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An Ontology-Based Approach M)
for Automatic Cloud Service Monitoring | %
and Management

Kirit J. Modi, Debabrata Paul Chowdhury and Sanjay Garg

Abstract Cloud computing provides an efficient, on-demand, and scalable envi-
ronment for the benefit of end users by offering cloud services as per service level
agreement (SLA) on which both user and cloud service providers are mutually
agreed. As the number of cloud users is increasing day by day, sometimes cloud
service providers unable to offer service as per SLA, which results in SLA viola-
tion. To detect SLA violation and to fulfill the user requirements from the service
provider, cloud services should be monitored. Cloud service monitoring plays a
critical role for both the customers and service providers as monitoring status helps
service provider to improve their services; at the same time, it also helps the
customers to know whether they are receiving the promised QoS or not as per the
SLA. Most existing cloud service monitoring frameworks are developed toward
service provider side. This raises the question of correctness and fairness of
monitoring mechanism; on the other hand, if monitoring is applied at user side, then
it would become overhead to the clients. To manage such issues, an ontology-based
Automatic Cloud Services Monitoring and Management (ACSMM) approach is
proposed, where cloud service monitoring and management would be performed at
the cloud broker, which is an intermediate entity between the user and service
provider. In this approach, when SLA violation is detected, it sends an alert to both
clients and service providers and generates the status report. Based on this status
report, broker automatically reschedules the tasks to reduce further SLA violation.

Keywords Cloud service monitoring - Service Level Agreement
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1 Introduction

In the era of Internet of Things (IoT) and cloud computing, IT resources, such as
server, software, bandwidth, and network have been delivered by the service pro-
vider to customer as a service through Web known as cloud services. When hun-
dreds of thousands of servers are connected together; then it produces massive,
shared capacity for computing that can be provided through software, storage, and
infrastructure. Nowadays, people make use of the services through a particular
application, such as Gmail, Dropbox, or Facebook. In cloud computing, the service
is acquired on an as-needed basis. When cloud service provider offers services to
the customers, it is equally important to measure the quality of the service offered
by the service provider. Cloud services are offered to users based on the legal
agreement made between service provider and user known as Service Level
Agreement (SLA). Due to economic benefits of cloud computing, all small and
large organizations are moving toward the cloud-based solution [1]. Thus, SLA
management is one of the biggest issues in the cloud computing environment. To
detect the SLA violation and what Quality of Services (QoS) is offered by the
service provider, monitoring of the cloud services needs to be performed. Cloud
service monitoring plays a critical role for both the user and service providers in the
sense that the monitoring status helps service provider to improve their services at
the same time helps the customer to know whether they are receiving the promised
QoS or not as per the SLA. There are several commercial and open-source cloud
service monitoring tools in the usage, but all of them are service-provider-specific
so they create the question of unfairness because monitoring is performed by the
sevice provide side. This motivates us to design and develop a fair cloud service
monitoring and management system.

Contribution: In this paper, an ontology-based Automatic Cloud Services
Monitoring and Management (ACSMM) approach is proposed, in which cloud
service monitoring and management is applied at cloud broker level using SLA and
ontology. The term automatic defines the ability to monitor and manage the cloud
services without any kind of human interference during the process. We develop a
SLA ontology model for the semantic description of the QoS parameters. Our
approach automatically monitors the cloud services and sends alerts, when SLA is
violated and automatically takes reactive actions to reduce the further SLA
violation.

2 Preliminary Concepts

In this section, we introduce the preliminary concepts related to cloud service
monitoring, QoS model and ontology to understand the present problem.
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2.1 Cloud Service Life Cycle

Before seeing the cloud service monitoring, it is necessary to understand the con-
cept of cloud service life cycle [2]. The existing software development models, such
as, waterfall model or spiral model, are not suitable for the cloud environment
because these existing models require more human which makes it time-consuming
for both customers and service providers. As we know, the main characterisitcs of
the cloud computing are scalability, elasticity, on-demand service; thus, the con-
ventional software development models are not suitable for the cloud environment.
As a result, cloud service life cycle [2] concept is introduced, which consists of
following five phases.

e Requirements: In the service requirements phase, the consumer specifies the
technical or functional requirements and non-functional requirements of the
services, that they want to consume. As a result, they issue Request for Service
(RES).

e Service Discovery: In the service discovery phase, the RFS generated in the
previous phase is used to find the service providers that meet the technical or
functional and non-functional requirements of the service.

e Service Negotiation: In the service negotiation phase, discussion between the
service provider and customer regarding the service delivered is carried-out.
Based on the discussion, the key outcome of this phase is known as service level
agreement (SLA).

e Service Composition: Sometimes some complex requirements of customers
cannot be fulfilled by single service provider. These types of requirements can
be fulfilled by two or more than two service providers. Thus, two or more than
two service providers are combined together to meet the complex requirements
and provide a single composite service to the customers.

e Service Consumption and Monitoring: In this phase, the services are delivered
to the consumers based on the SLA. After the services are provided to the
consumer, it is necessary to regularly monitor the status of delivered service to
check whether delivered services meet the functional and non-functional goals
of the customers as specified in the SLA.

2.2 SIA

SLA [3] is a legal agreement between service provider and customer, in which
services provided by the service provider are formally defined. It also specifies the
action that could be taken in case of violation. In SLA, the key objectives are
known as Service Level Objective (SLO). There is always confusion between the
SLA and SLO. SLA is whole agreement, which includes time, location, and cost;
whereas SLO contains only key objective or Key Performance Indicators (KPI),
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which can be measured. The examples of the SLO are throughput, availability,
response time, etc. To describe the service level agreement, Web Service Level
Agreement [WSLA] [4] is used, which is based on the XML language.

2.3 Ontology

An ontology [2] is a data model that represents knowledge as a set of concepts
within a domain and their relationship between these concepts. The two standards
that govern the construction of the ontology are Resource Description Framework
(RDF) and Web Ontology Language (OWL). In addition to these standards,
ontology is made up of two main components: classes and relationships. The aim of
the ontology is to understand the domain knowledge at the same time use and share
that knowledge for various applications. Ontology helps to automate the various
phases of cloud service life cycle. Ontology is the key component of the Semantic
Web. The usage of ontologies allows meaning oriented information processing and
interoperability support.

2.4 QoS Model

QoS parameters, such as availability, throughput, and response time, are considered
as part of SLA in this work, which are defined as below.

e Auvailability: Availability [3] represents the idea of anywhere and anytime access
to services. Availability is calculated by the formula presented as follows:

(Commited hour — Outage hour) * 100
Commited hour

Availibility = (1)

o Throughput: Throughput [3] represents the performance of tasks performed by a
computing service over a particular time period. Throughput is calculated by the
formula presented as follows:

Number of task executed
Execution time of all tasks + Total Delay of the all tasks

Throughput =



An Ontology-Based Approach for Automatic Cloud Service ... 5

e Response time: It is the time taken by a request until the arrival of the response
at the requesting interface. The response time [3] of a task can be calculated as
follows:

Response time = Finish Time of task — Submission Time of task (3)

The above-defined preliminary concepts are applied by us to design and develop
the cloud service monitoring and management system. To understand the impor-
tance of cloud service monitoring, we have presented the related work carried out
by various researchers in the following section.

3 Related Work

In this section, we present the work related to cloud service monitoring published
by various researchers by highlighting their key contributions as follows.

Joshi et al. [2] described a process to automate each phase of the cloud service
life cycle using ontology. Authors implemented the cloud storage prototype, in
which they automate cloud service discovery and cloud service consumption phase,
but they haven’t implemented the automation in negotiation and monitoring phases.
This inspires us to propose a framework that automates the monitoring phase of the
cloud service life cycle. In [5], authors discussed the requirements of SLA in cloud
computing in detail and also discussed the different SLA metrics in cloud com-
puting. The existing cloud service monitoring is based on some benchmark tests,
which are not so much accurate to find the performance of the cloud services.
Rehman and Zia [6] proposed a cloud service monitoring framework based on user
feedback. Though, this solution is reliable and accurate but it has no solution in case
of SLA violation. Khandelwal et al. [7] designed lightweight, scalable cloud service
monitoring framework that provides correct and up to date measurements of per-
formance parameter of the application. In this framework, it only measures the
performance parameters and does not verify it with SLA. Sahai et al. [8] proposed
an automated SLA monitoring engine for the Web services. The limitation of this
approach that it only monitors the SLA defined in author-specific SLA definition
language. Frey et al. [3] described the SLA life cycle, where authors discussed the
general and specific KPIs, which help customers in the negotiation phase during the
creation of SLA. This work helps us to understand the key QoS parameters that are
defined in SLA. Mohamed et al. [9] proposed a mechanism for SLA violation
detection without specifying the reactive action part when SLA is violated. Vaitheki
and Urmela [10] presented an algorithm of rescheduling of resources for the SLA
violation reduction, which helps us to automate the reactive action when SLA
violation is detected by rescheduling of task to the lightly loaded virtual machines.
Singh et al. [11] implemented an automatic resource management technique called
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STAR based on SLA to provide better customer satisfaction, and they also com-
pared STAR architecture with relevant resource management technique.

From the above literature study, we have observed that the cloud services
monitoring is an important task to prevent the SLA violation; as a result, the
performance of the cloud services could be improved. We have seen that the
existing work on cloud service monitoring and management is service provider
specific in most cases, where monitoring is performed by the service provider which
raises the question of fairness of SLA violation. This motivates us to propose the
automatic cloud service monitoring and management framework, in which moni-
toring is done by an intermediate entity which is popularly known as cloud broker.
The next section present the proposed framework with necessary details.

4 Automatic Cloud Service Monitoring and Management

In this section, we present a framework for automatic cloud service monitoring and
management and an approach developed using this framework.

4.1 Automatic Cloud Service Monitoring and Management
Framework

Figure 1 shows a framework for automatic cloud service monitoring and man-
agement using SLA and ontology. This framework consists of eight main com-
ponents as follows:

1. Customers: It may be user or computer that uses the cloud services through Web
portal. The cloud services provided by the service provider may be situated
anywhere in the world. Customer specifies their requirements in SLA which is
used to perform the monitoring.

2. User Interface: User interface may be a Web portal though which customers
interact with the cloud broker.

3. Service Providers: Service providers are those, which deliver services to the
customers through Web portal. The examples of different cloud providers are
Google, Amazon, Microsoft Azure, Rackspace, iWeb, CloudSigma, yahoo,
salesforce, IBM, etc.

4. Cloud Broker: It is an intermediate entity, which interacts between the service
providers and customers. It monitors cloud service to check whether SLA is
violated or not. If SLA is violated, then broker performs rescheduling of the task
to reduce further SLA violation.

5. Monitoring: This entity calculates the QoS parameters availability, throughput,
and response time using Eq. (1), Eq. (2), Eq. (3), respectively and compares
these parameters with the SLA. If SLA is violated, it sends alerts to both service
providers and customers.
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%0

Customers
User Interface
Parameters Alert
Cloud Broker
SLA
e SLA Monitoring
R T SRS
Monitoring Stitos Management
Parameters Alert Rescheduling

Service Providers

Fig. 1 Framework for automatic cloud service monitoring and management (ACSMM)

6. Management: This entity helps service providers to manage their resources to
reduce SLA violation. When SLA is violated, this entity performs rescheduling
of the task to reduce further SLA violation.

7. SLA: SLA is legal agreement between service provider and customers, in which
services provided by the service provider is formally defined. It also specifies
the action that could be taken in case of violation. This agreement is used by the
monitoring entity for detection of SLA violation.

8. Ontology: It is a knowledge-base used by monitoring entity for SLA parameter
matching in semantic manner.

In the negotiation phase of cloud service life cycle, during the creation of SLA,
QoS parameters would be defined. Monitoring entity in the broker uses the SLA
ontology and SLA for monitoring the cloud services. The customers and service
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provider send parameters to the monitoring entity, which calculates the QoS
parameters and compares with the threshold values specified in the SLA. If SLA is
violated, monitoring entity sends alerts to the both customer and service provider.
The monitoring entity sends the monitoring status to the managment entity as an
input. For a particular task, if the SLA is violated, then it reschedules the task to the
other VM which is lightly loaded; thus, it reduces the further SLA violation.

4.2 Ontology Model

Various SLA specification templates are proposed through which customers specify
their requirements. The biggest problem with these templates is that they specify the
same QoS parameters with different names. This problem can be resolved using the
semantic knowledge of the SLA parameters by developing SLA ontology model.

It is important to note that the cloud platform is not providing any standards to
specify the SLA parameters. To overcome the issue of heterogeneity of different
SLA templates, we have developed a SLA ontology as shown in Fig. 2. This
ontology stores the semantic knowledge of the SLA parameters to implement the
mapping process of SLA parameters [12]. This mapping helps the monitoring entity
to identify the QoS parameters defined in the SLA. Based on this information, the
monitoring process is performed automatically to achieve efficiency in the pre-
sented work.

Figure 3 shows the SLA ontology, which contains the semantic information
about the SLA parameters. From this information, it is clear that memory usage,
memory utilization, memory consumption, storage requirement, memory require-
ment, and storage consumption are semantically equivalent to the storage functional
requirement. Similarly, CPU, core, and processing element are semantically
equivalent to the processor functional requirement.

For the non-functional requirement, we can infer that the required availability
should be semantically same as the availability of the QoS parameter. Similarly, the
required throughput should be semantically same as the throughput of the QoS
parameter and so on.

Semantic
—— | Decsription of
SLA

[BruiE

[

Ontology
Different SLA Templates

Fig. 2 Ontology model for SLA
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4.3 Automatic Cloud Service Monitoring and Management

Approach

In this section, we present two algorithms: one is for automatic monitoring of cloud
services and another is for rescheduling to manage the cloud services. In Algorithm

1

, we monitor the QoS parameters of the cloud services. In case of SLA violation,

an alert would be sent, and SLA violation report is delivered to the management
module. The notations used in the Algorithm 1 and Algorithm 2 are defined as
follows:

Cav (Calculated Availability): It is the value of the QoS parameter availability
for a customer calculated by monitoring entity. This value is compared with the
threshold value of the availability to check the SLA violation.

Crt (Calculated Response Time): It is the value of the QoS parameter for
response time a customer calculated by monitoring entity. This value is com-
pared with the threshold value of the response time to check the SLA violation.
Ctp (Calculated Throughput): 1t is the value of the QoS parameter for
throughput a customer calculated by monitoring entity. This value is compared
with the threshold value of the throughput to check the SLA violation.
Monitoring_Status: It monitors the status report of SLA violation for a particular
time interval. This status report is used by the management entity for the
rescheduling purpose.

Time_Interval: It is the time interval after which monitoring is done. It is very
important to determine the appropriate monitoring interval. If we choose very
large monitoring interval then we would not be able to delect all SLA violation
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and if we choose very small monitoring interval then it would adverly affect the
system performance. Thus, we have to choose optimum monitoring interval
depending upon the consumption of cloud resources.

o semSLA_av (Threshold value for Availability): Tt is semantically enabled
threshold value of QoS parameter availability for a particular customer as
specified in the SLA.

o semSLA_rt (Threshold value for Response): It is semantically enabled threshold
value of QoS parameter response time for a particular customer as specified in
the SLA.

o semSLA_tp (Threshold value for Throughput): It is semantically enabled
threshold value of QoS parameter throughput for a particular customer as
specified in the SLA.

o sub_time (Subscription Time): It specifies the time left from the due date of the
end of the subscription. In our algorithm, if the subscription time is less than 10
days, then alter would we send to both customer and service provider.

e vm (Virtual Machine): In cloud, a task is executed when it is assigned to a
particular virtual machine.

Algorithm 1: Algorithm for SLA based Monitoring

Input: semSLA av, semSLA rt, semSLA tp, sub time

Output: Monitoring Status

1. while (MonitoringTime = = true)

2. if (Cav >= semSLA_av OR Crt<= semSLA_rt OR Ctp>= semSLA_tp OR
sub time<10) then

3. sends alert to the customer

4. sends alert to ServiceProvider
5. Monitoring Status « SLA Violation Result

6. endif

7. wait(Time Interval)

8. endwhile

9. returnMonitoring Status

10. exit

In the above algorithm, the semantic enabled threshold value of availability,
response time, throughput, subscription time is taken as input. These threshold
values are defined in SLA; based on these values, monitoring is done. The output of
the algorithm is monitoring status report which is based on the SLA violation result.
The SLA violation result is calculated which is based on the percentage of SLA
violation which can be calculated using Eq. (4).

Number of violated QoS Paremeter

SLA iola ion7 = .
Violation 7 4 Stal no QoS Parameters in SLA for a Customer

100 (4)

First in algorithm while loop is taken, and loop is continuing until the monitoring
time value become false. Then, we check the QoS parameter value with the
threshold values specified in the SLA (step 2). If SLA is violated, then alert is sent
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to both the client and service provider. The SLA violation result is stored in
monitoring status report (step 3, 4, 5). The monitoring process is performed at
regular time interval (step 7). It is very important to determine the appropriate
monitoring interval. If we choose very long time interval, we will not able to take
appropriate action in case of SLA violation; whereas if we choose very small
monitoring interval, it will adversely affect the system performance. Thus, we have
to choose optimum monitoring interval depending upon the consumption of cloud
resources. At last, the algorithm returns the monitoring status report, which is used
as input to the Algorithm 2. The complexity of the algorithm 1 is O(n), where n is
number of time loop is executed.

Algorithm 2: Algorithm for rescheduling of task
Input: Monitoring Status
Output: Task is assigned to vm having less load
for each task i in Monitoring Status
if (SLA is violated for task 1)
for each host
for each vm
Find vm having least load
Assign 1 to vm
endfor
endfor
endif
endfor
exit

PO do 0w

[N

Whenever SLA is violated, the rescheduling of task is performed as per the
Algorithm 2; thus, it reduces the further SLA violation. In the Algorithm 2, the
monitoring status report, which is the output of the Algorithm 1 would be the input
of this algorithm. In the Algorithm 2, first we check the task whose SLA is violated
(step 2). If SLA is violated algorithm find the virtual machine having least load
(step 3, 4, 5). Then the selected virtual machine is assigned to that task (step 6);
thus, this will reduce the further SLA violation. The complexity of the Algorithm 2
is O (n * m * k) where n is number of task, m is number of host, and k is number of
host. In our approach, the monitoring is performed by Algorithm 1 after that the
management of the SLA violation is performed by Algorithm 2, which is based on
the monitoring status report of the task.

5 Experimental Setup and Results

In this section, we discuss the experimental setup and the results derived through
experiments by applying our proposed work as follows:
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5.1 Experimental Setup

We implement our framework using CloudSim 3.02 [13], which is a Java-based
simulation tool for cloud environment. There are many features supported by
CloudSim, i.e., network topologies, dynamic insertions of simulation entities,
message passing applications, user-defined policies for resource allocation, etc. The
various experiments are carried out on the machine that have 4 GB RAM, hard disk
500 GB, CPU 1.90 GHz, and Intel(R) Core(TM) i3-4030U processor. The machine
is equipped with the 64 bits Windows 10 pro operating system. The tools used for
the implementation are Eclipse Juno, jdk 1.8.0_77 Apache Jena, Protégé 5.0.
The SLA of each customer is specified using WSLA language.

5.1.1 CloudSim Configuration

In our experiment, the parameters of data center, host, virtual machine, client, and
cloudlet are defined. The value of these parameters is also given here:

e Data center: In our experiment, we have created two data centers and the both
have same configuration as given in Table 1.

e Host: We have created total five hosts in our experimental setup. The first two
hosts are in data center 1 and remaining three hosts are in data center 2. The
different configuration of host is shown in Table 2

e Virtual Machine: We have created six virtual machines in our experimental
work. The different configuration of the virtual machines is shown in Table 3.
We assign Vm1 and Vm?2 to hostl and host2, respectively. We assign the two
virtual machines Vm3 and Vm4 to host3. We also assign two virtual machines
Vm5 and Vm6 to the host4. We define another parameter million instructions
(MIPS) for virtual machines. The virtual machine having higher MIPS will have
better performance for the execution.

Table 1 Data center configuration

Arch oS Vmm Time Cost Cost per Cost per Cost per
zone memory Storage Bw
X 86 Linux Xen 10.0 3.0 0.05 0.001 0.0

Table 2 Host configuration

Host Id | Datacentre Id | No. of Pes | RAM (GB) |Bandwidth (Gbit/s) | Storage (TB)
1 1 4 1 1 1

2 1 4 1 1 1
3 2 2 2 1 1
4 2 4 4 1 1
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Table 3 VM configuration

Vm Id MIPS RAM (GB) Bandwidth (Gbit/s) No. of Pes Vmm
1 2000 1 1 4 Xen
2 2000 1 1 4 Xen
3 1000 1 1 1 Xen
4 1000 1 1 1 Xen
5 1000 2 1 2 Xen
6 1000 2 1 2 Xen
Table 4 Cloudlet configuration

Cloudlet No. of Required Required Required response
Id Pes availability (%) throughput time (s)

1 2 95 20 250

2 2 90 10 200

3 2 100 30 300

4 2 95 25 350

5 2 98 30 500

6 2 100 25 200

8 2 98 30 350

e Cloudlet: We have created eight tasks as cloudlets and for that the required QoS
values are specified in Table 4. These QoS values are defined in the SLA.

In our experiment, we have calculated the values of the QoS parameters of the
cloudlet and then checked them with the QoS values as specified in the SLA.
If SLA violation is detected, then rescheduling is performed to reduce the further
SLA violation. We compare the results SLA violation percentage with management
module.

5.2 Experimental Results

In this section, we present the experimental results of our framework and compare
the SLA violation results of with using rescheduling and without rescheduling.
Figure 4 shows the SLA violation results of cloudlets without using rescheduling;
thus, it means the management entity of our framework which is not included while
taking the SLA violations results. Figure 5 shows the SLA violation results of
cloudlets with rescheduling. We monitor the SLA parameters of the all eight
cloudlets after every 400 seconds monitoring interval.

After first 400 seconds, if we compare both graphs, we get same results; as
rescheduling is done, only after SLA violation is detected. After 800 seconds still
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Fig. 4 SLA violation
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results of the both graph are same, because there is no virtual machine so load is
very less. After 1200 seconds, we clearly found that the SLA violations are reduced
for cloudlet 3 and cloudlet 7. After 1600 seconds, we found that the SLA violation
results are reduced for the cloudlet 3, cloudlet 4, cloudlet 5, cloudlet 6, and cloudlet
8. For the other cloudlets, the results remain same. By comparing both the graphs,
we can easily conclude that the SLA violation results for the cloudlets are reduced
when rescheduling is applied.

5.3 Comparative Study with Exiting Approaches

There are several cloud service monitoring frameworks proposed, but only few of
them provides mechanism to reduce the SLA violation in automatic manner. In
[14], authors presented the approach to automate the QoS management, but they did
not specified the detail of proposed work regarding automated QoS management.
The Detecting SLA violation Infrastructure (DeSVi) architecture [15] is one of the
automatic SLA violation detection architecture, which provides timely guidance
depending on the consumption of resources, but this architecture is service provider
oriented. A detailed survey on different cloud service monitoring tools is described
in [16, 17]. As per the survey, we observed that most of tools are service provider
oriented and this may raise the question of unfair monitoring of cloud services in
case of SLA violation.
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6 Conclusion and Future Work

In this paper, we proposed a framework and approach for automatic monitoring and
management of the cloud services to monitor the quality of offered services using
SLA ontology. When SLA violation is detected, our approach sends the alert to
both service provider and user. To reduce further SLA violation, our approach
automatically finds the virtual machine having light load and allocate that virtual
machine to the task. We have demonstrated the experimental results derived
through rescheduling and compared these with traditional (without rescheduling)
approach. The results show that the automatic service monitoring and rescheduling
enhance the performance of the cloud services. From the proposed work, we can
specify that it is a win-win situation for both customers and service providers
because monitoring is applied at broker level, so it will provide a fair SLA violation
results to the users at the same time automatic rescheduling helps service providers
to manage the SLA. In future work, we focus to predict the SLA violation based on
the current resource conditions in cloud by applying machine learning technique. In
that case, we would require the previous knowledge of SLA violation condition to
predict the SLA violation. Thus, we will take action based on the prediction which
will reduce the SLA violation in the cloud environment at significant level.
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Incorporating Collaborative Tagging M)
in Social Recommender Systems e

K. Vani and T. Swathiha

Abstract Recommender systems play a major role in recent times to help online
users in finding the relevant items. Traditional recommender systems have been
analysed immensely, but they ignore information like social friendships, tags which
when incorporated in recommendation can improve its accuracy. With the advent of
social networking sites, study of social recommender systems has become active.
Most of the users ask their friends for recommendation. But not all friends have
similar taste as that of the user, and different group of friends contribute to different
recommendation tasks. So this paper proposes an approach to identify different
group of friends by grouping users based on items and retains the personal interest
of experienced by incorporating individual-based regularization in basic matrix
factorization. Information like ratings, tags and friendship are used in predicting the
missing values of user-item matrix efficiently. Empirical analysis on the dataset
proves that the proposed approach is better than the existing methods.

Keywords Social recommendation - Tags - Personal interest
Interpersonal influence - Matrix factorization

1 Introduction

Recommender systems are one of the most important Web applications that provide
many services and suggest some services automatically as per user’s interest.
Recommender systems have gained its popularity due to information overload
prevailing in the Internet. It helps users to identify items which are interested to
them. There are various techniques in personalized recommenders like content
based and collaborative filtering technique [1]. The traditional recommender sys-
tems suffer from various limitations like cold start problem, data sparsity, scala-
bility. To overcome these problems, social recommendation is introduced.
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Such recommender systems incorporate information like friends, ratings, and tags
which improve the accuracy of recommendation. Similarly, users’ trust relationship
can also be incorporated to improve accuracy of traditional recommender systems.
Such recommender systems consider only trustable users and recommend the items
rated by them. But it suffers from several limitations. Trust relationships need not be
mutual like social relationships, and building such trust network is difficult since
very few Websites provide trust assigning facility. Due to the rapid growth of social
networking sites, users like to interact more with their friends rather than the trusted
users. So these problems led to focus more on social recommender systems. In
social recommender systems, not all friends have similar taste as that of the user and
different group of friends can contribute to different recommendation tasks. So this
paper proposes an approach to group users based on similar items and incorporates
efficient regularization [2] to handle friends with different taste. Preference of any
item by a user can be known with their ratings as well as from their tagging
behaviour [3]. Ratings tell how much a user liked an item, whereas tags indicate
why they liked the item [4]. So tagging information is also incorporated with
friendship and rating information to make recommendations. Experiments have
been conducted on dataset to evaluate the performance of this approach. The paper
is organized as follows. Section 2 provides an overview of different approaches of
recommender systems. Section 3 describes the social recommendation framework
and Sect. 4 presents the experimental analysis and results.

2 Related Work

This section reviews important approaches of recommender systems including
social recommender systems and tag-based recommender systems.

2.1 Tag-Based Recommender Systems

Collaborative filtering technique fails when there are diverse domains because
people with similar taste in one domain may not agree well in other domain. So to
improve recommendation quality, content information about items has been used as
additional knowledge which led to the advent of collaborative tagging systems.
Tagging information helps in easy retrieval of items [5—7]. It also helps in classi-
fying their favourite items using the keywords. TF-based recommender system is
one of the content-based filtering approaches which exploit tagging information. It
models tag-based user profiles and item profiles. The simplest method to assign
weight to a particular tag is by counting the number of times that tag has been used
by the user, or the number of times the item has been annotated by that tag. Items
which are highly tagged by the user will be recommended. Probabilistic latent
semantic analysis (PLSA) and FolkRank algorithm are used to form tag-based
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recommender systems. PLSA [8] is used to find the semantic structure of a data
using co-occurrence matrix in a probabilistic framework. FolkRank algorithm [9] is
used to perform topic-specific ranking in folksonomies.

2.2 Social Recommender Systems

Nowadays, the usage of social networking sites has been increased tremendously.
Social influences play a key role when people are making decisions of adopting
products. Social recommender systems [10] aim to reduce information overload
problem by presenting the most relevant content. MF in social networks is proposed
in [11]. It assumes that neighbours in the social network may have similar interest
as that of a user. The objective function is

Z (Ru,i - I,éu,i)2 + g Z ((Qu _ZVSZ’ va) (Qu _ZVSZ’VQV) T)

(i, u)observed allu (21)
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The second term in the objective function minimizes the distance between user
profile O, and average of his friends’ profiles Q,. Matrix S denotes the user—user
trust values. This equation can be optimized using gradient descent approach.
CircleCon model [12] is found to be better than matrix factorization methods [13].
It is an extension of MF in social networks with inferred circle of friends. MF in
social networks considers all friends, but preference of friends will be different in
different categories. This idea is incorporated in CircleCon model. It infers a circle
of friends from entire social network regarding a specific category of items.

Most of the approaches consider only the social network information. Social
context factors like individual preference and interpersonal influence are ignored.
But these factors which affect user’s decision are incorporated in ContextMF model
[14]. In ContextMF recommendation, a user sends or recommends a set of items to
another user. Percentage of items adopted by user U from user V is denoted by
interpersonal influence. Matrix W denotes the interpersonal similarity of users. All
these factors contribute in predicting the missing values in user-item rating matrix.
Individual preference is obtained by the user’s history. The objective function of
ContextMF model is
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The third term in the Eq. (2.2) denotes the individual preference. Individual pref-
erence in ContextMF model is highly related with similarity with other users rather
than his own interest. So another personalized recommendation approach [15] is
proposed which fuses three social factors, personal interest of a user, interpersonal
interest similarity and interpersonal influence. Previous works considered friends or
inferred circle of friends for recommendation which solves cold start problem. But it
affects the individuality of experienced users. So for experienced users, personal
interest of them is given more weightage, and for cold users, preference of friends is
given more weightage and considered for recommendation.

3 The Recommendation Framework

Users usually turn towards their friends who have similar taste as that of them or
who are expert in that field to get suggestions. Users ask suggestions from different
set of people for different set of products. So, different group of users contribute to
different recommendation tasks. To obtain better results, suitable group of users are
clustered and friends of a user within his group are considered to be more similar to
the user. Thus, it handles friends with different taste by incorporating it as a reg-
ularization term in matrix factorization. Items which are highly rated or tagged by
the friends of a user are recommended to him in a social recommender system. This
achieves better results for cold users because they don’t have any history of rating
records but will have adverse effects for existing users. Existing users who have
rated comparatively higher number of items will have their own individual pref-
erence. In social recommender systems, such individual preference is ignored. So
this individual preference of existing users is also retained by incorporating it as
another regularization term.

3.1 The Clustering

Figure 1 shows the detailed flowchart of the proposed approach. Items are clustered
into stable groups based on the tags. If two items are assigned with same set of tags,
then they are considered to be similar. Let /, = {Ig] I SR ,Igp} denote the set of
item groups. Then the tag frequency of every user to the items in every group is
calculated.

Nu i
Tag frequency,, g = N’g (3.1)

where Tag frequency, o, represents the frequency of tags given by user u to items in
group g; and N, denotes the total number of times user u has tagged items and N, g,
denotes the number of times user u has tagged items in item group g;. Users are
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Fig. 1 Flowchart of the proposed approach

related to different item groups with different weightage of tag frequency. Users
with similar tag frequencies are clustered into user groups.

3.2 Social Regularization

In this approach, friends of a user within the same user group as that of the user will
be more similar to him. So friends within the same group are given higher
weightage than friends in other groups. The interpersonal interest similarity can be
calculated as follows.

Sif)y=p Y cos(Up,Uf)+(1=p) Y cos(UiUf) (3.2)
feF+(i) fEF,—(i)

The social regularization term [2] is

*Z X S@NHNUi- Ul (3:3)

l—lfeF
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where f is the weightage given to friends within the same group and (1-f) is the
weightage given to friends in other user groups. F, + (i) is the set of friends of user i
within the same group of user i and F, — (i) is the set of friends of user i in other
groups. S(i, f) denotes the cosine similarity between user i and his friend user f. If S
(i, f) is greater, then the friend f contributes more towards the preference of the user.

3.3 Individual Preference

Users with higher rating history will usually tend to choose items by themselves
with little influence by their friends. The proposed approach retains the individual
preference of experienced users with little influence from friends and considers taste
of their friends for cold users. Personal interest of user is represented as

Q5 =Sim(U,,V;) (3.4)

It denotes the similarity between feature of user and items in the group g to which
the user is more related [15]. The individual preference regularization term is

AR A (35)

where ‘Hjj ’ is the number of items the user tagged in the group g. It denotes how
much the user depends on his own preference. Higher the ‘H§| value, higher is the
impact of individual preference.

3.4 Model Training

The objective function of the proposed recommendation model is

m n /1
M= ming,y 5 22( UV + SN+ VI
n g R (3.6)
25 E HINUi=Uf|l+ 2 Z!Hﬂ(Qf;, uvl)?
= EF(i

It incorporates both social regularization and individual preference terms men-
tioned above. The objective function is minimized by gradient descent approach.
The gradients of the objective function with respect to U, and V; are
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The value of user and item latent feature matrices are updated with the gradient
values mentioned in the Eqs. (3.7) and (3.8).

4 Experimental Results

In this section, experiments are conducted on Last.fm dataset [16] to evaluate the
proposed approach and it is implemented in RStudio. Last.fm is a social music
Website. It has 1892 users, 17632 unique artists, 11946 tags and 186479 tag
assignments. It is the only dataset which has both tags and social contacts. So it is
used for this study.

4.1 Metrics

Metrics like root mean square error (RMSE), mean absolute error (MAE), precision
and recall are used. Precision and recall are defined as,

o |Relevant items retrieved)|
Precision =

4.1
|retrieved items| (4.1)

|Relevant items retrived|
Recall =

4.2
|relevant items| (42)

4.2 Comparisons

PersonalizedMF is the proposed approach which is compared with BasicMF,
SocialMF, TF-based recommender system. BasicMF is the one which employs
basic matrix factorization, and SocialMF employs matrix factorization with only
social regularization term, whereas the PersonalizedMF incorporates both the social
regularization term and individual preference term. TF-based system recommends
items which are highly tagged by the users. Learning rate is set to 0.015,



24 K. Vani and T. Swathiha

:able 11. Pzrl\f/?gl}aﬂ;% of Weightage | 0.5 0.6 0.7 0.8 0.9
asgsznj;ﬁfes in different f "2 N iSE 05184 |0.5181 |0.5179 |0.5238 |0.5239
MAE 0.4512 |0.4509 [0.4508 |0.4545 |0.4545
Fig. 2 Comparison of RMSE and MAE
different models with RMSE 0.7
and MAE values 8?
0.4
0.3
0.2
01 II II |
0
&
S S
o2 N L
& ¥ @
&
QQ/
B RMSE m MAE
Fig. 3 Comparison of Precision and Recall
different models with 0.4

precision and recall values

0.3

0.2

Hinh
0

S S

M Precision M Recall

and overfitting regularization term A is set to 0.001. Experiments are conducted by
assigning same weightage to both social regularization and individual preference
regularization terms. Table 1 depicts the performance of PersonalizedMF in dif-
ferent weightage (B and n) values. Error is low when weightage is 0.7. Figures 2
and 3 depict the performance comparison of various methods with the metrics.

5 Conclusion and Future Work

In this paper, we focus on improving the quality of social recommender system. The
existing social recommendation approaches use social relationship of user without
considering the interpersonal similarity. But some social connections may have
adverse effects in the recommendation. In reality, every user will have different
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circle of people like family, friends, colleagues, neighbours and so on. User will
consult different group of people to get suggestions for different category of items.
So the proposed approach clusters items and similar users based on their tag fre-
quency to find different group of friends for different recommendation tasks and
incorporates social regularization term to handle friends with different taste and
individual preference term to retain the preference of existing users. The experi-
ments on the benchmark dataset show that the proposed approach is better than the
existing approaches. Time and location information of the user can also be con-
sidered for recommendation.
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