.76)

which usually needs to be maximized numerically.
Looking at (4.76), we see an interesting phenomenon: when n grows large, the

prior loses its significance. There are more and more terms in the likelihood part,
and, eventually, they will completely determine the posterior because the single
prior term will not have any influence anymore. In other words, when we have a
very large sample, the data outweighs the prior information. This phenomenon is
related to the learning interpretation we discussed above: the organism eventually
learns so much from the incoming data that the prior belief it had in the very begin-
ning is simply forgotten.

4.9 References

Most of the material in this chapter is very classic. Most of it can be found in basic
textbooks to probability theory, while Sect. 4.8 can be found in introductory text-
books to the theory of statistics. A textbook covering both areas is Papoulis and
Pillai (2001). Some textbooks on probabilistic machine learning also cover all this
material, in particular Mackay (2003), Bishop (2006).

4.10 Exercises

Mathematical Exercises

1. Show that a conditional pdf as defined in (4.15) is properly normalized, i.e. its
integral is always equal to one.

2. Compute the mean and variance of a random variable distributed uniformly in
the interval [a, b] (b > a).

3. Consider n scalar random variables xi , i = 1,2, . . . , n, having, respectively, the
variances σ 2

xi
. Show that if the random variables xi are all uncorrelated, the vari-
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ance of their sum equals the sum of their variances

σ 2
y =

n∑

i=1

σ 2
xi

. (4.77)

4. Assume the random vector x has uncorrelated variables, all with unit variance.
Show that the covariance matrix equals the identity matrix.

5. Take a linear transformation of x in the preceding exercise: y = Mx for some
matrix M. Show that the covariance matrix of y equals MMT.

6. Show that the maximum likelihood estimator of the mean of a Gaussian distrib-
ution equals the sample average, i.e. (4.70).

7. Next we consider estimation of the variance parameter in a Gaussian distribution.
We have the pdf

p(z | σ) = 1√
2πσ

exp

(
− z2

2σ 2

)
. (4.78)

Formulate the likelihood and the log-likelihood, given a sample z(1), . . . , z(n).
Then find the maximum likelihood estimator for σ .

Computer Assignments

1. Generate 1000 samples of 100 independent observations of a Gaussian variable
of zero mean and unit variance (e.g. with Matlab’s randn function). That is, you
generate a matrix of size 1000 × 100 whose all elements are all independent
Gaussian observations.
a. Compute the average of each sample. This is the maximum likelihood estima-

tor of the mean for that sample.
b. Plot a histogram of the 1000 sample averages.
c. Repeat all the above, increasing the sample size to 1000 and to 10 000.
d. Compare the three histograms. What is changing?

2. Generate a sample of 10 000 observations of a two-dimensional random vector
x with independent standardized Gaussian variables. Put each observation in a
column and each random variable in a row, i.e. you have a 2 × 10 000 matrix,
denote it by X.
a. Compute the covariance matrix of this sample of x, e.g. by using the cov func-

tion in Matlab. Note that the transpose convention in Matlab is different from
what we use here, so you have to apply the cov function of the transpose of X.
Compare the result with the theoretical covariance matrix (what is its value?)

b. Multiply x (or in practice, X) from the left with the matrix

A =
(

2 3
0 1

)
. (4.79)

Compute the covariance matrix of Ax. Compare with AAT.



Part II
Statistics of Linear Features



Chapter 5
Principal Components and Whitening

The most classical method of analyzing the statistical structure of multi-dimensional
random data is principal component analysis (PCA), which is also called the
Karhunen–Loève transformation, or the Hotelling transformation. In this chapter,
we will consider the application of PCA to natural images. It will be found that it
is not a successful model in terms of modeling the visual system. However, PCA
provides the basis for all subsequent models. In fact, before applying the more suc-
cessful models described in the following chapters, PCA is often applied as a pre-
processing of the data. So, the investigation of the statistical structure of natural
images must start with PCA.

Before introducing PCA, however, we will consider a very simple and funda-
mental concept: the DC component.

5.1 DC Component or Mean Grey-Scale Value

To begin with, we consider a simple property of an image patch: its DC component.
The DC component refers to the mean grey-scale value of the pixels in an image or
an image patch.1 It is often assumed that the DC component does not contain inter-
esting information. Therefore, it is often removed from the image before any further
processing to simplify the analysis. Removing the DC component thus means that
we preprocess each image (in practice, image patch) as follows

Ĩ (x, y) = I (x, y) − 1

m

∑

x′,y′
I (x′, y′) (5.1)

where m is the number of pixels. All subsequent computations would then use Ĩ .
In Sect. 1.8, we looked at the outputs of some simple feature detectors when the

input is natural images. Let us see what the effect of DC removal is on the statistics
of these features; the features are depicted in Fig. 1.10 on page 19. Let us denote the
output of a linear feature detector with weights Wi(x, y) by s:

si =
∑

x,y

Wi(x, y)I (x, y). (5.2)

1The name “DC” comes from a rather unrelated context in electrical engineering, in which it origi-
nally meant “direct current” as opposed to “alternating current”. The expression has become rather
synonymous with “constant” in electrical engineering.

A. Hyvärinen, J. Hurri, P.O. Hoyer, Natural Image Statistics,
Computational Imaging and Vision 39,
© Springer-Verlag London Limited 2009
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Fig. 5.1 Effect of DC removal. These are histograms of the outputs of the filters in Fig. 1.10 when
the output is natural images whose DC component has been removed. Left: output of Dirac filter,
which is the same as the histogram of the original pixels themselves. Center: output of grating
feature detector. Right: output of edge detector. The scales of the axes are different from those in
Fig. 1.10

The ensuing histograms of the si , for the three detectors when input with natural
images, and after DC removal, are shown in Fig. 5.1. Comparing with Fig. 1.11 on
page 19, we can see that the first histogram changes radically, where as the latter two
do not. This is because the latter two filters were not affected by the DC component
in the first place, which is because the sum of their weight was approximately zero:∑

x,y W(x, y) = 0. Actually, the three histograms are now more similar to each
other: the main difference is in the scale. However, they are by no means identical,
as will be seen in the analyses of this book.

The effect of DC component removal depends on the size of the image patch.
Here, the patches were relatively small, so the removal had a large effect on the
statistics. In contrast, removing the DC component from whole images has little
effect on the statistics.

In the rest of this book, we will assume that the DC component has been removed
unless otherwise mentioned. Removing the DC component also means that the mean
of any s is zero; this is intuitively rather obvious but needs some assumptions to be
shown rigorously (see Exercises). Thus, in what follows, we shall assume that the
mean of any feature s is zero.

Some examples of natural image patches with DC component removed are shown
in Fig. 5.2. This is the kind of data analyzed in almost all of the rest of this book.

5.2 Principal Component Analysis

5.2.1 A Basic Dependency of Pixels in Natural Images

The point in PCA is to analyze the dependencies of the pixel grey-scale values
I (x, y) and I (x′, y′) for two different pixel coordinate pairs (x, y) and (x′, y′).
More specifically, PCA considers the second-order structure of natural images, i.e.
the variances and covariances of pixel values I (x, y).

If the pixel values were all uncorrelated, PCA would have nothing to analyze.
Even a rudimentary analysis of natural images shows, however, that the pixel values
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Fig. 5.2 Some natural image
patches, with DC component
removed

Fig. 5.3 Scatter plot of the grey-scale values of two neighboring pixels. a Original pixel values.
The values have been scaled so that the mean is zero and the variance one. b Pixel values after
removal of DC component in a 32 × 32 patch

are far from independent. It is intuitively rather clear that natural images are typi-
cally smooth in the sense that quite often, the pixel values are very similar in two
near-by pixels. This can be easily demonstrated by a scatter plot of the pixel values
for two neighboring pixels sampled from natural images. This is shown in Fig. 5.3.
The scatter plot shows that the pixels are correlated. In fact, we can compute the
correlation coefficient (equation (4.39)), and it turns out to be approximately equal
to 0.9.

Actually, we can easily compute the correlation coefficients of a single pixel with
all near-by pixels. Such a plot is shown in grey-scale in Fig. 5.4, both without re-
moval of DC component (in a) and with DC removal (in b). We see that the correla-
tion coefficients (and thus, the covariances) fall off with increasing distance. These
two plots, with or without DC removal, look rather similar because the plots use
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Fig. 5.4 The correlation coefficients of a pixel (in the middle) with all other pixels. a For original
pixels. Black is small positive white is one. b After removing DC component. The scale is different
from a: black is now negative and white is plus one. c A cross-section of a in 1D to show the actual
values. d A cross-section of b in 1D

different scales; the actual values are quite different. We can take one-dimensional
cross-sections to see the actual values. They are shown in Fig. 5.4c and d. We see
that without DC removal, all the correlation coefficients are strongly positive. Re-
moving the DC components reduces the correlations to some extent, and introduces
negative correlations.

5.2.2 Learning One Feature by Maximization of Variance

5.2.2.1 Principal Component as Variance-Maximizing Feature

The covariances found in natural images pixel values can be analyzed by PCA. In
PCA, the point is to find linear features that explain most of the variance of the data.
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Fig. 5.5 Illustration of PCA.
The principal component of
this (artificial)
two-dimensional data is the
oblique axis plotted.
Projection on the principal
axis explains more of the
variance of the data than
projection on any other axis

It is natural to start the definition of PCA by looking at the definition of the first
principal component. We consider the variance of the output:

var(s) = E
{
s2}− (E{s})2 = E

{
s2} (5.3)

where the latter equality is true because s has zero mean.
Principal components are features s that contain (or “explain”) as much of the

variance of the input data as possible. It turns out that the amount of variance ex-
plained is directly related to the variance of the feature, as will be discussed in
Sect. 5.3.1 below. Thus, the first principal component is defined as the feature, or
linear combination of the pixel values, which has the maximum variance. Finding a
feature with maximum variance can also be considered interesting in its own right.
The idea is to find the “main axis” of the data cloud, which is illustrated in Fig. 5.5.

Some constraint on the weights W , which we call the principal component
weights, must be imposed as well. If no constraint were imposed, the maximum
of the variance would be attained when W becomes infinitely large (and the min-
imum would be attained when all the W(x,y) are zero). In fact, just multiplying
all the weights in W by a factor of two, we would get a variance that is four times
as large, and by dividing all the coefficients by two the variance decreases to one
quarter.

A natural thing to do is to constrain the norm of W :

‖W‖ =
√∑

x,y

W(x, y)2. (5.4)

For simplicity, we constrain the norm to be equal to one, but any other value would
give the same results.
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Fig. 5.6 The feature detectors giving the first principal component of image windows of size
32 × 32, computed for ten different randomly sampled datasets taken from natural images. The
feature detector is grey-scale-coded so that the grey-scale value of a pixel gives the value of the
coefficient at that pixel. Grey pixels mean zero coefficients, light-grey or white pixels are positive,
and dark-grey or black are negative

5.2.2.2 Learning One Feature from Natural Images

What is then the feature detector that maximizes the variance of the output, given
natural image input, and under the constraint that the norm of the detector weights
equals one? We can find the solution by taking a random sample of image patches.
Let us denote by T the total number of patches used, and by It each patch, where
t is an index that goes from 1 to T . Then, the expectation of s2 can be approximated
by the average over this sample. Thus, we maximize

1

T

T∑

t=1

(∑

x,y

W(x, y)It (x, y)

)2

(5.5)

with respect to the weights in W(x,y), while constraining the values of W(x,y) so
that the norm in (5.4) is equal to one. The computation of the solution is discussed
in Sect. 5.2.4.

Typical solutions for natural images are shown in Fig. 5.6. The feature detector
is an object of the same size and shape as an image patch, so it can be plotted as an
image patch itself. To test whether the principal component weights are stable, we
computed it ten times for different image samples. It can be seen that the component
is quite stable.

5.2.3 Learning Many Features by PCA

5.2.3.1 Defining Many Principal Components

One of the central problems with PCA is that it basically gives only one well-defined
feature. It cannot be extended to the learning of many features in a very meaningful
way. However, if we want to model visual processing by PCA, it would be absurd
to compute just a single feature which would then be supposed to analyze the whole
visual scene.

Definition Typically, the way to obtain many principal components is by a “de-
flation” approach: After estimating the first principal component, we want to find
the feature of maximum variance under the constraint that the new feature must be
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orthogonal to the first one (i.e. the dot-product is zero, as in (5.8)). This will then
be called the second principal component. This procedure can be repeated to obtain
as many components as there are dimensions in the data space. To put this formally,
assume that we have estimated k principal components, given by the weight vectors
W1,W2, . . . ,Wk . Then the k +1-th principal component weight vector is defined by

max
W

var

(∑

x,y

I (x, y)W(x, y)

)
(5.6)

under the constraints

‖W‖ =
√∑

x,y

W(x, y)2 = 1, (5.7)

∑

x,y

Wj (x, y)W(x, y) = 0 for all j = 1, . . . , k. (5.8)

An interesting property is that any two principal components are uncorrelated, and
not only orthogonal. In fact, we could change the constraint in the definition to
uncorrelatedness, and the principal components would be the same.

Critique of the Definition This classic definition of many principal components
is rather unsatisfactory, however. There is no really good justification for thinking
that the second principal component corresponds to something interesting: it is not
a feature that maximizes any property in itself. It only maximizes the variance not
explained by the first principal component.

Moreover, the solution is not quite well defined, since for natural images, there
are many principal components that give practically the same variance. After the first
few principal components, the differences of the variances of different directions get
smaller and smaller. This is a serious problem for the following reason. If two princi-
pal components, say si and sj , have the same variance, then any linear combination
q1si +q2sj has the same variance as well,2 and the weights q1Wi(x, y)+q2Wj(x, y)

fulfill the constraints of unit norm and orthogonality, if we normalize the coefficients
q1 and q2 so that q2

1 + q2
2 = 1. So, not only we cannot say what is the order of the

components, but actually there is an infinite number of different components from
which we cannot choose the “right” one.

In practice, the variances of the principal components are not exactly equal due
to random fluctuations, but this theoretical result means that the principal compo-
nents are highly dependent on those random fluctuations. In the particular sample
of natural images that we are using, the maximum variance (orthogonal to previous
components) can be obtained by any of these linear combinations. Thus, we cannot
really say what the 100th principal component is, for example, because the result
we get from computing it depends so much on random sampling effects. This will
be demonstrated in the experiments that follow.

2This is due to the fact that the principal components are uncorrelated; see Sect. 5.8.1.
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Fig. 5.7 The 320 first principal components weights Wi of image patches of size 32 × 32. The
order of decreasing variances is left to right on each row, and top to bottom

5.2.3.2 All Principal Components of Natural Images

The first 320 principal components of natural images patches are shown in Fig. 5.7,
while Fig. 5.8 shows the variances of the principal components. For lack of space,
we don’t show all the components, but it is obvious from the figure what they look
like. As can be seen, the first couple of features seem quite meaningful: they are
oriented, something like very low-frequency edge detectors. However, most of the
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Fig. 5.8 The logarithms of
the variances of the principal
components for natural image
patches, the first of which
were shown in Fig. 5.7

Fig. 5.9 Ten different estimations of the 100th principal component of image windows of size
32 × 32. The random image sample was different in each run

features given by PCA do not seem to be very interesting. In fact, after the first, say,
50 features, the rest seem to be just garbage. They are localized in frequency as they
clearly are very high-frequency features. However, they do not seem to have any
meaningful spatial structure. For example, they are not oriented.

In fact, most of the features do not seem to be really well defined for the reason
explained in the previous section: the variances are too similar for different features.
For example, some of the possible 100th principal components, for different random
sets of natural image patches, are shown in Fig. 5.9. The random changes in the
component are obvious.

5.2.4 Computational Implementation of PCA

In practice, numerical solution of the optimization problem which defines the prin-
cipal components is rather simple and based on what is called the eigenvalue de-
composition. We will not go into the mathematical details here; they can be found
in Sect. 5.8.1. Briefly, the computation is based on the following principles

1. The variance of any linear feature as in (5.2) can be computed if we just know
the variances and covariances of the image pixels.

2. We can collect the variances and covariances of image pixels in a single matrix,
called the covariance matrix, as explained in Sect. 4.6.3. Each entry in the matrix
then gives the covariance between two pixels—variance is simply covariance of
a pixel with itself.

3. Any sufficiently sophisticated software for scientific computation is able to com-
pute the eigenvalue decomposition of that matrix. (However, the amount of com-
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putation needed grows fast with the size of the image patch, so the patch size
cannot be too large.)

4. As a result of the eigenvalue decomposition we get two things. First, the eigen-
vectors, which give the Wi which are the principal component weights. Second,
the eigenvalues, which give the variances of the principal components si . So, we
only need to order the eigenvectors in the order of descending eigenvalues, and
we have computed the whole PCA decomposition.

5.2.5 The Implications of Translation-Invariance

Many of the properties of the PCA of natural images are due a particular property of
the covariance matrix of natural images. Namely, the covariance for natural images
is translation-invariant, i.e. it depends only on the distance

cov
(
I (x, y), I (x′, y′)

)= f
(
(x − x ′)2 + (y − y′)2) (5.9)

for some function f . After all, the covariance of two neighboring pixels is not likely
to be any different depending on whether they are on the left or the right side of
the image. (This form of translation-invariance should not be confused with the
invariances of complex cells, discussed in Sect. 3.4.2 and Chap. 10.)

The principal component weights Wi(x, y) for a covariance matrix of this form
can be shown to always have a very particular form: they are sinusoids:

Wi(x, y) = sin(ax + by + c) (5.10)

for some constants a, b, c (the scaling is arbitrary so you could also multiply Wi

with a constant d). See Sect. 5.8.2 below for a detailed mathematical analysis which
proves this.

The constants a and b determine the frequency of the oscillation. For example,
the first principal components have lower frequencies than the later ones. They also
determine the orientation of the oscillation. It can be seen in Fig. 5.7 that some of
the oscillations are oblique while others are vertical and horizontal. Some have os-
cillations in one orientation only, while others form a kind of checkerboard pattern.
The constant c determines the phase.

The variances associated with the principal components thus tell how strongly the
frequency of the sinusoid is present in the data, which is closely related to computing
the power spectrum of the data.

Because of random effects in the sampling of image patches and computation
of the covariance matrix, the estimated feature weights are not exactly sinusoids.
Of course, just the finite resolution of the images makes them different from real
sinusoidal functions.

Since the principal component weights are sinusoids, they actually perform some
kind of Fourier analysis. If you apply the obtained Wi as feature detectors on an
image patch, that will be related to a discrete Fourier transform of the image patch.
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In particular, this can be interpreted as computing the coefficients of the patch in the
basis given by sinusoidal functions, as discussed in Sect. 2.3.2.

An alternative viewpoint is that you could also consider the computation of the
principal components as doing a Fourier analysis of the covariance matrix of the
image patch; this interesting connection will be considered in Sect. 5.6.

5.3 PCA as a Preprocessing Tool

So far, we have presented PCA as a method for learning features, which is the classic
approach to PCA. However, we saw that the results were rather disappointing in the
sense that the features were not interesting as neurophysiological models, and they
were not even well defined.

However, PCA is not a useless model. It accomplishes several useful preprocess-
ing tasks, which will be discussed in this section.

5.3.1 Dimension Reduction by PCA

One task where PCA is very useful is in reducing the dimension of the data so that
the maximum amount of the variance is preserved.

Consider the following general problem that also occurs in many other areas
than image processing. We have a very large number, say m, of random variables
x1, . . . , xm. Computations that use all the variables would be too burdensome. We
want to reduce the dimension of the data by linearly transforming the variables into
a smaller number, say n, of variables that we denote by z1, . . . , zn:

zi =
m∑

j=1

wijxj , for all i = 1, . . . , n. (5.11)

The number of new variables n might be only 10% or 1% of the original number m.
We want to find the new variables so that they preserve as much information on
the original data as possible. This “preservation of information” has to be exactly
defined. The most wide-spread definition is to look at the squared error that we get
when we try to reconstruct the original data using the zi . That is, we reconstruct xj

as a linear transformation
∑

i ajizi , minimizing the average error

E

{
∑

j

(
xj −

∑

i

ajizi

)2
}

= E

{∥∥∥∥x −
∑

i

aizi

∥∥∥∥
2
}

(5.12)

where the aji are also determined so that they minimize this error. For simplicity, let
us consider only transformations for which the transforming weights are orthogonal
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and have unit norm:
∑

j

w2
ij = 1, for all i, (5.13)

∑

j

wijwkj = 0, for all i �= k. (5.14)

What is the best way of doing this dimension reduction? The solution is to take
as the zi the n first principal components! (A basic version of this result is shown in
the exercises.) Furthermore, the optimal reconstruction weight vectors ai in (5.12)
are given by the very same principal components weights which compute the zi .

The solution is not uniquely defined, though, because any orthogonal transforma-
tion of the zi is just as good. This is understandable because any such transformation
of the zi contains just the same information: we can make the inverse transformation
to get the zi from the transformed ones.

As discussed above, the features given by PCA suffer from the problem of not
being uniquely defined. This problem is much less serious in the case of dimen-
sion reduction. What matters in the dimension reduction context is not so much the
actual components themselves, but the subspace which they span. The principal
subspace means the set of all possible linear combinations of the n first principal
components. It corresponds to taking all possible linear combinations of the princi-
pal component weight vectors Wi associated with the n principal components. As
pointed out above, if two principal components si and sj have the same variance,
any linear combination q1si + q2sj has the same variance for q2

1 + q2
2 = 1. This is

not a problem here, however, since such a linear combination still belongs to the
same subspace as the two principal components si and sj . Thus, it does not matter
if we consider the components si and sj , or two components of the form q1si +q2sj
and r1si + r2sj where the coefficients r1 and r2 give a different linear combination
than the q1 and q2.

So, the n-dimensional principal subspace is usually uniquely defined even if
some principal components have equal variances. Of course, it may happen that
the nth and the (n + 1)-th principal components have equal variances, and that we
cannot decide which one to include in the subspace. But the effect on the whole
subspace is usually quite small and can be ignored in practice.

Returning to the case of image data, we can rephrase this result by saying that
it is the set of features defined by the n first principal components and their linear
combinations that is (relatively) well defined, and not the features themselves.

5.3.2 Whitening by PCA

5.3.2.1 Whitening as Normalized Decorrelation

Another task for which PCA is quite useful is whitening. Whitening is an impor-
tant preprocessing method where the image pixels are transformed to a set of new
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variables s1, . . . , sn so that the si are uncorrelated and have unit variance:

E{sisj } =
{

0 if i �= j,

1 if i = j.
(5.15)

(It is assumed that all the variables have zero mean.) It is also said that the resulting
vector (s1, . . . , sn) is white.

In addition to the principal components weights being orthogonal, the princi-
pal components themselves are uncorrelated, as will be shown in more detail in
Sect. 5.8.1. So, after PCA, the only thing we need to do to get whitened data is to
normalize the variances of the principal components by dividing them by their stan-
dard deviations. Denoting the principal components by yi , this means we compute

si = yi√
var(yi)

(5.16)

to get whitened components si . Whitening is a useful preprocessing method that
will be used later in this book. The intuitive idea is that it completely removes the
second-order information of the data. “Second-order” means here correlations and
variances. So, it allows us to concentrate on properties that are not dependent on
covariances, such as sparseness in the next chapter.

Whitening by PCA is illustrated in Fig. 5.10.

5.3.2.2 Whitening Transformations and Orthogonality

It must be noted that there are many whitening transformations. In fact, if the ran-
dom variables si , i = 1, . . . , n are white, then any orthogonal transformation of
those variables is also white (the proof is left as an exercise). Often, whitening is
based on PCA because PCA is a well-known method that can be computed very
fast, but it must be kept in mind that PCA is just one among the many whitening
transformations. Yet, PCA is a unique method because it allows us to combine three
different preprocessing methods into one: dimension reduction, whitening, and anti-
aliasing (which will be discussed in the next section).

In later chapters, we will often use the fact that the connection between orthogo-
nality and uncorrelatedness is even stronger for whitened data. In fact, if we compute
two linear components

∑
i visi and

∑
i wisi from white data, they are uncorrelated

only if the two vectors v and w (which contain the entries vi and wi , respectively)
are orthogonal.

In general, we have the following theoretical result. For white data, multiplication
by a square matrix gives white components if and only if the matrix is orthogonal.
Thus, when we have computed one particular whitening transformation, we also
know that only orthogonal transformations of the transformed data can be white.

Note here the tricky point in terminology: a matrix if called orthogonal if its
columns, or equivalently its rows, are orthogonal, and the norms of its columns
are all equal to one. To emphasize this, some authors call an orthogonal matrix
orthonormal. We stick to the word “orthogonal” in this book.
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Fig. 5.10 Illustration of PCA and whitening. a The original data “cloud”. The arrows show the
principal components. The first one points in the direction of the largest variance in the data, and
the second in the remaining orthogonal direction. b When the data is transformed to the principal
components, i.e. the principal components are taken as the new coordinates, the variation in the
data is aligned with those new axes, which is because the principal components are uncorrelated.
c When the principal components are further normalized to unit variance, the data cloud has equal
variance in all directions, which means it has been whitened. The change in the lengths of the
arrows reflects this normalization; the larger the variance, the shorter the arrow

5.3.3 Anti-aliasing by PCA

PCA also helps combat the problem of aliasing, which refers to a class of problems
due to the sampling of the data at a limited resolution—in our case the limited num-
ber of pixels used to represent an image. Sampling of the image loses information;
this is obvious since we only know the image through its values at a finite number
of pixels. However, sampling can also introduce less obvious distortions in the data.
Here, we consider two important ones, and show how PCA can help.

5.3.3.1 Oblique Gratings Can Have Higher Frequencies

One problem is that in the case of the rectangular sampling grid, oblique higher
frequencies are overrepresented in the data, because the grid is able to represent
oblique oscillations which have a higher frequency than either the vertical or hori-
zontal oscillations of the highest possible frequency.

This is because we can have an image which takes the form of a checkerboard as
illustrated in Fig. 5.11a. If you draw long oblique lines along the white and black
squares, the distance between such lines is equal to

√
1/2 as can be calculated by
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Fig. 5.11 Effects of sampling (limited number of pixels) on very high-frequency gratings. a A si-
nusoidal grating which has a very high frequency in the oblique orientation. The cycle of the oscil-
lation has a length of 2

√
1/2 = √

2 which is shorter than the smallest possible cycle length (equal
to two) in the vertical and horizontal orientations. b A sinusoidal grating which has the Nyquist fre-
quency. Although it is supposed to be sinusoidal, due to the limited sampling (i.e. limited number
of pixels), it is really a block grating

basic trigonometry. This is smaller than one, which is the shortest half-cycle (half
the length of an oscillation) we can have in the vertical and horizontal orientation.
(It corresponds to the Nyquist frequency as discussed in the next subsection, and
illustrated in Fig. 5.11b.)

In the Fourier transform, this lack of symmetry is seen in the fact that the area of
possible 2-D frequencies is of the form of a square, instead of a circle as would be
natural for data which is the same in all orientations (“rotation-invariant”, as will be
discussed in Sect. 5.7). Filtering out the highest oblique frequencies is thus a mean-
ingful preprocessing step to avoid any artefacts due to this aliasing phenomenon.
(Note that we are here talking about the rectangular form of the sampling grid, i.e.
the relation of the pixels center-points to each other. This is not at all related to the
shape of the sampling window, i.e. the shape of the patch.)

It turns out that we can simply filter out the oblique frequencies by PCA. With
natural images, the last principal components are those that correspond to the high-
est oblique frequencies. Thus, simple dimension reduction by PCA alleviates this
problem.

5.3.3.2 Highest Frequencies Can Have only Two Different Phases

Another problem is that at the highest frequencies, we cannot have sinusoidal grat-
ings with different phases. Let us consider the highest possible frequency, called in
Fourier theory the Nyquist frequency, which means that there is one cycle for every
two pixels; see Fig. 5.11b). What happens when you change the phase of the grating
a little bit, i.e. shift the “sinusoidal” grating a bit? Actually, almost nothing happens:
the grating does not shift at all because due to the limited resolution given by the
pixel size, it is impossible to represent a small shift in the grating. (The grey-scale
values will be changed; they depend on the match between the sampling lattice and
the underlying sinusoidal they try to represent.) The sampled image really changes
only when the phase is changed so much that the best approximation is to flip all the
pixels from white to black and vice versa.
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Fig. 5.12 The percentage of different frequencies present in the data as a function of PCA di-
mension reduction. Horizontal axis: Percentage of dimensions retained by PCA. Vertical axis:
Percentage of energy of a given grating retained. Solid lines: Gratings of half Nyquist frequency
(vertical and oblique) (wanted). Dotted line (see lower right-hand corner): checkerboard pattern
(unwanted). Dashed lines: Gratings of Nyquist frequency (vertical and oblique) (unwanted)

Thus, a grating sampled at the Nyquist frequency can really have only two differ-
ent phases which can be distinguished. This means that many concepts depending
on the phase of the grating, such as the phase tuning curve (Sect. 6.4) or phase-
invariance (Chap. 10) are rather meaningless on the Nyquist frequency. So, we
would like to low-pass filter the image to be able to analyze such phenomena without
the distorting effect of a limited resolution.

Again, we can alleviate this problem by PCA dimension reduction because it
amounts to discarding the highest frequencies.

5.3.3.3 Dimension Selection to Avoid Aliasing

So, we would like to do PCA so that we get rid of the checkerboard patterns as well
as everything in the Nyquist frequency. On the other hand, we don’t want to get rid
of any lower frequencies.

To investigate the dimension reduction needed, we computed what amount of
checkerboard and Nyquist gratings is present in the data as a function of dimension
after PCA. We also computed this for gratings that had half the Nyquist frequency
(i.e. a cycle was four pixels), which is a reasonable candidate for the highest fre-
quency patterns that we want to retain.

The results are shown in Fig. 5.12. We can see in the figure that to get rid of
checkerboard patterns, not much dimension reduction is necessary: 10% or so seems
to be enough.3 To get rid of the Nyquist frequency, at least 30% seems to be neces-
sary. And if we look at how much we can reduce the dimension without losing any

3Note that this may be an underestimate: van Hateren proposed that 30% may be needed (van
Hateren and van der Schaaf 1998). This is not important in the following because we will anyway
reduce at least 30% for other reasons that will be explained next.
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information on the lowest frequencies that we are really interested in, it seems we
can easily reduce even 60%–70% of the dimensions.

Thus, the exact number of dimensions is not easy to determine because we don’t
have a very clear criterion. Nevertheless, a reduction of at least 30% seems to be
necessary to avoid the artifacts, and even 60%–70% can be recommended. In the
experiments in this book, we usually reduce dimension by 75%.

5.4 Canonical Preprocessing Used in This Book

Now, we have arrived at a preprocessing method that we call “canonical preprocess-
ing” because it is used almost everywhere in this book. Canonical preprocessing
means:

1. Remove the DC component as in (5.1).
2. Compute the principal components of the image patches.
3. Retain only the n first principal components and discard the rest. The number n

is typically chosen as 25% of the original dimension.
4. Divide the principal components by their standard deviations as in (5.16) to get

whitened data.

Here, we see two important (and interrelated) reasons for doing whitening by
PCA instead of some other whitening method. We can reduce dimension to com-
bat aliasing and to reduce computational load with hardly any extra computational
effort.

Notation The end-product of this preprocessing is an n-dimensional vector for
each image patch. The preprocessed vector will be denoted by z, and its elements by
z1, . . . , zn, when considered as a random vector and random variables. Observations
of the random vector will be denoted by z1, z2, . . . , or more often with the subscript
t as in zt . In the rest of this book, we will often use such canonically preprocessed
data. Likewise, observed image patches will be denoted by I , and their individual
pixels by I (x, y), when these are considered a random vector and random variables,
respectively, and their observations will be denoted by It and It (x, y).

5.5 Gaussianity as the Basis for PCA

5.5.1 The Probability Model Related to PCA

In PCA and whitening, it is assumed that the only interesting aspect of the data
variables x1, . . . , xn is variances and covariances. This is the case with Gaussian
data, where the probability density function equals

p(x1, . . . , xn) = 1

(2π)n/2|det C|−1/2
exp

(
−1

2

∑

i,j

xixj

[
C−1]

ij

)
(5.17)
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where C is the covariance matrix of the data, C−1 is its inverse, and [C−1]ij is
the i, j th element of the inverse. Thus, the probability distribution is completely
characterized by the covariances (as always, the means are assumed zero here).

These covariance-based methods are thus perfectly sufficient if the distribution
of the data is Gaussian. However, the distribution of image data is typically very far
from Gaussian. Methods based on the Gaussian distribution thus neglect some of
the most important aspects of image data, as will be seen in the next chapter.

Using the Gaussian distribution, we can also interpret PCA as a statistical model.
After all, one of the motivations behind estimation of statistical models for natural
images was that we would like to use them in Bayesian inference. For that, it is
not enough to just have a set of features. We also need to understand how we can
compute the prior probability density function p(x1, . . . , xn) for any given image
patch.

The solution is actually quite trivial: we just plug in the covariance of the data
in (5.17). There is actually no need to go through the trouble of computing PCA in
order to get a probabilistic model! The assumption of Gaussianity is what gives us
this simple solution.

In later chapters, we will see the importance of the assumption of Gaussianity, as
we will consider models which do not make this assumption.

5.5.2 PCA as a Generative Model

A more challenging question is how to interpret PCA as a generative model, i.e.
a model which describes a process which “generated” the data. There is a large
literature on such modeling, which is typically called factor analysis. PCA is con-
sidered a special case, perhaps the simplest one, of factor analytic models. The point
is that we can express data as a linear transformation of the principal components

I (x, y) =
∑

i

Wi(x, y)si . (5.18)

What we have done here is simply to invert the transformation from the data to the
principal components, so that the data is a function of the principal components
and not vice versa. This is very simple because the vectors Wi are orthogonal: then
the inverse of the system (matrix) they form is just the same matrix transposed, as
discussed in Sect. 19.7. Therefore, the feature vectors in this generative model are
just the same as the feature detector weights that we computed with PCA.

Now, we define the distribution of the si as follows:

1. The distribution of each si is Gaussian with variance equal to the variance of the
ith principal component.

2. The si are statistically independent from each other.

This gives us, using (5.18), a proper generative model of the data. That is, the data
can be seen as a function of the “hidden” variables that are now given by the princi-
pal components si .
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Fig. 5.13 Image synthesis
using PCA. 20 patches were
randomly generated using the
PCA model whose
parameters were estimated
from natural images.
Compare with real natural
image patches in Fig. 5.2

5.5.3 Image Synthesis Results

Once we have a generative model, we can do an interesting experiment to test our
model: We can generate image patches from our model, and see what they look like.
Such results are shown in Fig. 5.13. What we see is that the PCA model captures the
general smoothness of the images. The smoothness comes from the fact that the first
principal components correspond to feature vectors which change very smoothly.
Other structure is not easy to see in these results. The results can be compared with
real natural images patches shown in Fig. 5.2 on page 95; they clearly have a more
sophisticated structure, visible even in these small patches.

5.6 Power Spectrum of Natural Images

An alternative way of analyzing the covariance structure of images is through
Fourier analysis. The covariances and the frequency-based properties are related
via the Wiener–Khinchin theorem. We begin by considering the power spectra of
natural images and then show the connection.

5.6.1 The 1/f Fourier Amplitude or 1/f 2 Power Spectrum

The fundamental result on frequency-based representation of natural images is that
the power spectrum of natural images typically falls off inversely proportional to
the square of the frequency. Since the power spectrum is the square of the Fourier
amplitude (spectrum), this means that the Fourier amplitude falls off as a function
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Fig. 5.14 Two natural images used in the experiments

Fig. 5.15 Power spectrum or Fourier amplitude of natural images. a The logarithm of
two-dimensional power spectrum of natural image in Fig. 5.14a. b The average over orientations
of one-dimensional cross-sections of the power spectrum of the two images in Fig. 5.14. Only the
positive part is shown since this is symmetric with respect to the origin. This is a log–log plot
where a logarithm of base 10 has been taken of both the frequency (horizontal axis) and the power
(vertical axis) in order to better show the 1/f 2 behavior, which corresponds to a linear dependency
with slope of −2

c/f where c is some constant and f is the frequency. It is usually more convenient
to plot the logarithms. For the logarithm, this means

Log Fourier amplitude = − logf + const. (5.19)

or

Log power spectrum = −2 logf + const. (5.20)

for some constant which is the logarithm of the constant c.
Figure 5.15a shows the logarithm of the power spectrum of the natural image

in Fig. 5.14a. What we can see in this 2D plot is just that the spectrum is smaller
for higher frequencies. To actually see how it falls off, we have to look at one-
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dimensional cross-sections of the power spectrum, so that we average over all ori-
entations. This is how we get Fig. 5.15b, in which we have also taken the logarithm
of the frequency as in (5.20). This plot partly verifies our result: it is largely linear
with a slope close to minus two, as expected. (Actually, more thorough investiga-
tions have found that the log-power spectrum may, in fact, change a bit slower than
1/f 2, with a exponent closer to 1.8 or 1.9.) In addition, the power spectra are very
similar for the two images in Fig. 5.15.

A large literature in physics and other fields has considered the significance of
such a behavior of the power spectrum. Many other kinds of data have the same
kind of spectra. An important reason for this is that if the data is scale-invariant,
or self-similar, i.e. it is similar whether you zoom in or out, the power spectrum is
necessarily something like proportional to 1/f 2; see References section below for
some relevant work.

5.6.2 Connection between Power Spectrum and Covariances

What is then the connection between the power spectrum of an image, and the co-
variances between pixels we have been computing in this chapter? To this end, we
need a theorem from the theory of stochastic processes (we will not rigorously de-
fine what stochastic processes are because that is not necessary for the purposes
of this book). The celebrated Wiener–Khinchin theorem states that for a stochastic
process, the average power spectrum is the Fourier transform of the autocorrelation
function.

The theorem talks about the “autocorrelation function”. This is the terminology
of stochastic processes, which we have not used in this chapter: we simply consid-
ered different pixels as different random variables. The “autocorrelation function”
means simply the correlations of variables (i.e. pixel values) as a function of the hor-
izontal and vertical distances between them. Thus, the autocorrelation function is a
matrix constructed as follows. First, take one row of the covariance matrix, say the
one corresponding to the pixel at (x0, y0). To avoid border effects, let’s take (x0, y0)

which is in the middle of the image patch. Then convert this vector back to the shape
of the image patch. Thus, we have a matrix C(x0, y0)

⎛

⎜⎝
cov(I (x0, y0), I (1,1)) . . . cov(I (x0, y0), I (1, n))

...

cov(I (x0, y0), I (n,1)) . . . cov(I (x0, y0), I (n,n))

⎞

⎟⎠ (5.21)

which has the same size m × m as the image patch. This matrix is nothing else than
what was already estimated from natural images and plotted in Fig. 5.4.

Actually, it is obvious that this matrix essentially contains all the information
in the covariance matrix. As discussed in Sect. 5.2.5, it is commonly assumed that
image patches are translation-invariant in the sense that the covariances actually
only depend on the distance between two pixels, and not on where in the patch the
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pixels happen to be. (This may not hold for whole images, where the upper half
may depict sky more often and lower parts, but it certainly holds for small image
patches.) Thus, to analyze the covariance structure of images, all we really need is
a matrix like in (5.21).

What the Wiener–Khinchin theorem now says is that when we take the Fourier
transformation of C(x0, y0), just as if this matrix were an image patch, the Fourier
amplitudes equal the average power spectrum of the original image patches. (Due to
the special symmetry properties of covariances, the phases in the Fourier transform
of C(x0, y0) are all zero, so the amplitudes are also equal to the coefficients of the
cos functions.)

Thus, we can see the connection between the 1/f Fourier amplitude of natural
images and the covariances of the pixels structure. The average 1/f Fourier ampli-
tude or the 1/f 2 power spectrum of single images implies that the Fourier transform
of C(x0, y0) also falls of as 1/f 2. Now, since the features obtained from PCA are
not very different from those used in a discrete Fourier transform (sine and cosine
functions), and the squares of the coefficients in that basis are the variances of the
principal components, we see that the variances of the principal components fall
off as 1/f 2 as a function of frequency. (This cannot be seen in the variance plot in
Fig. 5.8 because that plot does not give the variances as a function of frequency.)

Another implication of the Wiener–Khinchin theorem is that it shows how con-
sidering the power spectrum of images alone is related to using Gaussian model.
Since the average power spectrum contains essentially the same information as the
covariance matrix, and using covariances only is equivalent to using a Gaussian
model, we see that considering the average power spectrum alone is essentially
equivalent to modeling the data with a Gaussian pdf as in Sect. 5.5. Since the power
spectrum does not contain information about phase, using the phase structure is thus
related to using the non-Gaussian aspects of the data, which will be considered in
the next chapters.

5.6.3 Relative Importance of Amplitude and Phase

When considering frequency-based representations of natural images, the following
question naturally arises: Which is more important, phase or amplitude (power)—
or are they equally important? Most researchers agree that the phase information is
more important for the perceptual system than the amplitude structure. This view is
justified by experiments in which we take the phase structure from one image and
the power structure from another, and determine whether the image is more similar
to one of the natural images. What this means is that we take the Fourier transform
(using the Discrete Fourier Transform) of the two images, and isolate the phase and
amplitude from the two transforms. Then we compute the inverse of the Fourier
transform from the combination of the phase from the first image and the amplitude
from the second; this gives us a new image. We also create another image with the
inverse Fourier transform using the phase from the second image and the amplitude
from the first.
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Fig. 5.16 Relative importance of phase and power/amplitude information in natural images.
a Image which has the Fourier phases of the image in Fig. 5.14a, and the Fourier amplitudes
of the image in Fig. 5.14b. b Image which has the phases of the image in Fig. 5.14b, and the am-
plitude structure of the image in Fig. 5.14a. In both cases the images are perceptually more similar
to the image from which the phase structure was taken, which indicates that the visual system is
more sensitive to the phase structure of natural images

Results of such an experiment are shown in Fig. 5.16. In both cases, the image
“looks” more like the image from which the phase structure was taken, although
in (a) this is not very strongly so. This may be natural if one looks at the Fourier
amplitudes of the images: since they are both rather similar (showing the typical 1/f

fall-off), they cannot provide much information about what the image really depicts.
If all natural images really have amplitude spectra which approximately show the
1/f shape, the power spectrum cannot provide much information on any natural
image, and thus the phase information has to be the key to identifying the contents
in the images.

Thus, one can conclude that since PCA concentrates only on information in the
power spectrum, and the power spectrum does not contain a lot of perceptually im-
portant information, one cannot expect PCA and related methods to yield too much
useful information about the visual system. Indeed, this provides an explanation for
the rather disappointing performance of PCA in learning features from natural im-
ages as seen in Fig. 5.7—the performance is disappointing, at least, if we want to
model receptive fields in V1. In the next chapter, we will see that using information
not contained in the covariances gives an interesting model of simple cell receptive
fields.

5.7 Anisotropy in Natural Images

The concept of anisotropy refers to the fact that natural images are not completely
rotationally invariant (which would be called isotropy). In other words, the statistical
structure is not the same in all orientations: if you rotate an image, the statistics
change.
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Fig. 5.17 Anisotropy, i.e. lack of rotational invariance, in natural image statistics. We took the
correlation coefficients in Fig. 5.4 and plotted them on three circles with different radii (the maxi-
mum radius allowed by the patch size, and that multiplied by one half and one quarter). For each of
the radii, the plot shows that the correlations are maximized for the orientations of 0 or π , which
mean horizontal orientation: the pixels are on the same horizontal line. The vertical orientation
π/2 shows another maximum which is less pronounced

This may come as a surprise after looking at the correlation coefficients in
Fig. 5.4d, in which it seems that the correlation is simply a function of the dis-
tance: the closer to each other the two pixels are, the stronger their correlation; and
the orientation does not seem to have any effect. In fact, isotropy is not a bad first
approximation, but a closer analysis reveals some dependencies on orientation.

Figure 5.17 show the results of such an analysis. We have taken the correlation
coefficients computed in Fig. 5.4, and analyzed how they depend on the orientation
of the line segment connecting the two pixels. An orientation of 0 (or π ) means that
the two pixels have the same y coordinate; orientation of π/2 means that they have
the same x coordinate. Other values mean that the pixels have an oblique relation-
ship to each other. Figure 5.17 shows that the correlations are the very strongest if
the pixels have the same y coordinate, that is, they are on the same horizontal line.
The correlations are also elevated if the pixels have the same x coordinate.

In fact, we already saw in Fig. 5.6 that the first principal component is, con-
sistently, a low-frequency horizontal edge. This is in line with the dominance of
horizontal correlations. If the images are exactly isotropic, horizontal edges and
vertical edges would have exactly the same variance, and the first principal compo-
nent would not be well defined at all; this would be reflected in Fig. 5.6 so that we
would get edges with different random orientations.

Thus, we have discovered a form of anisotropy in natural image statistics. It will
be seen in different forms in all the later models and analyses as well.

5.8 Mathematics of Principal Component Analysis*

This section is dedicated to a more sophisticated mathematical analysis of PCA and
whitening. It can be skipped by a reader not interested in mathematical details.
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5.8.1 Eigenvalue Decomposition of the Covariance Matrix

The “second-order” structure of data is completely described by the covariance ma-
trix, defined in Sect. 4.6.3. In our case with the x and y coordinates of the patches,
we can write:

C(x, y;x′, y′) = E
{
I (x, y)I (x′, y′)

}
. (5.22)

The point is that the covariance of any two linear features can be computed by

E

{[∑

x,y

W1(x, y)I (x, y)

][∑

x,y

W2(x, y)I (x, y)

]}

= E

{[ ∑

xyx′y′
W1(x, y)I (x, y)W2(x

′, y′)I (x′, y′)
]}

=
∑

xyx′y′
W1(x, y)W2(x

′, y′)E
{
I (x, y)I (x′, y′)

}

=
∑

xyx′y′
W1(x, y)W2(x

′, y′)C(x, y;x′, y′) (5.23)

which reduces to a something which can be computed using the covariance ma-
trix. The second-order structure is thus conveniently represented by a single matrix,
which enables us to use classic methods of linear algebra to analyze the second-
order structure.

To go into detail, we change the notation so that the whole image is in one vector,
x, so that each pixel is one element in the vector. This can be accomplished, for
example, by scanning the image row by row, as was explained in Sect. 4.1. This
simplifies the notation enormously.

Now, considering any linear combination wTx =∑i wixi we can compute its
variance simply by:

E
{(

wTx
)2}= E

{(
wTx

)(
xTw

)}= E
{
wT(xxT)w

}= wTE
{
xxT}w = wTCw

(5.24)
where we denote the covariance matrix by C = E{xxT}. So, the basic PCA problem
can be formulated as

max
w:‖w‖=1

wTCw. (5.25)

A basic concept in linear algebra is the eigenvalue decomposition. The starting
point is that C is a symmetric matrix, because cov(xi, xj ) = cov(xj , xi). In linear
algebra, it is shown that any symmetric matrix can be expressed as a product of the
form:

C = UDUT (5.26)



118 5 Principal Components and Whitening

where U is an orthogonal matrix, and D = diag(λ1, . . . , λm) is diagonal. The
columns of U are called the eigenvectors, and the λi are called the eigenvalues.
Many efficient algorithms exist for computing the eigenvalue decomposition of a
matrix.

Now, we can solve PCA easily. Lets us make the change of variables v = UTw.
Then we have

wTCw = wTUDUTw = vTDv =
∑

i

v2
i λi . (5.27)

Because U is orthogonal, ‖v‖ = ‖w‖, so the constraint is the same for v as it was
for w. Let us make the further change of variables to mi = v2

i . The constraint of
unit norm of v is now equivalent to the constraints that the sum of the mi must
equal one (they must also be positive because they are squares). Then the problem
is transformed to

max
mi≥0,

∑
mi=1

∑

i

miλi . (5.28)

It is rather obvious that the maximum is found when the mi corresponding to the
largest λi is one and the others are zero. Let us denote by i∗ the index of the max-
imum eigenvalue. Going back to the w, this corresponds to w begin equal to the
i∗th eigenvector, that is, the i∗th column of U. Thus, we see how the first principal
component is easily computed by the eigenvalue decomposition.

Since the eigenvectors of a symmetric matrix are orthogonal, finding the second
principal component means maximizing the variance so that vi∗ is kept zero. This
is actually equivalent to making the new w orthogonal to the first eigenvector. Thus,
in terms of mi , we have exactly the same optimization problem, but with the extra
constraint that mi∗ = 0. Obviously, the optimum is obtained when w is equal to the
eigenvector corresponding to the second largest eigenvalue. This logic applies to the
kth principal component.

Thus, all the principal components can be found by ordering the eigenvectors ui ,
i = 1, . . . ,m in U so that the corresponding eigenvalues are in decreasing order. Let
us assume that U is ordered so. Then the ith principal component si is equal to

si = uT
i x. (5.29)

Note that it can be proven that the λi are all non-negative for a covariance matrix.
Using the eigenvalue decomposition, we can prove some interesting properties

of PCA. First, the principal components are uncorrelated, because for the vector of
the principal components

s = UTx (5.30)

we have

E
{
ssT} = E

{
UTxxTU

}= UTE
{
xxT}U = UT(UDUT)U

= (UTU
)
D
(
UTU

)= D (5.31)
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because of the orthogonality of U. Thus, the covariance matrix is diagonal, which
shows that the principal components are uncorrelated.

Moreover, we see that the variances of the principal components are equal to
the λi . Thus, to obtain variables that are white, that is, uncorrelated and have unit
variance, it is enough to divide each principal component by the square root of
the corresponding eigenvalue. This proves that diag(1/

√
λ1, . . . ,1/

√
λm)UT is a

whitening matrix for x.
This relation also has an important implication for the uniqueness of PCA. If

two of the eigenvalues are equal, then the variance of those principal components
are equal. Then the principal components are not well-defined anymore because we
can make a rotation of those principal components without affecting their variances.
This is because if zi and zi+1 have the same variance, then linear combinations such
as

√
1/2zi + √

1/2zi+1 and
√

1/2zi − √
1/2zi+1 have the same variance as well;

all the constraints (unit variance and orthogonality) are still fulfilled, so these are
equally valid principal components. In fact, in linear algebra, it is well known that
the eigenvalue decomposition is uniquely defined only when the eigenvalues are all
distinct.

5.8.2 Eigenvectors and Translation-Invariance

Using the eigenvalue decomposition, we can show why the principal components
of a typical image covariance matrix are sinusoids as stated in Sect. 5.2.5. This is
because of their property of being translation-invariant, i.e. the covariance depends
only on the distance as in (5.9). For simplicity, let us consider a one-dimensional
covariance matrix c(x − x′). The function c is even-symmetric with respect to zero,
i.e. c(−u) = c(u). By a simple change of variable z = x − x ′, we have

∑

x

cov(x, x′) sin(x + α) =
∑

x

c(x − x′) sin(x + α) =
∑

z

c(z) sin(z + x′ + α).

(5.32)
Using the property that sin(a + b) = sina cosb + cosa sinb, we have

∑

z

c(z) sin(z + x′ + α) =
∑

z

c(z)
(
sin(z) cos(x ′ + α) + cos(z) sin(x′ + α)

)

=
[∑

z

c(z) sin(z)

]
cos(x′ + α)

+
[∑

z

c(z) cos(z)

]
sin(x′ + α). (5.33)
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Finally, because c(z) is even-symmetric and sin is odd-symmetric, the first sum in
brackets is zero. So, we have

∑

x

cov(x, x′) sin(x + α) =
[∑

z

c(z) cos(z)

]
sin(x′ + α) (5.34)

which shows that the sinusoid is an eigenvector of the covariance matrix, with eigen-
value

∑
z c(z) cos(z). The parameter α gives the phase of the sinusoid; this formula

shows that α can have any value, so sinusoids of any phase are eigenvectors.
This proof can be extended to sinusoids of different frequencies β: they all are

eigenvalues with eigenvalues that depend on how strongly the frequency is present
in the data:

∑
z c(z) cos(βz).

In the two-dimensional case, we have cov(I (x, y), I (x′, y′)) = c((x − x′)2 +
(y − y′)2) and with ξ = x − x′ and η = y − y′ we have

∑

x,y

c
(
(x − x′)2 + (y − y′)2) sin(ax + by + c)

=
∑

ξ,η

c(ξ, η) sin(aξ + bη + ax′ + by′ + c)

=
∑

ξ,η

c(ξ, η)
[
sin(aξ + bη) cos(ax′ + by′ + c)

+ cos(aξ + bη) sin(ax′ + by′ + c)
]

= 0 +
[∑

ξ,η

c(ξ, η) cos(aξ + bη)

]
sin(ax′ + by′ + c) (5.35)

which shows likewise that sinusoids of the form sin(ax′ +by′ + c) are eigenvectors.

5.9 Decorrelation Models of Retina and LGN *

In this section, we consider some further methods for whitening and decorrelation
of natural images, and the application of such methods as models of processing in
the retina and the LGN. This material can be skipped without interrupting the flow
of ideas.

5.9.1 Whitening and Redundancy Reduction

The starting point here is the redundancy reduction hypothesis, discussed in Chap. 1.
In its original form, this theory states that the early visual system tries to reduce the
redundancy in its input. As we have seen in this chapter, image pixel data is highly
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correlated, so a first approach to reduce the redundancy would be to decorrelate
image data, i.e. to transform it into uncorrelated components.

One way to decorrelate image data is to whiten it with a spatial filter. In a visual
system, this filtering would correspond to a set of neurons, with identical spatial
receptive fields, spaced suitably in a lattice. The outputs of the neurons would then
be uncorrelated, and if we were to look at the outputs of the whole set of neurons as
an image (or a set of images for multiple input images), these output images would
on the average have a flat power spectrum.

The whitening theory has led to well known if rather controversial models of the
computational underpinnings of the retina and the lateral geniculate nucleus (LGN).
In this section, we will discuss spatial whitening and spatial receptive fields accord-
ing to this line of thought; the case of temporal whitening and temporal receptive
fields will be discussed in detail in Sect. 16.3.2 (page 332).

The basic idea is that whitening alone could explain the center-surround struc-
ture of the receptive fields of ganglion cells in the retina, as well as those in the
LGN. Indeed, certain spatial whitening filters are very similar to ganglion RFs, as
we will see below. However, such a proposal is problematic because there are many
completely different ways of whitening the image input, and it is not clear why this
particular method should be used. Nevertheless, this theory is interesting because
of its simplicity and because it sheds light on certain fundamental properties of the
covariance structure of images.

There are at least two ways to derive the whitening operation in question. The
first is to compute it directly from the covariance matrix of image patches sampled
from the data; this will lead to a set of receptive fields, but with a suitable constraint
the RFs will be identical except for different center locations, as we will see below.
We will call this patch-based whitening. The second way is to specify a whitening
filter in the frequency domain, which will give us additional insight and control over
the process. This we will call filter-based whitening.

5.9.2 Patch-Based Decorrelation

Our first approach to spatial whitening is based on the PCA whitening introduced
above in Sect. 5.3.2 (page 104). The data transformation is illustrated in the two-
dimensional case in Fig. 5.18.

Here, we will use the matrix notation because it directly shows some important
properties of the representation we construct. Here, we denote by U the matrix with
the vectors defining the principal components as its columns

U = (u1,u2, . . . ,uk). (5.36)

Let x denote the data vector. Because the vectors u are orthogonal, each of the
principal components yk , k = 1, . . . ,K , of the data vector x can be computed simply
by taking the dot product between the data vector and the kth PCA vector:

yk = uT
k x, k = 1, . . . ,K. (5.37)



122 5 Principal Components and Whitening

Fig. 5.18 An illustration of the whitening procedure that is used to derive a set of whitening
filters wk , k = 1, . . . ,K (here, we take K = 2). The procedure utilizes the PCA basis vectors uk ,
k = 1, . . . ,K . a The original generated data points and the PCA basis vectors u1 and u2 (grey)
and the unit vectors (1,0) and (0,1) (black). b The data points are first rotated so that the new
axes match the PCA basis vectors. c The data points are then scaled along the axes so that the
data have the same variance along both axes. This also makes the two dimensions of the data
uncorrelated, so the end result is a whitened data set. (For purposes of visualization of the data
points and the vectors, in this illustration this variance is smaller than 1, while in whitening it is 1;
this difference corresponds to an overall scaling of the data.) d Finally, the data points are rotated
back to the original orientation. Note that the data are already white after the second transformation
in c, and the last transformation is one of infinitely many possible rotations that keep the data
white; in this method, it is the one that inverts the rotation done by PCA. Mathematically, the
three transformations in b–d can in fact be combined into a single linear transformation because
each transformation is linear; the combined operation can be done by computing the dot products
between the original data points and the vectors w1 and w2 which are the result of applying the
three transformations to the original unit vectors. See text for details

Defining the vector y = (y1, y2, . . . , yK)T, (5.37) for all k = 1, . . . ,K can be ex-
pressed in a single matrix equation

y = UTx. (5.38)

In our two-dimensional illustration, the result of this transformation is shown in
Fig. 5.18b.

As in Sect. 5.3.2, we next whiten the data by dividing the principal components
with their standard deviations. Thus, we obtain whitened components sk

sk = yk√
var(yk)

, k = 1, . . . ,K, (5.39)
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This is shown for our illustrative example in Fig. 5.18c.
Again, we can express these K equations by a single matrix equation. Define a

vector s = (s1, s2, . . . , sK)T, and let � denote a diagonal matrix with the inverses of
the square roots of the variances on its diagonal:

� =

⎡

⎢⎢⎢⎢⎢⎣

1√
var(y1)

0 · · · 0

0 1√
var(y2)

· · · 0
...

...
. . .

...

0 0 · · · 1√
var(yK)

⎤

⎥⎥⎥⎥⎥⎦
; (5.40)

then

s = �y = �UTx. (5.41)

So far, we have just expressed PCA whitening as a matrix formulation. Now,
we will make a new operation. Among the infinitely many whitening matrices, we
choose the one which is given by inverting the PCA computation given by U. In
a sense, we go “back from the principal components to the original coordinates”
(Fig. 5.18d). Denoting by z the final component computed, this is defined by the
following matrix equation:

z = Us = U�UTx. (5.42)

The computation presented in (5.43) consist of three linear (matrix) transfor-
mations in a cascade. The theory of linear transformation states that a cascade of
consecutive linear transformations is simply another linear transformation, and that
this combined transformation—which we will here denote by W—can be obtained
as the matrix product of the individual transformations:

z = U�UT
︸ ︷︷ ︸

=W

x = Wx. (5.43)

When written as k scalar equations, (5.43) shows that the components of vector
z = [z1 z2 . . . zK ]T can be obtained as a dot product between the data vector x and
the kth row of matrix W = [w1 w2 . . .wK ]T:

zk = wT
k x, k = 1, . . . ,K. (5.44)

The vectors wk , k = 1, . . . ,K , are of great interest to us, since they are filters which
map the input x to the whitened data. In other words, the vectors wk , k = 1, . . . ,K ,
can be interpreted as receptive fields. The receptive fields wk , k = 1, . . . ,K , can be
obtained simply by computing the matrix product in (5.43).

Matrix Square Root As an aside, we mention an interesting mathematical inter-
pretation of the matrix W. The matrix W is called the inverse matrix square root of
the covariance matrix C, and denoted by C−1/2. In other words, the inverse W−1
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is called the square root of C, and denoted by C1/2. The reason is that if we multi-
ply W−1 with itself, we get C. This is because, first, (U�UT)−1 = U�−1UT, and
second, we can calculate

W−1W−1 = (U�−1UT)(U�−1UT)= U�−1(UTU
)
�−1UT = U�−2UT. (5.45)

The matrix �−2 is simply a diagonal matrix with the variances in its diagonal, so the
result is nothing else than the eigenvalue decomposition of the covariance matrix as
in (5.26).

Symmetric Whitening Matrix Another interesting mathematical property of the
whitening matrix W in (5.43) is that it is symmetric, which can be shown as

WT = (U�UT)T = (UT)T�TUT = U�UT = W. (5.46)

In fact, it is the only symmetric whitening matrix.

Application to Natural Images When the previous procedure is applied to natural
image data, interesting receptive fields emerge. Figure 5.19a shows the resulting
whitening filters (rows/columns of W); a closeup of one of the filters is shown in
Fig. 5.19b. As can be seen, the whitening principle results in the emergence of filters
which have center-surround structure. All of the filters are identical, so processing
image patches with such filters is analogous to filtering them with the spatial filter
shown in Fig. 5.19b.

As pointed out several times above, whitening can be done in infinitely many
different ways: if W is a whitening transformation, so is any orthogonal transfor-
mation of W. Here, the whitening solution in (5.43) has been selected so that it
results in center-surround-type filters. This is a general property that we will bump
into time and again below: the whitening principle does constrain the form of the
emerging filters, but additional assumptions are needed before the results can have
a meaningful interpretation.

Note that the theory results in a single receptive field structure, while in the
retina, there are receptive fields with differing spatial properties—in particular scale
(frequency)—in the retina and the LGN. This is another limitation of the whiten-
ing principle, and additional assumptions are needed to produce a range of differing
filters.

5.9.3 Filter-Based Decorrelation

Now, we reformulate this theory in a filter-based framework. Then the theory postu-
lates that the amplitude response properties (see Sect. 2.2.3, page 34) of retinal and
LGN receptive fields follow from the following two assumptions:

1. The linear filters are whitening natural image data.
2. With the constraint that noise is not amplified unduly.
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Fig. 5.19 The application of the whitening principle results in the emergence of a set of cen-
ter-surround filters from natural image data. a The set of filters (rows/columns of whitening
matrix W) obtained from image data. b A closeup of one of the filters; the other filters are identical
except for spatial location
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Additional assumptions are needed to derive the phase response in order to specify
the filter completely. This is equivalent to the observation made above in the general
case of whitening: there are infinitely many whitening transformations. Here, the
phases are defined by specifying that the energy of the filter should be concentrated
in either time or space, which in the spatial case can be loosely interpreted to mean
that the spatial RFs should be as localized as possible.

The amplitude response of the filter will be derived in two parts: the first part is
the whitening filter, and the second part suppresses noise. The filter will be derived
in the frequency domain, and thereafter converted to the spatial domain by inverse
Fourier transform. It is often assumed that the statistics of image data do not depend
on spatial orientation; we make the same assumption here and study the orientation-
independent spatial frequency ωs. Conversion from the usual two-dimensional fre-

quencies ωx and ωy to spatial frequency ωs is given by ωs =
√

ω2
x + ω2

y . Let Ri(ωs)

denote the average power spectrum in natural images. We know that for uncorre-
lated/whitened data, the average power spectrum should be a constant (flat). Because
the average power spectrum of the filtered data is the product of the average power
spectrum of the original data and the squared amplitude response of the whiten-
ing filter, which we denote by |V (ωs)|2; this means that the amplitude response of
a whitening filter can be specified by

∣∣V (ωs)
∣∣= 1√

Ri(ωs)
, (5.47)

since then |V (ωs)|2Ri(ωs) = 1.
Real measurement data contains noise. Assume that the noise, whose average

power spectrum is Rn(ωs), is additive and uncorrelated with the original image
data, whose average power spectrum is Ro(ωs); then Ri(ωs) = Ro(ωs) + Rn(ωs).
To derive the amplitude response of the filter that suppresses noise, one can use a
Wiener filtering approach. Wiener filtering yields a linear filter that can be used to
compensate for the presence of additive noise: the resulting filter optimally restores
the original signal in the least mean square sense. The derivation of the Wiener filter
in the frequency space is somewhat involved, and we will skip it here; see Dong and
Atick (1995b). The resulting response properties of the filter are fairly intuitive: the
amplitude response |F(ωs)| of the Wiener filter is given by

∣∣F(ωs)
∣∣= Ri(ωs) − Rn(ωs)

Ri(ωs)
. (5.48)

Notice that if there are frequencies that contain no noise—that is, Rn(ωs) = 0—
the amplitude response is simply 1, and that higher noise power leads to decreased
amplitude response.

The overall amplitude response of the filter |W(ωs)| is obtained by cascading the
whitening and the noise-suppressive filters ((5.47) and (5.48)). Because this cascad-
ing corresponds to multiplication in the frequency domain, the amplitude response
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of the resulting filter is

∣∣W(ωs)
∣∣= ∣∣V (ωs)

∣∣∣∣F(ωs)
∣∣= 1√

Ri(ωs)

Ri(ωs) − Rn(ωs)

Ri(ωs)
. (5.49)

In practice, Ri(ωs) can be estimated directly from image data for each ωs, or one
can use the parametric form derived in Sect. 5.6 (page 111). (Negative values given
by this formula (5.49) have to be truncated to zero.) Noise is assumed to be spatially
uncorrelated, implying a constant (flat) power spectrum, and to have power equal to
data power at a certain characteristic frequency, denoted by ωs,c, so that

Rn(ωs) = Ri(ωs,c)

2
for all ωs. (5.50)

In order to fully specify the resulting filter, we have to define its phase response.
Here, we simply set the phase response to zero for all frequencies:

∠W(ωs) = 0 for all ωs. (5.51)

With the phases of all frequencies at zero, the energy of the filter is highly concen-
trated around the spatial origin, yielding a highly spatially localized filter. After the
amplitude and the phase responses have been defined, the spatial filter itself can be
obtained by taking the inverse two-dimensional Fourier transform.

The filter properties that result from the application of (5.49), (5.50) and (5.51)
are illustrated in Fig. 5.20 for characteristic frequency value ωs,c = 0.3 cycles per
pixel. For this experiment, 100 000 image windows of size 16 × 16 pixels were
sampled from natural images.4 The average power spectrum of these images was
then computed; the average of this spectrum over all spatial orientations is shown
in Fig. 5.20a. The squared amplitude response of the whitening filter, obtained from
(5.49), is shown in Fig. 5.20b. The power spectrum of the filtered data is shown
in Fig. 5.20c; it is approximately flat at lower frequencies and drops off sharply at
high frequencies because of the higher relative noise power at high frequencies. The
resulting filter is shown in Fig. 5.20d; for comparison, a measured spatial receptive
field of an LGN neuron is shown in Fig. 5.20e.

Thus, the center-surround receptive-field structure, found in the retina and the
LGN, emerges from this computational model and natural image data. However, we
made several assumptions above—such as the spacing of the receptive fields—and
obtained as a result only a single filter instead of a range of filters in different scales
and locations. In Sect. 16.3.2 (page 332), we will see that in the temporal domain,
similar principles lead to the emergence of temporal RF properties of these neurons.

4Here, we did not use our ordinary data set but that of van Hateren and van der Schaaf (1998).
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Fig. 5.20 The application of the whitening principle, combined with noise reduction and zero
phase response, leads to the emergence of center-surround filters from natural image data. a The
power spectrum Ri(ωs) of natural image data. b The squared amplitude response of a whitening
filter which suppresses noise: this curve follows the inverse of the data power spectrum at low
frequencies, but then drops off quickly at high frequencies, because the proportion of noise is larger
at high frequencies. c The power spectrum of the resulting (filtered) data, showing approximately
flat (white) power at low frequencies, and dropping off sharply at high frequencies. d The resulting
filter which has been obtained from the amplitude response in b and by specifying a zero phase
response for all frequencies; see text for details. e For comparison, the spatial receptive field of an
LGN neuron

5.10 Concluding Remarks and References

This chapter considered models of natural images which were based on analyzing
the covariances of the image pixels. The classic model is principal component analy-
sis, in which variance of a linear feature detector is maximized. PCA fails to yield
interesting feature detectors if the goal is to model visual cells in brain. However,
it is an important model historically and conceptually, and also provides the basis
for the preprocessing we use later in this book: dimension reduction combined with
whitening. In the next chapter, we will consider a different kind of learning criterion
which does yield features which are interesting for visual modeling.

Most of the work on second-order statistics of images is based on the (approx-
imate) 1/f 2 property of the power spectrum. This was investigated early in Field
(1987), Burton and Moorehead (1987), Tolhurst et al. (1992), Ruderman and Bialek
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(1994a), van der Schaaf and van Hateren (1996). It has been proposed to explain cer-
tain scaling phenomena in the visual cortex, such as the orientation bandwidth (van
der Schaaf and van Hateren 1996) and the relative sensitivity of cells tuned to differ-
ent frequencies (Field 1987). Early work on PCA of images include Sanger (1989),
Hancock et al. (1992). The 1/f property is closely related to the study of self-similar
stochastic processes (Embrechts and Maejima 2000) which has a very long history
(Mandelbrot and van Ness 1968). The study of self-critical systems (Bak et al. 1987)
may also have some connection. A model of how such self-similarities come about
as a result of composing an image of different “objects” is proposed in Ruderman
(1997).

A recent paper with a very useful discussion and review of the psychophysical
importance of the Fourier powers vs. phases is Wichmann et al. (2006); see also
Hansen and Hess (2007).

Another line of research proposes that whitening explains retinal ganglion re-
ceptive fields (Atick and Redlich 1992). (An extension of this theory explains LGN
receptive field by considering temporal correlations as well (Dan et al. 1996a); see
also Chap. 16.) For uniformity of presentation, we follow the mathematical theory
of Dong and Atick (1995b) both here in the spatial case and in the temporal case in
Sect. 16.3.2. As argued above, the proposal is problematic because there are many
ways of whitening data. A possible solution to the problem is to consider energy
consumption or wiring length; see Chap. 11 for this concept, as was done in Vincent
and Baddeley (2003), Vincent et al. (2005).

The anisotropy of pixel correlations has been used to explain some anisotropic
properties in visual psychophysics in Baddeley and Hancock (1991).

An attempt to characterize the proportion of information explained by the covari-
ance structure in natural images can be found in Chandler and Field (2007).

5.11 Exercises

Mathematical Exercises

1. Show that if the expectations of the grey-scale values of the pixels are the same
for all x, y:

E
{
I (x, y)

}= E
{
I (x′, y′)

}
for any x, y, x′, y′ (5.52)

then removing the DC component implies than the expectation of Ĩ (x, y) is zero
for any x, y.

2. Show that if
∑

x,y Wx,y = 0, the removal of the DC component has no effect on
the output of the features detector.

3. Show that if the vector (y1, . . . , yn)
T is white, any orthogonal transformation of

that vector is white as well.
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4. To get used to matrix notation:
a. The covariance matrix of the vector x = (x1, . . . , xn)

T is defined as the matrix
C with elements cij = cov(xi, xj ). Under what condition do we have C =
E{xxT}?

b. Show that the covariance matrix of y = Mx equals MCMT.
5. Denote by w a vector which reduces the dimension of x to one as z =∑i wixi .

Now, we will show that taking the first principal component is the optimal way of
reducing dimension if the optimality criterion is least-squares error. This means
that we reconstruct the original data as a linear transformation of z as:

J (W) = E

{∑

j

(xj − wjz)
2
}
. (5.53)

a. Show that J is equal to

∑

j

w2
j

∑

i,i′
wiwi′cov(xi, xi′) − 2

∑

j

wj

∑

i

wicov(xj , xi) +
∑

j

var(xj ).

(5.54)
b. Using this expression for J , show that the w which minimizes J under the

constraint ‖w‖ = 1 is the first principal component of x.

Computer Assignments

1. Take some images from the web. Take a large sample of extremely small patches
of the images, so that the patch contains just two neighboring pixels. Convert the
pixels to grey-scale if necessary. Make a scatter plot of the pixels. What can you
see? Compute the correlation coefficient of the pixel values.

2. Using the same patches, convert them into two new variables: the sum of the
grey-scale values and their difference. Do the scatter plot and computer the cor-
relation coefficient.

3. Using the same images, take a sample of 1000 patches of the form of 1 × 10
pixels. Compute the covariance matrix. Plot the covariance matrix (because the
patches are one-dimensional, you can easily plot this two-dimensional matrix).

4. The same as above, but remove the DC component of the patch. How does this
change the covariance matrix?

5. The same as above, but with only 50 patches sampled from the images. How are
the results changed and why?

6. *Take the sample of 1000 one-dimensional patches computed above. Compute
the eigenvalue decomposition of the covariance matrix. Plot the principal com-
ponent weights Wi(x).



Chapter 6
Sparse Coding and Simple Cells

In the preceding chapter, we saw how features can be learned by PCA of natural im-
ages. This is a classic method of utilizing the second-order information of statistical
data. However, the features it gave were not very interesting from a neural model-
ing viewpoint, which motivates us to find better models. In fact, it is clear that the
second-order structure of natural images is scratching the surface of the statistical
structure of natural images. Look at the outputs of the feature detectors of Fig. 1.10,
for example. We can see that the outputs of different kinds of filters differ from each
other in other ways than just variance: the output of the Gabor filter has a histogram
that has a strong peak at zero, whereas this is not the case for the histogram of
pixel values. This difference is captured in a property called sparseness. It turns out
that a more interesting model is indeed obtained if we look at the sparseness of the
output s instead of the variance as in PCA.

6.1 Definition of Sparseness

Sparseness means that the random variable is most of the time very close to zero,
and only occasionally gets clearly non-zero values. One often says that the random
variable is “active” only rarely.

It is very important to distinguish sparseness from small variance. When we say
“very close to zero”, this is relative to the general deviation of the random variable
from zero, i.e. relative to its variance and standard deviation. Thus, “very close to
zero” would mean something like “an absolute value that is smaller than 0.1 times
the standard deviation”.

To say that a random variable is sparse needs a baseline of comparison. Here,
it is the Gaussian (normal) distribution; a random variable is sparse if it is active
more rarely compared to a Gaussian random variable of the same variance (and
zero mean). Figure 6.1 shows a sample of a sparse random variable, compared to the
Gaussian random variable of the same variance. Another way of looking at sparse-
ness is to consider the probability density function (pdf). The property of being
most of the time very close to zero is closely related to the property that the pdf
has a peak at zero. Since the variable must have some deviation from zero (vari-
ance was normalized to unity), the peak at zero must be compensated by a relatively
large probability mass at large values; a phenomenon often called “heavy tails”. In
between these two extremes, the pdf takes relatively small values, compared to the
Gaussian pdf. This is illustrated in Fig. 6.2.1

1Here, we consider the case of symmetric distributions only. It is possible to talk about the sparse-
ness of non-symmetric distributions as well. For example, if the random variable only obtains
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Fig. 6.1 Illustration of
sparseness. Random samples
of a Gaussian variable (top)
and a sparse variable
(bottom). The sparse variable
is practically zero most of the
time, occasionally taking very
large values. Note that the
variables have the same
variance, and that these are
not time series but just
observations of random
variables

Fig. 6.2 Illustration of a typical sparse probability density. The sparse density function, called
Laplacian, is given by the solid curve (see (7.18) in the next chapter for an exact formula). For
comparison, the density of the absolute value of a Gaussian random variable of the same variance
is given by the dash-dotted curve. a The probability density functions, b their logarithms

6.2 Learning One Feature by Maximization of Sparseness

To begin with, we consider the problem of learning a single feature based on max-
imization of sparseness. As explained in Sect. 1.8, learning features is a simple
approach to building statistical models. Similar to the case of PCA, we consider one
linear feature s computed using weights W(x,y) as

s =
∑

x,y

W(x, y)I (x, y). (6.1)

non-negative values, the same idea of being very close to zero most of the time is still valid and is
reflected in a peak on the right side of the origin. See Sect. 13.2.3 for more information. However,
most distributions found in this book are symmetric.
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While a single feature is not very useful for vision, this approach shows the basic
principles in a simplified setting. Another way in which we simplify the problem
is by postponing the formulation of a proper statistical model. Thus, we do not
really estimate the feature in this section, but rather learn it by some intuitively
justified statistical criteria. In Sect. 6.3, we show how to learn many features, and in
Chap. 7 we show how to formulate a proper statistical model and learn the features
by estimating it.

6.2.1 Measuring Sparseness: General Framework

To be able to find features that maximize sparseness, we have to develop statistical
criteria for measuring sparseness. When measuring sparseness, we can first normal-
ize s to unit variance, which is simple to do by dividing s by its standard deviation.
This simplifies the formulation of the measures.

A simple way to approach the problem is to look at the expectation of some
function of s, a linear feature of the data. If the function is the square function,
we are just measuring variance (which we just normalized to be equal to one), so
we have to use something else. Since we know that the variance is equal to unity,
we can consider the square function as a baseline and look at the expectations of the
form

E
{
h
(
s2)} (6.2)

where h is some nonlinear function.
How should the function h be chosen so that the formula in (6.2) measures

sparseness? The starting point is the observation that sparse variables have a lot
of data (probability mass) around zero because of the peak at zero, as well as a lot
of data very far from zero because of heavy tails. Thus, we have two different ap-
proaches to measuring sparseness. We can choose h so that it emphasizes values that
are close to zero, or values that are much larger than one. However, it may not be
necessary to explicitly measure both of them because the constraint of unit variance
means that if there is a peak at zero, there has to be something like heavy tails to
make the variance equal to unity, and vice versa.

6.2.2 Measuring Sparseness Using Kurtosis

A simple function that measures sparseness with emphasis on large values (heavy
tails) is the quadratic function

h1(u) = (u − 1)2. (6.3)

(We denote by u the argument of h, to emphasize that it is not a function of s

directly. Typically, u = s2.) Algebraic simplifications show that then the sparseness



134 6 Sparse Coding and Simple Cells

measure is equal to

E
{
h1
(
s2)}= E

{(
s2 − 1

)2}= E
{
s4 − 2s2 + 1

}= E
{
s4}− 1 (6.4)

where the last equality holds because of the unit variance constraint. Thus, this mea-
sure of sparseness is basically the same as the fourth moment; subtraction of the
constant (one) is largely irrelevant since it just shifts the measurement scale.

Using the fourth moment is closely related to the classic statistic called kurtosis

kurt(s) = E
{
s4}− 3

(
E
{
s2})2. (6.5)

If the variance is normalized to 1, kurtosis is in fact the same as the fourth mo-
ment minus a constant (three). This constant is chosen so that kurtosis is zero for a
Gaussian random variable (this is left as an exercise). If kurtosis is positive, the vari-
able is called leptokurtic (or super-Gaussian); this is a simple operational definition
of sparseness.

However, kurtosis is not a very good measure of sparseness for our purposes.
The basic problem with kurtosis is its sensitivity to outliers. An “outlier” is a data
point that is very far from the mean, possibly due to an error in the data collection
process. Consider, for example, a data set that has 1000 scalar values and has been
normalized to unit variance. Assume that one of the values is equal to 10. Then
kurtosis is necessarily equal to at least 104/1000 − 3 = 7. A kurtosis of 7 is usually
considered a sign of strong sparseness. But here it was due to a single value, and not
representative of the whole data set at all!

Thus, kurtosis is a very unreliable measure of sparseness. This is due to the fact
that h1 puts much more weight on heavy tails than on values close to zero (it grows
infinitely when going far from zero). It is, therefore, useful to consider other mea-
sures of sparseness, i.e. other non-linear functions h.

6.2.3 Measuring Sparseness Using Convex Functions of Square

Convexity and Sparseness Many valid measures can be found by considering
functions h that are convex.2 Convexity means that a line segment that connects
two points on the graph is always above the graph of the function, as illustrated in
Fig. 6.3. Algebraically, this can be expressed as follows:

h
(
αx1 + (1 − α)x2

)
< αh(x1) + (1 − α)h(x2) (6.6)

for any 0 < α < 1. It can be shown that this is true if the second derivative of h is
positive for all x (except perhaps in single points).

Why is convexity enough to yield a valid measure of sparseness? The reason is
that the expectation of a convex function has a large value if the data is concentrated
in the extremes, in this case near zero and very far from zero. Any points between

2The convexity we consider here is usually called “strict” convexity in mathematical literature.
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Fig. 6.3 Illustration of convexity. The plotted function is y = −√
x + x + 1

2 , which from the
viewpoint of measurement of sparseness is equivalent to just the negative square root, as explained
in the text. The segment (dashed line) connecting two points on its graph is above the graph;
actually, this is always the case

the extremes decrease the expectation of the convex h due to the fundamental equa-
tion (6.6), where x1 and x2 correspond to the extremes, and αx1 + (1 − α)x2 is a
point in between.

The function h1 in (6.3) is one example of a convex function, but below we will
propose better ones.

An Example Distribution To illustrate this phenomenon, consider a simple case
where s takes only three values:

P
(
s = −√

5
)= 0.1, P

(
s = √

5
)= 0.1, P (s = 0) = 0.8. (6.7)

This distribution has zero mean, unit variance, and is quite sparse. The square s2

takes the values 0 and 5, which can be considered very large in the sense that it is
rare for a random variable to take values that are

√
5 times the standard deviation,

and 0 is, of course an extremely small absolute value. Now, let us move some of the
probability mass from 0 to 1, and to preserve unit variance, make the largest value
smaller. We define

P(s = −2) = 0.1, P (s = 2) = 0.1, P (s = 0) = 0.6, (6.8)

P(s = −1) = 0.1, P (s = 1) = 0.1. (6.9)

We can now compute the value of the measure E{h(s2)} for the new distribution
and compare it with the value obtained for the original distribution, based on the
definition of convexity:

0.2h(4) + 0.2h(1) + 0.6h(0)

= 0.2h(0.8 × 5 + 0.2 × 0) + 0.2h(0.2 × 5 + 0.8 × 0) + 0.6h(0)

< 0.2 × (0.8h(5) + 0.2h(0)
)+ 0.2 × (0.2h(5) + 0.8h(0)

)+ 0.6h(0)

= 0.2h(5) + 0.8h(0) (6.10)
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where the inequality is due to the definition of convexity in (6.6). Now, the last ex-
pression is the value of the sparseness measure in the original distribution. Thus, we
see that the convexity of h makes the sparseness measure smaller when probability
mass is taken away from the extremes. This is true for any convex function.

Suitable Convex Functions A simple convex function—which will be found to
be very suitable for our purposes—is given by the negative square root:

h2(u) = −√
u. (6.11)

This function is actually equivalent to the one in Fig. 6.3, because the addition of
u = s2 just adds a constant 1 to the measure: Adding a linear term to the sparseness
measure h has no effect because it only adds a constant due to the constraint of unit
variance. Adding a linear term has no effect on convexity either (which is left as
an exercise). This linear term and the constant term were just added to the function
Fig. 6.3 to illustrate the fact that it puts more weight on values near zero and far
from zero, but the weight for values far from zero do not grow too fast.

The validity of h2 as a sparseness measure is easy to see from Fig. 6.3, which
shows how the measure gives large values if the data is either around zero, or takes
very large values. In contrast to h1, or kurtosis, it does not suffer from sensitiv-
ity to outliers because it is equivalent to using the square root which grows very
slowly when going away from zero. Moreover, h2 also emphasizes the concentra-
tion around zero because it has a peak at zero itself.3

Another point to consider is that the function h2(s
2) is actually equal to the neg-

ative of the absolute value function −|s|. It is not differentiable at zero, because
its slope abruptly changes from −1 to +1. This may cause practical problems, for
example, in the optimization algorithms that will be used to maximize sparseness.
Thus, it is often useful to take a smoother function, such as

h3(u) = − log cosh
√

u (6.12)

which is as a function of s

h3
(
s2)= − log cosh s. (6.13)

The relevant functions and their derivatives are plotted in Fig. 6.4. Note that the
point is to have a function h that is a convex function as a function of the square
u = s2 as in (6.12). When expressed as a function of s as in (6.13), the function
need not be convex anymore.

Alternatively, one could modify h2 as

h2b = −√
u + ε (6.14)

3One could also argue that h2 does not give a large value for large values of s at all, but only for s

very close to zero, because the function h2 has a peak at zero. This is a complicated point because
we can add a linear function to h2 as pointed out above. In any case, it is certain that h2 puts much
more weight on values of u very close to zero.
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Fig. 6.4 Illustration of the log cosh function and its comparison with the absolute value func-
tion. a The function h2 in (6.11) is given in solid curve. The function h3 in (6.12) is given as
a dash-dotted curve. b The same functions h2 and h3 are given as function of s (and not its square).
c The derivatives of the functions in b

where ε is a small constant. This is another smoother version of the square root
function. It has the benefit of being simpler than h3 when we consider h as a function
of u; in contrast, h3 tends to be simpler when considered a function of s.

There are many different convex function that one might choose, so the question
arises whether there is an optimal one that we should use. In fact, estimation theory
as described in detail in Chap. 7 shows that the optimal measure of sparseness is
basically given by choosing

hopt
(
s2)= logps(s) (6.15)

where ps is the probability density function of s. The function h2 is typically not a
bad approximation of this optimal function for natural images. Often, the logarithm
of a pdf has an even stronger singularity (peak) at zero than what h2 has. Thus, to
avoid the singularity, it may be better to use something more similar to h2 or h3.
This will be considered in more detail in Sect. 7.7.2.



138 6 Sparse Coding and Simple Cells

Summary To recapitulate, finding linear feature detectors of maximum sparse-
ness can be done by finding a maximum of

E

{
h

([∑

x,y

W(x, y)I (x, y)

]2
)}

(6.16)

with respect to W , constraining W so that

E

{[∑

x,y

W(x, y)I (x, y)

]2
}

= 1, (6.17)

where the function h is typically chosen as in (6.12).
Usually, there are many local maxima of the objective function (see Sect. 18.3 for

the concept of global and local maxima). Each of the local maxima gives a different
feature.

6.2.4 The Case of Canonically Preprocessed Data

In practice, we use data that has been preprocessed by the canonical way described
in Sect. 5.4. That is, the dimension of the data has been reduced by PCA to re-
duce computational load and to get rid of the aliasing artifacts, and the data has
been whitened to simplify the correlation structure. Denoting the canonically pre-
processed data by zi , i = 1, . . . , n the maximization then takes the form

E

{
h

([
n∑

i=1

vizi

]2)}
(6.18)

with respect to the weights vi which are constrained so that

‖v‖2 =
∑

i

v2
i = 1. (6.19)

6.2.5 One Feature Learned from Natural Images

Consider again the three distributions in Fig. 5.1. All of them look quite sparse in the
sense that the histograms (which are just estimates of the pdf’s) have a peak at zero.
It is not obvious what kind of features are maximally sparse. However, optimizing a
sparseness measure we can find well-defined features.

Figure 6.5 shows the weights Wi obtained by finding a local maximum of sparse-
ness, using the sparseness measure h3 and canonically preprocessed data. It turns
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Fig. 6.5 Three weight vectors found by maximization of sparseness in natural images. The max-
imization was started in three different points which each gave one vector corresponding to one
local maximum of sparseness

out that features similar to Gabor functions and simple-cell receptive fields are char-
acterized by maximum sparseness. The features that are local maxima of sparseness,
they turn out to have the three basic localization properties: they are localized in the
(x, y)-space, localized in frequency (i.e. they are band-pass), and localized in orien-
tation space (i.e. they are oriented).

Note that in contrast to variance, sparseness has many local maxima. Most lo-
cal maxima (almost all, in fact) are localized in space, frequency, and orientation.
The sparsenesses of different local maxima are often not very different from each
other. In fact, if you consider a feature detectors whose weights are given by the Ga-
bor functions which are but otherwise similar but are in two different locations,
it is natural to assume that the sparsenesses of the two features must be equal,
since the properties of natural images should be the same in all locations. The
fact that sparseness has many local maxima forms the basis for learning many fea-
tures.

6.3 Learning Many Features by Maximization of Sparseness

A single feature is certainly not enough: Any vision system needs many features
to represent different aspects of an image. Since sparseness is locally maximized
by many different features, we could, in principle, just find many different local
maxima—for example, by running an optimization algorithm starting from many
different random initial conditions. Such a method would not be very reliable, how-
ever, because the algorithm could find the same maxima many times.

A better method of learning many features is to find many local maxima that
fulfill some given constraint. Typically, one of two options is used. First, we could
constrain the detector weights Wi to be orthogonal to each other, just as in PCA.
Second, we could constraint the different si to be uncorrelated. We choose here the
latter because it is a natural consequence of the generative-model approach that will
be explained in Chap. 7.

Actually, these two methods are not that different after all, because if the data
is whitened as part of canonical preprocessing (see Sect. 5.4), orthogonality and
uncorrelatedness are, in fact, the same thing, as was discussed in Sect. 5.3.2.2. This
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is one of the utilities in canonical preprocessing. Thus, decorrelation is equivalent
to orthogonalization, which is a classic operation in matrix computations.

Note that there is no order that would be intrinsically defined between the fea-
tures. This is in contrast to PCA, where the definition automatically leads to the
order of the first, second, etc. principal component. One can order the obtained
components according to their sparseness, but such an ordering is not as important
as in the case of PCA.

6.3.1 Deflationary Decorrelation

There are basically two approaches that one can use in constraining the different
feature detectors to have uncorrelated outputs. The first one is called deflation, and
proceeds by learning the features one-by-one. First, one learns the first feature. Then
one learns a second feature under the constraint that its output must be uncorrelated
from the output of the first one, then a third feature whose output must be uncorre-
lated from the two first ones, and so on, always constraining the new feature to be
uncorrelated from the previously found ones. In algorithmic form, this deflationary
approach can be described as follows:

1. Set k = 1.
2. Find a vector W that maximizes the sparseness:

E

{
h

([∑

x,y

W(x, y)I (x, y)

]2
)}

(6.20)

under the constraints of unit variance of deflationary decorrelation:

E

{(∑

x,y

W(x, y)I (x, y)

)2
}

= 1, (6.21)

E

{∑

x,y

W(x, y)I (x, y)
∑

x,y

Wi(x, y)I (x, y)

}
= 0 for all 1 ≤ i < k. (6.22)

3. Store this vector in Wk and increment k by one.
4. If k does not equal the dimension of the space, go back to step 2.

The deflationary approach is easy to understand. However, it is not recommended
because of some drawbacks. Basically, in the deflationary approach those features
that are found in the beginning are privileged over others. They can do the optimiza-
tion in the whole space whereas the last vectors (k close to the dimension of the
space) have very little space where to optimize. This leads to the gradual deterio-
ration of the features: the latter ones are often rather poor because their form is so
severely restricted. In other words, the random errors (due to limited sample size),
as well as numerical errors (due to inexact optimization) in the first feature weights
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propagate to latter weights, and produce new errors in them. A further problem
is that the method is not very principled; in fact, the more principled approach to
sparse coding discussed in the next chapter leads to the following method, symmet-
ric decorrelation.

6.3.2 Symmetric Decorrelation

It would be more natural and efficient to use a method in which all the features
are learned on an equal footing. This is achieved in what is called the symmetric
approach. In the symmetric approach, we maximize the sum of the sparsenesses of
the outputs. In this maximization, the outputs of all units are constrained to be un-
correlated. Thus, no filters are privileged. Using the measures of sparseness defined
above, this leads to an optimization problem of the following form:

Maximize
n∑

i=1

E

{
h

([∑

x,y

Wi(x, y)I (x, y)

]2
)}

(6.23)

under the constraints of unit variance and symmetric decorrelation:

E

{(∑

x,y

Wi(x, y)I (x, y)

)2
}

= 1 for all i, (6.24)

E

{∑

x,y

Wi(x, y)I (x, y)
∑

x,y

Wj (x, y)I (x, y)

}
= 0 for all i �= j. (6.25)

This approach can also be motivated by considering that we are actually maximiz-
ing the sparseness of a representation instead of sparsenesses of the features; these
concepts will be discussed next.

Whichever method of decorrelation is used, this approach limits the number of
features that we can learn to the dimensionality of the data. For canonically pre-
processed data, this is the dimensionality chosen in the PCA stage. This is because
the features are constrained orthogonal in the whitened space, and there can be at
most n orthogonal vectors in an n-dimensional space. Some methods are able to
learn more features than this; they will be treated later in Sect. 13.1.

6.3.3 Sparseness of Feature vs. Sparseness of Representation

When considering a group of features, sparseness has two distinct aspects. First,
we can look at the distribution of a single feature s when the input consists of many
natural images It , t = 1, . . . , T , as we did above—this is what we call the sparseness
of features (or “lifetime sparseness”). The second aspect is to look at the distribution
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of the features si over the index i = 1, . . . , n, for a single input image I—this is what
we call the sparseness of the representation (or “population sparseness”).

Sparseness of a representation means that a given image is represented by only
a small number of active (clearly non-zero) features. This was, in fact, one of the
main motivations of looking for sparse features in the first place, and it has been
considered the defining feature of sparse coding, i.e. a sparse representation.

A sparse representation can be compared to a vocabulary in a spoken language.
A vocabulary typically consists of tens of thousands of words. Yet, to describe a
single event or a single object, we only need to choose a few words. Thus, most of
the words are not active in the representation of a single event. In the same way,
a sparse representation consists of a large number of potential features; yet, to de-
scribe a single input image, only a small subset of them are activated.

This kind of reduction of active elements must be clearly distinguished from
dimension reduction techniques such as principal component analysis (PCA). In
PCA, we choose once and for all a small set of features that are used for representing
all the input patches. The number of these principal features is smaller than the
dimension of the original data, which is why this is called dimension reduction. In
a sparse representation, the active features are different from patch to patch, and the
total number of features in the representation need not be smaller than the number
of dimensions in the original data—in fact, it can even be larger.

What is then the connection between these two concepts of sparseness? Basically,
we could measure the sparseness of the representation of a given image using the
same measures as we used for the sparseness of the features. Thus, for a single image
It , the sparseness of the representation given by the image filters Wi , i = 1, . . . , n

can be measured as:

n∑

i=1

h

([∑

x,y

Wi(x, y)It (x, y)

]2
)

. (6.26)

For this measure to be justified in the same way as we justified it above, it must be
assumed that for the single image, the following two normalization conditions hold:

1. The mean of the features is zero.
2. The mean of the square of the features equals one (or any other constant).

While these conditions do not often hold exactly for a single image, they typically
are approximately true for large sets of features. In particular, if the features are
statistically independent and identically distributed (see Sect. 4.5), the conditions
will be approximately fulfilled by the law of large numbers—the basic statistical
law that says that the average of independent observations tends to the expectation.

Now, let us assume that we have observed T image patches It (x, y), t =
1, . . . , T , and let us simply take the sum of the sparsenesses of each image com-
puted as in (6.26) above. This gives

T∑

t=1

n∑

i=1

h

([∑

x,y

Wi(x, y)It (x, y)

]2
)

. (6.27)
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Rearranging the summations, we see that this is equal to

n∑

i=1

T∑

t=1

h

([∑

x,y

Wi(x, y)It (x, y)

]2
)

. (6.28)

The expression in (6.28) is the sum of the sparsenesses of the features. The expres-
sion in (6.27) is the sum of the sparsenesses of representations. Thus, we see that
these two measures are equal. However, for this equality to be meaningful, it must
be assumed that the normalization conditions given above hold as well. Above, we
argued that they are approximately fulfilled if the features are approximately inde-
pendent.

So, we can conclude that sparseness of features and sparseness of representation
give approximately the same function to maximize, hence the same feature set. The
functions are closer to equal when the feature sets are large and the features are
statistically independent and have identical distributions. However, the measures
might be different if the normalization conditions above are far from true.4

6.4 Sparse Coding Features for Natural Images

6.4.1 Full Set of Features

Now, we are ready to learn a whole set of features from natural images. We sam-
pled randomly 50 000 image patches of 32 × 32 pixels, and applied canonical pre-
processing to them, reducing the dimension to 256, which meant retaining 25%
of the dimensions. We used the log cosh function, i.e. h3 in (6.12), and symmetric
decorrelation. The actual optimization was done using a special algorithm called
FastICA, described in Sect. 18.7.

The obtained results are shown in Fig. 6.6. Again, the feature detector weights
are coded so that the grey-scale value of a pixel means the value of the coefficient
at that pixel. Grey pixels mean zero coefficients.

Visually, one can see that these feature detectors have interesting properties. First,
they are localized in space: most of the coefficients are practically zero outside of a
small receptive field. The feature detectors are also oriented. Furthermore, they are
multiscale in the sense that most of them seem to be coding for small things whereas
a few are coding for large things (in fact, so large that they do not fit in the window,
so that the detectors are not completely localized).

4Here’s a counterexample in which the sparseness of features is zero but the sparseness of repre-
sentation is high. Consider ten independent Gaussian features with zero mean. Assume nine have
a very small variance, and one of them has a very large variance. Each of the features, considered
separately, is Gaussian, and thus not sparse. However, for each image, the feature distribution has
nine values close to zero and one which is typically very large, and therefore the distribution is
sparse. The key here is that the features have different variances, which violates the normalization
conditions.
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Fig. 6.6 The whole set of symmetrically orthogonalized feature vectors Wi maximizing sparsity,
learned from natural images

6.4.2 Analysis of Tuning Properties

We can analyze the feature detectors Wi further by looking at the responses when
gratings, i.e. sinusoidal functions, are input to them. In other words, we create arti-
ficial images which are two-dimensional sinusoids, and compute the outputs si . We
consider sinusoidal functions of the form

fo(x, y) = sin
(
2πα

(
sin(θ)x + cos(θ)y

))
, (6.29)

fe(x, y) = cos
(
2πα

(
sin(θ)x + cos(θ)y

))
. (6.30)

These are sinusoidal gratings where θ gives the orientation (angle) of the oscilla-
tion, the x axis corresponding to θ = 0. The parameter α gives the frequency. The
two functions give two oscillations in different phases; more precisely, they are in
quadrature-phase, i.e. a 90 degrees phase difference.
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Now, we compute these functions for a large number of orientations and fre-
quencies. We normalize the obtained functions to unit norm. Then we compute the
dot-products of the Wi with each of the gratings. We can then compute the opti-
mal orientation and frequency by finding the α and θ that maximize the sum of the
squares of the two dot-products corresponding to the sin and cos functions. (We take
the sum of squares because we do not want the phase of the Wi to have influence on
this computation.)

This is actually almost the same as computing the 2-D power spectrum for all
orientations and frequencies. We could do similar computations using the Discrete
(or Fast) Fourier Transform as well, but we prefer here this direct computation for
two reasons. First, we see the concrete meaning of the power spectrum in these
computations. Second, we can compute the gratings for many more combinations
of orientations and frequencies than is possible by the DFT.

In neurophysiology, this kind of analysis is usually done using drifting gratings.
In other words, the gratings move on the screen in the direction of their oscilla-
tion. The maximum response of the cell for a drifting grating of a given (spatial)
frequency and orientation is measured. This is more or less the same thing as the
analysis that we are conducting here on our model simple cells. The fact that the
gratings move in time may be necessary in neurophysiology because movement
greatly enhances the cell responses, and so this method allows faster and more accu-
rate measurement of the optimal orientation and frequency. However, it complicates
the analysis because we have an additional parameter, the temporal frequency of the
grating, in the system. Fortunately, we do not need to use drifting gratings in our
analysis.

When we have found the optimal frequency and orientation parameters, we can
analyze the selectivities by changing one of the parameters in the grating, and com-
puting again the total response to two gratings that have the new parameters and
are in quadrature phase. Such analysis of selectivity (tuning curves) is routinely
performed in visual neuroscience.

In the same way, we can analyze the selectivity to phase. Here, we must obvi-
ously take a slightly different approach since we cannot take two filters in quadra-
ture phase since then the total response would not depend on the phase at all. In
neurophysiology, this is analyzed by simply plotting the response as a function of
time when the input is a drifting grating with the optimal frequency and orientation.
We can simulate the response by simply taking the dot-product of Wi with gratings
whose phase goes through all possible values, and still keeping the orientation and
frequency at optimal values. (The real utility of the analysis of phase selectivity will
be seen when the responses of linear features are compared with non-linear ones in
Chap. 10.)

In Fig. 6.7 we show the results of the analysis for the first ten features in Fig. 6.6,
i.e. the first ten receptive fields on the first row. What we see is that all the cells are
tuned to a specific values of frequency, orientation, and phase: any deviation from
the optimal value decreases the response.

It is also interesting to look at how the (optimal) orientations and frequencies are
related to each other. This is shown in Fig. 6.8. One can see that the model tries to
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Fig. 6.7 Tuning curves of the ten first sparse coding features Wi in Fig. 6.6. Left: change in
frequency (the unit is cycles in the window of 32 × 32 pixels, so that 16 means wavelength of
2 pixels). Middle: change in orientation. Right: change in phase
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Fig. 6.8 Scatter plot of the
frequencies and orientations
of the sparse coding features.
Horizontal axis: orientation,
vertical axis: frequency

Fig. 6.9 Histograms of the optimal a frequencies and b orientations of the linear features obtained
by sparse coding

cover all possible combinations of these variables. However, there is a strong empha-
sis on the highest frequencies that are present in the image. Note that preprocessing
by PCA removed the very highest frequencies, so the highest frequencies present
are much lower (approx. 9 cycles per patch) than the Nyquist frequency (32/2 = 16
cycles per patch).

Another way of looking at the distributions is to plot the histograms of the two
parameters separately, as shown in Fig. 6.9. Here, we see again that most of the fea-
tures have very high frequencies. The orientations are covered rather uniformly, but
there are more features with horizontal orientation (0 or, equivalently, π ). This is an-
other expression of the anisotropy of natural images, already seen in the correlations
in Sect. 5.7.

6.5 How Is Sparseness Useful?

6.5.1 Bayesian Modeling

The central idea in this book is that it is useful to find good statistical models for nat-
ural images because such models provide the prior probabilities needed in Bayesian
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inference or, in general, the prior information that the visual system needs on the
environment. These tasks include de-noising and completion of missing data.

So, sparse coding models are useful for the visual system simply because they
provide a better statistical model of the input data. The outputs of filter detectors are
sparse, so this sparseness should be accounted for by the model. We did not really
show that we get a better statistical model this way, but this point will be considered
in the next chapter.

A related viewpoint is that of information theory: sparseness is assumed to lead
to a more efficient code of the input. This viewpoint will be considered in Chap. 8.

6.5.2 Neural Modeling

Another viewpoint is to just consider the power of the statistical models to account
for the properties of the visual system. From the viewpoint of computational neuro-
science, sparse coding leads to the emergence of receptive fields similar to simple
cells, so sparse coding is clearly a better model of the visual cortex in this respect
than, say, PCA. Results in Chaps. 15 and 16 give even more support to this claim.
This viewpoint does not consider why the visual system should use sparseness.

6.5.3 Metabolic Economy

However, there are other, additional, reasons as well why it would be advantageous
for the visual system to use sparse coding, and these reasons have nothing to do with
the statistics of the input stimuli. The point is that firing of cells consumes energy,
and energy is one of the major constraints on the biological “design” of the brain.
A sparse code means that most cells do not fire more than their spontaneous firing
rate most of the time. Thus, sparse coding is energy-efficient.

So, we have a fortunate coincidence where those linear features that are opti-
mal statistically are also optimal from the viewpoint of energy consumption. Possi-
bly, future research will show some deep connections between these two optimality
properties.

6.6 Concluding Remarks and References

In this chapter, we learned feature detectors which maximize the sparseness of their
outputs when the input is natural images. Sparseness is a statistical property which
is completely unrelated to variance, which was the criterion in PCA in the preceding
chapter. Maximization of sparseness yield receptive fields which are quite similar to
those of simple cells. This fundamental result is the basis of all the developments in
the rest of this book.
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Early work on finding maximally sparse projection can be found in Field (1987,
1994). Estimating a whole basis for image patches was first accomplished in the
seminal paper (Olshausen and Field 1996) using a method considered in Sect. 13.1.
A detailed comparison with simple cell receptive fields is in van Hateren and van
der Schaaf (1998); see also van Hateren and Ruderman (1998). A discussion on
sparseness of features vs. sparseness of representation is in Willmore and Tolhurst
(2001).

The idea of increasing metabolic efficiency by sparse coding dates back to Bar-
low (1972); for more recent analysis, see e.g. Levy and Baxter (1996), Balasubra-
maniam et al. (2001), Attwell and Laughlin (2001), Lennie (2003).

Some researchers have actually measured the sparseness of real neuron outputs,
typically concluding that they are sparse; see Baddeley et al. (1997), Gallant et al.
(1998), Vinje and Gallant (2000, 2002), Weliky et al. (2003).

An approach that is popular in engineering is to take a fixed linear basis and then
analyze the statistics of the coefficients in that basis. Typically, one takes a wavelet
basis (see Sect. 17.3.2) which is not very much unlike the sparse coding basis. See
Simoncelli (2005) for reviews based on such an approach.

Approaches for sparse coding using concepts related to spike trains instead of
mean firing rates include Olshausen (2002), Smith and Lewicki (2005, 2006).

6.7 Exercises

Mathematical Exercises

1. Show that if f (x) is a (strictly) convex function, i.e. fulfills (6.6), f (x) + ax + b

has the same property, for any constants a, b.
2. Show that the kurtosis of a Gaussian random variable is zero. (For simplicity,

assume the variable is standardized to zero mean and unit variance. Hint: try
partial integration to calculate the fourth moment.)

3. The Gram–Schmidt orthogonalization algorithm is defined as follows. Given
n feature detector vectors Wi(x, y) which have been normalized to unit norm,
do
a. Set i → 1.
b. Compute the new value of the vector wi as

Wi(x, y) ← Wi(x, y) −
i−1∑

j=1

∑

x′,y′
Wj(x

′, y′)Wi(x
′, y′)Wj (x, y). (6.31)

c. Re-normalize Wi : Wi(x, y) ← Wi(x, y)/
√∑

x′,y′ Wi(x′, y′)2.

d. Increment i by one and go back to Step 1, if i is not yet larger than n.
Show that the set of vectors is orthogonal after application of this algorithm.
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Computer Assignments

1. Take some images. Take samples of 10 × 10 pixels. Construct a simple edge
detector. Compute its output. Plot the histogram of the output, and compute its
kurtosis.



Chapter 7
Independent Component Analysis

In this chapter, we discuss a statistical generative model called independent compo-
nent analysis. It is basically a proper probabilistic formulation of the ideas under-
pinning sparse coding. It shows how sparse coding can be interpreted as providing
a Bayesian prior, and answers some questions which were not properly answered in
the sparse coding framework.

7.1 Limitations of the Sparse Coding Approach

In the preceding chapter, we showed that by finding linear feature detectors that
maximize the sparseness of the outputs, we find features that are localized in space,
frequency, and orientation, thus being similar to Gabor functions and simple cell
receptive fields. While that approach had intuitive appeal, it was not completely
satisfactory in the following respects:

1. The choice of the sparseness measure was rather ad hoc. It would be interesting
to find a principled way of determining the optimal non-linear function h used in
the measures.

2. The learning of many features was done by simply constraining the outputs of
feature detectors to be uncorrelated. This is also quite ad hoc, and some justifi-
cation for the decorrelation is needed.

3. The main motivation for this kind of statistical modeling of natural images is
that the statistical model can be used as a prior distribution in Bayesian infer-
ence. However, just finding maximally sparse features does not give us a prior
distribution.

A principled approach that also solves these problems is using generative models.
A generative model describes how the observed data (natural images) is generated as
transformations of some simple original variables. The original variables are called
latent since they cannot usually be observed directly.

The generative model we propose here for modeling natural image patches is
called independent component analysis. This model was originally developed to
solve rather different kinds of problems, in particular, the so-called blind source
separation problem, see the References section below for more information. How-
ever, it turns out that the same model can be interpreted as a form of sparse coding,
and is more or less equivalent to finding linear features that are maximally sparse,
as we will see in this chapter.

A. Hyvärinen, J. Hurri, P.O. Hoyer, Natural Image Statistics,
Computational Imaging and Vision 39,
© Springer-Verlag London Limited 2009
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7.2 Definition of ICA

7.2.1 Independence

The latent variables in independent component analysis (ICA) are called indepen-
dent components. While the term “component” is mainly used for historical reasons
(inspired by the expression “principal components”), the word “independence” tells
what the basic starting point of ICA is: the latent variables are assumed to be statis-
tically independent.

Let us consider two random variables, say s1 and s2. Basically, the variables s1
and s2 are statistically independent if information on the value of s1 does not give
any information on the value of s2, and vice versa. In this book, whenever the word
“independent” is used, it always refers to statistical independence, unless otherwise
mentioned.

Section 4.5 gave a more extensive treatment of independence. Here, we recall
the basic definition. Let us denote by p(s1, s2) the joint probability density function
of s1 and s2. Let us further denote by p1(s1) the marginal pdf of s1, i.e. the pdf of s1
when it is considered alone. Then we define that s1 and s2 are independent if and
only if the joint pdf is factorizable, i.e. the pdf can be expressed as a product of the
individual marginal pdf’s

p(s1, s2) = p1(s1)p2(s2). (7.1)

This definition extends naturally for any number n of random variables, in which
case the joint density must be a product of n terms. (Note that we use here a sim-
plified notation in which si appears in two roles: it is the random variable, and the
value taken by the random variable—often these are denoted by slightly different
symbols.)

It is important to understand the difference between independence and uncor-
relatedness. If the two random variables are independent, they are necessarily un-
correlated as well. However, it is quite possible to have random variables that are
uncorrelated, yet strongly dependent. Thus, correlatedness is a special kind of de-
pendence. In fact, if the two variables s1 and s2 were independent, any non-linear
transformation of the outputs would be uncorrelated as well:

cov
(
g1(s1), g2(s2)

)= E
{
g1(s1)g2(s2)

}− E
{
g1(s1)

}
E
{
g2(s2)

}= 0 (7.2)

for any two functions g1 and g2. When probing the dependence of si and sj , a simple
approach would thus be to consider the correlations of some non-linear functions.
However, for statistical and computational reasons, we will develop a different ap-
proach below.

7.2.2 Generative Model

The generative model in ICA is defined by a linear transformation of the latent
independent components. Let us again denote by I (x, y) the pixel grey-scale values
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(point luminances) in an image, or in practice, a small image patch. In ICA, an image
patch is generated as a linear superposition of some features Ai , as discussed in
Sect. 2.3:

I (x, y) =
m∑

i=1

Ai(x, y)si (7.3)

for all x and y. The si are coefficients that are different from patch to patch. They
can thus be considered as random variables, since their values change randomly
from patch to patch. In contrast, the features Ai are the same for all patches.

The definition of ICA is now based on three assumptions made regarding this
linear generative model:

1. The fundamental assumption is that the si are statistically independent when
considered as random variables.

2. In the next sections, we will also see that in order to be able to estimate the model,
we will also have to assume that the distributions of the si are non-Gaussian. This
assumption shows the connection to sparse coding since sparseness is a form of
non-Gaussianity.

3. We will also usually assume that the linear system defined by the Ai is invertible
but this is a technical assumption that is not always completely necessary. In
fact, we will see below that we might prefer to assume that the linear system is
invertible after canonical preprocessing, which is not quite the same thing.

These assumptions are enough to enable estimation of the model. Estimation
means that given a large enough sample of image patches, It , t = 1, . . . , T , we can
recover some reasonable approximations of the values of Ai , without knowing the
values of the latent components si in advance.

One thing that we cannot recover is the scaling and signs of the components.
In fact, you could multiply a component si by any constant, say −2, and if you
divide the corresponding Ai by the same constant, this does not show up in the
data in any way. So, we can only recover the components up to a multiplicative
constant. Usually, we simplify the situation by defining that the components have
unit variance. This only leaves the signs of the components undetermined. So, for
any component si , we could just as well consider the component −si .

As typical in linear models, estimation of the Ai is equivalent to determining the
values of the Wi which give the si as outputs of linear feature detectors with some
weights Wi :

si =
∑

x,y

Wi(x, y)I (x, y) (7.4)

for each image patch. The coefficients Wi are obtained by inverting the matrix of
the Ai .
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7.2.3 Model for Preprocessed Data

In practice, we will usually prefer to formulate statistical models for canonically pre-
processed data (see Sect. 5.4). The data variables in that reduced representation are
denoted by zi . For a single patch, they can be collected to a vector z = (z1, . . . , zn).
Since a linear transformation of a linear transformation is still a linear transfor-
mation, the zi are also linear transformations of the independent components si ,
although the coefficients are different from those in the original space. Thus, we
have

zi =
m∑

j=1

bij sj (7.5)

for some coefficients bij which can be obtained by transforming the features Ai

using the same PCA transformation which is applied on the images.
We want to choose the number n of independent components so that the lin-

ear system can be inverted. Since we are working with preprocessed data, we will
choose n so that it equals the number of variables after canonical preprocessing (in-
stead of the number of original pixels). Then the system in (7.5) can be inverted in
a unique way and we can compute the si as a linear function of the zi :

si =
n∑

j=1

vij zj = vT
i z. (7.6)

Here, the vector vi = (v1i , . . . , vni) allows a simple expression using vector prod-
ucts. The coefficients vij are obtained by inverting the matrix of the coefficients bij .
The coefficients Wi in (7.4) are then obtained by concatenating the linear transfor-
mations given by vij and canonical preprocessing (i.e. multiplying the two matri-
ces).

7.3 Insufficiency of Second-Order Information

When comparing the feature learning results by PCA and sparse coding, it is nat-
ural to conclude that the second-order information (i.e. covariances) used in PCA
and other whitening methods is insufficient. In this section, we justify the same
conclusion from another viewpoint: we show that second-order information is not
sufficient for estimation of the ICA model, which also implies that the components
should not be Gaussian.

7.3.1 Why Whitening Does Not Find Independent Components

It is tempting to think that if we just whiten the data, maybe the whitened com-
ponents are equal to the independent components. The justification would be that
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Fig. 7.1 a The joint distribution of the independent components s1 and s2 with sparse distributions.
Horizontal axis: s1, vertical axis: s2. b The joint distribution of the observed data which are linear
transformations of the s1 and s2. c The joint distribution of observed data after whitening by PCA

ICA is a whitening transformation because it gives components which are inde-
pendent, and thus uncorrelated, and we defined their variances to be equal to one.
The fundamental error with this logic is that there is an infinite number of whiten-
ing transformations because any orthogonal transformation of whitened data is still
white, as pointed out in Sect. 5.3.2. So, if you whiten the data by, say, PCA, you get
just one of those many whitening transformations, and there is absolutely no reason
to assume that you would get the ICA transformation.

There is a reason why it is, in fact, not possible to estimate the ICA model using
any method which is only based on covariances. This is due to the symmetry of the
covariance matrix: cov(z1, z2) = cov(z2, z1). Thus, the number of different covari-
ances you can estimate from data is equal to n(n+1)

2 , i.e. roughly one half of n2. In
contrast, the number of parameters bij we want to estimate (this refers to the model
with preprocessed data in (7.5)) is equal to n2. So, if we try to solve the bij by forc-
ing the model to give just the right covariance structure, we have less equations (by
one half!) than we have variables, so the solution is not uniquely defined! The same
logic applies equally well to the original data before preprocessing.

This is illustrated in Fig. 7.1. We take two independent components s1 and s2
with very sparse distributions. Their joint distribution, in (a), has a “star-shape”
because the data is rather much concentrated on the coordinate axes. Then we mix
these variables linearly using randomly selected coefficients b11 = 0.5, b12 = 1.5,
b21 = 1 and b22 = 0.2. The resulting distribution is shown in Fig. 7.1b. The star has
now been “twisted”. When we whiten the data with PCA, we get the distribution
in (c). Clearly, the distribution is not the same as the original distribution in (a). So,
whitening failed to recover the original components.

On the positive side, we see that the whitened distribution in Fig. 7.1c has the
right “shape”, because what remains to be determined is the right orthogonal trans-
formation, since all whitening transformations are orthogonal transformations of
each other. In two dimension, an orthogonal transformation is basically a rotation.
So, we have solved part of the problem. After whitening, we know that we only
need to look for the remaining orthogonal transformation, which reduces the space
in which we need to search for the right solution.

Thus, we see why it was justified to constrain the different feature detectors to
give uncorrelated outputs in the sparse coding framework in Sect. 6.3. Constraining
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the transformation to be orthogonal for whitened data is equivalent to constraining
the features si to be uncorrelated (and to have unit variance). Even in the case of
ICA estimation, the features are often constrained to be uncorrelated, because this
simplifies the objective function, as discussed later in this chapter, and allows the
development of very efficient algorithms (see Sect. 18.7). In contrast, in the ICA
framework, it is not justified, for example, to constrain the original features Ai or
the detector weights Wi to be orthogonal, since the mixing matrix (or rather, its
inverse) is not necessarily orthogonal in the ICA model.

7.3.2 Why Components Have to Be Non-Gaussian

The insufficiency of second-order information also implies that the independent
components must not be Gaussian because Gaussian data contains nothing else than
second-order information. In this section, we explain a couple of different view-
points which further elaborate this point.

7.3.2.1 Whitened Gaussian pdf is Spherically Symmetric

We saw above that after whitening, we have to find the right rotation (orthogonal
transformation) which gives ICA. If the data is Gaussian, this is, in fact, not possible
due to a symmetry property of Gaussian data.

To see why, let us consider the definition of the Gaussian pdf in (5.17) on
page 109. Consider whitened variables, whose covariance matrix is the identity ma-
trix by definition. The inverse of the identity matrix is the identity matrix, so C−1

is the identity matrix. Thus, we have
∑

ij xixj [C−1]ij =∑i x
2
i . Furthermore, the

determinant of the identity matrix is equal to one. So, the pdf in (5.17) becomes

p(x1, . . . , xn) = 1

(2π)n/2
exp

(
−1

2

∑

i

x2
i

)
= 1

(2π)n/2
exp

(
−1

2
‖x‖2

)
(7.7)

This pdf depends only on the norm ‖x‖. Such a pdf is called spherically symmetric:
It is the same in all directions. So, there is no information left in the data to determine
the rotation corresponding to the independent components.

An illustration of this special property of the Gaussian distribution is in Fig. 7.2,
which shows a scatter plot of two uncorrelated Gaussian variables of unit variance.
The distribution is the same in all directions, except for random sampling effects.
The circles show contours on which the pdf is constant. It is clear that if you ro-
tate the data in any way, the distribution does not change, so there is no way to
distinguish the right rotation from the wrong ones.
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Fig. 7.2 A scatter plot of two
uncorrelated Gaussian
variables of unit variance.
This is what any whitening
method would give when
applied on Gaussian data. The
distribution is spherically
symmetric, i.e. the same in all
directions. This is also seen
by looking at contours on
which the pdf is constant:
they are circles, as further
plotted here

7.3.2.2 Uncorrelated Gaussian Variables Are Independent

A further justification why ICA is not possible for Gaussian variables is provided by
a fundamental result in probability theory. It says that if random variables s1, . . . , sn
have a Gaussian distribution and they are uncorrelated, then they are also inde-
pendent. Thus, for Gaussian variables, uncorrelatedness and independence are the
same thing, although in general uncorrelatedness does not imply independence. This
further shows why ICA brings nothing new for Gaussian variables: The main inter-
esting thing you can do to Gaussian variables is to decorrelate them, which is already
accomplished by PCA and other whitening methods in Chap. 5.

It is easy to see from (7.7) why uncorrelated Gaussian variables are independent.
Here, the variables are actually white, i.e. they have also been standardized to unit
variance, but this makes no difference since such standardization obviously cannot
change the dependencies between the variables. The point is that the pdf in (7.7) is
something which can be factorized:

p(x1, . . . , xn) =
∏

i

1√
2π

exp

(
−1

2
x2
i

)
(7.8)

where we have used the classic identity exp(a + b) = exp(a) exp(b). This form is
factorized, i.e. it is a product of the one-dimensional standardized Gaussian pdf’s.
Such factorization is the essence of the definition of independence, as in (7.1). So,
we have shown that Gaussian variables xi are independent if they are uncorrelated.

Thus, the components in ICA have to be non-Gaussian in order for ICA to be
meaningful. This also explains why models based on non-Gaussianity (such as ICA)
are very new in the field of statistics: classic statistics is largely based on the assump-
tion that continuous-valued variables have a Gaussian distribution—that is why it is
called the “normal” distribution!
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7.4 The Probability Density Defined by ICA

Now that we have a statistical generative model of the data, we can compute the
probability of each observed image patch using basic results in probability theory.
Then we can estimate the optimal features using classic estimation theory. This
solves some of the problems we mentioned in the Introduction to this chapter: we
will find the optimal measure of sparseness, and we will see why the constraint of
uncorrelatedness of the features makes sense. And obviously, we can then use the
model as a prior probability in Bayesian inference.

Let us assume for the moment that we know the probability density functions
(pdf’s) of the latent independent components si . These are denoted by pi . Then by
definition of independence, the multi-dimensional pdf of all the si is given by the
product:

p(s1, . . . , sn) =
n∏

i=1

pi(si) (7.9)

What we really want to find is the pdf of the observed preprocessed variables zi ,
which is almost the same thing as having a pdf of the image patches I (x, y). It
is tempting to think that we could just plug the formula for the si given by (7.6)
into (7.9). However, this is not possible. The next digression (which can be skipped
by readers not interested in mathematical details) will show why not.

Short Digression to Probability Theory To see why we cannot just combine (7.9) and
(7.6), let us consider what the pdf means in the one-dimensional case, where we have just
one variable s with probability density ps . By definition, the pdf at some point s0 gives the
probability that s belongs to a very small interval of length d as follows:

P
(
s ∈ [s0, s0 + d])= ps(s0)d. (7.10)

Now, let us consider a linearly transformed variable x = as for a > 0. Here, s can be solved
as s = wx where w = 1/a (note that we use a notation that is as close to the ICA case as
possible). Let us just plug this in (7.10) and consider the probability at point s0 = wx0:

P
(
wx ∈ [wx0,wx0 + d])= ps(wx0)d. (7.11)

Obviously, P(wx ∈ [x1, x2]) = P(x ∈ [x1/w,x2/w]). So, we can express (7.11) as

ps(wx0)d = P

(
x ∈

[
x0, x0 + d

w

])
= px(x0)

d

w
(7.12)

Note that the length of the interval d changed to d/w, and so we changed the right-hand side
of the equation to get the same term. Multiplying both sides of this equation by w/d, we
get ps(wx0)w = px(x0). Thus, the actual pdf of x is ps(wx)w, instead of simply ps(wx)!
This shows that in computing the pdf of a transformation, the change in scale caused by
the transformation must be taken into account, by multiplying the probability density by a
suitable constant that depends on the transformation.

In general, an important theorem in probability theory says that for any linear
transformation, the probability density function should be multiplied by the absolute
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value of the determinant det V of the matrix that gives the linear transformation. The
determinant of a matrix is a measure of the associated change in scale (volume).
The absolute value of the determinant is equal to the volume of the parallelepiped
that is determined by its column vectors. (For more information on the determinant,
see Sect. 19.4.)

Thus, the pdf of the preprocessed data z defined by ICA is actually given by

p(z) = ∣∣det(V)
∣∣

n∏

i=1

pi

(
vT
i z
)= ∣∣det(V)

∣∣
n∏

i=1

pi

(
n∑

j=1

vij zj

)
(7.13)

where V is a matrix whose elements are given by the coefficients vij ; in other words,
the rows of V are given by the vectors vi .

The pdf depends not only on the patch via z, but also on the parameters of the
model, i.e. the weights vij . Equivalently, we could consider the probability as a
function of the features bij , but this does not make any difference, since the vij

are uniquely determined by the bij and vice versa. The formula for the probability
in (7.13) is more easily formulated as a function of the vectors vi .

7.5 Maximum Likelihood Estimation in ICA

Maximum likelihood estimation is a classic, indeed, the classic method for estimat-
ing parameters in a statistical model. It is based on a simple principle: Find those pa-
rameter values that would give the highest probability for the observed data. A brief
description was provided in Sect. 4.8.

The likelihood is the probability of observing the data for given model parame-
ters. For a given data set, it is thus a function of the parameters. Let us assume that
we have observed T image patches It (x, y), t = 1, . . . , T that are collected at ran-
dom locations in some natural images. We consider here canonically preprocessed
data, let us denote by zt the vector obtained by canonically preprocessing the image
patch It .

Because the patches are collected in random locations, we can assume that the
patches are independent from each other. Thus, the probability of observing all these
patches is the product of the probabilities of each patch. This gives the likelihood L

of the observed data:

L(v1, . . . ,vn) =
T∏

t=1

p(zt ) =
T∏

t=1

[
∣∣det(V)

∣∣
n∏

i=1

pi

(
vT
i zt

)
]
. (7.14)

It is much simpler to look at the logarithm of the likelihood, which is after some
simple rearrangements:

logL(v1, . . . ,vn) = T log
∣∣det(V)

∣∣+
n∑

i=1

T∑

t=1

logpi

(
vT
i zt

)
. (7.15)
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Since the logarithm is a increasing function, maximization of the likelihood is the
same as maximization of this log-likelihood. Estimation by the maximum likelihood
method now means that we maximize the log-likelihood in (7.15) with respect to the
parameters, that is, the weights vi . (Choosing the functions logpi will be discussed
in Sect. 7.7.)

Maximization of the log-likelihood can be accomplished by numerical optimiza-
tion methods. In addition to general-purpose methods, special tailor-made methods
have been developed for this particular ICA maximization task. A thorough discus-
sion of such optimization methods can be found in Chap. 18, and we will not go
into detail here. Let us just note that the first term in (7.15) can be considered to be
constant and omitted, as we will see in Sect. 7.7.1.

7.6 Results on Natural Images

7.6.1 Estimation of Features

Using maximum likelihood estimation on 50 000 image patches of size 32×32 pix-
els as in the preceding chapters, we obtain the results in Fig. 7.3. These features have
the same qualitative properties as the feature detectors estimated by maximization
of sparseness in Fig. 6.6 on page 144. That is, the features are spatially localized,
oriented, and code for different scales (frequencies).

This is actually not surprising because as will be shown next, maximum likeli-
hood estimation of ICA is mathematically almost equivalent to the sparse coding
analysis we did in Sect. 6.4. The only difference is that we are here showing the
(generating) features Ai instead of the feature detectors Wi . This difference is ex-
plained in detail in Sect. 7.10.

7.6.2 Image Synthesis Using ICA

Now that we have defined a generative model, we can generate image data from it.
We generate the values of the si independently from each other, and multiply the
estimated features Ai with them to get one generated image patch. One choice we
have to make is what our model of the marginal (i.e. individual) distributions of the
independent component is. We use here two distributions. In the first case, we simply
take the histogram of the actual component in the natural images, i.e. the histogram
of each

∑
x,y Wi(x, y)I (x, y) when computed over the whole set of images. In the

second case, we use a well-known sparse distribution, the Laplacian distribution
(discussed in the next section), as the distribution of the independent components.

Figures 7.4 and 7.5 show the results in the two cases. The synthesis results are
clearly different than those obtained by PCA on page 111: Here, we can see more
oriented, edge-like structures. However, we are obviously far from reproducing all
the properties of natural images.
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Fig. 7.3 The whole set of features Ai obtained by ICA. In this estimation, the functions logpi

were chosen as in (7.19) in Sect. 7.7

7.7 Connection to Maximization of Sparseness

In this section, we show how ICA estimation is related to sparseness, how we should
model the logpi in the log-likelihood in (7.15) and how this connection tells us how
we should design the sparseness measure.

7.7.1 Likelihood as a Measure of Sparseness

Let us assume, as we typically do, that the linear features considered are constrained
to be uncorrelated and to have unit variance. This is equivalent to assuming that the
transformation given by V is orthogonal in the canonically preprocessed (whitened)
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Fig. 7.4 Image synthesis
using ICA. 20 patches were
randomly generated using the
ICA model whose parameters
were estimated from natural
images. In this figure, the
marginal distributions of the
components were those of the
real independent components.
Compare with real natural
image patches in Fig. 5.2 on
page 95, and the PCA
synthesis results in Fig. 5.13
on page 111

Fig. 7.5 Image synthesis
using ICA, and a Laplacian
approximation of the pdf of
the independent components.
Compare with Fig. 7.4, in
which the real distributions
were used for the independent
components. The results are
perhaps less realistic because
the Laplacian distribution is
less sparse than the real
distributions

space. Thus, the matrix V is constrained orthogonal. It can be proven that the deter-
minant of an orthogonal matrix is always equal to ±1. This is because an orthogonal
transformation does not change distances, and thus not volumes either; so the ab-
solute value of the determinant which measures the change in volume must be equal
to 1. Thus, the first term on the right-hand side of (7.15) is zero and can be omitted.

The second term on the right-hand side of (7.15) is the expectation (multiplied
by T ) of a non-linear function logpi of the output si of the feature detector (more
precisely, an estimate of that expectation, since this is computed over the sample).
Thus, what the likelihood really boils down to is measuring the expectations of the
form E{f (si)} for some function f .

The connection to maximization of sparseness is now evident. If the feature out-
puts are constrained to have unit variance, maximization of the likelihood is equiv-
alent to maximization of the sparsenesses of the outputs, if the functions logpi are
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of the form required for sparseness measurements, i.e. if we can express them as

logpi(s) = hi

(
s2) (7.16)

where the functions hi are convex. In other words, the functions

hi(u) = logpi

(√
u
)

(7.17)

should be convex for u ≥ 0. It turns out that this is usually the case in natural images,
as will be seen in the next section.

Earlier, we considered using the negative of square root as hi . In the probabilistic
interpretation given by ICA, using the square root means that the pdf of a component
si is of the form

p(si) = 1√
2

exp
(−√

2|si |
)

(7.18)

where the constants have been computed so that si has unit variance, and the integral
of the pdf is equal to one, as is always required. This distribution is called Laplacian.
It is also sometimes called the double exponential distribution, since the absolute
value of si has the classic exponential distribution (see (4.71) on page 88). The
Laplacian pdf was already illustrated in Fig. 6.2 on page 132.

As already pointed out in Chap. 6, using the Laplacian pdf maybe numerically
problematic because of the discontinuity of its derivative. Thus, one might use a
smoother version, where the absolute value function is replaced by the log cosh
function. This also corresponds to assuming a particular pdf for the independent
components, usually called the “logistic” pdf. When properly normalized and stan-
dardized to unit variance, the pdf has the form

logpi(s) = −2 log cosh

(
π

2
√

3
s

)
− 4

√
3

π
. (7.19)

In practice, the constants here are often ignored, and simply the plain log cosh func-
tion often is used to keep things simple.

7.7.2 Optimal Sparseness Measures

The maximum likelihood framework tells us what the non-linearities used in the
sparseness measure really should be. They should be chosen according to (7.17).
These non-linearities can be estimated from natural images. To really find the best
non-linearities, we could first maximize the likelihood using some initial guesses
of the hi , then estimate the pdf’s of the obtained independent components and re-
compute the hi according to (7.17). In principle, we should then re-estimate the Wi

using these new hi , re-estimate the hi using the latest Wi and so on until the process
converges. This is because we are basically maximizing the likelihood with respect
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to two different groups of parameters (the Wi and the hi ) and the real maximum can
only be found if we go on maximizing one of the parameters groups with the other
fixed until no increase in likelihood can be obtained. However, in practice we do not
need to bother to re-iterate this process because the hi do not change that much after
their initial estimation.

Figure 7.6 shows two hi ’s estimated from natural images with the corresponding
log-pdf’s; most of them tend to be very similar. These are obtained by computing a
histogram of distribution of two independent components estimated by a fixed hi :
the histogram gives an estimate of pi from which hi can be derived.

We see that the estimated hi are convex, if we ignore the behavior in the tails,
which are impossible to estimate exactly because they contain so few data points.
The hi estimated here are not very different from the square root function, although
sometimes they tend to be more peaked.

If we want to use such optimal non-linearities in practice, we need to use para-
metric probability models for the (log-)pdf’s. Using histogram estimates that we
show here is not used in practice because such estimates can be very inexact and
non-smooth. One well-known option for parameterized densities is the generalized
Gaussian density (sometimes also called the generalized Laplacian density):

p(s) = 1

c
exp

(
−|si |α

bα

)
. (7.20)

The parameters b and c are determined so that this is a pdf (i.e. its integral equals
one) which has unit variance. The correct values are

b =
√√√√�( 1

α
)

�( 3
α
)

and c = 2b
√

π�( 1
α
)

α�(1/2)
(7.21)

where � is the so-called “gamma” function which can be computed very fast in most
software for scientific computation. The parameter α > 0 controls the sparseness
of the density. If α = 2, we actually have the Gaussian density, and for α = 1, the
Laplacian density. What is most interesting when modeling images is that for α < 1,
we have densities that are sparser than the Laplacian density, and closer to the highly
sparse densities sometimes found in image features.

Another choice is the following density:

p(s) = 1

2

(α + 2)[α(α + 1)/2](α/2+1)

[√α(α + 1)/2 + |s|](α+3)
(7.22)

with a sparseness parameter α. When α → ∞, the Laplacian density is obtained as
the limit. The strong sparsity of the densities given by this model can be seen, e.g.
from the fact that the kurtosis of these densities is always larger than the kurtosis of
the Laplacian density, and reaches infinity for α ≤ 2. Similarly, p(0) reaches infinity
as α goes to zero.

A problem with these highly peaked distributions is that they are not smooth, in
particular their derivatives are discontinuous at zero. For the generalized Gaussian
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Fig. 7.6 Estimated optimal hi from natural images. After doing ICA, the histograms of the compo-
nent with the highest kurtosis and a component with kurtosis in the middle range were computed,
and their logarithms taken. The feature corresponding to the highest kurtosis is on the left, and
the one corresponding to the mid-range kurtosis is on the right. Top row: feature. Second row:
logarithm of pdf. Third row: optimal hi . Bottom row: the derivative of log-pdf for future reference
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Fig. 7.7 Top row: Some plots of the density function (left) and its logarithm (right) given in (7.20),
α is given values 0.75, 1 and 1.5. More peaked ones correspond to smaller α. Bottom row: Plots
of the density function (7.22), α is given values 0.5, 2, 10. More peaked values correspond to
smaller α

distribution, the derivative is actually infinite at zero for α < 1. Thus, to avoid prob-
lems in the computational maximization of sparseness measures, it may not be a bad
idea to use something more similar to a square root function in practical maximiza-
tion of the sparseness measures. Actually, usually we use a smoothed version of the
square root function as discussed in Sect. 7.7.1.

The two density families in (7.20) and (7.22) are illustrated in Fig. 7.7. While it
does not seem necessary to use such more accurate density models in the estimation
of the basis, they are likely to be quite useful in Bayesian inference where we really
do need a good probabilistic model.

7.8 Why Are Independent Components Sparse?

There are many different ways in which random variables can be non-Gaussian.
What forms do there exist, and why is it that independent components in images are
always sparse—or are they? These are the questions that we address in this section.
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7.8.1 Different Forms of Non-Gaussianity

While the forms of non-Gaussianity are infinite, most of the non-Gaussian as-
pects that are encountered in real data can be described as sub-Gaussianity, super-
Gaussianity, or skewness.

Super-Gaussianity is basically the same as sparseness. Often, super-Gaussianity
is defined as positive kurtosis (see (6.5) for a definition of kurtosis), but other def-
initions exist as well. The intuitive idea is that the probability density function has
heavy tails and a peak at zero.

The opposite of super-Gaussianity is sub-Gaussianity, which is typically char-
acterized by negative kurtosis. The density function is “flat” around zero. A good
example is the uniform distribution (here standardized to unit variance and zero
mean)

p(s) =
{ 1

2
√

3
, if |s| ≤ √

3,

0, otherwise.
(7.23)

The kurtosis of this distribution equals −6/5, which is left as an exercise.
An unrelated form of non-Gaussianity is skewness which basically means the

lack of symmetry of the probability density function. A typical example is the ex-
ponential distribution:

p(s) =
{

exp(−s), if s ≥ 0,

0, otherwise
(7.24)

which is not symmetric with respect to any point on the horizontal (s) axis. Skew-
ness is often measured by the third moment (assuming the mean is zero)

skew(s) = E
{
s3}. (7.25)

This is zero for a symmetrically-distributed random variable that has zero mean
(this is left as an exercise). In fact, skewness is usually defined as exactly the third
moment. However, any other non-linear odd function could be used instead of the
third power, for example the function that gives the sign (±1) of s.

7.8.2 Non-Gaussianity in Natural Images

Is it true that all the independent components in natural images are sparse, and no
other forms of non-Gaussianity are encountered? This is almost true, but not quite.

The skewness of the components is usually very small. After all, natural images
tend to be rather symmetric in the sense that black and white are equally probable.
This may not be exactly so, since such symmetry depends on the measurement scale
of the grey-scale values: a non-linear change of measurement scale will make sym-
metric data skewed. However, in practice, skewness seems to be so small that it can
be ignored.
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There are some sub-Gaussian components, though. In particular, the DC compo-
nent, i.e. the mean luminance of the image patch is typically sub-Gaussian. In fact,
its distribution is often not far from a uniform distribution. If we do not remove the
DC component from the images (in contrast to what we usually do), and we use
an ICA algorithm that is able to estimate sub-Gaussian components as well (not all
of them are), the DC component actually tends to be estimated as one independent
component. Depending on the window size and the preprocessing used, a couple of
further very low-frequency components can also be sub-Gaussian.

7.8.3 Why Is Sparseness Dominant?

One reason why the independent components in images are mostly sparse is the
variation of the local variance in different parts of an image. Some parts of the
image have high variation whereas others have low variation. In fact, flat surfaces
have no variation, which is sometimes called the blue-sky effect.

To model this change in local variance, let us model an independent component
si as a product of an “original” independent component gi of unit variance, and an
independent, non-negative “variance” variable di :

si = gi di . (7.26)

We call di a variance variable because it changes the scale of each observation of
gi . Such a variance variables will be the central topic in Chap. 9.

Let us assume that the original component gi is Gaussian with zero mean and
unit variance. Then the distributions of the si is necessarily super-Gaussian, i.e. it
has positive kurtosis. This can be shown using fact that for a Gaussian variable,
kurtosis is zero, and thus E{g4

i } = 3. So, we have

kurt si = E
{
s4
i

}− 3
(
E
{
s2
i

})2 = E
{
d4
i g4

i

}− 3
(
E
{
d2
i g2

i

})2

= E
{
d4
i

}
E
{
g4

i

}− 3
(
E
{
d2
i

})2(
E
{
g2

i

})2 = 3
[
E
{
d4
i

}− (E{d2
i

})2]
(7.27)

which is always non-negative because it is the variance of d2
i multiplied by 3. It can

be zero only if di is constant.
Thus, the changes in local variance are enough to transform the Gaussian distri-

bution of gi into a sparse distribution for si . The resulting distribution is called a
Gaussian scale mixture.

7.9 General ICA as Maximization of Non-Gaussianity

Now, we can consider the problem of ICA estimation in more generality, in the
case where the components are not necessarily sparse. In particular, we consider the
following two questions: Does estimation of ICA for non-sparse components have
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Fig. 7.8 a Histogram of a very sparse distribution. b Histogram of a sum of two independent
random variables distributed as in a, normalized by dividing by

√
2. c Histogram of a normalized

sum of ten variables with the same distribution as in a. The scale of the axes are the same in all
plots. We see that the distribution goes toward Gaussianity

a simple intuitive interpretation, and is there a deeper reason why maximization
of sparseness related to the estimation of the ICA model? These questions can be
answered based on the central limit theorem, a most fundamental theorem in prob-
ability theory. Here, we explain this connection and show how it leads to a more
general connection between independence and non-Gaussianity.

7.9.1 Central Limit Theorem

The Central Limit Theorem (CLT) basically says that when you take an average or
sum of many independent random variables, it will have a distribution that is close
to Gaussian. In the limit of an infinite number of random variables, the distribution
actually tends to the Gaussian distribution, if properly normalized:

lim
N→∞

1√
N

N∑

n=1

sn = Gaussian (7.28)

where we assume that sn have zero mean. We have to normalize the sum here be-
cause otherwise the variance of the sum would go to infinity. Note that if we nor-
malized by 1/N , the variance would go to zero.

Some technical restrictions are necessary for this results to hold exactly. The
simplest choice is to assume that the sn all have the same distribution, and that
distribution has finite moments. The CLT is illustrated in Fig. 7.8.

7.9.2 “Non-Gaussian Is Independent”

What does the CLT mean in the context of ICA? Let us consider a linear combi-
nation of the observed variables,

∑
i wizi . This is also a linear combination of the
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Fig. 7.9 a Histogram of one
of the original components in
Fig. 7.1. b Histogram of one
of the whitened components
in Fig. 7.1. The whitened
component has a distribution
which is less sparse, thus
closer to Gaussian

original independent components:

∑

i

wizi =
∑

i

wi

∑

j

aij sj =
∑

j

(∑

i

wiaij

)
sj =

∑

j

qj sj (7.29)

where we have denoted qj =∑i wiaij . We do not know the coefficients qj because
they depend on the aij .

The CLT would suggest that this linear combination
∑

j qj sj is closer to
Gaussian than the original independent components sj . This is not exactly true be-
cause the CLT is exactly true only in the limit of an infinite number of independent
components, and there are restrictions on the distributions (for example, the vari-
ables qj sj do not have identical distributions if the qj are not equal). However, the
basic idea is correct. This is illustrated in Fig. 7.9 which shows that the original
independent components are more Gaussian than the observed data after whitening,
shown in Fig. 7.1.

Thus, based on the central limit theorem, we can intuitively motivate a general
principle for ICA estimation: find linear combinations

∑
i wizi of the observed vari-

ables that are maximally non-Gaussian.
Why would this work? The linear combination

∑
i wizi equals a linear combi-

nation of the independent components with some coefficients qj . Now, if more than
one of the qj is non-zero, we have a sum of two independent random variables. Be-
cause of the CLT, we can expect that such a sum is closer to Gaussian that any of the
original variables. (This is really only an intuitive justification and not exactly true.)
Thus, the non-Gaussianity of such a linear combination is maximal when it equals
one of the original independent components, and the maximally non-Gaussian linear
combinations are the independent components.

Here, we have to emphasize that this connection between non-Gaussianity and
independence only holds for linear transformations. In Chap. 9, we will see that for
non-linear transformations, such a connection need not exist at all, and may in fact
be reversed.

7.9.3 Sparse Coding as a Special Case of ICA

Estimation of ICA by maximization of sparseness can now be seen as a special case
of maximization of non-Gaussianity. Sparseness is one form of non-Gaussianity,
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the one that is dominant in natural images. Thus, in natural images, maximization
of non-Gaussianity is basically the same as maximization of sparseness. For other
types of data, maximization of non-Gaussianity may be quite different from maxi-
mization of sparseness.

For example, in the theory of ICA, it has been proposed that the non-Gaussianity
of the components could be measured by the sum of the squares of the kurtoses:

n∑

i=1

[
kurt

(
vT
i z
)]2 (7.30)

where, as usual, the data vector z is whitened and the feature vectors vi are con-
strained to be orthogonal and to have unit norm. It can be shown that ICA estimation
can really be accomplished by maximizing this objective function. This works for
both sub-Gaussian and super-Gaussian independent components.

Now, if the components all have positive kurtoses, maximizing this sum is closely
related to finding vectors vi such that the vT

i z are maximally non-Gaussian. The
square of kurtosis is, however, a more general measure of non-Gaussianity because
there are cases where the kurtosis is negative as we saw above in Sect. 7.8.1. For
such components, maximization of non-Gaussianity means minimizing kurtosis (and
sparseness), because for negative values of kurtosis, maximization of the square
means to minimize kurtosis.

In fact, maximization of sparseness may not always be the correct method for
estimation ICA even on images. If we do not remove the DC component from the
images, the DC component turns out to be one independent component, and it some-
times has negative kurtosis. For such data, simply maximizing sparseness of all the
components will produce misleading results.

Thus, we see that there is a difference between basic linear sparse coding and
ICA in the sense that ICA works for different kinds of non-Gaussianity and not just
sparseness.

7.10 Receptive Fields vs. Feature Vectors

An important point to note is the relation between the feature vectors Ai and the
feature detector weights Wi . The feature vectors are shown Fig. 7.3. However, it is
often the Wi that are more interesting, since they are the weights that are applied to
the image to actually compute the si , and in neurophysiological modeling; they are
more closely connected to the receptive fields of neurons.

There is, in fact, a simple connection between the two: the Ai are basically low-
pass filtered versions of the Wi . In fact, simple calculations show that the covariance
cov(I (x, y), I (x′, y′)) in images generated according to the ICA model equals

∑

i

Ai(x, y)Ai(x
′, y′) (7.31)
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because the si are uncorrelated and have unit variance. Thus, we have
∑

x′,y′
cov
(
I (x, y), I (x′, y′)

)
Wi(x

′, y′) =
∑

x′,y′

∑

i

Ai(x, y)Ai(x
′, y′)Wi(x

′, y′)

=
∑

i

Ai(x, y)
∑

x′,y′
Ai(x

′, y′)Wi(x
′, y′)

= Ai(x, y) (7.32)

by definition of the Wi as the inverse of the Ai . This means that the Ai can be
obtained by multiplying the Wi by the covariance matrix of the data.

Such multiplication by the covariance matrix has a simple interpretation as a low-
pass filtering operation. This is because the covariances are basically a decreasing
function of the distance between (x, y) and (x′, y′), as shown in Fig. 5.4. Thus,
Ai and Wi have essentially the same orientation, location, and frequency tuning
properties. On the other hand, the Ai are better to visualize because they actually
correspond to parts of the image data; especially with data that is not purely spatial,
as in Chap. 15, visualization of the detector weights would not be straightforward.

7.11 Problem of Inversion of Preprocessing

A technical point that we have to consider is computation of the Ai for original
images based on ICA of canonically preprocessed data. There is actually a problem
here: in order to get the Ai we have to invert the canonical preprocessing, because
estimation of the model gives the vectors vi in the reduced (preprocessed) space
only. But canonical preprocessing is not invertible in the strict sense of the word
because it reduces the dimension and therefore loses information!

Typically, a solution based on the idea of computing the best possible approxima-
tion of the inverse of the PCA/whitening transformation. Such best approximation
can be obtained by the theory of multivariate regression, or, alternatively, by the the-
ory of pseudo-inverses (see Sect. 19.8). Without going into details, the description
of the solution is simple.

Denote by U the orthogonal matrix which contains the n vectors giving the di-
rections of the principal components as its rows, i.e. the n dominant eigenvectors of
the covariance matrix. Denote by λi the corresponding eigenvalues. Then, steps 3
and 4 of canonical preprocessing in Sect. 5.4 consist of multiplying the vectorized
image patches by diag(1/

√
λi)U.

We now define the inverse preprocessing as follows: After computing the fea-
ture vectors in the preprocessed space (the vi ), the basis vectors are multiplied by
UT diag(

√
λi). These are the optimal approximations of the feature vectors in the

original space. They can also be computed by taking the pseudo-inverse of the ma-
trix of the features Wi , which is what we did in our simulations.

Note that we have no such problem with computation of the Wi for the original
data because we just multiply the vectors vi with the PCA/whitening matrix, and no
inversion is needed.
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7.12 Frequency Channels and ICA

A long-standing tradition in vision science is to talk about “frequency channels”,
and more rarely, about “orientation” channels. The idea is that in the early visual
processing (something like V1), information of different frequencies is processed
independently. The word “independence” as used here has nothing to do with sta-
tistical independence: it means that processing happens in different physiological
systems that are more or less anatomically separate, and do not exchange informa-
tion with each other.

Justification for talking about different channels is abundant in research on V1.
In recordings from single cells, simple and complex cell receptive fields are band-
pass, i.e. respond only to stimuli in a certain frequency range, and various optimal
frequencies are found in the cells (see Chap. 3 and its references). In psychophysics,
a number of experiments also point to such a division of early processing. For ex-
ample, in Fig. 3.8 on page 59, the information on the high- and low-frequency parts
are quite different, yet observes have no difficulty in processing (reading) them sep-
arately.

In the results of ICA on natural images, we see an interesting new interpretation
of why the frequency channels might be independent in terms of physiological and
anatomical separation in the brain. The reason is that the information in different
frequency channels seems to be statistically independent, as measured by ICA. The
feature vectors Ai given by ICA are band-pass, thus showing that a decomposition
into statistically independent features automatically leads to frequency channels.

7.13 Concluding Remarks and References

Independent component analysis is a statistical generative model whose estimation
boils down to sparse coding. It gives a proper probabilistic formulation of sparse
coding and thereby solves a number of theoretical problems in sparse coding (in
particular: optimal ways of measuring sparseness, optimality of decorrelation), and
gives a proper pdf to be used in Bayesian inference. The expression “independent
component analysis” also points out another important property of this model: the
components are considered statistically independent. This independence assumption
is challenged in many more recent models which are the topics of Chaps. 9–11.

The first application of ICA, as opposed to sparse coding, on image patches was
in Bell and Sejnowski (1997) based on the earlier sparse coding framework in Ol-
shausen and Field (1996) considered in Sect. 13.1.

For more information on the ICA model, see Hyvärinen and Oja (2000) or
Hyvärinen et al. (2001b). Some of the earliest historical references on ICA in-
clude Hérault and Ans (1984), Mooijaart (1985), Cardoso (1989), Jutten and Hérault
(1991). Classic references include Delfosse and Loubaton (1995), which showed ex-
plicitly how maximization of non-Gaussianity is related to ICA estimation; Comon
(1994), which showed the uniqueness of the decomposition, and the validity of the
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sum-of-squares-of-kurtosis in (7.30); the maximum likelihood framework was in-
troduced in Pham et al. (1992), Pham and Garrat (1997).

For more information on the central limit theorem, see any standard textbook on
probability theory, for example Papoulis and Pillai (2001).

A related way of analyzing the statistics of natural images is to look at the cu-
mulant tensors (Thomson 1999, 2001). Cumulants (strictly speaking, higher-order
cumulants) are statistics which can be used as measures of non-Gaussianity; for ex-
ample, kurtosis and skewness are one of the simplest cumulants. Cumulant tensors
are generalizations of the covariance matrix to higher-order cumulants. Analysis
of cumulant tensors is closely related to ICA, as discussed in detail in Chap. 11
of Hyvärinen et al. (2001b). Equivalently, one can analyze the poly-spectra (usu-
ally the trispectrum) which are obtained by Fourier transformations of the cumulant
spectra, in a similar way as the ordinary Fourier spectrum function can be obtained
as the Fourier transform of the autocovariance function; see, e.g. Nikias and Mendel
(1993), Nikias and Petropulu (1993) for further information.

7.14 Exercises

Mathematical Exercises

1. Prove (7.2).
2. Based on (7.2), prove that two independent random variables are uncorrelated.
3. Calculate the kurtosis of the uniform distribution in (7.23).
4. Calculate the kurtosis of the Laplacian distribution in (7.18).
5. Show that the skewness of a random variable with a pdf which is even-symmetric

(i.e. p(−x) = p(x)) is zero.
6. In this exercise, we consider a very simple case of Gaussian mixtures (see

Sect. 7.8.3). Assume that a component follows s = vz where z is Gaussian with
zero mean and unit variance. Let us assume that in 50% of the natural images
the variance coefficient v has value α. In the remaining 50% of natural images,
v has value β .
a. What is the distribution of the random variable s in the set of all natural im-

ages? (Give the density function p(s)).
b. Show that E{s2} = 1

2 (α2 + β2).
c. Show that E{s4} = 3

2 (α4 + β4).
d. What is the kurtosis of this distribution?
e. Show that the kurtosis is positive for almost any parameter values.

7. Prove (7.31).

Computer Assignments

1. Using numerical integration, compute the kurtoses of the Laplacian and uniform
distributions.
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2. Load the FastICA program from the web. This will be used in the following
assignments. You will also need some images; try to find some that have not
been compressed, since compression can induce very nasty effects.

3. Take patches of 16 × 16 of the image. 10 000 is a sufficient amount of patches.
Input these to FastICA.

4. Plot histograms of the independent components. Compute their kurtoses. Plot
(some of the) RFs. Look at the RFs and comment on whether they look like V1
RFs or not. If not, why not?



Chapter 8
Information-Theoretic Interpretations

So far, we have been operating within the theoretical framework of Bayesian in-
ference: the goal of our models is to provide priors for Bayesian inference. An al-
ternative framework is provided by information theory. In information theory, the
goal is to find ways of coding the information as efficiently as possible. This turns
out to be surprisingly closely connected to Bayesian inference. In many cases, both
approaches start by estimation of parameters in a parameterized statistical model.

This chapter is different from the previous ones because we do not provide any
new models for natural image statistics. Rather, we describe a new framework for
interpreting some of the previous models.

8.1 Basic Motivation for Information Theory

In this section, we introduce the basic ideas of information theory using intuitive ex-
amples illustrating the two principal motivations: data compression and data trans-
mission.

8.1.1 Compression

One of the principal motivations of information theory is data compression. Let us
begin with a simple example. Consider the following string of characters:

BABABABADABACAABAACABDAAAAABAAAAAAAADBCA

We need to code this using a binary string, consisting of zeros and ones, because
that’s the form used in computer memory. Since we have four different characters,
a basic approach would be to assign the four possible two-digit codewords for each
of them:

A → 00 (8.1)

B → 01 (8.2)

C → 10 (8.3)

D → 11 (8.4)

A. Hyvärinen, J. Hurri, P.O. Hoyer, Natural Image Statistics,
Computational Imaging and Vision 39,
© Springer-Verlag London Limited 2009
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Replacing each of the characters by its two-digit codeword gives the code

0100010001000100110001001000000100001000
0111000000000001000000000000000011011000

However, a shorter code can be obtained by using the fundamental insight of
information theory: frequent characters should be given shorter codewords. This
makes intuitive sense: if frequent characters have short codewords, even at the ex-
pense of giving less frequent characters longer codewords, the average length could
be shortened.

In this example, the character A is the most frequent one: approximately one-half
of the letters are A’s. The letter B is the next, with a proportion of approximately
one quarter. So, let us consider the following kind of codeword assignment:

A → 0 (8.5)

B → 10 (8.6)

C → 110 (8.7)

D → 111 (8.8)

Now, the code becomes

1001001001001110100110001000110010111000
001000000000111101100

This is more than 10% shorter than the basic code given above. (In real-world appli-
cations, the saving is often much larger, sometimes reaching more than 90% in im-
age compression.) Note that the codeword assignment has been cleverly constructed
so that the original string can be recovered from this code without any ambiguity.

Compression was possible because some of the characters were more common
than others. In other words, it was due to the statistical regularities of the data (or
redundancy, which will be defined later). Thus, it is not surprising that the methods
developed in information theory have also been applied in the field of natural image
statistics.

8.1.2 Transmission

A rather different application of information theory is in data transmission. In trans-
mission, the central problem is noise. That is, the transmission will introduce ran-
dom errors in the data. The goal here is to code the data so that the receiving end of
the system can correct as many of the random errors as possible.

As a simple example, consider the following binary string which we want to
transmit:

1111101100100011100110100101110110100101

To code this string, we use a very simple method: we simply repeat all the digits
three times. Thus, we get the code
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1111111111111110001111110000001110000000
0011111111100000011111100011100000011100
0111111111000111111000111000000111000111

This is transmitted through a channel which has relatively strong noise: 25% of the
digits are randomly changed to the opposite. So, the receiving end in the channel
receives the following string:

1111100111111110000111110000001110100001
1000110100100100111010101011100001010100
1111111111000110101000111010010111100111

Now, we can use the repetitions in the string in the following way: we look at all
consecutive groups of three digits, and guess that the original string probably had
the digit which has the most occurrences among each group. Thus, we obtain the
following string

1111101100100101000110100101110110100101

This string has less than 10% wrong digits. Thus, our encoding scheme reduced the
number of errors introduced by the channel from 25% to less than 10%. (Actually,
we were a bit lucky with this string: on the average the errors would be of the order
of 16%.)

So, the central idea in transmission is very different from compression. In order
to combat noise, we want to code the data so that we introduce redundancy (to be
defined later), which often means making the code longer than the original data.

8.2 Entropy as a Measure of Uncertainty

Now, we introduce the concept of entropy, which is the foundation of information
theory. First, we give its definition and a couple of examples, and then show how it
is related to data compression.

8.2.1 Definition of Entropy

Consider a random variable z which takes values in a discrete set a1, . . . , aN with
probabilities P(z = ai), i = 1, . . . ,N . The most fundamental concept of informa-
tion theory is entropy, denoted by H(z), which is defined as

H(z) = −
N∑

i=1

P(z = ai) log2 P(z = ai). (8.9)

If the logarithms to base 2 are used, the unit of entropy is called a bit. Entropy is a
measure of the average uncertainty in a random variable. It is always non-negative.
We will next present a couple of examples to illustrate the basic idea.
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Fig. 8.1 Entropy of a random
variable which can only take
two values, plotted as a
function of the probability p0
of taking one of those values

Example 1 Consider a random variable which takes only two values, A and B .
Denote the probability P(z = A) by p0. Then entropy of z equals

H(z) = −p0 log2 p0 − (1 − p0) log2(1 − p0). (8.10)

We can plot this as a function of p0, which is shown in Fig. 8.1 The plot shows that
the maximum entropy is obtained when p0 = 0.5, which means that both outcomes
are equally probable. Then the entropy equals one bit. In contrast, if p0 equals 0 or 1,
there is no uncertainty at all in the random variable, and its entropy equals zero.

Example 2 Consider a random variable z which takes, for some given n, any of 2n

values with equal probability, which is obviously 1/2n. The entropy equals

H(z) = −
2n∑

i=1

1

2n
log2

1

2n
= −2n 1

2n
(−n) = n. (8.11)

Thus, the entropy equals n bits. This is also the number of binary digits (also called
bits) that you would need to represent the random variable in a basic binary repre-
sentation.

Example 3 Consider a random variable z which always takes the same value, i.e. it
is not really random at all. Its entropy equals

H(z) = −1 × log2 1 = 0. (8.12)

Again, we see that the entropy is zero since there is no uncertainty at all.

8.2.2 Entropy as Minimum Coding Length

An important result in information theory shows that the numerical value of entropy
directly gives the average code length for the shortest possible code (i.e. the one
giving maximum compression). It is no coincidence that the unit of entropy is called
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a bit, since the length of the code is also given in bits, in the sense of the number of
zero-one digits used in the code.

The proof of this property is very deep, so we will only try to illustrate it with an
example.

Example 4 Now, we will return back to the compression example in the preceding
section to show how entropy is connected to compression. Consider the characters
in the string as independent realizations of a random variable which takes values in
the set {A,B,C,D}. The probabilities used in generating this data are

P(A) = 1/2, (8.13)

P(B) = 1/4, (8.14)

P(C) = 1/8, (8.15)

P(D) = 1/8. (8.16)

We can compute the entropy, which equals 1.75 bits. Thus, the entropy is smaller
than 2 bits, which would be (according to Example 2), the maximum entropy for
a variable with four possible values. Using the definition of entropy as minimum
coding length, we see that the saving in code length can be at most (2 − 1.75)/2 =
12.5% for data with these characteristics. (This holds in the case of infinite strings
in which random effects are averaged out. Of course, for a finite-length string, the
code would be a bit shorter or longer due to random effects.)

Note also it is essential here that the characters in the string are generated inde-
pendently at each location; otherwise, the code length might be shorter. For example,
if the characters would be generated in pairs, as in AACCBBAA. . . , this dependency
could obviously be used to reduce the code length, possibly beyond the bound that
entropy gives.

8.2.3 Redundancy

Redundancy is a word which is widely used in information theory, as well as in nat-
ural image statistics. It is generally used to refer to the statistical regularities, which
make part of the information “redundant”, or unnecessary. Unfortunately, when talk-
ing about natural images, different authors use the word in slightly different ways.

An information-theoretic definition of redundancy is based on entropy. Given
a random variable which has 2n different values, say 1, . . . ,2n, we compare the
length of the basic n-bit code and the length of the shortest code, given by entropy:

redundancy = n − H(z). (8.17)

This is zero only if all the values 1, . . . ,2n are equally likely. Using this terminology,
we can say that compression of the string in Sect. 8.1.1 was possible because the
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string had some redundancy (n was larger than H(z)). Compression is possible by
removing, or at least reducing, redundancy in the data.

This definition is actually more general than it seems, because it can also consider
dependencies between different variables (say, pixels). If we have two variables z1

and z2, we can simply define a new variable z whose possible values correspond to
all the possible combinations1 of the values of z1 and z2. Then we can define entropy
and redundancy for this new variable. If the variables are highly dependent from
each other, some combinations will have very small probabilities, so the entropy
will be small and redundancy large.

It is important to understand that you may want to either reduce or increase re-
dundancy, depending on your purpose. In compression, you want to reduce it, but
in information transmission, you actually want to increase it. The situation is even
more complicated than this because usually before transmission, you want to com-
press the data in order to reduce the time needed for data transmission. So, you first
try to remove the redundancy to decrease the length of the data to be transmitted,
and then introduce new redundancy to combat noise. This need not be contradictory
because in introducing new redundancy, you do it is a controlled way using care-
fully designed codes which increase code length as little as possible for a required
level of noise-resistance. A result called “source-channel coding theorem” lays out
the conditions under which such a two-stage procedure is, in fact, optimal.

8.2.4 Differential Entropy

The extension of entropy to continuous-valued random variables or random vec-
tors is algebraically straightforward. For a random variable with probability density
function pz, we define the differential entropy, denoted by H just like entropy, as
follows:

H(z) = −
∫

pz(z) logpz(z) dz. (8.18)

So, basically we have just replaced the summation in the original definition in (8.9)
by an integral. The same definition also applies in the case of a random vector.

It is not difficult to see what kind of random variables have small differential
entropies. They are the ones whose probability densities take large values, since
these give strong negative contributions to the integral in (8.18). This means that
certain small intervals are quite probable. Thus, we again see that entropy is small
when the variable is not very random, that is, it is typically contained in some limited
intervals with high probabilities.

1More precisely: if z1 can take values in the set {1,2} and z2 can take values in the set {1,2,3},
we define z so that it takes values in the Cartesian product of those sets, i.e. {(1,1), (1,2), (1,3),

(2,1), (2,2), (2,3)}, so that the probability z = (a1, a2) simply equals the probability that z1 = a1
and z2 = a2.
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Differential entropy is related to the shortest code length of a discretized version
of the random variable z. Suppose we discretize z so that we divide the real line
to bins (intervals) of length d , and define a new discrete-valued random variable z̃

which tells which of these bins the value of z belongs to. This is similar to using
a limited number of decimals in the representation, for example using only one
decimal place as in “1.4” to represent the values of the random variable. Then the
entropy of z̃ is approximately equal to the differential entropy of z plus a constant
which only depends on the size of the bins, d .

Example 5 Consider a random variable z which follows a uniform distribution in
the interval [0, a]: Its density is given by

pz(z) =
{

1/a, for 0 ≤ z ≤ a,

0, otherwise.
(8.19)

Differential entropy can be evaluated as

H(z) = −
∫ a

0

1

a
log

1

a
dz = loga. (8.20)

We see that the entropy is large if a is large, and small if a is small. This is nat-
ural because the smaller a is, the less randomness there is in z. Actually, in the
limit where a goes to 0, differential entropy goes to −∞, because in the limit, z is
no longer random at all: it is always 0. This example also shows that differential
entropy, in contrast to basic entropy, need not be non-negative.

8.2.5 Maximum Entropy

An interesting question to ask is: What kind of distributions have maximum en-
tropy?

In the binary case in Example 1, we already saw that it was the distribution
with 50%–50% probabilities which is clearly consistent with the intuitive idea of
maximum uncertainty. In the general discrete-valued case, it can be shown that the
uniform distribution (probabilities of all possible values are equal) has maximum
entropy.

With continuous-valued variables, the situation is more complicated. Differen-
tial entropy can become infinite; consider, for example when a → ∞ in Example 5
above. So, some kind of constraints are needed. The simplest constraint would per-
haps be to constrain the random variable to take values only inside a finite interval
[a, b]. In this case, the distribution of maximum entropy is again the uniform distri-
bution, i.e. a pdf which equals 1

b−a
in the whole interval and is zero outside of it.

However, such a constraint may not be very relevant in most applications.
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If we consider random variables whose variance is constrained to a given value
(e.g. to 1), the distribution of maximum entropy is, interestingly, the Gaussian dis-
tribution. This is why the Gaussian distribution can be considered the least “infor-
mative”, or the least “structured”, of continuous-valued distributions.

This also means that differential entropy can be considered a measure of non-
Gaussianity. The smaller the differential entropy, the further away the distribution
is from the Gaussian distribution. However, it must be noted that differential en-
tropy depends on the scale as well. Thus, if entropy is used as a measure of non-
Gaussianity, the variables have to normalized to unit variance first, just like in the
case of kurtosis. We will see in Sect. 8.4 how differential entropy is, in fact, closely
related to the sparseness measures we used in Chap. 6.

8.3 Mutual Information

In information transmission, we need a measure of how much information the output
of the channel contains about the input. This the purpose of the concept of mutual
information.

Let’s start with the concept of conditional entropy. It is simply the average en-
tropy calculated for the conditional distribution of the variable z, where the condi-
tioning is by the observation of another variable y:

H(z|y) = −
∑

y

P (y)
∑

z

P (z|y) logP(z|y). (8.21)

That is, it measures how much entropy there is left in z when we know (observe)
the value of y; this is averaged over all values of y.

If z and y are independent, the conditional distribution of z given y is the same
as the distribution of z alone, so conditional entropy is the same as the entropy
of z. If z and y are not independent, conditional entropy is smaller than the entropy
of z, because then knowledge of the value of y reduces the uncertainty on z. In the
extreme case where z = y, the conditional distribution z given y is such that all
the probability is concentrated on the observed value of y. The entropy of such a
distribution is zero (see Example 3 above), so the conditional entropy is zero.

Let us assume that z is the message input to a transmission channel and y is the
output, i.e. the received signal. Basically, if transmission is very good, knowledge
of y will tell us very much about what z was. In other words, the conditional dis-
tribution of z given y is highly concentrated on some values. So, we could measure
the transmitted information by the change in entropy which is due to measurement
of y. It is called the mutual information, which we denote2 by J :

J (z, y) = H(z) − H(z|y). (8.22)

2We use a non-conventional notation J for mutual information because the conventional one, I ,
could be confused with the notation for an image.
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Just as entropy gives the code length of the optimal code, mutual information is
related to the amount of information which can be obtained about z, based on ob-
servation of the channel output y.

Note that in practice mutual information depends not only on the noise in the
channel, but also on how we code the data as the variable z in the first place. There-
fore, to characterize the properties of the channel itself, we need to consider the
maximum of mutual information over all possible ways of coding z. This is called
channel capacity and gives the maximum amount of information which can be trans-
mitted through the channel.

A generalization of mutual information to many variables is often used in the
theory of ICA. In that case, the interpretation as information transmitted over a
channel is no longer directly applicable. The generalization is based on the fact that
mutual information can be expressed in different forms:

J (z, y) = H(z) − H(z|y) = H(y) − H(y|z) = H(z) + H(y) − H(z, y) (8.23)

where H(z, y) is the joint entropy, which is simply obtained by defining a new
random variable so that it can take all the possible combinations of values of z

and y. Based on this formula, we define mutual information of n random variables
as

J (z1, z2, . . . , zn) =
n∑

i=1

H(zi) − H(z1, z2, . . . , zn). (8.24)

The utility in this quantity is that it can be used a measure of independence: it is
always non-negative and zero only if the variables zi are independent.

Conditional entropy, joint entropy, and mutual information can all be defined for
continuous-valued variables by using differential entropy in the definitions instead
of ordinary entropy.

8.4 Minimum Entropy Coding of Natural Images

Now, we discuss the application of the information-theoretic concepts in the context
of natural image statistics. This section deals with data compression models.

8.4.1 Image Compression and Sparse Coding

Consider first the engineering application of image compression. Such compression
is routinely performed when images are transmitted over the Internet or stored on
a disk. Most successful image compression methods begin with a linear transfor-
mation of image patches. The purpose of such a transformation is to reduce (differ-
ential) entropy. Grey-scale values of single pixels have a much larger entropy than,
for example, the coefficients in a Fourier or discrete cosine transform (DCT) basis
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(at least when these are applied on small patches). Since the coefficients in those
bases have smaller differential entropy, discretized (quantized) versions of the co-
efficients are easier to code: the quantization error, i.e. the error in quantizing the
coefficients for a fixed code length, is reduced. This is why such a transformation is
done as the first step.

This means that the optimal linear transformation of images as the first step of
a compression method would be a transformation which minimizes the differential
entropy of the obtained components. This turns out to be related to sparse coding,
as we will now show.

Let us consider the differential entropy of a linear component s. How can we
compute the value H(s) using the definition in (8.18) in practice? The key is to
understand that entropy is actually the expectation of a non-linear function of s. We
have

H(s) = E
{
G(s)

}
(8.25)

where the function G is the negative of the log-pdf: G(s) = − logps(s). In practice,
we have a sample of s, denote it by s(t), t = 1, . . . , T . Assume we also have rea-
sonable approximation of G, that is, we know rather well what the log-pdf is like.
Then differential entropy can be estimated as the sample average for a fixed G as

H(s) = 1

T

∑

t

G
(
s(t)
)
. (8.26)

Comparing this with (6.2) on page 133, we see that differential entropy is similar
the sparseness measures we used in sparse coding. In fact, in Sect. 7.7.2, it was
shown that the optimal sparseness measures are obtained when we use exactly the
log-pdf of s as the non-linearity. Thus, differential entropy is the optimal sparseness
measure in the sense of Sect. 7.7.2: it provides the maximum likelihood estimator
of the ICA model.

However, there is one important point which needs to be taken into account. The
sparseness measures assumed that the variance of s is constrained to be equal to
one. This is consistent with the theory of ICA which tells that the transformation
should be orthogonal in the whitened space. In contrast, in image compression, the
transformation giving the components is usually constrained to be orthogonal (in the
original image space). One reason is that then the quantization error in the image
space is the same as the quantization error in the component space. This makes
sense because then minimizing quantization error for the components is directly
related to the quantization error of the original image. In contrast, any method which
whitens the data amplifies high-frequency components which have low variance,
thus emphasizing errors in their coding. So, the quantization error in the components
is not the same as the error in the original image—which is what we usually want to
minimize in engineering applications.

If we consider transformations which are orthogonal in the original space, the
constraint of unit variance of a component s is not at all fulfilled. For example,
PCA is an orthogonal transformation which finds components with maximally dif-
ferent variances. From the viewpoint of information theory, logp changes quite a lot
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as a function of variance, so using a fixed G may give a very bad approximation of
entropy. So, while sparse coding, as presented in Chap. 6, is related to finding an op-
timal basis for image compression, it uses a rather unconventional constraint which
means it does not optimize the compression in the usual sense.

8.4.2 Mutual Information and Sparse Coding

Information-theoretic concepts allow us to see the connection between sparse cod-
ing and ICA from yet another viewpoint. Consider a linear invertible transformation
y = Vz of a random vector z which is white. The mutual information between the
components yi is equal to

J (y1, . . . , yn) =
n∑

i=1

H
(
vT
i z
)− H(Vz). (8.27)

Recall that mutual information can be interpreted as a measure of dependence. Now,
let us constrain V to be orthogonal. Then we have H(Vz) = H(z) because the shape
(in an intuitive sense) of the distribution is not changed at all: an orthogonal trans-
formation simply rotates the pdf in the n-dimensional space, leaving its shape intact.
This means that the values taken by pz and logpz in the definition in (8.18) are not
changed; they are just taken at new values of z. That is why differential entropy is
not changed by an orthogonal transformation of the data.3

So, to minimize the mutual information, we simply need to find an orthogonal
transformation which minimizes the differential entropies of the components; this
is the same as maximizing the non-Gaussianities of the components. And for sparse
data, maximizing non-Gaussianity is usually the same as maximizing sparseness.
Thus, we see that under the constraint of orthogonality, sparse coding is equiva-
lent to minimization of the dependence of the components if the data is white. This
provides another deep link between information theory, sparse coding, and indepen-
dence.

8.4.3 Minimum Entropy Coding in the Cortex

A very straightforward application of the data compression principle is then to as-
sume that V1 “wants” to obtain a minimum entropy code. This is very well in line

3A rigorous proof is as follows: denoting y = Vz, we simply have py(y) = pz(VTy) for an or-
thogonal V. The basic point is that the absolute value of the determinant of the transformation
matrix needed in transforming pdf’s, or variables in an integral formula, (see Sect. 7.4) is equal to
one for an orthogonal transformation, so it can be omitted. Thus, we have

∫
py(y) logpy(y) dy =∫

pz(VTy) logpz(VTy) dy. In this integral, we make a change of variables z̃ = VTy, and we get∫
pz(z̃) logpz(z̃) d z̃.
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with the results on sparse coding and ICA in Chaps. 6 and 7 because we have just
shown that the objective functions optimized there can be interpreted as differential
entropies and code lengths. Basically, what information theory provides is a new
interpretation of the objective functions used in learning simple cell receptive fields.

Yet, it is not quite clear whether such an entropy-based arguments are relevant to
the computational tasks facing the visual cortex. A critical discussion on the analogy
between compression and cortical coding is postponed to Sect. 8.6.

8.5 Information Transmission in the Nervous System

Following the fundamental division of information theory into compression and
transmission, the second influential application of information theory to visual cod-
ing considers maximization of data transmission, usually called simply infomax.

8.5.1 Definition of Information Flow and Infomax

Assume that x is a continuous-valued random vector. It is the input to a neural
system, which is modeled using a linear/non-linear model (see Sect. 3.4.1), with
additive noise. Thus, outputs are of the form

yi = φi

(
bT

i x
)+ n (8.28)

where the φi are some scalar functions, the bi are the connection weight vectors of
the neurons, and n is a vector of white Gaussian noise. That is, the neural network
first computes a linear transformation of the input data, with the coefficients given by
network connection weights bi ; then it transforms the outputs using scalar functions
φi , and there is noise in the system.

Let us consider information flow in such a neural network. Efficient information
transmission requires that we maximize the mutual information between the inputs
x and the outputs y, hence the name “infomax”. This problem is meaningful only
if there is some information loss in the transmission. Therefore, we assume that
there is some noise in the network; in practice, we have to assume that the noise is
infinitely small to be able to derive clear results. We can then ask how the network
parameters should be adapted (learned) so as to maximize information transmission.

8.5.2 Basic Infomax with Linear Neurons

To begin with, we shall consider the very basic case where there are actually no
nonlinearities: we define φ(u) = u, and the noise has constant variance. (It may
seem odd to say that white noise has constant variance, because that seems obvious.
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However, in Sect. 8.5.4, we will consider a model where the variance is not constant
because that is the case in neural systems.)

By definition of mutual information, we have

J (x,y) = H(y) − H(y|x). (8.29)

In the present case, the conditional distribution of y given x is simply the distribution
of the Gaussian white noise. So, the entropy H(y|x) does not depend on the weights
bi at all: it is just a function of the noise variance. This means that for the purpose
of finding the bi which maximizes information flow, we only need to consider the
output entropy H(y). This is true as long as the noise variance is constant.

To simplify the situation, let us assume just for the purposes of this section that
the transformation matrix B, with the bi as its rows, is orthogonal. Then y is just an
orthogonal transformation of x, with some noise added.

Furthermore, in all infomax analysis, we consider the limit where the noise vari-
ance goes to zero. This is because simple analytical results can only be obtained in
that limit.

So, combining these assumptions and results, infomax for linear neurons with
constant noise variance boils down to the following: we maximize the entropy H(y),
where y is an orthogonal transformation of x. Noise does not need to be taken into
account because we consider the limit of zero noise. But, as shown in Sect. 8.4.2, an
orthogonal transformation does not change differential entropy, so the information
flow does not depend on B at all!

Thus, we reach the conclusion that for linear neurons with constant noise vari-
ance, the infomax principle does not really give anything interesting. Fortunately,
more sophisticated variants of infomax are more interesting. In the next subsections,
we will consider the two principal cases: noise of constant variance with non-linear
neurons, and noise of non-constant variance with linear neurons.

8.5.3 Infomax with Non-linear Neurons

8.5.3.1 Definition of Model

First, we consider the case where

1. The functions φi are non-linear. One can build a more realistic neuron model by
taking a non-linearity which is saturating, and has no negative outputs.

2. The vector n is additive Gaussian white noise.This is the simplest noise model to
begin with.

Maximization of this mutual information J (x,y) is still equivalent to maximiza-
tion of the output entropy, as in the previous subsection. Again, we take the limit
where the noise has zero variance. We will not go into detail here, but it can be
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shown that the output entropy in this non-linear infomax model then equals

H(y) =
∑

i

E
{
logφ′

i

(
bT

i x
)}+ log |det B|. (8.30)

It turns out that this has a simple interpretation in terms of the ICA model. Now,
we see that the output entropy is of the same form as the expectation of the likeli-
hood as in (7.15). The pdf’s of the independent components are here replaced by the
functions φ′

i . Thus, if the non-linearities φi used in the neural network are chosen
as the cumulative distribution functions corresponding to the densities pi of the in-
dependent components, i.e. φ′

i (·) = pi(·), the output entropy is actually equal to the
likelihood. This means that infomax is equivalent to maximum likelihood estimation
of the ICA model.

Usually, the logistic function

φi(u) = 1

1 + exp(−u)
(8.31)

is used in the non-linear infomax model (see Fig. 8.2a). This estimates the ICA
model in the case of sparse independent components, because if we interpret φ′

i as a
pdf, it is sparse. In fact, the log-pdf given by logφ′

i is nothing else than the familiar
log cosh function (with negative sign and some unimportant constants), which we
have used as a measure of sparseness in Chap. 6, and as a model of a smooth sparse
log-pdf in (7.19).

8.5.4 Infomax with Non-constant Noise Variance

Here, we present some critique of the non-linear infomax model, and propose an
alternative formulation.

8.5.4.1 Problems with Non-linear Neuron Model

Using a logistic function as in (8.31) is a correct way of estimating the ICA model
for natural image data in which the components really are super-Gaussian. How-
ever, if the transfer function φi is changed to the Gaussian cumulative distribution
function, the method does not estimate the ICA model anymore, since this would
amount to assuming Gaussian independent components, which makes the estima-
tion impossible. An even worse situation arises if we change the function φi so that
φ′

i is the pdf of a sub-Gaussian (anti-sparse) distribution. This amounts to estimating
the ICA model assuming sub-Gaussian independent components. Then the estima-
tion fails completely because we have made a completely wrong assumption on the
distribution of the components.
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Fig. 8.2 a Three sigmoidal non-linearities corresponding to logistic, Gaussian, and sub-Gaussian
(with log-pdf proportional to −x4) prior cumulative distributions for the independent components.
The non-linearities are practically indistinguishable. (Note that we can freely scale the functions
along the x-axis since this has no influence on the behavior in ICA estimation. Here, we have
chosen the scaling parameters so as to emphasize the similarity.) b Three functions h that give the
dependencies of noise variance (functions h) which are equivalent to different distributions. Solid
line: basic Poisson like variance as in (8.34), corresponding to a sparse distribution. Dashed line:
the case of Gaussian distribution as in (8.37). Dotted line: the sub-Gaussian distribution used in a.
Here, the function in the basic Poisson-like variance case is very different from the others, which
indicates better robustness for the model with changing noise variance. From Hyvärinen (2002),
Copyright ©2002 Elsevier, used with permission

Unfortunately, the three non-linear functions φi corresponding to (8.31), the
Gaussian case, and one particular sub-Gaussian case look all very similar, how-
ever. This is illustrated in Fig. 8.2a. All the three functions have the same kind of
qualitative behavior. In fact, all cumulative distribution functions look very similar
after appropriate scaling along the x-axis.

It is not very likely that the neural transfer functions (which are only crude ap-
proximations anyway) would consistently be of the type in (8.31), and not closer to
the two other transfer functions. Thus, the model can be considered to be non-robust,
that is, too sensitive to small fluctuations in its parameters.4

8.5.4.2 Using Neurons with Non-constant Variance

A possible solution to the problems with non-linear infomax is to consider a more
realistic noise model. Let us thus take the linear function as φi , and change the
definition of the noise term instead.

What would be a sensible model for the noise? Many classic models of neurons
assume that the output is coded as the mean firing rate in a spike train, which follows

4It could be argued that the non-linear transfer function can be estimated from the data and it need
not be carefully chosen beforehand, but this only modifies this robustness problem because then
that estimation must be very precise.



192 8 Information-Theoretic Interpretations

a Poisson process. Without going into details, we just note that in that case, the
variance of mean firing rate has a variance that is equal to its mean. Thus, we have

var(ni |x) ∝ r + ∣∣bT
i x
∣∣ (8.32)

where r is a constant that embodies the spontaneous firing rate which is not zero
(and hence does not have zero noise). We take the absolute value of bT

i x because
we consider the output of a signed neuron to be actually coded by two different
neurons, one for the negative part and one for the positive part. The distribution of
noise in mean firing rate is non-Gaussian in the Poisson process case. However, in
the following, we approximate it as Gaussian noise: The fundamental property of
this new type of noise is considered to be the variance behavior given in (8.32), and
not its non-Gaussianity. Therefore, we call noise with this kind of variance behavior
“noise with Poisson-like variance” instead of Poisson noise.

A more general form of the model can be obtained by defining the variance to be
a non-linear function of the quantity in (8.32). To investigate the robustness of this
model, we do in the following all the computations in the more general case where

var(ni |x) = h
(
bT

i x
)

(8.33)

where h is some arbitrary function with non-negative values, for example

h(u) = r + |u| (8.34)

in the case of (8.32).
It then can be shown that the mutual information in the limit of zero noise is

equal to

J (x,y) = log |det B| −
∑

i

E
{

log
√

h
(
bT

i x
)}+ const. (8.35)

where terms that do not depend on B are grouped in the constant. A comparison
of (8.35) with (8.30) reveals that in fact, mutual information is of the same algebraic
form in the two cases. By taking h(u) = 1/φ′

i (u)2, we obtain an expression of the
same form. Thus, we see that considering noise with non-constant variance, we are
able to reproduce the same results as with a non-linear transfer function.

If we consider the basic case of Poisson-like variance, which means defining the
function h so that we have (8.32); this is equivalent to the non-linear infomax with

φ′
i (u) = 1√

r + |u| . (8.36)

In the non-linear infomax, φ′
i corresponds to the probability density function as-

sumed for the independent component. The function in (8.36) is an improper prob-
ability density function, since it is not integrable. However, its qualitative behavior
is typically super-Gaussian: very heavy tails and a peak at zero.
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Thus, in the basic case of Poisson-like variance, the infomax principle is equiv-
alent to estimation of the ICA model with this improper prior density for the com-
ponents. Since the choice of non-linearity is usually critical only along the sub-
Gaussian vs. super-Gaussian axis, this improper prior distribution can still be ex-
pected to properly estimate the ICA model for most super-Gaussian components.5

To investigate the robustness of this model, we can consider what the noise vari-
ance structure should be like to make the estimation of super-Gaussian components
fail. As with the non-linear infomax, we can find a noise structure that corresponds
to the estimation of Gaussian independent components. In the limit of r = 0, we
have the relation h(u) = 1/φ′(u)2, and we see that the Gaussian case corresponds to

h(u) ∝ exp
(
u2). (8.37)

This is a fast-growing (“exploding”) function which is clearly very different from
the Poisson-like variance structure given by the essentially linear function in (8.34).
In the space of possible functions h that define the noise structure in this model, the
function in (8.37) can be considered as a borderline between those variance struc-
tures that enable the estimation of super-Gaussian independent components, and
those that do not. These two different choices for h, together with one correspond-
ing to sub-Gaussian independent components (see caption) are plotted in Fig. 8.2b.
The Poisson-like variance is clearly very different from the other two cases.

Thus, we may conclude that the model with Poisson-like variance is quite robust
against changes of parameters in the model, since the main parameter is the function
h, and this can change qualitatively quite a lot before the behavior of the model with
respect to ICA estimation changes. This is in contrast to the non-linear infomax
principle where the non-linearity has to be very carefully chosen according to the
distribution of the data.

8.6 Caveats in Application of Information Theory

We conclude this chapter with a discussion on some open problems encountered in
the application of information theory to model cortical visual coding in the context
of natural image statistics.

Classic information theory is fundamentally a theory of compression and trans-
mission of binary strings. It is important to ask Is this theory really useful in the study
of cortical visual representations? Often, the concepts of information theory are di-
rectly applied in neuroscience simply because it is assumed that the brain processes
“information”. However, the concept of information, or the way it is processed, may
be rather different in the two cases.

5There is, however, the problem of scaling the components. Since the improper density has infinite
variance, the estimates of the components (and the weight vectors) grow infinitely large. Such be-
havior can be prevented by adding a penalty term of the form α

∑
i ‖wi‖2 in the objective function.

An alternative approach would be to use a saturating non-linearity as φi , thus combining the two
infomax models.
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In the data compression scheme, we start with a binary string, i.e. a sequence
of zeros and ones. We want to transform the vectors into a another string, so that
the string is as short as possible. This is basically accomplished by coding the most
frequent realizations by short substrings or codewords, and using longer codewords
for rarely occurring realizations. Such an approach has been found immensely useful
in storage of information in serial digital computers.

However, if the processing of information is massively parallel, as in the brain,
it is not clear what would be the interpretation of such reduction in code length.
Consider an image that is coded in the millions of neurons in V1. A straightforward
application of information theory would suggest that for some images, we only use
k1 neurons, where each neuron codes for one digit in the string, whereas others
need k2 neurons where k2 > k1. Furthermore, an optimal image code would be one
where the average number of neurons is minimized. Yet, the number of neurons that
are located in, say, the primary visual cortex is just the same for different stimuli. It
would be rather absurd to think that some region of V1 is not needed to represent the
most probable images. Even if some cells are not activated above the spontaneous
firing rate, this lack of activation is an important part of the code, and does not mean
that the neuron is not “part of the code”.

In fact, in sparse coding the active neurons are assumed to be different for differ-
ent stimuli, and each neuron is more or less equally important for representing some
of the stimuli. While sparseness, when interpreted in terms of entropy, has some
superficial similarity to information theoretic arguments, reducing the length of a
string is very different from sparse coding because sparse coding is fundamentally
a parallel scheme where no sequential order is given to the neurons, and the outputs
of all neurons are needed to reconstruct the stimulus. That is, there is no reduc-
tion of code “length” because the number of coding units needed for reconstructing
the stimulus is always the same, i.e. the total number of neurons. The whole con-
cept of “length” is not well defined in the case of massively parallel and distributed
processing. Reducing the length of a string is fundamentally an objective in serial
information processing.

Another motivation for application of information theory in learning optimal rep-
resentations comes from transmission of data. Optimal transmission methods are
important in systems where data have to be sent through a noisy channel of limited
capacity. Again, the basic idea is to code different binary sequences using other bi-
nary strings, based on their probabilities of occurrence. This allows faster and more
reliable transmission of a serial binary signal.

Such “limited-capacity channel” considerations may be quite relevant in the case
of the retina and optic nerve as well as nerves coming from other peripheral sensory
organs. Another important application for this theory is in understanding coding
of signals using spike trains. However, in V1, a limited capacity channel may be
difficult to find. A well-known observation is that the visual input coming from the
lateral geniculate nucleus (LGN) is expanded in the V1 by using a representation
consisting of many more neurons than there are in the LGN. So, the transmission of
information from LGN to V1 may not be seriously affected by the limited capacity
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of the “channel”. Yet, the limited capacity of the channel coming to V1 is the basic
assumption in infomax models.6

Thus, we think application of information-theoretical arguments in the study of
cortical visual coding has to be done with some caution. Borrowing of concepts
originally developed in electrical engineering should be carefully justified. This is
an important topic for future research.

8.7 Concluding Remarks and References

Information theory provides another viewpoint to the utility of statistical modeling
of images. The success in tasks such as compression and transmission depends on
finding a useful representation of the data, and information theory points out that
the optimal representation is the one which provides the best probabilistic model.
Some studies therefore apply information-theoretic concepts to the study of natural
image statistics and vision modeling. The idea of minimum-entropy coding gives
some justification for sparse coding, and information transmission leads to objec-
tive functions which are sometimes equivalent to those of ICA. Nevertheless, we
take here a more cautious approach because we think it is not clear if information
theoretical concepts can be directly applied in the context of neuroscience, which
may be far removed from the original digital communications setting in which the
theory was originally developed.

A basic introduction to information theory is Mackay (2003). A classic reference
which can be read as an introduction as well is Cover and Thomas (2006).

Basic and historical references on the infomax principle are Laughlin (1981),
van Hateren (1992), Linsker (1988), Fairhall et al. (2001). The non-linear infomax
principle was introduced in Nadal and Parga (1994), Bell and Sejnowski (1995).
Infomax based on noise models with non-constant variance were introduced by van
Vreeswijk (2001), Hyvärinen (2002), using rather different motivations. Poisson
models for spike trains are discussed in Dayan and Abbott (2001). Information con-
tent in spike trains in considered in, e.g. Rieke et al. (1997). Another critique of the
application of infomax principles to cortical coding can be found in Ringach and
Malone (2007).

8.8 Exercises

Mathematical Exercises

1. Consider the set of all possible probability distributions for a random variable
which takes values in the set {1,2, . . . ,100}. Which distribution has minimum
entropy?

6Possibly, the channel from V1 to V2 and other extrastriate areas could have a very limited capacity,
but that is not the usual assumption in current infomax models.
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2. Prove (8.23).
3. Consider a general (not standardized) one-dimensional Gaussian distribution,

with pdf given by

p(z) = 1√
2πσ

exp

(
− 1

2σ 2
(z − μ)2

)
. (8.38)

Compute its differential entropy. When it is maximized? When minimized?
4. Consider a random variable z with pdf

1

σ
p0

(
z

σ

)
(8.39)

where z takes values on the whole real line, and the function p0 is fixed. Compute
the differential entropy as a function of σ and p0.

5. * Assume we have a random vector z with pdf pz, and differential entropy H(z).
Consider a linear transformation y = Mz. What is the differential entropy of y?
Hint: Don’t forget to use the probability transformation formula involving the
determinant of M, as in (7.13); and note that the preceding exercise is a special
case of this one.

Computer Assignments

1. Let’s consider discrete probability distributions which take values in the set {1,2,

. . . ,100}. Create random probabilities for each of those values taken (remember
to normalize). Compute the entropy of the distribution. Repeat this 1000 times.
Find the distribution which had the largest and smallest entropies. What do they
look like? Compare with results in Examples 2 and 3.



Part III
Nonlinear Features and Dependency

of Linear Features



Chapter 9
Energy Correlation of Linear Features
and Normalization

It turns out that when we estimate ICA from natural images, the obtained compo-
nents are not really independent. This may be surprising since after all, in the ICA
model, the components are assumed to be independent. But it is important to under-
stand that while the components in the theoretical model are independent, the esti-
mates of the components of real image data are often not independent. What ICA
does is that it finds the most independent components that are possible by a linear
transformation, but a linear transformation has so few parameters that the estimated
components are often quite far from being independent. In this chapter and the fol-
lowing ones, we shall consider some dependencies that can be observed between
the estimated independent components. They turn out to be extremely interesting
both from the viewpoint of computational neuroscience and image processing. Like
in the case of ICA, the models proposed here are still very far from providing a
complete description of natural image statistics, but each model does exhibit some
very interesting new phenomena just like ICA.

9.1 Why Estimated Independent Components Are Not
Independent

9.1.1 Estimates vs. Theoretical Components

A paradox with ICA is that in spite of the name of the method, the estimated com-
ponents need not be independent. That is, when we have a sample of real image
patches, and estimate the independent components by an ICA algorithm, we get
components which are usually not independent. The key to this paradox is the dis-
tinction between the estimated components and theoretical components. The theo-
retical components, which do not really exist because they are just a mathematical
abstraction, are assumed to be independent. However, what an ICA algorithm gives,
for any real data, is estimates of those theoretical components, and the estimates do
not have all the properties of the theoretical components. In particular, the estimates
need not be independent.

Actually, it is not surprising that the components estimated by ICA are not inde-
pendent. If they were, the statistical structure of natural images would be completely
described by the simple ICA model. If we knew the linear features Ai and the dis-
tributions of the independent components, we would know everything there is to
know about the statistical structure of natural images. This would be rather absurd

A. Hyvärinen, J. Hurri, P.O. Hoyer, Natural Image Statistics,
Computational Imaging and Vision 39,
© Springer-Verlag London Limited 2009
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Fig. 9.1 Scatter plot of a
distribution which cannot be
linearly decomposed to
independent components.
Thus, the estimated
components (given by the
horizontal and vertical axes)
are dependent

because natural images are obviously an extremely complex data set; one could say
it is as complex as our world.

There are two different reasons why the estimates need not have the properties
assumed for the theoretical components. First, the real data may not fulfill the as-
sumptions of the model. This is very often the case, since models are basically ab-
stractions or approximations of reality. (We will see below how the ICA model does
not hold for natural image data.) The second reason is random fluctuation, called
sampling effect in statistics: When we estimate the model for a finite number of
image patches, we have only a limited amount of information about the underlying
distribution, and some errors in the estimates are bound to occur because of this.

Consider, for example, the two-dimensional data in Fig. 9.1. This data is white
(uncorrelated and unit variance), so we can constrain the ICA matrix to be orthogo-
nal. If we input this data into an ICA algorithm, the algorithm says that the horizon-
tal and vertical axis (say, s1 and s2) are the “independent components”. However,
it is easy to see that these components are not independent: If we know that s1 is
zero, we know that s2 cannot be zero. Thus, information on one of the components
gives information on the other component, so the components cannot be indepen-
dent. This data does not follow the ICA model for any parameter values.

9.1.2 Counting the Number of Free Parameters

Another way of looking at this paradox is to think of the number of free parameters.
A linear transformation of n variables to n new variables has n2 free parameters. We
can think of the problem of finding really independent components as a large system
of equations which express the independence of the obtained components. How
many equations are there? In Sect. 4.6, we saw that two independent components
have the following non-linear uncorrelatedness property:

cov
(
f1(si), f2(sj )

)= 0 (9.1)

for any non-linear functions f1 and f2. Now, there are an infinite number of different
non-linearities we could use. So, based on (4.42), we can form an infinite number of
different equations (constraints) that need to be fulfilled, but we only have a finite
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number of free parameters, namely n2. Thus, it is clear1 that usually, no solution
can be found!

Note that the situation with respect to independence is in stark contrast to the sit-
uation with whitening. As we saw in Chap. 5, we can always find a linear transfor-
mation which gives uncorrelated, and further whitened, components. This is because
whitening only needs to consider the covariance matrix, which has a relatively small
number of free parameters. In fact, the number of equations we get is n(n + 1)/2
(because the covariance is a symmetric operation, this is the number of free parame-
ters), which is smaller than n2, so we can find a transformation which whitens the
data.

9.2 Correlations of Squares of Components in Natural Images

Now, let us consider the dependencies of the components estimated in Chap. 7. The
components are forced to be exactly uncorrelated by the ICA method we used. So,
any dependencies left between the components must take the form of some kind of
non-linear correlations. Let us compute correlations of the type in (9.1) for different
non-linear functions f (we use the same function as both f1 and f2). Because the
variances of the non-linear transformations are not necessarily equal to one, it is a
good idea to normalize the covariance to yield the correlation coefficient:

corr
(
f (si), f (sj )

)= E{f (si)f (sj )} − E{f (si)}E{f (sj )}√
var(f (si))var(f (sj ))

. (9.2)

In Fig. 9.2, we show the correlation coefficients for several different functions f .
The figure shows the histograms of all the correlation coefficients between different
pairs of independent components estimated in Chap. 7.

It turns out that we have a strong correlation for even-symmetric functions, i.e.
functions for which

f (−s) = f (s). (9.3)

Typical examples are the square function or the absolute value (b and a in the figure).

9.3 Modeling Using a Variance Variable

Intuitively, the dependency of two components that was described above is such
that the components tend to be “active”, i.e. have non-zero outputs at the same time.

1Strictly speaking, we should show that we can form an infinite number of equations which cannot
be reduced to each other. This is too difficult to show, but it is likely to be true when we look at
some arbitrary data distribution, such as the distribution of natural images. Of course, the situation
is different when the data actually follows the ICA model: in that case, we know that there is a
solution. A solution is then possible because in this very special case, the equations can be reduced,
just as if we needed to solve a system of linear equations where the matrix is not full rank.
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Fig. 9.2 Histograms of correlation coefficients of non-linear functions of independent components
estimated from natural images. a f (s) = |s|, b f (s) = s2, c f (s) is a thresholding function that
gives 0 between −1 and 1 and gives 1 elsewhere, d f (s) = sign(s), e f (s) = s3. Note that linear
correlations, i.e. the case f (s) = s are zero up to machine precision by definition

However, the actual values of the components are not easily predictable from each
other. To understand this kind of dependency, consider a case where the components
si are defined as products of “original” independent variables s̃i and a common
“variance” variable d , which is independent of the s̃i . For simplicity, let us define
that the means of the s̃i are zeros and the variances are equal to one. Thus, we define
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the distribution of the components as follows:

s1 = s̃1d,

s2 = s̃2d,

...

sn = s̃nd.

(9.4)

Now, si and sj are uncorrelated for i �= j , but they are not independent. The idea is
that d controls the overall activity level of the two components: if d is very small,
s1 and s2 are probably both very small, and if d is very large, both components tend
to have large absolute values.

Such dependency can be measured by the correlation of their squares s2
i , some-

times called the “energies”. This means that

cov
(
s2
i , s2

j

)= E
{
s2
i s2

j

}− E
{
s2
i

}
E
{
s2
j

}
> 0. (9.5)

In fact, assuming that s̃i and s̃j have zero mean and unit variance, the covariance of
the squares equals

E
{
s̃2
i d2s̃2

j d2}− E
{
s̃2
i d2}E

{
s̃2
j d2}

= E
{
s̃2
i

}
E
{
s̃2
j

}
E
{
d2d2}− E

{
s̃2
i

}
E
{
d2}E

{
s̃2
j

}
E
{
d2}

= E
{
d4}− E

{
d2}2

. (9.6)

This covariance is positive because it equals the variance of d2, and the variance of
a random variable is always positive (unless the variable is constant).

Moreover, if the s̃i are Gaussian, the resulting components s1 and s2 can be shown
to be sparse (leptokurtic). This is because the situation for each of the components is
just the same as in Sect. 7.8.3: changing the variance of a Gaussian variable creates
a sparse variable. However, we do not assume here that original components s̃i are
Gaussian, so the effect of the variance variables is to increase their sparseness.

What is not changed from basic ICA is that the components si are uncorrelated
in the ordinary sense. This is because we have

E{sisj } = E{s̃i}E{s̃j }E
{
d2}= 0 (9.7)

due to the independence of the d from s̃j . One can also define that the si have
variance equal to one, which is just a scaling convention as in ICA. Thus, the vector
(s1, s2, . . . , sn) can be considered to be white.

9.4 Normalization of Variance and Contrast Gain Control

To reduce the effect of the variance dependencies, it is useful to normalize the local
variance. Let us assume that the image patch is generated as a linear combination
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of independent features, as in ICA. However, now the variances of the components
change from patch to patch as above. This can be expressed as

I (x, y) =
m∑

i=1

Ai(x, y)(ds̃i) = d

m∑

i=1

Ai(x, y)s̃i (9.8)

where d is the variance variables that gives the standard deviation at each patch. It
is a random variable because its value changes from patch to patch.

Here, we made the strong assumption that the variances of all the components are
determined by a single variance variable d . This may be not a bad approximation
when considering small image patches. It simplifies the situation considerably, since
now we can simply estimate d and divide the image patch by d :

Ī (x, y) ← I (x, y)

d̂
. (9.9)

Assuming that we have a perfect estimator d̂ = d , the normalized images Ī then
follow the basic ICA model

Ī (x, y) = d

d

m∑

i=1

Ai(x, y)s̃i =
m∑

i=1

Ai(x, y)s̃i (9.10)

with the original components s̃i . In practice, we don’t have a perfect estimator, so
the data will follow the ICA model only approximatively. Also, it is preferable to do

Ī (x, y) ← I (x, y)

d̂ + ε
(9.11)

where ε is a relatively small constant that prevents division by zero or a very small
number.2

This kind of normalization of variances is called contrast gain control. It can
be compared with the subtraction of the DC component: an unrelated (irrelevant)
variable that has a strong effect on the statistics of the features we are modeling is
removed so that we have a more direct access to the statistics.

For small image patches, one rather heuristic approach is to simply estimate d

using the norm of the image patch

d̂ = c

√∑

x,y

I (x, y)2 (9.12)

where c is a constant that is needed to make the si have unit variance after normal-
ization; it depends of the covariance matrix of the data. Usually, however, we do not
need to compute c because it only changes the overall scaling of the data.

2A reasonable method for determining ε might be to take the 10% quantile of the values of d ,
which we did in our simulations.
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When we normalize the contrast as described here, and compute the output of
linear feature detector, the result is closely related to the neurophysiological model
of divisive normalization; see (3.9) on page 64. The output of the linear feature
detector is then computed as

s̃ =
∑

x,y W(x, y)I (x, y)
√∑

x,y I (x, y)2 + ε
. (9.13)

In the divisive normalization model, the denominator was essentially the sum of the
squares of the outputs of linear feature detectors. Here, we have the norm of the
image patch instead. However, these two can be closely related to each other if the
set of linear feature detectors form an orthogonal basis for a small image patch; then
the sum of squares of pixel values and feature detectors are exactly equal.

The approach to estimating d in this section was rather ad hoc. A more principled
method for contrast gain control could be obtained by properly defining a probability
distribution for d together with the s̃, and estimating all those latent variables using
maximum likelihood estimation or some other principled methods. Furthermore, if
the model is to be used on whole images instead of small patches, a single variance
variable is certainly insufficient. This is still an area of ongoing research; see the
References section for more information.

Let us just mention here a slight modification of the divisive normalization
in (9.11) and (9.12) which has been found useful in some contexts. The idea is that
one could compute a weighted sum of the pixel values I (x, y) to estimate the vari-
ance variable. In particular, low frequencies dominate (9.12) because they have the
largest variances. This effect could be eliminated by computing a whitening matrix
and using the norms of the patches in the whitened space as d̂ . Note that the divisive
normalization destroys the whiteness of the data, so after such normalization, the
whitening matrix has to be recomputed, and the data has to be whitened with this
new whitening matrix.

9.5 Physical and Neurophysiological Interpretations

Why are the variances, or general activity levels, so strongly correlated, and what
is the point in contrast gain control? A number of intuitive explanations can be put
forward.

9.5.1 Canceling the Effect of Changing Lighting Conditions

The illumination (lighting) conditions can drastically change from one image to
another. The same scene can be observed under very different lighting conditions,
think for example of daylight, dusk, and indoor lighting. The light coming onto the
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retina is a function of the reflectances of the surfaces in the scene (R), and the light
(illuminance) level (L). In fact, the reflectances are multiplied by the illuminance to
give the luminance I arriving at the retina:

I (x, y) = L(x, y)R(x, y). (9.14)

In bright daylight, the luminance levels are uniformly larger than in an indoor room,
and so are the contrasts. The average luminance level is not visible in our images
because we have removed the DC component, which is nothing else than the mean
luminance in an image patch. But the general illuminance level still has a clear
effect on the magnitude of the contrasts in the image, and these are seen in the
values of the independent components. In a whole scene, the illuminance may be
quite different in different parts of the image due to shadows, but in a small image
patch illuminance is likely to be approximately the same for all pixels. Thus, the
single variance variable d , which does not depend on x or y, could be interpreted as
the general illuminance level in an image patch.

In this interpretation, the utility of divisive normalization is that it tries to estimate
the reflectances R of the surfaces (objects). These are what we are usually interested
in, because they are needed for object recognition. Illuminance L is usually not of
much interest.

9.5.2 Uniform Surfaces

A second reason for the correlated changes in the variances of features outputs is
what is called the “blue sky effect”. Natural images contain large areas of almost
zero contrast, such as the sky. In such areas, the variances of all the independent
components should be set to almost zero. Thus, the variance variable d is related to
whether the image patch is in a uniform surface or not. This would partly explain
the observed changes in the variances of the components, but this does not seem to
explain utility of contrast gain control.

9.5.3 Saturation of Cell Responses

Mechanisms related to gain control have been observed in many parts of the visual
system, from the retina to the visual cortex (see the References section below). Be-
fore the advent of statistical modeling, their existence was usually justified by the
limited response range of neurons. As discussed in Sect. 3.4.1, the neurons cannot
fire above a certain firing rate. The range of contrasts that are present in the stim-
uli coming to the retina is huge because of the changes in illuminance condition:
the incoming signal can differ in several orders of magnitude. Contrast gain con-
trol is assumed to solve this problem by dividing the contrasts (to be coded by cell
responses) by a measure of the general contrast level. This leads to a very similar
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computation to what our statistical modeling proposes, although our model does not
consider limited response ranges of neurons—linear RFs have no such limitation.

9.6 Effect of Normalization on ICA

Although we considered the dependencies after estimating ICA, it makes sense to do
the variance normalization before ICA. This would be theoretically optimal because
then the ICA estimation would be performed on data whose distribution is closer to
the distribution given by the ICA model. In fact, the method given above in Sect. 9.4
can actually normalize the patches without computing independent components.

A valid question then is: does variance normalization affect the independent com-
ponents? Let us now estimate ICA after variance normalization to see what effect
there may be. The obtained Wi and Ai are shown in Figs. 9.3 and 9.4. The similar-

Fig. 9.3 The whole set of detector weights Wi obtained by ICA after the variances have been
normalized as in (9.11) and (9.12)
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Fig. 9.4 The whole set of features Ai obtained by ICA after the variances have been normalized

ity to the results obtained without variance normalization (Fig. 6.6 on page 144 and
Fig. 7.3 on page 161) is striking.3

There is one important difference, however. Variance normalization makes the
components less sparse. In Fig. 9.5, we have plotted the histogram of the kurtoses of
the independent components, estimated either with and without variance normaliza-
tion. Variance normalization clearly reduces the average kurtosis of the components.
The components after variance normalization correspond to estimates s̃i .

This reduction in kurtosis is not very surprising if we recall the results in
Sect. 7.8.3. There, it was shown that changing variance of Gaussian variables is
one mechanism for creating sparse variables. The variance variable in (9.8) does ex-
actly that. Here, the variance variable is the same for all components, but that does

3However, there is some difference as well: the vectors Ai now have some spurious oscillations.
The reason for this phenomenon remains to be investigated.
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Fig. 9.5 Histograms of kurtoses of independent components. a Estimated without variance nor-
malization, b estimated with variance normalization

Fig. 9.6 Histograms of correlation coefficients of non-linear functions of independent components
estimated with variance normalization. a f (s) = |s|, b f (s) = s2, c f (s) is a thresholding function
that gives 0 between −1 and 1 and gives 1 elsewhere. Compare with a–c in Fig. 9.2
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not change the situation regarding the marginal distributions of the single compo-
nents: multiplication by the variance variable makes them more sparse. Thus, if we
cancel the effect of the variance variable, it is natural that the components become
less sparse.

In practice, normalization of the image patches only reduces the variance depen-
dencies but does not eliminate them. The process described above for modeling the
variances of the components was only a very rough approximation. Let us do the
same measurements on the variance dependencies that we did above before nor-
malization. The results are shown in Fig. 9.6. We see that energy correlations still
remain, although they are now smaller.

9.7 Concluding Remarks and References

This chapter focused on the simple empirical fact that the “independent compo-
nents” estimated from natural images are not independent. This seemingly para-
doxical statement is due to the slightly misleading way the expression “indepen-
dent component” is used in the context of ICA. While ICA finds the most indepen-
dent components possible by a linear transformation, there is no guarantee that they
would be completely independent. The dependencies observed in the case of natural
images can be partly explained by the concept of a global variance variable which
changes from patch to patch. Attempts to cancel the dependencies generated by such
a changing variance lead to divisive normalization or gain control models. However,
this is merely the beginning of a new research direction—modeling dependencies
of “independent” components—which will be continued in the following chapters.

The results in this chapter also point out an interesting, and very important,
change in the relationship between sparseness and independence. With linear mod-
els, maximization of sparseness is equivalent to maximization of independence, if
the linear projections are sparse (super-Gaussian). But in Sect. 9.6, we saw that divi-
sive normalization increases independence, as measured by correlations of squares,
while decreasing sparseness as measured by kurtosis. Thus, sparseness and inde-
pendence have a simple relation in linear models only; with non-linear processing,
we cannot hope to maximize both simultaneously. This point is elaborated in Lyu
and Simoncelli (2008); we will also return to this point in Sect. 17.2.1.

A seminal work on normalizing images to get more Gaussian distributions for
the components is Ruderman and Bialek (1994b). Simoncelli and co-workers have
proposed sophisticated methods for modeling variance dependencies in large im-
ages. They start with a fixed wavelet transform (which is similar to the ICA de-
composition; see Sect. 17.3.2). Since the linear basis is fixed, it is much eas-
ier to build further models of the wavelet coefficients, which can then be used
in contrast gain control (Schwartz and Simoncelli 2001a; Schwartz et al. 2005).
More complex models include hidden Markov models (Wainwright et al. 2001;
Romberg et al. 2001) as well as Markov Random Fields (Gehler and Welling 2005;
Lyu and Simoncelli 2007). A recent experimental work which considers different
alternatives for the functional form of divisive normalization is Bonin et al. (2006);
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the authors conclude that something like the division by the norm is a good model
of contrast gain control in the cat’s LGN.

Finally, let us mention that some work considers the statistical properties of il-
lumination itself, before its interaction with objects (Dror et al. 2004; Mury et al.
2007).

Gain control phenomena can be found in many different parts of the visual sys-
tem. Some of the earliest quantitative work on the effect of natural stimuli statistics
considered gain control in the retina (Laughlin 1981; van Hateren 1992). Recent
work on gain control in the LGN (Bonin et al. 2006) confirms the idea that it is
based on normalization by the Euclidean norm (i.e. root-mean-square contrast).

9.8 Exercises

Mathematical Exercises

1. Show that if two components s1 and s2 are created using a variance vari-
able as in (9.4), then also their absolute values have a positive correlation, i.e.
cov(|s1|, |s2|) > 0 unless d is constant.

2. Consider a variance variable d which only takes two values: α with probability
1/2 and β with probability 1/2. Assume s1 and s2 follow (9.4) with Gaussian s̃1
and s̃2.
a. Show that for α,β > 0, the resulting joint pdf of (s1, s2) is a sum of two

Gaussian pdf’s.
b. Take α = 0 and β > 0. What is the distribution now like? Can you write the

pdf?

Computer Assignments

1. Take some images and sample patches from them. Then build two edge detectors
in orthogonal orientations. Compute the outputs of both edge detectors for all the
patches. Normalize the outputs to unit variance. What are the
a. The ordinary covariances and correlation coefficients of edge detector outputs.
b. The covariances and correlation coefficients of the squares of the edge detec-

tor outputs?



Chapter 10
Energy Detectors and Complex Cells

In preceding chapters, we considered only linear features. In this chapter, we in-
troduce non-linear features. There is an infinite variety of different kinds of non-
linearities that one might use for computing such features. We will consider a very
basic form inspired by models previously used in computer vision and neuroscience.
This approach is based on the concepts of subspaces and energy detectors. The
resulting model called “independent subspace analysis” gives non-linear features
which turn out to be very similar to complex cells when the parameters are learned
from natural images.

10.1 Subspace Model of Invariant Features

10.1.1 Why Linear Features Are Insufficient

In the previous chapters, we assumed that each feature is basically a linear entity.
Linearity worked in two directions: The coefficient (strength) si of the feature in
the image was computed by a linear feature detector as in (7.4) on page 153, and
the image was composed of a linear superposition of the features Ai , as in (7.3) on
page 153.

A problem with linear features is that they cannot represent invariances. For
example, an ideal complex cell gives the same response for a grating irrespective of
its phase. A linear feature detector cannot have such behavior because the response
of a linear system to a grating depends on the match between the phase of the input
and the phase of the detector, as discussed in Sect. 2.2.3. In higher levels of the
visual system, there are cells which respond to complex object parts irrespective of
their spatial location. This cannot be very well described by a single linear template
(feature detector) either.

10.1.2 Subspaces or Groups of Linear Features

Linear combinations are a flexible tool that is capable of computing and representing
invariant features. Let us consider a feature that consist of several vectors and all
their linear combinations. Thus, one such feature corresponds to a group of simple
linear features which are mixed together with some coefficients:

invariant feature = set of
q∑

i=1

Ai(x, y)si for all values of si (10.1)

A. Hyvärinen, J. Hurri, P.O. Hoyer, Natural Image Statistics,
Computational Imaging and Vision 39,
© Springer-Verlag London Limited 2009
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where q is the number of vectors in a single group. This grouping of components is
closely related to the concept of subspace in linear algebra. The subspace spanned
by the vectors Ai for i = 1, . . . , q is defined as the set of all the possible linear
combinations of the vectors. Thus, the range of values that the invariant feature
represents is a subspace.

The point is that each such subspace is representing an invariant feature by taking
different linear combinations of the vectors. Let us consider, for example, the prob-
lem of constructing a detector for some shape, so that the output of the detector does
not depend on location of that shape, i.e. it detects whether the shape occurs any-
where in the image. You could approach the problem by linear vectors (templates)
Ai that represent the shape in many different locations. Now, if these vectors are
dense enough in the image space, so that all locations are covered, the occurrence
of the shape in any location can be represented as a trivial linear combination of the
templates: take the coefficient at the right location to be equal to one, and all the
other coefficients si to be zero. Thus, the subspace can represent the shape in a way
that is invariant with respect to the location, i.e. it does not depend on the location.
In fact, subspaces are even more powerful because to represent a shape that is not
exactly in the locations given by the basic vectors, a satisfactory representation can
often be obtained by taking the average of two or more templates in nearby locations
(say, just to the left and just to the right of the actual location). It is this capacity of
interpolation that makes the linear subspace representation so useful.

The whole image (patch) can be expressed as a linear superposition of these non-
linear features. Let us denote by S(k) the set of indices i of those Ai that belong to
the kth group or subspace; for example, if all the subspaces have dimension two, we
would have S(1) = {1,2}, S(2) = {3,4}, etc. Thus, we obtain the following model:

I (x, y) =
∑

k

∑

i∈S(k)

Ai(x, y)si . (10.2)

The image is still a linear superposition of the vectors Ai(x, y), but the point is that
these vectors are grouped together. The grouping is useful in defining non-linear
feature detectors, as shown next.

10.1.3 Energy Model of Feature Detection

In (10.2), there was no quantity that would directly say what the strength (value,
output) of a subspace feature is. It is, of course, important to define such a measure,
which is the counterpart of the si in the case of simple linear features. We now define
the value of the feature, i.e. the output of a feature detector as a particular non-linear
function of the input image patch. We shall denote it by ek .

First of all, since the model in (10.2) is still a linear superposition model, we
can invert the system given by the vectors Ai as in the linear case. To be able to do
this easily, we assume as in ICA, that the total number of vectors Ai is equal to the
number of pixels (alternatively, equal to the number of dimensions after canonical
preprocessing, as discussed below). Then each linear coefficient si can be computed
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by inverting the system, just as in (7.6):

si =
∑

x,y

Wi(x, y)I (x, y) (10.3)

for some detector weights Wi which are obtained just as with any linear image
model (e.g. the ICA model).

Now, how do we compute the strength of the subspace feature as a function of the
coefficients si that belong to that subspace? There are several reasons for choosing
the square root of the sum of the squares:

ek =
√ ∑

i∈S(k)

s2
i . (10.4)

The first reason for using this definition is that the sum of squares is related to the
norm of the vector

∑
i∈S(k) Aisi . In fact, if the Ai form an orthogonal matrix, i.e.

they are orthogonal and have norms equal to one, the square root of the sum of
squares is equal to the norm of that vector. The norm of the vector is an obvious
measure of its strength; here it can be interpreted as the “total” response of all the si
in the subspace.

Second, a meaningful measure of the strength ek of a subspace feature in an im-
age I could be formed by computing the distance of I from the best approximation
(projection) that the subspace feature is able to provide:

min
si ,i∈S(k)

∑

x,y

[
I (x, y) −

∑

i∈S(k)

siAi(x, y)

]2

. (10.5)

Again, if the Ai form an orthogonal matrix, this can be shown to be equal to
∑

x,y

I (x, y)2 −
∑

i∈S(k)

s2
i (10.6)

which is closely related to the sum of squares, because the first term does not depend
on the coefficients si at all.

Third, a sum of squares is often used in Fourier analysis: the “energy” in a given
frequency band is usually computed as the sum of squares of the Fourier coefficients
in the band. This is why a feature detector using sum of squares is often called an
energy detector. Note, however, that the connection to energy in the sense of physics
is quite remote.

Fourth, the sum of squares seems to be a good model of the way complex cells in
the visual cortex compute their outputs from outputs of simple cells; see Sect. 3.4.2.
In the physiological model, a square root is not necessarily taken, but the basic idea
of summing the squares is the same. In that context, the summation is often called
“pooling”.

Note that we could equally well talk about linear combinations of linear feature
detectors Wi instead of linear combinations of the Ai . For an orthogonal basis, these
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Fig. 10.1 Illustration of computation of complex cell outputs by pooling squares of linear feature
detectors. From Hyvärinen and Hoyer (2000), Copyright ©2000 MIT Press, used with permission

are essentially the same thing, as shown in Sect. 19.6. Then linear combinations of
the Wi in the same subspace give the forms of all possible linear feature detectors
associated with that subspace.

Figure 10.1 illustrates such an energy pooling (summation) model.

Canonically Preprocessed Data Invariant features can be directly applied to data
whose dimension has been reduced. Just as in the case of a basic linear decompo-
sition, we can simply formulate the linear model as in (10.2) where the data on the
left-hand side is the preprocessed data zi , and the linear feature vectors are in the re-
duced space. Nothing is changed in the concept of subspaces. Likewise, the energy
detector in (10.4) takes the same form.

10.2 Maximizing Sparseness in the Energy Model

10.2.1 Definition of Sparseness of Output

What we are now going to show is that we can learn invariant features from nat-
ural images by maximization of sparseness of the energy detectors ek given by the
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subspace model. Sparseness can be measured in the same way as in the linear case.
That is, we consider the expectation of a convex function of the square of the detec-
tor output.

First of all, we take a number of linear features that span a feature subspace. To
keep things simple, let us take just two in the following. Let us denote the detector
weight vectors, which work in the reduced space after canonical preprocessing, by
v1 and v2. Since we are considering a single subspace, we can drop the index i of
the subspace. So, what we want to maximize is a measure of sparseness of the form

E
{
h
(
e2)}= E

{
h
((

vT
1 z
)2 + (vT

2 z
)2)}= E

{
h

((
n∑

j=1

v1j zj

)2

+
(

n∑

j=1

v2j zj

)2)}

(10.7)
where h is a convex function just as in the linear feature case.

An important point that must be considered is how the relation between v1 and
v2 should be constrained. If they are not constrained at all, it may easily happen that
these two linear detectors end up being the equal to each other. Then we lose the
capability of representing a subspace. Mathematically speaking, such a situation is
violating our assumption that the linear system given by the vectors Ai is invertible,
because this assumption implies that the Wi (or the vi ) are not linear combinations
of each other.

We constrain here v1 and v2 in the same way as in the linear feature case: the
outputs of the linear feature detectors must be uncorrelated:

E
{(

vT
1 z
)(

vT
2 z
)}= 0 (10.8)

and, as before, we also constrain the output variances to be equal to one:

E
{(

vT
i z
)2}= 1, for i = 1,2. (10.9)

Now, we can maximize the function in (10.7) under the constraints in (10.8)
and (10.9).

10.2.2 One Feature Learned from Natural Images

To give some preview of what this kind of analysis means in practice, we show the
results of estimation of a single four-dimensional subspace from natural images.
The four vectors vi , converted back to the original image space (inverting the pre-
processing), are shown in Fig. 10.2.

What is the invariance represented by the subspace like? A simple way to analyze
this is to plot a lot of linear combinations of the weight vectors Wi belonging to the
same subspace. Thus, we see many instances of the different features that together
define the invariant feature. This is shown in Fig. 10.3 for the weight vectors in
Fig. 10.2, using random coefficients inside the subspace.
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Fig. 10.2 A group of weight vectors Wi found by maximization of the non-linear energy detector
in natural images

Fig. 10.3 Random combinations of the weight vectors Wi in the subspace shown in Fig. 10.2.
These combinations are all particular instances of the feature set represented by the invariant fea-
ture

The resulting invariance has a simple interpretation: The invariant feature ob-
tained by the algorithm is maximally invariant with respect to the phase of the in-
put. This is because all the four linear features Wi are similar to Gabor functions
which have quite similar parameters otherwise, but with the major difference that
the phases of the underlying oscillations are quite different. In the theory of space-
frequency analysis (Sect. 2.4), and in complex cell models (Sect. 3.4.2), invariance
to phase is achieved by using two different linear feature detectors which are in
quadrature-phase (as sine and cosine functions). Here, we have four linear feature
detectors, but the basic principle seems to be the same.

Such phase-invariance does, in fact, practically always emerge for the feature
subspaces estimated from natural image data; see Sect. 10.7 for a more detailed
analysis. The invariant features are thus similar to complex cells in the visual cor-
tex. This invariance appears because the linear features in the same subspace have
similar orientations, and frequencies, whereas they have quite different phases, and
slightly different positions. Note that it is not easy to distinguish the effects of dif-
ferent phases and slightly different positions, since they result in very much the
same transformations in the overall shape of the features (something that looks like
a small displacement of the feature).

These results indicate that from a statistical viewpoint, the invariance to phase
is a more important feature of natural images that, say, invariance to orientation.
Such invariance to phase has been considered very important in visual neuroscience
because it is the function usually attributed to complex cells: phase-invariance is the
hallmark property that distinguished simple and complex cells.

To see that this “emergence” of phase-invariant features is not self-evident, we
can consider some alternatives. A well-known alternative would be a feature sub-
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space invariant to orientation, called “steerable filters” in computer vision. Actually,
by taking a subspace of Gabor-like vectors that are similar in all other parameters
than orientation, one can obtain exactly orientation-invariant features (see Refer-
ences and Exercises sections below). What our results show is that in representing
natural images, invariance with respect to phase is more important in the sense that
it gives a better statistical model of natural images. This claim will be justified in
the next section, where we build a proper probabilistic model based on sparse, inde-
pendent subspaces.

10.3 Model of Independent Subspace Analysis

Maximization of sparseness can be interpreted as estimation of a statistical model
just as in the case of linear features. Assume that the pdf of the sk is of the following
form:

logp(s1, . . . , sn) =
∑

k

h
(
e2
k

)=
∑

k

h

( ∑

i∈S(k)

s2
i

)
. (10.10)

(A constant needs to be added to make this a proper pdf if the function h is not
properly normalized, but it has little significance in practice.) Denote by zt , t =
1, . . . , T a set of observed image patches after preprocessing. Then the likelihood of
the model can be obtained in very much the same way as in the case of ICA in (7.15)
on page 159. The log-likelihood is given by

logL(v1, . . . ,vn) = T log
∣∣det(V)

∣∣+
∑

k

T∑

t=1

h

( ∑

i∈S(k)

(
vT
i zt

)2
)

. (10.11)

Again, if we constrain the si to be uncorrelated and of unit variance, which is equiv-
alent to orthogonality of the matrix V, the term log |det(V)| is constant. The re-
maining term is just the sum of the sparseness measures of all the energy detectors.
Thus, we see that maximization of the sparsenesses is equivalent to estimation of
the statistical generative model by maximization of likelihood.

As a concrete example, let us consider the case of two-dimensional subspaces,
and choose h(y) = −√

y. This defines a distribution inside each subspace for which

logp(si, sj ) = −
√

s2
i + s2

j . If we further normalize this pdf so that its integral is

equal to one, and so that si and sj have unit variance, we get the following pdf for
si and sj in the same subspace:

p(si, sj ) = 2

3π
exp
(
−√

3
√

s2
i + s2

j

)
. (10.12)

This could be considered as a two-dimensional generalization of the Laplacian dis-
tribution. If you assume sj is given as sj = 0, the conditional pdf of si is proportional
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to exp(−√
3
√

s2
i ), which is as in the Laplacian pdf in (7.18) up to some scaling con-

stants.
What is the main difference between this statistical model and ICA? In ICA, the

pdf was derived using the assumption of independence of the components si . Since
we have here a rather different model, it must mean that some statistical dependen-
cies exist among the components. In fact, the pdf above corresponds to a model
where the non-linear features ek are independent, but the components (i.e. linear
features) in the same subspace are not. The independence of the non-linear features
can be seen from the fact that the log-density in (10.10) is a sum of functions of the
non-linear features. By definition, the non-linear features are then independent. This
also implies that two components in two different subspaces are independent. Since
the subspaces are independent in these two ways, this model is called independent
subspace analysis (ISA).

The more difficult question is: What kind of dependencies exist between the com-
ponents in a single subspace? This will be considered next.

10.4 Dependency as Energy Correlation

The basic result is that in the ISA model, the dependencies of the linear components
in the same subspace take the form of energy correlations already introduced in
Chap. 9. This result will be approached from different angles in the following.

10.4.1 Why Energy Correlations Are Related to Sparseness

To start this investigation on the statistical dependencies of components in ISA, we
consider a simple intuitive explanation of why the sparseness of energy detectors is
related to the correlations of energies of the underlying linear features.

Let us consider the following two cases. First, consider just two linear feature
detectors which have the same output distributions, and whose output energies are
summed (pooled) in a non-linear energy detector. If the outputs are statistically in-
dependent, the pooling reduces sparseness. This is because of the fundamental result
given by the Central Limit Theorem (see Sect. 7.9.1). It says, roughly speaking, that
the sum of independent random variables is closer to Gaussian (and, therefore, less
sparse) than the original random variables themselves.

Second, consider the contrasting extreme case where the linear detector outputs
are perfectly dependent, that is, equal. This means that the distribution of the pooled
energies is equal to the distribution of the original energies (up to a scaling constant),
and therefore there is no reduction in sparseness.

So, we see that maximization of the sparseness of the energy is related to maxi-
mization of the energy correlations (dependencies) of the underlying linear features.
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10.4.2 Spherical Symmetry and Changing Variance

Next, we show how the ISA pdf can be interpreted in terms of a variance variable,
already used in Chap. 9.

The distribution inside each subspace, as defined by (10.10), has the distinguish-
ing property of being spherically symmetric. This simply means that the pdf depends

on the norm
√∑

i∈S(k) s
2
i only. Then any rotation (orthogonal transformation) of the

variables in the subspace has exactly the same distribution.
Spherically symmetric distributions constitute one of the simplest models of non-

linear correlations. If h is non-linear, the variables in the same subspace are depen-
dent. In contrast, an important special case of spherically symmetric distributions is
obtained when h(u) = u, in which case the distribution is just the ordinary Gaussian
distribution with no dependencies or correlations.

Spherical symmetry is closely related to the model in which a separate variance
variable multiplies two (or more) independent variables as in (9.4) on page 203.
If the independent variables s̃1 and s̃2 are Gaussian, the distribution of the vector
(s1, s2) is spherically symmetric. To show this, we use the basic principle that the
marginal pdf of the vector (s1, s2) can be computed by integrating the joint pdf of
(s1, s2, d) over d . First, note that we have s̃2

i = s2
i /d2. Since the s̃i are Gaussian and

independent (let us say they have unit variance), and independent of d , the pdf can
be computed as:

p(s1, s2) =
∫

p(s1, s2, d) dd =
∫

1

2πd2
exp

(
− s2

1 + s2
2

2d2

)
p(d)dd. (10.13)

Even without actually computing the integral (“integrating d out”) in this formula,
we see that the pdf only depends on the (square of the) norm s2

1 + s2
2 . Thus, the

distribution is spherically symmetric. This is because the distribution of (s̃1, s̃2) was
spherically symmetric to begin with. The distribution of d , given by p(d) in the
equation above, determines what the distribution of the norm is like.

In the model estimation interpretation, h is obtained as the logarithm of the pdf,
when it is expressed as a function of the square of the norm. Thus, based in (10.13),
we have

h(e2) = log
∫

1

2πd2
exp

(
− e2

2d2

)
p(d)dd. (10.14)

Note that we obtain a spherically symmetric distribution only if the s̃i are
Gaussian, because only Gaussian variables can be both spherically symmetrically
distributed and independent. In Chap. 9, we did not assume that the s̃i are Gaussian;
in fact, when we normalized the data we saw the estimated s̃i are still quite super-
Gaussian. This apparent contradiction arises because in the ISA model, we have a
different variance variable dk for each subspace, whereas in Chap. 9, there was only
one d for the whole image patch. If we estimated the s̃i in the ISA model, their
distributions would presumably be much closer to Gaussian than in Chap. 9.



222 10 Energy Detectors and Complex Cells

10.4.3 Correlation of Squares and Convexity of Non-linearity

Next, we consider the role of the non-linearity h in (10.11). In the model developed
in this chapter, we don’t have just any h, but h is assumed to be convex because
we are considering measures of sparseness. Actually, it turns out that the h that can
be derived from the model with a variance variable as in the preceding section, are
necessarily convex. A detailed mathematical analysis of this connection is given in
Sect. 10.8.

Conversely, if we define the pdf inside a subspace by taking a convex function h

of the square of the norm, we usually get a positive covariance between the squares
of the components. Again, a detailed mathematical analysis of this connection is
given in Sect. 10.8, but we will discuss this connection here with an example.

As an illustrative example, consider two-dimensional subspaces with pdf defined
as in (10.12). The covariance of the squares of si and sj can be calculated, it is
equal to 2/3. The kurtosis of either si or sj is equal to 2, and the variables are un-
correlated. (This density has been standardized to that its mean is zero and variance
equal to one.) Using this pdf we can investigate the conditional distribution of sj for
a given si :

p(sj |si) = p(si, sj )

p(si)
= p(si, sj )∫

p(si, sj ) dsj
. (10.15)

This can be easily computed for our pdf, and is plotted in Fig. 10.4a. We see a shape
that has been compared to a bow-tie: when going away from zero on the horizontal

Fig. 10.4 Illustration of the correlation of squares in the probability density in (10.12). a The
two-dimensional conditional density of sj (vertical axis) given si (horizontal axis). The conditional
density is obtained by taking vertical slices of the density function, and then normalizing each slice
so that it integrates to one, and thus defines a proper probability density function. Black means
low probability density and white means high probability density. We see that the conditional
distribution get broader as si goes further from zero in either direction. This leads to correlation of
energies since the expectation of the square is nothing but the variance. b The conditional variance
of sj (vertical axis) for a given si (horizontal axis). Here, we see that the conditional variance
grows with the square (or absolute value) of si
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axis (si ), the distribution on the vertical axis (sj ) becomes wider and wider, i.e. its
variance grows. This can be quantified by the conditional variance

var(sj |si) =
∫

s2
j p(sj |si) dsj . (10.16)

The actual conditional variance of si , given sj is shown in Fig. 10.4b. We see that
the conditional variance grows with the absolute value of si .

What is the connection to energy correlations? Both increasing conditional vari-
ance and energy correlations try to formalize the same intuitive idea: when one of
the variables has a large absolute values, the other(s) is likely to have a large ab-
solute values as well. Correlations of squares or energies is something we can easily
compute, whereas conditional variance is a more faithful formalization of the same
idea.

Thus, we see that taking a convex h, or assuming the data to come from the
variance variable model (with Gaussian “original” variables s̃i ) are closely related.

10.5 Connection to Contrast Gain Control

Both the ISA model and the model we used to motivate divisive normalization in
Chap. 9 leads to a similar kind of dependency. This may give the impression that
the two are actually modeling the same thing. This is not so because in ISA, the
variance variables d are different for each subspace, whereas in the contrast gain
control there was a single d for the whole patch.

In the ISA model, the variance variables di are actually closely related to the
outputs of non-linear feature detectors. The sum of squares of the si inside one
subspace (or rather, that sum divided by the dimension of the subspace) can be
considered a very crude estimator of the d2

i of that subspace because, in general,
the average of squares is an estimator of variance. No such interpretation of d

can be made in the contrast gain control context, where the single d is consid-
ered an uninteresting “nuisance parameter”, something whose influence we want
to cancel.

Although the contrast gain control models could be generalized to the case where
the patch is modeled using several variance variables, which possibly control the
variances in different parts of the patch due to different illumination conditions,
the basic idea is still that in ISA, there are many more energy detectors than there
are variance variables due to illumination conditions in the contrast gain model in
Chap. 9.

Because the dependencies in the two models are so similar, one could envi-
sion a single model that encompasses both models. Steps toward such a model
are discussed in Sect. 11.8. On the other hand, we can use ISA to model the en-
ergy correlations that remain in the images after divisive normalization. In the
image experiments below, we first reduce energy correlation by divisive normal-
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ization using (9.11), and then model the data by ISA. This has two different
motivations:

1. We want to model energy correlations, or in general the statistical structure of im-
ages, as precisely as possible. So, it makes sense to first reduce the overall value
of energy correlations to be able better to see fine details. This can be compared
with removal of the DC component, which makes the details in second-order
correlations more prominent. Just like in ICA, one finds that the dependencies
between the subspaces are reduced by divisive normalization, so the ISA model
is then simply a better model of image data.

2. On a more intuitive level, one goal in image modeling is to find some kind of
“original” independent features. Reducing the dependencies of linear features by
divisive normalization seems a reasonable step toward such a goal.

10.6 ISA as a Non-linear Version of ICA

It is also possible to interpret the ISA model of independent subspace analysis as
a non-linear invertible transformation of the data. Obviously, the transformation is
non-linear, but how can we say that it is invertible? The point is to consider not
just the norms of the coefficients in the subspaces, but also the angles inside the
subspaces. That is, we look at what is called the polar coordinates inside each sub-
space. For simplicity, let us consider just two-dimensional subspaces, although this
discussion also applies in higher-dimensional subspaces.

The point is that if we express the coordinates s1, s2 in a two-dimensional sub-

space as a function of the norm r =
√

s2
1 + s2

2 and the angle θ = arctan s2/s1 with
respect to one of the axes. This is an invertible transformation; the inverse is given
by s1 = r cos θ and s2 = r sin θ .

The fundamental point is that the two variables r and θ are independent under the
ISA model. This is precisely because of the assumption that the pdf is spherically
symmetric, i.e. it depends on the norm only. Intuitively, this is easy to see: since
the pdf only depends on the norm, it can be factorized, as required by the defini-
tion of statistical independence, to two factors. The first depends on the norm only,
and the second, completely trivial factor is equal to 1. The constant factor can be
interpreted to be a (constant) function of θ , corresponding to a uniform distribution
of the angles. So, we see that the pdf can be factorized into a product of a function
of r and a function θ , which proves the independence. (Note that this proof is not
quite correct because we have to take into account the determinant of the Jacobian,
as always when we transform pdf’s. The rigorous proof is left as an exercise for
mathematically very sophisticated readers.)

Thus, we see that we can think of the generative model of ISA as a non-linear,
invertible transformation, which is, in the case of two-dimensional subspaces, as
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follows:
⎛

⎜⎜⎜⎜⎜⎝

r1
θ1
...
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⎞
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⎛

⎜⎜⎜⎜⎜⎝

z1
z2
...

zn−1
zn

⎞

⎟⎟⎟⎟⎟⎠
(10.17)

where the components on the left-hand side are all independent from each other.
The same idea holds for subspaces of any dimensions; we just need to parameterize
arbitrary rotations in those subspaces (which is rather complicated).

10.7 Results on Natural Images

10.7.1 Emergence of Invariance to Phase

10.7.1.1 Data and Preprocessing

We took the same 50 000 natural image patches of size 32 × 32 as in the ICA case.
We performed contrast gain control by divisive normalization as in (9.11), as mo-
tivated in Sect. 10.5. Then we preprocessed the normalized patches in the same
(“canonical”) way as with ICA, reducing the dimension to 256.

The non-linearity h used in the likelihood or sparseness measure was chosen to
be a smoothed version of the square root as in (6.14) on page 136. We then estimated
the whole set of feature subspaces using subspace size 4 for natural images, which
means 64 = 256/4 subspaces.

10.7.1.2 Features Obtained

The results are shown in Figs. 10.5 and 10.6 for the Wi and the Ai , respectively.
Again, the feature detectors are plotted so that the grey-scale value of a pixel means
the value of the coefficient at that pixel. Grey pixels mean zero coefficients. As with
linear independent components, the order of the subspaces is not defined by the
model. For further analysis, the subspaces are ordered according to the sparsenesses
of the subspaces as measure by the term

∑T
t=1 h(

∑
i∈S(k)(v

T
i zt )

2) in the likelihood.
Visually, one can see that these feature detectors have interesting localization

properties. First, they are localized in space: most of the coefficients are practically
zero outside of a small receptive field. This is true of the individual feature detectors
in the same way as in the case of linear feature detectors estimated by sparse coding
or ICA. What is important here is that it is also true with respect to the whole sub-
space, because the non-zero coefficients are more or less in the same spatial location
for all feature detectors corresponding to the same subspace. The linear feature de-
tectors and the invariant features are also oriented and multiscale in exactly the same
way: the optimal orientations and frequencies seem to be the same for all the linear
features in the same subspace.
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Fig. 10.5 The whole set of vectors Wi obtained by independent subspace analysis. The four vec-
tors in the same subspace are shown consecutively on the same row. The subspaces have been
ordered so that the sparsest ones are first (top rows)

10.7.1.3 Analysis of Tuning and Invariance

We can analyze these features further by fitting Fourier gratings, just as in Sect. 6.4.
In determining the optimal orientation and frequency for a subspace, we find the
grating that has maximum energy response, i.e. maximum sum of squares of linear
dot-products inside the subspace. The analysis is made a bit more complicated by
the fact that for these non-linear features; we cannot find the maximum response
over all phases by using two filters in quadrature-phase and taking the square of the
responses as we did in Sect. 6.4. We have to compute the responses over different
values of orientation, frequency, and phase. Thus, we take many different values of
α, β and θ in

f (x, y) = sin
(
2πα

(
sin(θ)x + cos(θ)y

)+ β
)
. (10.18)
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Fig. 10.6 The whole set of vectors Ai obtained by independent subspace analysis

Then we compute the responses of the energy detectors and find the α, θ that maxi-
mize the sum of responses over the different β for each subspace.

We can then investigate the selectivities of the features by changing one of the
parameters, while the others are fixed to the optimal values. This gives the tuning
curves for each of the parameters. Note that when computing the responses for vary-
ing orientation or frequency, we again take the sum over all possible phases to sim-
ulate the total response to a drifting grating. On the other hand, when we compute
the tuning curve for phase, we do not take a sum over different phases.

In Fig. 10.7, we have show the results of the analysis for the first ten (i.e. the ten
sparsest) subspaces in Fig. 10.5. We can clearly see that estimated energy detectors
are still selective to orientation and frequency. However, they are less selective to
phase. Some of the features are rather completely insensitive to phase, whereas in
other, some selectivity is present. This shows that the model successfully produces
the hallmark property of complex cells: invariance to phase—at least in some of the
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Fig. 10.7 Tuning curves of the ISA features Wi . Left: change in frequency (the unit is relative
to the window size of 32 pixels, so that 16 means wavelength of 2 pixels). Middle: change in
orientation. Right: change in phase
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Fig. 10.8 Correlation of parameters characterizing the linear features in the same independent
subspace. In each plot, we have divided the subspaces into two pairs, and plotted the optimal para-
meter values for the two linear features in a scatter plot. a Scatter plot of frequencies, b scatter plot
of orientations, c scatter plot of phases, d scatter plot of locations (x-coordinate of centerpoints)

cells.1 Thus, the invariance and selectivities that emerge from natural images by ISA
is just the same kind that characterize complex cells.

The selectivity to orientation and frequency is a simple consequence of the fact
that the orientation and frequency selectivities of the underlying linear feature de-
tectors are similar in a given subspace. This can be analyzed in more detail by visu-
alizing the correlations of the optimal parameters for two linear features in the same
subspace. In Fig. 10.8, we see that the orientations (b) are strongly correlated. In
the case of frequencies the correlation is more difficult to see because of the over-
all concentration to high frequencies. As for phases, no correlation (or any kind of
statistical dependency) can be seen.

In this analysis, it is important to reduce the dimension by PCA quite a lot. This
is because as explained in Sect. 5.3.3.2, the phase is not a properly defined quantity

1It should be noted that the invariance to phase of the sum of squares of linear filter responses is
not an interesting property in itself. Even taking receptive fields with random coefficients gives
similar phase-response curves as in Fig. 10.7 for the sum of squares. This is because the phase-
responses are always sinusoids, and so are their squares, so if the phases of different filters are
different enough, their sum often ends up being relatively constant. What is remarkable, and needs
sophisticated learning, is the combination of selectivity to orientation and frequency with phase-
invariance.
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Fig. 10.9 Histograms of the optimal a frequencies and b orientations of the independent subspaces

at the very highest frequencies (the Nyquist frequency) that can be represented by
the sampling lattice, i.e. the pixel resolution.

Finally, we can analyze the distribution of the frequencies and orientations of the
subspace features. The plot in Fig. 10.9 shows that while all orientations are rather
equally present (except for the anisotropy seen even in ICA results), the frequency
distribution is strongly skewed: most invariant features are tuned to high frequen-
cies.

10.7.1.4 Image Synthesis Results

Results of synthesizing image with the ISA model are shown in Fig. 10.10. This is
based on the interpretation as a non-linear ICA in Sect. 10.6, but the model with
variance dependencies in Sect. 10.4 would give the same results.

Here, the norms ri , i.e. the values of the invariance features, were chosen to be
equal to those actually observed in the data. The angles inside the subspace were
then randomly generated.

The synthesized images are quite similar to those obtained by ICA. The invari-
ance is not really reflected in the visual quality of these synthesized images.

10.7.2 The Importance of Being Invariant

What is the point in features that are invariant to phase? In general, the variability
of how objects are expressed in the retinal image is one of the greatest challenges,
perhaps the very greatest, to the visual system. Objects can be seen in different
locations in the visual space (= retinal space). They can appear at different distances
to the observer, which changes their size in the retinal image. Objects can rotate,
turn around, and transform in a myriad of ways. And that’s not all: the environment
can change, moving light sources and changing their strength, casting shadows, and
even occluding parts of the object.
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Fig. 10.10 Image synthesis using ISA. Compare with the ICA results in Fig. 7.4 on page 162

The visual system has learned to recognize objects despite these difficulties. One
approach used in the early parts of the system is to compute features that are in-
variant to some of such changes. Actually, in Chap. 9, we already saw one such
operation: contrast gain control attempts to cancel some effects of changes in light-
ing, and removal of the DC component is doing something similar.

With energy detectors, we find phase-invariant features, similar to those in com-
plex cells. It is usually assumed that the point in such an invariance is to make
recognition of objects less dependent on the exact position where they appear. The
point is that a change in phase is very closely related to a change in position. In fact,
it is rather difficult to distinguish between phase-invariance and position-invariance
(which is often called translation- or shift-invariance). If you look at the different
feature vectors Ai inside the same subspace in Fig. 10.6, you might say that they are
the same feature in slightly different positions.

Changing the phase of a grating, and in particular of a Gabor function is in-
deed very similar to moving the stimulus a bit. However, it is not movement in
an arbitrary direction: It is always movement in the direction of oscillations. Thus,
phase-invariance is rather a special case of position-invariance. And, of course, the
position-invariance exhibited by these energy detectors is very limited. If the stim-
ulus is spatially localized (say, a Gabor function as always!), only a small change
in the position is allowed, otherwise the stimulus goes out of the receptive field and
the response goes to zero. Even this very limited position-invariance can be useful
as a first step, especially if combined with further invariant computations in the next
processing layers.

Figure 10.11 shows a number of Gabor stimuli that have all other parameters
fixed at the same values but the phase is changed systematically. An ideal phase-
invariant feature detector would give the same response to all these stimuli.
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Fig. 10.11 A Gabor stimulus whose phase is changed

Fig. 10.12 Correlation coefficients of the squares of all possible pairs of components estimated
by ISA. a Components in the same subspace, b components in different subspaces

10.7.3 Grouping of Dependencies

Next, we analyze how grouping of dependencies can be seen in the ISA results on
natural images. A simple approach is to compute the correlation coefficients of the
squares of components. This is done separately for components which belong to
the same subspace, and for components which belong to different subspaces. When
this is computed for all possible component pairs, we can plot the histogram of the
correlation coefficients in the two cases. This is shown in Fig. 10.12. We see that
square correlations are much stronger for components in the same subspace. Ac-
cording to the model definition, square correlations should be zero for components
in different subspaces, but again we see that the real data does not exactly respect
the independence assumptions.

Another way of analyzing the results is to visualize the square correlations. This
is done in Fig. 10.13 for the first 80 components, i.e. 20 first subspaces. Visually, we
can see a clear grouping of dependencies.

10.7.4 Superiority of the Model over ICA

How do we know if the ISA model really is better for natural images when compared
to the ICA model? The first issue to settle is what it means to have a better model.
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Fig. 10.13 Correlation
coefficients of the squares of
the 80 first components in
Fig. 10.5. The correlation
coefficients are shown in
grey-scale. To improve the
visualization, values larger
than 0.3 have been set to 0.3

Of course, ISA is better than ICA in the sense that it shows emergence of new
kinds of phenomena. However, since we are building statistical models, it is impor-
tant to ask if the new model we have introduced, in this case ISA, really is better
than ICA in a purely statistical sense. One useful way of approaching this is to
compute the maximum likelihood. In a Bayesian interpretation, the likelihood is the
probability of the parameters given the data, if the prior is flat. This helps us in com-
paring ICA and ISA models because we can consider the subspace size as another
parameter. The ICA model is obtained in the case where the subspace size equals
one. So, we can plot the maximum likelihood as a function of subspace size, always
recomputing the Wi so as to maximize the likelihood for each subspace size. If the
maximum is obtained for a subspace size larger than one, we can say that ISA is a
better model than ICA.2

It is important to note that we need to use a measure which is in line with the
theory of statistics. One might think that comparison of, say, sparsenesses of the
ICA and ISA features could be used to compare the models, but such a compari-
son would be more problematic. First, ISA has fewer features, so how to compare
the total sparseness of the representations? Second, we would also encounter the
more fundamental question: Which sparseness measure to use? If we use likeli-
hood, statistical theory automatically shows how to compute the quantities used in
the comparison.

2Comparison of models in this way is actually a bit more complicated. One problem is that if the
models may have a different number of parameters, a direct comparison of the likelihoods is not
possible because having more parameters can lead to overfitting. Here, this problem is not serious
because the number of parameters in the two models is essentially the same (it may be a bit dif-
ferent if the non-linearities hi are parameterized as well). Furthermore, Bayesian theory proposes
a number of more sophisticated methods for comparing models; they consider the likelihood with
many different parameter values and not only at the maximal point. Such methods are, however,
computationally quite complicated, so we don’t use them here.
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Fig. 10.14 Maximum
likelihood of natural image
data as a function of subspace
dimensionality in ISA.
Subspace size equal to 1
corresponds to the ICA
model. The error bars are
computed by doing the
estimation many times for
different samples of patches.
Adapted from Hyvärinen and
Köster (2007)

In Fig. 10.14, likelihood is given as a function of subspace size for the ISA model,
for image patches is 24 × 24. What we see here is that the likelihood grows when
the subspace size is made larger than one—a subspace size of one is the same as
the ICA model. Thus, ISA gives a higher likelihood. In addition, the graph shows
that the likelihood is maximized when the subspace size is 32, which is quite large.
However, this maximum depends quite a lot on how contrast gain control is per-
formed. Here, it was performed by dividing the image patches by their norms, but
as noted in Chap. 9, this may not a very good normalization method. Thus, the re-
sults in Fig. 10.14 should not be taken too seriously. Combining a proper contrast
gain control method with the ICA and ISA model is an important topic for future
research.

10.8 Analysis of Convexity and Energy Correlations*

In this section, we show more detailed mathematical analysis on the connection of
the correlation of squares and convexity of h discussed in Sect. 10.4.3. It can be
omitted by readers not interested in mathematical details.

10.8.1 Variance Variable Model Gives Convex h

First, we show that the dependency implied by the model with a convex h typically
takes the form of energy correlations. To prove that h in (10.14) is always convex, it
is enough to show that the second derivative of h is always positive. We can ignore
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the factor 1/2π . Using simple derivation under the integral sign, we obtain

h′′(u) =
∫ 1

d6 exp(− u

2d2 )p(d) dd
∫ 1

d2 exp(− u

2d2 )p(d) dd − [∫ 1
d4 exp(− u

2d2 )p(d) dd]2

[∫ 1
d2 exp(− u

2d2 )p(d) dd]2
.

(10.19)

Since the denominator is always positive, it is enough to show that the numerator is
always positive. Let is consider exp(− u

2d2 )p(d) as a new pdf of d , for any fixed u,
after it has been normalized to have unit integral. Then the numerator takes the
form (E{1/d6}E{1/d2}−E{1/d4}2). Thus, it is enough that we prove the following
general result: for any random variable z ≥ 0, we have

(
E
{
z2})2 ≤ E

{
z3}E{z}. (10.20)

When we apply this on z = 1/d2, we have shown that the numerator is positive. The
proof of (10.20) is possible by the classic Cauchy–Schwarz inequality, which says
that for any x, y ≥ 0, we have

E{xy} ≤ E
{
x2}1/2

E
{
y2}1/2

. (10.21)

Now, choose x = z3/2 and y = z1/2. Then taking squares on both sides, (10.21)
gives (10.20).

10.8.2 Convex h Typically Implies Positive Energy Correlations

Next, we show why convexity of h implies energy correlations in the general case.
We cannot show this exactly. We have to use a first-order approximation. Let us
consider two variables, and look at the conditional pdf of s2 near the point s2 = 0.
This gives

h
(
s2

1 + s2
2

)= h
(
s2

1

)+ h′(s2
1)s2

2 + smaller terms. (10.22)

Let us interpret this as the logarithm of the pdf of s2, given a fixed s1. Some nor-
malization term should then be added, corresponding to the denominator in (10.15),
but it is a function of s1 alone. This first-order approximation of the conditional pdf
is Gaussian, because only the Gaussian distribution has a log-pdf that is a quadratic
function. The variance of the distribution is equal to 2/|h′(s2

1)|. Because of convex-
ity, h′ is increasing. Usually, h′ is also negative, because the pdf must go to zero
(and its log to −∞) when s2 goes infinite. Thus, |h′(s2

1)| is a decreasing function,
and 2/|h′(s2

1)| is increasing. This shows that the conditional variance of s2 increases
with s2

1 , if h is convex. Of course, this was only an approximation, but it justifies the
intuitive idea that a convex h leads to positive energy correlations.

Thus, we see that using a convex h in the ISA model is closely related to assum-
ing that the si inside the same subspace have positive energy correlations.
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10.9 Concluding Remarks and References

Independent subspace analysis is for complex cells what ICA was for simple cells.
When estimated from natural image data, it learns an energy detector model which
is similar to what is computed by complex cells in V1. The resulting features have a
relatively strong phase-invariance, while they retain the simple-cell selectivities for
frequency, orientation, and to a lesser degree, location. A restriction in the model is
that the pooling in the second layer is fixed; relaxing this restriction is an important
topic of current research and will be briefly considered in Sect. 11.8. Another ques-
tion is whether the squaring non-linearity in computation of the features is better
than, say, the absolute value; experiments in Hyvärinen and Köster (2007) indicate
that it is.

Steerable filters (orientation-invariant features) are discussed in the exercises and
computer assignments below. The earliest references include Koenderink and van
Doorn (1987), Freeman and Adelson (1991), Simoncelli et al. (1992). An alter-
native viewpoint on using quadratic models on natural images is in Lindgren and
Hyvärinen (2007), which uses a different approach and finds very different features.

Early and more recent work on energy detectors can be found in Pollen and
Ronner (1983), Mel et al. (1998), Emerson et al. (1992), Gray et al. (1998). It is
also possible to directly incorporate energy detectors in wavelets using complex-
valued wavelets (Romberg et al. 2000). The idea of transforming the data into polar
coordinates can be found in Zetzsche et al. (1999). Using position-invariant features
in pattern recognition goes back to at least Fukushima (1980); see, e.g. Fukushima
et al. (1994), Riesenhuber and Poggio (1999) for more recent developments.

Only recently, reverse correlation methods have been extended to estimation en-
ergy models (Touryan et al. 2005; Rust et al. 2005; Chen et al. 2007). These provide
RFs for linear subunits in an energy model. The obtained results are quite similar
to those we learned in this chapter. However, such reverse-correlation studies are
quite scarce at the moment, so a detailed comparison is hardly possible. Alterna-
tive approaches to characterizing complex cells is presented in Felsen et al. (2005),
Touryan et al. (2002).

10.10 Exercises

Mathematical Exercises

1. Show (10.6).
2. This exercise considers the simplest case of steerable filters. Consider the

Gaussian function

ϕ(x, y) = exp

(
−1

2

(
x2 + y2)

)
. (10.23)
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a. Compute the partial derivatives of ϕ with respect to x and y. Denote them by
ϕx and ϕy .

b. Show that ϕx and ϕy are orthogonal:

∫
ϕx(x, y)ϕy(x, y) dx dy = 0. (10.24)

c. The two functions ϕx and ϕy define a pair of steerable filters. The subspace
they span has an invariance property which will be shown next. Define an
orientation angle parameter α. Consider a linear combination

ϕα = ϕx cosα + ϕy sinα. (10.25)

The point is to show that ϕα has just the same shape as ϕx or ϕy , the only
difference being that they are all rotated versions of each other. Thus, ϕx and
ϕy form an orthogonal basis for a subspace which consists of simple edge
detectors with all possible orientations. The proof can be obtained as follows.
Define a rotated version of the variables as

(
x′
y′
)

=
(

sinβ cosβ

− cosβ sinβ

)(
x

y

)
. (10.26)

Express ϕ as a function of x ′ and y′. Show that this is equivalent to ϕα for a
suitably chosen β .

Computer Assignments

1. Create two two-dimensional Gabor filters in quadrature-phase and plot random
linear combinations of them.

2. Next, we consider steerable filters.
a. Plot the partial derivatives ϕx and ϕy defined in the Mathematical Exercise 2

above.
b. For a couple of different values of alpha, plot their linear combinations ϕα .
Compare visually the shapes of the functions plotted.



Chapter 11
Energy Correlations and Topographic
Organization

The energy detection model in the preceding chapter can easily be modified to in-
corporate topography, i.e. an arrangement of the features on a two-dimensional grid.
This is very interesting because such organization is one of the most prominent phe-
nomena found in the primary visual cortex. In this chapter, we shall investigate such
a topographic version of the ICA model. It is, mathematically, a rather simple mod-
ification of the independent subspace analysis model.

11.1 Topography in the Cortex

Topography means that the cells in the visual cortex are not in any random order;
instead, they have a very specific spatial organization. When moving on the corti-
cal surface, the response properties of the neurons change in systematic ways. The
phenomenon can also be called topological organization, and sometimes the term
“columnar organization” is used in almost the same sense.

Fundamentally the cortex is, of course, three-dimensional. In addition to the sur-
face coordinates, which we denote by xc and yc, there is the depth dimension zc.
The depth “axis” goes from the very surface of the cortex through different layers
of the grey matter to the white matter.

However, the depth dimension is usually assumed to be different from the other
two dimensions. In the most simplistic interpretations, the cells that are on the same
surface location (xc, yc) are similar irrespective of how deep they are on the cortex.
This is most clearly expressed in the classic “ice cube” model of V1. Such a simplis-
tic view has been challenged, and it is now well known that at least some properties
of the cells are clearly different in different (depth) layers. In particular, input to V1
is received in some of the layers and others are specialized in outputting the results.
Still, it seems that the response properties which we consider in this book, such as
location, frequency, and orientation selectivities, depend mainly on the coordinates
(xc, yc) of the cell with respect to the surface.

Looking at the spatial organization of response properties as a function of the
surface coordinates xc and yc, the most striking aspect of topographic organization is
retinotopy, which means that the location of the receptive field in the retinal space is
closely correlated with the xc and yc coordinates. The global correspondence of the
retinal coordinates and the cortical coordinates is somewhat complicated due to such
phenomena as the magnification factor (the area in the center of the visual field has
a relatively larger representation on the cortex), the division into two hemispheres,
some unexpected discontinuities, and so on. The correlation is, therefore, more of a
local nature.

A. Hyvärinen, J. Hurri, P.O. Hoyer, Natural Image Statistics,
Computational Imaging and Vision 39,
© Springer-Verlag London Limited 2009
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The second important topographic property is the gradual change of orienta-
tion tuning. The preferred orientation of simple and complex cells mostly changes
smoothly. This phenomenon is often referred to as orientation columns. They can be
seen most clearly in optical imaging experiments where one takes a “photograph” of
the cortex that shows which regions are active when the input consists of a grating
of a given orientation. Such activity patterns take the form of stripes (columns).

The third important property of spatial organization is that frequency selectivity
seems to be arranged topographically into low-frequency blobs so that the blobs (or
at least their centers) contain predominantly cells that prefer low-frequency cells
and the inter-blob cells prefer higher frequencies. These low-frequency blobs seem
to coincide with the well-known cytochrome oxidase blobs.

A final point to note is that phase is not arranged topographically. In fact, phase
seems to be completely random: there is no correlation between the phase parame-
ters in two neighboring cells.

11.2 Modeling Topography by Statistical Dependence

Now, we show how to extend the models of natural image statistics to include topog-
raphy. The key is to consider the dependencies of the components. The model is thus
closely related to the model of independent subspace analysis in Chap. 10. In fact,
ISA can be seen as a special case of this model.

11.2.1 Topographic Grid

To model topographic organization, we have to first define which features are “close
to each other” on the cortical surface. This is done by arranging the features si on
a two-dimensional grid or lattice. The restriction to 2D is motivated by cortical
anatomy, but higher dimensions are equally possible. The spatial organization on
the grid models the organization on the cortical surface. The arrangement on the
lattice is illustrated in Fig. 11.1.

The topography is formally expressed by a neighborhood function π(i, j) that
gives the proximity of the features (components) with indices i and j . Typically,
one defines that π(i, j) is 1 if the features are sufficiently close to each other (they
are “neighbors”), and 0 otherwise. Typically, the neighborhood function is chosen
by defining the neighborhood of a feature to be square. For example, π(i, j) is 1 if
the feature j is in a 5 × 5 square centered on feature i; otherwise, π(i, j) is zero.

11.2.2 Defining Topography by Statistical Dependencies

Consider a number of features si , i = 1, . . . , n. How can we order the features on the
topographic grid in a meaningful way? The starting point is to define a measure of
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Fig. 11.1 Illustration of
topography and its statistical
interpretation. The neurons
(feature detectors) are
arranged on a
two-dimensional grid that
defines which neurons are
near to each other and which
are far from each other. It also
defines the neighborhood of a
cell as the set of cells which
are closer than a certain
radius. In the statistical
model, neurons that are near
to each other have statistically
dependent outputs, neurons
that are far from each other
have independent outputs

similarity between two features, and then to order the features so that features that
are similar are close to each other on the grid. This is a general principle that seems
fair enough. But then, what is a meaningful way of defining similarity between two
features? There are actually a couple of different possibilities.

In many models, the similarity of features is defined by similarity of the features
weights or receptive fields Wi . Typically, this means the dot-product (also called,
somewhat confusingly, the correlation of the receptive fields). This is the case in
Kohonen’s self-organizing map and related models. However, this seems rather in-
adequate in the case of the visual cortex. For example, two features of the same
frequency need not exhibit large dot-products of weight vectors; in fact, the dot-
product can be zero if the features are of orthogonal orientations with otherwise
similar parameters. Yet, since the V1 exhibits low-frequency blobs, low-frequency
features should be considered similar to each other even if they are quite differ-
ent with respect to other parameters. What’s even worse is that since the phases
change randomly when moving a bit on the cortical surface, the dot-products be-
tween neighboring components also change rather randomly since the phase has a
large influence on the shape of the receptive fields and on the dot-products.

Another candidate for a similarity measure would be correlation of the feature
detector outputs si when the input consists of natural images. However, this is no
good either, since the outputs (components) are typically constrained to be exactly
uncorrelated in ICA and related models. Thus, they would all be maximally dissim-
ilar if similarity is based on correlations.

Yet, using correlations seems to be a step in the right direction. The central hy-
pothesis used in this book—visual processing in the cortex is strongly influenced
by the statistical structure of the natural input—would suggest that we have to look
at the statistics of feature detector outputs in order to find a meaningful measure of
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similarity to be used in a model of topography. We just need more information than
the ordinary linear correlations.

Our statistical approach to topography thus concentrates on the pattern of statis-
tical dependencies between the si , assuming that the joint distribution of the si is
dictated by the natural image input. The basic idea is that similarity is defined by
the statistical dependency of the outputs. Thus, features that have strong statistical
dependencies are defined to be similar, and features that are independent or weakly
dependent are defined to be dissimilar.

The application of this principle is illustrated in Fig. 11.1. The linear feature
detectors (simple cells) have been arranged on a grid (cortex) so that any two fea-
ture detectors that are close to each other have dependent outputs, whereas feature
detectors that are far from each other have independent outputs.

Actually, from Chaps. 9 and 10, we know what are the most prominent statis-
tical dependencies that remains after ordinary ICA: the correlations of squares (or
absolute values, which seems to be closely related). Thus, we do not need to model
the whole dependency structure of the si , which would be most complicated. We
can just concentrate on the dependencies of the squares s2

i .

11.3 Definition of Topographic ICA

As in the ICA and ISA models, we model the image as a linear superposition of
features Ai with random coefficients si :

I (x, y) =
m∑

i=1

Ai(x, y)si . (11.1)

As in ICA and ISA, the si are obtained as the outputs of linear feature detectors as

si =
∑

x,y

Wi(x, y)I (x, y) =
n∑

j=1

vij zj = vT
i z (11.2)

where the zj denotes the j th variable obtained from the image patch by canonical
preprocessing.

The point is now to define the joint pdf of the si so that it expresses the topo-
graphic ordering. First, we define the “local energies” as

ci =
n∑

j=1

π(i, j)s2
j . (11.3)

This is basically the general activity level in the neighborhood of the linear fea-
ture si . The weighting by π(i, j) means that we only sum over sj which are close
to si in the topography.
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Next, we define the likelihood of the topographic ICA model by a simple mod-
ification of the log-likelihood in the ISA model, given in (10.11) on page 219. We
replace the subspace energies ek by these local energies. (The connection between
the two models is discussed in more detail later.) Thus, define the pdf of the si as

logp(s1, . . . , sn) =
n∑

i=1

h

(
n∑

j=1

π(i, j)s2
j

)
(11.4)

where h is a convex function as in the preceding chapters, e.g. Sect. 6.2.1. Assum-
ing we have observed a set of image patches, represented by zt , t = 1, . . . , T after
canonical preprocessing, we obtain the likelihood

logL(v1, . . . ,vn) = T log
∣∣det(V)

∣∣+
n∑

i=1

T∑

t=1

h

(
n∑

j=1

π(i, j)
(
vT
j zt

)2
)

. (11.5)

The topography given by π(i, j) is considered fixed, and only the linear feature
weights vj are estimated, so this likelihood is a function of the vj only. As in earlier
models, the vectors vj are constrained to form an orthogonal matrix, so the deter-
minant is constant (one) and the term T log |det(V)| can be ignored.

The central feature of this model is that the responses si of near-by simple cells
are not statistically independent in this model. The responses are still linearly uncor-
related, but they have non-linear dependencies. In fact, the energies s2

i are strongly
positively correlated for neighboring cells. This property is directly inherited from
the ISA model; that connection will be discussed next.

11.4 Connection to Independent Subspaces and Invariant
Features

Topographic ICA can be considered a generalization of the model of independent
subspace analysis. The likelihood of ISA (see (10.11)) can be expressed as a special
case of the likelihood in (11.5) with a neighborhood function which is one if the
components are in the same subspace and zero otherwise, or more formally:

π(i, j) =
{

1, if there is some subspace with index q so that i, j ∈ S(q),

0, otherwise.

This shows that topographic ICA is closely connected to the principle of invari-
ant feature subspaces in Chap. 10. In topographic ICA, every component has its own
neighborhood, which corresponds to a subspace in ISA. Each of the local energies
ci could be considered as the counterpart of the energies ek in ISA. Thus, the local
energies, possibly after a non-linear transform, can be interpreted as the values of
invariant features. The pooling process is controlled by the neighborhood function
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Fig. 11.2 Computation of
invariant features in the
topographic ICA model.
Invariant features (complex
cell outputs) are obtained by
summing the squares of linear
features (simple cell outputs)
in a neighborhood of the
topographic grid. From
Hyvärinen et al. (2001a),
Copyright ©2001 MIT Press,
used with permission

π(i, j). This function directly gives the pooling weights, i.e. the connections be-
tween the linear features with index i and the invariant feature cell with index j .
Note that the number of invariant features is here equal to the number of underlying
linear features.

The dependencies of the components can also be deduced from this analogy
with ISA. In ISA, components which are in the same subspace have correlations
of energies. In topographic ICA, components which are close to each other in the
topographic grid have correlations of squares. Thus, all the features in the same
neighborhood tend to be active (non-zero) at the same time.

In a biological interpretation, our definition of the pooling weights from simple
cells to complex cells in topographic ICA is equivalent to the assumption that com-
plex cells only pool outputs of simple cells that are near-by on the topographic grid.
Neuroanatomic measurements indicate that the wiring of complex cells may indeed
be so constrained; see References below. Such a two-layer network is illustrated in
Fig. 11.2.

11.5 Utility of Topography

What is the computational utility of a topographic arrangement? A widely used ar-
gument is that such a spatial arrangement is useful to minimize wiring length. Wiring
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length means here the length of the physical connections (axons) needed to send sig-
nals from one neuron to another. Consider, for example, the problem of designing
the connections from simple cells to complex cells so that the “wires” are as short
as possible. It is rather obvious that topographic ICA is related to minimizing that
wiring length because in topographic ICA all such connections are very local in the
sense that they are not longer that the radius of the neighborhoods. A more general
task may be to pool of responses to reduce noise: if a cell in a higher area wants
to “read”, say, the orientation of the stimulus, it could reduce noise in V1 cell re-
sponses by looking at the average of the responses of many cells which have the
same orientation selectivity.

In general, if we assume that two cells need to communicate with each other
if (and only if) their outputs are statistically dependent, topographic ICA pro-
vides optimal wiring. The same applies if the responses of two cells are com-
bined by a third cell only if the outputs of the two cells are statistically depen-
dent. Such assumptions are reasonable because if the cells represent pieces of in-
formation which are related (in some intuitive sense), it is likely that their out-
puts are statistically dependent, and vice versa; so, statistical dependence tells
which cells contain related information which has to be combined in higher lev-
els.

Minimization of wiring length may be important for keeping the total brain vol-
ume minimal: a considerable proportion of the brain volume is used up in intercon-
necting axons. It would also speed up processing because the signal travels along
the axons with limited speed.

11.6 Estimation of Topographic ICA

A fundamental similarity to ISA is that we do not specify what parameters should
be considered as defining the topographic order. That is, the model does not specify,
for example, that near-by neurons should have receptive fields that have similar
locations, or similar orientations. Rather, we let the natural images decide what the
topography should be like, based on their statistical structure.

Since we have already defined the likelihood in (11.5), estimation needs hardly
any further comment. We use whitened (canonically preprocessed) data, so we con-
strain V to be orthogonal just like in ICA and ISA. We maximize the likelihood
under this constraint. The computational implementation of such maximization is
discussed in detail in Chap. 18, in particular, Sect. 18.5.

The intuitive interpretation of such estimation is that we are maximizing the
sparsenesses of the local energies. This is completely analogue to ISA, where we
maximize sparsenesses of complex cell outputs. The learning process is illustrated
in Fig. 11.3.
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Fig. 11.3 Illustration of learning in the topographic ICA model. From Hyvärinen and Hoyer
(2001), Copyright ©2001 Elsevier, used with permission

11.7 Topographic ICA of Natural Images

11.7.1 Emergence of V1-like Topography

11.7.1.1 Data and Preprocessing

We performed topographic ICA on the same data as in previous chapters. We took
the same 50 000 natural image patches of size 32 × 32 as in the preceding chapters.
We preprocessed the data in the same way as in the ISA case: This means divisive
normalization using (9.11), and reducing the dimension to 256 by PCA. The non-
linearity h was chosen to be a smoothed version of the square root as in (6.14), just
like in the ISA experiments.

The topography was chosen so that π(i, j) is 1 if the cell j is in a 5 × 5 square
centered on cell i; otherwise π(i, j) is zero. Moreover, it was chosen to be cyclic
(toroidal) so that the left edge of the grid is connected to the right edge, and the
upper edge is connected to the lower edge. This was done to reduce border artifacts
due to the limited size to the topographic grid.
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Fig. 11.4 The whole set of vectors Wi obtained by topographic independent component analysis,
in the topographic order

11.7.1.2 Results and Analysis

The linear detector weights Wi obtained by topographic ICA from natural images
are shown in Fig. 11.4, and the corresponding feature vectors Ai are in Fig. 11.5.
The topographic ordering is visually obvious. The underlying linear features are
tuned for the three principal parameters: orientation, frequency, and location. Visual
inspection of the map shows that orientation and location mostly change smoothly
as a function of position on the topographic grid. A striking feature of the map is a
“blob” grouping low-frequency features. Thus, the topography is determined by the
same set of parameters for which the features are selectively tuned; these are just the
same as in ICA and ISA. These are also the three parameters with respect to which
a clear spatial organization has been observed in V1.

The topography can be analyzed in more detail by either a global or a local analy-
sis. A local analysis is done by visualizing the correlations of the optimal Gabor
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Fig. 11.5 The whole set of vectors Ai obtained by topographic independent component analysis

parameters for two linear features that are immediate neighbors. In Fig. 11.6, we
see that the locations (a, b) and orientations (c) are strongly correlated. In the case
of frequencies (d), the correlation is more difficult to see because of the overall con-
centration to high frequencies. As for phases (e), no correlation (or any kind of sta-
tistical dependency) can be seen, which is again similar to what has been observed
in V1. Furthermore, all these correlations are similar to the correlations inside in-
dependent subspaces in Fig. 10.8 on page 229. This is not surprising because of the
intimate connection between the two models, explained above in Sect. 11.4.

A global analysis is possible by color-coding the Gabor parameters of linear
features. This gives “maps” whose smoothness shows the smoothness of the under-
lying parameter. The maps are shown in Fig. 11.7. The locations (a and b) can be
seen to change smoothly, which is not obvious from just looking at the features in
Fig. 11.4. The orientation and frequency maps (c and d) mainly change smoothly,
which was rather obvious from Fig. 11.4 anyway. In some points, the orientation
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Fig. 11.6 Correlation of parameters characterizing the linear features of two neighboring features
in Fig. 11.4. An immediate neighbor for each cell chosen as the one immediately to the right. Each
point in the scatter plots is based on one such couple. a scatter plot of locations along x-axis,
b locations along y-axis, c orientations, d frequencies, and e phases. The plots are very similar to
corresponding plots for ISA in Fig. 10.8 on page 229; the main visual difference is simply due to
the fact that here we have twice the number of dots in each plot



250 11 Energy Correlations and Topographic Organization

Fig. 11.7 Global structure of the topography estimated from natural images in Fig. 11.4. Each
parameter of the Gabor functions describing the features is plotted grey-scale or color-coded.
Color-coding is used for parameters which are cyclic: orientation and phase, since the color spec-
trum is also cyclic. The actual values of the parameters are not given because they have little
importance. a Locations along x-axis, b locations along y-axis, c orientations, d frequencies, and
e phases
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Fig. 11.8 Histograms of the optimal a frequencies and b orientations of the linear features in
topographic ICA

seems to change abruptly, which may correspond to so-called “pinwheels”, which
are points in which many different orientations can be found next to each other, and
have been observed on the cortex. As for phases, the map in (e) shows that they
really change randomly.

We can also analyze the distribution of the frequencies and orientations of the
features. The plot in Fig. 11.8 shows the histograms preferred orientations and
frequencies for the linear features. We see that all orientations are almost equally
present, but the horizontal orientation is slightly overrepresented. This is the same
anisotropy we have seen all preceding models. In contrast, the frequency distrib-
ution is very strongly skewed: most linear features are tuned to high frequencies.
However, the distribution of frequencies is a bit closer to uniform than in the cases
of ICA (Fig. 6.9) or ISA (Fig. 10.9).

The connection of the model to ISA suggests that the local energies can be in-
terpreted as invariant features. What kind of invariances do we see emerging from
natural images? Not surprisingly, the invariances are similar to what we obtained
with ISA, because the neighborhoods have the same kinds of parameters correla-
tions (Fig. 11.6) as in ICA; we will not analyze them in more detail here. The main
point is that local energies are like complex cells. That is, the topographic ICA
model automatically incorporates a complex cell model.

Basically, the conclusion to draw from these results is that the topographic ICA
model produces a spatial topographic organization of linear features that is quite
similar to the one observed in V1.

11.7.1.3 Image Synthesis Results and Sketch of Generative Model

Next, we will synthesize images from the topographic ICA model. This is a bit tricky
because, in fact, we did not yet introduce a proper generative model for topographic
ICA. Such a model can be obtained as a special case of the framework introduced
later in Sect. 11.8.2. We will here briefly describe how such a generative model can
be obtained.
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Fig. 11.9 Image synthesis
using topographic ICA.
Compare with the ICA results
in Fig. 7.4 on page 162 and
ISA results in Fig. 10.10 on
page 231

Basically, the idea is a simple generalization of the framework using variance
variables as in Sects. 10.4 and 9.3. Here, we have a separate variance variable di for
each component si :

si = s̃idi (11.6)

where the s̃i are Gaussian and independent from each other (and from the di ).
The point is to generate the di so that their dependencies incorporate the topog-
raphy. This can be accomplished by generating them using a higher-order ICA
model, where the mixing matrix is given by the neighborhood function. Denoting
the higher-order components by ui , we simply define

di =
∑

j

π(i, j)ui . (11.7)

This produces approximately the same distribution as the pdf which we used to de-
fine the topographic ICA model earlier in this chapter. See Sect. 11.8.2 for details.
A problem we encounter here is that it is not obvious how to estimate the distribu-
tions of the ui . So, we have to fix them rather arbitrarily, which means the results
are not quite directly comparable with those obtained by ISA and ICA where we
could use the observed histograms of the features.

Results of synthesizing images with this generative model are shown in Fig. 11.9.
The ui were generated as the fourth powers of Gaussian variables. The synthesized
images seem to have more global structure than those obtained by ICA or ISA, but
as we just pointed out, this may be related to the way we fixed the distributions of
the ui .
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11.7.2 Comparison with Other Models

When compared with other models on V1 topography, we see three important prop-
erties in the topographic ICA model:

1. The topographic ICA model shows emergence of a topographic organization us-
ing the above-mentioned three principal parameters: location, frequency, and ori-
entation. The use of these particular three parameters is not predetermined by the
model, but determined by the statistics of the input. This is in contrast to most
models that only model topography with respect to one or two parameters (usu-
ally orientation possibly combined with binocularity) that are chosen in advance.

2. No other model has shown the emergence of a low-frequency blob.
3. Topographic ICA may be the first one to explicitly show a connection between

topography and complex cells. The topographic, columnar organization of the
simple cells is such that complex cell properties are automatically created when
considering local activations. This is related to the randomness of phases, which
means that in each neighborhood, there are linear features with very different
phases, like in the subspaces in ISA.

It is likely that the two latter properties (blobs and complex cells) can only
emerge in a model that is based on simultaneous activation (energy correlation)
instead of similarity of receptive fields as measured by Euclidean distances or recep-
tive field correlations. This is because Euclidean distances or correlations between
feature vectors of different frequencies, or of different phases, are quite arbitrary:
they can obtain either large or small values depending on the other parameters. Thus,
they do not offer enough information to qualitatively distinguish the effects of phase
vs. frequency, so that phase can be random and frequency can produce a blob.

11.8 Learning Both Layers in a Two-Layer Model *

In this section, we discuss estimation of a two-layer model which is a generaliza-
tion of the topographic ICA. The section is quite sophisticated mathematically, and
presents ongoing work with a lot of open problems, so it can be skipped by readers
not interested in mathematical details.

11.8.1 Generative vs. Energy-Based Approach

Many of the results in the preceding chapters are related to a two-layer generative
model. In the model, the observed variables z are generated as a linear transforma-
tion of components s, just as in the basic ICA model: z = As. The point is to define
the joint density of s so that it expresses the correlations of squares that seem to be
dominant in image data.
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There are two approaches we can use. These parallel very much the sparse cod-
ing and ICA approaches in Chaps. 6 and 7. In the first approach, typically called
“energy-based” for historical reasons,1 we just define an objective function which
expresses sparseness or some related statistical criterion, and maximize it. In the sec-
ond approach, we formulate a generative model which describes how the data is gen-
erated starting from some elementary components. We shall consider here first the
generative-model approach; the energy-based model is considered in Sect. 11.8.5.

11.8.2 Definition of the Generative Model

In the generative-model approach, we define the joint density of s as follows. The
variances d2

i of the si are not constant, instead they are assumed to be random vari-
ables. These random variables di are, in their turn, generated according to a model
to be specified. After generating the variances d2

i , the variables si are generated in-
dependently from each other, using some conditional distributions to be specified.
In other words, the si are independent given their variances. Dependence among the
si is implied by the dependence of their variances.

This is a generalization of the idea of a common variance variable presented in
Sect. 7.8.3. Here, there is no single common variance variable, since there is a sep-
arate variance variable d2

i corresponding to each si . However, these variance vari-
ables are correlated, which implies that the squares of the si are correlated. Consider
the extreme case where the di are completely correlated. Then the d2

i are actually the
same variable, possibly multiplied by some constants. Thus, in this extreme case, we
actually have just a single variance variable as in the divisive normalization model
in Chap. 9.

Many different models for the variances d2
i could be used. We prefer here to use

an ICA model followed by a non-linearity:

di = r

(
n∑

k=1

π(i, k)uk

)
. (11.8)

Here, the uk are the “higher-order” independent components used to generate the
variances, and r is some scalar non-linearity (possibly just the identity r(z) = z).
The coefficients π(i, k) are the entries of a higher-order feature matrix. It is closely
related to the matrix defining the topography in topographic ICA, which is why we
use the same notation.

This particular model can be motivated by two facts. First, taking sparse ui , we
can model a two-layer generalization of sparse coding, where the activations (i.e. the
variances) of the components si are sparse, and constrained to some groups of “re-
lated” components. Related components means here components whose variances
are strongly influenced by the same higher-order components ui .

1Note that the word “energy” here has nothing to do with Fourier energy; it comes from a com-
pletely different physical analogy.
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Fig. 11.10 An illustration of the two-layer generative model. First, the “variance-generating” vari-
ables ui are generated randomly. They are then mixed linearly. The resulting variables are then
transformed using a non-linearity r , thus giving the local variances d2

i . Components si are then
generated with variances d2

i . Finally, the components si are mixed linearly to give the observed
variables xi (which are subsequently whitened to give the zi )

In the model, the distributions of the ui and the actual form of r are additional
parameters; some suggestions will be given below. It seems natural to constrain the
uk to be non-negative. The function r can then be constrained to be a monotonic
transformation in the set of non-negative real numbers. This ensures that the di ’s are
non-negative, so is a natural constraint since they give the standard deviation of the
components.

The resulting two-layer model is summarized in Fig. 11.10. Note that the two
stages of the generative model can be expressed as a single equation, analogously to
(9.4), as follows:

si = r

(∑

k

π(i, k)uk

)
s̃i (11.9)

where s̃i is a random variable that has the same distribution as si given that di is
fixed to unity. The uk and the s̃i are all mutually independent.

11.8.3 Basic Properties of the Generative Model

Here, we discuss some basic properties of the generative model just defined.

11.8.3.1 The Components si Are Uncorrelated

This is because according to (11.9) we have

E{sisj } = E{s̃i}E{s̃j }E
{
r

(∑

k

π(i, k)uk

)
r

(∑

k

π(j, k)uk

)}
= 0 (11.10)

due to the independence of the uk from s̃i and s̃j . (Recall that s̃i and s̃j are zero-
mean.) To simplify things, one can define that the marginal variances (i.e. integrated
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over the distribution of di ) of the si are equal to unity, as in ordinary ICA. In fact,
we have

E
{
s2
i

}= E
{
s̃2
i

}
E

{
r

(∑

k

π(i, k)uk

)2
}

, (11.11)

so we only need to rescale π(i, j) (the variance of s̃i is equal to unity by definition).

11.8.3.2 The Components si Are Sparse

This is true in the case where component si is assumed to have a Gaussian distrib-
ution when the variance is given. This follows from the proof given in Sect. 7.8.3:
the logic developed there still applies in this two-layer model, when the marginal
distribution of each component si is consider separately. Then the marginal, uncon-
ditional distributions of the components si are called Gaussian scale mixtures.

11.8.3.3 Topographic Organization Can Be Modeled

This is possible simply by constraining the higher-order matrix π(i, j) to equal a
topographic neighborhood matrix as in Sect. 11. We can easily prove that compo-
nents which are far from each other on the topography are then independent. Assume
that si and sj are such that their neighborhoods have no overlap, i.e. there is no index
k such that both π(i, k) and π(j, k) are non-zero. Then their variances di and dj are
independent because no higher-order component influences both of these variances.
Thus, the components si and sj are independent as well.

11.8.3.4 Independent Subspaces Are a Special Case

This is more or less implied by the discussion in Sect. 11.4 where independent sub-
space analysis was shown to be a special case of topographic ICA. A more direct
connection is seen by noting that each variance variable could determine the vari-
ance inside a single subspace, with no interactions between the variance variables.
Then we get the ISA model as explained in Sect. 10.4.

11.8.4 Estimation of the Generative Model

11.8.4.1 Integrating Out

In this section, we discuss the estimation of the two-layer model introduced in the
previous section. In principle, this can be done by “integrating out” the latent vari-
ables. Integrating out is an intuitive appealing method: since the likelihood depends
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on the values of the variance variables ui which we don’t know, why not just com-
pute the likelihood averaged over all possible values of ui? Basically, if we have the
joint density of the si and the ui , we could just compute the integral over the ui to
get the density over si alone:

p(s) =
∫

p(s,u) du (11.12)

The problem is, as always with integration, that we may not be able to express this
integral with a simple formula, and numerical integration may be computationally
impossible.

In our case, the joint density of s, i.e. the topographic components, and u, i.e. the
higher-order independent components generating the variances, can be expressed as

p(s,u) = p(s|u)p(u) =
∏

i

ps
i

(
si

r(
∑

k π(i, k)uk)

)
1

r(
∑

k π(i, k)uk)

∏

j

pu
j (uj )

(11.13)
where the pu

i are the marginal densities of the ui and the ps
i are the densities of ps

i

for variance fixed to unity. The marginal density of s could be obtained by integra-
tion:

p(s) =
∫ ∏

i

ps
i

(
si

r(
∑

k π(i, k)uk)

) ∏
j pu

j (uj )

r(
∑

k π(i, k)uk)
du (11.14)

Possibly, for some choices of the non-linearity r and the distributions pu
i , this inte-

gral could be computed easily, but no such choices are known to us.

11.8.4.2 Approximating the Likelihood

One thing which we can do is to approximate the likelihood by an analytical expres-
sion. This approximation actually turns out to be rather useless for the purpose of
estimating the two-layer model, but it shows an interesting connection to the likeli-
hood of the topographic ICA model.

To simplify the notation, we assume in the following that the densities pu
i are

equal for all i, and likewise for ps
i . To obtain the approximation, we first fix the

density ps
i = ps to be Gaussian, as discussed in Sect. 11.8.3, and we define the

non-linearity r as

r

(∑

k

π(i, k)uk

)
=
(∑

k

π(i, k)uk

)−1/2

. (11.15)

The main motivation for these choices is algebraic simplicity that makes a sim-
ple approximation possible. Moreover, the assumption of conditionally Gaussian si ,
which implies that the unconditional distribution of si super-Gaussian, is compatible
with the preponderance of super-Gaussian variables in ICA applications.
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With these definitions, the marginal density of s equals:

p(s) =
∫

1√
2π

n exp

(
−1

2

∑

i

s2
i

[∑

k

π(i, k)uk

])∏

i

pu(ui)

√∑

k

π(i, k)uk du

(11.16)
which can be manipulated to give

p(s) =
∫

1√
2π

n exp

(
−1

2

∑

k

uk

[∑

i

π(i, k)s2
i

])∏

i

pu(ui)

√∑

k

π(i, k)uk du.

(11.17)
The interesting point in this form of the density is that it is a function of the “local
energies”

∑
i π(i, k)s2

i only. The integral is still intractable, though. Therefore, we
use the simple approximation:

√∑

k

π(i, k)uk ≈√π(i, i)ui . (11.18)

This is actually a lower bound, and thus our approximation will be a lower bound of
the likelihood as well. This gives us the following approximation p̃(s):

p̃(s) =
∏

k

exp

(
G

(∑

i

π(i, k)s2
i

))
(11.19)

where the scalar function G is obtained from the pu by

G(y) = log
∫

1√
2π

exp

(
−1

2
uy

)
pu(u)

√
π(i, i)udu. (11.20)

Recall that we assumed π(i, i) to be constant.
Next, using the same derivation as in ICA, we obtain the likelihood of the data as

log L̃(V) =
T∑

t=1

n∑

j=1

G

(
n∑

i=1

π(i, j)
(
vT
i z(t)

)2
)

+ T log |det V|. (11.21)

where V = (v1, . . . ,vn)
T = A−1, and the z(t), t = 1, . . . , T are the observations

of z. It is here assumed that the neighborhood function and the non-linearity r as
well as the densities pu

i and ps
i are known. This approximation is a function of local

energies. Every term
∑n

i=1 π(i, j)(vT
i z(t))2 could be considered as the energy of

a neighborhood, related to the output of a higher-order neuron as in complex cell
models. The function G has a similar role as the log-density of the independent
components in ICA; the corresponding function h is basically obtained as h(u) =
G(

√|u|).
The formula for G in (11.20) can be analytically evaluated only in special cases.

One such case is obtained if the uk are obtained as squares of standardized Gaussian
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variables. Straightforward calculation then gives the following function

G0(y) = − log(1 + y) + const. (11.22)

However, in ICA, it is well known that the exact form of the log-density does not
affect the consistency of the estimators, as long as the overall shape of the function
is correct. This is probably true in topographic ICA as well.

11.8.4.3 Difficulty of Estimating the Model

What we have really shown in deriving the approximation of likelihood in (11.21)
is that the heuristically justified objective function in (11.5) can be obtained from
the two-layer generative model as an approximation. But we have not really got any
closer to the goal of estimating both layers of weights. This is because the approxi-
mation used here approximates the dependence of the likelihood from π quite badly.
To see why, consider maximization of the approximative likelihood in (11.21) with
respect to the π(i, j). Take G as in (11.22). Now,

∑n
i=1 π(i, j)(vT

i z(t))2 is always
non-negative. On the other hand, G attains its maximum at zero. So, if we simply
take π(i, j) = 0 for all i, j , G is actually always evaluated at zero and the approxi-
mative likelihood is maximized. So, taking all zeros in π is the maximum, which is
absurd!

One approach would be to find the values of the latent variables ui which max-
imize the likelihood, treating the ui like the parameters. Thus, we would not try to
integrate out the ui , but rather just formulate the joint likelihood of V, π(i, j), ui(t)

for all i, j and all t = 1, . . . , T . This is computationally very difficult because the
latent variables di are different for each image patch, so there is a very large number
of them. The situation could be simplified by first estimating the first layer by ordi-
nary ICA, and then fixing V once and for all (Karklin and Lewicki 2005). However,
this does not reduce the number of dimensions.

So, we see that the estimation of both layers in a generative two-layer model is
quite difficult. However, abandoning the generative-model approach simplifies the
situation, and provides a promising approach, which will be treated next.

11.8.5 Energy-Based Two-Layer Models

A computationally simpler alternative to estimation of the two layers is provided
by an “energy-based” approach. The idea is to take the likelihood in (11.5) as the
starting point. As pointed out above, it does not make sense to try to maximize this
with respect to the π , because the maximum is obtained by taking all zeros as the
second layer weights.

There is a deep mathematical reason why we cannot maximize the likelihood
in (11.5) with respect to the π . The reason is that the likelihood is not normalized.
That is, when we interpret the likelihood as a pdf, its integral over the data variables
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is not equal to one: the integral depends on the values of the π . This means it is not
a properly defined pdf because a pdf must always integrate to one, so the likelihood
is not a properly defined likelihood either. To alleviate this, we have to introduce
what is called a normalization constant or a partition function in the likelihood.
The normalization constant, which is actually not a constant but a function of the
model parameters, is chosen so that it makes the integral equal to one. Denoting the
normalization constant by Z(π), we write

logL(v1, . . . ,vn) =
T∑

t=1

∑

i

h

(
n∑

j=1

π(i, j)
(
vT
i zt

)2
)

− log |det V| − logZ(π).

(11.23)
See Sect. 13.1.5 and Chap. 21 for more discussion on the normalization constant.

In principle, the normalization constant can be computed by computing the inte-
gral of the underlying pdf over the space of the v, but this is extremely complicated
numerically. Fortunately, there is a way around this problem, which is to use spe-
cial estimation methods which do not require the normalization constant. Thus, we
abandon maximization of likelihood because it requires that we compute the nor-
malization constant. See Chap. 21 for information on such methods.

Attempts to estimate both layers in a two-layer model, using an energy-based
approach, and estimation methods which circumvent the need for a normalization
constant, can be found in Osindero et al. (2006), Köster and Hyvärinen (2007, 2008).
This is a very active area of research (Karklin and Lewicki 2008). Some more re-
motely related work is in Köster et al. (2009a).

11.9 Concluding Remarks and References

A simple modification of the model of independent subspace analysis leads to emer-
gence of topography, i.e. the spatial arrangement of the features. This is in contrast
to ICA and ISA, in which the features are in random order. (In ISA, it is the sub-
spaces which are in random order, but the linear features have some organization
because of their partition to subspaces.) The basic idea in modeling topography is
to consider subspaces which are overlapping, so that the neighborhood of each cell
is one subspace. It is also possible to formulate a proper generative model which in-
corporates the same kind of statistical dependencies using variance variables which
are generated by a higher-order ICA model, but that approach is mathematically
difficult and still under construction.

Basic though old papers on topography are Hubel and Wiesel (1968), DeVal-
ois et al. (1982). Optical imaging results are shown in Blasdel (1992), and a recent
high-resolution imaging study is in Ohki et al. (2005). Topography with respect to
spatial frequency is investigated in Tootell et al. (1988), Silverman et al. (1989),
Edwards et al. (1996). Seminal papers on pinwheels are Bonhoeffer and Grinvald
(1991), Maldonado et al. (1997). A most interesting recent paper is DeAngelis et al.
(1999) that also shows that the phases are not correlated in neighboring cells. The
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relationships of the topographic representation for different parameters are consid-
ered in Hübener et al. (1997). An important point is made in Yen et al. (2007), who
show that the topography of responses is not so clear when the stimuli are complex,
presumable due to non-linear interactions. The connection between topography and
complex cell pooling is discussed in Blasdel (1992), DeAngelis et al. (1999).

The idea of minimum wiring length, or wiring economy, goes back to Ramón
y Cajal, cited in Chen et al. (2006). The metabolic advantages of topography are
further considered in Durbin and Mitchison (1990), Mitchison (1992), Koulakov
and Chklovskii (2001), Attwell and Laughlin (2001). Comparisons between white
and grey matter volume also point out how brain (skull) size limits the connectivity
(Zhang and Sejnowski 2000).

Original papers describing the topographic ICA models are Hyvärinen and Hoyer
(2001), Hyvärinen et al. (2001a). Kohonen’s famous self-organizing map is also
closely related (Kohonen 1982, 2001), but it has not been shown to produce a real-
istic V1-like topography; reasons for this were discussed in Sect. 11.7.2. A model
which produces more a realistic topography (but still no low-frequency blobs) is
Kohonen’s ASSOM model (Kohonen 1996; Kohonen et al. 1997). However, in that
model the nature of the topography is strongly influenced by an artificial manipula-
tion of the input (a sampling window that moves smoothly in time), and it does not
really emerge from the structure of images alone.

A related idea on minimization of wiring length has been proposed in Vincent and
Baddeley (2003), Vincent et al. (2005), in which it is proposed that the retinal coding
minimizes wiring, whereas cortical coding maximizes sparseness of activities.



Chapter 12
Dependencies of Energy Detectors: Beyond V1

All the models in this book so far have dealt with the primary visual cortex (V1).
In this chapter, we show how statistical models of natural images can be extended
to deal with properties in the extrastriate cortex, i.e. those areas which are close to
V1 (also called the striate cortex) and to which the visual information is transmitted
from V1.

12.1 Predictive Modeling of Extrastriate Cortex

Most of the experimental results in early cortical visual processing have consid-
ered V1. The function of most extrastriate areas is still rather much a mystery.
Likewise, most research in modeling natural image statistics has been on low-level
features, presumably corresponding to V1.

However, the methodology that we used in this book could possibly be extended
to such extrastriate areas as V2, V3(A), V4, and V5. Actually, since the function of
most extrastriate areas is not well understood, it would be most useful if we could
use this modeling endeavor in a predictive manner, so that we would be able to
predict properties of cells in the visual cortex, in cases where the properties have
not yet been demonstrated experimentally. This would give testable, quantitative
hypotheses that might lead to great advances in visual neuroscience.

In the next sections, we attempt to accomplish such predictive modeling in order
to predict properties of a third processing step, following the simple and complex
cell layers. The predictions should be based on the statistical properties of mod-
eled complex-cell outputs. Our method is to apply ordinary independent component
analysis to modeled outputs of complex cells whose input consists of natural im-
ages.1

12.2 Simulation of V1 by a Fixed Two-Layer Model

The basic idea in this chapter is to fix a model of complex cells and then learn
a representation for complex cell outputs using a statistical model. The resulting
three-layer network is depicted in Fig. 12.1.

This approach is rather different from the one used in previous chapters, in which
we learned first the simple cells and then the complex cells from the data. Here, to
simplify the model and the computations, we do not attempt to learn everything

1This chapter is based on the article (Hyvärinen et al. 2005a), originally published in BMC Neu-
roscience. The experiments were done by Michael Gutmann. Copyright retained by the authors.

A. Hyvärinen, J. Hurri, P.O. Hoyer, Natural Image Statistics,
Computational Imaging and Vision 39,
© Springer-Verlag London Limited 2009
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Fig. 12.1 The simplified hierarchical model investigated in this chapter. Modeled complex-cell
responses are calculated in a feedforward manner, and these responses are subsequently analyzed
by a higher-order feature layer in the network (“contour” layer). To emphasize that the lower layers
are fixed and not learned, these layers have been greyed out in the figure. The direction of the arrows
is from higher features to lower ones which is in line with the interpretation of our analysis as a
generative model

at the same time. Instead, we fix the first two layers (simple and complex cells)
according to well-known models, and learn only the third layer.

The classic complex-cell model is based on Gabor functions. As explained in
Sect. 3.4.2, complex cells can be modeled as the sum of squares of two Gabor func-
tions which are in quadrature phase. Quadrature phase means simply that if one of
them is even-symmetric, the other one is odd-symmetric. This is related to compu-
tation of the Fourier energy locally, as explained in Sect. 2.4.

Complex-cell responses ck to natural images were thus modeled with a Gabor
energy model of the following form:

ck =
(∑

x,y

W o
k (x, y)I (x, y)

)2

+
(∑

x,y

W e
k (x, y)I (x, y)

)2

(12.1)

where W e
k and W o

k are even- and odd-symmetric Gabor receptive fields; the equa-
tion shows that their squares (energies) are pooled together in the complex cell. The
complex cells were arranged on a 6 × 6 spatial grid. They had 6 × 6 = 36 different
spatial locations, and at each location, four different preferred orientations and three
different frequency selectivities (“bands”). The aspect ratio (ratio of spatial length to
width) was fixed to 1.5. The frequency selectivities of the Gabor filters are shown in
Fig. 12.2, in which all the filters W were normalized to unit norm for visualization
purposes. The actual normalization we used in the experiments consisted of stan-
dardizing the variances of the complex cell outputs so that they were equal to unity
for natural image input. The number of complex cells totaled 36 × 4 × 3 = 432.

As the basic data, we used 1008 grey-scale natural images of size 1024 × 1536
pixels from van Hateren’s database.2 We manually chose natural images in the nar-

2Available at http://hlab.phys.rug.nl/imlib/index.html, category “deblurred” (van Hateren and van
der Schaaf 1998).
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Fig. 12.2 We used fixed complex cells with three different frequency selectivities. The ampli-
tudes of the Fourier Transforms of the odd-symmetric Gabor filters are shown here. The selec-
tivities are such that each cell is sensitive to a certain frequency “band”. The underlying Gabor
filters had logarithmically spaced frequency peaks. Peak spatial frequencies were chosen as fol-
lows: f1 = 0.1 cycles/pixel, f2 = 0.21 cycles/pixel and f3 = 0.42 cycles/pixel

rower sense, i.e. only wildlife scenes. From the source images, 50 000 image patches
of size 24 × 24 pixels were randomly extracted. The mean grey value of each im-
age patch was subtracted and the pixel values were rescaled to unit variance. The
resulting image patch will be denoted by I (x, y).

12.3 Learning the Third Layer by Another ICA Model

After fixing the first two layers, we learned the feature weights in the third layer
by doing a simple ICA of the complex cell (second-layer) outputs denoted by ck .
No PCA dimension reduction was done here, so the number of independent com-
ponents equals the number of complex cells, K . Thus, ICA was performed on the
vector c = (c1, . . . , cK) using the FastICA algorithm (see Sect. 18.7). In ICA, the or-
thogonalization approach was symmetric. Different non-linearities g were used, see
Table 12.1. (The non-linearities are related to the non-Gaussianity measures used;
see Sect. 18.7.)

Thus, we learned (estimated) a linear decomposition of the form

ck =
K∑

i=1

akisi for all k = 1, . . . ,K (12.2)

or in vector form

c =
K∑

i=1

ai si = As (12.3)
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Table 12.1 The measures of non-Gaussianity used, i.e. the different functions G = logps used in
the likelihood of the ICA model. These correspond to different non-linearities g in the FastICA
algorithm, and to different sparseness measures h. The measures probe the non-Gaussianity of the
estimated components in different ways

Non-Gaussianity measure FastICA non-linearity Motivation

G1(y) = log coshy g1(y) = tanh(y) Basic sparseness measure

G2(y) = − exp(−y2/2) g2(y) = y exp(−y2/2) More robust variant of g1

G3(y) = 1
3 y3 g3(y) = y2 Skewness (asymmetry)

G4(y) = Gaussian cum. distr. function g4(y) = exp(−y2/2) Robust variant of g3

where each vector ai = (a1i , . . . , aKi) gives a higher-order feature vector. The si
define the values of the higher-order features in the third cortical processing stage.
Recall that the input to the system was natural images, so the statistics of c reflect
natural image statistics.

Note that the signs of the feature vectors are not defined by the ICA model, i.e.
the model does not distinguish between ai and −ai because any change in sign
of the feature vector can be canceled by changing the sign of si accordingly. Here,
unlike in the original natural images, the features will not be symmetric with respect
to such a change of sign, so it makes sense to define the signs of the ai based on that
asymmetry. We defined the sign for each vector ai so that the sign of the element
with the maximal absolute value was positive.

This model can be interpreted as a generative model of image patches, following
the interpretation of ISA as a non-linear ICA in Sect. 10.6. The higher-order inde-
pendent component (here denoted by si ) are generated according to (12.2). Then
the activity of the complex cell is expressed as activities of simple cells with ran-
dom division of the activity to the simple cells, using a random angle variable as
in (10.17) on page 225. Finally, the simple cell activities are linearly transformed to
image patches as in ICA or ISA models. This provides a complete generative model
from the higher-order features to image pixel values.

12.4 Methods for Analyzing Higher-Order Components

We need to introduce some special methods to analyze the “higher-order” compo-
nents obtained by this method, because the resulting higher-order feature vectors ai

cannot be simply plotted in the form of image patches.
We visualize the vectors ai by plotting an ellipse at the centerpoint of each com-

plex cell. The orientation of the ellipse is the orientation of the complex cell with
index k, and the brightness of the ellipse with index i is proportional to the coeffi-
cient aki of the feature vector ai , using a grey-scale coding of coefficient values. We
plotted complex cells in each frequency band (i.e. with the same frequency selectiv-
ity) separately.

We are also interested in the frequency pooling of complex cells in different
higher-order features. We quantified the pooling over frequencies using a simple
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measure defined as follows. Let us denote by ai(x, y, θ, fn) the coefficient in the
higher-order feature vector ai that corresponds to the complex cell with spatial lo-
cation (x, y), orientation θ and preferred frequency fn. We computed a quantity
which is similar to the sums of correlations of the coefficients over the three fre-
quency bands, but normalized in a slightly different way. This measure Pi was de-
fined as follows:

Pi =
∑

m<n

|∑x,y,θ ai(x, y, θ, fm)ai(x, y, θ, fn)|
CmCn

(12.4)

where the normalization constant Cm is defined as

Cm =
√√√√ 1

K

∑

j,x,y,θ

aj (x, y, θ, fm)2 (12.5)

and likewise for Cn.
For further analysis of the estimated feature vectors, we defined the preferred

orientation of a higher-order feature. First, let us define for a higher-order feature of
index i the hot-spot (xi, yi)

∗ as the center location (x, y) of complex cells where the
higher-order component si generates the maximum amount of activity. That is, we
sum the elements of ai that correspond to a single spatial location, and choose the
largest sum. This allows us to define the tuning to a given orientation of a higher-
order feature i by summing over the elements of ai that correspond to the spa-
tial hotspot and a given orientation; the preferred orientation is the orientation for
which this sum is maximized. We also computed the length of a higher-order feature
by least-squares fitting a Gaussian kernel to the patterns ai (Hoyer and Hyvärinen
2002).

It is also possible to perform an image synthesis from a higher-order feature
vector. However, the mapping from image to complex-cell outputs is not one-to-
one. This means that the generation of the image is not uniquely defined given the
activities of higher-order features alone. A unique definition can be achieved by
constraining the phases of the complex cells. For the purposes of image synthesis,
we assume that only odd-symmetric Gabor filters are active. Furthermore, we make
the simplifying assumptions that the receptive fields W in simple cells are equal to
the corresponding feature vectors, and that all the elements in the higher-order fea-
ture vector are non-negative (or small enough to be ignored). Then the synthesized
image I i

synth for higher-order feature vector ai is given by

I i
synth(x, y) =

∑

k∈H

W o
k (x, y)

√
aki (12.6)

where the square root cancels the squaring operation in the computation of complex-
cell responses, and H denotes the set of indices that correspond to complex cells of
the preferred orientation at the hotspot. Negative values of aki were set to zero in
this formula.
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Since we are applying ICA on data which has been heavily processed (by the
complex cell model), we have to make sure that the model is not only analyzing the
artifacts produced by that processing. To obtain a baseline with which to compare
our results, and to show which part of the results is due to the statistical properties
of natural images instead of some intrinsic properties of our filterbank and analy-
sis methods, we did exactly the same kind of analysis for 24 × 24 image patches
that consisted of white Gaussian noise, i.e. the grey-scale value in each pixel was
randomly and independently drawn from a Gaussian distribution of zero mean and
unit variance. The white Gaussian noise input provides a “chance level” for any
quantities computed from the ICA results. In a control experiment, such white noise
patches were thus fed to the complex cell model, and the same kind of ICA was
applied on the outputs.

12.5 Results on Natural Images

12.5.1 Emergence of Collinear Contour Units

In the first experiment, we used only the output from complex cells in a single
frequency band, f2 in Fig. 12.2.

The higher-order features are represented by their feature vectors ai which show
the contribution of the third-stage feature of index i on the activities of complex
cells. A collection of the obtained feature vectors is shown in Fig. 12.3 for the non-
linearity g1 (see Table 12.1), visualized as described above. We can see emergence
of collinear features. That is, the higher-order features code for the simultaneous
activation of complex cells that together form something similar to a straight line
segment.

Fig. 12.3 Random selection of learned feature vectors ai when the complex cells are all in a
single frequency band. ICA non-linearity g was the tanh non-linearity g1. Each patch gives the co-
efficients of one higher-order feature. Each ellipse means that the complex cell in the correspond-
ing location and orientation is present in the higher-order feature, the brightness of the ellipse is
proportional to the coefficient aki
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Fig. 12.4 Comparison of different measures of non-Gaussianity (FastICA non-linearities) in the
first experiment. The histogram gives the lengths of the contour patterns for the four different
non-linearities g1, . . . , g4 in Table 12.1

Those coefficients that are clearly different from zero have almost always the
same sign in a single feature vector. Defining the sign as explained above, this means
that the coefficients are essentially non-negative.3

Other measures of non-Gaussianity (FastICA non-linearities) led to similar fea-
ture vectors. However, some led to a larger number of longer contours. Figure 12.4
shows the distribution of lengths for different non-linearities. The non-linearity g4
(robust skewness) seems to lead to the largest number of long contours. The outputs
of complex cells are skewed (non-symmetric), so it makes sense to use a skewness-
based measure of non-Gaussianity, as discussed in Sect. 7.9. In this experiment, the
results were very similar to those obtained by sparseness, however.

12.5.2 Emergence of Pooling over Frequencies

In the second experiment, the complex cell set was expanded to include cells of
three different preferred frequencies. In total, there were now 432 complex cells.
We performed ICA on the complex cell outputs when their input consisted of nat-
ural images. Thus, we obtained 432 higher-order feature vectors (features) ai with
corresponding activities si .

We visualized a random selection of higher-order features learned from natural
images in Fig. 12.5. The visualization shows that the features tend to be spatially
localized and oriented, and show collinearity as in the single-channel experiment

3In earlier work (Hoyer and Hyvärinen 2002), we actually imposed a non-negativity constraint on
the coefficients; see Sect. 13.2. The results reported here show that those results can be replicated
using ordinary ICA methods. The constraint of non-negativity of the feature vectors has little im-
pact on the results: even without this constraint, the system learns feature vectors which are mainly
non-negative.
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Fig. 12.5 A random selection of higher-order feature vectors ai estimated from natural images
using complex cells of multiple frequencies in the second experiment. ICA non-linearity g was
the tanh non-linearity g1. Each display of three patches gives the coefficients of one higher-order
feature. Each patch gives the coefficients of one higher-order feature in one frequency band. Each
ellipse means that the complex cell in the corresponding location, and of the corresponding orien-
tation and frequency is present in the higher-order feature, brightness of ellipse is proportional to
coefficient aki

above. What is remarkable in these results is that many cells pool responses over
different frequencies. The pooling is coherent in the sense that the complex cells
that are pooled together have similar locations and orientations. A smaller number
of cells is shown in more detail in Fig. 12.6, where the coefficients in all orientations
are shown separately.

We computed the frequency pooling measure Pi in (12.4) for the learned feature
vectors. The distribution of this measure for natural image input and white Gaussian
noise input is shown in Fig. 12.7. The figure shows that frequency pooling accord-
ing to this measure was essentially non-existent for white Gaussian noise input, but
relatively strong for many feature vectors when the input consisted of natural im-
ages. To express this more quantitatively, we computed the 99% quantile for the
white Gaussian noise input. Then 59% of the basis vectors for natural image input
had a pooling index Pi that was larger than this quantile. (For the 95% quantile, the
proportion was 63%.) Thus, we can say that more than half of the higher-order basis
vectors, when learned from natural images, have a pooling over frequencies that is
significantly above chance level.

To show that the pooling measure is valid, and to further visualize the frequency
pooling in the higher-order features, we chose randomly feature vectors learned
from natural images that have pooling significantly over chance level (Pi above its
99% quantile for white Gaussian noise). These are plotted in Fig. 12.8. Visual in-
spection shows that in this subset, all basis vectors exhibit pooling over frequencies
that respects the orientation tuning and collinearity properties.

The corresponding results when the input is white Gaussian noise are shown in
Fig. 12.9, for a smaller number of higher-order cells. (To make the comparison fair,
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Fig. 12.6 Higher-order feature vectors of four selected higher-order features in the second ex-
periment, shown in detail. The coefficients in each orientation and frequency band are plotted
separately

Fig. 12.7 The distributions of the frequency pooling measure in (12.4) for natural images and
white Gaussian noise

these were randomly chosen among the 59% that had higher pooling measures, the
same percentage as in Fig. 12.8.) Pooling over frequencies as well as collinearity
are minimal. Some weak reflections of these properties can be seen, presumably
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Fig. 12.8 A selection of higher-order feature vectors ai estimated from natural images in the
second experiment. These basis vectors were chosen randomly among those that have frequency
pooling significantly above chance level

Fig. 12.9 For comparison, higher-order feature vectors estimated from white Gaussian noise, with
each frequency band shown separately

due to the small overlap of the filters in space and frequency, which leads to weak
statistical correlations between complex cells that are spatially close to each other
or in neighboring frequency bands.

We also examined quantitatively whether the higher-order features are tuned to
orientation. We investigated which complex cell has the maximum weight in ai for
each i in each frequency band. When the data used in learning consisted of natural
images, in 86% of the cells the maximally weighted complex cells were found to
be located at the hotspot (xi, yi)

∗ (i.e., point of maximum activity, see above) and
tuned to the preferred orientation of the higher-order feature for every frequency f .
This shows how the higher-order features are largely selective to a single orientation.
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Fig. 12.10 Local image
synthesis from the three
odd-symmetric Gabor
elements that have preferred
orientation at the hotspot of a
higher-order feature vector
(H209 in Fig. 12.6). The thick
dotted curve shows the
synthesis using coefficients
from natural images, and the
solid curves show various
synthesis results using
coefficients learned from
white Gaussian noise input

When the data used in learning consisted of Gaussian white noise, only 34% of the
cells were found to be orientation-selective according to this criterion.

Finally, we synthesized images from higher-order feature activities. Figure 12.10
shows a slice orthogonal to the preferred orientation of one higher-order feature vec-
tor (H209 in Fig. 12.6). The intensity of the synthesized image shows no side-lobes
(unnecessary oscillations), while representing a sharp, localized edge. In contrast,
synthesis in the white Gaussian noise case (also shown in Fig. 12.10) gives curves
that have either side-lobes like the underlying Gabor filters, or do not give a sharp
localized edge. Thus, the curve obtained from synthesis of the features learned from
natural images corresponds better to the notion of an edge.

12.6 Discussion of Results

12.6.1 Why Coding of Contours?

The result of the first experiment, using a single frequency channel (Sect. 12.5.1),
is that simple ICA of simulated complex cell outputs leads to emergence of units
coding for collinear contours (Fig. 12.3). First, we have to note that this result is
not logically necessary: It is not obvious that the higher-order representation should
necessarily code for contours. Multi-layer mechanisms similar to the one used here
have been proposed in the context of texture segregation as well (Sperling 1989;
Malik and Perona 1990). A priori, one could have expected such texture bound-
ary detectors to emerge from this model. Our results seem to indicate that contour
coding is, at least in this sparse coding sense, more fundamental than texture segre-
gation.

The higher-order neurons which represent long contours bear many similarities
to ‘collator’ (or ‘collector’) units, proposed in the psychophysical literature (Mussap
and Levi 1996; Moulden 1994). Such units are thought to integrate the responses of
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smaller, collinear filters, to give a more robust estimate of global orientation than
could be achieved with elongated linear mechanisms.4

12.6.2 Frequency Channels and Edges

In the second experiment using multiple frequency channels (Sect. 12.5.2), we
saw emergence of pooling of contour information across multiple frequencies
(Figs. 12.5, 12.6, 12.8). What is the functional meaning of this frequency pooling?
One possibility is that this spatially coherent pooling of multiple frequencies leads
to a representation of an edge that is more realistic than the edges given by typical
Gabor functions. Presumably, this is largely due to the fact that natural images con-
tain many sharp, step-like edges that are not contained in a single frequency band.
Thus, representation of such “broad-band” edges is difficult unless information from
different frequency bands is combined.

In terms of frequency channels, the model predicts that frequency channels
should be pooled together after complex cell processing. Models based on frequency
channels and related concepts have been most prominent in image coding literature
in recent years, both in biological and computer vision circles. The utility of fre-
quency channels in the initial processing stages is widely acknowledged, and it is
not put into question by these results—in fact, the results in Chaps. 6–10 show that
using frequency-selective simple and complex cells is statistically optimal. How-
ever, the question of when the frequency channels should be pooled or otherwise
combined has received little attention. The results in this chapter (second experi-
ment) indicate that a statistically optimal way is to pool them together right after
the complex cell “stage”, and this pooling should be done among cells of a given
orientation which form a local, collinear configuration.

12.6.3 Toward Predictive Modeling

As we explained in the beginning of the chapter, the present results are an instance of
predictive modeling, where we attempt to predict properties of cells and cell assem-
blies that have not yet been observed in experiments. To be precise, the prediction is
that in V2 (or some related area) there should be cells whose optimal stimulus is a

4In principle, long contours could be represented by long feature vectors on the level of simple cells
as well. However, the representation by these higher-order contour coding cells has the advantage
of being less sensitive to small curvature and other departures from strict collinearity. Even very
small curvature can completely change the response of an elongated linear filter (simple cell), but
it does not change the representation on this higher level, assuming that the curvature is so small
that the line stays inside the receptive fields of the same complex cells. Thus, higher-order contour
cells give a more robust representation of the contours. Of course, the intermediate complex cell
layer also confers some phase-invariance to the contour detectors.
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broad-band edge that has no side lobes while being relatively sharp, i.e. the optimal
stimulus is closer to a step-edge than the Gabor functions that tend to be optimal for
V1 simple and complex cells. The optimal stimulus should also be more elongated
(Polat and Tyler 1999; Gilbert and Wiesel 1985) than what is usually observed in
V1, while being highly selective for orientation.

Statistical models of natural images offer a framework that lends itself to predic-
tive modeling of the visual cortex. First, they offer a framework where we often see
emergence of new kinds of feature detectors—sometimes very different from what
was expected when the model was formulated. Second, the framework is highly
constrained and data-driven. The rigorous theory of statistical estimation makes
it rather difficult to insert the theorist’s subjective expectations in the model and,
therefore, the results are strongly determined by the data. Third, the framework is
very constructive. From just a couple of simple theoretical specifications, e.g. non-
Gaussianity, natural images lead to the emergence of complex phenomena.

We hope that the present work as well as future results in the same direction will
serve as a basis for a new kind of synergy between theoretical and experimental
neuroscience.

12.6.4 References and Related Work

Several investigators have looked at the connection between natural image statistics,
Gestalt grouping rules, and local interactions in the visual cortex (Geisler et al. 2001;
Sigman and Gilbert 2000; Elder and Goldberg 2002; Krüger 1998). However, few
have considered the statistical relations between features of different frequencies. It
should be noted that some related work on interactions of different frequencies does
exist in the models of contrast gain control; see Chap. 9 or Schwartz and Simoncelli
(2001a).

Recent measurements from cat area 18 (somewhat analogous to V2) emphasize
responses to “second-order” or “non-Fourier” stimuli, typically sine-wave gratings
whose amplitudes are modulated (Mareschal and Baker 1998a, 1998b). These re-
sults and the proposed models are related to our results and predictions, yet funda-
mentally different. In the model in Mareschal and Baker (1998b), a higher-order cell
pools outputs of complex cells in the same frequency band to find contours that are
defined by texture-like cues instead of luminance. The same cell also receives direct
input from simple cells of a different frequency, which enables the cell to combine
luminance and second-order cues. This is in stark contrast to higher-order cells in
the model we used in this chapter, which pool outputs of complex cells of different
frequencies. They can hardly find contours defined by second-order cues; instead
they seem to be good for coding broad-band contours. Furthermore, in Mareschal
and Baker (1998a, 1998b), any collinearity of pooling seems to be absent. This nat-
urally leads to the question: Why are our predictions so different from these results
from area 18? We suspect this is because it is customary to think of visual process-
ing in terms of division into frequency channels—“second-order” stimuli are just an
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extension of this conceptualization. Therefore, not much attempt has been made to
find cells that break the division into frequency channels according to our prediction.
On the other hand, one can presume that the cells found in area 18 in Mareschal and
Baker (1998a, 1998b) are different from our predictions because they use a learning
strategy which is different from sparse coding used in our model, perhaps related to
the temporal aspects of natural image sequences, see Chap. 16.

Another closely related line of work is by Zetzsche and co-workers (Zetzsche
and Krieger 1999; Zetzsche and Röhrbein 2001) who emphasize the importance of
decomposing the image information to local phase and amplitude information. The
local amplitude is basically given by complex cell outputs, whereas the physiologi-
cal coding of the local phases is not known. An important question for future work
is how to incorporate phase information in the higher-order units. Some models by
Zetzsche et al. actually predict some kind of pooling over frequencies, but rather
directly after the simple cell stage; see Fig. 16 in Zetzsche and Röhrbein (2001).

Related models in which edge detection uses phase information pooled over dif-
ferent frequencies are in Morrone and Burr (1988), Kovesi (1999). An interesting
investigation into the relation of edges and space-frequency analysis filter outputs in
natural images is in Griffin et al. (2004). A psychophysical study on the integration
of information over different frequencies is Olzak and Wickens (1997).

The model in this chapter opens the way to highly non-linear multilayer models
of natural image statistics. While this seems like a most interesting direction of re-
search, not much work has been done so far. Related attempts to construct very gen-
eral, non-linear models of natural image statistics include Pedersen and Lee (2002),
Lee et al. (2003), Malo and Gutiérrez (2006), Chandler and Field (2007), Griffin
(2007).

12.7 Conclusion

Experiments in this chapter show that two different kinds of pooling over complex
cells emerge when we model the statistical properties of natural images. First, the
higher-order features group collinear complex cells which form a longer contour.
Second, they group complex cells of different frequency preferences. This is ac-
complished by applying ordinary ICA on a set of modeled complex cells with mul-
tiple frequencies, and inputting natural images to the complex cells. Thus, statistical
modeling of natural stimuli leads to an interesting hypothesis on the existence of a
new kind of cells in the visual cortex.



Chapter 13
Overcomplete and Non-negative Models

In this chapter, we discuss two generalizations of the basic ICA and sparse coding
models. These do not reject the assumption of independence of the components
but change some of the other assumptions in the model. Although the generative
models are linear, the computation of the features is non-linear. In the overcomplete
basis model, the number of independent components is larger than the number of
pixels. In the non-negative model, the components, as well as the feature vectors,
are constrained to be non-negative.

13.1 Overcomplete Bases

13.1.1 Motivation

An important restriction of most of the models treated so far is that the number of
features cannot be larger than the dimension of the data. The dimension of the data
is at most equal to the number of pixels, and it is actually smaller after canonical
preprocessing including PCA. This was for two reasons:

1. In the sparse coding models the feature detector weights were constrained to be
orthogonal. In a space with n dimensions, we can have at most n orthogonal
vectors, so this constrains the number of features.

2. In the generative models such as ICA, we had to assume that the matrix A, which
has the features as its columns, is invertible. Again, a matrix can be invertible
only if it is square: thus, the number of features cannot be larger than the number
of pixels.

However, it can be argued that the number of features should be larger than the
dimension of the image data. The computational justification for such a claim goes
as follows:

1. The processing of an image part, corresponding perhaps to an object, should not
depend on which location of the image it happens to occupy. That is, if a face
is in on the left side of the visual field, it should be processed in the same way
as if it were on the right side; and if the object is moved one pixel to the left, its
processing should not change either.1

1The resolution of the retinal image changes as a function of eccentricity (the distance from the
centerpoint), so talking about moving “one pixel to the left” is an oversimplification. However,
this does not change the underlying logic very much, if one simply thinks of photo-receptors or
ganglion cells instead of pixels.

A. Hyvärinen, J. Hurri, P.O. Hoyer, Natural Image Statistics,
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2. Thus, any feature the system computes should be computed at each possible
location—at the minimum at the location corresponding to each pixel. For ex-
ample, if we have an edge detector, the output of that edge detector should be
computed at each possible (x, y) location possible. Denote their number by N .

3. So, any feature should basically have N replicates in the system, one for each
location. Possibly it could be a bit less because we may not want to replicate the
feature very close to borders where they could not be replicated completely, but
this does not change the basic argument.

4. What all this implies is that if we just take one feature, say a vertical odd-
symmetric Gabor of a given frequency and envelope, copy it in all different loca-
tions, we already have N different features, supposedly the maximum number!

5. Of course, we would actually like to have many different Gabors with different
orientations, different phases, different frequencies, and maybe something else
as well. Actually, the argument in point 1 can be applied equally well to different
orientations and frequencies, which should be processed equally well. So, in the
end, the number of features must be many times greater than the number of
pixels.

A neuroanatomical justification for the same phenomenon is the following cal-
culation: the number of simple cells in V1 seems to be much larger than the number
of retinal ganglion cells which send out the information on the retina, perhaps by
a factor of 25 (Olshausen 2003). So, if we consider the number of ganglion cells
as the “dimension” of input to V1, the number of features seems to be much larger
than the number of dimensions.2

13.1.2 Definition of Generative Model

Now, we define a generative model which has more features than the data has
dimensions. In this context, to avoid any confusion, we call the feature vectors
Ai basis vectors. A set of basis vectors which contains more vectors than the
space has dimensions is called an overcomplete basis (Simoncelli et al. 1992;
Olshausen and Field 1997).

The definition of a generative model with an overcomplete basis is rather straight-
forward. We just need to express the image as a linear superposition

I (x, y) =
m∑

i=1

Ai(x, y)si (13.1)

2This point is a bit complicated by the fact that the number of photo-receptors in the retina is
approximately 100 times larger than the number of ganglion cells. Thus, ganglion cells reduce
the dimension of the data, and V1 seems to increase it again. Nevertheless, if we consider the
computational problem faced by V1, it does seem justified to say that it uses an overcomplete basis
because it can only receive the outputs of ganglion cells.
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where the only difference to previous models is that the number of features m is arbi-
trarily large. We also need to specify the statistical properties of the components si .
In the basic case, we assume that they are sparse and statistically independent.

For technical reasons, another modification is also usually introduced at this
point: we assume that the image is not exactly a linear sum of the features, but
there is noise as well. That is, Gaussian noise N(x,y) is added to each pixel:

I (x, y) =
m∑

i=1

Ai(x, y)si + N(x,y). (13.2)

This does not change the behavior of the model very much, especially if the noise
level is small, but it simplifies the computations in this case. (In the case of basic
ICA, introduction of noise in the model just complicates things, so it is usually
neglected.)

Note that the meaning of overcompleteness changes when the dimension is re-
duced by PCA. From the viewpoint of statistical modeling, the dimension of the
data is then the dimension given by PCA. So, even a basis which has the same num-
ber of vectors as there are pixels can be called overcomplete because the number of
pixels is larger than the PCA-reduced dimension.

Despite the simplicity of the definition of the model, the overcomplete basis
model is much more complicated to estimate. What is interesting is that it has a
richer behavior than the basic sparse coding and ICA models because it leads to
some non-linearities in the computation of the features. We will treat this point first.

13.1.3 Nonlinear Computation of the Basis Coefficients

Consider first the case where the basis vectors Ai are given, and we want to compute
the coefficients si for an input image I . The fundamental problem is that the linear
system given by the basis vectors Ai is not invertible: If one tries to solve for the si
given an I , there are more unknowns si than there are equations. So, computation of
the si seems impossible. Indeed, it is impossible in the sense that even if the image
were created as a linear sum of the Ai for some coefficient values si , we cannot
recover those original coefficients from the input image alone, without some further
information.

As an illustration, consider an image with two pixels with values (1,1). Assume
we use a basis with three vectors: (0,1), (1,0), and (1,1). Thus, we have

(1,1) = (0,1)s1 + (1,0)s2 + (1,1)s3. (13.3)

Obviously, we could represent the image by setting s1 = 0, s2 = 0, and s3 = 1.
But equally well, we could set s1 = 1, s2 = 1, and s3 = 0. Even if the image was
exactly generated using one of these choices for si , we cannot tell which one it was
by using information in the image alone. Actually, there is an infinite number of
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different solutions: you could take any weighted average with of the two solution
just given, and it would be a solution as well.

However, there is a partial solution to this problem. The key is to use sparseness.
Since we know that the si are sparse, we can try decide to find the sparsest solution.
In the illustration above, we would choose the solution s1 = 0, s2 = 0, and s3 = 1
because it is the sparsest possible in the sense that only one coefficient is different
from zero.3

There is a clear probabilistic justification for such a procedure. Basically, we can
find the most probable values for the coefficients si , under the assumption that the
si have sparse distributions. This is possible by using conditional probabilities in
a manner similar to Bayes’ rule (see Sect. 4.7). Now we will derive the procedure
based on probabilistic reasoning. By the definition of conditional pdf’s, we have

p(s|I ) = p(s, I )

p(I )
= p(I |s)p(s)

p(I )
(13.4)

which is the basis for Bayes’ rule. The formula can be simplified because p(I) does
not depend on s. Since our goal is to find the s which maximizes p(s|I ), we can
just ignore this constant. We can also maximize its logarithm instead because it is
often simpler, and equivalent because logarithm is a strictly increasing function.
This gives us the following objective function to maximize:

logp(I |s) + logp(s). (13.5)

Such estimation of the s is called maximum a posteriori (MAP) estimation, as dis-
cussed in Sect. 4.8.2.

Now, we have to compute the probabilities logp(I |s) and logp(s) needed. The
first thing we consider is the prior distribution p(s) of the si . In Bayesian inference,
the prior distribution (or prior for short) incorporates the knowledge we have before
making any observations. What prior knowledge do we have here? First, we know
that the components are sparse. Second, we assume that they are independent, which
is a simple approximation although it is not terribly precise. Thus, logp(s) is similar
to what was used in ordinary ICA estimation and linear sparse coding. It can be
expressed as

logp(s) =
m∑

i=1

G(si) (13.6)

where the function G is the same kind of function we used in ICA estimation; see
e.g. (7.19) on page 163.

To compute p(I |s), we will use the noisy version of the model in (13.2). Assume
that we know the variance of the Gaussian noise, and denote it by σ 2. Then the
conditional probability of I (x, y) given all the si is the Gaussian pdf of N(x,y) =

3Another solution would be to use the Moore–Penrose pseudo-inverse; see Sect. 19.8. However,
that method is less justified by statistical principles, and less useful in practice.
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∑m
i=1 Ai(x, y)si − I (x, y). By definition of the Gaussian pdf, the pdf of a single

noise variable is thus

p
(
N(x,y)

)= 1√
2π

exp

(
− 1

2σ 2
N(x,y)2

)
. (13.7)

So, the conditional log-pdf for one pixel is

logp
(
I (x, y)|s) = − 1

2σ 2
N(x,y)2 − 1

2
log 2π

= − 1

2σ 2

[
I (x, y) −

m∑

i=1

Ai(x, y)si

]2

− 1

2
log 2π. (13.8)

We assume that the noise is independent in all pixels, so the conditional pdf of the
whole image I is the sum of these log-pdf’s:

logp(I |s) = − 1

2σ 2

∑

x,y

[
I (x, y) −

m∑

i=1

Ai(x, y)si

]2

− n

2
log 2π. (13.9)

The constant n
2 log 2π can be omitted for simplicity.

Putting all this together: To find the most probable s1, . . . , sm that generated the
image, we maximize

logp(s|I ) = logp(I |s) + logp(s) + const.

= − 1

2σ 2

∑

x,y

[
I (x, y) −

m∑

i=1

Ai(x, y)si

]2

+
m∑

i=1

G(si) + const. (13.10)

where the “const” means terms which do not depend on s. Maximization of this
objective function is usually not possible in closed form, and numerical optimiza-
tion methods have to be used. We have here assumed that the Ai are known; their
estimation will be considered below.

Maximization of such an objective function leads to a non-linear computation of
the cell activities si . This is in stark contrast to ordinary (non-overcomplete) models,
in which the si are a linear function of the I (x, y). The implications of such a non-
linearity will be considered in more detail in Chap. 14.

13.1.4 Estimation of the Basis

Estimation of the basis vectors Ai can be performed using the same principle as
estimation of the si . Basically, the solution is hidden in (13.10). First, note that
the pdf in (13.9) depends on the Ai as well. So, that equation actually describes
p(I |s,A1, . . . ,Am) instead of just p(I |s). Further, if we backtrack in the logic that
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lead us to (13.10), we see that the conditional probability in (13.10), when con-
sidered as a function of both s and the Ai , is equal to p(s,A1, . . . ,Am|I ), if we
assume a flat (constant) prior for the Ai . This is the conditional probability of both
s and the Ai , given the image I . Thus, the conditional log-pdf can be interpreted as
essentially the likelihood of the Ai .

Estimation of the Ai can now be performed by maximizing the conditional pdf
in (13.10) for a sample of images I1, I2, . . . , IT . (Obviously, we cannot estimate a
basis from a single image.) As usual, we assume that the images in the sample have
been collected independently from each other, in which case the log-pdf for the
sample is simply the sum of the log-pdf. So, we obtain the final objective function

T∑

t=1

logp
(
s(t),A1, . . . ,Am|It

) = − 1

2σ 2

T∑

t=1

∑

x,y

[
It (x, y) −

m∑

i=1

Ai(x, y)si(t)

]2

+
T∑

t=1

m∑

i=1

G
(
si(t)

)+ const. (13.11)

When we maximize this objective function with respect to all the basis vectors Ai

and cell outputs si(t) (the latter are different for each image), we obtain at the same
time, the estimates of the components and the basis vectors.4 In other words, we
compute both the non-linear cell outputs and the features Ai .

Note that it is not straightforward to define the receptive fields of the cell any-
more. This is because computation of the cell outputs is non-linear, and receptive
fields are simple to define for linear cells only. Actually, if we collect the basis vec-
tors Ai into a matrix A as we did earlier in the ordinary ICA case, that matrix is
simply not invertible, so we cannot define the receptive fields as the rows of its
inverse, as we did earlier.

13.1.5 Approach Using Energy-Based Models

An alternative approach for estimating an overcomplete representation is the follow-
ing: We give up a generative model and concentrate on generalizing the sparseness
criteria. Basically, we take the log-likelihood of the basic ICA model, and relax the
constraint that there cannot be too many linear feature detectors. This approach is
computationally more efficient because we do not need to compute the non-linear
estimates of the components si which requires another optimization.

4One technical problem with this procedure is that the scales of the independent components are
not fixed, which leads to serious problems. This problem can be solved simply by normalizing the
variances of the independent components to be equal to unity at every optimization step. Alterna-
tively, one can normalize the basis vector Ai to unit norm at every step.
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Consider the log-likelihood of the basic ICA model in (7.15), which we repro-
duce here for convenience:

logL(v1, . . . ,vn; z1, . . . , zT ) = T log
∣∣det(V)

∣∣+
m∑

i=1

T∑

t=1

Gi

(
vT
i zt

)
(13.12)

where zt is the canonically preprocessed data sample, and the vi are the feature
detector vectors in the preprocessed space. We have changed the number of fea-
ture detectors to m in line with the notation in this section. Moreover, we use here
general functions Gi , which in the case of basic ICA is equal to logpi , the log-
pdf of the independent component. (In this section, we revert to using canonically
preprocessed data, but this does not really change anything in the mathematical de-
velopments. Overcompleteness then means that the number of features is larger than
the PCA-reduced dimension.)

Now, could we just use the formula in (13.12) with more features than dimen-
sions? Let us denote the dimension of the data by n. Then this means that we just
take m > n to achieve an overcomplete representation.

Unfortunately, this is not possible. The problem is the term log |det(V)|. The
simple reason is that if m > n, the matrix V, which collects the vi as its rows, would
not be square, and the determinant is only defined for a square matrix.

On the other hand, the second term on the right-hand side in (13.12) is just a sum
of measures of sparseness of the features, so this term need not be changed if we
want to have an overcomplete representation.

So, we have to understand the real meaning of the term log |det(V)| to obtain
a model with an overcomplete representation. This term is actually the logarithm
of what is called the normalization constant or a partition function. It is a function
of the model parameters which makes the pdf of the data fulfill the fundamental
constraint that the integral of the pdf is equal to one—a constraint that every pdf
must fulfill. A likelihood is nothing else than a pdf interpreted as a function of the
parameters, and computed for the whole sample instead of one observation. So, the
likelihood must fulfill this constraint as well.

The normalization constant is, in theory, obtained in a straightforward manner.
Let us define the pdf (for one observation) by replacing the first term in (13.12) by
the proper normalization constant, which we denote by Z:

logL(z;v1, . . . ,vn) = − logZ(V) +
n∑

i=1

Gi

(
vT
i z
)
. (13.13)

Normalization of the pdf means that we should have

∫
L(z;v1, . . . ,vn) dz = 1. (13.14)
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In the present case, this means

∫
L(z;v1, . . . ,vn) dz = 1

Z(V)

∫ n∏

i=1

exp
(
Gi

(
vT
i z
))

dz = 1. (13.15)

So, in principle, we just need to take

Z(V) =
∫ n∏

i=1

exp
(
Gi

(
vT
i z
))

dz (13.16)

because this makes the integral in (13.15) equal to one.
However, in practice, evaluation of the integral in (13.16) is extremely difficult

even with the best numerical integration methods. So, the real problem when we
take more feature detector vectors than there are dimensions in the data, is the com-
putation of the normalization constant.

Estimation of the model by maximization of likelihood requires that we know Z.
If we omit Z and maximize only the first term in (13.13), the estimation goes com-
pletely wrong: If the Gi have a single peak at zero (like the negative log cosh func-
tion), as we have assumed in earlier chapters, the maximum of such a truncated
likelihood is obtained when the Wi(x, y) are all zero, which is quite absurd!

So, the model becomes much more complicated to estimate since we don’t know
how to normalize the pdf as a function of the vectors vi . This is in stark contrast
to the basic case where the number of feature detector vectors equals the number
of input variables: the function Z is simply obtained from the determinant of the
matrix collecting all the vectors vi , as seen in (7.15).

Fortunately, there are methods for estimating models in the case where Z can-
not be easily computed. First of all, there is a number of methods for computing Z

approximately, so that the maximum likelihood estimation is computationally pos-
sible. However, in our case, it is probably more useful to look at methods which
estimate the model directly, avoiding the computation of the normalization con-
stant. Score matching and contrastive divergence are two methods for estimating
such “non-normalized” models. The mathematical details of score matching are de-
scribed in Chap. 21.

One point to note is that we are really estimating linear receptive fields Wi us-
ing this method. Thus, the result is not really an overcomplete basis but rather an
overcomplete representation using an overcomplete set of receptive fields.

This approach is sometimes called “energy-based” due to complicated histor-
ical reasons. The model in (13.13) has also been called a “Products of Experts”
model (Hinton 2002). Further related methods are considered in Hyvärinen and Inki
(2002). See Utsugi (2001) for an overcomplete version of the ISA model.
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13.1.6 Results on Natural Images

We estimated an overcomplete representation from natural images using the method
in Sect. 13.1.5. Thus, we defined the model using the non-normalized log-likelihood
in (13.13). We basically used the classic (negative) log cosh function as G, but we
allowed a bit more flexibility by allowing rescaling of the Gi by defining Gi(u) =
−αi log cosh(u), where αi are parameters that are estimated at the same time as
the vi . We also constrained the norms of the vi to be equal to one. We used the
score matching approach (see above or Chap. 21) to estimate the parameters without
computation of the normalization constant.

To reduce the computational load, we took patches of 16 × 16 pixels. We pre-
processed the data just like with ICA in Chap. 7, but the dimension reduction was
less strong: we retained 128 principal components, i.e. one half of the dimensions.
Then we estimated a representation with 512 receptive fields. The representation is
thus 4 times overcomplete when compared to the PCA dimension, and two times
overcomplete when compared with the number of pixels.

The resulting receptive fields are shown in Fig. 13.1. To save space, only a ran-
dom sample of 192 receptive fields is shown. The receptive fields are quite similar to
those estimated by basic ICA or sparse coding. Some are more oscillatory, though.

13.1.7 Markov Random Field Models *

The approach of energy-based overcomplete representations can be readily extended
to models which cover the whole image using the principle of Markov random fields.
Here, we provide a very brief description of this extension for readers with some
background in MRFs.

A very important question for any image-processing application is how the mod-
els for image patches can be used for whole images which have tens of thousands,
or even millions of pixels. One approach for this is to use Markov random fields
(MRF). What this means is that we define what is called in that theory a neighbor-
hood for each pixel, and define the probability density for the image as a function of
each pixel value and the values of the pixels in the neighborhood. The central idea
is that we compute the same function in all possible locations of the image.

In our context, the neighborhood of a pixel can be defined to be an image patch
taken so that the pixel in question is in the very middle. To extend our models to a
MRF, we can also use the outputs of linear feature detectors to define the pdf.

This leads to a pdf of the following form:

logp(I ;W1, . . . ,Wn) =
∑

x,y

n∑

i=1

G

(∑

ξ,η

Wi(ξ, η)I (x + ξ, y + η)

)

− logZ(W1, . . . ,Wn). (13.17)
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Fig. 13.1 Receptive fields Wi in a four times overcomplete basis for canonically preprocessed
data, estimated using the model in (13.13) and score matching estimation. Only a random sample
of the Wi is shown to save space
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Here, the first sum over x, y goes over all possible image locations and neighbor-
hoods. For each location, we compute the outputs of n linear feature detectors so
that they are always centered around the location x, y. The function G is the same
kind of function, for example log cosh, as used in sparse coding.

An important point is that the indices ξ, η only take values inside a small range,
which is the neighborhood size. For example, we could define that they belong to
the range −5, . . . ,5, in which case the patch size would be 11 × 11 pixels.

One interpretation of this pdf is that we are sliding a window over the whole
image and computing the outputs of the feature detectors in those windows. In other
words, we compute the convolution of each of the Wi with the image, and then apply
the non-linear function G on the results of the convolution. Summation over x, y

and over i then simply means that the log-pdf is the sum over the whole convolved,
non-linearly processed image, and all the filters.

As in the case of the model in Sect. 13.1.5, the log-pdf includes a normaliza-
tion constant Z, which is a function of the feature detector weights Wi . Again, the
computation of the normalization constant is most difficult, and the model is prob-
ably best estimated using methods which avoid computation of the normalization
constant (see, e.g. Chap. 21).

In fact, we can see a direct connection with the overcomplete basis framework
as follows. Define the translated feature detector W(a,b) as a feature detector whose
weights have been translated by the amount given by a and b, so that W(a,b)(x, y) =
W(x −a, y −b). Also, redefine indices as x +ξ = x′, y +η = y′. Then we can write
the log-pdf as

logp(I ;W1, . . . ,Wn) =
n∑

i=1

∑

x,y

G

(∑

x′,y′
W

(x,y)
i (x′, y′)I (x′, y′)

)
− logZ. (13.18)

This model is just like the overcomplete model in Sect. 13.1.5, but the feature
weights are constrained so that they are copies of a small number of feature weights
Wi in all the different locations, obtained by the translation operation Wi(x, y). Due
to the summation over the translation parameters x, y, each weight vector is copied
to all different locations. (We are here neglecting any border effects which appear
because for those weight in the Wi which go over the edges of the image.) Further-
more, the normalization constant is computed in a slightly different way because the
integration is over the whole image.

Learning feature detector weights of MRFs was proposed in Roth and Black
(2005). A related approach was proposed in Zhu et al. (1997). At the time of this
writing, the first successful attempt to estimate MRFs in the sense that we obtain
Gabor-like features was obtained in Köster et al. (2009b). A review of classic MRF
models, i.e. models in which the features are not learned but manually tuned, is in
Li (2001); a more mathematical treatise is Winkler (2003).

Let us finally mention some completely different approaches to modeling whole
images or scenes. One is to extract some global statistics, i.e. feature histograms,
which can then be further analyzed by various statistical models, as in, e.g. Liu
and Cheng (2003), Lindgren and Hyvärinen (2004). Yet another alternative is to
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compute a low-dimensional holistic representation by techniques related to PCA, as
in, e.g. Torralba and Oliva (2003).

13.2 Non-negative Models

13.2.1 Motivation

Neural firing rates are never negative. Even if we consider the spontaneous firing
rate as the baseline and define it to be zero in our scale, the firing in cortical cells
cannot go much below zero because the spontaneous firing rates are so low; so,
it may be useful to consider them non-negative anyway. It has been argued that
this non-negativity of firing rates should be taken into account in statistical models.
Non-negative matrix factorization (NMF) (Lee and Seung 1999) is a recent method
for finding such a representation. It was originally introduced in a different context
and called positive matrix factorization (Paatero and Tapper 1994), but the acronym
NMF is now more widely used.5

13.2.2 Definition

Let us assume that our data consists of T of n-dimensional vectors, denoted by
x(t) (t = 1, . . . , T ). These are collected to a non-negative data matrix X which has
x(t) as its columns. NMF finds an approximate factorization of X into non-negative
factors A and S. Thus, non-negative matrix factorization is a linear, non-negative
approximate data representation, given by

x(t) ≈
m∑

i=1

ai si(t) = As(t) or X ≈ AS

where A is an n × m matrix containing the basis vectors ai as its columns. This
representation is, of course, similar in many respects to PCA and ICA. In particular,
the dimension of the representation m can be smaller than the dimension of the data,
in which the dimension is reduced as in PCA.

Whereas PCA and ICA do not in any way restrict the signs of the entries of
A and S, NMF requires all entries of both matrices to be non-negative. What
this means is that the data is described by using additive components only.
This constraint has been motivated in a couple of ways: First, in many appli-
cations one knows (for example by the rules of physics) that the quantities in-
volved cannot be negative—firing rates are one example. In such cases, it can

5This section is based on the article (Hoyer 2004), originally published in Journal of Machine
Learning Research. Copyright retained by the author.
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be difficult to interpret the results of PCA and ICA (Paatero and Tapper 1994;
Parra et al. 2000). Second, non-negativity has been argued for based on the intu-
ition that parts are generally combined additively (and not subtracted) to form a
whole; hence, these constraints might be useful for learning parts-based representa-
tions (Lee and Seung 1999).

Given a data matrix X, the optimal choice of matrices A and S are defined to be
those non-negative matrices that minimize the reconstruction error between X and
AS. Various error functions have been proposed (Paatero and Tapper 1994; Lee and
Seung 2001), perhaps the most widely used is the squared error (Euclidean distance)
function

D(A,S) = ‖X − AS‖2 =
∑

i,j

(xij − [AS]ij )2.

A gradient algorithm for this optimization was proposed by Paatero and Tapper
(1994), whereas in Lee and Seung (2001) a multiplicative algorithm was devised
that is somewhat simpler to implement and also showed good performance.

Although some theoretical work on the properties of the NMF representation
exists (Donoho and Stodden 2004), much of the appeal of NMF comes from its
empirical success in learning meaningful features from a diverse collection of real-
life datasets. It was shown in Lee and Seung (1999) that, when the dataset con-
sisted of a collection of face images, the representation consisted of basis vectors
encoding for the mouth, nose, eyes, etc.; the intuitive features of face images. In
Fig. 13.2a,we have reproduced that basic result using the same dataset. Addition-
ally, they showed that meaningful topics can be learned when text documents are
used as data. Subsequently, NMF has been successfully applied to a variety of
datasets (Buchsbaum and Bloch 2002; Brunet et al. 2004; Jung and Kim 2004;
Kim and Tidor 2003).

Despite this success, there also exist datasets for which NMF does not give an
intuitive decomposition into parts that would correspond to our idea of the ‘building
blocks’ of the data. It was shown by Li et al. (2001) that when NMF was applied
to a different facial image database, the representation was global rather than local,
qualitatively different from that reported by Lee and Seung (1999). Again, we have
rerun that experiment and confirm those results; see Fig. 13.2b. The difference was
mainly attributed to how well the images were hand-aligned (Li et al. 2001).

Another case where the decomposition found by NMF does not match the under-
lying elements of the data is shown in Fig. 13.2c. In this experiment, natural image
patches were whitened, and subsequently split into positive (‘ON’) and negative
(‘OFF’) contrast channels, simply by separating positive and negative values into
separate channels (variables). This is somewhat similar to how visual information is
processed by the retina. Each image patch of 12×12 pixels was thus represented by
a 2 × 12 × 12 = 288-dimensional vector, each element of which mimics the activ-
ity of an ON- or OFF-center neuron to the input patch. These vectors made up the
columns of X. When NMF is applied to such a dataset, the resulting decomposition
does not consist of the oriented filters which form the cornerstone of most of visual
models and modern image processing. Rather, NMF represents these images using
simple, dull, circular ‘blobs’.
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Fig. 13.2 NMF applied to various image dataset. a Basis images given by NMF applied to face
image data from the CBCL database (http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html),
following Lee and Seung (1999). In this case, NMF produces a parts-based representation of the
data. b Basis images derived from the ORL face image database (http://www.uk.research.att.com/
facedatabase.html), following Li et al. (2001). Here, the NMF representation is global rather than
parts-based. c Basis vectors from NMF applied to ON/OFF-contrast filtered natural image data.
Top: Weights for the ON-channel. Each patch represents the part of one basis vector ai corre-
sponding to the ON-channel. (White pixels denote zero weight, darker pixels are positive weights.)
Middle: Corresponding weights for the OFF-channel. Bottom: Weights for ON minus weights for
OFF. (Here, grey pixels denote zero.) NMF represents this natural image data using simple blobs

13.2.3 Adding Sparseness Constraints

Now we show, following Hoyer (2004), how explicitly controlling the sparseness
of the representation leads to representations that are parts-based and match the
intuitive features of the data. Here, we use a sparseness measure based on the re-
lationship between the sum of absolute values and the sum of squares (Euclidean
norm):

sparseness(s) =
√

m − (
∑ |si |)/

√∑
s2
i√

m − 1
,
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where m is the dimensionality of s. This function evaluates to unity if and only if
s contains only a single non-zero component, and takes a value of zero if and only
if all components are equal (up to signs), interpolating smoothly between the two
extremes.

Our aim is to constrain NMF to find solutions with desired degrees of sparseness.
The first question to answer is then: what exactly should be sparse? The basis vectors
A or the coefficients S? This is a question that cannot be given a general answer; it
all depends on the specific application in question. Further, just transposing the data
matrix switches the role of the two, so it is easy to see that the choice of which to
constrain (or both, or none) must be made by the experimenter.

When trying to learn useful features from images, it might make sense to require
both A and S to be sparse, signifying that any given object is present in few images
and affects only a small part of the image. Or we could take the approach in Chap. 6
and only require the si to be sparse.

These considerations lead us to defining NMF with sparseness constraints as
follows: Given a non-negative data matrix X of size n × T , find the non-negative
matrices A and S of sizes n × m and m × T (respectively) such that

D(A,S) = ‖X − AS‖2 (13.19)

is minimized, under optional constraints

sparseness(ai ) = Sa, ∀i,

sparseness(si ) = Ss, ∀i,

where ai is the ith column of A and si is the ith row of S. Here, m denotes the
number of components, and Sa and Ss are the desired sparsenesses of A and S
(respectively). These three parameters are set by the user.

Note that we did not constrain the scales of ai or si yet. However, since ai si =
(aiλ)(si/λ) for any λ, we are free to arbitrarily fix any norm of either one. In our
algorithm, we thus choose to fix the Euclidean norm (sum of squares) of s to unity,
as a matter of convenience.

An algorithm for learning NMF with sparseness constraints is described in Hoyer
(2004). In Fig. 13.2c, we showed that standard NMF applied to natural image data
produces only circular features, not oriented features as have been observed in the
cortex. Now, let us see the result of using additional sparseness constraints. Fig-
ure 13.3 shows the basis vectors obtained by putting a sparseness constraint on
the coefficients (Ss = 0.85) but leaving the sparseness of the basis vectors uncon-
strained. In this case, NMF learns oriented Gabor-like features that represent edges
and lines. This example illustrates how it is often useful to combine sparseness and
non-negativity constraints to obtain a method which combines the biologically plau-
sible results of low-level features with the purely additive learning of NMF. Such
combinations may be useful in future models which attempt to go beyond the pri-
mary visual cortex because non-negativity may be an important property of complex
cell outputs and other higher-order features, as was already pointed out in Chap. 12.
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Fig. 13.3 Basis vectors from ON/OFF-filtered natural images obtained using NMF with sparse-
ness constraints. The sparseness of the coefficients was fixed at 0.85, and the sparseness of the
basis images was unconstrained. Top: weights in ON channel. Middle: weights in OFF channel.
Bottom: weights in ON channel minus weights in OFF channel. As opposed to standard NMF (cf.
Fig. 13.2c), the representation is based on oriented, Gabor-like, features
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13.3 Conclusion

In this chapter, we saw two quite different extensions of the basic linear ICA model.
The model with overcomplete basis is well motivated as a model of simple cells,
and the next chapter will show some more implications of the principle.

In contrast, the utility of non-negative models for feature extraction is still to
be explored. Possibly, non-negative models can be useful in learning higher-order
features, which can be considered either to be “there” (positive values) or “not there”
(zero value), negative values being less meaningful. On the other hand, negative
values can often be interpreted as meaning that the feature is there “less strongly” or
“less likely”, possibly related to some baseline. In fact, after our initial work (Hoyer
and Hyvärinen 2002) learning the third layer as in Chap. 12 using non-negativity
constraints, we found out that the non-negativity constraints had little effect on the
results, and the results in Chap. 12 do not use any such constraint.

Moreover, it is not clear if both the basis vectors and their coefficients should
be constrained non-negative: A partly non-negative model in which either the basis
vectors or the components are constrained non-negative may also be more meaning-
ful. Non-negativity may, in the end, find its utility as one of the many properties of
(some of the) parameters in a statistical model, instead of being very useful in itself.



Chapter 14
Lateral Interactions and Feedback

So far, we have almost exclusively considered a “bottom-up” or feedforward frame-
work, in which the incoming image is processed in a number of successive stages,
the information flowing in one direction only. However, it is widely appreciated in
visual neuroscience that the brain is doing something much more complicated than
just feedforward processing. There is a lot of evidence for

1. feedback from “higher” areas to lower areas, e.g., “top-down” connections from
V2 back to V1, as well as

2. lateral (horizontal) interactions, by which we mean here connections between
features in the same stage, e.g., connections between simple cells.

In this chapter, we will see how such phenomena are rather natural consequences
of Bayesian inference in the models we have introduced. First, we will introduce a
model of feedback based on thresholding, or shrinkage, of coefficients in the higher
stage. Second, we will consider a lateral interaction phenomenon: end-stopping in
simple cells. Finally, we will discuss the relationship of the principle of predictive
coding to these phenomena.

14.1 Feedback as Bayesian Inference

A central question in visual neuroscience concerns the computational role of feed-
back connections. It has been suggested that the purpose of feedback is that of using
information from higher-order units to modulate lower-level outputs, so as to se-
lectively enhance responses which are consistent with the broader visual context
(Lamme 1995; Hupé et al. 1998). In hierarchical generative models, this is naturally
understood as part of the inference process: finding the most likely configuration
of the network requires integrating incoming (bottom-up) sensory information with
priors stored in higher areas (top-down) at each layer of the network (Hinton and
Ghahramani 1997).

Why would this kind of feedback inference be useful? In many cases, there can
be multiple conflicting interpretations of the stimulus even on the lowest level, and
top-down feedback is needed to resolve such conflicts. In essence, feedback infer-
ence computes the most likely interpretation of the scene (Knill and Richards 1996;
Lee and Mumford 2003; Yuille and Kersten 2006), combining bottom-up sensory
information with top-down priors.

A. Hyvärinen, J. Hurri, P.O. Hoyer, Natural Image Statistics,
Computational Imaging and Vision 39,
© Springer-Verlag London Limited 2009
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14.1.1 Example: Contour Integrator Units

An example of Bayesian feedback inference can be constructed based on the model
of higher-order units that integrate outputs of complex cells, introduced in Chap. 12.
Basically, the idea is as follows: if enough collinear complex cells are active, they
will activate a higher-order contour-coding unit. The activation of such a unit is then
evidence for a contour at that location, and this evidence will strengthen responses
of all complex cells lying on the contour, especially those whose bottom-up input is
relatively weak.

The structure of the network was depicted in Fig. 12.1 in Chap. 12. In that chap-
ter, we interpreted this network as performing feedforward computations only: first,
the energy model for complex cells, and then a linear transformation. How can we
then simulate the full network inference process to model feedback?

One approach is reduction of noise (Hupé et al. 1998). “Noise” in this context
refers to any activity that is not consistent with the learned statistical model and
is thus not only neural or photo-receptor noise. Such noise reduction essentially
suppresses responses which are not typical of the training data, while retaining re-
sponses that do fit the learned statistical model. Denoting the complex cell responses
by ck , we model them by a linear generative model which includes a noise term:

ck =
K∑

i=1

akisi + nk for all k (14.1)

where nk is Gaussian noise of zero mean and variance σ 2. The outputs of higher-
order contour-coding units are still denoted by si .

We postulate that the outputs si of higher-order cells are computed by Bayesian
inference in this generative model. Given an image, the complex-cell outputs are
first computed in a feedforward manner; these initial values are denoted by ck . (It is
here assumed that the feature weights aik have already been learned.) Next, the out-
puts of higher-order cells are computed by finding the si which have the highest
posterior probability—we use the Bayesian terminology “posterior probability (dis-
tribution)”, which simply means the conditional probability given the observations.
Let us denote the computed outputs as ŝ:

ŝ = arg max
s

logp(s|c). (14.2)

As is typical in Bayesian inference (see Sect. 4.7), we can formulate the posterior
log-probability as the sum of two terms:

logp(s|c) = logp(c|s) + logp(s) − const. (14.3)

where p(s) is the prior pdf of s. It incorporates our knowledge of the structure of
the world, e.g. that the cell outputs are sparse. The term logp(c|s) incorporates our
knowledge of the image generation process; an example will be given below.
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The important point here is that the outputs ŝi of higher-order units are non-
linear functions of the complex cell outputs. We will discuss below why this is
so. This opens up the possibility of reducing noise in the complex cell outputs by
reconstructing them using the linear generative model in (14.1), ignoring the noise.
The obtained reconstructions, i.e. the outputs of the complex cells after they have
received feedback, are denoted by ĉk , and computed as

ĉk =
K∑

i=1

aki ŝi for all k. (14.4)

Non-linearity is essential in these models. If the outputs ŝi were simply linear trans-
formations of the complex cell outputs, little would be gained by such feedback.
This is because the reconstructed values ĉk would still be linear transformations of
the original feed-forward ck . Thus, one could wonder why any feedback would re-
ally be needed to compute the ĉk because a linear transformation could certainly be
easily incorporated in the feedforward process which computes the ck in the first
place. However, the non-linear computations that emerge from the Bayesian infer-
ence process do need more complicated computing circuitry, so it is natural that
feedback is needed.

The effect of this inference is that the top–down connections from the contour-
coding units to the complex cells seek to adjust the complex cell responses toward
that predicted by the contour units. To be more precise, such an effect can be ob-
tained, for example, by sending a dynamic feedback signal of the form

uki =
[

K∑

i=1

aki ŝi

]
− ck (14.5)

from the ith higher-order cell to the kth complex cell. When ck is equal to its de-
noised estimate, this signal is zero and equilibrium is achieved. Of course, this feed-
back signal is just one possibility and it is not known how this computation is actu-
ally achieved in the visual system. What is important here is that Bayesian inference
gives an exact proposal on what the purpose of such feedback signals should be,
thus providing a normative model.

In Fig. 14.1, we show a very basic example of how feedback noise reduction in
this model results in the emphasis of smooth contours. We generated image patches
by placing Gabor functions at random locations and orientations (for simplicity,
we consider only a single frequency band here). In one case, there was a collinear
alignment of three consecutive Gabors; in the other these same Gabors had random
orientations. These image patches are shown in Fig. 14.1a. Next, we processed these
by our model complex cells, as we had processed the natural image patches in our
experiments in Chap. 12. The resulting ck are shown in Fig. 14.1b. Finally, we cal-
culated the contour-coding unit activities si (the actual method is discussed in the
next subsection), and plotted the noise-reduced complex cell activity in Fig. 14.1c.

Note how the noise-reduction step suppresses responses to “spurious” edges,
while emphasizing the responses that are part of the collinear arrangement. Such
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Fig. 14.1 Noise reduction and contour integration. a Two image patches containing Gabors at
random locations and orientations. In the top patch there is a collinear set of three Gabors, whereas
in the bottom patch these same Gabors had random orientations. b The response of the model
complex cells to the images in a. c The response of the complex cells after feedback noise reduction
using the learned network model. Note that the reduction of noise has left the activations of the
collinear stimuli but suppressed activity that did not fit the learned sparse coding model well. From
Hoyer and Hyvärinen (2002), Copyright ©2002 Elsevier, used with permission

response enhancement to contours is the defining characteristic of many pro-
posed computational models of contour integration; see, for example Grossberg
and Mingolla (1985), Li (1999), Neumann and Sepp (1999). Comparing the de-
noised responses (Fig. 12c) with each other one can also observe collinear con-
textual interactions in the model. The response to the central Gabor is stronger
when it is flanked by collinear Gabors (upper row) than when the flankers have
random orientations (bottom row), even though the flankers fall well outside the
receptive field of the central neuron. This type of contextual interaction has been
the subject of much study recently (Polat and Sagi 1993; Polat et al. 1998;
Polat and Tyler 1999, Kapadia 1995, 2000, Kurki et al. 2006); see Fitzpatrick (2000)
for a review. It is hypothesized to be related to contour integration, although such a
relation is not certain (Williams and Hess 1998).

14.1.2 Thresholding (Shrinkage) of a Sparse Code

What is the non-linearity in the inference of the si like in (14.2)? Because the code
is sparse, it turns out to be something like a thresholding of individual cell activities,
as we will show next.

14.1.2.1 Decoupling of Estimates

Inference in an ICA model which contains Gaussian noise, as in (14.1), is a special
case of the principle in Sect. 13.1.3, in which the coefficients in an overcomplete ba-
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sis were estimated. We will see that the noise alone leads to non-linear computations
even if the basis is not overcomplete as it was in Sect. 13.1.3. We can directly use
the posterior pdf we calculated there, in (13.10) on page 281; instead of the original
image I the observed data is the vector of complex cell outputs c. Thus, we have

logp(s|c) = − 1

2σ 2

∑

k

[
ck −

m∑

i=1

akisi

]2

+
m∑

i=1

G(si) + const. (14.6)

where aki is the matrix of higher-order features weights, and the constant does not
depend on s. Now, let us assume that the number of complex cells equals the number
of higher-order features. This is just the classic assumption that we usually make
with ICA (with the exception of the overcomplete basis model in Sect. 13.1). Then
the matrix A, which has the aki as its entries, is invertible. Second, let us make the
assumption that the matrix A is orthogonal. This assumption is a bit more intricate.
It can be interpreted as saying that the noise is added on the whitened data because
A is orthogonal after whitening. Since the noise is, in our case, an abstract kind
of noise whose structure is not very well known in any case, this may not be an
unreasonable assumption.

After these simplifying assumptions, the inference defined in (14.6) becomes
quite simple. First, note that the sum of squares is, in matrix notation, equal to
‖c − As‖2. Because an orthogonal transformation does not change the norm, we
can multiply the vector c − As by AT without changing the norm. Thus, we can
replace the sum of squares in (14.6) by ‖ATc − s‖2, obtaining

logp(s|c) = − 1

2σ 2

m∑

i=1

[
K∑

k=1

akick − si

]2

+
m∑

i=1

G(si) + const. (14.7)

Now, we see the remarkable fact that this posterior log-pdf is a sum of functions
of the form

logp(si |c) = − 1

2σ 2

[
K∑

k=1

akick − si

]2

+ G(si) + const. (14.8)

which are functions of single si (higher-order features) only. Thus, we can maxi-
mize this posterior pdf separately for each si : we only need to do one-dimensional
optimization. Each such one-dimensional maximum depends only on

∑K
k=1 akick .

This means that the estimates of the si which maximize this pdf are obtained by
applying some one-dimensional non-linear function f on linear transformations of
the complex cell outputs:

ŝi = f

(
K∑

k=1

akick

)
(14.9)

where the non-linear function f depends on G, the log-pdf of the si .
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Fig. 14.2 Illustration of why noise reduction with a sparse prior for si leads to shrinkage. In both
plots, the dashed line gives the Laplacian prior pdf G(s) = −√

2|s|. The dash-dotted line gives
the squared error term in (14.8). The solid line gives the sum of these two terms, i.e. the posterior
log-probability log(si |c). The variance is fixed to σ 2 = 0.5. a The case where the feedforward
signal is weak:

∑K
k=1 akick = 0.25. We can see that the peak at zero of the Laplacian pdf dominates,

and the maximum of the posterior is obtained at zero. This leads to a kind of thresholding. b The
case where the feedforward signal is strong:

∑K
k=1 akick = 1.5. Now, the sparse prior does not

dominate anymore. The maximum of the posterior is obtained at a value which is clearly different
from zero, but a bit smaller than the value given by the feedforward signal

14.1.2.2 Sparseness Leads to Shrinkage

What kind of nonlinearity f does noise reduction lead to? Intuitively, there are two
forces at play in the posterior log-density logp(si |c). The first term, squared error,
says that si should be close to

∑K
k=1 akick , which can be thought of as the feed-

forward linear estimate for si . The really interesting part is the prior given by the
function G in (14.8). Now, for a sparse density, the log-density G is a peaked func-
tion. For example, it equals G(s) = −√

2|s| (plus some constant) for the Laplacian
density which we have used previously (see (7.18)). This peakedness makes the in-
ference non-linear so that if the linear estimate

∑K
k=1 akick is sufficiently close to

zero, the maximum of p(si |c) is obtained at zero. This is illustrated in Fig. 14.2.
Actually, the form of the function f can be obtained analytically for some

choices of G. In particular, assume that G is the log-pdf of the Laplacian distri-
bution. Then the function f becomes what is called a “shrinkage” function:

f (y) = sign(y) max
(|y| − √

2σ 2,0
)
. (14.10)

What this function means is that the linear transformation of complex cell outputs∑K
k=1 akick is “shrunk” toward zero by an amount which depends on noise level σ 2.

Such a function can be considered a “soft” form of thresholding. In fact, for some
other choices of G, such as the one in (7.22), which correspond to much sparser
pdf’s, the non-linearity becomes very close to thresholding. See Fig. 14.3 for plots
of such functions. For more details in shrinkage functions, see Hyvärinen (1999b),
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Fig. 14.3 Plots of the shrinkage functions f which modify the outputs of the higher-order contour
cells. The effect of the functions is to reduce the absolute value of its argument by a certain amount
which depends on the noise level. Small arguments are set to zero. This reduces Gaussian noise
for sparse random variables. Solid line: shrinkage corresponding to Laplace density. Dash-dotted
line: a thresholding function corresponding to the highly sparse density in (7.22). The line x = y is
given as the dotted line. The linear estimate to which this non-linearity is applied was normalized
to unit variance, and noise variance was fixed to 0.3

Simoncelli and Adelson (1996), Johnstone and Silverman (2005) in a Bayesian con-
text, and Donoho (1995) for a related method.

The non-linear behavior obtained by a sparse prior is in stark contrast to the case
where the distribution of si is Gaussian: then G is quadratic, and so is logp(si |c).
Minimization of a quadratic function leads to a linear function of the parameters. In
fact, we can take the derivative of logp(si |c) = − 1

2σ 2 [∑K
k=1 akick −si]2 −s2

i /2 with

respect to si and set it to zero, which gives as the solution ŝi = 1
1+σ 2

∑K
k=1 akick .

This is a simple linear function of the feed-forward estimate. So, we see that it is
sparseness, or non-Gaussianity, which leads to interesting non-linear phenomena.

Thus, we see that the function of Bayesian inference in this kind of a model
is to reduce small cell activities in the higher processing area to zero. If there is
not enough evidence that the feature encoded by a higher-order cell is there, the
cell activity is considered pure noise, and set to zero. Feedback from higher ar-
eas modulates activity in lower areas by suppressing cells which are not consistent
with the cell activity which is left after noise reduction on the higher level. In other
words, activities of some cells in the lower-level area are suppressed because they
are considered purely noise. At the same time, activities of some cells may even be
enhanced so as to make them consistent with higher-level activities. Such a mech-
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anism can work on many different levels of hierarchy. However, the mathematical
difficulties constrain most analysis to a network where the feedback is only between
two levels.

14.1.3 Categorization and Top-Down Feedback

The shrinkage feedback treated above is only one example of Bayesian inference
in a noisy linear generative model. Different variants can be obtained depending
on the assumptions of the marginal distributions of the latent variables, and their
dependencies. Actually, even the generative model in (14.1) is applicable to any two
groups of cells on two levels of hierarchy; the ck need not be complex cells and si
need not be contour-coding cells.

For example, consider the latent variables si as indicating category membership.
Each of them is zero or one depending on whether the object in the visual field
belongs to a certain category. For example, assume one of them, s1, signals the
category “face”.

Thus, Bayesian inference based on (14.2) can again be used to infer the most
probable values for the ck variables for s1. What is interesting here is that the binary
nature of s1 means that when the visual input is sufficiently close to the prototype
of a face, the most likely value of s1 will be exactly 1; at a certain threshold, it
will jump from 0 to 1. This will affect the denoised estimates of the complex cell
outputs ck . The top-down feedback will now say that they should be similar to the
first basis vector (a11, . . . , a1n). Thus, a combination of excitatory and inhibitory
feedback will be sent down to complex cells to drive the complex cell outputs in
this direction.

For example, if the input is a face in which some of the contours have very low
contrast, due to lighting conditions, this feedback will try to enhance them (Lee and
Mumford 2003). Such feedback will be triggered if the evidence for s1 being 1 is
above the threshold needed. Otherwise, possibly the feedback from another category
unit is activated.

14.2 Overcomplete Basis and End-stopping

A second kind of phenomenon which emerges from Bayesian inference and goes
beyond a basic feedforward model is competitive interactions. This happens espe-
cially in the model with overcomplete basis; see Sect. 13.1, and can explain the
phenomenon of end-stopping.

End-stopping refers to a phenomenon, already described by Hubel and Wiesel in
the 1960s, in which the cell output is reduced when the optimal stimulus is made
longer. That is, you first find a Gabor stimulus which gives maximum response in a
simple cell. Then you simply make that Gabor longer, that is, more elongated, with-
out changing anything else. You would expect that the response of the cell does not
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Fig. 14.4 The receptive fields and stimuli used in the end-stopping illustration. When the stimulus
on the left is input to the system, the sparsest, i.e. the most probable pattern of coefficients is such
that only the cell in the middle is activated si > 0. In contrast, when the stimulus is made longer,
i.e. the stimulus on the right is input to the system, the inference leads to a representation in which
only the cells on the left and the right are used s1, s3 > 0 whereas the cell in the middle has zero
activity s2 = 0

change because the new stuff that appears in the stimulus is outside of the receptive
field. However, some cells (both simple and complex) actually reduce their firing
rate when the stimulus is made more elongated. This is what is called end-stopping.

As discussed in Sect. 13.1, in an overcomplete basis there are often many differ-
ent combinations of coefficients si which can give rise to the same image in a lin-
ear generative model I (x, y) =∑i Ai(x, y)si . Using Bayesian inference, the most
likely coefficients si can be found, and this may provide a more accurate model for
how simple cells in V1 compute their responses. This is related to end-stopping be-
cause such Bayesian inference in an overcomplete basis leads to dynamics which
can be conceptualized as competition.

Here is an example of such competition. Consider only three Gabor-shaped ba-
sis vectors which are of the same shape but in slightly different locations, so that
together they form an elongated Gabor. It is important that the Gabors are overlap-
ping; this is necessary for the competition to arise. The three Gabors are depicted in
Fig. 14.4.

First assume that the stimulus is a Gabor which is exactly the same as the feature
coded by the cell in the middle. Then obviously, the sparsest possible representation
of the stimulus is to set the coefficients of the left- and right-most features to zero
(s1 = s3 = 0), and use only the feature in the middle. Next, assume that the stimulus
is a more elongated Gabor, which is actually exactly the sum of the two Gabors on
the left and the right sides. Now, the sparsest representation is such that the middle
feature has zero activity (s2 = 0), and the other two are used with equal coefficients.
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Thus, the cell in the middle is first highly activated, but when the stimulus be-
comes more elongated, its activity is reduced, and eventually becomes zero. We can
interpret this in terms of competition: The three cells are competing for the “right”
to represent the stimulus, and with the first stimulus, the cell in the middle wins,
whereas when the stimulus is elongated, the other two win. This competition pro-
vides a perfect example of end-stopping.

This kind of experiments also show that the classical concept of receptive field
may need to be redefined, as already discussed in Sect. 13.1.4. After all, the concept
of receptive field is based on the idea that the response of the cell only depends
on the light pattern in a particular part of the retinal space. Now, end-stopping, and
other phenomena such as contrast gain control, show that the cell response depends
on stimulation outside of what is classically called the receptive field. Hence, the ex-
pression classical receptive field is used for the part which roughly corresponds to
non-zero weights in W(x,y), and the area from which signals of contrast gain con-
trol and end-stopping come is called the non-classical receptive field. See Angelucci
et al. (2002) for an investigation of different kinds of receptive fields.

14.3 Predictive Coding

A closely related idea on the relation between feedback and feedforward processing
is predictive coding. There are actually rather different ideas grouped under this
title.

Firstly, one can consider prediction in time or in space, where “space” means
different parts of a static image. Some of the earliest work in predictive coding
considered prediction in both (Srivanivasan et al. 1982). Secondly, prediction can
be performed between different processing stages (Mumford 1992; Rao and Ballard
1999) or inside a single stage (Srivanivasan et al. 1982; Hosoya et al. 2005). There
is also a large body of engineering methods in which time signals, such as speech,
are predicted in time in order to compress the signal (Spanias 1994); we shall not
consider such methods here.

We constrain ourselves here to the case where prediction happens between dif-
ferent levels of neural processing and for static stimuli. The key idea here is that
each neural level tries to predict the activity in the lower processing level. This is
usually coupled with the idea that the lower level sends to the higher level the error
in that prediction.

Prediction of the activities in lower levels is, in fact, implicit in the noisy gener-
ative model we have been using. As we saw in Sect. 13.1, estimation of the model
in (14.1) can be accomplished by maximization of the objective function (the poste-
rior probability) in (14.6) with respect to both aki and si . We can interpret

∑
i akisi

as the prediction that the higher level makes of lower-level activities. (In Sect. 14.1,
we interpreted it as a denoised estimate which is closely related.) Then the first term
in (14.6) can be interpreted as the prediction that the higher level makes of the lower
level activities ck . Thus, estimation of the model is, indeed, based on minimization
of a prediction error as in predictive coding.
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The idea that the lower level sends only the prediction error to the higher level
needs some reinterpretation of the model. In Sect. 14.1, we showed how inference
of si can, under some assumptions, be interpreted as shrinkage. Let us approach the
maximization of the posterior probability in (14.8) by a basic gradient method. The
partial derivative of the objective function with respect to si equals:

∂ logp(s|c)
∂si

= 1

σ 2

∑

k

aki

[
ck −

m∑

i=1

akisi

]
+ G′(si). (14.11)

This derivative actually contains the prediction errors ck −∑m
i=1 akisi of the lower-

level activities ck , and no other information on the ck . Thus, if the higher level
implements a gradient descent method to infer the most likely si , the information
which it needs from the lower level can be conveyed by sending these prediction
errors (multiplied by the weights aki which can be considered as feedforward con-
nection weights).

The main difference between predictive coding and the generative modeling
framework may thus be small from the viewpoint of statistical inference. The es-
sential difference is in the interpretation of how the abstract quantities are computed
and coded in the cortex. In the predictive modeling framework, it is assumed that
the prediction errors ck −∑m

i=1 akisi are actually the activities (firing rates) of the
neurons on the lower level. This is a strong departure from the framework used in
this book, where the ck are considered as the activities of the neurons. Which one
of these interpretations is closer to the neural reality is an open question which has
inspired some experimental work; see Murray et al. (2002). Something like a syn-
thesis of these views is to posit that there are two different kinds of neurons, each
sending one of these signals (Roelfsema et al. 2002).

14.4 Conclusion

In this chapter, we have shown that in contrast to the impression one might get from
preceding chapters, current models of natural images are not at all bound to a strict
feed-forward thinking which neglects top-down influence. Quite on the contrary,
Bayesian inference in these models leads to different kind of lateral interactions and
feedback from higher cortical areas.

We have barely scratched the surface here. In many cases where connections be-
tween latent variables and images are not completely deterministic and one-to-one
in both directions, such phenomena emerge. For example, the two-layer generative
model in Sect. 11.8 would also give rise to such phenomena: If the latent vari-
ables are properly inferred from the input stimuli, some interesting dynamics might
emerge.

Another very important case is contour integration by lateral (horizontal) connec-
tions between simple or complex cells. Basic dependencies between cells signaling
contours which are typically part of a longer contour were pointed out in Krüger
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(1998), Geisler et al. (2001), Sigman et al. (2001), Elder and Goldberg (2002). Prob-
abilistic models incorporating horizontal connections can be found in Garrigues and
Olshausen (2008), Osindero and Hinton (2008).

A very deep question related to feedback concerns the very definition of natural
images. Any sufficiently sophisticated organism has an active mechanism, related to
attention, which selects what kind of information it receives by its sensory organs.
This introduces a complicated feedback loop between perception and action. It has
been pointed out that the statistics in those image parts to which people attend, or
direct their gaze, are different from the overall statistics (Reinagel and Zador 1999;
Krieger et al. 2000); see Henderson (2003) for a review. The implications of this
difference can be quite deep. A related line of work considers contours labeled by
human subjects in natural images (Martin et al. 2004).



Part IV
Time, Color, and Stereo



Chapter 15
Color and Stereo Images

In this chapter, we show how we can model some other visual modalities, color, and
stereopsis using ICA. We will see that ICA still finds features that are quite similar
to those computed in the visual cortex.

15.1 Color Image Experiments

In this section, we extend the ICA image model from grey-scale (achromatic) to
color (chromatic) images. Thus, for each pixel we have three values (red, green and
blue), instead of one (grey-scale). The corresponding ICA model is illustrated in
Fig. 15.1. First, we discuss the selection of data, then we analyze its second-order
statistics and finally show the features found using ICA.

15.1.1 Choice of Data

Obviously, we should select as input data as “natural” images as possible if we wish
to make any connection between our results and properties of neurons in the visual
cortex. When analyzing colors, the spectral composition of the images becomes
important in addition to the spatial structure.

It is clear that the color content of images varies widely with the environment in
which the images are taken. Thus, we do not pretend to find some universally opti-
mal features in which to code all natural color images. Rather, we seek the general
qualitative properties of an ICA model of such images. In other words, we hope to
find answers to questions such as: “How are colors coded in using such features;
separate from, or mixed with achromatic channels?” and “What kind of spatial con-
figuration do color-coding feature vectors have?”

We hope that as with grey-scale images, the ICA features are not too sensitive to
the particular choice of color images, and that our data is realistic enough.

Neurons, of course, receive their information ultimately from the outputs of the
photoreceptors in the retina. Color vision is made possible by the existence of pho-
toreceptors called “cones” which come in three types, each sensitive to light of dif-
ferent wavelengths. Thus, our data should consist of the hypothetical outputs of the

This chapter was originally published as the article (Hoyer and Hyvärinen 2000)
in Network: Computation in Neural Systems. Copyright ©2000 Institute of Physics,
used with permission.

A. Hyvärinen, J. Hurri, P.O. Hoyer, Natural Image Statistics,
Computational Imaging and Vision 39,
© Springer-Verlag London Limited 2009
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Fig. 15.1 The color image ICA model. As with grey-scale patches, we model the data as a linear
combination of feature vectors Ai . Here, each feature vector consists of the three color planes (red,
green, and blue), shown separately to clearly illustrate the linear model

three types of cones in response to our images. However, any three linear combi-
nations of these outputs is just as good an input data, since we are applying ICA:
Linearly transforming the data transforms the feature matrix A, but does not alter
the independent components.

We choose to use standard red/green/blue (RGB) values as inputs, assuming the
transformation to cone outputs to be roughly linear. This has the advantage that the
features found are directly comparable to features currently in use in image process-
ing operations such as compression or denoising, and could straightforwardly be
applied in such tasks. The drawback of using RGB values as inputs is of course that
any non-linearities inherent in the conversion from RGB to cone responses will af-
fect the ICA result and a comparison to properties of neurons may not be warranted.
To test the effect of non-linearities, we have experimented with transforming the
RGB values using the well-known gamma non-linearity1 of cathode ray tubes used
in computer screens. This did not qualitatively change the results and, therefore, we
are confident that our results would be similar if we had used estimated cone outputs
as inputs.

Our main data consists of color versions of natural scenes (depicting forest,
wildlife, rocks, etc.) which we have used in previous work as well. The data is
in the form of 20 RGB images (of size 384 × 256-pixels) in standard TIFF format.

15.1.2 Preprocessing and PCA

From the images, a total of 50 000 12-by-12 pixel image patches were sampled ran-
domly. Since each channel yields 144 pixels, the dimensionality was now 3×144 =
432. Next, the mean value of each variable (pixel/color pair) was subtracted from
that component, centering the dataset on the origin. Note that the DC component
was not subtracted.

Then we calculated the covariance matrix and its eigenvectors, which gave us
the principal components. These are shown in Fig. 15.2. The eigenvectors consist
of global features, resembling 2D Fourier features. The variance decreases with
increasing spatial frequency, and when going from grey-scale to blue/yellow to

1The gamma non-linearity is the most significant nonlinearity of the CRT monitor. After gamma-
correction the transform from RGB to cone responses is roughly linear; see the Appendix in Wan-
dell (1995).
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Fig. 15.2 PCA features of color images. These are the eigenvectors of the covariance matrix of
the data, from left-to-right and top-to-bottom in order of decreasing corresponding eigenvalues. As
explained in the main text, we projected the data on the first 160 principal components (top 8 rows)
before performing ICA

red/green features.2 These results were established by Ruderman et al. (1998) who
used hyperspectral images (i.e. data with many more than the three spectral compo-
nent in RGB data) as their original input data.

To analyze the color content of the PCA filters in more detail, we will show the
pixels of a few filters plotted in a colored hexagon. In particular, each pixel (RGB-

2It should be noted that chromatic aberration in the eye might have an effect of additionally reduc-
ing signal energy at high spatial frequencies.
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Fig. 15.3 The color hexagon used for analyzing the color content of the PCA and ICA fea-
tures. The hexagon is the projection of the RGB cube onto a plane orthogonal to the luminance
(R + G + B) vector. Thus, achromatic RGB triplets map to the center of the hexagon while highly
saturated ones are projected close to the edges

Fig. 15.4 Color content of four PCA filters. From left to right: Component nos. 3, 15, 432, and
67. All pixels of each filter have been projected onto the color hexagon shown in Fig. 15.3. See
main text for a discussion of the results

triplet) is projected onto a plane given by

R + G + B = constant. (15.1)

In other words, the luminance is ignored, and only the color content is used in the
display. Figure 15.3 shows the colors in this hexagon. Note that this is a very simple
2D projection of the RGB color cube and should not directly be compared to any
neural or psychophysical color representations.

Figure 15.4 shows a bright/dark filter (no. 3), a blue/yellow filter (no. 15),
a red/green filter (no. 432, the last one), and a mixture (no. 67). Most filters are
indeed exclusively opponent colors, as was found in Ruderman et al. (1998). How-
ever, there are also some mixtures of these in the transition zones of main opponent
colors.

As described earlier, we project the data onto the n first principal components
before whitening (we have experimented with n = 100, 160, 200, and 250). As can
be seen from Fig. 15.2, dropping the dimension mostly discards blue/yellow fea-
tures of high spatial frequency and red/green features of medium to high frequency.
This already gives a hint as to why the blue/yellow and the red/green systems have
a much lower resolution than the bright/dark system, as has been observed in psy-
chophysical experiments (Mullen 1985).



15.1 Color Image Experiments 313

Fig. 15.5 ICA features of color images. Each patch corresponds to one feature Ai . Note that each
feature is equally well represented by its negation, i.e. switching each pixel to its opponent color
in any one patch is equivalent to changing the sign of ai and does not change the ICA model
(assuming components with symmetric distributions)

15.1.3 ICA Results and Discussion

The feature vectors Ai estimated by ICA are shown in Fig. 15.5. Examining
Fig. 15.5 closely reveals that the features found are very similar to earlier re-
sults on grey-scale image data, i.e. the features resemble Gabor-functions. Note
that most units are (mainly) achromatic, so they only represent brightness (lu-
minance) variations. This is in agreement with the finding that a large part of
the neurons in the primary visual cortex seem to respond equally well to dif-
ferent colored stimuli, i.e. are not selective to color (Hubel and Wiesel 1968;
Livingstone and Hubel 1984). In addition, there is a small number of red/green and
blue/yellow features. These are also oriented, but of much lower spatial frequency,
similar to the grey-scale features of lowest frequency. One could think that the low
frequency features together form a “colour” (including brightness) system, and the
high-frequency grey-scale features a channel analyzing form. Also, note that the
average color (DC-value) of the patches is represented by 3 separate feature vec-
tors, just as the average brightness in an ICA decomposition of grey-scale images is
usually separate from the other feature vectors.

We now show typical ICA features plotted in the color-hexagon (Fig. 15.6), as
we did with the PCA features. The figure shows a bright/dark feature, a blue-yellow
feature, and a red/green feature. There were no “mixtures” of the type seen for PCA;
in other words each feature clearly belonged to one of these groups. (Note that the
bright/dark features also contained blue/yellow to a quite small degree.)

The dominance of bright/dark features is largely due to the dimension reduction
performed while whitening. To test the dependence of the group sizes on the value
of n used, we estimated the ICA features for different values of n and counted the
group sizes in each case. The results can be seen in Fig. 15.7. Clearly, when n is
increased, the proportion of color-selective units increases. However, even in the
case of keeping over half of the dimensions of the original space (n = 250), the
bright/dark features still make up over 60% of all units.
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Fig. 15.6 Color content of three ICA filters, projected onto the color hexagon of Fig. 15.3. From
left to right: no. 24, 82, and 12

Fig. 15.7 Percentages of
achromatic, blue/yellow, and
red/green feature vectors for
different numbers of retained
PCA components (100, 160,
200, and 250). (In each case,
the three features giving the
mean color have been left out
of this count)

Another thing to note is that each ICA feature is “double-opponent”: For blue-
yellow features stimulating with a blue spot always gives an opposite sign in the
response compared to stimulating with a yellow spot. Red/green and bright/dark
features behave similarly. This is in fact a direct consequence of the linear ICA
model. It would be impossible to have completely linear filters function in any other
way.

Although early results (Livingstone and Hubel 1984) on the chromatic properties
of neurons suggested that most color-sensitive cells were unoriented, and exhibited
center-surround receptive fields, more recent studies have indicated that there are
also oriented color-selective neurons (Ts’o and Gilbert 1988). The fact that our color
features are mostly oriented is thus at least in partial agreement with neurophysio-
logical data.

In any case, there is some agreement that most neurons are not selective to chro-
matic contrast, rather are more concerned about luminance (Hubel and Wiesel 1968;
Livingstone and Hubel 1984; Ts’o and Roe 1995). Our basis is in agreement with
these findings. In addition, the cytochrome oxidase blobs which have been linked to
color processing (Livingstone and Hubel 1984) have also been associated with low
spatial frequency tuning (Tootell et al. 1988; Shoham et al. 1997). In other words,
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color selective cells should be expected to be tuned to lower spatial frequencies.
This is also seen in our features.

As stated earlier, we do not pretend that our main image set is representative of all
natural environments. To check that the results obtained do not vary wildly with the
image set used, we have performed the same experiments on another dataset: single-
eye color versions of the 11 stereo images described in Sect. 15.2.1. The found ICA
features (not shown) are in most aspects quite similar to that shown in Fig. 15.5:
Features are divided into bright/dark, blue/yellow and red/green channels, of which
the bright/dark group is the largest, containing Gabor-like filters of mostly higher
frequency than the features coding colors. The main differences are that (a) there is
a slightly higher proportion of color-coding units, and (b) the opponent colors they
code are slightly shifted in color space from those found from our main data. In
other words, the qualitative aspects, answering questions such as those proposed in
Sect. 15.1.1, are quite similar. However, quantitative differences do exist.

15.2 Stereo Image Experiments

Another interesting extension of the basic grey-scale image ICA model can be made
by modeling stereopsis, which means the extraction of depth information from
binocular disparity. (Binocular disparity refers to the difference in image location
of an object seen by the left and right eyes, resulting from the eyes’ horizontal sep-
aration.) Now, our artificial neurons are attempting to learn the dependencies of
corresponding patches from natural stereo images. The model is shown in Fig. 15.8.

15.2.1 Choice of Data

Again, the choice of data is an important step for us to get realistic results. Different
approaches are possible here. In some early work, a binocular correlation function
was estimated from actual stereo image data, and subsequently analyzed (Li and
Atick 1994). In addition, at least one investigation of receptive field development
used artificially generated disparity from monocular images (Shouval et al. 1996).

Fig. 15.8 The ICA model for corresponding stereo image patches. The top row contains the
patches from left-eye image and the bottom row corresponding patches from the right-eye im-
age. Just as for grey-scale and color patches, we model the data as a linear combination of feature
vectors Ai with independent coefficients si
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Fig. 15.9 One of the stereo images used in the experiments. The left image should be seen with
the left eye, and the right image with the right eye (so-called uncrossed viewing)

Here, we have chosen to use 11 images from a commercial collection of stereo
images of natural scenes; a typical image is given in Fig. 15.9.

To simulate the workings of the eyes, we selected 5 focus points at random from
each image and estimated the disparities at these points. We then randomly sampled
16 × 16-pixel corresponding image patches in an area of 300 × 300 pixels centered
on each focus point, obtaining a total of 50 000 samples. Because of the local fluctu-
ations in disparity (due to the 3D imaging geometry) corresponding image patches
often contained similar, but horizontally shifted features; this is of course the basis
of stereopsis.

Note that in reality the “sampling” is quite different. Each neuron sees a certain
area of the visual field which is relatively constant with respect to the focus point.
Thus, a more realistic sampling would be to randomly select 50 000 focus points
and from each take corresponding image patches at some given constant positional
offset. However, the binocular matching is computationally slow and we thus opted
for the easier approach, which should give the same distribution of disparities.

15.2.2 Preprocessing and PCA

The same kind of preprocessing was used in these experiments as for color, in
Sect. 15.1. Since each sample consisted of corresponding left and right 16 × 16-
patches our original data was 512-dimensional. First, the mean was removed from
each variable, to center the data on the origin. Next, we calculated the covariance
matrix of the data, and its eigenvalue decomposition. In order not to waste space,
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Fig. 15.10 PCA features of stereo images, i.e. the eigenvectors of the covariance matrix of the
data, from left-to-right and top-to-bottom in order of decreasing corresponding eigenvalues. See
main text for discussion

we show here (in Fig. 15.10) the principal components for a window size of 8 × 8
pixels (the result for 16 × 16 is qualitatively very similar).

The most significant feature is that the principal components are roughly or-
dered according to spatial frequency, just as in PCA on standard (monocular) image
patches. However, in addition early components (low spatial frequency) are more
binocular than late ones (high frequency). Also note that binocular components gen-
erally consist of features of identical or opposite phases. This is in agreement with
the binocular correlation function described in Li and Atick (1994).

As before, we select the first 160 principal components for further analysis by
ICA. Again, this is plausible as a coding strategy for neurons, but is mainly done to
lower the computational expenses and thus running time and memory consumption.
Due to the structure of the covariance matrix, dropping the dimension to 160 is
similar to low-pass filtering.

15.2.3 ICA Results and Discussion

Figure 15.11 shows the estimated ICA feature vectors Ai . Each pair of patches rep-
resents one feature. First, note that pairs have varying degrees of binocularity. Many
of our “model neurons” respond equally well to stimulation from both eyes, but
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Fig. 15.11 ICA of stereo images. Each pair of patches represents one feature vector Ai . Note the
similarity of these features to those obtained from standard image data (Fig. 7.3 on page 161). In
addition, these exhibit various degrees of binocularity and varying relative positions and phases

there are also many which respond much better to stimulation of one eye than to
stimulation of the other. This is shown quantitatively in Fig. 15.12, which gives
an “ocular-dominance” histogram of the features. Ocular dominance thus means
whether the neuron prefers input from one of the eyes (monocular) or combines
information from both eyes (binocular).

The histogram depends strongly on the area of the sampling around the focus
points (which in these experiments was 300 × 300 pixels). Sampling a smaller area
implies that the correlation between the patches is higher and a larger number of
features fall into the middle bin of the histogram. In theory, if we chose to sample
only exactly at the fixation point, we would obtain (ignoring factors such as occlu-
sion) identical left-right image patches; this would in turn make all feature vectors
completely binocular with identical left-right patches, as there would be no signal
variance in the other directions of the data space. On the other hand, sampling a
larger area leads to a spreading of the histogram towards the edge bins. As the area
gets larger, the dependencies between the left and right patches get weaker. In the
limit of unrelated left and right windows, all features fall into bins 1 and 7 of the
histogram. This was confirmed in experiments (results not shown).
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Fig. 15.12 Ocular dominance histogram of the ICA features. For each pair, we calculated the value
of (‖Aleft

i ‖−‖Aright
i ‖)/(‖Aleft

i ‖+‖Aleft
i ‖), and used the bin boundaries [−0.85,−0.5,−0.15,0.15,

0.5,0.85] as suggested in Shouval et al. (1996). Although many units where quite monocular (as
can be seen from Fig. 15.11), no units fell into bins 1 or 7. This histogram is quite dependent on
the sampling window around fixation points, as discussed in the main text

Taking a closer look at the binocular pairs reveals that for most pairs the left
patch is similar to the right patch both in orientation and spatial frequency. The po-
sitions of the features inside the patches are close, when not identical. In some pairs,
the phases are very similar, while in others they are quite different, even completely
opposite. These properties make the features sensitive to different degrees of binoc-
ular disparity. Identical left-right receptive fields make the feature most responsive
to zero disparity, while receptive fields that are identical except for a phase reversal
show strong inhibition (a response smaller than the “base-line” response given by
an optimal monocular stimulus) to zero disparity.

To analyze the disparity tuning we first estimated several ICA bases using dif-
ferent random number seeds. We then selected only relatively high frequency, well
localized, binocular features which had a clear Gabor filter structure. This was nec-
essary because filters of low spatial frequency were not usually well confined within
the patch, and thus cannot be analyzed as complete neural receptive fields. The set
of selected feature vectors is shown in Fig. 15.13.

For each stereo pair, we presented an identical stimulus at different disparities
to both the left and right parts of the filter corresponding to the pair. For each dis-
parity, the maximum over translations was taken as the response of the pair at that
disparity. This gave a disparity tuning curve. For stimuli, we used the feature vectors
themselves, first presenting the left patch of the pair to both “eyes”, then the right.
The tuning curves were usually remarkably similar, and we took the mean of these
as the final curve.

We then classified each curve as belonging to one of the types “tuned excitatory”,
“tuned inhibitory”, “near”, or “far”, which have been identified in physiological ex-
periments (Poggio and Fischer 1977; Fischer and Kruger 1979; LeVay and Voigt
1988). Tuned excitatory units showed a strong peak at zero, usually with smaller
inhibition at either side. Tuned inhibitory units on the other hand showed a marked
inhibition (canceling) at zero disparity, with excitation at small positive or nega-
tive disparities. Features classified as “near” showed a clear positive peak at crossed
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Fig. 15.13 Units selected for
disparity tuning analysis.
These were selected from
bases such as the one in
Fig. 15.11 on the basis of
binocularity, frequency
content, and localization
(only well-localized Gabor
filters were suitable for
further analysis)

(positive) disparity while those grouped as “far” a peak for uncrossed (negative) dis-
parity. Some tuning curves that did not clearly fit any of these classes were grouped
into “others”.

In Fig. 15.14, we give one example from each class. Shown are the feature vec-
tors and the corresponding tuning curves. It is fairly easy to see how the organi-
zation of the patches gives the tuning curves. The tuned excitatory (top) unit has
almost identical left-right profiles, and thus shows a strong preference for stimuli
at zero disparities. The tuned inhibitory (second) unit has nearly opposite polar-
ity patches which implies strong inhibition at zero disparity. The near (third) unit’s
right receptive field is slightly shifted (positional offset) to the left compared with
the left field, giving it a positive preferred disparity. On the other hand, the far unit
(bottom) has an opposite positional offset and thus responds best to negative dispar-
ities.

Figure 15.15 shows the relative number of units in the different classes. Note that
the most common classes are “tuned excitatory” and “near”. One would perhaps
have expected a greater dominance of the tuned excitatory over the other groups.
The relative number of tuned vs. untuned units probably depends to a great deal on
the performance of the disparity estimation algorithm in the sampling procedure.
We suspect that with a more sophisticated algorithm (we have used a very simple
window-matching technique) one would get a larger number of tuned cells. The
clear asymmetry between the “near” and “far” groups is probably due to the much
larger range of possible disparities for near than for far stimuli: Disparities for ob-
jects closer than fixation can in principle grow arbitrarily large whereas disparities
for far objects are limited (Barlow et al. 1967).

It is important to note that completely linear units (simple cells) cannot have
very selective disparity tuning. Also, since the disparity tuning curves vary with
the stimulus, the concept “disparity tuning curve” is not very well defined (Zhu
and Qian 1996). However, disparity tuning is still measurable so long as one keeps
in mind that the curve depends on the stimulus. Our tuning curves are “simula-
tions” of experiments where a moving stimulus is swept across the receptive field at
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Fig. 15.14 Disparity tuning curves for units belonging to different classes. Top row: A “tuned ex-
citatory” unit (no. 4 in Fig. 15.13). Second row: a “tuned inhibitory” unit (12). Third row: a “near”
unit (38). Bottom row: a “far” unit (47). Crossed disparity (“near”) is labeled positive and uncrossed
(“far”) negative in the figures. The horizontal dotted line gives the “base-line” response (the opti-
mal response to one-eye only) and the vertical dotted line the position of maximum deviation from
that response

Fig. 15.15 Disparity tuning
histogram. The histogram
shows the relative amounts of
“tuned excitatory” (44),
“near” (44), “far” (17) units
(in black) and “tuned
inhibitory” units (25) in
white. Not shown are those
which did not clearly fit into
any of these categories (15)
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different binocular disparities, and the responses of the neuron in question is mea-
sured. As such, it is appropriate to use the estimated feature vectors as input. To
obtain stimulus-invariant disparity tuning curves (as well as more complex binocu-
lar interactions than those seen here) one would need to model non-linear (complex)
cells.

Overall, the properties of the found features correspond quite well to those of re-
ceptive fields measured for neurons in the visual cortex. The features show varying
degrees of ocular dominance, just as neuronal receptive fields (Hubel and Wiesel
1962). Binocular units have interocularly matched orientations and spatial frequen-
cies, as has been observed for real binocular neurons (Skottun and Freeman 1984).
It is easy by visual inspection to see that there exist both interocular position and
phase differences, which seems to be the case for receptive fields of cortical neurons
(Anzai et al. 1999a). Finally, simulated disparity tuning curves of the found features
are also similar to tuning curves measured in physiological experiments (Poggio and
Fischer 1977).

15.3 Further References

15.3.1 Color and Stereo Images

Work concerning the second-order statistics of color include Atick et al. (1992), van
Hateren (1993), Ruderman et al. (1998). In addition, colored input was used in Bar-
row et al. (1996) to emerge a topographic map of receptive fields. Again, that work
basically concerns only the second-order structure of the data, as the correlation-
based learning used relies only on this information. Application of ICA on color
images has been reported in Hoyer and Hyvärinen (2000), Wachtler et al. (2001),
Doi et al. (2003), Caywood et al. (2004), Wachtler et al. (2007). Related work on
LGN neurons can be found in Mante et al. (2005).

In addition to learning chromatic receptive fields, it is also possible to investi-
gate the statistical properties of the chromatic spectra if single pixels (Wachtler et
al. 2001). That is, one measures the spectral content of single pixels with a high
resolution which gives more than the conventional three dimensions. This can shed
light on the optimality of the three-cone dimensionality reduction used in the retina.

Emerging receptive fields from stereo input has been considered in Li and Atick
(1994), Shouval et al. (1996), Erwin and Miller (1996, 1998). As with color, most
studies have explicitly or implicitly used only second-order statistics (Li and Atick
1994; Erwin 1996, 1998). The exception is Shouval et al. (1996) which used the
BCM learning rule (Bienenstock et al. 1982) which is a type of projection pursuit
learning closely linked to ICA. The main difference between their work and the one
reported in this chapter is that here we use data from actual stereo images whereas
they used horizontally shifted (misaligned) data from regular images. In addition, we
estimate a complete basis for the data, whereas they studied only single receptive
fields.
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15.3.2 Other Modalities, Including Audition

Further investigations into the statistical structure of other sensory modalities have
been made especially in the context of audition, in which ICA yields interest-
ing receptive fields whether applied on raw audio data (Bell and Sejnowski 1996;
Lewicki 2002; Cavaco and Lewicki 2007) or spectrograms (Klein et al. 2003). See
also Schwartz et al. (2003) for work related to music perception, and Schwartz and
Simoncelli (2001b) for work on divisive normalization for auditory signals.

Further topics which have been addressed using the statistical structure of the
ecologically valid environment include visual space (Yang and Purves 2003), so-
matosensory system (Hafner et al. 2003), and place cells (Lörincz and Buzsáki
2000). Motion in image sequences is considered in Sect. 16.2.

For some work on multimodal integration and natural image statistics, see Hurri
(2006), Krüger and Wörgötter (2002) (the latter is on image sequences). An image-
processing application combining spatial, temporal, and chromatic information is in
Bergner and Drew (2005).

15.4 Conclusion

In this chapter, we have investigated the use of independent component analysis for
decomposing natural color and stereo images. ICA applied to color images yields
features which resemble Gabor functions, with most features achromatic, and the
rest red/green- or blue/yellow-opponent. When ICA is applied on stereo images
we obtain feature pairs which exhibit various degrees of ocular dominance and are
tuned to various disparities. Thus, ICA seems to be a plausible model also for these
modalities and not just grey-scale images.



Chapter 16
Temporal Sequences of Natural Images

Up to this point, this book has been concerned with static natural images. However,
in natural environments the scene changes over time. In addition, the observer may
move, or the observer may move its eyes. Temporal sequences of natural images,
temporal properties of the visual system, and temporal models of processing are the
topics of this chapter.

16.1 Natural Image Sequences and Spatiotemporal Filtering

In digital systems, dynamical (time-varying) images are often processed as image
sequences, which consist of frames, each frame being one static image. Figure 16.1
shows an example of an image sequence with lateral camera movement.

Previous chapters have made clear the importance of linear operators as tools and
models in image processing. In the case of image sequence data, the fundamental
linear operation is spatiotemporal linear filtering, which is a straightforward exten-
sion of the spatial linear filtering discussed in Chap. 2. Remember that in spatial
linear filtering a two-dimensional filter is slid across the image, and the output is
formed by computing a weighted sum of the pixels in the area of the filter, with the
weights given by the elements of the filter. In spatiotemporal linear filtering, a three-
dimensional filter is slid across the image sequence, and the output is formed by
computing a weighted sum of the pixels in the spatiotemporal area of the filter, with
the weights given by the elements of the filter.

Mathematically, let W(x,y, t) denote the filter weights, I (x, y, t) denote the in-
put image sequence, and O(x,y, t) denote the output image sequence. The index t

is time. Then linear spatiotemporal filtering is given by

O(x,y, t) =
∞∑

x∗=−∞

∞∑

y∗=−∞

∞∑

t∗=−∞
W(x∗, y∗, t∗)I (x + x∗, y + y∗, t + t∗), (16.1)

where the upper and lower limits of the sums are in practical situations finite. Typ-
ically only filters which do not use future time points are used; mathematically, we
will denote this causality restriction by W(x,y, t) = 0 when t > 0.

The concepts of frequency-based representations, presented in Sect. 2.2 (page 29)
are applicable also in the three-dimensional, spatiotemporal case. An image se-
quence can be represented as a sum of spatiotemporal sinusoidal components

I (x, y, t) =
∑

ωx

∑

ωy

∑

ωt

Aωx,ωy,ωt cos(ωxx + ωyy + ωt t + ψωx,ωy,ωt ), (16.2)
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Fig. 16.1 An example of an image sequence (van Hateren and Ruderman 1998) with 5 frames.
Here, time proceeds from left to right

where ωx and ωy are spatial frequencies and ωt is a temporal frequency, Aωx,ωy,ωt

is the amplitude associated with the frequency triple, and ψωx,ωy,ωt is the phase of
the frequency triple. You may want to compare (16.2) with its spatial counterpart,
(2.9) on page 35. A spatiotemporal convolution operation is defined by

H(x,y, t)∗I (x, y, t) =
∞∑

x∗=−∞

∞∑

y∗=−∞

∞∑

t∗=−∞
I (x −x∗, y −y∗, t − t∗)H(x∗, y∗, t∗),

(16.3)
where H(x,y, t) is the impulse response, which has a straightforward relationship
with the linear filter W(x,y, t)

H(x, y, t) = W(−x,−y,−t). (16.4)

This impulse response has a complex-valued three-dimensional discrete Fourier
transform H̃ (u, v,w), the magnitude of which reveals the amplitude response of
the filter, and the angle reveals the phase response.

16.2 Temporal and Spatiotemporal Receptive Fields

With the inclusion of time, we get two new kinds of receptive fields: spatiotempo-
ral and temporal; these are illustrated in Fig. 16.2 in the case of a neuron from the
lateral geniculate nucleus. A spatiotemporal receptive field W(x,y, t) (Fig. 16.2a)
corresponds to a causal spatiotemporal filter: it defines a linear model that relates the
history of all pixels in the image sequence to the output of a neuron. These inher-
ently three-dimensional spatiotemporal receptive fields are often visualized in two
dimensions with one spatial dimension and a temporal dimension W(x, t) by taking
either a slice at where y is constant (y = yconst) or summing over the y-dimension
(Fig. 16.2b).1 A temporal receptive field (Fig. 16.2c) is the time course of a single
spatial location in a spatiotemporal receptive field: W(t) = W(xconst, yconst, t). It de-
fines a linear model that relates the history of a single pixel to the output of a neuron.

Spatiotemporal receptive fields are divided into two qualitatively different types
based on whether or not they can be described as a cascade of a spatial and a tempo-

1When the RF is selective to a certain spatial orientation of the stimulus, this visualization can be
improved by rotating the RF spatially so that the preferred orientation becomes the y-axis.
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Fig. 16.2 Spatiotemporal and temporal receptive fields of a neuron in the lateral geniculate nu-
cleus (LGN), estimated from measurement data from the neuron. a A spatiotemporal receptive
field W(x,y, t), the equivalent of a causal linear spatiotemporal filter. b A two-dimensional
visualization of the RF in a, obtained by summing the spatiotemporal RF along the y-axis:
W(x, t) =∑y W(x, y, t). c A temporal receptive field, which is a single time-slice of the spa-
tiotemporal RF: W(t) = W(xconst, yconst, t). For the description of the original measurement data
and its source see Dayan and Abbott (2001), Kara et al. (2000)

ral filtering operation. In the case where this is possible, the spatiotemporal filter is
called is called space-time separable. Let us denote again the output of the filtering
by O(x,y, t), the spatial filter by Wspat(x, y) and the temporal filter by Wtemp(t).
Then the cascade can be combined into a single spatiotemporal filter as follows:

O(x,y, t) =
∞∑

x∗=−∞

∞∑

y∗=−∞
Wspat(x∗, y∗)

∞∑

t∗=−∞
Wtemp(t∗)I (x + x∗, y + y∗, t + t∗)

=
∞∑

x∗=−∞

∞∑

y∗=−∞

∞∑

t∗=−∞
Wspat(x∗, y∗)Wtemp(t∗)︸ ︷︷ ︸

=W(x∗,y∗,t∗)

I (x + x∗, y + y∗, t + t∗)

=
∞∑

x∗=−∞

∞∑

y∗=−∞

∞∑

t∗=−∞
W(x∗, y∗, t∗)I (x + x∗, y + y∗, t + t∗). (16.5)

Thus, the spatiotemporal filter is obtained as a product of the spatial and temporal
parts as

W(x,y, t) = Wspat(x, y)Wtemp(t). (16.6)

By changing the ordering of the sums in (16.5), it is easy to see that in the space-time
separable case, the order in which the spatial and the temporal filtering are done is
irrelevant. A spatiotemporal receptive field that is not space-time separable is called
space-time inseparable.
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Fig. 16.3 A space-time-separable representation of the spatiotemporal RF of Fig. 16.2.
a, b The optimal spatial RF Wspat(x, y) and temporal RF Wtemp(t), estimated using the sep-
arability condition W(x,y, t) = Wspat(x, y)Wtemp(t). c The resulting space-time-separable RF
Wspat(x, y)Wtemp(t); comparison of this with Fig. 16.2a demonstrates the good match provided
by the separable model for this neuron

The spatiotemporal receptive field shown in Fig. 16.2 is approximately space-
time separable: Fig. 16.3 shows the decomposition of the receptive field into the
spatial part and the temporal part, and the resulting space-time-separable approxi-
mation.2 This suggests that the linear model of the neuron can be divided into a spa-
tial filter and a temporal filter. Intuitively speaking, space-time separability means
that the RF does not contain anything that “moves” from one place to another, be-
cause the spatial profile is all the time in the same place: only its magnitude (and
possibly sign) changes.

16.3 Second-Order Statistics

16.3.1 Average Spatiotemporal Power Spectrum

Now, we begin the investigation of the statistical structure of natural image se-
quences by characterizing the spatiotemporal correlations between two pixels in

2The decomposition has been obtained by minimizing the squared Euclidean distance between the
original RF and its space-time-separable version. This can be solved by employing the singular-
value decomposition approximation of matrices.
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an image sequence. As was discussed in Sect. 5.6 on page 111, a characterization of
the average power spectrum is equivalent to an examination of these second-order
statistics. Therefore, following Dong and Atick (1995a), we proceed to analyze the
average spatiotemporal power spectrum of natural image sequences.

The natural image sequences used as data were a subset of those used in van
Hateren and Ruderman (1998). The original data set consisted of 216 monochrome,
non-calibrated video clips of 192 seconds each, taken from television broadcasts.
More than half of the videos feature wildlife, the rest show various topics such as
sports and movies. Sampling frequency in the data is 25 frames per second, and
each frame had been block-averaged to a resolution of 128 × 128 pixels. For our
experiments, this dataset was pruned to remove the effect of human-made objects
and artifacts. First, many of the videos feature human-made objects, such as houses,
furniture, etc. Such videos were removed from the data set, leaving us with 129
videos. Some of these 129 videos had been grabbed from television broadcasts so
that there was a wide black bar with height 15 pixels at the top of each image, prob-
ably because the original broadcast had been in wide screen format. Our sampling
procedure never took samples from this topmost part of the videos.

The results of this section are based on the following procedure. We first took
10 000 samples of size 64 × 64 × 64 = �x × �y × �t from the natural im-
age sequence. We then computed the spatiotemporal power spectrum of each of
these samples by computing the squared amplitudes of three-dimensional discrete
Fourier transform of the sample. These power spectra were averaged over all of
the samples to obtain the average power spectrum R(ωx,ωy,ωt ). Image data is of-
ten assumed to be approximately rotationally invariant (isotropic, see Sect. 5.7),
so a two-dimensional average power spectrum was computed as a function of spa-

tial frequency ωs =
√

ω2
x + ω2

y by averaging over all spatial orientations, yielding

R(ωs,ωt ).
One way to visualize the resulting two-dimensional function R(ωs,ωt ) is to plot

curves of the function while keeping one of the variables fixed. This has been done
in Figs. 16.4a and b, keeping ωt constant in the former and ωs in the latter. In order
to analyze the form of this power spectrum in more detail, one can first fit a space-
time separable power spectrum Rs(ωs)Rt (ωt ); the best fit (in terms of least mean
square) is visualized in Fig. 16.5 in similar plots as those in Fig. 16.4, but this time
plotting curves from both the observed and the best space-time separable power
spectrum. As can be seen, at higher frequencies the best separable power spectrum
provides a relatively poor match to the observed one.

In order to proceed to a more accurate model of the spatiotemporal power spec-
trum of natural image sequences, let us reconsider the frequency representation
of the s–t -space. Referring to our presentation of the two-dimensional frequency-
based representation in Sect. 2.2.2—in particular, see Fig. 2.5 on page 32—let
ω = [ωs ωt ]T. The vector ω has two important properties: direction and magnitude
(length). Now consider the direction of the vector. In the case of a two-dimensional
spatial frequency-based representation, the direction of the vector [ωx ωy]T deter-
mines the spatial orientation of the sinusoidal in the x–y-space. Analogously, in the



330 16 Temporal Sequences of Natural Images

Fig. 16.4 One-dimensional slices of the two-dimensional average spatiotemporal power spectrum
R(ωs,ωt ) of natural image sequences. a Plots in which ωt is held constant. b Plots in which ωs is
held constant

Fig. 16.5 The average spatiotemporal power spectrum of natural image sequences R(ωs,ωt ) is
not well approximated by a space-time separable Rs(ωs)Rt (ωt ). These plots show the observed
curves plotted in Fig. 16.4 along with plots from the best separable spatiotemporal spectrum (here
“best” is defined by minimal least mean square distance). The uppermost curves contain both the
observed and best separated curves on almost exactly on top of each other, which shows that in the
case of the lowest frequencies, the approximation is very good

spatiotemporal case, the direction of the vector ω = [ωs ωt ]T determines the ori-
entation of the sinusoidal in the s–t -space. We are able to provide a more intuitive
interpretation for orientation in the s–t -space: it is the speed of the spatial pattern
that is moving. Figure 16.6 illustrates this. Points in the (ωs,ωt )-space that have the
same speed (direction) lie on a line ωt = cωs , where c is a constant. Therefore, the
set of (ωs,ωt )-points have the same speed when ωt

ωs
= constant.

It was observed by Dong and Atick (1995b) that the power spectrum has a par-
ticularly simple form as a function of spatial frequency ωs when the speed ωt

ωs
is

held constant. Figure 16.7a shows plots of R(ωs,ωt ) as a function of spatial ωs for
different constant values of speed ωt

ωs
. As can be seen, in this log–log-plot all the
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Fig. 16.6 In the frequency-based representation of the s–t -space, the direction of the frequency
vector ω = [ωs ωt ]T is equivalent to the speed of the pixels of a moving spatial grating in the
image sequence. This is illustrated here for two different (ωs,ωt )-pairs (a, b), for which the fre-
quency-based representation is shown on the left, and the s–t -representation on the right. One can
see that the pixels in the spatial gratings move with the same speed: for example, looking at the
pixel which starts at the corner position (s, t) = (64,1), it can be seen that in both cases (a, b),
the pixel moves across the whole image when time t runs from 1 to 64, indicating similar speed of
movement

Fig. 16.7 The average spatiotemporal power spectrum R(ωs,ωt ) of natural image sequences can
be separated into functions depending on spatial frequency ωs and speed ωt

ωs
. a Log–log plots of

R(ωs,ωt ) as a function of ωs are straight lines, suggesting that R(ωs,ωt ) ≈ ω−a
s f ( ωt

ωs
), where

a > 0 and f ( ωt

ωs
) is a function of speed. b A plot of f ( ωt

ωs
) ≈ ω3.7

s R(ωs,ωt ). See text for details

curves are similar to straight lines with the same slope but different intercepts for
different values of ωt

ωs
. Denoting the common slope by −a, a > 0, and the intercepts

by b( ωt

ωs
), this suggests that

logR(ωs,ωt ) ≈ −a logωs + b

(
ωt

ωs

)
, (16.7)

R(ωs,ωt ) ≈ ω−a
s exp

[
b

(
ωt

ωs

)]

︸ ︷︷ ︸
=f (

ωt
ωs

)

, (16.8)
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R(ωs,ωt ) ≈ ω−a
s f

(
ωt

ωs

)
, (16.9)

where f (·) is an unknown function of speed. When an estimate of the slope a has
been computed (e.g. from the data shown in Fig. 16.7a, an approximate plot of
function f (·) can be obtained from

f

(
ωt

ωs

)
≈ ωa

s R(ωs,ωt ); (16.10)

this plot is shown in Fig. 16.7b for a = 3.7.
Dong and Atick (1995a) went two steps further in the characterization of

R(ωs,ωt ). First, they derived (16.9) from the average power spectrum of static im-
ages and a model in which objects move with different velocities at different dis-
tances. Second, by assuming a distribution of object velocities they also derived a
parametric form for function f (·) which agrees well with the observed R(ωs,ωt )

with reasonable parameter values. See their paper for more details.
The spatiotemporal power spectrum seems to exhibit some anisotropies (see

Sect. 5.7, i.e. it is not the same in all orientations). This can be used to explain
some psychophysical phenomena (Dakin et al. 2005).

16.3.2 The Temporally Decorrelating Filter

In Sect. 5.9 (page 120), we saw that the removal of linear correlations—that is,
whitening—forms the basis of a model that results in the emergence of spatial
center-surround receptive fields from natural data. In this section, we apply similar
theory to the case of temporal data and temporal receptive fields (see Fig. 16.2c on
page 327). We are examining the statistical properties of purely temporal data here,
that is, samples consisting of time courses of individual pixels (which are sampled
from different spatial locations in the image sequences).

We proceed similarly as in the spatial case. Let Ri(ωt ) denote the temporal power
spectrum of natural image sequence data (time courses of individual pixels). As in
the spatial case, we assume that noise power Rn(ωt ) is constant, and given by

Rn(ωt ) = Ri(ωt,c)

2
for all ωt , (16.11)

where ωt,c is the characteristic frequency at which the data and noise have the same
power. As in the spatial case (see (5.49) on page 127), we define the amplitude re-
sponse of the filter |W̃ (ωt )| as the product of the amplitude responses of a whitening
filter and a noise-suppressive filter:

∣∣W̃ (ωt )
∣∣= 1√

Ri(ωt )

Ri(ωt ) − Rn(ωt )

Ri(ωt )
. (16.12)
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As was mentioned in Sect. 5.9, a shortcoming of the decorrelation theory is that
it does not predict the phase response of the filter. Here, we use the principle of
minimum energy delay: the phases are specified so that the energy in the impulse
response of the resulting causal filter is delayed the least. The phase response of a
minimum energy delay filter is given by the Hilbert transform of the logarithm of
the amplitude response; see Oppenheim and Schafer (1975) for details. After the
amplitude and the phase responses have been defined, the temporal filter itself can
be obtained by taking the inverse Fourier transform.

The filter properties that result from the application of (16.11) and (16.12) and
the minimum energy delay principle are illustrated in Fig. 16.8 for a characteristic
frequency value of ωs,t = 7 Hz (the same value was used in Dong and Atick 1995b).
For this experiment, 100 000 signals of spatial size 1 × 1 pixels and a duration of
64 time points (≈2.5 s) were sampled from the image sequence data of van Hateren
and Ruderman (1998). The average temporal power spectrum of these signals was
then computed and is shown in Fig. 16.8a. The squared amplitude response of the
whitening filter, obtained from (16.12), is shown in Fig. 16.8b. The power spectrum
of the filtered data is shown in Fig. 16.8c; it is approximately flat at lower frequen-
cies and drops off at high frequencies because of the higher relative noise power
at high frequencies. The resulting filter is shown in Fig. 16.8d; for comparison, a
measured temporal receptive field of an LGN neuron is shown in Fig. 16.8e. Please
observe the difference in the time scales in Figs. 16.8d and e. Here, the match be-
tween the two linear filters is only qualitative; in experimental animals, the latencies
of LGN cells seem to vary from tens to hundreds milliseconds (Saul and Humphrey
1990). Similar temporal processing properties are often attributed to retinal ganglion
cells (Meister and Berry II 1999), although Dong and Atick (1995a) argue that the
temporal frequency response of retinal cells is typically flat when compared with
the response of neurons in the LGN.

Dong and Atick (1995a) proceed by showing that when combined with basic
neural non-linearities (rectification), the temporally decorrelating filter theory yields
response properties that match the timing and phase response properties of LGN
neurons. For additional experimental evaluation of the model, see Dan et al. (1996b).

Here, we have used a linear neuron model with a constant filter (static receptive
field). In reality, the temporal receptive field of a visual neuron may change, and this
adaptation may be related to the short-term changes in stimulus statistics (Hosoya
et al. 2005).

16.4 Sparse Coding and ICA of Natural Image Sequences

To analyze the spatiotemporal statistics beyond covariances, the ICA model can be
applied directly to natural image sequences. Instead of vectorizing image patches
(windows), and using them as data in the ICA model, spatiotemporal image se-
quence blocks can be vectorized to form the data x. After a spatiotemporal feature
detector weight vector w or, alternatively, a spatiotemporal feature vector a has been
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Fig. 16.8 The application of the whitening principle, combined with noise reduction and minimum
energy delay phase response, leads to the emergence of filters resembling the temporal receptive
fields of neurons in the retina and the LGN. a The temporal power spectrum Ri(ωt ) of natural im-
age sequence data. b The squared amplitude response of a whitening filter which suppresses noise:
this curve follows the inverse of the data power spectrum at low frequencies, but drops off at high
frequencies, because the proportion of noise is larger at high frequencies. c The power spectrum
of the resulting (filtered) data, showing approximately flat (white) power at low frequencies, and
dropping off at high frequencies. d The resulting filter which has been obtained from the amplitude
response in b and by specifying a minimum energy delay phase response; see text for details. e For
comparison, the temporal receptive field of an LGN neuron. Please note the differences in the time
scales in d and e
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Fig. 16.9 Spatiotemporal features estimated by ICA. Each row in each display (a or b) corre-
sponds to one feature vector, i.e. one column of the matrix A in the ICA model. On a given row,
each frame corresponds to one spatial frame with time index fixed, so that time goes from left to
right. Thus, each feature is basically obtained by “playing” the frames on one row one after the
other. a Sampling rate 25 Hz, i.e. sampled every 40 ms. b Sampling rate 3.125 Hz, i.e. sample
every 320 ms

learned from the data, it can be visualized as an image sequence after “unvectoriz-
ing” it, just like in the basic spatial case.

Results of estimating spatiotemporal features by ICA are shown in Fig. 16.9.
The data consisted of image sequence blocks of size (11,11,9), where the two
first values are in pixels and the third value is in time steps. We used two different
sampling rates, 25 Hz and 3.125 Hz because that parameter has a visible influence on
the results. The number of spatiotemporal patches was 200 000, and the dimension
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was reduced by approximately 50% by PCA. The data set was the same van Hateren
and Ruderman (1998) dataset as used above. FastICA was run in the symmetric
mode with non-linearity g(α) = tanh(α), which corresponds to the familiar log cosh
measure of sparseness (see Sect. 18.7).

The estimated features shown in Fig. 16.9 are spatially Gabor-like, some of them
are separable and other are not. The results clearly depend on the sampling rate: if
the sampling rate is high (a), the features tend to be static, i.e. there is hardly any
temporal change. This is intuitively comprehensible: if the time resolution in the
data is too high, there is simply not enough time for any changes to occur. When the
sampling rate is lower (b), there is much more temporal change in the features.

The results are thus quite well in line with those measured in single-cell record-
ings in, e.g. DeAngelis et al. (1993a, 1993b, 1995).

Further results on estimating spatiotemporal features vectors obtained by apply-
ing FastICA to natural image sequence data can be found at http://hlab.phys.rug.nl/
demos/ica/index.html, and the paper (van Hateren and Ruderman 1998).

16.5 Temporal Coherence in Spatial Features

16.5.1 Temporal Coherence and Invariant Representation

Our visual environment has inertia: during a short time interval, the scene we see
tends to remain similar in the sense that the same objects persist in our field of
vision, the lighting conditions usually change slowly, etc. Could our visual system
utilize this property of our environment?

In particular, it has been proposed that those properties which change more
quickly are often less important for pattern recognition: The identities of the ob-
jects in our visual field change slower than their appearance. For example, when
you talk with somebody, you see the same face for a long time, but its appearance
undergoes various transformations due to the change in the facial expression and the
muscle actions related to speech. So, if you consider those features which change
the slowest, they might be directly related to the identity of the interlocutor.

Thus, it has been proposed that a good internal representation for sensory input
would be one that changes slowly. The term temporal coherence refers to a repre-
sentation principle in which, when processing temporal input, the representation in
the computational system is optimized so that it changes as slowly as possible over
time (Hinton 1989; Földiák 1991).

In this section, we will take a look at a model of temporal coherence which results
in the emergence of simple-cell-like RFs from natural image sequence data. In the
next section, this will be extended to a model that exhibit complex-cell-like behavior
and topographical organization of RFs.
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16.5.2 Quantifying Temporal Coherence

It has been argued that the neural output in the visual system is characterized tem-
porally as short, intense firing events, or bursts of spikes (Reinagel 2001). Here, we
present a model which optimizes a measure of such temporal coherence of activity
levels—or energy—and which, when applied to a set of natural image sequences,
leads to the emergence of RFs which resemble simple-cell RFs.3

We use a set of spatial feature detectors (weight vectors) w1, . . . ,wK to relate
input to output. While it may first sound weird to use purely spatial features with
spatiotemporal data, this simplification will make better sense below when we intro-
duce the temporal filtering used in preprocessing; this combination of temporal and
spatial features is equivalent to space-time separable spatiotemporal features (see
Sect. 16.2, page 327). Let vector x(t) denote the (preprocessed) input to the system
at time t . The output of the kth feature detector at time t , denoted by sk(t), is given
by sk(t) = wT

k x(t). Let matrix W = [w1 . . . wK ]T denote a matrix with all the fea-
ture detector weights as rows. Then the input-output relationship can be expressed
in vector form by s(t) = Wx(t), where vector s(t) = [s1(t) . . . sK(t)]T.

To proceed to the objective function, we first define a non-linearity g(·) that
measures the strength (amplitude) of the feature, and emphasizes large responses
over small ones: we require that g is strictly convex, even-symmetric (rectifying),
and differentiable. Examples of choices for this non-linearity are g1(x) = x2, which
measures the energy of the response, and g2(x) = log coshx, which is a robustified
version of g1 (less sensitive to outliers). Let the symbol �t denote a delay in time.
Temporal response strength correlation, the objective function, is defined by

f (W) =
K∑

k=1

T∑

t=1+�t

g
(
sk(t)

)
g
(
sk(t − �t)

)
. (16.13)

A set of feature detectors which has a large temporal response strength correlation
is such that the same features often respond strongly at consecutive time points,
outputting large (either positive or negative) values. This means that the same fea-
tures will respond strongly over short periods of time, thereby expressing temporal
coherence of activity levels in the neuronal population.

To keep the outputs of the features bounded we enforce the unit variance
constraint on each of the output signals sk(t), that is, we enforce the con-
straint Et {s2

k (t)} = wT
k Cxwk = 1 for all k, where Cx is the covariance matrix

Et {x(t)xT(t)}, and Et means average over t . Additional constraints are needed to
keep the feature detectors from converging to the same solution. Standard methods
are either to force the set of feature weights to be orthogonal, or to force their outputs
to be uncorrelated, from which we choose the latter, as in preceding chapters. This
introduces additional constraints wT

i Cxwj = 0, i = 1, . . . ,K , j = 1, . . . ,K , j �= i.

3This section is based on the article (Hurri and Hyvärinen 2003a) originally published in Neural
Computation. Copyright ©2003 MIT Press, used with permission.
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These uncorrelatedness constraints limit the number of features K we can find so
that if the image data has spatial size N ×N pixels, then K ≤ N2. The unit variance
constraints and the uncorrelatedness constraints can be expressed by a single matrix
equation

WCxWT = I. (16.14)

Note that if we use a non-linearity g(x) = x2, and �t = 0, the objective function
becomes f (W) =∑K

k=1 Et {s4
k (t)}. In this case, the optimization of the objective

function under the unit variance constraint is equivalent to optimizing the sum of
kurtoses of the outputs. As was discussed in Sect. 6.2.1 on page 133, kurtosis is
a commonly used measure in sparse coding. Similarly, in the case of non-linearity
g(x) = log coshx and �t = 0, the objective function can be interpreted as a non-
quadratic measure of the non-Gaussianity of features.

Thus, the receptive fields are learned in the model by maximizing the objec-
tive function in (16.13) under the constraint in (16.14). The optimization algorithm
used for this constrained optimization problem is a variant of the gradient projection
method described in Sect. 18.2.4. The optimization approach employs whitening,
that is, a temporary change of coordinates, to transform the constraint (16.14) into
an orthogonality constraint. Then a gradient projection algorithm employing opti-
mal symmetric orthogonalization can be used. See Hurri and Hyvärinen (2003a) for
details.

16.5.3 Interpretation as Generative Model *

An interpretation of maximization of objective function (16.13) as estimation
of a generative model is possible, based on the concept of sources with non-
stationary (non-constant) variances (Matsuoka et al. 1995; Pham and Cardoso 2001;
Hyvärinen 2001a). The linear generative model for x(t) is similar to the one in pre-
vious chapters:

x(t) = As(t). (16.15)

Here, A = [a1 . . . aK ] denotes a matrix which relates the image sequence patch
x(t) to the activities of the simple cells, so that each column ak , k = 1, . . . ,K ,
gives the feature that is coded by the corresponding simple cell. The dimension of
x(t) is typically larger than the dimension of s(t), so that (16.15) is generally not
invertible. A one-to-one correspondence between W and A can be established by
using the pseudo-inverse solution (see Sect. 19.8):

A = WT(WWT)−1
. (16.16)

The non-stationarity of the variances of sources s(t) means that their variances
change over time, and the variance of a signal is correlated at nearby time points.
An example of a signal with non-stationary variance is shown in Fig. 16.10. It can be
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Fig. 16.10 Illustration of non-stationarity of variance. a A temporally uncorrelated signal s(t)

with non-stationary variance. b Plot of s2(t)

shown (Hyvärinen 2001a) that optimization of a cumulant-based criterion, similar
to (16.13), can separate independent sources with non-stationary variances. Thus,
the maximization of the objective function can also be interpreted as estimation of
generative models in which the activity levels of the sources vary over time, and
are temporally correlated over time. This situation is analogous to the application
of measures of sparseness to estimate linear generative models with independent
non-Gaussian sources, i.e. the ICA model treated in Chap. 7.

16.5.4 Experiments on Natural Image Sequences

16.5.4.1 Data and Preprocessing

The natural image data used in the experiments was described in Sect. 16.3.1
(page 329). The final, preprocessed (see below) data set consisted of 200 000 pairs
of consecutive 11 × 11 image patches at the same spatial position, but �t mil-
liseconds apart from each other. In the main experiment, �t = 40 ms; other values
were used in the control experiments. However, because of the temporal filtering
used in preprocessing, initially 200 000 longer image sequences with a duration of
�t + 400 ms, and the same spatial size 11 × 11, were sampled with the same sam-
pling rate.

The preprocessing in the main experiment consisted of three steps: temporal
decorrelation, subtraction of local mean, and normalization. The same preprocessing
steps were applied in the control experiments; whenever preprocessing was varied in
control experiments it is explained separately below. Temporal decorrelation can be
motivated in two different ways. First, as was discussed in Sect. 16.3.2 (page 332),
it can be motivated biologically as a model of temporal processing in the early vi-
sual system. Second, as discussed above, for �t = 0 the objective function can be
interpreted as a measure of sparseness. Therefore, it is important to rule out the pos-
sibility that there is hardly any change in short intervals in video data, since this
would imply that our results could be explained in terms of sparse coding or ICA.
To make the distinction between temporal response strength correlation and mea-
sures of sparseness clear, temporal decorrelation was applied because it enhances
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temporal changes. Note, however, that this still does not remove all of the static part
in the video—this issue is addressed in the control experiments below.

Temporal decorrelation was performed with the temporal filter shown in
Fig. 16.8d (page 334). As was already mentioned above, the use of such a tem-
poral filter in conjunction with the learned spatial features makes the overall model
spatiotemporal (to be more exact, space-time separable).

16.5.4.2 Results and Analysis

In the main experiment, non-linearity g in objective function (16.13) was chosen to
be g(x) = log coshx. A set of feature detector weights (rows of W) learned by the
model is shown in Fig. 16.11a. The features resemble Gabor functions. They are
localized, oriented, and have different scales, and thus have the main properties of
simple-cell receptive fields.

To compare the results obtained with this model against those obtained with ICA,
we ran both this algorithm and the symmetric version of FastICA with non-linearity
tanh 50 times with different initial values and compared the resulting two sets of
6000 (= 50 × 120) features against each other. The results are shown in Fig. 16.12.
The measured properties were peak spatial frequency (Figs. 16.12a and b, note log-
arithmic scale, units cycles/pixel), peak orientation (Figs. 16.12c and d), spatial fre-
quency bandwidth (Figs. 16.12e and f), and orientation bandwidth (Figs. 16.12g
and h). Peak orientation and peak frequency are simply the orientation and fre-
quency of the highest value in the Fourier power spectrum. Bandwidths measure the
sharpness of the tuning and were computed from the tuning curve as the full width
at the point were half the maximum response was attained (full width at half maxi-
mum, FWHM); this measure is widely used in vision science. See van Hateren and
van der Schaaf (1998) for more details.

Although there are some differences between the two feature sets, the most im-
portant observation here is the similarity of the histograms. This supports the idea
that ICA/sparse coding and temporal coherence are complementary theories, in that
they both result in the emergence of simple-cell-like receptive fields. As for the dif-
ferences, the results obtained using temporal response strength correlation have a
slightly smaller number of high-frequency receptive fields. Also, temporal response
strength correlation seems to produce receptive fields that are somewhat more local-
ized with respect to both spatial frequency and orientation.4

4When these results are compared against the results in van Hateren and van der Schaaf (1998),
the most important difference is the peak at zero bandwidth in Figs. 16.12e and f. This differ-
ence is probably a consequence of the fact that no dimensionality reduction, anti-aliasing or noise
reduction was performed here, which results in the appearance of very small, checkerboard-like
receptive fields. This effect is more pronounced in ICA, which also explains the stronger peak at
the 45◦ angle in Fig. 16.12d.
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Fig. 16.11 Simple-cell-like filters emerge when temporal response strength correlation is opti-
mized in natural image sequences. a Feature weights wk , k = 1, . . . ,120, which maximize tem-
poral response strength correlation (16.13); here the non-linearity g(x) = log coshx. The features
have been ordered according to Et {g(sk(t))g(sk(t − �t))}, that is, according to their “contribu-
tion” into the final objective value (features with largest values top left). b A corresponding set of
feature vectors ak , k = 1, . . . ,120, from a generative-model-based interpretation of the results (see
(16.15) and (16.16))

16.5.5 Why Gabor-Like Features Maximize Temporal Coherence

A simplified intuitive illustration of why the outputs of Gabor-like feature have such
strong energy correlation over time is shown in Fig. 16.13. Most transformations of
objects in the 3D world result in something similar to local translations of lines and



342 16 Temporal Sequences of Natural Images

Fig. 16.12 Comparison of properties of receptive fields obtained by optimizing temporal response
strength correlation (left column, histograms a, c, e and g) and estimating ICA (right column,
histograms b, d, f and h). See text for details

edges in image sequences. This is obvious in the case of 3D translations, and is il-
lustrated in Fig. 16.13a for two other types of transformations: rotation and bending.
In the case of a local translation, a suitably oriented simple-cell-like RF responds
strongly at consecutive time points, but the sign of the response may change. Note
that when the output of a feature detector is considered as a continuous signal, the
change of sign implies that the signal reaches zero at some intermediate time point,
which can lead to a weak measured correlation. Thus, a better model of the de-
pendencies would be to consider dependencies of variances (Matsuoka et al. 1995;
Pham and Cardoso 2001), as in the generative-model interpretation described above.
However, for simplicity, we consider here the magnitude that is a crude approxima-
tion of the underlying variance.

In order to further visualize the correlation of rectified responses at consecutive
time points, we will consider the interaction of features in one dimension (orthog-
onal to the orientation of the feature). This allows us to consider the effect of local
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Fig. 16.13 A simplified illustration of temporal activity level dependencies of simple-cell-like
features when the input consists of image sequences. a Transformations of objects induce local
translations of edges and lines in local regions in image sequences: rotation (left) and bending
(right). The solid line shows the position/shape of a line in the image sequence at time t − �t , and
the dotted line shows its new position/shape at time t . The dashed square indicates the sampling
window. b Temporal activity level dependencies: in the case of a local translation of an edge or a
line, the response of a simple-cell-like features with a suitable position and orientation is strong at
consecutive time points, but the sign may change. The figure shows a translating line superimposed
on an oriented and localized receptive field at two different time instances (time t − �t , solid line,
left; time t , dotted line, right)

translations in a simplified setting. Figure 16.14 illustrates, in a simplified case, why
the temporal response strengths of lines and edges correlate positively as a result of
Gabor-like feature structure. Prototypes of two different types of image elements—
the profiles of a line and an edge—which both have a zero DC component are shown
in the topmost row of the figure. The leftmost column shows the profiles of three
different features with unit norm and zero DC component: a Gabor-like feature, a si-
nusoidal (Fourier basis-like) feature, and an impulse feature. The rest of the figure
shows the square rectified responses of the features to the inputs as functions of
spatial displacement of the input.

Consider the rectified response of the Gabor-like feature to the line and the edge,
that is, the first row of responses in Fig. 16.14. The squared response at time t − �t

(spatial displacement zero) is strongly positively correlated with response at time t ,
even if the line or edge is displaced slightly. This shows how small local transla-
tions of basic image elements still yield large values of temporal response strength
correlation for Gabor-like features. If you compare the responses of the Gabor-like
feature to the responses of the sinusoidal feature—that is, the second row of re-
sponses in Fig. 16.14—you can see that the responses to the sinusoidal feature are
typically much smaller. This leads to a lower value of our measure of temporal re-
sponse strength correlation that emphasizes large values. Also, in the third row of
responses in Fig. 16.14, we can see that while the response of an impulse feature to
an edge correlates quite strongly over small spatial displacements, when the input
consists of a line even a very small displacement will take the correlation to almost
zero.

Thus, we can see that when considering three important classes of features—
features which are maximally localized in space, maximally localized in frequency,
or localized in both—the optimal feature is a Gabor-like feature, which is localized
both in space and in frequency. If the feature is maximally localized in space, it fails
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Fig. 16.14 A simplified illustration of why a Gabor-like feature, localized in both space and fre-
quency, yields larger values of temporal response strength correlation than a feature localized only
in space or only in frequency. Top row: cross sections of a line (left) and an edge (right) as func-
tions of spatial position. Leftmost column: cross sections of three features with unit norm and zero
DC component—a Gabor-like feature (top), a sinusoidal feature (middle), and an impulse feature
(bottom). The other plots in the figure show the responses of the feature detectors to the inputs as a
function of spatial displacement of the input. The Gabor-like feature yields fairly large positively
correlated values for both types of input. The sinusoidal feature yields small response values. The
impulse feature yields fairly large positively correlated values when the input consists of an edge,
but when the input consists of a line even a small displacement yields a correlation of almost zero

to respond over small spatial displacements of very localized image elements. If
the feature is maximally localized in frequency, its responses to the localized image
features are not strong enough.

Figure 16.15 shows why we need non-linear correlations instead of linear ones:
raw output values might correlate either positively or negatively, depending on the
displacement. Thus, we see why ordinary linear correlation is not maximized for
Gabor-like features, whereas the rectified (non-linear) correlation is.

16.5.6 Control Experiments

To validate the novelty of the results obtained with this model when compared with
ICA and sparse coding, and to examine the effect of different factors in the results,
a number of control experiments were made. These experiments are summarized
here; details can be found in Hurri and Hyvärinen (2003a). The control experiments
show that
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Fig. 16.15 A simplified illustration of why nonlinear correlation is needed for the emergence of
the phenomenon. Raw response values of the Gabor-like feature to the line and edge may correlate
positively or negatively, depending on the displacement. (See Fig. 16.14 for an explanation of the
layout of the figure)

• the results are qualitatively similar when the static part of the video is removed
altogether by employing Gram–Schmidt orthogonalization, which strengthens the
novelty of this model when compared with static models

• the results are qualitatively similar when no temporal decorrelation is performed
• the results are qualitatively similar when �t = 120 ms; when � is further in-

creased to �t = 480 ms and �t = 960 ms, the resulting features start to lose their
spatial localization and gradually also their orientation selectivity; finally, when
the consecutive windows have no temporal relationship (consecutive windows
chosen randomly), the resulting features correspond to noise patterns

• the results are qualitatively similar when observer (camera) movement is com-
pensated by a tracking mechanism in video sampling.

Finally, one further control experiment was made in which the linear correlation
f�(wk) = Et {sk(t)sk(t − �t)} was maximized. The unit variance constraint is used
here again, so the problem is equivalent to minimizing Et {(sk(t) − sk(t − �t))2}
with the same constraint; we will return to this objective function below in
Sect. 16.8. The resulting features resemble Fourier basis vectors, and not simple-
cell receptive fields. This shows that non-linear, higher-order correlation is indeed
needed for the emergence of simple-cell-like features.

16.6 Spatiotemporal Energy Correlations in Linear Features

16.6.1 Definition of the Model

Temporal response strength correlation, defined in (16.13) on page 337, maximizes
the “temporal coherence” in the outputs of individual simple cells. Note that in
terms of the generative model described above, the objective functions says nothing
about the interdependencies in different sk(t)’s—that is, different cells. Thus, there
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Fig. 16.16 The two layers of the generative model. Let abs(s(t)) = [|s1(t)| . . . |sK(t)|]T denote
the amplitudes of simple cell responses. In the first layer, the driving noise signal v(t) generates
the amplitudes of simple cell responses via an autoregressive model. The signs of the responses are
generated randomly between the first and second layer to yield signed responses s(t). In the second
layer, natural video x(t) is generated linearly from simple cell responses. In addition to the relations
shown here, the generation of v(t) is affected by M abs(s(t − �t)) to ensure non-negativity of
abs(s(t)). See text for details

is an implicit assumption of independence in the model, at least if it is interpreted
as a probabilistic generative model. In this section, we add another layer to the
generative model to extend the theory to simple-cell interactions, and to the level of
complex cells.5

Like in the many generative models discussed in this book, the output layer of
the new model (see Fig. 16.16) is linear, and maps cell responses s(t) to image
features x(t), but we do not assume that the components of s(t) are independent.
Instead, we model the temporal dependencies between these components in the first
layer of our model. Let abs(s(t)) = [|s1(t)| . . . |sK(t)|]T denote the activities of the
cells, and let v(t) denote a driving noise signal and M denote a K × K matrix; the
modeled interdependencies will be “coded” in M. Our model is a multidimensional
first-order autoregressive process, defined by

abs
(
s(t)
)= M abs

(
s(t − �t)

)+ v(t). (16.17)

Again, we also need to fix the scale of the latent variables by defining Et {s2

k(t)} = 1
for k = 1, . . . ,K .

There are dependencies between the driving noise v(t) and output strengths
abs(s(t)), caused by the non-negativity of abs(s(t)). To take these dependencies
into account, we use the following formalism. Let u(t) denote a random vector with
components which are statistically independent of each other. To ensure the non-
negativity of abs(s(t)), we define

v(t) = max
(−M abs

(
s(t − �t)

)
,u(t)

)
, (16.18)

where, for vectors a and b, max(a,b) = [max(a1, b1) . . . max(an, bn)]T. We as-
sume that u(t) and abs(s(t)) are uncorrelated. The point in this definition is to make
sure that the noise does not drive the absolute values of the sK(t) negative, which
would be absurd.

5This section is based on the article (Hurri and Hyvärinen 2003b) originally published in Network:
Computation in Neural Systems. Copyright ©2003 Institute of Physics, used with permission.
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To make the generative model complete, a mechanism for generating the signs
of cell responses s(t) must be included. We specify that the signs are generated
randomly with equal probability for plus or minus after the strengths of the re-
sponses have been generated. Note that one consequence of this is that the different
sk(t)’s are uncorrelated. In the estimation of the model this uncorrelatedness prop-
erty is used as a constraint. When this is combined with the unit variance (scale)
constraints described above, the resulting set of constraints is the same as in the
approach described above in Sect. 16.5 (page 336).

In (16.17), a large positive matrix element M(i, j), or M(j, i), indicates that
there is strong temporal dependency between the output strengths of cells i and j .
Thinking in terms of grouping temporally coherent cells together, matrix M can
be thought of as containing similarities (reciprocals of distances) between different
cells. We will use this property below to derive a topography of simple-cell receptive
fields from M.

16.6.2 Estimation of the Model

To estimate the model defined above we need to estimate both M and A. Instead of
estimating A directly, we estimate W which maps image sequence data to responses

s(t) = Wx(t), (16.19)

and use the pseudo-inverse relationship—that is, (16.16) on page 338—to com-
pute A. In what follows, we first show how to estimate M, given W. We then
describe an objective function which can be used to estimate W, given M. Each
iteration of the estimation algorithm consists of two steps. During the first step M is
updated, and W is kept constant; during the second step these roles are reversed.

First, regarding the estimation of M, consider a situation in which W is kept
constant. It can be shown (Hurri and Hyvärinen 2003b) that M can be estimated by
using approximative method of moments, and that the estimate is given by

M ≈ βEt

{(
abs(s(t)) − Et {abs(s(t))})(abs(s(t − �t)) − Et {abs(s(t))})T}

× Et

{(
abs(s(t)) − Et {abs(s(t))})(abs(s(t)) − Et {abs(s(t))})T}−1

,

where β > 1. Since this multiplier does not change the relative strengths of the
elements of M, and since it has a constant linear effect in the objective function of
W given below, its value does not affect the optimal W, so we can simply set β = 1
in the optimization. The resulting estimator for M is the same as the optimal least
mean squares linear predictor in the case of unconstrained v(t).

The estimation of W is more complicated. A rigorous derivation of an objective
function based on well-known estimation principles is very difficult because the
statistics involved are non-Gaussian, and the processes have difficult interdepen-
dencies. Therefore, instead of deriving an objective function from first principles,
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we derived an objective function heuristically (Hurri and Hyvärinen 2003b), and
verified through simulations that the objective function is capable of estimating the
two-layer model. The objective function is a weighted sum of the covariances of
feature output strengths at times t − �t and t , defined by

f (W,M) =
K∑

i=1

K∑

j=1

M(i, j) cov
{∣∣si(t)

∣∣,
∣∣sj (t − �t)

∣∣}. (16.20)

In the actual estimation algorithm, W is updated by employing a gradient projection
approach to the optimization of f in (16.20) under the constraints. The initial value
of W is selected randomly.

The fact that the algorithm described above is able to estimate the two-layer
model has been verified through extensive simulations. These simulations show that
matrix W can be estimated fairly reliably, and that the relative error of the estimate
of matrix M also decreases reliably in the estimation, but the remaining error for M
is larger than in the case of matrix W. This difference is probably due to the approx-
imation made in the estimation of M; see Hurri and Hyvärinen (2003b). However,
the simulations suggest that the error in the estimate of M is largely due to a sys-
tematic, monotonic, non-linear element-wise bias, which does not affect greatly our
interpretation of the elements of M, since we are mostly interested in their relative
magnitudes. See Hurri and Hyvärinen (2003b) for details. A very closely related
model which can be analyzed in detail is in Hyvärinen and Hurri (2004), which
shows that a rigorous justification for our objective function above can be found in
the case where we use the quadratic function instead of the absolute value function.
See also Valpola et al. (2003) for related theoretical work.

16.6.3 Experiments on Natural Images

The estimation algorithm was run on the same data set as for the basic temporal
coherence model in Sect. 16.5 to obtain estimates for M and A. Figure 16.17 shows
the resulting feature vectors—that is, columns of A. As can be seen, the result-
ing features are localized, oriented, and have multiple scales, thereby fulfilling the
most important defining criteria of simple-cell receptive fields. This suggests that, as
far as receptive-field structure is concerned, the method yields receptive fields with
similar qualitative properties to those obtained with sparse coding, ICA, or temporal
response strength correlation.

What is truly novel in this model is the estimation of matrix M, which captures
the temporal and spatiotemporal activity-level dependencies between the feature
vectors shown in Fig. 16.17. The extracted matrices A and M can be visualized si-
multaneously by using the interpretation of M as a similarity matrix (see page 347).
Figure 16.18 illustrates the feature vectors—that is, columns of A—laid out at spa-
tial coordinates derived from M in a way explained below. The resulting feature
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Fig. 16.17 The estimation of the two-layer generative model from natural visual stimuli results
in the emergence of localized, oriented receptive fields with multiple scales. The feature vectors
(columns of A) shown here are in no particular order

vectors are again oriented, localized and multiscale, as in the basic temporal coher-
ence model in Sect. 16.5.

In the resulting planar representation shown in Fig. 16.18, the temporal coher-
ence between the outputs of two cells i and j is reflected in the distance between
the corresponding receptive fields: the larger the elements M(i, j) and M(j, i) are,
the closer the receptive fields are to each other. We can see that local topography
emerges in the results: those basis vectors which are close to each other seem to be
mostly coding for similarly oriented features at nearby spatial positions. This kind
of grouping is characteristic of pooling of simple cell outputs at complex cell level
(Palmer 1999). Some global topography also emerges: those basis vectors which
code for horizontal features are on the left in the figure, while those that code for
vertical features are on the right.

Thus, the estimation of our two-layer model from natural image sequences yields
both simple-cell-like receptive fields, and grouping similar to the pooling of simple
cell outputs. Linear receptive fields emerge in the second layer (matrix A), and cell
output grouping emerges in the first layer (matrix M). Both of these layers are es-
timated simultaneously. This is an important property when compared with other
statistical models of early vision, because no a priori fixing of either of these layers
is needed. The results thus compare with the two-layer models for static images dis-
cussed in Sect. 11.8 and Köster and Hyvärinen (2007, 2008). The main difference
is that here, M describes “lateral” interactions between the features sk , whereas in
Sect. 11.8 considered another stage in hierarchical processing.



350 16 Temporal Sequences of Natural Images

Fig. 16.18 Results of estimating the two-layer generative model from natural image sequences.
Features (columns of A) plotted at spatial coordinates given by applying multidimensional scal-
ing to M. Matrix M was first converted to a non-negative similarity matrix Ms by subtracting
mini,j M(i, j) from each of its elements, and by setting each of the diagonal elements at value 1.
Multidimensional scaling was then applied to Ms by interpreting entries Ms(i, j) and Ms(j, i) as
similarity measures between cells i and j . Some of the resulting coordinates were very close to
each other, so tight cell clusters were magnified for purposes of visual display. Details are given in
Hurri and Hyvärinen (2003b)

16.6.4 Intuitive Explanation of Results

The results shown in Fig. 16.18 suggest that features which prefer similar orientation
but different spatial location have spatiotemporal activity dependencies. Why is this
the case?

Temporal activity-level dependencies, illustrated in Fig. 16.13, are not the only
type of activity-level dependencies in a set of simple-cell-like features. Figure 16.19
illustrates how two different cells with similar receptive field profiles—having the
same orientation but slightly different positions—respond at consecutive time in-
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Fig. 16.19 A simplified illustration of static and short-time activity-level dependencies of sim-
ple-cell-like receptive fields. For a translating edge or line, the responses of two similar receptive
fields with slightly different positions (cell 1, top row; cell 2, bottom row) are large at nearby time
instances (time t − �t , solid line, left column; time t , dotted line, right column). Each sub-figure
shows the translating line superimposed on a receptive field. The magnitudes of the responses of
both cells are large at both time instances. This introduces three types of activity-level depen-
dencies: temporal (in the output of a single cell at nearby time instances), spatial (between two
different cells at a single time instance) and spatiotemporal (between two different cells at nearby
time instances). The multivariate autoregressive model discussed in this section includes temporal
and spatiotemporal activity-level dependencies (marked with solid lines). Spatial activity-level de-
pendency (dashed line) is an example of energy dependencies modeled in work on static images in
Chaps. 9–11

stances when the input is a translating line. The receptive fields are otherwise iden-
tical, except that one is a slightly translated version of the other. It can be seen that
both cells are highly active at both time instances, but again, the signs of the outputs
vary. This means that in addition to temporal activity dependencies (the activity of
a cell is large at time t − �t and time t ), there are two other kinds of activity-level
dependencies.

Spatial (static) dependencies Both cells are highly active at a single time instance.
This kind of dependency is an example of the energy dependencies earlier modeled
in static images in Chaps. 9–11.

Spatiotemporal dependencies The activity levels of different cells are also related
over time. For example, the activity of cell 1 at time t −�t is related to the activity
of cell 2 at time t .

What makes these dependencies important is that they seem to be reflected in
the structure of the topography in the primary visual cortex. The results presented
in this section suggest that combining temporal activity level dependencies with
spatiotemporal dependencies yields both simple-cell-like receptive fields and a set
of connections between these receptive fields. These connections can be related to
both the way in which complex cells seem to pool simple-cell outputs, and to the
topographic organization observed in the primary visual cortex, in the same way as
described in Chap. 11. Therefore, the principle of activity level dependencies seems
to explain both receptive field structure and their organization.
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16.7 Unifying Model of Spatiotemporal Dependencies

In order to motivate the development of a model which unifies a number of statistical
properties in natural image sequences, let us summarize the key results on proba-
bilistic modeling of the properties of the neural representation at the simple-cell
level.

1. Results obtained using sparse coding or independent component analysis suggest
that, on the average, at a single time instant relatively few simple cells are active
on the cortex (see Chap. 6); furthermore, each cell is active only rarely.

2. In this chapter, we have described a complementary model, which suggests that
simple cells tend to be highly active at consecutive time instants—that is, their
outputs are burst-like (see Sect. 16.5).

3. Models on static dependencies between simple-cell-like features, and the rela-
tionship between these dependencies and cortical topography, suggest that the
active cells tend to be located close to each other on the cortex, as in Chap. 11.

4. As we saw in the preceding section, temporal correlations also lead to topo-
graphic properties resembling cortical topography, based on a model which uti-
lizes temporal correlations between the outputs of different features.

These four different principles—sparseness, temporal coherence of activity levels,
spatial activity level dependencies, and spatiotemporal activity level dependencies—
are not conflicting. That is, none of the principles excludes the existence of another.
Perhaps, then, each of these models offers just a limited view to a more complete
model of cortical coding at the simple-cell level. In fact, the following description
of simple-cell activation is in accordance with all of the principles: when an animal
is viewing a natural scene, a relatively small number of patches of cortical area are
highly active in the primary visual cortex, and the activity in these areas tends to be
sustained for a while. That is, activity is sparse, and contiguous both in space and
time. This is the bubble coding model (Hyvärinen et al. 2003).

In the bubble coding model, the final generative mapping from latent components
to natural image sequence data is linear, like in the previous sections: x(t) = As(t).
The main idea in the bubble coding model is generation of the s(t) so that they have
bubble-like activity. This is accomplished by introducing a bubble-like variance sig-
nal for s(t), as illustrated by an example in Fig. 16.20. The spatiotemporal locations
of the variance bubbles are determined by a sparse process u(t) (Fig. 16.20a). A tem-
poral filter φ and spatial pooling function h, both of which are fixed a priori in the
model, spread the variance bubbles temporally and spatially (Figs. 16.20b and c).
The resulting variance bubbles can also overlap each other, in which case the vari-
ance in the overlapping area is obtained as a sum of the variances in each bubble; in
Fig. 16.20, however, the variance bubbles are non-overlapping for illustrative pur-
poses. It is also possible that at this point a fixed static non-linearity f is applied
to rescale the magnitudes of the variance bubbles. These steps yield the variance
signals

vk(t) = f

(∑

�

h(k, �)
[
φ(t) ∗ u�(t)

])
, (16.21)
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Fig. 16.20 Illustration of the generation of components sk(t) in the bubble coding model. For
simplicity of illustration, we use a one-dimensional topography instead of the more conventional
two-dimensional one. a The starting point is the set of sparse signals uk(t). b Each sparse signal
uk(t) is filtered with a temporal low-pass filter φ(t), yielding signals φ(t) ∗ uk(t). In this example,
the filter φ(t) simply spreads the impulses uniformly over an interval. c In the next step, a neighbor-
hood function h(k, �) is applied to spread the bubbles spatially; this is like a spatial low-pass filter.
A static non-linearity f may also be applied at this point to rescale the magnitudes of the variance
bubbles. This yields variance bubble signals vk(t) = f (

∑
� h(k, �)[φ(t) ∗ u�(t)]). In this example,

the neighborhood function h is simply 1 close-by and 0 elsewhere, and the static non-linearity f is
just the identity mapping f (α) = α. d Next, we generate Gaussian temporally uncorrelated (white
noise) signals zk(t). e Linear components (responses) are defined as products of the Gaussian
white noise signals and the spatiotemporally spread bubble signals: sk(t) = zk(t)vk(t). These are
transformed linearly by the matrix A to give the observed image data (not shown). (Note that in
sub-figures a–c, white denotes value zero and black denotes value 1, while in sub-figures d and e,
medium grey denotes zero, and black and white denote negative and positive values, respectively)
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where ∗ denotes temporal convolution. The burst-like oscillating nature of the com-
ponents inside the bubbles is introduced through a Gaussian temporally uncorrelated
(white noise) process z(t) (Fig. 16.20d). Thus, the components sk(t) are generated
from the variance bubbles and the noise signals by multiplying the two together
(Fig. 16.20e):

sk(t) = vk(t)zk(t). (16.22)

Note that all three different types of activity level dependencies—temporal, spatial,
and spatiotemporal (see Fig. 16.19 on page 351)—are present in the bubble-coding
model, as well as sparseness. To complete this generative model, the sk(t) are finally
linearly transformed to the image using a linear transformation, as in almost all
models in this book.

An approximative maximum likelihood scheme can be used to estimate the bub-
ble coding model; details can be found in Hyvärinen et al. (2003). Note that because
the pooling function h is fixed, it enforces the spatial pooling, while in the two-layer
model described in the previous section, this pooling was learned from the data. The
temporal smoothing (low-pass) filter φ is also fixed in the model.

Figure 16.21 shows the resulting spatial basis vectors, obtained when the bubble
coding model was estimated from natural image sequence data. The basis consists
of simple-cell-like linear receptive-field models, similar to those obtained by topo-
graphic ICA from static images (Fig. 11.4 on page 247), or using the temporal mod-
els in Sect. 16.6. The orientation and the location of the feature coded by the vectors
change smoothly when moving on the topographic grid. Low-frequency basis vec-
tors are spatially segregated from the other vectors, so there also seems to be some
ordering based on preferred spatial frequency. Such an organization with respect to
orientation, location, and spatial frequency is similar to the topographic ordering of
simple cells in the primary visual cortex, as was discussed in Chap. 11.

One can also estimate spatiotemporal features with this model. An animated ex-
ample of the resulting spatiotemporal features can be found at www.cs.helsinki.fi/
group/nis/animations/bubbleanimation.gif.

The features obtained by the bubble coding models are thus hardly any different
from what were obtained by the topographic ICA model, for example. The signifi-
cance of the model is mainly theoretical in the sense that it gives a unified framework
for understanding the different models involved.

16.8 Features with Minimal Average Temporal Change

16.8.1 Slow Feature Analysis

16.8.1.1 Motivation and History

All of the models of temporal coherence discussed above—temporal response
strength correlation, the two-layer autoregressive model, and the bubble-coding



16.8 Features with Minimal Average Temporal Change 355

Fig. 16.21 A set of spatial features, estimated from natural image using the bubble coding estima-
tion method, and laid out at spatial coordinates defined by the topographic grid in the bubble coding
model. The topographic organization of the features exhibits ordering with respect to orientation,
location, and spatial frequency of the vectors, being very similar to that obtained by topographic
ICA

model—are based on temporal patterns in output energies (variances) s2(t). What
happens if we just minimize a measure of the temporal change in the outputs of the
model neurons? That is, if s(t) is the output of a model at time t , and w is our vector
of model parameters, we could for example minimize the squared difference of the
output at close-by time points

fSFA(w) = Et

{(
s(t) − s(t − �t)

)2}
. (16.23)

An explicit formalization of this principle was given by Mitchison (1991) who sim-
ply described it as “removal of time variation” (see also Hinton 1989; Földiák 1991;
Stone 1996). The principle was also used in blind source separation, in which a
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number of sophisticated methods for its algorithmic implementation have been de-
veloped (Tong et al. 1991; Belouchrani et al. 1997; Hyvärinen et al. 2001b). Re-
cently, the principle has been given the name slow feature analysis (Wiskott and
Sejnowski 2002), thus the subscript SFA in the definition of the objective function.

In order to relate the SFA objective function to the models we have discussed
above, let us analyze it in more detail. Expanding the square and taking the expec-
tations of the resulting terms we get

fSFA(w) = Et

{
s2(t) − 2s(t)s(t − �t) + s2(t − �t)

}

= Et

{
s2(t)

}− 2Et

{
s(t)s(t − �t)

}+ Et

{
s2(t − �t)

}
︸ ︷︷ ︸

=Et {s2(t)}

= 2
(
Et

{
s2(t)

}− Et

{
s(t)s(t − �t)

})
(16.24)

The objective function is non-negative, and a trivial way to minimize it is to compute
a zero output s(t) = 0 for all t . A standard way to avoid this anomaly is to constrain
the “energy” (second moment) of the output signal to unity, that is, define constraint

Et

{
s2(t)

}= 1, (16.25)

in which case the objective function become simpler:

fSFA(w) = 2
(
1 − Et

{
s(t)s(t − �t)

})
, (16.26)

which shows that under the unit energy constraint, SFA is equivalent to maximiza-
tion of the linear temporal correlation in the output. This is in contrast to the model
in Sect. 16.5 (page 336), which was based on maximization of non-linear tem-
poral correlation. Also, note that if mean output is zero, that is, if Et {s(t)} = 0,
then the unit energy constraint is equivalent to the unit variance constraint, since
var(s(t)) = Et {s2(t)} − (Et {s(t)})2.

16.8.1.2 SFA in a Linear Neuron Model

In Sect. 16.5 (page 336), we mentioned that in a linear neuron model, maximization
of linear temporal correlation results in receptive fields which resemble frequency
components and not simple-cell-like receptive fields or Gabor functions. In such a
linear model, slow feature analysis can be analyzed mathematically in detail. Let
s(t) denote the output of the unit at time t :

s(t) = wTx(t). (16.27)

Assume that the input x(t) has zero mean (Et {x(t)} = 0), and that we impose the
unit variance constraint to avoid the trivial solution w = 0. Then the unit energy
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constraint also holds, and instead of minimizing the SFA objective function (16.26)
we can just maximize linear temporal correlation

fLTC(w) = Et

{
s(t)s(t − �t)

}= Et

{
wTx(t)x(t − �t)Tw

}

= wTEt

{
x(t)x(t − �t)T}w (16.28)

with the constraint

Et

{
s2(t)

}= 1 ⇐⇒ wTEt

{
x(t)x(t)T}w = 1. (16.29)

A solution can be derived by adapting the mathematics of PCA described in
Sect. 5.8.1. The connection becomes clear if we first whiten the data x(t) (spa-
tially, i.e. in the same way as in Chap. 5, ignoring the temporal dependencies). For
simplicity, we denote the whitened data by x(t) in the following. For the whitened
data, the constraint of unit variance is equivalent to the constraint that w has unit
norm, because Et {x(t)x(t)T} is the identity matrix.

Thus, we have a maximization of a quadratic function under unit norm constraint,
just as in PCA. There is a small difference, though: The matrix Et {x(t)x(t − �t)T}
defining the quadratic function is not necessarily symmetric. Fortunately, it is not
difficult to prove that actually, this maximization is equivalent to maximization using
a symmetric version of the matrix:

fLTC(w) = wT
[

1

2
Et

{
x(t)x(t − �t)T}+ 1

2
Et

{
x(t − �t)x(t)T}

]
w. (16.30)

Thus, the same principle of computing the eigenvalue decomposition applies here
(Tong et al. 1991). The optimal vector w is obtained as the one corresponding to the
largest eigenvalue of this matrix. If we want to extract a set of RFs, we can use the
following result: assuming that the output of the next selected RF has to be uncor-
related with the outputs of the previously selected ones, then the next maximum is
the eigenvector with the next largest eigenvalue.

Figure 16.22 shows the filters that result from such optimization in a linear neu-
ron model. The data set and preprocessing in this experiment was identical to the one
in Sect. 16.5. As can be seen, the resulting filters correspond to frequency (Fourier)
features, and not the localized RFs in the early visual system.

16.8.2 Quadratic Slow Feature Analysis

As shown above, SFA in the case of a linear neuron model does not produce very
interesting results. In contrast, application of the principle in the non-linear case has
proven more promising, although results for real natural image sequences have not
been reported.

A straightforward and computationally simple way to design non-linear models
is the basis expansion approach. As a simple example, assume that out original
input data is a single scalar x. This data can be expanded by computing the square
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Fig. 16.22 The set of filters which optimize the objective function in slow feature analysis from
natural image data in the case of a linear neuron model. As can be seen, the resulting filters do not
resemble localized receptive fields of either retina/LGN or V1

of the data point x2. We can then design a model that is linear in the parameters
a = (a1 a2)

T

y = a1x + a2x
2 = aT

(
x

x2

)
(16.31)

but obviously non-linear in the data x (here, it is quadratic). A very nice property
of this approach is that the analysis developed for the linear case is immediately
applicable: all we need to do is to replace the original data with the expanded data.
In the SFA case, let f(x(t)) = [f1(x(t)) f2(x(t)) . . . fM(x(t))]T denote a non-linear
expansion of the data. Then the output is

s(t) = wTf
(
x(t)

)
, (16.32)

and all of the optimization results apply after x(t) is replaced with f(x(t)).
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The form of basis expansion we are particularly interested in is that of a
quadratic basis. Let x(t) = [x1(t) x2(t) · · · xK(t)]T denote our original data. Then
a data vector in our quadratic data set f(x(t)) includes, in addition to the origi-
nal components x1(t), x2(t), . . . , xK(t), the products of all pairs of components
xk(t)x�(t), k = 1, . . . ,K , � = 1, . . . ,K ; note that this also includes the squares
x2

1(t), x2
2(t), . . . , x2

K(t).
While the computation of the optimum in the case of basis-expanded SFA is

straightforward, the interpretation of the results is more difficult: unlike in the case
of linear data, the obtained parameters can not simply be interpreted as a template
of weights at different positions in the image, because some of the parameters cor-
respond to the quadratic terms xk(t)x�(t), k = 1, . . . ,K , � = 1, . . . ,K . One way to
analyze the learned parameter vectors w1, . . . ,wM is to compute the input images
that elicit maximal and minimal responses, while constraining the norm (energy) of
the images to make the problem well posed; that is, if c > 0 is a constant

xmax = arg max‖x‖=c
wTf(x), (16.33)

xmin = argmin
‖x‖=c

wTf(x). (16.34)

A procedure for finding xmax and xmin is described in Berkes and Wiskott (2007).
Berkes and Wiskott (2005) applied quadratic SFA to simulated image sequence

data: the image sequences x(t) were obtained from static natural images by selecting
an initial image location, obtaining as x(0) from the location with random orienta-
tion and zoom factor, and then obtaining x(t), t > 0, by applying all of the follow-
ing transformations at the location of x(t − 1): translation, rotation, and zooming.
An important property of the results obtained by Berkes and Wiskott (2005) using
SFA with simulated image sequence data is the phase invariance of the quadratic
units. This has lead to an association between SFA and complex cells; in fact, Berkes
and Wiskott (2005) report a number of observed properties in quadratic SFA mod-
els that match those of complex cells. See Fig. 16.23 for a reproduction of those
results. However, the results by Berkes and Wiskott were obtained by simulated
image sequences, whose temporal correlations were basically determined by the ex-
perimenters themselves. Thus, they do not really provide a basis for making conclu-
sions about the connection between ecologically valid stimuli and visual processing.

Hashimoto (2003) applied quadratic SFA to real natural image sequences. She
found that the obtained features were only weakly related to complex cells, and
proposed that better results could be found by a sparse variant of SFA. This will be
treated next.

16.8.3 Sparse Slow Feature Analysis

In sparse SFA, the measure of change is changed to one that emphasizes sparseness.
In the original objective in (16.23), it is not necessary to take the squared error.
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Fig. 16.23 Quadratic SFA of image sequence data generated from static image data. a Input im-
ages xmax that correspond to maximum output. b Input images xmin that correspond to minimum
output. The maximum and minimum input images are at corresponding locations in the lattices.
Most of the optimal input images are oriented and bandpass, and also spatially localized to some
degree. The maximum and minimum input images of the units have interesting relationships; for
example, they may have different preferred orientations, different locations, or one can be orienta-
tion-selective while the other is not

The squared error is used here for algebraic and computational simplicity only: it
allows us to maximize the objective function using the eigenvalue decomposition.
In general, we can consider objective function of the form

fSSFA(w) = Et

{
G
(
s(t) − s(t − �t)

)}
. (16.35)

where G is some even-symmetric function. A statistically optimal choice of G is
presumably one that corresponds to a sparse pdf because changes in images are
usually abrupt, as in edges. We call resulting model Sparse SFA. The statistical
justification is based on modeling the data with an autoregressive model in which
the driving noise term (innovation process) is super-Gaussian or sparse (Hyvärinen
2001b).

The same sparse model (using a G which is not the square function) can be used
in the context of quadratic SFA because quadratic SFA simply means defining the
input data in a new way. This leads to the concept of sparse quadratic SFA. It is
important not to confuse the two ways in which an SFA model can be quadratic: It
can use squared error (i.e. take G(u) = u2), or it can use a quadratic expansion of
the input data (using products of the original input variables as new input variables).

Using sparse quadratic SFA, Hashimoto (2003) obtained energy detectors which
seem to be much closer to quadrature-phase filter pairs and complex cells than those
obtained by ordinary quadratic SFA. Those results were obtained on real natural
image sequences, from which ordinary quadratic SFA does not seem to learn very
complex-cell like energy detectors.

Thus, we see how sparseness is ubiquitous in natural image statistics modeling,
and seems to be necessary even in the context of SFA.
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16.9 Conclusion

Different models of temporal coherence have been applied to simulated and natural
visual data. The results that emerge from these models agree with neurophysiologi-
cal observations to varying degrees. Thus, far the principle has mostly been applied
to model V1 cells—that is, simple and complex cells. In this chapter we focused on
models which have resulted in the emergence of spatially localized filters with mul-
tiple scales (responding to different frequencies) from natural image sequence data.
That is, we required that the spatial localization has not been forced in the model, but
emerges from learning, as happened in all the sparse coding and ICA-related models
treated in this book so far; this is in contrast to some temporal coherence models,
in which spatial localization is enforced by sampling with a Gaussian weighting
window, so that the RFs are then necessarily localized in the center of the patch.
Also, we required that the image sequences come from a video camera or a simi-
lar device, which is in contrast to some work in which one takes static images and
then artificially creates sequence by sampling from them. Further work on temporal
coherence, in addition to the work already cited above, include Kohonen (1996),
Kohonen et al. (1997), Bray and Martinez (2003), Kayser et al. (2003), Körding et
al. (2004), Wyss et al. (2006).

A more philosophical question concerns the priorities between models of static
images and image sequences. We have seen models which produce quite similar re-
sults in the two cases. For example, simple cell RFs can be learned by sparse coding
and ICA from static natural images, or, alternatively, using temporal coherence from
natural image sequences. Which model is then more “interesting”? This is certainly
a deep question which depends very much of the justification of the assumptions
in the models. Yet, one argument can be put forward in general: We should always
prefer the simpler model, if both models have the same explanatory power. This is
a general principle in modeling, called parsimony, or Occam’s razor. In our case,
it could be argued that since static images are necessarily simpler than image se-
quences, we should prefer models which use static images—at least if the models
have similar conceptual simplicity. Thus, one could argue that models on image se-
quences are mainly interesting if they enable learning of aspects which cannot be
learned with static images. This may not have been the case with many models we
considered in this chapter; however, the principles introduced may very well to lead
to discoveries of new properties which cannot be easily, if at all, found in static
images.

An important related question concerns learning image transformations (Memi-
sevic and Hinton 2007). One can view image sequences from a viewpoint where
each image (frame) is a transformation of the preceding one. This is, in a sense,
complementary to the viewpoint of temporal coherence, in which one tries to cap-
ture features which are not transformed. It also seems to be closely related to the
idea of predictive coding; see Sect. 14.3.
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Chapter 17
Conclusion and Future Prospects

In this chapter, we first provide a short overview of this book. Then we discuss
some open questions in the field, as well as alternative approaches to natural image
statistics which we did not consider in detail in this book. We conclude with some
remarks on possible future developments.

17.1 Short Overview

We started this book in Chap. 1 by motivating the research on natural image statistics
from an ecological-statistical viewpoint: The visual system is assumed to be adapted
to the statistical structure of natural images because it needs to use Bayesian infer-
ence. Next, we prepared the reader by introducing well-known mathematical tools
which are needed in natural image statistics models (Part I, i.e. Chaps. 2–4). The
rest of the book, up to this chapter, was mainly a succession of different statistical
models for natural images.

Part II was dedicated to models using purely linear receptive fields. The first
model we considered was principal component analysis in Chap. 5. It is an important
model for historical reasons, and also because it provides a preprocessing method
(dimension reduction accompanied by whitening) which is used in most subsequent
models. However, it does not provide a proper model for receptive fields in the
primary visual cortex (V1).

In Chap. 6, the failure of principal component analysis was explained as the
failure to consider the sparse, non-Gaussian structure of the data. In fact, natural
images have a very sparse structure; the outputs of typical linear filters all have
strongly positive kurtosis. Based on this property, we developed a method in which
we find the feature weights by maximizing the sparseness of the output when the
input to the feature detectors is natural images. Thus, we obtained a fundamental
result: sparse coding finds receptive fields which are quite similar to those in V1
simple cells in the sense that they are spatially localized, oriented, and band-pass
(localized in Fourier space).

Chapter 7 further elaborated on the linear sparse coding model and brought it
firmly into the realm of generative probabilistic models. It also brought the view-
point of independence: instead of maximizing the sparseness of single features, we
can maximize their statistical independence. A most fundamental theoretical results
says that these two goals are equivalent for linear features. The resulting model has
been named independent component analysis (ICA) in the signal-processing litera-
ture. An information-theoretic interpretation of the model was considered Chap. 8,
as an alternative to the Bayesian one.

Part III took a clear step forward by introducing non-linear feature detectors. It
turns out that independent component analysis is not able to cancel all the depen-
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dencies between the components, despite the name of the method. If we measure
the dependencies of components given by ICA by computing different kinds of cor-
relations, we see that the squares of the components tend to be strongly correlated
(Chap. 9). Such squares are called “energies” for historical reasons. We can model
such dependencies by introducing a random variable which controls the variances
of all the components at the same time. This enables the reduction of the depen-
dencies based on processing which is quite similar to neurophysiological models of
interactions between cells in V1, based on divisive normalization.

In Chap. 10, we used the same kind of energy dependencies to model strongly
non-linear features. Here, the non-linearities took the form of computing the squares
of linear feature detectors and summing (“pooling”) such squares together. Just as
with linear features, we can maximize the sparseness of such non-linear features
when the input is natural images. The resulting features are quite similar to complex
cells in V1. Again, we can build a probabilistic model, independent subspace analy-
sis, based on this maximization of sparseness. Interestingly, the model can also be
considered a non-linear version of independent component analysis.

The same idea of maximization of sparseness of energies was extended to model
the spatial (“topographic”) arrangement of cells in the cortex in Chap. 11. This
model is really a simple modification of the complex cells model of the preceding
chapter. We order the simple cells or linear feature detectors on a regular grid, which
thus defines which cells are close to each other. Then we maximize the sparsenesses
of energy detectors which pool the energies of close-by simple cells; we take the
sum of such sparsenesses over all grid locations. This leads to a spatial arrangement
of linear features which is similar to the one in V1 in the sense that preferred ori-
entations and frequencies of the cells change smoothly when we move on the grid
(or cortex); the same applies to the locations of the centers of the features. Because
of the close connection to the complex cell model, the pooled energies of close-by
cells (i.e. sums of squares of feature detectors which are close to each other on the
grid) have the properties of complex cells just like in the preceding chapter.

In Chap. 12, even more complicated non-linear features were learned, although
we didn’t introduce any new probabilistic models. The trick was to fix the initial
feature extraction to computation of energies as in complex cell models. Then we
can just estimate a linear model, basic ICA, of the outputs of such non-linear feature
detectors. Effectively, we are then estimating a hierarchical three-layer model. The
results show that there are strong dependencies between outputs of complex cells
which are collinear, even if they are in different frequency bands. Thus, the learned
features can be interpreted as short line segments which are, in contrast to the fea-
tures computed by simple or complex cells, not restricted to a single frequency band
(and they are also more elongated).

In Chap. 13, we went back to the basic linear models such as ICA, and intro-
duced two important extensions. First, we considered the case where the number
of components is arbitrarily large, which results in what is called an overcomplete
basis. Overcomplete bases seem to be important for building a good probabilistic
model, although the receptive fields learned are not unlike those learned by basic
ICA. This is related to Markov random fields which may allow extension of the
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models to whole images instead of image patches. The second extension was to
consider non-negativity constraints.

To conclude Part III, we showed how the concept of feedback emerges naturally
from Bayesian inference in models of natural image statistics (Chap. 14). Feedback
can be interpreted as a communication between different feature sets to compute
the best estimates of the feature values. Computing the values of the features was
straightforward in models considered earlier, but if we assume that there is noise in
the system or we have an overcomplete basis, things are much more complicated.
The features are interpreted latent (hidden) random variables, and computing the op-
timal Bayesian estimates of the features is a straightforward application of Bayesian
inference. However, computationally it can be quite complicated, and requires up-
dating estimates of some features based on estimates of others; hence the need for
feedback from one cortical area to another, or between groups of cells inside the
same cortical area. This topic is not yet well developed, but holds great promise to
explain the complicated phenomena of cortical feedback which are wide-spread in
the brain.

Part IV considered images which are not simple static grey-scale images. For
color images and stereo images (mimicking the capture of visual information by
the two eyes), ICA gives features which are similar to the corresponding processing
in V1, as shown in Chap. 15. For motion (Chap. 16), the same is true, at least to
some extent; more interestingly, motion leads to a completely new kind of statistical
property, or learning principle. This is temporal coherence or stability, which is
based on finding features which change slowly.

17.2 Open, or Frequently Asked, Questions

Next, we consider some questions on the general framework and fundamental as-
sumptions adopted in this book.

17.2.1 What Is the Real Learning Principle in the Brain?

There has been some debate on what is the actual learning principle which the vi-
sual cortex “follows”, or which it should follow. There are really two questions
here: What is the learning principle which the brain should follow according to the
ecological-statistical approach, and what is the learning principle which best ex-
plains the functioning of the brain. Answering the latter question seems impossible
considering our modest knowledge of the workings of the visual cortex, but the for-
mer question needs some comment because it may seem the existing theory provides
several contradictory answers.

In fact, in this book, we saw a few different proposals for the learning princi-
ple: sparseness in Chap. 6, independence in Chap. 7, and temporal coherence in
Chap. 16. However, in our view, there is no need to argue which one of these is
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the best since they are all subsumed under the greater principle of describing the
statistical structure of natural images as well as possible.

Having a good statistical model of the input is what the visual system needs in
order to perform Bayesian inference. Yet, it is true that Bayesian inference may not
be the only goal for which the system needs input statistics. Sparse coding, as well
as topography, may be useful for reducing metabolic costs (Sects. 6.5 and 11.5).
Information theoretic approaches (Chap. 8) assume that the ultimate goal is to store
and to transmit the data in noisy channels of limited capacity—the limited capacity
being presumably due to metabolic costs.

Our personal viewpoint is that the image analysis and pattern recognition are so
immensely difficult tasks that the visual system needs to be optimized to perform
them. Metabolic costs may not be such a major factor in the design of the brain.
However, we admit that this is, at best, an educated guess, and future research may
prove it to be wrong.

In principle, we can compare different models and learning principles as the the-
ory of statistical estimation gives us clear guidelines on how to measure how well a
model describes a data set. There may not be a single answer, because one could use,
for example, either the likelihood or the score matching distance. However, these
different measures of model fit are likely to give very similar answers on which
models are good and which are not. In the future, such calculations may shed some
light on the optimality of various learning principles.

17.2.2 Nature vs. Nurture

One question which we have barely touched is whether the formation of receptive
fields is governed by genes or the input from the environment. One answer to this
question is simply that we don’t care: the statistical models are modeling the final
result of genetic instructions and individual development, and we don’t even try
to figure out which part has what kind of contribution. The question of nature vs.
nurture seems to be highly complex in the case of the visual system, and trying to
disentangle the two effects has not produced very conclusive results.

What makes the situation even more complicated in vision research is that there is
ample evidence that pre-natal experience in the uterus has an important effect on the
receptive field properties; see Wong (1999) for a review. In fact, the retinal ganglion
cells exhibit spontaneous activity which is characterized by synchronized bursts,
and they generate waves of activity that periodically sweep across the retina. If such
“traveling waves” are disrupted by experimental manipulations, the development of
the visual cortex suffers considerably (Cang et al. 2005).

Spontaneous retinal waves may, in fact, be considered as a primitive form of vi-
sual stimuli from which the visual cortex might learn in rather similar ways as it
learns from natural images. Application of ICA on such traveling waves can gen-
erate something similar to ICA of natural images. Thus, traveling waves may be a
method of enabling the rudimentary learning of some basic receptive field proper-
ties even before the eyes receive any input. One might speculate that such waves
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are a clever method, devised by evolution, of simulating some of the most funda-
mental statistical properties of natural images. Such learning would bridge the gap
between nature and nurture, since it is both innate (present at birth) and learned from
“stimuli” external to the visual cortex (Albert et al. 2008).

17.2.3 How to Model Whole Images

Our approach was based on the idea of considering images as random vectors. This
means, in particular, that we neglect their two-dimensional structure, and the fact
that different parts of the image tend to have rather similar statistical regularities.
Our approach was motivated by the desire to be sure that the properties we esti-
mate are really about the statistics of images and not due to our assumptions. The
downside is that this is computationally a very demanding approach: the number of
parameters can be very large even for small image patches, which means that we
need large amounts of data and the computational resources needed can be near the
limit of what is available—at the time of this writing.

The situation can be greatly simplified if we assume that the dependencies of
pixels are just the same regardless of whether the pixels considered are in, say, the
upper-left corner of the image, or in the center. We have already considered one
approach based on this idea, Markov random fields in Sect. 13.1.7, and wavelet
approaches to be considered below in Sect. 17.3.2 are another.

Wavelet theory has been successfully used in many practical engineering tasks
to model whole images. A major problem is that it does not really answer the ques-
tion of what are the statistically optimal receptive fields; the receptive fields are
determined largely by mathematical convenience, the desire to imitate V1 receptive
fields, or, more recently, the desire to imitate ICA results.

On the other hand, the theory of Markov random fields offers a promising alter-
native in which we presumably can estimate receptive fields from natural images, as
well as obtain a computationally feasible probability model for Bayesian inference.
However, at present, the theory is really not developed enough to see whether that
promise will be fulfilled.

17.2.4 Are There Clear-Cut Cell Types?

There has been a lot of debate about the categorization of V1 cells into simple and
complex cells. Some investigators argue that the cells cannot be meaningfully di-
vided into two classes. They argue that there is a continuum of cell types, meaning
that there are many cells which are between the stereotypical simple cells and com-
plex cells.

Consider some quantity (such as phase-variance) which can be measured from
cells in the primary visual cortex. The basic point in the debate is whether we can
find a quantity such that its distribution is bimodal. This is illustrated in Fig. 17.1.
In some authors’ view, only such bi-modality can justify classification to simple
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Fig. 17.1 Hypothetical
histogram of some quantity
for cells in the primary visual
cortex. Some authors argue
that the histogram should be
bimodal (solid curve) to
justify classification of cells
into simple and complex
cells. On the other hand, even
if the distribution is flat
(dashed curve),
characterizing the cells at the
two ends of the distribution
may be an interesting
approach, especially in
computational models which
always require some level of
abstraction

and complex cells. Thus, there is not much debate on whether there are some cells
which fit the classical picture of simple cells, and others which fit the complex cell
category. The debate is mainly on whether there is a clear distinction or division
between these two classes.

This debate is rather complicated because there are very different dimensions in
which one could assume simple and complex cells to be form two classes. One can
consider, for example, their response properties as measured by phase-invariance, or
some more basic physiological or anatomical quantities in the cells. It has, in fact,
been argued that even marked differences in response properties need not imply any
fundamental physiological difference which would justify considering two different
cell types (Mechler and Ringach 2002).

A related debate is on the validity of the hierarchical model, in which complex
cell responses are computed from simple cell responses. It has been argued that
complex cell responses might be due to lateral connections in a system with no hi-
erarchical distinction between simple and complex cells (Chance et al. 1999). This
dimension, hierarchy vs. lateral connections, might be considered another dimen-
sion along which the bi-modality or flatness of the distribution could be considered.

We would argue that this debate is not necessarily very relevant for natural image
statistics. Even if the distribution of simple and complex cells is not bimodal with
respect to any interesting quantity, it still makes sense to model the two ends of the
distribution. This is a useful abstraction even if it neglects the cells in the middle
of the distribution. Furthermore, if we have models of the cells at the ends of the
“spectrum”, it may not be very difficult to combine them into one to provide a more
complete model. In any case, mathematical and computational modeling always re-
quire some level of abstraction; this includes classification of objects into categories
which are not strictly separated in reality.1

1In fact, when we talk about response properties of a cell, there is always a certain amount of
abstraction involves since the response properties change (adapt) depending on various parame-
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17.2.5 How Far Can We Go?

So far, the research on natural image statistics has mainly been modeling V1, using
the classic distinction of simple and complex cells. Chapter 12 presented an attempt
to go beyond these two processing layers. How far is it possible to go with this
modeling approach?

A central assumption in natural image statistics research is that learning is unsu-
pervised. In the terminology of machine learning, this means learning in which we
do not know what is good and what is bad; nor do we know what is the right output
of the system in contrast to classic regression methods. Thus, if the system knows
that bananas are good (in the sense of increasing some objective function), we are
in a domain which is perhaps outside of natural image statistics. So, the question
really is: How much of the visual system is involved in processing which applies
equally to all stimuli, and does not require knowledge of what the organism needs?

Unsupervised learning may be enough for typical signal-processing tasks such
as noise reduction and compression. Noise reduction should be taken here in a
very general sense, including operations such as contour completion. More sophisti-
cated tasks which may be possible in an unsupervised setting include segmentation,
amodal completion (completion of occluded contours), and various kinds of filling-
in of image areas which are not seen due to anatomical restrictions or pathologies.

Certainly, there need not be any clear-cut distinction between processing based
on unsupervised learning and the rest. For example, the system might be able to
perform a rudimentary segmentation based on generic knowledge of natural image
statistics; if that results in recognition of, say, a banana, the prior knowledge about
the banana can be used to refine the segmentation. That is, knowledge of the general
shapes of objects can be complemented by knowledge about specific objects, the
latter being perhaps outside of the domain of natural image statistics.

The greatest obstacle in answering the question in the title of this section is our
lack of knowledge of the general functioning of the visual system. We simply don’t
know enough to make a reasonable estimate on which parts could be modeled by
natural image statistics. So, it may be better to leave this question entirely to future
research.

17.3 Other Mathematical Models of Images

In this book, data-driven analysis was paramount: We took natural images and an-
alyzed them with models which are as general as possible. A complementary ap-
proach is to construct mathematical models of images based on some theoretical
assumptions, and then find the best representation. The obvious advantage is that
the features can be found in a more elegant mathematical form, although usually

ters. For example, the contrast level may change the classification of a cell to simple or complex
(Crowder et al. 2007).
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not as a simple formula. The equally obvious disadvantage is that the utility of such
a model crucially depends on how realistic the assumptions are. An ancestor of this
line of research is Fourier analysis, as well as the more elaborate Gabor analysis,
which were discussed in Chap. 2.

In this section, we consider some of the most important models developed using
this approach.

17.3.1 Scaling Laws

Most of the mathematical models in this section are related to scaling laws, which
are one of the oldest observations of the statistical structure of natural images.
Scaling laws basically describe the approximately 1/f 2 behavior of the power
spectrum which we discussed in Sect. 5.6.1. As reviewed in Srivastava et al.
(2003), they were first found by television engineers in the 1950s (Deriugin 1956;
Kretzmer 1952).

The observed scaling is very closely related to scale-invariance. The idea is to
consider how natural image statistics change when you look at natural images at dif-
ferent scales (resolutions). The basic observation, or assumption, is that they don’t:
natural images look just the same if you zoom in or zoom out. Such scale-invariance
is one of the basic motivations of a highly influential theory of signal and image
analysis: wavelet theory, which we consider next.

17.3.2 Wavelet Theory

Beginning from the 1980s, the theory of wavelets became very prominent in signal
and image processing. Wavelets provide a basis for one-dimensional signals; the
basis is typically orthogonal. The key idea is that all the basis vectors (or functions,
since the original formulation uses a continuous formalism) are based on a single
prototype function called the mother wavelet φ(x). The functions in the wavelet
basis are obtained by translations φ(x + l) and “dilations” (rescalings) φ(2−sx):

φs,l(x) = 2−s/2φ
(
2−sx − l

)
(17.1)

where s and l are integers that represent scale and translation, respectively. The fun-
damental property of a wavelet basis is self-similarity, which means that the same
function is used in different scales without changing it shape. This is motivated
by the scale-invariance of natural images. Wavelet theory can be applied on sig-
nals sampled with a finite resolution by considering discretized versions of these
functions, just like in Fourier analysis we can move from a continuous-time repre-
sentation to a discretized one.

Much of the excitement around wavelets is based on mathematical analysis which
shows that the representation is optimal for several statistical signal-processing tasks
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such as de-noising (Donoho et al. 1995). However, such theoretical results always
assume that the input data comes from a certain theoretical distribution (in this case,
from certain function spaces defined using sophisticated functional analysis theory).
Another great advantage is the existence of fast algorithms for computing the coef-
ficients in such a basis (Mallat 1989).

This classic formulation of wavelets is for one-dimensional signals, which is a
major disadvantage for image analysis. Although it is straightforward to apply a
one-dimensional analysis on images by first doing the analysis in, say, the horizon-
tal direction, and then the vertical direction, this is not very satisfactory because then
the analysis does not properly contain features of different orientations. In practical
image processing, the fact that basic wavelets form an orthogonal basis may also
be problematic: It implies that the number of features equals the number of pixels,
whereas in engineering applications, an overcomplete basis is usually required. Var-
ious bases which are similar to wavelets, but better for images, have therefore been
developed. In fact, the theory of multiresolution decompositions of images was one
of the original motivations for the general theory of wavelets (Burt and Adelson
1983).

Wavelet-like bases specifically developed for images typically include features
of different orientations, as well as some overcompleteness. “Steerable pyramids”
are based on steerable filters and, therefore, provide implicitly all possible orienta-
tions, see, e.g. Freeman and Adelson (1991), Simoncelli et al. (1992). One of the
most recent systems is “curvelets”. Curvelets can be shown to provide an optimally
sparse representation of edges (Candès et al. 2005), thus providing a basis set which
is mathematically well defined and statistically optimal. However, such strong theo-
retical optimality results only come at the cost of considering edge representation in
an artificial setting, and their relevance to natural images remains to be investigated.
In any case, such ready-made bases may be very useful in engineering applications.

An interesting hybrid approach is to use a wavelet basis which is partly learned
(Olshausen et al. 2001; Sallee and Olshausen 2003), thus bridging the wavelet theory
and the theory in this book; see also Turiel and Parga (2000).

17.3.3 Physically Inspired Models

Another line of research models the process which generated natural images in the
first place. As with wavelet analysis, scale-invariance plays a very important role in
these models. In the review by Srivastava et al. (2003), these models were divided
into two classes, superposition models and occlusion models.

In the superposition models (Mumford and Gidas 2001; Grenander and Srivas-
tava 2001), it is assumed that the images are a linear sum of many independent
“objects”. In spirit, the models are not very different from the linear superposition
we have encountered ever since the ICA model in Chap. 7. What is different from
ICA is that first, the objects come from a predefined model which is not learned, and
second, the predefined model is typically richer than the one used in ICA. In fact,
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the objects can be from a space which defines different sizes, shapes, and textures
(Grenander and Srivastava 2001). One of the basic results in this line of research is
to show that such superposition models can exhibit both scale-invariance and non-
Gaussianity for well-chosen distributions of the sizes of the objects (Mumford and
Gidas 2001).

In occlusion models, the objects are not added linearly; they can occlude each
other if placed close to each other. An example is the “dead leaves” model, which
was originally proposed in mathematical morphology, see Srivastava et al. (2003).
It can be shown that scale-invariance can be explained with this class of models as
well (Ruderman 1997; Lee et al. 2001).

17.4 Future Work

Modern research in natural statistics essentially started in the mid-1990s with the
publication of the seminal sparse coding paper by Olshausen and Field (1996).
It coincided with a tremendous increase of interest in independent component
analysis (Comon 1994; Bell and Sejnowski 1995; Delfosse and Loubaton 1995;
Cardoso and Laheld 1996; Amari et al. 1996; Hyvärinen and Oja 1997) and the
highly influential work by Donoho, Johnstone and others on application of wavelets
to statistical signal processing (Donoho et al. 1995; Donoho 1995; Donoho and
Johnstone 1995). What we have tried to capture in this book is the developments of
these ideas in the last 10–15 years.

What might be the next wave in natural image statistics? Multilayer models are
seen by many as the Holy Grail, especially if we were able to estimate an arbitrary
number of layers, as in classical multilayer perceptrons. Markov random fields may
open the way to new successful engineering applications even if their impact on
neuroscientific modeling may be modest. Some would argue that image sequences
are the key because their structure is much richer than those of static images.

People outside of the mainstream natural image statistics research might put
forward arguments in favor of embodiment, i.e. we cannot dissociate information
processing from behavior, and possibly not from metabolic needs either. This would
mean we need research on robots, or simulated robot-like agents, which interact
with their environment. On the other hand, science has often advanced faster when
it has dissociated one problem from the rest; it may be that using robots makes
modeling technically too difficult.

Whatever future research may bring, natural image statistics seems to have con-
solidated its place as the dominant functional explanation of why V1 receptive fields
are as they are. Hopefully, it will lead to new insights on how the rest of the visual
system works. Combined with more high-level theories of pattern recognition by
Bayesian inference, it has the potential of providing a “grand unified theory” of
visual processing in the brain.
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Chapter 18
Optimization Theory and Algorithms

In this book, we have considered features which are defined by some optimality
properties, such as maximum sparseness. In this chapter, we briefly explain how
those optimal features can be numerically computed. The solutions are based ei-
ther on general-purpose optimization methods, such as gradient methods, or specific
tailor-made methods such as fixed-point algorithms.

18.1 Levels of Modeling

First, it is important to understand the different levels on which we can model vision.
A well-known classification is due to Marr (1982), who distinguished between the
computational, algorithmic, and implementation levels. In our context, we can actu-
ally distinguish even more levels. We can consider, at least, the following different
levels:

1. Abstract principle. The modeling begins by formulating an abstract optimality
principle for learning. For example, we assume that the visual system should
have a good model of the statistical properties of the typical input, or that the
representation should be sparse to decrease metabolic costs.

2. Probabilistic model. Typically, the abstract principle leads to a number of con-
crete quantitative models. For example, independent component analysis is one
model which tries to give a good model of the statistics of typical input.

3. Objective function. Based on the probabilistic model, or sometimes directly us-
ing the abstract principle, we formulate an objective function which we want to
optimize. For example, we formulate the likelihood of a probabilistic model.

4. Optimization algorithm. This is the focus of this chapter. The algorithm allows
us to find the maximum or minimum of the objective function.

5. Physical implementation. This is the detailed physical implementation of the op-
timization algorithm. The same algorithm can be implemented in different kinds
of hardware: a digital computer or a brain, for example. Actually, this level is
quite complex and could be further divided into a number of levels: the physical
implementation can be described at the level of networks, single cells, or mole-
cules, whereas the detailed implementation of the numerical operations (e.g. ma-
trix multiplication and non-linear scalar functions) is an interesting issue in itself.
We will not go into details regarding this level.

Some of the levels may be missing in some cases. For example, in the basic
sparse coding approach in Chap. 6, we don’t have a probabilistic model: We go
directly from the level of principles to the level of objective functions. However,
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the central idea of this book is that we should include the probabilistic modeling
level—which was one motivation for going from sparse coding to ICA.

An important choice made in this book is that the level of objective function is
always present. All our learning was based on optimization of objective functions—
which are almost always based on probabilistic modeling principles. In some other
approaches, one may go directly from the representational principle to an algorithm.
The danger with such an approach is that it may be difficult to understand what
such algorithms actually do. Going systematically through the levels of probabilis-
tic modeling, and objective function formulation, we gain a deeper understanding of
what the algorithm does based on the theory of statistics. Also, this approach con-
strains the modeling because we have to respect the rules of probabilistic modeling,
and avoids completely ad hoc methods.

Since we always have an objective function, we always need an optimization
algorithm. In preceding chapters, we omitted any discussion on how such optimiza-
tion algorithms can be constructed. One reason for this is that it is possible to use
general-purpose optimization methods readily implemented in many scientific com-
puting environments. So, one could numerically optimize the objective functions
without knowing anything, or at least not much, on the theory of optimization.

However, it is of course very useful to understand optimization theory when do-
ing natural image statistics modeling for several reasons:

• One can better choose a suitable optimization method, and fine-tune its parame-
ters.

• Some optimization methods have interesting neurophysiological interpretations
(in particular, Hebbian learning in Sect. 18.4).

• Some methods have tailor-made optimization methods (FastICA in Sect. 18.7).

That is why in this chapter, we review the optimization theory needed for under-
standing how to optimize the objective functions obtained in this book.

18.2 Gradient Method

18.2.1 Definition and Meaning of Gradient

The gradient method is the most fundamental method for maximizing a continuous-
valued, smooth function in a multi-dimensional space.

We consider the general problem of finding the maximum of a function that takes
real values in an n-dimensional real space. Finding the minimum is just finding the
maximum of the negative of the function, so the same theory is directly applicable
to both cases. We consider here maximization because that is what we needed in
preceding chapters. Let us denote the function to be maximized by f (w) where
w = (w1, . . . ,wn) is just an n-dimensional vector. The function to be optimized is
usually called the objective function.
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Fig. 18.1 The geometrical meaning of the gradient. Consider the function in (18.3), plotted in a.
In b, the closed curves are the sets where the function f has a constant value. The gradient at point
(0.5,1.42) is shown and it is orthogonal to the curve

The gradient of f , denoted by ∇f is defined as the vector of the partial deriva-
tives:

∇f (w) =

⎛

⎜⎜⎝

∂f (w)
∂w1
...

∂f (w)
∂wn

⎞

⎟⎟⎠ . (18.1)

The meaning of the gradient is that it points in the direction where the function
grows the fastest. More precisely, suppose we want to find a vector v which is such
that f (w+v) is as large as possible when we constrain the norm of v to be fixed and
very small. Then the optimal v is given by a suitably short vector in the direction
of the gradient vector. Likewise, the vector that reduces the value of f as much as
possible is given by −∇f (w), multiplied by a small constant. Thus, the gradient is
the direction of “steepest ascent”, and −∇f (w) is the direction of steepest descent.

Geometrically, the gradient is always orthogonal to the curves in a contour plot
of the function (i.e. to the curves that show where f has the same value), pointing
in the direction of growing f .

For illustration, let us consider the following function:

f (w) = exp
(−5(x − 1)2 − 10(y − 1)2) (18.2)

which is, incidentally, like a Gaussian pdf. The function is plotted in Fig. 18.1a. Its
maximum is at the point (1,1). The gradient is equal to

∇f (w) =
(−10(x − 1) exp(−5(x − 1)2 − 10(y − 1)2)

−20(y − 1) exp(−5(x − 1)2 − 10(y − 1)2)

)
. (18.3)

Some contours where the function is constant are shown in Fig. 18.1b. Also, the
gradient at one point is shown. We can see that taking a small step in the direction
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of the gradient, one gets closer to the maximizing point. However, if one takes a big
enough step, one actually misses the maximizing point, so the step really has to be
small.

18.2.2 Gradient and Optimization

The gradient method for finding the maximum of a function consists of repeatedly
taking small steps in the direction of the gradient, ∇f (w), recomputing the gradient
at the current point after each step. We have to take small steps because we know
that this direction leads to an increase in the value of f only locally — actually,
we can be sure of this only when the steps are infinitely small. The direction of the
gradient is, of course, different at each point and needs to be computed again in the
new point. The method can then be expressed as

w ← w + μ∇f (w) (18.4)

where the parameter μ is a small step size, typically much smaller than 1. The
iteration in (18.4) is repeated over and over again until the algorithm converges to
a point. This can be tested by looking at the change in w between two subsequent
iterations: if it is small enough, we assume the algorithm has converged.

When does such an algorithm converge? Obviously, if it arrives at a point where
the gradient it zero, it will not move away from it. This is not surprising because
the basic principles of optimization theory tell that at the maximizing points, the
gradient is zero; this is a generalization of the elementary calculus result which says
that in one dimension, the minima or maxima of a function are obtained at those
points where the derivative is zero.

If the gradient method is used for minimization of the function, as is more con-
ventional in the literature, the sign of the increment in (18.4) is negative, i.e.

w ← w − μ∇f (w). (18.5)

Choosing a good step size parameter μ is crucial. If it is too large, the algorithm
will not work at all; if it is too small, the algorithm will be too slow. One method,
which we used in the ISA and topographic ICA experiments in this book, is to adapt
the step size during the iterations. At each step, we consider the step size used in the
previous iteration (say μ0), and a larger one (say 2μ0) and a smaller one (μ0/2).
Then we compute the value of the objective function that results from using any of
these three step sizes in the current step, and choose the step size which gives the
largest value for the objective function, and use it as the μ0 in the next iteration.
Such adaptation makes each step a bit slower, but it makes sure that the step sizes
are reasonable.
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18.2.3 Optimization of Function of Matrix

Many functions we want to maximize are actually functions of a matrix. However,
in this context, such matrices are treated just like vectors. That is, an n×n matrix is
treated as an ordinary n2-dimensional vector. Just like we vectorize image patches
and consider them as very long vectors, we consider the parameter matrices as if
they had been vectorized. In practice, we don’t need to concretely vectorize the
parameter matrices we optimize, but that is the underlying idea.

For example, the gradient of the likelihood of the ICA model in (7.15) is given
by (see Hyvärinen et al. 2001b for derivation):

T∑

t=1

g(Vzt )zT
t + (V−1)T (18.6)

where the latter term is the gradient of log |det V|. Here, g is a function of the pdf
of the independent components: g = p′

i/pi where pi is the pdf of an independent
component. Thus, a gradient method for maximizing the likelihood of ICA is given
by

V ← V + μ

[
T∑

t=1

g(Vzt )zT
t + (V−1)T

]
(18.7)

where μ is the learning rate, not necessarily constant in time. Actually, in this case
it is possible to use a very simple trick to speed up computation. If the gradient is
multiplied by VTV from the right, we obtain a simpler version

V ← V + μ

T∑

t=1

[
I + g(yt )yT

t

]
V, (18.8)

where yt = Vzt . This turns out to be a valid method for maximizing likelihood.
Simply, the algorithm can be assumed to converge to the same points as the one
in (18.7) because VTV is invertible, and thus the points where the change in V is
zero are the same. A more rigorous justification of this natural or relative gradient
method is given in Cardoso and Laheld (1996), Amari (1998).

18.2.4 Constrained Optimization

It is often necessary to maximize a function under some constraints. That is, the
vector w is not allowed to take any value in the n-dimensional real space. The most
common constraint that we will encounter is that the norm of w is fixed to be con-
stant, typically equal to one: ‖w‖ = 1. The set of allowed values is called the con-
straint set. Some changes are needed in the gradient method to take such constraints
into account, but in the cases that we are interested in, the changes are actually quite
simple.
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Fig. 18.2 Projection onto the constraint set (a), and projection of the gradient (b). A function (not
shown explicitly) is to be minimized on the unit sphere. a Starting at the point marked with “o”, a
small gradient step is taken, as shown by the arrow. Then the point is projected to the closest point
on the unit sphere, which is marked by “×”. This is one iteration of the method. b The gradient
(dashed arrow) points in a direction in which is it dangerous to take a big step. The projected
gradient (solid arrow) points in a better direction, which is “tangential” to the constraint set. Then
a small step in this projected direction is taken (the step is not shown here)

18.2.4.1 Projecting Back to Constraint Set

The basic idea of the gradient method can be used in the constrained case as well.
Only a simple modification is needed: after each iteration of (18.4), we project the
vector w onto the constraint set. Projecting means going to the point in the constraint
set which is closest. Projection to the constraint set is illustrated in Fig. 18.2a.

In general, computing the projection can be very difficult, but in some special
cases, it is a simple operation. For example, if the constraint set consists of vectors
with norm equal to one, the projection is performed simply by the division:

w ← w/‖w‖. (18.9)

Another common constraint is orthogonality of a matrix. In that case, the projec-
tion onto the constraint set is given by

W ← (
WWT)−1/2W. (18.10)

Here, we see a rather involved operation: the inverse of the square root of the matrix.
We shall not go into details on how it can be computed; suffice it to say that most nu-
merical software can compute it quite efficiently.1 This operation often called sym-

1If you really want to know: the inverse square root (WWT)−1/2 of the symmetric matrix WWT is
obtained from the eigenvalue decomposition of WWT = E diag(λ1, . . . , λn)ET as (WWT)−1/2 =
E diag(1/

√
λ1, . . . ,1/

√
λn)ET. It is easy to see that if you multiply this matrix with itself, you get

the inverse of the original matrix. See also Sect. 5.9.2.
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metric orthogonalization, and it is the way that symmetric decorrelation in sparse
coding and other algorithms is usually implemented.

18.2.4.2 Projection of the Gradient

Actually, an even better method is obtained if we first project the gradient onto the
“tangent space” of the constraint set, and then take a step in that direction instead
of the ordinary gradient direction. What this means is that we compute a direction
that is “inside” the constraint set in the sense that infinitely small changes along that
direction do not get us out of the constraint set, yet the movement in that direction
maximally increases the value of the objective function. This improves the method
because then we can usually take larger step sizes and obtain larger increases in the
objective function without going in a completely wrong direction as is always the
danger when taking large steps. The projection onto the constraint set has to done
even in this case. Projection of the gradient is illustrated in Fig. 18.2b.

This is quite useful in the case where we are maximizing with respect to a para-
meter matrix that is constrained to be orthogonal. The projection can be shown to
equal (Edelman et al. 1998):

∇̃f (W) = ∇f (W) − WT∇f (W)WT (18.11)

where ∇f (W) is the ordinary gradient of the function f .
In Sect. 18.5 below, we will see an example of how these ideas of constrained

optimization are used in practice.

18.3 Global and Local Maxima

An important distinction is between global and local maxima. Consider the one-
dimensional function in Fig. 18.3. The global maximum of the function is at the
point x = 6; this is the “real” maximum point where the function attains its very
largest value. However, there are also two local maxima, at x = 2 and x = 9. A local
maximum is a point in which the function obtains a value which is greater than the
values in all neighboring points close-by.

An important point to understand is that the result of a gradient algorithm de-
pends on the initial point, that is, the point where the algorithm starts in the first
iteration. The algorithm only sees the local behavior of the function, so it will find
the closest local maximum. Thus, if in Fig. 18.3, the algorithm is started in the point
marked by circles, it will find the global maximum. In contrast, if it is started in one
of the points marked by crosses, it will converge to one of the local maxima.

In many cases, we are only interested in the global maximum. Then the behavior
of the gradient method can be rather unsatisfactory because it only finds a local
optimum. This is actually the case with most optimization algorithms. So, when
running optimization algorithms, we have to always keep in mind that an algorithm
only gives a local optimum, not the global one.
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Fig. 18.3 Local vs. global maxima. The function has a global maximum at x = 6 and two local
maxima at x = 2 and x = 9. If a gradient algorithm starts near one of the local maxima (e.g. at
the points marked by crosses), it will get stuck at one of the local maxima and it will not find the
global maximum. Only if the algorithm starts sufficiently close to the global maximum (e.g. at the
points marked by circles), it will find the global maximum

18.4 Hebb’s Rule and Gradient Methods

18.4.1 Hebb’s Rule

Hebb’s rule, or Hebbian learning, is a principle which is central in modern research
on learning and memory. It attempts to explain why certain synaptic connections get
strengthened as a result of experience, and others don’t; this is called plasticity in
neuroscience, and learning is a more cognitive context. Donald Hebb proposed in
1949 that

When an axon of cell A (. . . ) excites cell B and repeatedly or persistently takes part in
firing it, some growth process of metabolic change takes place in one or both cells so that
A’s efficiency as one of the cells firing B is increased. (Quoted in Kandel et al. (2000).)

This proposal can be readily considered in probabilistic terms: A statistical analysis
is about things which happen “repeatedly or persistently”.

A basic interpretation of Hebb’s rule is in terms of the covariance of the firing
rates of cells A and B: the change in the synaptic connection should be proportional
to that covariance. This is because if the firing rates of A and B are both high at
the same time, their covariance is typically large. The covariance interpretation is
actually stronger because it would also imply that if both cells are silent (firing rate
below average) at the same time, the synaptic connection is strengthened. Even more
than that: if one of the cells is typically silent when the other one fires strongly, this
has a negative contribution to the covariance, and the synaptic connection should be
decreased. Such an extension of Hebb’s rule seems to be quite in line with Hebb’s
original idea (Dayan and Abbott 2001).

Note a difference between this covariance interpretation, in which only the cor-
relation of the firing rates matters, and the original formulation, in which cell A is
assumed to “take part in firing [cell B]”, i.e. to have a causal influence on cell B’s
firing. This difference may be partly resolved by recent research which shows that
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the exact timing of the action potentials in cell A and cell B is important, a phenom-
enon called spike-timing dependent plasticity (Dan and Poo 2004), but we will not
consider this difference here.

18.4.2 Hebb’s Rule and Optimization

Hebb’s rule can be readily interpreted as an optimization process, closely related
to gradient methods. Consider an objective function of the form which we have
extensively used in this book:

J (w) =
∑

t

G

(
n∑

i=1

wixi(t)

)
. (18.12)

To compute the gradient, we use two elementary rules. First, the derivative of
a sum is the sum of the derivatives, so we just need to take the derivative of
G(
∑n

i=1 wixi(t)) and take its sum over t . Second, we use the chain rule which
gives the derivative of a compound function f1(f2(w)) as f ′

2(w)f ′
1(f2(w)). Now,

the derivative of
∑n

i=1 wixi(t) with respect to wi is simply xi(t), and we denote by
g = G′ the derivative of G. Thus, the partial derivatives are obtained as

∂J

∂wi

=
∑

t

xi(t)g

(
n∑

i=1

wixi(t)

)
. (18.13)

So, a gradient method to maximize this function would be of the form

wi ← wi + μ
∑

t

xi(t)g

(
n∑

i=1

wixi(t)

)
, for all i. (18.14)

Now, let us interpret the terms in (18.14). Assume that

1. The xi(t) are the inputs to the ith dendrite of a neuron at time point t .
2. The wi are the strengths of the synapses at those dendrites.
3. The firing rate of the neuron at time point t is equal to

∑n
i=1 wixi(t).

4. The inputs xi have zero mean, i.e. they describe changes around the mean firing
rate.

Further, let us assume that the function g is increasing.
Then the gradient method in (18.14) is quite similar to a Hebbian learning

process. Consider the connection strength of one of the synapses i. Then the con-
nection wi is increased if xi(t) is repeatedly high at the same time as the firing rate
of the neuron in question. In fact, the term multiplied by the learning rate μ is noth-
ing else that the covariance between the input to the ith dendrite and an increasing
function of the firing rate of the neuron, as in the covariance-based extension of
Hebb’s rule.
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Such a “learning rule” would be incomplete, however. The reason is that we
have to constrain w somehow, otherwise it might simply go to zero or infinity. In
preceding chapters, we usually constrained the norm of w to be equal to unity. This
is quite a valid constraint here as well. So, we assume that in addition to Hebb’s
rule, some kind of normalization process is operating in cell B.

18.4.3 Stochastic Gradient Methods

The form of Hebb’s rule in (18.14) uses the statistics of the data in the sense that it
computes the correlation over many observations of x. This is not very realistic in
terms of neurobiological modeling. A simple solution for this problem is offered by
the theory of stochastic gradient methods (Kushner and Clark 1978).

The idea in a stochastic gradient is simple and very general. Assume we want to
maximize some expectation, say E{g(w,x)} where x is a random vector, and w is a
parameter vector. The gradient method for maximizing this with respect to w gives

w ← w + μE
{∇wg(w,x)

}
(18.15)

where the gradient is computed with respect to w, as emphasized by the subscript in
the ∇ operator. Note that we have taken the gradient inside the expectation operator,
which is valid because expectation is basically a sum, and the derivative of a sum is
the sum of the derivatives as noted above.

The stochastic gradient method now proposes that we don’t need to compute the
expectation before taking the gradient step. For each observation x, we can use the
gradient iteration given that single observation:

w ← w + μ∇wg(w,x). (18.16)

So, when given a sample of observations of x, we compute the update in (18.16) for
each observation picked in any order. This is reasonable because the update in the
gradient will be, on the average, equal to the update in the original gradient with the
expectation given in (18.15). The step size has to be much smaller, though, because
of the large random fluctuations in this “instantaneous” gradient.

So, we can consider Hebbian learning in (18.14) so that the sum over t is omitted,
and each incoming observation, i.e. stimulus, is immediately used in learning:

wi ← wi + μxi(t)g

(
n∑

i=1

wixi(t)

)
. (18.17)

Such a learning method still performs maximization of the objective function, but is
more realistic in terms of neurophysiological modeling: at each time point, the input
and output of the neuron make a small change in the synaptic weights.
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Fig. 18.4 Two
non-linearities: g1 in (18.18),
dash-dotted line, and g2
in (18.20), solid line. For
comparison, the line x = y is
given as dotted line

18.4.4 Role of the Hebbian Non-linearity

By changing the non-linearity g in the learning rule, and thus the G in the objective
function, we see that Hebb’s rule is quite flexible and allows different kinds of learn-
ing to take place. If we assume that g is linear the original function G is quadratic.
Then Hebb’s rule is actually doing PCA (Oja 1982), since it is simply maximizing
the variance of wTx under the constraint that w has unit norm.

On the other hand, if g is non-linear, G is non-quadratic. Then we can go back
to the framework of basic sparse coding in Chap. 6. There, we used the expression
h(s2) instead of G(s) in order to investigate the convexity of h. So, if G is such that
it corresponds to a convex h, Hebb’s rule can be interpreted as doing sparse coding!
The is no contradiction in that almost same rule is able to do both PCA and sparse
coding because in Chap. 6 we also assumed that the data is whitened. So, we see
that the operation of Hebb’s rule depends very much on the preprocessing of the
data.

What kind of non-linearities does sparse coding require? Consider the widely-
used choice G1(s) = − log cosh s. This would give

g1(s) = − tanh s. (18.18)

This function (plotted in Fig. 18.4) would be rather odd to use as such in Hebb’s
rule, because it is decreasing, and the whole idea of Hebb’s rule would be inverted.
(Actually, such “anti-Hebbian” learning has been observed in some contexts (Bell
et al. 1993), and is considered important in some computational models (Földiák
1990).)

However, because the data is whitened, we can find a way of interpreting this
maximization as Hebbian learning. The point is that for whitened data, we can add
a quadratic term to G, and consider

G2(s) = 1

2
s2 − log cosh s. (18.19)

Since the data is whitened and w is constrained to unit norm, the expectation of
s2 = (wTx)2 is constant, and thus the maximization of G2 produces just the same
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result as maximization of G1. Now, the derivative of G2 is

g2(s) = s − tanh s (18.20)

which is an increasing function; see Fig. 18.4.
So, using a non-linearity such as g2, sparse coding does have a meaningful inter-

pretation as a special case of Hebb’s rule. The non-linearity g2 even makes intuitive
sense: it is a kind of a thresholding function (actually, a shrinkage function, see
Sect. 14.1.2.2), which ignores activations which are small.

18.4.5 Receptive Fields vs. Synaptic Strengths

In the Hebbian learning context, the feature weights Wi are related to synaptic
strengths in the visual cells. However, the visual input reaches the cortex only after
passing through several neurons in the retina and the thalamus. Thus, the Wi actually
model the compound effect of transformations in all those processing stages. How
can we then interpret optimization of a function such as G(

∑
x,y W(x, y)I (x, y))

in terms of Hebb’s rule?
In Sect. 5.9, we discussed the idea that the retina and LGN perform something

similar to a whitening of the data. Thus, as a rough approximation, we could con-
sider the canonically preprocessed data as the input to the visual cortex. Then max-
imization of a function such as G(vTz), where z is the preprocessed data, is in fact
modeling the plasticity of synapses of the cells the primary visual cortex. So, Heb-
bian learning in that stage can be modeled just as we did above.

18.4.6 The Problem of Feedback

In the Hebbian implementation of ICA and related learning rules, there is one more
problem which needs to be solved. This is the implementation of the constraint of
orthogonality. The constraint is necessary to prevent the neurons from all learning
the same feature. A simple approach would be to consider the minimization of some
measure of the covariance of the outputs (assuming the data is whitened as a pre-
processing stage):

Q(v1, . . . ,vn) = −M
∑

j �=i

[
E{sisj }

]2 = −M
∑

i �=j

[
E
{(

vT
i z
)(

vT
j z
)}]2 (18.21)

where M is a large constant (say, M = 100). We can add this function as a so-called
penalty to the measures of sparseness. If we then consider the gradient with respect
to vi , this leads to the addition of a term of the form

∇vi
Q = −2M

∑

j �=i

E{z sj }E{sisj } (18.22)
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to the learning rule for vi . Because M is large, after maximization the sum of the
[E{sisj }]2 will be very close to zero—corresponding to the case where the si are all
uncorrelated. Thus, this penalty approximately reinforces the constraint of uncorre-
latedness.

The addition of Q to the sparseness measure thus results in the addition of a feed-
back term of the form in (18.22).

18.5 Optimization in Topographic ICA *

As an illustration of the gradient method and constrained optimization, we consider
in this section maximization of likelihood of the topographic ICA in (11.5). This
section can be skipped by readers not interested in mathematical details.

Because independent subspace analysis is formally a special case of topographic
ICA, obtained by a special definition of the neighborhood function, the obtained
learning rule is also the gradient method for independent subspace analysis.

First note that we constrain V to be orthogonal, so det V is constant (equal to one),
and can be ignored in this optimization. Another simple trick to simplify the problem
is to note is that we can ignore the sum over t and just compute the “instantaneous”
gradient as in stochastic gradient methods. We can always go back to the sum over
t by just summing the gradient over t , because the gradient of a sum is the sum
of the gradients. In fact, we can simplify the problem even further by computing
the gradient of the likelihood for each term of in the sum over i in the likelihood
in (11.5), and taking the sum afterward.

So, the computation of the gradient is essentially reduced to computing the gra-
dient of

Li(v1, . . . ,vn) = h

(
n∑

j=1

π(i, j)
(
vT
j zt

)2
)

. (18.23)

Denote by vl
k the lth component of vk . By the chain rule, applied twice, we obtain

∂Li

∂vl
k

= 2zl
tπ(i, k)

(
vT
k zt

)
h′
(

n∑

j=1

π(i, j)
(
vT
j zt

)2
)

. (18.24)

This can be written in vector form by simply collecting these partial derivatives for
all l in a single vector:

∇vk
Li = 2ztπ(i, k)

(
vT
k zt

)
h′
(

n∑

j=1

π(i, j)
(
vT
j zt

)2
)

. (18.25)

(This is not really the whole gradient because it is just the partial derivatives with
respect to some of the entries in V, but the notation using ∇ is still often used.)
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Since the log-likelihood is simply the sum of the Li ’s we obtain

∇vk
logL =

T∑

t=1

n∑

i=1

∇vk
Li = 2

T∑

t=1

zt

(
vT
k zt

) n∑

i=1

π(i, k)h′
(

n∑

j=1

π(i, j)
(
vT
j zt

)2
)

.

(18.26)
We can omit the constant 2 which does not change the direction of the gradient.

So, the algorithm for maximizing the likelihood in topographic ICA is finally as
follows:

1. Compute the gradients in (18.26) for all k. Collect them in a matrix ∇V logL

which has the ∇vk logL as its rows.
2. Compute the projection of this matrix on the tangent space of the constraint

space, using the formula in (18.11). Denote the projected matrix as G̃. (This
projection step is optional, but usually it speeds up the algorithm.)

3. Do a gradient step as

V ← V + μG̃. (18.27)

4. Orthogonalize the matrix V. For example, this can be done by the formula
in (18.10).

To see a connection of such an algorithm with Hebbian learning, consider a gra-
dient update for each vk separately. We obtain the gradient learning rule

vk ← vk + μ

T∑

t=1

zt

(
vT
k zt

)
rk
t (18.28)

where

rk
t =

n∑

i=1

π(i, k)h′
(

n∑

j=1

π(i, j)
(
vT
j zt

)2
)

. (18.29)

Equally well, we could use a stochastic gradient method, ignoring the sum over t .
In a neural interpretation, the Hebbian learning rule in (18.28) can be considered a
“modulated” Hebbian learning, since the ordinary Hebbian learning term zt (vT

k zt )

is modulated by the term rk
t . This term could be considered as top-down feedback,

since it is a function of the local energies which could be the outputs of higher-order
neurons (complex cells).

18.6 Beyond Basic Gradient Methods *

This section can be skipped by readers not interested in mathematical theory. Here,
we briefly describe two further well-known classes of optimization methods. Actu-
ally, in our context, these are not very often better than the basic gradient method,
so our description is very brief.
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Fig. 18.5 Illustration of
Newton’s method for solving
an equation (which we use in
optimization to solve the
equation which says that the
gradient is zero). The function
is linearly approximated by
its tangent. The point where
the tangent intersects with the
x-axis is taken as the next
approximation of the point
where the function is zero

18.6.1 Newton’s Method

As discussed above, the optima of an objective function are found in points where
the gradient is zero. So, optimization can be approached as the problem of solving
a system of equations given by

∂f

∂w1
(w) = 0,

... (18.30)

∂f

∂wn

(w) = 0.

A classic method for solving such a system of equations is Newton’s method. It
can be used to solve any system of equations, but we consider here the case of the
gradient only.

Basically, the idea is to approximate the function linearly using its derivatives. In
one dimension, the idea is simply to approximate the graph of the function using its
tangent, whose slope is given by the derivative. That is, for a general function g:

g(w) ≈ g(w0) + g′(w0)(w − w0). (18.31)

This very general idea of finding the point where the function attains the value zero
is illustrated in Fig. 18.5.

In our case, g corresponds to the gradient, so we use the derivatives of the gradi-
ents, which are second partial derivatives of the original function f . Also, we need
to use a multidimensional version of this approximation. This gives

∇f (w) = ∇f (w0) + H(w0)(w − w0) (18.32)

where the function H, called the Hessian matrix, is the matrix of second partial
derivatives:

Hij = ∂2f

∂wi∂wj

. (18.33)
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Now, we can at every step of the method, find the new point as the one for which
this linear approximation is zero. Thus, we solve

∇f (w0) + H(w0)(w − w0) = 0 (18.34)

which gives

w = w0 − H(w0)
−1(∇f (w0)

)
. (18.35)

This is the idea in the Newton iteration. Starting from a random point, we iteratively
update w according to (18.35), i.e. compute the right-hand side for the current value
of w, and take that as the new value of w. Using the same notation as with the
gradient methods, we have the iteration

w ← w − H(w)−1(∇f (w)
)
. (18.36)

Note that this iteration is related to the gradient method. If the matrix H(w0)
−1

in (18.35) is replaced by a scalar step size μ, we actually get the gradient method.
So, the difference between the methods is threefold:

1. In Newton’s method, the direction where w “moves” is not given by the gradient
directly, but the gradient multiplied by the inverse of the Hessian.

2. This “step size” is not always very small: It is directly given by the inverse of the
Hessian matrix, and can be quite large.

3. In the gradient method, one can choose between minimization and maximization
of the objective function, by choosing the sign in the algorithm (cf. (18.4) and
(18.5)). In the Newton method, no such choice is possible. The algorithm just
tries to find a local extremum in which the gradient is zero, and this can be either
a minimum or a maximum.

The Newton iteration has some advantages and disadvantages compared to the
basic gradient method. It usually requires a smaller number of steps to converge.
However, the computations needed at each step are much more demanding, because
one has to first compute the Hessian matrix, and then compute H(w)−1(∇f (w))

(which is best obtained by solving the linear system H(w)v = ∇f (w)).
In practice, however, the main problem with the Newton method is that its be-

havior can be quite erratic. There is no guarantee any one iteration gives a w which
increases f (w). In fact, a typical empirical observation is that for some functions
this does not happen, and the algorithm may completely diverge, i.e. go to arbitrary
values of w, eventually reaching infinity. This is because the step size can be arbi-
trarily large, unlike in the gradient methods. This lack of robustness is why Newton’s
method is not often used in practice.

As an example of this phenomenon, consider the function

f (w) = exp

(
−1

2
w2
)

(18.37)

which has a single maximum as w = 0. The first and second derivatives, which
are the one-dimensional equivalents of the gradient and the Hessian, can be easily
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calculated as

f ′(w) = −w exp

(
−1

2
w2
)

, (18.38)

f ′′(w) = (w2 − 1
)

exp

(
−1

2
w2
)

(18.39)

which gives the Newton iteration as

w ← w + w

w2 − 1
. (18.40)

Now, assume that we start the iteration at any point where w > 1. Then the change
w

w2−1
is positive, which means that w is increased and it moves further and further

away from zero! In this case, the method fails completely and w goes to infinity
without finding the maximum at zero. (In contrast, a gradient method, with a rea-
sonably small step size, would find the maximum.)

However, different variants of the Newton method have proven useful. For ex-
ample, methods which do something between the gradient method and Newton’s
method (e.g. the Levenberg–Marquardt algorithm) have proven useful in some ap-
plications. In ICA, the FastICA algorithm (see below) uses the basic iteration of
Newton’s method but with a modification which takes the special structure of the
objective function into account.

18.6.2 Conjugate Gradient Methods

Conjugate gradient methods are often considered as the most efficient general-
purpose optimization methods. The theory is rather complicated and non-intuitive,
so we do not try to explain it in detail.

Conjugate gradient methods try to find a direction which is better than the gra-
dient direction. The idea is illustrated in Fig. 18.6. While the gradient direction is
good for a very small step size (actually, it is still the best for an infinitely small
step size), it is not very good for a moderately large step size. The conjugate gra-
dient method tries to find a better direction based on information on the gradient
directions in previous iterations. In this respect, the method is similar to Newton’s
method, which also modifies the gradient direction.

In fact, conjugate gradient methods do not just take a step of a fixed size in
the direction they have found. An essential ingredient, which is actually necessary
for the method to work, is a one-dimension line search. This means that once the
direction, say d, in which w should move has been chosen (using the complicated
theory of conjugate gradient methods), many different step sizes μ are tried out, and
the best one is chosen. In other words, a one-dimensional optimization is performed
on the function h(μ) = f (w + μd), and μ maximizing this function is chosen.
(Such line search could also be used in the basic gradient method. However, in the
conjugate gradient method it is completely necessary.)
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Fig. 18.6 A problem with
the gradient method. The
gradient direction may be
very bad for anything but the
very smallest step sizes. Here,
the gradient goes rather
completely in the wrong
direction due to the strongly
non-circular (non-symmetric)
structure of the objective
function. The conjugate
gradient method tries to find a
better direction

Conjugate gradient methods are thus much more complicated than ordinary gra-
dient methods. This is not a major problem if one uses a scientific computing en-
vironment in which the method is already programmed. Sometimes, the method is
much more efficient than the ordinary gradient methods, but this is not always the
case.

18.7 FastICA, a Fixed-Point Algorithm for ICA

Development of tailor-made algorithms for solving the optimization problems in
ICA is a subject of an extensive literature. Here, we explain briefly one popular
algorithm for performing the maximization, more information and details can be
found in the ICA book (Hyvärinen et al. 2001b).

18.7.1 The FastICA Algorithm

Assume that the data zt , t = 1, . . . , T , is whitened and has zero mean. The basic
form of the FastICA algorithm is as follows:

1. Choose an initial (e.g. random) weight vector w.
2. Let w ←∑

t zt g(wTzt ) − w
∑

t g
′(wTzt ).

3. Let w ← w/‖w‖.
4. If not converged, go back to 2.

Note that the sign of w may change from one iteration to the next; this is in line
with the fact that the signs of the components in ICA are not well defined. Thus,
the convergence of the algorithm must use a criterion which is immune to this. For
example, one might stop the iteration if |wTwold| is sufficiently close to one, where
wold is the value of w at the previous iteration.
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To use FastICA for several features, the iteration step 2 is applied separately for
the weight vector of each unit. After updating all the weight vectors, they are orthog-
onalized (assuming whitened data). This means projecting the matrix W, which con-
tains the vectors wi as its rows, on the space of orthogonal matrices, which can be
accomplished, for example, by the classical method involving matrix square roots,
given in (18.10). See Chap. 6 of Hyvärinen et al. (2001b) for more information on
orthogonalization.

18.7.2 Choice of the FastICA Non-linearity

The FastICA algorithm uses a non-linearity, usually denoted by g. This comes from
a measure of non-Gaussianity. Non-Gaussianity is measured as E{G(s)} for some
non-quadratic function. The function g is then the derivative of G.

Note that in Chap. 6 we measured non-Gaussianity (or sparseness) as E{h(s2)}.
Then we have G(s) = h(s2) which implies g(s) = 2h′(s2)s. So, we must make a
clear distinction between the non-linearities h and the functions G and g; they are
all different functions but they can be derived from one another.

The choice of the measure of non-Gaussianity, or the non-linearity, is actually
quite free in FastICA. We are not restricted to functions such that maximization of
G corresponds to maximization of sparseness, or such that G corresponds to the
log-pdf of the components. We can use, for example measures of skewness, i.e. the
lack of symmetry of the pdf.

In practice, it has been found that G(s) = log cosh s works quite well in a variety
of domains; it corresponds to the tanh non-linearity as g. (In FastICA, it makes no
difference if we take tanh or −tanh, the algorithm is immune to the change of sign.)

18.7.3 Mathematics of FastICA *

Here, we present the derivation of the FastICA algorithm, and show its connection
to gradient methods. This can be skipped by readers not interested in mathematical
details.

18.7.3.1 Derivation of the Fixed-Point Iteration

To begin with, we shall derive the fixed-point algorithm for one feature, using an ob-
jective function motivated by projection pursuit, see Hyvärinen (1999a) for details.
Denote the weight vector corresponding to one feature detector by w, and the canon-
ically preprocessed input by z. The goal is to find the extrema of E{G(wTz)} for a
given non-quadratic function G, under the constraint E{(wTz)2} = 1. According
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to the Lagrange conditions (Luenberger 1969), the extrema are obtained at points
where

E
{
zg
(
wTz

)}− βCw = 0 (18.41)

where C = E{zzT}, and β is a constant that can be easily evaluated to give β =
E{wT

0 zg(wT
0 z)}, where w0 is the value of w at the optimum. Let us try to solve this

equation by the classical Newton’s method; see Sect. 18.6.1 above. Denoting the
function on the left-hand side of (18.41) by F , we obtain its Jacobian matrix, i.e. the
matrix of partial derivatives, JF(w) as

JF(w) = E
{
zzTg′(wTz

)}− βC. (18.42)

To simplify the inversion of this matrix, we decide to approximate the first term in
(18.42). A reasonable approximation in this context seems to be E{zzTg′(wTz)} ≈
E{zzT}E{g′(wTz)} = E{g′(wTz)}C. The obtained approximation of the Jacobian
matrix can be inverted easily:

JF(w)−1 ≈ C−1/
(
E
{
g′(wTz

)}− β
)
. (18.43)

We also approximate β using the current value of w instead of w0. Thus, we obtain
the following approximative Newton iteration:

w ← w − [C−1E
{
zg
(
wTz

)}− βw
]/[

E
{
g′(wTz

)}− β
]

(18.44)

where w+ denotes the new value of w, and β = E{wTzg(wTz)}. After every step,
w+ is normalized by dividing it by

√
(w+)TCw+ to improve stability. This algo-

rithm can be further algebraically simplified (see Hyvärinen (1999a)) to obtain the
original form the fixed-point algorithm:

w ← C−1E
{
zg
(
wTz

)}− E
{
g′(wTz

)}
w. (18.45)

These two forms are equivalent. Note that for whitened data, C−1 disappears, giving
an extremely simple form of the Newton iteration. In Hyvärinen and Oja (1997), this
learning rule was derived as a fixed-point iteration of a gradient method maximizing
kurtosis, hence the name of the algorithm. However, image analysis must use the
more general form in Hyvärinen (1999a) because of the non-robustness of kurtosis.

18.7.3.2 Connection to Gradient Methods

There is a simple an interesting connection between the FastICA algorithm and
gradient algorithms for ICA.

Let us assume that the number of independent components to be estimated equals
the number of observed variables, i.e. n = m and A is square. Denote by W the
estimate of the inverse of A.

Now, consider the preliminary form of the algorithm in (18.44). To avoid the
inversion of the covariance matrix, we can approximate it as C−1 ≈ WTW, since
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C = AAT. Thus, collecting the updates for all the rows of W into a single equation,
we obtain the following form of the fixed-point algorithm:

W ← W + D
[
diag(−βi) + E

{
g(y)y

}]
W (18.46)

where y = Wz, βi = E{yig(yi)}, and D = diag(1/(βi − E{g′(yi)})). This can
be compared to the natural gradient algorithm for maximization of the likelihood
in (18.8). We can see that the algorithms are very closely related. First, the expecta-
tion in (18.46) is in practice computed as a sample average as in (18.8). So, the main
difference is that in the natural gradient algorithm, the βi are all set to one, and D is
replaced by identity times the step size μ. So, D is actually like a step size, although
in the form of a matrix here, but it does not affect to the point where the algorithm
converges (i.e. the update is zero). So, the only real difference is the βi . Now, it can
be proven that if the g really is the derivative of the log-likelihood, then the βi are
also (for infinite sample) equal to one (Hyvärinen et al. 2001b). In theory, then even
this difference vanishes and the algorithms really converge to the same points.

It must be noted that the FastICA algorithm does not maximize sparseness but
non-Gaussianity. Thus, in the case of sub-Gaussian features, it may actually be min-
imizing sparseness; see Sect. 7.9.3.



Chapter 19
Crash Course on Linear Algebra

This chapter explains basic linear algebra on a very elementary level. This is mainly
meant as a reminder: The readers hopefully already know this material.

19.1 Vectors

A vector in an n-dimensional real space is an ordered collection of n real numbers.
In this book, a vector is typically either the grey-scale values of pixels in an image
patch, or the weights in a linear filter or feature detector. The number of pixels is
n in the former case, and the number of weights is n in the latter case. We denote
images by I (x, y) and the weights of a feature detector typically by W(x,y). It is
assumed that the index x takes values from 1 to nx and the index y takes values
from 1 to ny , where the dimensions fulfill n = nx × ny . In all the sums that follow,
this is implicitly assumed and not explicitly written to simplify notation.

One of the main points in linear algebra is to provide a notation in which many
operations take a simple form. In linear algebra, the vectors such as I (x, y) and
W(x,y) are expressed as one-dimensional columns or rows of numbers. Thus, we
need to index all the pixels by a single index i that goes from 1 to n. This is obviously
possible by scanning the image row by row, or column by column (see Sect. 4.1 for
details on such vectorization). It does not make any difference which method is
used. A vector is usually expressed in column form as

v =

⎛

⎜⎜⎜⎝

v1
v2
...

vn

⎞

⎟⎟⎟⎠ . (19.1)

In this book, the vector containing image data (typically after some preprocessing
steps) will be usually denoted by z, and the vector giving the weights of a feature de-
tector by v. In the following, we will use both the vector- and image-based notations
side-by-side.

The (Euclidean) norm of a vector is defined as

∥∥W(x,y)
∥∥=

√∑

x,y

W(x, y)2, or ‖v‖ =
√∑

i

v2
i . (19.2)

The norm gives the length (or “size”) of a vector. There are also other ways of
defining the norm, but the Euclidean one is the most common.
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The dot-product (or inner product between two vectors is defined as

〈W,I 〉 =
∑

x,y

W(x, y)I (x, y). (19.3)

If W is a feature detector, this could express the value of the feature when the input
image is I . It basically computes a match between I and W . In vector notation, we
use the transpose operator, given by vT, to express the same operation:

vTz =
n∑

i=1

vizi . (19.4)

If the dot-product is zero, the vectors W and I are called orthogonal. The dot-
product of a vector with itself equals the square of its norm.

19.2 Linear Transformations

A linear transformation is the simplest kind of transformation in an n-dimensional
vector space. A vector I is transformed to a vector J by taking weighted sums:

J (x, y) =
∑

x′y′
m(x,y, x′, y′)I (x′, y′), for all x, y. (19.5)

The weights in the sum are different for every point (x, y). The indices x′ and y′ take
all the same values as x and y. Typical linear transformations include smoothing and
edge detection.

We can compound linear transformations by taking a linear transformation of J

using weights denoted by n(x, y, x′, y′). This gives the new vector as

K(x,y) =
∑

x′′y′′
n(x, y, x′′, y′′)J (x′′, y′′)

=
∑

x′′y′′
n(x, y, x′′, y′′)

∑

x′y′
m(x′′, y′′, x′, y′)I (x′, y′)

=
∑

x′y′

(∑

x′′y′′
n(x, y, x′′, y′′)m(x′′, y′′, x′, y′)

)
I (x′, y′). (19.6)

Defining

p(x, y, x′, y′) =
∑

x′′y′′
n(x, y, x′′, y′′)m(x′′, y′′, x′, y′) (19.7)

we see that the compounded transformation is a linear transformation with the
weights given by p.
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19.3 Matrices

In matrix algebra, linear transformations and linear systems of equations (see below)
can be succinctly expressed by products (multiplications). In this book, we avoid
using too much linear algebra to keep things as simple as possible. However, it
is necessary to understand how matrices are used to express linear transformation,
because in some cases, the notation becomes just too complicated, and also because
most numerical software takes matrices as input.

A matrix M of size n1 × n2 is a collection of real numbers arranged into n1
rows and n2 columns. The single entries are denoted by mij where i is the row
and j is the column. We can convert the weights m(x,y, x′, y′) expressing a linear
transformation by the same scanning process as was done with vectors. Thus,

M =
⎡

⎢⎣
m11 m12 . . . m1m

...
...

mn1 mn2 . . . mnm

⎤

⎥⎦ . (19.8)

The linear transformation of a vector z is then denoted by

y = Mz (19.9)

which is basically a short-cut notation for

yi =
n2∑

j=1

mij zj , for all i. (19.10)

This operation is also the definition of the product of a matrix and a vector.
If we concatenate two linear transformations, defining

s = Ny (19.11)

we get another linear transformation. The matrix P that expresses this linear trans-
formation is obtained by

pij =
n1∑

k=1

nikmkj . (19.12)

This is the definition of the product of two matrices: the new matrix P is denoted by

P = MN. (19.13)

This is the matrix version of (19.7). The definition is quite useful, because it means
we can multiply matrices and vectors in any order when we compute s. In fact, we
have

s = Ny = N(Mz) = (NM)z. (19.14)
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Another important operation with matrices is the transpose. The transpose MT

of a matrix M is the matrix where the indices are exchanged: the i, j th entry of MT

is mji . A matrix M is called symmetric if mij = mji , i.e., if M equals its transpose.

19.4 Determinant

The determinant answers the question: how are volumes changed when the data
space is transformed by the linear transformation m? That is, if I takes values in a
cube whose edges are all of length one, what is the volume of the set of the values
J in (19.5)? The answer is given by the absolute value of the determinant, denoted
by |det(M)| where M is the matrix form of m.

Two basic properties of the determinant are very useful.

1. The determinant of a product is the product of the determinants: det(MN) =
det(M)det(N). If you think that the first transformation changes the volume by
a factor or 2 and the second by a factor of 3, it is obvious that when you do both
transformation, the change in volume is by a factor of 2 × 3 = 6.

2. The determinant of a diagonal matrix equals the product of the diagonal ele-
ments. If you think is two dimensions, a diagonal matrix simply stretches one
coordinate by a factor of, say 2, and the other coordinate by a factor of, say 3, so
the volume of a square of area equal to 1 then becomes 2 × 3 = 6.

(In Sect. 19.7, we will see a further important result on the determinant of an or-
thogonal matrix.)

19.5 Inverse

If a linear transformation in (19.5) does not change the dimension of the data, i.e.
the number of pixels, the transformation can usually be inverted. That is, (19.5)
can usually be solved for I : if we know J and m, we can compute what was the
original I . This is the case if the linear transformation is invertible—a technical
condition that is almost always true. In this book, we will always assume that a
linear transformation is invertible if not otherwise mentioned.

In fact, we can then find a matrix of coefficients n(x, y), so that

I (x, y) =
∑

x′y′
n(x, y, x′, y′)J (x′, y′), for all x, y. (19.15)

This is the inverse transformation of m. In matrix algebra, the coefficient are ob-
tained by computing the inverse of the matrix M, denoted by M−1. So, solving for
y in (19.9) we have

y = M−1z. (19.16)

A multitude of numerical methods for computing the inverse of the matrix exist.
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Note that the determinant of the inverse matrix is simply the inverse of the deter-
minant: det(M−1) = 1/det(M). Logically, if the transformation changes the volume
by a factor of 5 (say), then the inverse must change the volume by a factor of 1/5.

The product of a matrix with its inverse equals the identity matrix I:

MM−1 = M−1M = I. (19.17)

The identity matrix is a matrix whose diagonal elements are all ones and the off-
diagonal elements are all zero. It corresponds to the identity transformation, i.e.
a transformation which does not change the vector. This means we have

Iz = z (19.18)

for any z.

19.6 Basis Representations

An important interpretation of the mathematics in the preceding sections is the rep-
resentation of an image in a basis. Assume we have a number of features Ai(x, y)

where i goes from 1 to n. Given an image I (x, y), we want to represent it as a linear
sum of these feature vectors:

I (x, y) =
n∑

i=1

Ai(x, y)si . (19.19)

The si are the coefficients of the feature vectors Ai . They can be considered as the
values of the features in the image I , since they tell “to what extent” the features are
in the image. If, for example, s1 = 0, that means that the feature A1 is not present in
the image.

Using vector notation, the basis representation can be given as

z =
n∑

i=1

ai si . (19.20)

Interestingly, this equation can be further simplified by putting all the si into a single
vector s, and forming a matrix A so that the columns of that matrix are the vectors ai ,
that is:

A = [a1,a2, . . . ,an] =
⎡

⎢⎣

⎛

⎜⎝
a11
...

an1

⎞

⎟⎠

⎛

⎜⎝
a12
...

an2

⎞

⎟⎠ . . .

⎛

⎜⎝
a1n

...

an3

⎞

⎟⎠

⎤

⎥⎦ . (19.21)

Then we have equivalently

z = As. (19.22)
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From this equation, we see how we can apply all the linear algebra machinery to
answer the following questions:

• How do we compute the coefficients si? This is done by computing the inverse
matrix of A (hoping that one exists), and then multiplying z with the inverse,
since s = A−1z.

• When is it possible to represent any z using the given ai? This question was
already posed in the preceding section. The answer is: if the number of basis
vectors equals the dimension of z, the matrix A is invertible practically always.
In such a case, we say that the ai (or the Ai ) form a basis.

A further important question is: What happens then if the number of vectors ai is
smaller than the dimension of the vector z? Then we cannot represent all the possi-
ble z’s using those features. However, we can find the best possible approximation
for any z based on those features, which is treated in Sect. 19.8.

The opposite case is when we have more vectors ai than the dimension of the
data. Then we can represent any vector z using those features; in fact, there are
usually many ways of representing any z, and the coefficients si are not uniquely
defined. This case is called overcomplete basis and treated in Sect. 13.1.

19.7 Orthogonality

A linear transformation is called orthogonal if it does not change the norm of the
vector. Likewise, a matrix A is called orthogonal if the corresponding transformation
is orthogonal. An equivalent condition for orthogonality is

ATA = I. (19.23)

If you think about the meaning of this equation in detail, you will realize that it says
two things: the column vectors of the matrix A are orthogonal, and all normalized to
unit norm. This is because the entries in the matrix ATA are the dot-products aT

i aj

between the column vectors of the matrix A.
An orthogonal basis is nothing else than a basis in which the basis vectors are

orthogonal and have unit norm; in other words, if we collect the basis vectors into a
matrix as in (19.21), that matrix is orthogonal.

Equation (19.23) shows that the inverse of an orthogonal matrix (or an orthogonal
transformation) is trivial to compute: we just need to rearrange the entries by taking
the transpose. This means that si = aT

i z, or

si =
∑

x,y

Ai(x, y)I (x, y). (19.24)

So, in an orthogonal basis, we obtain the coefficients as simple dot-products with
the basis vectors. Note that this is not true unless the basis is orthogonal.
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The compound transformation of two orthogonal transformation is orthogonal.
This is natural since if neither of the transformations changes the norm of the image,
then doing one transformation after the other does not change the norm either.

The determinant of an orthogonal matrix is equal to plus or minus one. This
is because an orthogonal transformation does not change volumes, so the absolute
value has to be one. The change in sign is related to reflections. Think of multiplying
one-dimensional data by −1: This does not change the “volumes”, but “reflects” the
data with respect to 0, and corresponds to a determinant of −1.

19.8 Pseudo-Inverse *

Sometimes transformations change the dimension, and the inversion is more com-
plicated. If there are more variables in y than in z in (19.9), there are basically more
equations than free variables, so there is no solution in general. That is, we cannot
find a matrix M̃ so that for any given y, z = M̃y is a solution for (19.9). However,
in many cases, it is useful to consider an approximative solution: Find a matrix M+
so that for z = M+y, the error ‖y − Mz‖ is as small as possible. In this case, the
optimal “approximative inverse” matrix can be easily computed as:

M+ = (MTM
)−1MT. (19.25)

On the other hand, if the matrix M has fewer rows than columns (fewer variables
in y than in z), there are more free variables than there are constraining equations.
Thus, there are many solutions z for (19.9) for a given y, and we have to choose one
of them. One option is to choose the solution that has the smallest Euclidean norm.
The matrix that gives this solution as M+y is given by

M+ = MT(MMT)−1
. (19.26)

The matrix M+ in both of these cases is called the (Moore–Penrose) pseudo-inverse
of M. (A more sophisticated solution for the latter case, using sparseness, is consid-
ered in Sect. 13.1.3.)



Chapter 20
The Discrete Fourier Transform

This chapter is a mathematically sophisticated treatment of the theory of Fourier
analysis. It concentrates on the discrete Fourier transform which is the variant used
in image analysis practice. It is not necessary to know this material to understand
the developments in this book; this is meant as supplementary material.

20.1 Linear Shift-Invariant Systems

Let us consider a system H operating on one-dimensional input signals I (x). The
system is linear if for inputs I1(x) and I2(x), and scalar α

H
{
I1(x) + I2(x)

} = H
{
I1(x)

}+ H
{
I2(x)

}
, (20.1)

H
{
αI1(x)

} = αH
{
I1(x)

}; (20.2)

similar definitions apply in the two-dimensional case. A system H is shift-invariant
if a shift in the input results in a shift of the same size in the output; that is, if
H{I (x)} = O(x), then for any integer m

H
{
I (x + m)

}= O(x + m); (20.3)

or, in the two-dimensional case, for any integers m and n,

H
{
I (x + m,y + n)

}= O(x + m,y + n). (20.4)

A linear shift-invariant system H operating on signals (or, in the two-dimensional
case, on images) can be implemented by either linear filtering with a filter, or another
operation, the convolution of the input and the impulse response of the system. The
impulse response H(x) is the response of the system to an impulse

δ(x) =
{

1, if x = 0,

0, otherwise,
(20.5)

that is

H(x) = H
{
δ(x)

}
. (20.6)

By noting that I (x) =∑∞
k=−∞ I (k)δ(x − k), and by applying linearity and shift-

invariance properties (equations (20.1)–(20.3)) it is easy to show that

O(x) = H
{
I (x)

}=
∞∑

k=−∞
I (k)H(x − k) = I (x) ∗ H(x), (20.7)
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where the last equality sign defines convolution ∗. Note that convolution is a sym-
metric operator since by making the change in summation index � = x−k (implying
k = x − �)

I (x) ∗H(x) =
∞∑

k=−∞
I (k)H(x − k) =

∞∑

�=−∞
H(�)I (x − �) = H(x) ∗ I (x). (20.8)

20.2 One-Dimensional Discrete Fourier Transform

20.2.1 Euler’s Formula

For purposes of mathematical convenience, in Fourier analysis, the frequency rep-
resentation is complex-valued: both the basis images and the weights consist of
complex numbers; this is called the representation of an image in the Fourier space.
The fundamental reason for this is Euler’s formula, which states that

eai = cosa + i sina (20.9)

where i is the imaginary unit. Thus, a complex exponential contains both the sin and
cos function in a way that turns out to be algebraically very convenient. One of the
basic reasons for this is that the absolute value of a complex number contains the
sum-of-squares operation:

|a + bi| =
√

a2 + b2 (20.10)

which is related to the formula in (2.16) on page 40 which gives the power of a
sinusoidal component. We will see below that we can indeed compute the Fourier
power as the absolute value (modulus) of some complex numbers.

In fact, we will see that the argument of a complex number on the complex plane
is related to the phase in signal processing. The argument of a complex number c is
a real number φ ∈ (−π,π] such that

c = |c|eφi . (20.11)

We will use here the signal-processing notation ∠c for the argument.
We will also use the complex conjugate of a complex number c = a+bi, denoted

by c̄, which can be obtained either as a − bi or, equivalently, as |c|e−φi . Thus, the
complex conjugate has the same absolute value, but opposite argument (“phase”).

20.2.2 Representation in Complex Exponentials

In signal processing theory, sinusoidals are usually represented in the form of the
following complex exponential signal

eiωx = cos(ωx) + i sin(ωx), x = 1, . . . ,M. (20.12)
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A fundamental mathematical reason for this is that these signals are eigensignals
of linear shift-invariant systems. An eigensignal is a generalization of the concept
of an eigenvector in linear algebra (see Sect. 5.8.1). Denote by H(x) the impulse
response of a linear shift-invariant system H. Then

H
{
eiωx

} = H(x) ∗ eiωx =
∞∑

k=−∞
H(k)eiω(x−k) = eiωx

∞∑

k=−∞
H(k)e−iωk

︸ ︷︷ ︸
=H̃ (ω)

= H̃ (ω)eiωx, (20.13)

where we have assumed that the sum
∑∞

k=−∞ H(k)e−iωk converges, and have de-
noted this complex number by H̃ (ω). Equation (20.13) shows that when a complex
exponential is input into a linear shift-invariant system, the output is the same com-
plex exponential multiplied by H̃ (ω); the complex exponential is therefore called
an eigensignal of the system.

To illustrate the usefulness of the representation in complex exponentials in an-
alytic calculations, let us derive the response of a linear shift-invariant system to a
sinusoidal. This derivation uses the identity

cos(φ) = 1

2

(
eiφ + e−iφ

)
, (20.14)

which can be verified by applying (20.12). Let H be a linear shift-invariant system,
and A cos(ωx + ψ) be an input signal; then

H
{
A cos(ωx + ψ)

} = A

2
H
{
ei(ωx+ψ) + e−i(ωx+ψ)

}

= A

2

(
eiψ H

{
eiωx

}+ e−iψ H
{
e−iωx

})

= A

2

(
eiψH̃ (ω)eiωx + e−iψ H̃ (−ω)e−iωx

)
. (20.15)

By the definition of H̃ (ω) (see (20.13)), H̃ (−ω) = H̃ (ω) = |H̃ (ω)|e−i∠H̃ (ω). Thus,

H
{
A cos(ωx + ψ)

} = ∣∣H̃ (ω)
∣∣A

1

2

(
ei(ωx+ψ+∠H̃ (ω)) + e−i(ωx+ψ+∠H̃ (ω))

)

= ∣∣H̃ (ω)
∣∣A

︸ ︷︷ ︸
amplitude

cos
(
ωx + ψ + ∠H̃ (ω)︸ ︷︷ ︸

phase

)
. (20.16)

Equation (20.16) is a one-dimensional formal version of the two statements made
in Sect. 2.2.3 (page 35):

• When a sinusoidal is input into a linear shift-invariant system, the output is a
sinusoidal with the same frequency.

• The change in amplitude and phase depend only on the frequency ω.
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Furthermore, the equation contains another important result, namely that both the
amplitude and the phase response can be read out from H̃ (ω): the amplitude re-
sponse is |H̃ (ω)|, and the phase response ∠H̃ (ω). This also explains the notation
introduced for amplitude and phase responses on page 35.

In order to examine further the use of complex exponentials eiωx , let us derive
the representation of a real-valued signal in terms of these complex-valued signals.
Thus, the imaginary parts have to somehow disappear in the final representation. De-
riving such a representation from the representation in sinusoidals (equation (2.6),
page 31) can be done by introducing negative frequencies ω < 0, and using (20.14).
Let us denote the coefficient of the complex exponential eiωx by Ĩ∗(ω). The repre-
sentation can be calculated as follows:

I (x) =
ωM∑

ω=0

Aω cos(ωx + ψω) =
ωM∑

ω=0

Aω

2

(
ei(ωx+ψω) + e−i(ωx+ψω)

)

=
ωM∑

ω=0

Aω

2

(
eiψωeiωx + ei(−ψω)ei(−ω)x

)

= A0︸︷︷︸
=Ĩ∗(0)

+
ωM∑

ω=−ωM
ω �=0

A|ω|
2

ei sgn(ω)ψ|ω|

︸ ︷︷ ︸
=Ĩ∗(ω)

when ω �= 0

eiωx =
ωM∑

ω=−ωM

Ĩ∗(ω)eiωx. (20.17)

Note the following properties of the coefficients Ĩ∗(ω):

• In general, the coefficients Ĩ∗(ω) are complex-valued, except for Ĩ∗(0) which is
always real.

• For ω ≥ 0, a coefficient Ĩ∗(ω) contains the information about both the amplitude
and the phase of the sinusoidal representation—amplitude information is given
by the magnitude |Ĩ∗(ω)| and phase information by the angle ∠Ĩ∗(ω):

Aω =
{

Ĩ∗(0), if ω = 0,

2|Ĩ∗(ω)|, otherwise,
(20.18)

ψω =
{

undefined, if ω = 0,

∠Ĩ∗(ω), otherwise.
(20.19)

• A closer look at the derivation (20.17) shows that the magnitude and the angle of
the positive and negative frequencies are related to each other as follows:

∣∣Ĩ∗(−ω)
∣∣= ∣∣Ĩ∗(ω)

∣∣, (20.20)

∠Ĩ∗(−ω) = −∠Ĩ∗(ω). (20.21)

Thus, Ĩ∗(w) and Ĩ∗(−w) form a complex-conjugate pair. This also means that
knowing only the coefficients of the positive frequencies—or only the coeffi-
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cients of the negative frequencies—is sufficient to reconstruct the whole repre-
sentation. (This is true only for real-valued signals; if one wants to represent
complex-valued signals, the whole set of coefficients is needed. However, such
representations are not needed in this book.)

Above it was assumed that a frequency-based representation of a signal I (x)

exists:

I (x) =
ωM∑

ω=0

Aω cos(ωx + ψω). (20.22)

From that, we derived a representation in complex exponentials

I (x) =
ωM∑

ω=−ωM

Ĩ∗(ω)eiωx, (20.23)

Ĩ∗(ω) =
{

A0 when ω = 0,
A|ω|

2 ei sgn(ω)ψ|ω| otherwise.
(20.24)

This derivation can be reversed: assuming that a representation in complex expo-
nentials exists—so that the coefficients of the negative and positive frequencies are
complex-conjugate pairs—a frequency-based representation also exists:

I (x) =
ωM∑

ω=−ωM

Ĩ∗(ω)eiωx =
ωM∑

ω=−ωM

∣∣Ĩ∗(ω)
∣∣ei(ωx+∠Ĩ∗(ω))

= Ĩ∗(0) +
ωM∑

ω=ω1

2
∣∣Ĩ∗(ω)

∣∣ cos
(
ωx + ∠Ĩ∗(ω)

)
. (20.25)

20.2.3 The Discrete Fourier Transform and Its Inverse

Next, we introduce the discrete Fourier transform (DFT) and its inverse, which are
the tools that are used in practice to convert signals to their representation in com-
plex exponentials and back. We will first give a definition of the transforms, and
then relate the properties of these transforms to the discussion we had above.

The word “discrete” refers here to the fact that the signal (or image) is sampled
at a discrete set of points, i.e. the index x is not continuous. This is in contrast to
the general mathematical definition of the Fourier transform which is defined for
functions which take values in a real-valued space. Another point is that the DFT
is in a sense closer to what is called the Fourier series in mathematics because the
set of frequencies used is discrete as well. Thus, the theory of DFT has a number of
differences to the general mathematical definitions used in differential calculus.

The discrete Fourier transformation is used to compute the coefficients of the
signal’s representation in complex exponentials: this set of coefficients is called the
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discrete Fourier transform. The inverse discrete Fourier transformation (IDFT) is
used to compute the signal from its representation in complex exponentials. Let
I (x) be a signal of length N . The discrete Fourier transform pair is defined by

DFT: Ĩ (u) =
N−1∑

x=0

I (x)e−i 2πx
N

u, u = 0, . . . ,N − 1. (20.26)

IDFT: I (x) = 1

N

N−1∑

u=0

Ĩ (u)ei 2πu
N

x, x = 0, . . . ,N − 1, (20.27)

Notice that the frequencies utilized in the representation in complex exponentials of
the IDFT (20.27) are

ωu = 2πu

N
, u = 0, . . . ,N − 1. (20.28)

The fact that (20.27) and (20.26) form a valid transform pair—that is, that the
IDFT of Ĩ (k) is I (x)—can be shown as follows. Let Ĩ (u) be defined as in (20.26).
Then—redefining the sum in (20.26) to be over x∗ instead of x to avoid using the
same index twice—the IDFT gives

1

N

N−1∑

u=0

Ĩ (u)ei 2πu
N

x = 1

N

N−1∑

u=0

(
N−1∑

x∗=0

I (x∗)e−i 2πx∗
N

u

)
ei 2πu

N
x

= 1

N

N−1∑

x∗=0

I (x∗)
(

N−1∑

u=0

ei
2πu(x−x∗)

N

)

= 1

N

N−1∑

x∗=0

I (x∗)
[

N−1∑

u=0

(
ei

2π(x−x∗)
N

)u
]

︸ ︷︷ ︸
term A

. (20.29)

If x∗ = x, then term A in (20.29) equals N; when x∗ �= x, the value of this geometric
sum is

N−1∑

u=0

(
ei

2π(x−x∗)
N

)u =

=1︷ ︸︸ ︷
(ei

2π(x−x∗)
N )N −1

ei
2π(x−x∗)

N − 1
= 0. (20.30)

Therefore, the IDFT gives

1

N

N−1∑

u=0

Ĩ (u)ei 2πu
N

x = 1

N
I (x)N = I (x). (20.31)

We now discuss several of the properties of the discrete Fourier transform pair.
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Negative Frequencies and Periodicity in the DFT The representation in com-
plex exponentials in the DFT employs the following frequencies:

ωu = 2πu

N
, u = 0, . . . ,N − 1. (20.32)

In the previous section, we discussed the use of negative frequencies in representa-
tions based on complex exponentials. At first sight, it looks like no negative frequen-
cies are utilized in the DFT. However, the representation used by the DFT (20.27)
is periodic: as a function of the frequency index u, both the complex exponentials
and their coefficients have a period of N . That is, for any integer �, for the complex
exponentials, we have

ei
2π(u+�N)

N
x = ei 2πu

N
x ei2π�x
︸ ︷︷ ︸

=1

= ei 2πu
N

x, (20.33)

and for the coefficients

Ĩ (u + �N) =
N−1∑

x=0

I (x)e−i 2πx
N

(u+�N) =
N−1∑

x=0

I (x)e−i 2πx
N

u e−i2πu�
︸ ︷︷ ︸

=1

=
N−1∑

x=0

I (x)e−i 2πx
N

u = Ĩ (u). (20.34)

Therefore, for example, the coefficient Ĩ (N − 1) corresponding to frequency
2π(N−1)

N
is the same as the coefficient Ĩ (−1) corresponding to frequency −2π

N
would

be. In general, the latter half of the DFT can be considered to correspond to the neg-
ative frequencies. To be more precise, for a real-valued I (x), the DFT equivalent of
the complex-conjugate relationships (20.20) and (20.21) is

Ĩ (N − u) =
N−1∑

x=0

I (x)e−i 2πx
N

(N−u) =
N−1∑

x=0

I (x) e−i2πx
︸ ︷︷ ︸

=1

ei 2πx
N

u

=
N−1∑

x=0

I (x)e−i 2πx
N

u = Ĩ (u). (20.35)

This relation also explains why the DFT seems to have “too many numbers” for real-
valued signals. It consists of N complex-valued numbers, which seems to contain
twice the amount of information as the original signal, which has N real-valued
numbers. The reason is that half the information in DFT is redundant, due to the
relation in (20.35). For example, if you know all the values of Ĩ (u) for u from 0 to
(N −1)/2 (assuming N is odd), you can compute all the rest by just taking complex
conjugates.
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Periodicity of the IDFT and the Convolution Theorem The Fourier-transform
pair implicitly assumes that the signal I (x) is periodic: applying a derivation similar
to (20.34) to the IDFT (20.27) gives

I (x + �N) = I (x). (20.36)

This assumption of periodicity is also important for perhaps the most important
mathematical statement about the discrete Fourier transform, namely the convo-
lution theorem. Loosely speaking, the convolution theorem states that the Fourier
transform of the convolution of two signals is the product of the discrete Fourier
transforms of the signals. To be more precise, we have to take border effects into
account, i.e. what happens near the beginning and the end of signals, and this is
where the periodicity comes into play.

Now, we shall derive the convolution theorem. Let I (x) and H(x) be two signals
of the same length N (if they initially have different lengths, one of them can always
be extended by “padding” zeros, i.e. adding a zero signal the end). Denote by Ĩ (u)

and H̃ (u) the Fourier transforms of the signals. Then the product of the Fourier
transforms is

H̃ (u)Ĩ (u) =
(

N−1∑

�=0

H(�)e−i2π�u/N

)(
N−1∑

k=0

I (k)e−i2πku/N

)

=
N−1∑

�=0

N−1∑

k=0

H(�)I (k)e−i2π(�+k)u/N . (20.37)

Making a change of index x = � + k yields

H̃ (u)Ĩ (u) =
N−1∑

�=0

�+N−1∑

x=�

H(�)I (x − �)e−i2πxu/N

=
N−1∑

�=0

[
N−1∑

x=�

H(�)I (x − �)e−i2πxu/N

+
�+N−1∑

x=N

H(�)I (x − �)e−i2πxu/N

︸ ︷︷ ︸
sum A

]
. (20.38)

If we assume that I (x) is periodic with a period of N , then what has been denoted
by sum A in (20.38) can be made simpler: since in that sum H(�) is constant and
e−i2πxu/N is periodic with a period of N , the lower and upper limits in the sum can
simply be changed to 0 and � − 1, respectively, yielding

H̃ (u)Ĩ (u) =
N−1∑

�=0

[
N−1∑

x=�

H(�)I (x − �)e−i2πxu/N +
�−1∑

x=0

H(�)I (x − �)e−i2πxu/N

]
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=
N−1∑

�=0

N−1∑

x=0

H(�)I (x − �)e−i2πxu/N

=
N−1∑

x=0

N−1∑

�=0

H(�)I (x − �)

︸ ︷︷ ︸
=O(x)

e−i2πxu/N

=
N−1∑

x=0

O(x)e−i2πxu/N = Õ(u), (20.39)

where Õ(u) is the discrete Fourier transform of O(x). Notice that O(x) is obtained
as a convolution of H(x) and I (x) under the assumption of periodicity. That is,
we define the values of the signal outside of its actual range by assuming that it is
periodic. (If we want to use the basic definition of convolution, we actually have
to define the values of the signal up to infinite values of the indices, because the
definition assumes that the signals have infinite length.) We call such an operation
cyclic convolution.

Equation (20.39) proves the cyclic version of the convolution theorem: the DFT
of the cyclic convolution of two signals is the product of the DFTs of the signals.
Note that the assumption of cyclicity is not needed in the general continuous-space
version of the convolution theorem; it is a special property of the discrete transform.

In practice, when computing the convolution of two finite-length signals, the
definition of cyclic convolution is often not what one wants, because it means that
values of the signals near x = 0 can have an effect on the values of the convolution
near x = N − 1. In most cases, one would like to define the convolution so that the
effect of finite length is more limited. Usually, this is done by modifying the signals
so that the difference between cyclic convolution and other finite-length versions
disappear. For example, this can lead to adding (“padding”) zeros at the edges. Such
zero-padding makes it simple to compute convolutions using DFTs, which is usually
much faster than using the definition.1

Real- and Complex-Valued DFT Coefficients In general, the coefficients Ĩ (u)

are complex-valued, except for Ĩ (0) which is always real-valued. However, if the
signal has an even length so that N

2 is an integer, then

Ĩ

(
N

2

)
= Ĩ

(
N − N

2

)
= Ĩ

(
N

2

)
, (20.40)

where in the last step we have applied (20.35). Therefore, when N is even, Ĩ (N
2 ) is

also real-valued.

1See, for example, the MATLAB reference manual entry for the function conv for details.
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The Sinusoidal Representation from the DFT If N is odd, then starting
from (20.27), a derivation similar to (20.25) gives

I (x) = Ĩ (0)

N︸︷︷︸
=A0

+
N−1

2∑

u=1

2|Ĩ (u)|
N︸ ︷︷ ︸

=Au
when u �= 0

cos

(
2πu

N︸︷︷︸
=ωu

when u �= 0

x + ∠Ĩ (u)︸ ︷︷ ︸
=ψu

when u �= 0

)
. (20.41)

If N is even, then

I (x) = Ĩ (0)

N︸︷︷︸
=A0

+
N
2 −1∑

u=1

2|Ĩ (u)|
N︸ ︷︷ ︸

=Au
when u �= 0
and u �= N

2

cos

(
2πu

N︸︷︷︸
=ωu

when u �= 0
and u �= N

2

x + ∠Ĩ (u)︸ ︷︷ ︸
=ψu

when u �= 0
and u �= N

2

)

+ Ĩ (N
2 )

N︸ ︷︷ ︸
=A N

2

cos( π︸︷︷︸
=ω N

2

x). (20.42)

Comparing (20.41) to (20.25), we can see that the magnitudes of the DFT coeffi-
cients are divided by N to get the amplitudes of the sinusoidals. This corresponds to
the 1

N
coefficient in front of the IDFT (20.27), which is needed so that the DFT and

the IDFT form a valid transform pair. However, the placement of this coefficient is
ultimately a question of convention: the derivation in (20.29)–(20.31) is still valid if
the coefficient 1

N
would be moved in front of the DFT in (20.26), or even if both the

IDFT and DFT equations would have a coefficient of 1√
N

in front. The convention
adopted here in the DFT-IDFT equation pair (equations (20.27) and (20.26)) is the
same as in MATLAB.

The Basis is Orthogonal, Perhaps up to Scaling In terms of a basis representa-
tion, the calculations in (20.29) show that the complex basis vectors used in DFT
are orthogonal to each other. In fact, the dot-product of two basis vectors with fre-
quencies u and u∗ is

N−1∑

x=0

e−i 2πx
N

uei 2πx
N

u∗ =
N−1∑

x=0

(
ei 2π

N
(u∗−u)

)x (20.43)

where we have taken the conjugate of the latter term because that is how the dot-
product of complex-valued vectors is defined. Now, this is almost like the “term A”
in (20.29) with the roles of u and x exchanged (as well as the signs of u and u∗
flipped and the scaling of u changed). So, the calculations given there can be sim-
ply adapted to show that for u �= u∗, this dot-product is zero. However, the norms of
these basis vectors are not equal to one in this definition. This does not change much
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because it simply means that the inverse transform rescales the coefficients accord-
ingly. The coefficients in the basis are still obtained by just taking dot-products with
the basis vectors (and some rescaling if needed). As pointed out above, different de-
finitions of DFT exist, and in some of them, the basis vectors are normalized to unit
norm, so the basis is exactly orthogonal. (In such a definition, it is the convolution
theorem which needs a scaling coefficient.)

DFT Can Be Computed by the Fast Fourier Transformation A basic way of
computing the DFT would be to use the definition in (20.26). That would mean that
we have to do something like N2 operations because computing each coefficient
needs a sum with N terms, and there are N coefficients. A most important algorithm
in signal processing is the Fast Fourier Transform (FFT), which computes the DFT
using operations which are of the order N logN , based on a recursive formula. This
is much faster than N2 because the logarithm grows very slowly as a function of N .
Using FFT, one can compute the DFT for very long signals. Practically all numerical
software implementing DFT use some variant of FFT, and usually the function is
called fft.

20.3 Two- and Three-Dimensional Discrete Fourier Transforms

The two- and three-dimensional discrete Fourier transforms are conceptually similar
to the one-dimensional transform. The inverse transform can be thought of as a
representation of the image in complex exponentials

I (x, y) = 1

MN

M−1∑

u=0

N−1∑

v=0

Ĩ (u, v)ei2π( ux
M

+ vy
N

),

x = 0, . . . ,M − 1, y = 0, . . . ,N − 1, (20.44)

and the coefficients Ĩ (u, v) in this representation are determined by the (forward)
transform

Ĩ (u, v) =
M−1∑

x=0

N−1∑

y=0

I (x, y)e−i2π( ux
M

+ vy
N

),

u = 0, . . . ,M − 1, v = 0, . . . ,N − 1. (20.45)

The horizontal and vertical frequencies (see Sect. 2.2.2 on page 31) in the represen-
tation in complex exponentials (20.44) are

ωx,u = 2πu

M
, u = 0, . . . ,M − 1, (20.46)

ωy,v = 2πv

N
, v = 0, . . . ,N − 1, (20.47)
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and the amplitude Au,v and phase ψu,v of the corresponding frequency components

Au,v cos(ωx,ux + ωy,vy + ψu,v), u = 0, . . . ,M − 1, v = 0, . . . ,N − 1, (20.48)

can be “read out” from the magnitude and angle of the complex-valued coefficient
Ĩ (u, v). In a basis interpretation, the DFT thus uses a basis with different frequen-
cies, phases, and orientations.

Computationally, the two-dimensional DFT can be obtained as follows. First,
compute a one-dimensional DFT along for each row, i.e. for the one-dimensional
slice given by fixing y. For each row, replace the original values I (x, y) by the
DFT coefficients. Denote these by I (u, y). Then, just compute a one-dimensional
DFT for each column, i.e. for each fixed u. This gives the final two-dimensional
DFT I (u, v). Thus, the two-dimensional DFT is obtained by applying the one-
dimensional DFT twice; typically, an FFT algorithm is used. The reason why this is
possible is the following relation, which can be obtained by simple rearrangement
of the terms in the definition in Equation (20.45):

Ĩ (u, v) =
M−1∑

y=0

[
N−1∑

x=0

I (x, y)e−i2π ux
N

]
e−i2π

vy
M (20.49)

in which the term in brackets is just the one-dimensional DFT for a fixed y.
The three-dimensional discrete Fourier transform pair is defined similarly:

I (x, y, t) = 1

MNT

M−1∑

u=0

N−1∑

v=0

T −1∑

w=0

Ĩ (u, v,w)ei2π( ux
M

+ vy
N

+ wt
N

),

x = 0, . . . ,M − 1, y = 0, . . . ,N − 1, t = 0, . . . , T − 1, (20.50)

Ĩ (u, v,w) =
M−1∑

x=0

N−1∑

y=0

T −1∑

t=0

I (x, y, y)e−i2π( ux
M

+ vy
N

+ wt
N

),

u = 0, . . . ,M − 1, v = 0, . . . ,N − 1, w = 0, . . . , T − 1. (20.51)

The two- and three-dimensional discrete Fourier transforms enjoy a number of
similar properties as the one-dimensional transform. For example, the properties of
two-dimensional transform pair include:

• Complex-conjugate symmetry Ĩ (−u,−v) = I (u, v)

• Convolution theorem holds when the convolution is defined as the cyclic variant
• Periodicity of the transform Ĩ (u, v) = Ĩ (u + M,v) = Ĩ (u, v + N) = Ĩ (u + N,

v + M)

• Periodicity of the inverse I (x, y) = I (x + M,y) = I (x, y + N) = I (x + N,

y + M)



Chapter 21
Estimation of Non-normalized Statistical Models

Statistical models are often based on non-normalized probability densities. That
is, the model contains an unknown normalization constant whose computation is
too difficult for practical purposes. Such models were encountered, for example,
in Sects. 13.1.5 and 13.1.7. Maximum likelihood estimation is not possible with-
out computation of the normalization constant. In this chapter, we show how such
models can be estimated using a different estimation method. It is not necessary to
know this material to understand the developments in this book; this is meant as
supplementary material.

21.1 Non-normalized Statistical Models

To fix the notation, assume we observe a random vector x ∈ R
n which has a prob-

ability density function (pdf) denoted by px(.). We have a parametrized density
model p(.; θ), where θ is an m-dimensional vector of parameters. We want to esti-
mate the parameter θ from observations of x, i.e. we want to approximate px(.) by
p(.; θ̂) for the estimated parameter value θ̂ . (To avoid confusion between the ran-
dom variable and an integrating variable, we use ξ as the integrating variable instead
of x in what follows.)

The problem we consider here is that we only are able to compute the pdf given
by the model up to a multiplicative constant 1/Z(θ):

p(ξ ; θ) = 1

Z(θ)
q(ξ ; θ).

That is, we do know the functional form of q as an analytical expression (or any
form that can be easily computed), but we do not know how to easily compute Z

which is given by an integral that is often analytically intractable:

Z(θ) =
∫

ξ∈Rn

q(ξ ; θ) dξ .

In higher dimensions (in fact, for almost any n > 2), the numerical computation of
this integral is practically impossible as well.

Thus, maximum likelihood estimation cannot be easily performed. One solution
is to approximate the normalization constant Z using Monte Carlo methods; see, e.g.
Mackay (2003). In this chapter, we discuss a simpler method called score matching.

This chapter is based on (Hyvärinen 2005), first published in Journal of Machine
Learning Research. Copyright retained by the author

A. Hyvärinen, J. Hurri, P.O. Hoyer, Natural Image Statistics,
Computational Imaging and Vision 39,
© Springer-Verlag London Limited 2009
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21.2 Estimation by Score Matching

In the following, we use extensively the gradient of the log-density with respect to
the data vector. For simplicity, we call this the score function, although according
the conventional definition, it is actually the score function with respect to a hypo-
thetical location parameter (Schervish 1995). For the model density, we denote the
score function by ψ(ξ ; θ):

ψ(ξ ; θ) =

⎛

⎜⎜⎝

∂ logp(ξ ;θ)
∂ξ1
...

∂ logp(ξ ;θ)
∂ξn

⎞

⎟⎟⎠=
⎛

⎜⎝
ψ1(ξ ; θ)

...

ψn(ξ ; θ)

⎞

⎟⎠= ∇ξ logp(ξ ; θ).

The point in using the score function is that it does not depend on Z(θ). In fact, we
obviously have

ψ(ξ ; θ) = ∇ξ logq(ξ ; θ). (21.1)

Likewise, we denote by ψx(.) = ∇ξ logpx(.) the score function of the distribution
of observed data x. This could in principle be estimated by computing the gradient
of the logarithm of a non-parametric estimate of the pdf—but we will see below that
no such computation is necessary. Note that score functions are mappings from R

n

to R
n.

We now propose that the model is estimated by minimizing the expected squared
distance between the model score function ψ(.; θ) and the data score function ψx(.).
We define this squared distance as

J (θ) = 1

2

∫

ξ∈Rn

px(ξ)
∥∥ψ(ξ ; θ) − ψx(ξ)

∥∥2
dξ . (21.2)

Thus, our score matching estimator of θ is given by

θ̂ = arg min
θ

J (θ).

The motivation for this estimator is that the score function can be directly com-
puted from q as in (21.1), and we do not need to compute Z. However, this may
still seem to be a very difficult way of estimating θ , since we might have to com-
pute an estimator of the data score function ψx from the observed sample, which
is basically a non-parametric estimation problem. However, no such non-parametric
estimation is needed. This is because we can use a simple trick of partial integration
to compute the objective function very easily, as shown by the following theorem.

Theorem 1 Assume that the model score function ψ(ξ ; θ) is differentiable, as well
as some weak regularity conditions.1

1Namely: the data pdf px(ξ) is differentiable, the expectations Ex{‖ψ(x; θ)‖2} and Ex{‖ψx(x)‖2}
are finite for any θ , and px(ξ)ψ(ξ ; θ) goes to zero for any θ when ‖ξ‖ → ∞.
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Then the objective function J in (21.2) can be expressed as

J (θ) =
∫

ξ∈Rn

px(ξ)

n∑

i=1

[
∂iψi(ξ ; θ) + 1

2
ψi(ξ ; θ)2

]
dξ + const. (21.3)

where the constant does not depend on θ ,

ψi(ξ ; θ) = ∂ logq(ξ ; θ)

∂ξi

is the ith element of the model score function, and

∂iψi(ξ ; θ) = ∂ψi(ξ ; θ)

∂ξi

= ∂2 logq(ξ ; θ)

∂ξ2
i

is the partial derivative of the ith element of the model score function with respect
to the ith variable.

The proof, given in Hyvärinen (2005), is based on a simple trick of partial inte-
gration.

The theorem shows the remarkable fact that the squared distance of the model
score function from the data score function can be computed as a simple expecta-
tion of certain functions of the non-normalized model pdf. If we have an analytical
expression for the non-normalized density function q , these functions are readily
obtained by derivation using (21.1) and taking further derivatives.

In practice, we have T observations of the random vector x, denoted by
x(1), . . . ,x(T ). The sample version of J is obviously obtained from (21.3) as

J̃ (θ) = 1

T

T∑

t=1

n∑

i=1

[
∂iψi

(
x(t); θ)+ 1

2
ψi

(
x(t); θ)2

]
+ const. (21.4)

which is asymptotically equivalent to J due to the law of large numbers. We propose
to estimate the model by minimization of J̃ in the case of a real, finite sample.

One may wonder whether it is enough to minimize J to estimate the model, or
whether the distance of the score functions can be zero for different parameter val-
ues. Obviously, if the model is degenerate in the sense that two different values of θ

give the same pdf, we cannot estimate θ . If we assume that the model is not degen-
erate, and that q > 0 always, we have local consistency as shown by the following
theorem and the corollary.

Theorem 2 Assume the pdf of x follows the model: px(.) = p(.; θ∗) for some θ∗.
Assume further that no other parameter value gives a pdf that is equal2 to p(.; θ∗),

2In this theorem, equalities of pdf’s are to be taken in the sense of equal almost everywhere with
respect to the Lebesgue measure.
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and that q(ξ ; θ) > 0 for all ξ , θ . Then

J (θ) = 0 ⇔ θ = θ∗.

For a proof, see Hyvärinen (2005).

Corollary 1 Under the assumptions of the preceding theorems, the score matching
estimator obtained by minimization of J̃ is consistent, i.e. it converges in probability
toward the true value of θ when sample size approaches infinity, assuming that the
optimization algorithm is able to find the global minimum.

The corollary is proven by applying the law of large numbers.3

This result of consistency assumes that the global minimum of J̃ is found by the
optimization algorithm used in the estimation. In practice, this may not be true, in
particular because there may be several local minima. Then the consistency is of
local nature, i.e., the estimator is consistent if the optimization iteration is started
sufficiently close to the true value.

21.3 Example 1: Multivariate Gaussian Density

As a very simple illustrative example, consider estimation of the parameters of the
multivariate Gaussian density:

p(x;M,μ) = 1

Z(M,μ)
exp

(
−1

2
(x − μ)TM(x − μ)

)

where M is a symmetric positive-definite matrix (the inverse of the covariance ma-
trix). Of course, the expression for Z is well known in this case, but this serves as
an illustration of the method. As long as there is no chance of confusion, we use x
here as the general n-dimensional vector. Thus, here we have

q(x) = exp

(
−1

2
(x − μ)TM(x − μ)

)
(21.5)

and we obtain

ψ(x;M,μ) = −M(x − μ)

and

∂iψi(x;M,μ) = −mii.

3As sample size approaches infinity, J̃ converges to J (in probability). Thus, the estimator con-
verges to a point where J is globally minimized. By Theorem 2, the global minimum is unique and
found at the true parameter value (obviously, J cannot be negative).
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Thus, we obtain

J̃ (M,μ) = 1

T

T∑

t=1

[∑

i

−mii + 1

2

(
x(t) − μ

)TMM
(
x(t) − μ

)]
. (21.6)

To minimize this with respect to μ, it is enough to compute the gradient

∇μJ̃ = MMμ − MM
1

T

T∑

t=1

x(t)

which is obviously zero if and only if μ is the sample average 1
T

∑T
t=1 x(t). This is

truly a minimum because the matrix MM that defines the quadratic form is positive-
definite.

Next, we compute the gradient with respect to M, which gives

∇MJ̃ = −I+M
1

2T

T∑

t=1

(
x(t)−μ

)(
x(t)−μ

)T + 1

2T

[
T∑

t=1

(
x(t)−μ

)(
x(t)−μ

)T
]

M

which is zero if and only if M is the inverse of the sample covariance matrix
1
T

∑T
t=1(x(t) − μ)(x(t) − μ)T, which thus gives the score matching estimate.

Interestingly, we see that score matching gives exactly the same estimator as
maximum likelihood estimation. In fact, the estimators are identical for any sample
(and not just asymptotically). The maximum likelihood estimator is known to be
consistent, so the score matching estimator is consistent as well.

This example also gives some intuitive insight into the principle of score match-
ing. Let us consider what happened if we just maximized the non-normalized log-
likelihood, i.e., log of q in (21.5). It is maximized when the scale parameters in M
are zero, i.e. the model variances are infinite and the pdf is completely flat. This
is because then the model assigns the same probability to all possible values of
x(t), which is equal to 1. In fact, the same applies to the second term in (21.6),
which thus seems to be closely connected to maximization of the non-normalized
log-likelihood.

Therefore, the first term in (21.3) and (21.6), involving second derivatives of the
logarithm of q , seems to act as a kind of a normalization term. Here it is equal
to −∑i mii . To minimize this, the mii should be made as large (and positive) as
possible. Thus, this term has the opposite effect to the second term. Since the first
term is linear and the second term polynomial in M, the minimum of the sum is
different from zero.

A similar interpretation applies to the general non-Gaussian case. The second
term in (21.3), expectation of the norm of score function, is closely related to max-
imization of non-normalized likelihood: if the norm of this gradient is zero, then
in fact the data point is in a local extremum of the non-normalized log-likelihood.
The first term then measures what kind of an extremum this is. If it is a minimum,
the first term is positive and the value of J is increased. To minimize J , the first
term should be negative, in which case the extremum is a maximum. In fact, the ex-
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tremum should be as steep a maximum (as opposed to a flat maximum) as possible
to minimize J . This counteracts, again, the tendency to assign the same probability
to all data points that is often inherent in the maximization of the non-normalized
likelihood.

21.4 Example 2: Estimation of Basic ICA Model

Next, we show how score matching can be used in the estimation of the basic ICA
model, defined as

logp(x) =
n∑

k=1

G
(
wT

k x
)+ Z(w1, . . . ,wn). (21.7)

Again, the normalization constant is well known and equal to log |det W| where the
matrix W has the vectors wi as rows, but this serves as an illustration of our method.

Here, we choose the distribution of the components si to be so-called logistic
with

G(s) = −2 log cosh

(
π

2
√

3
s

)
− 4

√
3

π
.

This distribution is normalized to unit variance as typical in the theory of ICA. The
score function of the model in (21.7) is given by

ψ(x;W) =
n∑

k=1

wkg
(
wT

k x
)

(21.8)

where the scalar non-linear function g is given by

g(s) = − π√
3

tanh

(
π

2
√

3
s

)
.

The relevant derivatives of the score function are given by

∂iψi(x) =
n∑

k=1

w2
kig

′(wT
k x
)

and the sample version of the objective function J̃ is given by

J̃ = 1

T

T∑

t=1

n∑

i=1

[
n∑

k=1

w2
kig

′(wT
k x(t)

)+ 1

2

n∑

j=1

wjig
(
wT

j x(t)
) n∑

k=1

wkig
(
wT

k x(t)
)
]

=
n∑

k=1

‖wk‖2 1

T

T∑

t=1

g′(wT
k x(t)

)+ 1

2

n∑

j,k=1

wT
j wk

1

T

T∑

t=1

g
(
wT

k x(t)
)
g
(
wT

j x(t)
)
.

(21.9)
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21.5 Example 3: Estimation of an Overcomplete ICA Model

Finally, we how score matching can be applied in the case of the overcomplete basis
model in Sect. 13.1.5. The likelihood is defined almost as in (21.7), but the number
of components m is larger than the dimension of the data n, and we introduce some
extra parameters. The likelihood is given by

logp(x) =
m∑

k=1

αkG
(
wT

k x
)+ Z(w1, . . . ,wn,α1, . . . , αn) (21.10)

where the vectors wk = (wk1, . . . ,wkn) are constrained to unit norm (unlike in the
preceding example), and the αk are further parameters. We introduce here the extra
parameters αk to account for different distributions for different projections. Con-
straining αk = 1 and m = n and allowing the wk to have any norm, this becomes the
basic ICA model.

We have the score function

ψ(x;W, α1, . . . , αm) =
m∑

k=1

αkwkg
(
wT

k x
)
.

where g is the first derivative of G. Going through similar developments as in the
case of the basic ICA model, the sample version of the objective function J̃ can be
shown to equal

J̃ =
m∑

k=1

αk

1

T

T∑

t=1

g′(wT
k x(t)

)

+ 1

2

m∑

j,k=1

αjαkwT
j wk

1

T

T∑

t=1

g
(
wT

k x(t)
)
g
(
wT

j x(t)
)
. (21.11)

Minimization of this function thus enables estimation of the overcomplete ICA
model using the energy-based formulation. This is how we obtained the results in
Fig. 13.1 on page 286.

21.6 Conclusion

Score matching is a simple method to estimate statistical models in the case where
the normalization constant is unknown. Although the estimation of the score func-
tion is computationally difficult, we showed that the distance of data and model
score functions is very easy to compute. The main assumptions in the method are:
(1) all the variables are continuous-valued and defined over R

n, (2) the model pdf is
smooth enough.
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We have seen how the method gives an objective function whose minimization
enables estimation of the model. The objective function is typically given as an
analytical formula, so any classic optimization method, such as gradient methods,
can be used to minimize it.

Two related methods are contrastive divergence (Hinton 2002) and pseudo-
likelihood (Besag 1975). The relationships between these methods are considered
in Hyvärinen (2007).
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Vetterli M, Kovačević J (1995) Wavelets and subband coding. Prentice Hall signal processing se-
ries. Prentice Hall, Englewood Cliffs

Vincent B, Baddeley RJ (2003) Synaptic energy efficiency in retinal processing. Netw Comput
Neural Syst 43:1283–1290

Vincent B, Baddeley RJ, Troscianko T, Gilchrist ID (2005) Is the early visual system optimised to
be energy efficient? Netw Comput Neural Syst 16:175–190

Vinje WE, Gallant JL (2000) Sparse coding and decorrelation in primary visual cortex during
natural vision. Science 287(5456):1273–1276

Vinje WE, Gallant JL (2002) Natural stimulation of the nonclassical receptive field increases in-
formation transmission efficiency in V1. J Neurosci 22:2904–2915

Wachtler T, Lee TW, Sejnowski TJ (2001) Chromatic structure of natural scenes. J Opt Soc Am A
18(1):65–77

Wachtler T, Doi E, Lee TW, Sejnowski TJ (2007) Cone selectivity derived from the responses of
the retinal cone mosaic to natural scenes. J Vis 7(8):1–14

Wainwright MJ, Simoncelli EP, Willsky AS (2001) Random cascades on wavelet trees and their
use in analyzing and modeling natural images. Appl Comput Harmon Anal 11:89–123

Wandell BA (1995) Foundations of vision. Sinauer Associates, Sunderland
Weliky M, Fiser J, Hunt RH, Wagner DN (2003) Coding of natural scenes in primary visual cortex.

Neuron 37(4):703–718



440 References

Wichmann FA, Braun DI, Gegenfurtner KR (2006) Phase noise and the classification of natural
images. Vis Res 46:1520–1529

Wilkinson F, James T, Wilson H, Gati J, Menon R, Goodale M (2000) An fMRI study of the
selective activation of human extrastriate form vision areas by radial and concentric gratings.
Curr Biol 10:1455–8

Williams CB, Hess RF (1998) Relationship between facilitation at threshold and suprathreshold
contour integration. J Opt Soc Am A 15(8):2046–2051

Willmore B, Tolhurst DJ (2001) Characterizing the sparseness of neural codes. Netw Comput
Neural Syst 12:255–270

Winkler G (2003) Image analysis, random field and Markov chain Monte Carlo methods, 2nd edn.
Springer, Berlin

Wiskott L, Sejnowski TJ (2002) Slow feature analysis: Unsupervised learning of invariances.
Neural Comput 14(4):715–770

Wong ROL (1999) Retinal waves and visual system development. Ann Rev Neurosci 22:29–47
Wyss R, König P, Verschure PFMJ (2006) A model of the ventral visual system based on temporal

stability and local memory. PLoS Biol 4(5):0836–0843
Yang Z, Purves D (2003) A statistical explanation of visual space. Nat Neurosci 6:632 – 640
Yen SC, Baker J, Gray CM (2007) Heterogeneity in the responses of adjacent neurons to natural

stimuli in cat striate cortex. J Neurophysiol 97:1326–1341
Yuille A, Kersten D (2006) Vision as Bayesian inference: analysis by synthesis? Trends Cogn Sci

10(7):301–308
Zetzsche C, Krieger G (1999) Nonlinear neurons and high-order statistics: New approaches to

human vision and electronic image processing. In: Rogowitz B, Pappas T (eds) Human vision
and electronic imaging IV. Proc. SPIE, vol 3644. SPIE, Bellingham, pp 2–33

Zetzsche C, Röhrbein F (2001) Nonlinear and extra-classical receptive field properties and the
statistics of natural scenes. Netw Comput Neural Syst 12:331–350

Zetzsche C, Krieger G, Wegmann B (1999) The atoms of vision: Cartesian or polar? J Opt Soc
Am A 16:1554–1565

Zhang K, Sejnowski TJ (2000) A universal scaling law between gray matter and white matter of
cerebral cortex. Proc Natl Acad Sci USA 97:5621–5626

Zhu SC, Wu ZN, Mumford D (1997) Minimax entropy principle and its application to texture
modeling. Neural Comput 9:1627–1660

Zhu Y, Qian N (1996) Binocular receptive field models, disparity tuning, and characteristic dispar-
ity. Neural Comput 8:1611–1641



Index

A
action potential, 51
aliasing, 340

and rectangular sampling grid, 106
of phases of highest frequencies, 107
reducing it by dimension reduction, 108

amodal completion, 371
amplitude, 29
amplitude response, 35, 410
analysis by synthesis, 8
anisotropy, 115, 147, 230, 251, 332
argument (of Fourier coefficient), 408
aspect ratio, 58, 264
attention, 306
audition, 323
autocorrelation function, 113
axon, 51

B
basis

definition, 403
illustration, 39
orthogonal, 39
overcomplete, see overcomplete basis
undercomplete, 39

basis vector, 278
Bayes’ rule, 83
Bayesian inference, 9

and cortical feedback, 295
as higher-order learning principle, 368
definition, 81
in overcomplete basis, 280

blue sky effect, 206
bottom-up, 295
bubble coding, 352

C
canonical preprocessing, see preprocessing,

canonical
category, 302
causal influence, 384
central limit theorem, 169, 220

channel
color (chromatic), 309
frequency, see frequency channels
information, 184
limited capacity, 185, 194
ON and OFF, 289

chromatic aberration, 311
coding, 13, 177

bubble, 352
predictive, 304
sparse, see sparse coding

collator units, 273
collector units, 273
color, 309
color hexagon, 312
competitive interactions, 302
complex cells, 61, 213, 215, 218

energy model, see energy model
hierarchical model criticized, 370
in ISA, 229
in topographic ICA, 244, 251
interactions between, 62

complex exponentials, 408
compression, 13, 177
cones, 309
contours, 273, 296
contrast, 55
contrast gain control, 63, 225

and normalization of variance, 204
relationship to ISA, 223

contrastive divergence, 284
convexity, 163, 164, 217, 234

definition, 134
convolution, 28, 407
correlation

and Hebb’s rule, 384
between pixels, 95
of squares (energies), see energy correla-

tions
correlation coefficient, 78
cortex, 54

extrastriate, 263
striate, see V1
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covariance
and Hebb’s rule, 384
definition, 78

covariance matrix, 78
and PCA, 101
connection to power spectrum, 113

curvelets, 373
cytochrome oxidase blobs, 240, 314

D
DC component, 93

is not always sparse, 168, 171
removal, 63, 93, 204

as part of canonical preprocessing,
109

dead leaves model, 374
decorrelation

deflationary, 140
symmetric, 141

dendrite, 51
derivatives, 379, 391
determinant

considered constant in likelihoods, 162
definition, 402
in density of linear transform, 159

dimension reduction
as part of canonical preprocessing, 109
by PCA, 103

Dirac filter, 18
discrete cosine transform, 185
disparity, 315
divisive normalization, 63, 205, 225
dot-product, 399
double opponent, 314

E
ecological adaptation, 7
eigensignal, 409
eigenvalue decomposition

and Fourier analysis, 120
and PCA, 102, 117
and translation-invariant data, 119
definition, 117
finds maximum of quadratic form, 118
of covariance matrix, 117

eigenvectors/eigenvalues, see eigenvalue de-
composition

embodiment, 374

end-stopping, 302
energy correlations, 201, 220, 234, 342

spatiotemporal, 345, 352
temporal, 337

energy model, 61, 242, 264
as subspace feature in ISA, 214
learning by sparseness, 216

entropy
and coding length, 180
definition, 179
differential, 182

as measure of non-Gaussianity, 184
maximum, 183
minimum, 185
of neuron outputs, 188

estimation, 86
maximum a posteriori (MAP), 87
maximum likelihood, see likelihood,

maximum
Euler’s formula, 408
excitation, 53
expectation

definition, 77
linearity, 77

exponential distribution, 167
extrastriate cortex, 64, 295, 371

F
FastICA, 143, 336

definition, 394
feature, 17

output statistics, 18
feedback, 295, 389
FFT, 417
filling-in, 371
filter

linear, 25
spatiotemporal, 325
temporally decorrelating, 332

firing rate, 53
modeled as a function of stimulus, 55
spontaneous, 53

Fourier amplitude (see power spectrum)
1/f behavior, 111, 372

Fourier analysis, see Fourier transform
Fourier energy, 33, 61
Fourier power spectrum, see power spectrum
Fourier space, 408
Fourier transform, 29, 37, 407
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connection to PCA, 102
definition, 407
discrete, 37, 411
fast, 417
spatiotemporal, 326
two-dimensional, 417

frame (in image sequences), 325
frequency

negative, 410
frequency channels, 58, 269, 274

produced by ICA, 173
frequency-based representation, 29, 325

as a basis, 40
function

log cosh, 136, 143, 163, 190, 266, 285,
287, 336, 337, 387, 395

neighborhood, 240
nonlinear, see nonlinearity
tanh, see nonlinearity, tanh

G
Gabor filter, 45, 264
Gabor function, 45, 57, 274, 313, 341

in complex cell model, 61
gain control, contrast, see contrast gain con-

trol
gain control, luminance, 63
ganglion cells, 54, 64, 121

learning receptive fields, 124
number compared to V1, 278
receptive fields, 55

Gaussian distribution
and PCA, 109
and score matching estimation, 422
generalized, 164
multidimensional, 109
one-dimensional, 70
spherical symmetry when whitened, 156
standardized, 70, 79
uncorrelatedness implies independence,

157
gaze direction, 306
gradient, 378
gradient method, 380

conjugate, 393
stochastic, 386
with constraints, 381

Gram–Schmidt orthogonalization, 149
grandmother cell, 53

H
Hebb’s rule, 384

and correlation, 384
and orthogonality, 388

Hessian, 391
horizontal interactions

see lateral interactions, 295

I
ice cube model, 239
image, 2
image space, 10
image synthesis

by ICA, 160
by ISA, 230
by PCA, 111

impulse response, 28, 407
independence

as nonlinear uncorrelatedness, 152
definition, 75
implies uncorrelatedness, 79
increased by divisive normalization, 210
of components, 152

independent component analysis, 151
after variance normalization, 207
and Hebb’s rule, 385
and mutual information, 187
and non-Gaussianity, 153
and optimal sparseness measures, 163
connection to sparse coding, 161
definition, 153
for preprocessed data, 154
image synthesis, 160
impossibility for Gaussian data, 156
indeterminacies, 153
likelihood, see likelihood, of ICA
maximum likelihood, 159
need not give independent components,

199
nonlinear, 224
of color images, 313, 317
of complex cell outputs, 265
of image sequences, 335
of natural images, 160
optimization in, 388
pdf defined by, 158
score matching estimation, 424
topographic, 242
vs. whitening, 154
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independent subspace analysis, 213
as nonlinear ICA, 224
generative model definition, 219
image synthesis, 230
of natural images, 225
special case of topographic ICA, 243
special case of two-layer model, 256
superiority over ICA, 232

infomax, 188
basic, 188
nonlinear neurons, 189
with non-constant noise variance, 190

information flow
maximization, see infomax

information theory, 13, 177
critique of application, 193

inhibition, 53
integrating out, 256
invariance

modeling by subspace features, 214
not possible with linear features, 213
of features, importance, 230
of ISA features, 229
rotational (of image), see anisotropy
shift (of a system), 407
to orientation, 219, 236
to phase, of a feature

and sampling grid, 108
in complex cells, 62
in ISA, 217, 225

to position, 214, 231
to scale, 372, 374

and 1/f 2 power spectrum, 113
to translation, of an image, 119

and relation to PCA, 102
inverse of matrix, 402

K
kurtosis, 164, 165, 338

and classification of distributions, 167
and estimation of ICA, 171
definition, 134

L
Laplacian distribution, 163, 300

generalized, 164
two-dimensional generalization, 219

lateral geniculate nucleus, see LGN
lateral interactions, 295, 302, 305, 349, 370

LGN, 54, 194
learning receptive fields, 124, 333
receptive fields characterized, 55

likelihood, 86, 89, 159
and divisive normalization, 205
maximum, 87, 368, 419
obtained by integrating out, 257
of ICA, 159, 174

and differential entropy, 186
and infomax, 190
and optimal sparseness measures, 163
as a sparseness measure, 161
optimization, 381

of ISA, 219
of topographic ICA, 242, 245
of two-layer model, 257
used for deciding between models, 233

linear features
cannot be invariant, 213

linear–nonlinear model, 60
local maximum, 383
local minimum, 383
localization

simultaneous, 46
log cosh, see function, log cosh

M
Markov random field, 285, 369, 374
matrix

definition, 401
identity, 403
inverse, 402

of orthogonal matrix, 404
optimization of a function of, 381
orthogonal, 105

matrix square root, 123
and orthogonalization, 382
and whitening, 124

maximum entropy, 183
maximum likelihood, see likelihood, maxi-

mum
metabolic economy, 148, 368
minimum entropy, 185

coding in cortex, 187
model

descriptive, 15
different levels, 377
energy, see energy model
energy-based, 254, 282
generative, 8, 254
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normative, 15, 297, 367
physically inspired, 373
predictive, 263, 274
statistical, 86, 377
two-layer, 253

multilayer models, 374
multimodal integration, 323
music, 323
mutual information, 184, 187, 189

N
natural images

as random vectors, 67
definition, 11
sequences of, 325
transforming to a vector, 67

nature vs. nurture, 368
neighborhood function, 240
neuron, 51
Newton’s method, 391
noise

added to pixels, 279
reduction and feedback, 296
reduction by thresholding, 298
white, see white noise

non-Gaussianity
and independence, 169
different forms, 167
maximization and ICA, 168

non-negative matrix factorization, 288
with sparseness constraints, 290

nonlinearity, 133
convex, 134, 163, 164, 217, 222
gamma, 310
Hebbian, 387
in FastICA, 266, 395
in overcomplete basis, 281
in three-layer model, 297
square root, 136, 163, 225
tanh, 266, 336, 387, 395

norm, 399
normal distribution, see Gaussian distribu-

tion
normalization constant, 260, 283, 419

O
objective function, 378
ocular dominance, 318
optimization

constrained, 381
under orthogonality constraint, 382

orientation columns, 240
orthogonality

and Hebb’s rule, 388
equivalent to uncorrelatedness, 105
of matrix or transformation, 404
of vectors, 400
of vectors vs. of matrix, 105
prevents overcompleteness, 277

orthogonalization
as decorrelation, 140
Gram–Schmidt, 149
symmetric, 383

orthonormality, 105
overcomplete basis

and end-stopping, 302
and PCA, 279
definition, 278
energy-based model, 282

score matching estimation, 425
generative model, 278

P
partition function, see normalization con-

stant
PCA, see principal component analysis
pdf, 69

non-normalized, 419
phase, 29, 408

its importance in natural images, 114
phase response, 35, 410
photo-receptors, 54

and color, 309
pinwheels, 251, 260
place cells, 323
plasticity, 384

spike-time dependent, 384
pooling, 215, 244

frequency, 266
positive matrix factorization, 288
posterior distribution, 82, 83, 296
power spectrum, 33

1/f 2 behavior, 111, 372
and covariances, 113
and Gaussian model, 114
and PCA, 115
its importance in natural images, 114
of natural images, 111
spatiotemporal, 328



446 Index

Wiener–Khinchin theorem, 113
preprocessing

by DC removal, see DC component, re-
moval

canonical, 109, 139, 140, 143, 172, 216,
225, 242

how it changes the models, 154
in sparse coding, 138
input to visual cortex, 388
inversion of, 172

primary visual cortex, see V1
principal component analysis

and Hebb’s rule, 387
and whitening, 104
as anti-aliasing, 106, 108
as dimension reduction, 103
as generative model, 110
as part of canonical preprocessing, 109
as preprocessing, 103
components are uncorrelated, 118
computation of, 101, 116
connection to Fourier analysis, 102
definition, 96
definition is unsatisfactory, 99
lack of uniqueness, 99, 119
mathematics of, 116
of color images, 311
of natural images, 98, 100
of stereo images, 317

principal subspace, 104
prior distribution, 7, 9, 83, 158, 280

non-informative, 83
prior information, see prior distribution
probabilistic model, see model, statistical
probability

conditional, 73
joint, 70
marginal, 70

probability density (function), see pdf
products of experts, 284
pseudo-inverse, 405
pyramids, 373

Q
quadrature phase, 45, 144, 264

in complex cell model, 61

R
random vector, 68
receptive field, 55, 57

center-surround, 55, 121, 314, 332
classical and non-classical, 304
definition is problematic, 282, 304
Gabor model, 57
linear model, 56
space-time inseparable, 327
space-time separable, 327
spatiotemporal, 326
temporal, 326
vs. feature (basis) vector, 171
vs. synaptic strength, 388

rectification, 64, 333, 342
half-wave, 60

redundancy, 13, 181
as predictability, 14
problems with, 182
reduction, 14

representation, 17
frequency-based, see frequency-based

representation
linear, 17, 38

retina, 53
learning receptive fields, 124
receptive fields characterized, 55

retinotopy, 64, 239
reverse correlation, 57
RGB data, 310

S
sample, 86

two different meanings, 86
sampling, 3, 106, 316, 336
saturation, 60, 206
scale mixture, 168, 256
scaling laws, 372
score matching, 284, 368, 420
segmentation, 371
selectivities

of ISA features, 229
of simple cells, 58
of sparse coding features, 145

sequences
of natural images, 325

shrinkage, 300, 388
simple cells, 56, 244

distinct from complex cells?, 369
Gabor models, 57
interactions between, 62
linear models, 56
nonlinear responses, 59
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selectivities, 58
sinusoidal, 409
skewness, 167

in natural images, 167
slow feature analysis, 354

linear, 356
quadratic, 357
sparse, 359

space-frequency analysis, 41
sparse coding

and compression, 185
and Hebb’s rule, 385, 387
connection to ICA, 161
metabolic economy, 148, 368
optimization in, 388
results with natural images, 138, 143
special case of ICA, 170
utility, 147

sparseness
as non-Gaussianity, 167
definition, 131
lifetime vs. population, 141
measure, 133

absolute value, 136
by convex function of square, 134
kurtosis, 133
log cosh, 136
optimal, 151, 163
relation to tanh function, 387

minimization of, 171
of feature vs. of representation, 141
why present in images, 166

spherical symmetry, 221
spike, 51
square root

of a matrix, see matrix square root
statistical–ecological approach, 20
steerable filters, 219, 236, 373
step size, 380, 392
stereo vision, 315
stereopsis, 315
striate cortex, see V1
sub-Gaussianity, 167

in natural images, 168
subspace features, 213, 214
super-Gaussianity, 167

T
temporal coherence, 336

and spatial energy correlations, 345, 352

temporal response strength correlation, see
temporal coherence

thalamus, 54
theorem

central limit, 169, 220
of density of linear transform, 159
Wiener–Khinchin, 113

three-layer model, 265, 296
thresholding

and feedback, 300, 302
in simple cell response, 60

top-down, 295
topographic grid, 240
topographic ICA, 242

connection to ISA, 243
optimization in, 389

topographic lattice, 240
topographic organization, 64, 239

utility, 244
transmission

of data, 178
transpose, 401
tuning curve, 58

disparity, 320
of ISA features, 226
of sparse coding features, 145

two-layer model
energy-based, 259
fixed, 263
generative, 254

U
uncertainty principle, 46
uncorrelatedness

definition, 78
equivalent to orthogonality, 105
implied by independence, 79
nonlinear, 152

uniform distribution, 76
is sub-Gaussian, 167
maximum entropy, 183

unsupervised learning, 371

V
V1, see also simple cells and complex cells,

54
V2, 195, 275, 295
V4, 64
V5, 64
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variance
as basis for PCA, 96
changing (non-constant), 168, 190, 201,

221, 254, 338
definition, 78

variance variable, 168, 201, 221, 254
vector, 399
vectorization, 67
vision, 2
visual space, 323

W
wavelets, 210, 372

learning them partly, 373
waves

retinal traveling, 368

white noise, 57, 189, 273, 354
definition, 80

whitening, 104
and center-surround receptive fields, 120
and LGN, 120, 124
and retina, 120, 124
as part of canonical preprocessing, 109
by matrix square root, 124
by PCA, 104
center-surround receptive fields, 124
filter, 124
patch-based and filter-based, 121
symmetric, 124

Wiener–Khinchin theorem, 113
wiring length minimization, 129, 244
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