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3Dc

3Dc is a lossy data compression algorithm for normal maps invented and first
implemented by ATI. It builds upon the earlier DXT5 algorithm and is an open
standard. 3Dc is now implemented by both ATI and NVIDIA.

Target Application
The target application, normal mapping, is an extension of bump mapping that
simulates lighting on geometric surfaces by reading surface normals from a rec-
tilinear grid analogous to a texture map - giving simple models the impression
of increased complexity.

Although processing costs are reduced, memory costs are greatly increased.
Pre-existing lossy compression algorithms implemented on consumer 3d hard-
ware lacked the precision necessary for reproducing normal maps without ex-
cessive visible artefacts, justifying the development of 3Dc.

Although 3Dc was formally introduced with the ATI x800 series cards, there is
also an S3TC compatible version planned for the older R3xx series, and cards
from other companies. The quality and compression will not be as good, but
the visual errors will still be significantly less than offered by standard S3TC.

Algorithm
Surface normals are three dimensional vectors of unit length. Because of the
length constraint only two elements of any normal need be stored. The input
is therefore an array of two dimensional values.

Compression is performed in 4x4 blocks. In each block the two components of
each value are compressed separately. This produces two sets of 16 numbers
for compression.

The compression is achieved by finding the lowest and highest values of the
16 to be compressed and storing each of those as an 8-bit quantity. Individual
elements within the 4x4 block are then stored with 3-bits each, representing
their position on an 8 step linear scale from the lowest value to the highest.

Total storage is 128 bits per 4x4 block once both source components are fac-
tored in. In an uncompressed scheme with similar 8-bit precision, the source
data is 32 8-bit values for the same area, occupying 256 bits. The algorithm
therefore produces a 2:1 compression ratio.

The compression ratio is sometimes stated as being "up to 4:1" as it is com-
mon to use 16-bit precision for input data rather than 8-bit. This produces
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compressed output that is literally 1/4 the size of the input but it is not of
comparable precision.

References

• 3Dc White Paper (PDF)1

• What is a Normal Map?2

• CREATING AND USING NORMAL MAPS3

• Creating Normal Maps4

• 3Dc - higher quality textures with better compression5

Source: http://en.wikipedia.org/wiki/3Dc

Principal Authors: Timharwoodx, ThomasHarte, FireFox, Mushroom, RJHall

3D computer graphics

The rewrite of this article is being devised at 3D computer graphics/Temp.
Please comment or help out as necessary. Thanks!

3D computer graphics are works of graphic art that were created with the aid
of digital computers and specialized 3D software. In general, the term may
also refer to the process of creating such graphics, or the field of study of 3D
computer graphic techniques and its related technology.

3D computer graphics are different from 2D computer graphics in that a three-
dimensional representation of geometric data is stored in the computer for
the purposes of performing calculations and rendering 2D images. Sometimes
these images are pre-rendered, sometimes they are not.

In general, the art of 3D modeling, which prepares geometric data for 3D com-
puter graphics is akin to sculpting or photography, while the art of 2D graphics
is analogous to painting. However, 3D computer graphics relies on many of the
same algorithms as 2D computer graphics.

In computer graphics software, this distinction is occasionally blurred; some
2D applications use 3D techniques to achieve certain effects such as lighting,
while some primarily 3D applications make use of 2D visual techniques.

http://www.ati.com/products/radeonx800/3DcWhitePaper.pdf1

http://members.shaw.ca/jimht03/normal.html2

http://www.monitorstudios.com/bcloward/tutorials_normal_maps1.html3

http://www.blender3d.org/cms/Normal_Maps.491.0.html4

http://www.neoseeker.com/Articles/Hardware/Reviews/r420preview/3.html5
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Figure 1 [A 3D rendering with raytracing and ambient occlusion using Blender and Yafray

Technology
→OpenGL and →Direct3D are two popular APIs for the generation of real-
time imagery. (Real-time means that image generation occurs in ’real time’,
or ’on the fly’) Many modern graphics cards provide some degree of hardware
acceleration based on these APIs, frequently enabling the display of complex
3D graphics in real-time. However, it’s not necessary to employ any one of
these to actually create 3D imagery.

Creation of 3D computer graphics
The process of creating 3D computer graphics can be sequentially divided into
three basic phases:

• Modeling
• Scene layout setup
• Rendering

Modeling
The modeling stage could be described as shaping individual objects that are
later used in the scene. There exist a number of modeling techniques, includ-
ing, but not limited to the following:
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Figure 2 Architectural rendering compositing of modeling and lighting finalized by rendering
process

• constructive solid geometry
• NURBS modeling
• polygonal modeling
• subdivision surfaces
• implicit surfaces

Modeling processes may also include editing object surface or material proper-
ties (e.g., color, luminosity, diffuse and specular shading components — more
commonly called roughness and shininess, reflection characteristics, trans-
parency or opacity, or index of refraction), adding textures, bump-maps and
other features.

Modeling may also include various activities related to preparing a 3D model
for animation (although in a complex character model this will become a stage
of its own, known as rigging). Objects may be fitted with a skeleton, a central
framework of an object with the capability of affecting the shape or movements
of that object. This aids in the process of animation, in that the movement of
the skeleton will automatically affect the corresponding portions of the model.
See also →Forward kinematic animation and →Inverse kinematic animation.
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At the rigging stage, the model can also be given specific controls to make
animation easier and more intuitive, such as facial expression controls and
mouth shapes (phonemes) for lipsyncing.

Modeling can be performed by means of a dedicated program (e.g., Lightwave
Modeler, Rhinoceros 3D, Moray), an application component (Shaper, Lofter in
3D Studio) or some scene description language (as in POV-Ray). In some cases,
there is no strict distinction between these phases; in such cases modelling
is just part of the scene creation process (this is the case, for example, with
Caligari trueSpace).

Process

Scene layout setup
Scene setup involves arranging virtual objects, lights, cameras and other enti-
ties on a scene which will later be used to produce a still image or an anima-
tion. If used for animation, this phase usually makes use of a technique called
"keyframing", which facilitates creation of complicated movement in the scene.
With the aid of keyframing, instead of having to fix an object’s position, rota-
tion, or scaling for each frame in an animation, one needs only to set up some
key frames between which states in every frame are interpolated.

Lighting is an important aspect of scene setup. As is the case in real-world
scene arrangement, lighting is a significant contributing factor to the resulting
aesthetic and visual quality of the finished work. As such, it can be a difficult
art to master. Lighting effects can contribute greatly to the mood and emotional
response effected by a scene, a fact which is well-known to photographers and
theatrical lighting technicians.

Tessellation and meshes
The process of transforming representations of objects, such as the middle
point coordinate of a sphere and a point on its circumference into a polygon
representation of a sphere, is called tessellation. This step is used in polygon-
based rendering, where objects are broken down from abstract representations
("primitives") such as spheres, cones etc, to so-called meshes, which are nets of
interconnected triangles.

Meshes of triangles (instead of e.g. squares) are popular as they have proven
to be easy to render using scanline rendering.

Polygon representations are not used in all rendering techniques, and in these
cases the tessellation step is not included in the transition from abstract repre-
sentation to rendered scene.
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Rendering
Rendering is the final process of creating the actual 2D image or animation
from the prepared scene. This can be compared to taking a photo or filming
the scene after the setup is finished in real life.

Rendering for interactive media, such as games and simulations, is calculated
and displayed in real time, at rates of approximately 20 to 120 frames per
second. Animations for non-interactive media, such as video and film, are
rendered much more slowly. Non-real time rendering enables the leveraging
of limited processing power in order to obtain higher image quality. Rendering
times for individual frames may vary from a few seconds to an hour or more
for complex scenes. Rendered frames are stored on a hard disk, then possibly
transferred to other media such as motion picture film or optical disk. These
frames are then displayed sequentially at high frame rates, typically 24, 25, or
30 frames per second, to achieve the illusion of movement.

There are two different ways this is done: →Ray tracing and GPU based real-
time polygonal rendering. The goals are different:

Figure 3 An example of a ray-traced image that typically takes seconds or minutes to
render. The photo-realism is apparent.
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In ray-tracing, the goal is photo-realism. Rendering often takes of the order of
seconds or sometimes even days (for a single image/frame). This is the basic
method employed in films, digital media, artistic works, etc;

In real time rendering, the goal is to show as much information as possible as
the eye can process in a 30th of a second. The goal here is primarily speed
and not photo-realism. In fact, here exploitations are made in the way the eye
’perceives’ the world, and thus the final image presented is not necessarily that
of the real-world, but one which the eye can closely associate to. This is the
basic method employed in games, interactive worlds, VRML;

Photo-realistic image quality is often the desired outcome, and to this end
several different, and often specialized, rendering methods have been de-
veloped. These range from the distinctly non-realistic wireframe rendering
through polygon-based rendering, to more advanced techniques such as: scan-
line rendering, ray tracing, or radiosity.

Rendering software may simulate such visual effects as lens flares, depth of
field or motion blur. These are attempts to simulate visual phenomena result-
ing from the optical characteristics of cameras and of the human eye. These
effects can lend an element of realism to a scene, even if the effect is merely a
simulated artifact of a camera.

Techniques have been developed for the purpose of simulating other naturally-
occurring effects, such as the interaction of light with various forms of mat-
ter. Examples of such techniques include particle systems (which can simulate
rain, smoke, or fire), volumetric sampling (to simulate fog, dust and other spa-
tial atmospheric effects), caustics (to simulate light focusing by uneven light-
refracting surfaces, such as the light ripples seen on the bottom of a swimming
pool), and subsurface scattering (to simulate light reflecting inside the volumes
of solid objects such as human skin).

The rendering process is computationally expensive, given the complex vari-
ety of physical processes being simulated. Computer processing power has
increased rapidly over the years, allowing for a progressively higher degree of
realistic rendering. Film studios that produce computer-generated animations
typically make use of a render farm to generate images in a timely manner.
However, falling hardware costs mean that it is entirely possible to create small
amounts of 3D animation on a home computer system.

Often renderers are included in 3D software packages, but there are some ren-
dering systems that are used as plugins to popular 3D applications. These
rendering systems include Final-Render, Brazil r/s, V-Ray, mental ray, POV-Ray,
and Pixar Renderman.
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The output of the renderer is often used as only one small part of a completed
motion-picture scene. Many layers of material may be rendered separately and
integrated into the final shot using compositing software.

Projection

Figure 4 Perspective Projection

Since the human eye sees three dimensions, the mathematical model repre-
sented inside the computer must be transformed back so that the human eye
can correlate the image to a realistic one. But the fact that the display device
- namely a monitor - can display only two dimensions means that this math-
ematical model must be transferred to a two-dimensional image. Often this
is done using projection; mostly using perspective projection. The basic idea
behind the perspective projection, which unsurprisingly is the way the human
eye works, is that objects that are further away are smaller in relation to those
that are closer to the eye. Thus, to collapse the third dimension onto a screen,
a corresponding operation is carried out to remove it - in this case, a division
operation.

Orthogonal projection is used mainly in CAD or CAM applications where sci-
entific modelling requires precise measurements and preservation of the third
dimension.

Reflection and shading models
Modern 3D computer graphics rely heavily on a simplified reflection model
called →Phong reflection model (not to be confused with →Phong shading).
In refraction of light, an important concept is the refractive index. In most 3D
programming implementations, the term for this value is "index of refraction,"
usually abbreviated "IOR."
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Figure 5 An example of cel shading in the OGRE3D engine.

Popular reflection rendering techniques in 3D computer graphics include:

• →Flat shading: A technique that shades each polygon of an object based
on the polygon’s "normal" and the position and intensity of a light source.

• →Gouraud shading: Invented by H. Gouraud in 1971, a fast and resource-
conscious vertex shading technique used to simulate smoothly shaded sur-
faces.

• →Texture mapping: A technique for simulating a large amount of surface
detail by mapping images (textures) onto polygons.

• →Phong shading: Invented by Bui Tuong Phong, used to simulate specular
highlights and smooth shaded surfaces.

• →Bump mapping: Invented by Jim Blinn, a normal-perturbation technique
used to simulate wrinkled surfaces.

• Cel shading: A technique used to imitate the look of hand-drawn animation.
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3D graphics APIs
3D graphics have become so popular, particularly in computer games, that spe-
cialized APIs (application programmer interfaces) have been created to ease
the processes in all stages of computer graphics generation. These APIs have
also proved vital to computer graphics hardware manufacturers, as they pro-
vide a way for programmers to access the hardware in an abstract way, while
still taking advantage of the special hardware of this-or-that graphics card.

These APIs for 3D computer graphics are particularly popular:

• →OpenGL and the OpenGL Shading Language
• →OpenGL ES 3D API for embedded devices
• →Direct3D (a subset of DirectX)
• RenderMan
• RenderWare
• →Glide API
• TruDimension LC Glasses and 3D monitor API

There are also higher-level 3D scene-graph APIs which provide additional func-
tionality on top of the lower-level rendering API. Such libraries under active
development include:

• QSDK
• Quesa
• Java 3D
• JSR 184 (M3G)
• NVidia Scene Graph
• OpenSceneGraph
• OpenSG
• OGRE
• Irrlicht
• Hoops3D

See also

• →3D model
• 3D modeler
• →3D projection
• →Ambient occlusion
• Anaglyph image - Anaglyphs are stereo pictures that are viewed with red-

blue glasses, that allow a 3D image to be perceived as 3D by the human
eye.
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• Animation
• Graphics
• History of 3D Graphics - Major Milestones/Influential peo-

ple/Hardware+Software Develoments
• List of 3D Artists
• Magic Eye autostereograms
• →Rendering (computer graphics)
• Panda3D
• Polarized glasses - Another method to view 3D images as 3D
• VRML
• X3D
• 3d motion controller

Source: http://en.wikipedia.org/wiki/3D_computer_graphics

Principal Authors: Frecklefoot, Dormant25, Flamurai, Wapcaplet, Pavel Vozenilek, Michael Hardy,

Furrykef, Blaatkoala, Mikkalai, Blueshade

3D computer graphics software

→3D computer graphics software is a program or collection of programs used
to create 3D computer-generated imagery. There are typically many stages in
the "pipeline" that studios use to create 3D objects for film and games, and this
article only covers some of the software used. Note that most of the 3D pack-
ages have a very plugin-oriented architecture, and high-end plugins costing
tens or hundreds of thousands of dollars are often used by studios. Larger stu-
dios usually create enormous amounts of proprietary software to run alongside
these programs.

If you are just getting started out in 3D, one of the major packages is usually
sufficient to begin learning. Remember that 3D animation can be very difficult,
time-consuming, and unintuitive; a teacher or a book will likely be necessary.
Most of the high-end packages have free versions designed for personal learn-
ing.

Major Packages
Maya (Autodesk) is currently the leading animation program for cinema; near-
ly every studio uses it. It is known as difficult to learn, but it is possibly the
most powerful 3D package. When studios use Maya, they typically replace
parts of it with proprietary software. Studios will also render using Pixar’s
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Figure 6 Modeling in LightWave. This interface is fairly typical of 3D packages.

Renderman, rather than the default mentalray. Autodesk, makers of 3DS Max,
recently bought Maya from Alias and have rebranded it. There are still open
questions about how independent Maya will be from 3DS Max.

Softimage|XSI (Avid) is often seen as head-to-head competition with Maya,
and is very feature-similar. Fans of the two packages often will often argue
the merits of each. XSI was once the leader in animation, but lagged as Maya
surged ahead. It is now trying to reclaim the top spot.

3D Studio Max (Autodesk), often abbreviated 3DS Max, is the leading anima-
tion program in the video game industry. Experts argue that it is very good
at handling low-polygon animation, but perhaps its greatest asset to the com-
puter/video industry is its entrenched support network and its many plugins.
It is also the most expensive of the high-end packages, coming at $3500 US,
compared to about $2000 for the others. Because of its presence in the video
game industry, it is also a popular hobbyist package.

Houdini (Side Effects Software) is a high-end package that is found often in
studios. Its most common use is in animating special effects, rather than mod-
els.

LightWave 3D (NewTek) is a popular 3D package because of its easy-to-learn
interface; many artists prefer it to the more technical Maya or 3DS Max. It has
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weaker modeling and particularly animation features than some of the larger
packages, but it is still used widely in film and broadcasting.

Cinema 4D (MAXON) is a lighter package than the others. Its main asset is
its artist-friendliness, avoiding the complicated technical nature of the other
packages. For example, a popular plugin, BodyPaint, allows artists to draw
textures directly onto the surface of models.

formZ (autodessys, Inc.) is a general purpose 3D modeler. Its forte is mod-
eling. Many of its users are architects, but also include designers from many
fields including interior designers, illustrators, product designers, set design-
ers. Its default renderer uses the LightWorks rengering engine for raytracing
and radiosity. formZ has been around since 1991, available for both the Mac-
intosh and Windows operating systems.

Other packages
Free

Blender is a free software package that mimics the larger packages. It is being
developed under the GPL, after its previous owner, Not a Number Technologies,
went bankrupt. Art of Illusion is another free software package developed
under the GPL. Wings 3D is a BSD-licensed, minimal modeler. Anim8or is
another free 3d rendering and animation package.

Not Free

MilkShape 3D is a shareware/trialware polygon 3D modelling program with
extensive import/export capabilities.

Carrara (Eovia) is a 3D complete tool set package for 3D modeling, texturing
animation and rendering; and Amapi and Hexagon (Eovia) are 3D packages
often used for high-end abstract and organic modeling respectively. Bryce (DAZ
productions) is most famous for landscapes. modo, created by developers who
splintered from NewTek, is a new modeling program. Zbrush(Pixologic) is a
digital sculpting tool that combines 3D/2.5D modeling, texturing and painting.

Renderers
Pixar’s RenderMan is the premier renderer, used in many studios. Animation
packages such as 3DS Max and Maya can pipeline to RenderMan to do all the
rendering. mental ray is another popular renderer, and comes default with
most of the high-end packages. POV-Ray and YafRay are two free renderers.
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Related to 3D software
Swift3D is a package for transforming models in Lightwave or 3DS Max in-
to Flash animations. Match moving software is commonly used to match live
video with computer-generated video, keeping the two in sync as the camera
moves. Poser is the most popular program for modeling people. After pro-
ducing video, studios then edit or composite the video using programs such as
Adobe Premiere or Apple Final Cut at the low end, or Autodesk Combustion or
Apple Shake at the high end.

Source: http://en.wikipedia.org/wiki/3D_computer_graphics_software

Principal Authors: Bertmg, Goncalopp, ShaunMacPherson, Snarius, Skybum

3D model

Figure 7 A 3D model of a character in the 3D modeler LightWave, shown in various manners and
from different perspectives

A 3D model is a 3D polygonal representation of an object, usually displayed
with a computer or via some other video device. The object can range from a
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real-world entity to fictional, from atomic to huge. Anything that can exist in
the physical world can be represented as a 3D model.

3D models are most often created with special software applications called 3D
modelers, but they need not be. Being a collection of data (points and other in-
formation), 3D models can be created by hand or algorithmically. Though they
most often exist virtually (on a computer or a file on disk), even a description
of such a model on paper can be considered a 3D model.

3D models are widely used anywhere 3D graphics are used. Actually, their
use predates the widespread use of 3D graphics on personal computers. Many
computer games used pre-rendered images of 3D models as sprites before com-
puters could render them in real-time.

Today, 3D models are used in a wide variety of fields. The medical industry us-
es detailed models of organs. The movie industry uses them as characters and
objects for animated and real-life motion pictures. The video game industry us-
es them as assets for computer and video games. The science sector uses them
as highly detailed models of chemical compounds. The architecture industry
uses them to demonstrate proposed buildings and landscapes. The engineer-
ing community uses them as designs of new devices, vehicles and structures as
well as a host of other uses. In recent decades the earth science community
has started to construct 3D geological models as a standard practice.

A 3D model by itself is not visual. It can be rendered as a simple wireframe
at varying levels of detail, or shaded in a variety of ways. Many 3D models,
however, are covered in a covering called a texture (the process of aligning the
texture to coordinates on the 3D model is called texture mapping). A texture
is nothing more than a graphic image, but gives the model more detail and
makes it look more realistic. A 3D model of a person, for example, looks more
realistic with a texture of skin and clothes, than a simple monochromatic model
or wireframe of the same model.

Other effects, beyond texturing, can be done to 3D models to add to their
realism. For example, the surface normals can be tweaked to effect how they
are lit, certain surfaces can have bump mapping applied and any other number
of 3D rendering tricks can be applied.

3D models are often animated for some uses. For example, 3D model are heav-
ily animated for use in feature films and computer and video games. They can
be animated from within the 3D modeler that created them or externally. Often
extra data is added to the model to make it easier to animate. For example,
some 3D models of humans and animals have entire bone systems so they will
look realistic when they move and can be manipulated via joints and bones.
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Source: http://en.wikipedia.org/wiki/3D_model

Principal Authors: Frecklefoot, Furrykef, HolgerK, Equendil, ZeroOne

3D projection

A 3D projection is a mathematical transformation used to project three di-
mensional points onto a two dimensional plane. Often this is done to simulate
the relationship of the camera to subject. 3D projection is often the first step
in the process of representing three dimensional shapes two dimensionally in
computer graphics, a process known as rendering.

The following algorithm was a standard on early computer simulations and
videogames, and it is still in use with heavy modifications for each particular
case. This article describes the simple, general case.

Data necessary for projection
Data about the objects to render is usually stored as a collection of points,
linked together in triangles. Each point is a series of three numbers, represent-
ing its X,Y,Z coordinates from an origin relative to the object they belong to.
Each triangle is a series of three points or three indexes to points. In addition,
the object has three coordinates X,Y,Z and some kind of rotation, for example,
three angles alpha, beta and gamma, describing its position and orientation
relative to a "world" reference frame.

Last comes the observer (the term camera is the one commonly used). The
camera has a second set of three X,Y,Z coordinates and three alpha, beta and
gamma angles, describing the observer’s position and the direction along which
it is pointing.

All this data is usually stored in floating point, even if many programs convert
it to integers at various points in the algorithm, to speed up the calculations.

• Warning: The author has used the × symbol to denote multiplication of
matrices, e.g. ‘A×B’ to mean ‘A times B’. This is confusing since in this
field this symbol is instead used to indicate the cross product of vectors, i.e.
‘A×B’ usually means ‘A cross B’. The two operators are different. In matrix
algebra A times B is usually written as ‘A B’. I have NOT edited the rest of
the document to reflect this.
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First step: world transform
The first step is to transform the points coordinates taking into account the
position and orientation of the object they belong to. This is done using a set
of four matrices: (The Matrix we use is column major i.e. v’ = Matrix*v the
same in OpenGL but different in Directx)








1 0 0 x

0 1 0 y

0 0 1 z

0 0 0 1









— object translation









1 0 0 0

0 cosα − sinα 0

0 sin α cosα 0

0 0 0 1









— rotation about the x-axis









cosβ 0 sinβ 0

0 1 0 0

− sinβ 0 cosβ 0

0 0 0 1









— rotation about the y-axis









cos γ − sin γ 0 0

sin γ cos γ 0 0

0 0 1 0

0 0 0 1









— rotation about the z-axis.

The four matrices are multiplied together, and the result is the world transform
matrix: a matrix that, if a point’s coordinates were multiplied by it, would
result in the point’s coordinates being expressed in the "world" reference frame.

Note that, unlike multiplication between numbers, the order used to multi-
ply the matrices is significant: changing the order will change the results too.
When dealing with the three rotation matrices, a fixed order is good for the
necessity of the moment that must be chosen. The object should be rotated
before it is translated, since otherwise the position of the object in the world
would get rotated around the centre of the world, wherever that happens to
be.
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World transform = Translation × Rotation

To complete the transform in the most general way possible, another matrix
called the scaling matrix is used to scale the model along the axes. This matrix
is multiplied to the four given above to yield the complete world transform.
The form of this matrix is:








sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1









— where sx, sy, and sz are the scaling factors along the three co-ordinate
axes.

Since it is usually convenient to scale the model in its own model space or co-
ordinate system, scaling should be the first transformation applied. The final
transform thus becomes:

World transform = Translation × Rotation × Scaling

(as in some computer graphics book or some computer graphic programming
API such as Directx, it use mactrics with translation vectors in the bottom row,
in this scheme, the order of matrices would be reversed.)








sx cos γ cosβ −sy sin γ cosβ sz sin β x

sx cos γ sin β sin α + sx sin γ cosα sy cos γ cosα − sy sin γ sin β sin α −sz cosβ sin α y

sx sin γ sinα − sx cos γ sin β cosα sy sin γ sinβ cosα + sy sin α cos γ sz cosβ cosα z

0 0 0 1









— final result of Translation × x × y × z × Scaling.

Second step: camera transform
The second step is virtually identical to the first one, except for the fact that it
uses the six coordinates of the observer instead of the object, and the inverses
of the matrixes should be used, and they should be multiplied in the oppo-
site order. (Note that (A×B)-1=B-1×A-1.) The resulting matrix can transform
coordinates from the world reference frame to the observer’s one.

The camera looks in its z direction, the x direction is typically left, and the y
direction is typically up.








1 0 0 −x

0 1 0 −y

0 0 1 −z

0 0 0 1








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— inverse object translation (the inverse of a translation is a translation in
the opposite direction).









1 0 0 0

0 cosα sinα 0

0 − sin α cosα 0

0 0 0 1









— inverse rotation about the x-axis (the inverse of a rotation is a rotation in
the opposite direction. Note that sin(-x) = -sin(x), and cos(-x) = cos(x)).









cosβ 0 − sinβ 0

0 1 0 0

sin β 0 cosβ 0

0 0 0 1









— inverse rotation about the y-axis.









cos γ sin γ 0 0

− sinγ cos γ 0 0

0 0 1 0

0 0 0 1









— inverse rotation about the z-axis.

The two matrices obtained from the first two steps can be multiplied together
to get a matrix capable of transforming a point’s coordinates from the object’s
reference frame to the observer’s reference frame.

Camera transform = inverse rotation × inverse translation

Transform so far = camera transform × world transform.

Third step: perspective transform
The resulting coordinates would be already good for an isometric projection
or something similar, but realistic rendering requires an additional step to cor-
rectly simulate the perspective distortion. Indeed, this simulated perspective is
the main aid for the viewer to judge distances in the simulated view.

A perspective distortion can be generated using the following 4×4 matrix:
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







1/ tanµ 0 0 0

0 1/ tanν 0 0

0 0
B+F

B−F

−2BF

B−F

0 0 1 0









where µ is the angle between a line pointing out of the camera in z direction
and the plane through the camera and the right-hand edge of the screen, and
ν is the angle between the same line and the plane through the camera and
the top edge of the screen. This projection should look correct, if you are
looking with one eye; your actual physical eye is located on the line through the
centre of the screen normal to the screen, and µ and ν are physically measured
assuming your eye is the camera. On typical computer screens as of 2003, tan µ
is probably about 11/3 times tan ν, and tan µ might be about 1 to 5, depending
on how far from the screen you are.

F is a positive number representing the distance of the observer from the front
clipping plane, which is the closest any object can be to the camera. B is
a positive number representing the distance to the back clipping plane, the
farthest away any object can be. If objects can be at an unlimited distance
from the camera, B can be infinite, in which case (B + F)/(B - F) = 1 and
-2BF/(B - F) = -2F.

If you are not using a Z-buffer and all objects are in front of the camera, you
can just use 0 instead of (B + F)/(B - F) and -2BF/(B - F). (Or anything you
want.)

All the calculated matrices can be multiplied together to get a final transfor-
mation matrix. One can multiply each of the points (represented as a vector of
three coordinates) by this matrix, and directly obtain the screen coordinate at
which the point must be drawn. The vector must be extended to four dimen-
sions using homogeneous coordinates:









x
′

y
′

z
′

ω
′









=
[

Perspective transform
]

×

[

Camera transform
]

×

[

World transform
]

×









x

y

z

1









.

Note that in computer graphics libraries, such as →OpenGL, you should give
the matrices in the opposite order as they should be applied, that is, first the



DR
AF

T

21

3D projection

perspective transform, then the camera transform, then the object transform, as
the graphics library applies the transformations in the opposite order than you
give the transformations in! This is useful, since the world transform typical-
ly changes more often than the camera transform, and the camera transform
changes more often than the perspective transform. One can, for example,
pop the world transform off a stack of transforms and multiply a new world
transform on, without having to do anything with the camera transform and
perspective transform.

Remember that {x’/ω’, y’/ω’} is the final coordinates, where {-1, -1} is typically
the bottom left corner of the screen, {1, 1} is the top right corner of the screen,
{1, -1} is the bottom right corner of the screen and {-1, 1} is the top left corner
of the screen.

If the resulting image may turn out upside down, swap the top and bottom.

If using a Z-buffer, a z’/ω’ value of -1 corresponds to the front of the Z-buffer,
and a value of 1 corresponds to the back of the Z-buffer. If the front clipping
plane is too close, a finite precision Z-buffer will be more inaccurate. The same
applies to the back clipping plane, but to a significantly lesser degree; a Z-
buffer works correctly with the back clipping plane at an infinite distance, but
not with the front clipping plane at 0 distance.

Objects should only be drawn where -1 ≤ z’/ω’ ≤ 1. If it is less than -1, the
object is in front of the front clipping plane. If it is more than 1, the object is
behind the back clipping plane. To draw a simple single-colour triangle, {x’/ω’,
y’/ω’} for the three corners contains sufficient information. To draw a textured
triangle, where one of the corners of the triangle is behind the camera, all the
coordinates {x’, y’, z’, ω’} for all three points are needed, otherwise the texture
would not have the correct perspective, and the point behind the camera would
not appear in the correct location. In fact, the projection of a triangle where a
point is behind the camera is not technically a triangle, since the area is infinite
and two of the angles sum to more than 180◦, the third angle being effectively
negative. (Typical modern graphics libraries use all four coordinates, and can
correctly draw "triangles" with some points behind the camera.) Also, if a point
is on the plane through the camera normal to the camera direction, ω’ is 0, and
{x’/ω’, y’/ω’} is meaningless.

Simple version
X2D = X3D − DX

Z3D+Eye distance ×X3D

Y2D = Y3D − DY
Z3D+Eye distance × Y3D
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where DX
DY is the distance between the eye and the 3D point in the X/Y axis, a

large positive Z is towards the horizon and 0 is screen.

See also

• Computer graphics
• →3D computer graphics
• Graphics card
• →Transform and lighting
• →Texture mapping
• Perspective distortion

Source: http://en.wikipedia.org/wiki/3D_projection

Principal Authors: Michael Hardy, Cyp, Alfio, Oleg Alexandrov, Bobbygao

Ambient occlusion

Ambient occlusion is a shading method used in→3D computer graphics which
helps add realism to local reflection models by taking into account attenuation
of light due to occlusion. Unlike local methods like →Phong shading, ambient
occlusion is a global method, meaning the illumination at each point is a func-
tion of other geometry in the scene. However, it is a very crude approximation
to full global illumination. The soft appearance achieved by ambient occlusion
alone is similar to the way an object appears on an overcast day.

Ambient occlusion is most often calculated by casting rays in every direction
from the surface. Rays which reach the background or “sky” increase the
brightness of the surface, whereas a ray which hits any other object contributes
no illumination. As a result, points surrounded by a large amount of geometry
are rendered dark, whereas points with little geometry on the visible hemi-
sphere appear light.

Ambient occlusion is related to accessibility shading, which determines appear-
ance based on how easy it is for a surface to be touched by various elements
(e.g., dirt, light, etc.). It has been popularized in production animation due
to its relative simplicity and efficiency. In industry, ambient occlusion is often
referred to as "sky light."
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Figure 8 ambient occlusion

Figure 9 diffuse only

The occlusion Ap at a point p on a surface with normal N can be computed
by integrating the visibility function over the hemisphere Ω with respect to
projected solid angle:

Ap = 1
π

∫
Ω Vp,ω(N · ω) dω

where Vp,ω is the visibility function at p, defined to be zero if p is occluded in
the direction ω and one otherwise. A variety of techniques are used to approx-
imate this integral in practice: perhaps the most straightforward way is to use
the Monte Carlo method by casting rays from the point p and testing for inter-
section with other scene geometry (i.e., ray casting). Another approach (more
suited to hardware acceleration) is to render the view from p by rasterizing
black geometry against a white background and taking the (cosine-weighted)
average of rasterized fragments. This approach is an example of a "gather-
ing" or "inside-out" approach, whereas other algorithms (such as depth-map
ambient occlusion) employ "scattering" or "outside-in" techniques.

In addition to the ambient occlusion value, a "bent normal" vector Nb is often
generated, which points in the average direction of unoccluded samples. The
bent normal can be used to look up incident radiance from an environment
map to approximate image-based lighting. However, there are some situations
in which the direction of the bent normal is a misrepresentation of the domi-
nant direction of illumination, e.g.,

External links

• Depth Map based Ambient Occlusion6

• Ambient Occlusion7

http://www.andrew-whitehurst.net/amb_occlude.html6
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Figure 10 combined
ambient and diffuse

Figure 11 am-
bient occlusion

• Assorted notes about ambient occlusion8

• Ambient Occlusion Fields9 — real-time ambient occlusion using cube maps
• Fast Precomputed Ambient Occlusion for Proximity Shadows10 real-time

ambient occlusion using volume textures
• Dynamic Ambient Occlusion and Indirect Lighting11 a real time self ambient

occlusion method from Nvidia’s GPU Gems 2 book
• ShadeVis12 an open source tool for computing ambient occlusion

Source: http://en.wikipedia.org/wiki/Ambient_occlusion

Principal Authors: Mrtheplague, ALoopingIcon, SimonP, Gaius Cornelius, Jotapeh

http://www-viz.tamu.edu/students/bmoyer/617/ambocc/7

http://www.cs.unc.edu/~coombe/research/ao/8

http://www.tml.hut.fi/~janne/aofields/9

http://www.inria.fr/rrrt/rr-5779.html10

http://download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch14.pdf11

http://vcg.sourceforge.net/tiki-index.php?page=ShadeVis12
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Figure 12 dif-
fuse only

Figure 13 com-
bined ambient
and diffuse

Back-face culling

In computer graphics, back-face culling determines whether a polygon of a
graphical object, within the field of view of the camera, is visible. It is a step in
the graphical pipeline that uses the test

Ax+By+Cz+D < 0

to test if the polygon is visible or not. If this test is true, the normal vector
of the polygon is pointed away from the camera, meaning that the polygon is
facing away and does not need to be drawn.

The process makes rendering objects quicker and more efficient by reducing
the number of polygons for the program to draw. For example, in a city street
scene, there is generally no need to draw the polygons on the sides of the
buildings facing away from the camera; they are completely occluded by the
sides facing the camera.

A related technique is clipping, which determines whether polygons are within
the camera’s field of view at all.

It is important to note that this technique only works with single-sided poly-
gons, which are only visible from one side. Double-sided polygons are rendered
from both sides, and thus have no back-face to cull.
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Figure 14 am-
bient occlusion

Figure 15 dif-
fuse only

Further reading

• Geometry Culling in 3D Engines13, by Pietari Laurila

Source: http://en.wikipedia.org/wiki/Back-face_culling

Principal Authors: Eric119, Charles Matthews, Mdd4696, Deepomega, Canderson7

Beam tracing

Beam tracing is a derivative of the ray tracing algorithm that replaces rays,
which have no thickness, with beams. Beams are shaped like unbounded pyra-
mids, with (possibly complex) polygonal cross sections. Beam tracing was first
proposed by Paul Heckbert and Pat Hanrahan.

In beam tracing, a pyramidal beam is initially cast through the entire viewing
frustum. This initial viewing beam is intersected with each polygon in the
environment, from nearest to farthest. Each polygon that intersects with the
beam must be visible, and is removed from the shape of the beam and added to
a render queue. When a beam intersects with a reflective or refractive polygon,
a new beam is created in a similar fashion to ray-tracing.

A variant of beam tracing casts a pyramidal beam through each pixel of the
image plane. This is then split up into sub-beams based on its intersection with

http://www.gamedev.net/reference/articles/article1212.asp13
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Figure 16 com-
bined ambient
and diffuse

Figure 17

scene geometry. Reflection and transmission (refraction) rays are also replaced
by beams. This sort of implementation is rarely used, as the geometric pro-
cesses involved are much more complex and therefore expensive than simply
casting more rays through the pixel.

Beam tracing solves certain problems related to sampling and aliasing, which
can plague conventional ray tracing. However, the additional computational
complexity that beams create has made them unpopular. In recent years, in-
creases in computer speed have made Monte Carlo algorithms like distributed
ray tracing much more viable than beam tracing.

However, beam tracing has had a renaissance in the field of acoustic modelling,
in which beams are used as an efficient way to track deep reflections from
sound source to receiver (or vice-versa), a field where ray tracing is notoriously
prone to sampling errors.

Beam tracing is related in concept to cone tracing.
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Figure 18

Source: http://en.wikipedia.org/wiki/Beam_tracing

Principal Authors: Kibibu, Reedbeta, RJFJR, Hetar, RJHall

Bilinear filtering

Figure 19 A zoomed small portion of a bitmap of
a cat, using nearest neighbor filtering (left) and
bicubic filtering (right). Bicubic filtering is similar
to bilinear filtering but with a different interpola-
tion function.

Bilinear filtering is a texture mapping method used to smooth textures when
displayed larger or smaller than they actually are.

Most of the time, when drawing a textured shape on the screen, the texture is
not displayed exactly as it is stored, without any distortion. Because of this,
most pixels will end up needing to use a point on the texture that’s ’between’
texels, assuming the texels are points (as opposed to, say, squares) in the mid-
dle (or on the upper left corner, or anywhere else; it doesn’t matter, as long as



DR
AF

T

29

Bilinear filtering

it’s consistent) of their respective ’cells’. Bilinear filtering uses these points to
perform bilinear interpolation between the four texels nearest to the point that
the pixel represents (in the middle or upper left of the pixel, usually).

The formula
In these equations, uk and vk are the texture coordinates and yk is the color
value at point k. Values without a subscript refer to the pixel point; values
with subscripts 0, 1, 2, and 3 refer to the texel points, starting at the top left,
reading right then down, that immediately surround the pixel point. These are
linear interpolation equations. We’d start with the bilinear equation, but since
this is a special case with some elegant results, it is easier to start from linear
interpolation.

ya = y0 + y1−y0
u1−u0

(u− u0)

yb = y2 + y3−y2
u3−u2

(u− u2)

y = yb + yb−ya
v2−v0

(v − v0)

Assuming that the texture is a square bitmap,

v1 = v0

v2 = v3

u1 = u3

u2 = u0

v3 − v0 = u3 − u0 = w

Are all true. Further, define

U = u−u0
w

V = v−v0
w

With these we can simplify the interpolation equations:

ya = y0 + (y1 − y0)U
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yb = y2 + (y3 − y2)U

y = ya + (yb − ya)V

And combine them:

y = y0 + (y1 − y0)U + (y2 − y0)V + (y3 − y2 − y1 + y0)UV

Or, alternatively:

y = y0(1− U)(1− V ) + y1U(1− V ) + y2(1− U)V + y3UV

Which is rather convenient. However, if the image is merely scaled (and not
rotated, sheared, put into perspective, or any other manipulation), it can be
considerably faster to use the separate equations and store yb (and sometimes
ya, if we are increasing the scale) for use in subsequent rows.

Sample Code
This code assumes that the texture is square (an extremely common occur-
rence), that no mipmapping comes into play, and that there is only one chan-
nel of data (not so common. Nearly all textures are in color so they have red,
green, and blue channels, and many have an alpha transparency channel, so
we must make three or four calculations of y, one for each channel).

double getBilinearFilteredPixelColor(Texture tex, double u, dou-

ble v) {
u *= tex.size;

v *= tex.size;

int x = floor(u);

int y = floor(v);

double u ratio = u - x;

double v ratio = v - y;

double u opposite = 1 - u ratio;

double v opposite = 1 - v ratio;

double result = (tex[x][y] * u opposite + tex[x+1][y] *

u ratio) * v opposite +

(tex[x][y+1] * u opposite + tex[x+1][y+1] *

u ratio) * v ratio;

return result;

}
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Limitations
Bilinear filtering is rather accurate until the scaling of the texture gets below
half or above double the original size of the texture - that is, if the texture was
256 pixels in each direction, scaling it to below 128 or above 512 pixels can
make the texture look bad, because of missing pixels or too much smoothness.
Often, mipmapping is used to provide a scaled-down version of the texture
for better performance; however, the transition between two differently-sized
mipmaps on a texture in perspective using bilinear filtering can be very abrupt.
Trilinear filtering, though somewhat more complex, can make this transition
smooth throughout.

For a quick demonstration of how a texel can be missing from a filtered texture,
here’s a list of numbers representing the centers of boxes from an 8-texel-wide
texture, intermingled with the numbers from the centers of boxes from a 3-
texel-wide texture (in blue). The red numbers represent texels that would not
be used in calculating the 3-texel texture at all.

0.0625, 0.1667, 0.1875, 0.3125, 0.4375, 0.5000, 0.5625, 0.6875, 0.8125,
0.8333, 0.9375

Special cases
Textures aren’t infinite, in general, and sometimes you end up with a pixel
coordinate that lies outside the grid of texel coordinates. There are a few ways
to handle this:

• Wrap the texture, so that the last texel in a row also comes right before the
first, and the last texel in a column also comes right above the first. This
works best when the texture is being tiled.

• Make the area outside the texture all one color. This is probably not that
great an idea, but it might work if the texture is designed to be laid over a
solid background or be transparent.

• Repeat the edge texels out to infinity. This works well if the texture is
designed to not be repeated.

See also

• Trilinear filtering
• Anisotropic filtering

Source: http://en.wikipedia.org/wiki/Bilinear_filtering

Principal Authors: Vorn, Msikma, Skulvar, Rgaddipa, HarrisX
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Blinn–Phong shading model

The Blinn-Phong shading model (also called Blinn-Phong reflection model
or modified Phong reflection model) is a modification to the →Phong reflec-
tion model, trading visual precision for computing efficiency.

In Phong shading, one must continually recalculate the angle R · V between a
viewer (V) and the beam from a light-source (L) reflected (R) on a surface.

If we instead calculate a halfway vector between the viewer and light-source
vectors,

H = L+V
|L+V |

we can replace R · V with N ·H.

This dot product represents the cosine of an angle that is half of the angle
represented by Phong’s dot product, if V, L, N and R all lie in the same plane.
The angle between N and H is therefore sometimes called the halfway angle.

The halfway angle is smaller than the angle we want in Phong’s model, but
considering that Phong is using (R · V )α, we can set an exponent α′ so that
(N ·H)α′ is closer to the former expression.

Blinn-Phong is the default shading model used in →OpenGL, and is carried out
on each vertex as it passes down the graphics pipeline; pixel values between
vertices are interpolated by →Gouraud shading by default, rather than the
more expensive →Phong shading.

See also

• →Phong reflection model for Phong’s corresponding model
• →Phong shading
• →Gouraud shading

Source: http://en.wikipedia.org/wiki/Blinn%E2%80%93Phong_shading_model
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Bloom (shader effect)

Figure 20 Doom 3 mini-mod showing the bloom shader effect (screenshot by Motoxpro @
doom3world )

Bloom (sometimes referred to as Light bloom) is a computer graphics shader
effect used by computer games.

In high dynamic range rendering (HDR) applications, it is used when the neces-
sary brightness exceeds the contrast ratio that a computer monitor can display.
A bloom works by radiating, or blooming, the high intensity light around the
very bright object, so that the bright light appears to be coming from around
the object, not only from the object itself. This gives the illusion that the object
is brighter than it really is. It can be used without HDR rendering to represent
a surface that is being illuminated with an extremely bright light source, and
as a result, is often mistaken for a full implementation of HDR Rendering.

Bloom became very popular after Tron 2.0 and is used in many games and
modifications. The first game to use blooming was Deus Ex: Invisible War.
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See also

• →High dynamic range rendering
• Tone mapping

Source: http://en.wikipedia.org/wiki/Bloom_%28shader_effect%29

Bounding volume

Figure 21 A bounding box for a three dimensional model

In computer graphics and computational geometry, a bounding volume for
a set of objects is a closed volume that completely contains the union of the
objects in the set. Bounding volumes are used to improve the efficiency of geo-
metrical operations by using simple volumes to contain more complex objects.
Normally, simpler volumes have simpler ways to test for overlap.
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A bounding volume for a set of objects is also a bounding volume for the single
object consisting of their union, and the other way around. Therefore it is pos-
sible to confine the description to the case of a single object, which is assumed
to be non-empty and bounded (finite).

Uses of bounding volumes
Bounding volumes are most often used to accelerate certain kinds of tests.

In ray tracing, bounding volumes are used in ray-intersection tests, and in
many rendering algorithms, it is used for viewing frustum tests. If the ray or
viewing frustum does not intersect the bounding volume, it cannot intersect
the object contained in the volume. These intersection tests produce a list of
objects that must be displayed. Here, displayed means rendered or rasterized.

In collision detection, when two bounding volumes do not intersect, then the
contained objects cannot collide, either.

Testing against a bounding volume is typically much faster than testing against
the object itself, because of the bounding volume’s simpler geometry. This is
because an ’object’ is typically composed of polygons or data structures that
are reduced to polygonal approximations. In either case, it is computationally
wasteful to test each polygon against the view volume if the object is not visible.
(Onscreen objects must be ’clipped’ to the screen, regardless of whether their
surfaces are actually visible.)

To obtain bounding volumes of complex objects, a common way is to break the
objects/scene down using a scene graph or more specifically bounding volume
hierarchies like e.g. OBB trees. The basic idea behind this is to organize a scene
in a tree-like structure where the root comprises the whole scene and each leaf
contains a smaller subpart.

Common types of bounding volume
The choice of the type of bounding volume for a given application is deter-
mined by a variety of factors: the computational cost of computing a bounding
volume for an object, the cost of updating it in applications in which the objects
can move or change shape or size, the cost of determining intersections, and
the desired precision of the intesection test. It is common to use several types
in conjunction, such as a cheap one for a quick but rough test in conjunction
with a more precise but also more expensive type.

The types treated here all give convex bounding volumes. If the object being
bounded is known to be convex, this is not a restriction. If non-convex bound-
ing volumes are required, an approach is to represent them as a union of a
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number of convex bounding volumes. Unfortunately, intersection tests become
quickly more expensive as the bounding boxes become more sophisticated.

A bounding sphere is a sphere containing the object. In 2-D graphics, this
is a circle. Bounding spheres are represented by centre and radius. They are
very quick to test for collision with each other: two spheres intersect when the
distance between their centres does not exceed the sum of their radii. This
makes bounding spheres appropriate for objects that can move in any number
of dimensions.

A bounding cylinder is a cylinder containing the object. In most applications
the axis of the cylinder is aligned with the vertical direction of the scene. Cylin-
ders are appropriate for 3-D objects that can only rotate about a vertical axis
but not about other axes, and are constrained to move by horizontal transla-
tion only, orthogonal to the vertical axis. Two vertical-axis-aligned cylinders
intersect when, simultaneously, their projections on the vertical axis intersect –
which are two line segments – as well their projections on the horizontal plane
– two circular disks. Both are easy to test. In video games, bounding cylinders
are often used as bounding volumes for people standing upright.

A bounding box is a cuboid, or in 2-D a rectangle, containing the object. In
dynamical simulation, bounding boxes are preferred to other shapes of bound-
ing volume such as bounding spheres or cylinders for objects that are roughly
cuboid in shape when the intersection test needs to be fairly accurate. The
benefit is obvious, for example, for objects that rest upon other, such as a car
resting on the ground: a bounding sphere would show the car as possibly in-
tersecting with the ground, which then would need to be rejected by a more
expensive test of the actual model of the car; a bounding box immediately
shows the car as not intersecting with the ground, saving the more expensive
test.

In many applications the bounding box is aligned with the axes of the co-
ordinate system, and it is then known as an axis-aligned bounding box
(AABB). To distinguish the general case from an AABB, an arbitrary bounding
box is sometimes called an oriented bounding box (OBB). AABBs are much
simpler to test for intersection than OBBs, but have the disadvantage that they
cannot be rotated.

A discrete oriented polytope (DOP) generalizes the AABB. A DOP is a convex
polytope containing the object (in 2-D a polygon; in 3-D a polyhedron), con-
structed by taking a number of suitably oriented planes at infinity and moving
them until they collide with the object. The DOP is then the convex polytope
resulting from intersection of the half-spaces bounded by the planes. Popular
choices for constructing DOPs in 3-D graphics include the axis-aligned bound-
ing box, made from 6 axis-aligned planes, and the beveled bounding box,
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made from 10 (if beveled only on vertical edges, say) 18 (if beveled on all
edges), or 26 planes (if beveled on all edges and corners). A DOP constructed
from k planes is called a k -DOP; the actual number of faces can be less than k,
since some can become degenerate, shrunk to an edge or a vertex.

A convex hull is the smallest convex volume containing the object. If the object
is the union of a finite set of points, its convex hull is a polytope, and in fact
the smallest possible containing polytope.

Basic Intersection Checks
For some types of bounding volume (OBB and Convex Polyhedra), an effective
check is that of the Separating Axis Test. The idea here is that, if there exists
an axis by which the objects do not overlap, then the objects do not intersect.
Usually the axes checked are those of the basic axes for the volumes (the unit
axes in the case of an AABB, or the 3 base axes from each OBB in the case
of OBBs). Often, this is followed by also checking the cross-products of the
previous axes (one axis from each object).

In the case of an AABB, this tests becomes a simple set of overlap tests in terms
of the unit axes. For an AABB defined by M,N against one defined by O,P they
do not intersect if (Mx>Px) or (Ox>Nx) or (My>Py) or (Oy>Ny) or (Mz>Pz)
or (Oz>Nz).

An AABB can also be projected along an axis, for example, if it has edges of
length L and is centered at C, and is being projected along the axis N:
r=0.5Lx|Nx|+0.5Ly|Ny|+0.5Lz|Nz|, and b=C*N or b=CxNx+CyNy+CzNz, and
m=b-r, n=b+r
where m and n are the minimum and maximum extents.

An OBB is similar in this respect, but is slightly more complicated. For an OBB
with L and C as above, and with I, J, and K as the OBB’s base axes, then:
r=0.5Lx|N*I|+0.5Ly|N*J|+0.5Lz|N*K|
m=C*N-r and n=C*N+r

For the ranges m,n and o,p it can be said that they do not intersect if m>p
or o>n. Thus, by projecting the ranges of 2 OBBs along the I, J, and K axes
of each OBB, and checking for non-intersection, it is possible to detect non-
intersection. By additionally checking along the cross products of these axes
(I0×I1, I0×J1, ...) one can be more certain that intersection is impossible.

This concept of determining non-intersection via use of axis projection also
extends to Convex Polyhedra, however with the normals of each polyhedral
face being used instead of the base axes, and with the extents being based on
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the minimum and maximum dot products of each vertex against the axes. Note
that this description assumes the checks are being done in world space.

External link

• Illustration of several DOPs for the same model, from epicgames.com14

Source: http://en.wikipedia.org/wiki/Bounding_volume

Principal Authors: Gdr, Lambiam, Jaredwf, Tosha, Frank Shearar

Box modeling

Box modeling is a technique in 3D modeling where the model is created by
modifying primitive shapes in a way to create a "rough draft" of the final model.
This is in contrast with the edge modeling method, where the modeler edits in-
dividual vertices. While a primary function of box modeling involves extruding
and scaling the flat planes that make up a model, called faces, another, more
prominent feature of this art style gives it a second, less rudimentary name of
subdivision modeling.

Subdivision
Subdivision modeling is derived from the idea that as a work is progressed,
should the artist want to make his work appear less sharp, or "blocky", each
face would be divided up into smaller, more detailed faces (usually into sets of
four). However, more experienced box modelers manage to create their model
without subdividing the faces of the model. Basically, box modeling is broken
down into the very basic concept of polygonal management.

Quads
Quadrilateral faces, or quads, are the fundamental entity in box modeling. Ob-
viously, if one were to start off from a cube, the artist would have six quad faces
to work with before extrusion. While most applications for three-dimensional
art provide abilities for faces up to any size, results are often more predictable
and consistent by working with quads. This is so because of the fact if you
were to draw an X connecting the corner vertices of a quad, the surface nor-
mal is nearly always the same. (We say nearly under the logic that should a

http://udn.epicgames.com/Two/CollisionTutorial/kdop_sizes.jpg14
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quad be something other than a perfect parallelogram, such as a rhombus, or
a trapezoid, the surface normal would not be the same.)

Advantages and disadvantages
Box modeling is a modeling method that is quick and easy to learn. It is also
appreciably faster than placing each point individually. However, it is difficult
to add high amounts of detail to models created using this technique without
practice.

Box modeling in web design
Box modeling is also a technique used in web design to lay out the various
elements of a web page before the design is implemented in HTML or XHTML.

Source: http://en.wikipedia.org/wiki/Box_modeling

Principal Authors: Greatpoo, Furrykef, Scott5114, Jonburney, Derbeth

Bui Tuong Phong

Bui Tuong Phong (1942–1975) was a Vietnamese-born computer graphics re-
searcher and pioneer. His works are most often indexed under his family name,
Bui Tuong (from the Vietnamese Bùi Tuòng), which comes before his given
name by Vietnamese name convention. But his inventions are remembered
under his given name Phong.

Dr. Bui Tuong was the inventor of the →Phong reflection model and the
→Phong shading interpolation method, techniques widely used in computer
graphics. Bui Tuong published the description of the algorithms in his 1973
PhD dissertation15 and a 1975 paper16. He received his Ph.D. from the Univer-
sity of Utah in 1973.

References

Source: http://en.wikipedia.org/wiki/Bui_Tuong_Phong

Principal Authors: Dicklyon, T-tus, Hathawayc, Calvin08, Mikkalai

Bui Tuong Phong, Illumination of Computer-Generated Images, Department of Computer Science,15

University of Utah, UTEC-CSs-73-129, July 1973.
Bui Tuong Phong, "Illumination for Computer Generated Images," Comm. ACM, Vol 18(6):311-317,16

June 1975.
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Bump mapping

Figure 22 A sphere without bump mapping.

Figure 23 This sphere is geometrically the same as
the first, but has a bump map applied. This changes
how it reacts to shading, giving it the appearance of a
bumpy texture resembling that of an orange.

Bump mapping is a computer graphics technique where at each pixel, a per-
turbation to the surface normal of the object being rendered is looked up in
a heightmap and applied before the illumination calculation is done (see, for
instance, →Phong shading). The result is a richer, more detailed surface repre-
sentation that more closely resembles the details inherent in the natural world.
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The difference between displacement mapping and bump mapping is evident
in the example images; in bump mapping, the normal alone is perturbed, not
the geometry itself. This leads to artifacts in the silhoutte of the object (the
sphere still has a circular silhoutte).

Fake bump mapping
Programmers of 3D graphics sometimes use computationally cheaper fake
bump mapping techniques in order to a simulate bump mapping. One such
method uses texel index alteration instead of altering surface normals, often
used for ’2D’ bump mapping. As of GeForce 2 class card this technique is im-
plemented in graphics accelerator hardware.

Full-screen 2D fake bump mapping, which could be easily implemented with
a very simple and fast rendering loop, was a very common visual effect in the
demos of the 1990’s.

References

• Blinn, James F. "Simulation of Wrinkled Surfaces", Computer Graphics, Vol.
12 (3), pp. 286-292 SIGGRAPH-ACM (August 1978)

Links

• http://www.jawed.com/bump/ Real-time bump mapping demo in Java (in-
cludes source code)

See also

• →Normal mapping
• →Parallax mapping
• →Displacement mapping

Source: http://en.wikipedia.org/wiki/Bump_mapping

Principal Authors: Viznut, Loisel, Brion VIBBER, Engwar, Kimiko, Xezbeth, Madoka, Mrwojo, Branko,

Jumbuck
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Carmack’s Reverse

Carmack’s Reverse is a →3D computer graphics technique for stencil shadow
volumes that solves the problem of when the viewer’s "eye" enters the shadow
volume by tracing backwards from some point at infinity to the eye of the
camera. It is named for one of its inventors, game programmer John Carmack.

According to a widely reported forum posting, Sim Dietrich may have pre-
sented the technique to the public at a developer’s forum in 1999. William
Bilodeau and Michael Songy filed a US patent application for the technique
the same year. U.S. Patent 638482217 entitled "Method for rendering shadows
using a shadow volume and a stencil buffer" issued in 2002.

Bilodeau and Songy assigned their patent ownership rights to Creative Labs.
Creative Labs, in turn, granted Id Software a license to use the invention free
of charge in exchange for future support of EAX technology.

Carmack independently invented the algorithm in 2000 during the develop-
ment of Doom 3. He is generally given credit for it since he, unlike Bilodeau
and Songy, advertised his discovery to the larger public.

References

• Creative Pressures id Software With Patents18. Slashdot. (July 28, 2004).
Retrieved on 2006-05-16.

• Creative patents Carmack’s reverse19. The Tech Report. (July 29, 2004).
Retrieved on 2006-05-16.

• Creative gives background to Doom III shadow story20. The Inquirer. (July
29, 2004). Retrieved on 2006-05-16.

See also

• List of software patents

Source: http://en.wikipedia.org/wiki/Carmack%27s_Reverse

Principal Authors: Frecklefoot, AlistairMcMillan, Rl, Fredrik, CesarB, Andymadigan

http://patft.uspto.gov/netacgi/nph-Parser?patentnumber=638482217

http://games.slashdot.org/games/04/07/28/1529222.shtml18

http://techreport.com/onearticle.x/711319

http://www.theinquirer.net/?article=1752520



DR
AF

T

43

Catmull-Clark subdivision surface

Catmull-Clark subdivision surface

Figure 24 First three steps of Catmull-Clark subdivision of a
cube with subdivision surface below

The Catmull-Clark algorithm is used in subdivision surface modeling to create
smooth surfaces. It was devised by Edwin Catmull (of Pixar) and Jim Clark.

Procedure
Start with a mesh of an arbitrary polyhedron. All the vertices in the mesh shall
be called original points.

• For each face, add a face point
• Set each face point to be the average of all original points for the re-

spective face.
• For each face point, add an edge for every edge of the face, connecting

the face point to each edge point for the face.
• For each edge, add an edge point.
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• Set each edge point to be the average of all neighbouring face points
and original points.

• For each original point P, take the average F of all n face points for faces
touching P, and take the average E of all n edge points for edges touching
P. Move each original point to the point F+2E+(n−3)P

n .

The new mesh will consist only of quadrilaterals, which won’t in general be
flat. The new mesh will generally look smoother than the old mesh.

Repeated subdivision results in smoother meshes. It can be shown that the
limit surface obtained by this refinement process is at least C1

at extraordinary
vertices and C2

everywhere else.

Software using Catmull-Clark subdivision surfaces

• Art of Illusion
• Blender
• Wings 3D

External links

• Recursively generated B-spline surfaces on arbitrary topological surfaces21,
by E. Catmull and J. Clark ( Computer-Aided Design22 10(6):350-355,
November 1978).

• Catmull-Clark Subdivision Surfaces23

Source: http://en.wikipedia.org/wiki/Catmull-Clark_subdivision_surface

Principal Authors: Orderud, Ati3414, Rasmus Faber, Cyp, Mystaker1

http://www.idi.ntnu.no/~fredrior/files/Recursively%20generated%20B-spline%20surfaces%20on%20ar-21

bitrary%20topological%20surfaces.PDF
http://www.sciencedirect.com/science/journal/0010448522

http://symbolcraft.com/graphics/subdivision/23
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Cel-shaded animation

Figure 25 Object with a basic cel-shader (AKA "toon shader") and border detection.

Cel-shaded animation (also called "cel-shading", "cell-shading", or "toon
shading") is a type of non-photorealistic rendering designed to make computer
graphics appear to be hand-drawn. Cel-shading is often used to mimic the style
of a comic book or cartoon. It is a quite recent addition to computer graphics,
most commonly turning up in console video games. Though the end result of
cel-shading has a very simplistic feel like that of hand-drawn animation, the
process is complex. The name comes from the clear sheets of acetate, called
cels, that are painted on for use in traditional 2D animation, such as Disney
classics.

Process

Hand-drawn animation

Main article: Traditional animation

In hand-drawn animation or traditional animation, from the mid-19th cen-
tury onwards, artists would start by creating pencil drawings; these would then
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be transferred onto celluloid, made of cellulose nitrate, either by using xerog-
raphy (a photocopying technique) and paint, or ink and paint. Later, by the
mid-20th century, celluloid was made using cellulose acetate instead of cellu-
lose nitrate due to the latter burning easily and suffering from spontaneous
decomposition, though the process remained the same.

Digital animation
The cel-shading process starts with a typical 3D model. The difference occurs
when a cel-shaded object is drawn on-screen. The rendering engine only selects
a few shades of each colour for the object, producing a flat look. This is not the
same as using only a few shades of texture for an object, as lighting and other
environmental factors would come into play and ruin the effect. Therefore,
cel-shading is often implemented as an additional rendering pass after all other
rendering operations are completed.

In order to draw black ink lines outlining an object’s contours, the back-face
culling is inverted to draw back-faced triangles with black-coloured vertices.
The vertices must be drawn multiple times with a slight change in translation to
make the lines "thick." This produces a black-shaded silhouette. The back-face
culling is then set back to normal to draw the shading and optional textures of
the object. Finally, the image is composited via →Z-buffering, as the back-faces
always lie deeper in the scene than the front-faces. The result is that the object
is drawn with a black outline, and even contours that reside inside the object’s
surface in screen space.

History

Video games
The first 3D video game to feature true real-time cel shading was Jet Set Ra-
dio for the Sega Dreamcast in 2000. An earlier game, Fear Effect for the Sony
PlayStation, was released in the same year and was noted for its use of dramat-
ic textures to give an anime appearance to its characters, but lacked outlines
and dynamic light-sourcing. Games before Fear Effect have used textures in
a similar fashion, but not as starkly apparent or stylized as the game. Wacky
Races, released on Dreamcast a few months before Jet Set Radio with an out-
line effect some mistake for cel shading, but it in-fact, still used traditional
shading techniques.

In the years following Jet Set Radio, numerous other cel-shaded games were
introduced during a minor fad involving cel-shaded graphics, yet only a few
would fully match or surpass its mainstream appeal. The next games with cel-
shading to capture the industry’s attention in some form were 2002’s Jet Set
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Figure 26 The Legend of Zelda: The Wind Waker is a well-known cel-shaded game

Radio Future and Sly Cooper and the Thievius Raccoonus. Over time, more
cel-shaded titles such as Dark Cloud 2, Cel Damage, Klonoa 2, the Viewti-
ful Joe series, and XIII were released with positive feedback, though none
were considered blockbusters in terms of sales figures. Originally the only cel-
shaded games to receive both positive ratings and sales after Sly Cooper and
the Thievius Raccoonus were The Legend of Zelda: The Wind Waker and Sly
2: Band of Thieves.

NOTE: Some dispute whether games like Klonoa 2 and Sly Cooper are cel-
shaded. Like Wacky Races, they use the black outline effects associated with
cel-shading, but they feature smoothly shaded surfaces with gentle lighting
gradiants as opposed to the harsh contrasts associated with the cel-shading
technique

Originally, Sega’s The House of the Dead 3 for the Xbox was cel-shaded. Ear-
ly in HotD3’s development Sega released screenshots of the then current cel-
shaded graphics to the gaming community. Shorty after those initial screen-
shots were released, Sega announced that they were dropping the cel-shaded
graphics in favour of conventional graphic techniques. There are several sus-
pected reasons for Sega’s change of heart, the most popular and most likely
is that the screenshots met much negative response from gamers who disliked
the cel-shaded graphical style. Many gamers claimed the cel-shading was used
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purely as a gimmick in an attempt to sell more games. HotD3 was a bloody,
gory and very violent light gun game which featured zombies and other mutat-
ed and deformed creatures. Many felt the cel-shaded look clashed greatly with
the game’s themes and content.

The use of cel-shading in video games has slowed somewhat since its inception,
but the technique continues to be employed in the modern era. Recent and
upcoming examples include Dragon Quest VIII, Killer 7, Metal Gear Acid 2,
and Ōkami.

Examples of digital cel-shading
Main article: List of cel-shaded video games

Some of the more prominent films that have featured cel-shaded graphics are:

• Appleseed
• The Animatrix short films
• Beyblade: The Movie - Fierce Battle
• Various sequences from Futurama, a US TV series
• Parts of Ghost in the Shell: Stand Alone Complex, a Japanese TV series

• The Tachikoma Days sequences at the end of the episodes are entirely
CG using cel-shading.

• Ghost in the Shell: S.A.C. 2nd GIG and Innocence: Ghost in the Shell
• Hot Wheels Highway 35 World Race
• Lego Exo-Force
• Rescue Heroes: The Movie
• Various sequences from Sonic X, a Japanese TV series
• Star Wars: Clone Wars
• Stuart Little 3: Call of the Wild
• The Iron Giant
• Tom and Jerry Blast Off to Mars

Some of the more prominent games that have featured cel-shaded graphics
are:

• Auto Modellista
• Bomberman Generation
• Bomberman Jetters
• Cel Damage
• Crazyracing Kartrider
• Dark Cloud 2
• Dragon Ball Z: Budokai 2, 3, and Tenkaichi
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• Dragon Quest VIII
• Gungrave series
• Harvest Moon: Save the Homeland
• Jet Set Radio series
• Killer 7
• Klonoa 2
• The Legend of Zelda: Phantom Hourglass
• The Legend of Zelda: The Wind Waker
• Mega Man X7
• Mega Man X Command Mission
• Metal Gear Acid 2
• Monster Rancher 3
• Robotech: Battlecry
• Runaway: A Road Adventure
• Shin Megami Tensei III: Nocturne
• Shin Megami Tensei: Digital Devil Saga and Digital Devil Saga 2
• Sly Cooper series
• Ultimate Spider-Man
• Tales of Symphonia
• Tony Hawk’s American Sk8land
• Viewtiful Joe series
• Wild Arms 3
• XIII
• X-Men Legends II: Rise of Apocalypse
• Zone of the Enders: The 2nd Runner

In addition, some TV series and commercials also use cel-shading effects:

• Atomic Betty
• Canada’s Worst Driver
• Class of the Titans
• Daily Planet (2005-2006 season)
• Delilah and Julius
• D.I.C.E.
• Dragon Booster
• Duck Dodgers
• Family Guy
• Fairly OddParents
• Funky Cops
• Futurama (mainly in scene-setting shots)
• G.I. Joe: Sigma 6
• Gundam Seed
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Figure 27 Spider-Man squatting.

• He-Man and the Masters of the Universe
• Initial D: 4th Stage
• Invader Zim
• Kirby: Right Back at Ya!
• MegaMan NT Warrior
• Monster House
• Ōban Star-Racers
• ReBoot episode My Two Bobs
• The Simpsons
• Sonic X
• Skyland
• Spider-Man
• Superior Defender Gundam Force
• The Littlest Robo
• Transformers Cybertron
• Transformers Energon
• Winx Club
• Zoids
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• Lego Exo-Force (commercial)
• McCain’s Zwak Punch (commercial)
• Sola/Nero/Vena/Olera/Zonte sparking wine (commercial)

See also

• List of cel-shaded video games

Other types of animation

• Traditional animation
• Special effects animation
• Character animation
• Computer animation and →3D computer graphics
• Skeletal animation
• See Animation#Styles and techniques of animation for more info

References

• CelShading.com24. More information on 3D cel-shading including an image
gallery.

• Celshader.com FAQ25. Retrieved August 2, 2005.
• IGN: Jet Grind Radio Review26. Retrieved August 4, 2005.
• GameDev.net - Cel-Shading27. Retrieved August 5, 2005.

Source: http://en.wikipedia.org/wiki/Cel-shaded_animation

Principal Authors: Joshfist, Jacob Poon, Andrevan, GrumpyTroll, Jacoplane, CyberSkull, MIT Trekkie,

Sherool

http://www.celshading.com/24

http://www.celshader.com/FAQ.html25

http://dreamcast.ign.com/articles/163/163512p1.html26

http://www.gamedev.net/reference/articles/article1438.asp27
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Cg programming language

Cg or C for Graphics is a High level shader language created by NVIDIA for
programming vertex and pixel shaders.

Cg is based on the C programming language and although they share the same
syntax, some features of C were modified and new data types were added to
make Cg more suitable for programming graphics processing units.

Background
As a result of technical advancements in graphics cards, some areas of 3D
graphics programming have become quite complex. To simplify the process,
new features were added to graphics cards, including the ability to modify
their rendering pipelines using vertex and pixel shaders.

In the beginning, vertex and pixel shaders were programmed at a very low level
with only the assembly language of the graphics processing unit. Although
using the assembly language gave the programmer complete control over code
and flexibility, it was fairly hard to use. A portable, higher level language
for programming the GPU was needed, so Cg was created to overcome these
problems and make shader development easier.

Some of the benefits of using Cg over assembly are:

• High level code is easier to learn, program, read, and understand than as-
sembly code.

• Cg code is portable to a wide range of hardware and platforms, unlike
assembly code, which usually depends on hardware and the platforms it’s
written for.

• The Cg compiler can optimize code and do lower level tasks automatically,
which are hard to do and error prone in assembly.

Details

Data types
Cg has six basic data types, some of them are the same as in C, others are
especially added for GPU programming, these types are:

• float - a 32bit floating point number
• half - a 16bit floating point number
• int - a 32bit integer
• fixed - a 12bit fixed point number
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• bool - a boolean variable
• sampler* - represents a texture object

Cg also features vector and matrix data types that are based on the basic data
types, such as float3, float4x4, such data types are quite common when dealing
with 3D graphics programming, Cg also has struct and array data types, which
work in a similar way to C equivalents.

Operators
Cg supports a wide range of operators, including the common arithmetic op-
erators from C, the equivalent arithmetic operators for vector and matrix data
types, and the common logical operators.

Functions and control structures
Cg shares the basic control structures with C, like if/else, while, and for. It also
has a similar way of defining functions.

The standard Cg library
As in C, Cg features a set of functions for common tasks in GPU programming.
Some of the functions have equivalents in C, like the mathematical functions
abs and sin, while others are specialized in GPU programming tasks, like the
texture mapping functions tex1D and tex2D.

The Cg runtime library
Cg programs are merely vertex and pixel shaders, and they need supporting
programs that handle the rest of the rendering process, Cg can be used with
two APIs, →OpenGL or DirectX, each has its own set of Cg functions to com-
municate with the Cg program, like setting the current Cg shader, passing pa-
rameters, and such tasks.

A sample Cg vertex shader

// input vertex

struct VertIn {
float4 pos : POSITION;

float4 color : COLOR0;

};

// output vertex

struct VertOut {
float4 pos : POSITION;

float4 color : COLOR0;
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};

// vertex shader main entry

VertOut main(VertIn IN, uniform float4x4 modelViewProj) {
VertOut OUT;

OUT.pos = mul(modelViewProj, IN.pos); // calculate out-

put coords

OUT.color = IN.color; // copy input color to output

OUT.color.z = 1.0f; // blue component of color = 1.0f

return OUT;

}

Applications and games that use Cg

• Far Cry
• PlayStation 3 compatibility
• Crystal Space
• OGRE
• Virtools Dev

Further reading

• Randima Fernando, Mark J. Kilgard, The Cg Tutorial: The Definitive Guide
to Programmable Real-Time Graphics, Addison-Wesley Professional, ISBN
0-32119-496-9

• Randima Fernando, GPU Gems: Programming Techniques, Tips, and Tricks
for Real-Time Graphics, Addison-Wesley Professional, ISBN 0-32122-832-4

• William R. Mark, R. Steven Glanville, Kurt Akeley, Mark J. Kilgard, Cg: A
System for Programming Graphics Hardware in a C-like Language 28, Pro-
ceedings of SIGGRAPH 200329.

• Mark J. Kilgard, Cg in Two Pages 30, 2003.

See also

• Computer programming
• Computer graphics
• Vertex and pixel shaders
• High level shader language

http://www.cs.utexas.edu/~billmark/papers/Cg/28

http://www.cs.brown.edu/~tor/sig2003.html29

http://xxx.lanl.gov/ftp/cs/papers/0302/0302013.pdf30
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• OpenGL shading language
• Shader Model
• →OpenGL
• DirectX

External links

• Cg in Two Pages31

• NVIDIA32

• Cg home page33

• OpenGL home page34

• DirectX home page35

• CgShaders.org36

• NeHe Cg vertex shader tutorial37

• Far Cry38

• A glimpse at Cg Shader Toolkit39

• Virtools40

Source: http://en.wikipedia.org/wiki/Cg_programming_language

Principal Authors: Ayman, Optim, Orderud, T-tus, RJHall

http://xxx.lanl.gov/ftp/cs/papers/0302/0302013.pdf31

http://www.nvidia.com/32

http://developer.nvidia.com/page/cg_main.html33

http://www.opengl.org34

http://www.microsoft.com/windows/directx/default.aspx35

http://www.cgshaders.org/36

http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=4737

http://www.farcry-thegame.com/38

http://deathfall.com/feature.php?op=showcontent&id=1239

http://www.virtools.com40
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Clipmap

Clipmapping is a method of clipping a mipmap to a subset of data pertinent
to the geometry being displayed. This is useful for loading as little data as
possible when memory is limited, such as on a graphics card.

External Links

• SGI paper from 200241

• SGI paper from 199642

• Description from SGI’s developer library43

Source: http://en.wikipedia.org/wiki/Clipmap

COLLADA

COLLADA is a COLLAborative Design Activity for establishing an interchange
file format for interactive 3D applications.

COLLADA defines a standard XML schema for data interchange.

Originally established by Sony Computer Entertainment as the official format
for PlayStation 3 and PlayStation Portable development, COLLADA continues
to evolve through the efforts of the Khronos contributors. Dozens of commer-
cial game studios and game engines have adopted the standard.

COLLADA version 1.4, released in January 2006, supports features such as
character skinning and morph targets, rigid body dynamics and shader effects
for multiple shading languages including the →Cg programming language,
GLSL and HLSL.

Solutions exist to transport data from one Digital Content Creation (DCC) tool
to another. Supported DCCs include Maya (using ColladaMaya), 3D Studio
Max (using ColladaMax), Softimage XSI and Blender. Game engines, such as
Unreal engine and the open-source C4 Engine, have also adopted this format.

http://www.cs.virginia.edu/~gfx/Courses/2002/BigData/papers/Texturing/Clipmap.pdf41

http://www.sgi.com/products/software/performer/presentations/clipmap_intro.pdf42

http://techpubs.sgi.com/library/tpl/cgi-bin/getdoc.cgi?coll=0650&db=bks&srch=&fname=/SGI_De-43

veloper/Perf_PG/sgi_html/ch15.html
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Google Earth (release 4) has adopted COLLADA (1.4) as their native format
for describing the objects populating the earth. Users can simply drag and
drop a COLLADA (.dae) file on top of the virtual earth. Alternatively, Google
sketchup can also be used to create .kmz files, a zip file containing a KML file,
a COLLADA (.dae) file, and all the texture images.

Two open-source utility libraries are available to simplify the import and ex-
port of COLLADA documents: the COLLADA DOM and the FCollada library.
The COLLADA DOM is generated at compile-time from the COLLADA schema.
It provides a low-level interface that eliminates the need for hand-written pars-
ing routines, but is limited to reading and writing only one version of COLLA-
DA, making it difficult to upgrade as new versions are released. In contrast,
Feeling Software’s FCollada provides a higher-level interface and can import
all versions of COLLADA. FCollada is used in ColladaMaya, ColladaMax and
several commercial game engines.

See also

• X3D
• List of vector graphics markup languages

External links

• Official homepage44

• Forum45

• COLLADA book46

• COLLADA tools including: ColladaMaya, ColladaMax, FCollada and the
Feeling Viewer47

• COLLADA DOM, COLLADA RT, and COLLADA FX libraries are on
sourceforge48

• Bullet Physics Library - First open source rigid body dynamics simulator
with COLLADA Physics import49

Source: http://en.wikipedia.org/wiki/COLLADA

Principal Authors: Racklever, Karada, Agentsoo, Who, Khalid hassani, N00body

http://www.khronos.org/collada/44

http://collada.org/45

http://www.akpeters.com/product.asp?ProdCode=287646

http://www.feelingsoftware.com47

http://sourceforge.net/projects/collada-dom48

http://bullet.sourceforge.net49
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Comparison of Direct3D and OpenGL

In computer software, →Direct3D is a proprietary API designed by Microsoft
Corporation that provides a standardized API for hardware 3D acceleration on
the Windows platform. Direct3D is implemented, like OpenGL on the same
platform, in the display driver.

→OpenGL is an open standard Application Programming Interface that pro-
vides a number of functions for the rendering of 2D and 3D graphics. An
implementation is available on most modern operating systems.

Following is a comparison of the two APIs, structured around various consid-
erations mostly relevant to game development.

Portability
For the most part, Direct3D is only implemented on Microsoft’s Windows family
of operating systems, including the embedded versions used in the Xbox family
of video game consoles. Several partially functional ports of the Direct3D API
have been implemented by Wine, a project to port common Windows APIs to
Linux, but this work is difficult due to the dependency of DirectX as a whole
on many other components of the Windows operating systems. Microsoft once
started development on a port to Apple Computer’s Mac OS, but later aban-
doned this project.

OpenGL, on the other hand, has implementations available across a wide va-
riety of platforms including Microsoft Windows, Linux, UNIX-based systems,
Mac OS X and game consoles by Nintendo and Sony, such as the PlayStation 3
and Wii. With the exception of Windows, all operating systems that allow for
hardware-accelerated 3D graphics have chosen OpenGL as the primary API.
Even more operating systems have OpenGL software renderers.

Microsoft’s supplied OpenGL driver in Windows (including Vista) provides no
hardware acceleration or direct support for extensions. Microsoft’s stance on
this is that eliminating OpenGL inconveniences few and allows them to support
more hardware in the same testing time. Other platforms supply very few
drivers for any hardware, OpenGL or otherwise.

Windows thus requires the correct drivers from the GPU’s manufacturer or
vendor for OpenGL hardware support, as well as the full performance in
its Direct3D support. These manufacturer-supplied drivers nearly all include
OpenGL support through the ICD (Installable Client Driver).

In terms of portability, Direct3D is a much more limiting choice; however, this
"lock-in" will only be a problem for some applications. Those aiming at the
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desktop computer gaming market should consider that its non-Windows seg-
ment is still relatively small. On the other hand, while Microsoft’s segment of
the console market is growing, it is very small, especially compared to that of
Sony’s, and predicted by analysts to remain so. While no current or upcom-
ing console uses exactly standard graphics APIs, the Microsoft Xbox 360 uses
a variant of Direct3D while the Sony PlayStation 3 uses a variant of →OpenGL
ES.

Ease of use
In its earliest incarnation, Direct3D was known to be rather clumsy to use
— to perform a state change, for instance, it required a number of complex
operations. For example, to enable alpha blending, one had to create a so-
called execute buffer, lock it, fill it with the correct opcodes (along with a
structure header telling how many opcodes the buffer contained and a special
"exit" opcode), unlock it, and finally send it to the driver for execution. In
contrast, OpenGL only requires a single "glEnable(GL_BLEND);" call. The Di-
rect3D model frustrated many programmers. The most famous complaint was
probably made by high-profile game developer John Carmack in the .plan file
in which he urged Microsoft to abandon Direct3D in favor of OpenGL.

Version 5 (the second version, but it was released with DirectX 5) abandoned
execute buffers and improved the API significantly, but it was still cumbersome
and didn’t provide much in terms of texture management or vertex array man-
agement. Direct3D 7 provided texture management, and Direct3D 8, among
other things, provided vertex array management. Currently, Direct3D’s API
is a well-designed API. Direct3D and OpenGL still follow different paradigms,
though.

Direct3D is built upon Microsoft’s COM. The use of this framework means that
C++ code is a little unusual. Functions for acquiring values don’t return the
value in the return argument for the function because all COM functions return
an "HRESULT" that tells whether the function executed correctly or not. The
plus side of using COM is that you can use the same API in any COM-aware
language. These include Visual Basic and Visual Basic Script, among others.

OpenGL is a specification based on the C programming language. It is built
around the concept of a finite state machine, though more recent OpenGL ver-
sions have transformed it into much more of an object based system. Though
the specification is built on C, it can be implemented in other languages as well.

In general, Direct3D is designed to be a 3D hardware interface. The featureset
of D3D is derived from the featureset of what hardware provides. OpenGL, on
the other hand, is designed to be a 3D rendering system that may be hardware
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accelerated. As such, its featureset is derived from that which users find use-
ful. These two API’s are fundamentally designed under two separate modes of
thought. The fact that the two APIs have become so similar in functionality
shows how well hardware is converging into user functionality.

Even so, there are functional differences in how the two APIs work. Direct3D
expects the application to manage hardware resources; OpenGL makes the
implementation do it. This makes it much easier for the user in terms of writing
a valid application, but it leaves the user more succeptible to implementation
bugs that the user may be unable to fix. At the same time, because OpenGL
hides hardware details (including whether hardware is even being used), the
user is unable to query the status of various hardware resources. So the user
must trust that the implementation is using hardware resources "best".

Until recently, another functional difference between the APIs was the way
they handled rendering to textures: the Direct3D method (SetRenderTarget())
is convenient, while previous versions of OpenGL required the manipulation of
P-buffers (pixel buffers). This was cumbersome and risky: if the programmer’s
codepath was different from that anticipated by the driver manufacturer, the
code would have fallen back to software rendering, causing a substantial per-
formance drop. According to a Gamasutra article50 (registration required), the
aforementioned John Carmack considered switching from OpenGL to Direct3D
because of the contrived use of P-buffers. However, widespread support for the
"frame buffer objects" extension, which provides an OpenGL equivalent of the
Direct3D method, has successfully addressed this shortcoming.

Outside of a few minor functional differences, typically with regard to render-
ing to textures (the "framebuffer objects" extension did not cover everything,
but the ARB is working to address this), the two APIs provide nearly the same
level of functionality.

Performance
Shortly after the establishment of both Direct3D and OpenGL as viable graph-
ics libraries, Microsoft and SGI engaged in what has been called the "API Wars".
Much of the argument revolved around which API offered superior perfor-
mance. This question was relevant due to the very high cost of graphics accel-
erators during this time, which meant the consumer market was using software
renderers implemented by Microsoft for both Direct3D and OpenGL.

Microsoft had marketed Direct3D as faster based on in-house performance
comparisons of these two software libraries. The performance deficit was
blamed on the rigorous specification and conformance required of OpenGL.

http://www.gamasutra.com/features/20040830/mcguire_02.shtml50
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This perception was changed at the 1996 SIGGRAPH (Special Interest Group
on Computer Graphics) conference. At that time, SGI challenged Microsoft
with their own optimized Windows software implementation of OpenGL called
CosmoGL which in various demos matched or exceeded the performance of Di-
rect3D. For SGI, this was a critical milestone as it showed that OpenGL’s poor
software rendering performance was due to Microsoft’s inferior implementa-
tion, and not to design flaws in OpenGL itself.

Direct3D 9 and below have a particular disadvantage with regard to perfor-
mance. Drawing a vertex array in Direct3D requires that the CPU switch to
kernel-mode and call the graphics driver immediately. In OpenGL, because an
OpenGL driver has portions that run in user-mode, can perform marshalling
activities to limit the number of kernel-mode switches and batch numerous
calls in one kernel-mode switch. In effect, the number of vertex array drawing
calls in a D3D application is limitted to the speed of the CPU, as switching to
kernel-mode is a fairly slow and CPU intensive operation.

Direct3D 10 allows portions of drivers to run in user-mode, thus allowing
D3D10 applications to overcome this performance limitation.

Outside of this, Direct3D and OpenGL applications have no significant perfor-
mance differences.

Structure
OpenGL, originally designed for then-powerful SGI workstations, includes a
number of features that are only useful for workstation applications. The API
as a whole contains about 250 calls, but only a subset of perhaps 100 are useful
for game development. However, no official gaming-specific subset was ever
defined. MiniGL, released by 3Dfx as a stopgap measure to support glQuake,
might have served as a starting point, but additional features like stencil were
soon adopted by games, and support for the entire OpenGL standard contin-
ued. Today, workstations and consumer machines use the same architectures
and operating systems, and so modern incarnations of the OpenGL standard
still include these features, although only special workstation-class video cards
accelerate them.

OpenGL is designed as a feature rich API regardless of hardware support.
The specification often drives the implementation of hardware acceleration for
these features. For example, when the GeForce 256 graphics card came out in
1999, games like Quake III Arena could already benefit from its acceleration
of Transform & Lighting, because the API was designed to provide this feature.
Meanwhile, Direct3D developers had to wait for the next version of Direct3D
to be released and rewrite their games to use the new API before they could
take advantage of hardware-based Transform and Lighting.
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The advantage of OpenGL’s inclusive, extensible approach is limited in practice,
however, by the market dominance Direct3D has achieved. In recent years,
games have rarely implemented features until Direct3D has supported them,
and graphics cards vendors have been reluctant to implement features that
current or upcoming versions of Direct3D will not support.

Extensions
The OpenGL extension mechanism is probably the most heavily disputed dif-
ference between the two APIs. OpenGL includes a mechanism where any driver
can advertise its own extensions to the API, thus introducing new functionality
such as blend modes, new ways of transferring data to the GPU, or different
texture wrapping parameters. This allows new functionality to be exposed
quickly, but can lead to confusion if different vendors implement similar exten-
sions with different APIs. Many of these extensions are periodically standard-
ized by the OpenGL Architecture Review Board, and some are made a core part
of future OpenGL revisions.

On the other hand, Direct3D is specified by one vendor (Microsoft) only, lead-
ing to a more consistent API, but denying access to vendor-specific features.
nVidia’s UltraShadow51 technology, for instance, is not available in the stock
Direct3D APIs at the time of writing. It should be noted that Direct3D does
support texture format extensions (via so-called FourCC’s). These were once
little-known and rarely used, but are now used for DXT texture compression.

When graphics cards added support for pixel shaders (known on OpenGL as
"fragment programs"), Direct3D provided a single "Pixel Shader 1.1" (PS1.1)
standard which the GeForce 3 and up, and Radeon 8500 and up, claimed com-
patibility with. Under OpenGL the same functionality was accessed through a
variety of custom extensions.

In theory, the Microsoft approach allows a single code path to support both
brands of card, whereas under OpenGL the programmer had to write two sep-
arate systems. In reality, though, because of the limits on pixel processing of
those early cards, Pixel Shader 1.1 was nothing more than a pseudo-assembly
language version of the nVidia-specific OpenGL extensions. For the most part,
the only cards that claimed PS 1.1 functionality were nVidia cards, and that is
because they were built for it natively. When the Radeon 8500 was released,
Microsoft released an update to Direct3D that included Pixel Shader 1.4, which
was nothing more than a pseudo-assembly language version of the ATi-specific
OpenGL extensions. The only cards that claimed PS 1.4 support were ATi cards
because they were designed with the precise hardware necessary to make that

http://www.nvidia.com/object/feature_ultrashadow.html51
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functionality happen. In terms of early Pixel shaders, D3D’s attempt at a single
code path fared no better than the OpenGL mechanism.

Fortunately, this situation only existed for a short time under both APIs.
Second-generation pixel shading cards were much more similar in function-
ality, with each architecture evolving towards the same kind of pixel pro-
cessing conclusion. As such, Pixel Shader 2.0 allowed a unified code path
under Direct3D. Around the same time OpenGL introduced its own ARB-
approved vertex and pixel shader extensions (GL_ARB_vertex_program and
GL_ARB_fragment_program), and both sets of cards supported this standard
as well.

The Windows Vista Issue
An issue has arisen between Direct3D and OpenGL recently (mid-to-late 2005),
with regard to support for Microsoft’s new operating system, Windows Vista.
The Vista OS has a feature called Desktop Compositing (which is similar in
concept to Mac OS X’s Quartz Compositor or Compiz on Linux based systems)
that allows individual windows to blend into the windows beneath them as
well as a number of other cross-window effects. The new OS’s rendering system
that allows this to function operates entirely through Direct3D; as such, every
Windows application is automatically a Direct3D application.

The ICD driver model used in prior versions of Windows will still function
however. There is one important caveat: activating an ICD will cause Vista to
deactivate Desktop Compositing.

Note that this functionality only truly matters for applications running in win-
dowed mode. Full-screen applications, the way most people run games, will
not be affected. Desktop compositing wouldn’t affect them regardless, and the
user won’t notice that windows that the user can’t see have had desktop com-
positing deactivated. However, the problem remains for running windowed
OpenGL ICDs.

Microsoft has also updated their own implementation of OpenGL. In pre-Vista
OSs, if you didn’t select a device context from an ICD driver, you were given
Microsoft’s OpenGL implementation. This was a software OpenGL implemen-
tation which was frozen at version 1.1. In Vista, Microsoft’s implementation
has become a wrapper around Direct3D, supporting GL versions through 1.3.
Activating this driver does not turn off desktop compositing, since it is just a
D3D wrapper.

The potential problem with the wrapper is that, at the time of writing this, it
is known to only support OpenGL 1.4. Since 1.4 was released, GL versions
have progressed to 2.0. The features introduced into the core of 2.0 have giv-
en OpenGL significant functionality improvements, particularly as it relates to
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shaders. Before 2.0, developers had to rely on widely-supported extensions for
shaders; only 2.0 and beyond have shader functionality built in. Additionally,
Microsoft’s OpenGL 1.4 implementation will not support extensions, so users
will not be able to use shaders on that implementation.

According to IHVs, the problem with ICD’s turning off desktop compositing
can be solved in the ICDs themselves. However, in order to do so, the IHVs will
need to be provided with information about the inner workings of the desktop
compositing subsystem of Vista. As of yet, it is unknown whether Microsoft
has supplied IHVs with the necessary information or not. Speculation may
suggest that, since Vista is in beta, the necessary information may actually
change between now and release, so the release of such information should
wait until the release of Vista comes closer.

Update, as of March 15, 2006:

It would appear that this issue has been resolved. According to a Microsoft
Blog52, there are 2 OpenGL paths under Vista. An application can use the
default implementation, frozen at OpenGL version 1.4. An application can use
an ICD as well, which comes in two flavors: legacy and Vista-compatible. A
legacy ICD functions as specified above: the activation of one will turn off
the desktop compositor. A Vista-compatible ICD, made by IHVs using a new
internal API path provided by Microsoft, will be completely compatible with the
desktop compositor. Given the statements made by the two primary OpenGL
ICD vendors (ATi and nVidia), it would be reasonable to expect both to provide
full Vista-compatible ICDs for Windows Vista.

Users
OpenGL has always seen more use in the professional graphics market than
DirectX (Microsoft even acknowledges OpenGL’s advantage in this field), while
DirectX is used mostly for computer games.

At one point many professional graphics cards only supported OpenGL, howev-
er, nowadays all the major professional card manufacturers (Nvidia, ATI Tech-
nologies and Matrox) support both OpenGL and Direct3D on Microsoft Win-
dows.

The reasons for OpenGL’s advantage in the professional market is partly histori-
cal. Many professional graphics applications (for example, Softimage|3D, Alias
PowerAnimator) were originally written in IRIS GL for high-end SGI worksta-
tions, then ported to OpenGL. Even long after SGI no longer dominated the
market, many professional graphics cards only supported OpenGL.

http://blogs.msdn.com/kamvedbrat/archive/2006/02/22/537624.aspx52
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The many extra features of OpenGL that were previously mentioned as not
useful for game development are also a factor in OpenGL’s professional market
advantage, because many of them are useful in professional applications.

The other reason for OpenGL’s advantage there is marketing and design. Di-
rectX is a set of APIs that were not marketed towards professional graphics
applications. Indeed, they were not even designed with those applications in
mind. DirectX was an API designed for low-level, high-performance hardware
access for the purpose of game development. OpenGL is a much more gen-
eral purpose 3D API, so it provides features that aren’t necessarily exclusive
towards any particular kind of user.

The principal reason for Direct3D’s dominance in the gaming industry is his-
torical. In the earliest days of hardware-accelerated 3D graphics, 3dfx was the
dominant force, and their →Glide API was used by far more games than D3D
or OpenGL. Glide was much lower-level than D3D or OpenGL, and thus its per-
formance was greater than either. Performance is the most important facet for
game developers, so the less easy to use Glide API was preferred over the oth-
er two. This helped catapult 3DFx into the forefront of 3D hardware in those
days.

As hardware got faster, however, the performance advantages of Glide began
to be outweighted by the ease of use. Also, because Glide was restricted to
3dfx hardware, and 3dfx was not being as smart about hardware design as its
main competitor nVidia, a hardware neutral API was needed. The very earliest
versions of Direct3D (part of DirectX version 3) was not the simplest API to use.
The next Direct3D version (in DirectX 5) was much more lucid. As interest in
making Glide only games or games with multiple renderers dropped, there was
a choice to make: OpenGL or Direct3D 5.

Making games that use OpenGL while using the non-Direct3D portion of the
DirectX API is no more difficult than making a game using all of the DirectX API.
The decision to use Direct3D over OpenGL was made from simple pragmatism:
in those days, OpenGL implementations were difficult to work with. Writing
an OpenGL implementation requires implementing every feature of OpenGL,
even if the hardware doesn’t support it. If the hardware can’t do it, you have
to write a software rasterizer that can handle that feature.

Different GL implementations would, when activating some feature, sponta-
neously go into a slow software renderer. Because OpenGL has no mechanism
for telling the user whether or not a feature, or combination of features, will
kick the renderer into software mode, users of OpenGL had to carefully test
everything that they did on every piece of hardware that they were going to
support.
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Adding to that is the fact that an OpenGL implementation is a complex piece
of code. It is much more than a simple graphics driver that is just a low-level
interface to hardware registers. It needs to keep track of a great deal of state
information, and that requires a lot of code. In the early days of OpenGL
implementations, the implementations themselves were quite buggy. Indeed,
a perfectly functioning game could break when downloading a new graphics
driver; this is a complication that many game developers didn’t want to have
to deal with. This feature is very useful if performance is not a primary goal,
such as in professional graphics applications or off-line renderers; it guarantees
the existence of functionality. However, in a game situation, where a loss of
performance can destroy the feeling of the game, it is more desirable to know
that the functionality doesn’t exist and to simply avoid using it.

Direct3D didn’t have these problems. A Direct3D driver is (or, was in those
days) just a low-level interface to hardware registers. And D3D has a query
mechanism that tells the application whether or not a particular feature is
available in hardware. So game developers chose to use it because it did what
they needed. While IHVs did resolve the bug issue to a significant degree, the
issue of hardware specificity was never addressed. Even so, the need for it has
decreased as more and more OpenGL specified functionality becomes imple-
mented in hardware. Later versions of OpenGL would rarely add functionality
that wasn’t actually widely available in hardware. As such, the issue has, for
the most part, become a non-issue.

At this point, the Windows Vista issue aside, the reason for using one over the
other is typically inertia. It is what they have used in the past, so it is what they
use now.

See also

• Fahrenheit graphics API

External links

• Direct3D vs. OpenGL: Which API to Use When, Where, and Why53

Source: http://en.wikipedia.org/wiki/Comparison_of_Direct3D_and_OpenGL

Principal Authors: Sesse, Korval, Racklever, Warrens, Rufous, LesmanaZimmer, Imroy, Joe Jarvis,

Gargaj, Smccandlish

http://www.gamedev.net/reference/articles/article1775.asp53
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Cone tracing

Cone tracing is a derivative of the ray tracing algorithm that replaces rays,
which have no thickness, with cones. Cone tracing is related to beam tracing,
but uses circular rather than polygonal cross sections.

Cone tracing solves certain problems related to sampling and aliasing, which
can plague conventional ray tracing. However, cones tracing creates a host of
problems of its own. For example, just intersecting a cone with scene geometry
leads to an enormous variety of possible results. For this reason, cone tracing
has always been unpopular. In recent years, increases in computer speed have
made Monte Carlo algorithms like distributed ray tracing much more viable
than cone tracing, which has been all but forgotten.

Source: http://en.wikipedia.org/wiki/Cone_tracing

Principal Authors: RJHall, RJFJR, CesarB, Reedbeta

Constructive solid geometry

Figure 28 The light cycles from the movie Tron
were constructed using Constructive Solid Geometry

Constructive solid geometry (CSG) is a technique used in solid modeling.
CSG is often, but not always, a procedural modeling technique used in →3D



DR
AF

T

68

Constructive solid geometry

computer graphics and CAD. Constructive solid geometry allows a modeler
to create a complex surface or object by using Boolean operators to combine
objects. Often CSG presents a model or surface that appears visually complex,
but is actually little more than cleverly combined or decombined objects. (In
some cases, constructive solid geometry is performed on polygonal meshes,
and may or may not be procedural and/or parametric.)

The simplest solid objects used for the representation are called primitives.
Typically they are the objects of simple shape: cuboids, cylinders, prisms, pyra-
mids, spheres, cones. The set of allowable primitives is limited by each soft-
ware package. Some software packages allow CSG on curved objects while
other packages do not.

It is said that an object is constructed from primitives by means of allowable
operations, which are typically Boolean operations on sets: union, intersection
and difference.

Operations
In modeling packages, basic geometric objects such as the cube or ’box’, sphere
or ellipse, torus, and a number of other shapes that can be described using a
mathematical formula, are commonly known as primitives. These objects can
typically be described by a procedure which accepts some number of parame-
ters; for example, a sphere may be described by the coordinates of its center
point, along with a radius value. These primitives can be combined into com-
pound objects using operations like these:

Boolean union Boolean difference Boolean intersection

The merger of two objects into
one.

The subtraction of one object
from another.

The portion common to both
objects.

Table 1 Operations in constructive solid geometry
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Applications of CSG
Constructive solid geometry has a number of practical uses. It is used in cases
where simple geometric objects are desired, or where mathematical accuracy
is important. The Unreal engine uses this system, as do Hammer (the mapping
engine for the Source engine) and Quake. (Hammer actually started out as an
editor for Quake.) BRL-CAD is a solid modeling CAD package that is fundamen-
tally based on CSG modeling techniques. CSG is popular because a modeler
can use a set of relatively simple objects to create very complicated geometry.
When CSG is procedural or parametric, the user can revise their complex geom-
etry by changing the position of objects or by changing the Boolean operation
used to combine those objects.

Source: http://en.wikipedia.org/wiki/Constructive_solid_geometry

Principal Authors: Oleg Alexandrov, Mikkalai, Michael Hardy, Operativem, Merovingian

Conversion between quaternions and Eu-
ler angles

Spatial rotations in three dimensions can be parametrized using both Euler an-
gles and unit quaternions. This article explains how to convert between the
two representations. Actually this simple use of "quaternions" was first pre-
sented by Euler some seventy years earlier than Hamilton to solve the problem
of "magic squares." For this reason the dynamics community commonly refers
to quaternions in this application as "Euler parameters".

A unit quaternion can be described as:

q =

[

q0 q1 q2 q3

]T

|q|2 = q20 + q21 + q22 + q23 = 1

q0 = cos(α/2)

q1 = sin(α/2) cos(βx)

q2 = sin(α/2) cos(βy)
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q3 = sin(α/2) cos(βz)

where α is a simple rotation angle and βx, βy , βz , are the "direction cosines"
locating the axis of rotation (Euler’s Theorem).

Figure 29

Similarly for Euler angles, we use (in terms of flight dynamics):

• Roll - φ: rotation about the X-axis
• Pitch - θ: rotation about the Y-axis
• Yaw - ψ: rotation about the Z-axis

where the X-axis points forward, Y-axis to the right and Z-axis downward and
in the example to follow the rotation occurs in the order yaw, pitch, roll (about
body-fixed axes).

Rotation matrices
The orthogonal matrix corresponding to a rotation by the unit quaternion q is
given by




1 − 2(q2

2
+ q

2

3
) 2(q1q2 − q0q3) 2(q0q2 + q1q3)

2(q1q2 + q0q3) 1 − 2(q2

1
+ q

2

3
) 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q0q1 + q2q3) 1 − 2(q2

1
+ q

2

2
)





The orthogonal matrix corresponding to a rotation with Euler angles φ, θ ψ, is
given by
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



cos θ cosψ − cosφ sinψ + sinφ sin θ cosψ sinφ sinψ + cosφ sin θ cosψ

cos θ sinψ cosφ cosψ + sinφ sin θ sinψ − sinφ cosψ + cosφ sin θ sinψ

− sin θ sinφ cos θ cosφ cos θ





Conversion
By comparing the terms in the two matrices, we get

q =









cos(φ/2) cos(θ/2) cos(ψ/2) + sin(φ/2) sin(θ/2) sin(ψ/2)
sin(φ/2) cos(θ/2) cos(ψ/2) − cos(φ/2) sin(θ/2) sin(ψ/2)
cos(φ/2) sin(θ/2) cos(ψ/2) + sin(φ/2) cos(θ/2) sin(ψ/2)
cos(φ/2) cos(θ/2) sin(ψ/2) − sin(φ/2) sin(θ/2) cos(ψ/2)









For Euler angles we get:




φ

θ

ψ



 =







arctan2(q0q1+q2q3)
1−2(q2

1
+q

2

2
)

arcsin(2(q0q2 − q3q1))

arctan2(q0q3+q1q2)
1−2(q2

2
+q

2

3
)







Singularities
One must be aware of singularities in the Euler angle parametrization when
the pitch approaches ±90o (north/south pole). These cases must be handled
specially.

Source: http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles

Principal Authors: Orderud, Patrick, Icairns, Oleg Alexandrov, Woohookitty

Cornell Box

The Cornell Box is a test aimed at determining the accuracy of rendering soft-
ware by comparing the rendered scene with an actual photograph of the same
scene. It was created by the Cornell University Program of Computer Graphics
for a paper published in 1984.

A physical model of the box is created and photographed with a CCD camera.
The exact settings are then measured from the scene: emission spectrum of the
light source, reflectance spectra of all the surfaces, exact position and size of
all objects, walls, light source and camera.
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Figure 30 Standard Cornell Box rendered with POV-Ray

The same scene is then reproduced in the renderer, and the output file is com-
pared with the photography.

The basic environment consists of:

• One light source in the center of a white ceiling
• A green right wall
• A red left wall
• A white back wall
• A white floor

Objects are often placed inside the box. The first objects placed inside the
environment were two white boxes. Another common version first used to test
photon mapping includes two spheres: one with a perfect mirror surface and
one made of glass.

The physical properties of the box are designed to show diffuse interreflection.
For example, some light should reflect off the red and green walls and bounce
onto the white walls, so parts of the white walls should appear slightly red or
green.
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Today, the Cornell Box is often used to show off renderers in a similar way as
the Stanford Bunny, the →Utah teapot, and Lenna: computer scientists often
use the scene just for its visual properties without comparing it to test data
from a physical model.

See also

• →Utah teapot
• Lenna
• Stanford Bunny
• Suzanne

External links

• The Cornell Box website54

Source: http://en.wikipedia.org/wiki/Cornell_Box

Principal Authors: SeeSchloss, T-tus, John Fader, 1983, Reedbeta

Crowd simulation

Crowd simulation is the process of simulating the movement of a large num-
ber of objects or characters, now often appearing in →3D computer graphics
for film.

The need for crowd simulation arises when a scene calls for more characters
than can be practically animated using conventional systems, such as skele-
tons/bones.

Animators typically create a library of motions, either for the entire charac-
ter or for individual body parts. To simplify processing, these animations are
sometimes baked as morphs. Alternatively, the motions can be generated pro-
cedurally - i.e. choreographed automatically by software.

The actual movement and interactions of the crowd is typically done in one of
two ways:

• Particle Motion: The characters are attached to point particles, which are
then animated by simulating wind, gravity, attractions, and collisions. The

http://www.graphics.cornell.edu/online/box/54
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particle method is usually inexpensive to implement, and can be done in
most 3D software packages. However, the method is not very realistic be-
cause it is difficult to direct individual entities when necessary, and because
motion is generally limited to a flat surface.

• Crowd AI : The entities - also called agents - are given artificial intelligence,
which guides the entities based on one or more of sight, hearing, basic
emotion, energy level, aggressiveness level, etc.. The entities are given
goals and then interact with each other as members of a real crowd would.
They are often programmed to respond to changes in environment, en-
abling them to climb hills, jump over holes, scale ladders, etc. This system
is much more realistic than particle motion, but is very expensive to pro-
gram and implement.

The most notable examples of AI simulation can be seen in New Line Cinema’s
The Lord of the Rings films, where AI armies of many thousands battle each
other. The crowd simulation was done using Weta Digital’s MASSIVE software.
Crowd simulation can also refer to simulations based on group dynamics and
crowd psychology, often in public safety planning. In this case, the focus is just
the behavior of the crowd, and not the visual realism of the simulation.

See also

• →3D computer graphics
• Artificial intelligence
• Emergent behavior
• MASSIVE (animation)
• Multi-agent system
• →Particle system

External links

• NetLogo55, a free software for multi-agent modeling, simulation, and the
like.

• MASSIVE56, the software used in The Lord of the Rings films.

Source: http://en.wikipedia.org/wiki/Crowd_simulation

Principal Authors: Aniboy2000, The Anome, Pmkpmk, Kuru, JonHarder

http://ccl.northwestern.edu/netlogo55

http://massivesoftware.com56
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Cube mapping

In computer graphics, cube mapping is a technique that takes a three dimen-
sional texture coordinate and returns a texel from a given cube map (very
similar to a skybox’s texture’s format). This texture coordinate is a vector that
specifies which way to look from the center of the cube mapped cube to get the
desired texel.

See also:

• Skybox (video games)
• Cube mapped reflection

Source: http://en.wikipedia.org/wiki/Cube_mapping

Principal Authors: TopherTG

Diffuse reflection

Diffuse reflection is the reflection of light from an uneven or granular surface
such that an incident ray is seemingly reflected at a number of angles. It is
the complement to specular reflection. If a surface is completely nonspecular,
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the reflected light will be evenly spread over the hemisphere surrounding the
surface (2×π steradians).

The most familiar example of the distinction between specular and diffuse re-
flection would be matte and glossy paints as used in home painting. Matte
paints have a higher proportion of diffuse reflection, while gloss paints have a
greater part of specular reflection.

Diffuse interreflection is a process whereby light reflected from an object
strikes other objects in the surrounding area, illuminating them. Diffuse in-
terreflection specifically describes light reflected from objects which are not
shiny or specular. In real life terms what this means is that light is reflected
off non-shiny surfaces such as the ground, walls, or fabric, to reach areas not
directly in view of a light source. If the diffuse surface is colored, the reflected
light is also colored, resulting in similar coloration of surrounding objects.

In →3D computer graphics, diffuse interreflection is an important component
of global illumination. There are a number of ways to model diffuse inter-
reflection when rendering a scene. →Radiosity and photon mapping are two
commonly used methods.

See also

• Optics
• Reflectivity
• Specular reflection
• →Lambertian reflectance

Source: http://en.wikipedia.org/wiki/Diffuse_reflection

Principal Authors: JohnOwens, Srleffler, Patrick, Francs2000, Flamurai

Digital puppetry

Digital puppetry is the manipulation and performance of digitally animated
2D or 3D figures and objects in a virtual environment that are rendered in real-
time by computers. It is most commonly used in film and television production,
but has also been utilized in interactive theme park attractions and live theatre.

The exact definition of what is and is not digital puppetry is subject to debate
within the puppetry and computer graphics communities, but it is generally
agreed that digital puppetry differs from conventional computer animation in
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that it involves performing characters in real time, rather than animating them
frame by frame.

Digital puppetry is closely associated with motion capture technologies and 3D
animation. It is sometimes referred to as Performance Animation. Machinima
is a form of digital puppetry, although most machinima creators do not identify
themselves as puppeteers.

History & Usage
Digital puppetry was pioneered by the late Jim Henson, creator of The Mup-
pets. The character Waldo C. Graphic in the Muppet television series The Jim
Henson Hour is widely regarded to have been the first example of a digitally
animated figure being performed and rendered in real-time on television and
grew out of experiments Henson conducted in 1987 with a computer generat-
ed version of Kermit the Frog for InnerTube, which was the unaired television
pilot for Jim Henson Hour.

Another early digital puppet was Mike Normal, which was developed by com-
puter graphics company deGraf/Wahrman and was first demonstrated at the
1988 SIGGRAPH convention. The system developed by deGraf/Wahrman to
perform Mike Normal was later used to create a representation of the villain
Cain in the motion picture RoboCop 2, which is believed to be the first exam-
ple of digital puppetry being used to create a character in a full-length motion
picture.

In 1994, the BBC introduced a live digital puppet cat called Ratz, in the TV
show Live & Kicking. He became the first real-time rendered digital puppet to
appear on live TV. He also co-presented Children’s BBC, and was eventually
given his own show, RatzRun.

A more recent example of digital puppetry from 2003 is "Bugs Live", a digital
puppet of Bugs Bunny created by Phillip Reay for Warner Brothers Pictures.
The puppet was created using hand drawn frames of animation that were pup-
peteered by Bruce Lanoil and David Barclay. The Bugs Live puppet was used to
create nearly 900 minutes of live, fully interactive interviews of 2D animated
Bugs character about his role in then recent movie Looney Tunes: Back In Ac-
tion in English and Spanish. Bugs Live also appeared at the 2004 SIGGRAPH
Digital Puppetry Special Session with the Muppet puppet Gonzo.

In 2004 Walt Disney Imagineering used digital puppetry techniques to create
the Turtle Talk with Crush attractions at the Walt Disney World and Disney’s
California Adventure theme parks. In the attraction, a hidden puppeteer per-
forms and voices a digital puppet of Crush, the laid-back sea turtle from Finding
Nemo, on a large rear-projection screen. To the audience Crush appears to be
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swimming inside an aquarium and engages in unscripted, real-time conversa-
tions with theme park guests.

Types of Digital Puppetry
Waldo Puppetry - A digital puppet is controlled onscreen by a puppeteer who
uses a telemetric input device connected to the computer. The X-Y-Z axis move-
ment of the input device causes the digital puppet to move correspondingly. A
keyboard is sometimes used in place of a telemetric input device.

Motion Capture Puppetry (Mocap Puppetry) - An object (puppet) or human
body is used as a physical representation of a digital puppet and manipulated
by a puppeteer. The movements of the object or body are matched correspond-
ingly by the digital puppet in real-time.

Machinima - A production technique that can be used to perform digital
puppets. Machinima as a production technique concerns the rendering of
computer-generated imagery (CGI) using low-end 3D engines in video games.
Players act out scenes in real-time using characters and settings within a game
and the resulting footage is recorded and later edited in to a finished film.

See also

• →Motion capture
• Machinima
• Puppets
• Puppeteer

External links

• Machin-X57 - Discussion of theories, tools and applications of digital pup-
petry as well as news from the digital puppetry community.

• Machinima.com58 - Large web portal for machinima.

Source: http://en.wikipedia.org/wiki/Digital_puppetry

http://machin-x.blogspot.com57

http://www.machinima.com58
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Dilution of precision (computer graphics)

Dilution of precision is an algorithmic trick used to handle difficult problems
in hidden line removal, caused when horizontal and vertical edges lay on top
of each other due to numerical instability. Numerically, the severity escalates
when a CAD model is viewed along the principal axii or when a geometric form
is viewed end-on. The trick is to alter the view vector by a small amount, there-
by hiding the flaws. Unfortunately, this mathematical modification introduces
new issues of its own, namely that the exact nature of the original problem has
been destroyed, and visible artifacts of this kluge will continue to haunt the
algorithm. One such issue is that edges that were well defined and hidden will
now be problematic. Another common issue is that the bottom edges on circles
viewed end-on will often become visible and propagate their visibility thought
the problem.

External link

Source: http://en.wikipedia.org/wiki/Dilution_of_precision_%28computer_graphics%29

Principal Authors: Wheger, David Levy, RJHall, Whitepaw

Direct3D

Direct3D is part of Microsoft’s DirectX API. Direct3D is only available for Mi-
crosoft’s various Windows operating systems (Windows 95 and above) and
is the base for the graphics API on the Xbox and Xbox 360 console systems.
Direct3D is used to render three dimensional graphics in applications where
performance is important, such as games. Direct3D also allows applications to
run fullscreen instead of embedded in a window, though they can still run in a
window if programmed for that feature. Direct3D uses hardware acceleration
if it is available on the graphic board.

Direct3D is a 3D API. That is, it contains many commands for 3D rendering,
but contains few commands for rendering 2D graphics.59 Microsoft strives to
continually update Direct3D to support the latest technology available on 3D
graphics cards. Direct3D offers full vertex software emulation but no pixel

Microsoft DirectX SDK Readme (December 2005)(http://msdn.microsoft.com/directx/sdk/read-59

mepage/default.aspx)
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software emulation for features not available in hardware. For example, if a
program programmed using Direct3D requires pixel shaders and the graphics
card on the user’s computer does not support that feature, Direct3D will not
emulate it. The program will most likely exit with an error message. The API
does define a Reference Rasterizer (or REF device), which emulates a generic
graphics card, although it’s too slow to be used in any application to emulate
pixel shaders and is usually ignored.

Direct3D’s main competitor is →OpenGL. There are numerous features and
issues that proponents for either API disagree over, see comparison of Direct3D
and OpenGL for a summary.

Version history
In 1992, Servan Keondjian started a company named RenderMorphics, which
developed a 3D graphics API named Reality Lab, which was used in medical
imaging and CAD software. Two versions of this API were released. Microsoft
bought RenderMorphics in February 1995, bringing Keondjian on board to im-
plement a 3D graphics engine for Windows 95. This resulted in the first version
of Direct3D.

In DirectX version 7.0, the .dds texture format was introduced.

As of DirectX version 8.0, Direct3D was rolled up into a package called Direc-
tX Graphics. DirectX Graphics was meant to be a combination of DirectDraw
and Direct3D, but in reality was just Direct3D with a few DirectDraw features
added. Most users still refer to DirectX Graphics as Direct3D.

Direct3D was not considered to be user friendly, but as of DirectX version 8.1,
many usability problems were resolved. Direct3D (DX8) contained many very
powerful 3D graphics features, such as vertex shaders, pixel shaders, fog, bump
mapping and texture mapping.

DirectX version 9.0 added a new version of the →High Level Shader Language,
support for high dynamic range lighting, multiple render targets, and vertex
buffer indexing.

Direct3D 10
Microsoft is currently working on a large update to Direct3D API. Originally
called Windows Graphics Foundation, DirectX 10, and later DirectX Next, but
currently referred to as Direct3D 10, it will appear as part of Windows Vista.
Version 10 will represent a departure from the driver model of DirectX Graph-
ics 9.0, with the addition of a scheduler and memory virtualization system.
Direct3D 10 will forego the current DirectX practice of using "capability bits" to
indicate which features are active on the current hardware. Instead, Direct3D
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10 will define a minimum standard of hardware capabilities which must be
supported for a display system to be "Direct3D 10 compatible". According to
Microsoft, Direct3D 10 will be able to display graphics up to 8 times more
quickly than DirectX Graphics 9.0c. In addition, Direct3D 10 will incorporate
Microsoft Shader Model 4.0.

Vista will ship with Windows Graphics Foundation (WGF) 1.0. WGF 2.0 will
ship later (after Vista). Beneath the WGF is either legacy (XP) drivers with lim-
ited functionality or Windows Display Driver Model (WDDM) drivers in one of
two flavors: Basic (for existing hardware) and Advanced (for post-Vista hard-
ware). What’s currently referred to as DX10 is really WGF 2.0 atop Advanced
WDDM drivers running on post-Vista hardware. WGF 1.0 (atop either flavor
of WDDM), as shipping with Vista, is referred to by MS as DX9.L – it’s most
definitely not DX10. It certainly does have some benefits – managed resources
for "unlimited" memory (limited by virtual memory), better gamma control
and text rendering, some performance improvements, etc – but it’s a relatively
minor upgrade, and it’s not going to drive radical new development in either
games or GPUs.

DX10 functionality will require WGF 2.0, and will require the Advanced WD-
DM, which in turn will require new graphics hardware, even beyond uni-
fied shaders and an updated shader model: it includes things like additional
pipeline stages (geometry shaders), hardware virtualization (to allow multiple
threads/processes time-sliced use of the GPU), demand-paged virtual graphics
memory, offload of various operations from the CPU to the GPU, and more. No
GPU is going to be available with the full WGF 2.0 featureset in 2006.

Note also that games that take advantage of WGF 1.0 will run successfully on
Vista atop existing hardware. However, once they make the transition to WGF
2.0 it’s unclear if they’ll be able to degrade gracefully to 1.0, meaning that the
first "must have" game using WGF 2.0 is going to require not just Vista but a
new video card: while there will be XP drivers for "DX10" hardware XP won’t
support WGF 2.0, and older cards running Vista will at most support WGF 1.0
and Basic WDDM drivers. So the first WGF 2.0 games will be looking at a fairly
small market with the requisite hardware base, and thus there may be a bit of
delay until such titles are released (fortunately the new hardware should offer
enough of an improvement on existing titles that we won’t see a chicken-and-
egg situation develop).

New Features



DR
AF

T

82

Direct3D

• Fixed pipeline60 is being done away with in favor of a fully programmable
pipeline (often referred to as a unified pipeline architecture), which can be
programmed to emulate the same.

• Paging of graphics memory, to allow data to be loaded to Video RAM when
needed and move it out when not needed. This enables usage of the system
memory to hold graphics data, such as textures, thereby allowing use of
more and higher resolution textures in games.

• There is no limit on the number of objects which can be rendered, provided
enough resources are available.61

• Virtualization of the graphics hardware, to allow multiple
threads/processes to use it, in turns.

• New state object to enable the GPU to change states efficiently.
• Shader Model 4.0, enhances the programmability of the graphics pipeline.

It adds instructions for integer and bitwise calculations.
• Geometry shaders, which work on indivdual triangles which form a mesh.
• Texture arrays enable swapping of textures in GPU without CPU interven-

tion.
• Resource View enables pre-caching of resources, thereby reducing latency.
• Predicated Rendering allows drawing calls to be ignored based on some

other conditions. This enables rapid occlusion culling, which prevents ob-
jects from being rendered if it is not visible or too far to be visible.

Related tools
DirectX comes with D3DX, a library of tools designed to perform common
mathematical calculations and several more complicated tasks, such as compil-
ing or assembling shaders used for 3D graphic programming. It also includes
several classes that simplify the use of 3D-models and, for example, particle
systems. D3DX is provided as a dynamic link library (DLL).

DXUT (also called the sample framework) is a layer built on top of the Direct3D
API. The framework is designed to help the programmer spend less time with
mundane tasks, such as creating a window, creating a device, processing Win-
dows messages and handling device events.

CNet News(http://news.com.com/An+inside+look+at+Windows+Vista+-+page+4/2100-104360

_3-6051736-4.html?tag=st.num)
SDK March 2006(http://www.ati.com/developer/radeonSDK.html?tag=Radeon)61
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References

Source: http://en.wikipedia.org/wiki/Direct3D

Principal Authors: Frecklefoot, Soumyasch, Warrens, Wrendelgeth, Algumacoisaqq

Displacement mapping

Figure 31 Displacement mapping

Displacement mapping is an alternative technique in contrast to bump map-
ping, normal mapping, and parallax mapping, using a heightmap to cause an
effect where the actual geometric position of points over the textured surface
are displaced along the surface normal according to the values stored into the
texture.

For years, displacement mapping was a peculiarity of high-end rendering sys-
tems like RenderMan, while realtime Application Programming Interfaces, like
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→OpenGL and DirectX, lacked this possibility. One of the reasons for this ab-
sence is that the original implementation of displacement mapping required
an adaptive tessellation of the surface in order to obtain micropolygons whose
size matched the size of a pixel on the screen.

With the newest generation of graphics hardware, displacement mapping can
be interpreted as a kind of vertex-texture mapping, where the values of the
texture map do not alter the pixel color, but instead change the position of the
vertex. Unlike bump mapping and normal mapping, displacement mapping can
in this way produce a genuine rough surface. It is currently implemented only
in a few desktop graphics adapters, and it has to be used in conjunction with
adaptive tessellation techniques (that increases the number of rendered poly-
gons according current viewing settings) to produce highly detailed meshes,
and to give a more 3D feel and a greater sense of depth and detail to textures
to which displacement mapping is applied.

Further reading

• Photoshop CS Tutorial Displacement Mapping Effect62

• Relief Texture Mapping63 website
• Real-Time Relief Mapping on Arbitrary Polygonal Surfaces 64 paper
• Relief Mapping of Non-Height-Field Surface Details 65 paper

See also

• →Bump mapping
• →Normal mapping
• →Parallax mapping
• Demo effects
• Heightmap

Source: http://en.wikipedia.org/wiki/Displacement_mapping

Principal Authors: Tommstein, ALoopingIcon, Furrykef, Engwar, T-tus

http://www.psdesignzone.com/photoshop-tutorials/displacement-mapping-in-photoshop.html62

http://www.inf.ufrgs.br/%7Eoliveira/RTM.html63

http://www.inf.ufrgs.br/%7Eoliveira/pubs_files/Policarpo_Oliveira_Comba_RTRM_I3D_2005.pdf64

http://www.inf.ufrgs.br/%7Eoliveira/pubs_files/Policarpo_Oliveira_RTM_multilayer_I3D2006.pdf65
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Distance fog

Distance fog is a technique used in →3D computer graphics to enhance the
perception of distance.

Because many of the shapes in graphical environments are relatively simple,
and complex shadows are difficult to render, many graphics engines employ a
"fog" gradient, so that objects further from the camera are progressively more
obscured by haze. This technique works because of light scattering, which
causes more distant objects to appear hazier to the eye, especially in outdoor
environments.

Figure 32 Example of fog

Fogging is another use of distance fog in mid to late nineties games, where
processing power was not enough to render far viewing distances, and clipping
was employed. However, the effect could be very distracting, and by applying a
medium-ranged fog, the clipped polygons would fade in more realistically from
the haze, even though the effect may have been considered unrealistic in some
cases. Many early Nintendo 64 games used this effect — most (in)famously in
Turok: Dinosaur Hunter and Superman 64.

See also

• Computer graphics
• Virtual reality

Source: http://en.wikipedia.org/wiki/Distance_fog

Principal Authors: Graft, SimonP, Reedbeta, WolfenSilva, RJHall
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Draw distance

Draw distance is a computer graphics term, defined as the distance in a 3
dimensional scene that is still drawn by the rendering engine. Polygons that lie
behind the draw distance won’t be drawn to the screen.

As the draw distance increases more polygons need to be drawn onto the screen
which requires more computing power. This means the graphic quality and
realism of the scene will increase as draw distance increases, but the overall
performance (frames per second) will decrease. Many games and applications
will allow users to manually set the draw distance to balance performance and
visuals.

Older games had far shorter draw distances, most noticeable in vast, open
scenes. Racing arcade games were particularly infamous, as the open high-
ways and roads often led to "pop-up graphics" - an effect where distant objects
suddenly appear without warning as the camera gets closer to it. This is a hall-
mark of poor draw distance, and still plagues large, open-ended games like the
Grand Theft Auto series.

A common trick used in games to disguise a short draw distance is to obscure
the area with a distance fog. Alternative methods have been developed to
sidestep the problem altogether using level of detail manipulation. Black &
White was one of the earlier games to use adaptive level of detail to decrease
the number of polygons in objects as they moved away from the camera, al-
lowing it to have a massive draw distance while maintaining detail in close-up
views.

Grand Theft Auto 3 made particular use of fogging, however, this made the
game less playable when driving or flying at high speed, as object would pop-
up out of the fog and cause you to crash into them.

Source: http://en.wikipedia.org/wiki/Draw_distance

Principal Authors: Goncalopp, 25, Deepomega, Oswax, Xhin



DR
AF

T

87

Flat shading

Euler boolean operation

In constructive solid geometry, a Euler boolean operation is a series of mod-
ifications to solid modelling which perserves the Euler characteristic in the
boundary representation at every stage. One or more of these Euler boolean
operations is stored in a change state, so as to only represent models which are
physically realizable.

Failing to maintain the Euler characteristic would result in geometric and topo-
logical entities often depicted by M. C. Escher. Esher’s geometry artwork comes
close to preserving the Euler characteristic (usually a problem with just the hole
count).

Source: http://en.wikipedia.org/wiki/Euler_boolean_operation

Principal Authors: Wheger, Charles Matthews, Gaius Cornelius, Zzyzx11, RJHall

Flat shading

Figure 33 Flat shading interpolation example

Flat shading is lighting technique used in →3D computer graphics. It shades
each polygon of an object based on the angle between the polygon’s surface
normal and the direction of the light source, their respective colors and the
intensity of the light source. It is usually used for high speed rendering where
more advanced shading techniques are too computationally expensive.

The disadvantage of flat shading is that it gives low-polygon models a faceted
look. Sometimes this look can be advantageous though, such as in modeling
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boxy objects. Artists sometimes use flat shading to look at the polygons of a sol-
id model they are creating. More advanced and realistic lighting and shading
techniques include →Gouraud shading and →Phong shading.

See also: computer graphics

Source: http://en.wikipedia.org/wiki/Flat_shading

Principal Authors: RJFJR, Mrwojo, AndreasB, Poccil, Whitepaw, D3

Forward kinematic animation

Forward kinematic animation is a method in →3D computer graphics for
animating models.

The essential concept of forward kinematic animation is that the positions of
particular parts of the model at a specified time are calculated from the position
and orientation of the object, together with any information on the joints of an
articulated model. So for example if the object to be animated is an arm with
the shoulder remaining at a fixed location, the location of the tip of the thumb
would be calculated from the angles of the shoulder, elbow, wrist, thumb and
knuckle joints. Three of these joints (the shoulder, wrist and the base of the
thumb) have more than one degree of freedom, all of which must be taken
into account. If the model were an entire human figure, then the location of
the shoulder would also have to be calculated from other properties of the
model.

Forward kinematic animation can be distinguished from inverse kinematic an-
imation by this means of calculation - in inverse kinematics the orientation of
articulated parts is calculated from the desired position of certain points on the
model. It is also distinguished from other animation systems by the fact that
the motion of the model is defined directly by the animator - no account is
taken of any physical laws that might be in effect on the model, such as gravity
or collision with other models.

Source: http://en.wikipedia.org/wiki/Forward_kinematic_animation

Principal Authors: Onebyone, Jiang, TimBentley, Charles Matthews, Bryan Derksen
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Fragment (computer graphics)

A fragment is a computer graphics term for all of the data necessary needed
to generate a pixel in the frame buffer. This may include

• raster position
• depth
• interpolated attributes (color, texture coordinates , etc.)
• stencil
• alpha
• window ID
• etc.

It can be thought of as the data needed to shade the pixel, plus the data needed
to test whether the fragment survives to become a pixel (depth, alpha, stencil,
scissor, window ID, etc.)

See also

• →Graphics pipeline

Source: http://en.wikipedia.org/wiki/Fragment_%28computer_graphics%29

Gelato (software)

Gelato

Maintainer: NVIDIA Corporation

Latest release: 2.0R4 / May 2006

OS: Windows XP, Linux (Red Hat or SUSE)

Use: →3D computer graphics

License: Proprietary

Website: NVIDIA’s Gelato site66

Gelato is hardware-accelerated non-real-time renderer created by graphics
card manufacturer NVIDIA originally for use with its Quadro FX GPU, although
a Quadro class GPU is not a requirement any longer as it now also supports
GeForce cards. It was designed to produce film-quality images. Gelato uses a
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shading language very similar to the RenderMan shading language. After BM-
RT resolved their issues with Pixar, NVIDIA quickly acquires the brain behind
the moon and not long after, released Gelato in April 2004.

With the release of Gelato 2.0, in push to popularize GPU accelerated rendering
(as opposed to the traditional CPU rendering), NVIDIA released a free version
of Gelato for users of personal computers with locked out advanced features
for production rendering that your average joe render monkeys would rarely
use.

Gelato Pro
at $1500 per render node, Gelato pro is relatively cheaper than other renderer’s
such as Pixar’s Renderman Pro Server.

Extra Gelato Pro features are:

• NVIDIA R© SorbettoTM interactive relighting technology
• DSO shadeops
• Network parallel rendering
• Multithreading
• Native 64-bit support
• Maintenance and support from NVIDIA’s High-Quality-Rendering Team

External links

• Official website67

• A Gelato review68

Source: http://en.wikipedia.org/wiki/Gelato_%28software%29

Principal Authors: Flamurai, T-tus, -Ril-, Marudubshinki, Asparagus

http://film.nvidia.com/page/gelato.html67

http://deathfall.com/feature.php?op=showcontent&id=3668
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Geometric model

A geometric model describes the shape of a physical or mathematical object
by means of geometric concepts. Geometric model(l)ing is the construction
or use of geometric models. Geometric models are used in computer graphics,
computer-aided design and manufacturing, and many applied fields such as
medical image processing.

Geometric models can be built for objects of any dimension in any geometric
space. Both 2D and 3D geometric models are extensively used in comput-
er graphics. 2D models are important in computer typography and technical
drawing. 3D models are central to computer-aided design and manufacturing,
and many applied technical fields such as geology and medical image process-
ing.

Geometric models are usually distinguished from procedural and object-
oriented models, which define the shape implicitly by an algorithm. They are
also contrasted with digital images and volumetric models; and with implicit
mathematical models such as the zero set of an arbitrary polynomial. How-
ever, the distinction is often blurred: for instance, geometric shapes can be
represented by objects; a digital image can be interpreted as a collection of
colored squares; and geometric shapes such as circles are defined by implicit
mathematical equations. Also, the modeling of fractal objects often requires a
combination of geometric and procedural techniques.

See also

• Computational geometry

Source: http://en.wikipedia.org/wiki/Geometric_model

Principal Authors: Oleg Alexandrov, Mdd, Jorge Stolfi, Kbdank71, Patrick
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Geometry pipelines

Geometry Pipelines, also called Geometry Engines (GE) are the first stage in a
classical Graphics Pipeline, such as the Reality Engine. They do the transforma-
tion from 3D coordinates used to specify the geometry to a unified coordinate
system used by the Raster Manager (RM) to rasterize the geometry into frame-
buffer pixels. The Display Generator (DG) scans these pixels into a video signal
understood by a monitor. In →OpenGL, this transformation is defined by the
Modelview Matrix and the Projection Matrix. Typically, the modelview matrix
defines the transformation of the incoming vertices into world coordinates, a
coordinate system used for all vertices. The projection matrix defines how this
3-dimensional coordinate space is projected to the Viewport. In addition to this
transformation, the GEs compute the vertex colors based on the light settings,
may perform texture coordinate generation as well as clipping of the geometry.
The Geforce graphics cards from nVidia introduced these functionalities for the
first time in the consumer market, labelled as hardware-based Transform and
Lighting (T&L).

See also

• Computer graphics
• James H. Clark
• Silicon Graphics, Inc.

Source: http://en.wikipedia.org/wiki/Geometry_pipelines

Principal Authors: Jpbowen, Bumm13, JoJan, Joyous!

Geometry Processing

Geometry Processing is a fast-growing area of research that uses concepts
from applied mathematics, computer science, and engineering to design ef-
ficient algorithms for the acquisition, reconstruction, analysis, manipulation,
simulation and transmission of complex 3D models. Applications of geometry
processing algorithms already cover a wide range of areas from multimedia,
entertainment, and classical computer-aided design, to biomedical computing,
reverse engineering, and scientific computing.
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See also

• Computer-aided design (CAD)

External links

• " Digital Geometry Processing69", by Peter Schroder and Wim Sweldens

• Symposium on Geometry Processing70

• Multi-Res Modeling Group71, Caltech

• Compter Graphics & Multimedia Department72, RWTH-Aachen University

Source: http://en.wikipedia.org/wiki/Geometry_Processing

Principal Authors: Betamod, RJHall

GLEE

The OpenGL Easy Extension library (GLee) automatically links →OpenGL ex-
tensions and core functions at initialisation time. This saves programmers the
effort of manually linking every required extension, and effectively brings the
OpenGL library up to date.

GLee is compatible with Windows, Linux and FreeBSD platforms. It is also
likely to be compatible with other unix-like systems which use X windows.

External links

Source: http://en.wikipedia.org/wiki/GLEE

http://www.multires.caltech.edu/pubs/DGPCourse/DGP.pdf69

http://www.geometryprocessing.org/70

http://www.multires.caltech.edu/71

http://www-i8.informatik.rwth-aachen.de/index.html72
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GLEW

The OpenGL Extension Wrangler Library (GLEW) is a cross-platform C/C++
library that helps in querying and loading →OpenGL extensions. GLEW pro-
vides efficient run-time mechanisms for determining which OpenGL extensions
are supported on the target platform. all OpenGL extensions are exposed in a
single header file, which is machine-generated from the official extension list.
GLEW is available for a variety of operating systems, including Windows, Lin-
ux, Mac OS X, FreeBSD, Irix, and Solaris.

External links
GLEW English surname meaning wise. Believed to be from the wiseman of the
tribe.
Source: http://en.wikipedia.org/wiki/GLEW

Glide API

Glide was a proprietary 3D graphics API developed by 3dfx used on their
Voodoo graphics cards. It was dedicated to gaming performance, supporting
geometry and texture mapping primarily, in data formats identical to those
used internally in their cards. The Voodoo cards were the first to offer per-
formance to really make 3D games work well, and Glide became fairly widely
used as a result. The introduction of DirectX and full OpenGL implementations
from other vendors eventually doomed Glide, and 3dfx along with it.

Glide is based on the basic geometry and "world view" of →OpenGL. OpenGL
is a very large library with about 250 calls in the API, many of which are of
limited use. Glide was an effort to select those features that were truly useful
for gaming, leaving the rest out. The result was an API that was small enough
to be implemented entirely in hardware. That hardware, of course, was 3dfx’s
own Voodoo cards. This led to several odd limitations in Glide – for instance,
it only supported 16-bit color.

The combination of the Voodoo’s raw performance and Glide’s easy-to-use API
resulted in Voodoo cards generally dominating the gaming market from the
mid to late 1990s. The name Glide was chosen to be indicative of the GL un-
derpinnings, while being different enough to avoid trademark problems. 3dfx
also supported a low-level MiniGL driver, making their cards particularly pop-
ular for players of the various Quake-derived games. MiniGL was essentially a
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"different Glide" with a wider selection of OpenGL calls and lacking the dedi-
cation to a single hardware platform. Due to the Voodoo’s "GL-like" hardware,
MiniGL on Voodoo was very "thin" and ran almost as well as Glide.

As new cards entered the market 3dfx managed to hold the performance crown
for a short time, based largely on the tight integration between Glide and
their hardware. This allowed them to be somewhat lax in hardware terms,
which was important as the small gamer-only market 3dfx sold into wasn’t
large enough to support a large development effort. It was not long before
offerings from nVidia and ATI Technologies were able to outperform the latest
Voodoo cards using standard APIs. 3dfx responded by releasing Glide as an
open source API, but it was too late. By late 1999 they announced that almost
all games had moved to →Direct3D, and to a lesser extent, OpenGL.

Today old Glide supporting games can often be run on modern graphics cards
with help of a Glide wrapper. Numerous such computer programs exist.

External links

• GLIDE programming manual73

• Glide Wrappers74 at VoodooFiles

Source: http://en.wikipedia.org/wiki/Glide_API

Principal Authors: Maury Markowitz, Lproven, Doug Bell, The Anome, GreatWhiteNortherner

Global illumination

Global illumination algorithms used in →3D computer graphics are those
which, when determining the light falling on a surface, take into account not
only the light which has taken a path directly from a light source (direct illu-
mination), but also light which has undergone reflection from other surfaces
in the world (indirect illumination).

Images rendered using global illumination algorithms are more photorealistic
than images rendered using local illumination algorithms. However, they are
also much slower and more computationally expensive. A common approach is
to compute the global illumination of a scene and store that information with

http://www.gamers.org/dEngine/xf3D/glide/glidepgm.htm73

http://www.voodoofiles.com/type.asp?cat_id=1474
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the geometry (ie. radiosity). That stored data can then be used to generate im-
ages from different viewpoints for generating walkthroughs of a scene without
having to go through expensive lighting calculations.

→Radiosity, ray tracing, beam tracing, cone tracing, →Path Tracing, metropolis
light transport and photon mapping are examples of algorithms used in global
illumination, some of which may be used together.

These algorithms model diffuse inter-reflection which is a very important part
of global illumination, however most of these (excluding radiosity) also model
specular reflection too which makes them more accurate algorithms to solve
the lighting equation and provide a more realistic globally illuminated scene.

The algorithms used to calculate the distribution of light energy between sur-
faces of a scene are closely related to heat transfer simulations performed using
finite-element methods in engineering design.

In real-time 3D graphics, global illumination is sometimes approximated by an
"ambient" term in the lighting equation.

Figure 34 An example of a global illumination rendering, demonstrating how surface materials
are reflected in other surfaces.

See also

• Povray free rendering software featuring global illumination
• YafRay free rendering software featuring global illumination
• Radiance - highly accurate ray-tracing software system for UNIX computers.

Free to non-commercial users. It has been open-sourced.
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External links

• PBRT75 - Literate programming, has a great accompanying book.
• Vraywiki76 - Vraywiki website.
• SplutterFish77 - developers of Brazil, a rendering system based on global

illumination. The site has an extensive gallery of contributed images
• Perceptuum78 - good source for photon mapping, and other global illumina-

tion techniques.
• Mental Images79 - makers of the MentalRay renderer. The renderer is used

in packages such as Softimage XSI, Maya and 3D Studio Max

Source: http://en.wikipedia.org/wiki/Global_illumination

Principal Authors: Dormant25, Reedbeta, Paranoid, Heron, Nohat, Jsnow, Peter bertok, Arru, RJHall,

Jose Ramos

GLSL

GLSL - OpenGL Shading Language also known as GLslang is a high level
shading language based on the C programming language. It was created by the
OpenGL ARB for programming graphics processing units directly, thus giving
developers control of the graphics pipeline at the lowest level.

Background
With the recent advancements in graphics cards, new features have been added
to allow for increased flexibility in the rendering pipeline at the vertex and frag-
ment level. Programmability at this level is achieved with the use of fragment
and vertex shaders.

Originally, this functionality was achieved through the use of shaders written in
assembly language. Assembly language is non-intuitive and rather complex for
developers to use. The OpenGL ARB created the OpenGL Shading Language
to provide a more intuitive method for programming the graphics processing
unit while maintaining the open standards advantage that has driven OpenGL
throughout its history.

http://pbrt.org/75

http://www.vraywiki.com/76

http://www.splutterfish.com/77

http://www.hxa7241.org/perceptuum/perceptuum.html78

http://www.mentalimages.com/79
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Originally introduced as an extension to OpenGL 1.5, the OpenGL ARB formal-
ly included GLSL into the →OpenGL 2.0 core. →OpenGL 2.0 is the first major
revision to →OpenGL since the creation of →OpenGL 1.0 in 1992.

Some benefits of using GLSL are:

• Cross platform compatibility on multiple operating systems, including Win-
dows and Linux.

• The ability to write shaders that can be used on any hardware vendor’s
graphics card that supports the OpenGL Shading Language.

• Each hardware vendor includes the GLSL compiler in their driver, thus al-
lowing each vendor to create code optimized for their particular graphics
card’s architecture.

Details

Data types
The OpenGL Shading Language Specification defines 22 basic data types, some
are the same as used in the C programming language, while others are specific
to graphics processing.

• void – used for functions that do not return a value
• bool – conditional type, values may be either true or false
• int – a signed integer
• float – a floating point number
• vec2 – a 2 component floating point vector
• vec3 – a 3 component floating point vector
• vec4 – a 4 component floating point vector
• bvec2 – a 2 component Boolean vector
• bvec3 – a 3 component Boolean vector
• bvec4 – a 4 component Boolean vector
• ivec2 – a 2 component vector of integers
• ivec3 – a 3 component vector of integers
• ivec4 – a 4 component vector of integers
• mat2 – a 2X2 matrix of floating point numbers
• mat3 – a 3X3 matrix of floating point numbers
• mat4 – a 4X4 matrix of floating point numbers
• sampler1D – a handle for accessing a texture with 1 dimension
• sampler2D – a handle for accessing a texture with 2 dimensions
• sampler3D – a handle for accessing a texture with 3 dimensions
• samplerCube – a handle for accessing cube mapped textures
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• sampler1Dshadow – a handle for accessing a depth texture in one dimen-
sion

• sampler2Dshadow – a handle for accessing a depth texture in two dimen-
sions

Operators
The OpenGL Shading Language provides many operators familiar to those with
a background in using the C programming language. This gives shader devel-
opers flexibility when writing shaders. GLSL contains the operators in C and
C++, with the exception of bitwise operators and pointers...

Functions and control structures
Similar to the C programming language, GLSL supports loops and branching,
including if, else, if/else, for, do-while, break, continue, etc.

User defined functions are supported, and a wide variety of commonly used
functions are provided built-in as well. This allows the graphics card manu-
facturer the ability to optimize these built in functions at the hardware level if
they are inclined to do so. Many of these functions are similar to those found in
the C programming language such as exp() and abs() while others are specific
to graphics programming such as smoothstep() and texture2D().

Compilation and Execution
GLSL shaders are not stand-alone applications; they require an application
that utilizes the →OpenGL API. C, C++, C#, Delphi and Java all support the
→OpenGL API and have support for the OpenGL Shading Language.

GLSL shaders themselves are simply a set of strings that are passed to the
hardware vendor’s driver for compilation from within an application using the
OpenGL API’s entry points. Shaders can be created on the fly from within an
application or read in as text files, but must be sent to the driver in the form of
a string.

A sample trivial GLSL Vertex Shader

void main(void)

{
gl Position = ftransform();

}
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A sample trivial GLSL Fragment Shader

void main(void)

{
gl FragColor = vec4(1.0, 0.0, 0.0, 1.0);

}

References

• Rost, Randi. OpenGL Shading Language. 1st ed. Pearson Education, Inc,
2004. ISBN 0321197895

• Kessenich, John, & Baldwin, David, & Rost, Randi. The OpenGL Shading
Language. Version 1.10.59. 3Dlabs, Inc. Ltd. http://developer.3dlabs.com
/documents/index.htm

See also

• Shader Languages
• Computer programming
• Computer graphics
• →OpenGL
• Shaders

External links

• The Official OpenGL Web Site80

• GLSL Resources and Documentation81

• Tutorials and Examples from Lighthouse3D82

• Tutorials and Examples from Nehe83

• A GLSL Development Environment84

• RenderMonkey Shader Development Environment85

Source: http://en.wikipedia.org/wiki/GLSL

Principal Authors: Csl77, Zemyla, Rufous, Enochlau, Fritz Saalfeld

http://www.opengl.org80

http://developer.3dlabs.com/81

http://www.lighthouse3d.com/opengl/82

http://nehe.gamedev.net83

http://www.typhoonlabs.com84

http://www.ati.com/developer/rendermonkey/85
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GLU

GLU is the →OpenGL Utility Library.

It consists of a number of functions that use the base OpenGL library to provide
higher-level drawing routines from the more primitive routines that OpenGL
provides. It is usually distributed with the base OpenGL package.

Among these features are mapping between screen- and world-coordinates,
generation of texture mipmaps, drawing of quadric surfaces, NURBS, tessella-
tion of polygonal primitives, interpretation of OpenGL error codes, an extend-
ed range of transformation routines for setting up viewing volumes and simple
positioning of the camera, generally in more human-friendly terms than the
routines presented by OpenGL. It also provides additional primitives for use in
OpenGL applications, including spheres, cylinders and disks.

GLU functions can be easily recognized by looking at them because they all
have glu as a prefix. An example function is gluOrtho2D() which defines a two
dimensional orthographic projection matrix.

Specifications for GLU are available at the OpenGL specification page86

See also

• GLUT
• →GLUI

Source: http://en.wikipedia.org/wiki/GLU

Principal Authors: LesmanaZimmer, Elie De Brauwer, Tipiac, Segv11, Joseph Myers

http://www.opengl.org/documentation/specs/86
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GLUI

GLUI is a GLUT-based C++ user interface library which provides controls such
as buttons, checkboxes, radio buttons, and spinners to OpenGL applications. It
is window- and operating-system independent, relying on GLUT to handle all
system-dependent issues, such as window and mouse management.

It lacks the features of a more full-fledged GUI toolkit such as QT, wxWindows,
or FLTK, but it has a very small footprint and is extremely easy to use. A
research or demonstration program using only GLUT can be modified in just a
couple of hours, by someone new to the toolkit, to have a useful control panel.
Weaknesses include the lack of a file chooser (perhaps the most frustrating
omission) and mediocre responsiveness.

It was first written by Paul Rademacher to help him with his academic work. It
is now maintained by Nigel Stewart.

See Also

• →GLU
• GLUT

External links

• Main Site (download)87

• GLUI SourceForge Project88

Source: http://en.wikipedia.org/wiki/GLUI

Principal Authors: Nigosh, Inike, Niteowlneils, Mark Foskey, LesmanaZimmer

http://glui.sourceforge.net/87

http://sourceforge.net/projects/glui/88
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Gouraud shading

Figure 35 Gouraud shaded sphere - note the in-
accuracies towards the edges of the polygons.

Gouraud shading is a method used in computer graphics to simulate the dif-
fering effects of light and color across the surface of an object. In practice,
Gouraud shading is used to achieve smooth lighting on low-polygon surfaces
without the heavy computational requirements of calculating lighting for each
pixel. The technique was first presented by Henri Gouraud in 1971.

The basic principle behind the method is to calculate the surface normals at the
vertices of polygons in a 3D computer model. These normals are then averaged
for all the polygons that meet at each point. Lighting computations are then
performed to produce color intensities at vertices. The lighting calculation used
by Gouraud was based on the Lambertian diffuse lighting model.

These color values are then interpolated along the edges of the polygons. To
complete the shading, the image is filled by lines drawn across the image that
interpolate between the previously calculated edge intensities.



DR
AF

T

104

Gouraud shading

Gouraud shading is much less processor intensive than →Phong shading, but
does not calculate all desirable lighting effects as accurately. For instance, the
white shiny spot on the surface of an apple (called a specular highlight) is
highly dependent on the normal within that spot. If a model’s vertices are not
within that spot, their colors are blended across it, making it disappear alto-
gether. This problem is made more obvious when the light source is relocated,
moving the highlight across a vertex. Using Gouraud shading, the specular
highlight will appear mysteriously and grow in intensity as the light moves to-
ward a position of reflection from the observer across the vertex. The desired
result would be to see the highlight move smoothly rather than fade out and in
between vertices.

Despite the drawbacks, Gouraud shading is much superior to flat shading
which requires significantly less processing than Gouraud, but gives low-
polygon models a sharp, faceted look.

Original publications

• H. Gouraud, "Continuous shading of curved surfaces," IEEE Transactions on
Computers, 20(6):623–628, 1971.

• H. Gouraud, Computer Display of Curved Surfaces, Doctoral Thesis, Uni-
versity of Utah, USA, 1971.

• H. Gouraud, Continuous shading of curved surfaces. In Rosalee Wolfe (ed-
itor), Seminal Graphics: Pioneering efforts that shaped the field89, ACM
Press, 1998. ISBN 1-58113-052-X.

See also

• →Blinn–Phong shading model

Source: http://en.wikipedia.org/wiki/Gouraud_shading

Principal Authors: Jpbowen, Blueshade, Kocio, Michael Hardy, Mrwojo, Jaxl, Zundark, Poccil, The

Anome

http://www.siggraph.org/publications/seminal-graphics.html89
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Graphics pipeline

In 3D computer graphics, the terms graphics pipeline or rendering pipeline
most commonly refer to the current state of the art method of rasterization-
based rendering as supported by commodity graphics hardware. The graphics
pipeline typically accepts some representation of a 3D scene as an input and
results in a 2D raster image as output.

Stages of the graphics pipeline:

• Modeling transformation
• Lighting
• Viewing transformation
• Projection transformation
• Clipping
• Scan conversion or rasterization
• Texturing or shading
• Display

Modeling transformation
In this stage the 3D geometry provided as input is established in what is known
as 3D world-space—a conceptual orientation and arrangement in 3D space.
This could include transformations on the local object-space of geometric prim-
itives such as translation and rotation.

Lighting
Geometry in the complete 3D scene is lit according to the defined locations
of light sources and reflectance and other surface properties. Current hard-
ware implementations of the graphics pipeline compute lighting only at the
vertices of the polygons being rendered. The lighting values between vertices
are then interpolated during rasterization. Per-pixel lighting can be done on
modern graphics hardware as a post-rasterization process by means of a frag-
ment shader program.

Viewing transformation
Objects are transformed from 3D world-space coordinates into a 3D coordinate
system based on the position and orientation of a virtual camera. This results
in the original 3D scene as seen from the camera’s point of view, defined in
what it called eye-space or camera-space.



DR
AF

T

106

Graphics pipeline

Projection transformation
In this stage of the graphics pipeline, geometry is transformed from the eye-
space of the rendering camera into 2D image-space, mapping the 3D scene
onto a plane as seen from the virtual camera.

Clipping

For more details on this topic, see Clipping (computer graphics).

Geometric primitives that now fall outside of the viewing frustum will not be
visible and are discarded at this stage. Clipping is not necessary to achieve
a correct image output, but it accelerates the rendering process by eliminat-
ing the unneeded rasterization and post-processing on primitives that will not
appear anyway.

Scan conversion or rasterization
Rasterization is the process by which the 2D image-space representation of the
scene is converted into raster format and the correct resulting pixel values are
determined.

Texturing or shading
At this stage of the pipeline individual fragments (or pre-pixels) are assigned
a color based on values interpolated from the vertices during rasterization or
from a texture in memory.

Display
The final colored pixels can then be displayed on a computer monitor or other
display.

The Graphics Pipeline in Hardware
The rendering pipeline is mapped onto current graphics acceleration hardware
such that the input to the graphics card (GPU) is in the form of vertices. These
vertices then undergo transformation and per-vertex lighting. At this point in
modern GPU pipelines a custom vertex shader program can be used to ma-
nipulate the 3D vertices prior to rasterization. Once transformed and lit, the
vertices undergo clipping and rasterization resulting in fragments. A second
custom shader program can then be run on each fragment before the final
pixel values are output to the frame buffer for display.

The graphics pipeline is well suited to the rendering process because it allows
the GPU to function as a stream processor since all vertices and fragments
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can be thought of as independent. This allows all stages of the pipeline to
be used simultaneously for different vertices or fragments as they work their
way through the pipe. In addition to pipelining vertices and fragments, their
independence allows graphics processors to use parallel processing units to
process multiple vertices or fragments in a single stage of the pipeline at the
same time.

References

1. ↑ Graphics pipeline. (n.d.). Computer Desktop Encyclopedia. Retrieved
December 13, 2005, from Answers.com Web site: 90

2. ↑ Raster Graphics and Color91 2004 by Greg Humphreys at the University
of Virginia

See also

• Rendering
• Graphics Processing Unit
• Stream Processor
• →Shader
• NVIDIA
• ATI

External links

• MIT OpenCourseWare Computer Graphics, Fall 200392

• Answers.com overview of the graphics pipeline93

• OpenGL94

• DirectX95

Source: http://en.wikipedia.org/wiki/Graphics_pipeline

Principal Authors: Flamurai, Seasage, Sfingram, Piotrus, Hellisp

http://www.answers.com/topic/graphics-pipeline90

http://www.cs.virginia.edu/~gfx/Courses/2004/Intro.Fall.04/handouts/01-raster.pdf91

http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-837Fall2003/CourseHome92

/index.htm
http://www.answers.com/topic/graphics-pipeline93

http://www.opengl.org/about/overview.html94

http://www.microsoft.com/windows/directx/default.aspx95
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Hidden line removal

Figure 36 Line removal technique in action

Hidden line removal is an extension of wireframe rendering where lines (or
segments of lines) covered by surfaces are not drawn.

This is not the same as hidden face removal since this involves depth and oc-
clusion while the other involves normals.

A commonly used algorithm to implement it is Arthur Appel’s algorithm (de-
veloped at IBM in the late 1960’s). This algorithms works by propagating the
visibility from a segment with a known visibility to a segment whose visibility is
yet to be determined. Certain pathological cases exist in making this algorithm
difficult to implement, those cases are (i) vertices on edges and (ii) edges on
vertices and (iii) edges on edges. This algorithm is unstable because an error
in visibilty will be propagated to subsequent nodes (although there are ways to
compensate for this problem). James Blinn published a paper on this problem.

External links

• Patrick-Gilles Maillot’s Thesis96 an extension of the Bresenham line drawing
algorithm to perform 3D hidden lines removal; also published in MICAD

http://www.chez.com/pmaillot96
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’87 proceedings on CAD/CAM and Computer Graphics, page 591 - ISBN
2-86601-084-1.

• Vector Hidden Line Removal97 An article by Walter Heger with a further
description (of the pathelogical cases) and more citations.

Source: http://en.wikipedia.org/wiki/Hidden_line_removal

Principal Authors: MrMambo, Grutness, Qz, RJHall, Oleg Alexandrov

Hidden surface determination

In →3D computer graphics, hidden surface determination is the process used
to determine which surfaces and parts of surfaces are not visible from a cer-
tain viewpoint. A hidden surface determination algorithm is a solution to the
visibility problem, which was one of the first major problems in the field of
3D computer graphics. The process of hidden surface determination is some-
times called hiding, and such an algorithm is sometimes called a hider. The
analogue for line rendering is hidden line removal.

Hidden surface determination is necessary to render an image correctly, as
parts of the image that are not visible should not be drawn. It also speeds up
rendering since objects that aren’t visible can be removed from the graphics
pipeline.

There are many techniques for hidden surface determination, and the core dif-
ferences between most rendering algorithms is how they handle this problem.
There are also different stages of hidden surface determination. These stages
include:

Backface culling

Since meshes are hollow shells, not solid objects, the back side of some
faces, or polygons, in the mesh will never face the camera. Typically, there
is no reason to draw such faces. This is responsible for the effect often seen
in computer and video games in which, if the camera happens to be inside
a mesh, rather than seeing the "inside" surfaces of the mesh, it disappears
completely (all faces are seen from behind, and are culled).

Viewing frustum culling

http://wheger.tripod.com/vhl/vhl.htm97
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The viewing frustum is a geometric representation of the volume visible
to the virtual camera. Naturally, objects outside this volume will not be
visible in the final image, so they are discarded. Often, objects lie on the
boundary of the viewing frustum. These objects are cut into pieces along
this boundary in a process called clipping, and the pieces that lie outside
the frustum are discarded.

Occlusion culling

Occlusion culling is the process of determining which portions of objects
are hidden by other objects from a given viewpoint. This is one of the
fundamental problems in computer graphics, and many different occlusion
culling algorithms have been developed. The simplest is painter’s algo-
rithm, in which polygons are sorted, then drawn back to front. The most
common in real-time computer graphics is z-buffering, in which the depth
value at each pixel is stored as each polygon is rendered. The pixel is only
overwritten if the depth value of the current point is less than the depth val-
ue stored in the z-buffer. Both of these methods operate on polygon meshes.

Contribution culling

Often, objects are so far away that they do not contribute significantly to
the final image. These objects are thrown away if their screen projection is
too small.

Though hidden surface determination is most often used to determine what is
visible in the final image, it is also has other applications, such as determining
which parts of objects are in shadow.

Visible surface determination
Sometimes the majority of surfaces is invisible, so why ever touch them? This
approach is opposite to hidden surface removal and used in:

• Ray tracer : →Ray tracing, which can also operate on parametric geometry,
attempts to model the path of light rays into a viewpoint by tracing rays
from the viewpoint into the scene. The first object the ray intersects is
rendered, as it naturally is the object visible to the camera. Additional data
structures used to solve this sorting problem include bsp trees and octrees.

• Portal rendering
• some Heightfield renderers work this way. Google Earth certainly does not

process the whole earth for every frame.
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Source: http://en.wikipedia.org/wiki/Hidden_surface_determination

Principal Authors: Flamurai, Fredrik, B4hand, Connelly, Arnero

High dynamic range imaging

Figure 37 Tone Mapped HDRI example showing stained glass windows in south alcove of Old
Saint Paul’s, Wellington, New Zealand.

In computer graphics and cinematography, high dynamic range imaging
(HDRI for short) is a set of techniques that allow a far greater dynamic range
of exposures than normal digital imaging techniques. The intention is to accu-
rately represent the wide range of intensity levels found in real scenes, ranging
from direct sunlight to the deepest shadows.

This provides the opportunity to shoot a scene and have total control of the
final imaging from the beginning to the end of the photography project. An
example would be that it provides the possibility to re-expose. One can capture
as wide a range of information as possible on location and choose what is
wanted later.

Gregory Ward is widely considered to be the founder of the file format for high
dynamic range imaging. The use of high dynamic range imaging in computer
graphics has been pioneered by Paul Debevec. He is considered to be the first
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person to create computer graphic images using HDRI maps to realistically
light and animate CG objects.

When preparing for display, a high dynamic range image is often tone mapped
and combined with several full screen effects.

Figure 38 The six individual exposures used to create the previous HDRI. Exposure times from
top left are: 1/40sec, 1/10sec, 1/2sec, 1sec, 6sec, 25sec

Difference between high dynamic range and tradi-
tional digital images
Information stored in high dynamic range (HDR) images usually corresponds
to the physical values of luminance or radiance that can be observed in the
real world. This is different from traditional digital images, which represent
colors that should appear on a monitor or a paper print. Therefore HDR im-
age formats are often called scene-referred, in contrast to traditional digital
images, which are device-referred or output-referred. Furthermore, tradition-
al images are usually encoded for the human visual system (maximizing the
visual information stored in the fixed number of bits), which is usually called
gamma encoding or gamma correction. The values stored for HDR images are
linear, which means that they represent relative or absolute values of radiance
or luminance (gamma 1.0).

HDR images require a higher number of bits per color channel than traditional
images, both because of the linear encoding and because they need to repre-
sent values from 10−4 to 108 (the range of visible luminance values) or more.
16-bit ("half precision") or 32-bit floating point numbers are often used to rep-
resent HDR pixels. However, when the appropriate transfer function is used,
HDR pixels for some applications can be represented with as few as 10-12
bits for luminance and 8 bits for chrominance without introducing any visible
quantization artifacts 98 99.
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Example HDR Images

Figure 39 Nave in Old Saint Paul’s,Wellington, New
Zealand. Eight exposures ranging from 1/20th of a second
to 30 seconds

See also

• →High dynamic range rendering (rendering virtual scenes using high dy-
namic range lighting calculation, notably in computer games)

• OpenEXR
• Radiance file format
• Logluv TIFF file format
• CinePaint image editor
• Pixel image editor
• Panoscan

http://www.anyhere.com/gward/hdrenc/hdr_encodings.html98

http://www.mpi-sb.mpg.de/resources/hdrvideo/99
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Figure 40 This scene of the Grand Canyon from the North Rim is an example of how two different
exposures (4 stops difference) can be combined and the dynamic range subsequently compressed
to make the image viewable on a standard display

External links

• Photomatix100 HDRI Composition and Tone Mapping software
• Real Time High Dynamic Range Image Based Lighting Demo101

• High Dynamic Range Image Encodings102 by Greg Ward, Anyhere Software
• High Dynamic Range images under Linux103 by Nathan Willis
• Hyperfocal Design104 Commercial HDRIs, tutorials, software reviews, news

and
• HDR Image and Video Processing from acquisition to display105

• AHDRIA106 Software for capturing HDRI with standard digital cameras.
• practical description of fully automatic Gradient Domain High Dynamic

Range Compression107

• HDRShop108 High Dynamic Range Imaging Processing and Manipulation
Software Resources

• HDRIE109 (High Dynamic Range Image Editor) - an open-source project in-
spired by HDRShop.

• HDRI rendering in Renderman110

• PFStools111 - open-source package for creating and editing HDR images

http://www.hdrsoft.com/100

http://www.daionet.gr.jp/~masa/rthdribl/101

http://www.anyhere.com/gward/hdrenc/hdr_encodings.html102

http://www.linux.com/article.pl?sid=05/12/06/2115258103

http://www.hyperfocaldesign.com104

http://www.mpi-inf.mpg.de/resources/hdr/105

http://www.cs.uh.edu/~somalley/hdri_images.html106

http://www.gregdowning.com/HDRI/stitched/107

http://www.hdrshop.com108

http://www.acm.uiuc.edu/siggraph/eoh_projects/eoh2002.html109

http://www.rendermania.com/HDRI/110
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Photography:

• High Dynamic Range (HDR) in Photography112 - Implementation in Photo-
shop CS2

HDR displays:

• http://www.brightsidetech.com/ High Dynamic Range Displays
• Technical information on HDR displays113

Studio rendering:

• http://www.hdri-studio.com Commercial HDR maps derived from studio
lighting setups

• http://www.sachform.com Commercial HDR panoramas and viewer.
• PixelBox Academy HDRI Tutorial114 HDRI in PRMan using Image Based Il-

lumination

On Rendering, but need descriptions, should be deleted otherwise:

Source: http://en.wikipedia.org/wiki/High_dynamic_range_imaging

Principal Authors: Imroy, Tnikkel, Rafm, Deanpemberton, Diliff, Noclip, Toytoy

High dynamic range rendering

High dynamic range rendering (HDRR or HDR Rendering) or less common-
ly, high dynamic range lighting (HDR Lighting), is the rendering of 3D com-
puter graphics scenes by using lighting calculations done in a high dynamic
range. Specifically it refers to the new lighting model used to illuminate 3D
worlds. Video games and computer generated movies greatly benefit from this
as it creates far more realistic scenes than with conventional lighting models.

http://www.mpi-inf.mpg.de/resources/pfstools/111

http://www.cambridgeincolour.com/tutorials/high-dynamic-range.htm112

http://www.cs.ubc.ca/~heidrich/Projects/HDRDisplay113

http://pbacademy.com.sapo.pt/tutorials/renderman/hdri.htm114
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History
The use of high dynamic range imaging (HDRI) in computer graphics was in-
troduced by Greg Ward in 1985 with his Radiance rendering and lighting sim-
ulation software which created the first file format to retain a high dynamic
range image. HDRI languished for many years with limited use as computing
power and storage, as well as capture methods, had to be developed for HDRI
to be put in to practical use.

In 1997 Paul Debevec presented Recovering high dynamic range radiance maps
from photographs at SIGGRAPH and the following year presented Rendering
synthetic objects into real scenes . These two papers laid the framework for
creating HDR light probes of a location and then using this probe to light a
rendered scene.

In gaming applications, after E3 2003, Valve Software released a demo movie
of their Source Engine rendering a cityscape in a high dynamic range. The
term wouldn’t be brought up again until E3 2004 where it gained much more
attention when Valve Software announced Half-Life 2: Lost Coast and Epic
Megagames showcased Unreal Engine 3.

Features and limits

Figure 41 FarCry with HDR.
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Figure 42 FarCry without HDR.

Preservation of detail in large contrast differences
The primary feature of HDRR is that both dark and bright areas of a scene
can be accurately represented. Without HDR (sometimes called low dynamic
range, or LDR, in comparison), dark areas are ’clipped’ to black and the bright
areas are clipped to white (represented by the hardware as a floating point
value of 0.0 and 1.0, respectively).

Graphics processor company NVIDIA summarizes one of HDRR’s features in
three points:

• Bright things can be really bright
• Dark things can be really dark
• And details can be seen in both

The images on the right are from Ubisoft’s FarCry, demonstrating a new patch
that enables Shader Model 3.0 effects. The image on top shows a scene ren-
dered with a high dynamic range, while the image on the bottom is not. Notice
that the beams of light in the top image are vibrant and that there’s more color
to them. Also the walls where these beams illuminate appear brighter than
the image on the bottom. Slightly more details can be seen in the HDRR ren-
der, despite that the darker areas of the scene (namely the dark area between
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the two beams) have about the same amount of visibility in both pictures. In
regards to color vibrance, the scene without HDR appears dull.

Accurate reflection of light

Figure 43 From Half-Life 2: Lost Coast, a comparison image between the same scene rendered
with HDRR and without HDRR.

Without HDRR, the sun and most lights are clipped to 100% (1.0 in the frame-
buffer). When this light is reflected the result must then be less than or equal
to 1.0, since the reflected value is calculated by multiplying the original value
by the surface’s reflectiveness, usually in the range [0, 1]. This makes the lights
appear dull. Using HDR the light produced by the sun and other lights can be
represented with appropriately high values, exceeding the 1.0 clamping limit
in the frame buffer, with the sun possibly being stored as 60000. When the
light from them is reflected it will remain relatively high (even for very poor
reflectors), which will be clipped to white or properly tonemapped when ren-
dered. Looking at the example picture above, from Valve’s Half-Life 2: Lost
Coast, you can see these reflection differences upon the water and the sand.

An example
Imagine a dark room lit with moonlight, with a desk against the wall, a comput-
er monitor on that desk, and a poster on the wall directly behind the monitor.
If the scene was rendered in 3D using either 8-bit, 16-bit, or 32-bit lighting
precision, there would be very little difference due to the low dynamic range
inherent in the scene. Now if the monitor is displaying this web page, the dy-
namic range would be high. Human eyes could depict the detail on both the
poster and monitor simultaneously better than say a digital camera could, be-
cause the digital camera can only "see" in a 256:1 contrast ratio of perception
(assuming a linear response curve, which is the case for most CCD-based tech-
nology), whereas human eyes can perceive a much higher contrast ratio. This
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would mean that the digital camera would have to capture the scene with a
bit of bias between brightening the scene or darkening the scene by adjusting
its exposure. If the scene was brightened, the text upon the monitor would be
washed out in order for the poster to be seen. If the scene was darkened, the
detail on the poster would be lost in favor upon capturing the text displayed
on the monitor.

If this scene was rendered with HDR rendering, the detail on both the monitor
and the poster would be preserved, without placing bias on brightening or
darkening the scene.

Limitations
The human eye supports its high dynamic range in part through better bright-
ness resolution than what can be done with 8 bits, but it also needs the iris
to move its range of sensivity from nearly pitch-black to a white wall in direct
sunlight at the same time and computer displays can’t do either.

A natural scene exposed in the sunlight can display a contrast of about
50,000:1. Negative black and white film can capture a dynamic range of about
4096:1 (12 stops) maximum, while color slide film reach can typically cap-
ture a dynamic range of 64:1 (6 stops). Printing has the same problems as
displaying on LDR monitors as color paper only has about 64:1 (6 stops).

On average, most computer monitors have a specified contrast ratio between
500:1 and 1000:1, sometimes 1500:1. Current plasma displays are specified
at a 10,000:1 contrast ratio (most are 50% lower). However, the contrast of
commercial displays is measured as the ratio of a full white screen to a full
black screen in a completely dark room. The simultaneous contrast of real
content under normal viewing conditions is significantly lower.

One of the few monitors that can display in true HDR is the BrightSide
Technologies115 HDR monitor, which has a simultaneous contrast ratio of
around 200,000:1 for a brightness of 3000 cd.m-2, measured on a checker-
board image. In fact this higher contrast is equivalent to a ANSI9 contrast
of 60,000:1, or about 60 times higher that the one of a TFT screen (about
1000:1). The brightness is 10 times higher that the one of the most CRT or
TFT. But such display should only be useful if it needs to operate in a pitch-
black room and in two seconds under bright lightning, and the eye should be
able to see a full dynamic range on the display in both situations.

This means that HDR rendering systems have to map the full dynamic range
to what the eye would see in the rendered situation. This tone mapping is
done relative to what the virtual scene camera sees, combined with several full

http://www.brightsidetech.com/115
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screen effects, e.g. to simulate dust in the air which is lit by direct sunlight in
a dark cavern.

There is currently two graphical effects used to combat these limitations, tone
mapping and light blooming, which are often used together.

However, due to the stressing nature of HDRR, it’s not recommended that full
screen anti-aliasing (FSAA) be enabled while HDRR is enabled at the same
time on current hardware, as this will cause a severe performance drop. Many
games that support HDRR will only allow FSAA or HDRR. However some
games which use a simpler HDR rendering model will allow FSAA at the same
time.

Tone mapping

Figure 44 A screenshot of Day of Defeat: Source. While looking into a dark interior from the
outside, it appears dark.

The limitations of display devices (whose gamuts are very limited compared
to a gamut which supports HDR colors) prevent colors in HDR from being
displayed properly. Tone mapping attempts to solve the problem of displaying
HDR colors on a LDR display device by mapping colors in a HDR image to LDR.
Many different tone mapping operators exist, and vary wildly in complexity
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Figure 45 Inside, the interior is brighter.

Figure 46 Looking outside, the exterior appears brighter than before.
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Figure 47 But the exterior’s brightness normalizes as one goes outside.

and visual results. Some tone mapping algorithms are also time dependant,
as seen in the above images, in an attempt to approximate a human eye’s iris
regulation of light entering the eye.

Light Bloom

Main article: →Bloom (shader effect)

Light blooming "spreads" out a light source. For example, a bright light in the
background will appear to bleed over onto objects in the foreground. This ef-
fect is achieved by multiplying the image of the screen (lighten lighter areas
and darken darker areas,) blurring the image, and drawing it over top of the
original image. If there’s a light source that is "brighter" than what the moni-
tor can show, light blooming helps to create an illusion that makes the object
appear brighter than it is, but at the cost of softening the scene. A common
misconception is that a game that uses a bloom filter uses HDR. This is untrue,
however, as blooming is often used alongside HDR, but is not a component of
HDR.

The reason blooming is used alongside HDR is that when a saturated LDR
image is blurred, the result is equivalent to blurring an image with lots of white
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areas, simply because values above 1.0 aren’t preserved, so bright areas bur to
gradients in the range of 1.0 -> 0.0. The result is simply a linear white to black
gradient, regardless of the original color of the bright part. HDR, on the other
hand, preserves colors above 1.0, so the blur result in a gradient between the
saturated value that slowly becomes less and less saturated. A bright blue light
may appear white at its center, but with HDR it retains the blue color in a halo
around it when the image is blurred.

Applications in computer entertainment
Currently HDRR has been prevalent in games. Though these games are most-
ly for the PC, it is also possible to render scenes in a high dynamic range in
Microsoft’s Xbox 360, Sony’s PlayStation 3, and Nintendo’s Wii. It has also
been simulated on the PlayStation 2, GameCube, and Xbox. In desktop pub-
lishing and gaming, colour values are often processed several times over. As
this includes multiplication and division it is useful to have the extended accu-
racy and range of 16 bit integer or 16 bit floating point format. This is useful
irrespective of the abovementioned limitations in some hardware.

The development of HDRR into real time rendering mostly came from Mi-
crosoft’s DirectX API.

DirectX’s role in HDRR development
Complex shader effects began its days back with the release of Shader Model
1.0 with DirectX 8. Shader Model 1.0 illuminated 3D worlds with what is now
called standard lighting. However, standard lighting had two problems:

1. Lighting precision was confined to 8 bit integers, which limited the contrast
ratio to 256:1. Using the HVS color model, the value (V), or brightness of
a color has a range of 0 - 255. This means the brightest white ( a value of
255 ) is only 256 times brighter than the darkest black ( a value of 0 ).

2. Lighting calculations were integer based, which didn’t offer much accuracy
because the real world is not confined to whole numbers 116.

Before HDRR was fully developed and implemented, games would fake the
illusion of HDR by using light blooming and sometimes using an option called
"Enhanced Contrast Settings" (Need For Speed Underground 2 had this as an
option, while Metal Gear Solid 3 had it on at all times).

On December 24, 2002, Microsoft released a new version of DirectX. DirectX
9.0 introduced Shader Model 2.0 which offered one of the necessary compo-
nents to enable rendering of high dynamic range rendering, lighting precision

http://download.nvidia.com/developer/presentations/2004/6800_Leagues/6800_Leagues_HDR.pdf116
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was not limited to just 8-bits. Although 8-bits was minimum in applications,
programmers could choose up to a maximum of 24-bits for lighting precision.
However, all calculations were still integer based. One of the first graphics
cards to take advantage of DirectX 9.0 was Ati’s Radeon 9700, though the ef-
fect wasn’t programmed into games for years to come. On August 23, 2003,
Microsoft updated DirectX to DirectX 9.0b, which enabled Pixel Shader 2.x
(Extended) profile for ATI’s Radeon X series and NVIDIA’s GeForce FX series of
graphics processing units.

On August 9, 2004, Microsoft updated DirectX once more to DirectX 9.0c.
This also exposed the Shader Model 3.0 profile for high level shader language
(HLSL). Shader Model 3.0’s lighting precision, according to Dr. Sim Dietrich
Jr., has a minimum of 32-bits as opposed to 2.0’s 8-bit minimum. Also all light-
ing precision calculations are now floating-point based. NVIDIA states that
contrast ratios using Shader Model 3.0 can be as high as 65535:1 using 32-bit
lighting precision. At first, HDRR was only capable on video cards capable of
Shader Model 3.0 effects, but software developers soon added compatibility
for Shader Model 2.0. The difference between an HDRR scene rendered in
Shader Model 3.0 or 2.0 is negligible at this point. As a side note, when re-
ferred as Shader Model 3.0 HDR, the HDRR is really done by FP16 blending.
FP16 blending is not part of Shader Model 3.0, but supported only by cards
also capable of Shader Model 3.0, excluding the GeForce 6200 models as they
lack the capabilities. FP16 blending is used as a faster way to render HDR in
video games.

It is unsure what HDR upgrades will be available from Shader Model 4.0 (to
be released with DirectX 10).

Graphics cards which support HDRR
This is a list of Graphics cards that may or can support HDRR. It is implied that
because the minimum requirement for HDR rendering is Shader Model 2.0 (or
in this case DirectX 9), any graphics card that supports Shader Model 2.0 can
do HDR rendering. However, HDRR may greatly impact the performance of
the software using it, refer to your software’s recommended specifications in
order to run with acceptable performance.

Graphics cards designed for games
Shader Model 2 Compliant (Includes versions 2.0, 2.0a and 2.0b)

From ATI R300 series: 9500, 9500 Pro, 9550, 9550 SE, 9600, 9600 SE, 9600 AIW, 9600
Pro, 9600 XT, 9650, 9700, 9700 AIW, 9700 Pro, 9800, 9800 SE, 9800 AIW,
9800 Pro, 9800XT, X300, X300 SE, X550, X600 AIW, X600 Pro, X600 XT R420
series: X700, X700 Pro, X700 XT, X800, X800SE, X800 GT, X800 GTO, X800
Pro, X800 AIW, X800 XL, X800 XT, X800 XTPE, X850 Pro, X850 XT, X850
XTPE



DR
AF

T

125

High dynamic range rendering

From NVIDIA GeForce FX (includes PCX versions): 5100, 5200, 5200 SE/XT, 5200 Ultra,
5300, 5500, 5600, 5600 SE/XT, 5600 Ultra, 5700, 5700 VE, 5700 LE, 5700
Ultra, 5750, 5800, 5800 Ultra, 5900 5900 ZT, 5900 SE/XT, 5900 Ultra, 5950,
5950 Ultra

From Intel GMA: 900, 950

From S3 Graphics Delta Chrome: S4, S4 Pro, S8, S8 Nitro, F1, F1 Pole Gamma Chrome: S18 Pro,
S18 Ultra, S25, S27

From SiS Xabre: Xabre II

From XGI Volari: V3 XT, V5, V5, V8, V8 Ultra, Duo V5 Ultra, Duo V8 Ultra, 8300, 8600,
8600 XT
Shader Model 3.0 Compliant

From ATI R520 series: X1300 HyperMemory Edition, X1300, X1300 Pro, X1600 Pro,
X1600 XT, X1800 GTO, X1800 XL AIW, X1800 XL, X1800 XT, X1900 AIW,
X1900 GT, X1900 XT, X1900 XTX

From NVIDIA GeForce 6: 6100, 6150, 6200, 6200 TC, 6500, 6600, 6600 LE, 6600 DDR2,
6600 GT, 6610 XL, 6700 XL, 6800, 6800 LE, 6800 XT, 6800 GS, 6800 GTO,
6800 GT, 6800 Ultra, 6800 Ultra Extreme GeForce 7: 7300 GS, 7600 GS, 7600
GT, 7800 GS, 7800 GT, 7800 GTX, 7800 GTX 512MB, 7900 GT, 7900 GTX,
7900 GX2, 7950 GX2

Graphics cards designed for workstations
Shader Model 2 Compliant (Includes versions 2.0, 2.0a and 2.0b)

From ATI FireGL: Z1-128, T2-128, X1-128, X2-256, X2-256t, V3100, V3200, X3-256, V5000,
V5100, V7100

From NVIDIA Quadro FX: 330, 500, 600, 700, 1000, 1100, 1300, 2000, 3000

Shader Model 3.0 Compliant

From ATI FireGL: V7300, V7350

From NVIDIA Quadro FX: 350, 540, 550, 560, 1400, 1500, 3400, 3450, 3500, 4000, 4400, 4500,
4500SDI, 4500 X2, 5500

From 3Dlabs Wildcat Realizm: 100, 200, 500, 800

Games which include HDR rendering
It will be only a matter of time before HDRR becomes a standard for future
games, but until then, here’s a list of games that support it.
Shader Model 3.0 HDR Shader Model 2.0 HDR Limited HDR
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• Act of War: High Treason
• Age of Empires III
• Bet on Soldier
• Bioshock
• Brothers In Arms: Hell’s

Highway
• Crysis
• Duke Nukem Forever
• Far Cry

• (with patch 1.3
installed)

• Far Cry Instincts: Predator

Romani in Spatiu

• Gears of War
• Huxley
• Juiced

• (PC version only)
• Kameo: Elements of Power
• The Lord of the Rings: The

Battle for Middle-earth
• The Lord of the Rings: The

Battle for Middle-earth II
• Lineage II

• (with Chronicle 4
updated)

• Project Gotham Racing 3
• Project Offset
• Perfect Dark Zero
• Serious Sam II
• Stranglehold
• The Elder Scrolls IV:

Oblivion
• TimeShift
• Tom Clancy’s Ghost Recon:

Advanced Warfighter
• Tom Clancy’s Splinter Cell:

Chaos Theory
• (PC version only)

• Tom Clancy’s Splinter Cell:
Double Agent
• (PC and Xbox 360

version only)
• Tomb Raider: Legend

• (PC and Xbox 360
version only)

• Unreal Tournament 2007
• Vanguard: Saga of Heroes

• Act of War: High Treason
• Bioshock
• Brothers In Arms: Hell’s

Highway
• Brothers in Arms: Earned in

Blood
• Brothers in Arms: Road to

Hill 30
• Call of Duty 2
• Counter-Strike: Source

• (Limited to certain
maps)

• Crysis
• Day of Defeat: Source
• Far Cry

• (SM 2.0 HDR patch
soon)

• Gears of War
• Half-Life 2: Episode One
• Half-Life 2: Lost Coast
• Huxley
• Red Orchestra: Ostfront

41-45
• Stranglehold
• Tom Clancy’s Splinter Cell:

Chaos Theory
• (PC version only with

patch 1.4 installed)
• Tom Clancy’s Splinter Cell:

Double Agent
• (PC version only)

• Unreal Tournament 2007
• Vanguard: Saga of Heroes

• Deus Ex: Invisible War
• Need for Speed:

Underground 2
• Shadow of the Colossus
• Operation Flashpoint: Elite
• Pariah
• Metal Gear Solid 3: Snake

Eater
• Spartan: Total Warrior
• SWAT 4
• SWAT 4: The Stetchkov

Syndicate
• Thief: Deadly Shadows
• Tribes Vengeance
• Unreal Championship 2
• WarPath
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Links

External links and sources

• NVIDIA’s HDRR technical summary117 (PDF)
• Microsoft’s technical brief on SM3.0 in comparison with SM2.0118

• High Dynamic Range Rendering in Photoshop CS2119 - Applications to digi-
tal photography

• Horror Blog120

• Tom’s Hardware: New Graphic Card Features of 2006121

• The Contrast Ratio Number Game122

• List of GPU’s compiled by Chris Hare123

• techPowerUp! GPU Database124

Software developer websites

• Source Engine Licensing125 (see Source Engine for more)
• Half-Life 2126

• Unreal Engine 3127

• Emergent’s Gamebryo128

• CryEngine129

• FarCry130

Real-time HDR rendering

• Real time HDR demo for PCs131

• 3D Engine with HDR previewing132

• Unigine with HDR Rendering Demos133

http://download.nvidia.com/developer/presentations/2004/6800_Leagues/6800_Leagues_HDR.pdf117

http://www.microsoft.com/whdc/winhec/partners/shadermodel30_NVIDIA.mspx118

http://www.cambridgeincolour.com/tutorials/high-dynamic-range.htm119

http://www.codinghorror.com/blog/archives/000324.html|Coding120

http://www.tomshardware.com/2006/01/13/new_3d_graphics_card_features_in_2006/121

http://www.practical-home-theater-guide.com/contrast-ratio.html122

http://users.erols.com/chare/video.htm123

http://www.techpowerup.com/gpudb/124

http://www.valvesoftware.com/sourcelicense/125

http://www.half-life2.com/126

http://www.unrealtechnology.com/html/technology/ue30.shtml127

http://www.emergent.net128

http://www.crytek.com129

http://www.farcry-thegame.com130

http://www.daionet.gr.jp/~masa/rthdribl/131

http://powerrender.com/132

http://unigine.com/133
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References

• ↑ Paul E. Debevec and Jitendra Malik (1997). "Recovering High Dynamic
Range Radiance Maps from Photographs"134. SIGGRAPH.

• ↑ Paul E. Debevec (1998). "Rendering Synthetic Objects into Real Scenes:
Bridging Traditional and Image-Based Graphics with Global Illumination
and High Dynamic Range Photography."135. SIGGRAPH.

Source: http://en.wikipedia.org/wiki/High_dynamic_range_rendering

Principal Authors: XenoL-Type, Unico master 15, Tnikkel, NoSoftwarePatents, Coldpower27

High Level Shader Language

The High Level Shader Language ( HLSL ) is a shader language developed by
Microsoft for use with →Direct3D, and is very similar to Cg.

HLSL allows expensive graphical computations to be done on the graphics card,
thus freeing up the CPU for other purposes.

Shader Model Comparison
PS_2_0 PS_2_a PS_2_b PS_3_0

Dependent texture limit 4 No Limit 4 No Limit

Texture instruction limit 32 Unlimited Unlimited Unlimited

Position register No No No Yes

Instruction slots 32 + 64 512 512 ≥ 512

Executed instructions 32 + 64 512 512 ≥65535

Interpolated registers 2 + 8 2 + 8 2 + 8 10

Instruction predication No Yes No Yes

Index input registers No No No Yes

Temp registers 12 22 32 32

Constant registers 32 32 32 224

Arbitrary swizzling No Yes No Yes

Gradient instructions No Yes No Yes

Loop count register No No No Yes

Face register (2-sided lighting) No No No Yes

Dynamic flow control No No No 24

http://www.debevec.org/Research/HDR/debevec-siggraph97.ps.gz134

http://www.debevec.org/Research/IBL/debevec-siggraph98.pdf135
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• PS_2_0 = DirectX 9.0 original Shader Model 2 specification.
• PS_2_a = NVIDIA GeForce FX-optimized model, DirectX 9.0a.
• PS_2_b = ATI Radeon X700, X800, X850 shader model, DirectX 9.0b.
• PS_3_0 = Shader Model 3.

External links

• HLSL Introduction136

• Shader Model Comparison at Beyond3D137

Source: http://en.wikipedia.org/wiki/High_Level_Shader_Language

Principal Authors: Swaaye, Nabla, TheSock, Unixxx, Soumyasch

Humanoid Animation

Humanoid Animation (H-Anim) is an approved ISO standard for humanoid
modeling and animation. H-Anim defines a specification for defining inter-
changeable human figures so that those characters can be used across a variety
of 3D games and simulation environments.

External links

• Humanoid Animation Working Group138

• Web3D Consortium139

• X3D Specification140

• ISO/IEC 19774:2006 Humanoid Animation (H-Anim)141

Source: http://en.wikipedia.org/wiki/Humanoid_Animation

Principal Authors: Mditto, X42bn6, Perfecto

http://www.neatware.com/lbstudio/web/hlsl.html136

http://www.beyond3d.com/reviews/ati/r420_x800/index.php?p=8137

http://www.h-anim.org138

http://www.web3d.org139

http://www.web3d.org/x3d/specifications140

http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=33912141
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Image based lighting

Image based lighting is a global illumination method used in 3D photo re-
alistic rendering in which an image is used to light the scene in conjunction
with tradional light models. Image based lighting, or IBL, is generally HDR,
although LDR can be used, and provides a larger range of light sampling then
can be obtained through traditional light models. LDR, low dynamic range,
works similar to HDR, but offers a much smaller range of lighting information.

Almost every modern renderer offers some type of image based lighting, how-
ever the terminology used in their application might be slightly different.

Image based lighting is also starting to show up in game technology since most
game consoles and computers have such an immense amount of processing
power today.

References

• Tutorial142

See also

• →Ambient occlusion
• Final gathering
• →Global illumination
• →High dynamic range imaging
• Light transport theory

Source: http://en.wikipedia.org/wiki/Image_based_lighting

http://www.debevec.org/CGAIBL2/ibl-tutorial-cga2002.pdf142
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Image plane

In →3D computer graphics, the image plane is that plane in the world which
is identified with the plane of the monitor. If one makes the analogy of taking a
photograph to rendering a 3D image, the surface of the film is the image plane.
In this case, the viewing transformation is a projection that maps the world
onto the image plane. A rectangular region of this plane, called the viewing
window or viewport, maps to the monitor. This establishes the mapping be-
tween pixels on the monitor and points (or rather, rays) in the 3D world.

Source: http://en.wikipedia.org/wiki/Image_plane

Principal Authors: TheParanoidOne, RJHall, CesarB, Reedbeta

Inverse kinematic animation

Inverse kinematic animation (IKA) refers to a process utilized in 3D comput-
er graphic animation, to calculate the required articulation of a series of limbs
or joints, such that the end of the limb ends up in a particular location. In
contrast to forward kinematic animation, where each movement for each com-
ponent must be planned, only the starting and ending locations of the limb are
necessary.

For example, when one wants to reach for a door handle, their brain must
make the necessary calculations to position his limbs and torso such that the
hand locates near the door. The main objective is to move the hand but the
many complex articulations of several joints must occur to get the hand to
the desired location. Similarly with many technological applications, inverse
kinematic mathematical calculations must be performed to articulate limbs in
the correct ways to meet desired goals.

One example where inverse kinematic calculations are often essential is
robotics, where an operator wants to position a tool using a robot arm but
certainly doesn’t want to manipulate each robot joint individually. Other ap-
plications include computer animation where animators may want to operate
a computer generated character, but find it impossibly difficult to animate in-
dividual joints. The solution is to model the virtual joints of the puppet and
allow the animator to move the hands feet and torso, and the computer auto-
matically generates the required limb positions to accomplish this using inverse
kinematics.
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Key to the successful implementation of inverse kinematics is animation within
constraints: computer characters’ limbs must behave within reasonable anthro-
pomorphic limits. Similarly, robotic devices have physical constraints such as
the environment they operate in, the limitations of the articulations their joints
are capable of, and the finite physical loads and speeds at which they are able
to operate.

See also: →Inverse kinematics

Source: http://en.wikipedia.org/wiki/Inverse_kinematic_animation

Principal Authors: Stevertigo, FrenchIsAwesome, Diberri, Stefan, Bryan Derksen

Inverse kinematics

Inverse kinematics is the process of determining the parameters of a jointed
flexible object in order to achieve a desired pose. For example, with a 3D
model of a human body, what are the required wrist and elbow angles to move
the hand from a resting position to a waving position? This question is vital
in robotics, where manipulator arms are commanded in terms of joint angles.
Inverse kinematics are also relevant to game programming and→3D modeling,
though its importance there has decreased with the rise of use of large libraries
of motion capture data.

An articulated figure consists of a set of rigid segments connected with joints.
Varying angles of the joints yields an indefinite number of configurations. The
solution to the forward kinematics problem, given these angles, is the pose
of the figure. The more difficult solution to the inverse kinematics problem
is to find the joint angles given the desired configuration of the figure (i.e.,
end-effector). In the general case there is no analytic solution for the inverse
kinematics problem. However, inverse kinematics may be solved via nonlin-
ear programming techniques. Certain special kinematic chains—those with a
spherical wrist—permit kinematic decoupling. This treats the end-effector’s
orientation and position independently and permits an efficient closed-form
solution.

For animators, the inverse kinematics problem is of great importance. These
artists find it far simpler to express spatial appearance rather than joint angles.
Applications of inverse kinematic algorithms include interactive manipulation,
animation control and collision avoidance.

See also: →Inverse kinematic animation



DR
AF

T

133

Irregular Z-buffer

External links

• Inverse Kinematics algorithms143

• Robot Inverse Kinematics144

• HowStuffWorks.com article How do the characters in video games move so
fluidly? 145 with an explanation of inverse kinematics

• 3D Theory Kinematics146

• Protein Inverse Kinematics147

Source: http://en.wikipedia.org/wiki/Inverse_kinematics

Principal Authors: Frecklefoot, GTubio, K.Nevelsteen, Charles Matthews, Dvavasour

Irregular Z-buffer

The irregular Z-buffer is an algorithm designed to solve the visibility problem
in real-time 3-d computer graphics. It is related to the classical Z-buffer in that
it maintains a depth value for each image sample and uses these to determine
which geometric elements of a scene are visible. The key difference, however,
between the classical Z-buffer and the irregular Z-buffer is that the latter allows
arbitrary placement of image samples in the image plane, whereas the former
requires samples to be arranged in a regular grid (See Figure 1).

These depth samples are explicitly stored in a two-dimensional spatial data
structure. During rasterization, triangles are projected onto the image plane as
usual, and the data structure is queried to determine which samples overlap
each projected triangle. Finally, for each overlapping sample, the standard
Z-compare and (conditional) frame buffer update are performed.

http://freespace.virgin.net/hugo.elias/models/m_ik2.htm143

http://www.learnaboutrobots.com/inverseKinematics.htm144

http://entertainment.howstuffworks.com/question538.htm145

http://www.euclideanspace.com/physics/kinematics/joints/index.htm146

http://cnx.org/content/m11613/latest/147
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Implementation
The classical rasterization algorithm projects each polygon onto the image
plane, and determines which sample points from a regularly-spaced set lie in-
side the projected polygon. Since the locations of these samples (i.e. pixels)
are implicit, this determination can be made by testing the edges against the
implicit grid of sample points. If, however the locations of the sample points
are irregularly spaced and cannot be computed from a formula, then this ap-
proach does not work. The irregular Z-buffer solves this problem by storing
sample locations explicitly in a two-dimensional spatial data structure, and lat-
er querying this structure to determine which samples lie within a projected
triangle. This latter step is referred to as "irregular rasterization".

Although the particular data structure used may vary from implementation to
implementation, the two studied approaches are the kd-tree, and a grid of
linked lists. A balanced kd-tree implementation has the advantage that it guar-
antees O(log(N)) access. It’s chief disadvantage is that parallel construction of
the kd-tree may be difficult, and traversal requires expensive branch instruc-
tions. The grid of lists has the advantage that it can be implemented more
effectively on GPU hardware, which is designed primarily for the classical Z-
buffer.

Applications
The irregular Z-buffer can be used for any application which requires visibility
calculations at arbitrary locations in the image plane. It has been shown to be
particularly adept at shadow mapping, an image space algorithm for rendering
hard shadows. In addition to shadow rendering, potential applications include
adaptive anti-aliasing, jittered sampling, and environment mapping.

External links

• The Irregular Z-Buffer And Its Application to Shadow Mapping148 (pdf warn-
ing)

• Alias-Free Shadow Maps149 (pdf warning)

Source: http://en.wikipedia.org/wiki/Irregular_Z-buffer

Principal Authors: Fooberman, DabMachine

http://www.cs.utexas.edu/ftp/pub/techreports/tr04-09.pdf148

http://www.tml.hut.fi/~timo/publications/aila2004egsr_paper.pdf149
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Isosurface

Figure 48 Zirconocene with an isosurface showing areas of the molecule susceptible to elec-
trophilic attack. Image courtesy of Accelrys (http://www.accelrys.com)

An isosurface is a three-dimensional analog of an isocontour. It is a surface
that represents points of a constant value (e.g. pressure, temperature, veloc-
ity, density) within a volume of space; in other words, it is a level set of a
continuous function whose domain is 3-space.

Isosurfaces are normally displayed using computer graphics, and are used as
data visualization methods in computational fluid dynamics (CFD), allowing
engineers to study features of a fluid flow (gas or liquid) around objects, such
as aircraft wings. An isosurface may represent an individual shockwave in
supersonic flight, or several isosurfaces may be generated showing a sequence
of pressure values in the air flowing around a wing. Isosurfaces tend to be a
popular form of visualization for volume datasets since they can be rendered
by a simple polygonal model, which can be drawn on the screen very quickly.

In medical imaging, isosurfaces may be used to represent regions of a particular
density in a three-dimensional CT scan, allowing the visualization of internal
organs, bones, or other structures.
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Numerous other disciplines that are interested in three-dimensional data of-
ten use isosurfaces to obtain information about pharmacology, chemistry, geo-
physics and meteorology.

A popular method of constructing an isosurface from a data volume is the
marching cubes algorithm.

Source: http://en.wikipedia.org/wiki/Isosurface

Principal Authors: StoatBringer, The demiurge, Michael Hardy, RedWolf, Taw

Joint constraints

Joint constraints are rotational constraints on the joints of an artificial bone
system. They are used in an inverse kinematics chain, for such things as 3D
animation or robotics. Joint constraints can be implemented in a number of
ways, but the most common method is to limit rotation about the X, Y and Z
axis independently. An elbow, for instance, could be represented by limiting
rotation on Y and Z axis to 0 degress of freedom, and constraining the X-axis
rotation to 130 degrees of freedom.

To simulate joint constrains more accurately, dot-products can be used with an
independent axis to repulse the child bones orientation from the unreachable
axis. Limiting the orientation of the child bone to a border of vectors tangent
to the surface of the joint, repulsing the child bone away from the border, can
also be useful in the precise restriction of shoulder movement.

Source: http://en.wikipedia.org/wiki/Joint_constraints

Principal Authors: Rofthorax, Dreadlocke, Salmar, Ravedave, Banana04131
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Lambertian reflectance

If a surface exhibits Lambertian reflectance, light falling on it is scattered
such that the apparent brightness of the surface to an observer is the same
regardless of the observer’s angle of view. More technically, the surface lumi-
nance is the same regardless of angle of view. For example, unfinished wood
exhibits roughly Lambertian reflectance, but wood finished with a glossy coat
of polyurethane does not (depending on the viewing angle, specular highlights
may appear at different locations on the surface). Not all rough surfaces are
perfect Lambertian reflectors, but this is often a good approximation when the
characteristics of the surface are unknown.

In computer graphics, Lambertian reflection is often used as a model for diffuse
reflection, and is calculated by taking the dot product of the surface’s normal-
ized normal vector N and a normalized vector L pointing from the surface to
the light source. This number is then multiplied by the color of the surface and
the intensity of the light hitting the surface:

ID = L · N ∗ C ∗ IL,

where ID is the intensity of the diffusely reflected light (surface brightness), C
is the color and IL is the intensity of the incoming light. Because

L · N = |N ||L| cosα,

where α is the angle between the direction of the two vectors, the intensity
will be the highest if the normal vector points in the same direction as the light
vector (cos (0) = 1, the surface will be perpendicular to the direction of the
light), and the lowest if the normal vector is perpendicular to the light vector
(cos (π) = 0, the surface runs parallel with the direction of the light).

Lambertian reflection is typically accompanied by specular reflection, where
the surface luminance is highest when the observer’s angle is the same as the
angle of the light source. This is simulated in computer graphics with →Phong
shading.

Spectralon is a material which is designed to exhibit almost perfect Lambertian
reflectance.
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See also

• →Lambert’s cosine law
• Specular reflection
• →Diffuse reflection

Source: http://en.wikipedia.org/wiki/Lambertian_reflectance

Principal Authors: Srleffler, KYN, Pedrose, PAR, Pflatau

Lambert’s cosine law

Lambert’s cosine law says that the total radiant power observed from a "Lam-
bertian" surface is directly proportional to the cosine of the angle θ between
the observer’s line of sight and the surface normal. The law is also known as
the cosine emission law or Lambert’s emission law. It is named after Johann
Heinrich Lambert, from his Photometria, published in 1760.

An important consequence of Lambert’s cosine law is that when an area ele-
ment on the surface is viewed from any angle, it has the same radiance. This
means, for example, that to the human eye it has the same apparent brightness
(or luminance). It has the same radiance because although the emitted pow-
er from an area element is reduced by the cosine of the emission angle, the
observed size (solid angle) of the area element is also reduced by that same
amount, so that while the area element appears smaller, its radiance is the
same. For example, in the visible spectrum, the Sun is almost a Lambertian
radiator, and as a result the brightness of the Sun is almost the same every-
where on an image of the solar disk. Also, a black body is a perfect Lambertian
radiator.

Lambertian reflectors
When an area element is radiating as a result of being illuminated by an exter-
nal source, the irradiance (energy or photons/time/area) landing on that area
element will be proportional to the cosine of the angle between the illuminat-
ing source and the normal. A Lambertian reflector will then reflect this light
according to the same cosine law as a Lambertian emitter. This means that
although the radiance of the surface depends on the angle from the normal to
the illuminating source, it will not depend on the angle from the normal to the
observer. For example, if the moon were a Lambertian reflector, one would ex-
pect to see its reflected brightness appreciably diminish towards the terminator
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due to the increased angle at which sunlight hit the surface. The fact that it
does not diminish illustrates that the moon is not a Lambertian reflector, and in
fact tends to reflect more light into the oblique angles than would a Lambertian
reflector.

Details of equal brightness effect

Figure 57 Figure 1: Emission rate (photons/s) in a normal and off-normal direction. The num-
ber of photons/sec directed into any wedge is proportional to the area of the wedge.
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Figure 58 Figure 2: Observed intensity (photons/(s·cm2·sr)) for a normal and off-normal ob-
server; dA 0 is the area of the observing aperture and dΩ is the solid angle subtended by the
aperture from the viewpoint of the emitting area element.

This situation for a Lambertian reflector is illustrated in Figures 1 and 2. For
conceptual clarity we will think in terms of photons rather than energy or lu-
minous energy. The wedges in the circle each represent an equal angle dΩ and
the number of photons per second emitted into each wedge is proportional to
the area of the wedge.

It can be seen that the height of each wedge is the diameter of the circle times
cos(θ). It can also be seen that the maximum rate of photon emission per
unit solid angle is along the normal and diminishes to zero for θ = 90◦. In
mathematical terms, the radiance along the normal is I photons/(s·cm2·sr)
and the number of photons per second emitted into the vertical wedge is I dΩ
dA. The number of photons per second emitted into the wedge at angle θ is
I cos(θ) dΩ dA.

Figure 2 represents what an observer sees. The observer directly above the
area element will be seeing the scene through an aperture of area dA 0 and the
area element dA will subtend a (solid) angle of dΩ0. We can assume without
loss of generality that the aperture happens to subtend solid angle dΩ when
"viewed" from the emitting area element. This normal observer will then be
recording I dΩ dA photons per second and so will be measuring a radiance of

I0 = I dΩ dA
dΩ0 dA0

photons/(s·cm2·sr).
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The observer at angle θ to the normal will be seeing the scene through the
same aperture of area dA 0 and the area element dA will subtend a (solid)
angle of dΩ0 cos(θ). This observer will be recording I cos(θ) dΩ dA photons
per second, and so will be measuring a radiance of

I0 = I cos(θ) dΩ dA
dΩ0 cos(θ) dA0

= I dΩ dA
dΩ0 dA0

photons/(s·cm2·sr),

which is the same as the normal observer.

Source: http://en.wikipedia.org/wiki/Lambert%27s_cosine_law

Principal Authors: PAR, Dbenbenn, Srleffler, Oleg Alexandrov, Michael Hardy

Level of detail (programming)

In computer programming and computer graphics, level of detail involves de-
creasing the detail of a model or object as it moves away from the viewer.
Level of detail is used in computer and video games because it increases the
efficiency of rendering by decreasing the polygon count — a desirable effect.
The reduced visual quality of the model or object is, ideally, unnoticed due to
the distance of the object. This, of course, depends on the individual system or
game.

Black & White was one of the first games to use level of detail effects in its
rendering. Each map consisted of a single, large island, sometimes populated
with hundreds of villagers. As the player zoomed the camera out, progressively
lower-detailed models were substituted for the villagers, buildings, and even
the island itself. While not perfect, the technique allowed for a huge island to
have detail in close-ups, but still be visible without slow-down when zoomed
out. Messiah used a similar technique and was released before Black & White.
150

Halo 2 used level of detail adjustments to allow for much greater detail in
cutscenes and maps, but at the cost of a "detail pop-in" effect when a level or
scene was first loaded. Models would appear to have little or no detail at first,
with more detail suddenly appearing over time as the more detailed models
and textures loaded.

In order to make the detail decrease less obvious, fog is commonly used in
computer and video games to reduce the visibility of details on the object,

http://pc.ign.com/articles/123/123117p1.html150
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simulating the haze that falls over distant objects in reality. When the object is
out of the range of visibility, it won’t be rendered anymore.

One of the most common methods used in automatic level of detail construc-
tion is based on the edge collapse transformation of a 3D mesh. Each pair of
vertices in the 3D mesh are given a weighted error metric based on curvature
or other criteria. The pair with the least given error is then merged/collapsed
into one vertex. This is repeated until the desired triangle count is reached.

Other more advanced methods include the creation of lists containing precal-
culated edge collapse and vertex split values. Such lists can then be used for
realtime calculation of level of detail objects. This method is often referred to
as progressive meshes.

More advanced level of detail runtime systems use algorithms that are able
to merge several 3D objects and simplify the merged objects in order to en-
hance reduction. Such algorithms are referred to as hierarchical level of detail
algorithms.

External links

• Level of Detail for 3D Graphics151, by D. Luebke et. al.; one of the most
complete books on level of detail for computer graphics

• Phd disertation on hierarchical levels of details (PDF)152

• Donya research153; research and development of level of detail software
company

Source: http://en.wikipedia.org/wiki/Level_of_detail_%28programming%29

Principal Authors: ZS, Drat, Jtalledo, Deepomega, GreatWhiteNortherner

http://lodbook.com/151

http://www.cs.unc.edu/~geom/HLOD/Dissertation/Dissertation.pdf152

http://www.donya.se153
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→Low poly is a term used by videogame creators, players and journalists alike
to describe a three-dimensional computer generated character or object that
appears to be lacking in polygons.

In computer technology, polygons are what designers typically use to create
any three-dimensional object that is output to the screen. The polygons are
usually triangles. The more triangles that are used to create an object, the
more detailed it will appear, but the more computing power it will take to
render the object. Because of this, designers of videogames often have to be
creative or cut corners with their polygon budget (the number of polygons that
can be rendered per frame in a scene). This leads to objects that are often
described as being low poly.

Objects that are said to be low poly often appear blocky (square heads) and
lacking in detail (no individual fingers). Objects that are supposed to be circu-
lar or spherical are most obviously low poly, as the number of triangles needed
to make a circle is high relative to other shapes, due to the curved line that is
a circle.

The low poly issue is mostly confined to videogames and other software that
the user manipulates in real time, e.g. the parts of a game that are playable.
Low poly and polygon budgets are not an issue in, for example, computer-
generated imagery effects like Gollum from the Lord of the Rings films or the
entirety of Pixar animated films because they are created on large networks
of computers called render farms. Each frame takes about an hour to create,
despite the enormous computer power involved. This is why FMV sequences
in videogames look so much better than the games themselves.

Low poly is a phrase which is used relative to the time it is released. As com-
puting power inevitably increases, the number of polygons that can be used
increases as well. For example, Super Mario 64 would be considered low poly
today, but was considered a stunning achievement when it was released in
1996.

See also

• →Bump mapping
• →Normal mapping
• Sprites
• Nurbs
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Source: http://en.wikipedia.org/wiki/Low_poly

Principal Authors: RJHall, David Levy, Plasmatics, Praetor alpha, Josh Parris

MegaTexture

MegaTexture refers to a texture mapping technique used in Splash Damage’s
upcoming game, Enemy Territory: Quake Wars. It was developed by id Soft-
ware technical director John Carmack. MegaTexture is a design to eliminate
repeating textures over an environment. The original version of the Doom 3
engine was criticized over its perceived inability to handle landscapes and large
outdoor areas. The MegaTexture technology addresses this issue by introduc-
ing a means to create expansive outdoor scenes. By painting a single massive
texture (About 32000x32000 pixels, or 1 gigapixel) covering the entire poly-
gon map and highly detailed terrain, the desired effects can be achieved. The
MegaTexture can also store physical information about the terrain such as the
amount of traction in certain areas or indicate what sound effect should be
played when walking over specific terrain types on the map. i.e. walking on
rock will sound different from walking on grass. It is expected that this will
result in a considerably more detailed scene than the majority of existing tech-
nologies, using tiled textures, allow.

It has been suggested that MegaTexture technique is a modification of Clip
Mapping.

See also

• →Texture mapping
• id Software
• Enemy Territory: Quake Wars
• Doom 3

External links

• id Software154

• Splash Damage155

http://www.idsoftware.com154

http://www.splashdamage.com155
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• John Carmack on MegaTexture156

• Arnout van Meer on Quake Wars157

Source: http://en.wikipedia.org/wiki/MegaTexture

Principal Authors: Mojohompo, R. Koot, Skrapion, Vahid83, Amren

Mesa 3D

Mesa 3D is an open source graphics library, initially developed by Brian Paul in
August 1993, that provides a generic →OpenGL implementation for rendering
three-dimensional graphics on multiple platforms. Though Mesa is not an offi-
cially licensed OpenGL implementation, the structure, syntax and semantics of
the API is that of OpenGL.

Advantages

• In its current form, Mesa 3D is available and can be compiled on virtually
all modern platforms.

• Though not an official OpenGL implementation for licensing reasons, the
Mesa 3D authors have worked to keep the API in line with the most current
OpenGL standards and conformance tests, as set forth by the OpenGL ARB.

• Mesa 3D is distributed under the MIT License.

• Whilst Mesa 3D supports several hardware graphics accelerators, it may al-
so be compiled as a software-only renderer. Since it is also Open Sourced,
it is possible to use it to study the internal workings of an →OpenGL-
compatible renderer.

• It is sometimes possible to find subtle bugs in OpenGL applications by link-
ing against Mesa 3D and using a conventional debugger to track problems
into the lower level library.

http://www.gamerwithin.com/?view=article&article=1319&cat=2156

http://www.beyond3d.com/interviews/etqw/157
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External links

• Mesa 3D Homepage158 - Information and documentation for the latest ver-
sion of Mesa 3D.

Source: http://en.wikipedia.org/wiki/Mesa_3D

Principal Authors: Imroy, SteveBaker, Agentsoo, Caiyu, Aegis Maelstrom

Metaballs

Figure 59 Two metaballs

Metaballs, in computer graphics terms, are organic-looking n-dimensional ob-
jects. The technique for rendering metaballs was invented by Jim Blinn in the
early 1980s.

http://www.mesa3d.org/158
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Each metaball is defined as a function in n-dimensions (ie. for three dimen-
sions, f(x, y, z); three-dimensional metaballs tend to be most common). A
thresholding value is also chosen, to define a solid volume. Then,∑

n

i=0
metaball i(x, y, z) ≤ threshold

represents whether the volume enclosed by the surface defined by n metaballs
is filled at (x, y, z) or not.

A typical function chosen for metaballs is f(x, y, z) = 1/((x − x0)2 + (y −
y0)2 + (z− z0)2), where (x0, y0, z0) is the center of the metaball. However, due
to the divide, it is computationally expensive. For this reason, approximate
polynomial functions are typically used (examples?).

There are a number of ways to render the metaballs to the screen. The two
most common are brute force raycasting and the marching cubes algorithm.

2D metaballs used to be a very common demo effect in the 1990s. The effect
is also available as an XScreensaver module.

Further reading

• Blinn, James F. "A Generalization of Algebraic Surface Drawing." ACM
Transactions on Graphics 1(3), July 1982, pp. 235–256.

Source: http://en.wikipedia.org/wiki/Metaballs

Principal Authors: Iron Wallaby, Viznut, T-tus, Kibibu, Felsir

Metropolis light transport

This SIGGRAPH 1997 paper by Eric Veach and Leonidas J. Guibas describes
an application of a variant of the Monte Carlo method called the Metropolis-
Hastings algorithm to the rendering equation for generating images from de-
tailed physical descriptions of three dimensional scenes.

The procedure constructs paths from the eye to a light source using bi-
directional path tracing, then constructs slight modifications to the path. Some
careful statistical calculation (the Metropolis algorithm) is used to compute
the appropriate distribution of brightness over the image. This procedure has
the advantage, relative to bidirectional path tracing, that once a path has been
found from light to eye, the algorithm can then explore nearby paths; thus
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difficult-to-find light paths can be explored more thoroughly with the same
number of simulated photons.

In short, the algorithm generates a path and stores the paths ’nodes’ in a list. It
can then modify the path by adding extra nodes and creating a new light path.
While creating this new path, the algorithm decides how many new ’nodes’ to
add and whether or not these new nodes will actually create a new path.

External link

• Metropolis project at Stanford159

Source: http://en.wikipedia.org/wiki/Metropolis_light_transport

Principal Authors: Pfortuny, Loisel, Aarchiba, The Anome, Levork

Micropolygon

In →3D computer graphics, a micropolygon is a polygon that is at least as
small as the size of a pixel in the output image. The concept of micropoly-
gons was developed to be used by the Reyes algorithm. At rendering time,
the geometric primitive is tessellated into a rectangular grid of tiny four-sided
polygons or micropolygons. A shader later assigns colors to the vertices of
these faces. Commonly the size of these micropolygons is the same as the area
of a pixel. Using micropolygons allows the renderer to create a highly detailed
image.

Shaders that operate on micropolygons can process an entire grid at once in
SIMD fashion. This often leads to faster shader execution, and allows shaders
to compute spatial derivatives (e.g. for texture filtering) by comparing values
at neighboring micropolygon vertices.

A renderer that uses micropolygons can support displacement mapping simply
by perturbing micropolygon vertices during shading.

Further reading

• Steve Upstill: The RenderMan Companion: A Programmer’s Guide to Real-
istic Computer Graphics, Addison-Wesley, ISBN 0-201-50868-0

• Anthony A. Apodaca, Larry Gritz: Advanced RenderMan: Creating CGI for
Motion Pictures, Morgan Kaufmann Publishers, ISBN 1-55860-618-1

http://graphics.stanford.edu/papers/metro/159
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Source: http://en.wikipedia.org/wiki/Micropolygon

Principal Authors: Flamurai, RJHall, Dmaas, T-tus

Mipmap

In →3D computer graphics texture mapping, MIP maps (also mipmaps) are
pre-calculated, optimized collections of bitmap images that accompany a main
texture, intended to increase rendering speed and reduce artifacts. They are
widely used in 3D computer games, flight simulators and other 3D imaging
systems. The technique is known as mipmapping. The letters "MIP" in the
name are an acronym of the Latin phrase multum in parvo, meaning "much in
a small space".

How it works

Each bitmap image of the mipmap set is a version of the main texture, but at a
certain reduced level of detail. Although the main texture would still be used
when the view is sufficient to render it in full detail, the renderer will switch
to a suitable mipmap image (or in fact, interpolate between the two nearest)
when the texture is viewed from a distance or at a small size. Rendering speed
increases since the number of texture pixels ("texels") being processed can be
much lower than with simple textures. Artifacts are reduced since the mipmap
images are effectively already anti-aliased, taking some of the burden off the
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real-time renderer. Scaling down and up is made more efficient with mipmaps
as well.

If the texture has a basic size of 256 by 256 pixels (textures are typically square
and must have side lengths equal to a power of 2), then the associated mipmap
set may contain a series of 8 images, each one-fourth the size of the previous
one: 128×128 pixels, 64×64, 32×32, 16×16, 8×8, 4×4, 2×2, 1×1 (a single
pixel). If, for example, a scene is rendering this texture in a space of 40×40
pixels, then an interpolation of the 64×64 and the 32×32 mipmaps would be
used. The simplest way to generate these textures is by successive averaging,
however more sophisticated algorithms (perhaps based on signal processing
and Fourier transforms) can also be used.

The increase in storage space required for all of these mipmaps is a third of
the original texture, because the sum of the areas 1/4 + 1/16 + 1/256 + ...
converges to 1/3. (This assumes compression is not being used.) This is a
major advantage to this selection of resolutions. However, in many instances,
the filtering should not be uniform in each direction (it should be anisotropic,
as opposed to isotropic), and a compromise resolution is used. If a higher
resolution is used, the cache coherence goes down, and the aliasing is increased
in one direction, but the image tends to be clearer. If a lower resolution is used,
the cache coherence is improved, but the image is overly blurry, to the point
where it becomes difficult to identify.

To help with this problem, nonuniform mipmaps (also known as rip-maps)
are sometimes used. With a 16×16 base texture map, the rip-map resolutions
would be 16×8, 16×4, 16×2, 16×1, 8×16, 8×8, 8×4, 8×2, 8×1, 4×16, 4×8,
4×4, 4×2, 4×1, 2×16, 2×8, 2×4, 2×2, 2×1, 1×16, 1×8, 1×4, 1×2 and 1×1.

The unfortunate problem with this approach is that rip-maps require four times
as much memory as the base texture map, and so rip-maps have been very
unpopular.

To reduce the memory requirement, and simultaneously give more resolutions
to work with, summed-area tables were conceived. Given a texture (tjk), we
can build a summed area table (sjk) as follows. The summed area table has
the same number of entries as there are texels in the texture map. Then, define

smn :=
∑

1≤j≤m, 1≤k≤n tjk

Then, the average of the texels in the rectangle (a1,b1] × (a2,b2] is given by
sa2b2−sa1b2−sa2b1 +sa1b1

(a2−a1)(b2−b1)
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However, this approach tends to exhibit poor cache behavior. Also, a summed
area table needs to have wider types to store the partial sums sjk than the
word size used to store tjk. For these reasons, there isn’t any hardware that
implements summed-area tables today.

A compromise has been reached today, called anisotropic mip-mapping. In the
case where an anisotropic filter is needed, a higher resolution mipmap is used,
and several texels are averaged in one direction to get more filtering in that
direction. This has a somewhat detrimental effect on the cache, but greatly
improves image quality.

Origin
Mipmapping was invented by Lance Williams in 1983 and is described in his
paper Pyramidal parametrics. From the abstract: "This paper advances a ’pyra-
midal parametric’ prefiltering and sampling geometry which minimizes aliasing
effects and assures continuity within and between target images." The "pyra-
mid" can be imagined as the set of mipmaps stacked on top of each other.

See also

• Anti-aliasing

Source: http://en.wikipedia.org/wiki/Mipmap

Principal Authors: MIT Trekkie, RJHall, Spoon!, Mat-C, Tarquin, Grendelkhan

Morph target animation

Morph target animation (or per-vertex animation) is a method of 3D com-
puter animation that is sometimes used in alternative to skeletal animation.
Morph target animation is stored as a series of vertex positions. In each
keyframe of the animation, the vertices are moved to a different position.

Depending on the renderer, the vertices will move along paths to fill in the
blank time between the keyframes or the renderer will simply switch between
the different positions, creating a somewhat jerky look. The former is used
more commonly.

There are advantages to using morph target animation over skeletal animation.
The artist has more control over the movements because he or she can define
the individual positions of the vertices within a keyframe, rather than being
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constrained by skeletons. This can be useful for animation cloth, skin, and
facial expressions because it can be difficult to conform those things to the
bones that are required for skeletal animation.

However, there are also disadvantages. Vertex animation is usually a lot more
time-consuming than skeletal animation because every vertex position would
have to be calculated. (3D models in modern computer and video games of-
ten contain something to the order of 4,000-9,000 vertices.) Also, in methods
of rendering where vertices move from position to position during in-between
frames, a distortion is created that doesn’t happen when using skeletal anima-
tion. This is described by critics of the technique as looking "shaky." Howerver,
there are some who like this slightly distorted look.

Not all morph target animation has to be done by actually editting vertex po-
sitions. It is also possible to take vertex positions found in skeletal animation
and then use those rendered as morph target animation.

Sometimes, animation done in one 3D application suite will need to be taken
into another for rendering. To avoid issues in export, animation will often be
converted from whatever format it was in to morph target animation. This is
sometimes necessary because things such as bones and special effects are not
programmed using consistent systems among different 3D application suties.

See also

• Skeletal animation
• Computer and video games
• →3D computer graphics

Source: http://en.wikipedia.org/wiki/Morph_target_animation

Motion capture

Motion capture, or mocap, is a technique of digitally recording movements
for entertainment, sports and medical applications.

It started as an analysis tool in biomechanics research, but has grown increas-
ingly important as a source of motion data for computer animation as well as
education, training and sports and recently for both cinema and video games.
A performer wears a set of one type of marker at each joint: acoustic, inertial,
LED, magnetic or reflective markers, or combinations, to identify the motion
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Figure 60 A dancer wearing a suit used in an optical motion capture system

of the joints of the body. Sensors track the position or angles of the mark-
ers, optimally at least two times the rate of the desired motion. The motion
capture computer program records the positions, angles, velocities, accelera-
tions and impulses, providing an accurate digital representation of the motion.
This can reduce the costs of animation, which otherwise requires the animator
to draw each frame, or with more sophisticated software, key frames which
are interpolated by the software. Motion capture saves time and creates more
natural movements than manual animation, but is limited to motions that are
anatomically possible. Some applications might require additional impossible
movements like animated super hero martial arts.

Optical systems triangulate the 3D position of a marker with a number of cam-
eras with high precision (sub-millimeter resolution or better). These systems
produce data with 3 degrees of freedom for each marker, and rotational infor-
mation must be inferred from the relative orientation of three or more markers;
for instance shoulder, elbow and wrist markers providing the angle of the el-
bow. A related technique match moving can derive 3D camera movement from
a single 2D image sequence without the use of photogrammetry, but is often
ambiguous below centimeter resolution, due to the inability to distinguish pose
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and scale characteristics from a single vantage point. One might extrapolate
that future technology might include full-frame imaging from many camera
angles to record the exact position of every part of the actor’s body, clothing,
and hair for the entire duration of the session, resulting in a higher resolution
of detail than is possible today. A newer technique discussed below uses higher
resolution linear detectors to derive the one dimensional positions, requiring
more sensors and more computations, but providing higher resolutions (sub
millimeter down to 10 micrometres time averaged) and speeds than possible
using area arrays 160 161 162.

Passive optical systems use reflective markers and triangulate each marker
from its relative location on a 2D map with multiple cameras calibrated to
provide overlapping projections combined to calculate 3D positions. Data can
be cleaned up with the aid of kinematic constraints and predictive gap filling
algorithms. Passive systems typically use sensors such as Micron’s 163 where the
sensor captures an image of the scene, reduces it to bright spots and finds the
centroid. These 1.3 megapixel sensors can run at frame rates up to 60,000,000
pixels per second divided by the resolution, so at 1.3 megapixels they can op-
erate at 500 frames per second. The 4 megapixel sensor costs about $1,000
and can run at 640,000,000 pixels per second divided by the applied resolu-
tion. By decreasing the resolution down to 640 x 480, they can run at 2,000
frames per second, but then trade off spatial resolution for temporal resolution.
At full resolution they run about 166 frames per second, with about 200 LED
strobes syncronized to the CMOS sensor. The ease of combining a hundred
dollars worth of LEDs to a $1,000 sensor has made these system very popu-
lar. Professional vendors have sophisticated software to reduce problems from
marker swapping since all markers appear identical. These systems are popular
for entertainment, biomechanics, engineering, and virtual reality applications;
tracking a large number of markers and expanding the capture area with the
addition of more cameras. Unlike active marker systems and magnetic systems,
passive systems do not require the user to wear wires or electronic equipment.
Passive markers are usually spheres or hemispheres made of plastic or foam
25 to 3mm in diameter with special retroreflective tape. This type of system
is the dominate favorite among entertainment and biomechanics groups cur-
rently due to its ability to capture large numbers of markers at frame rates as
high as 2000fps and high 3D accuracy. Active marker system run into a disad-
vantage when marker counts climb as they perform "frame slicing", providing

http://www.ndigital.com160

http://www.phasespace.com/161

http://www.vicon.com/162

http://www.micron.com/products/imaging/products/MT9M413.html163
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a frame for each active marker, or by using coded pulsing which can lead to
mis-identification. Manufacturers of this type of system include Vicon-Peak 164,
Motion Analysis 165 and BTS 166.

Active marker systems have an advantage over passive in that there is no doubt
about which marker is which. In general, the overall update rate drops as
the marker count increases; 5000 frames per second divided by 100 markers
would provide updates of 50 hertz. As a result, these systems are popular in
the biomechanics market. Two such active marker systems are Optotrak by
Northern Digital 167 and the Visualeyez system by PhoeniX Technologies Inc.168.

Active marker systems such as PhaseSpace 169 modulate the active output of
the LED to differentiate each marker, allowing several markers to be on at the
same time, to provide marker IDs in real time eliminating marker swapping and
providing much cleaner data than older technologies. Active markers require
wires to the LEDs, allowing motion capture outdoors in direct sunlight, while
providing the higher resolution of 3,600 x 3,600 or 12 megapixel resolution
while capturing up to 480 frames per second. The advantage of using active
markers is intelligent processing allows higher speed and higher resolution of
optical systems at a lower price. This higher accuracy and resolution requires

http://www.viconpeak.com/164

http://www.motionanalysis.com165

http://www.bts.it166

http://www.ndigital.com167

http://www.ptiphoenix.com/168

http://www.phasespace.com/169



DR
AF

T

156

Motion capture

more processing than older passive technologies, but the additional processing
is done at the camera to improve resolution via a subpixel or centroid process-
ing, providing both high resolution and high speed. By using newer processing
and technology, these motion capture systems are about 1/3 the cost of older
systems.

Magnetic systems, calculate position and orientation by the relative magnetic
flux of three orthogonal coils on both the transmitter and each receiver. The rel-
ative intensity of the voltage or current of the three coils allows these systems
to calculate both range and orientation by meticulously mapping the tracking
volume. Since the sensor output is 6DOF, useful results can be obtained with
two-thirds the number of markers required in optical systems; one on upper
arm and one on lower arm for elbow position and angle. The markers are not
occluded by nonmetallic objects but are susceptible to magnetic and electrical
interference from metal objects in the environment, like rebar (steel reinforc-
ing bars in concrete) or wiring, which affect the magnetic field, and electrical
sources such as monitors, lights, cables and computers. The sensor response
is nonlinear, epecially toward edges of the capture area. The wiring from the
sensors tends to preclude extreme performance movements. The capture vol-
umes for magnetic systems are dramatically smaller than they are for optical
systems. With the magnetic systems, there is a distinction between "AC" and
"DC" systems: one uses square pulses, the other uses sine wave pulses. Two
magnetic systems are Ascension technology170 and Polhemus171.

A motion capture session records only the movements of the actor, not his vi-
sual appearance. These movements are recorded as animation data which are
mapped to a 3D model (human, giant robot, etc.) created by a computer artist,
to move the model the same way. This is comparable to the older technique of
rotoscope where the visual appearance of the motion of an actor was filmed,
then the film used as a guide for the frame by frame motion of a hand-drawn
animated character.

Inertial systems use devices such as accelerometers or gyroscopes to measure
positions and angles. They are often used in conjunction with other systems
to provide updates and global reference, since they only measure relative
changes, not absolute position.

RF (radio frequency) positioning systems are becoming more viable as higher
frequency RF devices allow greater precision than older RF technologies. The
speed of light is 30 centimeters per nanosecond (billionth of a second), so a
10 gigahertz (billion cycles per second) RF signal enables an accuracy of about

http://www.ascension-tech.com/170

http://www.polhemus.com/171
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3 centimeters. By measuring amplitude to a quarter wavelength, it is possible
to improve the resolution down to about 8 mm. To achieve the resolution
of optical systems, frequencies of 50 gigahertz or higher are needed, which
are almost as line of sight and as easy to block as optical systems. Multipath
and reradiation of the signal are likely to cause additional problems, but these
technologies will be ideal for tracking larger volumes with reasonable accuracy,
since the required resolution at 100 meter distances isn’t likely to be as high.

Mechanical motion capture systems directly track body joint angles and are of-
ten referred to as exo-skeleton motion capture systems, due to the way the sen-
sors are attached to the body. A performer attaches the skeletal-like structure
to their body and as they move so do the articulated mechanical parts, mea-
suring the performer’s relative motion. Mechanical motion capture systems are
real-time, relatively low-cost, free-of-occlusion, and wireless (untethered) sys-
tems that have unlimited capture volume. Typically, they are rigid structures
of jointed, straight metal or plastic rods linked together with potentiometers
that articulate at the joints of the body. However, a newer and more flexible
take on exo-skeleton motion capture systems is the ShapeWrap II 172 system by
Measurand Inc.173ShapeWrap II offers a mocap system based on ShapeTapes 174

that flex. By conforming to limbs instead of following rigid paths, ShapeWrap
II moves with the body to capture fine details of shape on a wide variety of
body types.

http://www.measurand.com/products/ShapeWrap.html172

http://www.measurand.com/173

http://www.measurand.com/products/ShapeTape.html174
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The procedure
In the motion capture session, the movements of one or more actors are sam-
pled many times per second. High resolution optical motion capture systems
can be used to sample body, facial and finger movement at the same time

If desired, a camera can pan, tilt, or dolly around the stage while the actor is
performing and the motion capture system can capture the camera and props
as well. This allows the computer generated characters, images and sets, to
have the same perspective as the video images from the camera. A computer
processes the data and displays the movements of the actor, as inferred from
the 3D position of each marker.

After processing, the software exports animation data, which computer anima-
tors can associate with a 3D model and then manipulate using normal comput-
er animation software such as Maya or 3D Studio Max. If the actor’s perfor-
mance was good and the software processing was accurate, this manipulation
is limited to placing the actor in the scene that the animator has created and
controlling the 3D model’s interaction with objects.

Advantages
Mocap offers several advantages over traditional computer animation of a 3D
model:

• Mocap can take far fewer man-hours of work to animate a character. One
actor working for a day (and then technical staff working for many days
afterwards to clean up the mocap data) can create a great deal of animation
that would have taken months for traditional animators.

• Mocap can capture secondary animation that traditional animators might
not have had the skill, vision, or time to create. For example, a slight move-
ment of the hip by the actor might cause his head to twist slightly. This
nuance might be understood by a traditional animator but be too time con-
suming and difficult to accurately represent, but it is captured accurately
by mocap, which is why mocap animation often seems shockingly realistic
compared with hand animated models. Incidentally, one of the hallmarks
of rotoscope in traditional animation is just such secondary "business."

• Mocap can accurately capture difficult-to-model physical movement. For
example, if the mocap actor does a backflip while holding nunchaku by the
chain, both sticks of the nunchucks will be captured by the cameras moving
in a realistic fashion. A traditional animator might not be able to physically
simulate the movement of the sticks adequately due to other motions by the
actor. Secondary motion such as the ripple of a body as an actor is punched
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or is punching requires both higher speed and higher resolution as well as
more markers.

Disadvantages
On the negative side, mocap data requires special programs and time to manip-
ulate once captured and processed, and if the data is wrong, it is often easier
to throw it away and reshoot the scene rather than trying to manipulate the
data. Many systems allow real time viewing of the data to decide if the take
needs to be redone.

Another important point is that while it is common and comparatively easy
to mocap a human actor in order to animate a biped model, applying motion
capture to animals like horses can be difficult.

Motion capture equipment costs tens of thousands of dollars for the digital
video cameras, lights, software, and staff to run a mocap studio, and this tech-
nology investment can become obsolete every few years as better software and
techniques are invented. Some large movie studios and video game publishers
have established their own dedicated mocap studios, but most mocap work is
contracted to individual companies that specialize in mocap.

Applications
Video games use motion capture for football, baseball and basketball players
or the combat moves of a martial artist.

Movies use motion capture for CG effects, in some cases replacing tradition-
al cell animation, and for completely computer-generated creatures, such as
Gollum, Jar-Jar Binks, and King Kong, in live-action movies.

Virtual Reality and Augmented Reality require real time input of the user’s po-
sition and interaction with their environment, requiring more precision and
speed than older motion capture systems could provide. Noise and errors
from low resolution or low speed systems, and overly smoothed and filtered
data with long latency contribute to "simulator sickness" where the lag and
mismatch between visual and vistibular cues and computer generated images
caused nasea and discomfort.

High speed - high resolution active marker systems can provide smooth data at
low latency, allowing real time visualization in virtual and augmented reality
systems. The remaining challenge that is almost possible with powerful graphic
cards is mapping the images correctly to the real perspectives to prevent image
mismatch.

Motion capture technology is frequently used in digital puppetry systems to aid
in the performance of computer generated characters in real-time.
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Related techniques
Facial motion capture is utilized to record the complex movements in a human
face, especially while speaking with emotion. This is generally performed with
an optical setup using multiple cameras arranged in a hemisphere at close
range, with small markers glued or taped to the actor’s face.

Performance capture is a further development of these techniques, where both
body motions and facial movements are recorded. This technique was used in
making of The Polar Express, where all actors were animated this way.

An alternative approach was developed by a Russian compa-
ny VirtuSphere175, where the actor is given an unlimited walk-
ing area through the use of a rotating sphere, similar to a

, which con-
tains internal sensors recording the angular movements, removing the need
for external cameras and other equipment. Even though this technology could
potentially lead to much lower costs for mocap, the basic sphere is only capa-
ble of recording a single continuous direction. Additional sensors worn on the
person would be needed to record anything more.

http://www.virtusphere.net/175
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See also

• Animation
• Rotoscope
• Match moving, also known as "motion tracking"

External links

• Perspective Studios176- Motion Capture Studio located in New York.
• LUKOtronic177 - Portable optical motion capture systems.
• Motion Analysis178 - Maker of optical motion capture systems.
• Vicon Peak179 - Maker of optical motion capture systems.
• Audiomotion Studios180 - Award Winning Motion Capture Service Provider

Based in the UK.
• VirtualCinematography.org181 - several papers on Universal Capture use in

Matrix films
• Motion Reality Inc.182 - A company specializing in motion capture systems

and applications
• Measurand Inc.183 - A company specializing in motion capture systems and

applications
• Motion Reality Golf184 - A golf training application using motion capture

technology
• Optical Motion Capture185 - Active Marker LED based real time motion

tracking hardware and software for VR, AR, Telerobotics, medical and en-
tertainment applications.

• Giant Studios Inc.186 - A company specializing in motion capture systems
and software (Polar Express, Chronicles of Narnia)

• motionVR Corporation187 - A company that produces software for creating
semi-3D models of real life locations.

http://www.perspectivestudios.com/176

http://www.LUKOtronic.com/177

http://www.motionanalysis.com/178

http://www.vicon.com/179

http://www.audiomotion.com/180

http://www.virtualcinematography.org/181

http://www.motionrealityinc.com/182

http://www.measurand.com/183

http://www.motionrealitygolf.com/184

http://www.PhaseSpace.com/185

http://www.giantstudios.com/186

http://www.motionVR.com187
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• VirtuSphere Inc.188 - A company designed an alternative way of motion cap-
ture.

• Mocap.ca189 - Motion Capture resources and services including software and
motion capture data.

• House of Moves190 - Motion Capture Facility based in Los Angeles

Motion capture hardware

• LUKOtronic - Motion Capture Systems191 - Commercially available motion
capture systems and tools

• The ShapeWrap II & ShapeHand Motion Capture Systems192 - Commercially
available motion capture systems and tools

• PhaseSpace Optical Motion Capture193 - Active Marker LED based real time
motion tracking hardware and software for VR, AR, Telerobotics, medical
and entertainment applications.

• PhoeniX Technologies Inc. - Real-time Motion Capture194 - Features the Vi-
sualeyez real-time, active-optical motion capture system. Hardware and
software for diverse applications: biomechanics research, virtual environ-
mnents, animation, game development, tele-robotics, and more.

Source: http://en.wikipedia.org/wiki/Motion_capture

Principal Authors: Tmcsheery, Myf, Tempshill, Plowboylifestyle, Paranoid, Lindosland, RobertM52,

Sergeyy, Michael Snow

http://www.virtusphere.net/188

http://www.mocap.ca/189

http://www.moves.com/190

http://www.LUKOtronic.com/191

http://www.measurand.com/192

http://www.PhaseSpace.com/193

http://www.ptiphoenix.com/194
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Newell’s algorithm

Newell’s Algorithm is a →3D computer graphics procedure for elimination of
polygon cycles in the depth sorting required in hidden surface removal. It was
proposed in 1972 by M. E. Newell, R. Newell and T. Sancha.

In the depth sorting phase of hidden surface removal, if two polygons have no
overlaping extents or extreme minimum and maximum values in the x,y, and
z directions, then they can be easily sorted. If two polygons, Q and P do have
overlaping extents in the Z direction then it is possible that cutting is necessary.

Figure 61 Cyclic polygons must be
eliminated to correctly sort them by
depth

In that case Newell’s algorithm tests the following :

1. Test for Z overlap; implied in the selection of the face Q from the sort list

2. The extreme coordinate values in X of the two faces do not overlap(minimax
test in X)

3. The extreme coordinate values in Y of the two faces do not overlap (minimax
test in Y)

4. All vertices of P lie deeper than the plane of Q

5. All vertices of Q lie closer to the viewpoint than the plane of P

6. The rasterisation of P and Q do not overlap

Note that the tests are given in order of increasing computational difficulty.

Note also that the polygons must be planar.

If the tests are all false, then the polygons must be split. Splitting is accom-
plished by selecting one polygon and cutting it along the line of intersection
with the other polygon. The above tests are again performed and the algorithm
continues until all polygons pass the above tests.
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See also

• →Painter’s algorithm

Source: http://en.wikipedia.org/wiki/Newell%27s_algorithm

Normal mapping

Figure 62 Normal mapping used to re-detail simplified meshes.

In→3D computer graphics, normal mapping is an application of the technique
known as bump mapping. Normal mapping is sometimes referred to as "Dot3
bump mapping". While bump mapping perturbs the existing normal (the way
the surface is facing) of a model, normal mapping replaces the normal entirely.
Like bump mapping, it is used to add details to shading without using more
polygons. But where a bump map is usually calculated based on a single-
channel (interpreted as grayscale) image, the source for the normals in normal
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mapping is usually a multichannel image (that is, channels for "red", "green"
and "blue" as opposed to just a single color) derived from a set of more detailed
versions of the objects.

Normal mapping is usually found in two varieties: object-space and tangent-
space normal mapping. They differ in coordinate systems in which the normals
are measured and stored.

One of the most interesting uses of this technique is to greatly enhance the
appearance of a low poly model exploiting a normal map coming from a high
resolution model. While this idea of taking geometric details from a high res-
olution model had been introduced in "Fitting Smooth Surfaces to Dense Poly-
gon Meshes" by Krishnamurthy and Levoy, Proc. SIGGRAPH 1996, where this
approach was used for creating displacement maps over nurbs, its application
to more common triangle meshes came later. In 1998 two papers were pre-
sented with the idea of transferring details as normal maps from high to low
poly meshes: "Appearance Preserving Simplification", by Cohen et al. SIG-
GRAPH 1998, and "A general method for recovering attribute values on sim-
plified meshes" by Cignoni et al. IEEE Visualization ’98. The former presented
a particular constrained simplification algorithm that during the simplification
process tracks how the lost details should be mapped over the simplified mesh.
The latter presented a simpler approach that decouples the high and low polyg-
onal mesh and allows the recreation of the lost details in a way that is not de-
pendent on how the low model was created. This latter approach (with some
minor variations) is still the one used by most of the currently available tools.

How it works
To calculate the lambertian (diffuse) lighting of a surface, the unit vector from
the shading point to the light source is dotted with the unit vector normal to
that surface, and the result is the intensity of the light on that surface. Many
other lighting models also involve some sort of dot product with the normal
vector. Imagine a polygonal model of a sphere - you can only approximate the
shape of the surface. By using an RGB bitmap textured across the model, more
detailed normal vector information can be encoded. Each color channel in the
bitmap (red, green and blue) corresponds to a spatial dimension (X, Y and
Z). These spatial dimensions are relative to a constant coordinate system for
object-space normal maps, or to a smoothly varying coordinate system (based
on the derivatives of position with respect to texture coordinates) in the case
of tangent-space normal maps. This adds much more detail to the surface of a
model, especially in conjunction with advanced lighting techniques.
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Normal mapping in computer entertainment
Interactive normal map rendering was originally only possible on PixelFlow, a
parallel graphics machine built at the University of North Carolina at Chapel
Hill. It was later possible to perform normal mapping on high-end SGI worksta-
tions using multi-pass rendering and frame buffer operations or on low end PC
hardware with some tricks using paletted textures. However, with the increas-
ing processing power and sophistication of home PCs and gaming consoles,
normal mapping has spread to the public consciousness through its use in sev-
eral high-profile games, including: Far Cry (Crytek), Deus Ex: Invisible War
(Eidos Interactive), Thief: Deadly Shadows (Eidos Interactive), The Chronicles
of Riddick: Escape from Butcher Bay (Vivendi Universal), Halo 2 (Microsoft),
and Doom 3 (id Software), Half-Life 2 (Valve Software), Call of Duty 2 (Activi-
sion), and Tom Clancy’s Splinter Cell: Chaos Theory (Ubisoft). It is also used
extensively in the upcoming third version of the Unreal engine (Epic Games).
Normal mapping’s increasing popularity amongst video-game designers is due
to its combination of excellent graphical quality and decreased processing re-
quirements versus other methods of producing similar effects. This decreased
processing requirement translates into better performance and is made possi-
ble by distance-indexed detail scaling, a technique which decreases the detail
of the normal map of a given texture (cf. mipmapping). Basically, this means
that more distant surfaces require less complex lighting simulation. This in
turn cuts the processing burden, while maintaining virtually the same level of
detail as close-up textures.

Currently, normal mapping has been utilized successfully and extensively on
both the PC and gaming consoles. Initially, Microsoft’s Xbox was the only
home game console to fully support this effect, whereas other consoles use
a software-only implementation as they don’t support it directly on hardware.
Next generation consoles such as the Xbox360 rely heavily on normal mapping,
and even use parallax mapping.

See also

• →Bump mapping
• →Parallax mapping
• →Displacement mapping
• Linear algebra
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External links

• GIMP normalmap plugin195

• Photoshop normalmap plugin196

• normal mapping tutorials197, Ben Cloward
• Free xNormal normal mapper tool198, Santiago Orgaz
• Maya normal mapping plugin199, Olivier Renouard
• Normal Mapping with paletted textures200 using old OpenGL extensions.
• Normal Mapping without hardware assistance201, Lux aeterna luceat eis

Amiga demo from Ephidrena
• ZMapper202, Pixologic
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• Fitting Smooth Surfaces to Dense Polygon Meshes203, Krishnamurthy and
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• (PDF) A general method for recovering attribute values on simplifed
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Source: http://en.wikipedia.org/wiki/Normal_mapping

Principal Authors: Xmnemonic, Tommstein, AlistairMcMillan, CobbSalad, ALoopingIcon, Andrew

pmk

http://nifelheim.dyndns.org/%7ecocidius/normalmap/195

http://developer.nvidia.com/object/photoshop_dds_plugins.html196

http://www.monitorstudios.com/bcloward/tutorials_normal_maps1.html197

http://www.santyesprogramadorynografista.net/projects.aspx198

http://www.drone.org/tutorials/displacement_maps.html199

http://vcg.isti.cnr.it/activities/geometryegraphics/bumpmapping.html200

http://ada.untergrund.net/showdemo.php?demoid=534&pv=1#Comments201

http://206.145.80.239/zbc/showthread.php?t=031281202

http://www-graphics.stanford.edu/papers/surfacefitting/203

http://www.cs.unc.edu/~geom/APS/APS.pdf204

http://vcg.isti.cnr.it/publications/papers/rocchini.pdf205

http://www.cs.ubc.ca/~heidrich/Papers/Siggraph.99.pdf206
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Figure 63 OpenGL official logo

OpenGL (Open Graphics Library) is a standard specification defining a cross-
language cross-platform API for writing applications that produce →3D com-
puter graphics (and 2D computer graphics as well). The interface consists of
over 250 different function calls which can be used to draw complex three-
dimensional scenes from simple primitives. OpenGL was developed by Sili-
con Graphics and is popular in the video games industry where it competes
with →Direct3D on Microsoft Windows platforms (see Direct3D vs. OpenGL).
OpenGL is widely used in CAD, virtual reality, scientific visualization, informa-
tion visualization, flight simulation and video game development.

Specification
At its most basic level, OpenGL is a specification, meaning it is simply a docu-
ment that describes a set of functions and the precise behaviours that they must
perform. From this specification, hardware vendors create implementations
— libraries of functions created to match the functions stated in the OpenGL
specification, making use of hardware acceleration where possible. Hardware
vendors have to meet specific tests to be able to qualify their implementation
as an OpenGL implementation.

Efficient vendor-supplied implementations of OpenGL (making use of graphics
acceleration hardware to a greater or lesser extent) exist for Mac OS, Windows,
Linux, many Unix platforms and PlayStation 3. Various software implementa-
tions exist, bringing OpenGL to a variety of platforms that do not have ven-
dor support. Notably, the open source library Mesa is a fully software-based
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graphics API which is code-compatible with OpenGL. However to avoid licens-
ing costs associated with formally calling itself an OpenGL implementation, it
claims merely to be a "very similar" API.

The OpenGL specification is currently overseen by the OpenGL Architecture
Review Board (ARB), which was formed in 1992. The ARB consists of a set
of companies with a vested interest in creating a consistent and widely avail-
able API. Voting members of the ARB as of April 2006 include 3D hardware
manufacturers SGI, 3Dlabs, ATI Technologies, NVIDIA and Intel, and computer
manufacturers IBM, Apple Computer, Dell, and Sun Microsystems. Microsoft,
one of the founding members, left in March 2003. Aside from these corpora-
tions, each year many other companies are invited to be part of the OpenGL
ARB for one-year terms. With so many companies involved with such a diverse
set of interests, OpenGL has become very much a general-purpose API with a
wide range of capabilities.

According to current plans, control of OpenGL will pass to the Khronos Group
by the end of 2006. This is being done in order to improve the marketing
of OpenGL, and to remove barriers between the development of OpenGL and
→OpenGL ES.

Kurt Akeley and Mark Segal authored the original OpenGL specification. Chris
Frazier edited version 1.1. Jon Leech edited versions 1.2 through the present
version 2.0.

Design
OpenGL serves two main purposes:

• To hide the complexities of interfacing with different 3D accelerators, by
presenting the programmer with a single, uniform API.

• To hide the differing capabilities of hardware platforms, by requiring that
all implementations support the full OpenGL feature set (using software
emulation if necessary).

OpenGL’s basic operation is to accept primitives such as points, lines and poly-
gons, and convert them into pixels. This is done by a graphics pipeline known
as the OpenGL state machine207. Most OpenGL commands either issue prim-
itives to the graphics pipeline, or configure how the pipeline processes these
primitives. Prior to the introduction of OpenGL 2.0, each stage of the pipeline
performed a fixed function and was configurable only within tight limits but in
OpenGL 2.0 several stages are fully programmable using →GLSL.

http://www.opengl.org/documentation/specs/version1.1/state.pdf207
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OpenGL is a low-level, procedural API, requiring the programmer to dictate
the exact steps required to render a scene. This contrasts with descriptive
(aka scene graph or retained mode) APIs, where a programmer only needs to
describe a scene and can let the library manage the details of rendering it.
OpenGL’s low-level design requires programmers to have a good knowledge of
the graphics pipeline, but also gives a certain amount of freedom to implement
novel rendering algorithms.

OpenGL has historically been influential on the development of 3D accelera-
tors, promoting a base level of functionality that is now common in consumer-
level hardware:

• Rasterised points, lines and polygons as basic primitives
• A transform and lighting pipeline
• →Z-buffering
• →Texture mapping
• Alpha blending

Many modern 3D accelerators provide functionality far above this baseline, but
these new features are generally enhancements of this basic pipeline rather
than radical reinventions of it.

Example
We first clear the color buffer, in order to start with a blank canvas:

glClear( GL COLOR BUFFER BIT );

We now set the modelview matrix, which controls the position of the camera
relative to the primitives we render. We move it backwards 3 units along the Z
axis, which leaves it pointing towards the origin:

glMatrixMode( GL MODELVIEW ); /* Subsequent matrix com-

mands will affect the modelview matrix */

glLoadIdentity(); /* Initialise the modelview

to identity */

glTranslatef( 0, 0, -3 ); /* Translate the modelview 3

units along the Z axis */

The projection matrix governs the perspective effect applied to primitives, and
is controlled in a similar way to the modelview matrix:
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glMatrixMode( GL PROJECTION ); /* Subsequent matrix com-

mands will affect the projection matrix */

glLoadIdentity(); /* Initialise the projection

matrix to identity */

glFrustum( -1, 1, -1, 1, 1, 1000 ); /* Apply a perspective-

projection matrix */

Finally, we issue a polygon - a green square oriented in the XY plane:

glBegin( GL POLYGON ); /* Begin issuing a polygon

*/

glColor3f( 0, 1, 0 ); /* Set the current color to

green */

glVertex3f( -1, -1, 0 ); /* Issue a vertex */

glVertex3f( -1, 1, 0 ); /* Issue a vertex */

glVertex3f( 1, 1, 0 ); /* Issue a vertex */

glVertex3f( 1, -1, 0 ); /* Issue a vertex */

glEnd(); /* Finish issuing the poly-

gon */

Documentation
Part of the popularity of OpenGL is the excellence of its official documentation.

The OpenGL ARB released a series of manuals along with the specification
which have been updated to track changes in the API. These are almost univer-
sally known by the colors of their covers:

• The Red Book - The OpenGL Programmer’s guide. ISBN 0321335732
• : A readable tutorial and reference book - this is a ’must have’ book for

OpenGL programmers.
• The Blue Book - The OpenGL Reference manual. ISBN 032117383X
• : Essentially a hard-copy printout of the man pages for OpenGL.
• : Includes a poster-sized fold-out diagram showing the structure of an ide-

alised OpenGL implementation.
• The Green Book - Programming OpenGL for the X Window System. ISBN

0201483599
• : A book about X11 interfacing and GLUT.
• The Alpha Book (which actually has a white cover) - OpenGL Programming

for Windows 95 and Windows NT. ISBN 0201407094
• : A book about interfacing OpenGL to Microsoft Windows.

Then, for OpenGL 2.0 and beyond:
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• The Orange Book - The OpenGL Shading Language. ISBN 0321334892
• : A readable tutorial and reference book for GLSL.

Extensions
The OpenGL standard allows individual vendors to provide additional func-
tionality through extensions as new technology is created. Extensions may in-
troduce new functions and new constants, and may relax or remove restrictions
on existing OpenGL functions. Each vendor has an alphabetic abbreviation that
is used in naming their new functions and constants. For example, NVIDIA’s
abbreviation (NV) is used in defining their proprietary function glCombinerPa-
rameterfvNV() and their constant GL_NORMAL_MAP_NV. It may happen that
more than one vendor agrees to implement the same extended functionality.
In that case, the abbreviation EXT is used. It may further happen that the
Architecture Review Board "blesses" the extension. It then becomes known as
a standard extension, and the abbreviation ARB is used. The first ARB ex-
tension was GL_ARB_multitexture, introduced in version 1.2.1. Following the
official extension promotion path, multitexturing is no longer an optionally im-
plemented ARB extension, but has been a part of the OpenGL core API since
version 1.3.

Before using an extension a program must first determine its availability, and
then obtain pointers to any new functions the extension defines. The mech-
anism for doing this is platform-specific and libraries such as →GLEW and
→GLEE exist to simplify the process.

Specifications for nearly all extensions can be found at the official extension
registry 208.

Associated utility libraries
Several libraries are built on top of or beside OpenGL to provide features not
available in OpenGL itself. Libraries such as →GLU can always be found with
OpenGL implementations, and others such as GLUT and SDL have grown over
time and provide rudimentary cross platform windowing and mouse function-
ality and if unavailable can easily be downloaded and added to a development
environment. Simple graphical user interface functionality can be found in
libraries like →GLUI or FLTK. Still others libraries like AUX are deprecated li-
braries that have been superseded by functionality commonly available in more
popular libraries, but code still exists out there particularly in simple tutorials.
Other libraries have been created to provide OpenGL application developers
a simple means of managing OpenGL extensions and versioning, examples of

http://oss.sgi.com/projects/ogl-sample/registry/208
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these libraries include →GLEW "The OpenGL Extension Wrangler Library" and
→GLEE "The OpenGL Easy Extension library".

In addition to the aforementioned simple libraries other higher level object ori-
ented scene graph retained mode libraries exist such as →PLIB, OpenScene-
Graph, and OpenGL Performer, these are available as cross platform Open
Source or proprietary programming interfaces written on top of OpenGL and
systems libraries to enable the creation of real-time visual simulation applica-
tions.

→Mesa 3D (209) is an Open Sourced implementation of OpenGL. It supports
pure software rendering as well as providing hardware acceleration for several
3D graphics cards under Linux. As of February 2 2006 it implements the 1.5
standard, and provides some of its own extensions for some platforms.

Bindings
In order to emphasize its multi-language and multi-platform characteristics,
various bindings and ports have been developed for OpenGL in many lan-
guages. Most notably, the Java 3D library can rely on OpenGL for its hardware
acceleration. Direct bindings are also available like the Lightweight Java Game
Library210 which has a direct binding of OpenGL for Java and other game re-
lated components. Very recently, Sun has released beta versions of the JOGL
system, which provides direct bindings to C OpenGL commands, unlike Java
3D which does not provide such low level support. The OpenGL official page 211

lists various bindings for Java, Fortran 90, Perl, Pike, Python, Ada, and Visual
Basic. Bindings are also available for C++ and C#, see 212.

Higher level functionality
OpenGL was designed to be graphic output-only: it provides only rendering
functions. The core API has no concept of windowing systems, audio, print-
ing to the screen, keyboard/mouse or other input devices. While this seems
restrictive at first, it allows the code that does the rendering to be completely
independent of the operating system it is running on, allowing cross-platform
development. However some integration with the native windowing system
is required to allow clean interaction with the host system. This is performed
through the following add-on APIs:

http://www.mesa3d.org209

http://lwjgl.org/210

http://www.opengl.org/211

http://www.exocortex.org/3dengine/212
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• GLX - X11 (including network transparency)
• WGL - Microsoft Windows

Additionally the GLUT and SDL libraries provide functionality for basic win-
dowing using OpenGL, in a portable manner. Mac OS X has three APIs to get
OpenGL support: AGL for Carbon, NSOpenGL for Cocoa and CGL for lower-
level access.

History
Today the digital generation of animated scenes in three dimensions is a reg-
ular fixture in everyday life. Scientists utilize computer graphics to analyze
simulations of every possibility. Engineers and architects design virtual models
using computer graphics. Movies employ computer graphics to create stunning
special effects or entire animated films. And over the past few years, comput-
er games have brought computer graphics technology to regular consumers,
using graphics to bring their players into worlds that could never exist.

Bringing digital graphics technology to such widespread use was not without
its challenges. Fifteen years ago, developing software that could function with
a wide range of graphics hardware and all of their different interfaces was
time consuming. Each team of programmers developed interfaces separately,
and there was consequently much duplicated code. This was hindering the
growing industry of computer graphics.

Silicon Graphics Incorporated specializes in the creation of specialized graphics
hardware and software. By the early 1990’s, SGI had become the world leader
in 3D graphics, and its programming API, IrisGL, had become a defacto indus-
try standard, over-shadowing the open-standards-based PHIGS. There were
several reasons for the market superiority: SGI usually had the best and fastest
hardware; the IrisGL programming interface (API) was elegant, easy-to-use,
and, importantly, supported immediate-mode rendering. By contrast, PHIGS
was clunky, hard to use, and was several generations behind IrisGL in func-
tion and capability, primarily due to the dysfunctional PHIGS standardization
process. None-the-less, competing vendors, including Sun, Hewlett-Packard
and IBM were able to bring to market credible 3D hardware, supported by
proprietary extensions to PHIGS. By the early 90’s, 3D graphics hardware tech-
nology was fairly well understood by a large number of competitors and was
no longer a discriminating factor in computer systems purchases. Thus, rather
than prolonging a contentious and dangerous fight between IrisGL and PHIGS,
SGI sought to turn a defacto standard into a true open standard.

The IrisGL API itself wasn’t suitable for opening (although it had been previous-
ly licensed to IBM and others), in part because it had accumulated cruft over
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the years. For example, it included a windowing, keyboard and mouse API,
in part because it was developed before the X11 Window System versus Sun’s
NeWS battle had resolved. Thus, the API to be opened needed to be cleaned
up. In addition, IrisGL had a large software vendor (ISV) portfolio; the change
to the OpenGL API would keep ISV’s locked onto SGI (and IBM) hardware
for a few years while market support for OpenGL matured. Meanwhile, SGI
would continue to try to maintain a vendor lock by pushing the higher-level
and proprietary Iris Inventor and Iris Performer programming API’s.

The result is known as OpenGL. OpenGL standardised access to hardware, and
pushed the development responsibility of hardware interface programs, some-
times called device drivers, to hardware manufacturers and delegated window-
ing functions to the underlying operating system. With so many different kinds
of graphic hardware, getting them all to speak the same language in this way
had a remarkable impact by giving software developers a higher level platform
for 3D-software development.

In 1992, SGI led the creation of the OpenGL architectural review board
(OpenGL ARB), the group of companies that would maintain and expand the
OpenGL specification for years to come. OpenGL evolved from (and is very
similar in style to) SGI’s earlier 3D interface, IrisGL. One of the restrictions of
IrisGL was that it only provided access to features supported by the underlying
hardware. If the graphics hardware did not support a feature, then the appli-
cation could not use it. OpenGL overcame this problem by providing support
in software for features unsupported by hardware, allowing applications to use
advanced graphics on relatively low-powered systems.

In 1994 SGI played with the idea of releasing something called "→OpenGL++"
which included elements such as a scene-graph API (presumably based around
their Performer technology). The specification was circulated among a few
interested parties - but never turned into a product.

When →Direct3D was released in 1995, Microsoft, SGI, and Hewlett-Packard
initiated the Fahrenheit project, which was a joint effort with the goal of unify-
ing the OpenGL and Direct3D interfaces - and again, adding a scene-graph API.
It initially showed some promise of bringing order to the world of interactive
3D computer graphics APIs, but on account of financial constraints at SGI and
general lack of industry support it was abandoned. The engineers involved at
SGI held a beach party in celebration - complete with bonfires on which they
burned piles of Fahrenheit documentation.
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OpenGL 2.0
OpenGL 2.0 was conceived by 3Dlabs to address concerns that OpenGL was
stagnating and lacked a strong direction. 3Dlabs proposed a number of ma-
jor additions to the standard, the most significant of which was →GLSL (the
OpenGL Shading Language, also slang). This would enable the programmer to
replace the OpenGL fixed-function vertex and fragment pipelines with shaders
written in a C-like language, massively expanding the range of graphical ef-
fects possible. GLSL was notable for making relatively few concessions to the
limitations of the hardware then available; this harkened back to the earlier
tradition of OpenGL setting an ambitious, forward-looking target for 3D accel-
erators rather than merely tracking the state of currently available hardware.
The final OpenGL 2.0 specification 213 includes support for GLSL, but omits
many of the other features originally proposed which were deferred to later
versions of OpenGL (although many are now available as extensions).

Sample renderings

See also

• →GLSL - OpenGL’s shading language
• Cg - nVidia’s shading language that works with OpenGL
• Java OpenGL - Java bindings for OpenGL
• →OpenGL ES - OpenGL for embedded systems
• OpenAL - The Open Audio Library - designed to work well with OpenGL.
• OpenSL ES - Another audio library.
• →Graphics pipeline

OpenGL support libraries

• GLUT - The OpenGL utility toolkit.
• →GLU - Some additional functions for OpenGL programs.

Other graphics API’s

• →Mesa 3D - An OpenSourced implementation of OpenGL.
• →Direct3D and →Comparison of Direct3D and OpenGL - A competitor to

OpenGL.

http://www.opengl.org/documentation/specs/version2.0/glspec20.pdf213
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• Light Weight Java Game Library
• VirtualGL

Further reading

• Richard S. Wright Jr. and Benjamin Lipchak: OpenGL Superbible, Third
Edition, Sams Publishing, 2005, ISBN 0-67232-601-9

• Astle, Dave and Hawkins, Kevin: Beginning OpenGL Game Programming,
Course Technology PTR, ISBN 1-59200-369-9

• Fosner, Ron: OpenGL Programming for Windows 95 and Windows NT, Ad-
dison Wesley, ISBN 0-20140-709-4

• Kilgard, Mark: OpenGL for the X Window System, Addison-Wesley, ISBN
0-20148-359-9

• Lengyel, Eric: The OpenGL Extensions Guide, Charles River Media, ISBN
1-58450-294-0

• OpenGL Architecture Review Board, et al: OpenGL Reference Manual: The
Official Reference Document to OpenGL, Version 1.4, Addison-Wesley, ISBN
0-32117-383-X

• OpenGL Architecture Review Board, et al: OpenGL Programming Guide:
The Official Guide to Learning OpenGL, Version 2, Fifth Edition, Addison-
Wesley, ISBN 0-32133-573-2

• Rost, Randi J.: OpenGL Shading Language, Addison-Wesley, ISBN 0-32119-
789-5

External links

• Official website214

• Official OpenGL wiki215

• SGI’s OpenGL website216

• Red Book217 - Online copy of an early edition of The OpenGL Programming
Guide.

• Blue Book218 - Online copy of an early edition of The OpenGL Reference
Manual.

• MSDN219 - Microsoft’s OpenGL reference

http://www.opengl.org/214

http://www.opengl.org/wiki215

http://www.sgi.com/products/software/opengl/216

http://www.opengl.org/documentation/red_book/217

http://www.opengl.org/documentation/blue_book/218

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/opengl/apxb4_82lh.asp219
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• OpenGL 2.0 specification220 (PDF)
• OpenGL tutorials, software, etc221 at the Open Directory Project

Source: http://en.wikipedia.org/wiki/OpenGL

Principal Authors: SteveBaker, 0waldo, Klassobanieras, Haakon, Imroy, Robertbowerman, Stoat-

Bringer, BSTRhino, Fresheneesz, Flamurai

OpenGL++

OpenGL++ was intended to be a powerful layer above the →OpenGL 3D
graphics system written in C++ that supported object-oriented data structures.
The project started as the result of a partnership between SGI, IBM and Intel
(and later Digital Equipment Corporation as well) to provide a higher level
API than the "bare metal" support of OpenGL. Work on OpenGL++ ended
when SGI decided to partner with Microsoft instead, leading to the Fahrenheit
project, which also died.

Development
OpenGL++ (OGL++) was intended to offer a selection of routines and stan-
dardized data structures to dramatically simplify writing "real" programs using
OpenGL. Instead of the programmer having to keep track of the objects in the
3D world and make sure they were culled properly, OpenGL++ would include
its own scene graph system and handle many of the basic manipulation duties
for the programmer. In addition, OGL++ included a system for modifying the
scene graph on the fly, re-arranging it for added performance.

Much of OGL++ was a combination of ideas from earlier SGI projects in the
same vein, namely →Open Inventor which offered ease-of-use, and OpenGL
Performer which was written separately from Inventor to deliver a system that
optimized scene graphs for increased performance and exploited scalable ar-
chitectures. It was later intended that a new design could get the best of both
worlds while forming the underlying framework for several projects including
CAD, image processing, visual simulation, scientific visualization and user in-
terfaces or 3D manipulators allowing them to interoperate, thereby offering
both rapid development and high performance.

http://www.opengl.org/documentation/specs/version2.0/glspec20.pdf220

http://dmoz.org/Computers/Programming/Graphics/Libraries/OpenGL/221
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SGI had already almost completed one effort to merge the functionality of
scene graphsCosmo 3D, Cosmo 3D was in fact the spinoff from an earlier col-
laboration with Sun which was supposed to produce a scene graph for Java in
conjunction with SGI’s new scene graph, Sun and SGI went their separate ways
with Java3D and Cosmo3D. When SGI announced the OGL++ effort, they
halted development of Cosmo3D when it had just reached a beta release. By
then a CAD/"Large Model Visualization" layer of functionality called OpenGL
Optimizer had already been implemented on Cosmo3D and then released as
a product. Other "front end" packages like, Cosmo Code, a VRML authoring
tool, were produced by a different division and use of the Cosmo name was
merely part of a broader marketing strategy, it ran on OpenGL. OGL++ was
intended to be a cleaned up and more flexible version of Cosmo3D, most of the
Cosmo3D team started work on OGL++ and a lot of the effort was aimed at a
specification and implementation that could deliver on the promise of a truly
powerful yet generic scene graph.

At the end
In the end, there is little to show for any of these efforts. Parnerships with Sun
Microsystems, Intel and IBM and Microsoft all led to nothing as SGI jumped
from project to project. In retrospect, SGI reacted badly to a rapidly changing
environment. An internal desire to create a new improved generic but exten-
sible scene graph was constantly sidetracked by a belief that SGI couldn’t go it
alone. Partnerships were formed and later abandoned due to irreconcilable dif-
ferences or simply as priorities and internal pressures shifted. OGL++ was the
most nacent of these efforts and although it was the option that rapidly gained
the strongest interest the power of the idea forced an unholy alliance between
Microsoft and SGI in the form of Fahrenheit, SGI joining because of its long
held belief that it couldn’t go it alone and Microsoft because it wanted to avert
the possibility of a truly open 3D scene graph. Ancillary issues like powerful
CAD APIs running on Cosmo3D complicated the picture. In the final analysis
the new unified scene graph concept was bounced from project to project, and
eventually died in 2000 when Fahrenheit was killed.

Today, no such standardized scene graph exists, and SGI has all but exited the
API world. SGI has released the earlier Open Inventor code into open source,
but the source to OGL++ was never completed to any satisfactory degree.
No specification exists and as with OpenGL the spec and idea behind such an
open platform would have been what lent it it’s lasting value, not a single
implementation of a scene graph idea.

Source: http://en.wikipedia.org/wiki/OpenGL%2B%2B
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Principal Authors: Maury Markowitz, Tim Starling, Michael Hardy, Heron, Engwar, Zondor, Jwest-

brook, Nikola Smolenski

OpenGL ES

OpenGL ES (OpenGL for Embedded Systems) is a subset of the →OpenGL
3D graphics API designed for embedded devices such as mobile phones, PDAs,
and video game consoles. It is defined and promoted by the Khronos Group,
graphics hardware and software industry consortium interested in open APIs
for graphics and multimedia.

In creating OpenGL ES 1.0 much functionality has been stripped from the orig-
inal OpenGL API and a little bit added, two of the more significant differences
between OpenGL ES and OpenGL are the removal of the glBegin–glEnd calling
semantics for primitive rendering (in favor of vertex arrays) and the introduc-
tion of fixed-point data types for vertex coordinates and attributes to better
support the computational abilities of embedded processors, which often lack
an FPU. Many other areas of functionality have been removed in version 1.0 to
produce a lightweight interface: for example, quad and polygon primitive ren-
dering, texgen, line and polygon stipple, polygon mode, antialiased polygon
rendering (with alpha border fragments, not multisample), ARB_Image class
pixel operation functionality, bitmaps, 3D texture, drawing to the frontbuffer,
accumulation buffer, copy pixels, evaluators, selection, feedback, display lists,
push and pop state attributes, two-sided lighting, and user defined clip planes.

Several versions of the OpenGL ES specification now exist. OpenGL ES 1.0
is drawn up against the OpenGL 1.3 specification, OpenGL ES 1.1 is defined
relative to the OpenGL 1.5 specification and OpenGL ES 2.0 is defined rela-
tive to the OpenGL 2.0 specification. Version 1.0 and 1.1 both have common
and common lite profiles, the difference being that the common lite profile
only supports fixed-point in lieu of floating point data type support, whereas
common supports both.

OpenGL ES 1.1 adds to the OpenGL ES 1.0 functionality by introducing ad-
ditional features such as mandatory support for multitexture, better multitex-
ture support (with combiners and dot product texture operations), automatic
mipmap generation, vertex buffer objects, state queries, user clip planes, and
greater control over point rendering.

The common profile for OpenGL ES 2.0, publicly released in August 2005,
completely eliminates all fixed-function API support in favor of an entirely pro-
grammable model, so features like the specification of surface normals in the
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API for use in a lighting calculation are eliminated in favor of abstract variables,
the use of which is defined in a shader written by the graphics programmer.

OpenGL ES also defines an additional safety-critical profile that is intended to
be testable and demonstrably robust subset for safety-critical embedded appli-
cations such as glass cockpit avionics displays.

OpenGL ES has been chosen as the official graphics API used for PlayStation 3
gaming platform development and as the official 3D graphics API in Symbian
OS.

Further reading

• Astle, Dave and David Durnil: OpenGL ES Game Development, Course
Technology PTR, ISBN 1-592-00370-2

External links

• Official website222

• Open Source Software Implementation of OpenGL ES 1.0223

• ALT Software’s Commercial Implementation of OpenGL ES224

• A Swedish wiki dedicated to OpenGL/OpenGL ES and the development
round it.225

Source: http://en.wikipedia.org/wiki/OpenGL_ES

Principal Authors: Flamurai, Gaius Cornelius, Nova77, Cmdrjameson, Orderud

http://www.khronos.org/opengles/222

http://ogl-es.sourceforge.net/223

http://www.altsoftware.com/products/opengl/224

http://www.opengl.se225
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OpenGL Utility Toolkit

This article is about the OpenGL toolkit. GLUT can also stand for glucose
transporter.

The →OpenGL Utility Toolkit (GLUT) is a library of utilities for OpenGL pro-
grams, which primarily perform system-level I/O with the host operating sys-
tem. Functions performed include window definition, window control, and
monitoring of keyboard and mouse input. Routines for drawing a number of
geometric primitives (both in solid and wireframe mode) are also provided,
including cubes, spheres, and the →Utah teapot. GLUT even has some limited
support for creating pop-up windows.

GLUT was written by Mark J. Kilgard, author of OpenGL Programming for the
X Window System and The CG Tutorial: The Definitive Guide to Programmable
Real-Time Graphics while he was working for Silicon Graphics Inc.

The two aims of GLUT are to allow the creation of rather portable code between
operating systems (GLUT is cross-platform) and to make learning OpenGL
easier. Getting started with OpenGL programming while using GLUT often
takes only a few lines of code and requires no knowledge of operating system–
specific windowing APIs.

All GLUT functions start with the glut prefix (for example, glutPostRedisplay
rerenders the current screen).

freeglut and its spin-off, OpenGLUT, are free software alternatives to GLUT.
Freeglut attempts to be a fairly exact clone, OpenGLUT adds a number of new
features to the API. Both have the advantage of licensing that permits users to
modify and redistribute the library.

See also

• →GLU
• →GLUI

External links

• GLUT documentation226

• OpenGLUT227

• FreeGLUT228

http://www.opengl.org/documentation/specs/glut/spec3/spec3.html226

http://openglut.sourceforge.net/227



DR
AF

T

183

Open Inventor

Source: http://en.wikipedia.org/wiki/OpenGL_Utility_Toolkit

Principal Authors: SteveBaker, Orderud, Elie De Brauwer, MarSch, Bogdangiusca

Open Inventor

Open Inventor, originally IRIS Inventor, is a C++ object oriented “retained
mode” 3D graphics API designed by SGI to provide a higher layer of program-
ming for →OpenGL. Its main goals are better programmer convenience and
efficiency.

Early history
Around 1988–1989, Wei Yen asked Rikk Carey to lead the IRIS Inventor project.
Their goal was to create a toolkit that made developing 3D graphics applica-
tions easier to do. The strategy was based on the premise that people were
not developing enough 3D applications with OpenGL because it was too time-
consuming to do so with the low-level interface provided by OpenGL. If 3D
programming were made easier, through the use of an object oriented API,
then more people would create 3D applications and SGI would benefit. There-
fore, the credo was always “ease of use” before “performance”, and soon the
tagline “3D programming for humans” was being used widely.

Raison d’être
OpenGL (OGL) is a low level library that takes lists of simple polygons and
renders them as quickly as possible. To do something more practical like “draw
a house”, the programmer must break down the object into a series of simple
OGL instructions and send them into the engine for rendering. One problem
is that OGL performance is highly sensitive to the way these instructions are
sent into the system, requiring the user to know which instructions to send and
in which order, and forcing them to carefully cull the data to avoid sending in
objects that aren’t even visible in the resulting image. For simple programs a
tremendous amount of programming has to be done just to get started.

Open Inventor (OI) was written to address this issue, and provide a common
base layer to start working with. Objects could be subclassed from a number of
pre-rolled shapes like cubes and polygons, and then easily modified into new
shapes. The “world” to be drawn was placed in a scene graph run by OI, with

http://freeglut.sourceforge.net/228
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the system applying occlusion culling on objects in the graph automatically. OI
also included a number of controller objects and systems for applying them to
the scene, making common interaction tasks easier. Finally, OI also supplied
a common file format for storing “worlds”, and the code to automatically save
or load a world from these files. Basic 3D applications could then be written
in a few hundred lines under OI, by tying together portions of the toolkit with
“glue” code.

On the downside OI tended to be slower than hand-written code, as 3D tasks
are notoriously difficult to make perform well without shuffling the data in the
scene graph by hand. Another practical problem was that OI could only be
used with its own file format, forcing developers to write converters to and
from the internal system.

TGS Open Inventor
Open Inventor was later opened for 3rd-party licensing, which is when it
switched from “IRIS” to “Open“. It was licensed to two third party develop-
ers, Template Graphics Software (TGS)229 and Portable Graphics. TGS later
bought Portable Graphics, making them the sole licensee. In 2004 TGS was ac-
quired by Mercury Computer Systems230, who continue to develop and support
OI.

Performer
About a year into the Inventor project, a different philosophy began to emerge.
Instead of simply making it easy to write applications on SGI systems, now
the goal was to make it difficult to write slow applications. Members of the
Inventor team left to form their own group, forming the basis of the OpenGL
Performer project (then still known as IRIS Performer). Performer was also
based on an internal scene graph, but was allowed to modify it for better speed
as it saw fit, even dropping “less important” objects and polygons in order to
maintain guaranteed performance levels. Performer also used a number of
processes to run tasks in parallel for added performance, allowing it to be run
(in one version) on multiple processors. Unlike Inventor, Performer remained
proprietary so that SGI would have the agility to modify the API as needed to
keep in step with the latest hardware enhancements.

http://www.mc.com/tgs229

http://www.mc.com230
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Mid 1990s
At some point in the mid-1990s it was realized that there was no good reason
that the two systems could not be combined, resulting in a single high-level API
with both performance and programmability. SGI started work on yet another
project aimed at merging the two, eventually culminating in Cosmo 3D. How-
ever Cosmo had a number of practical problems that could have been avoided
with better design.

Eventually all of these ideas would come together to create the OpenGL++ ef-
fort, along with Intel, IBM and DEC. Essentially a cleaned up and more “open”
version of Cosmo 3D, work on Cosmo ended and SGI turned to OpenGL++ full
time. The OpenGL++ effort would drag on and eventually be killed, and SGI
then tried again with Microsoft with the similar Fahrenheit project, which also
died. During this time SGI ignored OI, and eventually spun it off completely to
TGS.

Recent history
After many years of Inventor being solely available under proprietary licensing
from TGS, it was released under an open source license in August 2000, which
is available from SGI.

At approximately the same time, an API clone library called “Coin”231 was re-
leased by the company Systems in Motion232. The Coin library had been writ-
ten in a clean room fashion from scratch, sharing no code with the original
SGI Inventor library, but implementing the same API for compatibility reasons.
Systems in Motion’s Coin library is released under a dual licensing scheme,
available both under the GNU GPL (for Free Software development) and a
commercially sold license for proprietary software development.

The open source version from SGI has since fallen into obscurity, as SGI has not
shown any commitment to do further development of the library, and seems to
spend little resources even on maintenance.

Systems in Motion’s Coin library and TGS’s Inventor are still thriving under ac-
tive development, and both have added numerous improvements to the origi-
nal Inventor API like extensive support for the VRML standard.

Despite its age, the Open Inventor API is still widely used for a wide range
of scientific and engineering visualization systems around the world, having
proven itself well designed for effective development of complex 3D application
software.

http://www.coin3d.org231

http://www.sim.no232
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External links

• Official SGI Open Inventor Site233

• Coin3D: independent implementation of the API234

Source: http://en.wikipedia.org/wiki/Open_Inventor

Principal Authors: Maury Markowitz, Mortene, RedWolf, ENGIMa, Engwar

OpenRT

The goal of the "OpenRT Real Time Ray Tracing Project" is to develop ray trac-
ing to the point where it offers an alternative to the current rasterization based
approach for interactive 3D graphics. Therefore the project consists of several
parts: a highly optimized ray tracing core, the OpenRT-API which is similar
to →OpenGL and many applications ranging from dynamically animated mas-
sive models and global illumination, via high quality prototype visualization to
computer games.

External links

• Official site of the OpenRT project235

• Official site of inTrace GmbH, distributor of OpenRT236

See also

• ray tracing hardware

Source: http://en.wikipedia.org/wiki/OpenRT

http://oss.sgi.com/projects/inventor/233

http://www.coin3d.org234

http://www.openrt.de/235

http://www.inTrace.com/236
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Painter’s algorithm

The painter’s algorithm is one of the simplest solutions to the visibility prob-
lem in →3D computer graphics. When projecting a 3D scene onto a 2D plane,
it is at some point necessary to decide which polygons are visible and which
are hidden.
The name "painter’s algorithm" refers to a simple-minded painter who paints
the distant parts of a scene at first and then covers them by those parts which
are nearer. The painter’s algorithm sorts all the polygons in a scene by their
depth and then paints them in this order. It will over-paint the parts that are
normally not visible and thus solves the visibility problem.

Figure 64 The distant mountains are painted first, followed by the closer meadows; finally, the
closest objects in this scene, the trees, are painted.

Figure 65 Overlapping polygons can
cause the algorithm to fail

The algorithm can fail in certain cases. In this example, Polygons A, B and C
overlap each other. It’s not possible to decide which polygon is above the oth-
ers or when two polygons intersect one another in three dimensions. In this
case the offending polygons must be cut in some way to allow sorting to occur.
Newell’s algorithm proposed in 1972 gives a method for cutting such polygons.
Numerous methods have also been proposed in the field of computational ge-
ometry .

In basic implementations, the painter’s algorithm can be inefficient. It forces
the system to render each point on every polygon in the visible set, even if that
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polygon is occluded in the finished scene. This means that, for detailed scenes,
the painter’s algorithm can overly tax the computer hardware.

A Reverse painter’s algorithm is sometimes used in which objects nearest to
the viewer are painted first - with the rule that paint must never be applied to
parts of the image that are already painted. In a computer graphic system, this
can be made to be very efficient since it is not necessary to calculate the colors
(using lighting, texturing and such) for parts of the more distant scene that are
hidden by nearby objects. However, the reverse algorithm suffers from many
of the same problems as the normal version.

These and other flaws with the algorithm led to the development of Z-buffer
techniques, which can be viewed as a development of the painter’s algorithm
by resolving depth conflicts on a pixel-by-pixel basis, reducing the need for a
depth-based rendering order. Even in such systems, a variant of painter’s algo-
rithm is sometimes employed. As Z-buffer implementations generally rely on
fixed-precision depth-buffer registers implemented in hardware, there is scope
for visibility problems due to rounding error. These are overlaps or gaps at
joins between polygons. To avoid this, some graphics engine implementations
"overrender", drawing the affected edges of both polygons in the order given
by painter’s algorithm. This means that some pixels are actually drawn twice
(as in the full painters algorithm) but this happens on only small parts of the
image and has a negligible performance effect.

Source: http://en.wikipedia.org/wiki/Painter%27s_algorithm

Principal Authors: Fredrik, Sverdrup, Finell, RadRafe, Bryan Derksen

Parallax mapping

Parallax Mapping (also, Photonic Mapping, Offset Mapping or Virtual Dis-
placement Mapping) is an enhancement of the bump mapping or normal map-
ping techniques applied to textures in 3D rendering applications such as video
games. To the end user, this means that textures (such as wooden floorboards)
will have more apparent depth and realism with less of an influence on the
speed of the game.

Parallax mapping is done by displacing the texture coordinates such that the
texture occludes itself in accordance with a height map. Next-generation 3D
applications may employ parallax mapping as new graphics algorithms are de-
veloped.
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Figure 66 From F.E.A.R., a bullet hole with Par-
allax mapping used to create the illusion of depth.

Figure 67 From F.E.A.R., same as before, but viewed at an angle.
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Figure 68 From F.E.A.R., when viewed at an ex-
treme angle, the illusion of depth disappears.

An easy way to understand this concept is to close one eye, take a pencil, point
it at your eye, and move your head left and right. Parallax mapping takes that
pixel on the far left of the pencil when it was facing you directly and stretches
it accordingly to simulate your angle in comparison to the pencil.

Parallax mapping is also a way of faking displacement mapping where the ac-
tual geometric position of points surface is displaced along the surface normal
according to the values stored into the texture: in Parallax mapping, like in
normal and bump mapping, the silhouette of the object is unaffected.

See also

• Parallax

External links

• Detailed Shape Representation with Parallax Mapping237

• Parallax mapping implementation in DirectX, forum topic238

http://vrsj.t.u-tokyo.ac.jp/ic-at/ICAT2003/papers/01205.pdf237

http://www.gamedev.net/community/forums/topic.asp?topic_id=387447238
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Source: http://en.wikipedia.org/wiki/Parallax_mapping

Principal Authors: Tommstein, Tnikkel, Charles Matthews, Jitse Niesen, Thepcnerd

Particle system

This article is about 3D computer graphics. For the computer game devel-
oper, see Particle Systems Ltd.

The term particle system refers to a computer graphics technique to simulate
certain fuzzy phenomena, which are otherwise very hard to reproduce with
conventional rendering techniques to produce realistic game physics. Examples
of such phenomena which are commonly done with particle systems include
fire, explosions, smoke, flowing water, sparks, falling leaves, clouds, fog, snow,
dust, meteor tails, or abstract visual effects like glowy trails, etc.

Figure 69 A particle system used to render a fire
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Figure 70 A particle system used to render a galaxy

Figure 71 An abstract trail of particles
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Typical implementation
Typically the particle system’s position in 3D space or motion therein is con-
trolled by what is called the emitter.

The emitter is mainly characterized by a set of particle behavior parameters
and a position in 3D space. The particle behavior parameters might include
spawning rate (how many particles are generated per unit of time), particle
initial velocity vector (i.e. which way will it go when it is emitted), particle life
(how much time does each individual particle live before being extinguished),
particle color and variations throughout its life, and many more. It is common
for all or most of these parameters to be fuzzy, in the sense that instead of ab-
solute values, some central value and allowable random variation is specified.

A typical particle system update loop (which is performed for each frame
of animation) can be separated into two distinct stages, the parameter up-
date/simulation stage and the rendering stage.

Simulation stage
During the simulation stage, the amount of new particles that must be created
is calculated based on spawning rates and interval between updates, and each
of them is spawned in a specific position in 3D space based on emitter position
and spawning area specified. Also each of the particle’s parameters, like veloc-
ity, color, life, etc, are initialized based on the emitter’s parameters. Then all
the existing particles are checked to see if they have exceeded their lifetime,
in which case they are removed from the simulation. Otherwise their position
and other characteristics are modified based on some sort of physical simula-
tion, which can be as simple as adding the velocity to the current position, and
maybe accounting for friction by modulating the velocity, or as complicated as
performing physically-accurate trajectory calculations taking into account ex-
ternal forces. Also it is common to perform some sort of collision checking with
specified 3D objects in order to make the particles bounce off obstacles in the
environment. However particle-particle collisions are rarely used, as they are
computationally expensive and not really useful for most of the simulations.

A particle system has its own rules that are applied to every particle. Often
these rules involve interpolating values over the lifetime of a particle. For
example, many systems have particles fade out to nothingness by interpolating
the particle’s alpha value (opacity) during the lifetime of the particle.

Rendering stage
After the update is complete, each particle is rendered usually in the form
of a textured billboarded quad (i.e. a quadrilateral that is always facing the
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viewer). However, this is not necessary, the particle may be rendered as just
a single pixel in small resolution/limited processing power environments, or
even as a metaball in off-line rendering (isosurfaces computed from particle-
metaballs make quite convincing liquid surfaces). Finally 3D meshes can also
be used to render the particles.

Artist-friendly particle system tools
Particle systems can be created and modified natively in many 3D modeling
and rendering packages including 3D Studio Max, Maya and Blender. These
editor programs allow artists to have instant feedback on how a particle sys-
tem might look given properties and rules that they can specify. There is also
plug-in software available that provide enhanced particle effects, such as After-
Burn and RealFlow (for liquids). Compositing software such as Combustion or
specialized, particle-only software such as Particle Studio, can be used for the
creation of particle systems for film and video.

External links

• Particle Systems: A Technique for Modeling a Class of Fuzzy Objects239 –
William T. Reeves (ACM Transactions on Graphics, April 1983)

Source: http://en.wikipedia.org/wiki/Particle_system

Principal Authors: Jtsiomb, Ashlux, Mrwojo, Sideris, The Merciful, MarSch

Path Tracing

Path tracing is a technique by James Kajiya when he presented his paper on
the Rendering Equation in the 1980s. The main goal of path tracing is to fully
solve the rendering equation.

A form of ray tracing whereby each ray is recursively traced along a path until
it reaches a light emitting source where the light contribution along the path is
calculated. This recursive tracing helps for solving the lighting equation more
accurately than conventional ray tracing.

A simple path tracing pseudocode might look something like this:

http://portal.acm.org/citation.cfm?id=357320239
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Color TracePath(Ray r,depth) {
if(depth==MaxDepth)

return Black; // bounced enough times

r.FindNearestObject();

if(r.hitSomething==false)

return Black; // nothing was hit

Material &m=r.thingHit->material;

Color emittance=m.emittance;

// pick a random direction from here and keep going

Ray newRay;

newRay.origin=r.pointWhereObjWasHit;

newRay.direction=RandomUnitVectorInHemisphereOf(r.normalWhereObjWasHit);

float cost=DotProduct(newRay.direction,r.normalWhereObjWasHit);

Color BRDF=m.reflectance/PI;

float scale=1.0*PI;

Color reflected=TracePath(newRay,depth+1);

return emittance + ( BRDF * scale * cost * reflected );

}

In the above example if every surface of a closed space emitted and reflected
(0.5,0.5,0.5) then every pixel in the image would be white.

A variation of this algorithm is to trace rays in the opposite direction, from
light sources to the camera, this is called light tracing. Furthermore these two
algorithms can be combined to enhance the image results and which is called
bi-directional path tracing.

Source: http://en.wikipedia.org/wiki/Path_Tracing

Principal Authors: Icairns, RJHall
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Perlin noise

Perlin noise is a function which uses interpolation between a large number
of pre-calculated gradient vectors to construct a value that varies pseudo-
randomly over space and/or time. It resembles band-limited white noise, and
is often used in CGI to make computer-generated objects more natural-looking,
by imitating the pseudo-randomness of nature.

It resulted from the work of Ken Perlin, who invented it to generate textures for
Tron. He won a special Academy Award for Perlin noise in 1997, although Tron
was denied the 1982 Academy Award for visual effects, because it "cheated" by
using computer-generated imagery.

Ken Perlin improved the implementation in 2002, supressing some visual arti-
facts. see the links.

Perlin noise is widely used in computer graphics for effects like fire, smoke
and clouds. It is also frequently used to generate textures when memory is
extremely limited, such as in demos.

See also

• Fractal landscape
• Simplex noise

External links

• a Ken perlin talk on noise, a very nice introduction240

• Ken Perlin’s homepage241

http://www.noisemachine.com/talk1/240

http://mrl.nyu.edu/~perlin/241
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• Ken perlin’s improved noise (2002) java source code242

• Ken Perlin’s Academy Award page243

• Matt Zucker’s Perlin noise math FAQ244

• A very good explanation and implementation of Perlin noise, with pseudo
code245

Source: http://en.wikipedia.org/wiki/Perlin_noise

Principal Authors: Michael Hardy, Charles Matthews, Reedbeta, Maa, Saga City, Gordmoo

Per-pixel lighting

In computer graphics, per-pixel lighting is commonly used to refer to a set
of methods for computing illumination at each rendered pixel of an image.
These generally produce more realistic images than vertex lighting, which only
calculates illumination at each vertex of a →3D model and then interpolates
the resulting values to calculate the per-pixel color values.

Per-pixel lighting is commonly used with other computer graphics techniques
to help improve render quality, including bump mapping, specularity, phong
shading and shadow volumes.

Real-time applications, such as computer games, which use modern graph-
ics cards will normally implement per-pixel lighting algorithms using pixel
shaders. Per-pixel lighting is also performed on the CPU in many high-end
commercial rendering applications which typically do not render at interactive
framerates.

See also

• →Phong shading
• Stencil shadow volumes
• →Unified lighting and shadowing

Source: http://en.wikipedia.org/wiki/Per-pixel_lighting

http://mrl.nyu.edu/~perlin/noise/242

http://www.mrl.nyu.edu/~perlin/doc/oscar.html243

http://www.cs.cmu.edu/~mzucker/code/perlin-noise-math-faq.html244

http://freespace.virgin.net/hugo.elias/models/m_perlin.htm245
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Principal Authors: Mikkalai, Alphonze, Jheriko, David Wahler

Phong reflection model

Not to be confused with →Phong shading.

The Phong reflection model is an illumination and shading model, used in
→3D computer graphics for assigning shades to points on a modeled surface.
It was developed by →Bui Tuong Phong in his University of Utah Ph.D. disser-
tation "Illumination for Computer Generated Pictures" in 1973, in conjunction
with a method for interpolating the calculation for each individual pixel that
is rasterized from a polygonal surface model; the interpolation technique is
known as →Phong shading, even when it is used with a reflection model other
than Phong’s.

The Phong reflection model can be treated as a simplification of the more gen-
eral rendering equation; it takes advantage of the following simplifications
when deciding the shade of a point on a surface:

1. It is a local reflection model, i.e. it doesn’t account for second-order reflec-
tions, as do raytracing or radiosity. In order to compensate for the loss of
some reflected light, an extra ambient lighting term is added to the scene
that is rendered.

2. It divides the reflection from a surface into three subcomponents, specular
reflection, diffuse reflection, and ambient reflection.

If we first define, for each light source in the scene to be rendered, the com-
ponents is and id, where these are the intensities (often as RGB values) of
the specular and diffuse components of the light sources respectively. A single
ia term controls the ambient lighting; it is sometimes computed as a sum of
contributions from the light sources.

If we then define, for each material (which is typically assigned 1-to-1 for the
object surfaces in the scene):

ks: specular reflection constant, the ratio of reflection of the specular term
of incoming light

kd: diffuse reflection constant, the ratio of reflection of the diffuse term of
incoming light
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ka: ambient reflection constant, the ratio of reflection of the ambient term
present in all points in the scene rendered

α: is a shininess constant for this material, which decides how "evenly"
light is reflected from a shiny spot

We further define lights as the set of all light sources, L is the direction vector
from the point on the surface toward each light source, N is the normal at
this point of the surface, R is the direction a perfectly reflected ray of light
(represented as a vector) would take from this point of the surface, and V is
the direction towards the viewer (such as a virtual camera).

Then the shade value for each surface point Ip is calculated using this equation,
which is the Phong reflection model :

Ip = kaia +
∑

lights(kd(L ·N)id + ks(R · V )αis)

The diffuse term does not use the direction towards the viewer (V ), as the
diffuse term is equal in all directions from the point, including the direction of
the viewer. The specular term, however, is large only when the reflection vector
R is nearly aligned with viewpoint vector V , as measured by the α power of the
cosine of the angle between them, which is the dot product of the normalized
direction vectors R and V . When α is large, representing an almost mirror-like
reflection, the specular reflection will be very small because the high power
of the cosine will go rapidly to zero with any viewpoint not aligned with the
reflection.

When we have color representations as RGB values, this equation will typically
be calculated individually for R, G and B intensities.

Phong reflection is an empirical model, which is not based on a physical de-
scription of light interaction, but instead on informal observation. Phong ob-
served that for very shiny surfaces the specular highlight was small and the
intensity fell off rapidly, while for duller surfaces it was larger and fell off more
slowly.

This equation can be represented in a graphic way:
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Here the "color and ambient" represents a colored ambient light (diffuse and
from all directions). The object shown here is gray, but is placed in a blue
environment. Interpret the figure accordingly.

Phong shading interpolation method
Main article: →Phong shading

Along with the reflection model for computing color at a surface point, →Bui
Tuong Phong also developed a method of interpolation to compute colors at
every pixel in a rasterized triangle representing a surface patch. These topics
are sometimes treated together under the term →Phong shading, but here the
latter term is used only for the interpolation method.

See also

• →Bui Tuong Phong : Read about this shading model creator’s life and work.

Source: http://en.wikipedia.org/wiki/Phong_reflection_model

Principal Authors: Dicklyon, Bignoter, Csl77, Nixdorf, Srleffler

Phong shading

An application of the →Phong reflection model.

Phong shading is an interpolation method in →3D computer graphics, using
interpolation of surface normals in rasterizing polygons, to get better resolu-
tion of specular reflections such as those generated by the →Phong reflection
model.

Since the inventor’s publications combined the interpolation technique with
his reflection model, the term Phong shading is also commonly used to refer
to the reflection model or to the combination of the reflection model and the
interpolation method.

These methods were developed by →Bui Tuong Phong, who published them in
his 1973 Ph.D. dissertation at the University of Utah.
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Phong illumination or reflection model
Main article: →Phong reflection model

Phong reflection is a local illumination model that can produce a certain degree
of realism in three-dimensional objects by combining three elements: diffuse,
specular, and ambient lighting for each considered point on a surface.

The reflection model has nothing specific to polygons or pixels, unlike the in-
terpolation method.

Phong interpolation

Figure 72 Phong shading interpolation example

As a rendering method, Phong shading can be regarded as an improvement on
→Gouraud shading that provides a better approximation to a point-by-point
application of an underlying reflection model by assuming a smoothly vary-
ing surface normal vector. The Phong interpolation method works better than
Gouraud shading when applied to the Phong reflection model or to any reflec-
tion model that has small specular highlights.

The main problem with Gouraud shading is that when a specular highlight
occurs near the center of a large triangle, it will usually be missed entirely, due
to the interpolation of colors between vertices. This problem is fixed by Phong
shading.

We are given three vertices in two dimensions, v 1, v 2 and v 3, as well as sur-
face normals for each vertex n 1, n 2 and n 3; we assume these are of unit length.
Unlike →Gouraud shading, which interpolates colors across triangles, in Phong
shading we linearly interpolate a normal vector N across the surface of the tri-
angle, from the three given normals. This is done for each pixel in the triangle,
and at each pixel we normalize N and use it in the Phong illumination model
to obtain the final pixel color.
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In some modern hardware, variants of this algorithm are called "pixel shad-
ing." It usually means that the lighting calculations can be done per-pixel, and
that the lighting variables (including surface normals or some appproximately
equivalent vector) are interpolated across the polygon.

See also

• →Blinn–Phong shading model — Phong shading modified to trade preci-
sion with computing efficiency

• →Bui Tuong Phong
• →Phong reflection model
• →Specular highlight — Other specular lighting equations

Source: http://en.wikipedia.org/wiki/Phong_shading

Principal Authors: T-tus, Karada, Csl77, Dicklyon, Michael Hardy

Photon mapping

Figure 73 A crystal ball with caustics
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In computer graphics, photon mapping is a global illumination algorithm
based on ray tracing used to realistically simulate the interaction of light with
different objects. Specifically, it is capable of simulating the refraction of light
through a transparent substance, such as glass or water, diffuse interreflections
between illuminated objects, and some of the effects caused by particulate mat-
ter such as smoke or water vapor. It was developed by Henrik Wann Jensen.

In the context of the refraction of light through a transparent medium, the de-
sired effects are called caustics. A caustic is a pattern of light that is focused on
a surface after having had the original path of light rays bent by an intermedi-
ate surface. An example is a glass of wine on a table. As light rays pass through
the glass and the liquid, they are refracted and focused on the table the glass is
standing on. The wine in the glass also produces interesting effects, changing
the pattern of light as well as its color.

With photon mapping, light packets (photons) are sent out into the scene from
the light source. Whenever a photon intersects with a surface, the intersec-
tion point, incoming direction, and energy of the photon are stored in a cache
called the photon map. As each photon is bounced or refracted by intermedi-
ate surfaces, the energy gets absorbed until no more is left. We can then stop
tracing the path of the photon. Often we stop tracing the path after a prede-
fined number of bounces in order to save time. One of the great advantages
of photon mapping is the independence of the scene’s description. That is, the
scene can be modelled using any type of geometric primitive as for instance
triangles, spheres, etc.

Another technique is to send out groups of photons instead of individual pho-
tons. In this case, each group of photons always has the same energy, thus the
photon map need not store energy. When a group intersects with a surface, it
is either completely transmitted or completely absorbed. This is a Monte Carlo
method called Russian roulette.

To avoid emitting unneeded photons, the direction of the outgoing rays is often
constrained. Instead of simply sending out photons in random directions, they
are sent in the direction of a known object that we wish to use as a photon ma-
nipulator to either focus or diffuse the light. There are many other refinements
that can be made to the algorithm like deciding how many photons to send,
and where and in what pattern to send them.

Photon mapping is generally a preprocess and is carried out before the main
rendering of the image. Often the photon map is stored on disk for later use.
Once the actual rendering is started, every intersection of an object by a ray
is tested to see if it is within a certain range of one or more stored photons
and if so, the energy of the photons is added to the energy calculated using a
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standard illumination equation. The slowest part of the algorithm is searching
the photon map for the nearest photons to the point being illuminated.

The BRL-CAD ray tracer includes an open source implementation of photon
mapping. Although photon mapping was designed to work primarily with ray
tracers, it can also be used with scanline renderers.

External links

• Realistic Image Synthesis Using Photon Mapping 246 ISBN 1568811470
• Photon mapping introduction247 from Worcester Polytechnic Institute

• Global Illumination using Photon Maps - Henrik Wann Jensen 248

Source: http://en.wikipedia.org/wiki/Photon_mapping

Principal Authors: Flamurai, MichaelGensheimer, Curps, Phrood, Patrick, Brlcad, Fnielsen, Nilmerg

Photorealistic (Morph)

Photorealistic computer graphics can be created by taking an original 3D ren-
dering, which resembles a photograph, and morphing the image in photoshop.
This creates a life-like 3D model, using a real image, that is a time consuming
chore for 3D animators.

An example of a photorealistic morph looks like this image below

http://graphics.ucsd.edu/~henrik/papers/book/246

http://www.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMap-247

ping.html
http://graphics.ucsd.edu/~henrik/papers/ewr7/egwr96.pdf248
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See also

• 3D Rendering
• photoshopping

Source: http://en.wikipedia.org/wiki/Photorealistic_%28Morph%29

PLIB

PLIB is a suite of Open Sourced portable computer game libraries, originally
written by Steve Baker in 1997 and licensed under the LGPL.

PLIB includes sound effects, music, a complete 3D engine, font rendering, a
simple windowing library, a game scripting language, a GUI, networking, 3D
math library and a collection of utility functions. All are 100% portable across
nearly all modern computing platforms. Each library component is fairly in-
dependent of the others - so if you want to use SDL, GTK+, GLUT, or FLTK
instead of PLIB’s ’PW’ windowing library, you can.

PLIB is used by many projects (not all games - and not all OpenSourced).

See also

• Allegro
• OpenML
• Simple DirectMedia Layer
• DirectX
• →OpenGL
• ClanLib

External links

• PLIB website249

Source: http://en.wikipedia.org/wiki/PLIB

http://plib.sourceforge.net/249
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Polygonal modeling

In →3D computer graphics, polygonal modeling is an approach for modeling
objects by representing or approximating their surfaces using polygons. Polyg-
onal modeling is well suited to scanline rendering and is therefore the method
of choice for real-time computer graphics. Alternate methods of representing
3D objects include NURBS surfaces, subdivision surfaces, and equation-based
representations used in ray tracers.

Geometric Theory and Polygons
The basic object used in mesh modeling is a vertex, a point in three dimen-
sional space. Two vertices connected by a straight line become an edge. Three
vertices, connected to the each other by three edges, define a triangle, which
is the simplest polygon in Euclidean space. More complex polygons can be cre-
ated out of multiple triangles, or as a single object with more than 3 vertices.
Four sided polygons (generally referred to as quads) and triangles are the most
common shapes used in polygonal modeling. A group of polygons, connected
to each other by shared vertices, is generally referred to as an element. Each
of the polygons making up an element is called a face.

In Euclidean geometry, any three points determine a plane. For this reason,
triangles always inhabit a single plane. This is not necessarily true of more
complex polygons, however. The flat nature of triangles makes it simple to de-
termine their surface normal, a three-dimensional vector perpendicular to the
triangle’s edges. Surface normals are useful for determining light transport in
ray tracing, and are a key component of the popular →Phong shading model.
Some rendering systems use vertex normals instead of surface normals to cre-
ate a better-looking lighting system at the cost of more processing. Note that
every triangle has two surface normals, which face away from each other. In
many systems only one of these normals is considered valid – the other side of
the polygon is referred to as a backface, and can be made visible or invisible
depending on the programmer’s desires.

Many modeling programs do not strictly enforce geometric theory; for exam-
ple, it is possible for two vertices to have two distinct edges connecting them,
occupying the exact same spatial location. It is also possible for two vertices to
exist at the same spatial coordinates, or two faces to exist at the same location.
Situations such as these are usually not desired by the user, and must be fixed
manually.
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A group of polygons which are connected together by shared vertices is referred
to as a mesh. In order for a mesh to appear attractive when rendered, it is de-
sirable that it be non-self-intersecting, meaning that no edge passes through a
polygon. Another way of looking at this is that the mesh cannot pierce itself. It
is also desirable that the mesh not contain any errors such as doubled vertices,
edges, or faces. For some purposes it is important that the mesh be a manifold
– that is, that it does not contain holes or singularities (locations where two
distinct sections of the mesh are connected by a single vertex).

Construction of Polygonal Meshes
Although it is possible to construct a mesh by manually specifying vertices and
faces, it is much more common to build meshes using a variety of tools. A wide
variety of 3d graphics software packages are available for use in constructing
polygon meshes.

One of the more popular methods of constructing meshes is box modeling,
which uses two simple tools:

• The subdivide tool splits faces and edges into smaller pieces by adding new
vertices. For example, a square would be subdivided by adding one vertex
in the center and one on each edge, creating four smaller squares.

• The extrude tool is applied to a face or a group of faces. It creates a new
face of the same size and shape which is connected to each of the existing
edges by a face. Thus, performing the extrude operation on a square face
would create a cube connected to the surface at the location of the face.

A second common modeling method is sometimes referred to as inflation mod-
eling or extrusion modeling. In this method, the user creates a 2d shape
which traces the outline of an object from a photograph or a drawing. The us-
er then uses a second image of the subject from a different angle and extrudes
the 2d shape into 3d, again following the shape’s outline. This method is es-
pecially common for creating faces and heads. In general, the artist will model
half of the head and then duplicate the vertices, invert their location relative to
some plane, and connect the two pieces together. This ensures that the model
will be symmetrical.

Another common method of creating a polygonal mesh is by connecting to-
gether various primitives, which are predefined polygonal meshes created by
the modeling environment. Common primitives include:

• Cubes
• Pyramids
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• Cylinders
• 2D primitives, such as squares, triangles, and disks
• Specialized or esoteric primitives, such as the Utah Teapot or Suzanne,

Blender’s monkey mascot.
• Spheres - Spheres are commonly represented in one of two ways:

• Icospheres are icosahedrons which possess a sufficient number of tri-
angles to resemble a sphere.

• UV Spheres are composed of quads, and resemble the grid seen on some
globes - quads are larger near the "equator" of the sphere and smaller
near the "poles," eventually terminating in a single vertex.

Finally, some specialized methods of constructing high or low detail meshes
exist. Sketch based modeling is a user-friendly interface for constructing low-
detail models quickly, while 3d scanners can be used to create high detail mesh-
es based on existing real-world objects in almost automatic way. These devices
are very expensive, and are generally only used by researchers and industry
professionals but can generate high accuracy sub-millimetric digital represen-
tations.

Extensions
Once a polygonal mesh has been constructed, further steps must be taken be-
fore it is useful for games, animation, etc. The model must be texture mapped
to add colors and texture to the surface and it must be given an inverse kine-
matics skeleton for animation. Meshes can also be assigned weights and cen-
ters of gravity for use in physical simulation.

In order to display a model on a computer screen outside of the modeling
environment, it is necessary to store that model in one of the file formats listed
below, and then use or write a program capable of loading from that format.
The two main methods of displaying 3d polygon models are →OpenGL and
→Direct3D. Both of these methods can be used with or without a graphics
card.

Advantages and disadvantages
There are many disadvantages to representing an object using polygons. Poly-
gons are incapable of accurately representing curved surfaces, so a large num-
ber of them must be used to approximate curves in a visually appealing manner.
The use of complex models has a cost in lowered speed. In scanline conver-
sion, each polygon must be converted and displayed, regardless of size, and
there are frequently a large number of models on the screen at any given time.
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Often, programmers must use multiple models at varying levels of detail to rep-
resent the same object in order to cut down on the number of polygons being
rendered.

The main advantage of polygons is that they are faster than other represen-
tations. While a modern graphics card can show a highly detailed scene at a
frame rate of 60 frames per second or higher, raytracers, the main way of dis-
playing non-polygonal models, are incapable of achieving an interactive frame
rate (10 fps or higher) with a similar amount of detail.

File Formats
A variety of formats are available for storing 3d polygon data. The most popu-
lar are:

• .3ds, .max, which is associated with 3D Studio Max
• .mb and .ma, which are associated with Maya
• .lwo, which is associated with Lightwave
• .obj (Wavefront’s "The Adanced Visualizer")
• .C4d associated with Cinema 4D
• .dxf, .dwg, .dwf, associated with AutoCAD
• .md3, .md2, associated with the Quake series of games
• .fbx (Alias)
• .rwx (Renderware)
• .wrl (VRML 2.0)

External links

• Free models in a variety of formats: 3dcafe250

• Computer graphics latest news, reviews, tutorials and interviews:
InsideCG251

• Computer graphics news: CG Channel252

• Computer graphics forums, reviews, and contests: CG Society253

• Open Source 3d modeling program: Blender 254

• Simple, small and open source 3D modelling program: Wings 3D 255

• Open Source 3D modeling program: AutoQ3D 256

http://www.3dcafe.com/250

http://www.insidecg.com/251

http://www.cgchannel.com/252

http://www.cgsociety.org/253

http://www.blender.org/254

http://www.Wings3D.com/255

http://autoq3d.ecuadra.com/256
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References
OpenGL SuperBible (3rd ed.), by Richard S Wright and Benjamin Lipchak ISBN
0672326019

OpenGL Programming Guide: The Official Guide to Learning OpenGL, Version
1.4, Fourth Edition by OpenGL Architecture Review Board ISBN 0321173481

OpenGL(R) Reference Manual : The Official Reference Document to OpenGL,
Version 1.4 (4th Edition) by OpenGL Architecture Review Board ISBN
032117383X

Blender documentation: http://www.blender.org/cms/Documentation.628.0.
html

Maya documentation: packaged with Alias Maya, http://www.alias.com/eng
/index.shtml

See also

• Finite element analysis / method
• →Polygon mesh
• Vector graphics

Source: http://en.wikipedia.org/wiki/Polygonal_modeling

Principal Authors: Furrykef, Jreynaga, KenArthur, Peter L, TenOfAllTrades, RJFJR

Polygon (computer graphics)

Polygons are used in computer graphics to compose images that are three-
dimensional in appearance. Usually (but not always) triangular, polygons arise
when an object’s surface is modeled, vertices are selected, and the object is
rendered in a wire frame model. This is quicker to display than a shaded
model; thus the polygons are a stage in computer animation. The polygon
count refers to the number of polygons being rendered per frame.

Competing methods for rendering polygons that
avoid seams

• point
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• floating point
• Fixed-point
• polygon
• because of rounding, every scanline has its own direction in space and

may show its front or back side to the viewer.
• Fraction (mathematics)

• Bresenham’s line algorithm
• polygons have to be split into triangles
• the whole triangle shows the same side to the viewer
• the point numbers from the →Transform and lighting stage have to con-

verted to Fraction (mathematics)
• Barycentric coordinates (mathematics)

• used in raytracing

See also

• Polygon, for general polygon information
• →Polygon mesh, for polygon object representation
• Polygon modeling

Source: http://en.wikipedia.org/wiki/Polygon_%28computer_graphics%29

Principal Authors: Michael Hardy, Arnero, Orderud, SimonP, BlazeHedgehog

Polygon mesh

A polygon mesh is a collection of vertices and polygons that define the shape
of an object in →3D computer graphics.

Meshes usually consists of triangles, quadrilaterals or other simple convex poly-
gons, since this simplifies rendering, but they can also contain objects made of
general polygons with optional holes.

Examples of internal mesh structure representations:

• Simple list of vertices with a list of indices describing which vertices are
linked to form polygons; additional information can describe a list of holes

• List of vertices + list of edges (pairs of indices) + list of polygons that link
edges

• Winged edge data structure
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The choice of the data structure is governed by the application: it’s easier to
deal with triangles than general polygons, especially in computational geome-
try. For optimized algorithms it is necessary to have a fast access to topological
informations such as edges or neighbouring faces; this requires more complex
structures such as the winged-edge representation.

Source: http://en.wikipedia.org/wiki/Polygon_mesh

Principal Authors: Orderud, Furrykef

Precomputed Radiance Transfer

Precomputed Radiance Transfer (PRT) is a technique used to render a scene
in real time with complex light interactions precomputed. →Radiosity can
be used to determine the diffuse lighting of the scene, however PRT offers a
method to dynamically change the lighting environment.

In essense, PRT computes the illumination of a point as a linear combination
of incident irradiance. An efficient method must be used to encode this data,
such as Spherical harmonics.

Reference: Sloan, Peter-Pike, Jan Kautz, and John Snyder. "Precomputed Ra-
diance Transfer for Real-Time Rendering in Dynamic, Low-Frequency Lighting
Environments". ACM Transactions on Graphics, Proceedings of the 29th Annu-
al Conference on Computer Graphics and Interactive Techniques (SIGGRAPH),
pp. 527-536. New York, NY: ACM Press, 2002.

Source: http://en.wikipedia.org/wiki/Precomputed_Radiance_Transfer

Principal Authors: Bhouston
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Pre-rendered

Pre-rendered graphics, in computer graphics, is a video footage which is not
being rendered in real-time by the hardware that is outputing or playing back
the video. Instead, the video is a recording of a footage that was previously
rendered on a different equipment (typically one that is more powerful than
the hardware used for playback). The advantage of pre-rendering is the ability
to use graphic models that are more complex and computationally intensive
than what can be rendered in real-time, due to the possibility of using multiple
computers over extended periods of time to render the end results. The dis-
advantage of pre-rendering, in the case of video game graphics, is a generally
lower level of interactivity, if any, with the player.

CG movies such as Toy Story, Shrek and Final Fantasy: The Spirits Within are
entirely pre-rendered. Pre-rendered graphics are used primarily as cut scenes
in modern video games, where they are also known as full motion video.

See also

• →Rendering (computer graphics)
• FMV game

Source: http://en.wikipedia.org/wiki/Pre-rendered

Procedural generation

Procedural generation is a widely used term to indicate the possibility to cre-
ate content on the fly, as opposed to creating it before distribution. This is often
related to computer graphics applications.

Procedural synthesis is actually the correct term for this kind of approach, re-
calling as "electronic sounds" have been (and still are) generated by synthe-
sizers from nothing but electricity and user’s creativity.[citation needed ] In this
document, the terms "synthesis" and "generation" are used interchangeably.

More generally, the term ’procedural’ is strictly related to a procedure used to
compute particular functions. This concept is similar to a fractal, although the
latter is considered to be much more math-involved. Most common procedu-
rally generated content include textures and meshes. Sound is seldom proce-
durally generated in PC applications. While procedural generation techniques
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have been employed for years in countless games, few actually used this ap-
proach extensively. The exception is Will Wright’s Spore, a highly-anticipated
video game title populated entirely with procedurally generated content. Some
"procedurally generated" elements also appeared in previous games: the first
Soldier of Fortune from Raven Software used simple routines to add random
detail to enemy models. To a certain degree, it could be said that the lighting
in Doom 3 from id Software is "procedurally generated" because it does not
rely on lightmaps precomputed using a radiosity process.

The modern demoscene uses procedural generation for squeezing a lot of im-
pressive audiovisual content into very small executable programs. Farbrausch
is a team famous for its achievements in this area, although many similar tech-
niques were already implemented by The Black Lotus in the 1990’s.

Procedural generation as an application of func-
tional programming
Procedurally generated content such as textures and landscapes may exhibit
variation, but the generation of a particular item or landscape must be identical
from frame to frame. Accordingly, the functions used must be referentially
transparent, always returning the same result for the same point, so that they
may be called in any order and their results freely cached as necessary. This is
similar to lazy evaluation in functional programming languages.

Procedural generation in video games
The earliest computer games were severely limited by memory constraints.
This forced content like maps to be generated algorithmically on the fly: there
simply wasn’t enough space to store premade levels and artwork. Today, most
games include thousands of times as much data in terms of memory as algo-
rithmic mechanics. For example, all of the buildings in the large gameworld of
Grand Theft Auto were individually designed and placed by artists.

In a typical modern video game, game content such as textures and character
and environment models are created by artists beforehand, then rendered in
the game engine. As the technical capabilities of computers and video game
consoles increases, the amount of work required by artists also increases. First,
high-end gaming PCs and next-generation game consoles like the Xbox 360
and PlayStation 3 are capable of rendering scenes containing many very de-
tailed objects with high-resolution textures in high-definition. This means that
artists must invest a great deal more time in creating a single character, vehicle,
building, or texture, since gamers will tend to expect ever-increasingly detailed
environments.
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Secondly, the number of unique objects displayed in a video game is increas-
ing. In addition to highly detailed models, players expect a variety of models
that appear substantially different from one another. In older games, a single
character or object model might have been used over and over again through-
out a game. With the increased visual fidelity of modern games, however, it is
very jarring (and threatens the suspension of disbelief) to see many copies of
a single object, while the real world contains far more variety. Again, artists
would be required to complete orders of magnitude more work in order to cre-
ate many different varieties of a particular object. The need to hire larger art
staffs is one of the reasons for skyrocketing game development budgets.

Some initial approaches to procedural synthesis attempted to solve these prob-
lems by shifting the burden of content generation from the artists to program-
mers who can create code which automatically generates different meshes ac-
cording to input parameters. Although sometimes this still happens, what has
been recognized is that applying a purely procedural model is often hard at
best, requiring huge amounts of time to evolve into a functional, usable and
realistic-looking method. Instead of writing a procedure that completely builds
content procedurally, it has been proven to be much cheaper and more effective
to rely on artist created content for some details. For example, SpeedTree is
a middleware used to generate trees procedurally with a large variety yet leaf
textures can be fetched from regular files often representing digitally acquired
real foliage. Other effective methods to generate hybrid content is to procedu-
rally merge different pre-made assets or to procedurally apply some distortions
to them.

Supposing, however, a single algorithm can be envisioned to generate a
realistic-looking tree, the algorithm could be called to generate random trees,
thus filling a whole forest at runtime, instead of storing all the vertices required
by the various models. This would save storage media space and reduce the
burden on artist, while providing richer experience. The same method would
require far more processing power in respect to a mere disk loading, but with
CPUs getting faster, the problem is gradually becoming smaller. Please note,
developing such algorithm is non-trivial for a single tree, let alone for a variety
of species (compare Sumac, Birch, Maple and its species), moreover assembling
a forest could not be done by just assembling trees because in real world this
introduces interactions between the various trees which dramatically change
their appearance (although this is probably a minor detail).

In 2004, a PC first-person shooter called .kkrieger was released that made
heavy use of procedural synthesis: while quite short and very simple, the ad-
vanced video effects were packed into just 96 Kilobytes. In contrast, many
modern games are released across several CDs, often exceeding 2 gigabytes in
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size, more than 20,000 times larger. Several upcoming commercial titles for
the PC, such as Will Wright’s Spore, will also make use of procedural synthesis,
calling for special hardware support in the console world: the Xbox 360 and
the Playstation 3 have impressive procedural synthesis capabilities.

Next-generation console support and speculations
The Xbox 360’s CPU, known as Xenon, is a 3-core design. When running pro-
cedural synthesis algorithms.257, one of the Xenon CPU’s cores may "lock" a
portion of the 1 MB shared L2 cache. When locked, a segment of cache no
longer contains any prefetched instructions or data for the CPU, but is instead
used as output space for the procedural synthesis thread. The graphics process-
ing unit, called Xenos, can then read directly from this locked cache space and
render the procedurally generated objects. The rationale behind this design is
that procedurally generated game content can be streamed directly from CPU
to GPU, without incurring additional latency by being stored in system RAM
as an intermediary step. The downside to this approach is that when part of
the L2 cache is locked, there is even less data immediately available to keep
the 3 symmetric cores in the Xenon CPU running at full efficiency (1 MB of
shared L2 is already a rather small amount of cache for 3 symmetric cores to
share, especially considering that the Xenon CPU does not support out-of-order
execution to more efficiently use available clock cycles).

The Cell processor contains an implementation-dependent number of vector
processing units called SPEs. PlayStation 3, to date the largest use of the Cell
processor, will contain 8 SPEs, only seven of which are active. The eighth is
to be used in the event that another SPE malfunctions. The SPEs can stream
data to each other, with each SPE performing a different operation on a large
set of data, thus creating a highly efficient chain which performs a sequence
of operations on a data set of arbitrary size (they are virtually assembled in a
"hyper-pipeline", allowing high amount of parallelism). Each SPE can execute
a different task in the algorithm and pass the result on to another SPE which
does the next piece of work. The cell can thus generate game objects very
quickly by dividing the algorithm into smaller tasks and setting up a chain of
SPEs to do the work on an arbitrarily large number of objects.

For example, to generate a boulder, an SPE may initialize the basic vertex po-
sitions to a spherical object, a second SPE may displace those points to add

http://arstechnica.com/articles/paedia/cpu/xbox360-1.ars257
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randomness, a third to generate normals, tangent and binormals for bumpmap-
ping while a fourth SPE may add volume texture coordinates (possibly in paral-
lel with the third SPE). Note that this example assumes the compiler can guess
correct parallelism opportunity.

The Cell’s counterpart to Xenon "cache locking" is each SPE’s 256 KiB local
store, essentially L2 cache memory which can be accessed directly, rather than
being used to speed up access to main memory. This approach has both perks
and flaws, as it allows each SPE to work extremely quickly, but only on a small
subset of the total data of a program. There is also a direct 35 GB/s link
between the Cell and the PS3’s "Reality Synthesizer" GPU, allowing objects to
be sent directly to the GPU to be rendered as soon as they are generated.

See also

• →Procedural texture
• Procedural animation
• Fractal landscape
• L-System

Software using procedural generation

• Elite (everything about the universe - planet positions, names, politics and
general descriptions - is generated procedurally; Ian Bell has released the
algorithms in C as text elite258)

• Exile
• Frontier: Elite 2
• Noctis
• StarFlight
• The Sentinel (computer game)
• Most Roguelikes procedurally generate gameworlds.
• Dozens of demos procedurally generate complex textures, sounds and 3D

objects.
• SpeedTree is a widely known middleware to procedurally generate trees at

various levels in the production pipeline or at runtime using L-systems.
• The Elder Scrolls IV: Oblivion
• Many games using the upcoming Unreal Engine 3.

• Spore
• Jade Cocoon (The merged minions were procedurally generated based on

body part sizes)

http://www.iancgbell.clara.net/elite/text/index.htm258
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External links

• Real-time procedural generation of ‘pseudo infinite’ cities259 - ACM
• The Future Of Content260 - Will Wright keynote on Spore & procedural gen-

eration at the Game Developers Conference 2005. (Scroll down 3/4 of
page, registration required to view video).

• Procedural 3D Content Generation261 - Dean Macri and Kin Pallister - Intel
- An excellent two-part article with an accompanying demo (including full
C++ source code).

• Darwinia262 - development diary263 procedural generation of terrains and
trees.

Source: http://en.wikipedia.org/wiki/Procedural_generation

Principal Authors: Jacoplane, MaxDZ8, Ashley Y, Viznut, Lapinmies, Tlogmer, Praetor alpha, Jess-

martin, ChopMonkey, Lupin

Procedural texture

A procedural texture is a computer generated image created using an algo-
rithm intended to create a realistic representation of natural elements such as
wood, marble, granite, metal, stone, and others.

Usually, the natural look of the rendered result is achieved by the usage of
fractal noise and turbulence functions. These functions are used as a numerical
representation of the “randomness” found in everything that surrounds us.

In general, these noise and fractal functions are simply used to “disturb” the
texture in a natural way such as the undulations of the veins of the wood. In
other cases, like marbles’ textures, they are based on the graphical representa-
tion of fractal noise.

http://portal.acm.org/citation.cfm?id=604490259

http://www.pqhp.com/cmp/gdctv/260

http://www.intel.com/cd/ids/developer/asmo-na/eng/20247.htm261

http://www.darwinia.co.uk/262

http://www.darwinia.co.uk/extras/development.html263

http://www.spiralgraphics.biz/gallery.htm264
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Figure 74 A procedural floor grate texture
generated with the texture editor Genetica264.

Example of a procedural marble texture:
(Taken from The Renderman Companion Book, by Steve Upstill)

/* Copyrighted Pixar 1988 */

/* From the RenderMan Companion p.355 */

/* Listing 16.19 Blue marble surface shader*/

/*

* blue marble(): a marble stone texture in shades of blue

* surface

*/

blue marble(

float Ks = .4,

Kd = .6,

Ka = .1,

roughness = .1,
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txtscale = 1;

color specularcolor = 1)

{
point PP; /* scaled point in shader space */

float csp; /* color spline parameter */

point Nf; /* forward-facing normal */

point V; /* for specular() */

float pixelsize, twice, scale, weight, turbulence;

/* Obtain a forward-facing normal for lighting calculations.

*/

Nf = faceforward( normalize(N), I);

V = normalize(-I);

/*

* Compute "turbulence" a la [PERLIN85]. Turbulence is a sum

of

* "noise" components with a "fractal" 1/f power spectrum.

It gives the

* visual impression of turbulent fluid flow (for example, as

in the

* formation of blue marble from molten color splines!). Use

the

* surface element area in texture space to control the num-

ber of

* noise components so that the frequency content is appro-

priate

* to the scale. This prevents aliasing of the texture.

*/

PP = transform("shader", P) * txtscale;

pixelsize = sqrt(area(PP));

twice = 2 * pixelsize;

turbulence = 0;

for (scale = 1; scale > twice; scale /= 2)

turbulence += scale * noise(PP/scale);

/* Gradual fade out of highest-frequency component near limit

*/

if (scale > pixelsize) {
weight = (scale / pixelsize) - 1;

weight = clamp(weight, 0, 1);
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turbulence += weight * scale * noise(PP/scale);

}

/*

* Magnify the upper part of the turbulence range 0.75:1

* to fill the range 0:1 and use it as the parameter of

* a color spline through various shades of blue.

*/

csp = clamp(4 * turbulence - 3, 0, 1);

Ci = color spline(csp,

color (0.25, 0.25, 0.35), /* pale blue */

color (0.25, 0.25, 0.35), /* pale blue */

color (0.20, 0.20, 0.30), /* medium blue */

color (0.20, 0.20, 0.30), /* medium blue */

color (0.20, 0.20, 0.30), /* medium blue */

color (0.25, 0.25, 0.35), /* pale blue */

color (0.25, 0.25, 0.35), /* pale blue */

color (0.15, 0.15, 0.26), /* medium dark blue */

color (0.15, 0.15, 0.26), /* medium dark blue */

color (0.10, 0.10, 0.20), /* dark blue */

color (0.10, 0.10, 0.20), /* dark blue */

color (0.25, 0.25, 0.35), /* pale blue */

color (0.10, 0.10, 0.20) /* dark blue */

);

/* Multiply this color by the diffusely reflected light. */

Ci *= Ka*ambient() + Kd*diffuse(Nf);

/* Adjust for opacity. */

Oi = Os;

Ci = Ci * Oi;

/* Add in specular highlights. */

Ci += specularcolor * Ks * specular(Nf,V,roughness);

}

This article was taken from The Photoshop Roadmap265 with written authoriza-
tion

http://www.photoshoproadmap.com265
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See also

• →Perlin noise
• →Procedural generation

Source: http://en.wikipedia.org/wiki/Procedural_texture

Principal Authors: MaxDZ8, Wikedit, TimBentley, Volfy, Viznut

Pyramid of vision

Pyramid of vision is a →3D computer graphics term: the infinite pyramid into
the real world, with an apex at the observer’s eye and faces passing through
the edges of the viewport ("window").

Source: http://en.wikipedia.org/wiki/Pyramid_of_vision

Qualitative invisibility

In CAD/CAM, Qualitative Invisibility (QI) is the number of solid bodies ob-
scuring a point in space as projected onto a plane (called [vector] hidden line
removal used by the Vector format). Oftentimes, when a CAD engineer cre-
ates a projection of his model into a plane [the drawing], he wishes to denote
the edges which are visible by a solid segment and those which are hidden
by dashed or dimmed segments. The idea of keeping track of the number of
obscuring bodies gives rise to an algorithm which propages the quantitative in-
visibility throughout the model. This technique uses edge coherence to speed
up the calculations in the algorithm. However, QI really only works well when
bodies are larger solids, non-interpenetrating, and not transparent. A tech-
nique like this would fall apart when trying to render soft organic tissue as
found in the human body, because there is not always a clear delineation of
structures. Also, when images become too cluttered and intertwined, then the
contribution of this algorithm is marginal.

Qualitative Invisibility is a term coined by Arthur Appel of the graphics group
at IBM Watson Research and used in several of his papers.
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External link

• Vector Hidden Line Removal and Fractional Quantitative Invisibility266

Reference
Appel, A., "The Notion of Quantitative Invisibility and the Machine Rendering
of Solids," Proceedings ACM National Conference, Thompson Books, Washing-
ton, DC, 1967, pp. 387-393, pp. 214-220.

Source: http://en.wikipedia.org/wiki/Qualitative_invisibility

Principal Authors: Wheger, Ulayiti, Patrick, Frencheigh

Quaternions and spatial rotation

The main article on quaternions describes the history and purely mathe-
matical properties of the algebra of quaternions. The focus of this article is
the practical application of these mathematical ideas in engineered physical
systems.

The algebra of quaternions is a useful mathematical tool for formulating the
composition of arbitrary spatial rotations, and establishing the correctness of
algorithms founded upon such compositions. These methods find broad appli-
cation in computer generated graphics, robotics, global navigation, and the
spatial orientation of instruments. (citation: Quaternions and rotation Se-
quences: a Primer with Applications to Orbits, Aerospace, and Virtual Reality,
Kuipers, Jack B., Princeton University Press copyright 1999)

Familiarity with the definition of a quaternion and the associated arithmetical
rudiments is assumed. These may be gleaned from a cursory examination of a
few paragraphs in the article on quaternions.

Introduction
The 1909 edition of Webster’s unabridged dictionary (citation: Webster’s New
International Dictionary, G. & C. Merriam Co. copyright 1909, pp1752) defines
a quaternion as

http://wheger.tripod.com/vhl/vhl.htm266
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5. Math. The quotient of two vectors ... Such is the view of the inventor,
Sir Wm. Rowan Hamilton, and his disciple, Prof. P. G. Tait; but authorities
are not yet quite agreed as to what a quaternion is or ought to be.

This definition together with the excised "..." is technically correct if the defini-
tion of "vector" is restricted to its three dimensional conception, but the wag-
gish remark serves to anecdotally illustrate the aura of arcane and possibly
irrational esotericism that encumbered the mathematical discipline in its early
days. To some degree, the disrepute of those early perceptions persist today.

The purpose of this introduction is to demystify the quaternions by demon-
strating that the underlying concepts are pervasive in the everyday experience
of ordinary people. This will establish a solid intuitive foundation upon which
the mathematical and algorithmic content of the remainder of the article may
be constructed. In fact, when approached from a geometric perspective, the
quaternion algebra is as easy to understand, utilize, and apply as the algebra
of complex numbers.

Non-commutativity
When considered as a purely numerical algebraic system, the non-
commutativity of quaternion multiplication strikes many initiates as capricious
and counter-intuitive. The following simple exercise demonstrates otherwise.

Consider an asymmetrical object, for example, a book. Set it on a table so that
the spine is to the left and the front cover is visible with the title readable.
Define the three orthonormal spatial axes as follows: positive z extends up
from the table, and x and y oriented as usual, i.e. x extending from left to
right, and y extending away from the viewer.

The application of two rotation operators to the book will demonstrate non-
commutativity. First, rotate the book 90 degrees clockwise about the z axis,
so that the spine is facing away. Next rotate the book 180 degrees clockwise
about the y axis, so that now the front cover faces down and the spine faces
away.

The application of these same two rotation operators in reverse order, first
yields the book in a position with the cover facing down and spine facing right.
After applying the z rotation, the book rests in its final position with the cover
facing down and the spine facing forward, demonstrating zy 6=yz. In fact, the
composition zy represents a single rotation of 180 degrees about the [-1 1 0]
axis, and yz represents a single rotation of 180 degrees about the [1 1 0] axis.

In general, the composition of two different rotations about two distinct spatial
axes will not commute. This is a truth that all of us subconsciously understand
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and apply every day. Quaternion algebra is simply a mathematical formulation
of this truth.

Double covering
This second exercise demonstrates the property of a quaternion rotation op-
erator that for each complete turn of the angular parameter, the image of the
object to which the operator is applied turns twice.

In a sitting position extend the forearm from the waist with the palm open and
up. Place a small object, such as a coin on the open palm, so that only gravity
holds the coin in the palm. When this exercise is complete, the palm (and coin)
will have rotated 720 degrees or two turns, without dropping or squeezing the
coin.

Define the three orthonormal spatial axes as follows: positive z extends up
from the palm, and x and y oriented as usual, i.e. x extending from left to
right through the shoulder sockets, and y extending away from the viewer.

Four pivot axes are of interest. The first is attached to the shoulder socket and
aligned with the y axis. The second is attached to the elbow, and is aligned
orthogonal to the upper arm and forearm. The third is aligned with the fore-
arm, and the fourth is aligned orthogonal to this at the wrist in the plane of the
palm.

First rotate the palm clockwise 180 degrees (counter-clockwise for left handed
people). The various pivot axes will turn in synchrony in order to maintain
the palm facing up, so that the palm comes to rest over the shoulder with the
fingers pointing back. Next rotate the palm another 180 degrees clockwise,
with the gimbals modulating so that the palm comes to rest with the fingers
pointing forward and the upper arm extended upward with the forearm angled
up.

Similarly, continue with another 180 degrees, so that the palm lingers with the
fingers pointing back under the armpit with the elbow akimbo up and back
with the upper arm extended horizontally. Finally rotate the last 180 degrees,
bringing the arm to rest in the original position. It is much easier to do this
than to describe it.

The movement is a composition of continuously applied incremental rotations
about the four pivot axes, which notably, do not have fixed alignment with the
orthonormal coordinate system. Each pivot traverses, in various combinations,
180 degrees clockwise, and 180 degrees counterclockwise, for a total of 360
degrees. For example, the wrist first flexes 90 degrees back, then 180 degrees
forward, and finally 90 degrees back. In contrast, the elbow closes 90 degrees,
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then opens 90 degrees, and then repeats the sequence. The palm (and coin),
which is the image of the operation, traverses 720 degrees clockwise about the
z coordinate axis.

Quaternion algebra provides an intuitive means for modelling these operations
using the naturally defined variably oriented axes established by the physical
circumstances. Any other method requires grappling with a tangle of trigono-
metric identities which convert the motions to the unnatural orthonormal ref-
erence frame.

Chirality
If a person endeavors to rotate the left hand so that it coincides with the right
hand - palms facing in the same direction, thumbs and corresponding fingers
aligned, the impossibility of the effort will soon become clear. The left and
right hands are mirror images of each other, and a reflection is required to
bring them into coincidence. Everyone understands instinctively that this is
not possible in three dimensions. The generalization of this concept of "hand-
edness" is known as chirality.

Chiral properties depend on the dimension of the space objects are constrained
to occupy. For example consider the letter "L" located at the origin in the x-y
plane. It is not possible to form the reflection of the letter across the y axis
by using rotations constrained to lie entirely in the x-y plane. It is, however,
possible to rotate the letter about the y axis, out of the plane 180 degrees, so
that the image returns to lie in the plane.

A two dimensional reflection can be seen to be the two dimensional projection
of a 180 degree three dimensional rotation. From the perspective of a three
dimensional observer, the image is not a reflection, since it is possible for such
an observer to go around behind the plane, where looking at the back side of
the image, the "L" appears normal. A three dimensional chiral object must have
three asymmetries.

So for example, if it were possible to rotate the left hand 180 degrees through
the fourth dimension and back into three dimensional space, the left hand
could be made to coincide with the right hand simply by applying a rotation.
Of course from the perspective of a four dimensional observer, the image of
the hand is not a reflection, for the observer can go around "behind" the three
space, where looking at the "back" side, the hand looks normal. Naturally it is
difficult to visualize this, except by analogy. A four dimensional chiral object
must have four dimensions of asymmetry. This process can be extrapolated ad
infinitum, but for the purposes of this article, four dimensions suffice.
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It is worth noticing that if the aforementioned left hand is biological, it is not
possible to bring it into coincidence with the right hand at the molecular level
by rotating it through the fourth dimension. The reason is that all of the right
handed DNA will be converted to left handed DNA by the rotation operation.
To see this clearly, consider constructing the two-dimensional "L" out of right
handed L-shaped tiles, nested together, say four along the short leg, and six
along the long leg. Once reflected in the y axis, each tile will be left handed,
and so will not coincide with a left handed "L" constructed from right handed
tiles.

Chirality gives a four dimensional insight into the nature of double covering,
demonstrates the fundamental importance of the simple concept of a reflection,
and illustrates that three dimensional rotations are just a subset of fully gener-
al four dimensional rotations. The algebra of quaternions is four dimensional
because it models four dimensional rotation operations, which necessarily in-
clude all three dimensional operations as a proper subset.

Definitions
In keeping with the empirical perspective of this article the presentation fo-
cuses on the practical needs of an implementor of a technological subsystem
embodying quaternion algebra. Typically, such subsystems are software sys-
tems executing on a digital computer. In contrast to a pure mathematician,
a practitioner is always concerned with the low level detail of a representa-
tion, for these details ultimately determine whether a system works correctly
or fails. Wherever possible, the details will be hidden by an abstraction which
approaches a pre-existing mathematical ideal, but due to the finite nature of
computing, such abstractions necessarily fall short of pure mathematics.

In keeping with this approach, the terminology and notation is chosen to reflect
modern mathematical use wherever possible, and deviates to reflect modern
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technological use in aspects where details are important or known to be trou-
blesome. These sections define the concepts, terminology, and notation useful
in this presentation.

Concepts
It is important to clearly define the distinct mathematical concepts in order to
separate their utilization and incompatibilities when implementing a geometri-
cal algorithm. The resulting taxonomy can be implemented with the class defi-
nition facilities available in more modern programming languages. In practice,
an amalgam of different, incompatible concepts is necessary in a given appli-
cation, and the transition between them is accomplished by ad hoc methods.
Careful definition minimizes the potential for operational error.

Euclidean space
Euclidean space is the set of absolute positions in n-dimensional space, typ-
ically represented by an n-tuple referred to an orthonormal basis. In three
dimensions, it is a representation of the classical physical world we live in, and
in four dimensions, it can represent various abstract extensions of that world,
including the physicist’s space-time, other non-Euclidean geometries, or the
four dimensional analogue of our world.

Addition of two positions is not well defined in Euclidean space. This can be
seen by considering that an n-tuple representation of an object depends upon
the choices of origin and basis orientation, which are arbitrary. Therefore,
the sum of two positions in one representation produces an absolute position,
which will not equal the absolute position implied by the sum produced in
another representation. This problem arises when simply translating the origin
some small distance from the original representation. (illustrative figure here)
The positions are unique absolute physical positions, whereas the n-tuple is
merely a symbolic abstraction.

The addition of a difference of two positions is, however, well defined, yielding
a unique absolute position independent of coordinate representation. Such a
difference is traditionally called a vector in contradistinction to a position. It
has a fixed length, which is called the distance between two positions. This
length is easily computed using the familiar Euclidean metric. The Euclidean
metric is invariant under rigid transformations of the space, i.e. under rotations
and translations.

Any two positions [a] and [b] define two vectors [v] = [a - b], and -[v] = [b -
a]. While the specific n-tuple defining [v] varies with coordinate representa-
tion, the addition of [v] to a position referred to the same basis produces an
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n-tuple referred to that basis, representative of an absolute position which is
independent of the particular basis chosen for performing the computations.

In practice, Euclidean space is the world or rendering space of a computer
graphics system, or the space in which servos and sensors operate in a control
system. It is the space in which object definitions are instantiated by placing
them at specific positions in the world space. It is the target space of a series
of computations.

Affine space
Affine space is the set of differentials on Euclidean space. Since all of the
elements are differences, addition of two elements produces another differ-
ence, so addition is well defined, independent of the coordinate system chosen
for the underlying Euclidean space. Affine space is commonly called a vec-
tor space, and admits scalar multiplication as well as the Euclidean metric,
although these are optional.

In practice, affine space is the space in which objects are defined, referred to
a basis which varies from object to object, and which is typically chosen for its
convenience for defining the object at hand.

Projective space
Projective space is one possible non-Euclidean affine space. As the name im-
plies, projective space is a set well suited to defining and manipulating pro-
jective transformations, more generally called möbius transformations. These
include, in particular, the all important perspective transformations of com-
puter graphics and imaging systems. The Euclidean metric is not preserved
by möbius transformations, but the cross-ratio, which measures the relative
proportion of a differential to two other differentials, is invariant.

There are several ways to represent projective space, but perhaps the most com-
mon is the homogeneous representation. This method establishes an equiva-
lence class among points on a line through the origin in a space with dimension
one greater than the target space. Thus, for example, a point in three dimen-
sional projective space is represented by the quadruple [w x y z] with [1 x/w
y/w z/w] considered to be the canonical representation. Two points are equiv-
alent if and only if their canonical representations are equal. More detailed de-
scriptions of projective geometries may be found in (citation: Projective Geom-
etry, H.S.M. Coxeter, Blaisdell Publishing Company, copyright 1964) (citation:
The Real Projective Plane, H.S.M. Coxeter, Cambridge University Press, copy-
right 1955 & Springer-Verlag, copyright 1993) (citation: Geometry - A Com-
prehensive Course, Dan Pedoe, Cambridge University Press, copyright 1970)
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A projective geometry is a dual space in which a one to one equivalence is es-
tablished between points in the space and the set of n-1 dimensional subspaces.
One consequence is that a projective space is not orientable. For example, in
two dimensions, the projective space can be created from the Euclidean plane
by adjoining to the Euclidean set a line at infinity, which is dual to the origin.
Subsequently, it is not possible to say which "side" of a line a point is on, since
it is always possible to go around through the line at infinity, and the absence
of the Euclidean metric makes the notion of distance meaningless. A practical
consequence of non-orientability in a graphics system is that objects behind
the viewpoint can wrap around through infinity and show up as background
clutter in a rendering. This problem is usually accommodated by including a
rear clipping plane during rendering.

In practice, three dimensional projective space is the space of choice for per-
forming the coordinate transformations necessary to instantiate a database of
object descriptions in a world space. The Euclidean metric and orientability are
usually implemented in various ad hoc ways - see for example (citation: Ori-
ented Projective Geometry: a Framework for Geometric Computations, Jorge
Stolfi, Academic Press, copyright 1991) (citation: Curves and Surfaces for
Computer Aided Geometric Design: a Practical guide, Gerald E. Farin, Aca-
demic Press, copyright 1988).

Operator space
An operator space is a set of endomorphic mappings on an object space. The
composition of two operators yields another mapping on the object space, so
the composition is contained within the operator space.

For example, the set of 3x3 matrices is an operator space on three dimensional
Euclidean space, and the set of 4x4 matrices is an operator space on three
dimensional projective space. Composition can be matrix multiplication or
addition. Application of the operator is achieved via matrix multiplication. If
the object space is considered a row vector, the operator is right applicative, i.e.
it is a postfix operator. If the object space is considered a column vector, the
operator is left applicative, i.e. it is a prefix operator. In these two examples,
the operator and object spaces are disjoint, and the only interface between the
two is the definition of operator application.

This need not be the case. The quaternions form an operator space on 4-
vectors. Composition can be quaternion multiplication or quaternion addition.
Application, in the most general sense, is quaternion multiplication or addition,
and may be right or left applicative. Most importantly, there is a one to one
correspondence between each 4-vector and each quaternion operator, i.e. each
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4-vector may be interpreted as an operator and vice versa. The identity be-
tween these two sets can lead to much confusion, so it is important to separate
the definitions.

The set of 4-vectors is simply an affine vector space. The quaternions are a
division algebra. In the parlance of computer programming, they are two dif-
ferent data types. The interface between the types includes the definitions of
operator application, and a pair of explicit type conversion functions. Mixed ex-
pressions outside these limits will cause implicit type conversion errors during
compilation in strongly typed programming languages and produce execution
exceptions or incorrect operation in other languages.

The larger purpose of this article is to establish the equivalence of traditional
matrix operator representations and the quaternion operator representation,
together with conversion algorithms. In practice, a quaternion representa-
tion is more adaptable to creating intuitive user interfaces, while the matrix
representation is more computationally efficient. User interface routines are
therefore typically implemented with quaternions for code clarity and ease of
modification, while execution engines are implemented with matrices for per-
formance. Robust and correct conversion procedures are therefore necessary.

[This article is under reconstruction. The preceding text is essential complete,
except for minor editing, such as checking spelling, formatting, and link inser-
tion. The following text still needs attention]

Terminology

Historical
Some of the historical terminology has its origin in the writings of Sir William
Rowan Hamilton, the inventor of quaternions. Other terms simply illustrate
the evolution of language in the diverse, sometimes incompatible, endeavors
of a broad topical area such as mathematics. The only historical terms that
are used in this article are norm and the usage of conjugate with origins in
complex analysis.

Tensor

Derived from the Latin tendere, tensum - to stretch the term tensor has a
modern usage completely disjoint from its usage in early papers on quater-
nions, where it was synonymous with the magnitude of a quaternion. The
1909 Webster’s defines the quaternion tensor

2. Geom. The ratio of the mere lengths of two vectors; - so called as
merely stretching one vector into another. The tensor, denoted by Tq , of
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a quaternion w+ix+jy+kz is√(w2 +x2 + y2 + z2), the square root of its
norm.

Versor

Derived from the Latin vertere, versum - to turn the term versor may be en-
countered in early papers on quaternions and refers to what is now called
a unit quaternion, i.e. a quaternion whose magnitude is unity. The term
versor is now obsolete, and completely anachronistic.

Conjugate

Used as a noun, the term refers to the counterpart of a given quaternion
whose scalar component is identical to the given scalar component, and
whose spatial component is the given spatial component negated. Used in
this sense, a quaternion conjugate is analogous to the complex conjugate
of complex number theory. The formation of a conjugate is the comple-
mentary operation of a reflection: a reflection negates a one dimensional
subspace and fixes the remainder; in contrast, a conjugate fixes one dimen-
sion, and negates the remainder. Given [q], [q*] denotes the conjugate of
[q].

Used as a verb, it may mean to form a quaternion conjugate, a meaning
which has its origins in complex analysis. It may also mean to form [q*vq],
or [pvq] where [p] and [q] are unit quaternions, and [v] is a 3-vector in the
former case, and a 4-vector in the latter. This second meaning has its ori-
gins in group theory, and may be expressed "conjugate [v] by [q]". In order
to avoid confusion, this article avoids this second usage and expresses the
same idea by the phrase "apply [q] to [v]".

Norm

The Oxford English Dictionary (citation: Oxford English Dictionary, Oxford
University Press, copyright 1933, Vol. N, pp207) defines norm as

b. Algebra. (See quot.) 1866 Brande & Cox Dict. Sci., etc. II 228/2
the product a2 + b2 of a complex number a+ b

√(−1) and its conjugate
a− b

√(−1) is called its norm.

Notice this definition reinforces the implicit definition in the citation under
"tensor" above, and shows the usage in most modern works, which defines
the norm as synonymous with magnitude, is a relatively recent change



DR
AF

T

233

Quaternions and spatial rotation

in terminology. Notably, John Conway, in his recent work (citation: On
Quaternions and Octonions: their geometry, arithmetic, and symmetry,
Conway, John H. & Smith, Derek A., A. K. Peters, copyright 2003) resur-
rects this older usage to good effect. This article conforms to this older
usage in order to unambiguously distinguish between the concepts of norm
and magnitude as well as to clarify the presentation of the generalized
pythagorean theorem.

Scalar part

The real number component of a quaternion.

Imaginary part

Analogous to a complex number a+bi, a quaternion may be written as
a+bu where [u] is a unit 3-vector. The set a+bu where [u] is fixed and a
and b are arbitrary real numbers is isomorphic to the complex numbers. In
particular , note that [u2]=-1. The quaternions therefore comprise infinitely
many copies of the complex numbers, each defined by a vector [u] on the
surface of the unit sphere in three dimensional space. As such, this article
refers to the imaginary component as the spatial component, or a 3-vector.

Pure quaternion

A quaternion whose scalar component is zero, i.e. is purely imaginary. In
this article, such an entity is simply called a 3-vector.

Modern
n-tuple

a linear array of n real numbers [a0 a1 ... a(n-1)] with a(i) typically repre-
sented as a floating point number.

orthonormal basis

n mutually orthogonal unit vectors which span an n-dimensional space.

vector

An n-tuple interpreted as the coordinates of a spatial position referred to
an orthonormal basis.
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3-vector

A three dimensional spatial position referred to the orthonormal basis

• i=[0 1 0 0]
• j=[0 0 1 0]
• k=[0 0 0 1]

4-vector

A four dimensional spatial position referred to the 3-vector’s basis aug-
mented by the unit vector

• h=[1 0 0 0]

quaternion

a 4-vector resulting from the polynomial product of two 3-vectors where
[i2]=[j2]=[k2]=[ijk]=-1 and [h2]=[h], i.e. [h]=1. A quaternion may be
thought of as the sum of a scalar (the [h] coordinate) and a 3-vector.

Notation
The notation used herein is an amalgam of various mathematical notations in
common use, and notations which have proven convenient in programming
systems. The decision to use a particular element in the notation was governed
by the following considerations in decreasing priority.

• Established precedent in existing mathematical discourse, leading to read-
ability

• Unambiguous representation of concepts, thereby avoiding confusion
• Harmonious cohesion with other elements, allowing concise expression
• Practical specification of detail, providing utility
• Linear denotation, for ease of editing

Apart from the specific amalgam, there is one feature that distinguishes the
notation from other mathematical notations: the notation forms a context free
grammar. Expressions in the notation may therefore easily be interpreted by
machine, or compiled into executable code. Moreover, the notation may easily
be adapted to any existing programming language, by running it through a pre-
processor which converts the notation into the appropriate, but less readable,
series of library function calls.
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Elements
There are two essential attributes of any data object: the actual representation
of the object, and the address where it is stored. The former may be either
an atomic element, specific to a particular architecture, e.g. a byte of mem-
ory, or a linear array of such atoms, i.e. an n-tuple. The specific meaning or
formatting associated with these essentials is an interpretation layered on top.
What follows is an explication of semantics associated with the typographical
representation of these essentials.

Scalars

are denoted by italic text, e.g. a, b, c, s, etc. In keeping with mathematical
notation and existing programming conventions of static and automatic
allocation, the address of a scalar’s storage location is implicit.

n-tuples

are typically dynamically allocated, and access to addresses (pointers) is
important. The address of the storage location of an n-tuple is denoted
by bold text, e.g. u, v, w, p, q, etc. The actual data value is denoted by
[address], e.g. [v], [q], etc. This usage is an amalgam of the long standing
textual denotation of matrices and vectors found in mathematical tracts,
and the usage of a simlar notation for dereferencing addresses found in
many assembly language syntaxes. It also reflects the notation for array
subscripting used in many higher level languages. The symbols [] may be
thought of as a dereferencing operator, more fully described below.

Rectangular arrays

are n-tuples with n = (l)(m) and an interpretation imposed which views
successive l-tuples as the rows of an l x m array. These arrays are denoted
by bold capital text in the same fashion as n-tuples, e.g. [A], [B], [M], [N], etc.

Arithmetic operations
Multiplication

e.g. (a)(b), a[b] = [ab], [a][b] = [q].

Division

e.g. a/b, [a/b] = [q].
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Addition

e.g. a+b, [a+b].

Subtraction

e.g. a-b, [a-b].

Bracket operations
[a]

the n-tuple pointed to by a, i.e. a dereferenced. [] has an operator prece-
dence higher than all other operators, and like parentheses, may be nested,
and is evaluated from innermost to outer most.

[a|
the n-tuple [a] interpreted as a row vector.

|b]

the n-tuple [b] interpreted as a column vector, i.e. the transpose of a row
vector.

[a|b]

the inner product (i.e. matrix product) of the row vector [a| and the column
vector |b], which reflects the notation used by physicist’s in a way which
is harmonious with the notation for the fundamental semantic here: finite
n-tuples.

[A|
the rectangular array [A].

|A]

the transpose of the rectangular array [A]. The transposition operator is
second in priority only to the dereferencing operator [].

[A|A]

the matrix product of the array [A| and its transpose |A].
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[a b]

the wedge product of [a] and [b]. In three dimensions, this is the cross
product, and reflects the notation used in many european mathematical
tracts. It also follows the notation of Grassman algebras, where is four
dimensions, [a b c] denotes a generalized cross product, i.e. a vector or-
thogonal to the parallelepiped defined by [a], [b], and [c], with magnitude
equal to its volume.

[A B]

the matrix product of two compatible square arrays.

||a||
the norm of the n-tuple [a], i.e. the determinant of [a|a].

||A||
the determinant of [A|A]

|a|
the absolute value or magnitude of the n-tuple [a], i.e. the Euclidean metric
equal to the square root of the norm.

|A|
the square root of ||A||, where [A] is an l x m array, i.e. the m-volume of the
parallelepiped defined by the m rows of [A] in l dimensional space. (cita-
tion: k-Volume in Rn and the Generalized Pythagorean Theorem, Gerald J.
Porter, American Mathematical Monthly vol. 103 #3 pp252, Mathematical
Association of America, copyright March 1996)

Conventions

Example
A typical three dimensional projective space viewing transformation in left ap-
plicative form is denoted by:

[w] = [P:T:R:S|v]

Where P, T, R, S are perpective, translational, rotational, and scaling matrices
respectively. The same operation denoted in right applicative form is:
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[w] = [v|S:R:T:P]

That is, each matrix is transposed immediately following dereferencing, so the
stored representation of each matrix is identical for both computations, and
the resulting n-tuple is identical.

Reflections
Geometrically, a reflection in an n dimensional space is defined as the opera-
tor which fixes an (n-1) dimensional subspace and negates the corresponding
mutually exclusive one dimensional subspace. This mutually exclusive one di-
mensional subspace is called the axis of reflection.

A reflection may be thought of as negating a single coordinate in a given rep-
resentation, keeping all of the remaining coordinates unchanged. Since the
choice of origin and basis are arbitrary, any arbitrary reflection may be so de-
fined by a suitable choice of origin, and selecting one coordinate, say the first
in the n-tuple, to represent the orthogonal projection of each vector onto the
axis of reflection.

In two dimensions, the line orthogonal to the axis of reflection is called the
mirror axis. In three dimensions, the plane orthogonal to the axis of reflection
is called the mirror plane. In higher dimensions, the n-1 dimensional subspace
orthogonal to the axis of reflection is called the mirror space. Vectors contained
within the mirror space project onto the axis of reflection with zero magnitude.
Such vectors are therefore unchanged by the reflection, and so it is clear why
the (n-1) dimensional mirror space is called the fixed space of a reflection.

Analytic form of a reflection
Arbitrary vectors may be uniquely decomposed into the sum of a vector in
the fixed space and a vector on the axis of reflection. The tool for computing
such a decomposition is the inner product [a|v]. A reflection may therefore be
concretely represented by a vector [a] along the axis of reflection. For computa-
tional convenience, [a] is assumed to have unit magnitude. There are two such
unit vectors for each reflection, and for the purposes of computing a simple
reflection, both are equivalent.

Define m(a,v) to be the reflection represented by [a] applied to an arbitrary
vector [v]. Then

m(a,v) = [v-2[a|v]a]

That is, geometrically, subtracting from [v] the projection of [v] onto [a] moves
[v] into the fixed space, and subtracting the same quantity again yields the
mirror image of [v] on the other side of the mirror space.
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Rotations
Geometrically, a rotation in an n dimensional space is defined as the operator
which fixes an (n-2) dimensional subspace. The corresponding mutually ex-
clusive two dimensional subspace is said to be rotated if distances within this
plane are also preserved. This mutually exclusive two dimensional subspace is
called the plane of rotation. The set of rotations of a space form a proper sub-
set of the rigid motions of the space, which comprises all reflections, rotations,
and translations.

In two dimensions the point orthogonal to the plane of rotation is called the
center of rotation. In three dimensions the line orthogonal to the plane of
rotation is called the axis of rotation. Logically, in higher dimensions the (n-
2) dimensional subspace orthogonal to the plane of rotation would be called
the subspace of rotation, but this terminology is apt to be confused with the
plane of rotation, and will be avoided. It will suffice to refer to this orthogonal
subspace as the fixed space of a rotation.

The progression of terminology is instructive, however, for it makes plain that
the essence of a rotation, like a reflection, is the space which moves, and the
fixed space is more ambiguous, depending on the dimension of the objects un-
der consideration. Given human immersion in an ostensibly three dimensional
Euclidean space, rotations are commonly thought of in terms of the axis of
rotation, but this is a misdirection. Spatial rotations are fundamentally four
dimensional quantities, which move a plane and fix an orthogonal plane. This
truth is an implication of the Hurwitz-Frobenius Theorem, which states that the
only division algebras over the real numbers are the real numbers, the complex
numbers, the quaternions, and the octonians. There is no three dimensional
division algebra, so even though we can not perceive a fixed fourth dimension
in any physical rotation, it implicitly exists in the underlying mathematical ab-
stractions.

Rotation: the composition of two reflections

Quaternion representation of a rotation

General rotations in four dimensional space

Canonical form
[This article is under reconstruction. The preceding text is in transition. The
following text still embodies concepts not yet incorporated in the revision.]
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Algebraic rules
Every quaternion z = a + bi + cj + dk can be viewed as a sum a + u of a
real number a (called the “real part” of the quaternion) and a 3-vector u = (b,
c, d) = b i + cj + dk in R3 (called the “imaginary part”).

Two such quaternions are added by adding the real parts and the imaginary
parts separately:

(a + u) + (b + v) = (a + b) + (u + v)

The multiplication of quaternions translates into the following rule:

(a + u) (b + v) = (ab - <u, v>) + (av + bu + u × v)

Here, <u, v> denotes the scalar product and u × v the vector product of u and
v.

This formula shows that two quaternions z and w commute, i.e., zw = wz, if
and only if their imaginary parts are collinear vectors (because, in this case, the
vector product of their imaginary parts will simply be equal to the zero vector).

Other properties
Consider the quaternions with modulus 1. They form a multiplicative group,
acting on R3: for any such quaternion z = cos α2 + sin α

2 v̂, the mapping f(x) =
z x z * is a counterclockwise rotation through an angle α about an axis v; -z is
the same rotation. Composition of arbitrary rotations in R3 corresponds to the
fairly simple operation of quaternion multiplication.

A pair of quaternions also allows for compact representations of rotations in
4D space; this is because the four-dimensional rotation group SO(4) may be
written as a semi-direct product of the three-dimensional rotation group SO(3).
The quaternions are, in turn, closely related to the double covering of SO(3)
by SU(2). Also closely related are the Lorentz group SL(2,C) and the Poincaré
group.

Quaternion rotation
It is well known that the vector product is related to rotation in space. The goal
then is to find a formula which expresses rotation in 3D space using quaternion
multiplication, similar to the formula for a rotation in 2D using complex mul-
tiplication,

f(w) = zw,
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where

z = eαi

is used for rotation by an angle α.

The formula in 3D cannot be a simple multiplication with a quaternion, because
rotating a vector should yield a vector. Multiplying a vector with a non-trivial
quaternion yields a result with non-zero real part, and thus not a vector.

It turns out that we can cancel the real part if we multiply by a quaternion from
one side and with its inverse from the other side. Let z = a + u be a non-zero
quaternion, and consider the function

f(v) = z v z -1

where z -1 is the multiplicative inverse of z and v is a vector, considered as a
quaternion with zero real part. The function f is known as conjugation by z.
Note that the real part of f(v) is zero, because in general zw and wz have the
same real part for any quaternions z and w, and so
R(z v z

−1) = R(v z
−1

z) = R(v 1) = 0

(note that this proof requires the associativity of quaternion multiplication).
Furthermore, f is R-linear and we have f(v) = v if and only if v and the imagi-
nary part u of z are collinear (because f(v) = v means v z = z v). Hence f is
a rotation whose axis of rotation passes through the origin and is given by the
vector u.

Note that conjugation with z is the equivalent to conjugation with rz for any
real number r. We can thus restrict our attention to the quaternions of absolute
value 1, the so-called unit quaternions. Note that even then z and -z represent
the same rotation. (The absolute value |z| of the quaternion z = a + v is
defined as the square root of a 2 + ||v||2, which makes it multiplicative: |zw|
= |z| |w|.) Inverting unit quaternions is especially easy: If |z| = 1, then z -1 =
z * (the conjugate z * of the quaternion z = a + v is defined as z * = a - v) and
this makes our rotation formula even easier.

It turns out that the angle of rotation α is also easy to read off if we are dealing
with a unit quaternion z = a + v: we have

a = cos α2 .

To summarize, a counterclockwise rotation through an angle α about an axis v
can be represented via conjugation by the unit quaternion z
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z = cos α2 + sin α
2 v̂

where v̂ is the normalized vector

v̂ = v
||v|| .

The composition of two rotations corresponds to quaternion multiplication: if
the rotation f is represented by conjugation with the quaternion z and the
rotation g is represented by conjugation with w, then the composition f g is
represented by conjugation with zw.

If one wishes to rotate about an axis that doesn’t pass through the origin, then
one first translates the vectors into the origin, conjugates, and translates back.

The angle between two quaternions should not be confused with the angle
of rotation involved in the rotation between the orientations corresponding
to these quaternions: the former is half of the latter (or 180◦ minus half the
latter). The angle between the axes of two rotations is again different.

For example the quaternion for the identity is ±1 and for a 180◦ rotation about
the z-axis is ±k. The angle between the two quaternions is 90◦. The angle
between the axes of the two rotations is in this case undefined.

An example
Consider the rotation f around the axis u = i + j + k, with a rotation angle of
120◦, or 2π/3 radians.

α = 2π
3 = 120◦

The length of u is
√

3, the half angle is π/3 (60◦) with cosine 1/2 (cos 60◦ = 0.5)
and sine

√
3/2 (sin 60◦ = 0.866). We are therefore dealing with a conjugation

by the unit quaternion

z = cos α2 + sin α
2 û

z = cos 60◦ + sin 60◦ û

z = 1
2 +

√
3

2 · û

z = 1
2 +

√
3

2 · (i+j+k)√
3

z = 1+i+j+k
2 .
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Concretely,

f(ai + bj + ck) = z (ai + bj + ck) z∗ .

Note that z∗ = 1/z, as z has unit modulus; here z∗ = (1-i -j -k)/2. This can be
simplified, using the ordinary rules for quaternion arithmetic, to

f(ai + bj + ck) = ci + aj + bk,

as expected: the rotation corresponds to keeping a cube held fixed at one point,
and rotating it 120◦ about the long diagonal through the fixed point (observe
how the three axes are permuted cyclically).

Quaternions versus other representations of rota-
tions
The representation of a rotation as a quaternion (4 numbers) is more compact
than the representation as an orthogonal matrix (9 numbers). Furthermore, for
a given axis and angle, one can easily construct the corresponding quaternion,
and conversely, for a given quaternion one can easily read off the axis and the
angle. Both of these are much harder with matrices or Euler angles.

In computer games and other applications, one is often interested in “smooth
rotations,” meaning that the scene should slowly rotate and not in a single
step. This can be accomplished by choosing a curve such as the spherical linear
interpolation in the quaternions, with one endpoint being the identity transfor-
mation 1 (or some other initial rotation) and the other being the intended final
rotation. This is more problematic with other representations of rotations.

When composing several rotations on a computer, rounding errors necessarily
accumulate. A quaternion that’s slightly off still represents a rotation after
being normalised—a matrix that’s slightly off need not be orthogonal anymore
and therefore is harder to convert back to a proper orthogonal matrix.

The orthogonal matrix corresponding to a rotation by the unit quaternion z =
a + bi + cj + dk (with |z| = 1) is given by




a
2 + b

2
− c

2
− d

2 2bc− 2ad 2ac + 2bd

2ad + 2bc a
2
− b

2 + c
2
− d

2 2cd − 2ab

2bd− 2ac 2ab + 2cd a
2
− b

2
− c

2 + d
2





(Compare the equivalent general formula for a 3 × 3 rotation matrix in terms
of the axis and the angle.)
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See also: Charts on SO(3), Euler angles

Pairs of unit quaternions as rotations in 4D space
A pair of unit quaternions z l and z r can represent any rotation in 4D space.
Given a four dimensional vector v, and pretending that it is a quaternion, we
can rotate the vector v like this:

f(v) = zlvzr =









al −bl −cl −dl

bl al −dl cl

cl dl al −bl

dl −cl bl al

















ar −br −cr −dr

br ar dr −cr

cr −dr ar br

dr cr −br ar

















w

x

y

z









It is straightforward to check that for each matrix M M T = I, that is, that
each matrix (and hence both matrices together) represents a rotation. Note
that since (z l v) z r = z l (v z r), the two matrices must commute. Therefore,
there are two commuting subgroups of the set of four dimensional rotations.
Arbitrary four dimensional rotations have 6 degrees of freedom, each matrix
represents 3 of those 6 degrees of freedom.

Since an infinitesimal four-dimensional rotation can be represented by a pair
of quaternions (as follows), all (non-infinitesimal) four-dimensional rotations
can also be represented.

zlvzr =









1 −dtab −dtac −dtad

dtab 1 −dtbc −dtbd
dtac dtbc 1 −dtcd

dtad dtbd dtcd 1

















w

x

y

z









zl =
(
1 + dtab+dtcd

2 i+ dtac−dtbd
2 j + dtad+dtbc

2 k
)

zr =
(
1 + dtab−dtcd

2 i+ dtac+dtbd
2 j + dtad−dtbc

2 k
)

Quaternions are used in computer graphics and related fields because they al-
low for compact representations of rotations, or correspondingly, orientations,
in 3D space:

See also

• Slerp — spherical linear interpolation
• conversion between quaternions and Euler angles
• rotation group
• coordinate rotations
• Clifford algebras
• spinor group
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• covering map
• 3-sphere

External links and resources

• [ftp://ftp.cis.upenn.edu/pub/graphics/shoemake/quatut.ps.Z Shoemake.
Quaternion tutorial]

• Hart, Francis, Kauffman. Quaternion demo267

• Dam, Koch, Lillholm. Quaternions, Interpolation and Animation268

• Byung-Uk Lee, Unit Quaternion Representation of Rotation269

Source: http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation

Principal Authors: Patrick, Cyp, Fropuff, Enosch, AxelBoldt, Orderud, Michael Hardy

Radiosity

Radiosity is a global illumination algorithm used in →3D computer graphics
rendering. Unlike direct illumination algorithms (such as ray tracing), which
tend to simulate light reflecting only once off each surface, global illumination
algorithms such as Radiosity simulate the many reflections of light around a
scene, generally resulting in softer, more natural shadows.

As a rendering method, Radiosity was introduced in 1984 by researchers at
Cornell University (C. Goral, K. E. Torrance, D. P. Greenberg and B. Battaile)
in their paper "Modeling the interaction of light between diffuse surfaces". The
theory had been in use in engineering to solve problems in radiative heat trans-
fer since about 1950.

Notable commercial Radiosity engines have been Lightscape (now incorporat-
ed into the Autodesk 3D Studio Max internal render engine), and Radiozity by
Auto*Des*Sys. Radiance (http://radsite.lbl.gov/radiance/), an open source
Synthetic Image System that seeks physical accurate lightning effects, also
makes use of the Radiosity method.

http://graphics.stanford.edu/courses/cs348c-95-fall/software/quatdemo/267

http://www.diku.dk/publikationer/tekniske.rapporter/1998/98-5.ps.gz268

http://home.ewha.ac.kr/~bulee/quaternion.pdf269
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Visual characteristics
The inclusion of radiosity calculations in the rendering process often lends an
added element of realism to the finished scene, because of the way it mimics
real-world phenomena. Consider a red ball sitting on a white floor.

Figure 75 Demonstration of a hybrid of radiosity ren-
dering and ray tracing

Light strikes the ball, casting a shadow, as well as reflecting a tiny amount of
red light to surrounding objects - in this case, the floor. This phenomenon gives
the white floor, in the vicinity of the ball, a reddish hue. The effect is subtle,
but since the human eye is accustomed to its counterpart in the real world, it
helps create the illusion of realism.

Physical characteristics
The basic radiosity method has its basis in the theory of thermal radiation,
since radiosity relies on computing the amount of light energy transferred be-
tween two surfaces. In order to simplify the calculations, the radiosity algo-
rithm assumes that this amount is constant across the surfaces (perfect or ideal
Lambertian surfaces); this means that to compute an accurate image, geometry
in the scene description must be broken down into smaller areas, or patches,
which can then be recombined for the final image.

After this breakdown, the amount of light energy transfer can be computed by
using the known reflectivity of the reflecting patch, combined with the form
factor of the two patches. This dimensionless quantity is computed from the
geometric orientation of two patches, and can be thought of as the fraction of
the total possible emitting area of the first patch which is covered by the second
patch.

More correctly radiosity is the energy leaving the patch surface per discrete
time interval and is the combination of emitted and reflected energy:
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BidAi = EidAi +Ri
∫
j BjFjidAj

Where:

• Bi is the radiosity of patch i.
• Ei is emitted energy.
• Ri is the reflectivity of the patch, giving reflected energy by multiplying by

the incident energy (the energy which arrives from other patches).
• All j (j 6= i) in the rendered environment are integrated for BjFjidAj, to

determine the energy leaving each patch j that arrives at patch i.
• Fji is a constant form factor for the geometric relation between patch i and

each patch j.

The reciprocity:

FijAi = FjiAj

gives:

Bi = Ei +Ri
∫
j BjFij

For ease of use the integral is replaced and constant radiosity is assumed over
the patch, creating the simpler:

Bi = Ei +Ri
∑n

j=1BjFji

This equation can then be applied to each patch. The equation is monochro-
matic, so color radiosity rendering requires calculation for each of the required
colors.

The constant Fji can be calculated in a number of ways. Early methods used
a hemicube (an imaginary cube centered upon the first surface to which the
second surface was projected, devised by Cohen and Greenberg in 1985) to
approximate the form factor, which also solved the intervening patch problem.
This is quite computationally expensive, because ideally form factors must be
derived for every possible pair of patches, leading to a quadratic increase in
computation with added geometry.

Limitations
As radiosity only deals with the global radiance transfer between objects,
position-dependent effects such as reflection (including specular lighting) and
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refraction cannot be simulated directly with this method. However, some sys-
tems use hybrid approaches, making use of radiosity for illumination and ray
tracing (or some other technique) for position-dependent effects.

External links

• Radiosity, by Hugo Elias270 (also provides a general overview of lighting
algorithms, along with programming examples)

• Radiosity, by Allen Martin271 (a slightly more mathematical explanation of
radiosity)

Source: http://en.wikipedia.org/wiki/Radiosity

Principal Authors: Wapcaplet, Osmaker, Sallymander, Snorbaard, Uriyan, Mintleaf

Ray casting

Ray casting is not a synonym for ray tracing, but can be thought of as an
abridged, and significantly faster, version of the ray tracing algorithm. Both are
image order algorithms used in computer graphics to render three dimensional
scenes to two dimensional screens by following rays of light from the eye of
the observer to a light source. Ray casting does not compute the new tangents
a ray of light might take after intersecting a surface on its way from the eye
to the source of light. This eliminates the possibility of accurately rendering
reflections, refractions, or the natural fall off of shadows – however all of these
elements can be faked to a degree, by creative use of texture maps or other
methods. The high speed of calculation made ray casting a handy method for
the rendering in early real-time 3D video games.

In nature, a light source emits a ray of light which travels, eventually, to a
surface that interrupts its progress. One can think of this "ray" as a stream of
photons travelling along the same path. At this point, any combination of three
things might happen with this light ray: absorption, reflection, and refraction.
The surface may reflect all or part of the light ray, in one or more directions.
It might also absorb part of the light ray, resulting in a loss of intensity of the

http://freespace.virgin.net/hugo.elias/radiosity/radiosity.htm270

http://web.cs.wpi.edu/~matt/courses/cs563/talks/radiosity.html271
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reflected and/or refracted light. If the surface has any transparent or translu-
cent properties, it refracts a portion of the light beam into itself in a different
direction while absorbing some (or all) of the spectrum (and possibly altering
the color). Between absorption, reflection, and refraction, all of the incoming
light must be accounted for, and no more. A surface cannot, for instance, re-
flect 66% of an incoming light ray, and refract 50%, since the two would add
up to be 116%. From here, the reflected and/or refracted rays may strike other
surfaces, where their absorptive, refractive, and reflective properties are again
calculated based on the incoming rays. Some of these rays travel in such a
way that they hit our eye, causing us to see the scene and so contribute to the
final rendered image. Attempting to simulate this real-world process of tracing
light rays using a computer can be considered extremely wasteful, as only a
minuscule fraction of the rays in a scene would actually reach the eye.

The first ray casting (versus ray tracing) algorithm used for rendering was
presented by A. Appel in 1968. The idea behind ray casting is to shoot rays
from the eye, one per pixel, and find the closest object blocking the path of
that ray - think of an image as a screen-door, with each square in the screen
being a pixel. This is then the object the eye normally sees through that pixel.
Using the material properties and the effect of the lights in the scene, this
algorithm can determine the shading of this object. The simplifying assumption
is made that if a surface faces a light, the light will reach that surface and not be
blocked or in shadow. The shading of the surface is computed using traditional
3D computer graphics shading models. One important advantage ray casting
offered over older scanline algorithms is its ability to easily deal with non-
planar surfaces and solids, such as cones and spheres. If a mathematical surface
can be intersected by a ray, it can be rendered using ray casting. Elaborate
objects can be created by using solid modelling techniques and easily rendered.

Ray casting for producing computer graphics was first used by scientists at
Mathematical Applications Group, Inc., (MAGI) of Elmsford, New York, New
York. In 1966 the company was created to perform radiation exposure calcula-
tions for the Department of Defense. MAGI’s software calculated not only how
the gamma rays bounced off of surfaces (ray casting for radiation had been
done since the 1940s), but also how they penetrated and refracted within.
These studies helped the government to determine certain military applica-
tions ; constructing military vehicles that would protect troops from radiation,
designing re-entry vehicles for space exploration. Under the direction of Dr.
Philip Mittelman, the scientists developed a method of generating images us-
ing the same basic software. In 1972 MAGI became a commercial animation
studio. This studio used ray casting to generate 3-D computer animation for
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television commercials, educational films, and eventually feature films – they
created much of the animation in the film Tron using ray casting exclusively.
MAGI went out of business in 1985.

Wolfenstein 3d
The world in Wolfenstein 3d is built from a square based grid of uniform height
walls meeting solid coloured floors and ceilings. In order to draw the world,
a single ray is traced for every column of screen pixels and a vertical slice of
wall texture is selected and scaled according to where in the world the ray hits
a wall and how far it travels before doing so.

The purpose of the grid based levels is twofold - ray to wall collisions can
be found more quickly since the potential hits become more predictable and
memory overhead is reduced.

Duke Nukem 3d
Duke Nukem 3d uses an algorithm similar to Wolfenstein 3d but abandons the
grid based levels, preferring a sector based approach. Levels are designed as
a series of convex polyhedral sectors which share edges to form non-convex
shapes. The shared edges are known as portals. Rays are cast as in Wolfenstein
3d to determine texture and wall height in every column of the display, but the
sector that the ray is in is kept track of in order to minimise collision tests.

Ray casting is used to produce flat floor and ceiling graphics in a very similar
way, except that viewer rotation around the y axis is taken into account when
drawing pixel rows.

Doom
Doom’s use of ray casting is very limited. The Doom engine’s primary drawing
algorithm is based on a binary space partitioning tree system that determines
which walls and floors are visible from any particular position. Ray casting is
used to determine texture position and scaling on walls but only after the walls
that the rays will hit are already known. This has the advantage of replacing
thousands of expensive divide operations with trigonometric multiplies.

’Mode 7’
’Mode 7’ is a popular name for the display of textured horizontal surfaces,
named after the display mode that allows their pixel plotting to be done in
hardware on the Super Nintendo. These require knowledge of texture offset
and scale per pixel row and are often implemented using the same trigonomet-
ric means as the other algorithms described here.
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References and External links

• Wolfenstein style Ray-Casting Tutorial by F. Permadi272

• Programming a Raycasting Engine Tutorial(QBasic) by Joe King273

• James D. Foley : Computer Graphics: Principles and Practice, Addison-
Wesley 1995, ISBN 02-018-4840-6

Source: http://en.wikipedia.org/wiki/Ray_casting

Principal Authors: Mikhajist, RzR, DaveGorman, Pinbucket, Iamhove, Silsor, Reedbeta

Ray tracing

Figure 76 A ray-traced scene

http://www.permadi.com/tutorial/raycast/272

http://killfest.sytes.net/deltacode/tutorials1.shtml273
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Ray tracing is a general technique from geometrical optics of modelling the
path taken by light by following rays of light as they interact with optical
surfaces. It is used in the design of optical systems, such as camera lenses,
microscopes, telescopes and binoculars. The term is also applied to mean a
specific rendering algorithmic approach in →3D computer graphics, where
mathematically-modelled visualisations of programmed scenes are produced
using a technique which follows rays from the eyepoint outward, rather than
originating at the light sources. It produces results similar to ray casting and
scanline rendering, but facilitates more advanced optical effects, such as ac-
curate simulations of reflection and refraction, and is still efficient enough to
frequently be of practical use when such high quality output is sought.

Broad description of ray tracing computer algo-
rithm

Figure 77 Three spheres, that reflect off the floor and each other

Ray tracing describes a more realistic method than either ray casting or scan-
line rendering, for producing visual images constructed in →3D computer
graphics environments. It works by tracing in reverse, a path that could have
been taken by a ray of light which would intersect the imaginary camera lens.
As the scene is traversed by following in reverse the path of a very large number
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of such rays, visual information on the appearance of the scene as viewed from
the point of view of the camera, and in lighting conditions specified to the soft-
ware, is built up. The ray’s reflection, refraction, or absorption are calculated
when it intersects objects and media in the scene.

Scenes in raytracing are described mathematically, usually by a programmer, or
by a visual artist using intermediary tools, but they may also incorporate data
from images and models captured by various technological means, for instance
digital photography.

Following rays in reverse is many orders of magnitude more efficient at build-
ing up the visual information than would be a genuine simulation of light inter-
actions, since the overwhelming majority of light rays from a given light source
do not wind up providing significant light to the viewers eye, but instead may
bounce around until they diminish to almost nothing, or bounce off to infinity.
A computer simulation starting with the rays emitted by the light source and
looking for ones which wind up intersecting the viewpoint is not practically
feasible to execute and obtain accurate imagery.

The obvious shortcut is to pre-suppose that the ray ends up at the viewpoint,
then trace backwards. After a stipulated number of maximum reflections has
occurred, the light intensity of the point of last intersection is estimated using a
number of algorithms, which may include the classic rendering algorithm, and
may perhaps incorporate other techniques such as radiosity.

Detailed description of ray tracing computer algo-
rithm and its genesis

What happens in nature
In nature, a light source emits a ray of light which travels, eventually, to a
surface that interrupts its progress. One can think of this "ray" as a stream of
photons travelling along the same path. In a perfect vacuum this ray will be a
straight line. In reality, any combination of three things might happen with this
light ray: absorption, reflection, and refraction. A surface may reflect all or part
of the light ray, in one or more directions. It might also absorb part of the light
ray, resulting in a loss of intensity of the reflected and/or refracted light. If the
surface has any transparent or translucent properties, it refracts a portion of the
light beam into itself in a different direction while absorbing some (or all) of
the spectrum (and possibly altering the color). Between absorption, reflection,
and refraction, all of the incoming light must be accounted for, and no more.
A surface cannot, for instance, reflect 66% of an incoming light ray, and refract
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50%, since the two would add up to be 116%. From here, the reflected and/or
refracted rays may strike other surfaces, where their absorptive, refractive, and
reflective properties are again calculated based on the incoming rays. Some
of these rays travel in such a way that they hit our eye, causing us to see the
scene and so contribute to the final rendered image. Attempting to simulate
this real-world process of tracing light rays using a computer can be considered
extremely wasteful, as only a minuscule fraction of the rays in a scene would
actually reach the eye.

Ray casting algorithm
The first ray casting (versus ray tracing) algorithm used for rendering was
presented by Arthur Appel in 1968. The idea behind ray casting is to shoot
rays from the eye, one per pixel, and find the closest object blocking the path
of that ray - think of an image as a screen-door, with each square in the screen
being a pixel. This is then the object the eye normally sees through that pixel.
Using the material properties and the effect of the lights in the scene, this
algorithm can determine the shading of this object. The simplifying assumption
is made that if a surface faces a light, the light will reach that surface and not be
blocked or in shadow. The shading of the surface is computed using traditional
3D computer graphics shading models. One important advantage ray casting
offered over older scanline algorithms is its ability to easily deal with non-
planar surfaces and solids, such as cones and spheres. If a mathematical surface
can be intersected by a ray, it can be rendered using ray casting. Elaborate
objects can be created by using solid modelling techniques and easily rendered.

Ray casting for producing computer graphics was first used by scientists at
Mathematical Applications Group, Inc., (MAGI) of Elmsford, New York, New
York. In 1966, the company was created to perform radiation exposure calcula-
tions for the Department of Defense. MAGI’s software calculated not only how
the gamma rays bounced off of surfaces (ray casting for radiation had been
done since the 1940s), but also how they penetrated and refracted within.
These studies helped the government to determine certain military applica-
tions ; constructing military vehicles that would protect troops from radiation,
designing re-entry vehicles for space exploration. Under the direction of Dr.
Philip Mittelman, the scientists developed a method of generating images us-
ing the same basic software. In 1972, MAGI became a commercial animation
studio. This studio used ray casting to generate 3-D computer animation for
television commercials, educational films, and eventually feature films – they
created much of the animation in the film Tron using ray casting exclusively.
MAGI went out of business in 1985.
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Ray tracing algorithm
The next important research breakthrough came from Turner Whitted in 1979.
Previous algorithms cast rays from the eye into the scene, but the rays were
traced no further. Whitted continued the process. When a ray hits a surface,
it could generate up to three new types of rays: reflection, refraction, and
shadow. A reflected ray continues on in the mirror-reflection direction from a
shiny surface. It is then intersected with objects in the scene; the closest object
it intersects is what will be seen in the reflection. Refraction rays traveling
through transparent material work similarly, with the addition that a refractive
ray could be entering or exiting a material. To further avoid tracing all rays
in a scene, a shadow ray is used to test if a surface is visible to a light. A ray
hits a surface at some point. If the surface at this point faces a light, a ray (to
the computer, a line segment) is traced between this intersection point and the
light. If any opaque object is found in between the surface and the light, the
surface is in shadow and so the light does not contribute to its shade. This new
layer of ray calculation added more realism to ray traced images.

Advantages of ray tracing
Ray tracing’s popularity stems from its basis in a realistic simulation of light-
ing over other rendering methods (such as scanline rendering or ray casting).
Effects such as reflections and shadows, which are difficult to simulate using
other algorithms, are a natural result of the ray tracing algorithm. Relatively
simple to implement yet yielding impressive visual results, ray tracing often
represents a first foray into graphics programming.

Disadvantages of ray tracing
A serious disadvantage of ray tracing is performance. Scanline algorithms and
other algorithms use data coherence to share computations between pixels,
while ray tracing normally starts the process anew, treating each eye ray sepa-
rately. However, this separation offers other advantages, such as the ability to
shoot more rays as needed to perform anti-aliasing and improve image qual-
ity where needed. Although it does handle interreflection and optical effects
such as refraction accurately, traditional Ray Tracing is also not necessarily
photorealistic. True photorealism occurs when the rendering equation is close-
ly approximated or fully implemented. Implementing the rendering equation
gives true photorealism. As the equation describes every physical effect of light
flow. However, this is usually infeasable given the computing resources re-
quired. The realism of all rendering methods, then, must be evaluated as an
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approximation to the equation, and in the case of Ray Tracing, it is not neces-
sarily the most realistic. Other methods, including photon mapping, are based
upon raytracing for certain parts of the algorithm, yet give far better results.

Reversed direction of traversal of scene by the rays
The process of shooting rays from the eye to the light source to render an im-
age is sometimes referred to as backwards ray tracing, since it is the opposite
direction photons actually travel. However, there is confusion with this termi-
nology. Early ray tracing was always done from the eye, and early researchers
such as James Arvo used the term backwards ray tracing to refer to shooting
rays from the lights and gathering the results. As such, it is clearer to distin-
guish eye-based versus light-based ray tracing. Research over the past decades
has explored combinations of computations done using both of these direc-
tions, as well as schemes to generate more or fewer rays in different directions
from an intersected surface. For example, radiosity algorithms typically work
by computing how photons emitted from lights affect surfaces and storing these
results. This data can then be used by a standard recursive ray tracer to cre-
ate a more realistic and physically correct image of a scene. In the context of
global illumination algorithms, such as photon mapping and →Metropolis light
transport, ray tracing is simply one of the tools used to compute light transfer
between surfaces.

Algorithm: classical recursive ray tracing

For each pixel in image {
Create ray from eyepoint passing through this pixel

Initialize NearestT to INFINITY and NearestObject to NULL

For every object in scene {
If ray intersects this object {

If t of intersection is less than NearestT {
Set NearestT to t of the intersection

Set NearestObject to this object

}
}

}

If NearestObject is NULL {
Fill this pixel with background color

} Else {
Shoot a ray to each light source to check if in shadow
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If surface is reflective, generate reflection ray: recurse

If surface is transparent, generate refraction ray: re-

curse

Use NearestObject and NearestT to compute shading function

Fill this pixel with color result of shading function

}
}

Ray tracing in real time
There has been some effort for implementing ray tracing in real time speeds
for interactive 3D graphics applications such as computer and video games.

The→OpenRT project includes a highly-optimized software core for ray tracing
along with an →OpenGL-like API in order to offer an alternative to the current
rasterization based approach for interactive 3D graphics.

→Ray tracing hardware, such as the experimental Ray Processing Unit devel-
oped at the Saarland University, has been designed to accelerate some of the
computationally intensive operations of ray tracing.

Some real-time software 3D engines based on ray tracing have been developed
by hobbyist demo programmers since the late 1990’s. The ray tracers used
in demos, however, often use inaccurate approximations and even cheating in
order to attain reasonably high frame rates. 274

In optical design
Ray tracing in computer graphics derives its name and principles from a much
older technique used for lens design since the 1900s. Geometric ray tracing is
used to describe the propagation of light rays through a lens system or optical
instrument, allowing the image-forming properties of the system to be mod-
eled. This is used to optimize the design of the instrument (e.g. to minimize
effects such as chromatic and other aberrations) before it is built. Ray tracing is
also used to calculate optical path differences through optical systems, which
are used to calculate optical wavefronts, which in turn are used to calculate
system diffraction effects such as point spread function, MTF, and Strehl ratio.
It is not only used for designing lenses, as for photography, but can also be used
for longer wavelength applications such as designing microwave or even radio
systems, and for shorter wavelengths, such as ultraviolet and X-ray optics.

http://www.acm.org/tog/resources/RTNews/demos/overview.htm274
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The principles of ray tracing for computer graphics and optical design are sim-
ilar, but the technique in optical design usually uses much more rigorous and
physically correct models of how light behaves. In particular, optical effects
such as dispersion, diffraction and the behaviour of optical coatings are impor-
tant in lens design, but are less so in computer graphics.

Before the advent of the computer, ray tracing calculations were performed by
hand using trigonometry and logarithmic tables. The optical formulas of many
classic photographic lenses were optimized by rooms full of people, each of
whom handled a small part of the large calculation. Now they are worked out
in optical design software such as OSLO or TracePro from Lambda Research,
Code-V or Zemax. A simple version of ray tracing known as ray transfer matrix
analysis is often used in the design of optical resonators used in lasers.

Example
As a demonstration of the principles involved in raytracing, let us consider
how one would find the intersection between a ray and a sphere. The general
equation of a sphere, where I is a point on the surface of the sphere, C is its
centre and r is its radius, is |I − C|2 = r2. Equally, if a line is defined by its
starting point S (consider this the starting point of the ray) and its direction d
(consider this the direction of that particular ray), each point on the line may
be described by the expression

S + td ,

where t is a constant defining the distance along the line from the starting
point (hence, for simplicity’s sake, d is generally a unit vector). Now, in the
scene we know S, d, C, and r. Hence we need to find t as we substitute in for
I:

|S + td− C|2 = r2 .

Let V ≡ S− C for simplicity, then

|V + td|2 = r2

V 2 + t2d2 + 2V · dt = r2

d2t2 + 2V · dt+ V 2 − r2 = 0 .

Now this quadratic equation has solutions
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t = −2V·d±
√

(2V·d)2−4d2(V 2−r2)
2d2 .

This is merely the math behind a straight ray-sphere intersection. There is of
course far more to the general process of raytracing, but this demonstrates an
example of the algorithms used.

See also

• Actual state
• →Beam tracing
• BRL-CAD
• →Cone tracing
• Distributed ray tracing
• →Global illumination
• Line-sphere intersection
• Pencil tracing
• Philipp Slusallek
• →Photon mapping
• POV-Ray
• Powerwall
• →Radiosity
• Radiance (software)
• Target state
• YafRay
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External links

• The Ray Tracing News275 - short research articles and new links to resources
• Games using realtime raytracing276

• A series of raytracing tutorials for the implementation of an efficient ray-
tracer using C++277

• Mini ray tracers written equivalently in various languages278

Raytracing software

• POV-Ray279

• PBRT280 - a Physically Based Raytracer
• Tachyon281

• Rayshade282

• OpenRT283 - realtime raytracing library
• Raster3D284

• RealStorm Engine285 - a realtime raytracing engine
• BRL-CAD286

• More ray tracing source code links287

• Zemax288

• Radiance289

• Yafray290

• OSLO291 - Lens design and optimization software; OSLO-EDU is a free
download

• TracePro292 - Straylight and illumination software with a CAD-like interface

http://www.raytracingnews.org/275

http://graphics.cs.uni-sb.de/RTGames/276

http://www.devmaster.net/articles/raytracing_series/part1.php277

http://www.ffconsultancy.com/free/ray_tracer/languages.html278

http://www.povray.org/279

http://www.pbrt.org280

http://jedi.ks.uiuc.edu/~johns/raytracer281

http://graphics.stanford.edu/~cek/rayshade282

http://www.openrt.de/283

http://www.bmsc.washington.edu/raster3d/raster3d.html284

http://www.realstorm.com285

http://brlcad.org/286

http://www.acm.org/tog/Software.html#ray287

http://www.zemax.com/288

http://radsite.lbl.gov/radiance/289

http://www.yafray.org290

http://www.lambdares.com/products/oslo/291

http://www.lambdares.com/products/tracepro/292
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Source: http://en.wikipedia.org/wiki/Ray_tracing

Principal Authors: Pinbucket, DrBob, Srleffler, Jawed, Osmaker, Carrionluggage, ToastieIL, Steverti-

go, Viznut, Ed g2s

Ray tracing hardware

Ray tracing hardware is a special purpose computer hardware design for ac-
celerating real-time ray tracing.

Ray Tracing vs. Rasterization
The problem of rendering 3D graphics can be conceptually presented as finding
all intersections between a set of "primitives" (typically triangles or polygons)
and a set of "rays" (typically one or more per pixel).

Typical graphic acceleration boards, so called GPUs use rasterization algorithm.
In this approach, in each step, the GPU finds all intersections of a single prim-
itive and all rays of the screen. Well known brands such as intel, NVIDIA and
ATI have developed very efficient algorithms to do so.

The ray tracing algorithm solves the rendering problem in a different way. In
each step, it finds all intersections of a single ray with all primitives of the
scene. The ray tracing algorithm has been around for some decades, but only
recent research from the Universities of Saarland and Utah, as well as inTrace
GmbH have led to the first interactive ray tracing application that is able to
compute this algorithm at several frames per second.

Both approaches have different benefits and drawbacks. Rasterization can be
performed in a stream-like manner, one triangle at the time, and access to
complete scene is not needed. The drawback of rasterization is that non-local
effects, like reflections, refraction, shadows and realistic lighting, are very dif-
ficult to compute.

The ray tracing algorithm can also be parallelized very well, if one considers
each ray separately, however its memory bandwidth is crucial as various parts
of the scene need to be accessed. But it can easily compute various kinds
of physically correct effects, providing much more realistic impression than
rasterization.

An additional advantage is logarithmic complexity of ray tracing in number of
scene objects and possibility of using more complex primitives without their



DR
AF

T

262

Reflection mapping

prior triangulation. The biggest drawback for real time ray tracing is the need
for quite costly recomputations of spatial index structures in case of highly
dynamic scenes. Some problems remain to be solved, such as ray tracing of
lines and text.

Implementations
Today there are two existing implementations of ray tracing hardware:

• There is the ART VPS company, situated in the UK, that sells ray tracing
hardware for offline rendering.

• There is the Saarland University, striving to develop a real-time ray tracing
chip, so far they have published two designs: SaarCOR and the RPU.

See also

• →OpenRT Only available real time ray tracing software

External links

• ART VPS293

Source: http://en.wikipedia.org/wiki/Ray_tracing_hardware

Reflection mapping

In Computer Graphics, reflection mapping is an efficient method of simulating
a complex mirroring surface by means of a precomputed texture image. The
texture is used to store the image of the environment surrounding the rendered
object. There are several ways of storing the surrounding enviromnent; the
most common ones are the Standard Environment Mapping in which a single
texture contains the image of the surrounding as reflected on a mirror ball, or
the Cubic Environment Mapping in which the envirornment is unfolded onto
the six faces of a cube and stored therefore as six square textures.

This kind of approach is more efficient than the classical ray tracing approach
of computing the exact reflection by shooting a ray and following its optically

http://www.art-render.com/293
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Figure 78 An example of reflection mapping. Observe the crudeness of the output.

exact path, but it should be noted that these are (sometimes crude) approxima-
tion of the real reflection. A typical drawback of this technique is the absence
of self reflections: you cannot see any part of the reflected object inside the
reflection itself.

Types of Reflection Mapping

Standard Environment Mapping
Standard environment mapping, more commonly known as spherical envi-
ronment mapping, involves the use of a textured sphere infinitely far away
from the object that reflects it. By creating a spherical texture using a fisheye
lens or via prerendering or with a light probe, this texture is mapped to a hol-
low sphere, and the texel colors are determined by calculating the light vectors
from the points on the object to the texels in the environment map. This tech-
nique is similar to raytracing, but incurs less of a performance hit because all
of the colors of the points to be referenced are known beforehand by the GPU,
so all it has to do is to calculate the angles of incidence and reflection.

There are a few glaring limitations to spherical mapping. For one thing, due
to the nature of the texture used for the map, there is an abrupt point of sin-
gularity on the backside of objects using spherical mapping. Cube mapping
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(see below) was developed to address this issue. Since cube maps (if made
and filtered correctly) have no visible seems, they are an obvious successor
to the archaic sphere maps, and nowadays spherical environment maps are al-
most nonexistent in certain contemporary graphical applications, such as video
game graphics. However, since cubic environment maps require six times the
image data of sphere maps (a cube has six sides), some people are still reluc-
tant to adopt them.

Cubic Environment Mapping

Figure 79 A diagram depicting
how cube mapped reflection works.

Cube mapped reflection is a technique that uses cube mapping to make ob-
jects look like they reflect the environment around them. Generally, this is
done with the same skybox that is used in outdoor renderings. Though this is
not a true reflection since objects around the reflective one will not be seen in
the reflection, the desired effect is usually achieved.

Cube mapped reflection is done by determining the vector that the object is
being viewed at. This camera ray is reflected about the surface normal of
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where the camera vector intersects the object. This results in the reflected ray
which is then passed to the cube map to get the texel which the camera then
sees as if it is on the surface of the object. This creates the effect that the object
is reflective.

Application in Real-Time 3D Graphics

Standard Environment Mapping

Cubic Environment Mapping

Figure 80 Example of a three-dimensional
model using cube mapped reflection

Cube mapped reflection, when used correctly, may be the fastest method of
rendering a reflective surface. To increase the speed of rendering, each vertex
calculates the position of the reflected ray. Then, the position is interpolated
across polygons to which the vertex is attached. This eliminates the need for
recalculating every pixel’s reflection.
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See Also

• The Story of Reflection mapping294 cured by Paul Debevec
• Skybox (video games)
• →Cube mapping

Source: http://en.wikipedia.org/wiki/Reflection_mapping

Principal Authors: ALoopingIcon, Gaius Cornelius, Abdull, Srleffler, Freeformer

Rendering (computer graphics)

Rendering is the process of generating an image from a model, by means of
a software program. The model is a description of three dimensional objects
in a strictly defined language or data structure. It would contain geometry,
viewpoint, texture and lighting information. The image is a digital image or
raster graphics image. The term may be by analogy with an "artist’s rendering"
of a scene. ’Rendering’ is also used to describe the process of calculating effects
in a video editing file to produce final video output.

It is one of the major sub-topics of →3D computer graphics, and in practice
always connected to the others. In the ’graphics pipeline’ it’s the last major step,
giving the final appearance to the models and animation. With the increasing
sophistication of computer graphics since the 1970s onward, it has become a
more distinct subject.

It has uses in: computer and video games, simulators, movies or TV special ef-
fects, and design visualisation, each employing a different balance of features
and techniques. As a product, a wide variety of renderers are available. some
are integrated into larger modelling and animation packages, some are stand-
alone, some are free open-source projects. On the inside, a renderer is a care-
fully engineered program, based on a selective mixture of disciplines related
to: light physics, visual perception, mathematics, and software development.

In the case of 3D graphics, rendering may be done slowly, as in pre-rendering,
or in real time. Pre-rendering is a computationally intensive process that is
typically used for movie creation, while real-time rendering is often done for

http://www.debevec.org/ReflectionMapping/294
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3D video games which rely on the use of graphics cards with 3D hardware
accelerators.

Usage
When the pre-image (a wireframe sketch usually) is complete, rendering is
used, which adds in bitmap textures or procedural textures, lights, bump map-
ping, and relative position to other objects. The result is a completed image
the consumer or intended viewer sees.

For movie animations, several images (frames) must be rendered, and stitched
together in a program capable of making an animation of this sort. Most 3D
image editing programs can do this.

Features
A rendered image can be understood in terms of a number of visible features.
Rendering research and development has been largely motivated by finding
ways to simulate these efficiently. Some relate directly to particular algorithms
and techniques, while others are produced together.

• shading — how the color and brightness of a surface varies with lighting
• texture-mapping — a method of applying detail to surfaces
• bump-mapping — a method of simulating small-scale bumpiness on sur-

faces
• fogging/participating medium — how light dims when passing through

non-clear atmosphere or air
• shadows — the effect of obstructing light
• soft shadows — varying darkness caused by partially obscured light

sources
• reflection — mirror-like or highly glossy reflection
• transparency — sharp transmission of light through solid objects
• translucency — highly scattered transmission of light through solid objects
• refraction — bending of light associated with transparency
• indirect illumination — surfaces illuminated by light reflected off other

surfaces, rather than directly from a light source
• caustics (a form of indirect illumination) — reflection of light off a shiny

object, or focusing of light through a transparent object, to produce bright
highlights on another object

• depth of field — objects appear blurry or out of focus when too far in front
of or behind the object in focus

• motion blur — objects appear blurry due to high-speed motion, or the
motion of the camera
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• photorealistic morphing — photoshopping 3D renderings to appear more
life-like

• non-photorealistic rendering — rendering of scenes in an artistic style,
intended to look like a painting or drawing

Techniques
Many rendering algorithms have been researched, and software used for ren-
dering may employ a number of different techniques to obtain a final image.

Tracing every ray of light in a scene would be impractical and would take
gigantic amounts of time. Even tracing a portion large enough to produce an
image takes an inordinate amount of time if the sampling is not intelligently
restricted.

Therefore, four loose families of more-efficient light transport modelling tech-
niques have emerged: rasterisation, including scanline rendering, considers
the objects in the scene and projects them to form an image, with no facili-
ty for generating a point-of-view perspective effect; ray casting considers the
scene as observed from a specific point-of-view, calculating the observed image
based only on geometry and very basic optical laws of reflection intensity, and
perhaps using Monte Carlo techniques to reduce artifacts; radiosity uses fi-
nite element mathematics to simulate diffuse spreading of light from surfaces;
and ray tracing is similar to ray casting, but employs more advanced optical
simulation, and usually uses Monte Carlo techniques, to obtain more realistic
results, at a speed which is often orders of magnitude slower.

Most advanced software combines two or more of the techniques to obtain
good-enough results at reasonable cost.

Scanline rendering and rasterisation
A high-level representation of an image necessarily contains elements in a dif-
ferent domain from pixels. These elements are referred to as primitives. In a
schematic drawing, for instance, line segments and curves might be primitives.
In a graphical user interface, windows and buttons might be the primitives. In
3D rendering, triangles and polygons in space might be primitives.

If a pixel-by-pixel approach to rendering is impractical or too slow for some
task, then a primitive-by-primitive approach to rendering may prove useful.
Here, one loops through each of the primitives, determines which pixels in the
image it affects, and modifies those pixels accordingly. This is called rasteriza-
tion, and is the rendering method used by all current graphics cards.
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Rasterization is frequently faster than pixel-by-pixel rendering. First, large ar-
eas of the image may be empty of primitives; rasterization will ignore these
areas, but pixel-by-pixel rendering must pass through them. Second, rasteri-
zation can improve cache coherency and reduce redundant work by taking ad-
vantage of the fact that the pixels occupied by a single primitive tend to be con-
tiguous in the image. For these reasons, rasterization is usually the approach of
choice when interactive rendering is required; however, the pixel-by-pixel ap-
proach can often produce higher-quality images and is more versatile because
it does not depend on as many assumptions about the image as rasterization.

Rasterization exists in two main forms, not only when an entire face (primitive)
is rendered but when the vertices of a face are all rendered and then the pixels
on the face which lie between the vertices rendered using simple blending of
each vertex colour to the next, this version of rasterization has overtaken the
old method as it allows the graphics to flow without complicated textures (a
rasterized image when used face by face tends to have a very block like effect
if not covered in complex textures, the faces aren’t smooth because there is
no gradual smoothness from one pixel to the next,) this meens that you can
utilise the graphics card’s more taxing shading functions and still achieve better
performance because you have freed up space o the card because complex
textures aren’t necessary. sometimes people will use one rasterization method
on some faces and the other method on others based on the angle at which
that face meets other joined faces, this can increase speed and not take away
too much from the images overall effect.

Ray casting
Ray casting is primarily used for realtime simulations, such as those used in
3D computer games and cartoon animations, where detail is not important, or
where it is more efficient to manually fake the details in order to obtain better
performance in the computational stage. This is usually the case when a large
number of frames need to be animated. The results have a characteristic ’flat’
appearance when no additional tricks are used, as if objects in the scene were
all painted with matt finish, or had been lightly sanded.

The geometry which has been modelled is parsed pixel by pixel, line by line,
from the point of view outward, as if casting rays out from the point of view.
Where an object is intersected, the colour value at the point may be evaluated
using several methods. In the simplest, the colour value of the object at the
point of intersection becomes the value of that pixel. The colour may be de-
termined from a texture-map. A more sophisticated method is to modify the
colour value by an illumination factor, but without calculating the relationship
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to a simulated light source. To reduce artifacts, a number of rays in slightly
different directions may be averaged.

Rough simulations of optical properties may be additionally employed: com-
monly, making a very simple calculation of the ray from the object to the point
of view. Another calculation is made of the angle of incidence of light rays
from the light source(s). And from these and the specified intensities of the
light sources, the value of the pixel is calculated.

Or illumination plotted from a radiosity algorithm could be employed. Or a
combination of these.

Radiosity
→Radiosity is a method which attempts to simulate the way in which reflected
light, instead of just reflecting to another surface, also illuminates the area
around it. This produces more realistic shading and seems to better capture
the ’ambience’ of an indoor scene. A classic example used is of the way that
shadows ’hug’ the corners of rooms.

The optical basis of the simulation is that some diffused light from a given point
on a given surface is reflected in a large spectrum of directions and illuminates
the area around it.

The simulation technique may vary in complexity. Many renderings have a very
rough estimate of radiosity, simply illuminating an entire scene very slightly
with a factor known as ambiance. However, when advanced radiosity estima-
tion is coupled with a high quality ray tracing algorithim, images may exhibit
convincing realism, particularly for indoor scenes.

In advanced radiosity simulation, recursive, finite-element algorithms ’bounce’
light back and forth between surfaces in the model, until some recursion limit
is reached. The colouring of one surface in this way influences the colouring
of a neighbouring surface, and vice versa. The resulting values of illumination
throughout the model (sometimes including for empty spaces) are stored and
used as additional inputs when performing calculations in a ray-casting or ray-
tracing model.

Due to the iterative/recursive nature of the technique, complex objects are
particularly slow to emulate. Advanced radiosity calculations may be reserved
for calulating the ambiance of the room, from the light reflecting off walls, floor
and celiing, without examining the contribution that complex objects make to
the radiosity – or complex objects may be replaced in the radiosity calculation
with simpler objects of similar size and texture.
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If there is little rearrangement of radiosity objects in the scene, the same radios-
ity data may be reused for a number of frames, making radiosity an effective
way to improve on the flatness of ray casting, without seriously impacting the
overall rendering time-per-frame.

Because of this, radiosity has become the leading real-time rendering method,
and has been used to beginning-to-end create a large number of well-known
recent feature-length animated 3D-cartoon films.

Ray tracing
Ray tracing is an extension of the same technique developed in scanline ren-
dering and ray casting. Like those, it handles complicated objects well, and the
objects may be described mathematically. Unlike scanline and casting, ray trac-
ing is almost always a Monte Carlo technique, that is one based on averaging
a number of randomly generated samples from a model.

In this case, the samples are imaginary rays of light intersecting the viewpoint
from the objects in the scene. It is primarily beneficial where complex and
accurate rendering of shadows, refraction or reflection are issues.

In a final, production quality rendering of a ray traced work, multiple rays are
generally shot for each pixel, and traced not just to the first object of intersec-
tion, but rather, through a number of sequential ’bounces’, using the known
laws of optics such as "angle of incidence equals angle of reflection" and more
advanced laws that deal with refraction and surface roughness.

Once the ray either encounters a light source, or more probably once a set lim-
iting number of bounces has been evaluated, then the surface illumination at
that final point is evaluated using techniques described above, and the changes
along the way through the various bounces evaluated to estimate a value ob-
served at the point of view. This is all repeated for each sample, for each pixel.

In some cases, at each point of intersection, multiple rays may be spawned.

As a brute-force method, raytracing has been too slow to consider for realtime,
and until recently too slow even to consider for short films of any degree of
quality, although it has been used for special effects sequences, and in advertis-
ing, where a short portion of high quality (perhaps even photorealistic) footage
is required.

However, efforts at optimising to reduce the number of calculations needed in
portions of a work where detail is not high or does not depend on raytracing
features have led to a realistic possibility of wider use of ray tracing. There is
now some hardware accelerated ray tracing equipment, at least in prototype
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phase, and some game demos which show use of realtime software or hardware
ray tracing.

Optimisation

Optimisations used by an artist when a scene is being devel-
oped
Due to the large number of calulations, a work in progress is usually only
rendered in detail appropriate to the portion of the work being developed at a
given time, so in the initial stages of modelling, wireframe and ray casting may
be used, even where the target output is ray tracing with radiosity. It is also
common to render only parts of the scene at high detail, and to remove objects
that are not important to what is currently being developed.

Common optimisations for real time rendering
For real-time, it is appropriate to simplify one or more common approxima-
tions, and tune to the exact parameters of the scenery in question, which is
also tuned to the agreed parameters to get the most ’bang for buck’.

There are some lesser known approaches to rendering, such as spherical har-
monics. These techniques are lesser known often due to slow speed, lack of
practical use or simply because they are in early stages of development; maybe
some will offer a new solution.

Sampling and filtering
One problem that any rendering system must deal with, no matter which ap-
proach it takes, is the sampling problem. Essentially, the rendering process
tries to depict a continuous function from image space to colors by using a fi-
nite number of pixels. As a consequence of the Nyquist theorem, the scanning
frequency must be twice the dot rate, which is proportional to image resolu-
tion. In simpler terms, this expresses the idea that an image cannot display
details smaller than one pixel.

If a naive rendering algorithm is used, high frequencies in the image function
will cause ugly aliasing to be present in the final image. Aliasing typically
manifests itself as jaggies, or jagged edges on objects where the pixel grid is
visible. In order to remove aliasing, all rendering algorithms (if they are to
produce good-looking images) must filter the image function to remove high
frequencies, a process called antialiasing.
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See also

• the painter’s algorithm
• Scanline algorithms like Reyes
• Z-buffer algorithms
• →Global illumination
• →Radiosity
• →Ray tracing
• →Volume rendering

Rendering for movies often takes place on a network of tightly connected com-
puters known as a render farm.

The current state of the art in 3-D image description for movie creation is
the RenderMan scene description language designed at Pixar. (compare with
simpler 3D fileformats such as VRML or APIs such as →OpenGL and DirectX
tailored for 3D hardware accelerators).

Movie type rendering software includes:

• RenderMan compliant renderers
• Mental Ray
• Brazil
• Blender (may also be used for modeling)
• LightWave (includes modelling module)

Academic core
The implementation of a realistic renderer always has some basic element of
physical simulation or emulation — some computation which resembles or ab-
stracts a real physical process.

The term "physically-based " indicates the use of physical models and approxi-
mations that are more general and widely accepted outside rendering. A par-
ticular set of related techniques have gradually become established in the ren-
dering community.

The basic concepts are moderately straightforward, but intractable to calcu-
late; and a single elegant algorithm or approach has been elusive for more
general purpose renderers. In order to meet demands of robustness, accuracy,
and practicality, an implementation will be a complex combination of different
techniques.

Rendering research is concerned with both the adaptation of scientific models
and their efficient application.
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The rendering equation

Main article: Rendering equation

This is the key academic/theoretical concept in rendering. It serves as the most
abstract formal expression of the non-perceptual aspect of rendering. All more
complete algorithms can be seen as solutions to particular formulations of this
equation.

Lo(x, ~w) = Le(x, ~w) +
∫
Ω fr(x, ~w

′, ~w)Li(x, ~w′)(~w′ · ~n)d~w′

Meaning: at a particular position and direction, the outgoing light (Lo) is the
sum of the emitted light (Le) and the reflected light. The reflected light being
the sum of the incoming light (Li) from all directions, multiplied by the surface
reflection and incoming angle. By connecting outward light to inward light,
via an interaction point, this equation stands for the whole ’light transport’ —
all the movement of light — in a scene.

The Bidirectional Reflectance Distribution Function
The Bidirectional Reflectance Distribution Function (BRDF) expresses a sim-
ple model of light interaction with a surface as follows:

fr(x, ~w′, ~w) = dLr(x,~w)
Li(x,~w′)(~w′·~n)d~w′

Light interaction is often approximated by the even simpler models: diffuse
reflection and specular reflection, although both can be BRDFs.

Geometric optics
Rendering is practically exclusively concerned with the particle aspect of light
physics — known as geometric optics. Treating light, at its basic level, as par-
ticles bouncing around is a simplification, but appropriate: the wave aspects
of light are negligible in most scenes, and are significantly more difficult to
simulate. Notable wave aspect phenomena include diffraction — as seen in the
colours of CDs and DVDs — and polarisation — as seen in LCDs. Both types of
effect, if needed, are made by appearance-oriented adjustment of the reflection
model.

Visual perception
Though it receives less attention, an understanding of human visual perception
is valuable to rendering. This is mainly because image displays and human per-
ception have restricted ranges. A renderer can simulate an almost infinite range
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of light brightness and color, but current displays — movie screen, computer
monitor, etc. — cannot handle so much, and something must be discarded or
compressed. Human perception also has limits, and so doesn’t need to be given
large-range images to create realism. This can help solve the problem of fitting
images into displays, and, furthermore, suggest what short-cuts could be used
in the rendering simulation, since certain subtleties won’t be noticeable. This
related subject is tone mapping.

Mathematics used in rendering includes: linear algebra, calculus, numerical
mathematics, signal processing, monte carlo.

Chronology of important published ideas

• 1970 Scan-line algorithm (Bouknight, W. J. (1970). A procedure for
generation of three-dimensional half-tone computer graphics presentations.
Communications of the ACM)

• 1971 Gouraud shading (Gouraud, H. (1971). Computer display of curved
surfaces. IEEE Transactions on Computers 20 (6), 623–629.)

• 1974 Texture mapping (Catmull, E. (1974). A subdivision algorithm for
computer display of curved surfaces. PhD thesis, University of Utah.)

• 1974 Z-buffer (Catmull, E. (1974). A subdivision algorithm for computer
display of curved surfaces. PhD thesis)

• 1975 Phong shading (Phong, B-T. (1975). Illumination for computer gen-
erated pictures. Communications of the ACM 18 (6), 311–316.)

• 1976 Environment mapping (Blinn, J.F., Newell, M.E. (1976). Texture
and reflection in computer generated images. Communications of the ACM
19, 542–546.)

• 1977 Shadow volumes (Crow, F.C. (1977). Shadow algorithms for com-
puter graphics. Computer Graphics (Proceedings of SIGGRAPH 1977) 11
(2), 242–248.)

• 1978 Shadow buffer (Williams, L. (1978). Casting curved shadows on
curved surfaces. Computer Graphics (Proceedings of SIGGRAPH 1978) 12
(3), 270–274.)

• 1978 Bump mapping (Blinn, J.F. (1978). Simulation of wrinkled surfaces.
Computer Graphics (Proceedings of SIGGRAPH 1978) 12 (3), 286–292.)

• 1980 BSP trees (Fuchs, H. Kedem, Z.M. Naylor, B.F. (1980). On visible sur-
face generation by a priori tree structures. Computer Graphics (Proceedings
of SIGGRAPH 1980) 14 (3), 124–133.)

• 1980 Ray tracing (Whitted, T. (1980). An improved illumination model
for shaded display. Communications of the ACM 23 (6), 343–349.)
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• 1981 Cook shader (Cook, R.L. Torrance, K.E. (1981). A reflectance mod-
el for computer graphics. Computer Graphics (Proceedings of SIGGRAPH
1981) 15 (3), 307–316.)

• 1983 Mipmaps (Williams, L. (1983). Pyramidal parametrics. Computer
Graphics (Proceedings of SIGGRAPH 1983) 17 (3), 1–11.)

• 1984 Octree ray tracing (Glassner, A.S. (1984). Space subdivision for fast
ray tracing. IEEE Computer Graphics & Applications 4 (10), 15–22.)

• 1984 Alpha compositing (Porter, T. Duff, T. (1984). Compositing digi-
tal images. Computer Graphics (Proceedings of SIGGRAPH 1984) 18 (3),
253–259.)

• 1984 Distributed ray tracing (Cook, R.L. Porter, T. Carpenter, L. (1984).
Distributed ray tracing. Computer Graphics (Proceedings of SIGGRAPH
1984) 18 (3), 137–145.)

• 1984 Radiosity (Goral, C. Torrance, K.E. Greenberg, D.P. Battaile, B.
(1984). Modelling the interaction of light between diffuse surfaces. Com-
puter Graphics (Proceedings of SIGGRAPH 1984) 18 (3), 213–222.)

• 1985 Hemi-cube radiosity (Cohen, M.F. Greenberg, D.P. (1985). The
hemi-cube: a radiosity solution for complex environments. Computer
Graphics (Proceedings of SIGGRAPH 1985) 19 (3), 31–40.)

• 1986 Light source tracing (Arvo, J. (1986). Backward ray tracing. SIG-
GRAPH 1986 Developments in Ray Tracing course notes)

• 1986 Rendering equation (Kajiya, J.T. (1986). The rendering equation.
Computer Graphics (Proceedings of SIGGRAPH 1986) 20 (4), 143–150.)

• 1987 Reyes algorithm (Cook, R.L. Carpenter, L. Catmull, E. (1987). The
reyes image rendering architecture. Computer Graphics (Proceedings of
SIGGRAPH 1987) 21 (4), 95–102.)

• 1991 Hierarchical radiosity (Hanrahan, P. Salzman, D. Aupperle, L.
(1991). A rapid hierarchical radiosity algorithm. Computer Graphics (Pro-
ceedings of SIGGRAPH 1991) 25 (4), 197–206.)

• 1993 Tone mapping (Tumblin, J. Rushmeier, H.E. (1993). Tone reproduc-
tion for realistic computer generated images. IEEE Computer Graphics &
Applications 13 (6), 42–48.)

• 1993 Subsurface scattering (Hanrahan, P. Krueger, W. (1993). Reflec-
tion from layered surfaces due to subsurface scattering. Computer Graphics
(Proceedings of SIGGRAPH 1993) 27 (), 165–174.)

• 1995 Photon mapping (Jensen, H.J. Christensen, N.J. (1995). Photon
maps in bidirectional monte carlo ray tracing of complex objects. Com-
puters & Graphics 19 (2), 215–224.)
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See also

• →Pre-rendered
• →Graphics pipeline
• Virtual model

Books and summaries

• Foley; Van Dam; Feiner; Hughes (1990). Computer Graphics: Principles
And Practice. Addison Wesley. ISBN 0201121107.

• Glassner (1995). Principles Of Digital Image Synthesis. Morgan Kaufmann.
ISBN 1558602763.

• Pharr; Humphreys (2004). Physically Based Rendering. Morgan Kaufmann.
ISBN 012553180X.

• Dutre; Bala; Bekaert (2002). Advanced Global Illumination. AK Peters.
ISBN 1568811772.

• Jensen (2001). Realistic Image Synthesis Using Photon Mapping. AK Pe-
ters. ISBN 1568811470.

• Shirley; Morley (2003). Realistic Ray Tracing (2nd ed.). AK Peters. ISBN
1568811985.

• Glassner (1989). An Introduction To Ray Tracing. Academic Press. ISBN
0122861604.

• Cohen; Wallace (1993). Radiosity and Realistic Image Synthesis. AP Pro-
fessional. ISBN 0121782700.

• Akenine-Moller; Haines (2002). Real-time Rendering (2nd ed.). AK Peters.
ISBN 1568811829.

• Gooch; Gooch (2001). Non-Photorealistic Rendering. AKPeters. ISBN
1568811330.

• Strothotte; Schlechtweg (2002). Non-Photorealistic Computer Graphics.
Morgan Kaufmann. ISBN 1558607870.

• Blinn (1996). Jim Blinns Corner - A Trip Down The Graphics Pipeline.
Morgan Kaufmann. ISBN 1558603875.

• Description of the ’Radiance’ system295

http://radsite.lbl.gov/radiance/papers/sg94.1/295
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External links

• SIGGRAPH296 The ACMs special interest group in graphics — the largest
academic and professional association and conference.

• Ray Tracing News297 A newsletter on ray tracing technical matters.
• Real-Time Rendering resources298 A list of links to resources, associated with

the Real-Time Rendering book.
• http://www.graphicspapers.com/ Database of graphics papers citations.
• http://www.cs.brown.edu/~tor/ List of links to (recent) siggraph papers

(and some others) on the web.
• http://www.pointzero.nl/renderers/ List of links to all kinds of renderers.
• ’Radiance’ renderer.299 A highly accurate ray-tracing software system.
• Pixie300 An efficient and free RenderMan compatible OpenSource renderer.
• ’Aqsis’ renderer301 A free RenderMan compatible OpenSource REYES ren-

derer.
• http://www.povray.org/ A free ray tracer.
• ’jrMan’ renderer302 A RenderMan compatible OpenSource REYES renderer

written in Java.

Source: http://en.wikipedia.org/wiki/Rendering_%28computer_graphics%29

Principal Authors: Hxa7241, Pinbucket, Reedbeta, Imroy, The Anome, Patrick, Lindosland, Bendman,

Pixelbox, P3d0

http://www.siggraph.org/296

http://www.raytracingnews.org/297

http://www.realtimerendering.com/298

http://radsite.lbl.gov/radiance/299

http://pixie.sourceforge.net/300

http://www.aqsis.org/301

http://www.jrman.org/302
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Render layers

What are Render Passes?
When creating computer-generated imagery or →3D computer graphics, final
scenes appearing in movies and television productions are usually produced
by →Rendering (computer graphics) more than one "layer" or "pass," which
are multiple images designed to be put together through digital compositing to
form a completed frame.

Rendering in passes is based on a traditions in Motion control photography
which pre-date CGI. As an example, in motion control photography for a visual
effects shot, a camera could be programmed to move past a physical model of
a spaceship in one pass to film the fully lit beauty pass of the ship, and then to
repeat the exact same camera move passing the ship again to photograph ad-
ditional elements such as the illuminated windows in the ship or its thrusters.
Once all of the passes were filmed, they could then be optically printed together
to form a completed shot.

The terms "Render Layers" and "Render Passes" are sometimes used inter-
changeably. However, rendering in layers refers specifically to separating dif-
ferent objects into separate images, such as a foreground characters layer, a
sets layer, a distant landscape layer, and a sky layer. Rendering in passes, on
the other hand, refers to separating out different aspects of the scene, such as
shadows, highlights, or reflections, each into a separate image.

Render Layer Overview (still needs editing)
Render Layers allows objects to be rendered into separate plates to save
on render time, re-rendering, render crashing. But render layers can ren-
der more than just individual objects. Render layes can also render dif-
ferent visual aspects and qualities of objects. For instance a render layer
can consist solely of an object’s specularity, transparency (alpha), or even
it occlusion and reflectivity.

Simple render passes include: Beauty, alpha, shadow, reflectivity and specular-
ity. Though many artists and studios may use more this set of five will cover
many aspects involved with successfully utilizing render layers. Other render
passes include: depth, color, diffuse and occlusion.

Beauty: This is the most common render pass as it encompasses the colors of
objects, the specularity and shadowing of the objects as well.
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Alpha / Geometry Mattes: This render layer, most often seen as a side effect of
rendering a scene with

Shadow: This render layer encompasses the shadows cast from one objects
onto other objects. A large reason to render the shadows as a separate pass it
to later control the density and range of shadows in post production.

Reflectivity: Any colors or objects reflected onto the object is now rendered
inside this layer. This is often used when adding a slight dreamy feel to a
sequence by slightly blurring the reflections off objects.

Specularity: Though this is already rendered in the Color and Beauty render
layers, it is often also required to separate out the specularity from the colors
of the objects.

___Other Render Layer Types___

Depth: In order for a compositing package to understand how to layers ob-
jects in post production, often times depth masks (or channels) are rendered,
making it easier to sort objects in post without requiring alpha channel trickery.

Color: This render layer describes the color of the rendered objects. In Maya 7
it covers both the diffuse and specular colors of the given objects without the
object’s shadowing.

Diffuse: This layer is responsible for rendering strictly the color, having nothing
to do with specularity or self-shadowing.

Occlusion: An occlusion pass is a visual stunner. It is often used to add a higher
level of depth in the imagery. In essence, its purpose is to darken all the nooks
and crannies of the objects. The closer objects are to each other the darker
those parts will appear in the occlusion pass. This simulates the effect of light
being blocked out by narrow spaces and close objects.

Uses: Rendering in layers saves a lot of time when rendering. Although more
rendering is done, and more images are created, the renderer deals with a
smaller number of objects and render qualities when rendering each image.
Render Layers make it easier to add visual effects in post production, where it is
much cheaper (by cost of time and cpu intensity) to create such effects. Render
Layers also make it easier to create a desired visual effect in post production.
Post production is where color, tonal, density, luminance, chroma, saturation
and other such visual qualities are edited and perfected creating an overall,
cohesive look to the image.

Lighting: Creating render layers also allows post production artists to have
more control of scene lighting by rendering objects into separate layers as de-
fined by the lights. For instance, if all objects are put into 3 render layers
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each render layer can have its own light. Thereby allowing the post production
artists to have control of the lighting in post production.

Note: This essay written with a practice and understanding Maya 7. Other 3D
rendering packages may have differences in their terminology or execution.

Source: http://en.wikipedia.org/wiki/Render_layers

Retained mode

Retained mode refers to a programming style for 3D graphics where a per-
sistent representation of graphical objects, their spatial relationships, their ap-
pearance and the position of the viewer, is held in memory and managed by a
library layer. The programmer performs less low-level work in loading, man-
aging, culling and rendering the data and can focus on higher application level
functions.

See also

• →OpenGL
• →Scene graph

Source: http://en.wikipedia.org/wiki/Retained_mode

S3 Texture Compression

S3 Texture Compression (S3TC) (sometimes also called DXTn or DXTC) is
a group of related image compression algorithms originally developed by S3
Graphics, Ltd. for use in their Savage 3D computer graphics accelerator. Unlike
previous image compression algorithms, S3TC’s fast random access to individ-
ual pixels made it uniquely suited for use in compressing textures in hardware
accelerated→3D computer graphics. Its subsequent inclusion in Microsoft’s Di-
rectX 6.0 led to widespread adoption of the technology among hardware and
software makers. While S3 Graphics is no longer a leading competitor in the
graphics accelerator market, license fees are still levied and collected for the
use of S3TC technology, for example in consoles.
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Codecs
There are five variations of the S3TC algorithm (named DXT1 through DXT5,
referring to the FOURCC code assigned by Microsoft to each format), each
designed for specific types of image data. All convert a 4x4 block of pixels
to a 64-bit or 128-bit quantity, resulting in compression ratios of 8:1 or 4:1
with 32-bit RGBA input data. S3TC is a lossy compression algorithm, resulting
in image quality degradation, but for most purposes the resulting images are
more than adequate. (The notable exception is the compression of normal
map data, which usually results in annoyingly visible artifacts. ATI’s →3Dc
compression algorithm is a modification of DXT5 designed to overcome S3TC’s
shortcomings in this area.)

Like many modern image compression algorithms, S3TC only specifies the
method used to decompress images, allowing implementers to design the com-
pression algorithm to suit their specific needs. The early compression routines
were not optimal, and although since greatly improved, hindered early adop-
tion of S3TC by developers. The nVidia GeForce 1 through to GeForce 4 cards
also used 16 bit interpolation to render DXT1 textures, which resulted in band-
ing when unpacking textures with color gradients. Again, this created an unfa-
vorable impression of texture compression, not related to the fundamentals of
the codec itself.

DXT1
DXT1 is the smallest variation of S3TC, storing 16 input pixels in 64 bits of
output, consisting of two 16-bit RGB 5:6:5 color values and a 4x4 two bit
lookup table.

If the first color value (c0) is numerically greater than the second color value
(c1), then two other colors are calculated, such that c2 = 2

3 c0 + 1
3 c1 and c3 =

1
3 c0 + 2

3 c1.

Otherwise, if c0 ≤ c1, then c2 = 1
2 c0 + 1

2 c1 and c3 is transparent.

The lookup table is then consulted to determine the color value for each pixel,
with a value of 0 corresponding to c0 and a value of 3 corresponding to c3.
DXT1 does not support texture alpha data.
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DXT2 and DXT3
DXT2 and DXT3 converts 16 input pixels into 128 bits of output, consisting
of 64 bits of alpha channel data (four bits for each pixel) followed by 64 bits
of color data, encoded the same way as DXT1 (with the exception that the 4
color version of the DXT1 algorithm is always used instead of deciding which
version to use based on the relative values of c0 and c1). In DXT2, the color
data is interpreted as being premultiplied by alpha, in DXT3 it is interpreted as
not having been premultiplied by alpha. Typically DXT2/3 are well suited to
images with sharp alpha transitions, between translucent and opaque areas.

DXT4 and DXT5
DXT4 and DXT5 converts 16 input pixels into 128 bits of output, consisting of
64 bits of alpha channel data (two 8 bit alpha values and a 4x4 3 bit lookup
table) followed by 64 bits of color data (encoded the same way as DXT2 and
DXT3).

If α0 > α1, then six other alpha values are calculated, such that α2 = 6α0+1α1
7 ,

α3 = 5α0+2α1
7 , α4 = 4α0+3α1

7 , α5 = 3α0+4α1
7 , α6 = 2α0+5α1

7 , and α7 = 1α0+6α1
7 .

Otherwise, if α0 ≤ α1, four other alpha values are calculated such that α2 =
4α0+1α1

5 , α3 = 3α0+2α1
5 , α4 = 2α0+3α1

5 , and α5 = 1α0+4α1
5 with α6 = 0 and

α7 = 255.

The lookup table is then consulted to determine the alpha value for each pixel,
with a value of 0 corresponding to α0 and a value of 7 corresponding to α7.
DXT4’s color data is premultiplied by alpha, whereas DXT5’s is not. Because
DXT4/5 use an interpolated alpha scheme, they generally produce superior
results for alpha (transparency) gradients than DXT2/3. Some consider DXT5
to be the most flexible general purpose compression codec.

S3TC Format Comparison
FOURCC Description Alpha premultiplied? Compression ratio Texture Type

DXT1 Opaque / 1-bit Alpha N/A 8:1 / 6:1 Simple non-alpha

DXT2 Explicit alpha Yes 4:1 Sharp alpha

DXT3 Explicit alpha No 4:1 Sharp alpha

DXT4 Interpolated alpha Yes 4:1 Gradient alpha

DXT5 Interpolated alpha No 4:1 Gradient alpha
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See also

• →3Dc
• FXT1
• DirectDraw Surface

External links

• NVIDIA Texture Tools303

• ATI Developer: Tools304

• MSDN Compressed Texture Resources305

• Comparison between S3TC and FXT1 texture compression306

• The Truth about S3TC307 Note: This article used an early S3TC compression
engine, not nVidia’s or ATI’s updated codecs.

Source: http://en.wikipedia.org/wiki/S3_Texture_Compression

Principal Authors: Timharwoodx, NJM, Paul-Jan, N00body, Ilya K

Scanline rendering

Scanline rendering is a rendering technique, or family of algorithms, in →3D
computer graphics that works on a row-by-row basis rather than a polygon-
by-polygon or pixel-by-pixel basis. All of the polygons to be rendered are first
sorted by the top y coordinate at which they first appear, then each row or
scan line of the image is computed using the intersection of a scan line with
the polygons on the front of the sorted list, while the sorted list is updated to
discard no-longer-visible polygons as the active scan line is advanced down the
picture.

The asset of this method is that it is not necessary to translate the coordinates
of all vertices from the main memory into the working memory—only vertices

http://developer.nvidia.com/object/nv_texture_tools.html303

http://www.ati.com/developer/tools.html304

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/directx9_c/directx/graphics/Pro-305

grammingGuide/GettingStarted/Direct3DTextures/compressed/compressedtextureresources.asp
http://www.digit-life.com/articles/reviews3tcfxt1/306

http://web.archive.org/web/20030618083605/www.hardwarecentral.com/hardwarecentral/reports307

/140/1/
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defining edges that intersect the current scan line need to be in active memory,
and each vertex is read in only once. The main memory is often very slow com-
pared to the link between the central processing unit and cache memory, and
thus avoiding re-accessing vertices in main memory can provide a substantial
speedup.

This kind of algorithm can be easily integrated with the →Phong reflection
model, the Z-buffer algorithm, and many other graphics techniques.

Scanline rendering is used by most modern graphics cards and is typically ac-
cessed by the programmer using some 3D API such as→OpenGL or→Direct3D.

History
The first publication of the scanline rendering technique was probably by
Wylie, Romney, Evans, and Erdahl in 1967.308

Other early developments of the scanline rendering method were by Bouknight
in 1969,309 and Newell, Newell, and Sancha in 1972.310 Much of the early work
on these methods was done in Ivan Sutherland’s graphics group at the Univer-
sity of Utah, and at the Evans & Sutherland company in Salt Lake City, Utah.

References

External Links
[http://accad.osu.edu/~waynec/history/tree/utah.html University of Utah
Graphics Group History

See also

• Scan line
• Pixel
• Raster scan

Source: http://en.wikipedia.org/wiki/Scanline_rendering

Principal Authors: Dicklyon, Samwisefoxburr, Nixdorf, Kc9cqj, Timo Honkasalo

Wylie, C, Romney, G W, Evans, D C, and Erdahl, A, "Halftone Perspective Drawings by Computer,"308

Proc. AFIPS FJCC 1967, Vol. 31, 49
Bouknight W.J, "An Improved Procedure for Generation of Half-tone Computer Graphics Representa-309

tion," UI, Coordinated Science Laboratory, Sept 1969
Newell, M E, Newell R. G, and Sancha, T.L, "A New Approach to the Shaded Picture Problem," Proc310

ACM National Conf. 1972
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Scene graph

A scene-graph is a general data structure commonly used by vector-based
graphics editing applications and modern computer games. Examples of such
programs include AutoCAD, Adobe Illustrator and CorelDRAW.

The scene-graph is an object-oriented structure that arranges the logical and
often (but not necessarily) spatial representation of a graphical scene. The
definition of a scene-graph is fuzzy, due to the fact that programmers who
implement scene-graphs in applications and in particular the games industry
take the basic principles and adapt these to suit a particular application. This
means there is no hard and fast rule what a scene-graph should be or shouldn’t
be.

Scene-graphs are a collection of nodes in a graph or tree structure. This means
that a node may have many children but often only a single parent, the effect
of a parent is apparent to all its child nodes - An operation applied to a group
automatically propagates its effect to all of its members. In many programs,
associating a geometrical transformation matrix (see also transformation and
matrix) at each group level and concatenating such matrices together is an
efficient and natural way to process such operations. A common feature, for
instance, is the ability to group related shapes/objects into a compound object
which can then be moved, transformed, selected, etc. as easily as a single
object.

Scene-graphs in graphics editing tools
In vector-based graphics editing, each node in a scene graph represents some
atomic unit of the document, usually a shape such as an ellipse or Bezier path.
Although shapes themselves (particularly paths) can be decomposed further
into nodes such as spline nodes, it is practical to think of the scene graph as
composed of shapes rather than going to a lower level of representation.

Another useful and user-driven node concept is the layer. A layer acts like a
transparent sheet upon which any number of shapes and shape groups can
be placed. The document then becomes a set of layers, any of which can be
conveniently made invisible, dimmed, and/or locked (made read-only). Some
applications place all layers in a linear list while others support sublayers (i.e.,
layers within layers, to any desired depth).

Internally, there may be no real structural difference between layers and groups
at all, since they are both just nested scenegraphs. If differences are needed,
a common type declaration in C++ would be to make a generic scenegraph
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class, and then derive layers and groups as subclasses. A visibility member, for
example, would be a feature of a layer but not necessarily of a group.

Scene-graphs in games and 3D applications
Scene graphs are ideal for modern games using 3D graphics and increasingly
large worlds or levels. In such applications, nodes in a scene-graph (generally)
represent entities or objects in the scene.

For instance, a game might define a logical relationship between a knight and
a horse so that the knight is considered an extension to the horse. The scene
graph would have a ’horse’ node with a ’knight’ node attached to it.

As well as describing the logical relationship, the scene-graph may also describe
the spatial relationship of the various entities: the knight moves through 3D
space as the horse moves.

In these large applications, memory requirements are major considerations
when designing a scene-graph. For this reason many large scene-graph sys-
tems use instancing to reduce memory costs and increase speed. In our exam-
ple above, each knight is a separate scene node, but the graphical represen-
tation of the knight (made up of a 3D mesh, textures, materials and shaders)
is instanced. This means that only a single copy of the data is kept, which is
then referenced by any ’knight’ nodes in the scene-graph. This allows a reduced
memory budget and increased speed, since when a new knight node is created,
the appearance data does not need to be duplicated.

Scene-graph Implementation
The simplest form of scene graph uses an array or linked list data structure, and
displaying its shapes is simply a matter of linearly iterating the nodes one by
one. Other common operations, such as checking to see which shape intersects
the mouse pointer (e.g., in a GUI-based applications) are also done via linear
searches. For small scenegraphs, this tends to suffice.

Larger scenegraphs cause linear operations to become noticeably slow and thus
more complex underlying data structures are used, the most popular being a
tree. This is the most common form of scene-graph. In these scene-graphs the
composite design pattern is often employed to create the hierarchical represen-
tation of group-nodes and leaf-nodes.

Group Nodes - Can have any number of child nodes attached to it. Group
nodes includes transformations and switch nodes.



DR
AF

T

288

Scene graph

Leaf Nodes - Are nodes that are actually rendered or see the effect of an oper-
ation. These include objects, sprites, sounds, lights and anything that could be
considered ’rendered’ in some abstract sense.

Scene-graph Operations and Dispatch
In order to apply an operation to a scene-graph some way of dispatching an
operation based upon what node is currently being considered is needed. For
example in a render operation a transformation group-node would do nothing
more than accumulate its transformation (generally this is matrix multiplica-
tion but could involve operations with vector displacement and quaternions or
Euler angles instead). Whereas an object leaf-node would send the object off
for rendering to the renderer (some implementations might render the object
directly but this can integrate the underlying rendering API - e.g. OpenGL or
DirectX too tightly and rigidly - it is better to separate the scene-graph and
renderer systems as this promotes good OOP style and extensibility).

In order to dispatch differently for different node types several different ap-
proaches can be taken, each have pros and cons and are widely disputed among
programmers arguing which is best.

In Object-Oriented languages such as C++ this can easily be achieved by virtu-
al functions, the node base class has virtual functions for every operation that
can be performed on the nodes. This is simple to do but prevents the addition
of new operations by other programmers that don’t have access to the source.

Alternatively the visitor pattern can be used - this is relatively simple and
faster than virtual functions where the operation to be performed is decided by
multiple dispatch. This has a similar disadvantage in that it is similarly difficult
to add new node types.

Other techniques involve the use of RTTI (Run-Time-Type-Information) the op-
eration can be realised as a class which is passed the current node, it then
queries the nodes type (RTTI) and looks up the correct operation in an array of
callbacks or functors. This requires that at initialisation the user/system regis-
ters functors/callbacks with the different operations so they can be looked up
in the array. This system offers massive flexibility, speed and extensibility of
new nodes and operations.

Variations on these techniques exist and new methods can offer added benefits
- one alternative is scene-graph re-building where the scene-graph is re-built for
each of the operations performed, this however can be very slow but produces
a highly optimised scene-graph. This demonstrates that a good scene-graph
implementation depends heavily on the application it is used in.
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Traversals
Traversals are the key to the power of applying operations to scene-graphs. A
traversal generally consists of starting at some arbitrary node (often the root of
the scene-graph), applying the operation(s) often the updating and rendering
operations are applied one after the other, and recursively moving down the
scene-graph(tree) to the child nodes, until a leaf node is reached. At this point
many scene-graphs then traverse back up the tree possibly applying a simi-
lar operation. As an example - Rendering: While recursively traversing down
the scene-graph hierarchy the operations applies a PreRender operation, once
reaching a leaf node it begin traversing back up the tree applying a PostRender
operation - This nicely allows certain nodes push a state for child nodes and
pop the state afterward.

Some scene-graph operations are actually more efficient when nodes are tra-
versed in a different order - This is where some systems implement scene-graph
re-building to reorder the scene-graph into an easier to parse format or tree.

For example:

In 2D cases, scenegraphs typically render themselves by starting at the tree’s
root node and then recursively drawing the child nodes. The tree’s leaves
represent the most foreground objects. Since drawing proceeds from back to
front with closer objects simply overwriting farther ones, the process is known
as employing the →Painter’s algorithm. In 3D systems, which often employ
depth buffers, it is more efficient to draw the closest objects first, since farther
objects often need only be depth-tested instead of actually rendered.

Scene-graph and Bounding Volume Hierarchies (BVHs)
Bounding Volume Hierarchies (BVHs) are useful for numerous tasks - including
efficient culling and speeding up collision detection between objects. A BVH
is a spatial structure but doesn’t have to partition the geometry (see spatial
partitioning, below).

A BVH is a tree of bounding volumes (often spheres, AABBs or/and OBBs).
At the bottom of the hierarchy the size of the volume is just large enough to
encompass a single object tightly (or possibly even some smaller fraction of an
object in high resolution BVHs), as you walk up the hierarchy each node has
its own volume which tightly encompasses all the volumes beneath it. At the
root of the tree is a volume that encompasses all the volumes in the tree (the
whole scene).

BVHs are useful for speeding up collision detection between objects. If an
object’s bounding volume does not intersect a volume higher in the tree then
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it cannot intersect any object below that node (so they are all rejected very
quickly).

Obviously there are some similarities between BVHs and scene-graphs. A
scene-graph can easily be adapted to include/become a BVH - if each node has
a volume associated or there’s purpose built ’bound node’ added in at conve-
nient location in the hierarchy. This may not be the typical view of scene-graph
but there are benefits to including a BVH in a scene-graph.

Scene-graphs and Spatial Partitioning
An effective way of combining spatial partitioning and scene-graphs is by cre-
ating a scene leaf node that contains the spatial partitioning data - This data is
usually static and generally contains non-moving level data in some partitioned
form. Some systems may have the systems separate and render them separate-
ly, this is fine and there are no real advantages to either method. In particular
it is bad to have the scene-graph contained within the spatial partitioning sys-
tem, this is because the scene-graph is better thought of as the grander system
to the spatial partitioning.

When it is useful to combine them
In short: Spatial partitioning will/should considerably speed up the processing
and rendering time of the scene-graph.

Very large drawings, or scene graphs that are generated solely at runtime (as
happens in ray tracing rendering programs), require defining of group nodes
in a more automated fashion. A raytracer, for example, will take a scene de-
scription of a 3D model and build an internal representation that breaks up its
individual parts into bounding boxes (also called bounding slabs). These boxes
are grouped hierarchically so that ray intersection tests (as part of visibility de-
termination) can be efficiently computed. A group box that does not intersect
an eye ray, for example, can entirely skip having to test any of its members.

A similar efficiency holds in 2D applications as well. If the user has magnified
a document so that only part of it is visible on his computer screen, and then
scrolls said document, it is useful to use a bounding box (or in this case, a
bounding rectangle scheme) to quickly determine which scenegraph elements
are visible and thus actually need to be drawn.

Depending on the particulars of the application’s drawing performance, a large
part of the scenegraph’s design can be impacted by rendering efficiency con-
siderations. In 3D video games such as Quake, for example, binary space par-
titioning (BSP) trees are heavily favored to minimize visibility tests. BSP trees,
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however, take a very long time to compute from design scenegraphs, and must
be recomputed if the design scenegraph changes so the levels tend to remain
static and dynamic characters aren’t generally considered in the spatial parti-
tioning scheme.

Scenegraphs for dense regular objects such as heightfields and polygon meshes
tend to employ quadtrees and octrees, which are specialized variants of a 3D
bounding box hierarchy. Since a heightfield occupies a box volume itself, recur-
sively subdividing this box into eight subboxes (hence the ’oct’ in octree) until
individual heightfield elements are reached is efficient and natural. A quadtree
is simply a 2D octree.

PHIGS
PHIGS was the first commercial scene-graph specification, and became an ANSI
standard in 1988. Disparate implementations were provided by Unix hardware
vendors. The "HOOPS 3D Graphics System"311 appears to have been the first
commercial scene graph library provided by a single software vendor. It was
designed to run on disparate lower-level 2D and 3D interfaces, with the first
major production version (v3.0) completed in 1991. Shortly thereafter, Silicon
Graphics released IRIS Inventor 1.0 (1992), which was a scene-graph built on
top of the IRIS GL 3D API. It was followed up with →Open Inventor in 1994,
a portable scene graph built on top of OpenGL. More 3D scenegraph libraries
can be found in 3D Scenegraph APIs.

References

Books

• Leler, Wm and Merry, Jim (1996) 3D with HOOPS, Addison-Wesley
• Wernecke, Josie (1994) The Inventor Mentor: Programming Object-

Oriented 3D Graphics with Open Inventor, Addison-Wesley, ISBN 0-201-
62495-8 (Release 2)

Web sites and articles

• Strauss, Paul (1993). "IRIS Inventor, a 3D Graphics Toolkit"312

• Helman, Jim; Rohlf, John (1994). "IRIS Performer: A High Performance
Multiprocessing Toolkit for Real-Time 3D Graphics"313

http://www.hoops3d.com311

http://portal.acm.org/citation.cfm?id=165889312

http://portal.acm.org/citation.cfm?id=192262313
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• Carey, Rikk and Bell, Gavin (1997). "The Annotated VRML 97 Reference
Manual"314

• PEXTimes 315

• Bar-Zeev, Avi. "Scenegraphs: Past, Present, and Future"316

• Open Scene Graph317

• OpenSG318

Source: http://en.wikipedia.org/wiki/Scene_graph

Principal Authors: Mortene, Mikkalai, Tommstein, CamTarn, WillC2 45220, Reinyday, Engwar

Shader

A shader is a computer program used in →3D computer graphics to determine
the final surface properties of an object or image. This often includes arbitrarily
complex descriptions of light absorption, diffusion, texture mapping, reflection,
refraction, shadowing, surface displacement and post-processing effects.

By design, shaders are ideal candidates for parallel execution by multiple
graphic processors, which are usually located on a video card, allowing for
scalable multiprocessing and lessening the burden on the CPU for rendering
scenes.

Because of the goals shaders are designed to address, they are usually writ-
ten using a shading language, a specifically designed programming language
built around the intrinsic strengths and weaknesses of the different compu-
tational model. Although limited in some ways when compared to tradition-
al approaches, the parallel architecture exposed by shaders has been used to
combine highly scalable processing power with the flexibility of programmable
devices, which is a boon in addressing the growing demands for graphics qual-
ity.

The increasing performance and programmability of shader-based architec-
tures attracted researchers trying to exploit the new parallel model for General
Purpose computation on GPUs. This demonstrated that shaders could be used

http://www.jwave.vt.edu/~engineer/vrml97book/ch1.htm314

http://www.jch.com/jch/vrml/PEXTimes.txt315

http://www.realityprime.com/scenegraph.php316

http://www.openscenegraph.org317

http://www.opensg.org318
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to process a large variety of information, and not just rendering-specific tasks.
This new programming model, which resembles stream processing, allows high
computational rates at extremely low cost that will operate on wide installed
base (e.g. the common home PC).

Real-time Shader Structure
There are different approaches to shading, mainly because of the various appli-
cations of the targeted technology. Production shading languages are usually
at a higher abstraction level, avoiding the need to write specific code to handle
lighting or shadowing. In contrast, real-time shaders integrate light and shad-
owing computations. In those languages, the lights are passed to the shader
itself as parameters.

There are actually two different applications of shaders in real-time shading
languages. Although the feature set actually converged (so it’s possible to write
a vertex shader using the same functions of a fragment shader), the different
purposes of computation impose limitations to be acknowledged.

Vertex Shaders
Vertex shaders are applied for each vertex and run on a programmable vertex
processor. Vertex shaders define a method to compute vector space transfor-
mations and other linearizable computations.

A vertex shader expects various inputs:

• Uniform variables are constant values for each shader invocation. It is al-
lowed to change the value of each uniform variable between different shad-
er invocation batches. This kind of variable is usually a 3-component array
but this does not need to be. Usually, only basic datatypes are allowed to
be loaded from external APIs so complex structures must be broken down.
Uniform variables can be used to drive simple conditional execution on a
per-batch basis. Support for this kind of branching at a vertex level has
been introduced in shader model 2.0.

• Vertex attributes, which are a special case of variant variables, which are
essentially per-vertex data such as vertex positions. Most of the time, each
shader invocation performs computation on different data sets. The exter-
nal application usually does not access these variables "directly" but man-
ages as large arrays. Besides this little detail, applications are usually ca-
pable of changing a single vertex attribute with ease. Branching on vertex
attributes requires a finer degree of control which is supported with extend-
ed shader model 2.
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Vertex shader computations are meant to provide following stages of the graph-
ics pipeline with interpolable fragment attributes. Because of this, a vertex
shader must output at least the transformed homogeneous vertex position (in
GLSL this means the variable gl_Position must be written). Outputs from differ-
ent vertex shader invocations from the same batch will be linearly interpolated
across the primitive being rendered. The result of this linear interpolation is
fetched to the next pipeline stage.

Some examples of vertex shader’s functionalities include arbitrary mesh de-
formation (possibly faking lens effects such as fish-eye) and vertex displace-
ments in general, computing linearizable attributes for later pixel-shaders such
as texture coordinate transformations. Actually, vertex shaders cannot create
vertices.

Pixel Shaders
Pixel shaders are used to compute properties which, most of the time, are
recognized as pixel colors.

Pixel shaders are applied for each pixel. They are run on a pixel processor,
which usually features much more processing power than its vertex-oriented
counterpart. As of October 2005, some architectures are merging the two pro-
cessors in a single one to increase transistor usage and provide some kind of
load balancing.

As previously stated, the pixel shaders expects input from interpolated vertex
values. This means there are three sources of information:

• Uniform variables can still be used and provide interesting opportunities.
A typical example is passing an integer providing a number of lights to
be processed and an array of light parameters. Textures are special cases
of uniform values and can be applied to vertices as well, although vertex
texturing is often more expensive.

• Varying attributes is a special name to indicate fragment’s variant variables,
which are the interpolated vertex shader output. Because of their origin, the
application has no direct control on the actual value of those variables.

Branching on the pixel processor has also been introduced with an extended
pixel shader 2 model but hardware supporting this efficiently is beginning to be
commonplace only now (6 March 2006), usually with full pixel shader model
3 support.

A fragment shader is allowed to discard the results of its computation, meaning
that the corresponding framebuffer position must retain its actual value.



DR
AF

T

295

Shader

Fragment shaders also don’t need to write specific color information because
this is not always wanted. Not producing color output when expected however
gives undefined results in GLSL.

Fragment shaders have been employed to apply accurate lighting models, sim-
ulate multi-layer surface properties, simulating natural phenomena such as tur-
bulence (vector field simulations in general) and applying depth of field to a
scene or other color-space transformations.

Texturing
Note: the following information on texture mapping with shaders applies
specifically to →GLSL. Those statements may not hold true for DirectX HLSL.

The functionality by itself continues to be applied "as usual" with shading lan-
guages providing special ad-hoc functions and opaque objects.

It has been stated that textures are special uniform variables. The shading lan-
guages define special variables to be used as textures called samplers. Each
sampler does have a specific lookup mode assigned explicitly in the name.
Looking up a texture actually means to get an interpolated texel color at a
specified position. For example, in GLSL sampler2D will access a specific tex-
ture performing bidimensional texturing and filtering to be used with a tex2D
function call. Other details are specified by the function used to actually per-
form the lookup. For cube map textures, a samplerCube would be used with
a textureCube function call.

Understanding completely the model also needs to know a little about the pre-
vious shading model, commonly referred as multitexturing or texture cascade.
For our purposes, we’ll just assume there is a limited set of units which can be
linked to specific textures and somehow produce color results, possibly combin-
ing them in a sequential order. This is redundant with the new programming
model which allows much greater flexibility.

To lookup to a specific texture, the sampler really needs to know what of those
texture units needs to be used with the specified lookup mode. This means
samplers are really integers referring to the texture unit used to carry on the
lookup. It will now be possible to bind to each texture unit an image texture
just as usual. It will happen that those units are actually a subset of "legacy"
texture units and are referred as image units. Most implementation actually
allow more image units than texture units because of the lower complexity to
implement them but also to push for the new programming model. In short,
samplers are really linked to image units, which are bound to textures.
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For final users, this extra flexibility results in both improved performance and
richer content because of the better hardware utilization and resources.

Lighting & Shadowing
Considering the lighting equation, we have seen the trend to move evaluations
to fragment granularity. Initially, the lighting computations were performed
at vertex level (phong lighting model) but improvements in fragment proces-
sor designs allowed to evaluate much more complex lighting equations such
as the blinn lighting model, often referred as bump mapping. In this latter
technique, vertex shaders are used to set up a vertex local space (also called
tangent space) which is then used to compute per-pixel lighting vectors. The
actual math for this can be quite involved and is beyond the scope of this arti-
cle.

It is well acknowledged that lighting really needs hardware support for dynam-
ic loops (this is often referred as DirectX Pixel Shader Model 3.0) because this
allows to process many lights of the same type with a single shader. By con-
trast, previous shading models would have need the application to use multi
pass rendering (an expensive operation) because of the fixed loops. This ap-
proach would also have needed more complicated machinery. For example,
after finding there are 13 "visible" lights, the application would have the need
to use a shader to process 8 lights (suppose this is the upper hardware limi-
tation) and another shader to process the remaining 5. If there are 7 lights
the application would have needed a special 7-light shader. By contrast, with
dynamic loops the application can iterate on dynamic variables thus defining
a uniform array to be 13 (or 7) "lights long" and get correct results, provid-
ed this actually fits in hardware capabilities. At the time this is being written
(27 October 2005) there are enough resources to evaluate over 50 lights per
pass when resources are managed carefully. Compare this to old programming
models.

Computing accurate shadows make this much more complicated, depending on
the algorithm used. Compare stencil shadow volumes and shadow mapping. In
the first case, the algorithm requires at least some care to be applied to multiple
lights at once and there’s no actual proof of a multi-light shadow volume based
version. Shadow mapping by contrast seems to be much more well suited
to future hardware improvements and to the new shading model which also
evaluates computations at fragment level. Shadow maps however needs to be
passed as samplers, which are limited resources: actual hardware (27 October
2005) support up to 16 samplers so this is a hard-limit, unless some tricks are
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used. It is speculated that future hardware improvements and packing multiple
shadow maps in a single 3D-texture will rapidly raise this resource availability.

Further reading

• Steve Upstill: The RenderMan Companion: A Programmer’s Guide to Real-
istic Computer Graphics, Addison-Wesley, ISBN 0-201-50868-0

• David S. Elbert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, Steven
Worley: Texturing and modeling: a procedural approach, AP Professional,
ISBN 0-12-228730-4. Ken Perlin is the author of →Perlin noise, an impor-
tant procedural texturing primitive.

• Randima Fernando, Mark Kilgard. The Cg Tutorial: The Definitive Guide
to Programmable Real-Time Graphics, Addison-Wesley Professional, ISBN
0-32119-496-9

• Randi Rost: OpenGL Shading Language, Addison-Wesley Professional, ISBN
0-321-19789-5
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Source: http://en.wikipedia.org/wiki/Shader

Principal Authors: T-tus, Flamurai, MaxDZ8, Parameter, Rufous

Shading language

A shading language is a special programming language adapted to easily map
on shader programming. Those kind of languages usually have special da-
ta types like color and normal. Because of the various target markets of 3D
graphics, different shading languages have been developed: a brief overview is
given below.

Production rendering
These kind of shading languages are geared towards maximum image quali-
ty. Material properties are totally abstracted, little programming skill and no
hardware knowledge is required. These kind of shaders are often developed by
artists to get the right "look", just as texture mapping, lighting and other facets
of their work.

Processing these kinds of shaders is usually a time-consuming process. The
computational power required to get this kind of shading to work can be rather
expensive because of their ability to produce photorealistic results. Most of the
time, production rendering is run on large computer clusters.

RenderMan Shading Language
RenderMan Shading Language, which is defined in the RenderMan Interface
Specification , is the most common shading language for production-quality
rendering. RenderMan by Rob Cook, is currently used in all of Pixar’s products.
It’s also one of the first shading languages ever implemented.

The language actually defines six major shader types:

• Light source shaders compute the color of the light emitted from a point on
the light source towards a point on the surface being illuminated.

• Surface shaders are used to model the optical properties of the object be-
ing illuminated. They output the final color and position of the point be-
ing illuminated by taking into account the incoming light and the physical
properties of the object.
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• Displacement shaders manipulate the surface’s geometry independent of its
color.

• Deformation shaders transform the entire space that a geometry is defined
in. Only one RenderMan implementation, the AIR renderer, actually imple-
ments this shader type.

• Volume shaders manipulate the color of a light as it passes through a vol-
ume. They are used to create effects like fog.

• Imager shaders describe a color transformation to final pixel values. This
is much like an image filter, however the imager shader operates on pre-
quantized data, which typically has a greater dynamic range than can be
displayed on the output device.

Most of the time RenderMan is referenced, it is really meant to speak about
PRMan, the RenderMan implementation from Pixar, which was the only one
available for years. Further information can be found at the RenderMan
repository325.

Gelato Shading Language
Developed by NVIDIA, a graphics processing unit manufacturer for its Gelato
rendering software.

This language is meant to interact with hardware, providing higher computa-
tional rates while retaining cinematic image quality and functionalities.

Real-time rendering
Until recently, developers did not have the same level of control over the out-
put from the graphics pipeline of graphics cards, but shading languages for
real-time rendering are now widespread. They provide both higher hardware
abstraction and a more flexible programming model when compared to previ-
ous paradigms which hardcoded transformation and shading equations. This
results in both giving the programmer greater control over the rendering pro-
cess, and delivering richer content at lower overhead.

Quite surprisingly those shaders, which are designed to be executed directly
on the GPU at the proper point in the pipeline for maximum performance, also
scored successes in general processing because of their stream programming
model.

http://www.renderman.org/325



DR
AF

T

300

Shading language

This kind of shading language is usually bound to a graphics API, although
some applications also provide built-in shading languages with limited func-
tionalities.

Historically, only few of those languages were successful in both establish-
ing themselves and maintaining strong market position; a short description
of those languages follows below.

OpenGL shading language

Also known as →GLSL or glslang, this standardized high level shading lan-
guage is meant to be used with →OpenGL.

The language featured a very rich feature set since the beginning, unifying
vertex and fragment processing in a single instruction set, allowing conditional
loops and (more generally) branches.

Historically, GLSL have been preceded by various OpenGL extensions such as
ARB_vertex_program326, ARB_fragment_program327 and many others. Those
were low-level, assembly-like languages with various limitations. Usage of
those languages is now discouraged. Those two extensions were also preceded
by other proposals which didn’t survive in the new version.

Cg programming language

This language developed by NVIDIA has been designed for easy and efficient
production pipeline integration. The language features API independence and
comes with a large variety of free tools to improve asset management.

The first Cg implementations were rather restrictive because of the hardware
being abstracted but they were still innovative when compared to previous
methods. Cg seems to have survived the introduction of the newer shading
languages very well, mainly of its established momentum in the digital content
creation area, although the language is seldom used in final products.

A distinctive feature of Cg is the use of connectors, special data structures to
link the various stages of processing. Connectors are used to define the input
from application to vertex processing stage and the attributes to be interpolated
as input to fragment processing.

DirectX High-Level Shader Language
This is possibly the most successful language to date, mainly because of great
pressure from Microsoft, combined with the fact that it was the first C-style

http://oss.sgi.com/projects/ogl-sample/registry/ARB/vertex_program.txt326

http://oss.sgi.com/projects/ogl-sample/registry/ARB/fragment_program.txt327
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shader language to be used for real-time rendering. The high level shader
language (also called HLSL for short) was released before its main competitor,
GLSL, although its feature set was later extended in two different revisions to
match the GLSL feature set.

References

1. ↑ https://renderman.pixar.com/products/rispec/
2. ↑ NVIDIA Gelato official website, http://film.nvidia.com/page/gelato.html
3. ↑ Official language specification, http://www.opengl.org/documentation

/glsl/
4. ↑ Previous vertex shading languages (in no particular order) for

OpenGL include EXT_vertex_shader328, NV_vertex_program329, the
aforementioned ARB_vertex_program330, NV_vertex_program2331 and
NV_vertex_program3332.

5. ↑ For fragment shading nvparse333 is possibly the first shading lan-
guage featuring high-level abstraction based on NV_register_combiners334,
NV_register_combiners2335 for pixel math and NV_texture_shader336,
NV_texture_shader2337 and NV_texture_shader3338 for texture lookups.
ATI_fragment_shader339 did not even provide a "string orient-
ed" parsing facility (although it has been later added by
ATI_text_fragment_shader340). ARB_fragment_program341, has been very
successful. NV_fragment_program342 and NV_fragment_program2343 are
actually similar although the latter provides much more advanced func-
tionality in respect to others.

http://oss.sgi.com/projects/ogl-sample/registry/EXT/vertex_shader.txt328

http://oss.sgi.com/projects/ogl-sample/registry/NV/vertex_program.txt329

http://oss.sgi.com/projects/ogl-sample/registry/ARB/vertex_program.txt330

http://oss.sgi.com/projects/ogl-sample/registry/NV/vertex_program2.txt331

http://oss.sgi.com/projects/ogl-sample/registry/NV/vertex_program3.txt332

http://developer.nvidia.com/object/nvparse.html333

http://oss.sgi.com/projects/ogl-sample/registry/NV/register_combiners.txt334

http://oss.sgi.com/projects/ogl-sample/registry/NV/register_combiners2.txt335

http://oss.sgi.com/projects/ogl-sample/registry/NV/texture_shader.txt336

http://oss.sgi.com/projects/ogl-sample/registry/NV/texture_shader2.txt337

http://oss.sgi.com/projects/ogl-sample/registry/NV/texture_shader3.txt338

http://oss.sgi.com/projects/ogl-sample/registry/ATI/fragment_shader.txt339

http://oss.sgi.com/projects/ogl-sample/registry/ATI/text_fragment_shader.txt340

http://oss.sgi.com/projects/ogl-sample/registry/ARB/fragment_program.txt341

http://oss.sgi.com/projects/ogl-sample/registry/NV/fragment_program.txt342

http://oss.sgi.com/projects/ogl-sample/registry/NV/fragment_program2.txt343
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6. ↑ Official Cg home page, http://developer.nvidia.com/object/cg_toolkit.
html

7. ↑ Fx composer from NVIDIA home page, http://developer.nvidia.com/ob-
ject/fx_composer_home.html

Source: http://en.wikipedia.org/wiki/Shading_language

Principal Authors: Rayc, MaxDZ8, Flamurai, Inike, Ecemaml

Shadow mapping

Figure 81 Scene with shadow mapping

Shadow mapping is a process, by which, shadows are added to→3D computer
graphics. This concept was introduced by Lance Williams in 1978, in a paper
entitled "Casting curved shadows on curved surfaces". Since then, it has been
used both in pre-rendered scenes and in realtime. Shadow mapping is used by
Pixar’s RenderMan, and likewise, shadow mapping has been used in such films
as Toy Story.
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Figure 82 Scene with no shadows

Shadows are created by testing whether a pixel is visible from the light source,
by comparing it to a z-buffer or depth image, in the form of a texture. This
technique involves three passes or re-renderings, although it can be accom-
plished with just two.

Principle of a shadow and a shadow map
A shadow can be considered thus: Imagine you have a spot light source, that is
aimed at some objects. The shadow thus cast by this light source can be visual-
ized by viewing through the light source at the objects and marking the visible
areas, and disregarding every point not seen by the light source as "shadow".

The complexity of this simple operation becomes apparent when one consid-
ers the amount of photons that are incident on the surface of the objects. The
sheer number of photons incident cannot be simulated at real-time even by
current fastest computers. Hence to make this effect more accessible to people
via games, 3D modelling tools, visualization tools, etc, programmers employ
a number of techniques to fake this complex shadow operation. The follow-
ing is a partial list of algorithms that most programmers use to approach this
problem:
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• Shadow mapping
• →Shadow volumes
• Ray-traced shadows

Though current computer games are leaning toward a mixture of shadow vol-
ume techniques and shadow volumes, the explosion of growth in the graphics
card arena has favored more toward shadow mapping, since memory is the
only limitation for shadow mapping.

Algorithm overview
As in any other graphics discussion, the standard camera, spot-light are as-
sumed to exist. The camera (usually a perspective camera) points toward the
scene, and the algorithm must paint the shadowed region using appropriate
color — usually by dark color, although some might replace this dark color
with a texture so as to achieve the effect of a projector head onto the object.

Figure 83 Pass one, render
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Pass one
Pass one involves rendering the scene from the light’s point of view. Since
this example uses a directional source of light (e.g., the Sun), it makes more
sense to have orthographic projection, instead of perspective projection for the
shadow map (inferring a point source of light).

Figure 84 Pass one, depth map

Since only the needed information is used, the color buffer (and others) may
be disabled, along with any color-altering schemes (e.g., lighting, shaders, tex-
turing). It is important that only the shadow-casting objects are rendered,
opposed to the objects that are shadowed. When shadow mapping is done in
realtime, speed is important and therefore the less that is rendered, the better.
A depth-offset is usually applied and enabled for the rendering of the shadow
casters, since if this is not used, ugly stitching artifacts will result.

When the rendering of the shadow casters are complete, a texture map (image)
of the depth buffer is made. This is the shadow map that will be used for the
remainder of the process.
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Figure 85 Pass two, projection

Pass two
The second pass involves drawing the scene from the eye’s view. The shadow
map is first projected over the whole scene, or at least, the shadow receivers,
from the light’s point of view. This is a mathematically intense part of the
process, since multiple matrices are involved to generate the proper texture
coordinates.

A test is applied to every pixel, to determine how far from the light the depth
map says it is, and how far it really is. Usually, if its greater, the pixel fails the
test, and is considered "shadowed".

Pass three
Pass three draws in the shadowed parts of the scene, since very rarely will
shadows ever be totally black. This step can be done before or after pass two,
but most often it is combined with pass two. A handful of ways exist, but
it is most often combined by a shader that simply applies a different lighting
scheme to the pixel. For this very reason alone, it is hard to find programs that
use shadow mapping without shaders.
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Figure 86 Pass two, failures

Figure 87 Pass two complete
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Figure 88 Final scene

This example used the →OpenGL extension GL_ARB_shadow_ambient to ac-
complish the process in two passes.

See also

• →Shadow volume, another shadowing technique

External links

• Hardware Shadow Mapping344, nVidia
• Shadow Mapping with Today’s OpenGL Hardware345, nVidia

Source: http://en.wikipedia.org/wiki/Shadow_mapping

Principal Authors: Praetor alpha, Dormant25, Tommstein, Starfox, Klassobanieras

http://developer.nvidia.com/attach/8456344

http://developer.nvidia.com/attach/6769345
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Shadow volume

Shadow volumes are a technique used in →3D computer graphics since 1977
to add shadows to a rendered scene. It is generally considered among the most
practical general purpose real-time shadowing systems given the capabilities
of modern 3D graphics hardware, and has been popularized by the computer
game Doom 3.

A shadow volume divides the virtual world into two; areas that are in shadow
and areas that are not.

Construction
In order to construct a shadow volume, project a line from the light through
each vertex in the shadow casting object to some point (generally at infinity).
These projections will together form a volume; any point inside that volume is
in shadow, everything outside is lit by the light.

Actual shadow volumes are computed in the following way:

• Find all silhouette edges (edges which separate front-facing faces from
back-facing faces)

• Extend all silhouette edges in the direction away from the light-source to
form quadrilateral surfaces

• Add front-cap and back-cap to the surfaces to form a closed volume (may
not be necessary, depending on the implementation used)

Usage
Current research and implementations focus on the use of a hardware stencil
buffer to optimize the algorithm making use of hardware acceleration - see
→Stencil shadow volume.

In order to test whether a given pixel in the rendered image is shadowed or not,
the shadow volume itself is rendered, though to the stencil buffer only and not
to the final image. For every front-facing face in the shadow volume the value
in the stencil buffer is increased; for every back-facing face it is decreased.

Once all faces in the shadow volume have been rendered to the stencil buffer,
any pixel with a value not equal to zero will be in shadow.

In order to understand why, think in terms of a ray of light heading back from
the pixel on the screen - if it passes into the shadow volume, it will be through
a front-facing face and so the stencil buffer value will be increased. If it then
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passes out through the back of the volume (through a back-facing face) it will
be decreased.

If, however, the pixel is in shadow then the value will only be decreased when
it leaves the shadow volume at the back, and so the value will be non-zero.

Figure 1 shows a simple scene containing a camera, a light, a shadow casting
object (the blue circle) and three shadow receiving objects (the green squares),
all represented in 2D. The thick black lines show the outline of the shadow
volume. The line projecting from the camera (smiley face) is the line of sight.

The line of sight first hits object a; at this point it has not reached any faces
of the shadow volume and so the stencil buffer will have a value of 0 - not in
shadow. At point 1 a front face of the shadow volume is crossed and increment
the stencil buffer. Next we hit object b; at this point we have a value of 1 in the
buffer so the object is in shadow. Progressing down the line of sight we reach
the back face of the shadow volume at 2, and decrement the stencil buffer back
to 0. Finally we hit object c, again with a value of 0 in the stencil buffer so the
object is not in shadow.

One problem with this algorithm is that if the camera (eye) is itself in the
shadow volume then this approach will fail - the line of sight first crosses a
back face of the shadow volume, decrementing the stencil buffer value so that
it is non-zero when it reaches object c, even though that object should not be
shadowed.

One solution to this is to trace backwards from some point at infinity to the
eye of the camera. This technique was discovered independently by a number
of people, but was popularized by John Carmack, and is generally known as
→Carmack’s Reverse.

See also

• →Stencil shadow volume, which describes how shadow volumes are imple-
mented using the stencil buffer

• →Silhouette edge
• →Shadow mapping, an alternative shadowing algorithm

External Articles

• http://www.gamedev.net/reference/articles/article1873.asp - this is an ex-
cellent introductory article

• http://www.gamedev.net/reference/articles/article2036.asp - another ex-
planation of the basic algorithm
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Source: http://en.wikipedia.org/wiki/Shadow_volume

Principal Authors: Orderud, Steve Leach, Staz69uk, Cma, LiDaobing

Silhouette edge

In computer graphics, a silhouette edge on a 3D body projected onto a 2D
plane (display plane) is the collection of points whose outwards surface normal
is perpendicular to the view vector. Due to discontinities in the surface normal,
a silhouette edge is also an edge which separates a front facing face from a
back facing face. Without loss of generality, this edge is usually chosen to be
the closest one on a face, so that in parallel view this edge corresponds to the
same one in a perspective view. Hence, if there is an edge between a front
facing face and a side facing face, and another edge between a side facing face
and back facing face, the closer one is chosen. The easy example is looking at
a cube in the direction where the face normal is colinear with the view vector.

The first type of silhouette edge is sometimes troublesome to handle because
it does not necessarily correspond to a physical edge in the CAD model. The
reason that this can be an issue is that a programmer might corrupt the original
model by introducing the new silhouette edge into the problem. Also, given
that the edge strongly depends upon the orientation of the model and view
vector, this can introduce numerical instablities into the algorithm (such as
when a trick like dilution of precision is considered).

Computation
To determine the silhouette edge of an object, we first have to know the plane
equation of all faces. Then, by examining the sign of the point-plane distance
from the light-source to each face

ax + by + cz + d =











> 0 front facing

= 0 parallel

< 0 back facing

we can determine if the edges is front- or back facing.

The silhouette edge(s) consist of all edges separating a front facing face from
a back facing face.
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External links

Source: http://en.wikipedia.org/wiki/Silhouette_edge

Principal Authors: Orderud, Wheger, Gaius Cornelius, David Levy, RJHall

Solid modelling

Solid modelling (or modeling) is the unambiguous representation of the solid
parts of an object, that is, models of solid objects suitable for computer process-
ing. It is also known as volume modelling. Other modelling methods include
surface models (used extensively in automotive and consumer product design
as well as entertainment animation) and wire frame models (which can be
ambiguous about solid volume).

Primary uses of solid modelling are for CAD, engineering analysis, computer
graphics and animation, rapid prototyping, medical testing, product visualiza-
tion and visualization of scientific research.

Basic theoretical concepts

• Sweeping
• An area feature is "swept out" by moving a primitive along a path to form

a solid feature. These volumes either add to the object ("extrusion") or
remove material ("cutter path").

• Also known as ’sketcher based modelling’.
• Analogous to various manufacturing techniques such as extrusion,

milling, lathe and others.

• Boundary representation (BREP)
• A solid object is represented by boundary surfaces and then filled to

make solid.
• Also knowing as ’surfacing’.
• Analogous to various manufacturing techniques; Injection moulding,

casting, forging, thermoforming, etc.

• Parameterized primitive instancing.
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• An object is specified by reference to a library of parameterized primi-
tives.

• For example, a bolt is modelled for a library, this model is used for all
bolt sizes by modifying a set of its parameters.

• Spatial occupancy (voxel)
• The whole space is subdivided into regular cells, and the object is spec-

ified by the set of cells it occupies.
• Models described this way lend themselves to Finite difference analysis.
• This is usually done after a model is made, as part of automated pre-

processing for analysis software.

• Facet modeling
• Forming the outside surface form of the volume from any triangular

planes
• Often used in reverse engineering of physical models.

• Decomposition
• Similar to "spatial occupancy", but the cells are neither regular, nor "pre-

fabricated".
• Models described this way lend themselves to FEA.
• This is usually done after a model is made, as part of automated pre-

processing for analysis software.

• →Constructive solid geometry
• Simple objects are combined using boolean operators such as union,

difference, and intersection.

• Feature based modelling
• Complex combinations of objects and operators are considered together

as a unit which can be modified or duplicated.
• Order of operations is kept in a history tree, and parametric changes can

propagate through the tree.

• Parametric modelling
• Attributes of features are parameterized, giving them labels rather than

only giving them fixed numeric dimensions, and relationships between
parameters in the entire model are tracked, to make changing numeric
values of parameters easier.

• Almost always combined with features, giving parametric feature based
modelling.
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History
Solid modeling has to be seen in context of the whole history of CAD, the key
milestones being the development of Romulus which went on to influence the
development of Parasolid and ACIS and thus the mid-range Windows based
feature modelers such as SolidWorks and Solid Edge and the arrival of para-
metric solid models system like T-Flex and Pro/Engineer.

Practical applications

Parametric Solid modelling CAD
Solid modellers have become commonplace in engineering departments in the
last ten years due to faster PCs and competitive software pricing. They are the
workhorse of machine designers.

Solid modelling software creates a virtual 3D representation of components for
machine design and analysis. Interface with the human operator is highly op-
timized and includes programmable macros, keyboard shortcuts and dynamic
model manipulation. The ability to dynamically re-orient the model, in real-
time shaded 3-D, is emphasized and helps the designer maintain a mental 3-D
image.

Design work on components is usually done within context of the whole prod-
uct using assembly modelling methods.

A solid model generally consists of a group of features, added one at a time,
until the model is complete. Engineering solid models are built mostly with
sketcher-based features; 2-D sketches that are swept along a path to become
3-D. These may be cuts, or extrusions for example.

Another type of modelling technique is ’surfacing’ (Freeform surface mod-
elling). Here, surfaces are defined, trimmed and merged, and filled to make
solid. The surfaces are usually defined with datum curves in space and a va-
riety of complex commands. Surfacing is more difficult, but better applicable
to some manufacturing techniques, like injection molding. Solid models for in-
jection molded parts usually have both surfacing and sketcher based features.

Engineering drawings are created semi-automatically and reference the solid
models.

The learning curve for these software packages is steep, but a fluent machine
designer who can master these software packages is highly productive.

The modelling of solids is only the minimum requirement of a CAD system’s
capabilities.
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Figure 89

Parametric modelling uses parameters to define a model (dimensions, for ex-
ample). The parameter may be modified later, and the model will update to
reflect the modification. Typically, there is a relationship between parts, as-
semblies, and drawings. A part consists of multiple features, and an assembly
consists of multiple parts. Drawings can be made from either parts or assem-
blies.

Example: A shaft is created by extruding a circle 100 mm. A hub is assembled
to the end of the shaft. Later, the shaft is modified to be 200 mm long (click
on the shaft, select the length dimension, modify to 200). When the model
is updated the shaft will be 200 mm long, the hub will relocate to the end of
the shaft to which it was assembled, and the engineering drawings and mass
properties will reflect all changes automatically.

Examples of parameters are: dimensions used to create model features, mate-
rial density, formulas to describe swept features, imported data (that describe
a reference surface, for example).
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Related to parameters, but slightly different are Constraints. Constraints are
relationships between entities that make up a particular shape. For a window,
the sides might be defined as being parallel, and of the same length.

Parametric modelling is obvious and intuitive. But for the first three decades
of CAD this was not the case. Modification meant re-draw, or add a new cut
or protrusion on top of old ones. Dimensions on engineering drawings were
created, instead of shown.

Parametric modelling is very powerful, but requires more skill in model cre-
ation. A complicated model for an injection molded part may have a thousand
features, and modifying an early feature may cause later features to fail. Skill-
fully created parametric models are easier to maintain and modify.

Parametric modelling also lends itself to data re-use. A whole family of cap-
screws can be contained in one model, for example.

Entertainment
Animation of a computer generated character is an example of parametric
modelling. Jar Jar Binks is described by parameters which locate key body
positions. The model is then built off these locations. The parameters are
modified, and the model rebuilt, for each frame to create animation.

Medical solid modelling
Modern computed axial tomography and magnetic resonance imaging scanners
can construct solid models of interior body features.

Uses of medical solid modelling;

• Visualization
• Visualization of specific body tissues (just blood vessels and tumor, for ex-

ample)
• Creating solid model data for rapid prototyping (to aid surgeons preparing

for difficult surgeries, for example)
• Combining medical solid models with CAD solid modelling (design of hip

replacement parts, for example)

See also

• Computer graphics
• Computational geometry
• Euler boundary representation
• Engineering drawing
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• Technical drawing
• SolidWorks
• SolidEdge
• Pro/ENGINEER
• BRL-CAD
• I-DEAS
• NX (Unigraphics)
• CATIA
• AutoCAD

Source: http://en.wikipedia.org/wiki/Solid_modelling

Principal Authors: Duk, Freeformer, Mikkalai, Oleg Alexandrov, Wheger

Specular highlight

A specular highlight is the bright spot of light that appears on shiny objects
when illuminated (for example, see image at right). Specular highlights are
important in →3D computer graphics, as they provide a strong visual cue for
the shape of an object and its location with respect to light sources in the scene.

Microfacets
The term specular means that light is perfectly reflected in a mirror-like way
from the light source to the viewer. Specular reflection is visible only where the
surface normal is oriented precisely halfway between the direction of incoming
light and the direction of the viewer; this is called the half-angle direction
because it bisects (divides into halves) the angle between the incoming light
and the viewer. Thus, a specularly reflecting surface would show a specular
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highlight as the perfectly sharp reflected image of a light source. However,
many shiny objects show blurred specular highlights.

This can be explained by the existence of microfacets. We assume that surfaces
that are not perfectly smooth are composed of many very tiny facets, each
of which is a perfect specular reflector. These microfacets have normals that
are distributed about the normal of the approximating smooth surface. The
degree to which microfacet normals differ from the smooth surface normal is
determined by the roughness of the surface.

The reason for blurred specular highlights is now clear. At points on the ob-
ject where the smooth normal is close to the half-angle direction, many of the
microfacets point in the half-angle direction and so the specular highlight is
bright. As one moves away from the center of the highlight, the smooth nor-
mal and the half-angle direction get farther apart; the number of microfacets
oriented in the half-angle direction falls, and so the intensity of the highlight
falls off to zero.

The specular highlight often reflects the color of the light source, not the color
of the reflecting object. This is because many materials have a thin layer of
clear material above the surface of the pigmented material. For example plas-
tic is made up of tiny beads of color suspended in a clear polymer and human
skin often has a thin layer of oil or sweat above the pigmented cells. Such ma-
terials will show specular highlights in which all parts of the color spectrum are
reflected equally. On metallic materials such as gold the color of the specular
highlight will reflect the color of the material.

Models of Microfacets
A number of different models exist to predict the distribution of microfacets.
Most assume that the microfacet normals are distributed evenly around the
normal; these models are called isotropic. If microfacets are distributed
with a preference for a certain direction along the surface, the distribution
is anisotropic.

Phong distribution
In the →Phong reflection model, the intensity of the specular highlight is calcu-
lated as kspec = cosn(R, V ), where R is the mirror reflection of the light vector
off the surface, and V is the viewpoint vector.

In Blinn-Phong shading, the intensity of a specular highlight is calculated as
kspec = cosn(N,H), where N is the smooth surface normal and H is the half-
angle direction (the direction vector midway between L, the vector to the light,
and V, the viewpoint vector).



DR
AF

T

319

Specular highlight

The number n is called the Phong exponent, and is a user-chosen value that
controls the apparent smoothness of the surface. These equations imply that
the distribution of microfacet normals is an approximately Gaussian distri-
bution, or approximately Pearson type II distribution, of the corresponding
angle.346 While this is a useful heuristic and produces believable results, it is
not a physically based model.

Gaussian distribution
A slightly better model of microfacet distribution can be created using a Gaus-
sian distribution. The usual function calculates specular highlight intensity as:

kspec = e
−
(

∠(N,H)
m

)2

where m is a constant between 0 and 1 that controls the apparent smoothness
of the surface.

Material from this section adapted from: Glassner, Andrew S. (ed). An
Introduction to Ray Tracing. San Diego: Academic Press Ltd, 1989. p. 148.

Beckmann distribution
A physically based model of microfacet distribution is the Beckmann distribu-
tion. This function gives very accurate results, but is also rather expensive to
compute.

kspec = 1
4m2 cos4(N,H)e

−
(

tan(N,H)
m

)2

where m is as before: a constant between 0 and 1 that controls the apparent
smoothness of the surface.

Material from this section adapted from: Foley et al. Computer Graphics:
Principles and Practice. Menlo Park: Addison-Wesley, 1990. p. 764.

Heidrich-Seidel anisotropic distribution
The Heidrich-Seidel distribution is a simple anisotropic distribution, based on
the Phong model. It can be used to model surfaces that have small parallel
grooves or fibers, such as brushed metal, satin, and hair. The specular highlight
intensity for this distribution is:

Richard Lyon, "Phong Shading Reformulation for Hardware Renderer Simplification", Apple Technical346

Report #43, Apple Computer, Inc. 1993
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kspec = [sin(L, T ) sin(V, T )− cos(L, T ) cos(V, T )]n

where n is the Phong exponent, V is the viewing direction, L is the direction
of incoming light, and T is the direction parallel to the grooves or fibers at this
point on the surface.

Ward anisotropic distribution

The Ward anisotropic distribution347 uses two user-controllable parameters αx
and αy to control the anisotropy. If the two parameters are equal, then an
isotropic highlight results. The specular term in the distribution is:

kspec = 1√
(N ·L)(N ·V )

N ·L
4αxαy exp

[
−2

(H·Xαx )2
+
(
H·Y
αy

)2

1+(H·N)

]

The specular term is zero if N ·L < 0 or N ·E < 0. All vectors are unit vectors.
The vector V is the vector from the surface point to the eye, L is the direction
from the surface point to the light, H is the half-angle direction, N is the surface
normal, and X and Y are two orthogonal vectors in the normal plane which
specify the anisotropic directions.

Using multiple distributions
If desired, different distributions (usually, using the same distribution function
with different values of m or n) can be combined using a weighted average.
This is useful for modelling, for example, surfaces that have small smooth and
rough patches rather than uniform roughness.

References

See also

• →Diffuse reflection
• Retroreflector
• Reflection (physics)
• Refraction

Source: http://en.wikipedia.org/wiki/Specular_highlight

Principal Authors: Dicklyon, Reedbeta, BenFrantzDale, Plowboylifestyle, Connelly

http://courses.dce.harvard.edu/~cscie234/papers/Surface%20Reflection%20Models.pdf347
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Specularity

Specularity is the quality used in many 3D rendering programs to set the size
and the brightness of a texture’s reflection to light.

Adding specularity into a render allows one to add highlights to an object.

Specularity only provides an illusion of reflection to the light. The function of
specularity only provides a central hotspot and the halo surrounding it.

In some situations, specularity is preferred over reflection because of faster
render speeds (due to the complexity of raytracing in reflection algorithms)
and because, even though reflection mapping is more realistic, specularity al-
gorithms often appear more realistic.

External links

• Leigh Van Der Byl Specularity Tutorial348

Source: http://en.wikipedia.org/wiki/Specularity

Principal Authors: Neonstarlight, Frap, Volfy, Megan1967, Oliver Lineham

Stencil buffer

A stencil buffer is an extra buffer, in addition to the color buffer (pixel buffer)
and depth buffer (z-buffer) found on modern computer graphics hardware.
The buffer is per pixel, and works on integer values, usually with a depth of
one byte per pixel. The depth buffer and stencil buffer often share the same
area in the RAM of the graphics hardware.

In the simplest case, the stencil buffer is used to limit the area of rendering
(stenciling). More advanced usage of the stencil buffer make use of the strong
connection between the depth buffer and the stencil buffer in the rendering
pipeline (for example, stencil values can be automatically increased/decreased
for every pixel that failed or passed the depth test).

The simple combination of depth test and stencil modifiers make a vast num-
ber of effects possible (such as shadows, outline drawing or highlighting of

http://leigh.cgcommunity.com/tutorialspart5.htm348
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intersections between complex primitives) though they often require several
rendering passes and, therefore, can put a heavy load on the graphics hard-
ware.

The most typical application is still to add shadows to 3D applications.

The stencil buffer and its modifiers can be accessed in computer graphics APIs
like →OpenGL and →Direct3D.

See also

• →Z-buffering (depth buffer)
• →Stencil shadow volume

Source: http://en.wikipedia.org/wiki/Stencil_buffer

Principal Authors: Cyc, Claynoik, Eep2, Orderud, Ddawson

Stencil shadow volume

A stencil shadow volume is a method of rendering in→3D computer graphics.
Frank Crow introduced shadow volumes in 1977 as the geometry describing
the 3D shape of the region occluded from a light source. Tim Heidmann later
showed how to use the stencil buffer to render shadows with shadow volumes
in real time. Heidmann’s approach only worked when the virtual camera was
itself not in shadow. Around 2000, several people discovered that Heidmann’s
method can be made to work for all camera positions by reversing a test based
on the z-coordinate. His original method is now known as z-pass and the new
method is called z-fail. Sim Dietrich’s PowerPoint talk at a Creative Labs talk
appears to be the first to mention this; however, Cass Everitt and Mark Kilgard’s
2002 NVIDIA technical report is the first detailed analysis of the technique.
John Carmack of id Software popularized the technique by using it in the Doom
3 video game, so it is often referred to as →Carmack’s Reverse.

Creative Labs has recently attempted to enforce a patent on z-fail testing.
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Variants
There are several ways of implementing stencil shadow volumes, all of which
use the stencil buffer available in both →OpenGL and DirectX. The variants
differ in speed, robustness and the number of stencil-bits required.

All variants require the construction of a shadow volume first, using the prop-
erties of silhouette edges.

Exclusive-Or variant
This is the fastest and simplest variant, requiring only a single additional pass.
This method also only requires a single bit in the stencil buffer.

1. Render scene with only ambient lighting
2. Render entire shadow volume to the stencil buffer. Invert stencil value on

z-pass
3. Render scene with diffuse and specular lighting in areas of zero stencil value

This variant has the drawback of intersecting shadow volumes canceling out
each other. It also fails if the camera is inside a shadow volume.

Depth-pass variant
This is a more advanced stencil counting approach capable of handling inter-
secting shadow volumes.

1. Render scene with only ambient lighting
2. Render front-facing faces to the stencil buffer. Increment stencil value on

z-pass
3. Render back-facing faces to the stencil buffer. Decrement stencil value on

z-pass
4. Render scene with diffuse and specular lighting in areas of zero stencil value

The near-plane is a plane in front of the camera; it is used to clip geometry that
is in front of that plane. The Depth-pass variant of the stencil shadow volume
algorithm fails if the near-rectangle (the portion of the near-plane visible by
the camera) intersects a shadow volume. It is possible, however, to ’repair’
such failure, with an additional rendering pass, see ZP+ in the External links
section, below.

Depth-fail variant (Carmack’s Reverse)
This is an even more advanced stencil counting approach capable of handling
both intersecting shadow volumes and cameras inside the shadow volumes.
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1. Render scene with only ambient lighting
2. Render back-facing faces to the stencil buffer. Increment stencil value on

z-fail
3. Render front-facing faces to the stencil buffer. Decrement stencil value on

z-fail
4. Render scene with diffuse and specular lighting in areas of zero stencil value

This variant does not fail if the camera is inside a shadow volume, but requires
closed shadow volumes which can be expensive to compute.

Common problems

• Non-convex objects may have self-intersecting silhouettes, leading to ar-
tifacts in the shadows if this is not accounted for (by removing all self-
intersections before rendering).

• Stencil buffer uses saturation arithmetic, which may lead to problems if the
initial stencil value is zero.

See also

• →Shadow volume, which describes the general algorithm
• →Silhouette edge, used to determine the shadow volume
• →Stencil buffer, the buffer used

External links

• The Theory of Stencil Shadow Volumes349 by Hun Yen Kwoon on
GameDev.net

• Tutorial - Stenciled Shadow Volumes in OpenGL350 by Josh Beam on
3ddrome

• ZP+: correct Z-pass stencil shadows351

Source: http://en.wikipedia.org/wiki/Stencil_shadow_volume

Principal Authors: Orderud, Staz69uk, Gracefool, HopeSeekr of xMule, Boredzo

http://www.gamedev.net/reference/articles/article1873.asp349

http://www.3ddrome.com/articles/shadowvolumes.php350

http://artis.inrialpes.fr/Publications/2005/HHLH05/351
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Subdivision surface

In computer graphics, subdivision surfaces are used to create smooth surfaces
out of arbitrary meshes. Subdivision surfaces are defined as the limit of an
infinite refinement process. They were introduced simultaneously by Edwin
Catmull and Jim Clark, and by Daniel Doo and Malcom Sabin in 1978. Little
progress was made until 1995, when Ulrich Reif solved subdivision surfaces
behaviour near extraordinary vertices.

The fundamental concept is refinement. By repeatedly refining an initial polyg-
onal mesh, a sequence of meshes is generated that converges to a resulting
subdivision surface. Each new subdivision step generates a new mesh that has
more polygonal elements and is smoother.

Figure 90 First three steps of Catmull-Clark subdivision of a
cube with subdivision surface below
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Subdivision methods
There are several refinement schemes:

• Catmull-Clark is a generalization of bi-cubic uniform B-splines
• Doo-Sabin is a generalization of bi-quadratic uniform B-splines
• Loop, by Charles Loop, is a generalization of quartic triangular box splines

(works with triangular meshes)
• Butterfly named after the scheme’s shape
• Midedge
• Kobbelt is a variational subdivision method that tries to overcome uniform

subdivision drawbacks

Advantages over NURBS modelling
Subdivision surface modeling is now preferred over NURBS modeling in major
modelers because subdivision surfaces have many benefits:

• work with more complex topology
• numerically stable
• easier to implement
• local continuity control
• local refinement
• no tesselation issue
• switch between coarser and finer refinement

B-spline relationship
B-spline curves are refinable: their control point sequence can be refined and
the iteration process converges to the actual curve. This is a useless property
for curves, but its generalization to surfaces yields subdivision surfaces.

Refinement process
Interpolation inserts new points while original ones remain undisturbed.

Refinement inserts new points and moves old ones in each step of subdivision.

Extraordinary points
The Catmull-Clark refinement scheme is a generalization of bi-cubic uniform
B-splines. Any portion of the surface that is equivalent to a 4x4 grid of control
points represents a bi-cubic uniform B-spline patch. Surface refinement is easy
in those areas where control points valence is equal to four. Defining a subdi-
vision surface at vertices with valence other than four was historically difficult;
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such points are called extraordinary points. Similarly, extraordinary points in
the Doo-Sabin scheme have a valence other than three.

Most schemes don’t produce extraordinary vertices during subdivision.

External links

• Resources about subdvisions352

• Geri’s Game353 : Oscar winning animation by Pixar completed in 1997 that
introduced subdivision surfaces (along with cloth simulation)

• Subdivision for Modeling and Animation354 tutorial, SIGGRAPH 2000
course notes

• A unified approach to subdivision algorithms near extraordinary vertices355,
Ulrich Reif (Computer Aided Geometric Design 12(2):153-174 March
1995)

Source: http://en.wikipedia.org/wiki/Subdivision_surface

Principal Authors: Orderud, Romainbehar, Furrykef, Lauciusa, Feureau

Subsurface scattering

Subsurface scattering (or SSS) is a mechanism of light transport in which
light penetrates the surface of a translucent object, is scattered by interacting
with the material, and exits the surface at a different point. The light will
generally penetrate the surface and be reflected a number of times at irregular
angles inside the material, before passing back out of the material at an angle
other than the angle it would reflect at had it reflected directly off the surface.
Subsurface scattering is important in →3D computer graphics, being necessary
for the realistic rendering of materials such as marble, skin, and milk.

http://www.subdivision.org/subdivision/index.jsp352

http://www.pixar.com/shorts/gg/theater/index.html353

http://www.mrl.nyu.edu/dzorin/sig00course/354

http://dx.doi.org/10.1016/0167-8396(94)00007-F355
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Figure 91 Three dimensional object with subsurface scattering

External links

• Henrik Wann Jensen’s subsurface scattering website356

• An academic paper by Jensen on modelling subsurface scattering357

• Simple superficial surface scattering for Blender358

Source: http://en.wikipedia.org/wiki/Subsurface_scattering

Principal Authors: Reedbeta, T-tus, Rufous, RJHall, ALoopingIcon

http://graphics.ucsd.edu/~henrik/images/subsurf.html356

http://graphics.ucsd.edu/~henrik/papers/bssrdf/357

http://www.dedalo-3d.com/index.php?filename=SXCOL/mh_ssss/abstract.html358
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Surface caching

Surface caching is a computer graphics technique pioneered by John Carma-
ck, first used in the computer game Quake. The traditional method of lighting
a surface is to calculate the surface from the perspective of the viewer, and then
apply the lighting to the surface. Carmack’s technique is to light the surface in-
dependent of the viewer, and store that surface in a cache. The lighted surface
can then be used in the normal rendering pipeline for any number of frames.

Surface caching is one of the reasons that it became practical to make a true
3D game that was reasonably fast on a 66 MHz Pentium microprocessor.

External links

• Quake’s Lighting Model: Surface Caching359 - an in-depth explanation by
Michael Abrash

Source: http://en.wikipedia.org/wiki/Surface_caching

Principal Authors: Fredrik, KirbyMeister, Schneelocke, Tregoweth, Hephaestos

Surface normal

A surface normal, or just normal to a flat surface is a three-dimensional vector
which is perpendicular to that surface. A normal to a non-flat surface at a point
p on the surface is a vector which is perpendicular to the tangent plane to that
surface at p. The word normal is also used as an adjective as well as a noun
with this meaning: a line normal to a plane, the normal component of a force,
the normal vector, etc.

Calculating a surface normal
For a polygon (such as a triangle), a surface normal can be calculated as the
vector cross product of two edges of the polygon.

For a plane given by the equation ax + by + cz = d, the vector (a, b, c) is a
normal.

http://www.bluesnews.com/abrash/chap68.shtml359
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Figure 92 A polygon and one of its two normal vectors.

If a (possibly non-flat) surface S is parametrized by a system of curvilinear
coordinates x(s, t), with s and t real variables, then a normal is given by the
cross product of the partial derivatives

∂x
∂s ×

∂x
∂t .

If a surface S is given implicitly, as the set of points (x, y, z) satisfying
F (x, y, z) = 0, then, a normal at a point (x, y, z) on the surface is given by
the gradient

∇F (x, y, z).

If a surface does not have a tangent plane at a point, it does not have a normal
at that point either. For example, a cone does not have a normal at its tip nor
does it have a normal along the edge of its base. However, the normal to the
cone is defined almost everywhere. In general, it is possible to define a normal
almost everywhere for a surface that is Lipschitz continuous.

Uniqueness of the normal
A normal to a surface does not have a unique direction; the vector pointing
in the opposite direction of a surface normal is also a surface normal. For an
oriented surface, the surface normal is usually determined by the right-hand
rule.
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Uses

• Surface normals are essential in defining surface integrals of vector fields.
• Surface normals are commonly used in →3D computer graphics for lighting

calculations; see →Lambert’s cosine law.

External link

• An explanation of normal vectors360 from Microsoft’s MSDN

Source: http://en.wikipedia.org/wiki/Surface_normal

Principal Authors: Oleg Alexandrov, Frecklefoot, Olegalexandrov, Patrick, Subhash15

Synthespian

For the Doctor Who novel, see SynthespiansTM.

A synthespian is any synthetic actor. A portmanteau of the words synthetic,
meaning not of natural origin, and thespian, meaning dramatic actor. The
dinosaurs in Jurassic Park, for instance, were animatronic synthespians created
by Stan Winston Studios. Aki Ross from the movie Final Fantasy: The Spirits
Within was an entirely computer-generated synthespian.

The term "synthespian" was created by Jeff Kleiser and Diana Walczak of
Kleiser-Walczak Construction Company.361 When they were assembling a syn-
thetic thespian for their project, "Nestor Sextone for President", they coined the
term "synthespian".

Source: http://en.wikipedia.org/wiki/Synthespian

Principal Authors: RoyBoy, Pegship, Drat, Sean Black, Khaosworks

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/directx9_c/directx/graphics/pro-360

grammingguide/GettingStarted/3DCoordinateSystems/facevertexnormalvectors.asp
http://www.kwcc.com/works/sp/lead.html361



DR
AF

T

332

Texel (graphics)

Tao (software)

For "The ACE ORB", see TAO (software).

The Tao Framework is a library giving .NET and mono developers access to
popular graphics and gaming libraries like →OpenGL and SDL.

External links

• Tao homepage362

• Tao wiki363

Source: http://en.wikipedia.org/wiki/Tao_%28software%29

Principal Authors: Orderud, Suruena, Asparagus, Zondor

Texel (graphics)

A texel, or texture element (also texture pixel) is the fundamental unit of
texture space364, used in computer graphics. Textures are represented by arrays
of texels, just as pictures are represented by arrays of pixels.

When texturing a 3D surface, a process known as texture mapping maps tex-
els to appropriate pixels in the output picture. On modern computers, this
operation is accomplished on the graphics card.

References

Source: http://en.wikipedia.org/wiki/Texel_%28graphics%29

Principal Authors: Neckelmann, Nlu, Dicklyon, Neg, ONjA

http://www.mono-project.com/Tao362

http://www.taoframework.com/Home363

Andrew Glassner, An Introduction to Ray Tracing, San Francisco: Morgan–Kaufmann, 1989364
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Texture filtering

In computer graphics, texture filtering is the method used to map texels (pixels
of a texture) to points on a 3D object. There are many methods of texture
filtering, and developers must make a tradeoff between rendering speed and
image quality when choosing a texture filtering algorithm.

The purpose of texture filtering is to accurately represent a texture that is
not aligned to screen coordinates. This is a common problem in 3D graph-
ics where textures are wrapped on polygons whose surface is not orthogonal
to the screen.

Different methods
The fastest method is to take a point on an object and look up the closest texel
to that position. The resulting point then gets its color from that one texel.
This is sometimes referred to as nearest neighbor filtering. It works quite well,
but can result in visual artifacts when objects are small, large, or viewed from
odd angles.

Antialiasing means thinking of the pixel and texel as blocks on a grid that
together make up an image and using the area a texel covers on a pixel as a
weight. As this is computionally expensive, a lot of approximations have been
invented: mip-mapping, supersampling, anisotropic filtering.

Mip-mapping stores multiple copies of a texture at smaller resolutions. Each
mip map is a quarter the resolution of the previous mip map. This speeds up
texture mapping on small polygons.

In bilinear filtering, the four closest texels to the screen coordinate are sampled
and the weighted average is used as the final colour. In trilinear filtering,
bilinear filtering is done for the nearest two mip map levels and the results
from both mip maps are averaged. This removes mip map transition lines from
the rendered image.

Both bilinear and trilinear filtering do not take into account the angle at which
the texture is oriented toward the screen. This produces blurry results for
textures that are at receding angle to the screen.

Anisotropic filtering takes up to 16 samples based on the angle of the textured
polygon. More texels are sampled at the receding end than the near end. This
produces accurate results no matter which way the texture is oriented toward
the screen.
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See also

• →Texture mapping

Source: http://en.wikipedia.org/wiki/Texture_filtering

Principal Authors: Alanius, Arnero, Rich Farmbrough, Srleffler, Tavla

Texture mapping

Figure 93 Spherical
texture mapping

Texture mapping is a method of adding detailed colour to a computer-
generated graphic. An image (the texture) is added (mapped) to a simpler
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shape that is generated in the scene, like a decal pasted onto its surface. This al-
lows a complicated colouring of the surface without requiring additional poly-
gons to represent minute details.

Multitexturing is the use of more than one texture at a time on a shape. This
has various uses, sometimes as a way of applying a light map to a surface,
which is faster than requiring the graphics hardware to do lighting calculation
for that surface on the fly, or more recently bump mapping has become popular,
which allows a texture to directly control the lighting calculations, allowing
the surface to not only have detailed colouring, but detailed contours as well
(bumps).

The way the resulting pixels on the screen are calculated from the texels (tex-
ture pixels) is governed by texture filtering. The fastest method is to use the
nearest neighbour interpolation, but bilinear interpolation is commonly chosen
as good tradeoff between speed and accuracy.

At the hardware level usually texture coordinates are specified at each vertex
of a given triangle (any polygon may be broken down into triangles for ren-
dering), and these coordinates are interpolated as part of a calculation that is
an extension of Bresenham’s line algorithm. Direct interpolation of the texture
coordinates between vertices results in affine texture mapping, which causes
a percievable discontinuity between adjacent triangles when the 3D geometry
of the specified triangle is at an angle to the plane of the screen, perspective
correction is thus preferred where realism is important, and adjusts the texture
coordinate interpolation as a function of the 3D depth of each pixel. Because
perspective correction involves more calculation, it did not become common-
place in graphics hardware until recently.

See also

• Edwin Catmull
• →Texture filtering
• Texture Splatting - a techique for combining textures.

External links

• Graphics for the Masses by Paul Rademacher365

• High resolution textures resource366

http://www.cs.unc.edu/~rademach/xroads-RT/RTarticle.html365

http://www.mayang.com/textures/366
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• High resolution images and textures resource367

• Texture Hound | Ultimate 3d Texture Links Directory368

Source: http://en.wikipedia.org/wiki/Texture_mapping

Principal Authors: Arnero, Al Fecund, T-tus, Canadacow, RJHall, AzaToth, Collabi, Viznut

Transform and lighting

Transform and lighting is a term used in computer graphics, generally used
in the context of hardware acceleration (Hardware T&L). Transform refers to
the task of converting spatial coordinates, which in this case involves moving
three-dimensional objects in a virtual world and converting the coordinates to
a two-dimensional view. Lighting refers to the task of taking light objects in a
virtual scene, and calculating the resulting colour of surrounding objects as the
light falls upon them.

In modern 3D games with complex scenes and detailed lighting effects, the
high number of points to be transformed and lit is a computationally intense
process, which is why 3D graphics cards offer acceleration.

Source: http://en.wikipedia.org/wiki/Transform_and_lighting

Principal Authors: Mel Etitis, GregorB, Gracefool, Peterhuh, Gothmog.es

Unified lighting and shadowing

Unified lighting and shadowing is a lighting model used in the Doom 3 game
engine developed by Id Software.

Previous 3D games like Quake III used separate lighting models for determin-
ing how a light would illuminate a character or a map. Lighting and shadow in-
formation for maps would be static, pre-generated and stored, whereas lighting
and shadowing information for characters would be determined at run-time.

http://www.imageafter.com/367

http://www.texturehound.com/368
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Figure 94 Doom 3 uses unified lighting and shadowing. Shadows are calculated using a stencil
shadow volume.

Doom 3 claims to use a unified model, which renders every triangle using the
same lighting mechanism, regardless as to whether it originated from a model,
or map geometry. This is not strictly true as some models are marked with a
’don’t self shadow’ flag, custom material shaders can allow different lighting
mechanisms to be employed on different surfaces (most often a reflective cube
map effect), and the point sprite effects (such as explosions) are totally unlit.
A renderer using a truly unified lighting system would use an identical set of
lighting calculations for every pixel on the screen and would not make such
distinctions, although Doom 3’s lighting is certainly far ’more unified’ than
previous games, there is still much more which can be done on recent and
future hardware to improve the consistency of lighting in games.

Doom 3 does not use →OpenGL’s built in system, instead, it uses its own sys-
tem which gives better quality and more accurate illumination than OpenGL’s
default lighting model.

See also

• →Shadow mapping - a technique for rendering shadows
• →Stencil shadow volumes - an alternative method, used for shadows in

Doom 3
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Figure 95 Quake III used an older lighting model in which shadows are calculated differently for
moving characters and backgrounds.

Source: http://en.wikipedia.org/wiki/Unified_lighting_and_shadowing

Principal Authors: AlistairMcMillan, Orderud, Jheriko, Michael Hardy, Gracefool

Utah teapot

The Utah teapot or Newell teapot is a 3D model which has become a stan-
dard reference object (and something of an in-joke) in the computer graphics
community. It is a simple, round, solid, partially concave mathematical model
of an ordinary teapot.

The teapot model was created in 1975 by early computer graphics researcher
Martin Newell, a member of the pioneering graphics program at the University
of Utah.
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Figure 96 The Utah teapot

History
Newell needed a moderately simple mathematical model of a familiar object
for his work. Sandra Newell (his wife) suggested modelling their tea service
since they were sitting down to tea at the time. He got some graph paper and
a pencil, and sketched the entire tea service by eye. Then, he went back to
the lab and edited Bezier control points on a Tektronix storage tube, again by
hand. While a cup, saucer, and teaspoon were digitized along with the famous
teapot, only the teapot itself attained widespread usage. It is thought that a
milk jug was also modelled - but the data for that seems to have been lost.

The teapot shape contains a number of elements that made it ideal for the
graphics experiments of the time — it is round, contains saddle points, has a
genus greater than zero because of the hole in the handle, can project a shad-
ow on itself, and looks reasonable when displayed without a complex surface
texture.

Newell made the mathematical data that describes the teapot’s geometry (a
set of three-dimensional coordinates) publicly available, and soon other re-
searchers began to use the same data for their computer graphics experiments.
These researchers needed something with roughly the same characteristics that
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Figure 97 The Melitta teapot that was the prototype for the Utah teapot model.

Newell had, and using the teapot data meant they didn’t have to laboriously
enter geometric data for some other object. Although technical progress has
meant that the act of rendering the teapot is no longer the challenge it was
in 1975, the teapot continued to be used as a reference object for increasingly
advanced graphics techniques.

Over the following decades, editions of computer graphics journals (such as the
ACM SIGGRAPH’s quarterly) regularly featured versions of the teapot: faceted
or smooth-shaded, wireframe, bumpy, translucent, refractive, even leopard-
skin and furry teapots were created.

The original teapot model was never intended to be seen from below and had
no surface to represent the base of the teapot; later versions of the data set
have fixed this.

The real teapot is noticeably taller than the computer model because Newell’s
frame buffer used non-square pixels. Rather than distorting the image,
Newell’s colleague Jim Blinn reportedly scaled the geometry to cancel out the
stretching, and when the model was shared with users of other systems, the
scaling stuck. Height scale factor was 1.3.

The original, physical teapot was purchased from ZCMI (a department store in
Salt Lake City, Utah) in 1974. It was donated to the Boston Computer Museum
in 1984 where it was on display until 1990. It now resides in the ephemera col-
lection at the Computer History Museum in Mountain View, California where it
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is catalogued as "Teapot used for Computer Graphics rendering" and bears the
catalogue number X00398.1984.

Applications
Versions of the teapot model, or sample scenes containing it, are distribut-
ed with or freely available for nearly every current rendering and modeling
program, including AutoCAD, POV-Ray, →OpenGL, →Direct3D, and 3D Stu-
dio Max. Along with the expected cubes and spheres, the GLUT library even
provides the function glutSolidTeapot() as a graphics primitive, as does its
→Direct3D counterpart D3DX (D3DXCreateTeapot()). BeOS included a small
demo of a rotating 3D teapot, intended to show off the platform’s multimedia
facilities.

Teapot scenes are commonly used for renderer self-tests and benchmarks. In
particular, the Teapot in a stadium benchmark and problem concern the dif-
ficulty of rendering a scene with drastically different geometrical density and
scale data in various parts of the scene.

Appearances
With the advent first of computer generated short films, and then of full length
feature films, it has become something of an in joke to hide a Utah teapot
somewhere in one of the film’s scenes. Utah teapots can be found in Toy Story,
Monsters Inc., and Disney’s Beauty and the Beast, as well as in The Simpsons.
It is also featured in one of the levels of the video game Super Monkey Ball 2,
in technological demo section of Serious Sam, and can be found in Microsoft
Train Simulator. By using a cheat code it is possible to have a Utah teapot as
an avatar in the Star Wars: Knights of the Old Republic PC game. In comput-
ers, the Utah teapot sometimes appears in the Pipes screensaver shipped with
Microsoft Windows.

One famous ray-traced image (by Jim Arvo and Dave Kirk, from their 1987 Sig-
Graph paper ‘Fast Ray Tracing by Ray Classification.’) shows six stone columns
five of which are surmounted by the platonic solids (tetrahedron, cube, octa-
hedron, dodecahedron, icosahedron) - and the sixth column has a teapot. The
image is titled "The Six Platonic Solids" - which has lead some people to call
the teapot a "Teapotahedron". This image appeared in on the covers of several
books and journals.

Jim Blinn (in one of his "Project Mathematics!" videos) proves an interesting
version of the Pythagorean theorem: Construct a (2D) teapot on each side of a
right triangle and the area of the teapot on the hypotenuse is equal to sum of
the areas of the teapots on the other two sides.
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See also

• Virtual model
• Trojan room coffee pot
• Stanford Bunny
• Lenna
• →Cornell Box

External links

• Direct link to the image of Utah teapot at Computer History Museum369

• A brief history of the Utah teapot370

• Original data set (tgz)371

• Interactive Java rendering of the teapot372

Source: http://en.wikipedia.org/wiki/Utah_teapot

Principal Authors: Finlay McWalter, SteveBaker, Tregoweth, Mikkalai, Gargaj, Dysprosia, 5994995,

Flamurai

UV mapping

UV mapping is a 3D modelling process of making a 2D map representing a 3D
model. This map is associated with an image known as a texture. In contrast
to "X", "Y" and "Z", which are the coordinates for the original 3D object in the
modelling space, "U" and "V" are the coordinates of this transformed map of the
surface. Then the image is back-transformed ("wrapped") onto the surface of
the 3D object. For example, it is used to give an animated character a realistic
looking face, but various other applications are possible.

http://archive.computerhistory.org/resources/still-image/Teapot/src/102630883.jpg369

http://www.sjbaker.org/teapot/370

http://www.sjbaker.org/teapot/teaset.tgz371

http://mrl.nyu.edu/~perlin/experiments/teapot/372
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External links

• LSCM Mapping image373 with Blender

Source: http://en.wikipedia.org/wiki/UV_mapping

Vertex

Vertex can have a number of meanings, dependent on the context.

• In geometry, a vertex (Latin: corner; plural vertices) is a corner of a poly-
gon (where two sides meet) or of a polyhedron (where three or more faces
and edges meet).

• In graph theory, a graph describes a set of connections between objects.
Each object is called a node or vertex. The connections themselves are
called edges or arcs.

• In optics, a vertex (or surface vertex) is the point where the surface of an
optical element crosses the optical axis. It is one of the cardinal points of
an optical system.

• In nuclear and particle physics, a vertex is the interaction point, where
some subnuclear process occurs, changing the number and/or momenta of
interacting particles or nuclei.

• In →3D computer graphics, a vertex is a point in 3D space with a particular
location, usually given in terms of its x, y, and z coordinates. It is one
of the fundamental structures in polygonal modeling: two vertices, taken
together, can be used to define the endpoints of a line; three vertices can
be used to define a planar triangle. Vertices are commonly confused with
vectors because a vertex can be described as a vector from a coordinate
system’s origin. They are, however, two completely different things.

• In anatomy, the vertex is the highest point of the skull in the anatomical
position (i.e. standing upright). It lies between the parietal bones in the
median sagittal plane.

http://de.wikibooks.org/wiki/Bild:Blender3D_LSCM.png373
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• In astrology, the vertex is a point in space seen near the Eastern horizon
(and the Ascendant) in the two-dimensional horoscope. In astrological
theory, planet(s) close to it are supposed to lend their personality to the
event(s) that the chart captures.

• Vertex is also an album by Buck 65.

In addition, there are several companies named "Vertex".

• Vertex Software develops web-based customer management solutions.
• Vertex Pharmaceuticals is a biotech company, with 2005 revenues of $161

million, that is developing small molecule therapeutics for the treatment
of HCV infection, inflammation, autoimmune diseases, cancer, pain, cystic
fibrosis and other diseases, both independently and in collaboration with
other pharmaceutical and biotechnology companies.

Source: http://en.wikipedia.org/wiki/Vertex

Principal Authors: Wapcaplet, Superborsuk, Ash211, AxelBoldt, Patrick, Nmg20, Mikkalai, V1adis1av,

Melaen

Viewing frustum

In→3D computer graphics, the viewing frustum or view frustum is the region
of space in the modeled world that may appear on the screen; it is the field of
view of the notional camera. The exact shape of this region varies depending
on what kind of camera lens is being simulated, but typically it is a frustum of
a rectangular pyramid. The planes that cut the frustum perpendicular to the
viewing direction are called the near plane and the far plane. Objects closer to
the camera than the near plane or beyond the far plane are not drawn. Often,
the far plane is placed infinitely far away from the camera so all objects within
the frustum are drawn regardless of their distance from the camera.

Viewing frustum culling or view frustum culling is the process of removing
objects that lie completely outside the viewing frustum from the rendering
process. Rendering these objects would be a waste of time since they are not
directly visible. In ray tracing, viewing frustum culling cannot be performed
because objects outside the viewing frustum may be visible when reflected off
an object inside the frustum. To make culling fast, it is usually done using
bounding volumes surrounding the objects rather than the objects themselves.
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Source: http://en.wikipedia.org/wiki/Viewing_frustum

Principal Authors: Gdr, Poccil, Eep2, Flamurai, Dpv

Volume rendering

Figure 94 A volume rendered cadaver head using view-aligned texture mapping and diffuse
reflection

Volume rendering is a technique used to display a 2D projection of a 3D dis-
cretely sampled data set.

A typical 3D data set is a group of 2D slice images acquired by a CT or MRI
scanner. Usually these are acquired in a regular pattern (e.g., one slice every
millimeter) and usually have a regular number of image pixels in a regular
pattern. This is an example of a regular volumetric grid, with each volume
element, or voxel represented by a single value that is obtained by sampling
the immediate area surrounding the voxel.
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To render a 2D projection of the 3D data set, one first needs to define a camera
in space relative to the volume. Also, one needs to define the opacity and color
of every voxel. This is usually defined using an RGBA (for red, green, blue,
alpha) transfer function that defines the RGBA value for every possible voxel
value.

Figure 95 Volume rendered CT scan of a forearm with different colour schemes for muscle, fat,
bone, and blood.

A volume may be viewed by extracting surfaces of equal values from the vol-
ume and rendering them as polygonal meshes or by rendering the volume di-
rectly as a block of data. The Marching Cubes algorithm is a common technique
for extracting a surface from volume data. Direct volume rendering is a com-
putationally intensive task that may be performed in a several ways.

Direct Volume Rendering
A direct volume renderer requires every sample value has to be mapped to
opacity and a color. This is done with a “transfer function” which can be a
simple ramp, a piecewise linear function or an arbitrary table. Once converted
to an RGBA (for red, green, blue, alpha) value, the composed RGBA result is
projected on correspondent pixel of the frame buffer. The way this is done
depends on the rendering technique.
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A combination of these techniques is possible. For instance, a shear warp im-
plementation could use texturing hardware to draw the aligned slices in the
off-screen buffer.

Volume Ray Casting
Main article: Volume ray casting.

The simplest way to project the image is to cast rays through the volume using
ray casting. In this technique, a ray is generated for each desired image pixel.
Using a simple camera model, the ray starts at the center of the projection of
the camera (usually the eye point) and passes through the image pixel on the
imaginary image plane floating in between the camera and the volume to be
rendered. The ray is clipped by the boundaries of the volume to save time
then the ray is sampled at regular intervals throughout the volume. The data
is interpolated at each sample point, the transfer function applied to form an
RGBA sample, the sample is composited onto the accumulated RGBA of the
ray, and the process repeated until the ray exits the volume. The RGBA color
is converted to an RGB color and deposited in the corresponding image pixel.
The process is repeated for every pixel on the screen to form the completed
image. The examples of high quality ray casting volume rendering can be seen
on 374.

Splatting
This is a technique which trades quality for speed. Here, every volume ele-
ment is splatted (like snow balls) on to the viewing surface from in back to
front order. These splats are rendered as disks whose properties (color and
transparency) vary diametrically in normal (Gaussian) manner. Flat disks and
those with other kinds of property distribution are also used depending on the
application.

Shear Warp
A new approach to volume rendering was developed by Philippe Lacroute and
Marc Levoy and described in the paper "Fast Volume Rendering Using a Shear-
Warp Factorization of the Viewing Transformation" 375 In this technique, the
viewing transformation is transformed such that the nearest face of the volume
becomes axis aligned with an off-screen image buffer with a fixed scale of vox-
els to pixels. The volume is then renderered into this buffer using the far more
favourable memory alignment and fixed scaling and blending factors. Once all

http://www.fovia.com/374

http://graphics.stanford.edu/papers/shear/375
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slices of the volume have been rendered, the buffer is then warped into the
desired orientation and scale in the displayed image.

This technique is relatively fast at the cost of less accurate sampling and poten-
tially worse image quality compared to ray casting.

Texture Mapping
Many 3D graphics systems use texture mapping to apply images, or textures, to
geometric objects. Commodity PC graphics cards are fast at texturing and can
efficiently render slices of a 3D volume, with realtime interaction capabilities.

These slices can either be aligned with the volume and rendered at an angle
to the viewer, or aligned with the viewing plane and sampled from unaligned
slices through the volume. Graphics hardware support for 3D textures is need-
ed for the second technique.

Volume aligned texturing produces images of reasonable quality, though there
is often a noticeable transition when the volume is rotated. View aligned tex-
turing creates images of similar high quality to those of ray casting, and indeed
the sampling pattern is identical.

Hardware-Accelerated Volume Rendering
A recently exploited technique to accelerate rendering is the use of mod-
ern graphics cards to accelerate traditional volume rendering algorithms such
as ray-casting. Starting with the programmable pixel shaders that appeared
around the year 2000(?), people recognized the power of parallel operations
on multiple pixels and began to perform general purpose computations on the
graphics chip. The pixel shaders, once called "register-combiners" were able to
read and write randomly from texture memory, perform some basic mathemat-
ical and logical calculations. These SIMD processors, now called GPUs, were
harnessed to perform general calculations such as ray tracing polygons and
signal processing. With OpenGL version 2.0, the pixel shaders now are able
to function as MIMD processors (now able to independently branch) with as
many as 48 parallel processing elements utilizing up to 1GB of texture memory
and high bit depth numerical formats. With such power, virtually any algo-
rithm such as volume ray casting or CT reconstruction can be performed with
tremendous acceleration.
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Optimization Techniques

Empty Space Skipping
Often, a volume rendering system will have a system for identifying regions
of the volume containing no visible material. This information can be used to
avoid rendering these transparent regions.

Early Ray Termination
This is a technique used when the volume is rendered in front to back order.
For a ray through a pixel, once sufficient dense material has been encountered,
further samples will make no significant contribution to the pixel and so may
be ignored.

Octree and BSP space subdivision
The use of hierarchical structures such as octree and BSP-tree could be very
helpful for both compression of volume data and speed optimization of volu-
metric ray casting process.

Volume Segmentation
By sectioning out large portions of the volume that one considers uninterest-
ing before rendering, the amount of calculations that have to be made by ray
casting or texture blending can be significantly reduced

Sources

• R. A. Drebin, L. Carpenter, P. Hanrahan: Volume Rendering. 1988

Source: http://en.wikipedia.org/wiki/Volume_rendering

Principal Authors: Sjschen, Andrewmu, Thetawave, Anilknyn, Ctachme
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Volumetric lighting

Volumetric lighting is a technique used in →3D computer graphics to add
lighting to a rendered scene. The term seems to have been introduced from
cinematography and is now widely applied to 3D modelling and rendering
especially in the field of computer and video games. Basically it allows the
viewer to see the beams of a light source shining through the environment;
seeing sunbeams streaming through an open window can be considered an
example of volumetric lighting.

In volumetric lighting, the light cone emitted by a light source is modeled as a
more or less transparent object and considered as a container of a "volume": as
a result, light has the capability to give the effect of passing through an actual
three dimensional medium (such as fog, dust, smoke or steam) that is inside
its volume, just like in the real world.

References

• Volumetric lighting tutorial at Art Head Start376

• 3D graphics terms dictionary at Tweak3D.net377

Source: http://en.wikipedia.org/wiki/Volumetric_lighting

Voxel

A voxel (a portmanteau of the words volumetric and pixel) is a volume ele-
ment, representing a value in three dimensional space. This is analogous to a
pixel, which represents 2D image data. Voxels are frequently used in the vi-
sualisation and analysis of medical and scientific data. Some true 3D displays
use voxels to describe their resolution. For example, a display might be able to
show 512×512×512 voxels.

As with pixels, voxels themselves typically do not contain their position in space
(their coordinates) - but rather, it is inferred based on their position relative to

http://www.art-head-start.com/tutorial-volumetric.html376

http://www.tweak3d.net/3ddictionary/377
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other voxels (i.e. their position in the data structure that makes up a single
volume image).

Voxel data
A voxel represents the sub-volume box with constant scalar/vector value inside
which is equal to scalar/vector value of the corresponding grid/pixel of the
original discreet representation of the volumetric data. The boundaries of a
voxel are exactly in the middle between neighboring grids. Thus, the notion
of “Voxel” is applicable only for nearest neighbor interpolation and it is not
applicable for higher order of interpolation such as tri-linear, tri-cubic... etc;
these cases can be represented through Cell volume subdivision.

The value of a voxel may represent various properties. In CT scans, the values
are Hounsfield units, giving the opacity of material to X-rays. Different types
of value are acquired from MRI or ultrasound.

Voxels can contain multiple scalar values what essentially is a vector data;
in the case of ultrasound scans with B-mode and Doppler data, density, and
volumetric flow rate are captured as separate channels of data relating to the
same voxel positions.

Other values may be useful for immediate 3D rendering, such as a surface
normal vector and color.

Uses

Visualization
A volume containing voxels can be visualised either by direct volume rendering
or by the extraction of polygon iso-surfaces which follow the contours of given
threshold values. The marching cubes algorithm is often used for iso-surface
extraction, however other methods exist as well.

Computer gaming

• Many NovaLogic games have used voxel-based rendering technology, in-
cluding the Delta Force series.

• Westwood Studios Command & Conquer: Tiberian series engine games
used voxels to render the vehicles.

• Similarly Total Annihilation used voxels to render its vehicles.
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Trivia
In the minimalist webcomic Pixel, in which pixels inside a computer are the
main characters, one ’race’ of supporting characters are the voxels, who have
the "supernatural" power of moving in three dimensions.

See also

• →Volume rendering

External links

• Volex378, a volumetric display using LED
• Voxel3D, voxel based modeling software379

• Voxlap, an open source voxel engine written by Ken Silverman380

• HVox, another voxel-based terrain engine381

• Iehovah, a volume based surface generation library for real-time
visualization382

• Geek, a voxel terrain engine that uses perlin noise to create natural looking
geometry383

• Cavernosa, a terrain/cave sculpturing tool based on a hierarchical binary
voxel grid384

• A tutorial, that explains how to draw a voxel terrain with code in C++ such
as Commanche/Outcast385

Source: http://en.wikipedia.org/wiki/Voxel

Principal Authors: Andrewmu, Pythagoras1, Maestrosync, Xezbeth, Stefanbanev, Omegatron,

Retodon8, RJHall, Karl-Henner, Wlievens

http://www.ucsi.edu.my/research/projects.html378

http://www.everygraph.com/frame.php?contents=product&name=voxel3d379

http://advsys.net/ken/voxlap.htm380

http://www.p0werup.de/381

http://www.home.zonnet.nl/petervenis382

http://www.flipcode.org/cgi-bin/fcarticles.cgi?show=62853383

http://www.btinternet.com/%7Eahcox/Cavernosa/index.html384

http://www.massal.net/article/voxel/385
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W-buffering

In computer graphics, w-buffering is a technique for managing image depth
coordinates in three-dimensional (3-D) graphics which is alternative to z-
buffering. It is used in cases where z-buffering produces artifacts. W-buffering
does a much better job of quantizing the depth buffer. W-buffering provides
a linear representation of distance in the depth buffer, whereas z-buffering is
nonlinear and allocates more bits for surfaces that are close to the eyepoint
and less bits for those farther away.

Source: http://en.wikipedia.org/wiki/W-buffering

Principal Authors: Lupin, Nabla, Interiot

Z-buffering

In computer graphics, z-buffering is the management of image depth coordi-
nates in three-dimensional (3-D) graphics, usually done in hardware, some-
times in software. It is one solution to the visibility problem, which is the
problem of deciding which elements of a rendered scene are visible, and which
are hidden. The painter’s algorithm is another common solution which, though
less efficient, can also handle non-opaque scene elements.

When an object is rendered by a 3D graphics card, the depth of a generated
pixel (z coordinate) is stored in a buffer (the z-buffer). This buffer is usually
arranged as a two-dimensional array (x-y) with one element for each screen
pixel. If another object of the scene must be rendered in the same pixel, the
graphics card compares the two depths and chooses the one closer to the ob-
server. The chosen depth is then saved to the z-buffer, replacing the old one.
In the end, the z-buffer will allow the graphics card to correctly reproduce the
usual depth perception: a close object hides a farther one.

The granularity of a z-buffer has a great influence on the scene quality: a 16-bit
z-buffer can result in artifacts (called "z-buffer fighting") when two objects are
very close to each other. A 24-bit or 32-bit z-buffer behaves much better. An
8-bit z-buffer is almost never used since it has too little precision.

Additionally, precision in the z-buffer distance values is not spread evenly over
distance. Nearer values are much more precise (and hence can display clos-
er objects more properly) than values which are farther away. Generally, this
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Figure 96 Z-buffer data

is desirable, but sometimes it will cause artifacts to appear as objects become
more distant. A variation on z-buffering which results in more evenly distribut-
ed precision is called w-buffering.

At the start of a new scene, the z-buffer must be cleared to a defined value,
usually 1.0, because this value is the upper limit (on a scale of 0 to 1) of depth,
meaning that no object is present at this point through the viewing frustum.

The invention of the z-buffer concept is most often attributed to Edwin Catmull.
Actually, also Wolfgang Straßer described this idea in his 1974 Ph.D. thesis1.

On recent PC graphics cards (1999-2005), z-buffer management uses a sig-
nificant chunk of the available memory bandwidth. Various methods have
been employed to reduce the impact of z-buffer, such as lossless compression
(computer resources to compress/decompress are cheaper than bandwidth)
and ultra fast hardware z-clear that makes obsolete the "one frame positive,
one frame negative" trick (skipping inter-frame clear altogether using signed
numbers to cleverly check depths).
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Mathematics
The range of depth values in camera space (See →3D projection) to be ren-
dered is often defined between a

near
and far value of z. After a perspective

transformation, the new value of z, or z′, is defined by:

z
′
=

far+near

far−near
+

1

z

(

−2·far ·near

far−near

)

Where z is the old value of z in camera space, and is sometimes called w or w′.

The resulting values of z′ are normalized between the values of -1 and 1, where
the near plane is at -1 and the far plane is at 1. Values outside of this range
correspond to points which are not in the viewing frustum, and shoudn’t be
rendered.

To implement a z-buffer, the values of z′ are linearly interpolated across screen
space between the vertices of the current polygon, and these intermediate val-
ues are generally stored in the z-buffer in fixed point format. The values of z′

are grouped much more densely near the near plane, and much more sparsely
farther away, resulting in better precision closer to the camera. The closer the
near plane is set to the camera, the less precision there is far away – having the
near plane set too closely is a common cause of undesirable rendering artifacts
in more distant objects.

To implement a w-buffer, the old values of z in camera space, or w, are stored in
the buffer, generally in floating point format. However, these values cannot be
linearly interpolated across screen space from the vertices – they usually have
to be inverted, interpolated, and then inverted again. The resulting values of
w, as opposed to z′, are spaced evenly between near and far.

Whether a z-buffer or w-buffer results in a better image depends on the appli-
cation.

When using the <canvas> tag with JavaScript, you can use the following as a
Z-Buffer formula.

//F=far, N=near, Z=final return

f=0;

n=0;

z=0;

z=(((f+n)/(f-n)))+((1/z)*((-2*f*n)/(f-n)));
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See also

• Edwin Catmull – inventor of the z-buffer concept.
• →3D computer graphics
• →Irregular Z-buffer
• Z-order

External links

• Learning to Love your Z-buffer386

• Alpha-blending and the Z-buffer387

Notes
Note 1: see W.K. Giloi, J.L. Encarnação, W. Straßer. "The Giloi’s School of
Computer Graphics". Computer Graphics 35 4:12–16.

–>
Source: http://en.wikipedia.org/wiki/Z-buffering

Principal Authors: PenguiN42, ToohrVyk, Zotel, Alfio, Solkoll, Zoicon5, Bookandcoffee

Z-fighting

Z-fighting is a phenomenon in 3D rendering that occurs when two or more
coplanar primitives have similar values in the Z-buffer, causing random parts
of the primitives to be rendered. This problem is usually caused by floating
point round-off errors. Z-fighting is reduced by the use of a higher resolution
depth buffer, by→W-buffering, or by simply moving the polygons further apart.

It is a relatively rare occurrence to encounter z-fighting while using a 24-bit Z-
buffer. For example, with a 16-bit Z-buffer, at 10,000 units, resolving accuracy
is only 1,800 units, meaning a point at 10,000 units away from the camera is
given the same Z-buffer value as a point 11,799 units away. For comparison,
resolving accuracy for a 24-bit Z-buffer is 6 units at the same distance.

As virtual world size increases, a greater likelihood exists that you will en-
counter Z-fighting between primitives.

http://www.sjbaker.org/steve/omniv/love_your_z_buffer.html386

http://www.sjbaker.org/steve/omniv/alpha_sorting.html387
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Figure 97 Coplanar polygons

Source: http://en.wikipedia.org/wiki/Z-fighting

Principal Authors: Chentianran, Mhoskins, Rbrwr, Reedbeta, RJHall
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GNU Free Documentation License
Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not
allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense
of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit
for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the
same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does. But
this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter
or whether it is published as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free
license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to
any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if
you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied
verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the
relationship of the publishers or authors of the Document to the Document’s overall subject (or to related matters)
and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sec-
tions, in the notice that says that the Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the
notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is
available to the general public, that is suitable for revising the document straightforwardly with generic text editors
or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has
been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not
Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX
input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF
designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which
the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly,
the material this License requires to appear in the title page. For works in formats which do not have any title page as
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such, "Title Page" means the text near the most prominent appearance of the work’s title, preceding the beginning of
the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ
in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name
mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title"
of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this
definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the
Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on
the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that
this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced
in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow
the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering
more than 100, and the Document’s license notice requires Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover
must present the full title with all words of the title equally prominent and visible. You may add other material on the
covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as
fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-
network location from which the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least one year after the last time you
distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large
number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above,
provided that you release the Modified Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of
previous versions (which should, if there were any, be listed in the History section of the Document). You may use
the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications
in the Modified Version, together with at least five of the principal authors of the Document (all of its principal
authors, if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified

Version under the terms of this License, in the form shown in the Addendum below.
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G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document’s
license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new

authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in
the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page,
then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Docu-
ment, and likewise the network locations given in the Document for previous versions it was based on. These may
be placed in the "History" section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the
section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or
the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.
O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain
no material copied from the Document, you may at your option designate some or all of these sections as invariant.
To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified
Version by various parties–for example, statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover
Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you
are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity
for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms defined in section
4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the
original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice,
and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list
of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming
one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled
"Dedications". You must delete all sections Entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this License, and replace
the individual copies of this License in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided
you insert a copy of this License into the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.
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7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or works, in or on
a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation
is not used to limit the legal rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less
than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document under the terms
of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders,
but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and the original version of this
License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4)
to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License.
Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights, from you under this License will
not have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time
to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular
numbered version of this License "or any later version" applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been published (not as a draft) by the Free
Software Foundation. If the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.
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id software 42, 144, 144, 166, 214, 322, 336
ieee transactions on computers 104
ihv 64
illusion 321
image 103, 266
image-based lighting 23
image compression 281
image order 248
image plane 26
image processing 178
image resolution 272
immediate-mode rendering 174
implementation 300
implicit surface 4
in-joke 338
infinitesimal 244
injection moulding 312
innocence: ghost in the shell 48
input device 173
integer 123, 321
integral 247
intel 169, 178, 185, 218
interaction point 343
interactive manipulation 132
interpolation 326
invader zim 50
inverse kinematic animation 4, 88, 132
inverse kinematics 132, 136, 208
invisibility 222
iris 64, 119

iris inventor 175
iris performer 175
irradiance 138
irregular z-buffer 356
irrlicht 10
isocontour 135
isometric projection 19
isotropic 150
ivan sutherland 285

j
jade cocoon 217
jaggies 272
james d. foley 251
james h. clark 92
japan 48
jar-jar binks 159
jar jar binks 316
java 3d 10, 173
java opengl 176
javascript 355
jet set radio 46, 49
jet set radio future 46
jim blinn 9, 146, 340
jim henson 77
jitendra malik 128
jogl 173
johann heinrich lambert 138
john carmack 42, 59, 144, 310, 322, 329
joint 136
jsr 184 10
july 28 42
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k
kd-tree 134
ken perlin 196, 297
kermit the frog 77
keyframing 5
khronos group 169, 180
killer 7 48, 49
kilobytes 215
kinematic decoupling 132
kinematics 132
kirby: right back at ya! 50
klonoa 2 47, 49
kluge 79
kml 57
knuckle 88
kobbelt 326
kurt akeley 54, 169
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l-system 217
l2 cache 216
lambert’s cosine law 138, 331
lambertian 165
lambertian diffuse lighting model 103
lambertian reflectance 76
lance williams 151, 302
larry gritz 148
laser 258
latin 149, 343
lazy evaluation 214
led 152
lego exo-force 48, 51
lenna 73, 73, 342
lens flare 7
leonidas j. guibas 147
level set 135
lgpl 205
light 75, 76, 203, 252, 317, 321, 327
light absorption 292
lighting 266, 350
lighting model 295
lightmap 214
light probe 263
light tracing 195
light transport theory 130
lightwave 5, 14, 209
light weight java game library 177
line-sphere intersection 259
linear 353
linear algebra 166, 275
linear interpolation 29
linked list 287
linux 58, 63, 98, 168, 173
lipschitz continuous 330
list of 3d artists 11
list of cel-shaded video games 48, 51
list of software patents 42
list of vector graphics markup languages 57
live & kicking 77
load balancing 294
logarithmic 258
logical operator 53
logluv tiff 113
looney tunes: back in action 77
lord of the rings 143
lorentz group 240
lossless compression 354
lossy data compression 1
low poly 143, 165
luminance 112, 137, 138
luminous energy 140
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m. c. escher 87
m. e. newell 163
machinima 77, 78
mac os 58, 168
mac os x 58, 63, 174
magic eye 11
magnetic resonance imaging 316
manifold 207
maple 215
marble 218, 327
marching cubes 136, 147, 351
marc levoy 347
mark kilgard 297, 322
massive (animation) 74
match moving 14, 153, 161
mathematical 131
mathematical applications group, inc. 249,

254
matrox 64
maxon 13
maya 56
medical image processing 91
medical imaging 135
megaman nt warrior 50
mega man x7 49
mega man x command mission 49
melitta 340
mental ray 7, 13, 273
mesa 3d 173, 176
mesh 43, 82, 213, 294
metaball 194
metal 218
metal gear acid 2 48, 49
metal gear solid 3 123
meteorology 136
metropolis-hastings algorithm 147
metropolis light transport 96, 256
michael abrash 329
micropolygon 84
microscope 252
microsoft 62, 79, 123, 123, 128, 169, 178,

185, 281, 300
microsoft corporation 58
microsoft train simulator 341
microsoft windows 168, 174, 341
midedge 326
milk 327
milkshape 3d 13
milling 312
mimd 348
minigl 94
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mip-mapping 333
mipmap 56, 101, 180
mipmapping 166
mit license 145
mobile phone 180
mode 7 250
modelview matrix 92
monster house 50
monster rancher 49
monsters inc. 341
monte carlo method 23, 147, 203
motion blur 7, 267
motion capture 77, 78, 132
motion control photography 279
mountain view, california 340
movies 266
movie studio 159
multi-agent system 74
multimedia 92
multi pass rendering 296
multiprocessing 292
muppet 77
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need for speed underground 2 123
network transparency 174
new line cinema 74
news 175
newtek 12
new york 249, 254
new zealand 111, 113
nintendo 58, 123
nintendo 64 85
noctis 217
noise 218
non-photorealistic rendering 45, 268
nonlinear programming 132
normalize 355
normal map 282
normal mapping 41, 83, 84, 143, 188
normal vector 25, 137
novalogic 351
nsopengl 174
numerical 218
numerical instability 79
nunchaku 158
nurbs 4, 101, 143, 165, 206, 326
nvidia 1, 52, 64, 89, 95, 117, 124, 169, 299,

300, 322
nvidia scene graph 10
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obb 289
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obj 209
object-oriented 178
object-oriented model 91
object oriented 183
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october 2005 294
octree 110, 291, 349
ogre 10
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on the fly 213
opcodes 59
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open directory project 178
openexr 113
opengl 3, 10, 20, 32, 53, 55, 58, 80, 84, 92,
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180, 182, 183, 186, 205, 208, 257, 273,
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opengl es 10, 59, 169, 176
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openglut 182
open inventor 178, 291
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openrt 257, 262
openscenegraph 10, 173
opensg 10
opensl es 176
open source 95, 145, 145, 168, 173, 179,

185, 205
open standard 1, 58
operating system 58, 173, 182
operating systems 79
operation 68
optical axis 343
optical coating 258
optical resonator 258
optics 76, 343
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orthogonal 243
orthogonal matrix 70, 243
orthographic projection 101, 305
oslo 258
out-of-order execution 216
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paging 82
paint 76
painter’s algorithm 110, 164, 273, 289, 353
panda3d 11
panoscan 113
parallax 190
parallax mapping 41, 83, 84, 166, 166
parameter 68, 293
parasolid 314
parietal bone 343
partial derivative 330
particle physics 343
particle system 7, 74, 82
particle systems ltd 191
pat hanrahan 26
path tracing 96
paul debevec 111, 116, 266
paul e. debevec 128
paul heckbert 26
pdf 127
pencil tracing 259
pentium 329
performance capture 160
perl 173
perlin noise 222, 297
perpendicular 329
personal computer 15
personal computers 90
perspective distortion 19, 22
perspective projection 8, 305
perspective transform 355
pharmacology 136
phigs 174
philip mittelman 254
philipp slusallek 259
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phong reflection model 8, 32, 32, 39, 200,

201, 202, 285, 318
phong shading 8, 9, 22, 32, 32, 39, 40, 88,

104, 137, 197, 197, 198, 200, 206
photograph 131
photography 2
photon 140, 248, 253
photon mapping 72, 76, 96, 256, 256, 259
photoshopping 205
physical law 88
physical simulation 208
pixar 13, 43, 90, 143, 273, 298, 302, 327
pixel 26, 32, 40, 89, 106, 197, 198, 250,

281, 285, 303, 333, 335, 350, 353
pixel buffer 321
pixel image editor 113
pixels 131, 332, 340

pixel shaders 80, 348
pixologic 13
planar 163
plasma displays 119
platonic solid 341
playstation 2 123
playstation 3 54, 56, 58, 123, 168, 181, 214,

216, 216
playstation portable 56
plib 173
plug-in 194
plugin 11
poincaré group 240
pointer 99
point spread function 257
polarized glasses 11
polygon 5, 14, 25, 26, 36, 87, 103, 134, 148,

163, 187, 206, 211, 211, 211, 329, 343,
351, 355

polygonal modeling 4
polygon mesh 210, 211
polygon modeling 211
polygons 206
polyhedron 36, 43, 343
polynomial 91
polytope 36
polyurethane 137
portal rendering 110
portmanteau 331, 350
poser 14
position 153
post-processing 292
pov-ray 5, 7, 13, 72, 259, 341
povray 96
poweranimator 64
powerwall 259
pre-rendered 277
pro/engineer 317
procedural animation 217
procedural generation 222
procedural texture 217
procedural textures 267
procedure 68
product visualization 312
profile 180
programmer 10, 41
programming 52
programming language 292, 298
projection matrix 92
puppeteer 78
puppeteers 77
puppets 78
pyramid 222
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pythagorean theorem 341

q
qsdk 10
quadric 101
quadrilateral 44, 211
quadtree 291
quake 69, 94, 209
quake iii 336
quake iii arena 61
quartz compositor 63
quaternion 223, 244
quaternions 288
quesa 10

r
radeon 62
radian 242
radiance 23, 112, 138, 140
radiance (software) 259
radiation exposure 249, 254
radiative heat transfer 245
radiosity 7, 76, 96, 198, 212, 214, 253, 256,

259, 268, 270, 273
ram 216, 321
randima fernando 297
randi rost 297
rapid prototyping 312, 316
raster graphics 266
raster image 105
rasterisation 163
rasterization 105, 105, 106, 106, 106, 106,

133, 261
raster manager 92
raster scan 285
ratz 77
ratzrun 77
raven software 214
ray-sphere intersection 259
ray casting 23, 252, 268
ray processing unit 257
ray tracer 110
ray tracing 6, 7, 26, 35, 67, 96, 110, 186,

194, 203, 245, 248, 261, 262, 268, 273,
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raytracing 3, 198, 211, 263, 321
ray tracing hardware 186, 257
ray transfer matrix analysis 258
real-time 3
real-time computer graphics 206
realflow 194
reality engine 92
reality lab 80

real number 240
reboot 50
reconstruction 92
rectangle 36
red 72
reference frame 16
reference rasterizer 80
reflection 247
reflection (physics) 320
reflection mapping 321
reflectivity 76
refraction 27, 248, 248, 252, 253, 267, 292,

320
refractive index 8
render 87
renderer 89
render farm 7, 273
rendering 16, 25, 148, 290, 321
rendering (computer graphics) 11, 213, 279
rendering equation 147, 198, 255, 274
renderman 10, 13, 83, 90, 273, 298, 302
renderman pro server 90
render monkey 90
rendermorphics 80
renderware 10
rescue heroes: the movie 48
research 92
retained mode 170, 173
retroreflector 320
reverse engineering 92
rgb 165, 198
rgba 282
rhinoceros 3d 5
right-hand rule 330
right triangle 341
robocop 2 77
robotech: battlecry 49
robotics 131, 132, 136
rotation group 240, 244
rotations 244
rotoscope 156, 161
round-off error 356
rounding 211
runaway: a road adventure 49
runtime 290
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saarcor 262
saarland university 257, 262
saddle point 339
salt lake city, utah 285, 340
saturation arithmetic 324
savage 3d 281
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scalar product 240
scan line 285
scanline 211, 268
scanline rendering 5, 7, 206, 252
scene description language 273
scene graph 35, 170, 178, 183, 281
scientific computing 92
scientific visualization 178
screensaver 341
sculpting 2
secondary animation 158
sector 250
sega 47
sega dreamcast 46
serious sam 341
set 199
shader 33, 105, 106, 107, 298, 306
shader language 128
shader model 293
shaders 176
shading 164
shading language 292
shadow 255, 292, 321
shadow mapping 134, 296, 310, 337
shadow volume 304, 308, 323, 324
shin megami tensei: digital devil saga 49
shin megami tensei iii: nocturne 49
shockwave 135
shoulder 88
shrek 213
side effects software 12
siggraph 116, 147, 327, 340, 341
silhouette 190
silhouette edge 309, 310, 323, 324
silicon graphics 168, 182
silicon graphics, inc. 92
simd 148, 348
sim dietrich 322
simple directmedia layer 205
simplex noise 196
simulation 16, 129
sine 242
skeletal animation 51, 151, 152
sketch based modeling 208
sketchup 57
skin 327
skull 343
skybox (video games) 75, 266
skyland 50
sl(2,c) 240
slashdot 42
slerp 244
sly 2: band of thieves 47

sly cooper 49
sly cooper and the thievius raccoonus 47
smoke 350
so(3) 240
so(4) 240
softimage 64
softimage xsi 56
software 71, 353
software application 15
solid angle 140
solidedge 317
solid modeling 67, 69
solid modelling 87, 249, 254
solidworks 317
sonic x 48, 50
sony 58, 123
sony computer entertainment 56
sound 213
source engine 69, 116, 127
space 355
spatial rotation 223
special effects animation 51
spectralon 137
specular 4, 76
specular highlight 104, 137, 201, 202
specularity 197
specular lighting 247
specular reflection 75, 76, 96, 137, 138
speedtree 215, 217
sphere 5, 36, 68, 101, 182, 249, 254
spherical harmonics 272
spherical wrist 132
spinor group 244
splash damage 144
square root 241
stanford bunny 73, 73, 342
starflight 217
star wars: clone wars 48
star wars: knights of the old republic 341
steam 350
stencil 321
stencil buffer 309, 322, 324
stencil shadow volume 42, 296, 309, 310,

322, 337, 337
stencil shadow volumes 197
steradian 76
steve baker 205
steven worley 297
steve upstill 148, 297
stream processing 293
stream processor 106
strehl ratio 257
stuart little 3: call of the wild 48
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su(2) 240
subdivision 38
subdivision surface 4, 43, 206
subsurface scattering 7
sumac 215
sun 138, 174, 305
sun microsystems 169, 179
superior defender gundam force 50
superman 64 85
super mario 64 143
super nintendo 250
supersampling 333
supersonic 135
surface 206, 329
surface integral 331
surface normal 38, 40, 87, 103, 138, 206,

264, 317
suspension of disbelief 215
swift3d 14
symbian os 181
synthesizer 213
synthespiansTM 331
synthetic 331

t
tachikoma days 48
tales of symphonia 49
tao (software) 332
target state 259
technical drawing 91, 317
technological 131
telescope 252
tessellation 5, 84, 101
tetrahedron 341
texture 15, 82, 213, 250, 321
texture filtering 333, 335, 335
texture mapped 208
texture mapping 9, 15, 22, 28, 80, 144, 149,

170, 292, 295, 332, 334, 345
texture splatting 335
the animatrix 48
theatre 76
the black lotus 214
the chronicles of riddick: escape from butcher

bay 166
the elder scrolls iv: oblivion 217
the house of the dead 3 47
the inquirer 42
the iron giant 48
the jim henson hour 77
the legend of zelda: phantom hourglass 49
the legend of zelda: the wind waker 47, 49
the littlest robo 50

the lord of the rings 74
theme park 76
the muppets 77
thermoforming 312
the sentinel (computer game) 217
the simpsons 50
thespian 331
the tech report 42
thief: deadly shadows 166
threshold 147
thumb 88
tim heidmann 322
tom and jerry blast off to mars 48
tom clancy’s splinter cell: chaos theory 166
tone mapping 34, 119, 120, 275
tony hawk’s american sk8land 49
tool 131
total annihilation 351
toy story 213, 302, 341
tracepro 258
trademark 94
traditional animation 45, 51
transfer function 112
transform and lighting 22, 92, 170, 211
transformers cybertron 50
transformers energon 50
translucent 249, 253
triangle 206, 211, 211
triangulation 262
trigonometry 258
trilinear filtering 31, 31, 333
trojan room coffee pot 342
tron 2.0 33
trudimension 10
truespace 5
turbulence 218
turner whitted 255
turok: dinosaur hunter 85
turtle talk with crush 77
typography 91

u
ubisoft 117, 166
ultrashadow 62
ultrasound 351
ultraviolet 257
unified lighting and shadowing 197
units 356
unit vector 258
university of utah 39, 104, 198, 200, 285,

338
unix 58, 168
unreal engine 56, 69, 166
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usa 104
utah teapot 73, 73, 182, 208

v
v-ray 7
valence 326
valve software 166
vector field 295, 331
vector format 222
vector graphics 210
vector product 240
vectors 136
vertex 142, 151, 206, 300
vertex normals 206
vertices 38
video 14
video game 36, 159, 188, 214, 214, 264
videogame 16
video game console 58, 180
video game industry 15
video game publisher 159
video games 45, 152
vietnam 39
viewing frustum 26, 35, 106, 110, 354
viewport 222
viewtiful joe 47, 49
virtualgl 177
virtualization 82
virtual model 277, 342
virtual reality 85, 168
visibility 142
visibility function 23
visibility problem 133, 187, 353
visible spectrum 138
visitor pattern 288
visual basic 173
visualization 312
visual system 112
volume 135
volume ray casting 347
volume rendering 273, 351, 352
volumetric display 352
volumetric flow rate 351
volumetric model 91
volumetric sampling 7
voodoo 94
voxel 313, 345
vrml 7, 11, 179, 185, 273

w
w-buffering 354, 356
wacky races 46
waldo c. graphic 77

walt disney imagineering 77
walt disney world 77
wavelength 257
web design 39
web page 39
wellington 111, 113
westwood studios 351
weta digital 74
wgl 174
white 72
white noise 196
wii 58, 123
wild arms 3 49
william rowan hamilton 231
will wright 214, 216, 218
wind 73
windowing system 173
windows 95 79, 80
windows display driver model 81
windows graphics foundation 80
windows vista 80
wing 135
winged edge 211
wings 3d 13, 44
winx club 50
wireframe 15, 108, 267
wire frame model 210, 312
wolfenstein 3d 250
wood 218
worcester polytechnic institute 204
wrist 88
wxwindows 102

x
x-men legends ii: rise of apocalypse 49
x-ray 257
x11 window system 175
x3d 11, 57
xbox 47, 58, 79, 123
xbox 360 59, 79, 123, 214, 216, 216
xerography 46
xhtml 39
xml schema 56
xscreensaver 147

y
yafray 3, 13, 96, 259

z
z-buffer 20, 21, 133, 285, 321, 356
z-buffering 46, 110, 170, 322, 353
z-order 356
zemax 258
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