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Preface

The field of computer algorithms has flourished since the early 1960s when
the first users of electronic computers started to pay attention to the per-
formance of programs. The limited resources of computers at that time
resulted in additional impetus for devising efficient computer algorithms.
After extensive research in this field, numerous efficient algorithms for dif-
ferent problems emerged. The similarities among different algorithms for
certain classes of problems have resulted in general algorithm design tech-
niques. This book emphasizes most of these algorithm design techniques
that have proved their utility in the solution to many problems. It may
be considered as an attempt to cover the most common techniques in the
design of sequential algorithms. Each technique is presented as follows.
First, the context in which that technique can be applied. Second, the spe-
cial characteristics of that technique that set it apart. Third, comparison
with other techniques, whenever possible; finally, and most importantly,
illustration of the technique by applying it to several problems.

Although the main theme of the book is algorithm design techniques, it
also emphasizes the other major component in algorithmic design: the anal-
ysis of algorithms. It covers in detail the analysis of most of the algorithms
presented. Appendix A covers most of the mathematical tools that are
helpful in analyzing algorithms. Chapter 10 is an introduction to the field
of computational complexity, and Chapter 11 covers the basics of establish-
ing lower bounds on the solution of various problems. These chapters are
indispensable for the design of efficient algorithms.

The focus of the presentation is on practical applications of the design
techniques. Each technique is illustrated by providing an adequate number

v
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of algorithms to solve some problems that quite often arise in many appli-
cations in science and engineering.

The style of presentation of algorithms is straightforward and uses
pseudocode that is similar to the syntax of structured programming
languages, e.g., if-then-else, for, and while constructs. The pseudocode
is sometimes intermixed with English whenever necessary. Describing a
portion of an algorithm in English is indeed instructive; it conveys the idea
with minimum effort on the part of the reader. However, sometimes it is
both easier and more formal to use a pseudocode statement. For example,
the function of the assignment statement

B[1..n]←A[1..n]

is to replace each entry B[i] with A[i] for all i, 1 ≤ i ≤ n. Neither the
for . . . end for construct nor plain English is more concise or easier to
state than this notation.

The book is divided into seven parts. Each part consists of chapters
that cover those design techniques that have common characteristics or
objectives. Part 1 sets the stage for the rest of the book, in addition to
providing the background material that is needed in subsequent chapters.
Part 2 is devoted to the study of recursive design techniques, which are
extremely important, as they emphasize a fundamental tool in the field of
computer science: recursion. Part 3 covers two intuitive and natural design
techniques: the greedy approach and graph traversals. Part 4 is concerned
with those techniques needed to investigate a given problem and the pos-
sibility of either coming up with an efficient algorithm for that problem
or proving its intractability. This part covers NP-completeness, computa-
tional complexity, and lower bounds. In Part 5, techniques for coping with
hard problems are presented. These include backtracking, randomization,
and finding approximate solutions that are reasonable and acceptable using
a reasonable amount of time. Part 6 introduces the concept of iterative
improvement using two important problems that have received extensive
attention, which resulted in increasingly efficient algorithms: The problem
of finding a maximum flow in a network and the problem of finding a max-
imum matching in an undirected graph. Finally, Part 7 is an introduction
to the relatively new field of computational geometry. In one chapter, the
widely used technique of geometric sweeping is presented with examples of
important problems in that field. In the other chapter, the versatile tool of
the Voronoi diagram is covered and some of its applications are presented.
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Preface vii

The book is intended as a text in the field of the design and analysis
of algorithms. It includes adequate material for two courses in algorithms.
Chapters 1–9 provide the core material for an undergraduate course in
algorithms at the junior or senior level. Some of the material such as
the amortized analysis of the union-find algorithms and the linear time
algorithms in the case of dense graphs for the shortest path and minimum
spanning tree problems may be skipped. The instructor may find it useful
to add some of the material in the following chapters such as backtracking,
randomized algorithms, approximation algorithms, or geometric sweeping.
The rest of the material is intended for a graduate course in algorithms.

The prerequisites for this book have been kept to the minimum; only
an elementary background in discrete mathematics and data structures are
assumed.

The author is grateful to King Fahd University of Petroleum & Minerals
(KFUPM) for its support and providing facilities for the preparation of
the manuscript. This book writing project has been funded by KFUPM
under Project ics/algorithm/182. The author would like to thank those
who have critically read various portions of the manuscript and offered
many helpful suggestions, including the students of the undergraduate and
graduate algorithms courses at KFUPM. Special thanks go to S. Albassam,
H. Almuallim, and S. Ghanta for their valuable comments.

M. H. Alsuwaiyel
Dhahran, Saudi Arabia
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Part 1 : Basic Concepts and Introduction to Algorithms 3

This part of the book is concerned with the study of the basic tools and
prerequisites for the design and analysis of algorithms.

Chapter 1 is intended to set the stage for the rest of the book. In this
chapter, we will discuss examples of simple algorithms for solving some of
the fundamental problems encountered in almost all applications of com-
puter science. These problems include searching, merging and sorting.
Using these example algorithms as a reference, we then investigate the
mathematical aspects underlying the analysis of algorithms. Specifically,
we will study in detail the analysis of the running time and space required
by a given algorithm.

Chapter 2 reviews some of the basic data structures usually employed in
the design of algorithms. This chapter is not intended to be comprehensive
and detailed. For a more thorough treatment, the reader is referred to
standard books on data structures.

In Chapter 3, we investigate in more detail two fundamental data struc-
tures that are used for maintaining priority queues and disjoint sets. These
two data structures, namely the heap and disjoint set data structures, are
used as a building block in the design of many efficient algorithms, espe-
cially graph algorithms. In this book, heaps will be used in the design of
an efficient sorting algorithm, namely heapsort. We will also make use of
heaps in Chapter 7 for designing efficient algorithms for the single-source
shortest path problem, the problem of computing minimum cost spanning
trees and the problem of finding variable-length code for data compression.
Heaps are also used in branch-and-bound algorithms, which is the subject
of Sec. 12.5. The disjoint set data structure will be used in Sec. 7.3 in Algo-
rithm kruskal for finding a minimum cost spanning tree of an undirected
graph. Both data structures are used extensively in the literature for the
design of more complex algorithms.
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Chapter 1

Basic Concepts in Algorithmic
Analysis

1.1 Introduction

The most general intuitive idea of an algorithm is a procedure that consists
of a finite set of instructions which, given an input , enables us to obtain
an output if such an output exists or else obtain nothing at all if there is
no output for that particular input through a systematic execution of the
instructions. The set of possible inputs consists of all inputs to which the
algorithm gives an output. If there is an output for a particular input,
then we say that the algorithm can be applied to this input and process it
to give the corresponding output. We require that an algorithm halts on
every input, which implies that each instruction requires a finite amount of
time, and each input has a finite length. We also require that the output
of a legal input to be unique, that is, the algorithm is deterministic in the
sense that the same set of instructions are executed when the algorithm is
initiated on a particular input more than once. In Chapter 13, we will relax
this condition when we study randomized algorithms.

The design and analysis of algorithms are of fundamental importance
in the field of computer science. As Donald E. Knuth stated “Computer
science is the study of algorithms.” This should not be surprising, as every
area in computer science depends heavily on the design of efficient algo-
rithms. As simple examples, compilers and operating systems are nothing
but direct implementations of special purpose algorithms.

5
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The objective of this chapter is twofold. First, it introduces some simple
algorithms, particularly related to searching and sorting. Second, it covers
the basic concepts used in the design and analysis of algorithms. We will
cover in depth the notion of “running time” of an algorithm, as it is of
fundamental importance to the design of efficient algorithms. After all,
time is the most precious measure of an algorithm’s efficiency. We will also
discuss the other important resource measure, namely the space required
by an algorithm.

Although simple, the algorithms presented will serve as the basis for
many of the examples in illustrating several algorithmic concepts. It is
instructive to start with simple and useful algorithms that are used as
building blocks in more complex algorithms.

1.2 Historical Background

The question of whether a problem can be solved using an effective pro-
cedure, which is equivalent to the contemporary notion of the algorithm,
received a lot of attention in the first part of the 20th century, especially in
the 1930s. The focus in that period was on classifying problems as being
solvable using an effective procedure or not. For this purpose, the need
arose for a model of computation by the help of which a problem can be
classified as solvable if it is possible to construct an algorithm to solve that
problem using that model. Some of these models are the recursive func-
tions of Gödel, λ-calculus of Church, Post machines of Post, and the Turing
machines of Turing. The RAM model of computation was introduced as a
theoretical counterpart of existing computing machines. By Church The-
sis , all these models have the same power, in the sense that if a problem is
solvable on one of them, then it is solvable on all others.

Surprisingly, it turns out that “almost all” problems are unsolvable.
This can be justified easily as follows. Since each algorithm can be thought
of as a function whose domain is the set of nonnegative integers and whose
range is the set of real numbers, the set of functions to be computed is
uncountable. Since any algorithm, or more specifically a program, can be
encoded as a binary string, which corresponds to a unique positive integer,
the number of functions that can be computed is countable. So, infor-
mally, the number of solvable problems is equinumerous with the set of
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integers (which is countable), whereas the number of unsolvable problems
is equinumerous with the set of real numbers (which is uncountable). As a
simple example, no algorithm can be constructed to decide whether seven
consecutive 1’s occur in the decimal expansion of π. This follows from the
definition of an algorithm, which stipulates that the amount of time an
algorithm is allowed to run must be finite. Another example is the prob-
lem of deciding whether a given equation involving a polynomial with n

variables x1, x2, . . . , xn has integer solutions. This problem is unsolvable,
no matter how powerful the computing machine used is. That field which
is concerned with decidability and solvability of problems is referred to as
computability theory or theory of computation, although some computer
scientists advocate the inclusion of the current field of algorithms as part
of this discipline.

After the advent of digital computers, the need arose for investigat-
ing those solvable problems. In the beginning, one was content with a
simple program that solves a particular problem without worrying about
the amount of resources, in particular, time, that this program requires.
Then the need for efficient programs that use as few resources as possi-
ble evolved as a result of the limited resources available and the need to
develop complex algorithms. This led to the evolution of a new area in
computing, namely computational complexity. In this area, a problem that
is classified as solvable is studied in terms of its efficiency, that is, the time
and space needed to solve that problem. Later on, other resources were
introduced, e.g., communication cost and the number of processors if the
problem is analyzed using a parallel model of computation.

Unfortunately, some of the conclusions of this study turned out to be
negative: There are many natural problems that are practically unsolvable
due to the need for huge amount of resources, in particular, time. On
the other hand, not only efficient algorithms have been devised to solve
many problems, but also it was also proved that those algorithms are opti-
mal in the sense that if any new algorithm to solve the same problem is
discovered, then the gain in terms of efficiency is virtually minimal. For
example, the problem of sorting a set of elements has been studied exten-
sively, and as a result, several efficient algorithms to solve this problem
have been devised, and it was proved that these algorithms are optimal in
the sense that no substantially better algorithm can ever be devised in the
future.
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1.3 Binary Search

Henceforth, in the context of searching and sorting problems, we will assume
that the elements are drawn from a linearly ordered set, for example, the
set of integers. This will also be the case for similar problems, such as
finding the median, the kth smallest element, and so forth. Let A[1..n] be
a sequence of n elements. Consider the problem of determining whether
a given element x is in A. This problem can be rephrased as follows.
Find an index j, 1 ≤ j ≤ n, such that x = A[j] if x is in A, and j = 0
otherwise. A straightforward approach is to scan the entries in A and
compare each entry with x. If after j comparisons, 1 ≤ j ≤ n, the search is
successful , i.e., x = A[j], j is returned; otherwise, a value of 0 is returned
indicating an unsuccessful search. This method is referred to as sequential
search. It is also called linear search, as the maximum number of element
comparisons grows linearly with the size of the sequence. This is shown as
Algorithm linearsearch.

Algorithm 1.1 linearsearch
Input: An array A[1..n] of n elements and an element x.

Output: j if x = A[j], 1 ≤ j ≤ n, and 0 otherwise.

1. j← 1
2. while (j < n) and (x �= A[j])
3. j← j + 1
4. end while
5. if x = A[j] then return j else return 0

Intuitively, scanning all entries of A is inevitable if no more information
about the ordering of the elements in A is given. If we are also given
that the elements in A are sorted, say in nondecreasing order, then there
is a much more efficient algorithm. The following example illustrates this
efficient search method.

Example 1.1 Consider searching the array

A[1..14] = 1 4 5 7 8 9 10 12 15 22 23 27 32 35 .

In this instance, we want to search for element x = 22. First, we compare x

with the middle element A[�(1 + 14)/2�] = A[7] = 10. Since 22 > A[7], and
since it is known that A[i] ≤ A[i+1], 1 ≤ i < 14, x cannot be in A[1..7], and
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therefore this portion of the array can be discarded. So, we are left with the
subarray

A[8..14] = 12 15 22 23 27 32 35 .

Next, we compare x with the middle of the remaining elements
A[�(8 + 14)/2�] = A[11] = 23. Since 22 < A[11], and since A[i] ≤
A[i + 1], 11 ≤ i < 14, x cannot be in A[11..14], and therefore this por-
tion of the array can also be discarded. Thus, the remaining portion of the
array to be searched is now reduced to

A[8..10] = 12 15 22 .

Repeating this procedure, we discard A[8..9], which leaves only one entry
in the array to be searched, that is, A[10] = 22. Finally, we find that x =
A[10], and the search is successfully completed.

In general, let A[low ..high ] be a nonempty array of elements sorted in
nondecreasing order. Let A[mid ] be the middle element, and suppose that
x > A[mid ]. We observe that if x is in A, then it must be one of the elements
A[mid + 1], A[mid + 2], . . . , A[high ]. It follows that we only need to search
for x in A[mid + 1..high]. In other words, the entries in A[low ..mid ] are
discarded in subsequent comparisons since, by assumption, A is sorted in
nondecreasing order, which implies that x cannot be in this half of the array.
Similarly, if x < A[mid ], then we only need to search for x in A[low ..mid−1].
This results in an efficient strategy which, because of its repetitive halving,
is referred to as binary search. Algorithm binarysearch gives a more
formal description of this method.

Algorithm 1.2 binarysearch
Input: An array A[1..n] of n elements sorted in nondecreasing order and an

element x.
Output: j if x = A[j], 1 ≤ j ≤ n, and 0 otherwise.

1. low← 1; high← n; j← 0
2. while (low ≤ high) and (j = 0)
3. mid←�(low + high)/2�
4. if x = A[mid ] then j←mid
5. else if x < A[mid ] then high←mid − 1
6. else low←mid + 1
7. end while
8. return j
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1.3.1 Analysis of the binary search algorithm

Henceforth, we will assume that each three-way comparison (if-then-else)
counts as one comparison. Obviously, the minimum number of comparisons
is 1, and it is achievable when the element being searched for, x, is in the
middle position of the array. To find the maximum number of comparisons,
let us first consider applying binary search on the array 2 3 5 8 . If we
search for 2 or 5, we need two comparisons, whereas searching for 8 costs
three comparisons. Now, in the case of unsuccessful search, it is easy to
see that searching for elements such as 1, 4, 7, or 9 takes 2, 2, 3, and
3 comparisons, respectively. It is not hard to see that, in general, the
algorithm always performs the maximum number of comparisons whenever
x is greater than or equal to the maximum element in the array. In this
example, searching for any element greater than or equal to 8 costs three
comparisons. Thus, to find the maximum number of comparisons, we may
assume without loss of generality that x is greater than or equal to A[n].

Example 1.2 Suppose that we want to search for x = 35 or x = 100 in

A[1..14] = 1 4 5 7 8 9 10 12 15 22 23 27 32 35 .

In each iteration of the algorithm, the bottom half of the array is discarded
until there is only one element:

12 15 22 23 27 32 35 → 27 32 35 → 35 .

Therefore, to compute the maximum number of element comparisons
performed by Algorithm binarysearch, we may assume that x is greater
than or equal to all elements in the array to be searched. To compute
the number of remaining elements in A[1..n] in the second iteration, there
are two cases to consider according to whether n is even or odd. If n is
even, then the number of entries in A[mid + 1..n] is n/2; otherwise, it is
(n − 1)/2. Thus, in both cases, the number of elements in A[mid + 1..n]
is exactly �n/2�.

Similarly, the number of remaining elements to be searched in the third
iteration is ��n/2�/2� = �n/4� (see Eq. (A.3)).

In general, in the jth pass through the while loop, the number of remain-
ing elements is �n/2j−1�. In the last iteration, either x is found or the size
of the subsequence being searched reaches 1, whichever occurs first. As a
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result, the maximum number of iterations needed to search for x is that
value of j satisfying the condition

�n/2j−1� = 1.

By the definition of the floor function, this happens exactly when

1 ≤ n/2j−1 < 2,

or

2j−1 ≤ n < 2j,

or

j − 1 ≤ log n < j.∗

Since j is integer, we conclude that

j = �log n�+ 1.

Alternatively, the performance of the binary search algorithm can be
described in terms of a decision tree, which is a binary tree that exhibits the
behavior of the algorithm. Figure 1.1 shows the decision tree corresponding
to the array given in Example 1.1. The darkened nodes are those compared
against x in Example 1.1.

Note that the decision tree is a function of the number of the elements
in the array only. Figure 1.2 shows two decision trees corresponding to
two arrays of sizes 10 and 14, respectively. As implied by the two figures,

32

5

35271297

8

4

1

23

10

15

22

Fig. 1.1. A decision tree that shows the behavior of binary search.

∗Unless otherwise stated, all logarithms in this book are to the base 2. The natural
logarithm of x will be denoted by ln x.
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(b)

3

5

6

1

10

9

14

13

11

8 1242

75

(a)

8

6
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9

10

2

3

4

1

Fig. 1.2. Two decision trees corresponding to two arrays of sizes 10 and 14, respectively.

the maximum number of comparisons in both trees is 4. In general, the
maximum number of comparisons is 1 plus the height of the corresponding
decision tree (see Sec. 2.5 for the definition of height). It can be shown
that the height of such a tree is �log n� (Exercise 1.4). Hence, we conclude
that the maximum number of comparisons is �log n�+ 1. We have in effect
given two proofs of the following theorem.

Theorem 1.1 The number of comparisons performed by Algorithm bina-

rysearch on a sorted array of size n is at most �log n�+ 1.

1.4 Merging Two Sorted Lists

Suppose we have an array A[1..m] and three indices p, q, and r, with 1 ≤
p ≤ q < r ≤ m, such that both the subarrays A[p..q] and A[q + 1..r]
are individually sorted in nondecreasing order. We want to rearrange the
elements in A so that the elements in the subarray A[p..r] are sorted in
nondecreasing order. This process is referred to as merging A[p..q] with
A[q + 1..r]. An algorithm to merge these two subarrays works as follows.
We maintain two pointers s and t that initially point to A[p] and A[q + 1],
respectively. We prepare an empty array B[p..r] which will be used as a
temporary storage. Each time, we compare the elements A[s] and A[t] and
append the smaller of the two to the auxiliary array B; if they are equal, we
will choose to append A[s]. Next, we update the pointers: If A[s] ≤ A[t],
then we increment s, otherwise we increment t. This process ends when
s = q + 1 or t = r + 1. In the first case, we append the remaining elements
A[t..r] to B, and in the second case, we append A[s..q] to B. Finally, the
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array B[p..r] is copied back to A[p..r]. This procedure is given in Algorithm
merge.

Algorithm 1.3 merge
Input: An array A[1..m] of elements and three indices p, q, and r, with

1 ≤ p ≤ q < r ≤ m, such that both the subarrays A[p..q] and
A[q + 1..r] are sorted individually in nondecreasing order.

Output: A[p..r] contains the result of merging the two subarrays A[p..q] and
A[q + 1..r].

1. comment: B[p..r] is an auxiliary array.

2. s← p; t← q + 1; k← p
3. while s ≤ q and t ≤ r
4. if A[s] ≤ A[t] then
5. B[k]←A[s]
6. s← s + 1
7. else
8. B[k]←A[t]
9. t← t + 1

10. end if
11. k← k + 1
12. end while
13. if s = q + 1 then B[k..r] ←A[t..r]
14. else B[k..r] ←A[s..q]
15. end if
16. A[p..r] ←B[p..r]

Let n denote the size of the array A[p..r] in the input to Algorithm
merge, i.e., n = r − p + 1. We want to find the number of comparisons
that are needed to rearrange the entries of A[p..r]. It should be emphasized
that from now on when we talk about the number of comparisons per-
formed by an algorithm, we mean element comparisons , i.e., the compar-
isons involving objects in the input data. Thus, all other comparisons, e.g.,
those needed for the implementation of the while loop, will be
excluded.

Let the two subarrays be of sizes n1 and n2, where n1 + n2 = n. The
least number of comparisons happens if each entry in the smaller subarray
is less than all entries in the larger subarray. For example, to merge the
two subarrays

2 3 6 and 7 11 13 45 57 ,
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the algorithm performs only three comparisons. On the other hand, the
number of comparisons may be as high as n − 1. For example, to merge
the two subarrrays

2 3 66 and 7 11 13 45 57 ,

seven comparisons are needed. It follows that the number of comparisons
done by Algorithm merge is at least n1 and at most n− 1.

Observation 1.1 The number of element comparisons performed by Algo-
rithm merge to merge two nonempty arrays of sizes n1 and n2, respectively,
where n1 ≤ n2, into one sorted array of size n = n1 + n2 is between n1 and
n−1. In particular, if the two array sizes are �n/2� and �n/2�, the number
of comparisons needed is between �n/2� and n− 1.

How about the number of element assignments (again here we mean
assignments involving input data)? At first glance, one may start by looking
at the while loop, the if statements, etc. in order to find out how the
algorithm works and then compute the number of element assignments.
However, it is easy to see that each entry of array B is assigned exactly
once. Similarly, each entry of array A is assigned exactly once, when copying
B back into A. As a result, we have the following observation.

Observation 1.2 The number of element assignments performed by Algo-
rithm merge to merge two arrays into one sorted array of size n is
exactly 2n.

1.5 Selection Sort

Let A[1..n] be an array of n elements. A simple and straightforward algo-
rithm to sort the entries in A works as follows. First, we find the minimum
element and store it in A[1]. Next, we find the minimum of the remaining
n− 1 elements and store it in A[2]. We continue this way until the second
largest element is stored in A[n−1]. This method is described in Algorithm
selectionsort.

It is easy to see that the number of element comparisons performed by
the algorithm is exactly

n−1∑
i=1

(n− i) = (n− 1) + (n− 2) + · · ·+ 1 =
n−1∑
i=1

i =
n(n− 1)

2
.
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Algorithm 1.4 selectionsort
Input: An array A[1..n] of n elements.

Output: A[1..n] sorted in nondecreasing order.

1. for i← 1 to n− 1
2. k← i
3. for j← i + 1 to n {Find the ith smallest element.}
4. if A[j] < A[k] then k← j
5. end for
6. if k �= i then interchange A[i] and A[k]
7. end for

It is also easy to see that the number of element interchanges is between 0
and n− 1. Since each interchange requires three element assignments, the
number of element assignments is between 0 and 3(n− 1).

Observation 1.3 The number of element comparisons performed by Algo-
rithm selectionsort is n(n − 1)/2. The number of element assignments
is between 0 and 3(n− 1).

1.6 Insertion Sort

As stated in Observation 1.3, the number of comparisons performed by
Algorithm selectionsort is exactly n(n− 1)/2 regardless of how the ele-
ments of the input array are ordered. Another sorting method in which the
number of comparisons depends on the order of the input elements is the
so-called insertionsort. This algorithm, which is shown below, works as
follows. We begin with the subarray of size 1, A[1], which is already sorted.
Next, A[2] is inserted before or after A[1] depending on whether it is smaller
than A[1] or not. Continuing this way, in the ith iteration, A[i] is inserted
in its proper position in the sorted subarray A[1..i − 1]. This is done by
scanning the elements from index i−1 down to 1, each time comparing A[i]
with the element at the current position. In each iteration of the scan, an
element is shifted one position up to a higher index. This process of scan-
ning, performing the comparison, and shifting continues until an element
less than or equal to A[i] is found, or when all the sorted sequence so far
is exhausted. At this point, A[i] is inserted in its proper position, and the
process of inserting element A[i] in its proper place is complete.
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Algorithm 1.5 insertionsort
Input: An array A[1..n] of n elements.

Output: A[1..n] sorted in nondecreasing order.

1. for i← 2 to n
2. x←A[i]
3. j← i− 1
4. while (j > 0) and (A[j] > x)
5. A[j + 1]← A[j]
6. j← j − 1
7. end while
8. A[j + 1]← x
9. end for

Unlike Algorithm selectionsort, the number of element comparisons
done by Algorithm insertionsort depends on the order of the input ele-
ments. It is easy to see that the number of element comparisons is mini-
mum when the array is already sorted in nondecreasing order. In this case,
the number of element comparisons is exactly n− 1, as each element A[i],
2 ≤ i ≤ n, is compared with A[i − 1] only. On the other hand, the maxi-
mum number of element comparisons occurs if the array is already sorted
in decreasing order and all elements are distinct. In this case, the number
of element comparisons is

n∑
i=2

i− 1 =
n−1∑
i=1

i =
n(n− 1)

2
,

as each element A[i], 2 ≤ i ≤ n, is compared with each entry in the subarray
A[1..i−1]. This number coincides with that of Algorithm selectionsort.

As to the number of element assignments, notice that there is an element
assignment after each element comparison in the while loop. Moreover,
there are n− 1 element assignments of A[i] to x in Step 2 of the algorithm.
It follows that the number of element assignments is equal to the number
of element comparisons plus n− 1.

Observation 1.4 The number of element comparisons performed by Algo-
rithm insertionsort is between n−1 and n(n−1)/2. The number of ele-
ment assignments is equal to the number of element comparisons plus n−1.
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Notice the correlation of element comparisons and assignments in Algo-
rithm insertionsort. This is in contrast to the independence of the num-
ber of element comparisons in Algorithm selectionsort related to data
arrangement.

1.7 Bottom-up Merge Sorting

The two sorting methods discussed thus far are both inefficient in the sense
that the number of operations required to sort n elements is proportional
to n2. In this section, we describe an efficient sorting algorithm that per-
forms much fewer element comparisons. Suppose we have the following
array of eight numbers that we wish to sort:

9 4 5 2 1 7 4 6 .

Consider the following method for sorting these numbers (see Fig. 1.3).
First, we divide the input elements into four pairs and merge each pair

into one 2-element sorted sequence. Next, we merge each two consecutive
2-element sequences into one sorted sequence of size four. Finally, we merge
the two resulting sequences into the final sorted sequence as shown in the
figure.

In general, let A be an array of n elements that is to be sorted. We first
merge �n/2� consecutive pairs of elements to yield �n/2� sorted sequences
of size 2. If there is one remaining element, then it is passed on to the next
iteration. Next, we merge �n/4� pairs of consecutive 2-element sequences
to yield �n/4� sorted sequences of size 4. If there are one or two remaining

41 6 974 52

4 952 1 64

52 1 644 9 7

7

6471259 4

Fig. 1.3. Example of bottom-up merge sorting.
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elements, then they are passed on to the next iteration. If there are three
elements left, then two (sorted) elements are merged with one element to
form a 3-element sorted sequence. Continuing this way, in the jth iteration,
we merge �n/2j� pairs of sorted sequences of size 2j−1 to yield �n/2j� sorted
sequences of size 2j . If there are k remaining elements, where 1 ≤ k ≤ 2j−1,
then they are passed on to the next iteration. If there are k remaining
elements, where 2j−1 < k < 2j, then these are merged to form a sorted
sequence of size k.

Algorithm bottomupsort implements this idea. The algorithm main-
tains the variable s which is the size of sequences to be merged. Initially, s

is set to 1 and is doubled in each iteration of the outer while loop. i + 1,
i + s, and i + t define the boundaries of the two sequences to be merged.
Step 8 is needed in the case when n is not a multiple of t. In this case, if the
number of remaining elements, which is n − i, is greater than s, then one
more merge is applied on a sequence of size s and the remaining elements.

Example 1.3 Figure 1.4 shows an example of the working of the algo-
rithm when n is not a power of 2. The behavior of the algorithm can be
described as follows.

(1) In the first iteration, s = 1 and t = 2. Five pairs of 1-element sequences
are merged to produce five 2-element sorted sequences. After the end
of the inner while loop, i + s = 10 + 1 �< n = 11, and hence no more
merging takes place.

6 1095 3 4 8

95 36 1 11

11

84113596 10 1 2

84 1 2

7

7

1 2 7

41 6 8732 5 9 10 11

1 2 763 4 9 11105 8

0

Fig. 1.4. Example of bottom-up merge sorting when n is not a power of 2.
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Algorithm 1.6 bottomupsort
Input: An array A[1..n] of n elements.

Output: A[1..n] sorted in nondecreasing order.

1. t← 1
2. while t < n
3. s← t; t← 2s; i← 0
4. while i + t ≤ n
5. merge(A, i + 1, i + s, i + t)
6. i← i + t
7. end while
8. if i + s < n then merge(A, i + 1, i + s, n)
9. end while

(2) In the second iteration, s = 2 and t = 4. Two pairs of 2-element
sequences are merged to produce two 4-element sorted sequences. After
the end of the inner while loop, i + s = 8 + 2 < n = 11, and hence
one sequence of size s = 2 is merged with the one remaining element to
produce a 3-element sorted sequence.

(3) In the third iteration, s = 4 and t = 8. One pair of 4-element sequences
are merged to produce one 8-element sorted sequence. After the end
of the inner while loop, i + s = 8 + 4 �< n = 11 and hence no more
merging takes place.

(4) In the fourth iteration, s = 8 and t = 16. Since i+ t = 0+16 �≤ n = 11,
the inner while loop is not executed. Since i + s = 0 + 8 < n = 11,
the condition of the if statement is satisfied, and hence one merge of 8-
element and 3-element sorted sequences takes place to produce a sorted
sequence of size 11.

(5) Since now t = 16 > n, the condition of the outer while loop is not
satisfied, and consequently the algorithm terminates.

1.7.1 Analysis of bottom-up merge sorting

Now, we compute the number of element comparisons performed by the
algorithm for the special case when n is a power of 2. In this case, the outer
while loop is executed k = log n times, once for each level in the sorting
tree except the topmost level (see Fig. 1.3). Observe that since n is a power
of 2, i = n after the execution of the inner while loop, and hence Algorithm
merge will never be invoked in Step 8. In the first iteration, there are n/2
comparisons. In the second iteration, n/2 sorted sequences of two elements
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each are merged in pairs. The number of comparisons needed to merge each
pair is either 2 or 3. In the third iteration, n/4 sorted sequences of four
elements each are merged in pairs. The number of comparisons needed to
merge each pair is between 4 and 7. In general, in the jth iteration of the
while loop, there are n/2j merge operations on two subarrays of size 2j−1

and it follows, by Observation 1.1, that the number of comparisons needed
in the jth iteration is between (n/2j)2j−1 and (n/2j)(2j − 1). Thus, if we
let k = log n, then the number of element comparisons is at least

k∑
j=1

( n

2j

)
2j−1 =

k∑
j=1

n

2
=

kn

2
=

n log n

2
,

and is at most
k∑

j=1

n

2j

(
2j − 1

)
=

k∑
j=1

(
n− n

2j

)

= kn− n

k∑
j=1

1
2j

= kn− n

(
1− 1

2k

)
(Eq. (A.11))

= kn− n

(
1− 1

n

)
= n logn− n + 1.

As to the number of element assignments, there are, by Observation 1.2
applied to each merge operation, 2n element assignments in each iteration
of the outer while loop for a total of 2n logn. As a result, we have the
following observation.

Observation 1.5 The total number of element comparisons performed by
Algorithm bottomupsort to sort an array of n elements, where n is a
power of 2, is between (n log n)/2 and n log n−n + 1. The total number of
element assignments done by the algorithm is exactly 2n logn.

1.8 Time Complexity

In this section, we study an essential component of algorithmic analysis,
namely determining the running time of an algorithm. This theme belongs
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to an important area in the theory of computation, namely computational
complexity, which evolved when the need for efficient algorithms arose in
the 1960s and flourished in the 1970s and 1980s. The main objects of study
in the field of computational complexity include the time and space needed
by an algorithm in order to deliver its output when presented with legal
input. We start this section with an example whose sole purpose is to reveal
the importance of analyzing the running time of an algorithm.

Example 1.4 We have shown before that the maximum number of ele-
ment comparisons performed by Algorithm bottomupsort when n is a
power of 2 is n logn− n + 1, and the number of element comparisons per-
formed by Algorithm selectionsort is n(n − 1)/2. The elements may
be integers, real numbers, strings of characters, etc. For concreteness, let
us assume that each element comparison takes 10−6 seconds on some com-
puting machine. Suppose we want to sort a small number of elements, say
128. Then the time taken for comparing elements using Algorithm bot-

tomupsort is at most 10−6(128 × 7 − 128 + 1) = 0.0008 seconds. Using
Algorithm selectionsort, the time becomes 10−6(128 × 127)/2 = 0.008
seconds. In other words, Algorithm bottomupsort uses one-tenth of
the time taken for comparison using Algorithm selectionsort. This,
of course, is not noticeable, especially to a novice programmer whose
main concern is to come up with a program that does the job. How-
ever, if we consider a larger number, say n = 220 = 1, 048, 576 which
is typical of many real-world problems, we find the following: The time
taken for comparing elements using Algorithm bottomupsort is at most
10−6(220 × 20 − 220 + 1) = 20 seconds, whereas using Algorithm selec-

tionsort, the time becomes 10−6(220 × (220 − 1))/2 = 6.4 days!

The calculations in the above example reveal the fact that time is
undoubtedly an extremely precious resource to be investigated in the anal-
ysis of algorithms.

1.8.1 Order of growth

Obviously, it is meaningless to say that an algorithm A, when presented
with input x, runs in time y seconds. This is because the actual time is not
only a function of the algorithm used, but it is also a function of numerous
factors, e.g., how and on what machine the algorithm is implemented and
in what language or even what compiler or programmer’s skills, to mention
a few. Therefore, we should be content with only an approximation of the
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exact time. But, first of all, when assessing an algorithm’s efficiency, do
we have to deal with exact or even approximate times? It turns out that
we really do not need even approximate times. This is supported by many
factors, some of which are the following. First, when analyzing the running
time of an algorithm, we usually compare its behavior with another algo-
rithm that solves the same problem, or even a different problem. Thus, our
estimates of times are relative as opposed to absolute. Second, it is desir-
able for an algorithm to be not only machine-independent, but also capable
of being expressed in any language, including human languages. Moreover,
it should be technology-independent, that is, we want our measure of the
running time of an algorithm to survive technological advances. Third, our
main concern is not in small input sizes; we are mostly concerned with the
behavior of the algorithm under investigation on large input instances.

In fact, counting the number of operations in some “reasonable” imple-
mentation of an algorithm is more than what is needed. As a consequence
of the third factor above, we can go a giant step further: A precise count
of the number of all operations is very cumbersome, if not impossible, and
since we are interested in the running time for large input sizes, we may
talk about the rate of growth or the order of growth of the running time.
For instance, if we can come up with some constant c > 0 such that the
running time of an algorithm A when presented with an input of size n is at
most cn2, c becomes inconsequential as n gets bigger and bigger. Further-
more, specifying this constant does not bring about extra insights when
comparing this function with another one of different order, say dn3 for
an algorithm B that solves the same problem. To see this, note that the
ratio between the two functions is dn/c and, consequently, the ratio d/c

has virtually no effect as n becomes very large. The same reasoning applies
to lower-order terms as in the function f(n) = n2 log n + 10n2 + n. Here,
we observe that the larger the value of n, the lesser the significance of the
contribution of the lower-order terms 10n2 and n. Therefore, we may say
about the running times of algorithms A and B above to be “of order”
or “in the order of ” n2 and n3, respectively. Similarly, we say that the
function f(n) above is of order n2 log n.

Once we dispose of lower-order terms and leading constants from a func-
tion that expresses the running time of an algorithm, we say that we are
measuring the asymptotic running time of the algorithm. Equivalently, in
the analysis of algorithms terminology, we may refer to this asymptotic
time using the more technical term “time complexity.”
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Now, suppose that we have two algorithms A1 and A2 of running times
in the order of n log n. Which one should we consider to be preferable
to the other? Technically, since they have the same time complexity, we
say that they have the same running time within a multiplicative constant ,
that is, the ratio between the two running times is constant. In some cases,
the constant may be important, and more a detailed analysis of the algo-
rithm or conducting some experiments on the behavior of the algorithm
may be helpful. Also, in this case, it may be necessary to investigate other
factors, e.g., space requirements and input distribution. The latter is help-
ful in analyzing the behavior of an algorithm on the average.

Figure 1.5 shows some functions that are widely used to represent
the running times of algorithms. Higher-order functions and exponen-
tial and hyperexponential functions are not shown in the figure. Expo-
nential and hyperexponential functions grow much faster than the ones
shown in the figure, even for moderate values of n. Functions of the form
logk n, cn, cn2, cn3 are called, respectively, logarithmic, linear , quadratic,
and cubic. Functions of the form nc or nc logk n, 0 < c < 1, are called
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Fig. 1.5. Growth of some typical functions that represent running times.
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Table 1.1. Running times for different sizes of input. “nsec” stands for nanoseconds,
“µ” is one microsecond, and “cent” stands for centuries.

n log n n n log n n2 n3 2n

8 3 nsec 0.01 µ 0.02 µ 0.06 µ 0.51 µ 0.26 µ
16 4 nsec 0.02 µ 0.06 µ 0.26 µ 4.10 µ 65.5 µ
32 5 nsec 0.03 µ 0.16 µ 1.02 µ 32.7 µ 4.29 sec
64 6 nsec 0.06 µ 0.38 µ 4.10 µ 262 µ 5.85 cent
128 0.01 µ 0.13 µ 0.90 µ 16.38 µ 0.01 sec 1020 cent
256 0.01 µ 0.26 µ 2.05 µ 65.54 µ 0.02 sec 1058 cent
512 0.01 µ 0.51 µ 4.61 µ 262.14 µ 0.13 sec 10135 cent
2048 0.01 µ 2.05 µ 22.53 µ 0.01 sec 1.07 sec 10598 cent
4096 0.01 µ 4.10 µ 49.15 µ 0.02 sec 8.40 sec 101214 cent
8192 0.01 µ 8.19 µ 106.50 µ 0.07 sec 1.15 min 102447 cent
16384 0.01 µ 16.38 µ 229.38 µ 0.27 sec 1.22 hrs 104913 cent
32768 0.02 µ 32.77 µ 491.52 µ 1.07 sec 9.77 hrs 109845 cent
65536 0.02 µ 65.54 µ 1048.6 µ 0.07 min 3.3 days 1019709 cent
131072 0.02 µ 131.07 µ 2228.2 µ 0.29 min 26 days 1039438 cent
262144 0.02 µ 262.14 µ 4718.6 µ 1.15 min 7 months 1078894 cent
524288 0.02 µ 524.29 µ 9961.5 µ 4.58 min 4.6 years 10157808 cent
1048576 0.02 µ 1048.60 µ 20972 µ 18.3 min 37 years 10315634 cent

sublinear . Functions that lie between linear and quadratic, e.g., n logn

and n1.5, are called subquadratic. Table 1.1 shows approximate running
times of algorithms with time complexities log n, n, n log n, n2, n3, and 2n,
for n = 23, 24, . . . , 220 ≈ one million, assuming that each operation takes
one nanosecond. Note the explosive running time (measured in centuries)
when it is of the order 2n.

Definition 1.1 We denote by an “elementary operation” any computa-
tional step whose cost is always upperbounded by a constant amount of
time regardless of the input data or the algorithm used.

Let us take, for instance, the operation of adding two integers. For the
running time of this operation to be constant, we stipulate that the size
of its operands be fixed no matter what algorithm is used. Furthermore,
as we are now dealing with the asymptotic running time, we can freely
choose any positive integer k to be the “word length” of our “model of
computation.” Incidentally, this is but one instance in which the beauty of
asymptotic notation shows off; the word length can be any fixed positive
integer. If we want to add arbitrarily large numbers, an algorithm whose
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running time is proportional to its input size can easily be written in terms
of the elementary operation of addition. Likewise, we can choose from a
large pool of operations and apply the fixed-size condition to obtain as many
number of elementary operations as we wish. The following operations on
fixed-size operands are examples of elementary operation.

• Arithmetic operations: addition, subtraction, multiplication, and
division.
• Comparisons and logical operations.
• Assignments, including assignments of pointers when, say, traversing a

list or a tree.

In order to formalize the notions of order of growth and time complexity,
special mathematical notation have been widely used. These notation make
it convenient to compare and analyze running times with minimal use of
mathematics and cumbersome calculations.

1.8.2 The O-notation

We have seen before (Observation 1.4) that the number of elementary oper-
ations performed by Algorithm insertionsort is at most cn2, where c is
some appropriately chosen positive constant. In this case, we say that the
running time of Algorithm insertionsort is O(n2) (read “Oh of n2” or
“big-Oh of n2”). This can be interpreted as follows. Whenever the num-
ber of elements to be sorted is equal to or exceeds some threshold n0, the
running time is at most cn2 for some constant c > 0. It should be empha-
sized, however, that this does not mean that the running time is always as
large as cn2, even for large input sizes. Thus, the O-notation provides an
upper bound on the running time; it may not be indicative of the actual
running time of an algorithm. For example, for any value of n, the running
time of Algorithm insertionsort is O(n) if the input is already sorted in
nondecreasing order.

In general, we say that the running time of an algorithm is O(g(n)),
whenever the input size is equal to or exceeds some threshold n0, and its
running time can be bounded above by some positive constant c times g(n).
The formal definition of this notation is as follows.†

†The more formal definition of this and subsequent notation is in terms of sets. We prefer
not to use their exact formal definitions, as it only complicates things unnecessarily.
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Definition 1.2 Let f(n) and g(n) be two functions from the set of natural
numbers to the set of nonnegative real numbers. f(n) is said to be O(g(n))
if there exists a natural number n0 and a constant c > 0 such that

∀ n ≥ n0, f(n) ≤ cg(n).

Consequently, if limn→∞ f(n)/g(n) exists, then

lim
n→∞

f(n)
g(n)

�=∞ implies f(n) = O(g(n)).

Informally, this definition says that f grows no faster than some constant
times g. The O-notation can also be used in equations as a simplification
tool. For instance, instead of writing

f(n) = 5n3 + 7n2 − 2n + 13,

we may write

f(n) = 5n3 + O(n2).

This is helpful if we are not interested in the details of the lower-order
terms.

1.8.3 The Ω-notation

While the O-notation gives an upper bound, the Ω-notation, on the other
hand, provides a lower bound within a constant factor of the running time.
We have seen before (Observation 1.4) that the number of elementary oper-
ations performed by Algorithm insertionsort is at least cn, where c is
some appropriately chosen positive constant. In this case, we say that the
running time of Algorithm insertionsort is Ω(n) (read “omega of n”, or
“big-omega of n”). This can be interpreted as follows. Whenever the num-
ber of elements to be sorted is equal to or exceeds some threshold n0, the
running time is at least cn for some constant c > 0. As in the O-notation,
this does not mean that the running time is always as small as cn. Thus,
the Ω-notation provides a lower bound on the running time; it may not be
indicative of the actual running time of an algorithm. For example, for any
value of n, the running time of Algorithm insertionsort is Ω(n2) if the
input consists of distinct elements that are sorted in decreasing order.
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In general, we say that an algorithm is Ω(g(n)), whenever the input
size is equal to or exceeds some threshold n0, and its running time can be
bounded below by some positive constant c times g(n).

This notation is widely used to express lower bounds on problems as
well. In other words, it is commonly used to state a lower bound for any
algorithm that solves a specific problem. For example, we say that the
problem of matrix multiplication is Ω(n2). This is a shorthand for saying
“any algorithm for multiplying two n × n matrices is Ω(n2).” Likewise,
we say that the problem of sorting by comparisons is Ω(n log n), to mean
that no comparison-based sorting algorithm with time complexity that is
asymptotically less than n log n can ever be devised. Chapter 11 is devoted
entirely to the study of lower bounds of problems. The formal definition of
this notation is symmetrical to that of the O-notation.

Definition 1.3 Let f(n) and g(n) be two functions from the set of natural
numbers to the set of nonnegative real numbers. f(n) is said to be Ω(g(n))
if there exists a natural number n0 and a constant c > 0 such that

∀ n ≥ n0, f(n) ≥ cg(n).

Consequently, if limn→∞ f(n)/g(n) exists, then

lim
n→∞

f(n)
g(n)

�= 0 implies f(n) = Ω(g(n)).

Informally, this definition says that f grows at least as fast as some
constant times g. It is clear from the definition that

f(n) is Ω(g(n)) if and only if g(n) is O(f(n)).

1.8.4 The Θ-notation

We have seen before that the number of element comparisons performed by
Algorithm selectionsort is always proportional to n2 (Observation 1.3).
Since each element comparison takes a constant amount of time, we say
that the running time of Algorithm selectionsort is Θ(n2) (read “theta
of n2”). This can be interpreted as follows. There exist two constants c1 and
c2 associated with the algorithm with the property that on any input of size
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n ≥ n0, the running time is between c1n
2 and c2n

2. These two constants
encapsulate many factors pertaining to the details of the implementation
of the algorithm as well as the machine and technology used. As stated
earlier, the details of the implementation include numerous factors such as
the programming language used and the programmer’s skill.

By Observation 1.5, the number of element comparisons performed by
Algorithm bottomupsort is proportional to n logn. In this case, we say
that the running time of Algorithm bottomupsort is Θ(n logn).

In general, we say that the running time of an algorithm is of order
Θ(g(n)), whenever the input size is equal to or exceeds some threshold n0,
and its running time can be bounded below by c1g(n) and above by c2g(n),
where 0 < c1 ≤ c2. Thus, this notation is used to express the exact order
of an algorithm, which implies an exact bound on its running time. The
formal definition of this notation is as follows.

Definition 1.4 Let f(n) and g(n) be two functions from the set of natural
numbers to the set of nonnegative real numbers. f(n) is said to be Θ(g(n))
if there exists a natural number n0 and two positive constants c1 and c2

such that

∀ n ≥ n0, c1g(n) ≤ f(n) ≤ c2g(n).

Consequently, if limn→∞ f(n)/g(n) exists, then

lim
n→∞

f(n)
g(n)

= c implies f(n) = Θ(g(n)),

where c is a constant strictly greater than 0.

An important consequence of the above definition is that

f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and f(n) = Ω(g(n)).

Unlike the previous two notation, the Θ-notation gives an exact picture
of the rate of growth of the running time of an algorithm. Thus, the running
time of some algorithms such as insertionsort cannot be expressed using
this notation, as the running time ranges from linear to quadratic. On
the other hand, the running time of some algorithms such as Algorithms
selectionsort and Algorithm bottomupsort can be described precisely
using this notation.
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It may be helpful to think of O as similar to ≤, Ω as similar to ≥,
and Θ as similar to =. We emphasized the phrase “similar to” since one
should be cautious not to confuse the exact relations with the asymptotic
notation. For example, 100n = O(n) although 100n ≥ n, n = Ω(100n)
although n ≤ 100n, and n = Θ(100n) although n �= 100n.

1.8.5 Examples

The above O, Ω, and Θ notation are not only used to describe the time
complexity of an algorithm, but they are also so general that they can
be applied to characterize the asymptotic behavior of any other resource
measure, say the amount of space used by an algorithm. Theoretically, they
may be used in conjunction with any abstract function. For this reason, we
will not attach any measures or meanings with the functions in the examples
that follow. We will assume in these examples that f(n) is a function from
the set of natural numbers to the set of nonnegative real numbers.

Example 1.5 Let f(n) = 10n2 + 20n. Then, f(n) = O(n2) since for
all n ≥ 1, f(n) ≤ 30n2. f(n) = Ω(n2) since for all n ≥ 1, f(n) ≥ n2.
Also, f(n) = Θ(n2) since for all n ≥ 1, n2 ≤ f(n) ≤ 30n2. We can also
establish these three relations using the limits as mentioned above. Since
limn→∞(10n2 + 20n)/n2 = 10, we see that f(n) = O(n2), f(n) = Ω(n2),
and f(n) = Θ(n2).

Example 1.6 In general, let f(n) = aknk + ak−1n
k−1 + · · ·+ a1n + a0.

Then, f(n) = Θ(nk). Recall that this implies that f(n) = O(nk) and
f(n) = Ω(nk).

Example 1.7 Since

lim
n→∞

log n2

n
= lim

n→∞
2 log n

n
= lim

n→∞
2

ln 2
ln n

n
=

2
ln 2

lim
n→∞

1
n

= 0

(differentiate both numerator and denominator), we see that f(n) = log n2

is O(n), but not Ω(n). It follows that log n2 is not Θ(n).

Example 1.8 Since log n2 = 2 log n, we immediately see that log n2 =
Θ(log n). In general, for any fixed constant k, log nk = Θ(log n).

Example 1.9 Any constant function is O(1), Ω(1), and Θ(1).

Example 1.10 It is easy to see that 2n is Θ(2n+1). This is an example
of many functions that satisfy f(n) = Θ(f(n + 1)).
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Example 1.11 In this example, we give a monotonic increasing function
f(n) such that f(n) is not Ω(f(n + 1)) and hence not Θ(f(n + 1)). Since
(n + 1)! = (n + 1)n! > n!, we have that n! = O((n + 1)!). Since

lim
n→∞

n!
(n + 1)!

= lim
n→∞

1
n + 1

= 0,

we conclude that n! is not Ω((n+1)!). It follows that n! is not Θ((n+1)!).

Example 1.12 Consider the series
∑n

j=1 log j. Clearly,

n∑
j=1

log j ≤
n∑

j=1

log n.

That is,
n∑

j=1

log j = O(n log n).

Also,

n∑
j=1

log j ≥
�n/2�∑
j=1

log
(n

2

)
= �n/2� log

(n

2

)
= �n/2� log n− �n/2�.

Thus,
n∑

j=1

log j = Ω(n log n).

It follows that
n∑

j=1

log j = Θ(n log n).

Example 1.13 We want to find an exact bound for the function f(n) =
log n!. First, note that log n! =

∑n
j=1 log j. We have shown in Example 1.12

that
∑n

j=1 log j = Θ(n log n). It follows that log n! = Θ(n log n).

Example 1.14 Since log n! = Θ(n logn) and log 2n = n, we deduce that
2n = O(n!) but n! is not O(2n). Similarly, since log 2n2

= n2 > n log n and
log n! = Θ(n logn) (Example 1.13), it follows that n! = O(2n2

), but 2n2
is

not O(n!).
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Example 1.15 It is easy to see that
n∑

j=1

n

j
≤

n∑
j=1

n

1
= O(n2).

However, this upper bound is not useful since it is not tight. We will show
in Example A.16 that

log(n + 1)
log e

≤
n∑

j=1

1
j
≤ log n

log e
+ 1.

That is
n∑

j=1

1
j

= O(log n) and
n∑

j=1

1
j

= Ω(log n).

It follows that
n∑

j=1

n

j
= n

n∑
j=1

1
j

= Θ(n logn).

Example 1.16 Consider the brute-force algorithm for primality test
given in Algorithm brute-force primalitytest.

Algorithm 1.7 brute-force primalitytest
Input: A positive integer n ≥ 2.

Output: true if n is prime and false otherwise.

1. s←�√n�
2. for j ← 2 to s
3. if j divides n then return false
4. end for
5. return true

We will assume here that
√

n can be computed in O(1) time. Clearly,
the algorithm is O(

√
n), since the number of iterations is exactly �√n�− 1

when the input is prime. Besides, the number of primes is infinite, which
means that the algorithm performs exactly �√n�−1 iterations for an infinite
number of values of n. It is also easy to see that for infinitely many values
of n, the algorithm performs only O(1) iterations (e.g., when n is even),
and hence the algorithm is Ω(1). Since the algorithm may take Ω(

√
n) time

on some inputs and O(1) time on some other inputs infinitely often, it is
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neither Θ(
√

n) nor Θ(1). It follows that the algorithm is not Θ(f(n)) for
any function f .

1.8.6 Complexity classes and the o-notation

Let R be the relation on the set of complexity functions defined by f R g if
and only if f(n) = Θ(g(n)). It is easy to see that R is reflexive, symmetric,
and transitive, i.e., an equivalence relation (see Sec. A.1.2.1). The equiv-
alence classes induced by this relation are called complexity classes. The
complexity class to which a complexity function g(n) belongs includes all
functions f(n) of order Θ(g(n)). For example, all polynomials of degree 2
belong to the same complexity class n2. To show that two functions belong
to different classes, it is useful to use the o-notation (read “little oh”) defined
as follows.

Definition 1.5 Let f(n) and g(n) be two functions from the set of natural
numbers to the set of nonnegative real numbers. f(n) is said to be o(g(n))
if for every constant c > 0 there exists a positive integer n0 such that
f(n) < cg(n) for all n ≥ n0. Consequently, if limn→∞ f(n)/g(n) exists, then

lim
n→∞

f(n)
g(n)

= 0 implies f(n) = o(g(n)).

Informally, this definition says that f(n) becomes insignificantly relative
to g(n) as n approaches infinity. It follows from the definition that

f(n) = o(g(n)) if and only if f(n) = O(g(n)), but g(n) �= O(f(n)).

For example, n log n is o(n2) which is equivalent to saying that n logn is
O(n2) but n2 is not O(n log n).

We also write f(n) ≺ g(n) to denote that f(n) is o(g(n)). Using this
notation, we can concisely express the following hierarchy of complexity
classes.

1 ≺ log log n ≺ log n ≺ √n ≺ n3/4 ≺ n ≺ n log n ≺ n2 ≺ 2n ≺ n! ≺ 2n2
.
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1.9 Space Complexity

We define the space used by an algorithm to be the number of memory cells
(or words) needed to carry out the computational steps required to solve
an instance of the problem excluding the space allocated to hold the input .
In other words, it is only the work space required by the algorithm. The
reason for not including the input size is basically to distinguish between
algorithms that use “less than” linear work space throughout their compu-
tation. All definitions of order of growth and asymptotic bounds pertaining
to time complexity carry over to space complexity. It is clear that the work
space cannot exceed the running time of an algorithm, as writing into each
memory cell requires at least a constant amount of time. Thus, if we let
T (n) and S(n) denote, respectively, the time and space complexities of an
algorithm, then S(n) = O(T (n)).

To appreciate the importance of space complexity, suppose we want to
sort n = 220 = 1, 048, 576 elements. If we use Algorithm selectionsort,
then we need no extra storage. On the other hand, if we use Algorithm
bottomupsort, then we need n = 1, 048, 576 extra memory cells as a
temporary storage for the input elements (see Example 1.19).

In the following examples, we will look at some of the algorithms we
have discussed so far and analyze their space requirements.

Example 1.17 In Algorithm linearsearch, only one memory cell is
used to hold the result of the search. If we add local variables, e.g., for
looping, we conclude that the amount of space needed is Θ(1). This is also
the case in Algorithms binarysearch, selectionsort, and insertion-

sort.

Example 1.18 In Algorithm merge for merging two sorted arrays, we
need an auxiliary amount of storage whose size is exactly that of the input,
namely n (recall that n is the size of the array A[p..r]). Consequently, its
space complexity is Θ(n).

Example 1.19 When attempting to compute an estimate of the space
required by Algorithm bottomupsort, one may find it to be complex at
first. Nevertheless, it is not difficult to see that the space needed is no more
than n, the size of the input array. This is because we can set aside an
array of size n, say B[1..n], to be used by Algorithm merge as an auxiliary
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storage for carrying out the merging process. It follows that the space
complexity of Algorithm bottomupsort is Θ(n).

Example 1.20 In this example, we will “devise” an algorithm that uses
Θ(log n) space. Let us modify the Algorithm binarysearch as follows.
After the search terminates, output a sorted list of all those entries of array
A that have been compared against x. This means that after we test x

against A[mid ] in each iteration, we must save A[mid ] using an auxiliary
array, say B, which can be sorted later. As the number of comparisons is
at most �log n� + 1, it is easy to see that the size of B should be at most
this amount, i.e., O(log n).

Example 1.21 An algorithm that outputs all permutations of a given n

characters needs only Θ(n) space. If we want to keep these permutations
so that they can be used in subsequent calculations, then we need at least
n× n! = Θ((n + 1)!) space.

Naturally, in many problems, there is a time–space tradeoff: The more
space we allocate for the algorithm, the faster it runs, and vice versa. This,
of course, is within limits: In most of the algorithms that we have discussed
so far, increasing the amount of space does not result in a noticeable speed-
up in the algorithm running time. However, it is almost always the case
that decreasing the amount of work space required by an algorithm results
in a degradation in the algorithm’s speed.

1.10 Optimal Algorithms

In Sec. 11.3.2, we will show that the running time of any algorithm that
sorts an array with n entries using element comparisons must be Ω(n log n)
in the worst case (see Sec. 1.12). This means that we cannot hope for
an algorithm that runs in time that is asymptotically less than n log n in
the worst case. For this reason, it is commonplace to call any algorithm
that sorts using element comparisons in time O(n log n) an optimal algo-
rithm for the problem of comparison-based sorting . By this definition, it
follows that Algorithm bottomupsort is optimal. In this case, we also
say that it is optimal within a multiplicative constant to indicate the pos-
sibility of the existence of another sorting algorithm whose running time is
a constant fraction of that of bottomupsort. In general, if we can prove
that any algorithm to solve problem Π must be Ω(f(n)), then we call any
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algorithm to solve problem Π in time O(f(n)) an optimal algorithm for
problem Π.

Incidentally, this definition, which is widely used in the literature, does
not take into account the space complexity. The reason is twofold. First,
as we indicated before, time is considered to be more precious than space
so long as the space used is within reasonable limits. Second, most of
the existing optimal algorithms compare to each other in terms of space
complexity in the order of O(n). For example, Algorithm bottomupsort,
which needs Θ(n) of space as auxiliary storage, is called optimal, although
there are other algorithms that sort in O(n log n) time and O(1) space. For
example, Algorithm heapsort, which will be introduced in Sec. 3.2.3, runs
in time O(n log n) using only O(1) amount of space.

1.11 How to Estimate the Running Time of an Algorithm

As we discussed before, a bound on the running time of an algorithm, be it
upper, lower, or exact, can be estimated to within a constant factor if we
restrict the operations used by the algorithm to those we referred to as ele-
mentary operations . Now it remains to show how to analyze the algorithm
in order to obtain the desired bound. Of course, we can get a precise bound
by summing up all elementary operations. This is undoubtedly ruled out,
as it is cumbersome and quite often impossible. There is, in general, no
mechanical procedure by the help of which one can obtain a “reasonable”
bound on the running time or space usage of the algorithm at hand. More-
over, this task is mostly left to intuition and, in many cases, to ingenuity
too. However, in many algorithms, there are some agreed upon techniques
that give a tight bound with straightforward analysis. In the following, we
discuss some of these techniques using simple examples.

1.11.1 Counting the number of iterations

It is quite often the case that the running time is proportional to the number
of passes through while loops and similar constructs. Thus, it follows that
counting the number of iterations is a good indicative of the running time
of an algorithm. This is the case with many algorithms including those for
searching, sorting, matrix multiplication, and so forth.

Counting the number of iterations can be achieved by looking for one
or more statements in the algorithm that get executed the most, and then
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estimating the number of times they get executed. Assuming that the cost
of executing such a statement once is constant, the estimate we compute
is asymptotically proportional to the overall cost of the algorithm and can
be expressed in terms of O() or Θ() notation. One way to achieve that is
to map the loop to a mathematical summation formula. Call the iterator
variable of a loop simple if it increases by one. A loop will be called simple if
its iterator variable is simple. In its simplest form, the simple for loop like

1. count← 0
2. for i← low to high
3. count← count + 1
4. end for

is mapped to the summation

count =
high∑

i=low

1.

Thus, a simple loop can be mapped to a mathematical summation formula
as follows:

• Use the iterator variable in the loop as the summation index.
• Use the starting value of the iterator as the lower limit and the last value

of the iterator as the upper limit of the summation formula.
• Each nested loop is mapped to a nested summation.

Example 1.22 Let n be a perfect square, i.e., an integer whose square
root is integer. Algorithm count1 computes for each perfect square j

between 1 and n the sum
∑j

i=1 i. (Obviously, this sum can be computed
more efficiently.)

We will assume that
√

n can be computed in Θ(1) time. It is obvious
that the cost of the algorithm is dominated by the number of times Line
5 is executed. Since we have two simple loops, we can immediately map
them to the double summation

∑k
j=1

∑j2

i=1 1 which is computed as follows:

k∑
j=1

j2∑
i=1

1 =
k∑

j=1

j2 =
k(k + 1)(2k + 1)

6
= Θ(k3) = Θ(n1.5).

It follows that the running time of the algorithm is Θ(n1.5).
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Algorithm 1.8 count1
Input: n = k2 for some integer k.

Output:
∑j

i=1
i for each perfect square j between 1 and n.

1. k←√n
2. for j ← 1 to k
3. sum[j]← 0
4. for i ← 1 to j2

5. sum[j]← sum[j] + i
6. end for
7. end for
8. return sum[1..k]

Example 1.23 Consider Algorithm count2, which consists of two
nested loops and a variable count that counts the number of iterations
performed by the algorithm on input n, which is a positive integer.

Algorithm 1.9 count2
Input: A positive integer n.

Output: count = number of times Step 5 is executed.

1. count← 0
2. for i← 1 to n
3. m← �n/i�
4. for j ← 1 to m
5. count← count + 1
6. end for
7. end for
8. return count

Again, we have two nested loops that are simple. Hence, the value of
count is

n∑
i=1

m∑
j=1

1 =
n∑

i=1

m =
n∑

i=1

⌊n

i

⌋
.

By the definition of the floor function, we know that
n

i
− 1 <

⌊n

i

⌋
≤ n

i
.

Hence,
n∑

i=1

(n

i
− 1
)

<

n∑
i=1

⌊n

i

⌋
≤

n∑
i=1

n

i
≈ n lnn.
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Therefore, we conclude that Step 5 is executed Θ(n log n) times. As the
running time is proportional to count, we conclude that it is Θ(n logn).

In the previous examples, the mapping was straightforward, as the loops
were simple. If at least one loop is not simple, then we need to “device”
a new iterator that is simple in order to include in the summation. This
variable is dependent on the original iterator, and hence we need to preserve
that dependency when evaluating the new summation.

Example 1.24 Consider Algorithm count3, which consists of two
nested loops and a variable count which counts the number of iterations
performed by the algorithm on input n = 2k, for some positive integer k.

Algorithm 1.10 count3
Input: n = 2k, for some positive integer k.

Output: count = number of times Step 5 is executed.

1. count← 0
2. i← 1
3. while i ≤ n
4. for j ← 1 to i
5. count← count + 1
6. end for
7. i← 2i
8. end while
9. return count

In this case, it is obvious that the for loop is simple, but the while loop
is not. The iterator of the while loop, i, is not simple, as it is doubled in
each iteration. The values that Iterator i assumes are

i = 1, 2, 4, . . . , n,

which can be rewritten as

i = 20, 21, 22, . . . , 2k = n.

Obviously, the exponent of 2 in the original iterator is a simple iterator
ranging between 0 and k. Hence, we choose a variable name that is not
used by the algorithm as an index in the summation formula. Let us choose
index r. Note the following relationship between the new iterator and the
original iterator.

i = 2r or r = log i.
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Hence, we can express the number of times Line 5 is executed as

k∑
r=0

i∑
j=1

1 =
k∑

r=0

i =
k∑

r=0

2r =
2k+1 − 1

2− 1
= 2log n+1 − 1 = 2n− 1 = Θ(n).

It follows that the running time is Θ(n).

Example 1.25 Consider Algorithm count4, which consists of two
nested loops and a variable count which counts the number of iterations
performed by the algorithm on input n = 2k, for some positive integer k.

Algorithm 1.11 count4
Input: n = 2k, for some positive integer k.

Output: count = number of times Step 4 is executed.

1. count← 0
2. while n ≥ 1
3. for j ← 1 to n
4. count← count + 1
5. end for
6. n← n/2
7. end while
8. return count

The for loop is simple, whereas the iterator of the while loop starts
with the value n and then decreases by half in each iteration until it reaches
1, inclusive. Let us assign an iterator variable, say i, to the while loop. In
this case, the values of i are

i = n,
n

2
,
n

4
, . . . ,

n
n
2

= 2, 1.

They can be rewritten as

i = 2k, 2k−1, 2k−2, . . . , 21, 20.

Similar to what we did in Example 1.24, we introduce the exponent variable
r where i = 2r and r = log i, and get the following value for count:

k∑
r=0

i∑
j=1

1.

The above summation is exactly the same as the one in Example 1.24. Since
the running time is proportional to count, we conclude that it is Θ(n).
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Example 1.26 Consider Algorithm count5, which consists of two
nested loops and a variable count which counts the number of iterations per-
formed by the while loop on input n that is of the form 22k

(k = log log n),
for some positive integer k. In this case, the for loop is simple, whereas

Algorithm 1.12 count5

Input: n = 22k

, for some positive integer k.

Output: Number of times Step 6 is executed.

1. count← 0
2. for i ← 1 to n
3. j← 2
4. while j ≤ n
5. j← j2

6. count← count + 1
7. end while
8. end for
9. return count

the while loop is not.
So, let us look at the values that are assumed by j.

j = 2, 22, 222
= 24, 242

= 28, . . . , 22k

,

which can be rewritten as

j = 220
, 221

, 222
, 223

, . . . , 22k−1
, 22k

.

Let us introduce the index r such that j = 22r

, and equivalently, r =
log log j. The value of count becomes equal to

n∑
i=1

k∑
r=0

1 =
n∑

i=1

(k + 1) =
n∑

i=1

(log log n + 1)

= (log log n + 1)
n∑

i=1

1 = n(log log n + 1).

We conclude that the running time of the algorithm is Θ(n log log n).

1.11.2 Counting the frequency of basic operations

In some algorithms, it is cumbersome, or even impossible, to make use
of the previous method in order to come up with a tight estimate of its
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running time. Unfortunately, at this point we have not covered good exam-
ples of such algorithms. Good examples that will be covered in subsequent
chapters include the single-source shortest path problem, Prim’s algorithm
for finding minimum spanning trees, depth-first search, computing convex
hulls, and others. However, Algorithm merge will serve as a reasonable
candidate. Recall that the function of Algorithm merge is to merge two
sorted arrays into one sorted array. In this algorithm, if we try to apply the
previous method, the analysis becomes lengthy and awkward. Now, con-
sider the following argument which we have alluded to in Sec. 1.4. Just
prior to Step 16 of the algorithm is executed, array B holds the final
sorted list. Thus, for each element x ∈ A, the algorithm executes one
element assignment operation that moves x from A to B. Similarly, in
Step 16, the algorithm executes n element assignment operations in order
to copy B back into A. This implies that the algorithm executes exactly
2n element assignments (Observation 1.2). On the other hand, there is
no other operation that is executed more than 2n times. For example, at
most one element comparison is needed to move each element from A to B

(Observation 1.1).
In general, when analyzing the running time of an algorithm, we may

be able to single out one elementary operation with the property that its
frequency is at least as large as any other operation. Let us call such an
operation a basic operation. We can relax this definition to include any
operation whose frequency is proportional to the running time.

Definition 1.6 An elementary operation in an algorithm is called a basic
operation if it is of highest frequency to within a constant factor among all
other elementary operations.

Hence, according to this definition, the operation of element assignment
is a basic operation in Algorithm merge and thus is indicative of its running
time. By Observation 1.2, the number of element assignments needed to
merge two arrays into one array of size n is exactly 2n. Consequently, its
running time is Θ(n). Note that the operation of element comparison is in
general not a basic operation in Algorithm merge, as there may be only
one element comparison throughout the execution of the algorithm. If,
however, the algorithm is to merge two arrays of approximately the same
size (e.g., �(n/2)� and �(n/2)�), then we may safely say that it is basic
for that special instance. This happens if, for example, the algorithm is
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invoked by Algorithm bottomupsort in which case the two subarrays to
be sorted are of approximately the same size.

In general, this method consists of identifying one basic operation and
utilizing one of the asymptotic notation to find out the order of execution
of this operation. This order will be the order of the running time of the
algorithm. This is indeed the method of choice for a large class of problems.
We list here some candidates of these basic operations:

• When analyzing searching and sorting algorithms, we may choose the
element comparison operation if it is an elementary operation.

• In matrix multiplication algorithms, we select the operation of scalar
multiplication.
• In traversing a linked list, we may select the “operation” of setting or

updating a pointer.
• In graph traversals, we may choose the “action” of visiting a node and

count the number of nodes visited.

Example 1.27 Using this method, we obtain an exact bound for Algo-
rithm bottomupsort as follows. First, note that the basic operations in
this algorithm are inherited from Algorithm merge, as the latter is called
by the former in each iteration of the while loop. By the above discus-
sion, we may safely choose the elementary operation of element comparison
as the basic operation. By Observation 1.5, the total number of element
comparisons required by the algorithm when n is a power of 2 is between
(n log n)/2 and n log n−n+1. This means that the number of element com-
parisons when n is a power of 2 is Ω(n log n) and O(n log n), i.e., Θ(n logn).
It can be shown that this holds even if n is not a power of 2. Since the
operation of element comparison used by the algorithm is of maximum fre-
quency to within a constant factor, we conclude that the running time of
the algorithm is proportional to the number of comparisons. It follows that
the algorithm runs in time Θ(n logn).

One should be careful, however, when choosing a basic operation, as
illustrated by the following example.

Example 1.28 Consider the following modification to Algorithm inser-

tionsort. When trying to insert an element of the array in its proper
position, we will not use linear search; instead, we will use a binary search
technique similar to Algorithm binarysearch. Algorithm binarysearch



January 14, 2016 14:21 Algorithms: Design Techniques and Analysis - 9in x 6in b2305-ch01 page 43

Basic Concepts in Algorithmic Analysis 43

can easily be modified so that it does not return 0 when x is not an entry
of array A; instead, it returns the position of x relative to other entries
of the sorted array A. For example, when Algorithm binarysearch is
called with A = 2 3 6 8 9 and x = 7, it returns 4. Incidentally,
this shows that using binary search is not confined to testing for the mem-
bership of an element x in an array A; in many algorithms, it is used to
find the position of an element x relative to other elements in a sorted
list. Let Algorithm modbinarysearch be some implementation of this
binary search technique. Thus, modbinarysearch({2, 3, 6, 8, 9}, 7) = 4.
The modified sorting algorithm is given in Algorithm modinsertionsort.

Algorithm 1.13 modinsertionsort
Input: An array A[1..n] of n elements.

Output: A[1..n] sorted in nondecreasing order.

1. for i← 2 to n
2. x←A[i]
3. k ←modbinarysearch (A[1..i− 1], x)
4. for j← i− 1 downto k
5. A[j + 1]← A[j]
6. end for
7. A[k]← x
8. end for

The total number of element comparisons are those performed by Algo-
rithm modbinarysearch. Since this algorithm is called n − 1 times and
since the maximum number of comparisons performed by the binary search
algorithm on an array of size i − 1 is �log(i− 1)� + 1 (Theorem 1.1), it
follows that the total number of comparisons done by Algorithm modin-

sertionsort is at most

n∑
i=2

(�log(i− 1)�+ 1) = n− 1 +
n−1∑
i=1

�log i� ≤ n− 1 +
n−1∑
i=1

log i = O(n log n).

The last equality follows from Example 1.12 and Eq. (A.18). One may be
tempted to conclude, based on the false assumption that the operation of
element comparison is basic, that the overall running time is O(n log n).
However, this is not the case, as the number of element assignments in
Algorithm modinsertionsort is exactly that in Algorithm insertion-

sort when the two algorithms are run on the same input. This has been
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shown to be O(n2) (Observation 1.4). We conclude that this algorithm
runs in time O(n2), and not O(n log n).

In some algorithms, all elementary operations are not basic. In these
algorithms, it may be the case that the frequency of two or more operations
combined together may turn out to be proportional to the running time of
the algorithm. In this case, we express the running time as a function of
the total number of times these operations are executed. For instance, if
we cannot bound the number of either insertions or deletions, but can come
up with a formula that bounds their total, then we may say something like:
There are at most n insertions and deletions. This method is widely used in
graph and network algorithms. Here we give a simple example that involves
only numbers and the two operations of addition and multiplication. There
are better examples that involve graphs and complex data structures.

Example 1.29 Suppose we are given an array A[1..n] of n integers and a
positive integer k, 1 ≤ k ≤ n, and asked to multiply the first k integers in A

and add the rest. An algorithm to do this is sketched below. Observe here
that there are no basic operations, since the running time is proportional
to the number of times both additions and multiplications are performed.
Thus, we conclude that there are n elementary operations: multiplications
and additions, which implies a bound of Θ(n). Note that in this example,
we could have counted the number of iterations to obtain a precise measure
of the running time as well. This is because in each iteration, the algorithm
takes a constant amount of time. The total number of iterations is k+(n−
k) = n.

1. prod← 1; sum← 0
2. for j← 1 to k
3. prod← prod×A[j]
4. end for
5. for j← k + 1 to n
6. sum← sum + A[j]
7. end for

1.11.3 Using recurrence relations

In recursive algorithms, a formula bounding the running time is usually
given in the form of a recurrence relation, that is, a function whose definition
contains the function itself, e.g., T (n) = 2T (n/2)+n. Finding the solution
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of a recurrence relation has been studied well to the extent that the solution
of a recurrence may be obtained mechanically (see Secs. 1.15 and A.8 for a
discussion on recurrence relations). It may be possible to derive a recurrence
that bounds the number of basic operations in a nonrecursive algorithm.
For example, in Algorithm binarysearch, if we let C(n) be the number
of comparisons performed on an instance of size n in the worst case, we
may express the number of comparisons done by the algorithm using the
recurrence

C(n) ≤
{

1 if n = 1,

C(�n/2�) + 1 if n ≥ 2.

The solution to this recurrence reduces to a summation as follows:

C(n) ≤ C(�n/2�) + 1

≤ C(��n/2�/2�) + 1 + 1

= C(�n/4�) + 1 + 1 (Eq. (A.3))

...

≤ C[1] + �log n�
= �log n�+ 1.

That is, C(n) ≤ �log n� + 1. It follows that C(n) = O(log n). Since the
operation of element comparison is a basic operation in Algorithm bina-

rysearch, we conclude that its time complexity is O(log n).

1.12 Worst-Case and Average-Case Analyses

Consider the problem of adding two n× n matrices A and B of integers.
Clearly, the running time expressed in the number of scalar additions of an
algorithm that computes A + B is the same for any two arbitrary n× n

matrices A and B. That is, the running time of the algorithm is insensitive
to the input values; it is dependent only on its size measured in the number
of entries. This is to be contrasted with an algorithm like insertionsort

whose running time is highly dependent on the input values as well. By
Observation 1.4, the number of element comparisons performed on an input
array of size n lies between n− 1 and n(n− 1)/2 inclusive. This indicates
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that the performance of the algorithm is not only a function of n, but also
a function of the original order of the input elements. The dependence
of the running time of an algorithm on the form of input data, not only
its number, is characteristic of many problems. For example, the process
of sorting is inherently dependent on the relative order of the data to be
sorted. This does not mean that all sorting algorithms are sensitive to
input data. For instance, the number of element comparisons performed
by Algorithm selectionsort on an array of size n is the same regardless
of the form or order of input values, as the number of comparisons done
by the algorithm is a function of n only. More precisely, the time taken
by a comparison-based algorithm to sort a set of n elements depends on
their relative order. For instance, the number of steps required to sort the
numbers 6, 3, 4, 5, 1, 7, 2 is the same as that for sorting the numbers 60, 30,
40, 50, 10, 70, 20. Obviously, it is impossible to come up with a function
that describes the time complexity of an algorithm based on both input size
and form; the latter, definitely, has to be suppressed.

Consider again Algorithm insertionsort. Let A[1..n] = {1, 2, . . . , n},
and consider all n! permutations of the elements in A. Each permuta-
tion corresponds to one possible input. The running time of the algorithm
presumably differs from one permutation to another. Consider three per-
mutations: a in which the elements in A are sorted in decreasing order, c

in which the elements in A are already sorted in increasing order, and b

in which the elements are ordered randomly (see Fig. 1.6). Thus, input
a is a representative of the worst case of all inputs of size n, input c is a
representative of the best case of all inputs of size n, and input b is between
the two. This gives rise to three methodologies for analyzing the running
time of an algorithm: worst-case analysis, average-case analysis, and best-
case analysis. The latter is not used in practice, as it does not give useful
information about the behavior of an algorithm, in general.

1.12.1 Worst-case analysis

In worst-case analysis of time complexity, we select the maximum cost
among all possible inputs of size n. As stated above, for any positive inte-
ger n, Algorithm insertionsort requires Ω(n2) to process some inputs of
size n (e.g., input a in Fig. 1.6). For this reason, we say that the running
time of this algorithm is Ω(n2) in the worst case. Since the running time of
the algorithm is O(n2), we also say that the running time of the algorithm is
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Fig. 1.6. Performance of Algorithm insertionsort: worst, average, and best cases.

O(n2) in the worst case. Consequently, we may use the stronger Θ-notation
and say that the running time of the algorithm is Θ(n2) in the worst case.
Clearly, use of Θ-notation is preferred, as it gives the exact behavior of the
algorithm in the worst case. In other words, stating that Algorithm inser-

tionsort has a running time of Θ(n2) in the worst case implies that it is
also Ω(n2) in the worst case, whereas stating that Algorithm insertion-

sort runs in O(n2) in the worst case does not. Note that for any value of
n, there are input instances on which the algorithm spends no more than
O(n) time (e.g., input c in Fig. 1.6).

It turns out that under the worst-case assumption, the notions of upper
and lower bounds in many algorithms coincide and, consequently, we may
say that an algorithm runs in time Θ(f(n)) in the worst case. As explained
above, this is stronger than stating that the algorithm is O(f(n)) in the
worst case. As another example, we have seen before that Algorithm lin-

earsearch is O(n) and Ω(1). In the worst case, this algorithm is both
O(n) and Ω(n), i.e., Θ(n).

One may be tempted, however, to conclude that in the worst case the
notions of upper and lower bounds always coincide. This in fact is not the
case. Consider, for example, an algorithm whose running time is known to
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be O(n2) in the worst case. However, it has not been proved that for all
values of n greater than some threshold n0, there exists an input of size n

on which the algorithm spends Ω(n2) time. In this case, we cannot claim
that the algorithm’s running time is Θ(n2) in the worst case, even if we
know that the algorithm takes Θ(n2) time for infinitely many values of n.
It follows that the algorithm’s running time is not Θ(n2) in the worst case.
This is the case in many graph and network algorithms for which only an
upper bound on the number of operations can be proved, and whether this
upper bound is achievable is not clear. The next example gives a concrete
instance of this case.

Example 1.30 Consider, for example, the procedure shown below whose
input is an element x and a sorted array A of n elements.

1. if n is odd then k← binarysearch(A, x)
2. else k← linearsearch(A, x)

This procedure searches for x in A using binary search if n is odd and
linear search if n is even. Obviously, the running time of this procedure
is O(n), since when n is even, the running time is that of Algorithm lin-

earsearch, which is O(n). However, the procedure is not Ω(n) in the
worst case because there does not exist a threshold n0 such that for all
n ≥ n0 there exists some input of size n that cause the algorithm to take at
least cn time for some constant c. We can only ascertain that the running
time is Ω(log n) in the worst case. Note that the running time being Ω(n)
for infinitely many values of n does not mean that the algorithm’s running
time is Ω(n) in the worst case. It follows that, in the worst case, this pro-
cedure is O(n) and Ω(log n), which implies that, in the worst case, it is not
Θ(f(n)) for any function f(n).

1.12.2 Average-case analysis

Another interpretation of an algorithm’s time complexity is that of the
average case. Here, the running time is taken to be the average time over
all inputs of size n (see Fig. 1.6). In this method, it is necessary to know
the probabilities of all input occurrences, i.e., it requires prior knowledge
of the input distribution. However, even after relaxing some constraints
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including the assumption of a convenient input distribution, e.g., uniform
distribution, the analysis is in many cases complex and lengthy.

Example 1.31 Consider Algorithm linearsearch. To simplify the
analysis, let us assume that all elements of A are distinct and that x is
in the array. Furthermore, and most importantly indeed, we will assume
that each element y in A is equally likely to be in any position in the array.
In other words, the probability that y = A[j] is 1/n, for all y ∈ A. The
number of comparisons performed by the algorithm on the average to find
the position of x is

T (n) =
n∑

j=1

j × 1
n

=
1
n

n∑
j=1

j =
1
n

n(n + 1)
2

=
n + 1

2
.

This shows that, on the average, the algorithm performs (n + 1)/2 element
comparisons in order to locate x. Hence, the time complexity of Algorithm
linearsearch is Θ(n) on the average.

Example 1.32 Consider computing the average number of comparisons
performed by Algorithm insertionsort. To simplify the analysis, let us
assume that all elements of A are distinct. Furthermore, we will assume
that all n! permutations of the input elements are equally likely. Now,
consider inserting element A[i] in its proper position in A[1..i]. If its proper
position is j, 1 ≤ j ≤ i, then the number of comparisons performed in
order to insert A[i] in its proper position is i − j if j = 1 and i − j + 1 if
2 ≤ j ≤ i. Since the probability that its proper position in A[1..i] is 1/i, the
average number of comparisons needed to insert A[i] in its proper position
in A[1..i] is

i− 1
i

+
i∑

j=2

i− j + 1
i

=
i− 1

i
+

i−1∑
j=1

j

i
= 1− 1

i
+

i− 1
2

=
i

2
− 1

i
+

1
2
.

Thus, the average number of comparisons performed by Algorithm inser-

tionsort is

n∑
i=2

(
i

2
− 1

i
+

1
2

)
=

n(n + 1)
4

− 1
2
−

n∑
i=2

1
i

+
n− 1

2
=

n2

4
+

3n

4
−

n∑
i=1

1
i
.
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Since

ln(n + 1) ≤
n∑

i=1

1
i
≤ ln n + 1 (Eq. (A.16)),

it follows that the average number of comparisons performed by Algorithm
insertionsort is approximately

n2

4
+

3n

4
− ln n = Θ(n2).

Thus, on the average, Algorithm insertionsort performs roughly half the
number of operations performed in the worst case (see Fig. 1.6).

1.13 Amortized Analysis

In many algorithms, we may be unable to express the time complexity in
terms of the Θ-notation to obtain an exact bound on the running time.
Therefore, we will be content with the O-notation, which is sometimes
pessimistic. If we use the O-notation to obtain an upper bound on the
running time, the algorithm may be much faster than our estimate even in
the worst case.

Consider an algorithm in which an operation is executed repeatedly with
the property that its running time fluctuates throughout the execution of
the algorithm. If this operation takes a large amount of time occasionally
and runs much faster most of the time, then this is an indication that
amortized analysis should be employed, assuming that an exact bound is
too hard, if not impossible.

In amortized analysis, we average out the time taken by the operation
throughout the execution of the algorithm and refer to this average as the
amortized running time of that operation. Amortized analysis guarantees
the average cost of the operation, and thus the algorithm, in the worst
case. This is to be contrasted with the average time analysis in which the
average is taken over all instances of the same size. Moreover, unlike the
average-case analysis, no assumptions about the probability distribution of
the input are needed.

Amortized time analysis is generally harder than worst-case analysis,
but this hardness pays off when we derive a lower time complexity. A good
example of this analysis will be presented in Sec. 3.3 when we study the
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union-find algorithms, which is responsible for maintaining a data structure
for disjoint sets. It will be shown that this algorithm runs in time that is
almost linear using amortized time analysis as opposed to a straightforward
bound of O(n log n). In this section, we present two simple examples that
convey the essence of amortization.

Example 1.33 Consider the following problem. We have a doubly linked
list (see Sec. 2.2) that initially consists of one node which contains the
integer 0. We have as input an array A[1..n] of n positive integers that are
to be processed in the following way. If the current integer x is odd, then
append x to the list. If it is even, then first append x and then remove all
odd elements before x in the list. A sketch of an algorithm for this problem
is shown below and is illustrated in Fig. 1.7 on the input

5 7 3 4 9 8 7 3 .

1. for j← 1 to n
2. x←A[j]
3. append x to the list
4. if x is even then
5. while pred(x) is odd
6. delete pred(x)
7. end while
8. end if
9. end for

First, 5, 7, and 3 are appended to the list. When 4 is processed, it is
inserted and then 5, 7, and 3 are deleted as shown in Fig. 1.7(f). Next, as
shown in Fig. 1.7(i), after 9 and 8 have been inserted, 9 is deleted. Finally,

(c)

(e)

(g)

(i)

(k)

(b) 0 5 0 5 7

0 5 7 3

40 9

4

0 4 8

37840
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Fig. 1.7. Illustration of amortized time analysis.
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the elements 7 and 3 are inserted but not deleted, as they do not precede
any integer that is even.

Now, let us analyze the running time of this algorithm. If the input data
contain no even integers, or if all the even integers are at the beginning,
then no elements are deleted, and hence each iteration of the for loop
takes constant time. On the other hand, if the input consists of n − 1
odd integers followed by one even integer, then the number of deletions
is exactly n − 1, i.e., the number of iterations of the while loop is n − 1.
This means that the while loop may cost Ω(n) time in some iterations. It
follows that each iteration of the for loop takes O(n) time, which results
in an overall running time of O(n2).

Using amortization, however, we obtain a time complexity of Θ(n) as
follows. The number of insertions is obviously n. As to the number of
deletions, we note that no element is deleted more than once and thus the
number of deletions is between 0 and n−1. It follows that the total number
of elementary operations of insertions and deletions altogether is between n

and 2n−1. This implies that the time complexity of the algorithm is indeed
Θ(n). It should be emphasized, however, that in this case we say that the
while loop takes constant amortized time in the worst case. That is, the
average time taken by the while loop is guaranteed to be O(1) regardless
of the input.

Example 1.34 Suppose we want to allocate storage for an unknown
number of elements x1, x2, . . . in a stream of input. One technique to handle
the allocation of memory is to first allocate an array A0 of reasonable size,
say m. When this array becomes full, then upon the arrival of the (m+1)th
element, a new array A1 of size 2m is allocated and all the elements stored
in A0 are moved from A0 to A1. Next, the (m + 1)th element is stored in
A1[m+1]. We keep doubling the size of the newly allocated array whenever
it becomes full and a new element is received, until all elements have been
stored.

Suppose, for simplicity, that we start with an array of size 1, that is, A0

consists of only one entry. First, upon arrival of x1, we store x1 in A0[1].
When x2 is received, we allocate a new array A1 of size 2, set A1[1] to A0[1]
and store x2 in A1[2]. Upon arrival of the third element x3, we allocate
a new array A2[1..4], move A1[1..2] to A2[1..2] and store x3 in A2[3]. The
next element, x4, will be stored directly in A2[4]. Now since A2 is full, when
x5 is received, we allocate a new array A3[1..8], move A2[1..4] to A3[1..4]
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and store x5 in A3[5]. Next, we store x6, x7, and x8 in the remaining free
positions of A3. We keep doubling the size of the newly allocated array
upon arrival of a new element whenever the current array becomes full and
move the contents of the current array to the newly allocated array.

We wish to count the number of element assignments. Suppose, for
simplicity, that the total number of elements received, which is n, is a
power of 2. Then the arrays that have been allocated are A0, A1, . . . , Ak,
where k = log n. Since x1 has been moved k times, x2 has been moved
k − 1 times, etc., we may conclude that each element in {x1, x2, . . . , xn}
has been moved O(k) = O(log n) times. This implies that the total number
of element assignments is O(n log n).

However, using amortized time analysis, we derive a much tighter bound
as follows. Observe that every entry in each newly allocated array has been
assigned to exactly once. Consequently, the total number of element assign-
ments is equal to the sum of sizes of all arrays that have been allocated,
which is equal to

k∑
j=0

2j = 2k+1 − 1 = 2n− 1 = Θ(n) (Eq. (A.10)).

Thus, using amortization, it follows that the time needed to store and move
each of the elements x1, x2, . . . , xn is Θ(1) amortized time.

1.14 Input Size and Problem Instance

A measure of the performance of an algorithm is usually a function of its
input: its size, order, distribution, etc. The most prominent of these, which
is of interest to us here, is the input size. Using Turing machines as the
model of computation, it is possible, and more convenient indeed, to mea-
sure the input to an algorithm in terms of the number of nonblank cells.
This, of course, is impractical, given that we wish to investigate real-world
problems that can be described in terms of numbers, vertices, line seg-
ments, and other varieties of objects. For this reason, the notion of input
size belongs to the practical part of algorithm analysis and its interpreta-
tion has become a matter of convention. When discussing a problem, as
opposed to an algorithm, we usually talk of a problem instance. Thus, a
problem instance translates to input in the context of an algorithm that
solves that problem. For example, we call an array A of n integers an
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instance of the problem of sorting numbers. At the same time, in the
context of discussing Algorithm insertionsort, we refer to this array as
an input to the algorithm.

The input size, as a quantity, is not a precise measure of the input, and
its interpretation is subject to the problem for which the algorithm is, or
is to be, designed. Some of the commonly used measures of input size are
the following:

• In sorting and searching problems, we use the number of entries in the
array or list as the input size.
• In graph algorithms, the input size usually refers to the number of vertices

or edges in the graph, or both.
• In computational geometry, the size of the input to an algorithm is usually

expressed in terms of the number of points, vertices, edges, line segments,
polygons, etc.
• In matrix operations, the input size is commonly taken to be the dimen-

sions of the input matrices.
• In number theory algorithms and cryptography, the number of bits in

the input is usually chosen to denote its length. The number of words
used to represent a single number may also be chosen as well, as each
word consists of a fixed number of bits.

These “heterogeneous” measures have brought about some inconsisten-
cies when comparing the amount of time or space required by two algo-
rithms. For example, an algorithm for adding two n × n matrices which
performs n2 additions sounds quadratic, whereas it is indeed linear in the
input size.

Consider the brute-force algorithm for primality testing given in Exam-
ple 1.16. Its time complexity was shown to be O(

√
n). Since this is a number

problem, the time complexity of the algorithm is measured in terms of the
number of bits in the binary representation of n. Since n can be repre-
sented using k = �log(n + 1)� bits, the time complexity can be rewritten
as O(

√
n) = O(2k/2). Consequently, Algorithm brute-force primali-

tytest is in fact an exponential algorithm.
Now we will compare two algorithms for computing the sum

∑n
j=1 j. In

the first algorithm, which we will call first, the input is an array A[1..n]
with A[j] = j, for each j, 1 ≤ j ≤ n. The input to the second algorithm,
call it second, is just the number n. These two algorithms are shown as
Algorithms first and Algorithm second.
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Algorithm 1.14 first
Input: A positive integer n and an array A[1..n] with A[j] = j, 1 ≤ j ≤ n.

Output:
∑n

j=1
A[j].

1. sum← 0
2. for j ← 1 to n
3. sum← sum + A[j]
4. end for
5. return sum

Algorithm 1.15 second
Input: A positive integer n.

Output:
∑n

j=1
j.

1. sum← 0
2. for j ← 1 to n
3. sum← sum + j
4. end for
5. return sum

Obviously, both algorithms run in time Θ(n). Clearly, the time com-
plexity of Algorithm first is Θ(n). Algorithm second is designed to solve
a number problem and, as we have stated before, its input size is measured
in terms of the number of bits in the binary representation of the inte-
ger n. Its input consists of k = �log (n + 1)� bits. It follows that the time
complexity of Algorithm second is Θ(n) = Θ(2k). In other words, it is
considered to be an exponential time algorithm. Notice that the number of
elementary operations performed by both algorithms is the same.

1.15 Divide-and-Conquer Recurrences

The main objective of this section is to study some of the techniques specific
to the solution of the most common divide-and-conquer recurrences that
arise in the analysis of divide-and-conquer algorithms in one variable (see
Chapter 5). These recurrences take the following form:

f(n) =

{
d if n ≤ n0,

a1f(n/c1) + a2f(n/c2) + · · ·+ apf(n/cp) + g(n) if n > n0,

where a1, a2, . . . , ap, c1, c2, . . . , cp, and n0 are nonnegative integers, d a non-
negative constant, p ≥ 1, and g(n) is a function from the set of nonnegative
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integers to the set of real numbers. We discuss here three of the most
common techniques of solving divide-and-conquer recurrences. For general
recurrences, see Appendix A (Sec. A.8).

1.15.1 Expanding the recurrence

Perhaps, the most natural approach to solve a recurrence is by expanding it
repeatedly in the obvious way. This method is so mechanical and intuitive
that it virtually does not need any explanation. However, one should keep
in mind that, in some cases, it is time-consuming and, being mechanical,
susceptible to calculation errors. This method is hard to apply on a recur-
rence in which the ratios in the definition of the function are not equal. An
example of this is given later when we study the substitution method in
Sec. 1.15.2.

Example 1.35 Consider the recurrence

f(n) =

{
d if n = 1,

2f(n/2) + bn logn if n ≥ 2,

where b and d are nonnegative constants and n is a power of 2. We proceed
to solve this recurrence as follows (here k = log n):

f(n) = 2f(n/2) + bn log n

= 2(2f(n/22) + b(n/2) log(n/2)) + bn logn

= 22f(n/22) + bn log(n/2) + bn log n

= 22(2f(n/23) + b(n/22) log(n/22)) + bn log(n/2) + bn logn

= 23f(n/23) + bn log(n/22) + bn log(n/2) + bn logn

...

= 2kf(n/2k) + bn(log(n/2k−1) + log(n/2k−2) + · · ·+ log(n/2k−k))

= dn + bn(log 21 + log 22 + · · ·+ log 2k)

= dn + bn

k∑
j=1

log 2j
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= dn + bn
k∑

j=1

j

= dn + bn
k(k + 1)

2

= dn +
bn log2 n

2
+

bn logn

2
.

Theorem 1.2 Let b and d be nonnegative constants, and let n be a power
of 2. Then, the solution to the recurrence

f(n) =

{
d if n = 1,

2f(n/2) + bn logn if n ≥ 2

is

f(n) = Θ(n log2 n).

Proof. The proof follows directly from Example 1.35. �

Lemma 1.1 Let a and c be nonnegative integers, b, d, and x nonnega-
tive constants, and let n = ck, for some nonnegative integer k. Then, the
solution to the recurrence

f(n) =

{
d if n = 1,

af(n/c) + bnx if n ≥ 2

is

f(n) = bnx logc n + dnx if a = cx,

f(n) =
(

d +
bcx

a− cx

)
nlogc a −

(
bcx

a− cx

)
nx if a �= cx.

Proof. We proceed to solve this recurrence by expansion as follows:

f(n) = af(n/c) + bnx

= a(af(n/c2) + b(n/c)x) + bnx

= a2f(n/c2) + (a/cx)bnx + bnx
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...

= akf(n/ck) + (a/cx)k−1bnx + · · ·+ (a/cx)bnx + bnx

= dalogc n + bnx
k−1∑
j=0

(a/cx)j

= dnlogc a + bnx
k−1∑
j=0

(a/cx)j .

The last equality follows from Eq. A.2. We have two cases:

(1) a = cx. In this case,

k−1∑
j=0

(a/cx)j = k = logc n.

Since logc a = logc cx = x,

f(n) = bnx logc n + dnlogc a = bnx logc n + dnx.

(2) a �= cx. In this case, by Eq. A.9,

bnx
k−1∑
j=0

(a/cx)j =
bnx(a/cx)k − bnx

(a/cx)− 1

=
bak − bnx

(a/cx)− 1

=
bcxak − bcxnx

a− cx

=
bcxalogc n − bcxnx

a− cx

=
bcxnlogc a − bcxnx

a− cx
.

Hence,

f(n) =
(

d +
bcx

a− cx

)
nlogc a −

(
bcx

a− cx

)
nx.

�
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Corollary 1.1 Let a and c be nonnegative integers, b, d, and x nonnega-
tive constants, and let n = ck, for some nonnegative integer k. Then, the
solution to the recurrence

f(n) =

{
d if n = 1,

af(n/c) + bnx if n ≥ 2

satisfies

f(n) = bnx logc n + dnx if a = cx,

f(n) ≤
(

bcx

cx − a

)
nx if a < cx,

f(n) ≤
(

d +
bcx

a− cx

)
nlogc a if a > cx.

Proof. If a < cx, then logc a < x, or nlogc a < nx. If a > cx, then
logc a > x, or nlogc a > nx. The rest of the proof follows immediately from
Lemma 1.1. �

Corollary 1.2 Let a and c be nonnegative integers, b and d nonnegative
constants, and let n = ck, for some nonnegative integer k. Then, the
solution to the recurrence

f(n) =

{
d if n = 1,

af(n/c) + bn if n ≥ 2

is

f(n) = bn logc n + dn if a = c,

f(n) =
(

d +
bc

a− c

)
nlogc a −

(
bc

a− c

)
n if a �= c.

Proof. Follows immediately from Lemma 1.1. �

Theorem 1.3 Let a and c be nonnegative integers, b, d, and x nonnega-
tive constants, and let n = ck, for some nonnegative integer k. Then, the
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solution to the recurrence

f(n) =

{
d if n = 1,

af(n/c) + bnx if n ≥ 2

is

f(n) =




Θ(nx) if a < cx,
Θ(nx log n) if a = cx,
Θ(nlogc a) if a > cx.

In particular, if x = 1, then

f(n) =




Θ(n) if a < c,
Θ(n log n) if a = c,
Θ(nlogc a) if a > c.

Proof. Follows immediately from Lemma 1.1 and Corollary 1.1. �

1.15.2 Substitution

This method is usually employed for proving upper and lower bounds. It
can also be used to prove exact solutions. In this method, we guess a
solution and try to prove it by appealing to mathematical induction. (See
Sec. A.2.5). Unlike what is commonly done in inductive proofs, here we first
proceed to prove the inductive step with one or more unknown constants,
and once the claim is established for f(n), where n is arbitrary, we try
to fine-tune the constant(s), if necessary, in order to make the solution
apply to the boundary condition(s) as well. The difficulty in this method
is in coming up with an intelligent guess that serves as a tight bound for
the given recurrence. In many instances, however, the given recurrence
resembles another one whose solution is known a priori . This helps in
finding a starting guess that is reasonably good. The following examples
illustrate this method.

Example 1.36 Consider the recurrence

f(n) =

{
d if n = 1,

f(�n/2�) + f(�n/2�) + bn if n ≥ 2,
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for some nonnegative constants b and d. When n is a power of 2, this
recurrence reduces to

f(n) = 2f(n/2) + bn,

whose solution is, by Corollary 1.2, bn logn + dn. Consequently, we will
make the guess that f(n) ≤ cbn logn + dn for some constant c > 0, whose
value will be determined later. Assume that the claim is true for �n/2� and
�n/2�, where n ≥ 2. Substituting for f(n) in the recurrence, we obtain

f(n) = f(�n/2�) + f(�n/2�) + bn

≤ cb�n/2� log �n/2�+ d�n/2�+ cb�n/2� log �n/2�+ d�n/2�+ bn

≤ cb�n/2� log �n/2�+ cb�n/2� log �n/2�+ dn + bn

= cbn log �n/2�+ dn + bn

≤ cbn log((n + 1)/2) + dn + bn

= cbn log(n + 1)− cbn + dn + bn.

In order for f(n) to be at most cbn logn + dn, we must have cbn log(n +
1)− cbn + bn ≤ cbn logn or c log(n + 1)− c + 1 ≤ c log n, which reduces to

c ≥ 1
1 + log n− log(n + 1)

=
1

1 + log n
n+1

.

When n ≥ 2,

1
1 + log n

n+1

≤ 1
1 + log 2

3

< 2.41,

and hence, we will set c = 2.41. When n = 1, we have 0 + d ≤ d. It follows
that

f(n) ≤ 2.41bn logn + dn for all n ≥ 1.

Example 1.37 In this example, we show that the recurrence f(n) defined
in Example 1.36 is at least cbn logn+dn. That is, we show that cbn logn+
dn is a lower bound for the function f(n), for some constant c > 0 that will
be determined later. Assume that the claim is true for �n/2� and �n/2�,
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where n ≥ 2. Substituting for f(n) in the recurrence, we obtain

f(n) = f(�n/2�) + f(�n/2�) + bn

≥ cb�n/2� log �n/2�+ d�n/2�+ cb�n/2� log �n/2�+ d�n/2�+ bn

≥ cb�n/2� log �n/2�+ d�n/2�+ cb�n/2� log �n/2�+ d�n/2�+ bn

= cbn log �n/2�+ dn + bn

≥ cbn log(n/4) + dn + bn

= cbnlog n− 2cbn + dn + bn

= cbnlog n + dn + (bn− 2cbn).

In order for f(n) to be at least cbn log n+dn, we must have bn−2cbn ≥ 0 or
c ≤ 1/2. Consequently, f(n) ≥ bn logn/2+dn. Since f(n) ≥ bn logn/2+dn

holds when n = 1, it follows that

f(n) ≥ bn log n

2
+ dn for all n ≥ 1.

Theorem 1.4 Let

f(n) =

{
d if n = 1,

f(�n/2�) + f(�n/2�) + bn if n ≥ 2,

for some nonnegative constants b and d. Then

f(n) = Θ(n log n).

Proof. The proof follows from Examples 1.36 and 1.37. �
Example 1.38 Consider the recurrence

f(n) =




0 if n = 0,

b if n = 1,

f(�c1n�) + f(�c2n�) + bn if n ≥ 2,

for some positive constants b, c1, and c2 such that c1 + c2 = 1. When
c1 = c2 = 1/2, and n is a power of 2, this recurrence reduces to

f(n) =

{
b if n = 1,

2f(n/2) + bn if n ≥ 2,
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whose solution is, by Corollary 1.2, bnlogn + bn. Consequently, we will
make the guess that f(n) ≤ cbn log n + bn for some constant c > 0, whose
value will be determined later. Assume that the claim is true for �c1n� and
�c2n�, where n ≥ 2. Substituting for f(n) in the recurrence, we obtain

f(n) = f(�c1n�) + f(�c2n�) + bn

≤ cb�c1n� log �c1n�+ b�c1n�+ cb�c2n� log �c2n�+ b�c2n�+ bn

≤ cbc1n log c1n + bc1n + cbc2n log c2n + bc2n + bn

= cbn log n + bn + cbn(c1 log c1 + c2 log c2) + bn

= cbn log n + bn + cben + bn,

where e = c1 log c1+c2 log c2 < 0. In order for f(n) to be at most cbn logn+
bn, we must have cben + bn ≤ 0, or ce ≤ −1, or c ≥ −1/e, a nonnegative
constant. Consequently, f(n) ≤ −bn logn/e + bn. Clearly, this inequality
holds for n = 1. It follows that

f(n) ≤ −bn logn

c1 log c1 + c2 log c2
+ bn for all n ≥ 1.

For example, if c1 = c2 = 1/2, c1 log c1 + c2 log c2 = −1, and hence f(n) ≤
bn log n + bn for all n ≥ 1. This conforms with Corollary 1.2 when n is a
power of 2.

Example 1.39 In this example, we solve the recurrence defined in Exam-
ple 1.38 when c1 + c2 < 1. When c1 = c2 = 1/4 and n is a power of 2, this
recurrence reduces to the recurrence

f(n) =

{
b if n = 1,

2f(n/4) + bn if n ≥ 2,

whose solution is, by Corollary 1.2, f(n) = 2bn − b
√

n. Consequently, we
will make the guess that f(n) ≤ cbn for some constant c > 0. That is, we
show that cbn is an upper bound for the function f(n) when c1 + c2 < 1,
for some constant c > 0 that will be determined later. Assume that the
claim is true for �c1n� and �c2n�, where n ≥ 2. Substituting for f(n) in
the recurrence, we obtain

f(n) = f(�c1n�) + f(�c2n�) + bn

≤ cb�c1n�+ cb�c2n�+ bn
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≤ cbc1n + cbc2n + bn

= c(c1 + c2)bn + bn.

In order for f(n) to be at most cbn, we must have c(c1 + c2)bn + bn ≤ cbn

or c(c1 + c2) + 1 ≤ c, that is, c(1 − c1 − c2) ≥ 1 or c ≥ 1/(1 − c1 − c2), a
nonnegative constant. Clearly, f(n) ≤ bn/(1− c1 − c2) holds for n = 0 and
n = 1. It follows that

f(n) ≤ bn

1− c1 − c2
for all n ≥ 0.

For example, if c1 = c2 = 1/4, then we havef(n) ≤ 2bn, and the exact
solution is, as stated above, f(n) = 2bn− b

√
n.

Theorem 1.5 Let b, c1, and c2 be nonnegative constants. Then, the solu-
tion to the recurrence

f(n) =




0 if n = 0,

b if n = 1,

f(�c1n�) + f(�c2n�) + bn if n ≥ 2

is

f(n) =

{
O(n log n) if c1 + c2 = 1,

Θ(n) if c1 + c2 < 1.

Proof. By Example 1.38, f(n) = O(n log n) if c1 + c2 = 1. If c1 + c2 < 1,
then by Example 1.39, f(n) = O(n). Since f(n) = Ω(n), it follows that
f(n) = Θ(n). �

1.15.3 Change of variables

In some recurrences, it is more convenient if we change the domain of the
function and define a new recurrence in the new domain whose solution
may be easier to obtain. In the following, we give two examples. The
second example shows that this method is sometimes helpful, as it reduces
the original recurrence to another much easier recurrence.
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Example 1.40 Consider the recurrence

f(n) =

{
d if n = 1,

2f(n/2) + bn logn if n ≥ 2,

which we have solved by expansion in Example 1.35. Here n is a power of 2,
so let k = log n and write n = 2k. Then, the recurrence can be rewritten as

f(2k) =

{
d if k = 0,

2f(2k−1) + bk2k if k ≥ 1.

Now let g(k) = f(2k). Then, we have

g(k) =

{
d if k = 0,

2g(k − 1) + bk2k if k ≥ 1.

This recurrence is of the form of Eq. (A.23). Hence, we follow the procedure
outlined in Sec. A.8.2 to solve this recurrence. Let

2kh(k) = g(k) with h(0) = g(0) = d.

Then,

2kh(k) = 2(2k−1h(k − 1)) + bk2k,

or

h(k) = h(k − 1) + bk.

The solution to this recurrence is

h(k) = h(0) +
k∑

j=1

bj = d +
bk(k + 1)

2
.

Consequently,

g(k) = 2kh(k) = d2k +
bk22k

2
+

bk2k

2
= dn +

bn log2 n

2
+

bn logn

2
,

which is the same solution obtained in Example 1.35.
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Example 1.41 Consider the recurrence

f(n) =




1 if n = 2,

1 if n = 4,

f(n/2) + f(n/4) if n > 4,

where n is assumed to be a power of 2. Let g(k) = f(2k), where k = log n.
Then, we have

g(k) =




1 if k = 1,

1 if k = 2,

g(k − 1) + g(k − 2) if k > 2.

g(k) is exactly the Fibonacci recurrence discussed in Example A.20, whose
solution is

g(k) =
1√
5

(
1 +
√

5
2

)k

− 1√
5

(
1−√5

2

)k

.

Consequently,

f(n) =
1√
5

(
1 +
√

5
2

)log n

− 1√
5

(
1−√5

2

)log n

.

If we let φ = (1 +
√

5)/2 = 1.61803, then

f(n) = Θ(φlog n) = Θ(nlog φ).Example 1.42 Let

f(n) =

{
d if n = 2,

2f(
√

n) + b logn if n > 2,

where n = 22k

, k ≥ 1. f(n) can be rewritten as

f(22k

) =

{
d if k = 0,

2f(22k−1
) + b2k if k > 0.

Let g(k) = f(22k

). Then,

g(k) =

{
d if k = 0,

2g(k − 1) + b2k if k > 0.
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This recurrence is of the form of Eq. (A.23). Hence, we follow the procedure
outlined in Sec. A.8.2 to solve this recurrence. If we let

2kh(k) = g(k) with h(0) = g(0) = d,

then we have

2kh(k) = 2(2k−1h(k − 1)) + b2k.

Dividing both sides by 2k yields

h(k) = h(0) +
k∑

j=1

b = d + bk.

Hence,

g(k) = 2kh(k) = d2k + bk2k.

Substituting n = 22k

, log n = 2k, and log log n = k yields

f(n) = d log n + b log n log log n.

1.16 Exercises

1.1. Let A[1..60] = 11, 12, . . . , 70. How many comparisons are performed by
Algorithm binarysearch when searching for the following values of x?
(a) 33. (b) 7. (c) 70. (d) 77.

1.2. Let A[1..2000] = 1, 2, . . . , 2000. How many comparisons are performed by
Algorithm binarysearch when searching for the following values of x?
(a) −3. (b) 1. (c) 1000. (d) 4000.

1.3. Draw the decision tree for the binary search algorithm with an input of
(a) 12 elements. (b) 17 elements. (c) 25 elements. (d) 35 elements.

1.4. Show that the height of the decision tree for binary search is �log n�.
1.5. Illustrate the operation of Algorithm selectionsort on the array

45 33 24 45 12 12 24 12 .

How many comparisons are performed by the algorithm?

1.6. Consider modifying Algorithm selectionsort as shown in Algorithm
modselectionsort.

(a) What is the minimum number of element assignments performed by
Algorithm modselectionsort? When is this minimum achieved?
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Algorithm 1.16 modselectionsort
Input: An array A[1..n] of n elements.

Output: A[1..n] sorted in nondecreasing order.

1. for i← 1 to n− 1
2. for j← i + 1 to n
3. if A[j] < A[i] then interchange A[i] and A[j]
4. end for
5. end for

(b) What is the maximum number of element assignments performed by
Algorithm modselectionsort? Note that each interchange is imple-
mented using three element assignments. When is this maximum
achieved?

1.7. Illustrate the operation of Algorithm insertionsort on the array

30 12 13 13 44 12 25 13 .

How many comparisons are performed by the algorithm?

1.8. How many comparisons are performed by Algorithm insertionsort when
presented with the input

4 3 12 5 6 7 2 9 ?

1.9. Prove Observation 1.4.

1.10. Which algorithm is more efficient: Algorithm insertionsort or Algorithm
selectionsort? What if the input array consists of very large records?
Explain.

1.11. Illustrate the operation of Algorithm bottomupsort on the array

A[1..16] = 11 12 1 5 15 3 4 10 7 2 16 9 8 14 13 6 .

How many comparisons are performed by the algorithm?

1.12. Illustrate the operation of Algorithm bottomupsort on the array

A[1..11] = 2 17 19 5 13 11 4 8 15 12 7 .

How many comparisons are performed by the algorithm?

1.13. Give an array A[1..8] of integers on which Algorithm bottomupsort per-
forms

(a) The minimum number of element comparisons.

(b) The maximum number of element comparisons.
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1.14. Fill in the blanks with either true or false:

f(n) g(n) f = O(g) f = Ω(g) f = Θ(g)

2n3 + 3n 100n2 + 2n + 100

50n + log n 10n + log log n
50n log n 10n log log n

log n log2 n

n! 5n

1.15. Express the following functions in terms of the Θ-notation.

(a) 2n + 3 log100 n.

(b) 7n3 + 1000n log n + 3n.

(c) 3n1.5 + (
√

n)3 log n.

(d) 2n + 100n + n!.

1.16. Express the following functions in terms of the Θ-notation.

(a) 18n3 + log n8.

(b) (n3 + n)/(n + 5).

(c) log2 n +
√

n + log log n.

(d) n!/2n + nn.

1.17. Consider the sorting algorithm shown below, which is called bubblesort.

Algorithm 1.17 bubblesort
Input: An array A[1..n] of n elements.

Output: A[1..n] sorted in nondecreasing order.

1. i← 1; sorted← false
2. while i ≤ n− 1 and not sorted
3. sorted← true
4. for j← n downto i + 1
5. if A[j] < A[j − 1] then
6. interchange A[j] and A[j − 1]
7. sorted← false
8. end if
9. end for

10. i← i + 1
11. end while

(a) What is the minimum number of element comparisons performed by
the algorithm? When is this minimum achieved?
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(b) What is the maximum number of element comparisons performed by
the algorithm? When is this maximum achieved?

(c) What is the minimum number of element assignments performed by
the algorithm? When is this minimum achieved?

(d) What is the maximum number of element assignments performed by
the algorithm? When is this maximum achieved?

(e) Express the running time of Algorithm bubblesort in terms of the O
and Ω notations.

(f) Can the running time of the algorithm be expressed in terms of the
Θ-notation? Explain.

1.18. Find two monotonically increasing functions f(n) and g(n) such that
f(n) �= O(g(n)) and g(n) �= O(f(n)).

1.19. Is x = O(x sin x)? Use the definition of the O-notation to prove your
answer.

1.20. Prove that
∑n

j=1
jk is O(nk+1) and Ω(nk+1), where k is a positive integer.

Conclude that it is Θ(nk+1).

1.21. Let f(n) = {1/n + 1/n2 + 1/n3 + · · ·}. Express f(n) in terms of the
Θ-notation. (Hint: Find a recursive definition of f(n)).

1.22. Show that n100 = O(2n), but 2n �= O(n100).

1.23. Show that 2n is not Θ(3n).

1.24. Is n! = Θ(nn)? Prove your answer.

1.25. Is 2n2
= Θ(2n3

)? Prove your answer.

1.26. Carefully explain the difference between O(1) and Θ(1).

1.27. Is the function �log n�! O(n), Ω(n), Θ(n)? Prove your answer.

1.28. Can we use the ≺ relation described in Sec. 1.8.6 to compare the order of
growth of n2 and 100n2? Explain.

1.29. Use the ≺ relation to order the following functions by growth rate:

n1/100,
√

n, log n100, n log n, 5, log log n, log2 n, (
√

n)n, (1/2)n, 2n2
, n!.

1.30. Consider the following problem. Given an array A[1..n] of integers, test
each element a in A to see whether it is even or odd. If a is even, then
leave it; otherwise multiply it by 2.

(a) Which one of the O and Θ notation is more appropriate to measure
the number of multiplications? Explain.

(b) Which one of the O and Θ notation is more appropriate to measure
the number of element tests? Explain.
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1.31. Give a more efficient algorithm than the one given in Example 1.22. What
is the time complexity of your algorithm?

1.32. Consider Algorithm count6 whose input is a positive integer n.

Algorithm 1.18 count6

1. comment: Exercise 1.32

2. count← 0
3. for i← 1 to �log n�
4. for j← i to i + 5
5. for k← 1 to i2

6. count← count + 1
7. end for
8. end for
9. end for

(a) How many times Step 6 is executed?

(b) Which one of the O and Θ notation is more appropriate to express the
time complexity of the algorithm? Explain.

(c) What is the time complexity of the algorithm?

1.33. Consider Algorithm count7 whose input is a positive integer n.

Algorithm 1.19 count7

1. comment: Exercise 1.33

2. count← 0
3. for i← 1 to n
4. j← �n/2�
5. while j ≥ 1
6. count← count + 1
7. if j is odd then j← 0 else j← j/2
8. end while
9. end for

(a) What is the maximum number of times Step 6 is executed when n is
a power of 2?

(b) What is the time complexity of the algorithm expressed in the
O-notation?

(c) What is the time complexity of the algorithm expressed in the
Ω-notation?

(d) Which one of the O and Θ notation is more appropriate to express the
time complexity of the algorithm? Explain briefly.
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1.34. Consider Algorithm count8 whose input is a positive integer n.

Algorithm 1.20 count8

1. comment: Exercise 1.34

2. count← 0
3. for i← 1 to n
4. j← �n/3�
5. while j ≥ 1
6. for k← 1 to i
7. count← count + 1
8. end for
9. if j is even then j← 0 else j←�j/3�

10. end while
11. end for

(a) What is the maximum number of times Step 7 is executed when n is
a power of 2?

(b) What is the maximum number of times Step 7 is executed when n is
a power of 3?

(c) What is the time complexity of the algorithm expressed in the
O-notation?

(d) What is the time complexity of the algorithm expressed in the
Ω-notation?

(e) Which one of the O and Θ notation is more appropriate to express the
time complexity of the algorithm? Explain briefly.

1.35. Write an algorithm to find the maximum and minimum of a sequence of n
integers stored in array A[1..n] such that its time complexity is

(a) O(n).

(b) Ω(n log n).

1.36. Let A[1..n] be an array of distinct integers, where n > 2. Give an O(1)
time algorithm to find an element in A that is neither the maximum nor
the minimum.

1.37. Consider the element uniqueness problem: Given a set of integers, deter-
mine whether two of them are equal. Give an efficient algorithm to solve
this problem. Assume that the integers are stored in array A[1..n]. What
is the time complexity of your algorithm?

1.38. Give an algorithm that evaluates an input polynomial

anxn + an−1x
n−1 + · · ·+ a1x + a0
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for a given value of x in time

(a) Ω(n2).

(b) O(n).

1.39. Let S be a set of n positive integers, where n is even. Give an efficient
algorithm to partition S into two subsets S1 and S2 of n/2 elements each
with the property that the difference between the sum of the elements in
S1 and the sum of the elements in S2 is maximum. What is the time
complexity of your algorithm?

1.40. Suppose we change the word “maximum” to “minimum” in Exercise 1.39.
Give an algorithm to solve the modified problem. Compare the time com-
plexity of your algorithm with that obtained in Exercise 1.39.

1.41. Let m and n be two positive integers. The greatest common divisor of m
and n, denoted by gcd(m, n), is the largest integer that divides both m
and n. For example gcd(12, 18) = 6. Consider Algorithm euclid shown
below, to compute gcd(m, n).

Algorithm 1.21 euclid
Input: Two positive integers m and n.

Output: gcd(m,n).

1. comment: Exercise 1.41

2. repeat
3. r← n mod m
4. n←m
5. m← r
6. until r = 0
7. return n

(a) Does it matter if in the first call gcd(m, n) it happens that n < m?
Explain.

(b) Prove the correctness of Algorithm euclid. (Hint: Make use of the
following theorem: If r divides both m and n, then r divides m− n).

(c) Show that the running time of Algorithm euclid is maximum if m
and n are two consecutive numbers in the Fibonacci sequence defined
by

f1 = f2 = 1; fn = fn−1 + fn−2 for n > 2.

(d) Analyze the running time of Algorithm euclid in terms of n, assuming
that n ≥ m.

(e) Can the time complexity of Algorithm euclid be expressed using the
Θ-notation? Explain.
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1.42. Find the time complexity of Algorithm euclid discussed in Exercise 1.41
measured in terms of the input size. Is it logarithmic, linear, exponential?
Explain.

1.43. Prove that for any constant c > 0, (log n)c = o(n).

1.44. Show that any exponential function grows faster than any polynomial func-
tion by proving that for any constants c and d greater than 1,

nc = o(dn).

1.45. Consider the following recurrence:

f(n) = 4f(n/2) + n for n ≥ 2; f(1) = 1,

where n is assumed to be a power of 2.

(a) Solve the recurrence by expansion.

(b) Solve the recurrence directly by applying Theorem 1.3.

1.46. Consider the following recurrence:

f(n) = 5f(n/3) + n for n ≥ 2; f(1) = 1,

where n is assumed to be a power of 3.

(a) Solve the recurrence by expansion.

(b) Solve the recurrence directly by applying Theorem 1.3.

1.47. Consider the following recurrence:

f(n) = 9f(n/3) + n2 for n ≥ 2; f(1) = 1,

where n is assumed to be a power of 3.

(a) Solve the recurrence by expansion.

(b) Solve the recurrence directly by applying Theorem 1.3.

1.48. Consider the following recurrence:

f(n) = 2f(n/4) +
√

n for n ≥ 4; f(n) = 1 if n < 4,

where n is assumed to be of the form 22k

, k ≥ 0.

(a) Solve the recurrence by expansion.

(b) Solve the recurrence directly by applying Theorem 1.3.
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1.49. Use the substitution method to find an upper bound for the recurrence

f(n) = f(�n/2�) + f(�3n/4�) for n ≥ 4; f(n) = 4 if n < 4.

Express the solution using the O-notation.

1.50. Use the substitution method to find an upper bound for the recurrence

f(n) = f(�n/4�) + f(�3n/4�) + n for n ≥ 4; f(n) = 4 if n < 4.

Express the solution using the O-notation.

1.51. Use the substitution method to find a lower bound for the recurrence in
Exercise 1.49. Express the solution using the Ω-notation.

1.52. Use the substitution method to find a lower bound for the recurrence in
Exercise 1.50. Express the solution using the Ω-notation.

1.53. Use the substitution method to solve the recurrence

f(n) = 2f(n/2) + n2 for n ≥ 2; f(1) = 1,

where n is assumed to be a power of 2. Express the solution using the
Θ-notation.

1.54. Let

f(n) = f(n/2) + n for n ≥ 2; f(1) = 1,

and

g(n) = 2g(n/2) + 1 for n ≥ 2; g(1) = 1,

where n is a power of 2. Is f(n) = g(n)? Prove your answer.

1.55. Use the change of variable method to solve the recurrence

f(n) = f(n/2) +
√

n for n ≥ 4; f(n) = 2 if n < 4,

where n is assumed to be of the form 22k
. Find the asymptotic behavior

of the function f(n).

1.56. Use the change of variable method to solve the recurrence

f(n) = 2f(
√

n) + n for n ≥ 4; f(n) = 1 if n < 4,

where n is assumed to be of the form 22k

. Find the asymptotic behavior
of the function f(n).
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1.57. Prove that the solution to the recurrence

f(n) = 2f(n/2) + g(n) for n ≥ 2; f(1) = 1

is f(n) = O(n) whenever g(n) = o(n). For example, f(n) = O(n) if
g(n) = n1−ε, 0 < ε < 1.

1.17 Bibliographic Notes

There are several books on the design and analysis of algorithms. These
include, in alphabetical order, Aho, Hopcroft, and Ullman (1974), Baase
(1988), Brassard and Bratley (1988), Brassard and Bratley (1996), Cormen,
Leiserson, Rivest and Stein (2009), Dromey (1982), Horowitz and Sahni
(1978), Hu (1982), Knuth (1968, 1969, 1973), Manber (1989), Mehlhorn
(1984a), Moret and Shapiro (1991), Purdom and Brown (1985), Reingold,
Nievergelt, and Deo (1977), Sedgewick (1988), and Wilf (1986). For a more
popular account of algorithms, see Knuth (1977), Lewis and Papadimitriou
(1978), and the two Turing Award Lectures of Karp (1986) and Tarjan
(1987). Some of the more practical aspects of algorithm design are discussed
in Bentley (1982a,b) and Gonnet (1984). Knuth (1973) discusses in detail
the sorting algorithms covered in this chapter. He gives step-counting anal-
yses. The asymptotic notation was used in mathematics before the emer-
gence of the field of algorithms. Knuth (1976) gives an account of its history.
This article discusses the Ω and Θ notation and their proper usage and is an
attempt to standardize these notation. Purdom and Brown (1985) present
a comprehensive treatment of advanced techniques for analyzing algorithms
with numerous examples. The main mathematical aspects of the analysis
of algorithms can be found in Greene and Knuth (1981). Weide (1977) pro-
vides a survey of both elementary and advanced analysis techniques. Hofri
(1987) discusses the average-case analysis of algorithms in detail.



January 14, 2016 14:21 Algorithms: Design Techniques and Analysis - 9in x 6in b2305-ch02 page 77

Chapter 2

Data Structures

2.1 Introduction

The choice of a suitable data structure can influence the design of an effi-
cient algorithm significantly. In this chapter, we briefly present some of the
elementary data structures. Our presentation here is not self-contained, and
many details have been omitted. More detailed treatment can be found in
many books on data structures.

2.2 Linked Lists

A linked list consists of a finite sequence of elements or nodes that contain
information plus (except possibly the last one) a link to another node. If
node x points to node y, then x is called the predecessor of y and y the
successor of x. There is a link to the first element called the head of the
list. If there is a link from the last element to the first, the list is called
circular. If in a linked list each node (except possibly the first one) points
also to its predecessor, then the list is called a doubly linked list. If the first
and last nodes of a doubly linked list are connected by a pair of links, then
we have a circular doubly linked list. A linked list and its variations are
diagrammed in Fig. 2.1.

The two primary operations on linked lists are insertion and deletion.
Unlike arrays, it costs only a constant amount of time to insert or delete
an element in a linked list. Imposing some restrictions on how a linked list
is accessed results in two fundamental data structures: stacks and queues.

77
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(a)

(b)

(c)

(d)

Fig. 2.1. Variations of linked lists: (a) Linked list. (b) Circular linked list. (c) Doubly
linked list. (d) Circular doubly linked list.

2.2.1 Stacks and queues

A stack is a linked list in which insertions and deletions are permitted only
at one end, called the top of the stack. It may as well be implemented
as an array. This data structure supports two basic operations: pushing
an element into the stack and popping an element off the stack. If S is
a stack, the operation pop(S) returns the top of the stack and removes it
permanently. If x is an element of the same type as the elements in S, then
push(S, x) adds x to S and updates the top of the stack so that it points
to x.

A queue is a list in which insertions are permitted only at one end of
the list called its rear, and all deletions are constrained to the other end
called the front of the queue. As in the case of stacks, a queue may also
be implemented as an array. The operations supported by queues are the
same as those for the stack except that a push operation adds an element
at the rear of the queue.

2.3 Graphs

A graph G = (V, E) consists of a set of vertices V = {v1, v2, . . . , vn} and
a set of edges E. G is either undirected or directed. If G is undirected,
then each edge in E is an unordered pair of vertices. If G is directed,
then each edge in E is an ordered pair of vertices. Figure 2.2 shows an
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db

ca

e

db

ca

e

Fig. 2.2. An undirected and directed graphs.

undirected graph (to the left) and a directed graph (to the right). For ease
of reference, we will call the undirected and directed graphs in this figure G

and D, respectively. Let (vi, vj) be an edge in E. If the graph is undirected,
then vi and vj are adjacent to each other. If the graph is directed, then
vj is adjacent to vi, but vi is not adjacent to vj unless (vj , vi) is an edge
in E. For example, both a and c are adjacent to one another in G, whereas
in D, c is adjacent to a but a is not adjacent to c. The degree of a vertex in
an undirected graph is the number of vertices adjacent to it. The indegree
and outdegree of a vertex vi in a directed graph are the number of edges
directed to vi and out of vi, respectively. For instance, the degree of e in
G is 4, the indegree of c in D is 2 and its outdegree is 1. A path in a
graph from vertex v1 to vertex vk is a sequence of vertices v1, v2, . . . , vk

such that (vi, vi+1), 1 ≤ i ≤ k − 1, is an edge in the graph. The length of
a path is the number of edges in the path. Thus, the length of the path
v1, v2, . . . , vk is k−1. The path is simple if all its vertices are distinct. The
path is a cycle if v1 = vk. An odd-length cycle is one in which the number
of edges is odd. An even-length cycle is defined similarly. For example,
a, b, e, a is an odd-length cycle of length 3 in both G and D. A graph
without cycles is called acyclic. A vertex v is said to be reachable from
vertex u if there is a path that starts at u and ends at v. An undirected
graph is connected if every vertex is reachable from every other vertex,
and disconnected otherwise. The connected components of a graph are the
maximal connected subgraphs of the graph. Thus, if the graph is connected,
then it consists of one connected component, the graph itself. Our example
graph G is connected. In the case of directed graphs, a subgraph is called
a strongly connected component if for every pair of vertices u and v in the
subgraph, v is reachable from u and u is reachable from v. In our directed
graph D, the subgraph consisting of the vertices {a, b, c, e} is a strongly
connected component.
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An undirected graph is said to be complete if there is an edge between
each pair of its vertices. A directed graph is said to be complete if there
is an edge from each vertex to all other vertices. Let G = (V, E) be a
complete graph with n vertices. If G is directed, then |E| = n(n− 1). If G

is undirected, then |E| = n(n− 1)/2. The complete undirected graph with
n vertices is denoted by Kn. An undirected graph G = (V, E) is said to be
bipartite if V can be partitioned into two disjoint subsets X and Y such
that each edge in E has one end in X and the other end in Y . Let m = |X |
and n = |Y |. If there is an edge between each vertex x ∈ X and each vertex
y ∈ Y , then it is called a complete bipartite graph, and is denoted by Km,n.

2.3.1 Representation of graphs

A graph G = (V, E) can be conveniently represented by a boolean matrix
M , called the adjacency matrix of G defined as M [i, j] = 1 if and only if
(vi, vj) is an edge in G. Another representation of a graph is the adjacency
list representation. In this scheme, the vertices adjacent to a vertex are
represented by a linked list. Thus, there are |V | such lists. Figure 2.3 shows
the adjacency list representations of an undirected and directed graphs.
Clearly, an adjacency matrix of a graph with n vertices has n2 entries.

1

1

2

3

4

5

2 4 5

1 3 5

2 4 5

3 5

1 2 3 4

1

2

3

4

5

4 5

1 3 5

4

3 4

1

5

2 3

41

5

2 3

4

Fig. 2.3. An example of adjacency list representation.
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In the case of adjacency lists, it costs Θ(m + n) space to represent a graph
with n vertices and m edges.

2.3.2 Planar graphs

A graph G = (V, E) is planar if it can be embedded in the plane with-
out edge crossings. Figure 2.4(a) shows an example of a planar graph.
This graph is planar because it can be embedded in the plane as shown in
Fig. 2.4(b).

The importance of planar graphs comes from the relationship between
their number of vertices, number of edges and number of regions. Let n, m

and r denote, respectively, the number of vertices, edges and regions in any
embedding of a planar graph. Then, these three parameters are related by
Euler’s formula

n−m + r = 2

or

m = n + r − 2.

The proof of this formula can be found in Example A.12 on page 499.
Moreover, there is a useful relationship between the number of vertices and
the number of edges in a planar graph, that is,

m ≤ 3n− 6 n ≥ 3.

The equality is attained if the graph is triangulated, i.e., each one of its
regions (including the unbounded region) is triangular. The graph shown
in Fig. 2.4(b) is triangulated and hence the relation m = 3n − 6 holds
for this graph. The above relationships imply that in any planar graph

(a) (b)

Fig. 2.4. An example of a planar graph.
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m = O(n). Thus, the amount of space needed to store a planar graph is
only Θ(n). This is to be contrasted with complete graphs, which require
an amount of space in the order of Θ(n2).

2.4 Trees

A free tree (or simply a tree) is a connected undirected graph that contains
no cycles. A forest is a vertex-disjoint collection of trees, i.e., they do not
have vertices in common.

Theorem 2.1 If T is a tree with n vertices, then

(a) Any two vertices of T are connected by a unique path.
(b) T has exactly n− 1 edges.
(c) The addition of one more edge to T creates a cycle.

Since the number of edges in a tree is n−1, when analyzing the time or
space complexity in the context of trees, the number of edges is insignificant.

2.5 Rooted Trees

A rooted tree T is a (free) tree with a distinguished vertex r called the root
of T . This imposes an implicit direction on the path from the root to every
other vertex. A vertex vi is the parent of vertex vj in T if vi is on the
path from the root to vj and is adjacent to vj. In this case, vj is a child
of vi. The children of a vertex are called siblings. A leaf of a rooted tree
is a vertex with no children; all other vertices are called internal vertices.
A vertex u on the path from the root to a vertex v is an ancestor of v.
If u �= v, then u is a proper ancestor of v. A vertex w on the path from
a vertex v to a leaf is a descendant of v. If w �= v, then w is a proper
descendant of v. The subtree rooted at a vertex v is the tree consisting of
v and its proper descendants. The depth of a vertex v in a rooted tree is
the length of the path from the root to v. Thus, the depth of the root is 0.
The height of a vertex v is defined as the length of the longest path from v

to a leaf. The height of a tree is the height of its root.

Example 2.1 Consider the rooted tree T shown in Fig. 2.5. Its root
is the vertex labeled a. b is the parent of e and f , which in turn are the
children of b. b, c and d are siblings. e, f, g and d are leaves; the others are
internal vertices. e is a (proper) descendant of both a and b, which in turn
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a

c db

e f g

Fig. 2.5. An example of a rooted tree.

are (proper) ancestors of e. The subtree rooted at b is the tree consisting
of b and its children. The depth of g is 2; its height is 0. Since the distance
from a to g is 2, and no other path from a to a leaf is longer than 2, the
height of a is 2. It follows that the height of T is the height of its root,
which is 2.

2.5.1 Tree traversals

There are several ways in which the vertices of a rooted tree can be sys-
tematically traversed or ordered. The three most important orderings are
preorder, inorder and postorder. Let T be a tree with root r and subtrees
T1, T2, . . . , Tn.

• In a preorder traversal of the vertices of T , we visit the root r followed by
visiting the vertices of T1 in preorder, then the vertices of T2 in preorder,
and so on up to the vertices of Tn in preorder.

• In an inorder traversal of the vertices of T , we visit the vertices of T1 in
inorder, then the root r, followed by the vertices of T2 in inorder, and so
on up to the vertices of Tn in inorder.

• In a postorder traversal of the vertices of T , we visit the vertices of T1

in postorder, then the vertices of T2 in postorder, and so on up to the
vertices of Tn in postorder, and finally we visit r.

2.6 Binary Trees

A binary tree is a finite set of vertices that is either empty or consists
of a root r and two disjoint binary trees called the left and right sub-
trees. The roots of these subtrees are called the left and right children
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u

v

u

v

(a) (b)

Fig. 2.6. Two different binary trees.

level  0

level  1

level  2

level  3

Fig. 2.7. A complete binary tree.

of r. Binary trees differ from rooted trees in two important ways. First, a
binary tree may be empty while a rooted tree cannot be empty. Second,
the distinction of left and right subtrees causes the two binary trees shown
in Fig. 2.6(a) and (b) to be different, and yet as rooted trees, they are
indistinguishable.

All other definitions of rooted trees carry over to binary trees. A binary
tree is said to be full if each internal vertex has exactly two children.
A binary tree is called complete if it is full and all its leaves have the
same depth, i.e., are on the same level. Figure 2.7 shows a complete binary
tree. The set of vertices in a binary tree is partitioned into levels, with each
level consisting of those vertices with the same depth (see Fig. 2.7).

Thus, level i consists of those vertices of depth i. We define a binary
tree to be almost-complete if it is complete except that possibly one or
more leaves that occupy the rightmost positions may be missing. Hence,
by definition, an almost-complete binary tree may be complete. Figure 2.8
shows an almost-complete binary tree. This tree is the same as the complete
binary tree shown in Fig. 2.7 with the three rightmost leaves removed.
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Fig. 2.8. An almost-complete binary tree.

A complete (or almost-complete) binary tree with n vertices can be
represented efficiently by an array A[1..n] that lists its vertices according
to the following simple relationship: The left and right children (if any) of
a vertex stored in A[j] are stored in A[2j] and A[2j + 1], respectively, and
the parent of a vertex stored in A[j] is stored in A[�j/2�].

2.6.1 Some quantitative aspects of binary trees

In the following observations, we list some useful relationships between the
levels, number of vertices and height of a binary tree.

Observation 2.1 In a binary tree, the number of vertices at level j is at
most 2j.

Observation 2.2 Let n be the number of vertices in a binary tree T of
height h. Then,

n ≤
h∑

j=0

2j = 2h+1 − 1.

The equality holds if T is complete. If T is almost-complete, then we have

2h ≤ n ≤ 2h+1 − 1.

Observation 2.3 The height of any binary tree with n vertices is at least
�log n� and at most n− 1.

Observation 2.4 The height of a complete or almost-complete binary tree
with n vertices is �log n�.
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Fig. 2.9. Two binary search trees representing the same set.

Observation 2.5 In a full binary tree, the number of leaves is equal to the
number of internal vertices plus one.

2.6.2 Binary search trees

A binary search tree is a binary tree in which the vertices are labeled with
elements from a linearly ordered set in such a way that all elements stored
in the left subtree of a vertex v are less than the element stored at vertex v,
and all elements stored in the right subtree of a vertex v are greater than
the element stored at vertex v. This condition, which is called the binary
search tree property, holds for every vertex of a binary search tree. The
representation of a set by a binary search tree is not unique; in the worst
case it may be a degenerate tree, i.e., a tree in which each internal vertex
has exactly one child. Figure 2.9 shows two binary search trees representing
the same set.

The operations supported by this data structure are insertion, deletion,
testing for membership and retrieving the minimum or maximum.

2.7 Exercises

2.1. Write an algorithm to delete an element x, if it exists, from a doubly-linked
list L. Assume that the variable head points to the first element in the list
and the functions pred(y) and next(y) return the predecessor and successor
of node y, respectively.

2.2. Give an algorithm to test whether a list has a repeated element.

2.3. Rewrite Algorithm insertionsort so that its input is a doubly linked list
of n elements instead of an array. Will the time complexity change? Is the
new algorithm more efficient?

2.4. A polynomial of the form p(x) = a1x
b1 + a2x

b2 + · · · + anxbn , where
b1 > b2 > · · · > bn ≥ 0, can be represented by a linked list in which each
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record has three fields for ai, bi and the link to the next record. Give an
algorithm to add two polynomials using this representation. What is the
running time of your algorithm?

2.5. Give the adjacency matrix and adjacency list representations of the graph
shown in Fig. 2.5.

2.6. Describe an algorithm to insert and delete edges in the adjacency list rep-
resentation for

(a) a directed graph.

(b) an undirected graph.

2.7. Let S1 be a stack containing n elements. Give an algorithm to sort the
elements in S1 so that the smallest element is on top of the stack after
sorting. Assume you are allowed to use another stack S2 as a temporary
storage. What is the time complexity of your algorithm?

2.8. What if you are allowed to use two stacks S2 and S3 as a temporary storage
in Exercise 2.7?

2.9. Let G be a directed graph with n vertices and m edges. When is it the
case that the adjacency matrix representation is more efficient that the
adjacency lists representation? Explain.

2.10. Prove that a graph is bipartite if and only if it has no odd-length cycles.

2.11. Draw the almost-complete binary tree with

(a) 10 nodes.

(b) 19 nodes.

2.12. Prove Observation 2.1.

2.13. Prove Observation 2.2.

2.14. Prove Observation 2.4.

2.15. Prove Observation 2.3.

2.16. Prove Observation 2.5.

2.17. Is a tree a bipartite graph? Prove your answer (see Exercise 2.10).

2.18. Let T be a nonempty binary search tree. Give an algorithm to

(a) return the minimum element stored in T .

(b) return the maximum element stored in T .

2.19. Let T be a nonempty binary search tree. Give an algorithm to list all the
elements in T in increasing order. What is the time complexity of your
algorithm?
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2.20. Let T be a nonempty binary search tree. Give an algorithm to delete
an element x from T , if it exists. What is the time complexity of your
algorithm?

2.21. Let T be binary search tree. Give an algorithm to insert an element x in
its proper position in T . What is the time complexity of your algorithm?

2.22. What is the time complexity of deletion and insertion in a binary search
tree? Explain.

2.23. When discussing the time complexity of an operation in a binary search
tree, which of the O and Θ notations is more appropriate? Explain.

2.8 Bibliographic Notes

This chapter outlines some of the basic data structures that are frequently
used in the design and analysis of algorithms. More detailed treatment can
be found in many books on data structures. These include, among others,
Aho, Hopcroft and Ullman (1983), Gonnet (1984), Knuth (1968), Knuth
(1973), Reingold and Hansen (1983), Standish (1980), Tarjan (1983) and
Wirth (1986). The definitions in this chapter conform with those in Tarjan
(1983). The adjacency lists data structure was suggested by Tarjan and is
described in Tarjan (1972) and Hopcroft and Tarjan (1973).
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Chapter 3

Heaps and the Disjoint Sets
Data Structures

3.1 Introduction

In this chapter, we investigate two major data structures that are more
sophisticated than those presented in Chapter 2. They are fundamental
in the design of efficient algorithms. Moreover, these data structures are
interesting in their own right.

3.2 Heaps

In many algorithms, there is the need for a data structure that supports
the two operations: Insert an element and find the element of maximum
(or minimum) value. A data structure that supports both these operations
is called a priority queue. If a regular queue is used, then finding the
largest (or smallest) element is expensive, as this requires searching the
entire queue. If a sorted array is used, then insertion is expensive, as it may
require shifting a large portion of the elements. An efficient implementation
of a priority queue is to use a simple data structure called a heap. Heaps are
classified as either maxheaps or minheaps. In this chapter, we will confine
our attention to maxheaps, as the structure and operations associated with
minheaps are similar.

Definition 3.1 A (binary) heap is an almost-complete binary tree (see
Sec. 2.6) with each node satisfying the heap property: If v and p(v) are a

89
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node and its parent, respectively, then the key of the item stored in p(v) is
not less than the key of the item stored in v.

A heap data structure supports the following operations:

• delete-max[H ]: Delete and return an item of maximum key from a
nonempty heap H .

• insert[H, x]: Insert item x into heap H .
• delete[H, i]: Delete the ith item from heap H .

Thus, the heap property implies that the keys of the elements along
every path from the root to a leaf are arranged in nonincreasing order. As
described in Sec. 2.6, a heap T (being an almost-complete binary tree) with
n nodes can be represented by an array H [1..n] in the following way:

• The root of T is stored in H [1].
• Suppose that a node x in T is stored in H [j]. If it has a left child, then

this child is stored in H [2j]. If it (also) has a right child, then this child
is stored in H [2j + 1].

• The parent of element H [j] that is not the root of the tree is stored in
H [�j/2�].

• The leaves of T are stored at H [�n/2�+ 1], H [�n/2�+ 2], . . . , H [n].

Note that if a node in a heap has a right child, then it must also have
a left child. This follows from the definition of an almost-complete binary
tree. Consequently, a heap can be viewed as a binary tree, while it is
in fact an array H [1..n] with the property that for any index j, 2 ≤ j ≤
n, key(H [�j/2�]) ≥ key(H [j]). Figure 3.1 shows an example of a heap
in both tree and array representations. To simplify this and subsequent
figures, we will treat the keys of the items stored in a heap as if they
themselves are the items. In Fig. 3.1, we note that if the tree nodes are
numbered from 1 to n in a top-down and left-to-right manner, then each
entry H [i] is represented in the corresponding tree by the node numbered i.
This numbering is indicated in the figure by the labels next to the tree
nodes. Thus, using this method, given a heap as an array, we can easily
construct its corresponding tree and vice versa.

3.2.1 Operations on heaps

Before describing the main heap operations, we first present two secondary
operations that are used as subroutines in the algorithms that implement
heap operations.
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Fig. 3.1. A heap and its array representation.

Sift-up

Suppose that for some i > 1, H [i] is changed to an element whose key is
greater than the key of its parent. This violates the heap property and,
consequently, the data structure is no longer a heap. To restore the heap
property, an operation called sift-up is needed to move the new item up to
its proper position in the binary tree so that the heap property is restored.
The sift-up operation moves H [i] up along the unique path from H [i] to the
root until its proper location along this path is found. At each step along
the path, the key of H [i] is compared with the key of its parent H [�i/2�].
This is described more precisely in Procedure sift-up.

Procedure sift-up
Input: An array H [1..n] and an index i between 1 and n.

Output: H [i] is moved up, if necessary, so that it is not larger than its parent.

1. done← false
2. if i = 1 then exit {node i is the root}
3. repeat
4. if key(H [i]) > key(H [�i/2�]) then interchange H [i] and H [�i/2�]
5. else done← true
6. i← �i/2�
7. until i = 1 or done

Example 3.1 Suppose the key stored in the 10th position of the heap
shown in Fig. 3.1 is changed from 5 to 25. This will violate the heap prop-
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Fig. 3.2. An example of the sift-up operation.

erty, as the new key 25 is now greater than the key stored in its parent node,
namely 11. To restore the heap property, we apply the sift-up operation
to the tree starting from that node in which 25 is stored. This action is
depicted in Fig. 3.2. As shown in the figure, 25 is moved up to the root.

Sift-down

Suppose that i ≤ �n/2� and the key of the element stored at H [i] is changed
to a value that is less than the key stored at H [2i] or the maximum of the
keys at H [2i] and H [2i + 1] if H [2i + 1] exists. This violates the heap
property and the tree is no longer a representation of a heap. To restore
the heap property, an operation called sift-down is needed to “percolate”
H [i] down the binary tree until its proper location is found. At each step
along the path, its key is compared with the maximum of the two keys
stored in its children nodes (if any). This is described more formally in
Procedure sift-down.

Example 3.2 Suppose we change the key 17 stored in the second
position of the heap shown in Fig. 3.1 to 3.3. This will violate the
heap property, as the new key 3 is now less than the maximum of
the two keys stored in its children nodes, namely 11. To restore the
heap property, we apply the sift-down operation starting from that
node in which 3 is stored. This action is depicted in Fig. 3.3. As
shown in the figure, 3 is percolated down until its proper position is
found.

Now, using these two procedures, it is fairly easy to write the algorithms
for the main heap operations.
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Procedure sift-down
Input: An array H [1..n] and an index i between 1 and n.

Output: H [i] is percolated down, if necessary, so that it is not smaller
than its children.

1. done← false
2. if 2i > n then exit {node i is a leaf}
3. repeat
4. i← 2i
5. if i + 1 ≤ n and key(H [i + 1]) > key(H [i]) then i← i + 1
6. if key(H [�i/2�]) < key(H [i]) then interchange H [i] and H [�i/2�]
7. else done← true
8. end if
9. until 2i > n or done

3 7

510

11

4 5

9

3

20

Fig. 3.3. An example of the sift-down operation.

Insert

To insert an element x into a heap H , append x to the end of H after
its size has been increased by 1, and then sift x up, if necessary. This is
described in Algorithm insert. By Observation 2.4, if n is the size of the
new heap, then the height of the heap tree is �log n�. It follows that the
time required to insert one element into a heap of size n is O(log n).

Delete

To delete an element H [i] from a heap H of size n, replace H [i] by H [n],
decrease the heap size by 1, and then sift H [i] up or down, if necessary,
depending on the value of its key relative to the keys stored in its parent
and children nodes. This is described in Algorithm delete. Since, by



January 14, 2016 14:21 Algorithms: Design Techniques and Analysis - 9in x 6in b2305-ch03 page 94

94 Algorithms: Design Techniques and Analysis

Algorithm 3.1 insert
Input: A heap H [1..n] and a heap element x.

Output: A new heap H [1..n + 1] with x being one of its elements.

1. n← n + 1 {increase the size of H}
2. H [n]← x
3. sift-up(H,n)

Algorithm 3.2 delete
Input: A nonempty heap H [1..n] and an index i between 1 and n.

Output: A new heap H [1..n− 1] after H [i] is removed.

1. x←H [i]; y←H [n]
2. n← n− 1 {decrease the size of H}
3. if i = n + 1 then exit {done}
4. H [i]← y
5. if key(y) ≥ key(x) then sift-up(H, i)
6. else sift-down(H, i)
7. end if

Observation 2.4, the height of the heap tree is �log n�, it follows that the
time required to delete a node from a heap of size n is O(log n).

Delete-max

This operation deletes and returns an item of maximum key in a nonempty
heap H . It costs Θ(1) time to return the element with maximum key
in a heap, as it is the root of the tree. However, since deleting the root
may destroy the heap, more work may be needed to restore the heap data
structure. A straightforward implementation of this operation makes use
of the delete operation: Simply return the element stored in the root and
delete it from the heap. The method for this operation is given in Algo-
rithm deletemax. Obviously, its time complexity is that of the delete
operation, i.e., O(log n).

3.2.2 Creating a heap

Given an array A[1..n] of n elements, it is easy to construct a heap out of
these elements by starting from an empty heap and successively inserting
each element until A is transformed into a heap. Since inserting the jth key
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Algorithm 3.3 deletemax
Input: A heap H [1..n].

Output: An element x of maximum key is returned and deleted from the heap.

1. x←H [1]
2. delete(H,1)
3. return x

costs O(log j), the time complexity of creating a heap using this method is
O(n log n) (see Example 1.12).

Interestingly, it turns out that a heap can be created from n elements
in Θ(n) time. In what follows, we give the details of this method. Recall
that the nodes of the tree corresponding to a heap H [1..n] can conveniently
be numbered from 1 to n in a top-down left-to-right manner. Given this
numbering, we can transform an almost-complete binary tree with n nodes
into a heap H [1..n] as follows. Starting from the last internal node (the
one numbered �n/2�) to the root (node number 1), we scan all these nodes
one by one, each time transforming, if necessary, the subtree rooted at the
current node into a heap.

Example 3.3 Figure 3.4 provides an example of the linear time algorithm
for transforming an array A[1..n] into a heap. An input array and its tree
representation are shown in Fig. 3.4(a). Each subtree consisting of only one
leaf is already a heap, and hence the leaves are skipped. Next, as shown in
Fig. 3.4(b), the two subtrees rooted at the fourth and fifth nodes are not
heaps, and hence their roots are sifted down in order to transform them
into heaps. At this point, all subtrees rooted at the second and third levels
are heaps. Continuing this way, we adjust the two subtrees rooted at the
third and second nodes in the first level, so that they conform to the heap
property. This is shown in Fig. 3.4(c) and (d). Finally, we move up to the
topmost level and percolate the element stored in the root node down to
its proper position. The resulting tree, which is now a heap, and its array
representation are shown in Fig. 3.4(e).

So far, we have shown how to work with trees. Performing the same
procedure directly on the input array is fairly easy. Let A[1..n] be the given
array and T the almost-complete binary tree corresponding to A. First, we
note that the elements

A[�n/2�+ 1], A[�n/2�+ 2], . . . , A[n]
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Fig. 3.4. An example of creating a heap.
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correspond to the leaves of T , and therefore we start adjusting the array at
A[�n/2�] and continue the adjustments at

A[�n/2� − 1], A[�n/2� − 2], . . . , A[1].

Once the subtree rooted at A[1], which is T itself, is adjusted, the resulting
array is the desired heap. Algorithm makeheap constructs a heap whose
items are the elements stored in an array A[1..n].

Algorithm 3.4 makeheap
Input: An array A[1..n] of n elements.

Output: A[1..n] is transformed into a heap

1. for i← �n/2� downto 1
2. sift-down(A, i)
3. end for

The running time of Algorithm makeheap is computed as follows. Let
T be the almost-complete binary tree corresponding to the array A[1..n],
and assume n ≥ 2. Then, by Observation 2.4, the height of T is h =
�log n�. Let A[j] correspond to the jth node in level i of the tree. The
number of iterations executed by Procedure sift-down when invoked by
the statement sift-down(A, j) is at most h − i. Since there are exactly
2i nodes on level i, 0 ≤ i < h, the total number of iterations is bounded
above by

h−1∑
i=0

(h− i)2i = 20(h) + 21(h− 1) + 22(h− 2) + · · ·+ 2h−1(1)

= 1(2h−1) + 2(2h−2) + · · ·+ h(2h−h)

=
h∑

i=1

i2(h−i)

= 2h
h∑

i=1

i/2i

≤ n
h∑

i=1

i/2i

< 2n.
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The last inequality follows from Eq. (A.14). The one before the last
follows from the fact that the number of nodes n in a heap of height h is
at least

20 + 21 + · · ·+ 2h−1 + 1 = 2h.

Since there are at most two element comparisons in each iteration of Pro-
cedure sift-down, the total number of element comparisons is bounded
above by 4n. Moreover, since there is at least one iteration in each call
to Procedure sift-down for the first �n/2� nonleaf nodes, the minimum
number of element comparisons is 2�n/2� ≥ n − 1. Finally, it is obvious
that the algorithm takes Θ(1) space to construct a heap out of n elements.
Thus, we have the following theorem.

Theorem 3.1 Let C(n) be the number of element comparisons performed
by Algorithm makeheap for the construction of a heap of n elements.
Then, n − 1 ≤ C(n) < 4n. Hence, the algorithm takes Θ(n) time and
Θ(1) space to construct a heap out of n elements.

3.2.3 Heapsort

We now turn our attention to the problem of sorting by making use of
the heap data structure. Recall that Algorithm selectionsort sorts an
array of n elements by finding the minimum in each of the n− 1 iterations.
Thus, in each iteration, the algorithm searches for the minimum among
the remaining elements using linear search. Since searching for the mini-
mum using linear search costs Θ(n) time, the algorithm takes Θ(n2) time.
It turns out that by choosing the right data structure, Algorithm selec-

tionsort can be improved substantially. Since we have at our disposal
the heap data structure with the delete-max operation, we can exploit it
to obtain an efficient algorithm. Given an array A[1..n], we sort its ele-
ments in nondecreasing order efficiently as follows. First, we transform A

into a heap with the property that the key of each element is the element
itself, i.e., key(A[i]) = A[i], 1 ≤ i ≤ n. Next, since the maximum of the
entries in A is now stored in A[1], we may interchange A[1] and A[n] so that
A[n] is the maximum element in the array. Now, the element stored in A[1]
may be smaller than the element stored in one of its children. Therefore,
we use Procedure sift-down to transform A[1..n − 1] into a heap. Next,
we interchange A[1] with A[n − 1] and adjust the array A[1..n − 2] into a
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heap. This process of exchanging elements and adjusting heaps is repeated
until the heap size becomes 1, at which point A[1] is minimum. The formal
description is shown in Algorithm heapsort.

Algorithm 3.5 heapsort
Input: An array A[1..n] of n elements.

Output: Array A sorted in nondecreasing order

1. makeheap(A)
2. for j← n downto 2
3. interchange A[1] and A[j]
4. sift-down(A[1..j − 1], 1)
5. end for

An important advantage of this algorithm is that it sorts in place, i.e., it
needs no auxiliary storage. In other words, the space complexity of Algo-
rithm heapsort is Θ(1). The running time of the algorithm is computed as
follows. By Theorem 3.1, creating the heap costs Θ(n) time. The sift-down

operation costs O(log n) time and is repeated n − 1 times. It follows that
the time required by the algorithm to sort n elements is O(n log n). This
implies the following theorem.

Theorem 3.2 Algorithm heapsort sorts n elements in O(n log n) time
and Θ(1) space.

3.2.4 Min and Max Heaps

So far we have viewed the heap as a data structure whose primary operation
is retrieving the element with maximum key. The heap can trivially be
modified so that the element with minimum key value is stored in the
root instead. In this case, the heap property mandates that the key of
the element stored in a node other than the root is greater than or equal
to the key of the element stored in its parent. These two types of heaps
are commonly referred to as max-heaps and min-heaps. The latter is not
less important than the former, and they are both used quite often in
optimization algorithms. It is customary to refer to either one of them as
a “heap” and which one is meant is understood from the context in which
it is used.
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3.3 Disjoint Sets Data Structures

Suppose we are given a set S of n distinct elements. The elements are
partitioned into disjoint sets. Initially, each element is assumed to be in a set
by itself. A sequence σ of m union and find operations, which will be defined
below, is to be executed so that after each union instruction, two disjoint
subsets are combined into one subset. Observe that the number of unions
is at most n− 1. In each subset, a distinguished element will serve as the
name of the set or set representative. For example, if S = {1, 2, . . . , 11} and
there are 4 subsets {1, 7, 10, 11}, {2, 3, 5, 6}, {4, 8}, and {9}, these subsets
may be labeled as 1, 3, 8, and 9, in this order. The find operation returns
the name of the set containing a particular element. For example, executing
the operation find(11) returns 1, the name of the set containing 11. These
two operations are defined more precisely as follows:

• find(x): Find and return the name of the set containing x.
• union(x, y): Replace the two sets containing x and y by their union.

The name of the union set is either the name of the old set containing x

or the name of the old set containing y; it will be determined later.

The goal is to design efficient algorithms for these two operations. To
achieve this, we need a data structure that is both simple and at the same
time allows for the efficient implementation of the union and find opera-
tions. A data structure that is both simple and leads to efficient implemen-
tation of these two operations is to represent each set as a rooted tree with
data elements stored in its nodes. Each element x other than the root has
a pointer to its parent p(x) in the tree. The root has a null pointer, and it
serves as the name or set representative of the set. This results in a forest
in which each tree corresponds to one set.

For any element x, let root(x) denote the root of the tree containing x.
Thus, find(x) always returns root(x). As the union operation must have
as its arguments the roots of two trees, we will assume that for any two
elements x and y, union(x, y) actually means union(root(x), root(y)).

If we assume that the elements are the integers 1, 2, . . . , n, the forest
can conveniently be represented by an array A[1..n] such that A[j] is the
parent of element j, 1 ≤ j ≤ n. The null parent can be represented by the
number 0. Figure 3.5(a) shows four trees corresponding to the four sets
{1, 7, 10, 11}, {2, 3, 5, 6}, {4, 8}, and {9}. Figure 3.5(b) shows their array
representation. Clearly, since the elements are consecutive integers, the
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101 2 3 4 5 6 7 8 9 11

0 3 0 8 2 2 1 0 0 1 1

(b)

1

7 10 11

3

2

5 6

8

4 9

(a)

Fig. 3.5. An example of the representation of disjoint sets. (a) Tree representation.
(b) Array representation when S = {1, 2, . . . , n}.

array representation is preferable. However, in developing the algorithms
for the union and find operations, we will assume the more general repre-
sentation, that is, the tree representation.

Now we focus our attention on the implementation of the union and
find operations. A straightforward implementation is as follows. In the
case of the operation find(x), simply follow the path from x until the root
is reached, then return root(x). In the case of the operation union(x, y),
let the link of root(x) point to root(y), i.e., if root(x) is u and root(y) is v,
then let v be the parent of u.

In order to improve on the running time, we present in the following
two sections two heuristics: union by rank and path compression.

3.3.1 The union by rank heuristic

An obvious disadvantage of the straightforward implementation of the
union operation stated above is that the height of a tree may become very
large to the extent that a find operation may require Ω(n) time. In the
extreme case, a tree may become degenerate. A simple example of this case
is in order. Suppose we start with the singleton sets {1}, {2}, . . . , {n} and
then execute the following sequence of unions and finds (see Fig. 3.6(a)):

union(1, 2),union(2, 3), . . . ,union(n− 1, n),

find(1), find(2), . . . , find(n).
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(b)

n
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(a)

Fig. 3.6. The result of n − 1 union operations. (a) Without union by rank. (b) With
union by rank.

In this case, the total cost of the n find operations is proportional to

n + (n− 1) + · · ·+ 1 =
n(n + 1)

2
= Θ(n2).

In order to constraint the height of each tree, we adopt the union by rank
heuristic: We store with each node a nonnegative number referred to as the
rank of that node. The rank of a node is essentially its height. (Recall that
the height of node v is the length of a longest path from v to a leaf node.)
Let x and y be two roots of two different trees in the current forest. Ini-
tially, each node has rank 0. When performing the operation union(x, y),
we compare rank(x) and rank(y). If rank(x) < rank(y), we make y the
parent of x. If rank(x) > rank(y), we make x the parent of y. Other-
wise, if rank(x) = rank(y), we make y the parent of x and increase rank(y)
by 1. Applying this rule on the sequence of operations above yields the
tree shown in Fig. 3.6(b). Note that the total cost of the n find opera-
tions is now reduced to Θ(n). This, however, is not always the case. As
will be shown later, using this rule, the time required to process n finds
is O(n log n).

Let x be any node, and p(x) the parent of x. The following two obser-
vations are fundamental.

Observation 3.1 rank(p(x)) ≥ rank(x) + 1.
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Observation 3.2 The value of rank(x) is initially zero and increases in
subsequent union operations until x is no longer a root. Once x becomes a
child of another node, its rank never changes.

Lemma 3.1 The number of nodes in a tree with root x is at least 2rank(x).

Proof. By induction on the number of union operations. Initially, x is a
tree by itself and its rank is zero. Let x and y be two roots, and consider the
operation union(x, y). Assume that the lemma holds before this operation.
If rank(x) < rank(y), then the formed tree rooted at y has more nodes than
the old tree with root y and its rank is unchanged. If rank(x) > rank(y),
then the formed tree rooted at x has more nodes than the old tree with root
x and its rank is unchanged. Thus, if rank(x) �= rank(y), then the lemma
holds after the operation. If, however, rank(x) = rank(y), then in this case,
by induction, the formed tree with root y has at least 2rank(x) + 2rank(y) =
2rank(y)+1 nodes. Since rank(y) will be increased by 1, the lemma holds
after the operation. �

Clearly, if x is the root of tree T , then the height of T is exactly the rank
of x. By Lemma 3.1, if the number of nodes in the tree rooted at x is k, then
the height of that tree is at most �log k�. It follows that the cost of each
find operation is O(log n). The time required by the operation union(x, y)
is O(1) if both arguments are roots. If not both x and y are roots, then
the running time reduces to that of the find operation. Consequently, the
time complexity of a union operation is that of the find operation, which
is O(log n). It follows that, using the union by rank heuristic, the time
complexity of a sequence of m interspersed union and find instructions is
O(m log n).

3.3.2 Path compression

To enhance the performance of the find operation further, another heuristic
known as path compression is also employed. In a find(x) operation, after
the root y is found, we traverse the path from x to y one more time and
change the parent pointers of all nodes along the path to point directly
to y. The action of path compression is illustrated in Fig. 3.7. During
the execution of the operation find(4), the name of the set is found to
be 1. Therefore, the parent pointer of each node on the path from 4 to 1
is reset so that it points to 1. It is true that path compression increases
the amount of work required to perform a find operation. However, this



January 14, 2016 14:21 Algorithms: Design Techniques and Analysis - 9in x 6in b2305-ch03 page 104

104 Algorithms: Design Techniques and Analysis

1

3 24

1

3

2

4

(a) (b)

Fig. 3.7. The effect of executing the find operation find(4) with path compression.

process will pay off in subsequent find operations, as we will be traversing
shorter paths. Note that when path compression is used, the rank of a node
may be greater than its height, so it serves as an upper bound on the height
of that node.

3.3.3 The union-find algorithms

Algorithms find and union describe the final versions of the find and union

operations using the two heuristics stated above.

Algorithm 3.6 find
Input: A node x

Output: root(x), the root of the tree containing x.

1. y← x
2. while p(y) �= null {Find the root of the tree containing x}
3. y← p(y)
4. end while
5. root← y; y← x
6. while p(y) �= null {Do path compression}
7. w← p(y)
8. p(y)← root
9. y← w

10. end while
11. return root
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Algorithm 3.7 union
Input: Two elements x and y

Output: The union of the two trees containing x and y. The original trees
are destroyed.

1. u← find(x); v← find(y)
2. if rank(u) ≤ rank(v) then
3. p(u)← v
4. if rank(u) = rank(v) then rank(v)← rank (v) + 1
5. else p(v)← u
6. end if

Example 3.4 Let S = {1, 2, . . . , 9} and consider applying the follow-
ing sequence of unions and finds: union(1, 2), union(3, 4), union(5, 6),
union(7, 8), union(2, 4), union(8, 9), union(6, 8), find(5), union(4, 8),
find(1). Figure 3.8(a) shows the initial configuration. Figure 3.8(b) shows
the data structure after the first four union operations. The result of the
next three union operations is shown in Fig. 3.8(c). Figure 3.8(d) shows
the effect of executing the operation find(5). The results of the operations
union(4, 8) and find(1) are shown in Fig. 3.8(e) and (f), respectively.

3.3.4 Analysis of the union-find algorithms

We have shown before that the running time required to process an inter-
spersed sequence σ of m union and find operations using union by rank is
O(m log n). Now we show that if path compression is also employed, then
using amortized time analysis (see Sec. 1.13), it is possible to prove that
the bound is almost O(m).

Lemma 3.2 For any integer r ≥ 0, the number of nodes of rank r is at
most n/2r.

Proof. Fix a particular value of r. When a node x is assigned a rank of r,
label by x all the nodes contained in the tree rooted at x. By Lemma 3.1,
the number of labeled nodes is at least 2r. If the root of that tree changes,
then the rank of the root of the new tree is at least r + 1. This means that
those nodes labeled with x will never be labeled again. Since the maximum
number of nodes labeled is n, and since each root of rank r has at least 2r

nodes, it follows that there are at most n/2r nodes with rank r. �
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Fig. 3.8. An example of the union-find algorithms.

Corollary 3.1 The rank of any node is at most �log n�.
Proof. If for some node x, rank (x) = r ≥ �log n�+1, then by Lemma 3.2,
there are at most n/2�log n�+1 < 1 nodes of rank r. �

Definition 3.2 For any positive integer n, log∗ n is defined as

log∗ n =




0 if n = 0 or 1,

min{i ≥ 0 | log log . . . log︸ ︷︷ ︸
i times

n ≤ 1} if n ≥ 2.

For example, log∗ 2 = 1, log∗ 4 = 2, log∗ 16 = 3, log∗ 65536 = 4, and
log∗ 265536 = 5. For the amortized time complexity analysis, we will intro-
duce the following function:

F (j) =

{
1 if j = 0,

2F (j−1) if j ≥ 1.
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The most important property of F (j) is its explosive growth. For example,
F (1) = 2, F (2) = 4, F (3) = 16, F (4) = 65536, and F (5) = 265536.

Let σ be a sequence of m union and find instructions. We partition the
ranks into groups. We put rank r in group log∗ r. For example, ranks 0
and 1 are in group 0, rank 2 is in group 1, ranks 3 and 4 are in group 2,
ranks 5–16 are in group 3, and ranks 17–65536 are in group 4. Since
the largest possible rank is �log n�, the largest group number is at most
log∗ log n = log∗ n− 1.

We assess the charges of a find instruction find(u) as follows. Let v be
a node on the path from node u to the root of the tree containing u, and
let x be that root. If v is the root, a child of the root, or if the parent of
v is in a different rank group from v, then charge one time unit to the find

instruction itself. If v �= x, and both v and its parent are in the same rank
group, then charge one time unit to node v. Note that the nodes on the
path from u to x are monotonically increasing in rank, and since there are
at most log∗ n different rank groups, no find instruction is charged more
than O(log∗ n) time units. It follows that the total number of time units
charged to all the find instructions in the sequence σ is O(m log∗ n).

After x is found to be the root of the tree containing u, by applying path
compression, x will be the parent of both u and v. If later on x becomes a
child of another node, and v and x are in different groups, no more node
costs will be charged to v in subsequent find instructions. An important
observation is that if node v is in rank group g > 0, then v can be moved
and charged at most F (g) − F (g − 1) times before it acquires a parent in
a higher group. If node v is in rank group 0, it will be moved at most once
before having a parent in a higher group.

Now we derive an upper bound on the total charges made to the nodes.
By Lemma 3.2, the number of nodes of rank r is at most n/2r. If we define
F (−1) = 0, then the number of nodes in group g is at most

F (g)∑
r=F (g−1)+1

n

2r

≤ n

2F (g−1)+1

∞∑
r=0

1
2r

=
n

2F (g−1)

=
n

F (g)
.
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Since the maximum number of node charges assigned to a node in group
g is equal to F (g) − F (g − 1), the number of node charges assigned to all
nodes in group g is at most

n

F (g)
(F (g)− F (g − 1)) ≤ n.

Since there are at most log∗ n groups (0, 1, . . . , log∗ n−1), it follows that the
number of node charges assigned to all nodes is O(n log∗ n). Combining this
with the O(m log∗ n) charges to the find instructions yields the following
theorem.

Theorem 3.3 Let T (m) denote the running time required to process an
interspersed sequence σ of m ≥ n union and find operations using union by
rank and path compression. Then T (m) = O(m log∗ n).

Note that for almost all practical purposes, log∗ n ≤ 5. This means that
the running time is O(m) for virtually all practical applications.

3.4 Exercises

3.1. What are the merits and demerits of implementing a priority queue using
an ordered list?

3.2. What are the costs of insert and delete-max operations of a priority queue
that is implemented as a regular queue.

3.3. Which of the following arrays are heaps?

(a) 8 6 4 3 2 . (b) 7 . (c) 9 7 5 6 3 .

(d) 9 4 8 3 2 5 7 . (e) 9 4 7 2 1 6 5 3 .

3.4. Where do the following element keys reside in a heap?
(a) Second largest key. (b) Third largest key. (c) Minimum key.

3.5. Give an efficient algorithm to test whether a given array A[1..n] is a heap.
What is the time complexity of your algorithm?

3.6. Which heap operation is more costly: insertion or deletion? Justify your
answer. Recall that both operations have the same time complexity, that
is, O(log n).

3.7. Let H be the heap shown in Fig. 3.1. Show the heap that results from

(a) deleting the element with key 17.

(b) inserting an element with key 19.
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3.8. Show the heap (in both tree and array representation) that results from
deleting the maximum key in the heap shown in Fig. 3.4(e).

3.9. How fast is it possible to find the minimum key in a max-heap of n ele-
ments?

3.10. Prove or disprove the following claim. Let x and y be two elements in a
heap whose keys are positive integers, and let T be the tree representing
that heap. Let hx and hy be the heights of x and y in T . Then, if x is
greater than y, hx cannot be less than hy. (See Sec. 2.5 for the definition
of node height.)

3.11. Illustrate the operation of Algorithm makeheap on the array

3 7 2 1 9 8 6 4 .

3.12. Show the steps of transforming the following array into a heap:

1 4 3 2 5 7 6 8 .

3.13. Let A[1..19] be an array of 19 integers, and suppose we apply Algorithm
makeheap on this array.

(a) How many calls to Procedure sift-down will there be? Explain.

(b) What is the maximum number of element interchanges in this case?
Explain.

(c) Give an array of 19 elements that requires the above maximum number
of element interchanges.

3.14. Show how to use Algorithm heapsort to arrange in increasing order the
integers in the array

4 5 2 9 8 7 1 3 .

3.15. Given an array A[1..n] of integers, we can create a heap B[1..n] from A as
follows. Starting from the empty heap, repeatedly insert the elements of
A into B, each time adjusting the current heap, until B contains all the
elements in A. Show that the running time of this algorithm is Θ(n log n)
in the worst case.

3.16. Illustrate the operation of the algorithm in Exercise 3.15 on the array

6 9 2 7 1 8 4 3 .
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3.17. Explain the behavior of Algorithm heapsort when the input array is
already sorted in

(a) increasing order.

(b) decreasing order.

3.18. Give an example of a binary search tree with the heap property.

3.19. Give an algorithm to merge two heaps of the same size into one heap.
What is the time complexity of your algorithm?

3.20. Compute the minimum and maximum number of element comparisons
performed by Algorithm heapsort.

3.21. A d-heap is a generalization of the binary heap discussed in this chapter.
It is represented by an almost-complete d-ary rooted tree for some d ≥ 2.
Rewrite Procedure sift-up for the case of d-heaps. What is its time
complexity?

3.22. Rewrite Procedure sift-down for the case of d-heaps (see Exercise 3.21).
What is its time complexity measured in terms of d and n?

3.23. Give a sequence of n union and find operations that results in a tree of
height Θ(log n) using only the heuristic of union by rank. Assume the set
of elements is {1, 2, . . . , n}.

3.24. Give a sequence of n union and find operations that requires Θ(n log n)
time using only the heuristic of union by rank. Assume the set of elements
is {1, 2, . . . , n}.

3.25. What are the ranks of nodes 3, 4, and 8 in Fig. 3.8(f)?

3.26. Let {1}, {2}, {3}, . . . , {8} be n singleton sets, each represented by a tree
with exactly one node. Use the union-find algorithms with union by rank
and path compression to find the tree representation of the set result-
ing from each of the following unions and finds: union(1, 2), union(3, 4),
union(5, 6), union(7, 8), union(1, 3), union(5, 7), find(1), union(1, 5),
find(1).

3.27. Let T be a tree resulting from a sequence of unions and finds using both
the heuristics of union by rank and path compression, and let x be a node
in T . Prove that rank(x) is an upper bound on the height of x.

3.28. Let σ be a sequence of union and find instructions in which all the unions
occur before the finds. Show that the running time is linear if both the
heuristics of union by rank and path compression are used.

3.29. Another heuristic that is similar to union by rank is the weight-balancing
rule. In this heuristic, the action of the operation union(x, y) is to let
the root of the tree with fewer nodes point to the root of the tree with a
larger number of nodes. If both trees have the same number of nodes, then
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let y be the parent of x. Compare this heuristic with the union by rank
heuristic.

3.30. Solve Exercise 3.26 using the weight-balancing rule and path compression
(see Exercise 3.29).

3.31. Prove that the weight-balancing rule described in Exercise 3.29 guarantees
that the resulting tree is of height O(log n).

3.32. Let T be a tree resulting from a sequence of unions and finds using the
heuristics of union by rank and path compression. Let x be the root of T
and y a leaf node in T . Prove that the ranks of the nodes on the path from
y to x form a strictly increasing sequence.

3.33. Prove the observation that if node v is in rank group g > 0, then v can
be moved and charged at most F (g)− F (g − 1) times before it acquires a
parent in a higher group.

3.34. Another possibility for the representation of disjoint sets is by using linked
lists. Each set is represented by a linked list, where the set representative
is the first element in the list. Each element in the list has a pointer to the
set representative. Initially, one list is created for each element. The union
of two sets is implemented by merging the two sets. Suppose two sets S1

represented by list L1 and S2 represented by list L2 are to be merged. If
the first element in L1 is to be used as the name of the resulting set, then
the pointer to the set name at each element in L2 must be changed so that
it points to the first element in L1.

(a) Explain how to improve this representation so that each find operation
takes O(1) time.

(b) Show that the total cost of performing n − 1 unions is Θ(n2) in the
worst case.

3.35. (Refer to Exercise 3.34). Show that when performing the union of two
sets, the first element in the list with a larger number of elements is always
chosen as the name of the new set, then the total cost of performing n− 1
unions becomes O(n log n).

3.5 Bibliographic Notes

Heaps and the data structures for disjoint sets appear in several books on
algorithms and data structures (see the bibliographic notes of Chapters 1
and 2). They are covered in greater depth in Tarjan (1983). Heaps were
first introduced as part of heapsort by Williams (1964). The linear time
algorithm for building a heap is due to Floyd (1964). A number of variants
of heaps can be found in Cormen et al. (2009), e.g., binomial heaps and
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Fibonacci heaps. A comparative study of many data structures for priority
queues can be found in Jones (1986). The disjoint sets data structure was
first studied by Galler and Fischer (1964) and Fischer (1972). A more
detailed analysis was carried out by Hopcroft and Ullman (1973) and then
a more exact analysis by Tarjan (1975). In this paper, a lower bound that is
not linear was established when both union by rank and path compression
are used.
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This part of the book is concerned with a particular class of algorithms,
called recursive algorithms. These algorithms turn out to be of fundamental
importance and indispensible in virtually every area in the field of computer
science. The use of recursion makes it possible to solve complex problems
using algorithms that are concise, easy to comprehend, and efficient (from
an algorithmic point of view). In its simplest form, recursion is the process
of dividing the problem into one or more subproblems, which are identical
in structure to the original problem and then combining the solutions of
these subproblems to obtain the solution to the original problem. We iden-
tify three special cases of this general design technique: (1) Induction or
tail-recursion. (2) Nonoverlapping subproblems. (3) Overlapping subprob-
lems with redundant invocations to subproblems, allowing trading space
for time. The higher numbered cases subsume the lower numbered ones.
The first two cases will not require additional space for the maintenance of
solutions for continued reuse. The third class, however, renders the possi-
bility of efficient solutions for many problems that at first glance appear to
be time-consuming to solve.

Chapter 4 is devoted to the study of induction as a technique for the
development of algorithms. In other words, the idea of induction in math-
ematical proofs is carried over to the design of efficient algorithms. In this
chapter, several examples are presented to show how to use induction to
solve increasingly sophisticated problems.

Chapter 5 provides a general overview of one of the most important
algorithm design techniques, namely divide and conquer. First, we derive
divide-and-conquer algorithms for the search problem and sorting by merg-
ing. In particular, Algorithm mergesort is compared with Algorithm
bottomupsort presented in Chapter 1, which is an iterative version of the
former. This comparison reveals the most appealing merits of divide-and-
conquer algorithms: conciseness, ease of comprehension and implementa-
tion, and most importantly the simple inductive proofs for the correctness
of divide-and-conquer algorithms. Next, some useful algorithms such as
Algorithms quicksort and select for finding the kth smallest element
are discussed in detail.

Chapter 6 provides some examples of the use of dynamic programming
to solve problems for which recursion results in many redundant calls. In
this design technique, recursion is first used to model the solution of the
problem. This recursive model is then converted into an efficient iterative
algorithm. By trading space for time, this is achieved by saving results
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of subproblems as they get solved and using a kind of table lookup for
future reference to those solved subproblems. In this chapter, dynamic
programming is applied to solve the longest common subsequence problem,
matrix chain multiplication, the all-pairs shortest path problem, and the
knapsack problem.
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Chapter 4

Induction

4.1 Introduction

Consider a problem with parameter n, which normally represents the num-
ber of objects in an instance of the problem. When searching for a solution
to such a problem, sometimes it is easier to start with a solution to the
problem with a smaller parameter, say n−1, n/2, etc., and extend the solu-
tion to include all the n objects. This approach is based on the well-known
proof technique of mathematical induction. Basically, given a problem with
parameter n, designing an algorithm by induction is based on the fact that
if we know how to solve the problem when presented with a parameter less
than n, called the induction hypothesis, then our task reduces to extending
that solution to include those instances with parameter n.

This method can be generalized to encompass all recursive algorithm
design techniques including divide and conquer and dynamic program-
ming. However, since these two have distinct marking characteristics, we
will confine our attention in this chapter to those strategies that use tail
recursion and devote Chapters 5 and 6 to the study of divide and con-
quer and dynamic programming, respectively. The algorithms that we will
cover in this chapter are usually recursive with only one recursive call, com-
monly called tail recursion. Thus, in most cases, they can conveniently be
converted into iterative algorithms.

An advantage of this design technique (and all recursive algorithms,
in general) is that the proof of correctness of the designed algorithm is

117
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naturally embedded in its description, and a simple inductive proof can
easily be constructed if desired.

4.2 Finding the Majority Element

Let A[1..n] be a sequence of integers. An integer a in A is called the majority
if it appears more than �n/2� times in A. For example, 3 is the majority in
the sequence 1, 3, 2, 3, 3, 4, 3, since it appears four times and the number of
elements is 7. There are several ways to solve this problem. The brute-force
method is to compare each element with every other element and produce
a count for each element. If the count of some element is more than �n/2�,
then it is declared as the majority; otherwise, there is no majority in the list.
But the number of comparisons here is n(n − 1)/2 = Θ(n2), which makes
this method too costly. A more efficient algorithm is to sort the elements
and count how many times each element appears in the sequence. This
costs Θ(n logn) in the worst case, as the sorting step requires Ω(n log n)
comparisons in the worst case (Theorem 11.2). Another alternative is to
find the median, i.e., the �n/2�th element. Since the majority must be the
median, we can scan the sequence to test whether the median is indeed
the majority. This method takes Θ(n) time, as the median can be found
in Θ(n) time. As we will see in Sec. 5.5, the hidden constant in the time
complexity of the median finding algorithm is too large, and the algorithm
is fairly complex.

It turns out that there is an elegant solution that uses much fewer
comparisons. We derive this algorithm using induction. The essence of the
algorithm is based on the following observation.

Observation 4.1 If two different elements in the original sequence are
removed, then the majority in the original sequence remains the majority
in the new sequence.

This observation suggests the following procedure for finding an element
that is a candidate for being the majority. Set a counter to zero and let
x = A[1]. Starting from A[2], scan the elements one by one increasing the
counter by 1 if the current element is equal to x and decreasing the counter
by 1 if the current element is not equal to x. If all the elements have been
scanned and the counter is greater than zero, then return x as the candidate.
If the counter becomes zero when comparing x with A[j], 1 < j < n, then
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call procedure candidate recursively on the elements A[j+1..n]. Notice that
decrementing the counter implements the idea of throwing two different
elements as stated in Observation 4.1. This method is described more
precisely in Algorithm majority. Converting this recursive algorithm into
an iterative one is straightforward and is left as an exercise. Clearly, the
running time of Algorithm majority is Θ(n).

Algorithm 4.1 majority
Input: An array A[1..n] of n elements.

Output: The majority element if it exists; otherwise none.

1. c← candidate(1)
2. count← 0
3. for j← 1 to n
4. if A[j] = c then count← count + 1
5. end for
6. if count > �n/2� then return c
7. else return none

Procedure candidate(m)

1. j←m; c←A[m]; count← 1
2. while j < n and count > 0
3. j← j + 1
4. if A[j] = c then count← count + 1
5. else count← count − 1
6. end while
7. if j = n then return c {See Exercises 4.12 and 4.13.}
8. else return candidate(j + 1)

4.3 Integer Exponentiation

In this section, we develop an efficient algorithm for raising a real number
x to the nth power, where n is a nonnegative integer. The straightforward
method is to iteratively multiply x by itself n times. This method is very
inefficient, as it requires Θ(n) multiplications, which is exponential in the
input size (see Sec. 1.14). An efficient method can be deduced as follows.
Let m = �n/2�, and suppose we know how to compute xm. Then, we have
two cases: If n is even, then xn = (xm)2; otherwise, xn = x(xm)2. This idea
immediately yields the recursive algorithm shown as Algorithm exprec.

Algorithm exprec can be rendered iteratively using repeated squaring
as follows. Let the binary digits of n be dk, dk−1, . . . , d0. Starting from
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Algorithm 4.2 exprec
Input: A real number x and a nonnegative integer n.

Output: xn.

1. power(x, n)

Procedure power(x, m) {Compute xm}
1. if m = 0 then y← 1
2. else
3. y← power(x, �m/2�)
4. y← y2

5. if m is odd then y← xy
6. end if
7. return y

Algorithm 4.3 exp
Input: A real number x and a nonnegative integer n.

Output: xn.

1. y← 1
2. Let n be dkdk−1 . . . d0 in binary notation.
3. for j← k downto 0
4. y← y2

5. if dj = 1 then y← xy
6. end for
7. return y

y = 1, we scan the binary digits from left to right. If the current binary
digit is 0, we simply square y and if it is 1, we square y and multiply it
by x. This yields Algorithm exp.

Assuming that each multiplication takes constant time, the running
time of both versions of the algorithm is Θ(log n), which is linear in the
input size.

4.4 Evaluating Polynomials (Horner’s Rule)

Suppose we have a sequence of n + 1 real numbers a0, a1, . . . , an and a real
number x, and we want to evaluate the polynomial

Pn(x) = anxn + an−1x
n−1 + · · ·+ a1x + a0.
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The straightforward approach would be to evaluate each term separately.
This approach is very inefficient since it requires n+n−1+ · · ·+1 = n(n+
1)/2 multiplications. A much faster method can be derived by induction
as follows. We observe that

Pn(x) = anxn + an−1x
n−1 + · · ·+ a1x + a0

= ((. . . (((anx + an−1)x + an−2)x + an−3) . . .)x + a1)x + a0.

This evaluation scheme is known as Horner’s rule. Use of this scheme leads
to the following more efficient method. Suppose we know how to evaluate

Pn−1(x) = anxn−1 + an−1x
n−2 + · · ·+ a2x + a1.

Then, using one more multiplication and one more addition, we have

Pn(x) = xPn−1(x) + a0.

This implies Algorithm horner.

Algorithm 4.4 horner
Input: A sequence of n + 1 real numbers a0, a1, . . . , an and a real number x.

Output: Pn(x) = anxn + an−1x
n−1 + · · ·+ a1x + a0.

1. p← an

2. for j← 1 to n
3. p← xp + an−j

4. end for
5. return p

It is easy to see that Algorithm horner costs n multiplications and
n additions. This is a remarkable achievement, which is attributed to the
judicious choice of the induction hypothesis.

4.5 Radix Sort

In this section, we study a sorting algorithm that runs in linear time in
almost all practical purposes. Let L = {a1, a2, . . . , an} be a list of n num-
bers each consisting of exactly k digits. That is, each number is of the form
dkdk−1 · · · d1, where each di is a digit between 0 and 9. In this problem,
instead of applying induction on n, the number of objects, we use induc-
tion on k, the number of digits. One way to sort the numbers in L is to
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distribute them into 10 lists L0, L1, . . . , L9 by their most significant digit,
so that those numbers with dk = 0 constitute list L0, those with dk = 1
constitute list L1, and so on. At the end of this step, for each i, 0 ≤ i ≤ 9,
Li contains those numbers whose most significant digit is i. We have two
choices now. The first choice is to sort each list using another sorting algo-
rithm and then concatenate the resulting lists into one sorted list. Observe
that in the worst case all numbers may have the same most significant digit,
which means that they will all end up in one list and the other nine lists
will be empty. Hence, if the sorting algorithm used runs in Θ(n log n) time,
the running time of this method will be Θ(n logn). Another possibility is
to recursively sort each list on digit dk−1. But this approach will result in
the addition of more and more lists, which is undesirable.

Surprisingly, it turns out that if the numbers are first distributed into the
lists by their least significant digit, then a very efficient algorithm results.
This algorithm is commonly known as radix sort. It is straightforward
to derive the algorithm using induction on k. Suppose that the numbers
are sorted lexicographically according to their least k − 1 digits, i.e., digits
dk−1, dk−2, . . . , d1. Then, after sorting them on their kth digits, they will
eventually be sorted. The implementation of the algorithm does not require
any other sorting algorithm. Nor does it require recursion. The algorithm
works as follows. First, distribute the numbers into 10 lists L0, L1, . . . , L9

according to digit d1, so that those numbers with d1 = 0 constitute list
L0, those with d1 = 1 constitute list L1, and so on. Next, the lists are
coalesced in the order L0, L1, . . . , L9. Then, they are distributed into 10
lists according to digit d2, coalesced in order, and so on. After distributing
them according to dk and collecting them in order, all numbers will be
sorted. The following example illustrates the idea.

Example 4.1 Figure 4.1 shows an example of radix sort. The left column
in the figure shows the input numbers. Successive columns show the results
after sorting by the first, second, third, and fourth digits.

The method is described more precisely in Algorithm radixsort.
There are k passes, and each pass costs Θ(n) time. Thus, the running
time of the algorithm is Θ(kn). If k is constant, the running time is simply
Θ(n). The algorithm uses Θ(n) space, as there are 10 lists needed and the
overall size of the lists is Θ(n).

It should be noted that the algorithm can be generalized to any radix,
not just radix 10 as in the algorithm. For example, we can treat each four
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7467 6792 9134 9134 1239
1247 9134 1239 9187 1247
3275 3275 1247 1239 3275
6792 4675 7467 1247 4675
9187 7467 3275 3275 6792
9134 1247 4675 7467 7467
4675 9187 9187 4675 9134
1239 1239 6792 6792 9187

Fig. 4.1. Example of radix sort.

Algorithm 4.5 radixsort
Input: A linked list of numbers L = {a1, a2, . . . , an} and k, the number of

digits.

Output: L sorted in nondecreasing order.

1. for j← 1 to k
2. Prepare 10 empty lists L0, L1, . . . , L9.
3. while L is not empty
4. a← next element in L. Delete a from L.
5. i← jth digit in a. Append a to list Li.
6. end while
7. L← L0

8. for i← 1 to 9
9. L← L, Li {append list Li to L}

10. end for
11. end for
12. return L

bits as one digit and work on radix 16. The number of lists will always be
equal to the radix. More generally, we can use Algorithm radixsort to
sort whole records on each field. If, for example, we have a file of dates each
consisting of year, month, and day, we can sort the whole file by sorting
first by day, then by month, and finally by year.

4.6 Generating Permutations

In this section, we study the problem of generating all permutations of the
numbers 1, 2, . . . , n. We will use an array P [1..n] to hold each permutation.
Using induction, it is fairly easy to derive several algorithms. In this section,
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we will present two of them that are based on the assumption that we can
generate all the permutations of n− 1 numbers.

4.6.1 The first algorithm

Suppose we can generate all permutations of n− 1 numbers. Then, we can
extend our method to generate the permutations of the numbers 1, 2, . . . , n

as follows. Generate all the permutations of the numbers 2, 3, . . . , n and
add the number 1 to the beginning of each permutation. Next, generate
all permutations of the numbers 1, 3, 4, . . . , n and add the number 2 to
the beginning of each permutation. Repeat this procedure until finally the
permutations of 1, 2, . . . , n− 1 are generated and the number n is added at
the beginning of each permutation. This method is described in Algorithm
permutations1. Note that when P [j] and P [m] are interchanged before
the recursive call, they must be interchanged back after the recursive call.

Algorithm 4.6 permutations1
Input: A positive integer n.

Output: All permutations of the numbers 1, 2, . . . , n.

1. for j← 1 to n
2. P [j]← j
3. end for
4. perm1(1)

Procedure perm1(m)

1. if m = n then output P [1..n]
2. else
3. for j←m to n
4. interchange P [j] and P [m]
5. perm1(m + 1)
6. interchange P [j] and P [m]
7. comment: At this point P [m..n] = m, m+1, . . . , n.

8. end for
9. end if

We analyze the running time of the algorithm as follows. Since there
are n! permutations, Step 1 of Procedure perm1 takes nn! to output all
permutations. Now we count the number of iterations of the for loop. In
the first call to Procedure perm1, m = 1. Hence, the for loop is executed n

times plus the number of times it is executed in the recursive call perm1(2).
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When n = 1, the number of iterations is zero, and the number of iterations
f(n) can be expressed by the recurrence

f(n) =

{
0 if n = 1,

nf(n− 1) + n if n ≥ 2.

Following the technique outlined in Sec. A.8.2, we proceed to solve this
recurrence as follows. Let n!h(n) = f(n) (note that h(1) = 0). Then,

n!h(n) = n(n− 1)!h(n− 1) + n

or

h(n) = h(n− 1) +
n

n!
.

The solution to this recurrence is

h(n) = h(1) +
n∑

j=2

n

j!
= n

n∑
j=2

1
j!

< n

∞∑
j=2

1
j!

= n(e− 2),

where e = 2.7182818 . . . (Eq. (A.1)). Hence,

f(n) = n!h(n) < nn!(e− 2).

Since the running time of the output statement is Θ(nn!), it follows that
the running time of the entire algorithm is Θ(nn!).

4.6.2 The second algorithm

In this section, we describe another algorithm for enumerating all the per-
mutations of the numbers 1, 2, . . . , n. At the beginning, all n entries of the
array P [1..n] are free, and each free entry will be denoted by 0. For the
induction hypothesis, let us assume that we have a method that generates
all permutations of the numbers 1, 2, . . . , n − 1. Then, we can extend our
method to generate all the permutations of the n numbers as follows. First,
we put n in P [1] and generate all the permutations of the first n− 1 num-
bers using the subarray P [2..n]. Next, we put n in P [2] and generate all
the permutations of the first n − 1 numbers using the subarrays P [1] and
P [3..n]. Then, we put n in P [3] and generate all the permutations of the
first n− 1 numbers using the subarrays P [1..2] and P [4..n]. This continues
until finally we put n in P [n] and generate all the permutations of the first
n − 1 numbers using the subarray P [1..n − 1]. Initially, all n entries of
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P [1..n] contain 0’s. The method is described more precisely in Algorithm
permutations2.

Algorithm 4.7 permutations2
Input: A positive integer n.

Output: All permutations of the numbers 1, 2, . . . , n.

1. for j← 1 to n
2. P [j]← 0
3. end for
4. perm2(n)

Procedure perm2(m)

1. if m = 0 then output P [1..n]
2. else
3. for j← 1 to n
4. if P [j] = 0 then
5. P [j]←m
6. perm2(m− 1)
7. P [j]← 0
8. end if
9. end for

10. end if

Algorithm permutations2 works as follows. If the value of m is equal
to 0, then this is an indication that Procedure perm2 has been called for
all consecutive values n, n − 1, . . . , 1. In this case, array P [1..n] has no
free entries and contains a permutation of the numbers 1, 2, . . . , n. If,
on the other hand, m > 0, then we know that m + 1, m + 2, . . . , n have
already been assigned to some entries of the array P [1..n]. Thus, we search
for a free entry P [j] in the array and set P [j] to m, and then we call
Procedure perm2 recursively with parameter m − 1. After the recursive
call, we must set P [j] to 0 indicating that it is now free and can be used in
subsequent calls.

We analyze the running time of the algorithm as follows. Since there
are n! permutations, Step 1 of Procedure perm2 takes nn! to output all
permutations. Now we count the number of iterations of the for loop.
The for loop is executed n times in every call perm2(m) plus the number
of times it is executed in the recursive call perm2(m − 1). When Pro-
cedure perm2 is invoked by the call perm2(m) with m > 0, the array
P contains exactly m zeros, and hence the recursive call perm2(m − 1)
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will be executed exactly m times. When m = 0, the number of iter-
ations is zero, and the number of iterations can be expressed by the
recurrence

f(m) =

{
0 if m = 0,

mf(m− 1) + n if m ≥ 1.

It should be emphasized that n in the recurrence above is constant and
independent of the value of m.

Following the technique outlined in Sec. A.8.2, we proceed to solve this
recurrence as follows. Let m!h(m) = f(m) (note that h(0) = 0). Then,

m!h(m) = m(m− 1)!h(m− 1) + n

or

h(m) = h(m− 1) +
n

m!
.

The solution to this recurrence is

h(m) = h(0) +
m∑

j=1

n

j!
= n

m∑
j=1

1
j!

< n

∞∑
j=1

1
j!

= n(e− 1),

where e = 2.7182818 . . . (Eq. (A.1)).
Hence,

f(m) = m!h(m) = nm!
m∑

j=1

1
j!

< 2nm!.

In terms of n, the number of iterations becomes

f(n) = nn!
n∑

j=1

1
j!

< 2nn!.

Hence, the running time of the algorithm is Θ(nn!).

4.7 Exercises

4.1. Give a recursive algorithm that computes the nth Fibonacci number fn

defined by

f1 = f2 = 1, fn = fn−1 + fn−2 for n ≥ 3.
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4.2. Give an iterative algorithm that computes the nth Fibonacci number fn

defined above.

4.3. Use induction to develop a recursive algorithm for finding the maximum
element in a given sequence A[1..n] of n elements.

4.4. Use induction to develop a recursive algorithm for finding the average of
n real numbers A[1..n].

4.5. Use induction to develop a recursive algorithm that searches for an element
x in a given sequence A[1..n] of n elements.

4.6. Give a recursive version of Algorithm selectionsort.

4.7. Give a recursive version of Algorithm insertionsort.

4.8. Give a recursive version of Algorithm bubblesort given in Exercise 1.17.

4.9. Give an iterative version of Algorithm majority.

4.10. Illustrate the operation of Algorithm majority on the arrays

(a) 5 7 5 4 5 .

(b) 5 7 5 4 8 .

(c) 2 4 1 4 4 4 6 4 .

4.11. Prove Observation 4.1.

4.12. Prove or disprove the following claim. If in Step 7 of Procedure candidate
in Algorithm majority j = n but count = 0, then c is the majority
element.

4.13. Prove or disprove the following claim. If in Step 7 of Procedure candidate
in Algorithm majority j = n and count > 0, then c is the majority
element.

4.14. Use Algorithm exprec to compute
(a) 25. (b) 27. (c) 35. (d) 57.

4.15. Solve Exercise 4.14 using Algorithm exp instead of Algorithm exprec.

4.16. Use Horner’s rule described in Sec. 4.4 to evaluate the following polynomi-
als at the point x = 2:

(a) 3x5 + 2x4 + 4x3 + x2 + 2x + 5.

(b) 2x7 + 3x5 + 2x3 + 5x2 + 3x + 7.

4.17. Illustrate the operation of Algorithm radixsort on the following sequence
of eight numbers:

(a) 4567, 2463, 6523, 7461, 4251, 3241, 6492, 7563.

(b) 16,543, 25,895, 18,674, 98,256, 91,428, 73,234, 16,597, 73,195.
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4.18. Express the time complexity of Algorithm radixsort in terms of n when
the input consists of n positive integers in the interval

(a) [1..n].

(b) [1..n2].

(c) [1..2n ].

4.19. Let A[1..n] be an array of positive integers in the interval [1..n!]. Which
sorting algorithm do you think is faster: bottomupsort or radixsort?
(see Sec. 1.7).

4.20. What is the time complexity of Algorithm radixsort if arrays are used
instead of linked lists? Explain.

4.21. A sorting method known as bucket sort works as follows. Let A[1..n]
be a sequence of n numbers within a reasonable range, say all numbers
are between 1 and m, where m is not too large compared to n. The
numbers are distributed into k buckets, with the first bucket containing
those numbers between 1 and �m/k�, the second bucket containing those
numbers between �m/k�+ 1 to �2m/k�, and so on. The numbers in each
bucket are then sorted using another sorting algorithm, say Algorithm
insertionsort. Analyze the running time of the algorithm.

4.22. Instead of using another sorting algorithm in Exercies 4.21, design a recur-
sive version of bucket sort that recursively sorts the numbers in each bucket.
What is the major disadvantage of this recursive version?

4.23. A sorting algorithm is called stable if the order of equal elements is pre-
served after sorting. Which of the following sorting algorithms are stable?

(a) selectionsort (b) insertionsort (c) bubblesort
(d) bottomupsort (e) heapsort (f) radixsort.

4.24. Carefully explain why in Algorithm permutations1 when P [j] and P [m]
are interchanged before the recursive call, they must be interchanged back
after the recursive call.

4.25. Carefully explain why in Algorithm permutations2 P [j] must be reset
to 0 after the recursive call.

4.26. Carefully explain why in Algorithm permutations2, when Procedure
perm2 is invoked by the call perm2(m) with m > 0, the array P con-
tains exactly m zeros, and hence the recursive call perm2(m − 1) will be
executed exactly m times.

4.27. Modify Algorithm permutations2 so that the permutations of the num-
bers 1, 2, . . . , n are generated in a reverse order to that produced by Algo-
rithm permutations2.

4.28. Modify Algorithm permutations2 so that it generates all k-subsets of the
set {1, 2, . . . , n}, 1 ≤ k ≤ n.
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4.29. Analyze the time complexity of the modified algorithm in Exercise 4.28.

4.30. Prove the correctness of Algorithm permutations1.

4.31. Prove the correctness of Algorithm permutations2.

4.32. Let A[1..n] be a sorted array of n integers, and x an integer. Design an
O(n) time algorithm to determine whether there are two elements in A, if
any, whose sum is exactly x.

4.33. Use induction to solve Exercise 2.7.

4.34. Use induction to solve Exercise 2.8.

4.8 Bibliographic Notes

The use of induction as a mathematical technique for proving the correct-
ness of algorithms was first developed by Floyd (1967). Recursion has been
studied extensively in algorithm design. See, for example, the books of
Burge (1975) and Paull (1988). The use of induction as a design technique
appears in Manber (1988). Manber (1989) is a whole book that is mostly
devoted to the induction design technique. Unlike this chapter, induction
in that book encompasses a wide variety of problems and is used in its
broad sense to cover other design techniques such as divide and conquer
and dynamic programming. The problem of finding the majority was stud-
ied, for example, by Misra and Gries (1982). Fischer and Salzberg (1982)
show that using more sophisticated data structures, the number of com-
parisons can be reduced to 3n/2 + 1 in the worst case and this bound is
optimal. Horner’s rule for polynomial evaluation is after the English math-
ematician W. G. Horner. Radix sort is used by card-sorting machines. In
old machines, the machine did the distribution step and the operator col-
lected the piles after each pass and combined them into one for the next
pass. Algorithm permutations2 appears in Banachowski, Kreczmar, and
Rytter (1991).
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Chapter 5

Divide and Conquer

5.1 Introduction

The name “divide and conquer” has been given to a powerful algorithm
design technique that is used to solve a variety of problems. In its simplest
form, a divide-and-conquer algorithm divides the problem instance into a
number of subinstances (in most cases 2), recursively solves each subin-
stance separately, and then combines the solutions to the subinstances to
obtain the solution to the original problem instance. To illustrate this
approach, consider the problem of finding both the minimum and maxi-
mum in an array of integers A[1..n] and assume for simplicity that n is a
power of 2. A straightforward algorithm might look like the one below. It
returns a pair (x, y), where x is the minimum and y is the maximum.

1. x←A[1]; y←A[1]
2. for i← 2 to n
3. if A[i] < x then x←A[i]
4. if A[i] > y then y←A[i]
5. end for
6. return (x, y)

Clearly, the number of element comparisons performed by this method
is 2n−2. However, using the divide-and-conquer strategy, we can find both
the minimum and maximum in only (3n/2)− 2 element comparisons. The
idea is very simple: Divide the input array into two halves A[1..n/2] and

131



January 14, 2016 14:21 Algorithms: Design Techniques and Analysis - 9in x 6in b2305-ch05 page 132

132 Algorithms: Design Techniques and Analysis

A[(n/2) + 1..n], find the minimum, and maximum in each half and return
the minimum of the two minima and the maximum of the two maxima.
The divide-and-conquer algorithm is given in Algorithm minmax.

Algorithm 5.1 minmax
Input: An array A[1..n] of n integers, where n is a power of 2.

Output: (x, y): the minimum and maximum integers in A.

1. minmax(1, n)

Procedure minmax(low , high)

1. if high − low = 1 then
2. if A[low ] < A[high] then return (A[low ], A[high])
3. else return (A[high], A[low ])
4. end if
5. else
6. mid←�(low + high)/2�
7. (x1, y1)← minmax(low ,mid)
8. (x2, y2)← minmax(mid + 1, high)
9. x← min{x1, x2}

10. y← max{y1, y2}
11. return (x, y)
12. end if

Let C(n) denote the number of comparisons performed by the algorithm
on an array of n elements, where n is a power of 2. Note that the element
comparisons are performed only in steps 2, 9, and 10. Also note that
the number of comparisons performed by steps 7 and 8 as a result of the
recursive calls is C(n/2). This gives rise to the following recurrence relation
for the number of comparisons done by the algorithm:

C(n) =

{
1 if n = 2,

2C(n/2) + 2 if n > 2.

We proceed to solve this recurrence by expansion as follows (k = log n):

C(n) = 2C(n/2) + 2

= 2(2C(n/4) + 2) + 2

= 4C(n/4) + 4 + 2

= 4(2C(n/8) + 2) + 4 + 2
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= 8C(n/8) + 8 + 4 + 2
...

= 2k−1C(n/2k−1) + 2k−1 + 2k−2 + · · ·+ 22 + 2

= 2k−1C(2) +
k−1∑
j=1

2j

= (n/2) + 2k − 2 (Eq. (A.10))

= (3n/2)− 2.

This result deserves to be called a theorem.

Theorem 5.1 Given an array A[1..n] of n elements, where n is a power
of 2, it is possible to find both the minimum and maximum of the elements
in A using only (3n/2)− 2 element comparisons.

5.2 Binary Search

Recall that in binary search, we test a given element x against the mid-
dle element in a sorted array A[low ..high ]. If x < A[mid ], where mid =
�(low + high)/2�, then we discard A[mid ..high ] and the same procedure is
repeated on A[low ..mid − 1]. Similarly, if x > A[mid ], then we discard
A[low ..mid ] and repeat the same procedure on A[mid + 1..high ]. This sug-
gests the recursive Algorithm binarysearchrec as another alternative to
implement this search method.

Algorithm 5.2 binarysearchrec
Input: An array A[1..n] of n elements sorted in nondecreasing order and

an element x.
Output: j if x = A[j], 1 ≤ j ≤ n, and 0 otherwise.

1. binarysearch(1, n)

Procedure binarysearch(low , high)

1. if low > high then return 0
2. else
3. mid←�(low + high)/2�
4. if x = A[mid ] then return mid
5. else if x < A[mid ] then return binarysearch(low ,mid − 1)
6. else return binarysearch(mid + 1, high)
7. end if
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Analysis of the recursive binary search algorithm

To find the running time of the algorithm, we compute the number of
element comparisons, since this is a basic operation, i.e., the running time
of the algorithm is proportional to the number of element comparisons
performed (see Sec. 1.11.2). We will assume that each three-way comparison
counts as one comparison. First, note that if n = 0, i.e., the array is empty,
then the algorithm does not perform any element comparisons. If n = 1,
the else part will be executed and, in case x �= A[mid ], the algorithm
will recurse on an empty array. It follows that if n = 1, then exactly
one comparison is performed. If n > 1, then there are two possibilities:
If x = A[mid ], then only one comparison is performed; otherwise, the
number of comparisons required by the algorithm is one plus the number
of comparisons done by the recursive call on either the first or second half
of the array. If we let C(n) denote the number of comparisons performed
by Algorithm binarysearchrec in the worst case on an array of size n,
then C(n) can be expressed by the recurrence

C(n) ≤
{

1 if n = 1,

1 + C(�n/2�) if n ≥ 2.

Let k be such that 2k−1 ≤ n < 2k, for some integer k ≥ 2. If we expand
the above recurrence, we obtain

C(n) ≤ 1 + C(�n/2�)
≤ 2 + C(�n/4�)
...

≤ (k − 1) + C(�n/2k−1�)
= (k − 1) + 1

= k,

since ��n/2�/2� = �n/4�, etc. (see Eq. (A.3)), and �n/2k−1� = 1 (since
2k−1 ≤ n < 2k). Taking the logarithms of the inequalities

2k−1 ≤ n < 2k

and adding 1 to both sides yields

k ≤ log n + 1 < k + 1,
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or

k = �log n�+ 1,

since k is integer. It follows that

C(n) ≤ �log n�+ 1.

We have, in effect, proved the following theorem.

Theorem 5.2 The number of element comparisons performed by Algo-
rithm binarysearchrec to search for an element in an array of n elements
is at most �log n� + 1. Thus, the time complexity of Algorithm binary-

searchrec is O(log n).

We close this section by noting that the recursion depth is O(log n),
and since in each recursion level Θ(1) of space is needed, the total amount
of space needed by the algorithm is O(log n). In contrast, this recursive
algorithm with the iterative version needs only Θ(1) space (see Sec. 1.3).

5.3 Mergesort

In this section, we consider an example of a simple divide-and-conquer
algorithm that reveals the essense of this algorithm design technique. We
give here more detailed description of how a generic divide-and-conquer
algorithm works in order to solve a problem instance in a top-down manner.
Consider the example of bottomupsort shown in Fig. 1.3. We have seen
how the elements were sorted by an implicit traversal of the associated
sorting tree level by level. In each level, we have pairs of sequences that
have already been sorted and are to be merged to obtain larger, sorted
sequences. We continue ascending the tree level by level until we reach the
root at which the final sequence has been sorted.

Now, let us consider doing the reverse, i.e., top-down instead of
bottom-up. In the beginning, we have the input array

A[1..8] = 9 4 5 2 1 7 4 6 .

We divide this array into two 4-element arrays as

9 4 5 2 and 1 7 4 6 .
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Next, we sort these two arrays individually, and then simply merge them
to obtain the desired sorted array. Call this algorithm sort. As to the
sorting method used for each half, we are free to make use of any sorting
algorithm to sort the two subarrays. In particular, we may use Algorithm
sort itself. If we do so, then we have indeed arrived at the well-known
mergesort algorithm. A precise description of this algorithm is given in
Algorithm mergesort.

Algorithm 5.3 mergesort
Input: An array A[1..n] of n elements.

Output: A[1..n] sorted in nondecreasing order.

1. mergesort(A, 1, n)

Procedure mergesort(A, low , high)

1. if low < high then
2. mid←�(low + high)/2�
3. mergesort(A, low ,mid)
4. mergesort(A, mid + 1, high)
5. merge (A, low ,mid , high)
6. end if

A simple proof by induction establishes the correctness of the algorithm.

5.3.1 How the algorithm works

Consider Fig. 5.1, which illustrates the behavior of Algorithm mergesort

on the input array

A[1..8] = 9 4 5 2 1 7 4 6 .

As shown in the figure, the main call mergesort(A, 1, 8) induces a series
of recursive calls represented by an implicit binary tree. Each node of
the tree consists of two arrays. The top array is the input to the call
represented by that node, whereas the bottom array is its output. Each
edge of the tree is replaced with two antidirectional edges indicating the
flow of control. The main call causes the call mergesort(A, 1, 4) to take
effect, which, in turn, produces the call mergesort(A, 1, 2), and so on. Edge
labels indicate the order in which these recursive calls take place. This chain
of calls corresponds to a preorder traversal of the tree: Visit the root, the
left subtree, and then the right subtree (see Sec. 2.5.1). The computation,
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Fig. 5.1. The behavior of Algorithm mergesort.

however, corresponds to a postorder traversal of the tree: Visit the left
subtree, the right subtree, and then the root. To implement this traversal,
a stack is used to hold the local data of each active call.

As indicated in the figure, the process of sorting the original array
reduces to that used in Algorithm bottomupsort when n is a power
of 2. Each pair of numbers are merged to produce two-element sorted
sequences. These sorted 2-element sequences are then merged to obtain
4-element sorted sequences, and so on. Compare Fig. 5.1 with Fig. 1.3.
The only difference between the two algorithms is in the order of merges:
In Algorithm bottomupsort, merges are carried out level by level, while
in Algorithm mergesort, the merges are performed in postorder. This jus-
tifies the remark stated in Observation 5.1 that the number of comparisons
performed by mergesort is identical to that of Algorithm bottomupsort

when n is a power of 2.

5.3.2 Analysis of the mergesort algorithm

As in the binary search algorithm, the basic operation here is element com-
parison. That is, the running time is proportional to the number of element
comparisons performed by the algorithm. Now, we wish to compute the
number of element comparisons C(n) required by Algorithm mergesort

to sort an array of n elements. For simplicity, we will assume that n is a
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power of 2, i.e., n = 2k for some integer k ≥ 0. If n = 1, then the algorithm
does not perform any element comparisons. If n > 1, then steps 2 through
5 are executed. By definition of the function C, the number of compar-
isons required to execute steps 3 and 4 is C(n/2) each. By Observation 1.1,
the number of comparisons needed to merge the two subarrays is between
n/2 and n − 1. Thus, the minimum number of comparisons done by the
algorithm is given by the recurrence

C(n) =

{
0 if n = 1,

2C(n/2) + n/2 if n ≥ 2.

Letting d = 0, a = c = 2, and b = 1/2 in Corollary 1.2, we obtain

C(n) =
n logn

2
.

The maximum number of comparisons done by the algorithm is given by
the recurrence

C(n) =

{
0 if n = 1,

2C(n/2) + n− 1 if n ≥ 2.

We proceed to solve this recurrence by expansion as follows:

C(n) = 2C(n/2) + n− 1

= 2(2C(n/22) + n/2− 1) + n− 1

= 22C(n/22) + n− 2 + n− 1

= 22C(n/22) + 2n− 2− 1

...

= 2kC(n/2k) + kn− 2k−1 − 2k−2 − · · · − 2− 1

= 2kC(1) + kn−
k−1∑
j=0

2j

= 2k × 0 + kn− (2k − 1) (Eq. (A.10))

= kn− 2k + 1

= n log n− n + 1.

As a result, we have the following observation.
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Observation 5.1 The total number of element comparisons performed by
Algorithm mergesort to sort an array of size n, where n is a power of 2 ,
is between (n log n)/2 and n logn − n + 1. These are exactly the numbers
stated in Observation 1.5 for Algorithm bottomupsort.

As described before, this is no coincidence, as Algorithm bottomup-

sort performs the same element comparisons as Algorithm mergesort

when n is a power of 2. Section 5.6.4 shows empirical results in which the
number of comparisons performed by the two algorithms are close to each
other when n is not a power of 2.

If n is any arbitrary positive integer (not necessarily a power of 2), the
recurrence relation for C(n), the number of element comparisons performed
by Algorithm mergesort, becomes

C(n) =

{
0 if n = 1,

C(�n/2�) + C(�n/2�) + bn if n ≥ 2

for some nonnegative constant b. By Theorem 1.4, the solution to this
recurrence is C(n) = Θ(n log n).

Since the operation of element comparison is a basic operation in the
algorithm, it follows that the running time of Algorithm mergesort is
T (n) = Θ(n log n). By Theorem 11.2, the running time of any algorithm for
sorting by comparisons is Ω(n log n). It follows that Algorithm mergesort

is optimal.
Clearly, as in Algorithm bottomupsort, the algorithm needs Θ(n) of

space for carrying out the merges. It is not hard to see that the space needed
for the recursive calls is Θ(n) (Exercise 5.14). It follows that the space
complexity of the algorithm is Θ(n). The following theorem summarizes
the main results of this section.

Theorem 5.3 Algorithm mergesort sorts an array of n elements in
time Θ(n log n) and space Θ(n).

5.4 The Divide-and-Conquer Paradigm

Now, since we have at our disposal Algorithm bottomupsort, why resort
to a recursive algorithm such as mergesort, especially if we take into
account the amount of extra space needed for the stack, and the extra time
brought about by the overhead inherent in handling recursive calls? From
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a practical point of view, there does not seem to be any reason to favor
a recursive algorithm on its equivalent iterative version. However, from a
theoretical point of view, recursive algorithms share the merits of being
easy to state, grasp, and analyze. To see this, compare the pseudocode of
Algorithm mergesort with that of bottomupsort. It takes much more
time to debug the latter, or even to comprehend the idea behind it. This
suggests that a designer of an algorithm might be better off starting with
an outline of a recursive description, if possible, which may afterwards be
refined and converted into an iterative algorithm. Note that this is always
possible, as every recursive algorithm can be converted into an iterative
algorithm which functions in exactly the same way on every instance of
the problem. In general, the divide-and-conquer paradigm consists of the
following steps.

(a) The divide step. In this step of the algorithm, the input is partitioned
into p ≥ 1 parts, each of size strictly less than n, the size of the original
instance. The most common value of p is 2, although other small
constants greater than 2 are not uncommon. We have already seen
an example of the case when p = 2, i.e., Algorithm mergesort. If
p = 1 as in Algorithm binarysearchrec, then part of the input is
discarded and the algorithm recurses on the remaining part. This case
is equivalent to saying that the input data is divided into two parts,
where one part is discarded; note that the some work must be done in
order to discard some of the elements. p may also be as high as log n,
or even nε, where ε is some constant, 0 < ε < 1.

(b) The conquer step. This step consists of performing p recursive call(s)
if the problem size is greater than some predefined threshold n0. This
threshold is derived by mathematical analysis of the algorithm. Once
it is found, it can be increased by any constant amount without affect-
ing the time complexity of the algorithm. In Algorithm mergesort,
although n0 = 1, it can be set to any positive constant without affecting
the Θ(n log n) time complexity. This is because the time complexity,
by definition, is concerned with the behavior of the algorithm when n

approaches infinity. For example, we can modify mergesort so that
when n ≤ 16, the algorithm uses a straightforward (iterative) sorting
algorithm, e.g., insertionsort. We can increase it to a much larger
value, say 1000. However, after some point, the behavior of the algo-
rithm starts to degrade. An (approximation to the) optimal threshold
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may be found empirically by fine-tuning its value until the desired
constant is found. It should be emphasized, however, that in some
algorithms, the threshold may not be as low as 1, it must be greater
than some constant that is usually found by a careful analysis of the
algorithm. An example of this is the median finding algorithm which
will be introduced in Sec. 5.5. It will be shown that the threshold for
that particular algorithm must be relatively high in order to guarantee
linear running time.

(c) The combine step.∗ In this step, the solutions to the p recursive call(s)
are combined to obtain the desired output. In Algorithm mergesort,
this step consists of merging the two sorted sequences obtained by the
two recursive calls using Algorithm merge. The combine step in a
divide-and-conquer algorithm may consist of merging, sorting, search-
ing, finding the maximum or minimum, matrix addition, etc.

The combine step is very crucial to the performance of virtually all
divide-and-conquer algorithms, as the efficiency of the algorithm is largely
dependent on how judiciously this step is implemented. To see this, sup-
pose that Algorithm mergesort uses an algorithm that merges two sorted
arrays of size n/2 each in time Θ(n log n). Then, the recurrence relation
that describes the behavior of this modified sorting algorithm becomes

T (n) =

{
0 if n = 1,

2C(n/2) + bn logn if n ≥ 2,

for some nonnegative constant b. By Theorem 1.2, the solution to this
recurrence is T (n) = Θ(n log2 n), which is asymptotically larger than the
time complexity of Algorithm mergesort by a factor of log n.

On the other hand, the divide step is invariant in almost all divide-and-
conquer algorithms: Partition the input data into p parts, and proceed to
the conquer step. In many divide-and-conquer algorithms, it takes O(n)
time or even only O(1) time. For example, the time taken by Algorithm
mergesort to divide the input into two halves is constant; it is the time
needed to compute mid . In quicksort algorithm, which will be introduced
in Sec. 5.6, it is the other way around: The divide step requires Θ(n) time,
whereas the combine step is nonexistent.

∗Sometimes, this step is referred to as the merge step; this has nothing to do with the
process of merging two sorted sequences as in Algorithm mergesort.
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In general, a divide-and-conquer algorithm has the following format.

(1) If the size of the instance I is “small”, then solve the problem using a
straightforward method and return the answer. Otherwise, continue to
the next step.

(2) Divide the instance I into p subinstances I1, I2, . . . , Ip of approximately
the same size.

(3) Recursively call the algorithm on each subinstance Ij , 1 ≤ j ≤ p, to
obtain p partial solutions.

(4) Combine the results of the p partial solutions to obtain the solution to
the original instance I. Return the solution of instance I.

The overall performance of a divide-and-conquer algorithm is very sen-
sitive to changes in these steps. In the first step, the threshold should be
chosen carefully. As discussed before, it may need to be fine-tuned until a
reasonable value is found and no more adjustment is needed. In the second
step, the number of partitions should be selected appropriately so as to
achieve the asymptotically minimum running time. Finally, the combine
step should be as efficient as possible.

5.5 Selection: Finding the Median and the
kth Smallest Element

The median of a sequence of n sorted numbers A[1..n] is the “middle”
element. If n is odd, then the middle element is the (n + 1)/2th element in
the sequence. If n is even, then there are two middle elements occurring at
positions n/2 and n/2 + 1. In this case, we will choose the n/2th smallest
element. Thus, in both cases, the median is the �n/2�th smallest element.

A straightforward method of finding the median is to sort all elements
and pick the middle one. This takes Ω(n log n) time, as any comparison-
based sort process must spend at least this much time in the worst case
(Theorem 11.2).

It turns out that the median, or in general the kth smallest element, in a
set of n elements can be found in optimal linear time. This problem is also
known as the selection problem. The basic idea is as follows. Suppose after
the divide step of every recursive call in a recursive algorithm, we discard
a constant fraction of the elements and recurse on the remaining elements.
Then, the size of the problem decreases geometrically. That is, in each call,
the size of the problem is reduced by a constant factor. For concreteness,
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let us assume that an algorithm discards one-third of whatever objects it
is processing and recurses on the remaining two-thirds. Then, the number
of elements becomes 2n/3 in the second call, 4n/9 in the third call, 8n/27
in the fourth call, and so on. Now, suppose that in each call, the algorithm
does not spend more than a constant time f̧or each element. Then, the over-
all time spent on processing all elements gives rise to the geometric series

cn + (2/3)cn + (2/3)2cn + · · ·+ (2/3)jcn + · · · ,
where c is some appropriately chosen constant. By Eq. A.12, this quantity
is less than

∞∑
j=0

cn(2/3)j = 3cn = Θ(n).

This is exactly what is done in the selection algorithm. Algorithm
select shown below for finding the kth smallest element behaves in the
same way. First, if the number of elements is less than 44, a predefined
threshold, then the algorithm uses a straightforward method to compute

Algorithm 5.4 select
Input: An array A[1..n] of n elements and an integer k, 1 ≤ k ≤ n.

Output: The kth smallest element in A.

1. select(A, k)

Procedure select(A, k)

1. n← |A|
2. if n < 44 then sort A and return (A[k])
3. Let q = �n/5�. Divide A into q groups of 5 elements each. If 5 does

not divide p, then discard the remaining elements.
4. Sort each of the q groups individually and extract its median. Let

the set of medians be M .
5. mm← select(M, �q/2�) {mm is the median of medians}
6. Partition A into three arrays:

A1 = {a | a < mm}
A2 = {a | a = mm}
A3 = {a | a > mm}

7. case
|A1| ≥ k: return select(A1, k)
|A1|+ |A2| ≥ k: return mm
|A1|+ |A2| < k: return select(A3, k − |A1| − |A2|)

8. end case
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the kth smallest element. The choice of this threshold will be apparent
later when we analyze the algorithm. The next step partitions the ele-
ments into �n/5� groups of five elements each. If n is not a multiple of 5,
the remaining elements are excluded, and this should not affect the per-
formance of the algorithm. Each group is sorted and its median, the third
element, is extracted. Next, the median of these medians, denoted by mm,
is computed recursively. Step 6 of the algorithm partitions the elements
in A into three arrays: A1, A2, and A3, which, respectively, contain those
elements less than, equal to, and greater than mm. Finally, in Step 7, it
is determined in which of the three arrays the kth smallest element occurs,
and depending on the outcome of this test, the algorithm either returns the
kth smallest element, or recurses on either A1 or A3.

Example 5.1 For the sake of this example, let us temporarily change
the threshold in the algorithm from 44 to a smaller number, say 6. Suppose
we want to find the median of the following 25 numbers: 8, 33, 17, 51, 57,
49, 35, 11, 25, 37, 14, 3, 2, 13, 52, 12, 6, 29, 32, 54, 5, 16, 22, 23, 7. Let
A[1..25] be this sequence of numbers and k = �25/2� = 13. We find the
13th smallest element in A as follows.

First, we divide the set of numbers into five groups of five elements each:
(8, 33, 17, 51, 57), (49, 35, 11, 25, 37), (14, 3, 2, 13, 52), (12, 6, 29, 32,
54), (5, 16, 22, 23, 7). Next, we sort each group in increasing order: (8, 17,
33, 51, 57), (11, 25, 35, 37, 49), (2, 3, 13, 14, 52), (6, 12, 29, 32, 54), (5, 7,
16, 22, 23). Now, we extract the median of each group and form the set of
medians: M = {33, 35, 13, 29, 16}. Next, we use the algorithm recursively
to find the median of medians in M : mm = 29. Now, we partition A into
three sequences: A1 = {8, 17, 11, 25, 14, 3, 2, 13, 12, 6, 5, 16, 22, 23, 7}, A2 =
{29}, and A3 = {33, 51, 57, 49, 35, 37, 52, 32, 54}. Since 13 ≤ 15 = |A1|, the
elements in A2 and A3 are discarded, and the 13th element must be in A1.
We repeat the same procedure above, so we set A = A1. We divide the
elements into three groups of five elements each: (8, 17, 11, 25, 14), (3, 2,
13, 12, 6), (5, 16, 22, 23, 7). After sorting each group, we find the new set
of medians: M = {14, 6, 16}. Thus, the new median of medians mm is 14.
Next, we partition A into three sequences: A1 = {8, 11, 3, 2, 13, 12, 6, 5, 7},
A2 = {14}, and A3 = {17, 25, 16, 22, 23}. Since 13 > 10 = |A1| + |A2|, we
set A = A3 and find the third element in A (3 = 13−10). The algorithm will
return A[3] = 22. Thus, the median of the numbers in the given sequence
is 22.
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5.5.1 Analysis of the selection algorithm

It is not hard to see that Algorithm select correctly computes the kth
smallest element. Now, we analyze the running time of the algorithm.
Consider Fig. 5.2 in which a number of elements have been divided into
5-element groups with the elements in each group ordered from bottom to
top in increasing order.

Furthermore, these groups have been aligned in such a way that their
medians are in increasing order from left to right. It is clear from the fig-
ure that all elements enclosed within the rectangle labeled W are less than
or equal to mm, and all elements enclosed within the rectangle labeled
X are greater than or equal to mm. Let A′

1 denote the set of elements
that are less than or equal to mm, and A′

3 the set of elements that are
greater than or equal to mm. In the algorithm, A1 is the set of ele-
ments that are strictly less than mm and A3 is the set of elements that are
strictly greater than mm. Since A′

1 is at least as large as W (see Fig. 5.2),
we have

|A′
1| ≥ 3��n/5�/2� ≥ 3

2
�n/5�.

increasing
    order

Set of group medians
sorted in  increasing
order from left to right

All elements here are
less than or equal to
the median of medians

All elements here are
greater than or equal to
the median of medians

mm

W

XY

Z

Fig. 5.2. Analysis of Algorithm select.
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Hence,

|A3| ≤ n− 3
2
�n/5� ≤ n− 3

2

(
n− 4

5

)
= n− 0.3n + 1.2 = 0.7n + 1.2.

By a symmetrical argument, we see that

|A′
3| ≥

3
2
�n/5� and |A1| ≤ 0.7n + 1.2.

Thus, we have established upperbounds on the number of elements in A1

and A3, i.e., the number of elements less than mm and the number of ele-
ments greater than mm, which cannot exceed roughly 0.7n, a constant
fraction of n.

Now we are in a position to estimate T (n), the running time of the
algorithm. Steps 1 and 2 of procedure select in the algorithm cost Θ(1)
time each. Step 3 costs Θ(n) time. Step 4 costs Θ(n) time, as sorting
each group costs a constant amount of time. In fact, sorting each group
costs no more than seven comparisons. The cost of Step 5 is T (�n/5�).
Step 6 takes Θ(n) time. By the above analysis, the cost of Step 7 is at
most T (0.7n + 1.2). Now we wish to express this ratio in terms of the
floor function and get rid of the constant 1.2. For this purpose, let us
assume that 0.7n + 1.2 ≤ �0.75n�. Then, this inequality will be satisfied if
0.7n+1.2 ≤ 0.75n−1, i.e., if n ≥ 44. This is why we have set the threshold
in the algorithm to 44. We conclude that the cost of this step is at most
T (�0.75n�) for n ≥ 44. This analysis implies the following recurrence for
the running time of Algorithm select.

T (n) ≤
{

c if n < 44,

T (�n/5�) + T (�3n/4�) + cn if n ≥ 44,

for some constant c that is sufficiently large. Since (1/5) + (3/4) < 1, it
follows by Theorem 1.5, that the solution to this recurrence is T (n) = Θ(n).
In fact, by Example 1.39,

T (n) ≤ cn

1− 1/5− 3/4
= 20cn.

Note that each ratio > 0.7n results in a different threshold. For instance,
choosing 0.7n + 1.2 ≤ �0.71n� results in a threshold of about 220. The
following theorem summarizes the main result of this section.
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Theorem 5.4 The kth smallest element in a set of n elements drawn
from a linearly ordered set can be found in Θ(n) time. In particular, the
median of n elements can be found in Θ(n) time.

It should be emphasized, however, that the multiplicative constant in
the time complexity of the algorithm is too large. In Sec. 13.5, we will
present a simple randomized selection algorithm with Θ(n) expected run-
ning time and a small multiplicative constant. Also, Algorithm select

can be rewritten without the need for the auxiliary arrays A1, A2, and A3

(Exercise 5.28).

5.6 Quicksort

In this section, we describe a very popular and efficient sorting algo-
rithm: quicksort. This sorting algorithm has an average running time
of Θ(n log n). One advantage of this algorithm over Algorithm mergesort

is that it sorts the elements in place, i.e., it does not need auxiliary storage
for the elements to be sorted . Before we describe the sorting algorithm, we
need the following partitioning algorithm, which is the basis for Algorithm
quicksort.

5.6.1 A partitioning algorithm

Let A[low ..high ] be an array of n numbers, and x = A[low ]. We consider
the problem of rearranging the elements in A so that all elements less
than or equal to x precede x which in turn precedes all elements greater
than x. After permuting the elements in the array, x will be A[w] for
some w, low ≤ w ≤ high . For example, if A = 5 3 9 2 7 1 8 ,

and low = 1 and high = 7, then after rearranging the elements we will have
A = 1 3 2 5 7 9 8 . Thus, after the elements have been rearranged,
w = 4. The action of rearrangement is also called splitting or partitioning
around x, which is called the pivot or splitting element.

Definition 5.1 We say that an element A[j] is in its proper position or
correct position if it is neither smaller than the elements in A[low ..j − 1]
nor larger than the elements in A[j + 1..high].

An important observation is the following.
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Observation 5.2 After partitioning an array A using x ∈ A as a pivot, x

will be in its correct position.

In other words, if we sort the elements in A in nondecreasing order after
they have been rearranged, then we will still have A[w] = x. Note that it
is fairly simple to partition a given array A[low ..high ] if we are allowed
to use another array B[low ..high ] as an auxiliary storage. What we are
interested in is carrying out the partitioning without an auxiliary array. In
other words, we are interested in rearranging the elements of A in place.
There are several ways to achieve this from which we choose the method
described formally in Algorithm split.

Algorithm 5.5 split
Input: An array of elements A[low ..high].

Output: (1)A with its elements rearranged, if necessary, as described above.
(2) w, the new position of the splitting element A[low ].

1. i← low
2. x←A[low ]
3. for j← low + 1 to high
4. if A[j] ≤ x then
5. i← i + 1
6. if i �= j then interchange A[i] and A[j]
7. end if
8. end for
9. interchange A[low ] and A[i]

10. w← i
11. return A and w

Throughout the execution of the algorithm, we maintain two pointers
i and j that are initially set to low and low + 1, respectively. These two
pointers move from left to right so that after each iteration of the for loop,
we have (see Fig. 5.3(a)):

(1) A[low ] = x.
(2) A[k]≤ x for all k, low ≤ k ≤ i.
(3) A[k]> x for all k, i < k ≤ j.

After the algorithm scans all elements, it interchanges the pivot with
A[i], so that all elements smaller than or equal to the pivot are to its left
and all elements larger than the pivot are to its right (see Fig. 5.3(b)).
Finally, the algorithm sets w, the position of the pivot, to i.
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(b) After the algorithm terminates. 

(a) After each iteration of the for loop.

x

i j

?

low high

low high

x

w

x x

x x

Fig. 5.3. The behavior of Algorithm split.
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(c)

j

i

6715 4 83 2

(d)

j

i

6 715 4 83 2

(e)

j

i

6 71 54 832

(f)

j

i

6715 4 8 3 2

(b)

j

i

67 15 4 8 3 2

(a)

j

i

Fig. 5.4. Example of partitioning a sequence of numbers using Algorithm split.

Example 5.2 To aid in the understanding of the algorithm, we apply it
to the input array 5 7 1 6 4 8 3 2 . The working of the algorithm
on this input is illustrated in Fig. 5.4. Figure 5.4(a) shows the input array.
Here low = 1 and high = 8, and the pivot is x = 5 = A[1]. Initially, i and
j point to elements A[1] and A[2], respectively (see Fig. 5.4(a)). To start
the partitioning, j is moved to the right, and since A[3] = 1 ≤ 5 = x, i is
incremented and then A[i] and A[j] are interchanged as shown in Fig. 5.4(b).
Similarly, j is incremented twice and then A[3] and A[5] are interchanged
as shown in Fig. 5.4(c). Next, j is moved to the right where an element
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that is less than x, namely A[7] = 3 is found. Again, i is incremented and
A[4] and A[7] are interchanged as shown in Fig. 5.4(d). Once more j is
incremented and since A[8] = 2 is less than the pivot, i is incremented and
then A[5] and A[8] are interchanged (see Fig. 5.4(e)). Finally, before the
procedure ends, the pivot is moved to its proper position by interchanging
A[i] with A[1] as shown in Fig. 5.4(f).

The following observation is easy to verify.

Observation 5.3 The number of element comparisons performed by Algo-
rithm split is exactly n− 1. Thus, its time complexity is Θ(n).

Finally, we note that the only extra space used by the algorithm is that
needed to hold its local variables. Therefore, the space complexity of the
algorithm is Θ(1).

5.6.2 The sorting algorithm

In its simplest form, Algorithm quicksort can be summarized as follows.
The elements A[low ..high ] to be sorted are rearranged using Algorithm
split so that the pivot element, which is always A[low ], occupies its correct
position A[w], and all elements that are less than or equal to A[w] occupy
the positions A[low ..w − 1], while all elements that are greater than A[w]
occupy the positions A[w + 1..high]. The subarrays A[low ..w − 1] and
A[w+1..high ] are then recursively sorted to produce the entire sorted array.
The formal algorithm is shown as Algorithm quicksort.

Algorithm 5.6 quicksort
Input: An array A[1..n] of n elements.

Output: The elements in A sorted in nondecreasing order.

1. quicksort(A, 1, n)

Procedure quicksort(A, low , high)

1. if low < high then
2. split(A[low ..high ], w) {w is the new position of A[low ]}
3. quicksort(A, low , w − 1)
4. quicksort(A, w + 1, high)
5. end if

The relationship between Algorithm split and Algorithm quicksort

is similar to that between Algorithm merge and Algorithm mergesort;
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both sorting algorithms consist of a series of calls to one of these two basic
algorithms, namely merge and split. However, there is a subtle difference
between the two from the algorithmic point of view: In Algorithm merge-

sort, merging the sorted sequences belongs to the combine step, whereas
splitting in Algorithm quicksort belongs to the divide step. Indeed, the
combine step in Algorithm quicksort is nonexistent.

Example 5.3 Suppose we want to sort the array 4 6 3 1 8 7
2 5 . The sequence of splitting the array and its subarrays is illustrated

in Fig. 5.5. Each pair of arrays in the figure corresponds to an input and
output of Algorithm split. Darkened boxes are used for the pivots. For
example, in the first call, Algorithm split was presented with the above 8-
element array. By Observation 5.2, after splitting the array, 4 will occupy
its proper position, namely position 4. Consequently, the problem now
reduces to sorting the two subarrays 2 3 1 and 8 7 6 5 . Since

1st call

2nd call

3rd call

4th call

6th call

5th call

7th call

8th call

4 6 3 1 8 7 2 5
2 3 1 4 8 7 6 5

2 3 1
31 2

1
1

1 2 3 4 5 6 7 8

8 7 6 5
5 7 6 8

6
6

3
3

5 7 6
5 7 6

7 6
6 7

Fig. 5.5. Example of the execution of Algorithm quicksort.
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calls are implemented in a preorder fashion, the second call induces the
third call on input 1 . Another call on only one element, namely 3 is
executed. At this point, the flow of control backs up to the first call and
another call on the subarray 8 7 6 5 is initiated. Continuing this way,
the array is finally sorted after eight calls to procedure quicksort.

5.6.3 Analysis of the quicksort algorithm

In this section, we analyze the running time of Algorithm quicksort. We
will show that although it exhibits a running time of Θ(n2) in the worst
case, its average time complexity is indeed Θ(n logn). This together with
the fact that it sorts in place makes it very popular and comparable to
heapsort in practice. Although no auxiliary storage is required by the
algorithm to store the array elements, the space required by the algorithm
is O(n). This is because in every recursive call, the left and right indices of
the right part of the array to be sorted next, namely w + 1 and high, must
be stored. It will be left as an exercise to show that the work space needed
by the algorithm varies between Θ(log n) and Θ(n) (Exercise 5.38).

5.6.3.1 The worst-case behavior

To find the running time of Algorithm quicksort in the worst case, we
only need to find one situation in which the algorithm exhibits the longest
running time for each value of n. Suppose that in every call to Algorithm
quicksort, it happens that the pivot, which is A[low ], is the smallest
number in the array. This means that Algorithm split will return w = low
and, consequently, there will be only one nontrivial recursive call, the other
call being a call on an empty array. Thus, if Algorithm quicksort is
initiated by the call quicksort(A, 1, n), the next two recursive calls will
be quicksort(A, 1, 0) and quicksort(A, 2, n), with the first being a trivial
call. It follows that the worst case happens if the input array is already
sorted in nondecreasing order! In this case, the smallest element will always
be chosen as the pivot, and as a result, the following n calls to procedure
quicksort will take place:

quicksort(A, 1, n), quicksort(A, 2, n), . . . , quicksort(A, n, n).

These, in turn, initiate the following nontrivial calls to Algorithm split.

split(A[1..n], w), split(A[2..n], w), . . . , split(A[n..n], w).
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Since the number of comparisons done by the splitting algorithm on
input of size j is j − 1 (Observation 5.3), it follows that the total number
of comparisons performed by Algorithm quicksort in the worst case is

(n− 1) + (n− 2) + · · ·+ 1 + 0 =
n(n− 1)

2
= Θ(n2).

It should be emphasized, however, that this extreme case is not the only
case that leads to a quadratic running time. If, for instance, the algorithm
always selects one of the smallest (or largest) k elements, for any constant
k that is sufficiently small relative to n, then the algorithm’s running time
is also quadratic.

The worst-case running time can be improved to Θ(n log n) by always
selecting the median as the pivot in linear time as shown in Sec. 5.5. This
is because the splitting of elements is highly balanced; in this case, the
two recursive calls have approximately the same number of elements. This
results in the following recurrence for counting the number of comparisons:

C(n) =

{
0 if n = 1,

2C(n/2) + Θ(n) if n > 1,

whose solution is C(n) = Θ(n logn). However, the hidden constant in the
time complexity of the median finding algorithm is too high to be used
in conjunction with Algorithm quicksort. Thus, we have the following
theorem.

Theorem 5.5 The running time of Algorithm quicksort is Θ(n2) in
the worst case. If, however, the median is always chosen as the pivot, then
its time complexity is Θ(n logn).

It turns out, however, that Algorithm quicksort as originally stated
is a fast sorting algorithm in practice (given that the elements to be sorted
are in random order); this is supported by its average time analysis, which
is discussed below. If the elements to be sorted are not in random order,
then choosing the pivot randomly, instead of always using A[low ], results
in a very efficient algorithm. This version of Algorithm quicksort will be
presented in Sec. 13.4.

5.6.3.2 The average-case behavior

It is important to note that the above extreme cases are practically rare,
and in practice the running time of Algorithm quicksort is fast. This
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motivates the investigation of its performance on the average. It turns out
that, on the average, its time complexity is Θ(n log n), and not only that,
but also the multiplicative constant is fairly small. For simplicity, we will
assume that the input elements are distinct. Note that the behavior of
the algorithm is independent of the input values; what matters is their
relative order. For this reason, we may assume without loss of generality,
that the elements to be sorted are the first n positive integers 1, 2, . . . , n.
When analyzing the average behavior of an algorithm, it is important to
assume some probability distribution on the input. In order to simplify the
analysis further, we will assume that each permutation of the elements is
equally likely. That is, we will assume that each of the n! permutations
of the numbers 1, 2, . . . , n is equally likely. This ensures that each number
in the array is equally likely to be the first element and thus chosen as
the pivot, i.e., the probability that any element of A will be picked as the
pivot is 1/n. Let C(n) denote the number of comparisons done by the algo-
rithm on the average on an input of size n. From the assumptions stated
(all elements are distinct and have the same probability of being picked as
the pivot), the average cost is computed as follows. By Observation 5.3,
Step 2 costs exactly n − 1 comparisons. Steps 3 and 4 cost C(w − 1)
and C(n − w) comparisons, respectively. Hence, the total number of
comparisons is

C(n) = (n− 1) +
1
n

n∑
w=1

(C(w − 1) + C(n− w)). (5.1)

Since

n∑
w=1

C(n− w) = C(n− 1) + C(n− 2) + · · ·+ C(0) =
n∑

w=1

C(w − 1),

Eq. (5.1) can be simplified to

C(n) = (n− 1) +
2
n

n∑
w=1

C(w − 1). (5.2)

This recurrence seems to be complicated when compared with the recur-
rences we are used to, as the value of C(n) depends on all its history:
C(n− 1), C(n− 2), . . . , C(0). However, we can remove this dependence as
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follows. First, we multiply Eq. (5.2) by n:

nC(n) = n(n− 1) + 2
n∑

w=1

C(w − 1). (5.3)

If we replace n by n− 1 in Eq. (5.3), we obtain

(n− 1)C(n− 1) = (n− 1)(n− 2) + 2
n−1∑
w=1

C(w − 1). (5.4)

Subtracting Eq. (5.4) from Eq. (5.3) and rearranging terms yields

C(n)
n + 1

=
C(n− 1)

n
+

2(n− 1)
n(n + 1)

. (5.5)

Now, we change to a new variable D, by letting

D(n) =
C(n)
n + 1

.

In terms of the new variable D, Eq. (5.5) can be rewritten as

D(n) = D(n− 1) +
2(n− 1)
n(n + 1)

, D(1) = 0. (5.6)

Clearly, the solution of Eq. (5.6) is

D(n) = 2
n∑

j=1

j − 1
j(j + 1)

.

We simplify this expression as follows:

2
n∑

j=1

j − 1
j(j + 1)

= 2
n∑

j=1

2
(j + 1)

− 2
n∑

j=1

1
j

= 4
n+1∑
j=2

1
j
− 2

n∑
j=1

1
j

= 2
n∑

j=1

1
j
− 4n

n + 1

= 2 lnn−Θ(1) (Eq. (A.16))

=
2

log e
log n−Θ(1)

≈ 1.44logn.
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Consequently,

C(n) = (n + 1)D(n) ≈ 1.44n logn.

We have, in effect, proved the following theorem.

Theorem 5.6 The average number of comparisons performed by Algo-
rithm quicksort to sort an array of n elements is Θ(n logn).

5.6.4 Comparison of sorting algorithms

Table 5.1 gives the output of a sorting experiment for the average number
of comparisons of five sorting algorithms using values of n between 500 and
5000.

The numbers under each sorting algorithm are the counts of the number
of comparisons performed by the respective algorithm. From the table, we
can see that the average number of comparisons performed by Algorithm
quicksort is almost double that of mergesort and bottomupsort.

5.7 Multiselection

Let A[1..n] be an array of n elements drawn from a linearly ordered set, and
let K[1..r], 1 ≤ r ≤ n, be a sorted array of r positive integers between 1
and n, that is an array of ranks. The multiselection problem is to select the
K[i]th smallest element in A for all values of i, 1 ≤ i ≤ r. For simplicity, we
will assume that the elements in A are distinct. To make the presentation

Table 5.1. Comparison of sorting algorithms.

n selectionsort insertionsort bottomupsort mergesort quicksort

500 124750 62747 3852 3852 6291
1000 499500 261260 8682 8704 15693
1500 1124250 566627 14085 13984 28172
2000 1999000 1000488 19393 19426 34020
2500 3123750 1564522 25951 25111 52513
3000 4498500 2251112 31241 30930 55397
3500 6123250 3088971 37102 36762 67131
4000 7998000 4042842 42882 42859 79432
4500 10122750 5103513 51615 49071 98635
5000 12497500 6180358 56888 55280 106178
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simple, we will assume that the elements are represented by the sequence
A = 〈a1, a2, . . . , an〉, and the ranks are represented by the sorted sequence
K = 〈k1, k2, . . . , kr〉. If r = 1, then we have the selection problem. On the
other hand, if r = n, then the problem is tantamount to the problem of
sorting.

The algorithm for multiselection, which we will refer to as multiselect,
is straightforward. Let the middle rank be k = k�r/2�. Use Algorithm
select to find and output the kth smallest element a. Next, partition A

into two subsequences A1 and A2 of elements, respectively, smaller than,
and larger than a. Let K1 = 〈k1, k2, . . . , k�r/2�−1〉 and K2 = 〈k�r/2�+1 −
k, k�r/2�+2− k, . . . , kr − k〉. Finally, make two recursive calls: One with A1

and K1 and another with A2 and K2. A less informal description of the
algorithm is shown below.

Algorithm 5.7 multiselect
Input: A sequence A = 〈a1, a2, . . . , an〉 of n elements, and a sorted sequence

of r ranks K = 〈k1, k2, . . . , kr〉.
Output: The kith smallest element in A, 1 ≤ i ≤ r.

1. multiselect(A, K)

Procedure multiselect(A, K)

1. r← |K|
2. If r > 0 then
3. Set k = k�r/2�.
4. Use Algorithm select to find a, the kth smallest element in A.
5. Output a.
6. Let A1 = 〈ai | ai < a〉 and A2 = 〈ai | ai > a〉.
7. Let K1 = 〈k1, k2, . . . , k�r/2�−1〉 and

K2 = 〈k�r/2�+1 − k, k�r/2�+2 − k, . . . , kr − k〉.
8. multiselect(A1, K1).
9. multiselect(A2, K2).

10. end if

In Step 4, select is the Θ(n) time algorithm for selection presented
in Sec. 5.5. Obviously, Algorithm multiselect solves the multiselection
problem. We now analyze its time complexity. Consider the recursion tree
depicted in Fig. 5.6. The root of the tree corresponds to the main call, and
its two children correspond to the first two recursive calls. The rest of the
nodes correspond to the remaining recursive calls. In particular, the leaves
represent calls in which there is only one rank. The bulk of the work done
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O(n)

O(n)

O(n)

O(n)

log r

Fig. 5.6. Recursion tree for multiselection.

in the root node is that for executing Algorithm select on an input of size
n, partitioning the elements into A1 and A2 and dividing K into K1 and
K2. Obviously, this takes O(n) time, as Algorithm select runs in time
O(n). Similarly, the next two recursive calls execute Algorithm select on
inputs of sizes n1 and n2, where n1 + n2 = n− 1. These two recursive calls
plus partitioning A and K require O(n1) + O(n2) = O(n) time. In each
subsequent level of the tree, Algorithm select is called a number of times
using a total of less than n elements, for a total time of O(n). The total
time needed for partitioning in each level is O(n). Hence, the time needed
in each level of the tree is O(n). But the number of levels in the recursion
tree is equal to �log r�, assuming that r > 1. It follows that the overall
running time of Algorithm multiselect is O(n log r).

As to the lower bound for multiselection, suppose that it is o(n log r).
Then, by letting r = n, we would be able to sort n elements in o(n log n)
time, contradicting the Ω(n log n) lower bound for comparison-based sort-
ing (see Sec. 11.3.2 and Theorem 11.2). It follows that the multiselection
problem is Ω(n log r), and hence the algorithm given above runs in time
Θ(n log r), and is optimal.

5.8 Multiplication of Large Integers

We have assumed in the beginning that multiplication of integers whose size
is fixed costs a unit amount of time. This is no longer valid when multiply-
ing two integers arbitrary length. As explained in Sec. 1.14, the input to an
algorithm dealing with numbers of variable size is usually measured in the
number of bits or, equivalently, digits. Let u and v be two n-bit integers.
The traditional multiplication algorithm requires Θ(n2) digit multiplica-
tions to compute the product of u and v. Using the divide-and-conquer
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u = w2n/2 + x: w x

v = y2n/2 + z: y z

Fig. 5.7. Multiplication of two large integers.

technique, this bound can be reduced significantly as follows. For simplic-
ity, assume that n is a power of 2.

Each integer is divided into two parts of n/2 bits each. Then, u and v

can be rewritten as u = w2n/2 + x and v = y2n/2 + z (see Fig. 5.7).
The product of u and v can be computed as

uv = (w2n/2 + x)(y2n/2 + z) = wy2n + (wz + xy)2n/2 + xz. (5.7)

Note that multiplying by 2n amounts to simply shifting by n bits to the left,
which takes Θ(n) time. Thus, in this formula, there are four multiplications
and three additions. This implies the following recurrence:

T (n) =

{
d if n = 1,

4T (n/2) + bn if n > 1

for some constants b and d > 0. The solution to this recurrence is, by
Theorem 1.3, T (n) = Θ(n2).

Now, consider computing wz + xy using the identity

wz + xy = (w + x)(y + z)− wy − xz. (5.8)

Since wy and xz need not be computed twice (they are computed in
Eq. (5.7)), combining Eqs. (5.7) and (5.8) results in only three multipli-
cations, namely

uv = wy2n + ((w + x)(y + z)− wy − xz)2n/2 + xz.

Thus, multiplying u and v reduces to three multiplications of integers of
size n/2 and six additions and subtractions. These additions cost Θ(n)
time. This method yields the following recurrence:

T (n) =

{
d if n = 1,

3T (n/2) + bn if n > 1
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for some appropriately chosen constants b and d > 0. Again, by Theo-
rem 1.3,

T (n) = Θ(nlog 3) = O(n1.59),

a remarkable improvement on the traditional method.

5.9 Matrix Multiplication

Let A and B be two n × n matrices. We wish to compute their product
C = AB. In this section, we show how to apply the divide-and-conquer
strategy to this problem to obtain an efficient algorithm.

5.9.1 The traditional algorithm

In the traditional method, C is computed using the formula

C(i, j) =
n∑

k=1

A(i, k)B(k, j).

It can be easily shown that this algorithm requires n3 multiplications and
n3−n2 additions (Exercise 5.47). This results in a time complexity of Θ(n3).

5.9.2 Strassen’s algorithm

This algorithm has a o(n3) time complexity, i.e., its running time is asymp-
totically less than n3. This is a remarkable improvement on the traditional
algorithm. The idea behind this algorithm consists in reducing the num-
ber of multiplications at the expense of increasing the number of additions
and subtractions. In short, this algorithm uses 7 multiplications and 18
additions of n/2× n/2 matrices.

Let

A =
(

a11 a12

a21 a22

)
and B =

(
b11 b12

b21 b22

)

be two 2× 2 matrices. To compute the matrix product

C =
(

c11 c12

c21 c22

)
=
(

a11 a12

a21 a22

)(
b11 b12

b21 b22

)
,
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we first compute the following products:

d1 = (a11 + a22)(b11 + b22),
d2 = (a21 + a22)b11,

d3 = a11(b12 − b22),
d4 = a22(b21 − b11),
d5 = (a11 + a12)b22,

d6 = (a21 − a11)(b11 + b12),
d7 = (a12 − a22)(b21 + b22).

Next, we compute C from the equation

C =
(

d1 + d4 − d5 + d7 d3 + d5

d2 + d4 d1 + d3 − d2 + d6

)
.

Since commutativity of scalar products is not used here, the above for-
mula holds for matrices as well. So, the di’s are in general n/2 × n/2
matrices.

Time Complexity

The number of additions used is 18 and the number of multiplications
is 7. In order to count the number of scalar operations, let a and m

denote the costs of scalar addition and multiplication, respectively. If
n = 1, the total cost is just m since we have only one scalar multipli-
cation. Thus, the total cost of multiplying two n× n matrices is governed
by the recurrence

T (n) =

{
m if n = 1,

7T (n/2) + 18(n/2)2a if n ≥ 2,

or

T (n) =

{
m if n = 1,

7T (n/2) + (9a/2)n2 if n ≥ 2.

Assuming that n is a power of 2, then by Lemma 1.1,

T (n) =
(

m +
(9a/2)22

7− 22

)
nlog 7−

(
(9a/2)22

7− 22

)
n2 = mnlog 7+6anlog 7−6an2.

That is, the running time is Θ(nlog 7) = O(n2.81).
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Table 5.2. The number of arithmetic operations done by the two algorithms.

Multiplications Additions Complexity

Traditional alg. n3 n3 − n2 Θ(n3)

Strassen’s alg. nlog 7 6nlog 7 − 6n2 Θ(nlog 7)

Table 5.3. Comparison between Strassen’s algorithm and the traditional algorithm.

n Multiplications Additions

Traditional alg. 100 1, 000, 000 990, 000
Strassen’s alg. 100 411, 822 2,470,334
Traditional alg. 1000 1, 000, 000, 000 999, 000, 000
Strassen’s alg. 1000 264, 280, 285 1,579,681,709
Traditional alg. 10,000 1012 9.99 × 1012

Strassen’s alg. 10,000 0.169 × 1012 1012

5.9.3 Comparisons of the two algorithms

In the above derivations, the coefficient of a is the number of additions
and the coefficient of m is the number of multiplications. Strassen’s algo-
rithm significantly reduces the total number of multiplications, which are
more costly than additions. Table 5.2 compares the number of arithmetic
operations performed by the two algorithms.

Table 5.3 compares Strassen’s algorithm with the traditional algorithm
for some values of n.

5.10 The Closest Pair Problem

Let S be a set of n points in the plane. In this section, we consider the
problem of finding a pair of points p and q in S whose mutual distance
is minimum. In other words, we want to find two points p1 = (x1, y1)
and p2 = (x2, y2) in S with the property that the distance between them
defined by

d(p1, p2) =
√

(x1 − x2)2 + (y1 − y2)2

is minimum among all pairs of points in S. Here d(p1, p2) is referred to
as the Euclidean distance between p1 and p2. The brute-force algorithm
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simply examines all the possible n(n− 1)/2 distances and returns that pair
with smallest separation. In this section, we describe a Θ(n logn) time algo-
rithm to solve the closest pair problem using the divide-and-conquer design
technique. Instead of finding that pair which realizes the minimum dis-
tance, the algorithm to be developed will only return the distance between
them. Modifying the algorithm to return that pair as well is easy.

The general outline of the algorithm can be summarized as follows.
The first step in the algorithm is to sort the points in S by increasing
x-coordinate. This sorting step is done only once throughout the execution
of the algorithm. Next, the point set S is divided about a vertical line L

into two subsets Sl and Sr such that |Sl| = �|S|/2� and |Sr| = �|S|/2�. Let
L be the vertical line passing by the x-coordinate of S[�n/2�]. Thus, all
points in Sl are on or to the left of L, and all points in Sr are on or to
the right of L. Now, recursively, the minimum separations δl and δr of the
two subsets Sl and Sr, respectively, are computed. For the combine step,
the smallest separation δ′ between a point in Sl and a point in Sr is also
computed. Finally, the desired solution is the minimum of δl, δr, and δ′.

As in most divide-and-conquer algorithms, most of the work comes from
the combine step. At this point, it is not obvious how to implement this
step. The crux of this step is in computing δ′. The näıve method which com-
putes the distance between each point in Sl and each point in Sr requires
Ω(n2) in the worst case, and hence an efficient approach to implement this
step must be found.

Let δ = min{δl, δr}. If the closest pair consists of some point pl in Sl

and some point pr in Sr, then pl and pr must be within distance δ of the
dividing line L. Thus, if we let S′

l and S′
r denote, respectively, the points

in Sl and Sr within distance δ of L, then pl must be in S′
l and pr must be

in S′
r (see Fig. 5.8).
Again, comparing each point in S′

l with each point in S′
r requires Ω(n2)

in the worst case, since we may have S′
l = Sl and S′

r = Sr. The crucial
observation is that not all these O(n2) comparisons are indeed necessary; we
only need to compare each point p in Sl, say, with those within distance δ.
A close inspection of Fig. 5.8 reveals that the points lying within the two
strips of width δ around L have a special structure. Suppose that δ′ ≤ δ.
Then there exist two points pl ∈ S′

l and pr ∈ S′
r such that d(pl, pr) = δ′. It

follows that the vertical distance between pl and pr is at most δ. Further-
more, since pl ∈ S′

l and pr ∈ S′
r, these two points are inside or on the bound-

ary of a δ × 2δ rectangle centered around the vertical line L (see Fig. 5.9).
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L

Fig. 5.8. Illustration of the combine step.

L

T

Fig. 5.9. Further illustration of the combine step.

Let T be the set of points within the two vertical strips. Referring again
to Fig. 5.9, if the distance between any two points in the δ × 2δ rectangle
must be at most δ, then the rectangle can accommodate at most eight
points: at most four points from Sl and at most four points from Sr. The
maximum number is attained when one point from Sl coincides with one
point from Sr at the intersection of L with the top of the rectangle, and
one point from Sl coincides with one point from Sr at the intersection of
L with the bottom of the rectangle. This implies the following important
observation.

Observation 5.4 Each point in T needs to be compared with at most seven
points in T .

The above observation gives only an upper bound on the number of
points to be compared with each point p in T , but does not give any



January 14, 2016 14:21 Algorithms: Design Techniques and Analysis - 9in x 6in b2305-ch05 page 165

Divide and Conquer 165

information as to which points are to be compared with p. A moment
of reflection shows that p must be compared with its neighbors in T . To
find such neighbors, we resort to sorting the points in T by increasing
y-coordinate. After that, it is not hard to see that we only need to compare
each point p in T with those seven points following p in increasing order of
their y-coordinates.

5.10.1 Time complexity

Let us analyze the running time of the algorithm developed so far. Sorting
the points in S requires O(n log n) time. Dividing the points into Sl and Sr

takes Θ(1) time, as the points are sorted. As to the combine step, we see
that it consists of sorting the points in T and comparing each point with at
most seven other points. Sorting costs |T | log |T | = O(n log n), and there
are at most 7|T | comparisons. Thus, the combine step takes Θ(n log n) time
in the worst case, and hence the recurrence relation for the performance of
the algorithm becomes

T (n) =

{
c if n ≤ 3,

2T (n/2) + O(n log n) if n > 3,

for some nonnegative constant c, since if the number of points is 2 or 3, the
minimum separation can be calculated in a straightforward method. By
Theorem 1.2, the solution to the above recurrence is T (n) = O(n log2 n),
which is not the desired bound.

We observe that if we reduce the time taken by the combine step to
Θ(n), then the time complexity of the algorithm will be Θ(n log n). This
can be achieved by embedding Algorithm mergesort in the algorithm for
finding the closest pair for sorting the points by their y-coordinates. After
dividing the points into the two halves Sl and Sr, these two subsets are
sorted recursively and stored in Yl and Yr, which are merged to obtain Y .
This approach reduces the time required by the combine step to Θ(n), as
sorting in every recursive invocation is now replaced by merging, which
costs only Θ(|Y |) time. Thus, the recurrence relation reduces to

T (n) =

{
c if n ≤ 3,

2T (n/2) + Θ(n) if n > 3,

for some nonnegative constant c. The solution to this familiar recur-
rence is the desired Θ(n log n) bound. The above discussion implies
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Algorithm closestpair. In the algorithm, for a point p, x(p) denotes the
x-coordinate of point p. Also, Sl = S[low ..mid ] and Sr = S[mid + 1..high].

The following theorem summarizes the main result. Its proof is embed-
ded in the description of the algorithm and the analysis of its running time.

Theorem 5.7 Given a set S of n points in the plane, Algorithm
closestpair finds the minimum separation between the pairs of points in
S in Θ(n logn) time.

Algorithm 5.8 closestpair
Input: A set S of n points in the plane.

Output: The minimum separation realized by two points in S.

1. Sort the points in S in nondecreasing order of their x-coordinates.
2. (δ, Y )← cp(1, n)
3. return δ

Procedure cp(low , high)

1. if high − low + 1 ≤ 3 then
2. compute δ by a straightforward method.
3. Let Y contain the points in nondecreasing order of y-coordinates.
4. else
5. mid←�(low + high)/2�
6. x0 ← x(S[mid ])
7. (δl, Yl)← cp(low , mid)
8. (δr, Yr)← cp(mid + 1, high)
9. δ← min{δl, δr}

10. Y ← Merge Yl with Yr in nondecreasing order of y-coordinates.
11. k← 0
12. for i← 1 to |Y | {Extract T from Y }
13. if |x(Y [i]) − x0| ≤ δ then
14. k← k + 1
15. T [k]← Y [i]
16. end if
17. end for {k is the size of T}
18. δ′← 2δ {Initialize δ′ to any number greater than δ}
19. for i← 1 to k − 1 {Compute δ′}
20. for j← i + 1 to min{i + 7, k}
21. if d(T [i], T [j]) < δ′ then δ′← d(T [i], T [j])
22. end for
23. end for
24. δ← min{δ, δ′}
25. end if
26. return (δ, Y )
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5.11 Exercises

5.1. Give a divide-and-conquer version of Algorithm linearsearch given in
Sec. 1.3. The algorithm should start by dividing the input elements
into approximately two halves. How much work space is required by the
algorithm?

5.2. Give a divide-and-conquer algorithm to find the sum of all numbers in an
array A[1..n] of integers. The algorithm should start by dividing the input
elements into approximately two halves. How much work space is required
by the algorithm?

5.3. Give a divide-and-conquer algorithm to find the average of all numbers in
an array A[1..n] of integers, where n is a power of 2. The algorithm should
start by dividing the input elements into approximately two halves. How
much work space is required by the algorithm?

5.4. Let A[1..n] be an array of n integers and x an integer. Derive a divide-
and-conquer algorithm to find the frequency of x in A, i.e., the number of
times x appears in A. What is the time complexity of your algorithm?

5.5. Give a divide-and-conquer algorithm that returns a pair (x, y), where x is
the largest number and y is the the second largest number in an array of
n numbers. Derive the time complexity of your algorithm.

5.6. Modify Algorithm minmax so that it works when n is not a power of 2.
Is the number of comparisons performed by the new algorithm �3n/2 − 2�
even if n is not a power of 2? Prove your answer.

5.7. Consider Algorithm slowminmax which is obtained from Algorithm min-
max by replacing the test

if high − low = 1

by the test

if high = low

and making some other changes in the algorithm accordingly. Thus, in
Algorithm slowminmax, the recursion is halted when the size of the input
array is 1. Count the number of comparisons required by this algorithm to
find the minimum and maximum of an array A[1..n], where n is a power
of 2. Explain why the number of comparisons in this algorithm is greater
than that in Algorithm minmax. (Hint: In this case, the initial condition
is C(1) = 0).

5.8. Derive an iterative minimax algorithm that finds both the minimum and
maximum in a set of n elements using only 3n/2 − 2 comparisons, where
n is a power of 2.
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5.9. Modify Algorithm binarysearchrec so that it searches for two keys. In
other words, given an array A[1..n] of n elements and two elements x1 and
x2, the algorithm should return two integers k1 and k2 representing the
positions of x1 and x2, respectively, in A.

5.10. Design a search algorithm that divides a sorted array into one-third and
two-thirds instead of two halves as in Algorithm binarysearchrec. Ana-
lyze the time complexity of the algorithm.

5.11. Modify Algorithm binarysearchrec so that it divides the sorted array
into three equal parts instead of two as in Algorithm binarysearchrec.
In each iteration, the algorithm should test the element x to be searched
for against two entries in the array. Analyze the time complexity of the
algorithm.

5.12. Use Algorithm mergesort to sort the array

(a) 32 15 14 15 11 17 25 51 .

(b) 12 25 17 19 51 32 45 18 22 37 15 .

5.13. Use mathematical induction to prove the correctness of Algorithm merge-
sort. Assume that Algorithm merge works correctly.

5.14. Show that the space complexity of Algorithm mergesort is Θ(n).

5.15. It was shown in Sec. 5.3 that algorithms bottomupsort and mergesort
are very similar. Give an example of an array of numbers in which

(a) Algorithm bottomupsort and Algorithm mergesort perform the
same number of element comparisons.

(b) Algorithm bottomupsort performs more element comparisons than
Algorithm mergesort.

(c) Algorithm bottomupsort performs fewer element comparisons than
Algorithm mergesort.

5.16. Consider the following modification of Algorithm mergesort. The algo-
rithm first divides the input array A[low ..high ] into four parts A1, A2, A3,
and A4 instead of two. It then sorts each part recursively, and finally
merges the four sorted parts to obtain the original array in sorted order.
Assume for simplicity that n is a power of 4.

(a) Write out the modified algorithm.

(b) Analyze its running time.

5.17. What will be the running time of the modified algorithm in Exercise 5.16
if the input array is divided into k parts instead of 4? Here, k is a fixed
positive integer greater than 1.
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5.18. Consider the following modification to Algorithm mergesort. We apply
the algorithm on the input array A[1..n] and continue the recursive calls
until the size of a subinstance becomes relatively small, say m or less. At
this point, we switch to Algorithm insertionsort and apply it on the
small instance. So, the first test of the modified algorithm will look like
the following:

if high − low + 1 ≤ m then insertionsort(A[low ..high ]).

What is the largest value of m in terms of n such that the running time
of the modified algorithm will still be Θ(n log n)? You may assume for
simplicity that n is a power of 2.

5.19. Use Algorithm select to find the kth smallest element in the list of num-
bers given in Example 5.1, where

(a) k = 1. (b) k = 9. (c) k = 17. (d) k = 22. (e) k = 25.

5.20. What will happen if in Algorithm select the true median of the elements
is chosen as the pivot instead of the median of medians? Explain.

5.21. Let A[1..105] be a sorted array of 105 integers. Suppose we run Algo-
rithm select to find the 17th element in A. How many recursive calls to
Procedure select will there be? Explain your answer clearly.

5.22. Explain the behavior of Algorithm select if the input array is already
sorted in nondecreasing order. Compare that to the behavior of Algorithm
binarysearchrec.

5.23. In Algorithm select, groups of size 5 are sorted in each invocation of the
algorithm. This means that finding a procedure that sorts a group of size 5
that uses the fewest number of comparisons is important. Show that it is
possible to sort five elements using only seven comparisons.

5.24. One reason that Algorithm select is inefficient is that it does not make full
use of the comparisons that it makes: After it discards one portion of the
elements, it starts on the subproblem from scratch. Give a precise count
of the number of comparisons the algorithm performs when presented with
n elements. Note that it is possible to sort five elements using only seven
comparisons (see Exercise 5.23).

5.25. Based on the number of comparisons counted in Exercise 5.24, determine
for what values of n one should use a straightforward sorting method and
extract the kth element directly.

5.26. Let g denote the size of each group in Algorithm select for some positive
integer g ≥ 3. Derive the running time of the algorithm in terms of g.
What happens when g is too large compared to the value used in the
algorithm, namely 5?
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5.27. Which of the following group sizes 3, 4, 5, 7, 9, 11 guarantees Θ(n) worst-
case performance for Algorithm select? Prove your answer (see Exer-
cise 5.26).

5.28. Rewrite Algorithm select using Algorithm split to partition the input
array. Assume for simplicity that all input elements are distinct. What is
the advantage of the modified algorithm?

5.29. Let A[1..n] and B[1..n] be two arrays of distinct integers sorted in increas-
ing order. Give an efficient algorithm to find the median of the 2n elements
in both A and B. What is the running time of your algorithm?

5.30. Make use of the algorithm obtained in Exercise 5.29 to device a divide-
and-conquer algorithm for finding the median in an array A[1..n]. What
is the time complexity of your algorithm? (Hint: Make use of Algorithm
mergesort.)

5.31. Consider the problem of finding all the first k smallest elements in an
array A[1..n] of n distinct elements. Here, k is not constant, i.e., it is part
of the input. We can solve this problem easily by sorting the elements and
returning A[1..k]. This, however, costs O(n log n) time. Give a Θ(n) time
algorithm for this problem. Note that running Algorithm select k times
costs Θ(kn) = O(n2) time, as k is not constant.

5.32. Apply Algorithm split on the array 27 13 31 18 45 16 17 53 .

5.33. Let f(n) be the number of element interchanges that Algorithm split
makes when presented with the input array A[1..n] excluding interchanging
A[low ] with A[i].

(a) For what input arrays A[1..n] is f(n) = 0?

(b) What is the maximum value of f(n)? Explain when this maximum is
achieved?

5.34. Modify Algorithm split so that it partitions the elements in A[low ..high ]
around x, where x is the median of {A[low ], A[�(low + high)/2�], A[high]}.
Will this improve the running time of Algorithm quicksort? Explain.

5.35. Algorithm split is used to partition an array A[low ..high ] around A[low ].
Another algorithm to achieve the same result works as follows. The algo-
rithm has two pointers i and j. Initially, i = low and j = high. Let
the pivot be x = A[low ]. The pointers i and j move from left to right
and from right to left, respectively, until it is found that A[i] > x and
A[j] ≤ x. At this point A[i] and A[j] are interchanged. This process con-
tinues until i ≥ j. Write out the complete algorithm. What is the number
of comparisons performed by the algorithm?

5.36. Let A[1..n] be a set of integers. Give an algorithm to reorder the elements
in A so that all negative integers are positioned to the left of all nonnegative
integers. Your algorithm should run in time Θ(n).
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5.37. Use Algorithm quicksort to sort the array

(a) 24 33 24 45 12 12 24 12 .

(b) 3 4 5 6 7 .

(c) 23 32 27 18 45 11 63 12 19 16 25 52 14 .

5.38. Show that the work space needed by Algorithm quicksort varies between
Θ(log n) and Θ(n). What is its average space complexity?

5.39. Explain the behavior of Algorithm quicksort when the input is already
sorted in decreasing order. You may assume that the input elements are
all distinct.

5.40. Explain the behavior of Algorithm quicksort when the input array A[1..n]
consists of n identical elements.

5.41. Modify Algorithm quicksort slightly so that it will solve the selection
problem. What is the time complexity of the new algorithm in the worst
case and on the average?

5.42. Give an iterative version of Algorithm quicksort.

5.43. Which of the following sorting algorithms are stable (see Exercise 4.23)?

(a) heapsort (b) mergesort (c) quicksort.

5.44. A sorting algorithm is called adaptive if its running time depends not
only on the number of elements n, but also on their order. Which of the
following sorting algorithms are adaptive?

(a) selectionsort (b) insertionsort (c) bubblesort (d) heapsort
(e) bottomupsort (f) mergesort (g) quicksort (h) radixsort.

5.45. Let x = a + bi and y = c + di be two complex numbers. The product xy
can easily be calculated using four multiplications, i.e., xy = (ac − bd) +
(ad+bc)i. Devise a method for computing the product xy using only three
multiplications.

5.46. Write out an algorithm for the traditional algorithm for matrix multipli-
cation described in Sec. 5.9.

5.47. Show that the traditional algorithm for matrix multiplication described
in Sec. 5.9 requires n3 multiplications and n3 − n2 additions (see Exer-
cise 5.46).

5.48. Explain how to modify Strassen’s algorithm for matrix multiplication so
that it can also be used with matrices whose size is not necessarily a power
of 2.

5.49. Suppose we modify the algorithm for the closest pair problem so that not
each point in T is compared with seven points in T . Instead, every point
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to the left of the vertical line L is compared with a number of points to
its right.

(a) What are the necessary modifications to the algorithm?

(b) How many points to the right of L have to be compared with every
point to its left? Explain.

5.50. Rewrite the algorithm for the closest pair problem without making use of
Algorithm mergesort. Instead, use a presorting step in which the input
is sorted by y-coordinates at the start of the algorithm once and for all.
The time complexity of your algorithm should be Θ(n log n).

5.51. Design a divide-and-conquer algorithm to determine whether two given
binary trees T1 and T2 are identical.

5.52. Design a divide-and-conquer algorithm that computes the height of a
binary tree.

5.12 Bibliographic Notes

Algorithms mergesort and quicksort are discussed in detail in Knuth
(1973). Algorithm quicksort is due to Hoare (1962). The linear time
algorithm for selection is due to Blum, Floyd, Pratt, Rivest, and Tarjan
(1973). The algorithm for integer multiplication is due to Karatsuba and
Ofman (1962). Strassen’s algorithm for matrix multiplication is due to
Strassen (1969). While Strassen’s algorithm uses a fast method to multiply
2 × 2 matrices as the base case, similar algorithms have since been devel-
oped that use more complex base cases. For example, Pan (1978) proposed
a method based on an efficient scheme for multiplying 70 × 70 matrices.
The exponent in the time complexity has been steadily reduced. This is
only of theoretical interest, as Strassen’s algorithm remains the only one
of practical interest. The algorithm for the closest pair problem is due to
Shamos and can be found in virtually any book on computational geometry.
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Chapter 6

Dynamic Programming

6.1 Introduction

In this chapter, we study a powerful algorithm design technique that is
widely used to solve combinatorial optimization problems. An algorithm
that employs this technique is not recursive by itself, but the underlying
solution of the problem is usually stated in the form of a recursive function.
Unlike the case in divide-and-conquer algorithms, immediate implementa-
tion of the recurrence results in identical recursive calls that are executed
more than once. For this reason, this technique resorts to evaluating the
recurrence in a bottom-up manner, saving intermediate results that are
used later on to compute the desired solution. This technique applies to
many combinatorial optimization problems to derive efficient algorithms.
It is also used to improve the time complexity of the brute-force methods
to solve some of the NP-hard problems (see Chapter 9). For example, the
traveling salesman problem can be solved in time O(n22n) using dynamic
programming, which is superior to the Θ(n!) bound of the obvious algo-
rithm that enumerates all possible tours. The two simple examples that
follow illustrate the essence of this design technique.

Example 6.1 One of the most popular examples used to introduce recur-
sion and induction is the problem of computing the Fibonacci sequence:

f1 = 1, f2 = 1, f3 = 2, f4 = 3, f5 = 5, f6 = 8, f7 = 13, . . . .

173
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Each number in the sequence 2, 3, 5, 8, 13, . . . is the the sum of the two
preceding numbers. Consider the inductive definition of this sequence:

f(n) =

{
1 if n = 1 or n = 2,

f(n− 1) + f(n− 2) if n ≥ 3.

This definition suggests a recursive procedure that looks like the following
(assuming that the input is always positive):

1. procedure f (n)
2. if (n = 1) or (n = 2) then return 1
3. else return f(n− 1) + f(n− 2)

This recursive version has the advantages of being concise, easy to write
and debug, and, most of all, its abstraction. It turns out that there is a rich
class of recursive algorithms and, in many instances, a complex algorithm
can be written succinctly using recursion. We have already encountered
in the previous chapters a number of efficient algorithms that possess the
merits of recursion. It should not be thought, however, that the recursive
procedure given above for computing the Fibonacci sequence is an efficient
one. On the contrary, it is far from being efficient, as there are many
duplicate recursive calls to the procedure. To see this, just expand the
recurrence a few times:

f(n) = f(n− 1) + f(n− 2)

= 2f(n− 2) + f(n− 3)

= 3f(n− 3) + 2f(n− 4)

= 5f(n− 4) + 3f(n− 5).

This leads to a huge number of identical calls. If we assume that com-
puting f(1) or f(2) requires a unit amount of time, then the time complexity
of this procedure can be stated as

T (n) =

{
1 if n = 1 or n = 2,

T (n− 1) + T (n− 2) if n ≥ 3.

Clearly, the solution to this recurrence is T (n) = f(n), i.e., the time required
to compute f(n) is f(n) itself. It is well known that f(n) = O(φn) for large
n, where φ = (1+

√
5)/2 ≈ 1.61803 is the golden ratio (see Example A.20).
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In other words, the running time required to compute f(n) is exponential
in the value of n. An obvious approach that reduces the time complex-
ity drastically is to enumerate the sequence bottom-up starting from f1

until fn is reached. This takes Θ(n) time and Θ(1) space, a substantial
improvement.

Example 6.2 As a similar example, consider computing the binomial
coefficient

(
n
k

)
defined recursively as

(
n

k

)
=




1 if k = 0 or k = n,(
n− 1
k − 1

)
+
(
n− 1

k

)
if 0 < k < n.

Using the same argument as in Example 6.1, it can be shown that the
time complexity of computing

(
n
k

)
using the above formula is proportional

to
(

n
k

)
itself. The function

(
n

k

)
=

n!
k!(n− k)!

grows rapidly. For example, by Stirling’s formula (Eq. (A.4)), we have
(assuming n is even)

(
n

n/2

)
=

n!
((n/2)!)2

≈
√

2πn nn/en

πn(n/2)n/en
≥ 2n

√
πn

.

An efficient computation of
(
n
k

)
may proceed by constructing the Pascal

triangle row by row (see Fig. A.1) and stopping as soon as the value of
(
n
k

)
has been computed. The details will be left as an exercise (Exercise 6.2).

6.2 The Longest Common Subsequence Problem

A simple problem that illustrates the principle of dynamic programming is
the following. Given two strings A and B of lengths n and m, respectively,
over an alphabet Σ, determine the length of the longest subsequence that
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is common to both A and B. Here, a subsequence of A = a1a2, . . . , an is
a string of the form ai1ai2 , . . . , aik

, where each ij is between 1 and n and
1 ≤ i1 < i2 < · · · < ik ≤ n. For example, if Σ = {x, y, z}, A = zxyxyz,
and B = xyyzx, then xyy is a subsequence of length 3 of both A and
B. However, it is not the longest common subsequence of A and B, since
the string xyyz is also a common subsequence of length 4 of both A and
B. Since these two strings do not have a common subsequence of length
greater than 4, the length of the longest common subsequence of A and
B is 4.

One way to solve this problem is to use the brute-force method: enu-
merate all the 2n subsequences of A, and for each subsequence determine
if it is also a subsequence of B in Θ(m) time. Clearly, the running time of
this algorithm is Θ(m2n), which is exponential.

In order to make use of the dynamic programming technique, we first
find a recursive formula for the length of the longest common subsequence.
Let A = a1a2, . . . , an and B = b1b2, . . . , bm. Let L[i, j] denote the length of
a longest common subsequence of a1a2, . . . , ai and b1b2, . . . , bj . Note that i

or j may be zero, in which case one or both of a1a2, . . . , ai and b1b2, . . . , bj

may be the empty string. Naturally, if i = 0 or j = 0, then L[i, j] = 0. The
following observation is easy to prove.

Observation 6.1 Suppose that both i and j are greater than 0. Then

• If ai = bj, L[i, j] = L[i− 1, j − 1] + 1.
• If ai �= bj, L[i, j] = max{L[i, j − 1], L[i− 1, j]}.

The following recurrence for computing the length of the longest com-
mon subsequence of A and B follows immediately from Observation 6.1:

L[i, j] =




0 if i = 0 or j = 0,

L[i− 1, j − 1] + 1 if i > 0, j > 0, and ai = bj ,

max{L[i, j − 1], L[i− 1, j]} if i > 0, j > 0, and ai �= bj .

The algorithm

Using the technique of dynamic programming to solve the longest common
subsequence problem is now straightforward. We use an (n + 1)× (m + 1)
table to compute the values of L[i, j] for each pair of values of i and j,
0 ≤ i ≤ n and 0 ≤ j ≤ m. We only need to fill the table L[0..n, 0..m]
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Algorithm 6.1 lcs
Input: Two strings A and B of lengths n and m, respectively, over an alpha-

bet Σ.
Output: The length of the longest common subsequence of A and B.

1. for i← 0 to n
2. L[i, 0]← 0
3. end for
4. for j← 0 to m
5. L[0, j]← 0
6. end for
7. for i← 1 to n
8. for j← 1 to m
9. if ai = bj then L[i, j]← L[i− 1, j − 1] + 1

10. else L[i, j]← max{L[i, j − 1], L[i− 1, j]}
11. end if
12. end for
13. end for
14. return L[n, m]

row by row using the above formula. The method is formally described in
Algorithm lcs.

Algorithm lcs can easily be modified so that it outputs the longest
common subsequence. Clearly, the time complexity of the algorithm is
exactly the size of the table, Θ(nm), as filling each entry requires Θ(1) time.
The algorithm can easily be modified so that it requires only Θ(min{m, n})
space (Exercise 6.6). This implies the following theorem.

Theorem 6.1 An optimal solution to the longest common subsequence
problem can be found in Θ(nm) time and Θ(min{m, n}) space.

Example 6.3 Figure 6.1 shows the result of applying Algorithm lcs on
the instance A =“xyxxzxyzxy” and B =“zxzyyzxxyxxz”.

First, row 0 and column 0 are initialized to 0. Next, the entries are filled
row by row by executing Steps 9 and 10 exactly mn times. This generates
the rest of the table. As shown in the table, the length of a longest common
subsequence is 6. One possible common subsequence is the string “xyxxxz”
of length 6, which can be constructed from the entries in the table in bold
face.
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0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 1 1 1 1 1 1 1 1 1
2 0 0 1 1 2 2 2 2 2 2 2 2 2
3 0 0 1 1 2 2 2 3 3 3 3 3 3
4 0 0 1 1 2 2 2 3 4 4 4 4 4
5 0 1 1 2 2 2 3 3 4 4 4 4 5
6 0 1 2 2 2 2 3 4 4 4 5 5 5
7 0 1 2 2 3 3 3 4 4 5 5 5 5
8 0 1 2 3 3 3 4 4 4 5 5 5 6
9 0 1 2 3 3 3 4 5 5 5 6 6 6
10 0 1 2 3 4 4 4 5 5 6 6 6 6

Fig. 6.1. An example of the longest common subsequence problem.

6.3 Matrix Chain Multiplication

In this section, we study in detail another simple problem that reveals
the essence of dynamic programming. Suppose we want to compute the
product M1M2M3 of three matrices M1, M2, and M3 of dimensions 2× 10,
10 × 2, and 2 × 10, respectively, using the standard method of matrix
multiplication. If we multiply M1 and M2 and then multiply the result by
M3, the number of scalar multiplications will be 2×10×2+2×2×10 = 80.
If, instead, we multiply M1 by the result of multiplying M2 and M3, then
the number of scalar multiplications becomes 10× 2 × 10 + 2× 10 × 10 =
400. Thus, carrying out the multiplication M1(M2M3) costs five times the
multiplication (M1M2)M3.

In general, the cost of multiplying a chain of n matrices M1M2 . . . Mn

depends on the order in which the n−1 multiplications are carried out. That
order which minimizes the number of scalar multiplications can be found
in many ways. Consider, for example, the brute-force method that tries to
compute the number of scalar multiplications of every possible order. For
instance, if we have four matrices M1, M2, M3, and M4, the algorithm will
try all the following five orderings:

(M1(M2(M3M4))),

(M1((M2M3)M4)),
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((M1M2)(M3M4)),

((M1M2)M3)M4)),

((M1(M2M3))M4).

In general, the number of orderings is equal to the number of ways to
place parentheses to multiply the n matrices in every possible way. Let
f(n) be the number of ways to fully parenthesize a product of n matrices.
Suppose we want to perform the multiplication

(M1M2 . . . Mk)× (Mk+1Mk+2 . . .Mn).

Then, there are f(k) ways to parenthesize the first k matrices. For each
one of the f(k) ways, there are f(n−k) ways to parenthesize the remaining
n − k matrices, for a total of f(k)f(n− k) ways. Since k can assume any
value between 1 and n− 1, the overall number of ways to parenthesize the
n matrices is given by the summation

f(n) =
n−1∑
k=1

f(k)f(n− k).

Observe that there is only one way to multiply two matrices and two ways
to multiply three matrices. That is, f(2) = 1 and f(3) = 2. In order for
the recurrence to make sense, we let f(1) = 1. It can be shown that

f(n) =
1
n

(
2n− 2
n− 1

)
.

This recurrence generates the so-called Catalan numbers defined by

Cn = f(n + 1),

the first 10 terms of which are

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, . . . .

Thus, for example, there are 4862 ways to multiply 10 matrices. By Stir-
ling’s formula (Eq. (A.4)),

n! ≈
√

2πn (n/e)n, where e = 2.71828 . . . ,

we have

f(n) =
1
n

(
2n− 2
n− 1

)
=

(2n− 2)!
n((n− 1)!)2

≈ 4n

4
√

π n1.5
.
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Thus,

f(n) = Ω
(

4n

n1.5

)
.

Since for each parenthesized expression, finding the number of scalar
multiplications costs Θ(n), it follows that the running time of the brute-
force method to find the optimal way to multiply the n matrices is
Ω(4n/

√
n), which is impractical even for values of n of moderate size.

In the rest of this section, we derive a recurrence relation for the least
number of scalar multiplications, and then apply the dynamic program-
ming technique to find an efficient algorithm for evaluating that recurrence.
Extending the algorithm to find the order of matrix multiplications is easy
(Exercise 6.12). Since for each i, 1 ≤ i < n, the number of columns of
matrix Mi must be equal to the number of rows of matrix Mi+1, it suffices
to specify the number of rows of each matrix and the number of columns
of the rightmost matrix Mn. Thus, we will assume that we are given n + 1
dimensions r1, r2, . . . , rn+1, where ri and ri+1 are, respectively, the number
of rows and columns in matrix Mi, 1 ≤ i ≤ n. Henceforth, we will write
Mi,j to denote the product of MiMi+1 . . . Mj. We will also assume that the
cost of multiplying the chain Mi,j , denoted by C[i, j], is measured in terms
of the number of scalar multiplications. For a given pair of indices i and j

with 1 ≤ i < j ≤ n, Mi,j can be computed as follows. Let k be an index
between i+1 and j. Compute the two matrices Mi,k−1 = MiMi+1 . . . Mk−1,
and Mk,j = MkMk+1 . . . Mj. Then Mi,j = Mi,k−1Mk,j . Clearly, the total
cost of computing Mi,j in this way is the cost of computing Mi,k−1 plus the
cost of computing Mk,j plus the cost of multiplying Mi,k−1 and Mk,j , which
is rirkrj+1. This leads to the following formula for finding that value of k

which minimizes the number of scalar multiplications required to perform
the matrix multiplication MiMi+1 . . . Mj :

C[i, j] = min
i<k≤j

{C[i, k − 1] + C[k, j] + rirkrj+1}. (6.1)

It follows that in order to find the minimum number of scalar multi-
plications required to perform the matrix multiplication M1M2 . . . Mn, we
only need to solve the recurrence

C[1, n] = min
1<k≤n

{C[1, k − 1] + C[k, n] + r1rkrn+1}.
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However, as noted in Examples 6.1 and 6.2, this will lead to a huge number
of overlapping recursive calls, and hence solving the recurrence directly in
a top-down fashion will not result in an efficient algorithm.

The dynamic programming algorithm

In what follows, we describe how the technique of dynamic programming
can be used to efficiently evaluate the above recurrence in time Θ(n3).
Consider Fig. 6.2, which illustrates the method on an instance consisting of
n = 6 matrices. In this figure, diagonal d is filled with the minimum costs
of multiplying various chains of d + 1 consecutive matrices. In particular,
diagonal 5 consists of exactly one entry which represents the minimum cost
of multiplying the six matrices, which is the desired result. In diagonal 0,
each chain consists of one matrix only, and hence this diagonal is filled with
0’s. We fill this triangular table with costs of multiplication diagonalwise,
starting at diagonal 0 and ending at diagonal 5. First, diagonal 0 is filled
with 0’s, as there are no scalar multiplications involved. Next, diagonal 1
is filled with the costs of multiplying two consecutive matrices. The rest
of the diagonals are filled using the formula stated above and the values
previously stored in the table. Specifically, to fill diagonal d, we make use
of the values stored in diagonals 0, 1, 2, . . . , d− 1.

1

2

3

4

5

6

d=1 d=2 d=3 d=4 d=5

C[1,1] C[1,2] C[1,3] C[1,4] C[1,5] C[1,6]

C[2,2] C[2,3] C[2,4] C[2,5] C[2,6]

C[3,3] C[3,4] C[3,6]C[3,5]

C[4,4] C[4,5] C[4,6]

C[5,5] C[5,6]

C[6,6]

i
d=0

Fig. 6.2. Illustration of matrix chain multiplication.
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As an example, the computation of C[2, 5] is the minimum of the fol-
lowing three costs (see Fig. 6.2):

(1) The cost of computing M2,2 (which is 0) plus the cost of computing
M3,5 plus the cost of multiplying M2,2 by M3,5.

(2) The cost of computing M2,3 plus the cost of computing M4,5 plus the
cost of multiplying M2,3 by M4,5.

(3) The cost of computing M2,4 plus the cost of computing M5,5 (which
is 0) plus the cost of multiplying M2,4 by M5,5.

To compute any other entry C[i, j] in the table other than the main
diagonal, we do the following. First, we draw two directed vectors: one
from C[i, i] to C[i, j − 1] and one from C[i + 1, j] to C[j, j] (see Fig. 6.2).
Next, we compute the cost of multiplying each pair of matrices as we follow
the two arrows starting from the pair C[i, i] and C[i + 1, j] to the pair
C[i, j − 1] and C[j, j]. Finally, we select the minimum cost and store it in
C[i, j].

In general, multiplying a chain of n matrices gives rise to a triangu-
lar table of n rows and n columns similar to the one shown in Fig. 6.2.
The formal algorithm that produces such a table is given as Algorithm
matchain.

Step 1 fills diagonal 0 with 0’s. The execution of each iteration of the
for loop in Step 2 advances to the next diagonal. Each iteration of the
for loop in Step 3 advances to a new entry in that diagonal (each diagonal
contains n − d entries). Steps 8–11 compute entry C[i, j] using Eq. (6.1).
First, it is initialized to a very large value. Next, its value is chosen as the
minimum of d quantities corresponding to d multiplications of subchains as
explained for the case of the instance C[2, 5] described above and shown in
Fig. 6.2.

Example 6.4 Figure 6.3 shows the result of applying Algorithm
matchain to find the minimum number of scalar multiplication required
to compute the product of the following five matrices:

M1: 5× 10, M2: 10× 4, M3: 4× 6, M4: 6× 10, M5: 10× 2.

Each entry C[i, j] of the upper triangular table is labeled with the minimum
number of scalar multiplications required to multiply the matrices Mi ×
Mi+1 × · · ·Mj for 1 ≤ i ≤ j ≤ 5. The final solution is C[1, 5] = 348.
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Algorithm 6.2 matchain
Input: An array r[1..n + 1] of positive integers corresponding to the

dimensions of a chain of n matrices, where r[1..n] are the number
of rows in the n matrices and r[n+1] is the number of columns in Mn.

Output: The least number of scalar multiplications required to multiply
the n matrices

1. for i← 1 to n {Fill in diagonal d0}
2. C[i, i]← 0
3. end for
4. for d← 1 to n− 1 {Fill in diagonals d1 to dn−1}
5. for i← 1 to n− d {Fill in entries in diagonal di}
6. j← i + d
7. comment: The next three lines compute C[i, j]

8. C[i, j]←∞
9. for k← i + 1 to j

10. C[i, j]← min{C[i, j], C[i, k−1]+C[k, j]+r[i]r[k]r[j +1]}
11. end for
12. end for
13. end for
14. return C[1, n]

C[1, 1] = 0 C[1, 2] = 200 C[1, 3] = 320 C[1, 4] = 620 C[1, 5] = 348
C[2, 2] = 0 C[2, 3] = 240 C[2, 4] = 640 C[2, 5] = 248

C[3, 3] = 0 C[3, 4] = 240 C[3, 5] = 168
C[4, 4] = 0 C[4, 5] = 120

C[5, 5] = 0

Fig. 6.3. An example of the matrix chain multiplication algorithm.

Finding the time and space complexites of Algorithm matchain is
straightforward. For some constant c > 0, the running time of the algorithm
is proportional to

n−1∑
d=1

n−d∑
i=1

d∑
k=1

c =
cn3 − cn

6
.

Hence, the time complexity of the algorithm is Θ(n3). Clearly, the work
space needed by the algorithm is dominated by that needed for the trian-
gular array, i.e., Θ(n2). So far we have demonstrated an algorithm that
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computes the minimum cost of multiplying a chain of matrices. The fol-
lowing theorem summarizes the main result.

Theorem 6.2 The minimum number of scalar multiplications required to
multiply a chain of n matrices can be found in Θ(n3) time and Θ(n2) space.

Finally, we close this section by noting that, surprisingly, this problem
can be solved in time O(n log n) (see the bibliographic notes).

6.4 The Dynamic Programming Paradigm

Examples 6.1 and 6.2 and Secs. 6.2 and 6.3 provide an overview of
the dynamic programming algorithm design technique and its underlying
principle. The idea of saving solutions to subproblems in order to avoid
their recomputation is the basis of this powerful method. This is usually
the case in many combinatorial optimization problems in which the solution
can be expressed in the form of a recurrence whose direct solution causes
subinstances to be computed more than once.

An important observation about the working of dynamic programming
is that the algorithm computes an optimal solution to every subinstance of
the original instance considered by the algorithm. In other words, all the
table entries generated by the algorithm represent optimal solutions to the
subinstances considered by the algorithm. For example, in Fig. 6.1, each
entry L[i, j] is the length of a longest common subsequence for the subin-
stance obtained by taking the first i letters from the first string and the
first j letters from the second string. Also, in Fig. 6.2, each entry C[i, j]
is the minimum number of scalar multiplications needed to perform the
product MiMi+1 . . . Mj. Thus, for example, the algorithm that generates
Fig. 6.2 not only computes the minimum number of scalar multiplication
for obtaining the product of the n matrices, but also computes the min-
imum number of scalar multiplication of the product of any sequence of
consecutive matrices in M1M2 . . . Mn.

The above argument illustrates an important principle in algorithm
design called the principle of optimality: Given an optimal sequence of
decisions, each subsequence must be an optimal sequence of decisions by
itself. We have already seen that the problems of finding the length of
a longest common subsequence and the problem of matrix chain multipli-
cation can be formulated in such a way that the principle of optimality
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applies. As another example, let G = (V, E) be a directed graph and let π

be a shortest path from vertex s to vertex t, where s and t are two vertices
in V . Suppose that another vertex, say x ∈ V , is on this path. Then, it
follows that the portion of π from s to x must be a path of shortest length,
and so is the portion of π from x to t. This can trivially be proved by
contradiction. On the other hand, let π′ be a simple path of longest length
from s to t. If vertex y ∈ V is on π′, then this does not mean, for example,
that the portion of π′ from s to y is a longest simple path from s to y. This
suggests that dynamic programming may be used to find a shortest path,
but it is not obvious if it can be used to find a longest simple path. In the
case of directed acyclic graphs, dynamic programming may be used to find
the longest path between two given vertices (Exercise 6.33). Note that in
this case, all paths are simple.

6.5 The All-Pairs Shortest Path Problem

Let G = (V, E) be a directed graph in which each edge (i, j) has a non-
negative length l[i, j]. If there is no edge from vertex i to vertex j, then
l[i, j] =∞. The problem is to find the distance from each vertex to all other
vertices, where the distance from vertex x to vertex y is the length of a short-
est path from x to y. For simplicity, we will assume that V = {1, 2, . . . , n}.
Let i and j be two different vertices in V . Define dk

i,j to be the length
of a shortest path from i to j that does not pass through any vertex in
{k + 1, k + 2, . . . , n}. Thus, for example, d0

i,j = l[i, j], d1
i,j is the length of

a shortest path from i to j that does not pass through any vertex except
possibly vertex 1, d2

i,j is the length of a shortest path from i to j that does
not pass through any vertex except possibly vertex 1 or vertex 2 or both,
and so on. Then, by definition, dn

i,j is the length of a shortest path from i

to j, i.e., the distance from i to j. Given this definition, we can compute
dk

i,j recursively as follows:

dk
i,j =

{
l[i, j] if k = 0,

min
{
dk−1

i,j , dk−1
i,k + dk−1

k,j

}
if 1 ≤ k ≤ n.

The algorithm

The following algorithm, which is due to Floyd, proceeds by solving
the above recurrence in a bottom-up fashion. It uses n + 1 matrices
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D0, D1, . . . , Dn of dimension n × n to compute the lengths of the short-
est constrained paths.

Initially, we set D0[i, i] = 0 and D0[i, j] = l[i, j] if i �= j and (i, j) is an
edge in G; otherwise, D0[i, j] = ∞. We then make n iterations such that
after the kth iteration, Dk[i, j] contains the value of a shortest length path
from vertex i to vertex j that does not pass through any vertex numbered
higher than k. Thus, in the kth iteration, we compute Dk[i, j] using the
formula

Dk[i, j] = min{Dk−1[i, j], Dk−1[i, k] + Dk−1[k, j]}.

Example 6.5 Consider the directed graph shown in Fig. 6.4.
The matrices D0, D1, D2, and D3 are

D0 =


 0 2 9

8 0 6
1 ∞ 0


, D1 =


 0 2 9

8 0 6
1 3 0


.

D2 =


0 2 8

8 0 6
1 3 0


, D3 =


 0 2 8

7 0 6
1 3 0


.

The final computed matrix D3 holds the desired distances.

An important observation is that in the kth iteration, both the kth row
and kth column are not changed. Therefore, we can perform the compu-
tation with only one copy of the D matrix. An algorithm to perform this
computation using only one n× n matrix is given as Algorithm floyd.

Clearly, the running time of the algorithm is Θ(n3) and its space com-
plexity is Θ(n2).

6
9

2 1
8

32

1

Fig. 6.4. An instance of the all-pairs shortest path problem.
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Algorithm 6.3 floyd
Input: An n× n matrix l[1..n, 1..n] such that l[i, j] is the length of the edge

(i, j) in a directed graph G = ({1, 2, . . . , n}, E).

Output: A matrix D with D[i, j] = the distance from i to j.

1. D← l {copy the input matrix l into D}
2. for k← 1 to n
3. for i← 1 to n
4. for j← 1 to n
5. D[i, j] = min{D[i, j], D[i, k] + D[k, j]}
6. end for
7. end for
8. end for

6.6 The Knapsack Problem

The knapsack problem can be defined as follows. Let U = {u1, u2, . . . , un}
be a set of n items to be packed in a knapsack of size C. For 1 ≤ j ≤ n,
let sj and vj be the size and value of the jth item, respectively. Here C

and sj , vj , 1 ≤ j ≤ n, are all positive integers. The objective is to fill the
knapsack with some items from U whose total size is at most C and such
that their total value is maximum. Assume without loss of generality that
the size of each item does not exceed C. More formally, given U of n items,
we want to find a subset S ⊆ U such that∑

ui∈S

vi

is maximized subject to the constraint∑
ui∈S

si ≤ C.

This version of the knapsack problem is sometimes referred to in the liter-
ature as the 0/1 knapsack problem. This is because the knapsack cannot
contain more than one item of the same type. Another version of the prob-
lem in which the knapsack may contain more than one item of the same
type is discussed in Exercise 6.26.

We derive a recursive formula for filling the knapsack as follows. Let
V [i, j] denote the value obtained by filling a knapsack of size j with items
taken from the first i items {u1, u2, . . . , ui} in an optimal way. Here the
range of i is from 0 to n and the range of j is from 0 to C. Thus, what we
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seek is the value V [n, C]. Obviously, V [0, j] is 0 for all values of j, as there
is nothing in the knapsack. On the other hand, V [i, 0] is 0 for all values of
i since nothing can be put in a knapsack of size 0. For the general case,
when both i and j are greater than 0, we have the following observation,
which is easy to prove.

Observation 6.2 V [i, j] is the maximum of the following two quantities:

• V [i− 1, j]: The maximum value obtained by filling a knapsack of size j

with items taken from {u1, u2, . . . , ui−1} only in an optimal way.
• V [i− 1, j − si] + vi: The maximum value obtained by filling a knapsack

of size j − si with items taken from {u1, u2, . . . , ui−1} in an optimal way
plus the value of item ui. This case applies only if j ≥ si and it amounts
to adding item ui to the knapsack.

Observation 6.2 implies the following recurrence for finding the value in
an optimal packing:

V [i, j] =




0 if i = 0 or j = 0,

V [i− 1, j] if j < si,

max{V [i− 1, j], V [i− 1, j − si] + vi} if i > 0 and j ≥ si.

The algorithm

Using dynamic programming to solve this integer programming problem is
now straightforward. We use an (n + 1) × (C + 1) table to evaluate the
values of V [i, j]. We only need to fill the table V [0..n, 0..C] row by row
using the above formula. The method is formally described in Algorithm
knapsack.

Clearly, the time complexity of the algorithm is exactly the size of the
table, Θ(nC), as filling each entry requires Θ(1) time. Algorithm knap-

sack can easily be modified so that it outputs the items packed in the
knapsack as well. It can also be easily modified so that it requires only
Θ(C) of space, as only the last computed row is needed for filling the cur-
rent row. This implies the following theorem.

Theorem 6.3 An optimal solution to the Knapsack problem can be found
in Θ(nC) time and Θ(C) space.
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Algorithm 6.4 knapsack
Input: A set of items U = {u1, u2, . . . , un} with sizes s1, s2, . . . , sn and

values v1, v2, . . . , vn and a knapsack capacity C.

Output: The maximum value of the function
∑

ui∈S
vi subject to∑

ui∈S
si ≤ C for some subset of items S ⊆ U .

1. for i← 0 to n
2. V [i, 0]← 0
3. end for
4. for j← 0 to C
5. V [0, j]← 0
6. end for
7. for i← 1 to n
8. for j← 1 to C
9. V [i, j]← V [i− 1, j]

10. if si ≤ j then V [i, j]← max{V [i, j], V [i− 1, j − si] + vi}
11. end for
12. end for
13. return V [n, C]

Note that the time bound, as stated in the above theorem, is not poly-
nomial in the input size. Therefore, the algorithm is considered to be
exponential in the input size. For this reason, it is referred to as a pseu-
dopolynomial time algorithm, as the running time is polynomial in the input
value.

Example 6.6 Suppose that we have a knapsack of capacity 9, which we
want to pack with items of four different sizes 2, 3, 4, and 5 and values 3, 4,
5, and 7, respectively. Our goal is to pack the knapsack with as many items
as possible in a way that maximizes the total value without exceeding the
knapsack capacity. We proceed to solve this problem as follows. First, we
prepare an empty rectangular table with five rows numbered 0 to 4 and 10
columns labeled 0 through 9. Next, we initialize the entries in column 0 and
row 0 with the value 0. Filling row 1 is straightforward: V [1, j] = 3, the
value of the first item, if and only if j ≥ 2, the size of the first item. Each
entry V [2, j] in the second column has two possibilities. The first possibility
is to set V [2, j] = V [1, j], which amounts to putting the first item in the
knapsack. The second possibility is to set V [2, j] = V [1, j − 3] + 4, which
amounts to adding the second item so that it either contains the second
item only or both the first and second items. Of course, adding the second
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0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0
1 0 0 3 3 3 3 3 3 3 3
2 0 0 3 4 4 7 7 7 7 7
3 0 0 3 4 5 7 8 9 9 12
4 0 0 3 4 5 7 8 10 11 12

Fig. 6.5. An example of the algorithm for the knapsack problem.

item is possible only if j ≥ 3. Continuing this way, rows 3 and 4 are filled
to obtain the table shown in Fig. 6.5.

The ith entry of column 9, that is, V [i, 9], contains the maximum value
we can get by filling the knapsack using the first i items. Thus, an opti-
mal packing is found in the last entry of the last column and is achieved
by packing items 3 and 4. There is also another optimal solution, which
is packing items 1, 2, and 3. This packing corresponds to entry V [3, 9]
in the table, which is the optimal packing before the fourth item was
considered.

6.7 Exercises

6.1. Give an efficient algorithm to compute f(n), the nth number in the
Fibonacci sequence (see Example 6.1). What is the time complexity of
your algorithm? Is it a polynomial time algorithm? Explain.

6.2. Give an efficient algorithm to compute the binomial coefficient
(
n
k

)
(see

Example 6.2). What is the time complexity of your algorithm? Is it a
polynomial time algorithm? Explain.

6.3. Prove Observation 6.1.

6.4. Use Algorithm lcs to find the length of a longest common subsequence
of the two strings A = “xzyzzyx” and B = “zxyyzxz”. Give one longest
common subsequence.

6.5. Show how to modify Algorithm lcs so that it outputs a longest common
subsequence as well.

6.6. Show how to modify Algorithm lcs so that it requires only Θ(min{m, n})
space.
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6.7. In Sec. 6.3, it was shown that the number of ways to fully parenthesize n
matrices is given by the summation

f(n) =

n−1∑
k=1

f(k)f(n− k).

Show that the solution to this recurrence is

f(n) =
1

n

(
2n− 2
n− 1

)
.

6.8. Consider using Algorithm matchain to multiply the following five matri-
ces:

M1: 4× 5, M2: 5× 3, M3: 3× 6, M4: 6× 4, M5: 4× 5.

Assume the intermediate results shown in Fig. 6.6 for obtaining the mul-
tiplication M1 × M2 × M3 × M4 × M5, where C[i, j] is the minimum
number of scalar multiplications needed to carry out the multiplication
Mi × · · · × Mj , 1 ≤ i ≤ j ≤ 5. Also shown in the figure parenthesized
expressions showing the optimal sequence for carrying out the multiplica-
tion Mi×· · ·×Mj. Find C[1, 5] and the optimal parenthesized expressions
for carrying out the multiplication M1 × · · · ×M5.

6.9. Give a parenthesized expression for the optimal order of multiplying the
five matrices in Example 6.4.

6.10. Consider applying Algorithm matchain on the following five matrices:

M1: 2× 3, M2: 3× 6, M3: 6× 4, M4: 4× 2, M5: 2× 7.

C[1, 1] = 0 C[1, 2] = 60 C[1, 3] = 132 C[1, 4] = 180
M1 M1M2 (M1M2)M3 (M1M2)(M3M4)

C[2, 2] = 0 C[2, 3] = 90 C[2, 4] = 132 C[2, 5] = 207
M2 M2M3 M2(M3M4) M2((M3M4)M5)

C[3, 3] = 0 C[3, 4] = 72 C[3, 5] = 132
M3 M3M4 (M3M4)M5

C[4, 4] = 0 C[4, 5] = 120
M4 M4M5

C[5, 5] = 0
M5

Fig. 6.6. An incomplete table for the matrix chain multiplication problem.
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(a) Find the minimum number of scalar multiplications needed to multiply
the five matrices (that is, C[1, 5]).

(b) Give a parenthesized expression for the order in which this optimal
number of multiplications is achieved.

6.11. Give an example of three matrices in which one order of their multiplication
costs at least 100 times the other order.

6.12. Show how to modify the matrix chain multiplication algorithm so that it
also produces the order of multiplications as well.

6.13. Let G = (V, E) be a weighted directed graph, and let s, t ∈ V . Assume
that there is at least one path from s to t;

(a) Let π be a path of shortest length from s to t that passes by another
vertex x. Show that the portion of the path from s to x is a shortest
path from s to x.

(b) Let π′ be a longest simple path from s to t that passes by another
vertex y. Show that the portion of the path from s to y is not neces-
sarily a longest path from s to y.

6.14. Run the all-pairs shortest path algorithm on the weighted directed graph
shown in Fig. 6.7.

6.15. Use the all-pairs shortest path algorithm to compute the distance matrix
for the directed graph with the lengths of the edges between all pairs of
vertices are as given by the matrix

(a)




0 1 ∞ 2
2 0 ∞ 2
∞ 9 0 4
8 2 3 0


 (b)




0 2 4 6
2 0 1 2
5 9 0 1
9 ∞ 2 0


.

6.16. Give an example of a directed graph that contains some edges with neg-
ative costs and yet the all-pairs shortest path algorithm gives the correct
distances.

6 9

2

1

4

1

4 3

27

41

Fig. 6.7. An instance of the all-pairs shortest path problem.
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6.17. Give an example of a directed graph that contains some edges with negative
costs such that the all-pairs shortest path algorithm fails to give the correct
distances.

6.18. Show how to modify the all-pairs shortest path algorithm so that it detects
negative-weight cycles (A negative-weight cycle is a cycle whose total
length is negative).

6.19. Prove Observation 6.2.

6.20. Solve the following instance of the knapsack problem. There are four items
of sizes 2, 3, 5, and 6 and values 3, 4, 5, and 7, respectively, and the
knapsack capacity is 11.

6.21. Solve the following instance of the knapsack problem. There are five items
of sizes 3, 5, 7, 8, and 9 and values 4, 6, 7, 9, respectively, and 10, and the
knapsack capacity is 22.

6.22. Explain what would happen when running the knapsack algorithm on an
input in which one item has negative size.

6.23. Show how to modify Algorithm knapsack so that it requires only Θ(C)
space, where C is the knapsack capacity.

6.24. Show how to modify Algorithm knapsack so that it outputs the items
packed in the knapsack as well.

6.25. In order to lower the prohibitive running time of the knapsack problem,
which is Θ(nC), we may divide C and all the si’s by a large number K
and take the floor. That is, we may transform the given instance into
a new instance with capacity �C/K� and item sizes �si/K�, 1 ≤ i ≤ n.
Now, we apply the algorithm for the knapsack discussed in Sec. 6.6. This
technique is called scaling and rounding (see Sec. 14.6). What will be the
running time of the algorithm when applied to the new instance? Give a
counterexample to show that scaling and rounding does not always result
in an optimal solution to the original instance.

6.26. Another version of the knapsack problem is to let the set U contain a set of
types of items, and the objective is to fill the knapsack with any number of
items of each type in order to maximize the total value without exceeding
the knapsack capacity. Assume that there is an unlimited number of items
of each type. More formally, let T = {t1, t2, . . . , tn} be a set of n types
of items, and C the knapsack capacity. For 1 ≤ j ≤ n, let sj and vj

be, respectively, the size and value of the items of type j. Find a set of
nonnegative integers x1, x2, . . . , xn such that

n∑
i=1

xivi
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is maximized subject to the constraint

n∑
i=1

xisi ≤ C.

x1, x2, . . . , xn are nonnegative integers.

Note that xj = 0 means that no item of the jth type is packed in the
knapsack. Rewrite the dynamic programming algorithm for this version of
the knapsack problem.

6.27. Solve the following instance of the version of the knapsack problem
described in Exercise 6.26. There are five types of items with sizes 2,
3, 5, and 6 and values 4, 7, 9, and 11, respectively, and the knapsack
capacity is 8.

6.28. Show how to modify the knapsack algorithm discussed in Exercise 6.26 so
that it computes the number of items packed from each type.

6.29. Consider the money change problem. We have a currency system that has
n coins with values v1, v2, . . . , vn, where v1 = 1, and we want to pay change
of value y in such a way that the total number of coins is minimized. More
formally, we want to minimize the quantity

n∑
i=1

xi

subject to the constraint
n∑

i=1

xivi = y.

Here, x1, x2, . . . , xn are nonnegative integers (so xi may be zero).

(a) Give a dynamic programming algorithm to solve this problem.

(b) What are the time and space complexities of your algorithm?

(c) Can you see the resemblance of this problem to the version of the
knapsack problem discussed in Exercise 6.26? Explain.

6.30. Apply the algorithm in Exercise 6.29 to the instance v1 = 1, v2 = 5, v3 =
7, v4 = 11, and y = 20.

6.31. Let G = (V, E) be a directed graph with n vertices. G induces a relation
R on the set of vertices V defined by: u R v if and only if there is a
directed edge from u to v, i.e., if and only if (u, v) ∈ E. Let MR be the
adjacency matrix of G, i.e., MR is an n×n matrix satisfying MR[u, v] = 1
if (u, v) ∈ E and 0 otherwise. The reflexive and transitive closure of MR,
denoted by M∗

R, is defined as follows. For u, v ∈ V , if u = v or there is a
path in G from u to v, then M∗

R[u, v] = 1 and 0 otherwise. Give a dynamic
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programming algorithm to compute M∗
R for a given directed graph. (Hint:

You only need a slight modification of Floyd’s algorithm for the all-pairs
shortest path problem).

6.32. Let G = (V, E) be a directed graph with n vertices. Define the n × n
distance matrix D as follows. For u, v ∈ V , D[u, v] = d if and only if
the length of the shortest path from u to v measured in the number of
edges is exactly d. For example, for any v ∈ V , D[v, v] = 0 and for any
u, v ∈ V D[u, v] = 1 if and only if (u, v) ∈ E. Give a dynamic programming
algorithm to compute the distance matrix D for a given directed graph.
(Hint: Again, you only need a slight modification of Floyd’s algorithm for
the all-pairs shortest path problem).

6.33. Let G = (V, E) be a directed acyclic graph (dag) with n vertices. Let s and
t be two vertices in V such that the indegree of s is 0 and the outdegree
of t is 0. Give a dynamic programming algorithm to compute a longest
path in G from s to t. What is the time complexity of your algorithm?

6.34. Give a dynamic programming algorithm for the traveling salesman prob-
lem: Given a set of n cities with their intercity distances, find a tour of
minimum length. Here, a tour is a cycle that visits each city exactly once.
What is the time complexity of your algorithm? This problem can be
solved using dynamic programming in time O(n22n) (see the bibliographic
notes).

6.35. Let P be a convex polygon with n vertices (see Sec. 17.3). A chord in P is
a line segment that connects two nonadjacent vertices in P . The problem
of triangulating a convex polygon is to partition the polygon into n − 2
triangles by drawing n− 3 chords inside P . Figure 6.8 shows two possible
triangulations of the same convex polygon.

(a) Show that the number of ways to triangulate a convex polygon with n
vertices is the same as the number of ways to multiply n− 1 matrices.

(b) A minimum weight triangulation is a triangulation in which the sum
of the lengths of the n − 3 chords is minimum. Give a dynamic pro-
gramming algorithm for finding a minimum weight triangulation of a
convex polygon with n vertices. (Hint: This problem is very similar
to the matrix chain multiplication covered in Sec. 6.3).

Fig. 6.8. Two triangulations of the same convex polygon.
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6.8 Bibliographic Notes

Dynamic programming was first popularized in the book by Bellman (1957).
Other books in this area include Bellman and Dreyfus (1962), Dreyfus
(1977), and Nemhauser (1966). Two general survey papers by Brown
(1979) and Held and Karp (1967) are highly recommended. The all-pairs
shortest paths algorithm is due to Floyd (1962). Matrix chain multipli-
cation is described in Godbole (1973). An O(n log n) algorithm to solve
this problem can be found in Hu and Shing (1980, 1982, 1984). The one-
and two-dimensional knapsack problems have been studied extensively;
see, for example, Gilmore (1977), Gilmore and Gomory (1966), and Hu
(1969). Held and Karp (1962) gave an O(n22n) dynamic programming
algorithm for the traveling salesman problem. This algorithm also appears
in Horowitz and Sahni (1978).
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When a solution to a problem is sought, perhaps the first strategy that
comes to one’s mind is the greedy method. If the problem involves graphs,
then one might consider traversing the graph, visiting its vertices, and
performing some actions depending on a decision made at that point. The
technique used to solve that problem is usually specific to the problem itself.
A common characteristic of both greedy algorithms and graph traversal is
that they are fast, as they involve making local decisions.

A graph traversal algorithm might be viewed as a greedy algorithm and
vice versa. In graph traversal techniques, the choice of the next vertex to
be examined is restricted to the set of neighbors of the current node. This
is in contrast to examining a bigger neighborhood, clearly a simple greedy
strategy. On the other hand, a greedy algorithm can also be viewed as a
graph traversal of a particular graph. For any greedy algorithm, there is
an implicit directed acyclic graph (dag) each nodes of which stand for a
state in that greedy computation. An intermediate state represents some
decisions that were already taken in a greedy fashion, while others remain
to be determined. In that dag, an edge from vertex u to vertex v exists only
if in the greedy method the algorithm’s state represented by v is arrived at
from that represented by vertex u as a consequence of one decision by the
greedy algorithm.

Although these techniques tend to be applied as initial solutions, they
rarely remain as the providers of optimal solutions. Their contribution
consequently is one of providing an initial solution that sets the stage for
careful examination of the specific properties of the problem.

In Chapter 7, we study in detail some algorithms that give optimal
solutions to well-known problems in computer science and engineering.
The two famous problems of the single-source shortest path, and finding a
minimum cost spanning tree in an undirected graph are representative of
those problems for which the greedy strategy results in an optimal solution.
Other problems, like Huffman code, will also be covered in this chapter.

Chapter 8 is devoted to graph traversals (depth-first search and breadth-
first search) that are useful in solving many problems, especially graph and
geometric problems.
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Chapter 7

The Greedy Approach

7.1 Introduction

As in the case of dynamic programming algorithms, greedy algorithms are
usually designed to solve optimization problems in which a quantity is to
be minimized or maximized. However, unlike dynamic programming algo-
rithms, greedy algorithms typically consist of an iterative procedure that
tries to find a local optimal solution. In some instances, these local optimal
solutions translate to global optimal solutions. In others, they fail to give
optimal solutions. A greedy algorithm makes a correct guess on the basis
of little calculation without worrying about the future. Thus, it builds a
solution step by step. Each step increases the size of the partial solution
and is based on local optimization. The choice made is that which pro-
duces the largest immediate gain while maintaining feasibility. Since each
step consists of little work based on a small amount of information, the
resulting algorithms are typically efficient. The hard part in the design of a
greedy algorithm is proving that the algorithm does indeed solve the prob-
lem it is designed for. This is to be contrasted with recursive algorithms
that usually have very simple inductive proofs. In this chapter, we will
study some of the most prominent problems for which the greedy strat-
egy works, i.e., gives an optimal solution: the single-source shortest path
problem, minimum cost spanning trees (Prim’s and Kruskal’s algorithms),
and Huffman codes. We will postpone those greedy algorithms that give
suboptimal solutions to Chapter 14. The exercises contain some problems
for which the greedy strategy works (e.g., Exercises 7.1, 7.8, and 7.32) and

201
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others for which the greedy method fails to give the optimal solution on
some instances (e.g., Exercises 7.5–7.7 and 7.10). The following is a simple
example of a problem for which the greedy strategy works.

Example 7.1 Consider the fractional knapsack problem defined as fol-
lows. Given n items of sizes s1, s2, . . . , sn, and values v1, v2, . . . , vn and size
C, the knapsack capacity, the objective is to find nonnegative real numbers
x1, x2, . . . , xn, 0 ≤ xi ≤ 1, that maximize the sum

n∑
i=1

xivi

subject to the constraint
n∑

i=1

xisi ≤ C.

This problem can easily be solved using the following greedy strategy.
For each item, compute yi = vi/si, the ratio of its value to its size. Sort
the items by decreasing ratio and fill the knapsack with as much as possible
from the first item, then the second, and so forth. This problem reveals
many of the characteristics of a greedy algorithm discussed above: The
algorithm consists of a simple iterative procedure that selects that item
which produces the largest immediate gain while maintaining feasibility.

7.2 The Shortest Path Problem

Let G = (V, E) be a directed graph in which each edge has a nonnegative
length, and there is a distinguished vertex s called the source. The single-
source shortest path problem, or simply the shortest path problem, is to
determine the distance from s to every other vertex in V , where the distance
from vertex s to vertex x is defined as the length of a shortest path from s

to x. For simplicity, we will assume that V = {1, 2, . . . , n} and s = 1. This
problem can be solved by using a greedy technique known as Dijkstra’s
algorithm. Initially, the set of vertices is partitioned into two sets X = {1}
and Y = {2, 3, . . . , n}. The intention is that X contains the set of vertices
whose distance from the source has already been determined. At each step,
we select a vertex y ∈ Y whose distance from the source vertex has already
been found and move it to X . Associated with each vertex y in Y is a



January 14, 2016 14:21 Algorithms: Design Techniques and Analysis - 9in x 6in b2305-ch07 page 203

The Greedy Approach 203

label λ[y], which is the length of a shortest path that passes only through
vertices in X . Once a vertex y ∈ Y is moved to X , the label of each vertex
w ∈ Y that is adjacent to y is updated, indicating that a shorter path to w

via y has been discovered. Throughout this section, for any vertex v ∈ V ,
δ[v] will denote the distance from the source vertex to v. As will be shown
later, at the end of the algorithm, δ[v] = λ[v] for each vertex v ∈ V . A
sketch of the algorithm is given below.

1. X ←{1}; Y ← V − {1}
2. For each vertex v ∈ Y if there is an edge from 1 to v then let λ[v]

(the label of v) be the length of that edge; otherwise let λ[v] = ∞.
Let λ[1] = 0.

3. while Y �= {}
4. Let y ∈ Y be such that λ[y] is minimum.
5. move y from Y to X.
6. update the labels of those vertices in Y that are adjacent to y.
7. end while

Example 7.2 To see how the algorithm works, consider the directed
graph shown in Fig. 7.1(a). The first step is to label each vertex v with
λ[v] = length[1, v]. As shown in the figure, vertex 1 is labeled with 0, and
vertices 2 and 3 are labeled with 1 and 12, respectively since length[1, 2] = 1
and length[1, 3] = 12. All other vertices are labeled with ∞ since there are
no edges from the source vertex to these vertices. Initially X = {1} and
Y = {2, 3, 4, 5, 6}. In the figure, those vertices to the left of the dashed
line belong to X , and the others belong to Y . In Fig. 7.1(a), we note that
λ[2] is the smallest among all vertices’ labels in Y , and hence it is moved
to X , indicating that the distance to vertex 2 has been found. To finish
processing vertex 2, the labels of its neighbors 3 and 4 are inspected to see
if there are paths that pass through 2 and are shorter than their old paths.
In this case, we say that we update the labels of the vertices adjacent to 2.
As shown in the figure, the path from 1 to 2 to 3 is shorter than the path
from 1 to 3, and thus λ[3] is changed to 10, which is the length of the path
that passes through 2. Similarly, λ[4] is changed to 4 since now there is
a finite path of length 4 from 1 to 4 that passes through vertex 2. These
updates are shown in Fig. 7.1(b). The next step is to move that vertex
with minimum label, namely 4, to X and update the labels of its neighbors
in Y as shown in Fig. 7.1(c). In this figure, we notice that the labels of
vertices 5 and 6 became finite and λ[3] is lowered to 8. Now, vertex 3 has
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Fig. 7.1. An example of Dijkstra’s algorithm.

a minimum label, so it is moved to X and λ[5] is updated accordingly as
shown in Fig. 7.1(d). Continuing in this way, the distance to vertex 5 is
found and thus it is moved to X as shown in Fig. 7.1(e). As shown in
Fig. 7.1(f), vertex 6 is the only vertex remaining in Y and hence its label
coincides with the length of its distance from 1. In Fig. 7.1(f), the label of
each vertex represents its distance from the source vertex.

Implementation of the shortest path algorithm

A more detailed description of the algorithm is given in Algorithm dijk-

stra.
We will assume that the input graph is represented by adjacency lists,

and the length of edge (x, y) is stored in the vertex for y in the adjacency
list for x. For instance, the directed graph shown in Fig. 7.1 is represented
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Algorithm 7.1 dijkstra
Input: A weighted directed graph G = (V, E), where V = {1, 2, . . . , n}.
Output: The distance from vertex 1 to every other vertex in G.

1. X = {1}; Y ← V − {1}; λ[1]← 0
2. for y← 2 to n
3. if y is adjacent to 1 then λ[y]← length [1, y]
4. else λ[y]←∞
5. end if
6. end for
7. for j← 1 to n− 1
8. Let y ∈ Y be such that λ[y] is minimum
9. X←X ∪ {y} {add vertex y to X}

10. Y ← Y − {y} {delete vertex y from Y }
11. for each edge (y, w)
12. if w ∈ Y and λ[y] + length [y, w] < λ[w] then
13. λ[w]← λ[y] + length[y, w]
14. end for
15. end for
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Fig. 7.2. Directed graph representation for the shortest path algorithm.

as shown in Fig. 7.2. We will also assume that the length of each edge in
E is nonnegative. The two sets X and Y will be implemented as boolean
vectors X [1..n] and Y [1..n]. Initially, X [1] = 1 and Y [1] = 0, and for all
i, 2 ≤ i ≤ n, X [i] = 0 and Y [i] = 1. Thus, the operation X←X ∪ {y}
is implemented by setting X [y] to 1, and the operation Y ← Y − {y} is
implemented by setting Y [y] to 0.

Correctness

Lemma 7.1 In Algorithm dijkstra, when a vertex y is chosen in
Step 8, if its label λ[y] is finite, then λ[y] = δ[y].
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x w y
X

1

Fig. 7.3. Proof of correctness of Algorithm dijkstra.

Proof. By induction on the order in which vertices leave the set Y and
enter X . The first vertex to leave is 1 and we have λ[1] = δ[1] = 0. Assume
that the statement is true for all vertices which left Y before y. Since λ[y]
is finite, there must exists a path from 1 to y whose length is λ[y]. Now, we
show that λ[y] ≤ δ[y]. Let π = 1, . . . , x, w, . . . , y be a shortest path from 1
to y, where x is the rightmost vertex to leave Y before y (see Fig. 7.3). We
have

λ[y] ≤ λ[w] since y left Y before w

≤ λ[x] + length(x, w) by the algorithm

= δ[x] + length(x, w) by induction

= δ[w] since π is a path of shortest length

≤ δ[y] since π is a path of shortest length. �

It will be left as an exercise to show that the above proof is based on
the assumption that all edge lengths are nonnegative (Exercise 7.18).

Time complexity

The time complexity of the algorithm is computed as follows. Step 1 costs
Θ(n) time. The for loop in step 2 costs Θ(n) time. The time taken
by Step 8 to search for the vertex with minimum label is Θ(n). This is
because the algorithm has to inspect each entry in the vector representing
the set Y . Since it is executed n − 1 times, the overall time required by
Step 8 is Θ(n2). Steps 9 and 10 cost Θ(1) time per iteration for a total of
Θ(n) time. The for loop in Step 11 is executed m times throughout the
algorithm, where m = |E|. This is because each edge (y, w) is inspected



January 14, 2016 14:21 Algorithms: Design Techniques and Analysis - 9in x 6in b2305-ch07 page 207

The Greedy Approach 207

exactly once by the algorithm. It follows that the time complexity of the
algorithm is Θ(m + n2) = Θ(n2).

Theorem 7.1 Given a directed graph G with nonnegative weights on its
edges and a source vertex s, Algorithm dijkstra finds the length of the
distance from s to every other vertex in Θ(n2) time.

Proof. Lemma 7.1 establishes the correctness of the algorithm and the
time complexity follows from the above discussion. �

7.2.1 Improving the time bound

Now we are ready to make a major improvement to Algorithm dijkstra in
order to lower its Θ(n2) time complexity to O(m log n) for graphs in which
m = o(n2). We will also improve it further, so that in the case of dense
graphs it runs in time linear in the number of edges.

The basic idea is to use the min-heap data structure (see Sec. 3.2) to
maintain the vertices in the set Y so that the vertex y in Y closest to a
vertex in V −Y can be extracted in O(log n) time. The key associated with
each vertex v is its label λ[v]. The final algorithm is shown as Algorithm
shortestpath.

Each vertex y ∈ Y is assigned a key which is the cost of the edge
connecting 1 to y if it exists; otherwise, that key is set to ∞. The heap
H initially contains all vertices adjacent to vertex 1. Each iteration of
the for loop in Step 12 starts by extracting that vertex y with minimum
key. The key of each vertex w in Y adjacent to y is then updated. Next,
if w is not in the heap, then it is inserted; otherwise, it is sifted up, if
necessary. The function H−1(w) returns the position of w in H . This can
be implemented by simply having an array that has for its jth entry the
position of vertex j in the heap (recall that the heap is implemented as
an array H [1..n]). The running time is dominated by the heap operations.
There are n − 1 deletemin operations, n − 1 insert operations, and at
most m − n + 1 siftup operations. Each heap operation takes O(log n)
time, which results in O(m log n) time in total. It should be emphasized
that the input to the algorithm is the adjacency lists of the graph.

A d-heap is essentially a generalization of a binary heap in which each
internal node in the tree has at most d children instead of 2, where d is a
number that can be arbitrarily large (see Exercise 3.21). If we use a d-heap,
the running time is improved as follows. Each deletemin operation takes
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Algorithm 7.2 shortestpath
Input: A weighted directed graph G = (V, E), where V = {1, 2, . . . , n}.
Output: The distance from vertex 1 to every other vertex in G.

Assume that we have an empty heap H at the beginning.

1. Y ← V − {1}; λ[1]← 0; key(1)← λ[1]
2. for y← 2 to n
3. if y is adjacent to 1 then
4. λ[y]← length [1, y]
5. key(y)← λ[y]
6. insert(H,y)
7. else
8. λ[y]←∞
9. key(y)← λ[y]

10. end if
11. end for
12. for j← 1 to n− 1
13. y← deletemin(H)
14. Y ← Y − {y} {delete vertex y from Y }
15. for each vertex w ∈ Y that is adjacent to y
16. if λ[y] + length [y, w] < λ[w] then
17. λ[w]← λ[y] + length[y, w]
18. key(w)← λ[w]
19. end if
20. if w /∈ H then insert(H,w)
21. else siftup(H,H−1(w))
22. end if
23. end for
24. end for

O(d logd n) time, and each insert or siftup operation requires O(logd n)
time. Thus, the total running time is O(nd logd n + m logd n). If we choose
d = �2 + m/n�, the time bound is O(m log�2+m/n� n). If m ≥ n1+ε for some
ε > 0 that is not too small, i.e., the graph is dense, then the running time is

O(m log�2+m/n� n) = O(m log�2+nε� n)

= O

(
m

log n

log nε

)

= O

(
m

log n

ε logn

)

= O
(m

ε

)
.

This implies the following theorem.
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Theorem 7.2 Given a graph G with nonnegative weights on its edges
and a source vertex s, Algorithm shortestpath finds the distance from
s to every other vertex in O(m log n) time. If the graph is dense, i.e., if
m ≥ n1+ε for some ε > 0, then it can be further improved to
run in time O(m/ε).

7.3 Minimum Cost Spanning Trees (Kruskal’s Algorithm)

Definition 7.1 Let G = (V, E) be a connected undirected graph with
weights on its edges. A spanning tree (V, T ) of G is a subgraph of G that
is a tree. If G is weighted and the sum of the weights of the edges in T is
minimum, then (V, T ) is called a minimum cost spanning tree or simply a
minimum spanning tree.

We will assume throughout this section that G is connected. If G is not
connected, then the algorithm can be applied on each connected component
of G. Kruskal’s algorithm works by maintaining a forest consisting of several
spanning trees that are gradually merged until finally the forest consists of
exactly one tree: a minimum cost spanning tree. The algorithm starts by
sorting the edges in nondecreasing order by weight. Next, starting from the
forest (V, T ) consisting of the vertices of the graph and none of its edges,
the following step is repeated until (V, T ) is transformed into a tree: Let
(V, T ) be the forest constructed so far, and let e ∈ E−T be the current edge
being considered. If adding e to T does not create a cycle, then include e

in T ; otherwise, discard e. This process will terminate after adding exactly
n− 1 edges. The algorithm is summarized below.

1. Sort the edges in G by nondecreasing weight.
2. For each edge in the sorted list, include that edge in the spanning

tree T if it does not form a cycle with the edges currently included
in T ; otherwise, discard it.

Example 7.3 Consider the weighted graph shown in Fig. 7.4(a). As
shown in Fig. 7.4(b), the first edge that is added is (1, 2) since it is of
minimum cost. Next, as shown in Fig. 7.4(c)–(e), edges (1, 3), (4, 6), and
then (5, 6) are included in T in this order. Next, as shown in Fig. 7.4(f),
the edge (2, 3) creates a cycle and hence is discarded. For the same reason,
as shown in Fig. 7.4(g), edge (4, 5) is also discarded. Finally, edge (3, 4)
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Fig. 7.4. An example of Kruskal Algorithm.

is included, which results in the minimum spanning tree (V, T ) shown in
Fig. 7.4(h).

Implementation of Kruskal’s algorithm

To implement the algorithm efficiently, we need some mechanism for testing
whether including an edge creates a cycle. For this purpose, we need to
specify a data structure that represents the forest at each instant of the algo-
rithm and detects cycles dynamically as edges are added to T . A suitable
choice of such data structure is the disjoint sets representation discussed
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in Sec. 3.3. In the beginning, each vertex of the graph is represented by a
tree consisting of one vertex. During the execution of the algorithm, each
connected component of the forest is represented by a tree. This method
is described more formally in Algorithm kruskal. First, the set of edges
is sorted in nondecreasing order by weight. Next n singleton sets are cre-
ated, one for each vertex, and the set of spanning tree edges is initially
empty. The while loop is executed until the minimum cost spanning tree is
constructed.

Algorithm 7.3 kruskal
Input: A weighted connected undirected graph G = (V, E) with n vertices.

Output: The set of edges T of a minimum cost spanning tree for G.

1. Sort the edges in E by nondecreasing weight.
2. for each vertex v ∈ V
3. makeset({v})
4. end for
5. T = {}
6. while |T | < n− 1
7. Let (x, y) be the next edge in E.
8. if find(x) �= find(y) then
9. Add (x, y) to T

10. union(x, y)
11. end if
12. end while

Correctness

Lemma 7.2 Algorithm kruskal correctly finds a minimum cost span-
ning tree in a weighted undirected graph.

Proof. We prove by induction on the size of T that T is a subset of the
set of edges in a minimum cost spanning tree. Initially, T = {} and the
statement is trivially true. For the induction step, assume before adding
the edge e = (x, y) in Step 9 of the algorithm that T ⊂ T ∗, where T ∗ is
the set of edges in a minimum cost spanning tree G∗ = (V, T ∗). Let X

be the set of vertices in the subtree containing x. Let T ′ = T ∪ {e}. We
will show that T ′ is also a subset of the set of edges in a minimum cost
spanning tree. By the induction hypothesis, T ⊂ T ∗. If T ∗ contains e,
then there is nothing to prove. Otherwise, by Theorem 2.1(c), T ∗ ∪ {e}
contains exactly one cycle with e being one of its edges. Since e = (x, y)
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connects one vertex in X to another vertex in V −X , T ∗ must also contain
another edge e′ = (w, z) such that w ∈ X and z ∈ V − X . We observe
that cost(e′) ≥ cost(e); for otherwise e′ would have been added before since
it does not create a cycle with the edges of T ∗ which contains the edges
of T . If we now construct T ∗∗ = T ∗ − {e′} ∪ {e}, we notice that T ′ ⊂ T ∗∗.
Moreover, T ∗∗ is the set of edges in a minimum cost spanning tree since e

is of minimum cost among all edges connecting the vertices in X with those
in V −X . �

Time complexity

We analyze the time complexity of the algorithm as follows. Step 1 costs
O(m log m), where m = |E|. The for loop in Step 2 costs Θ(n). Step 7
costs Θ(1), and since it is executed O(m) times, its total cost is O(m).
Step 9 is executed exactly n− 1 times for a total of Θ(n) time. The union

operation is executed n−1 times, and the find operation at most 2m times.
By Theorem 3.3, the overall cost of these two operations is O(m log∗ n).
Thus, the overall running time of the algorithm is dominated by the sorting
step, i.e., O(m log m) = O(m log n).

Theorem 7.3 Algorithm kruskal finds a minimum cost spanning tree
in a weighted undirected graph with m edges in O(m log n) time.

Proof. Lemma 7.2 establishes the correctness of the algorithm and the
time complexity follows from the above discussion. �

Since m can be as large as n(n − 1)/2 = Θ(n2), the time complexity
expressed in terms of n is O(n2 log n). If the graph is planar, then m =
O(n) (see Sec. 2.3.2) and hence the running time of the algorithm becomes
O(n log n).

7.4 Minimum Cost Spanning Trees (Prim’s Algorithm)

As in the previous section, we will assume throughout this section that G

is connected. If G is not connected, then the algorithm can be applied on
each connected component of G.

This is another algorithm for finding a minimum cost spanning tree in a
weighted undirected graph that has a totally different approach from that
of Algorithm kruskal. Prim’s algorithm for finding a minimum spanning
tree for an undirected graph is so similar to Dijkstra’s algorithm for the
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shortest path problem. The algorithm grows the spanning tree starting
from an arbitrary vertex. Let G = (V, E), where for simplicity V is taken
to be the set of integers {1, 2, . . . , n}. The algorithm begins by creating two
sets of vertices: X = {1} and Y = {2, 3, . . . , n}. It then grows a spanning
tree, one edge at a time. At each step, it finds an edge (x, y) of minimum
weight, where x ∈ X and y ∈ Y and moves y from Y to X . This edge
is added to the current minimum spanning tree edges in T . This step is
repeated until Y becomes empty. The algorithm is outlined below. It finds
the set of edges T of a minimum cost spanning tree.

1. T ←{}; X ←{1}; Y ← V − {1}
2. while Y �= {}
3. Let (x, y) be of minimum weight such that x ∈ X and y ∈ Y .
4. X←X ∪ {y}
5. Y ← Y − {y}
6. T← T ∪ {(x, y)}
7. end while

Example 7.4 Consider the graph shown in Fig. 7.5(a). The vertices to
the left of the dashed line belong to X , and those to its right belong to
Y . First, as shown in Fig. 7.5(a), X = {1} and Y = {2, 3, . . . , 6}. In
Fig. 7.5(b), vertex 2 is moved from Y to X since edge (1, 2) has the least
cost among all the edges incident to vertex 1. This is indicated by moving
the dashed line so that 1 and 2 are now to its left. As shown in Fig. 7.5(b),
the candidate vertices to be moved from Y to X are 3 and 4. Since edge
(1, 3) is of least cost among all edges with one end in X and one end in Y ,
3 is moved from Y to X . Next, from the two candidate vertices 4 and 5
in Fig. 7.5(c), 4 is moved since the edge (3, 4) has the least cost. Finally,
vertices 6 and then 5 are moved from Y to X as shown in Fig. 7.5(e). Each
time a vertex y is moved from Y to X , its corresponding edge is included in
T , the set of edges of the minimum spanning tree. The resulting minimum
spanning tree is shown in Fig. 7.5(f).

Implementation of Prim’s algorithm

We will assume that the input is represented by adjacency lists. The cost
(i.e., weight) of an edge (x, y), denoted by c[x, y], is stored at the node
for y in the adjacency list corresponding to x. This is exactly the input
representation for Dijkstra’s algorithm shown in Fig. 7.2 (except that here
we are dealing with undirected graphs). The two sets X and Y will be
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Fig. 7.5. An example of Prim’s algorithm.

implemented as boolean vectors X [1..n] and Y [1..n]. Initially, X [1] = 1
and Y [1] = 0, and for all i, 2 ≤ i ≤ n, X [i] = 0 and Y [i] = 1. Thus,
the operation X←X ∪ {y} is implemented by setting X [y] to 1, and the
operation Y ← Y − {y} is implemented by setting Y [y] to 0. The set of
tree edges T will be implemented as a linked list, and thus the operation
T← T ∪ {(x, y)} simply appends edge (x, y) to T . It is easy to build the
adjacency list representation of the resulting minimum cost spanning tree
from this linked list.

If (x, y) is an edge such that x ∈ X and y ∈ Y , we will call y a bordering
vertex. Bordering vertices are candidates for being moved from Y to X .
Let y be a bordering vertex. Then there is at least one vertex x ∈ X that
is adjacent to y. We define the neighbor of y, denoted by N [y], to be that
vertex x in X with the property that c[x, y] is minimum among all vertices
adjacent to y in X . We also define C[y] = c[y, N [y]]. Thus, N [y] is the
nearest neighbor to y in X , and C[y] is the cost of the edge connecting y and
N [y]. A detailed description of the algorithm is given as Algorithm prim.
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Initially, we set N [y] to 1 and C[y] = c[1, y] for each vertex y adjacent
to 1. For each vertex y that is not adjacent to 1, we set C[y] to ∞. In each
iteration, that vertex y with minimum C[y] is moved from Y to X . After
it has been moved, N [w] and C[w] are updated for each vertex w in Y that
is adjacent to y.

Algorithm 7.4 prim
Input: A weighted connected undirected graph G = (V, E), where

V = {1, 2, . . . , n}.
Output: The set of edges T of a minimum cost spanning tree for G.

1. T ←{}; X ←{1}; Y ← V − {1}
2. for y← 2 to n
3. if y adjacent to 1 then
4. N [y]← 1
5. C[y]← c[1, y]
6. else C[y]←∞
7. end if
8. end for
9. for j← 1 to n− 1 {find n− 1 edges}

10. Let y ∈ Y be such that C[y] is minimum
11. T← T ∪ {(y, N [y])} {add edge (y,N [y]) to T}
12. X←X ∪ {y} {add vertex y to X}
13. Y ← Y − {y} {delete vertex y from Y }
14. for each vertex w ∈ Y that is adjacent to y
15. if c[y, w] < C[w] then
16. N [w]← y
17. C[w]← c[y, w]
18. end if
19. end for
20. end for

Correctness

Lemma 7.3 Algorithm prim correctly finds a minimum cost spanning
tree in a connected undirected graph.

Proof. We prove by induction on the size of T that (X, T ) is a subtree
of a minimum cost spanning tree. Initially, T = {} and the statement is
trivially true. Assume the statement is true before adding edge e = (x, y),
where x ∈ X and y ∈ Y . Let X ′ = X∪{y} and T ′ = T ∪{e}. We will show
that G′ = (X ′, T ′) is also a subset of some minimum cost spanning tree.
First, we show that G′ is a tree. Since e is connected to exactly one vertex
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in X , namely x, and since by the induction hypothesis (X, T ) is a tree, G′ is
connected and has no cycles, i.e., a tree. We now show that G′ is a subtree
of a minimum cost spanning tree. By the induction hypothesis, T ⊂ T ∗,
where T ∗ is the set of edges in a minimum spanning tree G∗ = (V, T ∗). If T ∗

contains e, then there is nothing to prove. Otherwise, by Theorem 2.1(c),
T ∗ ∪ {e} contains exactly one cycle with e being one of its edges. Since
e = (x, y) connects one vertex in X to another vertex in Y , T ∗ must also
contain another edge e′ = (w, z) such that w ∈ X and z ∈ Y . If we now
construct T ∗∗ = T ∗ − {e′} ∪ {e}, we notice that T ′ ⊆ T ∗∗. Moreover, T ∗∗

is the set of edges in a minimum cost spanning tree since e is of minimum
cost among all edges connecting the vertices in X with those in Y . �

Time complexity

The time complexity of the algorithm is computed as follows. Step 1 costs
Θ(n) time. The for loop in Step 2 requires Θ(n) time. The time taken by
Step 10 to search for a vertex y closest to X is Θ(n) per iteration. This
is because the algorithm inspects each entry in the vector representing the
set Y . Since this step is executed n − 1 times, the overall time taken by
Step 10 is Θ(n2). Steps 11–13 cost Θ(1) time per iteration for a total of
Θ(n) time. The for loop in Step 14 is executed 2m times, where m = |E|.
This is because each edge (y, w) is inspected twice: once when y is moved to
X and the other when w is moved to X . Hence, the overall time required by
the for loop is Θ(m). It follows that the time complexity of the algorithm
is Θ(m + n2) = Θ(n2).

Theorem 7.4 Algorithm prim finds a minimum cost spanning tree in a
weighted undirected graph with n vertices in Θ(n2) time.

Proof. Lemma 7.3 establishes the correctness of the algorithm and the
rest follows from the above discussion. �

7.4.1 Improving the time bound

Now we improve on Algorithm prim as we did to Algorithm dijkstra in
order to lower its Θ(n2) time complexity to O(m log n) for graphs in which
m = o(n2). We will also improve it further, so that in the case of dense
graphs it runs in time linear in the number of edges.

As in Algorithm shortestpath, the basic idea is to use the min-heap
data structure (see Sec. 3.2) to maintain the set of bordering vertices so
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that the vertex y in Y incident to an edge of lowest cost that is connected
to a vertex in V − Y can be extracted in O(log n) time. The modified
algorithm is given as Algorithm mst.

Algorithm 7.5 mst
Input: A weighted connected undirected graph G = (V, E), where

V = {1, 2, . . . , n}.
Output: The set of edges T of a minimum cost spanning tree for G.

Assume that we have an empty heap H at the beginning.

1. T ←{}; Y ← V − {1}
2. for y← 2 to n
3. if y is adjacent to 1 then
4. N [y]← 1
5. key(y)← c[1, y]
6. insert(H,y)
7. else key(y)←∞
8. end if
9. end for

10. for j← 1 to n− 1 {find n− 1 edges}
11. y← deletemin(H)
12. T← T ∪ {(y, N [y])} {add edge (y,N [y]) to T}
13. Y ← Y − {y} {delete vertex y from Y }
14. for each vertex w ∈ Y that is adjacent to y
15. if c[y, w] < key(w) then
16. N [w]← y
17. key(w)← c[y, w]
18. end if
19. if w /∈ H then insert(H,w)
20. else siftup(H,H−1(w))
21. end for
22. end for

The heap H initially contains all vertices adjacent to vertex 1. Each
vertex y ∈ Y is assigned a key which is the cost of the edge connecting
y to 1 if it exists; otherwise, that key is set to ∞. Each iteration of the
for loop starts by extracting that vertex y with minimum key. The key of
each vertex w in Y adjacent to y is then updated. Next, if w is not in the
heap, then it is inserted; otherwise it is sifted up, if necessary. The function
H−1(w) returns the position of w in H . This can be implemented by simply
having an array that has for its jth entry the position of vertex j in the
heap. As in Algorithm shortestpath, the running time is dominated
by the heap operations. There are n − 1 deletemin operations, n − 1
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insert operations, and at most m − n + 1 siftup operations. Each one
of these operations takes O(log n) time using binary heaps which results in
O(m log n) time in total.

A d-heap is essentially a generalization of a binary heap in which each
internal node in the tree has at most d children instead of 2, where d is
a number that can be arbitrarily large (see Exercise 3.21). If we use a
d-heap, the running time is improved as follows. Each deletemin takes
O(d logd n) time, and each insert or siftup operation requires O(logd n)
time. Thus, the total running time is O(nd logd n + m logd n). If we choose
d = �2 + m/n�, the time bound becomes O(m log�2+m/n� n). If m ≥ n1+ε

for some ε > 0 that is not too small, i.e., the graph is dense, then the
running time is

O(m log�2+m/n� n) = O(m log�2+nε� n)

= O

(
m

log n

log(2 + nε)

)

= O

(
m

log n

log nε

)

= O
(m

ε

)
.

This implies the following theorem.

Theorem 7.5 Given a weighted undirected graph G, Algorithm mst

finds a minimum cost spanning tree in O(m log n) time. If the graph is
dense, i.e., if m ≥ n1+ε for some ε > 0, then it can be improved further to
run in time O(m/ε).

7.5 File Compression

Suppose we are given a file, which is a string of characters. We wish
to compress the file as much as possible in such a way that the original
file can easily be reconstructed. Let the set of characters in the file be
C = {c1, c2, . . . , cn}. Let also f(ci), 1 ≤ i ≤ n, be the frequency of char-
acter ci in the file, i.e., the number of times ci appears in the file. Using
a fixed number of bits to represent each character, called the encoding of
the character, the size of the file depends only on the number of charac-
ters in the file. However, since the frequency of some characters may be
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much larger than others, it is reasonable to use variable-length encodings.
Intuitively, those characters with large frequencies should be assigned short
encodings, whereas long encodings may be assigned to those characters with
small frequencies. When the encodings vary in length, we stipulate that
the encoding of one character must not be the prefix of the encoding of
another character; such codes are called prefix codes. For instance, if we
assign the encodings 10 and 101 to the letters “a” and “b”, there will be
an ambiguity as to whether 10 is the encoding of “a” or is the prefix of the
encoding of the letter “b”.

Once the prefix constraint is satisfied, the decoding becomes unambigu-
ous; the sequence of bits is scanned until an encoding of some character
is found. One way to “parse” a given sequence of bits is to use a full
binary tree, in which each internal node has exactly two branches labeled
by 0 and 1. The leaves in this tree correspond to the characters. Each
sequence of 0’s and 1’s on a path from the root to a leaf corresponds to
a character encoding. In what follows we describe how to construct a full
binary tree that minimizes the size of the compressed file.

The algorithm presented is due to Huffman. The code constructed by
the algorithm satisfies the prefix constraint and minimizes the size of the
compressed file. The algorithm consists of repeating the following procedure
until C consists of only one character. Let ci and cj be two characters with
minimum frequencies. Create a new node c whose frequency is the sum
of the frequencies of ci and cj , and make ci and cj the children of c. Let
C = C − {ci, cj} ∪ {c}.

4
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Fig. 7.6. An example of a Huffman tree.
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Example 7.5 Consider finding a prefix code for a file that consists of the
letters a, b, c, d, and e. See Fig. 7.6. Suppose that these letters appear in
the file with the following frequencies:

f(a) = 20, f(b) = 7, f(c) = 10, f(d) = 4 and f(e) = 18.

Each leaf node is labeled with its corresponding character and its frequency
of occurrence in the file. Each internal node is labeled with the sum of
the weights of the leaves in its subtree and the order of its creation. For
instance, the first internal node created has a sum of 11 and it is labeled with
1. From the binary tree, the encodings for a, b, c, d, and e are, respectively,
01, 110, 10, 111, and 00. Suppose each character was represented by three
binary digits before compression. Then, the original size of the file is 3(20+
7 +10+4 +18) = 177 bits. The size of the compressed file using the above
code becomes 2× 20 + 3× 7 + 2× 10 + 3× 4 + 2× 18 = 129 bits, a saving
of about 27%.

The algorithm

Since the main operations required to construct a Huffman tree are insertion
and deletion of characters with minimum frequency, a min-heap is a good
candidate data structure that supports these operations. The algorithm
builds a tree by adding n − 1 internal vertices one at a time; its leaves
correspond to the input characters. Initially and during its execution, the
algorithm maintains a forest of trees. After adding n−1 internal nodes, the
forest is transformed into a tree: the Huffman tree. Algorithm huffman

gives a more precise description of the construction of a full binary tree
corresponding to a Huffman code of an input string of characters together
with their frequencies.

Time complexity

The time complexity of the algorithm is computed as follows. The time
needed to insert all characters into the heap is Θ(n) (Theorem 3.1). The
time required to delete two elements from the heap and add a new element
is O(log n). Since this is repeated n−1 times, the overall time taken by the
for loop is O(n log n). It follows that the time complexity of the algorithm
is O(n log n).
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Algorithm 7.6 huffman
Input: A set C = {c1, c2, . . . , cn} of n characters and their frequencies

{f(c1), f(c2), . . . , f(cn)}.
Output: A Huffman tree (V, T) for C.

1. Insert all characters into a min-heap H according to their frequencies.
2. V ← C; T = {}
3. for j← 1 to n− 1
4. c← deletemin(H)
5. c′← deletemin(H)
6. f(v)← f(c) + f(c′) {v is a new node}
7. insert(H,v)
8. V = V ∪ {v} {Add v to V }
9. T = T ∪ {(v, c), (v, c′)} {Make c and c′ children of v in T}

10. end while

7.6 Exercises

7.1. This exercise is about the money change problem stated in Exercise 6.29.
Consider a currency system that has the following coins and their values:
dollar (100 cents), quarter (25 cents), dime (10 cents), nickel (5 cents), and
1-cent coins. (A unit-value coin is always required). Suppose we want to
give a change of value y cents in such a way that the total number of coins
n is minimized. Give a greedy algorithm to solve this problem.

7.2. Give a counterexample to show that the greedy algorithm obtained in
Exercise 7.1 does not always work if we instead use coins of values 1 cent,
5 cents, 7 cents, and 11 cents. Note that in this case dynamic programming
can be used to find the minimum number of coins. (See Exercises 6.29 and
6.30).

7.3. Suppose in the money change problem of Exercise 7.1, the coin values are:
1, 2, 4, 8, 16, . . . , 2k, for some positive integer k. Give an O(log n) algorithm
to solve the problem if the value to be paid is y < 2k+1.

7.4. For what denominations {v1, v2, . . . , vk}, k ≥ 2, does the greedy algorithm
for the money change problem stated in Exercise 6.29 always give the
minimum number of coins? Prove your answer.

7.5. Let G = (V, E) be an undirected graph. A vertex cover for G is a subset
S ⊆ V such that every edge in E is incident to at least one vertex in S.
Consider the following algorithm for finding a vertex cover for G. First,
order the vertices in V by decreasing order of degree. Next execute the fol-
lowing step until all edges are covered. Pick a vertex of highest degree that
is incident to at least one edge in the remaining graph, add it to the cover,
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and delete all edges incident to that vertex. Show that this greedy approach
does not always result in a vertex cover of minimum size.

7.6. Let G = (V, E) be an undirected graph. A clique C in G is a subgraph
of G that is a complete graph by itself. A clique C is maximum if there
is no other clique C′ in G such that the size of C ′ is greater than the size
of C. Consider the following method that attempts to find a maximum
clique in G. Initially, let C = G. Repeat the following step until C is a
clique. Delete from C a vertex that is not connected to every other vertex
in C. Show that this greedy approach does not always result in a maximum
clique.

7.7. Let G = (V, E) be an undirected graph. A coloring of G is an assignment of
colors to the vertices in V such that no two adjacent vertices have the same
color. The coloring problem is to determine the minimum number of colors
needed to color G. Consider the following greedy method that attempts
to solve the coloring problem. Let the colors be 1, 2, 3, . . . . First, color as
many vertices as possible using color 1. Next, color as many vertices as
possible using color 2, and so on. Show that this greedy approach does not
always color the graph using the minimum number of colors.

7.8. Let A1, A2, . . . , Am be m arrays of integers each sorted in nondecreas-
ing order. Each array Aj is of size nj . Suppose we want to merge all
arrays into one array A using an algorithm similar to Algorithm merge
described in Sec. 1.4. Give a greedy strategy for the order in which these
arrays should be merged so that the overall number of comparisons is min-
imized. For example, if m = 3, we may merge A1 with A2 to obtain
A4 and then merge A3 with A4 to obtain A. Another alternative is to
merge A2 with A3 to obtain A4 and then merge A1 with A4 to obtain
A. Yet another alternative is to merge A1 with A3 to obtain A4 and
then merge A2 with A4 to obtain A. (Hint: Give an algorithm similar to
Algorithm huffman).

7.9. Analyze the time complexity of the algorithm in Exercise 7.8.

7.10. Consider the following greedy algorithm which attempts to find the dis-
tance from vertex s to vertex t in a directed graph G with positive lengths
on its edges. Starting from vertex s, go to the nearest vertex, say x. From
vertex x, go to the nearest vertex, say y. Continue in this manner until you
arrive at vertex t. Give a graph with the fewest number of vertices to show
that this heuristic does not always produce the distance from s to t. (Recall
that the distance from vertex u to vertex v is the length of a shortest path
from u to v).

7.11. Apply Algorithm dijkstra on the directed graph shown in Fig. 7.7.
Assume that vertex 1 is the start vertex.



January 14, 2016 14:21 Algorithms: Design Techniques and Analysis - 9in x 6in b2305-ch07 page 223

The Greedy Approach 223

1

2

3

6

4

5

12

15

4

9

134

35

2

Fig. 7.7. Directed graph.

7.12. Is Algorithm dijkstra optimal? Explain.

7.13. What are the merits and demerits of using the adjacency matrix represen-
tation instead of the adjacency lists in the input to Algorithm dijkstra?

7.14. Modify Algorithm dijkstra so that it finds the shortest paths in addition
to their lengths.

7.15. Prove that the subgraph defined by the paths obtained from the modified
shortest path algorithm as described in Exercise 7.14 is a tree. This tree
is called the shortest path tree.

7.16. Can a directed graph have two distinct shortest path trees (see
Exercise 7.15)? Prove your answer.

7.17. Give an example of a directed graph to show that Algorithm dijkstra
does not always work if some of the edges have negative weights.

7.18. Show that the proof of correctness of Algorithm dijkstra (Lemma 7.1)
does not work if some of the edges in the input graph have negative weights.

7.19. Let G = (V, E) be a directed graph such that removing the directions from
its edges results in a planar graph. What is the running time of Algorithm
shortestpath when applied to G? Compare that to the running time
when using Algorithm dijkstra.

7.20. Let G = (V, E) be a directed graph such that m = O(n1.2), where n = |V |
and m = |E|. What changes should be made to Algorithm shortestpath
so that it will run in time O(m)?

7.21. Show the result of applying Algorithm kruskal to find a minimum cost
spanning tree for the undirected graph shown in Fig. 7.8.

7.22. Show the result of applying Algorithm prim to find a minimum cost span-
ning tree for the undirected graph shown in Fig. 7.8.

7.23. Let G = (V, E) be an undirected graph such that m = O(n1.99), where n =
|V | and m = |E|. Suppose you want to find a minimum cost spanning tree
for G. Which algorithm would you choose: Algorithm prim or Algorithm
kruskal? Explain.
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Fig. 7.8. An undirected graph.

7.24. Let e be an edge of minimum weight in an undirected graph G. Show that
e belongs to some minimum cost spanning tree of G.

7.25. Does Algorithm prim work correctly if the graph has negative weights?
Prove your answer.

7.26. Let G be an undirected weighted graph such that no two edges have the
same weight. Prove that G has a unique minimum cost spanning tree.

7.27. What is the number of spanning trees of a complete undirected graph G
with n vertices? For example, the number of spanning trees of K3, the
complete graph with three vertices, is 3.

7.28. Let G be a directed weighted graph such that no two edges have the same
weight. Let T be a shortest path tree for G (see Exercise 7.15). Let G′ be
the undirected graph obtained by removing the directions from the edges
of G. Let T ′ be a minimum spanning tree for G′. Prove or disprove that
T = T ′.

7.29. Use Algorithm huffman to find an optimal code for the characters a, b,
c, d, e, and f whose frequencies in a given text are, respectively, 7, 5, 3, 2,
12, and 9.

7.30. Prove that the graph obtained in Algorithm huffman is a tree.

7.31. Algorithm huffman constructs the code tree in a bottom-up fashion. Is
it a dynamic programming algorithm?

7.32. Let B = {b1, b2, . . . , bn} and W = {w1, w2, . . . , wn} be two sets of black
and white points in the plane. Each point is represented by the pair (x, y)
of x- and y-coordinates. A black point bi = (xi, yi) dominates a white
point wj = (xj , yj) if and only if xi ≥ xj and yi ≥ yj . A matching
between a black point bi and a white point wj is possible if bi dominates
wj. A matching M = {(bi1 , wj1), (bi2 , wj2 ), . . . , (bik , wjk )} between the
black and white points is maximum if k, the number of matched pairs in
M , is maximum. Design a greedy algorithm to find a maximum matching
in O(n log n) time. (Hint: Sort the black points in increasing x-coordinates
and use a heap for the white points).
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7.7 Bibliographic Notes

The greedy graph algorithms are discussed in most books on algorithms
(see the bibliographic notes in Chapter 1).

Algorithm dijkstra for the single-source shortest path problem is from
Dijkstra (1959). The implementation using a heap is due to Johnson (1977)
(see also Tarjan, 1983). The best known asymptotic running time for this
problem is O(m + n log n), which is due to Fredman and Tarjan (1987).

Graham and Hell (1985) discuss the long history of the minimum cost
spanning tree problem, which has been extensively studied. Algorithm
kruskal comes from Kruskal (1956). Algorithm prim is due to Prim
(1957). The improvement using heaps can be found in Johnson (1975).
More sophisticated algorithms can be found in Yao (1975), Cheriton and
Tarjan (1976), and Tarjan (1983). Algorithm huffman for file compression
is due to Huffman (1952) (see also Knuth, 1968).
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Chapter 8

Graph Traversal

8.1 Introduction

In some graph algorithms such as those for finding shortest paths or
minimum spanning trees, the vertices and edges are visited in an order
that is imposed by their respective algorithms. However, in some other
algorithms, the order of visiting the vertices is unimportant; what is impor-
tant is that the vertices are visited in a systematic order, regardless of the
input graph. In this chapter, we discuss two methods of graph traversal:
depth-first search and breadth-first search.

8.2 Depth-First Search

Depth-first search is a powerful traversal method that aids in the solution
of many problems involving graphs. It is essentially a generalization of the
preorder traversal of rooted trees (see Sec. 2.5.1). Let G = (V, E) be a
directed or undirected graph. A depth-first search traversal of G works as
follows. First, all vertices are marked unvisited. Next, a starting vertex
is selected, say v ∈ V , and marked visited. Let w be any vertex that is
adjacent to v. We mark w as visited and advance to another vertex, say
x, that is adjacent to w and is marked unvisited. Again, we mark x as
visited and advance to another vertex that is adjacent to x and is marked
unvisited. This process of selecting an unvisited vertex adjacent to the
current vertex continues as deep as possible until we find a vertex y whose
adjacent vertices have all been marked visited. At this point, we back up to

227
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the most recently visited vertex, say z, and visit an unvisited vertex that
is adjacent to z, if any. Continuing this way, we finally return back to the
starting vertex v. This method of traversal has been given the name depth-
first search, as it continues the search in the forward (deeper) direction.
The algorithm for such a traversal can be written using recursion as shown
in Algorithm dfs or a stack (see Exercise 8.5).

Algorithm 8.1 dfs
Input: A (directed or undirected) graph G = (V, E).

Output: Preordering and postordering of the vertices in the corresponding
depth-first search tree.

1. predfn← 0; postdfn← 0
2. for each vertex v ∈ V
3. mark v unvisited
4. end for
5. for each vertex v ∈ V
6. if v is marked unvisited then dfs(v)
7. end for

Procedure dfs(v)

1. mark v visited
2. predfn← predfn + 1
3. for each edge (v, w) ∈ E
4. if w is marked unvisited then dfs(w)
5. end for
6. postdfn← postdfn + 1

The algorithm starts by marking all vertices unvisited. It also initializes
two counters predfn and postdfn to zero. These two counters are not part
of the traversal ; their importance will be apparent when we later make
use of depth-first search to solve some problems. The algorithm then calls
Procedure dfs for each unvisited vertex in V . This is because not all the
vertices may be reachable from the start vertex. Starting from some vertex
v ∈ V , Procedure dfs performs the search on G by visiting v, marking v

visited and then recursively visiting its adjacent vertices. When the search
is complete, if all vertices are reachable from the start vertex, a spanning
tree called the depth-first search spanning tree is constructed whose edges
are those inspected in the forward direction, i.e., when exploring unvisited
vertices. In other words, let (v, w) be an edge such that w is marked
unvisited and suppose the procedure was invoked by the call dfs(v). Then,
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in this case, that edge will be part of the depth-first search spanning tree.
If not all the vertices are reachable from the start vertex, then the search
results in a forest of spanning trees instead.

After the search is complete, each vertex is labeled with predfn and
postdfn numbers. These two labels impose preorder and postorder num-
bering on the vertices in the spanning tree (or forest) generated by the
depth-first search traversal. They give the order in which visiting a vertex
starts and ends. In the following, we say that edge (v, w) is being explored
to mean that within the call dfs(v), the procedure is inspecting the edge
(v, w) to test whether w has been visited before or not. The edges of the
graph are classified differently according to whether the graph is directed
or undirected.

The case of undirected graphs

Let G = (V, E) be an undirected graph. As a result of the traversal, the
edges of G are classified into the following two types:

• Tree edges: edges in the depth-first search tree. An edge (v, w) is a tree
edge if w was first visited when exploring the edge (v, w).

• Back edges: All other edges.

Example 8.1 Figure 8.1(b) illustrates the action of depth-first search
traversal on the undirected graph shown in Fig. 8.1(a). Vertex a has
been selected as the start vertex. The depth-first search tree is shown
in Fig. 8.1(b) with solid lines. Dotted lines represent back edges. Each
vertex in the depth-first search tree is labeled with two numbers: predfn
and postdfn. Note that since vertex e has postdfn = 1, it is the first vertex
whose depth-first search is complete. Note also that since the graph is con-
nected, the start vertex is labeled with predfn = 1 and postdfn = 10, the
number of vertices in the graph.

The case of directed graphs

Depth-first search in directed graphs results in one or more (directed) span-
ning trees whose number depends on the start vertex. If v is the start ver-
tex, depth-first search generates a tree consisting of all vertices reachable
from v. If not all vertices are included in that tree, the search resumes from
another unvisited vertex, say w, and a tree consisting of all unvisited ver-
tices that are reachable from w is constructed. This process continues until
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Fig. 8.1. An example of depth-first search traversal of an undirected graph.

all vertices have been visited. In depth-first search traversal of directed
graphs, however, the edges of G are classified into four types:

• Tree edges: edges in the depth-first search tree. An edge (v, w) is a tree
edge if w was first visited when exploring the edge (v, w).

• Back edges: edges of the form (v, w) such that w is an ancestor of v in
the depth-first search tree (constructed so far) and vertex w was marked
visited when (v, w) was explored.

• Forward edges: edges of the form (v, w) such that w is a descendant of
v in the depth-first search tree (constructed so far) and vertex w was
marked visited when (v, w) was explored.

• Cross edges: All other edges.

Example 8.2 Figure 8.2(b) illustrates the action of depth-first search
traversal on the directed graph shown in Fig. 8.2(a). Starting at vertex a,
the vertices a, b, e, and f are visited in this order. When Procedure dfs is
initiated again at vertex c, vertex d is visited and the traversal is complete
after b is visited from c. We notice that the edge (e, a) is a back edge since
e is a descendant of a in the depth-first search tree, and (e, a) is not a tree
edge. On the other hand, edge (a, f) is a forward edge since a is an ancestor
of f in the depth-first search tree, and (a, f) is not a tree edge. Since neither
e nor f is an ancestor of the other in the depth-first search tree, edge (f, e)
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Fig. 8.2. An example of depth-first search traversal of a directed graph.

is a cross edge. The two edges (c, b) and (d, e) are, obviously, cross edges;
each edge connects two vertices in two different trees. Note that had we
chosen to visit vertex f immediately after a instead of visiting vertex b,
both edges (a, b) and (a, f) would have been tree edges. In this case, the
result of the depth-first search traversal is shown in Fig. 8.2(c). Thus the
type of an edge depends on the order in which the vertices are visited.

8.2.1 Time complexity of depth-first search

Now we analyze the time complexity of Algorithm dfs when applied to
a graph G with n vertices and m edges. The for loop of the algorithm
in lines 2–4 costs Θ(n) time. The for loop of the algorithm in lines 5–7
costs Θ(n) time. The number of procedure calls is exactly n since once the
procedure is invoked on vertex v, it will be marked visited and hence no
more calls on v will take place. The cost of a procedure call if we exclude
the for loop in Procedure dfs is Θ(1). It follows that the overall cost of
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procedure calls excluding the for loop is Θ(n). Now, it remains to find
the cost of the for loop in Procedure dfs. The number of times this step
is executed to test whether a vertex w is marked unvisited is equal to the
number of vertices adjacent to vertex v. Hence, the total number of times
this step is executed is equal to the number of edges in the case of directed
graphs and twice the number of edges in the case of undirected graphs.
Consequently, the cost of this step is Θ(m) in both directed and undirected
graphs. It follows that the running time of the algorithm is Θ(m + n). If
the graph is connected or m ≥ n, then the running time is simply Θ(m). It
should be emphasized, however, that the graph is assumed to be represented
by adjacency lists. The time complexity of Algorithm dfs when the graph
is represented by an adjacency matrix is left as an exercise (Exercise 8.6).

8.3 Applications of Depth-First Search

Depth-first search is used quite often in graph and geometric algorithms.
It is a powerful tool and has numerous applications. In this section, we list
some of its important applications.

8.3.1 Graph acyclicity

Let G = (V, E) be a directed or undirected graph with n vertices and
m edges. To test whether G has at least one cycle, we apply depth-first
search on G. If a back edge is detected during the search, then G is cyclic;
otherwise, G is acyclic.

8.3.2 Topological sorting

Given a directed acyclic graph (dag for short) G = (V, E), the problem
of topological sorting is to find a linear ordering of its vertices in such a
way that if (v, w) ∈ E, then v appears before w in the ordering. For
example, one possible topological sorting of the vertices in the dag shown
in Fig. 8.3(a) is a, b, d, c, e, f, g. We will assume that the dag has only one
vertex, say s, of indegree 0. If not, we may simply add a new vertex s and
edges from s to all vertices of indegree 0 (see Fig. 8.3(b)).

Next, we simply carry out a depth-first search on G starting at vertex s.
When the traversal is complete, the values of the counter postdfn define
a reverse topological ordering of the vertices in the dag. Thus, to obtain
the ordering, we may add an output step to Algorithm dfs just after the
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Fig. 8.3. Illustration of topological sorting.

counter postdfn is incremented. The resulting output is reversed to obtain
the desired topological ordering.

8.3.3 Finding articulation points in a graph

A vertex v in an undirected graph G with more than two vertices is called
an articulation point if there exist two vertices u and w different from v

such that any path between u and w must pass through v. Thus, if G is
connected, the removal of v and its incident edges will result in a discon-
nected subgraph of G. A graph is called biconnected if it is connected and
has no articulation points. To find the set of articulation points, we per-
form a depth-first search traversal on G. During the traversal, we maintain
two labels with each vertex v ∈ V : α[v] and β[v]. α[v] is simply predfn
in the depth-first search algorithm, which is incremented at each call to
the depth-first search procedure. β[v] is initialized to α[v], but may change
later on during the traversal. For each vertex v visited, we let β[v] be the
minimum of the following:

• α[v].
• α[u] for each vertex u such that (v, u) is a back edge.
• β[w] for each edge (v, w) in the depth-first search tree.

The articulation points are determined as follows:

• The root is an articulation point if and only if it has two or more children
in the depth-first search tree.

• A vertex v other than the root is an articulation point if and only if v

has a child w with β[w] ≥ α[v].

The formal algorithm for finding the articulation points is given as Algo-
rithm articpoints.
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Algorithm 8.2 articpoints
Input: A connected undirected graph G = (V, E).

Output: Array A[1..count] containing the articulation points of G, if any.

1. Let s be the start vertex.
2. for each vertex v ∈ V
3. mark v unvisited
4. end for
5. predfn← 0; count← 0; rootdegree← 0
6. dfs(s)

Procedure dfs(v)

1. mark v visited; artpoint← false ; predfn← predfn + 1
2. α[v]← predfn; β[v]← predfn {Initialize α[v] and β[v]}
3. for each edge (v, w) ∈ E
4. if (v, w) is a tree edge then
5. dfs(w)
6. if v = s then
7. rootdegree← rootdegree + 1
8. if rootdegree = 2 then artpoint← true
9. else

10. β[v]← min{β[v], β[w]}
11. if β[w] ≥ α[v] then artpoint← true
12. end if
13. else if (v, w) is a back edge then β[v]← min{β[v], α[w]}
14. else do nothing {w is the parent of v}
15. end if
16. end for
17. if artpoint then
18. count← count + 1
19. A[count ]← v
20. end if

First, the algorithm performs the necessary initializations. In particular,
count is the number of articulation points, and rootdegree is the degree of
the root of the depth-first search tree. This is needed to decide later whether
the root is an articulation point as mentioned above. Next the depth-first
search commences starting at the root. For each vertex v visited, α[v] and
β[v] are initialized to predfn. When the search backs up from some vertex
w to v, two actions take place. First, β[v] is set to β[w] if β[w] is found
to be smaller then β[v]. Second, if β[w] ≥ α[v], then this is an indication
that v is an articulation point. This is because any path from w to an
ancestor of v must pass through v. This is illustrated in Fig. 8.4 in which
any path from the subtree rooted at w to u must include v, and hence v
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is an articulation point. The subtree rooted at w contains one or more
connected components. In this figure, the root u is an articulation point
since its degree is greater than 1.

Example 8.3 We illustrate the action of Algorithm articpoints by
finding the articulation points of the graph shown in Fig. 8.1(a). See
Fig. 8.5. Each vertex v in the depth-first search tree is labeled with α[v]
and β[v]. The depth-first search starts at vertex a and proceeds to vertex e.
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A back edge (e, c) is discovered, and hence β[e] is assigned the value α[c]
= 3. Now, when the search backs up to vertex d, β[d] is assigned β[e] = 3.
Similarly, when the search backs up to vertex c, its label β[c] is assigned the
value β[d] = 3. Now, since β[d] ≥ α[c], vertex c is marked as an articulation
point. When the search backs up to b, it is also found that β[c] ≥ α[b], and
hence b is also marked as an articulation point. At vertex b, the search
branches to a new vertex f and proceeds, as illustrated in the figure, until
it reaches vertex j. The back edge (j, h) is detected and hence β[j] is set
to α[h] = 8. Now, as described before, the search backs up to i and then
h and sets β[i] and β[h] to β[j] = 8. Again, since β[i] ≥ α[h], vertex h is
marked as an articulation point. For the same reason, vertex g is marked
as an articulation point. At vertex g, the back edge (g, a) is detected, and
hence β[g] is set to α[a] = 1. Finally, β[f ] and then β[b] are set to 1 and
the search terminates at the start vertex. The root a is not an articulation
point since it has only one child in the depth-first search tree.

8.3.4 Strongly connected components

Given a directed graph G = (V, E), a strongly connected component in G

is a maximal set of vertices in which there is a path between each pair of
vertices. Algorithm strongconnectcomp uses depth-first search in order
to identify all the strongly connected components in a directed graph.

Algorithm 8.3 strongconnectcomp
Input: A directed graph G = (V, E).

Output: The strongly connected components in G.

1. Perform a depth-first search on G and assign each vertex its corre-
sponding postdfn number.

2. Construct a new graph G′ by reversing the direction of edges in G.
3. Perform a depth-first search on G′ starting from the vertex with

highest postdfn number. If the depth-first search does not reach
all vertices, start the next depth-first search from the vertex with
highest postdfn number among the remaining vertices.

4. Each tree in the resulting forest corresponds to a strongly connected
component.

Example 8.4 Consider the directed graph G shown in Fig. 8.2(a).
Applying depth-first search on this directed graph results in the forest
shown in Fig. 8.2(b). Also shown in the figure is the postordering of the
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vertices, which is e, f, b, a, d, c. If we reverse the direction of the edges in
G, we obtain G′, which is shown in Fig. 8.6(a). Starting from vertex c in
G′, a depth-first search traversal yields the tree consisting of vertex c only.
Similarly, applying depth-first search on the remaining vertices starting at
vertex d results in the tree consisting of only vertex d. Finally, applying
depth-first search on the remaining vertices starting at vertex a yields the
tree whose vertices are a, b, e, and f . The resulting forest is shown in
Fig. 8.6(b). Each tree in the forest corresponds to a strongly connected
component. Thus, G contains three strongly connected components.

8.4 Breadth-First Search

Unlike depth-first search, in breadth-first search when we visit a vertex v,
we next visit all vertices adjacent to v. The resulting tree is called a breadth-
first search tree. This method of traversal can be implemented by a queue
to store unexamined vertices. Algorithm bfs for breadth-first search can
be applied to directed and undirected graphs. Initially, all vertices are
marked unvisited. The counter bfn, which is initialized to zero, represents
the order in which the vertices are removed from the queue. In the case
of undirected graphs, an edge is either a tree edge or a cross edge. If the
graph is directed, an edge is either a tree edge, a back edge, or a cross edge;
there are no forward edges.

Example 8.5 Figure 8.7 illustrates the action of breadth-first search
traversal when applied on the graph shown in Fig. 8.1(a) starting from
vertex a. After popping off vertex a, vertices b and g are pushed into the
queue and marked visited. Next, vertex b is removed from the queue and
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Algorithm 8.4 bfs
Input: A directed or undirected graph G = (V, E).

Output: Numbering of the vertices in breadth-first search order.

1. bfn← 0
2. for each vertex v ∈ V
3. mark v unvisited
4. end for
5. for each vertex v ∈ V
6. if v is marked unvisited then bfs(v)
7. end for

Procedure bfs(v)

1. Q← {v}
2. mark v visited
3. while Q �= {}
4. v← Pop(Q)
5. bfn← bfn + 1
6. for each edge (v, w) ∈ E
7. if w is marked unvisited then
8. Push(w,Q)
9. mark w visited

10. end if
11. end for
12. end while
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Fig. 8.7. An example of breadth-first search traversal of an undirected graph.

its adjacent vertices that have not yet been visited, namely c and f , are
pushed into the queue and marked visited. This process of pushing vertices
into the queue and removing them later on is continued until vertex j is
finally removed from the queue. At this point, the queue becomes empty
and the breadth-first search traversal is complete. In the figure, each vertex
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is labeled with its bfn number, the order in which that vertex was removed
from the queue. Notice that the edges in the figure are either tree edges or
cross edges.

Time complexity

The time complexity of breadth-first search when applied to a graph
(directed or undirected) with n vertices and m edges is the same as that
of depth-first search, i.e., Θ(n + m). If the graph is connected or m ≥ n,
then the time complexity is simply Θ(m).

8.5 Applications of Breadth-First Search

We close this chapter with an application of breadth-first search that is
important in graph and network algorithms. Let G = (V, E) be a connected
undirected graph and s a vertex in V . When Algorithm bfs is applied to
G starting at s, the resulting breadth-first search tree is such that the path
from s to any other vertex has the least number of edges. Thus, suppose we
want to find the distance from s to every other vertex, where the distance
from s to a vertex v is defined to be the least number of edges in any path
from s to v. This can easily be done by labeling each vertex with its distance
prior to pushing it into the queue. Thus, the start vertex will be labeled 0,
its adjacent vertices with 1, and so on. Clearly, the label of each vertex is its
shortest distance from the start vertex. For instance, in Fig. 8.7, vertex a

will be labeled 0, vertices b and g will be labeled 1, vertices c, f , and h will
be labeled 2, and finally vertices d, e, i, and j will be labeled 3. Note that
this vertex numbering is not the same as the breadth-first numbering in
the algorithm. The minor changes to the breadth-first search algorithm are
left as an exercise (Exercise 8.25). In this case, the resulting search tree is
the shortest path tree.

8.6 Exercises

8.1. Show the result of running depth-first search on the undirected graph
shown in Fig. 8.8(a) starting at vertex a. Give the classification of edges
as tree edges or back edges.

8.2. Show the result of running depth-first search on the directed graph shown
in Fig. 8.8(b) starting at vertex a. Give the classification of edges as tree
edges, back edges, forward edges, or cross edges.
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8.3. Show the result of running depth-first search on the undirected graph of
Fig. 8.9 starting at vertex f . Give the classification of edges.

8.4. Show the result of running depth-first search on the directed graph of
Fig. 8.10 starting at vertex e. Give the classification of edges.

8.5. Give an iterative version of Algorithm dfs that uses a stack to store unvis-
ited vertices.

8.6. What will be the time complexity of the depth-first search algorithm if the
input graph is represented by an adjacency matrix (see Sec. 2.3.1 for graph
representation).
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8.7. Show that when depth-first search is applied to an undirected graph G,
the edges of G will be classified as either tree edges or back edges. That
is, there are no forward edges or cross edges.

8.8. Suppose that Algorithm dfs is applied to an undirected graph G. Give an
algorithm that classifies the edges of G as either tree edges or back edges.

8.9. Suppose that Algorithm dfs is applied to a directed graph G. Give an
algorithm that classifies the edges of G as either tree edges, back edges,
forward edges, or cross edges.

8.10. Give an algorithm that counts the number of connected components in an
undirected graph using depth-first search or breadth-first search.

8.11. Given an undirected graph G, design an algorithm to list the vertices in
each connected component of G separately.

8.12. Give an O(n) time algorithm to determine whether a connected undirected
graph with n vertices contains a cycle.

8.13. Apply the articulation points algorithm to obtain the articulation points
of the undirected graph shown in Fig. 8.9.

8.14. Let T be the depth-first search tree resulting from a depth-first search
traversal on a connected undirected graph. Show that the root of T is an
articulation point if and only if it has two or more children (see Sec. 8.3.3).

8.15. Let T be the depth-first search tree resulting from a depth-first search
traversal on a connected undirected graph. Show that a vertex v other
than the root is an articulation point if and only if v has a child w with
β[w] ≥ α[v] (see Sec. 8.3.3).

8.16. Apply the strongly connected components algorithm on the directed graph
shown in Fig. 8.10.

8.17. Show that in the strongly connected components algorithm, any choice of
the first vertex to carry out the depth-first search traversal leads to the
same solution.

8.18. An edge of a connected undirected graph G is called a bridge if its deletion
disconnects G. Modify the algorithm for finding articulation points so that
it detects bridges instead of articulation points.

8.19. Show the result of running breadth-first search on the undirected graph
shown in Fig. 8.8(a) starting at vertex a.

8.20. Show the result of running breadth-first search on the directed graph shown
in Fig. 8.8(b) starting at vertex a.

8.21. Show the result of running breadth-first search on the undirected graph of
Fig. 8.9 starting at vertex f .

8.22. Show the result of running breadth-first search on the directed graph of
Fig. 8.10 starting at vertex e.
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8.23. Show that when breadth-first search is applied to an undirected graph G,
the edges of G will be classified as either tree edges or cross edges. That
is, there are no back edges or forward edges.

8.24. Show that when breadth-first search is applied to a directed graph G,
the edges of G will be classified as tree edges, back edges, or cross edges.
That is, unlike the case of depth-first search, the search does not result in
forward edges.

8.25. Let G be a graph (directed or undirected), and let s be a vertex in G.
Modify Algorithm bfs so that it outputs the shortest path measured in
the number of edges from s to every other vertex.

8.26. Use depth-first search to find a spanning tree for the complete bipartite
graph K3,3. (See Sec. 2.3 for the definition of K3,3.)

8.27. Use breadth-first search to find a spanning tree for the complete bipartite
graph K3,3. Compare this tree with the tree obtained in Exercise 8.26.

8.28. Suppose that Algorithm bfs is applied to an undirected graph G. Give an
algorithm that classifies the edges of G as either tree edges or cross edges.

8.29. Suppose that Algorithm bfs is applied to a directed graph G. Give an
algorithm that classifies the edges of G as either tree edges, back edges, or
cross edges.

8.30. Show that the time complexity of breadth-first search when applied on a
graph with n vertices and m edges is Θ(n + m).

8.31. Design an efficient algorithm to determine whether a given graph is bipar-
tite (see Sec. 2.3 for the definition of a bipartite graph).

8.32. Design an algorithm to find a cycle of shortest length in a directed graph.
Here the length of a cycle is measured in terms of its number of edges.

8.33. Let G be a connected undirected graph, and T the spanning tree resulting
from applying breadth-first search on G starting at vertex r. Prove or
disprove that the height of T is minimum among all spanning trees with
root r.

8.7 Bibliographic Notes

Graph traversals are discussed in several books on algorithms, either sep-
arately or intermixed with other graph algorithms (see the bibliographic
notes in Chapter 1). Hopcroft and Tarjan (1973a) were the first to recog-
nize the algorithmic importance of depth-first search. Several applications
of depth-first search can be found in this paper and in Tarjan (1972).
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Algorithm strongconnectcomp for the strongly connected components
is similar to the one by Sharir (1981). Tarjan (1972) contains an algorithm
for finding the strongly connected components which needs only one depth-
first search traversal. Breadth-first search was discovered independently by
Moore (1959) and Lee (1961).
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In this part of the book, we turn our attention to the study of the
computational complexity of a problem as opposed to the cost of a particu-
lar algorithm to solve that problem. We define the computational complex-
ity of a problem to be the computational complexity of the most efficient
algorithm to solve that problem.

In Chapter 9, we study a class of problems known as NP-complete prob-
lems. This class of problems encompasses numerous problems drawn from
many problem domains. These problems share the property that if any
one problem in the class is solvable in polynomial time, then all other
problems in the class are solvable in polynomial time. We have chosen to
cover this topic informally, in the sense that no specific model of compu-
tation is assumed. Instead, only the abstract notion of algorithm is used.
This makes it easy to the novice reader to comprehend the ideas behind
NP-completeness without missing the details of a formal model (e.g., the
Turing machine). The most important point stressed in this chapter is to
study the standard technique of proving that a problem is NP-complete.
This is illustrated using several examples of NP-complete problems.

A more formal treatment of NP-completeness, as a special case of com-
pleteness, in general, is postponed to Chapter 10. This chapter is somewhat
advanced and relies heavily on more than one variant of the Turing machine
model of computation. This chapter is concerned with the classification of
problems based on the amount of time and space needed to solve a particu-
lar problem. First, the two variants of Turing machines, one for measuring
time and the other for space, are introduced. Next, the most prominent
time and space classes are defined, and the relationships among them are
studied. This is followed by defining the technique of transformation or
reduction in the context of Turing machines. The notion of completeness,
in general, is then addressed with the help of some examples. Finally, the
chapter closes with a preview of the polynomial time hierarchy.

Chapter 11 is concerned with establishing lower bounds for various prob-
lems. In this chapter, two models of computations are used for that pur-
pose. First, the decision tree model is used to establish lower bounds for
comparison-based problems such as searching and sorting. Next, the more
powerful algebraic decision tree model is used to establish lower bounds
for some other problems. Some of these problems belong to the field of
computational geometry, namely the convex hull problem, the closest pair
problem, and the Euclidean minimum spanning tree problem.
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Chapter 9

NP-complete Problems

9.1 Introduction

In the previous chapters, we have been working mostly with the design and
analysis of those algorithms for which the running time can be expressed
in terms of a polynomial of low degree, say 3. In this chapter, we turn our
attention to a class of problems for which no efficient algorithms have been
found. Moreover, it is unlikely that an efficient algorithm will someday
be discovered for any one of these problems. Let Π be any problem. We
say that there exists a polynomial time algorithm to solve problem Π if
there exists an algorithm for Π whose time complexity is O(nk), where n

is the input size and k is a nonnegative integer. It turns out that many of
the interesting real-world problems do not fall into this category, as their
solution requires an amount of time that is measured in terms of exponential
and hyperexponential functions, e.g., 2n and n!. It has been agreed upon
in the computer science community to refer to those problems for which
there exist polynomial time algorithms as tractable, and those for which it
is unlikely that there exist polynomial time algorithms as intractable.

In this chapter, we will study a subclass of intractable problems, com-
monly referred to as the class of NP-complete problems. This class contains,
among many others, hundreds of well-known problems having the common
property that if one of them is solvable in polynomial time, then all the oth-
ers are solvable in polynomial time. Interestingly, many of these are natural
problems in the sense that they arise in real-world applications. Moreover,
the running times of the existing algorithms to solve these problems are

249
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invariably measured in terms of hundreds or thousands of years for inputs
of moderate size (see Table 1.1).

When studying the theory of NP-completeness, it is easier to restate a
problem so that its solution has only two outcomes: yes or no. In this case,
the problem is called a decision problem. In contrast, an optimization prob-
lem is a problem that is concerned with the minimization or maximization
of a certain quantity. In the previous chapters, we have encountered numer-
ous optimization problems, like finding the minimum or maximum in a list
of elements, finding the shortest path in a directed graph, and computing
a minimum cost spanning tree of an undirected graph. In the following, we
give three examples of how to formulate a problem as a decision problem
and an optimization problem.

Example 9.1 Let S be a sequence of real numbers. The ELEMENT
UNIQUENESS problem asks whether all the numbers in S are distinct.
Rephrased as a decision problem, we have

Decision problem: element uniqueness.
Input: A sequence S of integers.
Question: Are there two elements in S that are equal?
Stated as an optimization problem, we are interested in finding an element
in S of highest frequency. For instance, if S = 1, 5, 4, 5, 6, 5, 4, then 5 is
of highest frequency since it appears in the sequence three times, which is
maximum. Let us call this optimization version element count. This
version can be stated as follows.

Optimization problem: element count.
Input: A sequence S of integers.
Output: An element in S of highest frequency.
This problem can be solved in optimal O(n log n) time in the obvious way,
which means it is tractable.

Example 9.2 Given an undirected graph G = (V, E), a coloring of G

using k colors is an assignment of one of k colors to each vertex in V in
such a way that no two adjacent vertices have the same color. The coloring
problem asks whether it is possible to color an undirected graph using a
specified number of colors. Formulated as a decision problem, we have

Decision problem: coloring.
Input: An undirected graph G = (V, E) and a positive integer k ≥ 1.
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Question: Is G k-colorable? That is, can G be colored using at most k

colors?
This problem is intractable. If k is restricted to 3, the problem reduces to
the well-known 3-coloring problem, which is also intractable even when
the graph is planar.
An optimization version of this problem asks for the minimum number of
colors needed to color a graph in such a way that no two adjacent vertices
have the same color. This number, denoted by χ(G), is called the chromatic
number of G.

Optimization problem: chromatic number.
Input: An undirected graph G = (V, E).
Output: The chromatic number of G.

Example 9.3 Given an undirected graph G = (V, E), a clique of size
k in G, for some positive integer k, is a complete subgraph of G with k

vertices. The clique problem asks whether an undirected graph contains a
clique of a specified size. Rephrased as a decision problem, we have

Decision problem: clique.
Input: An undirected graph G = (V, E) and a positive integer k.
Question: Does G have a clique of size k?
The optimization version of this problem asks for the maximum number k

such that G contains a clique of size k, but no clique of size k + 1. We will
call this problem max-clique.

Optimization problem: max-clique.
Input: An undirected graph G = (V, E).
Output: A positive integer k, which is the maximum clique size in G.

If we have an efficient algorithm that solves a decision problem, then
it can easily be modified to solve its corresponding optimization problem.
For instance, if we have an algorithm A that solves the decision problem for
graph coloring, we can find the chromatic number of a graph G using binary
search and Algorithm A as a subroutine. Clearly, 1 ≤ χ(G) ≤ n, where n

is the number of vertices in G. Hence, the chromatic number of G can be
found using only O(log n) calls to algorithm A. Because of this reason, in
the study of NP-complete problems, and computational complexity or even
computability, in general, it is easier to restrict one’s attention to decision
problems.
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It is customary in the study of NP-completeness, or computational com-
plexity, in general, to adopt a formal model of computation such as the
Turing machine model of computation, as it makes the topic more formal
and the proofs more rigorous. In this chapter, however, we will work with
the abstract notion of “algorithm” and will not attempt to formalize it by
associating it with any model of computation. A more formal treatment
that uses the Turing machine as a model of computation can be found in
Chapter 10.

9.2 The Class P

Definition 9.1 Let A be an algorithm to solve a problem Π. We say that
A is deterministic if, when presented with an instance of the problem Π, it
has only one choice in each step throughout its execution. Thus, if A is run
again and again on the same input instance, its output never changes.

All algorithms we have covered in the previous chapters are determinis-
tic. The modifier “deterministic” will mostly be dropped if it is understood
from the context.

Definition 9.2 The class of decision problems P consists of those deci-
sion problems whose yes/no solution can be obtained using a deterministic
algorithm that runs in polynomial number of steps, i.e., in O(nk) steps, for
some nonnegative integer k, where n is the input size.

We have encountered numerous such problems in the previous chap-
ters. Since in this chapter we are dealing with decision problems, we list
here some of the decision problems in the class P. The solutions to these
problems should be fairly easy.

sorting: Given a list of n integers, are they sorted in nondecreasing order?

set disjointness: Given two sets of integers, is their intersection empty?

shortest path: Given a directed graph G = (V, E) with positive weights
on its edges, two distinguished vertices s, t ∈ V and a positive integer k, is
there a path from s to t whose length is at most k?

2-coloring: Given an undirected graph G, is it 2-colorable? i.e., can its
vertices be colored using only two colors such that no two adjacent vertices
are assigned the same color? Note that G is 2-colorable if and only if it is
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bipartite, that is, if and only if it does not contain cycles of odd length (see
Sec. 2.3).

2-sat: Given a boolean expression f in conjunctive normal form (CNF),
where each clause consists of exactly two literals, is f satisfiable? (see
Sec. 9.4.1).

We say that a class of problems C is closed under complementation if
for any problem Π ∈ C the complement of Π is also in C. For instance, the
complement of the 2-coloring problem can be stated as follows. Given
a graph G, is it not 2-colorable? Let us call this problem not-2-color.
We can show that it is in P as follows. Since 2-coloring is in P, there
is a deterministic algorithm A which when presented with a 2-colorable
graph halts and answers yes, and when presented with a graph that is not
2-colorable halts and answers no. We can simply design a deterministic
algorithm for the problem not-2-color by simply interchanging the yes

and no answers in Algorithm A. This, informally, proves the following
fundamental theorem.

Theorem 9.1 The class P is closed under complementation.

9.3 The Class NP

The class NP consists of those problems Π for which there exists a deter-
ministic algorithm A which, when presented with a claimed solution to an
instance of Π, will be able to verify its correctness in polynomial time. That
is, if the claimed solution leads to a yes answer, there is a way to verify
this solution in polynomial time.

In order to define this class less informally, we must first define the
concept of a nondeterministic algorithm. On input x, a nondeterministic
algorithm consists of two phases:

(a) The guessing phase. In this phase, an arbitrary string of characters y

is generated. It may correspond to a solution to the input instance or
not. In fact, it may not even be in the proper format of the desired
solution. It may differ from one run to another of the nondetermin-
istic algorithm. It is only required that this string be generated in a
polynomial number of steps, i.e., in O(ni) time, where n = |x| and i

is a nonnegative integer. In many problems, this phase can be accom-
plished in linear time.
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(b) The verification phase. In this phase, a deterministic algorithm verifies
two things. First, it checks whether the generated solution string y is
in the proper format. If it is not, then the algorithm halts with the
answer no. If, on the other hand, y is in the proper format, then the
algorithm continues to check whether it is a solution to the instance x

of the problem. If it is indeed a solution to the instance x, then it halts
and answers yes; otherwise, it halts and answers no. It is also required
that this phase be completed in a polynomial number of steps, i.e., in
O(nj) time, where j is a nonnegative integer.

Let A be a nondeterministic algorithm for a problem Π. We say that
A accepts an instance I of Π if and only if on input I there is a guess that
leads to a yes answer. In other words, A accepts I if and only if it is possible
on some run of the algorithm that its verification phase will answer yes.
It should be emphasized that if the algorithm answers no, then this does
not mean that A does not accept its input, as the algorithm might have
guessed an incorrect solution.

As to the running time of a (nondeterministic) algorithm, it is simply
the sum of the two running times: the one for the guessing phase and
that for the verification phase. So it is O(ni) + O(nj) = O(nk), for some
nonnegative integer k.

Definition 9.3 The class of decision problems NP consists of those deci-
sion problems for which there exists a nondeterministic algorithm that runs
in polynomial time.

Example 9.4 Consider the problem coloring. We show that this prob-
lem belongs to the class NP in two ways.

(1) The first method is as follows. Let I be an instance of the problem
coloring. Let s be a claimed solution to I. It is easy to construct a
deterministic algorithm that tests whether s is indeed a solution to I.
It follows by our informal definition of the class NP that the problem
coloring belongs to the class NP.

(2) The second method is to construct a nondeterministic algorithm for
this problem. An algorithm A can easily be constructed that does
the following when presented with an encoding of a graph G. First,
A “guesses” a solution by generating an arbitrary assignment of the
colors to the set of vertices. Next, A verifies that the guess is a valid
assignment. If it is a valid assignment, then A halts and answers yes;
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otherwise, it halts and answers no. First, note that according to the
definition of a nondeterministic algorithm, A answers yes only if the
answer to the instance of the problem is yes. Second, regarding the
operation time needed, A spends no more than polynomial time in both
the guessing and verification phases.

We have the following distinction between the two important classes P
and NP:

• P is the class of decision problems that we can decide or solve using a
deterministic algorithm that runs in polynomial time.
• NP is the class of decision problems that we can check or verify their

solution using a deterministic algorithm that runs in polynomial time.
Equivalently, NP is the class of decision problems solvable by nondeter-
ministic polynomial time algorithms.

9.4 NP-complete Problems

The term “NP-complete” denotes the subclass of decision problems in NP
that are hardest in the sense that if one of them is proved to be solvable
by a polynomial time deterministic algorithm, then all problems in NP are
solvable by a polynomial time deterministic algorithm, i.e., NP = P. For
proving that a problem is NP-complete, we need the following definition.

Definition 9.4 Let Π and Π′ be two decision problems. We say that Π
reduces to Π′ in polynomial time, symbolized as Π ∝poly Π′, if there exists
a deterministic algorithm A that behaves as follows. When A is presented
with an instance I of problem Π, it transforms it into an instance I ′ of
problem Π′ such that the answer to I is yes if and only if the answer to I ′

is yes. Moreover, this transformation must be achieved in polynomial time.

Definition 9.5 A decision problem Π is said to be NP-hard if for every
problem Π′ in NP, Π′ ∝poly Π.

Definition 9.6 A decision problem Π is said to be NP-complete if

(1) Π is in NP and
(2) for every problem Π′ in NP, Π′ ∝poly Π.
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Thus, the difference between an NP-complete problem Π and an
NP-hard problem Π′ is that Π must be in the class NP, whereas Π′ may
not be in NP.

9.4.1 The satisfiability problem

Given a boolean formula f , we say that it is in conjunctive normal form
(CNF) if it is the conjunction of clauses. A clause is the disjunction of
literals, where a literal is a boolean variable or its negation. An example of
such a formula is

f = (x1 ∨ x2) ∧ (x1 ∨ x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x3 ∨ x4).

A formula is said to be satisfiable if there is a truth assignment to its
variables that makes it true. For example, the above formula is satisfiable,
since it evaluates to true under any assignment in which both x1 and x3

are set to true.

Decision problem: satisfiability.
Input: A CNF boolean formula f .
Question: Is f satisfiable?

The satisfiability problem was the first problem proved to be
NP-complete. Being the first NP-complete problem, there was no other
NP-complete problem that reduces to it. Therefore, the proof was to show
that all problems in the class NP can be reduced to it in polynomial time. In
other words, the essence of the proof is to show that any problem in NP can
be solved by a polynomial time algorithm that uses the satisfiability prob-
lem as a subroutine that is invoked by the algorithm exactly once. The proof
consists of constructing a boolean formula f in conjunctive normal form for
an instance I of Π such that there is a truth assignment that satisfies f if
and only if a nondeterministic algorithm A for the problem Π accepts the
instance I. f is constructed so that it “simulates” the computation of A on
instance I. This, informally, implies the following fundamental theorem.

Theorem 9.2 satisfiability is NP-complete.

9.4.2 Proving NP-completeness

The following theorem states that the reducibility relation ∝P is transitive.
This is necessary to show that other problems are NP-complete as well. We
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explain this as follows. Suppose that for some problem Π in NP, we can
prove that satisfiability reduces to Π in polynomial time. By the above
theorem, all problems in NP reduce to satisfiability in polynomial time.
Consequently, if the reducibility relation ∝P is transitive, then this implies
that all problems in NP reduce to Π in polynomial time.

Theorem 9.3 Let Π, Π′, and Π′′ be three decision problems such that
Π ∝poly Π′ and Π′ ∝poly Π′′. Then Π ∝poly Π′′.

Proof. Let A be an algorithm that realizes the reduction Π ∝poly Π′ in
p(n) steps for some polynomial p. Let B be an algorithm that realizes the
reduction Π′ ∝poly Π′′ in q(n) steps for some polynomial q. Let x be an
input to A of size n. Clearly, the size of the output of algorithm A when
presented with input x cannot exceed cp(n), as the algorithm can output
at most c symbols in each step of its execution for some positive integer
c > 0. If algorithm B is presented with an input of size p(n) or less, its
running time is, by definition, O(q(cp(n))) = O(r(n)) for some polynomial
r. It follows that the reduction from Π to Π′ followed by the reduction from
Π′ to Π′′ is a polynomial time reduction from Π to Π′′. �

Corollary 9.1 If Π and Π′ are two problems in NP such that Π′ ∝poly Π,

and Π′ is NP-complete, then Π is NP-complete.

Proof. Since Π′ is NP-complete, every problem in NP reduces to Π′ in
polynomial time. Since Π′ ∝poly Π, then by Theorem 9.3, every problem in
NP reduces to Π in polynomial time. It follows that Π is NP-complete. �

By the above corollary, to prove that a problem Π is NP-complete, we
only need to show that

(1) Π ∈ NP and
(2) there is an NP-complete problem Π′ such that Π′ ∝poly Π.

Example 9.5 Consider the following two problems:

(1) The problem Hamiltonian cycle: Given an undirected graph G =
(V, E), does it have a Hamiltonian cycle, i.e., a cycle that visits each
vertex exactly once?

(2) The problem traveling salesman: Given a set of n cities with their
intercity distances, and an integer k, does there exist a tour of length
at most k? Here, a tour is a cycle that visits each city exactly once.
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It is well known that the problem Hamiltonian cycle is NP-complete.
We will use this fact to show that the problem traveling salesman is
also NP-complete.

The first step in the proof is to show that traveling salesman is in
NP. This is very simple, since a nondeterministic algorithm can start by
guessing a sequence of cities, and then verifies that this sequence is a tour.
If this is the case, it then continues to see if the length of the tour is at
most k, the given bound.

The second step is to show that Hamiltonian cycle can be reduced
to traveling salesman in polynomial time, i.e.,

Hamiltonian cycle ∝poly traveling salesman.

Let G be any arbitrary instance of Hamiltonian cycle. We construct a
weighted graph G′ and a bound k such that G has a Hamiltonian cycle if
and only if G′ has a tour of total length at most k. Let G = (V, E). We let
G′ = (V, E′) be the complete graph on the set of vertices V , i.e.,

E′ = {(u, v) | u, v ∈ V }.

Next, we assign a length to each edge in E′ as follows:

l(e) =

{
1 if e ∈ E,

n if e /∈ E,

where n = |V |. Finally, we assign k = n. It is easy to see from the
construction that G has a Hamiltonian cycle if and only if G′ has a tour
of length exactly n. It should be emphasized that the assignment k = n is
part of the reduction.

9.4.3 Vertex cover, independent set, and clique problems

In this section, we prove the NP-completeness of three famous problems in
graph theory.
clique: Given an undirected graph G = (V, E) and a positive integer k,
does G contain a clique of size k? (Recall that a clique in G of size k is a
complete subgraph of G on k vertices.)
vertex cover: Given an undirected graph G = (V, E) and a positive
integer k, is there a subset C ⊆ V of size k such that each edge in E is
incident to at least one vertex in C?



January 14, 2016 14:22 Algorithms: Design Techniques and Analysis - 9in x 6in b2305-ch09 page 259

NP-complete Problems 259

independent set: Given an undirected graph G = (V, E) and a positive
integer k, does there exist a subset S ⊆ V of k vertices such that for each
pair of vertices u, w ∈ S, (u, w) /∈ E?
It is easy to show that all these three problems are indeed in NP. In what
follows we give reductions that establish their NP-completeness.

satisfiability ∝poly clique

Given an instance of satisfiability f = C1∧C2∧· · ·∧Cm with m clauses
and n boolean variables x1, x2, . . . , xn, we construct a graph G = (V, E),
where V is the set of all occurrences of the 2n literals (recall that a literal
is a boolean variable or its negation), and

E = {(xi, xj) | xi and xj are in two different clauses and xi �= xj}.
It is easy to see that the above construction can be accomplished in poly-
nomial time.

Example 9.6 An example of the reduction is provided in Fig. 9.1. Here
the instance of satisfiability is

f = (x ∨ y ∨ z) ∧ (x ∨ y) ∧ (x ∨ y ∨ z).

Lemma 9.1 f is satisfiable if and only if G has a clique of size m.

Proof. A clique of size m corresponds to an assignment of true to m

literals in m different clauses. An edge between two literals a and b means
that there is no contradiction when both a and b are assigned the value
true. It follows that f is satisfiable if and only if there is a noncontradictory

y

x z

x

y y

xz

Fig. 9.1. Reducing satisfiability to clique.
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assignment of true to m literals in m different clauses if and only if G has
a clique of size m. �

satisfiability ∝poly vertex cover

Given an instance I of satisfiability, we transform it into an instance I ′

of vertex cover. Let I be the formula f = C1 ∧ C2 ∧ · · · ∧ Cm with m

clauses and n boolean variables x1, x2, . . . , xn. We construct I ′ as follows:
(1) For each boolean variable xi in f , G contains a pair of vertices xi and xi

joined by an edge.
(2) For each clause Cj containing nj literals, G contains a clique Cj of size

nj .
(3) For each vertex w in Cj , there is an edge connecting w to its corre-

sponding literal in the vertex pairs (xi, xi) constructed in part (1). Call
these edges connection edges.

(4) Let k = n +
∑m

j=1(nj − 1).
It is easy to see that the above construction can be accomplished in

polynomial time.

Example 9.7 An example of the reduction is provided in Fig. 9.2. Here
the instance I is the formula

f = (x ∨ y ∨ z) ∧ (x ∨ y).

It should be emphasized that the instance I ′ is not only the figure shown;
it also includes the integer k = 3 + 2 + 1 = 6. A boolean assignment of
x = true, y = true, and z = false satisfies f . This assignment corresponds
to the six covering vertices shown shaded in the figure.

zz y xy x

Fig. 9.2. Reducing satisfiability to vertex cover.
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Lemma 9.2 f is satisfiable if and only if the constructed graph has a
vertex cover of size k.

Proof. ⇒: If xi is assigned true, add vertex xi to the vertex cover; oth-
erwise, add xi to the vertex cover. Since f is satisfiable, in each clique
Cj there is a vertex u whose corresponding literal v has been assigned the
value true, and thus the connection edge (u, v) is covered. Therefore, add
the other nj − 1 vertices in each clique Cj to the vertex cover. Clearly, the
size of the vertex cover is k = n +

∑m
j=1(nj − 1).

⇐: Suppose that the graph can be covered with k vertices. At least one
vertex of each edge (xi, xi) must be in the cover. We are left with k − n =∑m

j=1(nj − 1) vertices. It is not hard to see that any cover of a clique of
size nj must have at least nj − 1 vertices. So, in each clique, the cover
must include all its vertices except the one that is incident to a connection
edge that is covered by a vertex in some vertex pair (xi, xi). To see that
f is satisfiable, for each vertex xi, if it is in the cover then let xi = true;
otherwise (if xi is in the cover), let xi = false. Thus, in each clique, there
must be one vertex which is connected to a vertex xi or xi, which is assigned
the value true since it is in the cover. It follows that each clause has at
least one literal whose value is true, i.e., f is satisfiable. �

vertex cover ∝poly independent set

The transformation from vertex cover to independent set is straight-
forward. The following lemma provides the reduction.

Lemma 9.3 Let G = (V, E) be a connected undirected graph. Then,

S ⊆ V is an independent set if and only if V − S is a vertex cover in G.

Proof. Let e = (u, v) be any edge in G. S is an independent set if and
only if at least one of u or v is in V − S, i.e., V − S is a vertex cover in G.

�

A simple reduction from vertex cover to clique is left as an exer-
cise (Exercise 9.14). A reduction from independent set to clique is
straightforward since a clique in a graph G is an independent set in G, the
complement of G. Thus, we have the following theorem.

Theorem 9.4 The problems vertex cover, independent set, and
clique are NP-complete.
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Proof. It is fairly easy to show that these problems are in the class NP.
The above reductions whose proofs are given in Lemmas 9.1–9.3 complete
the proof. �

9.4.4 More NP-complete problems

The following is a list of additional NP-complete problems.

(1) 3-sat. Given a boolean formula f in conjunctive normal form such
that each clause consists of exactly three literals, is f satisfiable?

(2) 3-coloring. Given an undirected graph G = (V, E), can G be colored
using three colors? This problem is a special case of the more general
problem coloring, which is known to be NP-complete.

(3) Three-dimensional matching. Let X, Y, and Z be pairwise disjoint
sets of size k each. Let W be the set of triples {(x, y, z) | x ∈ X, y ∈
Y , z ∈ Z}. Does there exist a perfect matching M of W? That is,
does there exist a subset M ⊆ W of size k such that no two triplets
in M agree in any coordinate? The corresponding two-dimensional
matching problem is the regular perfect bipartite matching problem
(see Chapter 16).

(4) Hamiltonian path. Given an undirected graph G = (V, E), does it
contain a simple open path that visits each vertex exactly once?

(5) partition. Given a set S of n integers, is it possible to partition S

into two subsets S1 and S2 so that the sum of the integers in S1 is
equal to the sum of the integers in S2?

(6) knapsack. Given n items with sizes s1, s2, . . . , sn and values
v1, v2, . . . , vn, a knapsack capacity C and a constant integer k, is it
possible to fill the knapsack with some of these items whose total size
is at most C and whose total value is at least k? This problem can
be solved in time Θ(nC) using dynamic programming (Theorem 6.3).
This is polynomial in the input value, but exponential in the input
size.

(7) bin packing. Given n items with sizes s1, s2, . . . , sn, a bin capacity
C and a positive integer k, is it possible to pack the n items using at
most k bins?

(8) set cover. Given a set X , a family F of subsets of X and an integer
k between 1 and |F|, do there exist k subsets in F whose union is X?
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(9) multiprocessor scheduling. Given n jobs J1, J2, . . . , Jn each hav-
ing a run time ti, a positive integer m (number of processors), and a
finishing time T , can these jobs be scheduled on m identical processors
so that their finishing time is at most T ? The finishing time is defined
to be the maximum execution time among all the m processors.

(10) longest path. Given a weighted graph G = (V, E), two distin-
guished vertices s, t ∈ V and a positive integer c, is there a simple
path in G from s to t of length c or more?

9.5 The Class co-NP

The class co-NP consists of those problems whose complements are in NP.
One might suspect that the class co-NP is comparable in hardness to the
class NP. It turns out, however, that this is highly unlikely, which supports
the conjecture that co-NP �= NP. Consider, for example, the complement
of traveling salesman: Given n cities with their intercity distances,
is it the case that there does not exist any tour of length k or less? It
seems that there is no nondeterministic algorithm that solves this problem
without exhausting all the (n− 1)! possibilities. As another example, con-
sider the complement of satisfiability: Given a formula f , is it the case
that there is no assignment of truth values to its boolean variables that
satisfies f? In other words, is f unsatisfiable? There does not seem to be a
nondeterministic algorithm that solves this problem without inspecting all
the 2n assignments, where n is the number of boolean variables in f .

Definition 9.7 A problem Π is complete for the class co-NP if

(1) Π is in co-NP and
(2) for every problem Π′ in co-NP, Π′ ∝poly Π.

Let some deterministic algorithm A realize a reduction from one prob-
lem Π′ to another problem Π, both in NP. Recall that, by definition of
reduction, A is deterministic and runs in polynomial time. Therefore, by
Theorem 9.1, A is also a reduction from Π′ to Π, where Π and Π′ are the
complements of Π and Π′, respectively. This implies the following theorem.

Theorem 9.5 A problem Π is NP-complete if and only if its comple-
ment, Π, is complete for the class co-NP.



January 14, 2016 14:22 Algorithms: Design Techniques and Analysis - 9in x 6in b2305-ch09 page 264

264 Algorithms: Design Techniques and Analysis

In particular, since satisfiability is NP-complete, the complement of
satisfiability is complete for the class co-NP. It is not known whether the
class co-NP is closed under complementation. It follows, however, that the
complement of satisfiability is in NP if and only if NP is closed under
complementation.

A CNF formula f is unsatisfiable if and only if its negation is a tautology.
(A formula f is called a tautology if f is true under all truth assignments to
its boolean variables.) The negation of a CNF formula C1 ∧ C2 ∧ · · · ∧Ck,
where Ci = (x1 ∨ x2 ∨ · · · ∨ xmi), for all i, 1 ≤ i ≤ k, can be converted
into a disjunctive normal form (DNF) formula C′

1 ∨ C′
2 ∨ · · · ∨ C′

k, where
C′

i = (y1 ∧ y2 ∧ · · · ∧ ymi), for all i, 1 ≤ i ≤ k, using the identities

(C1 ∧ C2 ∧ · · · ∧Ck) = (C1 ∨ C2 ∨ · · · ∨ Ck)

and

(x1 ∨ x2 ∨ · · · ∨ xmi) = (x1 ∧ x2 ∧ · · · ∧ xmi).

The resulting DNF formula is a tautology if and only if the negation of the
CNF formula is a tautology. Therefore, we have the following theorem.

Theorem 9.6 The problem tautology: Given a formula f in DNF, is
it a tautology? is complete for the class co-NP.

It follows that

• tautology is in P if and only if co-NP = P and
• tautology is in NP if and only if co-NP = NP.

The following theorem is fundamental. Its simple proof is left as an
exercise (Exercise 9.29).

Theorem 9.7 If a problem Π and its complement Π are NP-complete,
then co-NP = NP.

In other words, if both a problem Π and its complement are
NP-complete, then the class NP is closed under complementation. As dis-
cussed before, this is highly unlikely, and it is an open question. In fact, it
is stronger than the NP �= P question. The reason is that if we can prove
that co-NP �= NP, then it follows immediately that NP �= P. For suppose
it has been proved that co-NP �= NP, and assume for the sake of contra-
diction that NP = P. Then, substituting P for NP in the proven result,
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Fig. 9.3. The relationships between the three complexity classes.

we obtain co-P �= P. But this contradicts the fact that P is closed under
complementation (Theorem 9.1). This contradiction implies that NP �= P.

9.6 The Relationships Between the Three Classes

Figure 9.3 shows the relationships between the three classes we have dis-
cussed in this chapter. From the figure, it is clear that P lies in the inter-
section of NP and co-NP, assuming that NP �= co-NP.

9.7 Exercises

9.1. Give an efficient algorithm to solve the decision version of the sorting
stated on page 252. What is the time complexity of your algorithm?

9.2. Give an efficient algorithm to solve the problem set disjointness stated
on page 252. What is the time complexity of your algorithm?

9.3. Design a polynomial time algorithm for the problem 2-coloring defined
on page 252. (Hint: Color the first vertex white, all adjacent vertices black,
etc.)

9.4. Let I be an instance of the problem coloring, and let s be a claimed
solution to I . Describe a deterministic algorithm to test whether s is a
solution to I .

9.5. Design a nondeterministic algorithm to solve the problem satisfiability.

9.6. Design a nondeterministic algorithm to solve the problem traveling
salesman.
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9.7. Let Π1 and Π2 be two problems such that Π1 ∝poly Π2. Suppose that
problem Π2 can be solved in O(nk) time and the reduction can be done in
O(nj) time. Show that problem Π1 can be solved in O(njk) time.

9.8. Given that the Hamiltonian cycle problem for undirected graphs is
NP-complete, show that the Hamiltonian cycle problem for directed graphs
is also NP-complete.

9.9. Show that the problem bin packing is NP-complete, assuming that the
problem partition is NP-complete.

9.10. Let Π1 and Π2 be two NP-complete problems. Prove or disprove that
Π1 ∝poly Π2.

9.11. Give a polynomial time algorithm to find a clique of size k in a given undi-
rected graph G = (V, E) with n vertices. Here k is a fixed positive integer.
Does this contradict the fact that the problem clique is NP-complete?
Explain.

9.12. Consider the following instance of satisfiability:

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x1 ∨ x2).

(a) Following the reduction method from satisfiability to clique, trans-
form the above formula into an instance of clique for which the answer
is yes if and only if the the above formula is satisfiable.

(b) Find a clique of size 4 in your graph and convert it into a satisfying
assignment for the formula given above.

9.13. Consider the formula f given in Exercise 9.12.

(a) Following the reduction method from satisfiability to vertex
cover, transform f into an instance of vertex cover for which the
answer is yes if and only if f is satisfiable.

(b) Find a vertex cover in your graph and convert it into a satisfying
assignment for f .

9.14. The NP-completeness of the problem clique was shown by reducing sat-
isfiability to it. Give a simpler reduction from vertex cover to clique.

9.15. Show that any cover of a clique of size n must have exactly n− 1 vertices.

9.16. Show that if one can devise a polynomial time algorithm for the problem
satisfiability, then NP = P (see Exercise 9.7.)

9.17. In Chapter 6 it was shown that the problem knapsack can be solved in
time Θ(nC), where n is the number of items and C is the knapsack capacity.
However, it was mentioned in this chapter that it is NP-complete. Is there
any contradiction? Explain.
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9.18. When showing that an optimization problem is not harder than its decision
problem version, it was justified by using binary search and an algorithm
for the decision problem in order to solve the optimization version. Will the
justification still be valid if linear search is used instead of binary search?
Explain. (Hint: Consider the problem traveling salesman.)

9.19. Prove that if an NP-complete problem Π is shown to be solvable in poly-
nomial time, then NP = P (see Exercises 9.7 and 9.16).

9.20. Prove that NP = P if and only if for some NP-complete problem Π, Π ∈ P.

9.21. Is the problem longest path NP-complete when the path is not restricted
to be simple? Prove your answer.

9.22. Is the problem longest path NP-complete when restricted to directed
acyclic graphs? Prove your answer. (See Exercises 6.33 and 9.21).

9.23. Show that the problem of finding a shortest simple path between two
vertices s and t in a directed or undirected graph is NP-complete if the
weights are allowed to be negative.

9.24. Show that the problem set cover is NP-complete by reducing the problem
vertex cover to it.

9.25. Show that the problem 3-sat is NP-complete.

9.26. Simplify the reduction from the problem satisfiability to vertex cover
by using 3-sat instead of satisfiability.

9.27. Show that the problem 3-coloring is NP-complete.

9.28. Compare the difficulty of the problem tautology to satisfiability.
What does this imply about the difficulty of the class co-NP.

9.29. Prove Theorem 9.7.

9.30. Design a polynomial time algorithm for the problem 2-sat defined on
page 253.

9.8 Bibliographic Notes

The study of NP-completeness started with two papers. The first was
the seminal paper of Cook (1971) in which the problem satisfiability

was the first problem shown to be NP-complete. The second was Karp
(1972) in which a list of 24 problems were shown to be NP-complete. Both
Stephen Cook and Richard Karp have won the ACM Turing awards and
their Turing award lectures were published in Cook (1983) and Karp (1986).
Garey and Johnson (1979) provides comprehensive coverage of the theory
of NP-completeness and covers the four basic complexity classes introduced
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in this chapter. Their book contains the proof that satisfiability is
NP-complete and a list of several hundred NP-complete problems. One
of the most famous of the open problems to be resolved is linear pro-

gramming. This problem has been proved to be solvable in polynomial
time using the ellipsoid method (Khachiyan, 1979). It has received much
attention, although its practical significance is yet to be determined. An
introduction to the theory of NP-completeness can also be found in Aho,
Hopcroft, and Ullman (1974) and Hopcroft and Ullman (1979).
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Chapter 10

Introduction to Computational
Complexity

10.1 Introduction

Computational complexity is concerned with the classification of problems
based on the amount of time, space, or any other resource needed to solve
a problem such as the number of processors and communication cost. In
this chapter, we review some of the basic concepts in this field and confine
our attention to the two classical resource measures: time and space.

10.2 Model of Computation: The Turing Machine

When studying computational complexity, a universal computing device
is required for the classification of computational problems. It turns out
that most, if not all, of the results are robust and are invariant under
different models of computations. In this chapter, we will choose the
Turing machine as our model of computation. In order to measure the
amount of time and space needed to solve a problem, it will be much eas-
ier to consider those problems whose solution output is either yes or no.
A problem of this type is called a decision problem (see Sec. 9.1). The
set of instances of a decision problem is partitioned into two sets: those
instances for which the answer is yes and those for which the answer is
no. We can encode such problems as languages. An alphabet Σ is a finite

269
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set of symbols. A language L is simply a subset of the set of all finite
length strings of symbols chosen from Σ, denoted by Σ∗. For example, a
graph G = (V, E), where V = {1, 2, . . . , n} can be encoded by the string
w(G) = (x11, x12, . . . , x1n)(x21, x22, . . . , x2n) . . . (xn1, xn2, . . . , xnn), where
xij = 1 if (i, j) ∈ E and 0 otherwise. Thus, the encoded graph w(G) is a
string of symbols over the finite alphabet {0, 1, (, )}.

The standard Turing machine has only one worktape, which is divided
into separate cells. Each cell of the worktape contains one symbol from some
finite alphabet Σ. The Turing machine has the ability to read and rewrite
the symbol contained in the cell of the worktape currently scanned by its
worktape head. The worktape head moves either one cell to the left, one
cell to the right, or it remains on the current cell at each step. The actions
of the Turing machine are specified by its finite state control . A Turing
machine at any moment of time is in some state. For the current state and
for the current scanned symbol on the worktape, the finite state control
specifies which actions are possible: It specifies which one of the states to
enter next, which symbol to print on the scanned cell of the worktape, and
in what way to move the worktape head.

10.3 k-Tape Turing Machines and Time Complexity

Since the standard Turing machine as described in the previous section can
move its worktape head one cell per step, it clearly needs n steps to move
the head n cells. In order to make an appropriate model of Turing machine
adequately measure the amount of time used by an algorithm, we need to
allow for more than one worktape. A k-tape Turing machine, for some
k ≥ 1, is just the natural extension of the one-tape Turing machine. It
has k worktapes instead of just one, and it has k worktape heads. Each
worktape head is associated with one of the worktapes and the heads can
move independently from one another.

Definition 10.1 A (nondeterministic) k-tape Turing machine is a 6-tuple
M = (S, Σ, Γ, δ, p0, pf ), where

(1) S is a finite set of states ,
(2) Γ is a finite set of tape symbols which includes the special symbol B

(the blank symbol),
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(3) Σ ⊆ Γ− {B}, the set of input symbols,
(4) δ, the transition function, is a function that maps elements of S × Γk

into finite subsets of S × ((Γ− {B})× {L, P, R})k,
(5) p0 ∈ S, the initial state, and
(6) pf ∈ S, the final or accepting state.

Note that we have assumed without loss of generality that there is
only one final state. A k-tape Turing machine M = (S, Σ, Γ, δ, p0, pf ) is
deterministic if for every p ∈ S and for every a1, a2, . . . , ak ∈ Γ, the set
δ(p, a1, a2, . . . , ak) contains at most one element.

Definition 10.2 Let M = (S, Σ, Γ, δ, p0, pf ) be a k-tape Turing machine.
A configuration of M is a (k + 1)-tuple

K = (p, w11↑w12, w21↑w22, . . . , wk1↑wk2),

where p ∈ S and wj1↑wj2 is the content of the jth tape of M , 1 ≤ j ≤ k.

Here, the head of the jth tape is pointing to the first symbol in the
string wj2. If wj1 is empty, then the head is pointing to the first nonblank
symbol on the tape. If wj2 is empty, then the head is pointing to the
first blank symbol after the string wj1. Both wj1 and wj2 may be empty,
indicating that the tape is empty. This is the case in the beginning of the
computation, where all tapes except possibly the input tape are empty.
Thus, the initial configuration is denoted by

(p0, ↑x, ↑B, . . . , ↑B),

where x is the initial input. The set of final or accepting configurations is
the set of all configurations

(pf , w11↑w12, w21↑w22, . . . , wk1↑wk2).

Definition 10.3 A computation by a Turing machine M on input x is
a sequence of configurations K1, K2, . . . , Kt, for some t ≥ 1, where K1 is
the initial configuration, and for all i, 2 ≤ i ≤ t, Ki results from Ki−1 in
one move of M . Here, t is referred to as the length of the computation.
If Kt is a final configuration, then the computation is called an accepting
computation.
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Definition 10.4 The time taken by a Turing machine M on input x,
denoted by TM (x), is defined by:

(1) If there is an accepting computation of M on input x, then TM(x) is
the length of the shortest accepting computation, and

(2) If there is no accepting computation of M on input x, then TM (x) =∞.

Let L be a language and f a function from the set of nonnegative inte-
gers to the set of nonnegative integers. We say that L is in DTIME(f)
(resp. NTIME(f)) if there exists a deterministic (resp. nondeterminis-
tic) Turing machine M that behaves as follows. On input x, if x ∈ L,
then TM(x) ≤ f(|x|); otherwise, TM (x) = ∞. Similarly, we may define
DTIME(nk), NTIME(nk) for any k ≥ 1. The two classes P and NP dis-
cussed in Chapter 9 can now be defined formally as follows:

P = DTIME(n) ∪DTIME(n2) ∪DTIME(n3) ∪ · · · ∪DTIME(nk) ∪ · · ·

and

NP = NTIME(n) ∪NTIME(n2) ∪NTIME(n3) ∪ · · · ∪NTIME(nk) ∪ · · ·

In other words, P is the set of all languages recognizable in polynomial time
using a deterministic Turing machine and NP is the set of all languages
recognizable in polynomial time using a nondeterministic Turing machine.
We have seen many examples of problems in the class P in earlier chapters.
We have also encountered several problems that belong to the class NP in
Chapter 9. There are also other important time complexity classes, two of
them are

DEXT =
⋃
c≥0

DTIME(2cn), NEXT =
⋃
c≥0

NTIME(2cn),

EXPTIME =
⋃
c≥0

DTIME(2nc

) NEXPTIME =
⋃
c≥0

NTIME(2nc

).

Example 10.1 Consider the following 1-tape Turing machine M that
recognizes the language L = {anbn | n ≥ 1}. Initially its tape contains
the string anbn. M repeats the following step until all symbols on the
tape have been marked, or M cannot move its tape head. M marks the
leftmost unmarked symbol if it is an a and then moves its head all the
way to the right and marks the rightmost unmarked symbol if it is a b. If
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the number of a’s is equal to the number of b’s, then all symbols on the
tape will eventually be marked, and hence M will enter the accepting state.
Otherwise, either the number of a’s is less than or greater than the number
of b’s. If the number of a’s is less than the number of b’s, then after all the
a’s have been marked, and after marking the last b, the leftmost symbol is
a b, and hence M will not be able to move its tape head. This will also be
the case if the number of a’s is greater than the number of b’s. It is easy
to see that if the input string is accepted, then the number of moves of the
tape head is less than or equal to cn2 for some constant c > 0. It follows
that L is in DTIME(n2).

10.4 Off-line Turing Machines and Space Complexity

For an appropriate measure of space, we need to separate the space used
to store computed information. For example, to say that a Turing machine
uses only �log n	 of its worktape cells is possible only if we separate the
input string and we do not count the n cells used to store the input string
of length n. For this reason, our model of a Turing machine that will
be used to measure space complexity will have a separate read-only input
tape. The Turing machine is not permitted to rewrite the symbols that
it scans on the input tape. This version of Turing machines is commonly
referred to as an off-line Turing machine. The difference between a k-tape
Turing machine and an off-line Turing machine is that an off-line Turing
machine has exactly two tapes: a read-only input tape and a read–write
worktape.

Definition 10.5 A (nondeterministic) off-line Turing machine is a
6-tuple M = (S, Σ, Γ, δ, p0, pf ), where

(1) S is a finite set of states ,
(2) Γ is a finite set of tape symbols , which includes the special symbol B

(the blank symbol),
(3) Σ ⊆ Γ−{B} is the set of input symbols; it contains two special symbols

# and $ (the left endmarker and the right endmarker , respectively).
(4) δ, the transition function, is a function that maps elements of S×Σ×Γ

into finite subsets of S × {L, P, R} × (Γ− {B})× {L, P, R},
(5) p0 ∈ S is the initial state, and
(6) pf ∈ S is the final or accepting state.
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Note that we have assumed without loss of generality that there is only
one final state. The input is presented to an off-line Turing machine in
its read-only tape enclosed by the endmarkers, $ and #, and it is never
changed. In the case of off-line Turing machines, a configuration is defined
by the 3-tuple

K = (p, i, w1↑w2),

where p is the current state, i is the cell number in the input tape pointed
to by the input head, and w1↑w2 is the contents of the worktape. Here the
head of the worktape is pointing to the first symbol of w2.

Definition 10.6 The space used by an off-line Turing machine M on
input x, denoted by SM (x), is defined by:

(1) If there is an accepting computation of M on input x, then SM (x) is
the number of worktape cells used in an accepting computation that
uses the least number of worktape cells and

(2) If there is no accepting computation of M on input x, then
SM (x) = ∞.

Example 10.2 Consider the following Turing machine M that recog-
nizes the language L = {anbn | n ≥ 1}. M scans its input tape from left to
right and counts the number of a’s representing the value of this count in
binary notation on its worktape. It does this by incrementing a counter in
its worktape. M then verifies that the number of occurrences of the symbol
b is the same by subtracting 1 from the counter for each b scanned. If n is
the length of the input string x, then M uses 
log(n/2) + 1� worktape cells
in order to accept x.

Let L be a language and f a function from the set of nonnegative inte-
gers to the set of nonnegative integers. We say that L is in DSPACE(f)
(resp. NSPACE(f)) if there exists a deterministic (resp. nondetermin-
istic) off-line Turing machine M that behaves as follows. On input x,
if x ∈ L then SM (x) ≤ f(|x|); otherwise, SM (x) = ∞. For example,
L(M) = {anbn | n ≥ 1} in Example 10.2 is in DSPACE(log n) since M is
deterministic and for any string x, if x ∈ L, M uses at most 
log(n/2) + 1�
worktape cells in order to accept x, where n = |x|. Similarly, we may define
DSPACE(nk), NSPACE(nk) for any k ≥ 1. We now define two important
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space complexity classes PSPACE and NSPACE as follows:

PSPACE = DSPACE(n) ∪DSPACE(n2) ∪DSPACE(n3)

∪ · · · ∪DSPACE(nk) ∪ · · · ,
NSPACE = NSPACE(n) ∪NSPACE(n2) ∪NSPACE(n3)

∪ · · · ∪NSPACE(nk) ∪ · · · .
In other words, PSPACE is the set of all languages recognizable in polyno-
mial space using a deterministic off-line Turing machine, and NSPACE is
the set of all languages recognizable in polynomial space using a nondeter-
ministic off-line Turing machine. There are also two fundamental complex-
ity classes:

LOGSPACE = DSPACE (log n) and NLOGSPACE = NSPACE (log n),

which define the two classes of languages recognizable in logarithmic space
using a deterministic and nondeterministic off-line Turing machine, respec-
tively. In the following example, we describe a problem that belongs to the
class NLOGSPACE.

Example 10.3 graph accessibility problem (gap): Given a finite
directed graph G = (V, E), where V = {1, 2, . . . , n}, is there a path from
vertex 1 to vertex n? Here, 1 is the start vertex and n is the goal vertex. We
construct a nondeterministic Turing machine M that determines whether
there is a path from vertex 1 to vertex n. M performs this task by first
beginning with the path of length zero from vertex 1 to itself, and extending
the path at each later step by nondeterministically choosing a next vertex,
which is a successor of the last vertex in the current path. It records in
its worktape only the last vertex in this path; it does not record the entire
list of vertices in the path. Since the last vertex can be represented by
writing its number in binary notation on the worktape, M uses at most

log(n + 1)� worktape cells. Since M chooses a path nondeterministically,
if a path from vertex 1 to vertex n exists, then M will be able to make a
correct sequence of choices and construct such a path. It will answer yes

when it detects that the last vertex in the path chosen is n. On the other
hand, M is not forced to make the right sequence of choices, even when an
appropriate path exists. For example, M may loop, by choosing an endless
sequence of vertices in G that form a cycle, or M may terminate without
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indicating that an appropriate path exists by making an incorrect choice
for the successor of the last vertex in the path. Since M needs to store
in its worktape only the binary representation of the current vertex whose
length is 
log(n + 1)�, it follows that gap is in NLOGSPACE.

10.5 Tape Compression and Linear Speed-up

Since the tape alphabet can be arbitrarily large, several tape symbols
can be encoded into one. This results in tape compression by a constant
factor, i.e., the amount of space used is reduced by some constant c > 1.
Similarly, one can speed up the computation by a constant factor. Thus,
in computational complexity, the constant factors may be ignored; only
the rate of growth is important in classifying problems. In the follow-
ing, we state without proof two theorems on tape compression and linear
speed-up.

Theorem 10.1 If a language L is accepted by an S(n) space-bounded
off-line Turing machine M, then for any constant c, 0 < c < 1, L is accepted
by a cS(n) space-bounded off-line Turing machine M ′.

Theorem 10.2 If a language L is accepted by a T (n) time-bounded Tur-
ing machine M with k > 1 tapes such that n = o(T (n)), then for any
constant c, 0 < c < 1, L is accepted by a cT (n) time-bounded Turing
machine M ′.

Example 10.4 Let L = {wwR | w ∈ {a, b}+}, i.e., L consists of the
set of palindromes over the alphabet {a, b}. A 2-tape Turing machine M

can be constructed to accept L as follows. The input string is initially in
the first tape. The second tape is used to mark the input symbols in the
following way. Scan the first symbol and mark it. Go to the rightmost
symbol, scan it, and mark it. Continue this process until the input string
is consumed, in which case it is accepted, or until a mismatch is found, in
which case the input string is rejected. Another 2-tape Turing machine M ′

that recognizes the language L works as follows. Scan simultaneously the
two leftmost symbols, mark them, and go to the right to scan and mark
the two rightmost symbols, etc. Clearly, the time required by M ′ is almost
half the time required by M .
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10.6 Relationships Between Complexity Classes

Definition 10.7 A total function T from the set of nonnegative integers
to the set of nonnegative integers is said to be time constructible if and only
if there is a Turing machine which on every input of length n halts in exactly
T (n) steps. A total function S from the set of nonnegative integers to the set
of nonnegative integers is said to be space constructible if and only if there is
a Turing machine which on every input of length n halts in a configuration
in which exactly S(n) tape cells of its work space are nonblank, and no
other work space has been used during the computation. Almost all known
functions are time and space constructible, e.g., nk, cn, n!.

Theorem 10.3

(a)DTIME(f(n)) ⊆ NTIME(f(n)) and DSPACE(f(n)) ⊆ NSPACE(f(n)).
(b) DTIME(f(n)) ⊆ DSPACE(f(n)) and NTIME(f(n)) ⊆ NSPACE(f(n)).
(c) If S is a space constructible function and S(n) ≥ log n, then

NSPACE(S(n)) ⊆ DTIME(cS(n)), c ≥ 2.

(d) If S is a space constructible function and S(n) ≥ log n, then

DSPACE(S(n)) ⊆ DTIME(cS(n)), c ≥ 2.

(e) If T is a time constructible function, then

NTIME(T (n)) ⊆ DTIME(cT (n)), c ≥ 2.

Proof.

(a) By definition, every deterministic Turing machine is nondeterministic.
(b) In n steps, at most n + 1 tape cells can be scanned by the tape heads.
(c) Let M be a nondeterministic off-line Turing machine such that on

all inputs of length n, M uses a work space bounded above by
S(n) ≥ log n. Let s and t be the number of states and worktape
symbols of M , respectively. Since M is S(n) space-bounded and S(n)
is space constructible, the maximum number of distinct configurations
that M can possibly enter on input x of length n is s(n + 2)S(n)tS(n).
This is the product of the number of states, number of input tape head
positions, number of worktape head positions, and number of possi-
ble worktape contents. Since S(n) ≥ log n, this expression is bounded
above by dS(n) for some constant d ≥ 2. Therefore, M cannot make
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more than dS(n) moves, for otherwise one configuration will be repeated
and the machine will never halt. Without loss of generality, we may
assume that if M accepts, it erases both of its tapes and brings the
tape heads to the first cell before entering the accepting state. Con-
sider a deterministic Turing machine M ′ that, on input x of length n,
generates a graph having all the configurations of M as its vertices,
and setting a directed edge between two configurations if and only if
the second one is reachable from the first in one step according to the
transition function of M . The number of configurations is computed
using the space constructibility of S. M ′ then checks whether there is a
directed path in the graph joining the initial and the unique accepting
configuration, and accepts if and only if this is the case. This can be
done in time O(d2S(n)) = O(cS(n)) for some constant c ≥ 2 (A shortest
path in a directed graph with n vertices can be found in O(n2) time).
Obviously, M ′ accepts the same language as M does, and therefore
this language is in DTIME(cS(n)) for some constant c ≥ 2.

(d) The proof follows immediately from parts (a) and (c).
(e) The proof follows immediately from parts (b) and (c). �

Corollary 10.1 LOGSPACE ⊆ NLOGSPACE ⊆ P.

Theorem 10.4 If S is a space constructible function and S(n) ≥ log n,

then NSPACE(S(n)) ⊆ DSPACE(S2(n)).

Proof. Let M be an S(n) nondeterministic off-line Turing machine that
halts on all inputs. We will construct an S2(n) deterministic off-line Turing
machine M ′ such that L(M ′) = L(M). The strategy is that M ′ can simu-
late M using divide and conquer. Let s and t be the number of states and
worktape symbols of M , respectively. Since M is S(n) space-bounded and
S(n) is space constructible, the maximum number of distinct configurations
that M can possibly enter on input x of length n is s(n+2)S(n)tS(n). This
is the product of the number of states, number of input tape head posi-
tions, number of worktape head positions, and number of possible worktape
contents. Since S(n) ≥ log n, this expression is bounded above by 2cS(n)

for some constant c ≥ 1. Therefore, M cannot make more than 2cS(n)

moves, for otherwise one configuration will be repeated and the machine
will never halt. Let the initial configuration on input x be Ci and the final
configuration Cf . M will accept x if and only if x causes the machine to
go from Ci to Cf . Suppose that this takes M j moves. Then there must



January 14, 2016 14:22 Algorithms: Design Techniques and Analysis - 9in x 6in b2305-ch10 page 279

Introduction to Computational Complexity 279

exist a configuration C such that x causes M to go into configuration C of
size O(S(n)) in at most j/2 steps and then from C to Cf in at most j/2
steps. M ′ will check for all possible configurations C using the divide-and-
conquer function reachable shown below. The first call to this function
is reachable(Ci, Cf , 2cS(n)).

1. Function reachable(C1, C2, j)
2. if j = 1 then
3. if C1 = C2 or C2 is reachable from C1 in one step
4. then return true
5. else return false
6. end if
7. else for each possible configuration C of size ≤ S(n)
8. if reachable (C1, C, j/2) and reachable (C, C2, j/2)
9. then return true

10. else return false
11. end if
12. end if
13. end reachable.

The function reachable decides whether there is a partial computation
of length at most j between two configurations. It does so by looking for
the middle configuration C and checking recursively that it is indeed the
middle configuration. This checking amounts to verifying the existence of
two partial computations of length at most j/2 each.

It is immediately clear that M ′ accepts its input if and only if M does.
Let us show the space bound for M ′. To simulate the recursive calls, M ′

uses its worktape as a stack, storing in it the information corresponding to
successive calls of the function. Each call decreases the value of j by a factor
of 2. Therefore, the depth of recursion is cS(n), and hence no more than
cS(n) calls are active simultaneously. For each call, M ′ stores the current
values of C1, C2, and C, of size O(S(n)) each. Therefore, O(S2(n)) space
suffices to hold the whole stack. It follows that M ′ is an S2(n) deterministic
off-line Turing machine with L(M ′) = L(M). �

Corollary 10.2 For any k ≥ 1,

NSPACE(nk) ⊆ DSPACE(n2k) and NSPACE(logk n) ⊆ DSPACE(log2k n).

Moreover, NSPACE = PSPACE.
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Corollary 10.3 There is a deterministic algorithm to solve the problem
gap using O(log2 n) space.

Proof. Immediate from Theorem 10.4 and the fact that gap has a non-
deterministic algorithm that uses O(log n) space (see Example 10.3). �

10.6.1 Space and time hierarchy theorems

Now we present two hierarchy theorems which are concerned with the rela-
tionships between classes when the same resource on the same model is
bounded by different functions. Specifically, we will present some sufficient
conditions for the strict inclusion between deterministic time and space
classes. These theorems are known as the space hierarchy and time hierar-
chy theorems. Let M be a 1-tape Turing machine. We encode M as a string
of 0’s and 1’s corresponding to a binary number as follows. Assume without
loss of generality that the input alphabet of M is {0, 1}, and the blank is
the only additional tape symbol. For convenience, call the symbols 0, 1 and
the blank X1, X2, and X3, respectively, and denote by D1, D2, and D3 the
directions L, R, and P . Then a move δ(qi, Xj) = (qk, Xl, Dm) is encoded
by the binary string 0i10j10k10l10m. Thus, the binary code for M is
111C111C211 . . . 11Cr111, where each Ci is the code for one move as shown
above. Each Turing machine may have many encodings, as the encodings of
moves can be listed in any order. On the other hand, there are binary num-
bers that do not correspond to any encodings of Turing machines. These
binary numbers may collectively be taken as the encodings of the null Tur-
ing machine, i.e., the Turing machine with no moves. It follows that we may
talk of the nth Turing machine, and so on. In a similar manner, we can
encode k-tape Turing machines for all k ≥ 1, and off-line Turing machines.

Theorem 10.5 Let S(n) and S′(n) be two space constructible space
bounds and assume that S ′(n) is o(S(n)). Then, DSPACE(S(n)) contains
a language that is not in DSPACE(S′(n)).

Proof. The proof is by diagonalization. Without loss of generality, we
may consider only off-line Turing machines with input alphabet {0, 1}. We
may also assume that a prefix of any number of 1’s is permitted in any
encoding of a Turing machine, so that each Turing machine has infinitely
many encodings. We construct a Turing machine M with space bound S(n)
that disagrees on at least one input with any Turing machine with space
bound S′(n). M treats its input x as an encoding of an off-line Turing
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machine. Let x be an input to M of length n. First, to ensure that M

does not use more than S(n) space, it first marks exactly S(n) cells of its
worktape. Since S(n) is space constructible, this can be done by simulating
a Turing machine that uses exactly S(n) space on each input of length n.
From now on, M aborts its operation whenever the computation attempts
to use a cell beyond the marked cells. Thus, M is indeed an S(n) bounded
Turing machine, that is, L(M) is in DSPACE(S(n)). Next, M simulates
Mx on input x, where Mx is the Turing machine whose encoding is the
input x. M accepts x if and only if it completes the simulation using S(n)
space and Mx halts and rejects x. If Mx is S′(n) space bounded and uses
t tape symbols, then the simulation requires 
log t�S′(n).

It should be noted that L(M) may be accepted by a Turing machine
other than M . We now show that if a Turing machine M ′ accepts L(M),
then M ′ cannot be S ′(n) space bounded. For suppose that there exists an
S′(n) space bounded Turing machine M ′ that accepts L(M), and assume
without loss of generality that M ′ halts on all inputs. Since S′(n) is o(S(n)),
and since any off-line Turing machine can have an encoding with arbitrarily
many 1’s, there exists an encoding x′ of M ′ such that 
log t�S′(n′) < S(n′),
where n′ = |x′|. Clearly, on input x′, M has sufficient space to simulate M ′.
But then, on input x′, M will accept if and only if M ′ halts and rejects.
It follows that L(M ′) �= L(M), and hence L(M) is in DSPACE(S(n)) and
not in DSPACE(S′(n)). �

For the time hierarchy theorem, we need the following lemma whose
proof is omitted.

Lemma 10.1 If L is accepted by a k-tape Turing machine in time T (n),
then L is accepted by a 2-tape Turing machine in time T (n) logT (n).

Theorem 10.6 Let T (n) and T ′(n) be two time bounds such that T (n)
is time constructible and T ′(n) log T ′(n) is o(T (n)). Then, DTIME(T (n))
contains a language which is not in DTIME(T ′(n)).

Proof. The proof is similar to that of Theorem 10.5. Therefore, we will
only state here the necessary modifications. On input x of length n, M

shuts itself off after executing exactly T (n) steps. This can be done by
simulating a T (n) time bounded Turing machine on extra tapes (note that
this is possible since T (n) is time constructible). It should be noted that
M has only a fixed number of tapes, and it is supposed to simulate Turing
machines with arbitrarily many tapes. By Lemma 10.1, this results in a
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slowdown by a factor of log T ′(n). Also, as in the proof of Theorem 10.5,
M ′ may have many tape symbols, which slows down the simulation by
a factor of c = 
log t�, where t is the number of tape symbols used by
M ′. Thus, the encoding x′ of M ′ of length n′ must satisfy the inequality
cT ′(n′) log T ′(n′) ≤ T (n′). Since M accepts x′ only if M ′ halts and rejects
x′, it follows that L(M ′) �= L(M), and hence L(M) is in DTIME(T (n))
and not in DTIME(T ′(n)). �

10.6.2 Padding arguments

Suppose we are given any particular problem Π. Then, we can create a
version of Π that has lower complexity by padding each instance of Π with
a long sequence of extra symbols. This technique is called padding. We
illustrate the idea behind this concept in connection with an example. Let
L ⊆ Σ∗ be a language, where Σ is an alphabet that does not contain the
symbol 0. Suppose that L is in DTIME(n2). Define the language

L′ = {x0k | x ∈ L and k = |x|2 − |x|}.

L′ is called a padded version of L. Now we show that L′ is in DTIME(n).
Let M be a Turing machine that accepts L. We construct another Turing
machine M ′ that recognizes L′ as follows. M ′ first checks that the input
string x′ is of the form x0k, where x ∈ Σ∗ and k = |x|2 − |x|. This can be
done in an amount of time bounded by |x′|. Next, if x′ is of the form x0k,
then M ′ simulates on input x′ = x0k the computation of M on input x.
If M accepts x, then M ′ accepts; otherwise, M ′ rejects. Since M requires
at most |x|2 steps to decide if x is in the language L, M ′ needs at most
|x′| = |x|2 steps to decide if x′ is in the language L′. Therefore, L′ is
in DTIME(n). In more general terms, if L is in DTIME(f(n2)), then L′

is in DTIME(f(n)). For example, if L is in DTIME(n4), then L′ is in
DTIME(n2), and if L is in DTIME(2n2

), then L′ is in DTIME(2n).
We now present two theorems that are based on padding arguments.

Theorem 10.7 If DSPACE(n) ⊆ P, then PSPACE = P.

Proof. Assume that DSPACE(n) ⊆ P. Let L ⊆ Σ∗ be a set in PSPACE,
where Σ is an alphabet that does not contain the symbol 0. Let M be
a Turing machine that accepts L in space p(n) for some polynomial p.
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Consider the set

L′ = {x0k | x ∈ L and k = p(|x|)− |x|}.

Then, as in the discussion above, there is a Turing machine M ′ that rec-
ognizes L′ in linear space. That is, L′ is in DSPACE(n). By hypothesis,
L′ is in P. Hence, there is a Turing machine M ′′ that accepts L′ in poly-
nomial time. Clearly, another Turing machine, which on input x appends
to it 0k, where k = p(|x|) − |x|, and then simulates M ′′ can easily be con-
structed. Obviously, this machine accepts L in polynomial time. It follows
that PSPACE ⊆ P. Since P ⊆ PSPACE, it follows that PSPACE = P. �

Corollary 10.4 P �= DSPACE(n).

Proof. If P = DSPACE(n), then by the above theorem, PSPACE =
P. Consequently, PSPACE = DSPACE(n). But this violates the space
hierarchy theorem (Theorem 10.5). It follows that P �= DSPACE(n). �

Theorem 10.8 If NTIME(n) ⊆ P, then NEXT = DEXT.

Proof. Assume that NTIME(n) ⊆ P. Let L ⊆ Σ∗ be a set in
NTIME(2cn), where Σ is an alphabet that does not contain the symbol 0.
Let M be a nondeterministic Turing machine that accepts L in time 2cn

for some constant c > 0. Consider the set

L′ = {x0k | x ∈ L and k = 2cn − |x|}.

Then, there is a nondeterministic Turing machine M ′ that recognizes L′ in
linear time, that is, L′ is in NTIME(n). By hypothesis, L′ is in P. Hence,
there is a deterministic Turing machine M ′′ that accepts L′ in polynomial
time. Clearly, another deterministic Turing machine, which on input x

appends to it 0k, where k = 2cn− |x|, and then simulates M ′′ can easily be
constructed. Obviously, this machine accepts L in time 2cn. It follows that
NTIME(2cn) ⊆ DTIME(2cn). Since DTIME(2cn) ⊆ NTIME(2cn), we have
as a result NTIME(2cn) = DTIME(2cn). Since c is arbitrary, it follows that
NEXT = DEXT. �

In other words, the above theorem says that if NEXT �= DEXT, then
there is a language L that is recognizable in linear time by a nondetermin-
istic Turing machine, but not recognizable by any polynomial time deter-
ministic Turing machine.
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Corollary 10.5 If NP = P, then NEXT = DEXT.

10.7 Reductions

In this section, we develop methods for comparing complexity classes of
computational problems. Such comparisons will be made by describing
transformations from one problem to another. A transformation is simply
a function that maps instances of one problem to instances of another prob-
lem. Let A ∈ Σ∗ and B ∈ ∆∗ be two arbitrary problems, which are encoded
as sets of strings over the alphabets Σ and ∆, respectively. A function f

which maps strings over the alphabet Σ into strings over the alphabet ∆ is
a transformation of A into B, if the following property is satisfied:

∀x ∈ Σ∗ x ∈ A if and only if f(x) ∈ B.

A transformation f from A to B is useful, since it implies a transfor-
mation also from any algorithm to solve B into an algorithm to solve A.
That is, one may construct the following algorithm to solve the problem A,
given as input an arbitrary string x ∈ Σ∗:

(1) Transform x into f(x).
(2) Decide whether f(x) ∈ B or not.
(3) If f(x) ∈ B, then answer yes; otherwise, answer no.

The complexity of this algorithm to solve A depends upon two factors:
the complexity of transforming x into f(x), and the complexity of deciding
whether a given string is in B or not. However, it is clear that an efficient
algorithm for B will be transformed into an efficient algorithm for A by the
above process if the transformation is not too complex.

Definition 10.8 If there is a transformation f from a problem A to a
problem B, then we say that A is reducible to B, denoted by A ∝ B.

Definition 10.9 Let A ⊆ Σ∗ and B ⊆ ∆∗ be sets of strings. Suppose
that there is a transformation f : Σ∗ → ∆∗. Then

• A is polynomial time reducible to B, denoted by A ∝poly B, if f(x) can
be computed in polynomial time.
• A is log space reducible to B, denoted by A ∝log B, if f(x) can be

computed using O(log |x|) space.
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Definition 10.10 Let ∝ be a reducibility relation. Let L be a family of
languages. Define the closure of L under the reducibility relation ∝ by

closure∝(L) = {L | ∃L′ ∈ L (L ∝ L′)}.
Then, L is closed under the reducibility relation ∝ if and only if

closure∝(L) ⊆ L.

If L consists of one language L, then we will write closure∝(L) instead of
closure∝({L}).

For example, closure∝poly(P) is the set of all languages that are
reducible to P in polynomial time, and closure∝log(P) is the set of all
languages that are reducible to P in log space. We will show later that P
is closed under both the reducibility relations ∝poly and ∝log by showing
that closure∝poly(P) ⊆ P and closure∝log(P) ⊆ P.

Now, we establish the relationship between the two important forms of
reducibility: polynomial time and log space reducibilities.

Lemma 10.2 The number of distinct configurations that a log space
bounded off-line Turing machine M can enter with an input of length n

is bounded above by a polynomial in n.

Proof. Let s and t be the number of states and worktape symbols of M ,
respectively. The number of distinct configurations that M can possibly
enter on an input of length n is given by the product of the following quan-
tities: s (the number of states of M), n + 2 (the number of distinct input
head positions of M on an input of length n plus the left and right mark-
ers), log n (the number of distinct worktape head positions), and tlog n (the
number of distinct strings that can be written within the log n worktape
cells). Thus, the number of distinct configurations of M on an input of
length n is

s(n + 2)(log n)tlog n = s(n + 2)(log n)nlog t ≤ nc, c > 1,

for all but finitely many n. It follows that the number of configurations is
bounded by a polynomial in n. �

Theorem 10.9 For any two languages A and B,

if A ∝log B then A ∝poly B.
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Proof. Immediate from Lemma 10.2 (also Corollary 10.1). �

Consequently, any log space reduction is a polynomial time reduction.
It follows that for any family L of languages, if L is closed under polynomial
time reductions, then it is also closed under log space reductions.

Lemma 10.3 P is closed under polynomial time reductions.

Proof. Let L ⊆ Σ∗, for some finite alphabet Σ, be any language such that
L ∝poly L′ for some language L′ ∈ P . By definition, there is a function f

computable in polynomial time, such that

∀x ∈ Σ∗ x ∈ L if and only if f(x) ∈ L′.

Since L′ ∈ P, there exists a deterministic Turing machine M ′ that accepts
L′ and operates in time nk, for some k ≥ 1. Since f is computable in poly-
nomial time, there exists a deterministic Turing machine M ′′ that computes
f and operates in time nl, for some l ≥ 1. We construct a Turing machine
M that accepts the set L. M performs the following steps on input x over
the alphabet Σ:

(1) Transform x into f(x) using Turing machine M ′′.
(2) Determine whether f(x) ∈ L′ or not using the Turing machine M ′.
(3) If M ′ decides that f(x) ∈ L′, then accept; otherwise, do not accept.

The time complexity of this algorithm for the Turing machine M is simply
the sum of the amounts of time spent doing Steps (1), (2), and (3). Let x be
a string of length n and let f(x) be a string of length m. Then, the amount
of time used by this algorithm on input x is bounded by nl + mk + 1, since
Step (1) takes at most nl steps, Step (2) at most mk steps, and Step (3) one
step. We observe that f(x) cannot be longer than nl, since M ′′ operates in
nl steps and at most one symbol is printed by M ′′ on the output tape per
step. In other words, m ≤ nl. Therefore, nl + mk +1 ≤ nl + nkl +1, for all
but finitely many n. We have demonstrated thereby that a deterministic
Turing machine exists that recognizes the set L in polynomial time. Thus,

if L ∝poly L′ then L ∈ P. �

The proof of the following lemma is similar to the proof of Lemma 10.3.

Lemma 10.4 NP and PSPACE are closed under polynomial time
reductions.
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Corollary 10.6 P, NP, and PSPACE are closed under log space
reductions.

Lemma 10.5 LOGSPACE is closed under log space reductions.

Proof. Let L ⊆ Σ∗, for some finite alphabet Σ, be any language such
that L ∝log L′ for some language L′ ∈ LOGSPACE. By definition, there is
a function f computable in log space such that

∀x ∈ Σ∗ x ∈ L if and only if f(x) ∈ L′.

Since L′ ∈ LOGSPACE, there exists a deterministic Turing machine M ′

that accepts L′ in space log n. Since f is computable in log space, there
exists a deterministic Turing machine M ′′ that computes f using at most
log n worktape cells on input of size n. We construct a deterministic Turing
machine M that accepts the set L. M performs the following steps on input
x over the alphabet Σ:

(1) Set i to 1.
(2) If 1 ≤ i ≤ |f(x)|, then compute the ith symbol of f(x) using the

Turing machine M ′′. Call this symbol σ. If i = 0, then let σ be the
left endmarker symbol#. If i = |f(x)| + 1, then let σ be the right
endmarker symbol $.

(3) Simulate the actions of the Turing machine M ′ on the symbol σ until
the input head of M ′ moves right or left. If the input head moves to
the right, then add one to i and go to Step (2). If the input head of
M ′ moves to the left, then subtract one from i and go to Step (2). If
M ′ enters a final state before moving its input head either right or left,
thereby accepting f(x), then accept the input string x.

It should be noted that M does indeed recognize the set L. It accepts a
string x if and only if M ′ accepts the string f(x). Step (2) requires at most
log n worktape space, since M ′′ works in log n space. The worktape contents
of the simulated Turing machine M ′ are stored in the worktape space of M .
This needs at most log |f(x)| space, since M ′ is a log space Turing machine
and it is being simulated on input f(x). As we have seen in Lemma 10.2,
M ′′ is polynomially time bounded, since M ′′ operates in space log n and
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eventually terminates with the value of the function f . Therefore, |f(x)| ≤
|x|c, for some c > 0. Thus, the worktape space needed for representing the
contents of the worktape of M ′ is bounded by

log |f(x)| ≤ log |x|c = c log |x|, c > 0.

Also, the value i, 0 ≤ i ≤ |f(x)| + 1, that records the position of the
input head of M ′ can be stored on the worktape of M using binary notation
within space log |f(x)| ≤ log |x|c = c log |x| worktape cells. Therefore, the
algorithm described for the Turing machine M requires at most d log n

worktape cells, for some d > 0, to recognize the set L. It follows that L is
in LOGSPACE and hence closure∝log(LOGSPACE) ⊆ LOGSPACE. �

The following lemma is proved in the same manner as Lemma 10.5.

Lemma 10.6 NLOGSPACE is closed under log space reductions.

10.8 Completeness

Definition 10.11 Let ∝ be a reducibility relation, and L a family of
languages. A language L is complete for L with respect to the reducibility
relation ∝ if L is in the class L and every language in L is reducible to the
language L by the relation ∝, that is, L ⊆ closure∝(L).

We have presented in Chapter 9 some problems that are complete for
the class NP with respect to polynomial time reductions. In fact, most of
the reductions in the proofs of NP-completeness found in the literature are
log space reductions.

We observe that every set S ∈ LOGSPACE is log space reducible to a
set with just one element. That is, given a set S ⊆ Σ∗ in LOGSPACE, we
define the function fS by

fS(x) =
{

1 if x ∈ S,
0 otherwise.

It follows, trivially, that the set {1} is LOGSPACE-complete with respect to
log space reduction. In fact, every problem in LOGSPACE is LOGSPACE-
complete with respect to log space reduction. This is because log space
reductions are too powerful to distinguish between sets in LOGSPACE.
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10.8.1 NLOGSPACE-complete problems

In the following theorem, we prove that the problem gap is complete for
the class NLOGSPACE.

Theorem 10.10 gap is log space complete for the class NLOGSPACE.

Proof. We have shown in Example 10.3 that gap is in the class
NLOGSPACE. It remains to show that any problem in that class reduces
to gap using log space reduction. Let L be in NLOGSPACE. We show
that L ∝log gap. Since L is in NLOGSPACE, there is a nondeterministic
off-line Turing machine M that accepts L, and for every x in L, there is an
accepting computation by M that visits at most log n worktape cells, where
n = |x|. We construct a log space reduction which transforms each input
string x into an instance of the problem gap consisting of a directed graph
G = (V, E). The set of vertices V consists of the set of all configurations
K = (p, i, w1↑w2) of M on input x such that |w1w2| ≤ log n. The set of
edges consists of the set of pairs (K1, K2) such that M can move in one
step on input x from the configuration K1 to the configuration K2. Further-
more, the start vertex s is chosen to be the initial configuration Ki of M on
input x. If we assume that when M enters the final state qf , it erases all
symbols in its worktape and positions its input head on the first cell, then
the goal vertex t is chosen to be the final configuration Kf = (pf , 1, ↑B).
It is not hard to see that M accepts x within log n worktape space if and
only if G has a path from its start vertex s to its goal vertex t. To finish
the proof, note that G can be constructed using only O(log n) space. �
Corollary 10.7 gap is in LOGSPACE if and only if

NLOGSPACE = LOGSPACE.

Proof. If NLOGSPACE = LOGSPACE, then clearly gap is in
LOGSPACE. On the other hand, assume that gap is in LOGSPACE.
Then,

closure∝log(gap) ⊆ closure∝log(LOGSPACE) ⊆ LOGSPACE,

since LOGSPACE is closed under ∝log. Since gap is complete for the class
NLOGSPACE, we have

NLOGSPACE ⊆ closure∝log(gap).
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Thus NLOGSPACE ⊆ LOGSPACE. Since LOGSPACE ⊆ NLOGSPACE,
it follows that NLOGSPACE = LOGSPACE. �

The proof of the following theorem is left as an exercise (Exercise 10.25).

Theorem 10.11 2-SAT is log space complete for the class NLOGSPACE.

10.8.2 PSPACE-complete problems

Definition 10.12 A problem Π is PSPACE-complete if it is in PSPACE
and all problems in PSPACE can be reduced to Π using polynomial time
reduction.

The relationship of the following problem to PSPACE is similar to the
relationship of the problem satisfiability to NP.

quantified boolean formulas (qbf): Given a boolean expression E on
n variables x1, x2, . . . , xn, is the boolean formula

F = (Q1x1)(Q2x2) . . . (Qnxn)E

true? Here each Qi is either ∃ or ∀.

Theorem 10.12 quantified boolean formula is PSPACE-
complete.

That quantified boolean formula is in PSPACE follows from the
fact that we can check whether F is true by trying all the possible truth
assignments for the variables x1, x2, . . . , xn and evaluating E for each. It is
not hard to see that no more than polynomial space is needed, even though
exponential time will be required to examine all 2n truth assignments. The
proof that each language L ∈ PSPACE can be transformed to quantified

boolean formula is similar to the proof that the problem satisfiability

is NP-complete.
An interesting PSPACE-complete problem is the following.

csg recognition: Given a context-sensitive grammar G and a string x,
is x ∈ L(G)? Here L(G) is the language generated by G.
It is well known that the class NSPACE(n) is precisely the set of languages
generated by context-sensitive grammars. This problem can be rephrased
in terms of Turing machines as follows. A linear bounded automaton is a
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restricted type of Turing machine in which the worktape space consists of
n + 2 cells, where n is the input length. Thus, equivalently, the following
problem is PSPACE-complete.

lba acceptance: Given a nondeterministic linear bounded automaton M

and a string x, does M accept x?

This problem remains PSPACE-complete even if the Turing machine is
deterministic. Thus, all problems that are solvable in polynomial space
can be reduced in polynomial time to a problem that requires only linear
space.

In addition to the above problems, the set of PSPACE-complete prob-
lems includes many interesting problems in widely different areas, especially
in game theory. Several two-person games involving a natural alternation of
turns for the two players which correspond to an alternation of quantifiers
in quantified boolean formula are known to be PSPACE-complete.
For example, generalized versions of the games hex, geography, and
kayles are PSPACE-complete. Also generalized versions of the more famil-
iar games checkers and go are known to be PSPACE-complete under
certain drawing restrictions.

10.8.3 P-complete problems

Although the class P contains all problems for which there exists an effi-
cient algorithm, there are problems in P that are practically intractable.
The following example reveals the hardness of a practical problem in this
class.

Example 10.5 Consider the problem k-clique defined as follows. Given
an undirected graph G = (V, E) with n vertices, determine whether G

contains a clique of size k, where k is fixed . The only known algorithm to
solve this problem is by considering all the k subsets of V . This results
in Ω(nk/k!) time complexity. Thus, even for moderate values of k, the
problem is practically intractable.

Definition 10.13 A problem Π is P-complete if it is in P and all problems
in P can be reduced to Π using log space reduction.

It is widely conjectured that there are problems in P for which any
algorithm must use an amount of space that is more than logarithmic in
the input size, that is, the set P− LOGSPACE is not empty.
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The class of P-complete problems is not empty and it does contain
several problems that are solvable in polynomial time of low degree such
as depth-first search, which is solvable in linear time, and the max-flow
problem, which is solvable in O(n3) time. These problems are important
in the field of parallel algorithms, as they contain those problems which
are hard to parallelize efficiently; they usually admit sequential algorithms
that are greedy in nature and thus inherently sequential.

Definition 10.14 The class NC consists of those problems that can be
solved in polylogarithmic time, that is, O(logk n) time, using a polynomial
number of processors.

This class remains invariant under different models of parallel compu-
tation. It encompasses those problems that are well parallelizable in the
sense that increasing the number of processors results in significant speedup.
Observe that NC ⊆ P, as the total number of steps performed by a parallel
algorithm is the product of the running time and the number of processors,
which is polynomial in the case of NC algorithms. In other words, such
a parallel algorithm can be transformed into a polynomial time sequential
algorithm.

However, there is a general belief that NC �= P. Interestingly, if a
problem is P-complete, then every other problem in P can be reduced to
it in polylogarithmic time using a polynomial number of processors. This
type of transformation is called NC-reduction. It can be shown that NC is
closed under NC-reduction. This motivates the next alternative definition
of P-complete problems.

Definition 10.15 A problem Π is P-complete if it is in P and all problems
in P can be reduced to Π using NC-reduction.

This definition yields the following theorem.

Theorem 10.13 If a problem Π is P-complete and Π is in NC, then P =
NC.

In other words, if P �= NC, then all P-complete problems must belong
to P−NC. Thus, although P-complete problems are not likely to be solv-
able in logarithmic space, they also do not seem to admit efficient parallel
algorithms.
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The following is a sample of some P-complete problems.

(1) circuit value problem (cvp): Given a boolean circuit C consist-
ing of m gates {g1, g2, . . . , gm}, and a specified set of input values
{x1, x2, . . . , xn}, determine whether the output of the circuit is equal
to 1. Here a gate is ∨,∧, or ¬.

(2) ordered depth-first search: Given a directed graph G = (V, E)
and three vertices s, u, v ∈ V , determine whether u is visited before v

in a depth-first search traversal of G starting at s.
(3) linear programming: Given an n×m matrix A of integers, a vector

b of n integers, a vector c of m integers, and an integer k, determine
whether there exists a vector x of m nonnegative rational numbers such
that Ax ≤ b and cx ≥ k.

(4) max-flow: Given a weighted directed graph G = (V, E) with two
distinguished vertices s and t, determine whether the maximum flow
from s to t is odd.

10.8.4 Some conclusions of completeness

Theorem 10.14 Let Π be an NP-complete problem with respect to poly-
nomial time reductions. Then NP = P if and only if Π ∈ P.

Proof. The theorem is easily established using the definition of com-
pleteness. Suppose that NP = P. Since Π is complete for NP, Π ∈ NP,
and hence Π ∈ P. On the other hand, suppose that Π ∈ P. Since Π is
NP-complete, NP ⊆ closure∝poly(Π). Thus,

NP ⊆ closure∝poly(Π) ⊆ closure∝poly(P) ⊆ P,

as P is closed under ∝poly. Since P ⊆ NP, it follows that NP = P. �

Theorem 10.14 is also true when the problem Π is complete for NP
with respect to log space reductions. This results in the following stronger
theorem, whose proof is similar to the proof of Theorem 10.14.

Theorem 10.15 Let Π be a problem that is complete for NP with respect
to log space reductions. Then

(1) NP = P if and only if Π ∈ P.
(2) NP = NLOGSPACE if and only if Π ∈ NLOGSPACE.
(3) NP = LOGSPACE if and only if Π ∈ LOGSPACE.
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In comparing Theorem 10.14 with Theorem 10.15, the number of con-
clusions that can be drawn from knowing that a problem Π is log space
complete for the class NP is more than the number of conclusions that
can be drawn from knowing that Π is complete for NP with respect to
polynomial time reductions. In fact, most, if not all, polynomial time
reductions between natural NP-complete problems described in the litera-
ture are also log space reductions. Also, log space reductions can distin-
guish between the complexity of sets in P and polynomial time reductions
cannot. The proofs of the following theorems are similar to the proof of
Theorems 10.14.

Theorem 10.16 Let Π be a problem that is complete for the class
PSPACE with respect to log space reductions. Then

(1) PSPACE = NP if and only if Π ∈ NP.
(2) PSPACE = P if and only if Π ∈ P.

Theorem 10.17 If a problem Π is P-complete, then

(1) P = LOGSPACE if and only if Π is in LOGSPACE.
(2) P = NLOGSPACE if and only if Π is in NLOGSPACE.

The following theorem is a generalization of Corollary 10.7.

Theorem 10.18 Let Π be a problem that is complete for NLOGSPACE
with respect to log space reductions. Then

NLOGSPACE = LOGSPACE if and only if Π ∈ LOGSPACE.

10.9 The Polynomial Time Hierarchy

An oracle Turing machine is a k-tape Turing machine with an additional
tape called the oracle tape, and a special state called the query state. The
purpose of the oracle is to answer questions about the membership of an
element in an arbitrary set. Let M be a Turing machine for an arbitrary
set A with an oracle for another arbitrary set B. Whenever M wants to
know whether an element x is in the set B, it writes x on its oracle tape,
and then enters its query state. The oracle answers this question in one
step: It erases the oracle tape and then prints yes on the oracle tape if the
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string x is in the set B and no if the string x is not in the set B. M can
consult the oracle more than once. Thus, it may ask during the course of
a computation whether each of the strings x1, x2, . . . , xk are in the set B.

Let A and B be arbitrary sets. A is said to be recognizable determin-
istically (nondeterministically) in polynomial time using an oracle for B

if there is a deterministic (nondeterministic) oracle Turing machine which
accepts the set A using an oracle for B and, for some fixed k ≥ 1, takes at
most |x|k steps on any input string x.

Definition 10.16 If a language A is accepted by a deterministic oracle
Turing machine in polynomial time using an oracle for the language B, then
A is said to be polynomial time Turing reducible to B.

Let PB denote the family of all languages recognizable deterministically
in polynomial time using an oracle for the set B, and let NPB denote the
family of all languages recognizable nondeterministically in polynomial time
using an oracle for the set B. Let F be a family of languages. The family
co-F denotes the family of complements of sets in F . That is, co-F = {co-
S | S ∈ F}.

Definition 10.17 The polynomial time hierarchy consists of the families
of sets ∆p

i , Σ
p
i , Π

p
i , for all integers i ≥ 0, defined by

∆p
0 = Σp

0 = Πp
0 = P,

and for all i ≥ 0 


∆p
i+1 =

⋃
B∈Σp

i

PB ,

Σp
i+1 =

⋃
B∈Σp

i

NPB,

Πp
i+1 = co-Σp

i+1.

The following theorems summarize some of the properties of the classes
in the polynomial time hierarchy. In these theorems, we will use the more
general concept of algorithm in place of Turing machines.

Theorem 10.19 ∆p
1 = P, Σp

1 = NP, and Πp
1 = co-NP.
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Proof. We show that, for any set B in P, every set A in PB is again in P.
Let the oracle set B be recognized in polynomial time by a deterministic
algorithm TB that runs in cnk steps, for some c > 0. Let TA be an algo-
rithm that accepts the set A in polynomial time using oracle B and runs
in dnl steps, for some d > 0. One can replace each request for an answer
from the oracle in TA by the execution of the algorithm TB, which decides
the membership in the set B. Since the algorithm TA runs in dnl steps, the
maximum length of any question, i.e., string, to the oracle is dnl. In replac-
ing each one of these requests by an execution of the algorithm TB, we make
each such step of TA take at most c(dnl)k steps. So, the new algorithm rec-
ognizes A without the use of an oracle in at most dnl(cdknkl) steps. Since
dnlcdknkl ≤ c′nkl+l, for some constant c′ > 0, it follows that there is a
polynomial time algorithm for A. Thus, for every set B ∈ Σp

0 = P, PB ⊆ P.
It follows that ∆p

1 =
⋃

B∈Σp
0
PB ⊆ P. To finish the proof, note that P = Pφ

and the empty set φ is in Σp
0, that is, P ⊆ ∆p

1. The proof that Σp
1 = NP is

similar. It follows, by definition, that Πp
1 = co-NP. �

Theorem 10.20 For all i ≥ 0, Σp
i ∪Πp

i ⊆ ∆p
i+1.

Proof. By definition, ∆p
i+1 =

⋃
B∈Σp

i
PB . Since a polynomial time algo-

rithm can easily be constructed to accept B using the set B as an oracle, it
follows that Σp

i ⊆ ∆p
i+1. Also, as we have seen, a polynomial time algorithm

can easily be constructed to accept co-B using an oracle for B. Therefore,
Πp

i = co−Σp
i ⊆ ∆p

i+1. �

Theorem 10.21 For all i ≥ 1, ∆p
i ⊆ Σp

i ∩Πp
i .

Proof. First, ∆p
i =

⋃
B∈Σp

i−1
PB ⊆ ⋃B∈Σp

i−1
NPB = Σp

i , since a nonde-
terministic algorithm is a generalization of a deterministic algorithm. To
show that ∆p

i ⊆ Πp
i , for all i ≥ 1, it is sufficient to show that co-∆p

i = ∆p
i .

That is, since ∆p
i ⊆ Σp

i , we have also that co-∆p
i ⊆ co-Σp

i = Πp
i . Thus, if

∆p
i = co-∆p

i , then ∆p
i ⊆ Πp

i . So, we must show that co-∆p
i = ∆p

i . Let A be
a set in ∆p

i =
⋃

B∈Σ
p
i−1

PB. Then, there is a deterministic polynomial time
algorithm MA for accepting A which uses an oracle for a set B in the family
Σp

i−1. An algorithm M ′
A for co-A can be constructed which uses an oracle

for B. M ′
A simply stops and accepts if MA does not accept, and stops and

rejects if MA does stop and accept. It follows that co-∆p
i = ∆p

i . �

The known relationships between the classes in the polynomial time
hierarchy are shown in Fig. 10.1.
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Fig. 10.1. Inclusion relations among complexity classes in the polynomial time hierarchy.

Theorem 10.22 If Σp
i = Σp

i+1 for some i ≥ 0, then Σp
i+j = Σp

i for all
j ≥ 1.

Proof. We prove this by induction on j. Assume Σp
i+j = Σp

i , for some
j ≥ 1. Then,

Σp
i+j+1 =

⋃
B∈Σp

i+j

NPB =
⋃

B∈Σp
i

NPB = Σp
i+1 = Σp

i .

So, Σp
i+j+1 = Σp

i , and hence Σp
i+j = Σp

i for all j ≥ 1. �
.

Corollary 10.8 If NP = P, then the polynomial time hierarchy collapses,
that is, each family in the polynomial time hierarchy coincides with P.

In fact, the converse implication is also true. If, for any i ≥ 1, it were
true that Σp

i = P, then since NP ⊆ Σp
1 ⊆ Σp

i , it would follow that NP = P.
Thus, any set A that is complete for the class Σp

i , for any i ≥ 1, satisfies
the property that it is in P if and only if NP = P.

Many problems which are not known to be in NP are in the polyno-
mial time hierarchy. Several of these problems are related to NP-complete
problems, but are concerned with finding a maximum or a minimum. The
following are two examples of problems in PNP and NPNP.

Example 10.6 chromatic number. Given an undirected graph G =
(V, E) and a positive integer k, is k the smallest number of colors that
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can be assigned to the vertices of G such that no two adjacent vertices
are assigned the same color? Recall that the problem coloring stated on
page 248 is the problem of deciding whether it is possible to color a given
graph using k colors, where k is a positive number that is part of the input.
It is well known that the problem coloring is NP-complete. An algorithm
to accept chromatic number using an oracle for coloring is as follows.

(1) If (G, k) is not in coloring then stop and reject, otherwise continue.
(2) If (G, k − 1) is in coloring then stop and reject, otherwise continue.
(3) Stop and accept.

We observe that checking whether (G, k) is in coloring is implemented
by asking the oracle coloring and is answered in one step, by assump-
tion. So, the algorithm presented above is clearly polynomial time bounded,
since it needs at most two steps to either accept or reject. It follows that
chromatic number is in ∆p

2 = PNP.

Example 10.7 minimum equivalent expression. Given a well-
formed boolean expression E and a nonnegative integer k, is there a well-
formed boolean expression E′ that contains k or fewer occurrences of literals
such that E′ is equivalent to E (i.e., E′ if and only if E)?

minimum equivalent expression does not appear to be in ∆p
2. It

is not obvious whether an oracle for a problem in NP can be used to
solve minimum equivalent expression in deterministic polynomial time.
However, this problem can be solved in nondeterministic polynomial time
using an oracle for satisfiability. The algorithm is as follows:

(1) Guess a boolean expression E′ containing k or fewer occurrences of
literals.

(2) Use satisfiability to determine whether ¬((E′ → E) ∧ (E → E′)) is
satisfiable.

(3) If it is not satisfiable then stop and accept, otherwise stop and reject.

The correctness of the above algorithm follows from the fact that a well-
formed formula E is not satisfiable if and only if its negation is a tautology.
Thus, since we want (E′ if and only if E) to be a tautology, we only need
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to check whether

¬((E′ → E) ∧ (E → E′))

is not satisfiable. As to the time needed, Step 1, generating E′, can easily
be accomplished in polynomial time using a nondeterministic algorithm.
Step 2, querying the satisfiability oracle, is done in one step. It follows
that minimum equivalent expression is in Σp

2 = NPNP.

10.10 Exercises

10.1. Show that the language in Example 10.1 is in DTIME(n). (Hint: Use a
2-tape Turing machine).

10.2. Show that the language L = {ww | w ∈ {a, b}+} is in LOGSPACE by
constructing a log space bounded off-line Turing machine that recognizes
L. Here {a, b}+ denotes all nonempty strings over the alphabet {a, b}.

10.3. Consider the following decision problem of sorting: Given a sequence of
n distinct positive integers between 1 and n, are they sorted in increasing
order? Show that this problem is in

(a) DTIME(n log n).

(b) LOGSPACE.

10.4. Give an algorithm to solve the problem k-clique defined in Example 10.5.
Use the O-notation to express the time complexity of your algorithm.

10.5. Show that the problem k-clique defined in Example 10.5 is in
LOGSPACE.

10.6. Consider the following decision problem of the selection problem. Given
an array A[1..n] of integers, an integer x and an integer k, 1 ≤ k ≤ n, is
the kth smallest element in A equal to x? Show that this problem is in
LOGSPACE.

10.7. Let A be an n × n matrix. Show that computing A2 is in LOGSPACE.
How about computing Ak for an arbitrary k ≥ 3, where k is part of the
input?

10.8. Show that the problem 2-SAT described in Sec. 9.2 is in NLOGSPACE.
Conclude that it is in P.

10.9. Show that all finite sets are in LOGSPACE.

10.10. Show that the family of sets accepted by finite state automata is a proper
subset of LOGSPACE. (Hint: The language {anbn | n ≥ 1} is not
accepted by any finite state automaton, but it is in LOGSPACE.)
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10.11. Show that if T1 and T2 are two time-constructible functions, then so are
T1 + T2, T1T2, and 2T1 .

10.12. Prove Corollary 10.5.

10.13. Show that if NSPACE(n) ⊆ NP, then NP = NSPACE. Conclude that
NSPACE(n) �= NP.

10.14. Show that if LOGSPACE = NLOGSPACE, then for every space con-
structible function S(n) ≥ log n, DSPACE(S(n)) = NSPACE(S(n)).

10.15. Describe a log space reduction from the set L = {www | w ∈ {a, b}+} to
the set L′ = {ww | w ∈ {a, b}+}. That is, show that L ∝log L′.

10.16. Show that the relation ∝poly is transitive. That is, if Π ∝poly Π′ and
Π′ ∝poly Π′′, then Π ∝poly Π′′.

10.17. Show that the relation ∝log is transitive. That is, if Π ∝log Π′ and
Π′ ∝log Π′′, then Π ∝log Π′′.

10.18. The problems 2-coloring and 2-SAT were defined in Sec. 9.2. Show that
2-coloring is log space reducible to 2-SAT. (Hint: Let G = (V, E). Let
the boolean variable xv correspond to vertex v for each vertex v ∈ V ,
and for each edge (u, v) ∈ E construct the two clauses (xu ∨ xv) and
(¬xu ∨ ¬xv).)

10.19. Show that for any k ≥ 1, DTIME(nk) is not closed under polynomial
time reductions.

10.20. Show that, for any k ≥ 1, the class DSPACE(logk n) is closed under log
space reductions.

10.21. A set S is linear time reducible to a set T , denoted by S ∝n T , if there
exists a function f that can be computed in linear time (that is, f(x)
can be computed in c|x| steps, for all input strings x, where c is some
constant > 0) such that

∀x x ∈ S if and only if f(x) ∈ T.

Show that if S ∝n T and T is in DTIME(nk), then S is in DTIME(nk).
That is, DTIME(nk) (k ≥ 1) is closed under linear time reducibility.

10.22. Suppose that k in Exercise 10.5 is not fixed, that is, k is part of the input.
Will the problem still be in LOGSPACE? Explain.

10.23. Show that the class NLOGSPACE is closed under complementation. Con-
clude that the complement of the problem gap is NLOGSPACE-complete.

10.24. Show that the problem gap remains NLOGSPACE-complete even if the
graph is acyclic.
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10.25. Show that the problem 2-SAT described in Sec. 9.2 is complete for the
class NLOGSPACE under log space reduction (see Exercise 10.8). (Hint:
Reduce the complement of the problem gap to it. Let G = (V, E) be a
directed acyclic graph. gap is NLOGSPACE-complete even if the graph
is acyclic (Exercise 10.24). By Exercise 10.23, the complement of the
problem gap is NLOGSPACE-complete. Associate with each vertex v in
V a boolean variable xv. Associate with each edge (u, v) ∈ E the clause
(¬xu ∨ xv), and add the clauses (xs) for the start vertex and (¬xt) for
the goal vertex t. Prove that 2-SAT is satisfiable if and only if there is no
path from s to t.)

10.26. Define the class

POLYLOGSPACE =
⋃
k≥1

DSPACE(logk n).

Show that there is no set that is complete for the class POLYLOGSPACE.
(Hint: The class DSPACE(logk n) is closed under log space reduction.)

10.27. Prove that PSPACE ⊆ P if and only if PSPACE ⊆ PSPACE(n). (Hint:
Use padding argument.)

10.28. Does there exist a problem that is complete for the class DTIME(n) under
log space reduction? Prove your answer.

10.29. Let L be a class that is closed under complementation and let the set L
(that is not necessarily in L) be such that

∀L′ ∈ L L′ ∝ L.

Show that

∀L′′ ∈ co-L L′′ ∝ L.

10.30. Show that for any class of languages L, if L is complete for the class L,
then L is complete for the class co-L.

10.31. Show that NLOGSPACE is strictly contained in PSPACE.

10.32. Show that DEXT �= PSPACE. (Hint: Show that DEXT is not closed
under ∝poly.)

10.33. Prove

(a) Theorem 10.15(1).

(b) Theorem 10.15(2).

(c) Theorem 10.15(3).
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10.34. Prove

(a) Theorem 10.16(1).

(b) Theorem 10.16(2).

10.35. Prove

(a) Theorem 10.17(1).

(b) Theorem 10.17(2).

10.36. Prove Theorem 10.18.

10.37. Show that polynomial time Turing reduction as defined on page 295
implies polynomial time transformation as defined in Sec. 10.7. Is the
converse true? Explain.

10.38. Consider the max-clique problem defined as follows. Given a graph
G = (V, E) and a positive integer k, decide whether the maximal complete
subgraph of G is of size k. Show that max-clique is in ∆p

2.

10.39. Prove that Σp
1 = NP.

10.40. Show that if Σp
k ⊆ Πp

k, then Σp
k = Πp

k.
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Chapter 11

Lower Bounds

11.1 Introduction

When we described algorithms in the previous chapters, we analyzed their
time complexities, mostly in the worst case. We have occasionally charac-
terized a particular algorithm as being “efficient” in the sense that it has
the lowest possible time complexity. In Chapter 1, we have denoted by
an optimal algorithm an algorithm for which both the upper bound of the
algorithm and the lower bound of the problem are asymptotically equiva-
lent. For virtually all algorithms we have encountered, we have been able to
find an upper bound on the amount of computation the algorithm requires.
But the problem of finding a lower bound of a particular problem is much
harder, and indeed there are numerous problems whose lower bound is
unknown. This is due to the fact that when considering the lower bound of
a problem, we have to establish a lower bound on all algorithms that solve
that problem. This is by no means an easy task compared with computing
the worst-case running time of a given algorithm. It turns out, however,
that most of the known lower bounds are either trivial or derived using a
model of computation that is severely constrained, in the sense that it is
not capable of performing some elementary operations, e.g., multiplication.

11.2 Trivial Lower Bounds

In this section, we consider those lower bounds that can be deduced using
intuitive argument without resorting to any model of computation or doing

305
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sophisticated mathematics. We will give two examples of establishing trivial
lower bounds.

Example 11.1 Consider the problem of finding the maximum in a list
of n numbers. Clearly, every element in the list must be inspected, assum-
ing that the list is unordered. This means that we must spend at least
Ω(1) time for each element. It follows that any algorithm to find the max-
imum in an unordered list must spend Ω(n) time. In terms of the number
of comparisons performed, it is easy to see that there are n − 1 element
comparisons, as each element is a candidate for being the maximum.

Example 11.2 Consider the problem of matrix multiplication. Any algo-
rithm to multiply two n×n matrices must compute exactly n2 values. Since
at least Ω(1) time must be spent in each evaluation, the time complexity
of any algorithm for multiplying two n× n matrices is Ω(n2).

11.3 The Decision Tree Model

There are certain problems where it is realistic to consider the branching
instruction as the basic operation (see Definition 1.6). Thus, in this case,
the number of comparisons becomes the primary measure of complexity.
In the case of sorting, for example, the output is identical to the input
except for order. Therefore, it becomes reasonable to consider a model
of computation in which all steps are two-way branches, based on a com-
parison between two quantities. The usual representation of an algorithm
consisting solely of branches is a binary tree called a decision tree.

Let Π be a problem for which a lower bound is sought, and let the size
of an instance of Π be represented by a positive integer n. Then, for each
pair of algorithm and value of n, there is a corresponding decision tree that
“solves” instances of the problem of size n. As an example, Fig. 1.2 shows
two decision trees corresponding to Algorithm binarysearch on instances
of size 10 and 14, respectively.

11.3.1 The search problem

In this section, we derive a lower bound on the search problem: Given an
array A[1..n] of n elements, determine whether a given element x is in the
array. In Chapter 1, we have presented Algorithm linearsearch to solve
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this problem. We have also presented Algorithm binarysearch for the
case when the list is sorted.

In the case of searching, each node of the decision tree corresponds to a
decision. The test represented by the root is made first and control passes
to one of its children depending on the outcome. If the element x being
searched for is less than the element corresponding to an internal node,
control passes to its left child. If it is greater, then control passes to its
right child. The search ceases if x is equal to the element corresponding to
a node, or if the node is a leaf.

Consider first the case when the list is not sorted. It is easy to see that
n comparisons are both necessary and sufficient in the worst case. It follows
that the problem of searching an arbitrary list requires at least Ω(n) time
in the worst case, and hence Algorithm linearsearch is optimal.

As regards the case when the list is sorted, we argue as follows. Let A

be an algorithm for searching a sorted list with n elements, and consider
the decision tree T associated with A and n. Let the number of nodes in
T be m. We observe that m ≥ n. We also observe that the number of
comparisons performed in the worst case must correspond to the longest
path from the root of T to a leaf plus one. This is exactly the height of T

plus one. By Observation 2.3, the height of T is at least �log n�. It follows
that the number of comparisons performed in the worst case is �log n�+ 1.
This implies the following theorem.

Theorem 11.1 Any algorithm that searches a sorted sequence of n ele-
ments must perform at least �log n�+ 1 comparisons in the worst case.

By the above theorem and Theorem 1.1, we conclude that Algorithm
binarysearch is optimal.

11.3.2 The sorting problem

In this section, we derive a lower bound on the problem of sorting by com-
parisons . All sorting problems that are not comparison-based, e.g., radix
sort and bucket sort are excluded. In the case of sorting, each internal ver-
tex of the tree represents a decision, and each leaf corresponds to an output.
The test represented by the root is made first and control passes to one of
its children depending on the outcome. The desired output is available at
the leaf reached. With each pair of sorting algorithm and value of n repre-
senting the number of elements to be sorted, we associate a decision tree.
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1:2

2:3

1:3

1:3

2:3a1 a2 a3< < a2 a1 a3< <

a1 a3 a2< < a3 a1 a2< < a3 a2 a1< <a2 a3 a1< <

Fig. 11.1. A decision tree for sorting three elements.

Thus, for a fixed value of n, the decision tree corresponding to mergesort,
for example, is different from that of heapsort or insertionsort. If the
elements to be sorted are a1, a2, . . . , an, then the outcome is a permutation
of these elements. It follows that any decision tree for the sorting problem
must have at least n! leaves. Figure 11.1 shows an example of a decision
tree for an algorithm that sorts three distinct elements.

Clearly, the time complexity in the worst case is the length of a longest
path from the root to a leaf, which is the height of the decision tree.

Lemma 11.1 Let T be a binary tree with at least n! leaves. Then, the
height of T is at least n log n− 1.5n = Ω(n log n).

Proof. Let l be the number of leaves in T , and let h be its height. By
Observation 2.1, the number of vertices at level h, which are leaves, is at
most 2h. Since l ≥ n!, we have

n! ≤ l ≤ 2h.

Consequently, h ≥ log n!. By Eq. (A.18),

h ≥ log n! =
n∑

j=1

log j ≥ n log n− n log e + log e ≥ n log n− 1.5n. �

Lemma 11.1 implies the following important theorem.
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Theorem 11.2 Any comparison-based algorithm that sorts n elements
must perform Ω(n log n) element comparisons in the worst case.

In Chapter 5, we have shown that if n is a power of 2, then Algorithm
mergesort performs n log n− n + 1 comparisons in the worst case, which
is very close to the lower bound in Lemma 11.1. In other words, the lower
bound we have obtained is almost achievable by Algorithm mergesort.

11.4 The Algebraic Decision Tree Model

The decision tree model as described in Sec. 11.3 is severely restricted, as it
only allows a comparison between two elements as the primary operation.
If the decision at each internal vertex is a comparison of a polynomial of
the input variables with the number 0, then the resulting decision tree is
called an algebraic decision tree. This model of computation is far more
powerful than the decision tree model, and in fact attains the power of the
RAM model of computation. When establishing lower bounds for decision
problems using this model, we usually ignore all arithmetic operations and
confine our attention to the number of branching instructions. Thus, this
model is similar to the decision tree model in the sense that it is best suited
for combinatorial algorithms that deal with rearrangements of elements.
We define this model of computation more formally as follows.

An algebraic decision tree on a set of n variables x1, x2, . . . , xn is a
binary tree with the property that each vertex is labeled with a statement
in the following way. Associated with every internal vertex is a statement
that is essentially a test of the form: If f(x1, x2, . . . , xn) : 0, then branch
to the left child, else branch to the right child. Here “:” stands for any
comparison relation from the set {=, <,≤}. On the other hand, one of the
answers yes or no is associated with each leaf vertex.

An algebraic decision tree is of order d, for some integer d ≥ 1, if all
polynomials associated with the internal nodes of the tree have degree at
most d. If d = 1, i.e., if all polynomials at the internal vertices of an
algebraic decision tree are linear, then it is called a linear algebraic decision
tree (or simply linear decision tree). Let Π be a decision problem whose
input is a set of n real numbers x1, x2, . . . , xn. Then, associated with Π is a
subset W of the n-dimensional space En such that a point (x1, x2, . . . , xn)
is in W if and only if the answer to the problem Π when presented with the
input x1, x2, . . . , xn is yes. We say that an algebraic decision tree T decides
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the membership in W if whenever the computation starts at the root of T

with some point p = (x1, x2, . . . , xn), control eventually reaches a yes leaf
if and only if (x1, x2, . . . , xn) ∈ W .

As in the decision tree model, to derive a lower bound on the worst-
case time complexity of a problem Π, it suffices to derive a lower bound on
the height of the algebraic decision tree that solves Π. Now, let W be the
subset of the n-dimensional space En that is associated with the problem
Π. Suppose that in some way the number #W of the connected components
of the set W is known. We want to derive a lower bound on the height of
the algebraic decision tree for Π in terms of #W . We now establish this
relation for the case of linear decision trees.

Let T be a linear decision tree. Then every path from the root to a leaf
in T corresponds to a sequence of conditions having one of the following
forms:

f(x1, x2, . . . , xn) = 0,

g(x1, x2, . . . , xn) < 0, and h(x1, x2, . . . , xn) ≤ 0.

Note that each of these functions is linear since we have assumed that T

is a linear decision tree. Thus, when the root of T is presented with a
point (x1, x2, . . . , xn), control eventually reaches a leaf l if and only if all
conditions on the path from the root to l are satisfied. By the linearity of
these conditions, the leaf l corresponds to an intersection of hyperplanes,
open halfspaces, and closed halfspaces, i.e., it corresponds to a convex set.
Since this set is convex, it is necessarily connected, i.e., it consists of exactly
one component. Thus, each yes-leaf corresponds to exactly one connected
component. It follows that the number of leaves of T is at least #W . By
an argument similar to that in the proof of Lemma 11.1, the height of the
tree is at least �log(#W )�. This implies the following theorem.

Theorem 11.3 Let W be a subset of En, and let T be a linear decision
tree of n variables that accepts the set W . Then, the height of T is at
least �log(#W )�.

The linear decision tree model is certainly very restricted. Therefore, it
is desirable to extend it to the more general algebraic decision tree model.
It turns out, however, that in this model, the above argument no longer
applies; a yes-leaf may have associated with it many connected components.
In this case, more complex mathematical analysis leads to the following
theorem.
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Theorem 11.4 Let W be a subset of En, and let d be a fixed positive
integer. Then, the height of any order d algebraic decision tree T that
accepts W is Ω(log #W − n).

One of the most important combinatorial problems is that of sorting a
set of n real numbers using only the operation of comparisons. We have
shown that under the decision tree model, this problem requires Ω(n log n)
comparisons in the worst case. It can be shown that this bound is still valid
under many computational models, and in particular the algebraic decision
tree model of computation. We state this fact as a theorem.

Theorem 11.5 In the algebraic decision tree model of computation,

sorting n real numbers requires Ω(n log n) element comparisons in the
worst case.

11.4.1 The element uniqueness problem

The problem element uniqueness is stated as follows. Given a set of n

real numbers, decide whether two of them are equal. We will now obtain
a lower bound on the time complexity of this problem using the algebraic
decision tree model of computation. A set of n real numbers {x1, x2, . . . , xn}
can be viewed as a point (x1, x2, . . . , xn) in the n-dimensional space En.
Let W ⊆ En be the membership set of the problem element unique-

ness on {x1, x2, . . . , xn}. In other words, W consists of the set of points
(x1, x2, . . . , xn) with the property that no two coordinates of which are
equal. It is not hard to see that W contains n! disjoint connected compo-
nents. Specifically, each permutation π of {1, 2, . . . , n} corresponds to the
set of points in En

Wπ = {(x1, x2, . . . , xn) | xπ(1) < xπ(2) < · · · < xπ(n)}.
Clearly,

W = W1 ∪W2 ∪ · · · ∪Wn!.

Moreover, these subsets are connected and disjoint. Thus, #W = n!, and
as a result, the following theorem follows from Theorem 11.4.

Theorem 11.6 In the algebraic decision tree model of computation, any
algorithm that solves the element uniqueness problem requires Ω(n log n)
element comparisons in the worst case.
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11.5 Linear Time Reductions

For the problem element uniqueness, we were able to obtain a lower
bound using the algebraic decision tree model of computation directly by
investigating the problem and applying Theorem 11.4. Another approach
for establishing lower bounds is by making use of reductions. Let A

be a problem whose lower bound is known to be Ω(f(n)), where n =
o(f(n)), e.g., f(n) = n logn. Let B be a problem for which we wish to
establish a lower bound of Ω(f(n)). We establish this lower bound for
problem B as follows:

(1) Convert the input to A into a suitable input to problem B.
(2) Solve problem B.
(3) Convert the output into a correct solution to problem A.

In order to achieve a linear time reduction, Steps 1 and 3 above must be
performed in time O(n). In this case, we say that the problem A has been
reduced to the problem B in linear time, and we denote this by writing

A ∝n B.

Now we give examples of establishing an Ω(n log n) lower bound for
three problems using the linear time reduction technique.

11.5.1 The convex hull problem

Let {x1, x2, . . . , xn} be a set of positive real numbers. We show that we
can use any algorithm for the convex hull problem to sort these numbers
using additional O(n) time for converting the input and output. Since the
sorting problem is Ω(n log n), it follows that the convex hull problem
is Ω(n log n) as well; otherwise, we would be able to sort in o(n log n) time,
contradicting Theorem 11.5.

With each real number xj , we associate a point (xj , x
2
j ) in the two-

dimensional plane. Thus, all the n constructed points lie on the parabola
y = x2 (see Fig. 11.2).

If we use any algorithm for the convex hull problem to solve the
constructed instance, the output will be a list of the constructed points
sorted by their x-coordinates. To obtain the sorted numbers, first we find
the point with a minimum x-coordinate p0. Next, starting from p0, we
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Fig. 11.2. Reducing sorting to the convex hull problem.

traverse the list and read off the first coordinate of each point. The result
is the original set of numbers in sorted order. Thus, we have shown that

sorting ∝n convex hull,

which proves the following theorem.

Theorem 11.7 In the algebraic decision tree model of computation, any
algorithm that solves the convex hull problem requires Ω(n log n) opera-
tions in the worst case.

11.5.2 The closest pair problem

Given a set S of n points in the plane, the closest pair problem calls for
identifying a pair of points in S with minimum separation (see Sec. 5.10).
We show here that this problem requires Ω(n log n) operations in the worst
case by reducing the problem element uniqueness to it.

Let {x1, x2, . . . , xn} be a set of positive real numbers. We show that
we can use an algorithm for the closest pair problem to decide whether
there are two numbers that are equal. Corresponding to each number xj ,
we construct a point pj = (xj , 0). Thus, the constructed set of points are
all on the line y = 0. Let A be any algorithm that solves the closest

pair problem. Let (xi, 0) and (xj , 0) be the output of algorithm A when
presented with the set of constructed points. Clearly, there are two equal
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numbers in the original instance of the problem element uniqueness if
and only if the distance between xi and xj is equal to zero. Thus, we have
shown that

element uniqueness ∝n closest pair.

This proves the following theorem.

Theorem 11.8 In the algebraic decision tree model of computation, any
algorithm that solves the closest pair problem requires Ω(n log n) opera-
tions in the worst case.

11.5.3 The Euclidean minimum spanning tree problem

Let S be a set of n points in the plane. The euclidean minimum spanning

tree problem (emst) is to construct a tree of minimum total length whose
vertices are the given points in S. We show that this problem requires
Ω(n log n) operations in the worst case by reducing the sorting problem
to it.

Let {x1, x2, . . . , xn} be a set of positive real numbers to be sorted. Cor-
responding to each number xj , we construct a point pj = (xj , 0). Thus,
the constructed set of points are all on the line y = 0. Let A be any
algorithm that solves the euclidean minimum spanning tree problem.
If we feed algorithm A with the constructed set of points, the resulting
minimum spanning tree will consist of n − 1 line segments l1, l2, . . . , ln−1

on the line y = 0, with the property that for each j, 1 ≤ j ≤ n − 2, the
right endpoint of lj is the left endpoint of lj+1. We can obtain the numbers
{x1, x2, . . . , xn} in sorted order by traversing the tree starting from the left-
most point and reading off the first component of each point. Thus, we have
shown that

sorting ∝n euclidean minimum spanning tree.

This proves the following theorem.

Theorem 11.9 In the algebraic decision tree model of computation, any
algorithm that solves the euclidean minimum spanning tree problem
requires Ω(n log n) operations in the worst case.
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11.6 Exercises

11.1. Give trivial lower bounds for the following problems:

(a) Finding the inverse of an n × n matix.

(b) Finding the median of n elements.

(c) Deciding whether a given array A[1..n] of n elements is sorted.

11.2. Draw the decision tree for Algorithm linearsearch on four elements.

11.3. Draw the decision tree for Algorithm insertionsort on three elements.

11.4. Draw the decision tree for Algorithm mergesort on three elements.

11.5. Let A and B be two unordered lists of n elements each. Consider the
problem of deciding whether the elements in A are identical to those in
B, i.e., the elements in A are a permutation of the elements in B. Use
the Ω-notation to express the number of comparisons required to solve
this problem.

11.6. What is the minimum number of comparisons needed to test whether an
array A[1..n] is a heap? Explain.

11.7. Let S be a list of n unsorted elements. Show that constructing a binary
search tree from the elements in S requires Ω(n log n) in the decision tree
model (see Sec. 2.6.2 for the definition of a binary search tree).

11.8. Let S = {x1, x2, . . . , xn} be a set of n distinct positive integers. We want
to find an element x that is in the upper half when S is sorted, or in other
words an element that is greater than the median. What is the minimum
number of element comparisons required to solve this problem?

11.9. Let A[1..n] be an array of n integers in the range [1..m], where m > n.
We want to find an integer x in the range [1..m] that is not in A. What
is the minimum number of comparisons required to solve this problem in
the worst case?

11.10. Give an algorithm to find both the largest and second largest of an
unordered list of n elements. Your algorithm should perform the least
number of element comparisons.

11.11. Show that any algorithm for finding both the largest and second largest
of an unordered list of n elements, where n is a power of 2, must perform
at least n − 2 + log n comparisons. See Exercise 11.10.

11.12. Consider the set disjointness problem: Given two sets of n real numbers
each, determine whether they are disjoint. Show that any algorithm to
solve this problem requires Ω(n log n) operations in the worst case.
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11.13. Let A and B be two sets of points in the plane each containing n elements.
Show that the problem of finding two closest points, one in A and the
other in B requires Ω(n log n) operations in the worst case.

11.14. Consider the triangulation problem: Given n points in the plane, join
them by nonintersecting straight line segments so that every region inter-
nal to their convex hull is a triangle. Prove that this problem requires
Ω(n log n) operations in the worst case. (Hint: Reduce the sorting prob-
lem to the special case of the triangulation problem when exactly n−1
points are collinear and one point is not on the same line.)

11.15. Consider the nearest point problem: Given a set S of n points in the
plane and a query point p, find a point in S that is closest to p. Show
that any algorithm to solve this problem requires Ω(log n) operations in
the worst case. (Hint: Reduce binary search to the special case where all
points lie on the same line.)

11.16. The all nearest points problem is defined as follows. Given n points
in the plane, find a nearest-neighbor of each. Show that this problem
requires Ω(n log n) operations in the worst case. (Hint: Reduce the clos-
est pair problem to it).

11.17. Let S be a set of n points in the plane. The diameter of S, denoted by
Diam(S), is the maximum distance realized by two points in S. Show
that finding Diam(S) requires Ω(n log n) operations in the worst case.

11.18. Consider the problem of partitioning a planar point set S into two sub-
sets S1 and S2 such that the maximum of Diam(S1) and Diam(S2) is
minimum. Show that this problem requires Ω(n log n) operations in the
worst case. (Hint: Reduce the problem of finding the diameter of a point
set S to this problem; see Exercise 11.17.)

11.7 Bibliographic Notes

For a detailed account of lower bounds for sorting, merging, and selection,
see Knuth (1973). This book provides an in-depth analysis. A sorting
algorithm that requires the fewest known number of comparisons was orig-
inally presented in Ford and Johnson (1959). A merging algorithm with
the minimum number of comparisons was presented by Hwang and Lin
(1972). A lower bound on selection can be found in Hyafil (1976). Other
relevant papers containing lower bound results include Fussenegger and
Gabow (1976), Reingold (1971), Reingold (1972), and Friedman (1972).
Theorem 11.3 is due to Dobkin and Lipton (1979). Theorem 11.4 is due to
Bin-Or (1983).
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In the previous part of the book, we have seen that many practical problems
have no efficient algorithms, and the known ones for these problems require
an amount of time measured in years or centuries even for instances of
moderate size.

There are three useful methodologies that could be used to cope with
this difficulty. The first methodology is suitable for those problems that
exhibit good average time complexity, but for which the worst-case poly-
nomial time solution is elusive. This methodology is based on a methodic
examination of the implicit state space induced by the problem instance
under study. In the process of exploring the state space of the instance,
some pruning takes place.

The second methodology in this part is based on the probabilistic notion
of accuracy. At the heart of these solutions is a simple decision-maker or
test that can accurately perform one task (either passing or failing the alter-
native) and not say much about the complementary option. An iteration
through this test will enable the construction of the solution or the increase
in the confidence level in the solution to the desired degree.

The final methodology is useful for incremental solutions where one is
willing to compromise on the quality of solution in return for faster (poly-
nomial time) solutions. Only some classes of hard problems admit such
polynomial time approximations. Still fewer of those provide a specturum
of polynomial time solutions where the degree of the polynomial is a func-
tion of accuracy.

In Chapter 12, we study two solution space search techniques that work
for some problems, especially those in which the solution space is large.
These techniques are backtracking and branch-and-bound. In these tech-
niques, a solution to the problem can be obtained by exhaustively searching
through a large but finite number of possibilities. It turns out that for many
hard problems, backtracking and branch-and-bound are the only known
techniques to solve these problems. After all, for some problems such as
the traveling salesman problem, even the problem of finding an approxi-
mate solution is NP-hard. In this chapter, a well-known branch-and-bound
algorithm for the traveling salesman problem is presented. Other examples
that are solved using the backtracking technique in this chapter include
3-coloring and the 8-queens problems.

Randomized algorithms are the subject of Chapter 13. In this chapter,
we first show that randomization improves the performance of algorithm
quicksort significantly and results in a randomized selection algorithm
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that is considerably simpler and (almost always) much faster than Algo-
rithm select discussed in Chapter 5. Next, we present randomized
algorithms for multiselection, min-cut, pattern matching, and sampling
problems. Finally, we apply randomization to a problem in number theory:
primality testing. We will describe an efficient algorithm for this problem
that almost all the time decides correctly whether a given positive integer
is prime or not.

Chapter 14 discusses another avenue for dealing with hard problems:
Instead of obtaining an optimal solution, we may be content with an
approximate solution. In this chapter, we study some approximation algo-
rithms for some NP-hard problems including the bin packing problem, the
Euclidean traveling salesman problem, the knapsack problem, and the ver-
tex cover problem. These problems share the common feature that the
ratio of the optimal solution to the approximate solution is bounded by
a small (and reasonable) constant. For the knapsack problem, we show a
polynomial approximation scheme, that is, an algorithm that receives as
input the desired approximation ratio and delivers an output whose rela-
tive ratio to the optimal solution is within the input ratio. This kind of
polynomial approximation scheme is not polynomial in the reciprocal of the
desired ratio. For this reason, we extend this scheme to the fully polynomial
time approximation scheme that is also polynomial in the reciprocal of the
desired ratio. As an example of this technique, we present an approximation
algorithm for the subset sum problem.
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Chapter 12

Backtracking

12.1 Introduction

In many real-world problems, as in most of the NP-hard problems, a
solution can be obtained by exhaustively searching through a large but
finite number of possibilities. Moreover, for virtually all of these problems,
there does not exist an algorithm that uses a method other than exhaus-
tive search. Hence, the need arose for developing systematic techniques of
searching, with the hope of cutting down the search space to possibly a
much smaller space. In this chapter, we present a general technique for
organizing the search known as backtracking. This algorithm design tech-
nique can be described as an organized exhaustive search which often avoids
searching all possibilities. It is generally suitable for solving problems where
a potentially large but a finite number of solutions have to be inspected.

12.2 The 3-Coloring Problem

Consider the problem 3-coloring: Given an undirected graph G = (V, E),
it is required to color each vertex in V with one of three colors, say 1, 2,
and 3, such that no two adjacent vertices have the same color. We call such
a coloring legal; otherwise, if two adjacent vertices have the same color,
it is illegal. A coloring can be represented by an n-tuple (c1, c2, . . . , cn)
such that ci ∈ {1, 2, 3}, 1 ≤ i ≤ n. For example, (1, 2, 2, 3, 1) denotes
a coloring of a graph with five vertices. There are 3n possible colorings
(legal and illegal) to color a graph with n vertices. The set of all possible

321
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Fig. 12.1. The search tree for all possible 3-colorings for a graph with three vertices.

colorings can be represented by a complete ternary tree called the search
tree. In this tree, each path from the root to a leaf node represents one
coloring assignment. Figure 12.1 shows such a tree for the case of a graph
with three vertices.

Let us call an incomplete coloring of a graph partial if no two adjacent
colored vertices have the same color. Backtracking works by generating the
underlying tree one node at a time. If the path from the root to the current
node corresponds to a legal coloring, the process is terminated (unless more
than one coloring is desired). If the length of this path is less than n and
the corresponding coloring is partial, then one child of the current node is
generated and is marked as the current node. If, on the other hand, the
corresponding path is not partial, then the current node is marked as a
dead node and a new node corresponding to another color is generated.
If, however, all three colors have been tried with no success, the search
backtracks to the parent node whose color is changed, and so on.

Example 12.1 Consider the graph shown in Fig. 12.2(a), where we are
interested in coloring its vertices using the colors {1, 2, 3}. Figure 12.2(b)
shows part of the search tree generated during the process of searching for
a legal coloring. First, after generating the third node, it is discovered that
the coloring (1, 1) is not partial and hence that node is marked as a dead
node by marking it with × in the figure. Next, b is assigned the color 2,
and it is seen that the coloring (1, 2) is partial. Hence, a new child node
corresponding to vertex c is generated with an initial color assignment of 1.
Repeating the above procedure of ignoring dead nodes and expanding those
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Fig. 12.2. An example of using backtracking to solve the problem 3-coloring.

corresponding to partial colorings, we finally arrive at the legal coloring
(1, 2, 2, 1, 3).

It is interesting to note that we have arrived at the solution after gen-
erating only 10 nodes out of the 364 nodes comprising the search tree.

There are two important observations to be noted in Example 12.1,
which generalize to all backtracking algorithms. First, the nodes are gen-
erated in a depth-first-search manner. Second, there is no need to store
the whole search tree; we only need to store the path from the root to the
current active node. In fact, no physical nodes are generated at all; the
whole tree is implicit. In our example above, we only need to keep track of
the color assignment.

The algorithm

Now we proceed to give two algorithms that use backtracking to solve the
3-coloring problem, one is recursive and the other is iterative. In both
algorithms, we assume for simplicity that the set of vertices is {1, 2, . . . , n}.
The recursive algorithm is shown as Algorithm 3-colorrec.

Initially, no vertex is colored and this is indicated by setting all colors
to 0 in Step 1. The call graphcolor(1) causes the first vertex to be colored
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Algorithm 12.1 3-colorrec
Input: An undirected graph G = (V, E).

Output: A 3-coloring c[1..n] of the vertices of G, where each c[j] is 1, 2, or 3.

1. for k← 1 to n
2. c[k]← 0
3. end for
4. flag← false
5. graphcolor(1)
6. if flag then output c
7. else output “no solution”

Procedure graphcolor(k)

1. for color = 1 to 3
2. c[k]← color
3. if c is a legal coloring then set flag← true and exit
4. else if c is partial then graphcolor(k + 1)
5. end for

with 1. Clearly, (1) is a partial coloring, and hence the procedure is then
recursively called with k = 2. The assignment statement causes the second
vertex to be colored with 1 as well. The resulting coloring is (1, 1). If
vertices 1 and 2 are not connected by an edge, then this coloring is partial.
Otherwise, the coloring is not partial, and hence the second vertex will be
colored with 2 and the resulting coloring is (1, 2). After the second vertex
has been colored, i.e., if the current coloring is partial, the procedure is
again invoked with k = 3, and so on. Suppose that the procedure fails
to color vertex j for some vertex j ≥ 3. This happens if the for loop is
executed three times without finding a legal or partial coloring. In this case,
the previous recursive call is activated and another color for vertex j − 1
is tried. If again none of the three colors result in a partial coloring, the
one before the last recursive call is activated. This is where backtracking
takes place. The process of advancing and backtracking is continued until
the graph is either colored or all possibilities have been exhausted without
finding a legal coloring. Checking whether a coloring is partial can be done
incrementally: If the coloring vector c contains m nonzero numbers and
c[m] does not result in a conflict with any other color, then it is partial;
otherwise, it is not partial. Checking whether a coloring is legal amounts to
checking whether the coloring vector consists of noncontradictory n colors.

The iterative backtracking algorithm is given as Algorithm
3-coloriter. The main part of this algorithm consists of two nested
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while loops. The inner while loop implements advances (generating new
nodes), whereas the outer while loop implements backtracking (to previ-
ously generated nodes). The working of this algorithm is similar to that of
the recursive version.

Algorithm 12.2 3-coloriter
Input: An undirected graph G = (V, E).

Output: A 3-coloring c[1..n] of the vertices of G, where each c[j] is 1, 2, or 3.

1. for k← 1 to n
2. c[k]← 0
3. end for
4. flag← false
5. k← 1
6. while k ≥ 1
7. while c[k] ≤ 2
8. c[k]← c[k] + 1
9. if c is a legal coloring then set flag← true

and exit from the two while loops.

10. else if c is partial then k← k + 1 {advance}
11. end while
12. c[k]← 0
13. k← k − 1 {backtrack}
14. end while
15. if flag then output c
16. else output “no solution”

As to the time complexity of these two algorithms, we note that O(3n)
nodes are generated in the worst case. For each generated node, O(n) work
is required to check whether the current coloring is legal, partial, or neither.
Hence, the overall running time is O(n3n) in the worst case.

12.3 The 8-Queens Problem

The classical 8-queens can be stated as follows. How can we arrange eight
queens on an 8×8 chessboard so that no two queens can attack each other?
Two queens can attack each other if they are in the same row, column, or
diagonal. The n-queens problem is defined similarly, where in this case we
have n queens and an n × n chessboard for an arbitrary value of n ≥ 1.
To simplify the discussion, we will study the 4-queens problem, and the
generalization to any arbitrary n is straightforward.
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(a) (b)

Fig. 12.3. Two configurations of the 4-queens problem.

Consider a chessboard of size 4×4. Since no two queens can be put in the
same row, each queen is in a different row. Since there are four positions in
each row, there are 44 possible configurations. Each possible configuration
can be described by a vector with four components x = (x1, x2, x3, x4).
For example, the vector (2, 3, 4, 1) corresponds to the configuration shown
in Fig. 12.3(a). A component is zero (and hence not included explicitly
in the vector) if there is no queen placed in its corresponding row. For
example, the partial vector (3, 1) corresponds to the configuration shown
in Fig. 12.3(b). In fact, since no two queens can be placed in the same
column, a legal placement corresponds to a permutation of the numbers 1,
2, 3, and 4. This reduces the search space from 44 to 4!. Modifying the
algorithm accordingly will be left as an exercise.

The algorithm

To solve the 4-queens problem using backtracking, the algorithm tries to
generate and search a complete 4-ary rooted tree in a depth-first manner.
The root of the tree corresponds to the placement of no queens. The nodes
on the first level correspond to the possible placements of the queen in the
first row, those on the second level correspond to the possible placements
of the queen in the second row, and so on. The backtracking algorithm
to solve this problem is given as Algorithm 4-queens. In the algorithm,
we used the term legal to mean a placement of four queens that do not
attack each other, and the term partial to mean a placement of less than
four queens that do not attack each other. Clearly, two queens placed at
positions xi and xj are in the same column if and only if xi = xj . It is not
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hard to see that two queens are in the same diagonal if and only if

xi − xj = i− j or xi − xj = j − i.

Algorithm 12.3 4-queens
Input: none.

Output: Vector x[1..4] corresponding to the solution of the 4-queens problem.

1. for k← 1 to 4
2. x[k]← 0 {no queens are placed on the chessboard }
3. end for
4. flag← false
5. k← 1
6. while k ≥ 1
7. while x[k] ≤ 3
8. x[k]← x[k] + 1
9. if x is a legal placement then set flag← true

and exit from the two while loops.

10. else if x is partial then k← k + 1 {advance}
11. end while
12. x[k]← 0
13. k← k − 1 {backtrack}
14. end while
15. if flag then output x
16. else output “no solution”

Example 12.2 Applying the algorithm produces the solution shown in
Fig. 12.4. In the figure, deadend nodes are marked with ×. First, x1 is set
to 1 and x2 is set to 1. This results in a deadend, as the two queens are
in the same column. The same result happens if x2 is set to 2 since in this
case the two queens are on the same diagonal. Setting x2 to 3 results in
the partial vector (1, 3) and the search advances to find a value for x3. As
shown in the figure, no matter what value x3 assumes, no partial vector
results with x1 = 1, x2 = 3, and x3 > 0. Hence, the search backtracks
to the second level and x2 is reassigned a new value, namely 4. As shown
in the figure, this results in the partial vector (1, 4, 2). Again, this vector
cannot be extended and consequently, after generating a few nodes, the
search backs up to the first level. Now, x1 is incremented to 2 and, in the
same manner, the partial vector (2, 4, 1) is found. As shown in the figure,
this vector is extended to the legal vector (2, 4, 1, 3), which corresponds to
a legal placement.
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x  = 21

x  = 42

x  = 13

x  = 34

Fig. 12.4. An example of using backtracking to solve the 4-queens problem.

Now, consider a brute-force method to solve the general n-queens prob-
lem. As mentioned before, since no two queens can be placed in the
same column, the solution vector must be a permutation of the numbers
1, 2, . . . , n. Thus, the brute-force method can be improved to test n! con-
figurations instead of nn. However, the following argument shows that
backtracking drastically cuts the number of tests. Consider the (n − 2)!
vectors corresponding to those configurations in which the first two queens
are placed in the first column. The brute-force method blindly tests all
these vectors, whereas in backtracking these tests can be avoided using
O(1) tests. Although the backtracking method to solve the n-queens prob-
lem costs O(nn) in the worst case, it empirically far exceeds the O(n!)
brute-force method in efficiency, as its expected running time is generally
much faster. For example, the algorithm discovered the solution shown in
Fig. 12.4 after generating 27 nodes out of a total of 341 possible nodes.

12.4 The General Backtracking Method

In this section, we describe the general backtracking algorithm as a system-
atic search method that can be applied to a class of search problems whose
solution consists of a vector (x1, x2, . . . , xi) satisfying some predefined con-
straints. Here i is some integer between 0 and n, where n is a constant that
is dependent on the problem formulation. In the two algorithms we have
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covered, 3-coloring and the 8-queens problems, i was fixed. However,
in some problems, i may vary from one solution to another as the following
example illustrates.

Example 12.3 Consider a variant of the partition problem defined as
follows. Given a set of n integers X = {x1, x2, . . . , xn} and an integer y,
find a subset Y of X whose sum is equal to y. For instance, if

X = {10, 20, 30, 40, 50, 60}
and y = 60, then there are three solutions of different lengths, namely

{10, 20, 30}, {20, 40}, and {60}.
It is not hard to devise a backtracking algorithm to solve this problem.

Note that this problem can be formulated in another way so that the solu-
tion is a boolean vector of length n in the obvious way. Thus, the above
three solutions may be expressed by the boolean vectors

{1, 1, 1, 0, 0, 0, }, {0, 1, 0, 1, 0, 0}, and {0, 0, 0, 0, 0, 1}.

In backtracking, each xi in the solution vector belongs to a finite linearly
ordered set Xi. Thus, the backtracking algorithm considers the elements of
the Cartesian product X1×X2×· · ·×Xn in lexicographic order. Initially, the
algorithm starts with the empty vector. It then chooses the least element of
X1 as x1. If (x1) is a partial solution, the algorithm proceeds by choosing
the least element of X2 as x2. If (x1, x2) is a partial solution, then the least
element of X3 is included; otherwise, x2 is set to the next element in X2.
In general, suppose that the algorithm has detected the partial solution
(x1, x2, . . . , xj). It then considers the vector v = (x1, x2, . . . , xj , xj+1). We
have the following cases:

(1) If v represents a final solution to the problem, the algorithm records it
as a solution and either terminates in case only one solution is desired
or continues to find other solutions.

(2) (The advance step). If v represents a partial solution, the algorithm
advances by choosing the least element in the set Xj+2.

(3) If v is neither a final nor a partial solution, we have two subcases:

(a) If there are still more elements to choose from in the set Xj+1, the
algorithm sets xj+1 to the next member of Xj+1.
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(b) (The backtrack step) If there are no more elements to choose from
in the set Xj+1, the algorithm backtracks by setting xj to the next
member of Xj. If again there are no more elements to choose from
in the set Xj, the algorithm backtracks by setting xj−1 to the next
member of Xj−1, and so on.

Now, we describe the general backtracking algorithm formally using
two algorithms: one recursive (backtrackrec) and the other iterative
(backtrackiter). We will assume that the solution is one vector.

Algorithm 12.4 backtrackrec
Input: Explicit or implicit description of the sets X1, X2, . . . , Xn.

Output: A solution vector v = (x1, x2, . . . , xi), 0 ≤ i ≤ n.

1. v← ( )
2. flag← false
3. advance(1)
4. if flag then output v
5. else output “no solution”

Procedure advance(k)

1. for each x ∈ Xk

2. xk← x; append xk to v
3. if v is a final solution then set flag← true and exit
4. else if v is partial then advance(k + 1)
5. end for

These two algorithms very much resemble those backtracking algorithms
described in Secs. 12.2 and 12.3. In general, to search for a solution to a
problem using backtracking, one of these two prototype algorithms may be
utilized as a framework around which an algorithm specially tailored to the
problem at hand can be designed.

12.5 Branch and Bound

Branch-and-bound design technique is similar to backtracking in the sense
that it generates a search tree and looks for one or more solutions. However,
while backtracking searches for a solution or a set of solutions that sat-
isfy certain properties (including maximization or minimization), branch-
and-bound algorithms are typically concerned with only maximization or
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Algorithm 12.5 backtrackiter
Input: Explicit or implicit description of the sets X1, X2, . . . , Xn.

Output: A solution vector v = (x1, x2, . . . , xi), 0 ≤ i ≤ n.

1. v← ( )
2. flag← false
3. k← 1
4. while k ≥ 1
5. while Xk is not exhausted
6. xk← next element in Xk; append xk to v
7. if v is a final solution then set flag← true

and exit from the two while loops.

8. else if v is partial then k← k + 1 {advance}
9. end while

10. Reset Xk so that the next element is the first.
11. k← k − 1 {backtrack}
12. end while
13. if flag then output v
14. else output “no solution”

minimization of a given function. Moreover, in branch-and-bound algo-
rithms, a bound is calculated at each node x on the possible value of any
solution given by nodes that may later be generated in the subtree rooted
at x. If the bound calculated is worse than a previous bound, the subtree
rooted at x is blocked, i.e., none of its children are generated.

Henceforth, we will assume that the algorithm is to minimize a given
cost function; the case of maximization is similar. In order for branch
and bound to be applicable, the cost function must satisfy the following
property. For all partial solutions (x1, x2, . . . , xk−1) and their extensions
(x1, x2, . . . , xk), we must have

cost(x1, x2, . . . , xk−1) ≤ cost(x1, x2, . . . , xk).

Given this property, a partial solution (x1, x2, . . . , xk) can be discarded once
it is generated if its cost is greater than or equal to a previously computed
solution. Thus, if the algorithm finds a solution whose cost is c, and there is
a partial solution whose cost is at least c, no more extensions of this partial
solution are generated.

The traveling salesman problem will serve as a good example for
the branch-and-bound method. This problem is defined as follows. Given
a set of cities and a cost function that is defined on each pair of cities, find
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Fig. 12.5. An instance matrix of the traveling salesman and its reduction.

a tour of minimum cost. Here a tour is a closed path that visits each city
exactly once. The cost function may be the distance, travel time, air fare,
etc. An instance of the traveling salesman is given by its cost matrix
whose entries are assumed to be nonnegative. The matrix A in Fig. 12.5 is
an example of such an instance. With each partial solution (x1, x2, . . . , xk),
we associate a lower bound y which is interpreted as follows. The cost of
any complete tour that visits the cities x1, x2, . . . , xk in this order must
be at least y.

We observe that each complete tour must contain exactly one edge and
its associated cost from each row and each column of the cost matrix. We
also observe that if a constant r is subtracted from every entry in any row
or column of the cost matrix A, the cost of any tour under the new matrix
is exactly r less than the cost of the same tour under A. This motivates
the idea of reducing the cost matrix so that each row or column contains
at least one entry that is equal to 0. We will refer to such a matrix as the
reduction of the original matrix. In Fig. 12.5, matrix B is the reduction of
matrix A.

Matrix B in the figure results from subtracting the shown amounts
from each row and from column 4. The total amount subtracted is 63. It
is not hard to see that the cost of any tour is at least 63. In general, let
(r1, r2, . . . , rn) and (c1, c2, . . . , cn) be the amounts subtracted from rows 1
to n and columns 1 to n, respectively, in an n× n cost matrix A. Then

y =
n∑

i=1

ri +
n∑

i=1

ci

is a lower bound on the cost of any complete tour.
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Now, we proceed to describe a branch-and-bound algorithm to solve the
traveling salesman problem through an example. Our example is to find an
optimal tour for the instance given in Fig. 12.5. The search tree, which is
a binary tree, is depicted in Fig. 12.6.

The root of the tree is represented by the reduction matrix B and is
labeled with the lower bound computed above, namely 63. This node is
split into two nodes corresponding to the left and right subtrees. The right
subtree contains all solutions that exclude the edge (3, 5) and thus the entry
D3,5 is set to ∞. We will justify the choice of the edge (3, 5) later. Since
there are no zeros in row 3 of matrix D, it can be reduced further by 12.
This is accompanied by increasing the lower bound by 12 to become 75.
The left subtree will contain all solutions that include the edge (3, 5) and
thus both the third row and fifth columns of matrix C are removed, since
we can never go from 3 to any other city nor arrive at 5 from any other
city. Furthermore, since all solutions in this subtree use the edge (3, 5), the
edge (5, 3) will not be used any more, and hence its corresponding entry
C5,3 is set to ∞. As each row and column of this matrix contains a zero,
it cannot be reduced further and hence the lower bound of this node is the
same as its parent’s lower bound.

Now, as the lower bound of the node containing matrix C is less than
that of the node containing matrix D, the next split is performed on the
node containing matrix C. We use edge (2, 3) to split this node.

The right subtree will contain all solutions that exclude the edge (2, 3)
and thus the entry F2,3 is set to ∞. Since there are no zeros in row 2 of
matrix F , it can be reduced further by 4. This increases the lower bound
from 63 to 67. The left subtree will contain all solutions that include the
edge (2, 3) and hence both the second row and third columns of matrix E

are removed. Now, following the same procedure above, we would change
E3,2 to ∞. However, this entry does not exist in matrix E. If we follow
the path from the root to the node containing this matrix, we see that the
two edges (3, 5) and (2, 3), i.e., the subpath 2, 3, 5 must be in any tour in
the subtree whose root contains matrix E. This implies that the entry E5,2

must be set to ∞. In general, if the edge included is (ui, v1) and the path
from the root contains the two paths u1, u2, . . . , ui and v1, v2, . . . , vj , then
Mvj ,u1 is set to ∞, where M is the matrix at the current node. To finish
processing matrix E, we subtract 10 from the first row, which increases the
lower bound from 63 to 73.
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Fig. 12.6. Solution of the traveling salesman using branch and bound.

Following the above procedure, the matrices G, H, I, J, K, L, and M are
computed in this order. The optimal tour can be traced from the root by
following the lines shown in bold face, that is 1, 3, 5, 4, 2, 1. Its total cost is
7 + 12 + 18 + 21 + 9 = 67.
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At the beginning of this example, we chose to split using the edge (3, 5)
because it caused the greatest increase in the lower bound of the right
subtree. This heuristic is useful because it is faster to find the solution by
following the left edges, which reduce the dimension as opposed to the right
edges which merely add a new ∞ and probably more zeros. However, we
did not use this heuristic when splitting at the node containing matrix C.
It is left as an exercise to find the optimal solution with fewer node
splittings.

From the above example, it seems that the heap is an ideal data struc-
ture to use in order to expand the node with the least cost (or maximum
cost in the case of maximization). Although branch-and-bound algorithms
are generally complicated and hard to program, they proved to be efficient
in practice.

12.6 Exercises

12.1. Consider the algorithm for 3-coloring presented in Sec. 12.2. Give an
efficient algorithm to test whether a vector corresponding to a 3-coloring
of a graph is legal.

12.2. Consider the algorithm for 3-coloring presented in Sec. 12.2. Explain
how to efficiently test whether the current vector is partial throughout
the execution of the algorithm.

12.3. Show that two queens placed at positions xi and xj are in the same
diagonal if and only if

xi − xj = i− j or xi − xj = j − i.

12.4. Give a recursive algorithm for the 8-queens problem.

12.5. Does the n-queen problem have a solution for every value of n ≥ 4? Prove
your answer.

12.6. Modify Algorithm 4-queens so that it reduces the search space from 44

to 4! as described in Sec. 12.3.

12.7. Design a backtracking algorithm to generate all permutations of the num-
bers 1, 2, . . . , n.

12.8. Design a backtracking algorithm to generate all 2n subsets of the numbers
1, 2, . . . , n.

12.9. Write a backtracking algorithm to solve the knight tour problem: Given
an 8×8 chessboard, decide if it is possible for a knight placed at a certain
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position of the board to visit every square of the board exactly once and
return to its start position.

12.10. Write a backtracking algorithm to solve the following variant of the par-
tition problem (see Example 12.3): Given n positive integers X =
{x1, x2, . . . , xn} and a positive integer y, does there exist a subset Y ⊆ X
whose elements sum up to y?

12.11. Give a backtracking algorithm to solve the Hamiltonian cycle problem:
Given an undirected graph G = (V, E), determine whether it contains a
simple cycle that visits each vertex exactly once.

12.12. Consider the knapsack problem defined in Sec. 6.6. It was shown that
using dynamic programming, the problem can be solved in time Θ(nC),
where n is the number of items and C is the knapsack capacity.

(a) Give a backtracking algorithm to solve the knapsack problem.

(b) Which technique is more efficient to solve the knapsack problem:
backtracking or dynamic programming? Explain.

12.13. Give a backtracking algorithm to solve the money change problem defined
in Exercise 6.29.

12.14. Apply the algorithm in Exercise 12.13 for the money change problem on
the instance in Exercise 6.30.

12.15. Give a backtracking algorithm to solve the assignment problem defined
as follows. Given n employees to be assigned to n jobs such that the cost
of assigning the ith person to the jth job is ci,j , find an assignment that
minimizes the total cost. Assume that the cost is nonnegative, that is,
ci,j ≥ 0 for 1 ≤ i, j ≤ n.

12.16. Modify the solution of the instance of the traveling salesman problem
given in Sec. 12.5 so that it results in fewer node splittings.

12.17. Apply the branch-and-bound algorithm for the traveling salesman
problem discussed in Sec. 12.5 on the instance


∞ 5 2 10
2 ∞ 5 12
3 7 ∞ 5
8 2 4 ∞


.

12.18. Consider again the knapsack problem defined in Sec. 6.6. Use branch and
bound and a suitable lower bound to solve the instance of this problem
in Example 6.6.

12.19. Carry out a branch-and-bound procedure to solve the following instance of
the assignment problem defined in Exercise 12.15. There are four employ-
ees and four jobs. The cost function is represented by the matrix below.
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In this matrix, row i corresponds to the ith employee, and column j
corresponds to the jth job. 


3 5 2 4
6 7 5 3
3 7 4 5
8 5 4 6


.

12.7 Bibliographic Notes

There are several books that cover backtracking in some detail. These
include Brassard and Bratley (1988), Horowitz and Sahni (1978), and
Reingold, Nievergelt, and Deo (1977). It is also described in Golomb and
Brumert (1965). Techniques for analyzing its efficiency are given in Knuth
(1975). The recursive form of backtracking was used by Tarjan (1972) in
various graph algorithms. Branch-and-bound techniques have been suc-
cessfully used in optimization problems since the late 1950s. Many of the
diverse applications are outlined in the survey paper by Lawler and Wood
(1966). The approach to solve the traveling salesman problem in this
chapter is due to Little, Murty, Sweeney, and Karel (1963). Another tech-
nique to solve the traveling salesman problem is described in the survey
paper by Bellmore and Nemhauser (1968).
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Chapter 13

Randomized Algorithms

13.1 Introduction

In this chapter, we discuss one form of algorithm design in which we relax
the condition that an algorithm must solve the problem correctly for all
possible inputs and demand that its possible incorrectness is something
that can safely be ignored due, say, to its very low likelihood of occur-
rence. Also, we will not demand that the output of an algorithm must be
the same in every run on a particular input. We will be concerned with
those algorithms that in the course of their execution can toss a fair coin,
yielding truly random outcomes. The consequences of adding this element
of randomness turn out to be surprising. Rather than producing unpre-
dictable results, the randomness introduced will be shown to be extremely
useful and capable of yielding fast solutions to problems that have only very
inefficient deterministic algorithms.

A randomized algorithm can be defined as one that receives, in addition
to its input, a stream of random bits that it can use in the course of its
action for the purpose of making random choices. A randomized algorithm
may give different results when applied to the same input in different runs.
It follows that the execution time of a randomized algorithm may vary
from one run to another when applied to the same input. By now, it
is recognized that, in a wide range of applications, randomization is an
extremely important tool for the construction of algorithms. There are two
main advantages that randomized algorithms often have. First, often the
execution time or space requirement of a randomized algorithm is smaller

339
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than that of the best deterministic algorithm that we know of for the same
problem. Second, if we look at the various randomized algorithms that have
been invented so far, we find that invariably they are extremely simple
to comprehend and implement. The following is a simple example of a
randomized algorithm.

Example 13.1 Suppose we have a polynomial expression in n variables,
say f(x1, x2, . . . , xn), and we wish to check whether or not f is identi-
cally zero. To do this analytically could be a horrendous job. Suppose,
instead, we generate a random n-vector (r1, r2, . . . , rn) of real numbers and
evaluate f(r1, r2, . . . , rn). If f(r1, r2, . . . , rn) �= 0, we know that f �= 0.
If f(r1, r2, . . . , rn) = 0, then either f is identically zero or we have been
extremely lucky in our choice of (r1, r2, . . . , rn). If we repeat this several
times and keep on getting f = 0, then we conclude that f is identically
zero. The probability that we have made an error is negligible.

In some deterministic algorithms, especially those that exhibit good
average running time, the mere introduction of randomization suffices to
convert a simple and näıve algorithm with bad worst-case behavior into
a randomized algorithm that performs well with high probability on every
possible input. This will be apparent when we study randomized algorithms
for sorting and selection in Secs. 13.4 and 13.5.

13.2 Las Vegas and Monte Carlo Algorithms

Randomized algorithms can be classified into two categories. The first
category is referred to as Las Vegas algorithms. It constitutes those ran-
domized algorithms that always give a correct answer or do not give an
answer at all. This is to be contrasted with the other category of random-
ized algorithms, which are referred to as Monte Carlo algorithms. A Monte
Carlo algorithm always gives an answer, but may occasionally produce an
answer that is incorrect. However, the probability of producing an incorrect
answer can be made arbitrarily small by running the algorithm repeatedly
with independent random choices in each run.

To be able to generally discuss the computational complexity of a ran-
domized algorithm, it is useful to first introduce some criteria for evaluating
the performance of algorithms. Let A be an algorithm. If A is determinis-
tic, then one measure of the time complexity of the algorithm is its average
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running time: The average time taken by A when for each value of n, each
input of size n is considered equally likely. That is, a uniform distribution
on all its inputs is assumed (see Sec. 1.12.2). This may be misleading, as
the input distribution may not be uniform. If A is a randomized algorithm,
then its running time on a fixed instance I of size n may vary from one
execution to another. Therefore, a more natural measure of performance
is the expected running time of A on a fixed instance I. This is the mean
time taken by algorithm A to solve the instance I over and over.

13.3 Two Simple Examples

Let A[1..n] be an array of n elements. By sampling one element from A we
mean picking an andex j unformly at random from the set {1, 2, . . . n} and
returning A[j].

13.3.1 A Monte Carlo algorithm

Let A[1..n] be an array of n distinct numbers, where n is even. We wish to
select one number x that is larger than the median. Consider the following
algorithm, which we will refer to as Algorithm MC.

Algorithm 13.1 MC

1. Let x← −∞.
2. Repeat Steps 3 to 4 k times.
3. Sample one element y from A.
4. If y > x then x← y.
5. Return x.

Let Pr[Succsess] be the probability that the sampled element is greater
than the median, and let Pr[Failue] be the probability that the sampled
element is less than or equal to the median. Obviously, Pr[Failue] in the
first iteration is 1/2. Consequently, Pr[Failue] in all k iterations is 1/2k.
Hence, Pr[Succsess] within the first k iterations is 1− 1/2k.

An algorithm runs with high probability of success if its probability of
success is of the form 1−1/nc for some constant c > 0, where n is the input
size. So, setting k = log n, we have that the algorithm uses log n iterations
and returns the correct result with probability 1− 1/n.
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13.3.2 A Las Vegas algorithm

Let A[1..n] be an array of n elements, where n is even. A contains (n/2)+1
copies of the same element x and (n/2) − 1 distinct elements that are
different from x. We wish to find this repeated element x. Consider the
following algorithm, which we will refer to as Algorithm LV.

Algorithm 13.2 LV

1. Repeat Steps 2 to 3 indefinitely.
2. Sample two indices i and j from {1, 2, . . . , n}.
3. If i �= j and A[i] = A[j] then set x←A[i] and exit.

If we let Pr[Succsess] denote the probability that i �= j and A[i] = A[j]
in one iteration, then

Pr[Succsess] =
(n/2) + 1

n
× n/2

n
>

n/2
n
× n/2

n
=

1
4
.

This is because there are (n/2) + 1 possibilities for the first drawing and
n/2 possibilities for the second drawing. Hence, Pr[Failue] ≤ 3/4 in one
iteration. It follows that the probability of failure in all k iterations is less
than or equal to (3/4)k. Consequently, the probability of success within
the first k iterations is greater than 1 − (3/4)k. Since we wish to have the
probability of success to be of the form 1 − 1/nc, setting (3/4)k = 1/nc

and solving for k yields k = c log(4/3) n. If, for example, we set c = 4,
then Algorithm LV always returns the correct result in time O(log n) with
probability 1− 1/n4.

It should be emphasized that in Algorithm MC, the probability is with
respect to its correctness while the running time is fixed. In the case of
Algorithm LV, the probability is with respect to its running time while its
result is always correct.

13.4 Randomized Quicksort

This is, perhaps, one of the most popular randomized algorithms. Consider
Algorithm quicksort which was presented in Sec. 5.6. We have shown that
the algorithm’s running time is Θ(n logn) on the average, provided that all
permutations of the input elements are equally likely. This, however, is not
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the case in many practical applications. We have also shown that if the
input is already sorted, then its running time is Θ(n2). This is also the
case if the input is almost sorted. Consider, for instance, an application
that updates a large sorted file by appending a small number of elements
to the original sorted file and then using Algorithm quicksort to sort it
afresh. In this case, the smaller the number of added elements, the closer
the running time to Θ(n2).

One approach to circumvent this problem and guarantee an expected
running time of O(n log n) is to introduce a preprocessing step whose sole
purpose is to permute the elements to be sorted randomly. This preprocess-
ing step can be performed in Θ(n) time (Exercise 13.3). Another simpler
approach which leads to the same effect is to introduce an element of ran-
domness into the algorithm. This can be done by selecting the pivot on
which to split the elements randomly. The result of choosing the pivot
randomly is to relax the assumption that all permutations of the input ele-
ments are equally likely. Modifying the original Algorithm quicksort by
introducing this step results in Algorithm randomizedquicksort. The
new algorithm simply chooses uniformly at random an index v in the
interval [low ..high ] and interchanges A[v] with A[low ]. This is because
Algorithm split uses A[low ] as the pivot (see Sec. 5.6.1). The algorithm
then continues as in the original quicksort algorithm. Here, the function
random(low , high) returns a random number between low and high . It is
important to note that any number between low and high is generated with
equal probability of 1/(high − low + 1).

Algorithm 13.3 randomizedquicksort
Input: An array A[1..n] of n elements.

Output: The elements in A sorted in nondecreasing order.

1. rquicksort(1, n)

Procedure rquicksort(low , high)

1. if low < high then
2. v← random(low , high)
3. interchange A[low ] and A[v]
4. split(A[low ..high ], w) {w is the new position of the pivot}
5. rquicksort(low , w − 1)
6. rquicksort(w + 1, high)
7. end if
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13.4.1 Expected running time of randomized quicksort

Assume without loss of generality that the elements in the array A are
distinct. Let a1, a2, . . . , an be the elements in array A sorted in increasing
order, that is, a1 < a2 < · · · < an. Let pij be the probability that ai

and aj will ever be compared throughout the execution of the algorithm.
In the beginning, an element av is chosen uniformly at random. All other
elements are compared to av resulting in two lists: A1 = {aj | aj < av}
and A2 = {aj | aj > av}. Notice that after this splitting around the pivot
av, none of the elements in A1 will be compared with elements in A2.

Consider the elements in the set S = {ak | ai ≤ ak ≤ aj}. Suppose that
during the excecution of the algorithm, ak ∈ S is chosen as the pivot. Then
if ak ∈ {ai, aj}, ai and aj will be compared; otherwise (if ak /∈ {ai, aj}),
they will never be compared. In other words, ai and aj will be compared
if and only if either ai or aj is first selected as the pivot among all the
elements in S. Consequently, the probability that ai and aj will ever be
compared throughout the execution of the algorithm is

pij =
2
|S| =

2
j − i + 1

.

Now, we bound the total number of comparisons. Towards this end, define
the indicator random variable Xij to be 1 if ai and aj are ever compared
and 0 otherwise. Then,

Pr[Xij = 1] = pij ,

and the total number of comparisons X performed by the algorithm satisfies

X =
n−1∑
i=1

n∑
j=i+1

Xij .

Hence, the expected number of comparisons is

E


n−1∑

i=1

n∑
j=i+1

Xij


 =

n−1∑
i=1

n∑
j=i+1

E[Xij ],

where the equality follows from the linearity of expectation (see Sec. B.3).



January 14, 2016 14:22 Algorithms: Design Techniques and Analysis - 9in x 6in b2305-ch13 page 345

Randomized Algorithms 345

Substituting for E[Xij ] = pij = 2/(j − i + 1) yields

E[X ] =
n−1∑
i=1

n∑
j=i+1

2
j − i + 1

= 2
n−1∑
i=1

n−i+1∑
j=2

1
j

< 2
n∑

i=1

n∑
j=1

1
j

= 2nHn

≈ 2n lnn,

where Hn is the harmonic series. Since Hn = ln n+O(1), it follows that the
expected running time of Algorithm randomizedquicksort is O(n log n).

Thus, we have the following theorem.

Theorem 13.1 The expected number of element comparisons performed
by Algorithm randomizedquicksort on input of size n is O(n log n).

13.5 Randomized Selection

Consider Algorithm select, which was presented in Sec. 5.5. We have
shown that the algorithm’s running time is Θ(n) with a large multiplica-
tive constant that makes the algorithm impractical, especially for small and
moderate values of n. In this section, we present a randomized Las Vegas
algorithm for selection that is both simple and fast. Its expected running
time is Θ(n) with a small multiplicative constant. The algorithm behaves
like the binary search algorithm in the sense that it keeps discarding por-
tions of the input until the desired kth smallest element is found. A precise
description of the algorithm is given in Algorithm quickselect.

13.5.1 Expected running time of randomized selection

In what follows we investigate the running time of Algorithm quickselect.
Assume without loss of generality that the elements in A are distinct. We
prove by induction that the expected number of element comparisons done
by the algorithm is less than 4n. Let C(n) be the expected number of
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Algorithm 13.4 quickselect
Input: An array A[1..n] of n elements and an integer k, 1 ≤ k ≤ n.

Output: The kth smallest element in A.

1. qselect(A, k)

Procedure qselect(A,k)

1. v← random(1, |A|)
2. x←A[v]
3. Partition A into three arrays:

A1 = {a | a < x}
A2 = {a | a = x}
A3 = {a | a > x}

4. case
|A1| ≥ k: return qselect(A1, k)
|A1|+ |A2| ≥ k: return x
|A1|+ |A2| < k: return qselect(A3, k − |A1| − |A2|)

5. end case

element comparisons performed by the algorithm on a sequence of n ele-
ments. Since v, which is chosen randomly, may assume any of the integers
1, 2, . . . , n with equal probability, we have two cases to consider according
to whether v < k or v > k. If v < k, the number of remaining elements is
n− v, and if v > k, the number of remaining elements is v − 1. Thus, the
expected number of element comparisons performed by the algorithm is

C(n) = n +
1
n


k−1∑

j=1

C(n− j) +
n∑

j=k+1

C(j − 1)




= n +
1
n


 n−1∑

j=n−k+1

C(j) +
n−1∑
j=k

C(j)


.

Maximizing over k yields the following inequality:

C(n) ≤ n + max
k


 1

n


 n−1∑

j=n−k+1

C(j) +
n−1∑
j=k

C(j)






= n +
1
n


max

k


 n−1∑

j=n−k+1

C(j) +
n−1∑
j=k

C(j)
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Since C(n) is a nondecreasing function of n, the quantity

n−1∑
j=n−k+1

C(j) +
n−1∑
j=k

C(j) (13.1)

is maximum when k = �n/2� (Exercise 13.4). Therefore, by induction

C(n) ≤ n +
1
n


 n−1∑

j=n−�n/2�+1

4j +
n−1∑

j=�n/2�
4j




= n +
4
n


 n−1∑

j=�n/2�+1

j +
n−1∑

j=�n/2�
j




≤ n +
4
n


 n−1∑

j=�n/2�
j +

n−1∑
j=�n/2�

j




= n +
8
n

n−1∑
j=�n/2�

j

= n +
8
n


n−1∑

j=1

j −
�n/2�−1∑

j=1

j




= n +
8
n

[
n(n− 1)

2
− �n/2�(�n/2� − 1)

2

]

≤ n +
8
n

[
n(n− 1)

2
− (n/2)(n/2− 1)

2

]
= 4n− 2

< 4n.

Thus, we have the following theorem.

Theorem 13.2 The expected number of element comparisons performed
by Algorithm quickselect on input of size n is less than 4n.
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13.6 Occupancy Problems

Given m identical balls and n identical boxes, we want to place each ball
in a bin independently and uniformly at random. This process has a vast
number of applications. Some typical questions related to it include: What
is the expected number of bins with k balls? What is the maximum number
of balls in any bin? How many ball throwings are needed to fill all bins?
What is the probability that one bin contains at least two balls? These are
some of the problems referred to as occupancy problems.

Approximations related to e. We will make use of the following
approximations:

(
1 +

x

n

)n

≈ ex and, in particular,
(

1− 1
n

)n

≈ e−1

and

1− x ≤ e−x (since e−x = 1− x +
x2

2!
− · · ·).

13.6.1 Number of balls in each bin

We consider the number of balls in each bin when throwing m balls into
n bins. For any i, 1 ≤ i ≤ n, define the indicator random variable (see
Sec. B.3) Xij for ball j landing in bin i as

Xij =

{
1 if ball j lands into bin i,

0 otherwise.

Then Xij represents a Bernoulli trial (see Sec. B.4.2) with probability

Pr[Xij = 1] = p =
1
n

.

Let Xi =
∑m

j=1 Xij . Then Xi is the number of balls in bin i, and it has
the binomial distribution (see Sec. B.4.3) with probability

Pr[Xi = k] =
(

m

k

)
pk(1 − p)m−k.

E[Xi] = pm = m/n. This should be intuitive. So, if m = n, E[Xi] = 1.



January 14, 2016 14:22 Algorithms: Design Techniques and Analysis - 9in x 6in b2305-ch13 page 349

Randomized Algorithms 349

Number of fixed points. As an example for the case when m = n, con-
sider a random permutation π = π1, π2, . . . , πn of the numbers 1, 2, . . . , n.
The expected number of elements with πi = i is 1.

The Poisson approximation. The probability of the number of balls in
bin Xi can be written as

Pr[Xi = k] =
(

m

k

)
pk(1− p)m−k =

(
m

k

)(
1
n

)k (
1− 1

n

)m−k

.

If m and n are both large compared to k, Pr[Xi = k] can be approximated
to

Pr[Xi = k] ≈ mk

k!

(
1
n

)k ((
1− 1

n

)n)m/n

≈ (m/n)k

k!
e−m/n.

Thus, if we let λ = m/n, then Pr[Xi = k] can be written as

Pr[Xi = k] ≈ λke−λ

k!
.

This is the Poisson distribution with parameter λ = m/n (see Sec. B.4.5).

13.6.2 Number of empty bins

Define the random variable Xi to be 1 if bin i is empty, and 0 otherwise.
Clearly, a ball goes into a bin different from i with probability (n − 1)/n.
Hence,

Pr[Xi = 1] =
(

n− 1
n

)m

=
(

1− 1
n

)m

=
((

1− 1
n

)n)m/n

≈ e−m/n.

Since Xi is an indicator random variable (see Sec. B.3),

E[Xi] = Pr[Xi = 1] ≈ e−m/n.

If X is the number of empty bins, then it follows by linearity of expectations
(see Sec. B.3) that the expected number of empty bins E[X ] is

E[X ] = E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi] = ne−m/n.

Thus, if m = n, then the number of empty bins is n/e.
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13.6.3 Balls falling into the same bin

Assume m ≤ n, that is, the number of balls is no greater than the number
of bins. For 1 ≤ j ≤ m, let Ej be the event that ball j will go into a
nonempty bin. So, we want to compute

Pr[E1 ∪ E2 ∪ · · · ∪ Em].

It is easier to solve the complement: No ball will go into a nonempty bin.
That is, we will compute

Pr[E1 ∩ E2 ∩ · · · ∩ Em].

Clearly, the first ball will fall into an empty bin with probability 1, the
second with probability (n− 1)/n, and so on. Hence,

Pr


 m⋂

j=1

Ej

 = 1× n− 1

n
× n− 2

n
× · · · × n−m + 1

n

= 1×
(

1− 1
n

)
×
(

1− 2
n

)
× · · · ×

(
1− m− 1

n

)

≤ e0 × e−1/n × e−2/n × · · · × e−(m−1)/n

= e−(1+2+···+(m−1))/n

= e−m(m−1)/2n

≈ e−m2/2n.

Consequently, if m ≈ �√2n�, all balls will fall into distinct bins with
probability e−1. It follows that

Pr[at least one bin contains at least two balls] ≥ 1− e−m(m−1)/2n

≈ 1− e−m2/2n.

Sampling. The importance of the above derivation becomes clear if we
consider the problem of sampling m elements from a universe of size n.
It shows that we should have n large enough to reduce the likelihood of
collisions. For example, if we generate m random numbers between 1 and n,
we should make certain that n is large enough.

The Birthday Paradox. We have essentially proved the following famous
result. We compute the probability that there are two people in a group of
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m people who happen to have the same birthday. If we let the size of the
group m = 23 and n = 365, then the probability is

1− e−23(23−1)/(2×365) = 1− e−0.69315 = 0.50000.

If the group size is 50, the probability is about 0.97.

13.6.4 Filling all bins

Suppose we want to fill all n bins so that each bin has at least one ball using
an unlimited supply of balls. When we throw the first ball, it will go directly
into an empty bin. When we throw the second, it will go to an empty bin
with high probability. After several throws, there may be collisions, i.e.,
balls falling into nonempty bins. Intuitively, the more nonempty bins, the
more balls we need to hit an empty bin. Call the experiment of throwing
a ball at random a trial. We will call a trial success if the ball lands in
an empty bin and let pi, 1 ≤ i ≤ n, be the probability of success. Let
Xi count the number of trials until the ith success. Then Xi has the
geometric distribution (see Sec. B.4.4), and hence E[Xi] = 1/pi. Clearly,
p1 = 1, p2 = (n− 1)/n, and in general,

pi =
n− i + 1

n
and E[Xi] =

n

n− i + 1
.

Let X be the random variable that counts the total number of trials. Then
X =

∑n
i=1Xi, and

E[X ] = E

[
n∑

i=1

Xi

]

=
n∑

i=1

E[Xi]

=
n∑

i=1

n

n− i + 1

= n

n∑
i=1

1
i

= nHn,

where Hn is the harmonic series. Since Hn = ln n + O(1), E[X ] = n ln n +
O(n) = Θ(n log n).
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13.7 Tail Bounds

One of the major tools in the analysis of randomized algorithms is to inves-
tigate the probability of their failure and the deviation from their expected
running time. Instead of stating that an algorithm runs in O(f(n)) expected
time, it is desirable to show that it does not deviate “much” from this time
bound, or in other words it runs in time O(f(n)) with high probability. To
estimate such a probability, a number of “tail” inequalities are customarily
used to establish such high bounds.

13.7.1 Markov inequality

Markov inequality does not require knowledge of the probability distribu-
tion; only the expected value is needed (see Sec. B.3).

Theorem 13.3 Let X be a non-negative random variable, and t a positive
number. Then

Pr[X ≥ t] ≤ E[X ]
t

.

Proof. Since X is nonnegative and t is positive, we have

E[X ] =
∑

x

xPr[X = x]

=
∑
x<t

xPr[X = x] +
∑
x≥t

xPr[X = x]

≥
∑
x≥t

xPr[X = x] since x is nonnegative

≥ t
∑
x≥t

Pr[X = x]

= tPr[X ≥ t]. �

Example 13.2 Consider a sequence of n flips of a fair coin. We use
Markov inequality to obtain an upper bound on the probability that the
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number of heads is at least 2n/3. Let X denote the total number of heads.
Clearly, X has the binomial distribution with parameters (n, 1/2). Hence,
E[X ] = np = n/2. Applying Markov inequality,

Pr
[
X ≥ 2n

3

]
≤ E[X ]

2n/3
=

n/2
2n/3

=
3
4
.

13.7.2 Chebyshev inequality

Chebyshev bound is more useful than Markov inequality. However, it
requires the knowledge of the expected value E[X ] and variance of the
random variable var[X ] (see Sec. B.3). The variance is defined by

var[X ] = E[(X −E[X ])2].

Theorem 13.4 Let t be a positive number. Then

Pr[|X −E[X ]| ≥ t] ≤ var[X ]
t2

.

Proof. Let Y = (X −E[X ])2. Then,

Pr[Y ≥ t2] = Pr[(X −E[X ])2 ≥ t2] = Pr[|X −E[X ]| ≥ t].

Applying Markov inequality yields

Pr[|X −E[X ]| ≥ t] = Pr[Y ≥ t2] ≤ E[Y ]
t2

=
var[X ]

t2

since E[Y ] = var[X ]. �

A similar proof results in the following variant of Chebyshev inequality:

Pr[|X −E[X ]| ≥ tσX ] ≤ 1
t2

,

where σX =
√

var[X ] is the standard deviation of X .
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Example 13.3 We apply Chebyshev inequality instead of Markov’s
in Example 13.2. Since X has the binomial distribution with parameters
(n, 1/2), E[X ] = np = n/2, and var[X ] = np(1− p) = n/4.

Pr
[
X ≥ 2n

3

]
= Pr

[
X −E[X ] ≥ 2n

3
− n

2

]

= Pr
[
X −E[X ] ≥ n

6

]
≤ Pr

[
|X −E[X ]| ≥ n

6

]

≤ var[X ]
(n/6)2

=
n/4

(n/6)2

=
9
n

.

So, there is a significant improvement; the bound is not constant as in
Example 13.2.

13.7.3 Chernoff bounds

Let X1, X2, . . . , Xn be a collection of n independent indicator random
variables representing Bernoulli trials such that each Xi has probability
Pr[Xi = 1] = pi. We are interested in bounding the probability that their
sum X =

∑n
i=1Xi will deviate from the mean µ = E[X ] by a multiple of µ.

13.7.3.1 Lower tail

Theorem 13.5 Let δ be some constant in the interval (0, 1). Then,

Pr[X < (1− δ)µ] <

(
e−δ

(1− δ)(1−δ)

)µ

,

which can be simplified to

Pr[X < (1 − δ)µ] < e−µδ2/2.
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Proof. First we state Pr[X < (1− δ)µ] in terms of exponentials.

Pr[X < (1− δ)µ] = Pr[−X > −(1− δ)µ] = Pr[e−tX > e−t(1−δ)µ],

where t is a positive real number to be determined later. Applying Markov
inequality to the right-hand side yields

Pr[X < (1 − δ)µ] <
E[e−tX ]
e−t(1−δ)µ

.

Since X =
∑n

i=1Xi,

e−tX =
n∏

i=1

e−tXi .

Substituting in the above inequality yields

Pr[X < (1− δ)µ] <
E
[∏n

i=1 e−tXi
]

e−t(1−δ)µ
=
∏n

i=1 E[e−tXi ]
e−t(1−δ)µ

.

Now,

E[e−tXi ] = pie
−t×1 + (1 − pi)e−t×0 = pie

−t + (1 − pi) = 1− pi(1− e−t).

Using the inequality 1− x < e−x with x = pi(1− e−t), we have

E[e−tXi ] < epi(e
−t−1).

Since µ =
∑n

i=1pi, simplifying we obtain

n∏
i=1

E[e−tXi ] <

n∏
i=1

epi(e
−t−1) = e(

∑
n

i=1
pi(e

−t−1)) = eµ(e−t−1).

Substituting in the formula for the bound gives

Pr[X < (1 − δ)µ] <
eµ(e−t−1)

e−t(1−δ)µ
= eµ(e−t+t−tδ−1).

Now we choose t so as to minimize the quantity µ(e−t + t − tδ − 1).
Setting its derivative to 0 yields

−e−t + 1− δ = 0,

which solves for t = ln(1/(1−δ)). Substituting for t in the above inequality,
we obtain

Pr[X < (1− δ)µ] < eµ((1−δ)+(1−δ) ln(1/(1−δ))−1),
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which simplifies to

Pr[X < (1− δ)µ] <

(
e−δ

(1− δ)(1−δ)

)µ

.

This proves the first part of the theorem. Now we simplify this expression.
The log of the denominator is (1−δ) ln(1−δ). The expansion of the natural
log of 1− δ is

ln(1− δ) = −δ − δ2

2
− δ3

3
− δ4

4
· · · .

Multiplying by (1− δ) yields

(1− δ) ln(1− δ) = −δ +
(

δ2

1
− δ2

2

)
+
(

δ3

2
− δ3

3

)
+
(

δ4

3
− δ4

4

)
+ · · ·

= −δ +
δ2

2
+

∞∑
j=3

δj

j(j − 1)

> −δ +
δ2

2
.

Hence,

(1− δ)(1−δ) = e(1−δ) ln(1−δ) > e−δ+δ2/2.

Substituting this inequality into the above bound yields

Pr[X < (1− δ)µ] <

(
e−δ

(1− δ)(1−δ)

)µ

<

(
e−δ

e−δ+δ2/2

)µ

= e−µδ2/2,

which proves the simplified bound. �

13.7.3.2 Upper tail

The proof of the following theorem for the upper tail is similar to the proof
of Theorem 13.5 and hence is omitted.

Theorem 13.6 Let δ > 0. Then,

Pr[X > (1 + δ)µ] <

(
eδ

(1 + δ)(1+δ)

)µ

,

which can be simplified to

Pr[X > (1 + δ)µ] < e−µδ2/4 if δ < 2e− 1,
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and

Pr[X > (1 + δ)µ] < 2−δµ if δ > 2e− 1.

Example 13.4 We refer to Examples 13.2 and 13.3, where we seek the
probability that the number of heads in a sequence of n flips of a fair coin
is at least 2n/3.

Let µ = E[X ] = n/2. Solving for δ,

(1 + δ)µ =
2n

3

gives δ = 1
3
. We apply Chernoff bound of Theorem 13.6. Since δ < 2e− 1,

we have

Pr
[
X ≥ 2n

3

]
< e−µδ2/4

= e−(n/2)(1/9)/4

= e−n/72.

So, compared to the bounds obtained in Examples 13.2 and 13.3, we see
that there is an exponential fall off.

13.8 Application of Chernoff Bounds: Multiselection

In this section, we propose a simple and efficient algorithm for the problem
of multiselection (see Sec. 5.7) and show how to use Chernoff bound in its
analysis. Let A = 〈a1, a2, . . . , an〉 be a sequence of n elements drawn from
a linearly ordered set, and let K = 〈k1, k2, . . . , kr〉 be a sorted sequence
of r positive integers between 1 and n, that is a sequence of ranks. The
multiselection problem is to select the kith smallest element in A for all
values of i, 1 ≤ i ≤ r.

Randomized quicksort is a very powerful algorithm, and as it turns
out, a slight modification of the algorithm solves the multiselection prob-
lem efficiently. The idea is so simple and straightforward. Call the elements
sought by the multiselection problem targets . For example, if j ∈ K, then
the jth smallest element in A is a target. Pick an element a ∈ A uniformly
at random, and partition the elements in A around a into small and large
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elements. If both small and large elements contain targets, let quicksort

continue normally. Otherwise, if only the small (large) elements contain
targets, then discard the large (small) elements and recurse on the small
(large) elements only. So, the algorithm is a hyprid of both quicksort and
quickselect algorithms. Note that by quicksort we mean the random-
ized version of the algorithm presented in Sec. 13.4.

In the algorithm to be presented, we will use the following notation to
repeatedly partition A into smaller subsequences. Let a ∈ A with rank
ki ∈ K. Partition A into two subsequences

A1 = 〈aj ∈ A | aj ≤ a〉
and

A2 = 〈aj ∈ A | aj > a〉.
This partitioning of A induces the following partitioning of K:

K1 = 〈k ∈ K | k ≤ ki〉
and

K2 = 〈k − ki | k ∈ K and k > ki〉.
In the pair (A, K), A will be called active if |K| > 0; otherwise, it will be
called inactive.

A more formal description of the algorithm is shown as Algorithm
quickmultiselect. Figure 13.1 shows an example of the execution of
the algorithm. In this example, the input to the algorithm is shown in the
root node. Also shown is a, which is the randomly chosen pivot. The rest
of the recursion tree is self-explanatory.

Clearly, in Step 3 of the algorithm, recursion should be halted when the
input size becomes sufficiently small. That is, if the size of A is small, then
sort A and return the elements whose ranks are in K. It was stated this
way only for the sake of simplifying its analysis and to make it more general
(so that it will degenerate to quicksort when r = n).

For the analysis of the algorithm, we need Boole’s inequality for a finite
number of events:

Boole’s inequality: For any finite sequence of events E1, E2, . . . , En,

Pr[E1 ∪ E2 ∪ · · · ∪ En] ≤ Pr[E1] + Pr[E2] + · · ·+ Pr[En]. (13.2)
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Algorithm 13.5 quickmultiselect
Input: A sequence A = 〈a1, a2, . . . , an〉 of n elements, and a sorted sequence

of r ranks K = 〈k1, k2, . . . , kr〉.
Output: The kith smallest element in A, 1 ≤ i ≤ r.

1. qmultiselect(A, K)

Procedure qmultiselect(A, K)

1. r← |K|
2. If r > 0 then
3. If |A| = 1 and |K| = 1 then output a and exit.
4. Let a be an element chosen from A uniformly at random.
5. By comparing a with the elements in A, determine the two sub-

sequences A1 and A2 of elements ≤ a and > a, respectively. At the
same time, compute r(a), the rank of a in A.

6. Partition K into K1 = 〈k ∈ K | k ≤ r(a)〉 and
K2 = 〈k − r(a) | k ∈ K and k > r(a)〉

7. qmultiselect (A1, K1).
8. qmultiselect (A2, K2).
9. end if

A = 〈70, 30, 10, 40, 20, 60, 50〉
K = 〈2, 5〉 a = 40

A = 〈30, 10, 40, 20〉
K= 〈2〉 a = 30

A = 〈70, 60, 50〉
K = 〈1〉 a=50

A = 〈30, 10, 20〉
K = 〈2〉 a = 20

A = 〈40〉 A = 〈50〉
K = 〈1〉

A = 〈70, 60〉

A = 〈10, 20〉
K = 〈2〉 a = 10

A = 〈30〉

A = 〈10〉 A = 〈20〉
K = 〈1〉

output 50

output 20

Fig. 13.1. Example of the execution of Algorithm quickmultiselect.
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13.8.1 Analysis of the algorithm

In this section, the sequence A as well as the subsequences A1 and A2

will be called intervals. Fix a target element t ∈ A, and let the intervals
containing t throughout the execution of the algorithm be It

0, I
t
1, I

t
2, . . . of

sizes n = nt
0, n

t
1, n

t
2, . . . . Thus, in the algorithm, It

0 = A, It
1 = A1 if t ∈ A1

and It
1 = A2 if t ∈ A2, and so on. For example, there are two targets

in Fig. 13.1, namely 20 and 50. The intervals containing target 20 are:
I20
0 = 〈70, 30, 10, 40, 20, 60, 50〉, I20

1 = 〈30, 10, 40, 20〉, I20
2 = 〈30, 10, 20〉,

I20
3 = 〈10, 20〉, and I20

4 = 〈20〉. Henceforth, we will drop the superscript t

and refer to It
j as Ij and refer to nt

j as nj .
In the jth partitioning step, a pivot a chosen randomly partitions the

interval Ij into two intervals, one of which is of size at least 3n/4 if and
only if the rank of a in Ij is ≤ nj/4 or the rank of a in Ij is ≥ 3nj/4. The
probability that a random element is among the smallest or largest nj/4
elements of Ij is ≤ 1/2. It follows that for any j ≥ 0,

Pr[nj+1 ≥ 3nj/4] ≤ 1
2
. (13.3)

Now we show that the recursion depth is O(log n) with high probability.
Next, we will show that the algorithm’s running time is O(n log r) with
high probability too.

Let d = 16 ln(4/3)+4. For clarity, we will write lg x in place of log4/3 x.

Lemma 13.1 For the sequence of intervals I0, I1, I2, . . . , after dm

partitioning steps, |Idm| < (3/4)mn with probability 1 − O((4/3)−2m).
Consequently, the algorithm will terminate after d lg n partitioning steps
with probability 1−O(n−1).

Proof. Call the jth partitioning step successful if nj+1 < 3nj/4, j ≥ 0.
Thus, the number of successful splittings needed to reduce the size of I0

to at most (3/4)mn is at most m. Therefore, it suffices to show that the
number of failures excceds dm −m with probability O((4/3)−2m). Define
the indicator random variable Xj , 0 ≤ j < dm, to be 1 if nj+1 ≥ 3nj/4
and 0 if nj+1 < 3nj/4. Let

X =
dm−1∑
j=0

Xj .
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So, X counts the number of failures. Clearly, the Xj ’s are independent
with Pr[Xj = 1] ≤ 1/2 (Ineq. (13.3)), and hence X is the sum of indicator
random variables of a collection of individual Bernoulli trials, where Xj = 1
if the jth partitioning step leads to failure. The expected value of X is

µ = E[X ] =
dm−1∑
j=0

E[Xj ] =
dm−1∑
j=0

Pr[Xj = 1] ≤ dm

2
.

Given the above, we can apply Chernoff bound of Theorem 13.6:

Pr[X ≥ (1 + δ)µ] ≤ exp
(−µδ2

4

)
, 0 < δ < 2e− 1

to derive an upper bound on the number of failures. Specifically, we will
bound the probability

Pr[X ≥ dm−m].

Pr[X ≥ dm−m] = Pr[X ≥ (2− 2/d)(dm/2)]

= Pr[X ≥ (1 + (1− 2/d))(dm/2)]

≤ exp
(−(dm/2)(1− 2/d)2

4

)

= exp
(−m(d− 4 + 4/d)

8

)

≤ exp
(−m(d− 4)

8

)

= exp
(−m(16 ln(4/3))

8

)

= e−2m ln(4/3)

= (4/3)−2m.

Consequently,

Pr[ |Idm| ≤ (3/4)mn] ≥ Pr[X < dm−m] ≥ 1− (4/3)−2m.
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Since the algorithm will terminate when the sizes of all active intervals
become 1, setting m = lg n, we have

Pr[ |Id lg n| ≤ 1] = Pr[ |Id lg n| ≤ (3/4) lg n n]

≥ Pr[X < d lg n− lg n]

≥ 1− (4/3)−2 lg n

= 1− n−2.

What we have computed so far is Pr[ |It
d lg n| ≤ 1] for target t. Since

the number of targets can be as large as O(n), using Boole’s inequality
(Ineq. (13.2)), it follows that the algorithm will terminate after d lg n par-
titioning steps with probability at least

1−O(n)× n−2 = 1−O(n−1).

�

Theorem 13.7 The running time of the algorithm is O(n log r) with
probability 1−O(n−1).

Proof. Assume without loss of generality that r > 1 and is a power
of 2. The algorithm will go through two phases: The first phase consists of
the first log r iterations, and the remaining iterations constitute the second
phase. An iteration here consists of all recursive invocations of the algorithm
on the same level of the recursion tree. The first phase consists of “mostly”
the first log r iterations of Algorithm quicksort, whereas the second phase
is “mostly” an execution of Algorithm quickselect. At the end of the first
phase, the number of active intervals will be at most r. Throughout the
second phase, the number of active intervals will also be at most r, as the
number of unprocessed ranks is at most r. In each iteration, including
those in the first phase, an active interval I is split into two intervals. If
both intervals are active, then they will be retained; otherwise, one will be
discarded. So, for c ≥ 2, after c log r iterations, O(rc) intervals will have
been discarded, and at most r will have been retained.

Clearly, the time needed for partitioning set A in the first phase of the
algorithm is O(n log r), as the recursion depth is log r. As to partitioning
the set K of ranks, which is sorted, binary search can be employed after
each partitioning of A. Since |K| = r, binary search will be applied at most
r times for a total of O(r log r) extra steps.
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Now we use Lemma 13.1 to bound the number of comparisons per-
formed by the second phase. In this phase, with probability 1 − O(n−1),
there are at most d lg n − log r iterations with at most r intervals, whose
total number of elements is less than or equal to n at the beginning of
the second phase. Call these intervals I1

log r, I
2
log r, . . . . at the beginning of

the second phase. The number of comparisons needed to partition interval
It
j is |It

j |. By Lemma 13.1, it follows that, with probability 1 − O(n−1),
the number of comparisons needed to partition the sequence of intervals
It
log r, I

t
log r+1, I

t
log r+2, . . . is the total of their lengths, which is at most

d lg n−log r∑
j=0

(
3
4

)j

|It
log r|.

It follows that, with probability 1−O(n−1), the number of comparisons in
the second phase is upperbounded by

∑
t≥1

d lg n−log r∑
j=0

(
3
4

)j

|It
log r| =

∑
t≥1

|It
log r|

d lg n−log r∑
j=0

(
3
4

)j

≤ n

∞∑
j=0

(
3
4

)j

= 4n.

Thus, the running time for the first phase is O(n log r), and for the second
it is O(n). It follows that the running time of the algorithm is O(n log r)
with probability 1−O(n−1). �

13.9 Random Sampling

Consider the problem of selecting a sample of m elements randomly from
a set of n elements, where m < n. For simplicity, we will assume that the
elements are positive integers between 1 and n. In this section, we present
a simple Las Vegas algorithm for this problem.

Consider the following selection method. First mark all the n elements
as unselected. Next, repeat the following step until exactly m elements
have been selected. Generate a random number r between 1 and n. If
r is marked unselected, then mark it selected and add it to the sample.
This method is described more precisely in Algorithm randomsampling.
A disadvantage of this algorithm is that its space complexity is Θ(n), as it
uses an array of size n to mark all integers between 1 and n. If n is too
large compared to m (e.g., n > m2), the algorithm can easily be modified
to eliminate the need for this array. (See Exercise 13.20).



January 14, 2016 14:22 Algorithms: Design Techniques and Analysis - 9in x 6in b2305-ch13 page 364

364 Algorithms: Design Techniques and Analysis

Algorithm 13.6 randomsampling
Input: Two positive integers m, n with m < n.

Output: An array A[1..m] of m distinct positive integers selected
randomly from the set {1, 2, . . . , n}.

1. comment: S[1..n] is a boolean array indicating
whether an integer has been selected.

2. for i← 1 to n
3. S[i]← false
4. end for
5. k← 0
6. while k < m
7. r← random(1, n)
8. if not S[r] then
9. k← k + 1

10. A[k]← r
11. S[r]← true
12. end if
13. end while

Clearly, the smaller the difference between m and n, the larger the
running time. For example, if n = 1000 and m = 990, then the algo-
rithm will spend too much time in order to generate the last integers in the
sample, e.g., the 990th integer. To circumvent this problem, we may select
10 integers randomly, discard them, and keep the remaining 990 integers
as the desired sample. Therefore, we will assume that m ≤ n/2, since oth-
erwise we may select n−m integers randomly, discard them, and keep the
remaining integers as our sample.

The analysis is similar to that of filling all bins with balls discussed in
Sec. 13.6.4. Let pk be the probability of generating an unselected integer
given that k − 1 numbers have already been selected, where 1 ≤ k ≤ m.
Clearly,

pk =
n− k + 1

n
.

If Xk, 1 ≤ k ≤ m, is the random variable denoting the number of integers
generated in order to select the kth integer, then Xk has the geometric
distribution (see Sec. B.4.4) with expected value

E(Xk) =
1
pk

=
n

n− k + 1
.
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Let Y be the random variable denoting the total number of integers gener-
ated in order to select the m out of n integers. By linearity of expectation
(see Sec. B.3), we have

E(Y ) = E(X1) + E(X2) + · · ·+ E(Xm).

Hence,

E(Y ) =
m∑

k=1

E(Xk)

=
m∑

k=1

n

n− k + 1

= n

n∑
k=1

1
n− k + 1

− n

n∑
k=m+1

1
n− k + 1

= n
n∑

k=1

1
k
− n

n−m∑
k=1

1
k

.

By Eq. (A.16),

n∑
j=1

1
k
≤ ln n + 1 and

n−m∑
k=1

1
k
≥ ln(n−m + 1).

Hence,

E(Y ) ≤ n (ln n + 1− ln(n−m + 1))

≈ n (ln n + 1− ln(n−m))

≤ n (ln n + 1− ln(n/2)) since m ≤ n/2

= n (ln 2 + 1)

= n ln 2e

≈ 1.69 n.

Hence T (n), the expected running time of the algorithm, is O(n).
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13.10 The Min-Cut Problem

Let G = (V, E) be an undirected graph on n vertices. An edge cut, or simply
a cut, in G is a subset C of the set of edges E whose removal disconnects G

into two or more components. We will present a randomized algorithm to
find a minimum cut, that is, a cut of minimum cardinality. Let (u, v) be
an edge in G. (u, v) is said to be contracted if its two ends u and v are
merged into one vertex, all edges connecting u and v are deleted, and all
other edges are retained. Note that contraction of an edge may result in
multiple edges, but no self-loops, so G may become a multigraph (with no
self-loops).

The algorithm is very simple. It consists of n − 2 iterations. In the
ith iteration, where 1 ≤ i ≤ n− 2, select an edge uniformly at random and
contract it. After each edge contraction, the number of vertices will decrease
by 1. See Fig. 13.2 for an example of the algorithm. In this example, the
resulting cut shown in Fig. 13.2(e) is of size 4, which is not minimum.

Now we show that this simple algorithm results in a minimum cut with
probability at least 2/n(n− 1). Let k be the size of a minimum cut in G,

uv wxyz

(e)

yzuv
wx

(d)

uv

y

zx

w

(b)

yzuv

x

(c)

w

u y

zx

w

v
(a)

Fig. 13.2. Example of successive contractions.
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and fix a cut C of size k. We will compute the probability that no edge in
the cut C is selected (and hence deleted) throughout the execution of the
algorithm. For iteration i, 1 ≤ i ≤ n−2, let Ai denote the event that the ith
edge selected by the algorithm is not in C, and let Bi = A1 ∩A2 ∩ · · · ∩Ai.
That is, Bi is the event that all of the first i chosen edges are not in the
cut C. Since the size of a minimum cut is k, the minimum vertex degree
is k, which means that the total number of edges is at least kn/2. Hence
the probability of the first event B1 = A1 is at least

1− k

kn/2
= 1− 2

n
.

Now assume that the selected edge in the first iteration is not in C. Then,
since the vertex degrees do not decrease, the probability of the second event
B2 = A1 ∩A2 is at least

1− k

k(n− 1)/2
= 1− 2

n− 1
.

Similarly, in the ith iteration, the probability of the ith event

Bi = A1 ∩A2 ∩ · · · ∩Ai

is at least

1− k

k(n− i + 1)/2
= 1− 2

n− i + 1
.

Applying the multiplication rule in Eq. (B.3), the probability that a min-
imum cut is found after n− 2 contractions is at least the probability that
no edge in the cut C is contracted, which is

Pr[Bn−2] = Pr[A1 ∩A2 ∩ · · · ∩An−2]

= Pr[A1] Pr[A2 | A1] · · ·Pr[An−2 | A1 ∩A2 ∩ · · · ∩An−3]

=
(

1− 2
n

)(
1− 2

n− 1

)
. . .

(
1− 2

n− i + 1

)
. . .

(
2
4

)(
1
3

)

=
(

n− 2
n

)(
n− 3
n− 1

)
. . .

(
n− i− 1
n− i + 1

)
. . .

(
2
4

)(
1
3

)

=
2

n(n− 1)
.
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It follows that the algorithm will fail to find a minimum cut with probability
at most

1− 2
n(n− 1)

≤ 1− 2
n2

.

Hence, repeating the algorithm n2/2 times and selecting the minimum cut,
the probability that the minimum cut is not found in any of the n2/2
repetitions is at most

(
1− 2

n2

)n2/2

<
1
e
.

Hence, repeating the algorithm n2/2 times and selecting the minimum cut,
the probability of finding a cut of minimum cardinality is at least

1− 1
e
.

Now we analyze the running time of the algorithm. Each contraction costs
O(n) time, and this is repeated n−2 times for each run of the algorithm for a
total of O(n2) time. Since the algorithm is repeated n2/2 times, the overall
running time of the algorithm is O(n4). Repeating the algorithm further
will result in better probability of success on the expense of increasing the
running time.

The best known deterministic algorithm for finding a minimum cut runs
in time O(n3). It can be shown that the running time of the randomized
algorithm can be substantially improved to O(n2 log n) with probability of
success Ω(1/ logn). Consequently, in order to have constant probability of
finding a minimum cut, it is sufficient to repeat this algorithm O(log n)
times. The time complexity becomes O(n2 log2 n).

13.11 Testing String Equality

In this section, we outline an example of how randomization can be
employed to cut down drastically on the communication cost. Suppose
that two parties A and B can communicate over a communication channel,
which we will assume to be very reliable. A has a very long string x and
B has a very long string y, and they want to determine whether x = y.
Obviously, A can send x to B, who in turn can immediately test whether
x = y. But this method would be extremely expensive, in view of the cost
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of using the channel. Another alternative would be for A to derive from
x a much shorter string that could serve as a “fingerprint” of x and send
it to B. B then would use the same derivation to obtain a fingerprint for
y, and then compare the two fingerprints. If they are equal, then B would
assume that x = y; otherwise, he would conclude that x �= y. B then noti-
fies A of the outcome of the test. This method requires the transmission of
a much shorter string across the channel. For a string w, let I(w) be the
integer represented by the bit string w. One method of fingerprinting is to
choose a prime number p and then use the fingerprint function

Ip(x) = I(x) (mod p).

If p is not too large, then the fingerprint Ip(x) can be sent as a short string.
The number of bits to be transmitted is thus O(log p). If Ip(x) �= Ip(y),
then obviously x �= y. However, the converse is not true. That is, if
Ip(x) = Ip(y), then it is not necessarily the case that x = y. We refer
to this phenomenon as a false match. In general, a false match occurs if
x �= y, but Ip(x) = Ip(y), i.e., p divides I(x) − I(y). We will later bound
the probability of a false match.

The weakness of this method is that, for fixed p, there are certain pairs
of strings x and y on which the method will always fail. We get around the
problem of the existence of these pairs x and y by choosing p at random
every time the equality of two strings is to be checked, rather than agreeing
on p in advance. Moreover, choosing p at random allows for resending
another fingerprint and thus increasing the confidence in the case x = y.
This method is described in Algorithm stringequalitytest shown below
(the value of M will be determined later).

Algorithm 13.7 stringequalitytest

1. A chooses p at random from the set of primes less than M .
2. A sends p and Ip(x) to B.
3. B checks whether Ip(x) = Ip(y) and confirms the equality or inequal-

ity of the two strings x and y.

Now, we compute the probability of a false match. Let n be the number
of bits in the binary representation of x. Of course, n is also equal to the
number of bits in the binary representation of y; otherwise the problem
is trivial. Let π(n) be the number of distinct primes less than n. It is
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well known that π(n) is asymptotic to n/ ln n. It is also known that if
k < 2n, then, except when n is very small, the number of distinct primes
that divide k is less than π(n). Since failure can occur only in the case of a
false match, i.e., x �= y but Ip(x) = Ip(y), this is only possible if p divides
I(x) − I(y). Hence, the probability of failure for two n-bit strings x and
y is

|{p | p is a prime < 2n and p divides I(x)− I(y)}|
π(M)

≤ π(n)
π(M)

.

If we choose M = 2n2, we obtain

Pr [failure] ≤ π(n)
π(M)

≈ n/ lnn

2n2/ lnn2
=

1
n

.

Furthermore, if we repeat the algorithm k times, each time selecting
a prime number less than M at random, then the probability becomes at
most (1/n)k. If, for example, we set k = �log log n�, then the probability
of failure becomes

Pr [failure] ≤ 1
n�log log n� .

Example 13.5 Suppose that x and y are 1 million bits each, i.e., n =
1, 000, 000. Then, M = 2 × 1012 = 240.8631. In this case, the number
of bits required to transmit p is at most log M� + 1 = 40 + 1 = 41.
The number of bits required to transmit the fingerprint of x is at most
log(p− 1)� + 1 ≤ log M� + 1 = 41. Thus, the total number of bits
transmitted is at most 82. The probability of failure in one transmission is
at most 1/n = 1/1, 000, 000. Since �log log n� = 5, repeating the algorithm
five times reduces the probability of false match to n−�log log n� = (106)−5 =
10−30, which is negligible.

13.12 Pattern Matching

Now we apply the same idea of fingerprinting described in Sec. 13.11 to a
classical problem in computer science: pattern matching. Given a string
of text X = x1x2 . . . xn and a pattern Y = y1y2 . . . ym, where m ≤ n,
determine whether or not the pattern appears in the text. Without loss of
generality, we will assume that the text alphabet is Σ = {0, 1}. The most
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straightforward method for solving this problem is simply to move the pat-
tern across the entire text, and in every position compare the pattern with
the portion of the text of length m. This brute-force method leads to an
O(mn) running time. There are, however, more complicated deterministic
algorithms whose running time is O(n + m).

Here we will present a simple and efficient Monte Carlo algorithm that
also achieves a running time of O(n + m). We will convert it later into
a Las Vegas algorithm having the same time complexity. The algorithm
follows the same brute-force algorithm of sliding the pattern Y across the
text X , but instead of comparing the pattern with each block X(j) =
xjxj+1 . . . xj+m−1, we will compare the fingerprint Ip(Y ) of the pattern
with the fingerprints Ip(X(j)) of the blocks of text. The O(n) fingerprints
of the text are fortunately easy to compute. The key observation is that
when we shift from one block of text to the next, the fingerprint of the
new block X(j + 1) can easily be computed from the fingerprint of X(j).
Specifically,

Ip(X(j + 1)) = (2Ip(X(j))− 2mxj + xj+m) (mod p).

If we let Wp = 2m (mod p), then we have the recurrence

Ip(X(j + 1)) = (2Ip(X(j))−Wpxj + xj+m) (mod p). (13.4)

The pattern matching algorithm is shown as Algorithm pattern-

matching (the value of M will be determined later).

Algorithm 13.8 patternmatching
Input: A string of text X and a pattern Y of length n and m, respectively.

Output: The first position of Y in X if Y occurs in X; otherwise 0.

1. Choose p at random from the set of primes less than M .
2. j← 1
3. Compute Wp = 2m (mod p), Ip(Y ) and Ip(Xj)
4. while j ≤ n−m + 1
5. if Ip(Xj) = Ip(Y ) then return j {A match is found (probably)}
6. j← j + 1
7. Compute Ip(Xj) using Eq. (13.4).
8. end while
9. return 0 {Y does not occur in X (definitely)}
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The computation of each of Wp, Ip(Y ), and Ip(X(1)) costs O(m) time.
When implementing the computation of Ip(X(j + 1)) from Ip(X(j)), we
do not need to use the more expensive operations of multiplication and
division; only a constant number of additions and subtractions is needed.
Thus, the computation of each Ip(X(j)), for 2 ≤ j ≤ n − m + 1, costs
only O(1) time for a total of O(n) time. Hence, the running time is O(n +
m). The above analysis is valid under the uniform-cost RAM model of
computation. If we use the more realistic logarithmic-cost RAM model of
computation, then the time complexity is increased by a factor of log p.

Now we analyze the frequency with which this algorithm will fail. A false
match will occur only if for some j we have

Y �= X(j) but Ip(Y ) = Ip(X(j)).

This is only possible if the chosen prime number p divides∏
{j | Y �=X(j)}

|I(Y )− I(X(j))|.

This product cannot exceed (2m)n = 2mn, and hence the number of primes
that divide it cannot exceed π(mn). If we choose M = 2mn2, then the
probability of a false match cannot exceed

π(mn)
π(M)

≈ mn/ ln(mn)
2mn2/ ln(mn2)

=
ln(mn2)

2n ln(mn)
<

ln(mn)2

2n ln(mn)
=

1
n

.

It is interesting to note that, according to the above derivation, the
probability of failure depends only on the length of the text, and the length
of the pattern has no effect on this probability. Note also that in the case
when m = n, the problem reduces to that of testing the equality of two
strings of equal length discussed in Sec. 13.11 and that the probability of
failure is identical to the one derived for that problem.

To convert the algorithm into a Las Vegas algorithm is easy. Whenever
the two fingerprints Ip(Y ) and Ip(X(j)) match, the two strings are tested
for equality. The expected time complexity of this Las Vegas algorithm
becomes

O(n + m)
(

1− 1
n

)
+ mn

(
1
n

)
= O(n + m).

Thus, we have an efficient pattern matching algorithm that always gives
the correct result.
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13.13 Primality Testing

In this section, we study a well-known Monte Carlo algorithm for testing
whether a given positive integer n is prime. The obvious method of repeat-
edly dividing by the numbers from 2 to √n� is extremely inefficient, as it
leads to exponential time complexity in the input size (see Example 1.16).
This method is appropriate only for small numbers and its only advantage
is that it outputs a divisor of n if it is composite. It turns out that factoring
an integer is a much harder problem than merely testing whether it is prime
or composite.

In primality tests, we use the idea of finding a “witness”, which is a
proof that a number is composite. Obviously, finding a divisor of n is a
proof that it is composite. However, such witnesses are very rare. Indeed,
if we take a number n that is fairly large, the number of its prime divisors
is very small compared to the number of integers between 1 and n. It is
well known that if n < 2k, then except when k is very small, the number
of distinct primes that divide n is less than π(k) ≈ k/ lnk.

This motivates the search for another type of witness. Before discussing
the alternate witness, we will dispose of an algorithm for an operation that
will be used throughout this section. Let a, m, and n be positive integers
with m ≤ n. We need the operation of raising a to the mth power and reduc-
ing the result modulo n. Algorithm expmod below computes am (mod n).
It is similar to the exponentiation algorithm presented in Sec. 4.3. Notice
that we reduce modulo n after each squaring or multiplication rather than
first computing am and reducing modulo n once at the end. A call to this
algorithm is of the form expmod(a, m, n).

Algorithm 13.9 expmod
Input: Positive integers a,m, and n with m ≤ n.

Output: am (mod n).

1. Let the binary digits of m be bk = 1, bk−1, . . . , b0.
2. c← 1
3. for j← k downto 0
4. c← c2 (mod n)
5. if bj = 1 then c← ac (mod n)
6. end for
7. return c
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It is easy to see that the running time of Algorithm expmod is
Θ(log m) = O(log n), if we want to charge one unit of time per one multipli-
cation. However, since we are dealing here with arbitrarily large integers,
we will count the exact number of bit multiplications performed by the
algorithm. If we use the obvious way of multiplying two integers, then each
multiplication costs O(log2 n). Thus, the overall running time of Algorithm
expmod is O(log3 n).

Now, we present a series of primality tests all of which are based on
Fermat’s theorem.

Theorem 13.8 If n is prime, then for all a �≡ 0 (mod n), we have

an−1 ≡ 1 (mod n).

Consider Algorithm ptest1. By Fermat’s theorem, if Algorithm
ptest1 returns composite, then we are sure that n is composite. The
ancient Chinese conjectured that a natural number n must be prime if it
satisfies the congruence 2n ≡ 2 (mod n). The question remained open until
1819, when Sarrus showed that 2340 ≡ 1 (mod 341), and yet 341 = 11× 31
is composite. Some other composite numbers that satisfy the congruence
2n−1 ≡ 1 (mod n) are 561, 645, 1105, 1387, 1729, and 1905. Thus, if
Algorithm ptest1 returns prime, then n may or may not be prime.

Algorithm 13.10 ptest1
Input: A positive odd integer n ≥ 5.

Output: prime if n is prime; otherwise composite.

1. if expmod(2, n−1, n) ≡ 1 (mod n) then return prime {probably}
2. else return composite {definitely}

Surprisingly, this simple test gives an erroneous result very rarely. For
example, for all composite numbers between 4 and 2000, the algorithm
returns prime only for the numbers 341, 561, 645, 1105, 1387, 1729, and
1905. Moreover, there are only 78 values of n less than 100,000 for which
the test errs, the largest of which is 93,961 = 7× 31× 433.

It turns out, however, that for many composite numbers n, there exist
integers a for which an−1 ≡ 1 (mod n). In other words, the converse of
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Fermat’s theorem is not true (we have already proved this for a = 2).
Indeed, there are composite integers n known as Carmichael numbers that
satisfy Fermat’s theorem for all positive integers a that are relatively prime
to n. The smallest Carmichael numbers are 561 = 3 × 11 × 17, 1105 =
5 × 13 × 17, 1729 = 7 × 13 × 19, and 2465 = 5 × 17 × 29. Carmichael
numbers are very rare; there are, for example, only 255 of them less than
108. When a composite number n satisfies Fermat’s theorem relative to
base a, n is called a base-a pseudoprime. Thus, Algorithm ptest1 returns
prime whenever n is prime or base-2 pseudoprime. One way to improve the
performance of Algorithm ptest1 is to choose the base randomly between
2 and n − 2. This yields Algorithm ptest2. As in Algorithm ptest1,
Algorithm ptest2 errs only if n is a base-a pseudoprime. For example,
91 = 7× 13 is base-3 pseudoprime since 390 ≡ 1 (mod 91).

Algorithm 13.11 ptest2
Input: A positive odd integer n ≥ 5.

Output: prime if n is prime; otherwise composite.

1. a← random(2, n− 2)
2. if expmod(a, n−1, n) ≡ 1 (mod n) then return prime {probably}
3. else return composite {definitely}

Let Z∗
n be the set of positive integers less than n that are relatively

prime to n. It is well known that Z∗
n forms a group under the operation of

multiplication modulo n. Define

Fn = {a ∈ Z∗
n | an−1 ≡ 1 (mod n)}.

If n is prime or a Carmichael number, then Fn = Z∗
n. So, suppose n is not a

Carmichael number or a prime number. Then, Fn �= Z∗
n. It is easy to verify

that Fn under the operation of multiplication modulo n forms a group that
is a proper subgroup of Z∗

n. Consequently, the order of Fn divides the order
of Z∗

n, that is, |Fn| divides |Z∗
n|. It follows that the number of elements in

Fn is at most half the number of elements in Z∗
n. This proves the following

lemma.

Lemma 13.2 If n is not a Carmichael number, then Algorithm ptest2

will detect the compositeness of n with probability at least 1/2.
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Unfortunately, it has recently been shown that there are, in fact,
infinitely many Carmichael numbers. In the remainder of this section, we
describe a more powerful randomized primality test algorithm that circum-
vents the difficulty that arises as a result of the existence of infinitely many
Carmichael numbers. The algorithm has the property that if n is com-
posite, then the probability that this is discovered is at least 1

2 . In other
words, the probability that it will err is at most 1

2 . Thus, by repeating the
test k times, the probability that it will err is at most 2−k. The algorithm,
which we will call ptest3, is based on the following reasoning. Let n ≥ 5
be an odd prime. Write n− 1 = 2qm (q ≥ 1 since n− 1 is even). Then, by
Fermat’s theorem, the sequence

am (mod n), a2m (mod n), a4m (mod n), . . . , a2qm (mod n)

must end with 1, and the value just preceding the first appearance of 1 will
be n− 1. This is because the only solutions to x2 ≡ 1 (mod n) are x = ±1
when n is prime. This reasoning leads to Algorithm ptest3.

Algorithm 13.12 ptest3
Input: A positive odd integer n ≥ 5.

Output: prime if n is prime; otherwise composite.

1. q← 0; m← n− 1
2. repeat {find q and m}
3. m←m/2
4. q← q + 1
5. until m is odd
6. a← random(2, n− 2)
7. x← expmod(a, m, n)
8. if x = 1 then return prime {probably}
9. for j← 0 to q − 1

10. if x ≡ −1 (mod n) then return prime {probably}
11. x← x2 (mod n)
12. end for
13. return composite {definitely}

Theorem 13.9 If Algorithm ptest3 returns “composite”, then n is com-
posite.

Proof. Suppose that Algorithm ptest3 returns “composite”, but n is an
odd prime. We claim that a2jm ≡ 1 (mod n) for j = q, q − 1, . . . , 0. If so,
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then setting j = 0 yields am ≡ 1 (mod n), which means that the algorithm
must have returned “prime” by Step 8, a contradiction to the outcome of
the algorithm. This contradiction establishes the theorem. Now, we prove
our claim. By Fermat’s theorem, since n is prime, the statement is true for
j = q. Suppose it is true for some j, 1 ≤ j ≤ q. Then it is also true for
j − 1 also because

(a2j−1m)2 = a2jm ≡ 1 (mod n)

implies that the quantity being squared is ±1. Indeed, the equation x2 = 1
in Z∗

n has only the solution x = ±1. But −1 is ruled out by the outcome
of the algorithm since it must have executed Step 13. Consequently,

a2j−1m ≡ 1 (mod n).

This completes the proof of the claim. �

Note that the contrapositive statement of the above theorem is: If n

is prime, then Algorithm ptest3 returns “prime”, which means that the
algorithm will never err if n is prime.

Obviously, Algorithm ptest3 is as good as Algorithm ptest2 in deal-
ing with non-Carmichael numbers. It can be shown, although we will not
pursue it here, that the probability that Algorithm ptest3 errs when pre-
sented with a Carmichael number is at most 1/2. So, the probability that
it will err on any composite number is at most 1/2. Thus, by repeating
the test k times, the probability that it will err is at most 2−k. If we set
k = �log n�, the probability of failure becomes 2−�log n� ≤ 1/n. In other
words, the algorithm will give the correct answer with probability at least
1− 1/n, which is negligible when n is sufficiently large. This results in our
final algorithm, which we will call primalitytest.

We compute the running time of Algorithm primalitytest as follows
(assuming that a random integer can be generated in O(1) time). The value
of q computed in Step 4 is O(log n). So, the repeat loop costs O(q) =
O(log n) time. We have shown before that the cost of Step 8 is Θ(log3 n).
It is repeated at most k = �log n� times for a total of O(log4 n). The
cost of the inner for loop is equal to the cost of each squaring, O(log2 n),
times O(q) = O(log n) times O(k) = O(log n) for a total of O(kq log2 n) =
O(log4 n). Thus, the time complexity of the algorithm is O(log4 n). The
following theorem summarizes the main result.
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Algorithm 13.13 primalitytest
Input: A positive odd integer n ≥ 5.

Output: prime if n is prime; otherwise composite.

1. q← 0; m← n− 1; k← 
log n�
2. repeat {find q and m}
3. m←m/2
4. q← q + 1
5. until m is odd
6. for i← 1 to k
7. a← random(2, n− 2)
8. x← expmod(a, m,n)
9. if x = 1 then return prime {probably}

10. for j← 0 to q − 1
11. if x ≡ −1 (mod n) then return prime {probably}
12. x← x2 (mod n)
13. end for
14. end for
15. return composite {definitely}

Theorem 13.10 In time O(log4 n), Algorithm primalitytest behaves
as follows when presented with an odd integer n ≥ 5:

(1) If n is prime, then it outputs prime.
(2) If n is composite, then it outputs composite with probability at least

1− 1/n.

13.14 Exercises

13.1. Let p1, p2, and p3 be three polynomials of degrees n, n, and 2n, respec-
tively. Give a randomized algorithm to test whether p3(x) = p1(x)×p2(x).

13.2. Let n be a positive integer. Design an efficient randomized algorithm
that generates a random permutation of the integers 1, 2, . . . , n. Assume
that you have access to a fair coin. Analyze the time complexity of your
algorithm.

13.3. In the discussion of Algorithm randomizedquicksort, it was stated that
one possibility to obtain a Θ(n log n) expected time for Algorithm quick-
sort is by permuting the input elements so that their order becomes ran-
dom. Describe an O(n) time algorithm to randomly permute the input
array before processing it by Algorithm quicksort.

13.4. Show that Eq. (13.1) is maximum when k = 
n/2�.
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13.5. Consider the following modification of Algorithm binarysearch (see
Sec. 1.3). Instead of halving the search interval in each iteration, select
one of the remaining positions at random. Assume that every position
between low and high is equally likely to be chosen by the algorithm.
Compare the performance of this algorithm with that of Algorithm bina-
rysearch.

13.6. Let A be a Monte Carlo algorithm whose expected running time is at
most T (n) and gives a correct solution with probability p(n). Suppose the
correctness of any solution of the algorithm can always be verified in time
T ′(n). Show that A can be converted into a Las Vegas algorithm A′ for
the same problem that runs in expected time at most (T (n)+T ′(n))/p(n).

13.7. Suppose that a Monte Carlo algorithm gives the correct solution with
probability at least 1− ε1, regardless of the input. How many executions
of the same algorithm are necessary in order to raise the probability to
at least 1− ε2, where 0 < ε2 < ε1 < 1.

13.8. Let L = x1, x2, . . . , xn be a sequence of elements that contains exactly k
occurrences of the element x (1 ≤ k ≤ n). We want to find one j such
that xj = x. Consider repeating the following procedure until x is found.
Generate a random number i between 1 and n and check whether xi = x.
Which method is faster, on the average, this method or linear search?
Explain.

13.9. Let L be a list of n elements that contains a majority element (see
Sec. 4.2). Give a randomized algorithm that finds the majority element
with probability 1 − ε, for a given ε > 0. Is randomization suitable for
this problem in view of the fact that there is an O(n) time algorithm to
solve it?

13.10. Let A, B, and C be three n × n matrices. Give a Θ(n2) time algorithm
to test whether AB = C. The algorithm is such that if AB = C, then it
returns true. What is the probability that it returns true when AB �= C?
(Hint: Let x be a vector of n random entries. Perform the test A(BX) =
CX.)

13.11. Let A and B be two n×n matrices. Give a Θ(n2) time algorithm to test
whether A = B−1. See Exercise 13.10.

13.12. If m balls are randomly thrown into n bins, compute the probability that

(a) bins 1 and 2 are empty.

(b) two bins are empty.

13.13. If m balls are randomly thrown into two bins, compute the probabil-
ity that bin 1 contains m1 balls and bin 2 contains m2 balls, where
m1 + m2 = m.
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13.14. If m balls are randomly thrown into three bins, compute the probability
that bin 1 contains m1 balls, bin 2 contains m2 balls, and bin 3 contains
m3 balls, where m1 + m2 + m3 = m. See Exercise 13.13.

13.15. Suppose there are n items to be stored in a hash table of size k, where
the location of each item in the hash table is chosen uniformly at random.
A collision happens if two items are assigned to the same location. How
large should k be in order to have a probability at least a half for a
collision? (Hint: This is similar to the birthday paradox.)

13.16. (The coupon collector’s problem) There are n types of coupons, and at
each trial a coupon is chosen randomly. Each chosen coupon is equally
likely to be of any of the n types. Compute the expected number of trials
needed to collect at least one coupon from each of the n types. (Hint:
This is similar to filling all bins with balls discussed in Sec. 13.6.4.)

13.17. A fair die is tossed 1000 times. Give Markov and Chebyshev bounds for
the probability that the sum is greater than 5000.

13.18. A fair coin is tossed 1000 times. Give a Chernoff bound for the probability
that the number of heads is less than 5000.

13.19. Consider the sampling problem in Sec. 13.9. Suppose we perform one
pass over the n integers and choose each one with probability m/n. Show
that the size of the resulting sample has a large variance and hence its
size may be much smaller or larger than m.

13.20. Modify Algorithm randomsampling in Sec. 13.9 to eliminate the need
for the boolean array S[1..n]. Assume that n is too large compared to m,
say n > m2. What is the new time and space complexities of the modified
algorithm?

13.21. A multigraph is a graph in which multiple edges are allowed between
pairs of vertices. Show that the number of distinct minimum cuts in a
multigraph with n vertices is at most n(n− 1)/2 (see Sec. 13.10).

13.22. Consider the algorithm for finding a minimum cut discussed in Sec 13.10.
Suppose the algorithm is repeated n(n − 1) lnn times instead of n2/2.
Compute the probability of success and the running time of the algorithm.
(Hint: You may make use of the inequality 1− 2

n(n−1)
≤ e−2/n(n−1).)

13.23. Consider the algorithm for finding a minimum cut discussed in Sec 13.10.
Suppose we stop the contractions when the number of remaining vertices
is
√

n, and find the minimum cut in the resulting graph using a deter-
ministic O(n3) time algorithm. Show that the probability of success is
Ω(1/n). Give probabilistic and timing analyses of the algorithm that
results from repeating this modified algorithm n times.

13.24. Suppose A and B can communicate through a communication chan-
nel. A has n strings x1, x2, . . . , xn, xi ∈ {0, 1}n, and B has n strings
y1, y2, . . . , yn, yi ∈ {0, 1}n. The problem is to determine whether there is
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a j ∈ {1, 2, . . . , n} such that xj = yj. Describe a randomized algorithm
to solve this problem. Give its probabilistic and timing analyses.

13.25. Consider Fn as defined on page 375. Suppose that n is neither a
Carmichael number nor a prime. Show that Fn under the operation of
multiplication modulo n forms a group that is a proper subgroup of Z∗

n.

13.15 Bibliographic Notes
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lem and the other for primality testing. The probabilistic algorithm of
Solovay and Strassen (1977, 1978), also for primality testing, is another
celebrated result. Hromkovic (2005), Motwani and Raghavan (1995), and
Mitzenmacher and Upfal (2005) are comprehensive books on randomized
algorithms. Some good surveys in this field include Karp (1991), Welsh
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based on Hoare (1962). The randomized selection algorithm is due to Hoare
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Chapter 14

Approximation Algorithms

14.1 Introduction

There are many hard combinatorial optimization problems that cannot be
solved efficiently using backtracking or randomization. An alternative in
this case for tackling some of these problems is to devise an approximation
algorithm, given that we will be content with a “reasonable” solution that
approximates an optimal solution. Associated with each approximation
algorithm, there is a performance bound that guarantees that the solution
to a given instance will not be far away from the neighborhood of the exact
solution. A marking characteristic of (most of) approximation algorithms
is that they are fast, as they are mostly greedy heuristics. As stated in
Chapter 7, the proof of correctness of a greedy algorithm may be complex.
In general, the better the performance bound, the harder it becomes to
prove the correctness of an approximation algorithm. This will be evi-
dent when we study some approximation algorithms. One should not be
optimistic, however, about finding an efficient approximation algorithm,
as there are hard problems for which even the existence of a “reasonable”
approximation algorithm is unlikely unless NP = P.

383
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14.2 Basic Definitions

A combinatorial optimization problem Π is either a minimization problem
or a maximization problem. It consists of three components:

(1) A set DΠ of instances.
(2) For each instance I ∈ DΠ, there is a finite set SΠ(I) of candidate

solutions for I.
(3) Associated with each solution σ ∈ SΠ(I) to an instance I in DΠ, there

is a value fΠ(σ) called the solution value for σ.

If Π is a minimization problem, then an optimal solution σ∗ for an
instance I ∈ DΠ has the property that for all σ ∈ SΠ(I), fΠ(σ∗) ≤ fΠ(σ).
An optimal solution for a maximization problem is defined similarly.
Throughout this chapter, we will denote by OPT (I) the value fΠ(σ∗).

An approximation algorithm A for an optimization problem Π is a (poly-
nomial time) algorithm such that given an instance I ∈ DΠ, it outputs some
solution σ ∈ SΠ(I). We will denote by A(I) the value fΠ(σ).

Example 14.1 In this example, we illustrate the above definitions. Con-
sider the problem bin packing: Given a collection of items of sizes between
0 and 1, it is required to pack these items into the minimum number of
bins of unit capacity. Obviously, this is a minimization problem. The set
of instances DΠ consists of all sets I = {s1, s2, . . . , sn}, such that for all
j, 1 ≤ j ≤ n, sj is between 0 and 1. The set of solutions SΠ consists of a
set of subsets σ = {B1, B2, . . . , Bk} which is a disjoint partition of I such
that for all j, 1 ≤ j ≤ k, ∑

s∈Bj

s ≤ 1.

Given a solution σ, its value f(σ) is simply |σ| = k. An optimal solution for
this problem is that solution σ having the least cardinality. Let A be (the
trivial) algorithm that assigns one bin for each item. Then, by definition,
A is an approximation algorithm. Clearly, this is not a good approximation
algorithm.

Throughout this chapter, we will be interested in optimization problems
as opposed to decision problems. For example, the decision problem version
of the bin packing problem has also as input a bound K, and the solution
is either yes if all items can be packed using at most K bins, and no
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otherwise. Clearly, if a decision problem is NP-hard, then the optimization
version of that problem is also NP-hard.

14.3 Difference Bounds

Perhaps, the most we can hope from an approximation algorithm is that
the difference between the value of the optimal solution and the value of
the solution obtained by the approximation algorithm is always constant.
In other words, for all instances I of the problem, the most desirable solu-
tion that can be obtained by an approximation algorithm A is such that
|A(I) −OPT (I)| ≤ K, for some constant K. There are very few NP-hard
optimization problems for which approximation algorithms with difference
bounds are known. One of them is the following problem.

14.3.1 Planar graph coloring

Let G = (V, E) be a planar graph. By the Four Color Theorem, every
planar graph is 4-colorable. It is fairly easy to determine whether a graph is
2-colorable or not (Exercise 9.3). On the other hand, to determine whether
it is 3-colorable is NP-complete. Given an instance I of G, an approximation
algorithm A may proceed as follows. Assume G is nontrivial, i.e., it has at
least one edge. Determine if the graph is 2-colorable. If it is, then output 2;
otherwise output 4. If G is 2-colorable, then |A(I)−OPT (I)| = 0. If it is
not 2-colorable, then |A(I)−OPT (I)| ≤ 1. This is because in the latter
case, G is either 3-colorable or 4-colorable.

14.3.2 Hardness result: The knapsack problem

The problem knapsack is defined as follows (see Sec. 6.6). Given n

items {u1, u2, . . . , un} with integer sizes s1, s2, . . . , sn and integer values
v1, v2, . . . , vn, and a knapsack capacity C that is a positive integer, the
problem is to fill the knapsack with some of these items whose total size
is at most C and whose total value is maximum. In other words, find a
subset S ⊆ U such that∑

uj∈S

sj ≤ C and
∑

uj∈S

vj is maximum.

We will show that there is no approximation algorithm with difference
bound that solves the knapsack problem. Suppose there is an approxi-
mation algorithm A to solve the knapsack problem with difference bound
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K, i.e., for all instances I of the problem, |A(I)−OPT (I)| ≤ K, where K

is a positive integer. Given an instance I, we can use algorithm A to output
an optimal solution as follows. Construct a new instance I ′ such that for
all j, 1 ≤ j ≤ n, s′j = sj and v′j = (K + 1)vj . It is easy to see that any
solution to I ′ is a solution to I and vice versa. The only difference is that
the value of the solution for I ′ is (K + 1) times the value of the solution
for I. Since A(I ′) = (K + 1)A(I), |A(I ′)−OPT (I ′)| ≤ K implies

|A(I)−OPT (I)| ≤
⌊

K

K + 1

⌋
= 0.

This means that A always gives the optimal solution, i.e., it solves the knap-
sack problem. Since the knapsack problem is known to be NP-complete, it
is highly unlikely that the approximation algorithm A exists unless NP = P.
(Recall that, by definition, an approximation algorithm runs in polynomial
time.)

14.4 Relative Performance Bounds

Clearly, a difference bound is the best bound guaranteed by an approxi-
mation algorithm. However, it turns out that very few hard problems pos-
sess such a bound, as exemplified by the knapsack problem for which we
have shown that the problem of finding an approximation algorithm with
a difference bound is impossible unless NP = P. In this section, we will
discuss another performance guarantee, namely the relative performance
guarantee.

Let Π be a minimization problem and I an instance of Π. Let A be
an approximation algorithm to solve Π. We define the approximation ratio
RA(I) to be

RA(I) =
A(I)

OPT (I)
.

If Π is a maximization problem, then we define RA(I) to be

RA(I) =
OPT (I)

A(I)
.

Thus, the approximation ratio is always greater than or equal to 1. This
has been done so that we will have a uniform measure for the quality of the
solution produced by A.
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The absolute performance ratio RA for the approximation algorithm A

is defined by

RA = inf{r | RA(I) ≤ r for all instances I ∈ DΠ}.

The asymptotic performance ratio R∞
A for the approximation algorithm A

is defined by

R∞
A = inf

{
r ≥ 1

∣∣∣∣ for some integer N, RA(I) ≤ r for all
instances I ∈ DΠ with OPT (I) ≥ N

}
.

It turns out that quite a few problems possess approximation algorithms
with relative performance ratios. For some problems, the asymptotic ratio
is more appropriate than the absolute performance ratio. For some others,
both ratios are identical. In the following sections, we will consider some
problems for which an approximation algorithm with constant relative per-
formance ratio exists.

14.4.1 The bin packing problem

The optimization version of the bin packing problem can be stated as
follows. Given a collection of items u1, u2, . . . , un of sizes s1, s2, . . . , sn,
where each sj is between 0 and 1, we are required to pack these items into
the minimum number of bins of unit capacity. We list here four heuristics
for the bin packing problem.

• First Fit (FF). In this method, the bins are indexed as 1, 2, . . . . All bins
are initially empty. The items are considered for packing in the order
u1, u2, . . . , un. To pack item ui, find the least index j such that bin j

contains at most 1− si, and add item ui to the items packed in bin j.
• Best Fit (BF). This method is the same as the FF method except that

when item ui is to be packed, we look for that bin, which is filled to level
l ≤ 1− si and l is as large as possible.

• First Fit Decreasing (FFD). In this method, the items are first ordered
by decreasing order of size and then packed using the FF method.
• Best Fit Decreasing (BFD). In this method, the items are first ordered

by decreasing order of size and then packed using the BF method.

It is easy to prove that RFF < 2, where RFF is the absolute performance
ratio of the FF heuristic. Let FF (I) denote the number of bins used by the
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FF heuristic to pack the items in instance I, and let OPT (I) be the number
of bins in an optimal packing. First, we note that if FF (I) > 1, then

FF (I) <

⌈
2

n∑
i=1

si

⌉
. (14.1)

To see this, note that no two bins can be half empty. Suppose for the sake
of contradiction that there are two bins Bi and Bj that are half empty,
where i < j. Then, the first item uk put into bin Bj is of size 0.5 or less.
But this means that the FF algorithm would have had put uk in Bi instead
of starting a new bin. To see that this bound is achievable, consider the
case when for all i, 1 ≤ i ≤ n, si = 0.5 + ε, where ε < 1/(2n) is arbitrarily
small. Then, in this case, the number of bins needed is exactly n, which is
less than �n + 2nε� = n + 1.

On the other hand, it is easy to see that the minimum number of bins
required in an optimal packing is at least the sum of the sizes of all items.
That is,

OPT (I) ≥
⌈

n∑
i=1

si

⌉
. (14.2)

Dividing inequality (14.1) by inequality (14.2), we have that

RFF (I) =
FF (I)

OPT (I)
< 2.

In the bin packing problem, it is more appropriate to use the asymp-
totic performance ratio, as it is more indicative of the performance of the
algorithm for large values of n. A better bound for the FF heuristic is given
by the following theorem whose proof is lengthy and complex.

Theorem 14.1 For all instances I of the bin packing problem,

FF (I) ≤ 17
10

OPT (I) + 2.

It can be shown that the BF heuristic also has a performance ratio of
17/10. The FFD algorithm has a better performance ratio, which is given
by the following theorem.
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Theorem 14.2 For all instances I of the bin packing problem,

FFD(I) ≤ 11
9

OPT (I) + 4.

Again, it can be shown that the BFD heuristic also has a performance
ratio of 11/9.

14.4.2 The Euclidean traveling salesman problem

In this section, we consider the following problem, Given a set S of n points
in the plane, find a tour τ on these points of shortest length. Here, a tour
is a circular path that visits every point exactly once. This problem is a
special case of the traveling salesman problem, and is commonly referred
to as the euclidean traveling salesman problem (etsp), which is
known to be NP-complete.

Let p1 be an arbitrary starting point. An intuitive method would pro-
ceed in a greedy manner, visiting first that point closest to p1, say p2, and
then that point which is closest to p2, and so on. This method is referred
to as the nearest-neighbor (NN ) heuristic and it can be shown that it does
not result in a bounded performance ratio i.e., RNN = ∞. Indeed, it can
be shown that this method results in the performance ratio

RNN (I) =
NN (I)
OPT (I)

= O(log n).

An alternative approximation algorithm satisfying RA = 2 can be sum-
marized as follows. First, a minimum cost spanning tree T is constructed.
Next, a multigraph T ′ is constructed from T by making two copies of each
edge in T . Next, an Eulerian tour τe is found (an Eulerian tour is a cycle
that visits every edge exactly once). Once τe is found, it can easily be con-
verted into the desired Hamiltonian tour τ by tracing the Eulerian tour τe

and deleting those vertices that have already been visited. Figure 14.1 illus-
trates the method. A minimum spanning tree of the input graph shown
in Fig. 14.1(a) is converted into an Eulerian multigraph in Fig. 14.1(b).
Figure 14.1(c) shows the resulting tour after bypassing those points that
have already been visited.

Call this method the MST (minimum spanning tree) heuristic. We now
show that RMST < 2. Let τ∗ denote an optimal tour. Then, the length of
the constructed minimum spanning tree T is strictly less than the length
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(a) (b) (c)

start

Fig. 14.1. An illustration of the approximation algorithm for the euclidean traveling
salesman problem.

of τ∗. This is because deleting an edge from τ∗ results in a spanning
tree. Thus, the length of T ′ is strictly less than twice the length of τ∗.
By the triangle inequality, bypassing those vertices that have already been
visited in τe does not increase the length of the tour (recall that the triangle
inequality states that the sum of the lengths of any two sides in a triangle
is greater than or equal to the length of the third side). It follows that the
length of τ is strictly less than twice the length of τ∗. This establishes the
bound RMST < 2.

The idea behind the MST approximation algorithm can be improved to
obtain a better performance ratio for this problem. To make T Eulerian,
we do not double its edges. Instead, we first identify the set X of vertices
of odd degree. The cardinality of X is always even (Exercise 14.5). Next,
we find a minimum weight matching M on the members of X . Finally, we
set T ′ = T ∪M . Clearly, each vertex in T ′ has an even degree, and thus T ′

is Eulerian. Continuing as before, we proceed to find τ . Let us refer to this
method as the minimum matching (MM ) heuristic. It is described more
precisely in Algorithm etspapprox.

Now we show that the performance ratio of this algorithm is 3/2. Let
τ∗ be an optimal tour. First, observe that length(T ) < length(τ∗). Next,
note that length(M) ≤ (1/2)length(τ∗). To see this, let τ ′ be τ∗ with all
vertices not in X removed. Then, τ ′, which is a cycle, consists of two
matchings M1 and M2 on the set of points in X . In other words, if we let
the edges in τ ′ be numbered as e1, e2, e3, . . ., then M1 = {e1, e3, e5, . . .} and
M2 = {e2, e4, e6, . . .}. Since M is a minimum weight matching, its total
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Algorithm 14.1 etspapprox
Input: An instance I of euclidean traveling salesman problem

Output: A tour τ for instance I .

1. Find a minimum spanning tree T of S.
2. Identify the set X of odd degree in T .
3. Find a minimum weight matching M on X.
4. Find an Eulerian tour τe in T ∪M .
5. Traverse τe edge by edge and bypass each previously visited vertex.

Let τ be the resulting tour.

weight is less than or equal to either one of M1 or M2. It follows that

length(τ) ≤ length(τe)

= length(T ) + length(M)

< length(τ∗) +
1
2
length(τ∗)

=
3
2
length(τ∗).

Thus, for any instance of euclidean traveling salesman problem,

RMM (I) =
MM (I)
OPT (I)

<
3
2
.

We remark that the above two approximation algorithms apply to any
instance of the general traveling salesman problem in which the triangle
inequality is respected. Since Algorithm etspapprox involves finding a
minimum weight matching, its time complexity is O(n3).

14.4.3 The vertex cover problem

Recall that a vertex cover C in a graph G = (V, E) is a set of vertices such
that each edge in E is incident to at least one vertex in C. We have shown
in Sec. 9.4.3 that the problem of deciding whether a graph contains a vertex
cover of size k, where k is a positive integer, is NP-complete.

Perhaps, the most intuitive heuristic that comes to mind is as follows.
Repeat the following step until E becomes empty. Pick an edge e arbitrarily
and add one of its endpoints, say v, to the vertex cover. Next, delete e and
all other edges incident to v. Surely, this is an approximation algorithm that
outputs a vertex cover. However, it can be shown that the performance ratio
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of this algorithm is unbounded. Surprisingly, if when considering an edge
e, we add both of its endpoints to the vertex cover, then the performance
ratio becomes 2. The process of picking an edge, adding its endpoints to
the cover, and deleting all edges incident to these endpoints is equivalent
to finding a maximal matching in G. Note that this matching need not
be of maximum cardinality. This approximation algorithm is outlined in
Algorithm vcoverapprox.

Algorithm 14.2 vcoverapprox
Input: An undirected graph G = (V, E).

Output: A vertex cover C for G.

1. C←{}
2. while E �= {}
3. Let e = (u, v) be any edge in E.
4. C←C ∪ {u, v}
5. Remove e and all edges incident to u or v from E.
6. end while

Algorithm vcoverapprox clearly outputs a vertex cover. We now show
that RV C = 2. It is not hard to see that the edges picked in Step 3 of the
algorithm correspond to a maximal matching M , that is, a matching on
the set of edges that cannot be extended. To cover the edges in M , we need
at least |M | vertices. This implies that the size of an optimal vertex cover
is at least |M |. However, the size of the cover obtained by the algorithm is
exactly 2|M |. It follows that RV C = 2. To see that this ratio is achievable,
consider the graph

G = ({v1, v2}, {(v1, v2)}).
For this graph, an optimal cover is {v1}, while the cover obtained by the
algorithm is {v1, v2}.

14.4.4 Hardness result: The traveling salesman problem

In the last sections, we have presented approximation algorithms with rea-
sonable performance ratios. It turns out, however, that there are many
problems that do not admit bounded performance ratios. For example, the
problems coloring, clique, independent set, and the general trav-

eling salesman problem (see Chapter 9) have no known approximation
algorithms with bounded ratios. Let G = (V, E) be an undirected graph.
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By Lemma 9.3, a subset S ⊆ V is an independent set of vertices if and only
if V − S is a vertex cover. Moreover, it can be shown that if S is of max-
imum cardinality, then V − S is of minimum cardinality (Exercise 14.9).
One may be tempted to conclude from this that an approximation algo-
rithm for vertex cover will help in finding an approximation algorithm
for independent set. This, however, is not the case. To see why, suppose
that G has a minimum vertex cover of size (n/2)− 1. The approximation
algorithm vcoverapprox above for the vertex cover problem will find one
of size at most n−2. But the complement of this cover is an independent set
of size 2, while the size of a maximum independent set is, by Exercise 14.9,
exactly n− ((n/2)− 1) = (n/2) + 1.

Now we turn our attention to the general traveling salesman problem.
The following theorem shows that it is impossible to find an approximation
algorithm with bounded ratio for the traveling salesman problem unless
NP = P.

Theorem 14.3 There is no approximation algorithm A for the problem
traveling salesman with RA <∞ unless NP = P.

Proof. Suppose, to the contrary, that there is an approximation algo-
rithm A for the problem traveling salesman with RA ≤ K, for some
positive integer K. We will show that this can be used to derive a polyno-
mial time algorithm for the problem Hamiltonian cycle, which is known
to be NP-complete (see Chapter 9). Let G = (V, E) be an undirected graph
with n vertices. We construct an instance I of the traveling salesman prob-
lem as follows. Let V correspond to the set of cities and define a distance
function d(u, v) for all pairs of cities u and v by

d(u, v) =

{
1 if (u, v) ∈ E,

Kn if (u, v) 	∈ E.

Clearly, if G has a Hamiltonian cycle, then OPT (I) = n; otherwise
OPT (I) > Kn. Therefore, since RA ≤ K, we will have A(I) ≤ Kn if
and only if G has a Hamiltonian cycle. This implies that there exists a
polynomial time algorithm for the problem Hamiltonian cycle. But
this implies that NP = P, which is highly unlikely. To complete the proof,
note that the construction of instance I of the traveling salesman problem
can easily be achieved in polynomial time. �
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14.5 Polynomial Approximation Schemes

So far we have seen that for some NP-complete problems there exist approx-
imation algorithms with bounded approximation ratio. On the other hand,
for some problems, it is impossible to devise an approximation algorithm
with bounded ratio unless NP = P. On the other extreme, it turns out that
there are problems for which there exists a series of approximation algo-
rithms whose performance ratio converges to 1. Examples of these problems
include knapsack, subset-sum, and multiprocessor scheduling.

Definition 14.1 An approximation scheme for an optimization problem
is a family of algorithms {Aε | ε > 0} such that RAε ≤ 1 + ε.

Thus, an approximation scheme can be viewed as an approximation
algorithm A whose input is an instance I of the problem and a bound error
ε such that RA(I, ε) ≤ 1 + ε.

Definition 14.2 A polynomial approximation scheme (PAS) is an
approximation scheme {Aε}, where each algorithm Aε runs in time that
is polynomial in the length of the input instance I.

Note that in this definition, Aε may not be polynomial in 1/ε. In the
next section, we will strengthen the definition of an approximation scheme
so that the algorithms run in time that is also polynomial in 1/ε. In this sec-
tion, we will investigate a polynomial approximation scheme for the knap-
sack problem.

14.5.1 The knapsack problem

Let U = {u1, u2, . . . , un} be a set of items to be packed in a knapsack of
size C. For 1 ≤ j ≤ n, let sj and vj be the size and value of the jth item,
respectively. Recall that the objective is to fill the knapsack with some
items in U whose total size is at most C and such that their total value is
maximum (see Sec. 6.6). Assume without loss of generality that the size of
each item is not larger than C.

Consider the greedy algorithm that first orders the items by decreasing
value to size ratio (vj/sj), and then considers the items one by one for
packing. If the current item fits in the available space, then it is included,
otherwise the next item is considered. The procedure terminates as soon
as all items have been considered, or no more items can be included in the
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knapsack. This greedy algorithm does not result in a bounded ratio as is
evident from the following instance. Let U = {u1, u2}, s1 = 1, v1 = 2, s2 =
v2 = C > 2. In this case, the algorithm will pack only item u1, while in
the optimal packing, item u2 is selected instead. Since C can be arbitrarily
large, the performance ratio of this greedy algorithm is unbounded.

Surprisingly, a simple modification of the above algorithm results in
a performance ratio of 2. The modification is to also test the pack-
ing consisting of the item of largest value only and then the better of
the two packings is chosen as the output. Call this approximation algo-
rithm knapsackgreedy. This approximation algorithm is outlined in
Algorithm knapsackgreedy. It will be left as an exercise to show that
Rknapsackgreedy = 2 (Exercise 14.6).

Algorithm 14.3 knapsackgreedy
Input: 2n + 1 positive integers corresponding to item sizes {s1, s2, . . . , sn},

item values {v1, v2, . . . , vn}, and the knapsack capacity C.

Output: A subset Z of the items whose total size is at most C.

1. Renumber the items so that v1/s1 ≥ v2/s2 ≥ · · · ≥ vn/sn.
2. j← 0; K← 0; V ← 0; Z←{}
3. while j < n and K < C
4. j← j + 1
5. if sj ≤ C −K then
6. Z← Z ∪ {uj}
7. K←K + sj

8. V ← V + vj

9. end if
10. end while
11. Let Z′ = {us}, where us is an item of maximum value.
12. if V ≥ vs then return Z
13. else return Z′.

Now, we describe a polynomial approximation scheme for the knapsack
problem. The idea is quite simple. Let ε = 1/k for some positive integer k.
Algorithm Aε consists of two steps. The first step is to choose a subset of
at most k items and put them in the knapsack. The second step is to run
Algorithm knapsackgreedy on the remaining items in order to complete
the packing. These two steps are repeated

∑k
j=0

(
n
j

)
times, once for each

subset of size j, 0 ≤ j ≤ k. In the following theorem, we bound both the
running time and performance ratio of Algorithm Aε, for all k ≥ 1.
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Theorem 14.4 Let ε = 1/k for some integer k ≥ 1. Then, the running
time of Algorithm Aε is O(knk+1), and its performance ratio is 1 + ε.

Proof. Since
∑k

j=0

(
n
j

)
= O(knk) (see Exercise 14.7), the number of sub-

sets of size at most k is O(knk). The amount of work done in each iteration
is O(n), and hence the time complexity of the algorithm is O(knk+1).

Now we bound the performance ratio of the algorithm. Let I be an
instance of the knapsack problem with items U = {u1, u2, . . . , un} and C

being the knapsack capacity. Let X be the set of items corresponding to
an optimal solution. If |X | ≤ k, then there is nothing to prove, as the
algorithm will try all possible k-subsets. So, suppose that |X | > k. Let
Y = {u1, u2, . . . , uk} be the set of k items of largest value in X , and let
Z = {uk+1, uk+2, . . . , ur} denote the set of remaining items in X , assuming
vj/sj ≥ vj+1/sj+1 for all j, k + 1 ≤ j ≤ r − 1. Since the elements in Y are
of largest value, we must have

vj ≤ OPT (I)
k + 1

for j = k + 1, k + 2, . . . , r. (14.3)

Consider now the iteration in which the algorithm tries the set Y as the
initial k-subset, and let um be the first item of Z not included in the
knapsack by the algorithm. If no such item exists, then the output of
the algorithm is optimal. So, assume that um exists. The optimal solution
can be written as

OPT (I) =
k∑

j=1

vj +
m−1∑

j=k+1

vj +
r∑

j=m

vj . (14.4)

Let W denote the set of items packed by the algorithm, but not in
{u1, u2, . . . , um}, that were considered by the algorithm before um. In
other words, if uj ∈ W , then uj /∈ {u1, u2, . . . , um} and vj/sj ≥ vm/sm.
Now, A(I) can be written as

A(I) ≥
k∑

j=1

vj +
m−1∑

j=k+1

vj +
∑
j∈W

vj . (14.5)

Let

C ′ = C −
k∑

j=1

sj −
m−1∑

j=k+1

sj and C′′ = C′ −
∑
j∈W

sj
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be the residual capacities available, respectively, in the optimal and approx-
imate solutions for the items of U − Y following um−1. From Eq. (14.4),
we obtain

OPT (I) ≤
k∑

j=1

vj +
m−1∑

j=k+1

vj + C′ vm

sm
.

By definition of m, we have C′′ < sm and vj/sj ≥ vm/sm for every item
uj ∈W . Since

C ′ =
∑

uj∈W

sj + C ′′ and C′′ < sm,

we must have

OPT (I) <

k∑
j=1

vj +
m−1∑

j=k+1

vj +
∑
j∈W

vj + vm.

Hence, from Eq. (14.5), OPT (I) < A(I)+vm, and from Eq. (14.3), we have

OPT (I) < A(I) +
OPT (I)
k + 1

,

that is,

OPT (I)
A(I)

(
1− 1

k + 1

)
=

OPT (I)
A(I)

(
k

k + 1

)
< 1.

Consequently,

Rk =
OPT (I)

A(I)
< 1 +

1
k

= 1 + ε. �

14.6 Fully Polynomial Approximation Schemes

The polynomial approximation scheme described in Sec. 14.5 runs in time
that is exponential in 1/ε, the reciprocal of the desired error bound. In this
section, we demonstrate an approximation scheme in which the approxi-
mation algorithm runs in time that is also polynomial in 1/ε. This can
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be achieved for some NP-hard problems using a constrained approximation
scheme which we define below.

Definition 14.3 A fully polynomial approximation scheme (FPAS) is an
approximation scheme {Aε}, where each algorithm Aε runs in time that is
polynomial in both the length of the input instance and 1/ε.

Definition 14.4 A pseudopolynomial time algorithm is an algorithm that
runs in time that is polynomial in the value of L, where L is the largest
number in the input instance.

Notice that if an algorithm runs in time that is polynomial in log L, then
it is a polynomial time algorithm. Here, logL is commonly referred to as
the size of L. In Chapter 6, we have seen an example of a pseudopolynomial
time algorithm, namely the algorithm for the knapsack problem. The idea
behind finding an FPAS for an NP-hard problem is typical to all problems
for which a pseudopolynomial time algorithm exists. Starting from such
an algorithm A, scaling and rounding are applied to the input values in an
instance I to obtain an instance I ′. Then, the same algorithm A is applied
to the modified instance I′ to obtain an answer that is an approximation
of the optimal solution. In this section, we will investigate an FPAS for the
subset-sum problem.

14.6.1 The subset-sum problem

The subset-sum problem is a special case of the knapsack problem in which
the item values are identical to their sizes. Thus, the subset-sum problem
can be defined as follows. Given n items of sizes s1, s2, . . . , sn, and a positive
integer C, the knapsack capacity, the objective is to find a subset of the
items that maximizes the total sum of their sizes without exceeding the
knapsack capacity C. Incidentally, this problem is a variant of the partition
problem (see Sec. 9.4.4). The algorithm to solve this problem is almost
identical to that for the knapsack problem described in Sec. 6.6. It is
shown below as Algorithm subsetsum.

Clearly, the time complexity of Algorithm subsetsum is exactly the
size of the table, Θ(nC), as filling each entry requires Θ(1) time. Now, we
develop an approximation algorithm Aε, where ε = 1/k for some positive
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Algorithm 14.4 subsetsum
Input: A set of items U = {u1, u2, . . . , un} with sizes s1, s2, . . . , sn and

a knapsack capacity C.

Output: The maximum value of the function
∑

ui∈S
si subject to∑

ui∈S
si ≤ C for some subset of items S ⊆ U .

1. for i← 0 to n
2. T [i, 0]← 0
3. end for
4. for j← 0 to C
5. T [0, j]← 0
6. end for
7. for i← 1 to n
8. for j← 1 to C
9. T [i, j]← T [i− 1, j]

10. if si ≤ j then
11. x← T [i− 1, j − si] + si

12. if x > T [i, j] then T [i, j]← x
13. end if
14. end for
15. end for
16. return T [n, C]

integer k. The algorithm is such that for any instance I,

RAε(I) =
OPT (I)
Aε(I)

≤ 1 +
1
k

.

Let

K =
C

2(k + 1)n
.

First, we set C′ = 
C/K� and s′j = 
sj/K� for all j, 1 ≤ j ≤ n, to obtain a
new instance I ′. Next, we apply Algorithm subsetsum on I ′. The running
time is now reduced to Θ(nC/K) = Θ(kn2). Now, we estimate the error
in the approximate solution. Since an optimal solution cannot contain
more than all the n items, we have the following relationship between the
two optimum values OPT (I) and OPT (I ′) corresponding to the original
instance I and the new instance I ′.

OPT (I)−K ×OPT (I ′) ≤ Kn.
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That is, if we let the approximate solution be K times the output of the
algorithm when presented with instance I ′, then we have

OPT (I)−Aε(I) ≤ Kn,

or

Aε(I) ≥ OPT (I)−Kn = OPT (I)− C

2(k + 1)
.

We may assume without loss of generality that OPT (I) ≥ C/2. This is
because it is easy to obtain the optimal solution if OPT (I) < C/2 (see
Exercise 14.27). Consequently,

RAε(I) =
OPT (I)
Aε(I)

≤ Aε(I) + C/2(k + 1)
Aε(I)

≤ 1 +
C/2(k + 1)

OPT (I)− C/2(k + 1)

≤ 1 +
C/2(k + 1)

C/2− C/2(k + 1)

= 1 +
1

k + 1− 1

= 1 +
1
k

.

Thus, the algorithm’s performance ratio is 1 + ε, and its running time
is Θ(n2/ε). For example, if we let ε = 0.1, then we obtain a quadratic
algorithm with a performance ratio of 11/10. If we let ε = 1/nr for some
r ≥ 1, then we have an approximation algorithm that runs in time Θ(nr+2)
with a performance ratio of 1 + 1/nr.

14.7 Exercises

14.1. Give an instance I of the bin packing problem such that FF (I) ≥
3
2
OPT (I).

14.2. Give an instance I of the bin packing problem such that FF (I) ≥
5
3
OPT (I).
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14.3. Show that the performance ratio of the MST heuristic is achievable. In
other words, give an instance of the Euclidean traveling salesman problem
on which the MST heuristic results in a performance ratio of 2.

14.4. Show that the performance ratio of the NN approximation algorithm for
the Euclidean traveling salesman problem is unbounded.

14.5. Show that the number of vertices of odd degree in an undirected graph is
even.

14.6. Show that the performance ratio of Algorithm knapsackgreedy for the
knapsack problem is 2.

14.7. Show that
∑k

j=0

(
n
j

)
= O(knk).

14.8. Theorem 14.4 states that the running time of Algorithm Aε is O(knk+1),
where k = 1/ε is part of the input. Explain why this is an exponential
algorithm.

14.9. Let G = (V, E) be an undirected graph. By Lemma 9.3, a subset S ⊆ V
is an independent set of vertices if and only if V − S is a vertex cover for
G. Show that if S is of maximum cardinality, then V −S is a vertex cover
of minimum cardinality.

14.10. Consider the following algorithm for finding a vertex cover in an undi-
rected graph. Execute the following step until all edges are deleted. Pick
a vertex of highest degree that is incident to at least one edge in the
remaining graph, add it to the cover, and delete all edges incident to that
vertex. Show that this greedy approach does not always result in a vertex
cover of minimum size.

14.11. Show that the performance ratio of the approximation algorithm in
Exercise 14.10 for the vertex cover problem is unbounded.

14.12. Consider the following approximation algorithm for the problem of finding
a maximum clique in a given graph G. Repeat the following step until the
resulting graph is a clique. Delete from G a vertex that is not connected
to every other vertex in G and also delete all its incident edges. Show that
this greedy approach does not always result in a clique of maximum size.

14.13. Show that the performance ratio of the approximation algorithm in
Exercise 14.12 for the maximum clique problem is unbounded.

14.14. Consider the following approximation algorithm for the problem of finding
a maximum clique in a given graph G. Set C = {} and repeat the
following step until G has no vertex that is not in C and is connected
to every other vertex in C. Add to C a vertex that is not in C and is
connected to every other vertex in C. Show that this greedy approach
does not always result in a clique of maximum size.
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14.15. Show that the performance ratio of the heuristic algorithm in
Exercise 14.14 for the maximum clique problem is unbounded.

14.16. Give an approximation algorithm for the coloring problem: Find the
minimum number of colors needed to color an undirected graph so that
adjacent vertices are assigned different colors. Prove or disprove that its
performance ratio is bounded.

14.17. Give an approximation algorithm for the independent set problem:
Find the maximum number of vertices that are mutually disconnected
from each other. Prove or disprove that its performance ratio is bounded.

14.18. Show that Algorithm vcoverapprox does not always give an optimal
vertex cover by giving a counterexample of a graph consisting of at least
three vertices.

14.19. Give an O(n) time algorithm that finds a minimum vertex cover in a tree
in linear time.

14.20. Show in more detail that the running time of the polynomial approx-
imation scheme for the knapsack problem discussed in the proof of
Theorem 14.4 is O(knk+1). You should take into account the time needed
to generate the subsets.

14.21. Consider the optimization version of the set cover problem defined in
Sec. 9.4.4: Given a set X of n elements, a family F of subsets of X,
find a subset C ⊆ F of minimum size that covers all the elements in X.
An approximation algorithm to solve this problem is outlined as follows.
Initialize S = X, and C = {}, and repeat the following step until S = {}.
Choose a subset Y ∈ F that maximizes |Y ∩ S|, add Y to C, and set
S = S − Y . Show that this greedy algorithm does not always produce a
set cover of minimum size.

14.22. Show that the performance ratio of the approximation algorithm
described in Exercise 14.21 for the set cover problem is unbounded.

14.23. Show that the performance ratio of the approximation algorithm
described in Exercise 14.21 for the set cover problem is O(log n).

14.24. Consider the optimization version of the multiprocessor scheduling
problem defined in Sec. 9.4.4: Given n jobs J1, J2, . . . , Jn, each having
a run time ti and a positive integer m (number of processors), schedule
those jobs on the m processors so as to minimize the finishing time. The
finishing time is defined to be the maximum execution time among all
the m processors. An approximation algorithm to solve this problem
is similar to the FF algorithm: The jobs are considered in their order
J1, J2, . . . , Jn, each job is assigned to the next available processor (ties
are broken arbitrarily). In other words, the next job is assigned to that
processor with the least finishing time. Show that the performance ratio
of this algorithm is 2− 1/m.
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14.25. Show that the 2 − 1/m bound of the approximation algorithm in
Exercise 14.24 is tight by exhibiting an instance that achieves this ratio.

14.26. Consider modifying the approximation algorithm described in
Exercise 14.24 for the multiprocessor scheduling problem by first
ordering the jobs by decreasing value of their run times. Prove that
in this case the performance ratio becomes

4

3
− 1

3m
.

14.27. Consider the subset-sum problem discussed in Sec. 14.6.1. Show that if
OPT (I) < C/2, then it is straighforward to obtain the optimal solution.
(Hint: Show that

∑n

j=1
sj < C.)
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constructing PAS and FPAS. An asymptotic PAS for the bin packing

problem is given by Vega and Lueker (1981).
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In this part of the book, we study an algorithm design technique that
we will refer to as iterative improvement. In its simplest form, this tech-
nique starts with a simple-minded (usually a greedy) solution and con-
tinues to improve on that solution in stages until an optimal solution is
found. One more aspect of problem specificity characterizes this technique.
Some marking characteristics of the iterative improvement technique are
in order. First, devising new data structures to meet the data access
requirements of the algorithm effectively, e.g., splay trees and Fibonacci
heaps. Second, the introduction of innovative analysis techniques to care-
fully account for the true cost of the computation. This will be evident
when, for example, counting the number of phases or augmentations in net-
work flow and matching algorithms. Third, exploiting the problem-specific
observations to improve upon the existing solution.

As examples of this design technique, we will study in detail two prob-
lems: finding a maximum flow in a network and finding a maximum match-
ing in undirected graphs. Both these problems have received a great amount
of attention by researchers, and as a result many algorithms have been
developed. Beside being interesting in their own right, these problems arise
as subproblems in many practical applications.

For the maximum flow problem, which is the subject of Chapter 15,
we present a sequence of increasingly efficient algorithms, starting from an
algorithm with unbounded time complexity to an algorithm that runs in
cubic time.

Chapter 16 is devoted to the problem of finding a maximum matching
in an undirected graph. We will give algorithms for bipartite graphs and
general graphs. We close this chapter with an elegant matching algorithm
in bipartite graphs that runs in time O(n2.5).
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Chapter 15

Network Flow

15.1 Introduction

Let G = (V, E) be a directed graph with two distinguished vertices s

and t called, respectively, the source and sink, and a capacity function
c(u, v) defined on all pairs of vertices. Throughout this chapter, the 4-tuple
(G, s, t, c), or simply G, will denote a network . Also, n and m will denote,
respectively, the number of vertices and edges in G, that is, n = |V | and
m = |E|. In this chapter, we consider the problem of finding a maximum
flow in a given network (G, s, t, c) from s to t. This problem is called the
max-flow problem. We will present a series of algorithms to solve this prob-
lem starting from a method of unbounded time complexity to an algorithm
that runs in time O(n3).

15.2 Preliminaries

Let G = (V, E) be a directed graph with two distinguished vertices s and
t called, respectively, the source and sink, and a capacity function c(u, v)
defined on all pairs of vertices with c(u, v) > 0 if (u, v) ∈ E and c(u, v) = 0
otherwise.

Definition 15.1 A flow in G is a real-valued function f on vertex pairs
having the following four conditions:
C1. Skew symmetry. ∀ u, v ∈ V, f(u, v) = −f(v, u). We say there is a flow

from u to v if f(u, v) > 0.

409
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C2. Capacity constraints. ∀ u, v ∈ V, f(u, v) ≤ c(u, v). We say edge (u, v)
is saturated if f(u, v) = c(u, v).

C3. Flow conservation. ∀ u ∈ V −{s, t}, ∑v∈V f(u, v) = 0. In other words,
the net flow (total flow out minus total flow in) at any interior vertex
is 0.

C4. ∀ v ∈ V, f(v, v) = 0.

Definition 15.2 A cut {S, T } is a partition of the vertex set V into two
subsets S and T such that s ∈ S and t ∈ T . The capacity of the cut {S, T },
denoted by c(S, T ), is

c(S, T ) =
∑

u∈S,v∈T

c(u, v).

The flow across the cut {S, T }, denoted by f(S, T ), is

f(S, T ) =
∑

u∈S,v∈T

f(u, v).

Thus, the flow across the cut {S, T } is the sum of the positive flow on
edges from S to T minus the sum of the positive flow on edges from T to S.
For any vertex u and any subset A ⊆ V , let f(u, A) denote f({u}, A), and
f(A, u) denote f(A, {u}). For a capacity function c, c(u, A) and c(A, u) are
defined similarly.

Definition 15.3 The value of a flow f , denoted by |f |, is defined to be

|f | = f(s, V ) =
∑
v∈V

f(s, v).

Lemma 15.1 For any cut {S, T } and a flow f , |f | = f(S, T ).

Proof. By induction on the number of vertices in S. If S = {s}, then it
is true by definition. Assume it is true for the cut {S, T }. We show that it
also holds for the cut {S∪{w}, T −{w}} for w ∈ T −{t}. Let S′ = S∪{w}
and T ′ = T − {w}. Then,

f(S′, T ′) = f(S, T ) + f(w, T )− f(S, w)− f(w, w)

= f(S, T ) + f(w, T ) + f(w, S)− 0 (by conditions C1 and C4)

= f(S, T ) + f(w, V )
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= f(S, T ) + 0 (by condition C3)

= f(S, T )

= |f |. (by induction) �

Definition 15.4 Given a flow f on G with capacity function c, the resid-
ual capacity function for f on the set of pairs of vertices is defined as follows.
For each pair of vertices u, v ∈ V , r(u, v) = c(u, v) − f(u, v). The residual
graph for the flow f is the directed graph R = (V, Ef ), with capacities
defined by r and

Ef = {(u, v)|r(u, v) > 0}.

The residual capacity r(u, v) represents the amount of additional flow
that can be pushed along the edge (u, v) without violating the capacity
constraints C2. If f(u, v) < c(u, v), then both (u, v) and (v, u) are present
in R. If there is no edge between u and v in G, then neither (u, v) nor (v, u)
are in Ef . Thus, |Ef | ≤ 2|E|.

Figure 15.1 shows an example of a flow f on a network G with its
residual graph R. In Fig. 15.1(a), the capacity of each edge and its assigned
flow are separated by comma. The edge (s, a) in G induces two edges in
R, namely (s, a) and (a, s). The residual capacity of (s, a) is equal to
c(s, a)− f(s, a) = 6− 2 = 4. This means that we can push four additional
units of flow along the edge (s, a). The residual capacity of (a, s) is equal
to the flow along the edge (s, a) = 2. This means that we can push two
units of backward flow along the edge (s, a). The edge (s, b) is not present
in the residual graph R, since its residual capacity is zero.

Residual graph
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Fig. 15.1. A network with flow and its residual graph.
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Let f and f ′ be any two flows in a network G. Define the function
f + f ′ by (f + f ′)(u, v) = f(u, v) + f ′(u, v) for all pairs of vertices u and v.
Similarly, define the function f − f ′ by (f − f ′)(u, v) = f(u, v)− f ′(u, v).

The following two lemmas, which appear to be intuitive, provide the
basis for the iterative improvement technique in a network flow. Their
proofs are left for the exercises.

Lemma 15.2 Let f be a flow in G and f ′ the flow in the residual graph
R for f . Then the function f + f ′ is a flow in G of value |f |+ |f ′|.
Lemma 15.3 Let f be any flow in G and f∗ a maximum flow in G. If
R is the residual graph for f, then the value of a maximum flow in R is
|f∗| − |f |.
Definition 15.5 Given a flow f in G, an augmenting path p is a directed
path from s to t in the residual graph R. The bottleneck capacity of p is
the minimum residual capacity along p. The number of edges in p will be
denoted by |p|.

In Fig. 15.1(b), the path s, a, c, b, d, t is an augmenting path with bot-
tleneck capacity 2. If two additional units of flow are pushed along this
path, then the flow becomes maximum.

Theorem 15.1 (max-flow min-cut theorem). Let (G, s, t, c) be a network
and f a flow in G. The following three statements are equivalent:

(a) There is a cut {S, T } with c(S, T ) = |f |.
(b) f is a maximum flow in G.
(c) There is no augmenting path for f .

Proof. (a)→(b). Since |f | ≤ c(A, B) for any cut {A, B}, c(S, T ) = |f |
implies f is a maximum flow.

(b)→(c). If there is an augmenting path p in G, then |f | can be increased
by increasing the flow along p, i.e., f is not maximum.

(c)→(a). Suppose there is no augmenting path for f . Let S be the set of
vertices reachable from s by paths in the residual graph R. Let T = V −S.
Then, R contains no edges from S to T . Thus, in G, all edges from S to T

are saturated. It follows that c(S, T ) = |f |. �
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The proof of the implication (c)→(a) suggests an algorithm for finding
a minimum cut in a given network.

15.3 The Ford–Fulkerson Method

Theorem 15.1 suggests a way to construct a maximum flow by itera-
tive improvement: One keeps finding an augmenting path arbitrarily and
increases the flow by its bottleneck capacity. This is known as the Ford–
Fulkerson method.

Algorithm 15.1 ford–fulkerson
Input: A network (G, s, t, c).

Output: A flow in G.

1. Initialize the residual graph: Set R = G.
2. for each edge (u, v) ∈ E
3. f(u, v)← 0
4. end for
5. while there is an augmenting path p = s, . . . , t in R
6. Let ∆ be the bottleneck capacity of p.
7. for each edge (u, v) in p
8. f(u, v)← f(u, v) + ∆
9. end for

10. Update the residual graph R.
11. end while

Step 1 initializes the residual graph to the original network. The
for loop in Step 2 initializes the flow in G to the zero flow. The while loop
is executed for each augmenting path found in the residual graph R. Each
time an augmenting path is found, its bottleneck capacity ∆ is computed
and the flow is increased by ∆. This is followed by updating the residual
graph R. Updating R may result in the addition of new edges or the dele-
tion of some of the existing ones. It should be emphasized that the selection
of the augmenting path in this method is arbitrary.

The Ford–Fulkerson method may not halt if the capacities are irrational.
If the flow does converge, however, it may converge to a value that is not
necessarily maximum. If the capacities are integers, this method always
computes the maximum flow f ∗ in at most |f∗| steps, since each augmenta-
tion increases the flow by at least 1. As each augmenting path can be found
in O(m) time (e.g., using depth-first search), the overall time complexity of
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Fig. 15.2. An example of a graph on which the ford–fulkerson method performs badly.

this method (when the input capacities are integers) is O(m|f∗|). Notice
that this time complexity is dependent on the input values. As an exam-
ple, consider the network shown in Fig. 15.2(a). If the method alternately
selects the augmenting paths s, a, b, t and s, b, a, t, the number of augment-
ing steps is 1000. The first two residual graphs are shown in Fig. 15.2(b)
and (c).

15.4 Maximum Capacity Augmentation

In this section, we consider improving the Ford–Fulkerson method by select-
ing among all possible augmenting paths that path with maximum bot-
tleneck capacity. This heuristic is due to Edmonds and Karp. As an
example, consider the original graph with zero flow of the network shown in
Fig. 15.1(a). According to this heuristic, the augmenting path s, a, c, b, d, t

with bottleneck capacity 6 is first selected. This is followed by choosing
the augmenting path s, b, c, t with bottleneck capacity 2. If the augmenting
path s, b, c, d, t with bottleneck capacity 2 is next selected, then the flow
becomes maximum. As to the network shown in Fig. 15.2, a maximum flow
can be found using this method after exactly two augmentations.

To analyze the time complexity of this method, which we will refer to
as the maximum capacity augmentation (mca) method, we first show that
there always exists a sequence of at most m augmentations that lead to a
maximum flow. Next, we show that if the input capacities are integers, then
its time complexity is polynomial in the input size, which is a significant
improvement on the Ford–Fulkerson method.

Lemma 15.4 Starting from the zero flow, there is a sequence of at most
m augmentations that lead to a maximum flow.
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Proof. Let f∗ be a maximum flow. Let G∗ be the subgraph of G induced
by the edges (u, v) such that f∗(u, v) > 0. Initialize i to 1. Find a path pi

from s to t in G∗. Let ∆i be the bottleneck capacity of pi. For every edge
(u, v) on pi, reduce f∗(u, v) by ∆i deleting those edges whose flow becomes
zero. Increase i by 1 and repeat the above procedure until t is no longer
reachable from s. This procedure halts after at most m steps, since at least
one edge is deleted in each iteration. It produces a sequence of augmenting
paths p1, p2, . . . with flows ∆1, ∆2, . . . . Now, beginning with the zero flow,
push ∆1 units along p1, ∆2 units along p2, . . . to construct a maximum flow
in at most m steps. �

This lemma is not constructive in the sense that it does not provide
a way of finding this sequence of augmenting paths; it only proves the
existence of such a sequence.

Theorem 15.2 If the edge capacities are integers, then the mca con-
structs a maximum flow in O(m log c∗) augmenting steps, where c∗ is the
maximum edge capacity.

Proof. Let R be the residual graph corresponding to the initial zero flow.
Since the capacities are integers, there is a maximum flow f∗ that is an inte-
ger. By Lemma 15.4, f∗ can be achieved in at most m augmenting paths,
and hence there is an augmenting path p in R with bottleneck capacity at
least f∗/m. Consider a sequence of 2m consecutive augmentations using the
mca heuristic. One of these augmenting paths must have bottleneck capac-
ity of f∗/2m or less. Thus, after at most 2m augmentations, the maximum
bottleneck capacity is reduced by a factor of at least 2. After at most 2m
more augmentations, the maximum bottleneck capacity is reduced further
by a factor of at least 2. In general, after at most 2km augmentations, the
maximum bottleneck capacity is reduced by a factor of at least 2k. Since
the maximum bottleneck capacity is at least 1, k cannot exceed log c∗. This
means the number of augmentations is O(m log c∗). �

A path of maximum bottleneck capacity can be found in O(n2) time
using a modification of Dijkstra’s algorithm for the single-source shortest
path problem (see Sec. 7.2). Therefore, the mca heuristic finds a maximum
flow in O(mn2 log c∗) time.

The time complexity is now polynomial in the input size. However, it is
undesirable that the running time of an algorithm is dependent on its input
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values. This dependence will be removed using the algorithms presented in
the following three sections.

15.5 Shortest Path Augmentation

In this section, we consider another heuristic, also due to Edmonds and
Karp, that puts some order on the selection of augmenting paths. It results
in a time complexity that is not only polynomial, but also independent of
the input values.

Definition 15.6 The level of a vertex v, denoted by level(v), i sthe least
number of edges in a path from s to v. Given a directed graph G = (V, E),
the level graph L is (V, E ′), where E′ = {(u, v) | level(v) = level(u) + 1}.

Given a directed graph G and a source vertex s, its level graph L can
easily be constructed using breadth-first search. As an example of the
construction of the level graph, see Fig. 15.3(a) and (b). In this figure, the
graph shown in (b) is the level graph of the network shown in (a). Here, {s},
{a, b}, {c, d}, and {t} constitute levels 0, 1, 2, and 3, respectively. Observe
that edges (a, b), (b, a), and (d, c) are not present in the level graph, as they
connect vertices in the same level. Also the edge (c, b) is not included since
it is directed from a vertex of higher level to a vertex of lower level.

This heuristic, which we will refer to as minimum path length augmen-
tation (mpla) method, selects an augmenting path of minimum length and
increases the current flow by an amount equal to the bottleneck capacity
of that path. The algorithm starts by initializing the flow to the zero flow
and setting the residual graph R to the original network. It then proceeds
in phases. Each phase consists of the following two steps:

(1) Compute the level graph L from the residual graph R. If t is not in L,
then halt; otherwise continue.

(2) As long as there is a path p from s to t in L, augment the current
flow by p, remove saturated edges from L and R, and update them
accordingly.

Note that augmenting paths in the same level graph are of the same
length. Moreover, as will be shown later, the length of an augmenting
path in any phase after the first is strictly longer than the length of an
augmenting path in the preceding phase. The algorithm terminates as
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soon as t does not appear in the newly constructed level graph. An out-
line of the algorithm is shown as Algorithm mpla (see Fig. 15.3 for an
example).

Algorithm 15.2 mpla
Input: A network (G, s, t, c).

Output: The maximum flow in G.

1. for each edge (u, v) ∈ E
2. f(u, v)← 0
3. end for
4. Initialize the residual graph: Set R = G.
5. Find the level graph L of R.
6. while t is a vertex in L
7. while t is reachable from s in L
8. Let p be a path from s to t in L.
9. Let ∆ be the bottleneck capacity on p.

10. Augment the current flow f by ∆.
11. Update L and R along the path p.
12. end while
13. Use the residual graph R to compute a new level graph L.
14. end while

To analyze the running time of the algorithm, we need the following
lemma.

Lemma 15.5 The number of phases in the mpla algorithm is at most n.

Proof. We show that the number of level graphs computed using the
algorithm is at most n. First, we show that the sequence of lengths of
augmenting paths using the mpla algorithm is strictly increasing. Let p be
any augmenting path in the current level graph. After augmenting using
p, at least one edge will be saturated and will disappear in the residual
graph. At most |p| new edges will appear in the residual graph, but they
are back edges, and hence will not contribute to a shortest path from s

to t. There can be at most m paths of length |p| since each time an edge
in the level graph disappears. When t is no longer reachable from s in the
level graph, any augmenting path must use a back edge or a cross edge, and
hence must be of length strictly greater than |p|. Since the length of any
augmenting path is between 1 and n− 1, the number of level graphs used
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for augmentations is at most n−1. Since one more level graph is computed
in which t does not appear, the total number of level graphs computed is
at most n. �

The running time of the mpla algorithm is computed as follows. Since
there can be at most m augmentations along paths of the same length,
and since by Lemma 15.5 the number of level graphs computed that are
used for augmenting is at most n − 1, the number of augmenting steps is
at most (n − 1)m. Finding a shortest augmenting path in the level graph
takes O(m) time using breadth-first search. Thus, the total time needed
to compute all augmenting paths is O(nm2). Computing each level graph
takes O(m) using breadth-first search, and hence the total time required to
compute all level graphs is O(nm). It follows that the overall running time
of Algorithm mpla is O(nm2).

As to the correctness of the algorithm, note that after computing at
most n−1 level graphs, there are no more augmenting paths in the original
network. By Theorem 15.1, this implies that the flow is maximum. Hence,
we have the following theorem.

Theorem 15.3 The mpla algorithm finds a maximum flow in a network
with n vertices and m edges in O(nm2) time.

15.6 Dinic’s Algorithm

In Sec. 15.5, it was shown that finding the maximum flow can be achieved
in O(nm2) time. In this section, we show that the time complexity can be
reduced to O(mn2) using a method due to Dinic. In the mpla algorithm,
after a level graph is computed, augmenting paths are found individually.
In contrast, the algorithm in this section finds all these augmenting paths
more efficiently, and this is where the improvement in the running time
comes from.

Definition 15.7 Let (G, s, t, c) be a network and H a subgraph of G

containing both s and t. A flow f in H is a blocking flow (with respect to
H) if every path in H from s to t contains at least one saturated edge.

In Fig. 15.4(c), the flow is a blocking flow with respect to the level graph
shown in Fig. 15.4(b). Dinic’s method is shown in Algorithm dinic. As in
the mpla algorithm, Dinic’s algorithm is divided into at most n phases.
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Algorithm 15.3 dinic
Input: A network (G, s, t, c).

Output: The maximum flow in G.

1. for each edge (u, v) ∈ E
2. f(u, v)← 0
3. end for
4. Initialize the residual graph: Set R = G.
5. Find the level graph L of R.
6. while t is a vertex in L
7. u← s
8. p← u
9. while outdegree(s) > 0 {begin phase}

10. while u �= t and outdegree(s) > 0
11. if outdegree(u) > 0 then {advance}
12. Let (u, v) be an edge in L.
13. p← p, v
14. u← v
15. else {retreat}
16. Delete u and all adjacent edges from L.
17. Remove u from the end of p.
18. Set u to the last vertex in p (u may be s).
19. end if
20. end while
21. if u = t then {augment}
22. Let ∆ be the bottleneck capacity along p. Augment

the current flow along p by ∆. Adjust capacities
along p in both residual graph and level graph, delet-
ing saturated edges. Set u to the last vertex on p
reachable from s. Note that u may be s.

23. end if
24. end while
25. Compute a new level graph L from the current residual graph R.
26. end while

Each phase consists of finding a level graph, a blocking flow with respect
to that level graph and increasing the current flow by that blocking flow.
By Lemma 15.5, the number of phases is at most n. Each iteration of the
outer while loop corresponds to one phase. The intermediate while loop
is essentially a depth-first search in which augmenting paths are found and
used to increase the flow. Here, p = s, . . . , u is the current path found so
far. There are two basic operations in the inner while loop. If u, which
is the end of the current path, is not t and there is at least one edge out
of u, say (u, v), then an advance operation takes place. This operation
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consists of appending v to p and making it the current endpoint of p. If,
on the other hand, u is not t and there is no edge out of it, a retreat
operation takes place. This operation simply amounts to removing u from
the end of p and removing it and all adjacent edges in the current level
graph L, as there cannot be any augmenting path that passes by u. The
inner while loop terminates if either t is reached or the search backs up to
s and all edges out of s have been explored. If t is reached, then this is an
indication that an augmenting path has been discovered and augmenting
by that path is carried out in the steps following the inner while loop. If,
on the other hand, s has been reached and all edges out of it have been
deleted, then no augmentation takes place and processing the current level
graph is complete. An example of the execution of the algorithm is given
in Fig. 15.4.

We compute the running time in each phase as follows. The number
of augmentations is at most m since at least one edge of the level graph is
deleted in each augmentation. Each augment costs O(n) time to update
the flow values and to delete edges in both the level graph, the residual
graph and the path p used in the algorithm and possibly to add edges to
the residual graph. Hence, the total cost of all augments in each phase is
O(mn). The number of retreats (the else part of the inner while loop) is
at most n− 2 since each retreat results in the deletion of one vertex other
than s or t. The total number of edges deleted from the level graph in
the retreats is at most m. This means that the total cost of all retreats
is O(m + n) in each phase. The number of advances (the if part of the
inner while loop) before each augment or retreat cannot exceed n− 1; for
otherwise one vertex will be visited more than once before an augment
or retreat. Consequently, the total number of advances is O(mn) in each
phase. It follows that the overall cost of each phase is O(mn), and since
there are at most n phases, the overall running time of the algorithm is
O(mn2).

As to the correctness of the algorithm, note that after computing at
most n−1 level graphs, there are no more augmenting paths in the residual
graph. By Theorem 15.1, this implies that the flow is maximum. Hence,
we have the following theorem.

Theorem 15.4 Dinic’s algorithm finds a maximum flow in a network
with n vertices and m edges in O(mn2) time.
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15.7 The MPM Algorithm

In this section, we outline an O(n3) time algorithm to find the maximum
flow in a given network. The algorithm is due to Malhotra, Pramodh-
Kumar, and Maheshwari. It is an improvement on Dinic’s algorithm. The
O(n3) bound is due to a faster O(n2) time method for computing a blocking
flow. In this section, we will consider only the method of finding such a
blocking flow. The rest of the algorithm is similar to Dinic’s algorithm. For
this, we need the following definition.

Definition 15.8 For a vertex v in a network (G, s, t, c) different from s

and t, we define the throughput of v as the minimum of the total capacity
of incoming edges and the total capacity of outgoing edges. That is, for
v ∈ V − {s, t},

throughput(v) = min

{∑
u∈V

c(u, v),
∑
u∈V

c(v, u)

}
.

The throughputs of s and t are defined by

throughput(s) =
∑

v∈V −{s}
c(s, v) and throughput(t) =

∑
v∈V −{t}

c(v, t).

As in Dinic’s algorithm, updating the residual graph, computing the
level graph, and finding a blocking flow comprise one phase of the algorithm.
Finding a blocking flow from the level graph L can be described as follows.
First, we find a vertex v such that g = throughput(v) is minimum among
all other vertices in L. Next, we “push” g units of flow from v all the way
to t and “pull” g units of flow all the way from s. When pushing a flow
out of a vertex v, we saturate some of its outgoing edges to their capacity
and leave at most one edge partially saturated. We then delete all outgoing
edges that are saturated. Similarly, when pulling a flow into a vertex v,
we saturate some of its incoming edges to their capacity and leave at most
one edge partially saturated. We then delete all incoming edges that are
saturated. Either all incoming edges or all outgoing edges will be saturated.
Consequently, vertex v and all its adjacent edges are removed from the level
graph and the residual graph R is updated accordingly. The flow out of
v is pushed through its outgoing edges to (some of) its adjacent vertices
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and so on until t is reached. Note that this is always possible, as v has
minimum throughput among all other vertices in the current level graph.
Similarly, the flow into v is propagated backward until s is reached. Next,
another vertex of minimum throughput is found and the above procedure
is repeated. Since there are n vertices, the above procedure is repeated at
most n− 1 times. The method is outlined in Algorithm mpm.

Algorithm 15.4 mpm
Input: A network (G, s, t, c).

Output: The maximum flow in G.

1. for each edge (u, v) ∈ E
2. f(u, v)← 0
3. end for
4. Initialize the residual graph: Set R = G.
5. Find the level graph L of R.
6. while t is a vertex in L
7. while t is reachable from s in L
8. Find a vertex v of minimum throughput = g.
9. Push g units of flow from v to t.

10. Pull g units of flow from s to v.
11. Update f , L and R.
12. end while
13. Use the residual graph R to compute a new level graph L.
14. end while

The time required by each phase of the algorithm is computed as follows.
The time required to find the level graph L is O(m) using breadth-first
search. Finding a vertex of minimum throughput takes O(n) time. Since
this is done at most n − 1 times, the total time required by this step is
O(n2). Deleting all saturated edges takes O(m) time. Since at most one
edge is partially saturated for each vertex, the time required to partially
saturate edges in each iteration of the inner while loop takes O(n) time.
Since there are at most n − 1 iterations of the inner while loop, the total
time required to partially saturate edges is O(n2). It follows that the total
time required to push flow from v to t and to pull flow from s to v is O(n2).
The time required to update the flow function f and the residual graph R

is no more than the time required to push and pull flows, i.e., O(n2). As a
result, the overall time required by each phase is O(n2 + m) = O(n2).

As there are at most n phases (in the final phase, t is not a vertex of
L), the overall time required by the algorithm is O(n3). Finally, note that
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after computing at most n− 1 level graphs, there are no more augmenting
paths in the residual graph. By Theorem 15.1, this implies that the flow is
maximum. Hence, we have the following theorem.

Theorem 15.5 The mpm algorithm finds a maximum flow in a network
with n vertices and m edges in O(n3) time.

15.8 Exercises

15.1. Prove Lemma 15.2.

15.2. Prove Lemma 15.3.

15.3. Let f be a flow in a network G and f ′ the flow in the residual graph R
for f . Prove or disprove the following claim. If f ′ is a maximum flow in
R, then f + f ′ is a maximum flow in G. The function f + f ′ is defined
on page 412.

15.4. Prove or disprove the following statement. If all capacities in a network
are distinct, then there exists a unique flow function that gives the max-
imum flow.

15.5. Prove or disprove the following statement. If all capacities in a network
are distinct, then there exists a unique min-cut that separates the source
from the sink.

15.6. Explain how to solve the max-flow problem with multiple sources and
multiple edges.

15.7. Give an O(m) time algorithm to construct the residual graph of a given
network with positive edge capacities.

15.8. Show how to find efficiently an augmenting path in a given residual graph.

15.9. Adapt the ford–fulkerson algorithm to the case where the vertices
have capacities as well.

15.10. Give an efficient algorithm to find a path of maximum bottleneck capacity
in a given directed acyclic graph.

15.11. Give an efficient algorithm to find the level graph of a given directed
acyclic graph.

15.12. Show by example that a blocking flow in the level graph of a residual
graph need not be a blocking flow in the residual graph.

15.13. Let G = (V, E) be a directed acyclic graph, where |V | = n. Give an
algorithm to find a minimum number of directed vertex-disjoint paths
which cover all the vertices, i.e., every vertex is in exactly one path. There
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are no restrictions on the lengths of the paths, where they start and end.
To do this, construct a flow network G′ = (V ′, E′), where

V ′ = {s, t} ∪ {x1, x2, . . . , xn} ∪ {y1, y2, . . . , yn},

E′ = {(s, xi) | 1 ≤ i ≤ n}∪{(yi, t) | 1 ≤ i ≤ n}∪{(xi, yj) | (vi, vj) ∈ E}.
Let the capacity of all edges be 1. Finally, show that the number of paths
which cover V is |V | − |f |, where f is the maximum flow in G′.

15.14. Let G = (V, E) be a directed graph with two distinguished vertices
s, t ∈ V . Give an efficient algorithm to find the maximum number of
edge-disjoint paths from s to t.

15.15. Let G = (V, E) be an undirected weighted graph with two distinguished
vertices s, t ∈ V . Give an efficient algorithm to find a minimum weight
cut that separates s from t.

15.16. Let G = (X ∪ Y, E) be a bipartite graph. An edge cover C for G is a set
of edges in E such that each vertex of G is incident to at least one edge
in C. Give an algorithm to find an edge cover for G of minimum size.

15.17. Let G = (X ∪ Y, E) be a bipartite graph. Let C be a minimum edge
cover (see Exercise 15.16) and I a maximum independent set. Show that
|C| = |I |.

15.18. The vertex connectivity of a graph G = (V, E) is defined as the minimum
number of vertices whose removal disconnects G. Prove that if G has
vertex connectivity k, then |E| ≥ k |V |/2.

15.9 Bibliographic Notes

Some references for network flow include Even (1979), Lawler (1976),
Papadimitriou and Steiglitz (1982), and Tarjan (1983). The Ford–Fulkerson
method is due to Ford and Fulkerson (1956). The two heuristics of augment-
ing by paths with maximum bottleneck capacity and augmenting by paths
of shortest lengths are due to Edmonds and Karp (1972). Dinic’s algorithm
is due to Dinic (1970). The O(n3) MPM algorithm is due to Malhotra,
Pramodh-Kumar, and Maheshwari (1978). The O(n3) bound remains the
best known for general graphs. In the case of sparse graphs, faster algo-
rithms can be found in Ahuja, Orlin, and Tarjan (1989), Galil (1980), Galil
and Tardos (1988), Goldberg and Tarjan (1988), Sleator (1980), and Tardos
(1985).
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Chapter 16

Matching

16.1 Introduction

In this chapter, we study in detail another example of a problem whose
existing algorithms use the iterative improvement design technique: the
problem of finding a maximum matching in an undirected graph. In its
most general setting, given an undirected graph G = (V, E), the maximum
matching problem asks for a subset M ⊆ E with the maximum number
of nonoverlapping edges, that is, no two edges in M have a vertex in com-
mon. This problem arises in many applications, particularly in the areas of
communication and scheduling. While the problem is interesting in its own
right, it is indispensable as a building block in the design of more complex
algorithms. That is, the problem of finding a maximum matching is often
used as a subroutine in the implementation of many practical algorithms.

16.2 Preliminaries

Let G = (V, E) be a connected undirected graph. Throughout this chapter,
we will let n and m denote, respectively, the number of vertices and edges
in G, that is, n = |V | and m = |E|.

A matching in G is a subset M ⊆ E such that no two edges in M have a
vertex in common. We will assume throughout this chapter that the graph
is connected, and hence the modifier “connected” will be dropped. An edge
e ∈ E is matched if it is in M , and unmatched or free otherwise. A vertex
v ∈ V is matched if it is incident to a matched edge, and unmatched or

427
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free otherwise. The size of a matching M , i.e., the number of matching
edges in it, will be denoted by |M |. A maximum matching in a graph is
a matching of maximum cardinality. A perfect matching is one in which
every vertex in V is matched. Given a matching M in an undirected graph
G = (V, E), an alternating path p with respect to M is a simple path that
consists of alternating matched and unmatched edges. The length of p is
denoted by |p|. If the two endpoints of an alternating path coincide, then
it is called an alternating cycle. An alternating path with respect to M is
called an augmenting path with respect to M if all the matched edges in p

are in M and its endpoints are free. Clearly, the number of edges in an
augmenting path is odd, and as a result, it cannot be an alternating cycle.
These definitions are illustrated in Fig. 16.1 in which matched edges are
shown as jagged edges.

In Fig. 16.1, M = {(b, c), (f, g), (h, l), (i, j)} is a matching. The edge
(a, b) is unmatched or free and the edge (b, c) is matched. Vertex a is free
and vertex b is matched. The path a, b, c, d is an alternating path. It is also
an augmenting path (with respect to M). Another augmenting path with
respect to M is a, b, c, g, f, e. Clearly, the matching M is neither maximum
nor perfect.

Let M1 and M2 be two matchings in a graph G. Then

M1 ⊕M2 = (M1 ∪M2)− (M1 ∩M2)

= (M1 −M2) ∪ (M2 −M1).

That is, M1 ⊕M2 is the set of edges that are in M1 or in M2 but not in
both. Consider the matching shown in Fig. 16.1 and the augmenting path

p = a, b, c, g, f, e.

ba c

f

i

d

e g h

lkj

Fig. 16.1. A matching in an undirected graph.
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ba c

f

i

d

e g h

lkj

Fig. 16.2. An augmented matching.

Reversing the roles of edges in p (matched to unmatched and vice versa)
results in the matching shown in Fig. 16.2. Moreover, the size of the new
matching is exactly the size of the old matching plus one. This illustrates
the following lemma whose proof is easy.

Lemma 16.1 Let M be a matching and p an augmenting path with respect
to M . Then M ⊕ p is a matching of size |M ⊕ p| = |M |+ 1.

The following corollary characterizes a maximum matching.

Corollary 16.1 A matching M in an undirected graph G is maximum if
and only if G contains no augmenting paths with respect to M .

Theorem 16.1 Let M1 and M2 be two matchings in an undirected graph
G = (V, E) such that |M1| = r, |M2| = s, and s > r. Then, M1 ⊕ M2

contains k = s− r vertex-disjoint augmenting paths with respect to M1.

Proof. Consider the graph G′ = (V, M1 ⊕ M2). Each vertex in V is
incident to at most one edge in M2−M1 and at most one edge in M1−M2.
Thus, each connected component in G′ is either

• an isolated vertex,
• a cycle of even length,
• a path of even length, or
• a path of odd length.

Moreover, the edges of all paths and cycles in G′ are alternately in
M2−M1 and M1−M2, which means that all cycles and even-length paths
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(b)

Matching in M

Matching in M

ba c

f
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e g h

lkj

(a)

Fig. 16.3. Illustration of Theorem 16.1. (a) M2. (b) M1 ⊕ M2.

have the same number of edges from M1 as the number of edges from M2.
Since there are k more M2 edges than M1 edges in G′, it must be the case
that G′ contains k odd-length paths with one more edge from M2. But
these odd-length paths are augmenting paths with respect to M1 since their
endpoints are free with respect to M1. Consequently, M1 ⊕M2 contains
k = s− r augmenting paths with respect to M1. �

Example 16.1 Consider the matching M1 shown in Fig. 16.1 and the
matching M2 shown in Fig. 16.3(a) for the same graph. As shown in
Fig. 16.3(b), G′ = (V, M1 ⊕M2) consists of an even-length cycle, two iso-
lated vertices and two augmenting paths with respect to M1. Moreover,
|M2| − |M1| = 2.

16.3 The Network Flow Method for Bipartite Graphs

Recall that an undirected graph is called bipartite if it contains no cycles
of odd length. For example, the graph in Fig. 16.1 is bipartite. Let G =
(X∪Y, E) be a bipartite graph. We can utilize one of the maximum network
flow algorithms to find a maximum matching in G as shown in Algorithm
bimatch1.

The correctness of the algorithm is easy to verify. It is also easy to
see that the construction of the flow network takes no more than O(m)
time, where m = |E|. Its running time is dependent on the maximum flow
algorithm used. If, for example, Algorithm mpm is used, then the running
time is O(n3), where n = |X |+ |Y |.
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Algorithm 16.1 bimatch1
Input: A bipartite graph G = (X ∪ Y,E).

Output: A maximum matching M in G.

1. Direct all edges in G from X to Y .
2. Add a source vertex s and a directed edge (s, x) from s to x for each

vertex x ∈ X.
3. Add a sink vertex t and a directed edge (y, t) from y to t for each

vertex y ∈ Y .
4. Assign a capacity c(u, v) = 1 to each (directed) edge (u, v).
5. Use one of the maximum network flow algorithms to find a maxi-

mum flow for the constructed network. M consists of those edges
connecting X to Y whose corresponding directed edge carries a flow
of one unit.

16.4 The Hungarian Tree Method for Bipartite Graphs

Let G = (V, E) be an undirected graph. Lemma 16.1 and Corollary 16.1
suggest a procedure for finding a maximum matching in G. Starting from
an arbitrary (e.g., empty) matching, we find an augmenting path p in G,
invert the roles of the edges in p (matched to unmatched and vice versa),
and repeat the process until there are no more augmenting paths. At
that point, the matching, by Corollary 16.1, is maximum. Finding an
augmenting path in the case of bipartite graphs is much easier than in the
case of general graphs.

Let G = (X ∪ Y, E) be a bipartite graph with |X | + |Y | = n and
|E| = m. Let M be a matching in G. We call a vertex in X an x-vertex.
Similarly, a y-vertex denotes a vertex in Y . First, we pick a free x-vertex,
say r, and label it outer. From r, we grow an alternating path tree, i.e., a
tree in which each path from the root r to a leaf is an alternating path.
This tree, call it T , is constructed as follows. Starting from r, add each
unmatched edge (r, y) connecting r to the y-vertex y and label y inner. For
each y-vertex y adjacent to r, add the matched edge (y, z) to T if such a
matched edge exists, and label z outer. Repeat the above procedure and
extend the tree until either a free y-vertex is encountered or the tree is
blocked, i.e., cannot be extended any more (note that no vertex is added
to the tree more than once). If a free y-vertex is found, say v, then the
alternating path from the root r to v is an augmenting path. On the other
hand, if the tree is blocked, then in this case the tree is called a Hungarian



January 14, 2016 14:22 Algorithms: Design Techniques and Analysis - 9in x 6in b2305-ch16 page 432

432 Algorithms: Design Techniques and Analysis

tree. Next, we start from another free x-vertex, if any, and repeat the above
procedure.

If T is a Hungarian tree, then it cannot be extended; each alternating
path traced from the root is stopped at some outer vertex. The only free
vertex in T is its root. Notice that if (x, y) is an edge such that x is in
T and y is not in T , then x must be labeled inner. Otherwise, x must be
connected to a free vertex or T is extendable through x. It follows that no
vertex in a Hungarian tree can occur in an augmenting path. For suppose
that p is an alternating path that shares at least one vertex with T . If p

“enters” T , then it must be through a vertex labeled inner. If it “leaves”
T , then it must also be through a vertex labeled inner. But, then, p is not
an alternating path, a contradiction. This implies the following important
observation.

Observation 16.1 If, in the process of searching for an augmenting path,
a Hungarian tree is found, then it can be removed permanently without
affecting the search.

Example 16.2 Consider the bipartite graph shown in Fig. 16.4. Starting
from vertex c, the alternating path tree shown in the figure is constructed.
Note that the vertices on any path from c to a leaf are alternately labeled
o(outer) and i(inner). In this alternating path tree, the augmenting path

a

e

g

i j

h

c

f

d

b

a

e

g j
o

freefree

i io

c

f

d

b

Alternating path tree

Fig. 16.4. A matching with an alternating path tree rooted at c.
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Fig. 16.5. A matching with a Hungarian tree rooted at i.

p = c, f, g, j is discovered. Augmenting the current matching by p results in
the matching shown in Fig. 16.5. Now, if we try to grow another alternating
path tree from the free x-vertex i, the search becomes blocked and results
in the Hungarian tree shown in the figure. Since there are no more free
x-vertices, we conclude that the matching shown in Fig. 16.5 is maximum.

The algorithm for finding a maximum matching in a bipartite graph is
outlined in Algorithm bimatch2.

Algorithm 16.2 bimatch2
Input: A bipartite graph G = (X ∪ Y,E).

Output: A maximum matching M in G.

1. Initialize M to any arbitrary (possibly empty) matching.
2. while there exists a free x-vertex and a free y-vertex
3. Let r be a free x-vertex. Using breadth-first search, grow an

alternating path tree T rooted at r.

4. if T is a Hungarian tree then let G←G− T {remove T}
5. else find an augmenting path p in T and let M = M ⊕ p.
6. end while

The running time of the algorithm is computed as follows. The construc-
tion of each alternating tree costs O(m) time using breadth-first search.
Since at most |X | = O(n) trees are constructed, the overall running time is
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O(nm). The correctness of the algorithm follows from Corollary 16.1 and
Observation 16.1. Thus, we have the following theorem.

Theorem 16.2 Algorithm bimatch2 finds a maximum matching in a
bipartite graph with n vertices and m edges in O(nm) = O(n3) time.

16.5 Maximum Matching in General Graphs

In this section, we consider finding a maximum matching in general graphs.
Edmonds was the first who gave a polynomial time algorithm for this prob-
lem. Here, we study a variant of his original algorithm. If we try to apply
Algorithm bimatch2 in Sec. 16.4 on general graphs, it will not work. The
culprit is the odd-length cycles that might exist in a general graph (there
are no odd cycles in bipartite graphs). Consider Fig. 16.6. If we start
searching for an augmenting path at the free vertex a, we may not detect
any of the two augmenting paths

a, b, c, d, e, f, g, h or a, b, c, g, f, e, d, i.

If we try to grow an alternating path tree starting at the free vertex a,
we may end up with the Hungarian tree shown in Fig. 16.7. This causes
the above augmenting paths to be overlooked. Edmonds called an odd

c

e

a b

d

fgh

i

Fig. 16.6. A blossom.

c

e

a b

d

fg

Fig. 16.7. A Hungarian tree.
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a b B

h

i

Fig. 16.8. A shrunken blossom.

cycle that consists of alternately matched and unmatched edges a blossom.
Thus, in Fig. 16.6, the odd cycle c, d, e, f, g, c is a blossom. c is called the
base of the blossom. The alternating path a, b, c is called the stem of the
blossom. Edmonds incredible idea consists in shrinking the blossom into a
supervertex and continuing the search for an augmenting path in the result-
ing graph. Figure 16.8 shows the result of shrinking the blossom shown
in Fig. 16.6.

In the resulting graph, there are two augmenting paths a, b, B, h and
a, b, B, i. In Fig. 16.6, vertex g divides the odd cycle into two simple paths:
an odd-length path c, g, and an even-length path c, d, e, f, g. To find an
augmenting path in the original graph, we replace B in the augmenting path
a, b, B, h by the even-length simple path c, d, e, f, g to obtain the augmenting
path a, b, c, d, e, f, g, h. We may equally replace B in the augmenting path
a, b, B, h by the even-length simple path c, g, f, e, d to obtain the augmenting
path a, b, c, g, f, e, d, i. This procedure is in fact general and always detects
those augmenting paths that would otherwise be overlooked.

Let G = (V, E) be an undirected graph and B a blossom in G (we use
B to denote both the odd cycle and the supervertex). Let G′ denote G

in which B is shrunk into a supervertex B. By shrinking a blossom, we
mean the deletion of its vertices and connecting all their incident edges
to B as shown in Fig. 16.8. The following theorem is fundamental to the
correctness of the matching algorithm to be presented.

Theorem 16.3 Let G = (V, E) be an undirected graph, and suppose that
G′ is formed from G by shrinking a blossom B. Then G′ contains an
augmenting path if and only if G does.

Proof. We prove the only if part. The proof of the if part is rather
complicated and therefore omitted (see the bibliographic notes). Suppose
that G′ contains an augmenting path p′. If p′ avoids B, then p′ is an
augmenting path in G. So, suppose that p′ passes by B. We expand p′

into an augmenting path p in G as follows. Let (u, B) be the matched
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Fig. 16.9. Illustration of the proof of Theorem 16.3.

edge incident to B, and (B, x) the unmatched edge incident to B that is on
the path p′ (see Fig. 16.9(a)). The matched edge corresponds in G to the
edge (u, v) incident to the base of the blossom. Similarly, the unmatched
edge corresponds to an unmatched edge (w, x) incident to the blossom. We
modify p′ to obtain p as follows:

(1) Replace (u, B) with (u, v).
(2) Replace (B, x) with (w, x).
(3) Insert between v and w the even-length portion of the blossom between

these two vertices (see Fig. 16.9(b)). �

The above proof is constructive in the sense that it describes how an
augmenting path in G′ can be transformed into an augmenting path in G.
Before presenting the algorithm, we illustrate in the following example
the process of finding an augmenting path by shrinking and expanding
blossoms.

Example 16.3 Consider Fig. 16.10 in which the augmenting path

a, b, c, d, k, l, v, u, e, f, g, h

is not so obvious.
First, we start at the free vertex a and begin to trace an augmenting

path. As in the algorithm for bipartite graphs, the matched vertices are
alternately labeled outer and inner starting from a free vertex. We label
a outer and try to grow an alternating path tree rooted at a. We add the
two edges (a, b) and (b, c) to the tree and label b inner and c outer. Next,
we add the two edges (c, d) and (d, k) to the tree and label d inner and k

outer. Again, we add the two edges (k, j) and (j, i) to the tree and label
j inner and i outer. At this point, if we try to explore the edge (i, c), we
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Fig. 16.11. Finding an augmenting path.

find that its endpoints have been labeled outer. This is an indication of
the existence of an odd cycle, i.e., a blossom. Thus, we have discovered
the blossom c, d, k, j, i, c and therefore proceed by shrinking it to a single
vertex W and label it outer, as shown in Fig. 16.11(a). Now, we continue
the search from an outer vertex. As W is labeled outer, we continue the
search from it and add the two edges (W, e) and (e, u) labeling e inner and
u outer. Again, we find another odd cycle, namely u, v, l, u. We reduce this
blossom into an outer vertex and call it X . This is shown in Fig. 16.11(b).
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This, in turn, results in the odd cycle W, e, X, W , which we reduce into one
vertex Y and label it outer. This is shown in Fig. 16.11(c). It should be
noted at this point that we have nested blossoms, i.e., a blossom, in this
case Y , that contains other blossoms, namely W and X . The process of
nesting blossoms continues when the odd cycle Y, f, g, Y is detected. We
call the blossom Z and label it outer (see Fig. 16.11(d)). Finally, from the
outer vertex Z, we discover a free vertex h, which signals the existence of
an augmenting path.

Now, we trace the augmenting path a, b, Z, h backward starting at h in
order to construct the augmenting path in the original graph. The rule of
expanding blossoms is that we interpolate the even-length path starting at
the vertex at which we enter the blossom to the base of the blossom as
described in the proof of Theorem 16.3 and illustrated in Fig. 16.9. With
this rule in mind, the construction of the augmenting path reduces to the
following blossom expansions:

(1) Expand Z in a, b, Z, h to obtain a, b, Y, f, g, h.
(2) Expand Y to obtain a, b, W, X, e, f, g, h.
(3) Expand X to obtain a, b, W, l, v, u, e, f, g, h.
(4) Expand W to obtain a, b, c, d, k, l, v, u, e, f, g, h.

The algorithm for matching in general graphs is described more formally
in Algorithm gmatch. This algorithm is similar to Algorithm bimatch2

of Sec. 16.4 with the addition of the necessary steps for handling blossoms
as described in Example 16.3. First, the matching is initialized to be empty.
The outer while loop iterates as long as the matching is not maximum. In
each iteration, an augmenting path is found and the matching is augmented
by that path. The intermediate while loop iterates for at most all the
free vertices until an augmenting path is found. In each iteration of this
while loop, a free vertex is chosen to be the root of the alternating path
tree. From this root, exploration of the graph commences in the inner
while loop, whose function is to grow an alternating path tree two edges
at a time. In each iteration, it picks arbitrarily an outer vertex x and a
corresponding edge (x, y). If such an edge exists, then we have the following
cases.
(1) If y is inner, then that edge is useless, as it forms an even-length cycle.
(2) If y is outer, then this is an indication that a blossom has been

found. This blossom is pushed on top of the stack and shrunk into
a supervertex so that it can be expanded later on when an augmenting
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Algorithm 16.3 gmatch
Input: An undirected graph G = (V, E).

Output: A maximum matching M in G.

1. M←{} {Initialize M to the empty matching}
2. maximum ← false
3. while not maximum
4. determine the set of free vertices F with respect to M
5. augment ← false
6. while F �= {} and not augment
7. Empty stack, unmark edges and remove labels from vertices.
8. Let x be a vertex in F ; F← F − {x}; T← x
9. Label x outer {initialize the alternating path tree}

10. hungarian ← false
11. while not augment
12. Choose an outer vertex x and an unmarked edge (x, y).
13. if (x, y) exists then Mark (x, y)
14. else
15. hungarian ← true
16. exit this while loop
17. end if
18. if y is inner then do nothing {even-length cycle found}
19. else if y is outer then {a blossom found}
20. Place the blossom on top of the stack, shrink it.
21. Replace the blossom with a vertex w and label w outer.
22. If the blossom contains the root, then label w free.
23. else if y is free then
24. augment ← true
25. F← F − {y}
26. else
27. Let (y, z) be in M . Add (x, y) and (y, z) to T .
28. Label y inner and z outer.
29. end if
30. end while
31. if hungarian then remove T from G.
32. else if augment then
33. Construct p by popping blossoms from the stack,
34. expanding them and adding the even-length portion.
35. Augment G by p.
36. end if
37. end while
38. if not augment then maximum ← true
39. end while
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path is discovered. If the blossom contains the root, then it is
labeled free.

(3) If y is labeled free, then an augmenting path has been found. In this
case, the inner while loop is terminated and augmenting by the aug-
menting path found takes place. Note that the augmenting path may
contain blossoms that are stored in the stack. These blossoms are
popped off the stack, expanded, and the appropriate even-length path
is inserted into the augmenting path.

(4) Otherwise, the alternating path tree T is extended by two more edges,
and the search for an augmenting path continues.

If, however, the edge (x, y) does not exist, then T is Hungarian. By
Observation 16.1, T can be removed from G permanently in the current
iteration and all subsequent iterations.

To analyze the running time of the algorithm, we note that there can
be no more than �n/2� augmentations. With careful handling of blos-
soms (shrinking and expanding blossoms), which we will not describe here,
searching for an augmenting path and augmenting the current matching
by that path costs O(m) time. The O(m) bound includes the time needed
to shrink and expand blossoms. It follows that the time complexity of the
algorithm is O(nm) = O(n3). The correctness of the algorithm follows
from Theorem 16.3, Corollary 16.1, and Observation 16.1. This implies
the following theorem.

Theorem 16.4 Algorithm gmatch finds a maximum matching in an
undirected graph with n vertices and m edges in O(nm) = O(n3) time.

16.6 An O(n2.5) Algorithm for Bipartite Graphs

In this section, we study an algorithm that finds a maximum matching in a
bipartite graph G = (X ∪ Y, E) in time O(m

√
n), where n = |X |+ |Y | and

m = |E|. The algorithm is due to Hopcroft and Karp. In this algorithm,
instead of starting at a free x-vertex and finding one augmenting path,
the algorithm carries out the breadth-first search starting at all the free
x-vertices. It then finds a maximal set of vertex-disjoint augmenting paths
of minimum length and simultaneously augments the current matching by
all these augmenting paths. The process of finding a maximal set of vertex-
disjoint augmenting paths and augmenting the current matching by them



January 14, 2016 14:22 Algorithms: Design Techniques and Analysis - 9in x 6in b2305-ch16 page 441

Matching 441

constitutes one phase of the algorithm. The above time complexity follows
from an upper bound of O(

√
n) on the number of phases whose cost is

O(m) each. This is reminiscent of Dinic’s algorithm for finding a maximum
flow in a network.

Lemma 16.2 Let M be a matching, p an augmenting path with respect to
M, and p′ an augmenting path with respect to M ⊕p. Let M ′ = M ⊕p⊕p′.
Then, M ⊕M ′ = p⊕ p′.

Proof. Clearly, we only need to consider edges in p ∪ p′. Let e be an
edge in p ∪ p′. If e is in p⊕ p′, then its status (matched or unmatched) in
M is different from its status in M ′ since its status will change only once:
either by p or p′. Consequently, e is in M ⊕M ′. On the other hand, if e

is in p ∩ p′, then its status is the same in both M and M ′ since its status
will change twice: first by p and then by p′, that is, e is not in M ⊕M ′.
Consequently, M ⊕M ′ = p⊕ p′. �

Lemma 16.3 Let M be a matching, p a shortest augmenting path with
respect to M, and p′ an augmenting path with respect to M ⊕ p. Then,

|p′| ≥ |p|+ 2|p ∩ p′|.

Proof. Let M ′ = M ⊕ p ⊕ p′. By Lemma 16.1, M ′ is a matching and
|M ′| = |M | + 2. By Theorem 16.1, M ⊕M ′ contains two vertex-disjoint
augmenting paths p1 and p2 with respect to M . Since, by Lemma 16.2,
M ⊕M ′ = p⊕ p′, we have

|p⊕ p′| ≥ |p1|+ |p2|.
Since p is of shortest length, |p1| ≥ |p| and |p2| ≥ |p|. Therefore,

|p⊕ p′| ≥ |p1|+ |p2| ≥ 2|p|.
From the identity

|p⊕ p′| = |p|+ |p′| − 2|p ∩ p′|,
we obtain

|p′| ≥ |p|+ 2|p ∩ p′|. �

Let M be a matching, k the length of a shortest augmenting path with
respect to M , and S a maximal set of vertex-disjoint augmenting paths
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with respect to M of length k. Let M ′ be obtained from M by augmenting
M by all the augmenting paths in S. Let p be an augmenting path in M ′.
We have the following important corollary of Lemma 16.3.

Corollary 16.2 |p| ≥ k + 2.

Thus, by Corollary 16.2, starting from the empty matching M0, we
obtain the matching M1 by finding a maximal set of augmenting paths of
length one and simultaneously augmenting by these paths. In general, we
construct a sequence of matchings M0, M1, . . ., where matching Mi+1 is
obtained from matching Mi by finding a maximal set of augmenting paths
of the same length with respect to Mi and simultaneously augmenting by
these paths. As stated before, we will denote by a phase the procedure of
finding a maximal set of augmenting paths of the same length with respect
to the current matching and augmenting by these paths. By Corollary 16.2,
the length of augmenting paths increases from one phase to the next by at
least 2. The following theorem establishes an upper bound on the number
of phases.

Theorem 16.5 The number of phases required to find a maximum match-
ing in a bipartite graph is at most 3�√n�/2.

Proof. Let M be the matching obtained after at least �√n�/2 phases and
M∗ a maximum matching. Since the length of augmenting paths increases
from one phase to the next by at least 2, the length of any augmenting path
in M is at least �√n�+ 1. By Theorem 16.1, there are exactly |M∗| − |M |
vertex-disjoint augmenting paths with respect to M . Since the length of
each path is at least �√n� + 1, and hence each path consists of at least
�√n�+ 2 vertices, we must have

|M∗| − |M | ≤ n

�√n�+ 2
<

n√
n

=
√

n.

Since each phase contributes at least one augmenting path, the remaining
number of phases is at most �√n�. It follows that the total number of
phases required by the algorithm is at most 3�√n�/2. �

The above analysis implies Algorithm bimatch3. The algorithm starts
with the empty matching. It then iterates through the while loop until
the matching becomes maximum. During each iteration, a directed acyclic
graph (dag) D is constructed from which a maximal set of vertex-disjoint
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Algorithm 16.4 bimatch3
Input: A bipartite graph G = (X ∪ Y,E).

Output: A maximum matching M in G.

1. Start with the empty matching M = {}.
2. maximum← false
3. while not maximum {Construct a dag D}
4. L0← Set of free vertices in X.
5. L1←{y ∈ Y | (x, y) ∈ E for some x ∈ L0}
6. E0 = {(x, y) ∈ E | x ∈ L0, y ∈ L1}
7. Mark all vertices in L0 and L1.
8. i← 0
9. while Li+1 contains no free vertices and is not empty

10. i← i + 2
11. Li←{x ∈ X | x is unmarked and is joined by
12. a matched edge to a vertex y ∈ Li−1}
13. Ei−1 = {(x, y) ∈ E | y ∈ Li−1, x ∈ Li}
14. Li+1←{y ∈ Y | y is unmarked and is joined by
15. an unmatched edge to a vertex x ∈ Li}
16. Ei = {(x, y) ∈ E | x ∈ Li, y ∈ Li+1}
17. Mark all vertices in Li and Li+1.
18. end while
19. if Li+1 is empty then maximum ← true
20. else
21. for each free vertex y ∈ Li+1 {augment}
22. Starting at y, use depth-first search to find an augment-

ing path p that ends at a free vertex x ∈ L0. Remove
all vertices on p and incident edges from the dag D. Set
M = M ⊕ p.

23. end for
24. end if
25. end while

augmenting paths is constructed. The current matching is then augmented
by these paths and the procedure is repeated. To construct a dag, we use
breadth-first search to find the sets of vertices L0, L1, . . . and sets of edges
E0, E1, . . . as follows.

(1) L0 is the set of free vertices in X .
(2) L1 is the set of vertices in Y connected by an unmatched edge to the

set of free vertices in X .
(3) If L1 contains at least one free vertex, then the construction of the

dag is complete, as there is at least one augmenting path consisting of
exactly one edge.



January 14, 2016 14:22 Algorithms: Design Techniques and Analysis - 9in x 6in b2305-ch16 page 444

444 Algorithms: Design Techniques and Analysis

(4) If L1 does not contain free vertices, two more sets are constructed,
namely L2 and L3, where L2 consists of the set of vertices in X con-
nected by matched edges to elements of L1 and L3 consists of those
vertices in Y − L1 connected to elements of L2 by unmatched edges.

(5) If L3 contains at least one free vertex, then the construction is complete,
as there is at least one augmenting path connecting a free vertex in L3

to a free vertex in L0.
(6) If L3 does not contain any free vertices, the process is repeated to

construct sets L4, L5, . . . . The construction ends whenever a set L2i+1

of y-vertices is found to contain at least one free vertex or when L2i+1

is empty.
(7) After the construction of each set Li, i ≥ 1, a set of edges Ei−1 is

added. Ei−1 consists of the set of edges connecting those vertices in
Li−1 and Li. The sets E0, E1, . . . consist alternately of unmatched and
matched edges.

Note that whenever a vertex is added to a set Li, it is marked so that
it is not added later on to another set Lj, j > i. Incidentally, note that
a maximal set does not necessarily imply maximum. If a set is maximal,
then no more vertex-disjoint augmenting paths of the same length can be
added.

Example 16.4 Consider the bipartite graph shown in Fig. 16.12(a). The
matching shown is the result of the first phase of the algorithm. In the first
phase, the algorithm found a maximal set of three augmenting paths (see
Fig. 16.12(a)). As noted above, this set is maximal, but not maximum,
as there are more than three augmenting paths in the original graph. Fig-
ure 16.12(b) shows the dag created in the second phase. In this dag, there
are two vertex-disjoint augmenting paths of shortest length. Augmenting
by these two augmenting paths results in a maximum matching of size 5.
Thus, the number of phases required to achieve a maximum matching for
this graph is 2.

As to the time complexity of the algorithm, Theorem 16.5 guarantees
that the number of iterations of the outer while loop is at most 3�√n�/2,
that is, the number of iterations is O(

√
n). It is not hard to see that the

construction of the dag in each iteration takes O(m) time. The time taken
for augmentations is also O(m). It follows that the running time of the
entire algorithm is O(m

√
n) = O(n2.5).



January 14, 2016 14:22 Algorithms: Design Techniques and Analysis - 9in x 6in b2305-ch16 page 445

Matching 445

(a)

a

g

i j

h

f

d

b

e

c

f

da e

free

Directed acyclic graph
free free

free

g

h

bc

(b)

a

g

i j

h

f

d

b

e

c

(c)

Fig. 16.12. An example of the algorithm.

Theorem 16.6 Algorithm bimatch3 finds a maximum matching in a
bipartite graph with n vertices and m edges in O(m

√
n) = O(n2.5) time.

16.7 Exercises

16.1. Prove Hall’s theorem: If G = (X ∪ Y, E) is a bipartite graph, then all
vertices in X can be matched to a subset of Y if and only if |Γ(S)| ≥ |S|
for all subsets S of X. Here Γ(S) is the set of all vertices in Y adjacent to
at least one vertex in S. Hall’s theorem is sometimes called the marriage
theorem since it can be rephrased as follows. Given a set of n men and a
set of n women, let each man make a list of the women he is willing to
marry. Then each man can be married to a woman on his list if and only
if the union of any k of the mens’ lists contains at least k women.

16.2. Use Hall’s theorem to show that there is no perfect matching in the bipar-
tite graph shown in Fig. 16.5.

16.3. A graph G is called k-regular if the degree of each vertex of G is k. Prove
the following corollary of Hall’s theorem: If G is a k-regular bipartite
graph with k > 0, then G has a perfect matching. Note that if G =
(X ∪ Y, E), then |X| = |Y |.

16.4. Let G be a graph with no isolated vertices. Prove that the size of a
maximum matching is less than or equal to the size of a minimum vertex
cover for G.
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16.5. Use the max-flow min-cut theorem to prove König’s theorem: If G is a
bipartite graph, then the size of a maximum matching in G is equal to
the size of a minimum vertex cover for G.

16.6. Use König’s theorem to prove Hall’s theorem.

16.7. How many perfect matchings are there in the graph Kn,n, the complete
bipartite graph with 2n vertices?

16.8. Prove or disprove the following statement. Using an algorithm for finding
a maximum matching by finding augmenting paths and augmenting using
these paths, whenever a vertex becomes matched, then it will remain
matched throughout the algorithm.

16.9. Prove that a (free) tree has at most one perfect matching. Give a linear
time algorithm to find such a matching.

16.10. Give an algorithm that finds an independent set of vertices of maximum
cardinality in a bipartite graph.

16.11. Give a recursive algorithm that finds an independent set of vertices of
maximum cardinality in an arbitrary graph.

16.12. Prove Lemma 16.1.

16.13. Prove Corollary 16.1.

16.14. Give a more detailed proof of Observation 16.1.

16.15. Show that Observation 16.1 applies in the case of general graphs.

16.16. Let G be a bipartite graph, and let M be a matching in G. Show that
there is a maximum matching M∗ such that every vertex matched in M
is also matched in M∗.

16.17. Let G be a graph and S1 and S2 be two disjoint subsets of its vertices.
Show how to find the maximum number of vertex-disjoint paths between
S1 and S2 by modeling the problem as a matching problem. For simplicity,
you may assume that S1 and S2 have the same size.

16.18. The stable marriage problem. In a group of n boys and n girls, each boy
ranks the n girls according to his preference and each girl ranks the n
boys according to her preference. A marriage corresponds to a perfect
matching between the boys and girls. A marriage is unstable if there is
a pair of one boy and one girl who are unmarried to each other, but like
each other more than their respective spouses. A marriage is stable if it is
not unstable. Show that a stable marriage always exists. Give an efficient
algorithm to find one stable marriage.

16.19. Show that the bound of Algorithm bimatch2 is tight by exhibiting a
bipartite graph that requires Θ(n) iterations each takes Θ(m) time.

16.20. Prove Corollary 16.2.
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16.21. Let G = (V, E) be a graph with no isolated vertices. An edge cover C for
G is a subset of its edges that cover all its vertices, i.e., each vertex in V
is incident to at least one edge in C. Show that if M is a matching, then
there exists an edge cover C such that |C| = |V | − |M |.

16.22. Use the result of Exercise 16.21 to show that the problem of finding an
edge cover of minimum size can be reduced to the problem of matching.
In other words, show how to use matching techniques to find an edge
cover of minimum cardinality.

16.23. Let S1, S2, . . . , Sn be n sets. A set {r1, r2, . . . , rn} is called a system of
distinct representatives (SDR) if rj ∈ Sj , 1 ≤ j ≤ n. Give an algorithm
for finding an SDR, if one exists, by defining a bipartite graph and solving
a matching problem.

16.24. Let S1, S2, . . . , Sn be n sets. Prove that an SDR exists for these sets (see
Exercise 16.23) if and only if the union of any k sets contains at least k
elements, for 1 ≤ k ≤ n. (Hint: See Exercise 16.1.)

16.8 Bibliographic Notes

Algorithms for maximum matching and maximum-weight matching can be
found in several books including Lawler (1976), McHugh (1990), Minieka
(1978), Moret and Shapiro (1991), Papadimitriou and Steiglitz (1982), and
Tarjan (1983). Algorithms for bipartite matching were studied a long time
ago; see, for example, Hall (1956). Corollary 1.1 was proved independently
by both Berge (1957) and Norman (1959). The idea of the algorithm
for matching in general graphs is due to the pioneering work of Edmonds
(1965). Edmonds’ proposed implementation requires O(n4) time. Improve-
ments in the efficiency of blossom handling are due to Gabow (1976), whose
implementation requires O(n3) time. The O(m

√
n) algorithm for match-

ing in bipartite graphs is due to Hopcroft and Karp (1973). In Even and
Tarjan (1975), it was first pointed out that this algorithm is a special case
of the maximum flow algorithm applied to simple networks. An algorithm
for maximum matching in general graphs with the same time complexity is
described in Micali and Vazirani (1980).
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Computational geometry is defined as the study of problems that are
inherently geometric in nature. There are several techniques to solve geo-
metric problems, some of them we have already covered in the previous
chapters. There are, however, standard techniques that are specific to solv-
ing geometric problems. It is important to have fast geometric algorithms in
many fields such as computer graphics, scientific visualization, and graphi-
cal user interfaces. Also, speed is fundamental in real-time applications in
which the algorithm receives its input dynamically.

In Chapter 17, we will study an important design technique generally
referred to as geometric sweeping. We will show how this technique can be
employed to solve fundamental problems in computational geometry such
as finding the maxima of a set of points, finding the intersection of line
segments, computing the convex hull of a point set, and finally computing
the diameter of a set of points.

Chapter 18 will be devoted to the study of two variants of Voronoi dia-
grams: the nearest-point Voronoi diagram and the farthest-point Voronoi
diagram. We will demonstate the power of the former by presenting solu-
tions to problems that are concerned with “nearness” and show how the
latter can be used to solve problems that have to do with “farthness”. Some
of these solutions include linear time algorithms for the following problems:

(1) The convex hull problem.
(2) The all nearest-neighbors problem.
(3) The Euclidean minimum spanning tree problem.
(4) The all farthest neighbors problem.
(5) Finding the smallest enclosing circle that enclose a planar point set.
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Chapter 17

Geometric Sweeping

17.1 Introduction

In geometric algorithms, the main objects considered are usually points,
line segments, polygons, and others in two-dimensional, three-dimensional,
and higher dimensional spaces. Sometimes, a solution to a problem calls
for “sweeping” over the given input objects to collect information in order
to find a feasible solution. This technique is called plane sweep in the
two-dimensional plane and space sweep in the three-dimensional space. In
its simplest form, a vertical line sweeps from left to right in the plane
stopping at each object, say a point, starting from the leftmost object to
the rightmost object.

17.2 A Simple Example: Computing the Maximal Points
of a Point Set

We illustrate the method of geometric sweeping in connection with a simple
problem in computational geometry: Computing the maximal points of a
set of points in the plane.

Definition 17.1 Let p1 = (x1, y1) and p2 = (x2, y2) be two points in
the plane. p2 is said to dominate p1, denoted by p1 ≺ p2, if x1 ≤ x2 and
y1 ≤ y2.

453
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Definition 17.2 Let S be a set of points in the plane. A point p ∈ S is
a maximal point or a maximum if there does not exist a point q ∈ S such
that p �= q and p ≺ q.

The following problem has a simple algorithm, which is a good example
of a geometric sweeping algorithm.

maximal points: Given a set S of n points in the plane, determine the
maximal points in S.

This problem can easily be solved as follows. First, we sort all the points
in S in nonincreasing order of their x-coordinates. The rightmost point (the
one with maximum x-value) is clearly a maximum. The algorithm sweeps
the points from right to left and for each point p it determines whether it
is dominated on the y-coordinate by any of the previously scanned points.
The algorithm is given as Algorithm maxima.

Algorithm 17.1 maxima
Input: A set S of n points in the plane.

Output: The set M of maximal points in S.

1. Let A be the points in S sorted in nonincreasing order of their
x-coordinates. If two points have the same x-coordinate, then the
one with larger y-coordinate appears first in the ordering.

2. M←{A[1]}
3. maxy← y-coordinate of A[1]
4. for j← 2 to n
5. (x, y)←A[j]
6. if y > maxy then
7. M←M ∪ {A[j]}
8. maxy← y
9. end if

10. end for

Figure 17.1 illustrates the behavior of the algorithm on a set of points.
As shown in the figure, the set of maxima {a, b, c, d} forms a staircase.
Note that, for example, e is dominated by a only, whereas f is dominated
by both a and b, and g is dominated by c only.

It is easy to see that the running time of the Algorithm maxima is
dominated by the sorting step, and hence is O(n log n).

The above example reveals the two basic components of a plane sweep
algorithm. First, there is the event point schedule, which is a sequence of the
x-coordinates ordered from right to left. These points define the “stopping”
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Fig. 17.1. A set of points with their maxima.

positions of the sweeping line, which in this case is a vertical line. Unlike
the case in the previous example, in some plane sweep algorithms, the event
point schedule may be updated dynamically, and thus data structures that
are more complex than a simple array or a queue may be required for
efficient implementation.

The other component in the plane sweep method is the sweep line status.
This is an appropriate description of the geometric objects at the sweeping
line. In the above example, the sweep line status consists of a “description”
of the most recent maximal point detected. This description is simply the
value of its y-coordinate. In other geometric algorithms, the sweep line
status may require storing the relevant information needed in the form of
a stack, a queue, a heap, etc.

17.3 Geometric Preliminaries

In this section, we present the definitions of some of the fundamental con-
cepts in computational geometry that will be used in this chapter. Most
of these definitions are within the framework of the two-dimensional space;
their generalization to higher dimensions is straightforward. A point p is
represented by a pair of coordinates (x, y). A line segment is represented by
two points called its endpoints. If p and q are two distinct points, we denote
by pq the line segment whose endpoints are p and q. A polygonal path π

is a sequence of points p1, p2, . . . , pn such that pipi+1 is a line segment for
1 ≤ i ≤ n− 1. If p1 = pn, then π (together with the closed region bounded
by π) is called a polygon. In this case, the points pi, 1 ≤ i ≤ n, are called
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the vertices of the polygon, and the line segments p1p2, p2p3, . . . , pn−1pn

are called its edges. A polygon can conveniently be represented using a cir-
cular linked list to store its vertices. In some algorithms, it is represented
by a circular doubly linked list. As defined above, technically, a polygon
refers to the closed connected region called the interior of the polygon plus
the boundary that is defined by the closed polygonal path. However, we
will mostly write “polygon” to mean its boundary. A polygon P is called
simple if no two of its edges intersect except at its vertices; otherwise it is
nonsimple. Figure 17.2 shows two polygons, one is simple and the other
is not.

Henceforth, it will be assumed that a polygon is simple unless otherwise
stated, and hence the modifier “simple” will be dropped. A polygon P is
said to be convex if the line segment connecting any two points in P lies
entirely inside P . Figure 17.3 shows two polygons, one is convex and the
other is not.

Let S be a set of points in the plane. The convex hull of S, denoted by
CH (S), is defined as the smallest convex polygon enclosing all the points
in S. The vertices of CH (S) are called hull vertices and are also referred
to as the extreme points of S.

(a) (b)

Fig. 17.2. (a) A simple polygon. (b) A nonsimple polygon.

(b)(a)

Fig. 17.3. (a) A convex polygon. (b) A nonconvex polygon.
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Fig. 17.4. (a) A left turn. (b) A right turn.

Let u = (x1, y1), v = (x2, y2), and w = (x3, y3). The signed area of the
triangle formed by these three points is half the determinant

D =

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ .
D is positive if u, v, w, u form a counterclockwise cycle, in which case

we say that the path u, v, w is a left turn. It is negative if u, v, w, u form a
clockwise cycle, in which case we say that the path u, v, w is a right turn
(see Fig. 17.4). D = 0 if and only if the three points are collinear, i.e., lie
on the same line.

17.4 Computing the Intersections of Line Segments

In this section, we consider the following problem. Given a set L =
{l1, l2, . . . , ln} of n line segments in the plane, find the set of points at which
they intersect. We will assume that no line segment is vertical and no three
line segments intersect at the same point. Removing these assumptions will
only make the algorithm more complicated.

Let li and lj be any two line segments in L. If li and lj intersect the
vertical line with x-coordinate x at two distinct points pi and pj , respec-
tively, then we say that li is above lj at x, denoted by li >x lj , if pi lies
above pj on the vertical line with x-coordinate x. The relation >x defines a
total order on the set of all line segments intersecting the vertical line with
x-coordinate x. Thus, in Fig. 17.5, we have

l2 >x l1, l2 >x l3, l3 >y l2 and l4 >z l3.
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x y z
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l

Fig. 17.5. Illustration of the relation >x.

The algorithm starts by sorting the 2n endpoints of the n line segments
in nondecreasing order of their x-coordinates. Throughout the algorithm, a
vertical line sweeps all endpoints of the line segments and their intersections
from left to right. Starting from the empty relation, each time an endpoint
or an intersection point is encountered, the order relation changes. Specif-
ically, the order relation changes whenever one of the following “events”
occurs while the line is swept from left to right.

(1) When the left endpoint of a line segment is encountered.
(2) When the right endpoint of a line segment is encountered.
(3) When the intersection point of two line segments is encountered.

The sweep line status S is completely described by the order relation >x.
As to the event point schedule E, it includes the sorted endpoints plus the
intersections of the line segments, which are added dynamically while the
line is swept from left to right.

The actions taken by the algorithm on each event are as follows.
(1) When the left endpoint of a line segment l is encountered, l is added to

the order relation. If there is a line segment l1 immediately above l and
l and l1 intersect, then their intersection point is inserted into the event
point schedule E. Similarly, if there is a line segment l2 immediately
below l and l and l2 intersect, then their intersection point is inserted
into E.

(2) When the right endpoint p of a line segment l is encountered, l is
removed from the order relation. In this case, the two line segments
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Fig. 17.6. Reversing the order of two line segments at an intersection point.

l1 and l2 immediately above and below l are tested for a possible
intersection at a point q to the right of p. If this is the case, q is
inserted into E.

(3) When the intersection point p of two line segments is encountered,
their relative order in the relation is reversed. Thus, if l1 >x l2 to
the left of their intersection, the order relation is modified so that
l2 >x l1. Let l3 and l4 be the two line segments immediately above and
below the intersection point p, respectively (see Fig. 17.6). In other
words, l3 is above l2, and l4 is below l1 to the right of the intersection
point (see Fig. 17.6). In this case, we check for the possibility of l2
intersecting with l3, and l1 intersecting with l4. As before, we insert
their intersection points into E, if any.

It remains to specify the data structures needed to implement the event
point schedule and the sweep line status. To implement the event point
schedule E, we need a data structure that supports the following operations:

• insert(p, E): Insert point p into E.
• delete-min(E): Return the point with minimum x-coordinate and delete

it from E.

These two operations are clearly supported by the heap data structure
in O(log n) time. Thus, E is implemented as a heap that initially contains
the 2n sorted points. Each time the sweep line is to be moved to the right,
the point with minimum x-coordinate is extracted. As explained above,
when the algorithm detects an intersection point p, it inserts p into E.
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As we have seen in the description of the algorithm above, the sweep
line status S must support the following operations:

• insert(l, S): Insert line segment l into S.
• delete(l, S): Delete line segment l from S.
• above(l, S): Return the line segment immediately above l.
• below(l, S): Return the line segment immediately below l.

A data structure known as a dictionary supports each of the above
operations in O(log n) time. Note that above(l, S) or below(l, S) may not
exist; a simple test (which is not included in the algorithm) is needed to
handle these two cases.

A more precise description of the algorithm is given in Algorithm inter-

sectionsls. In the algorithm, Procedure process(p) inserts p into E and
outputs p.

As regards the running time of the algorithm, we observe the following.
The sorting step takes O(n log n) time. Let the number of intersections
be m. Then, there are 2n + m event points to be processed. Each point
requires O(log(2n+m)) processing time. Hence, the total time required by
the algorithm to process all intersection points is O((2n+m) log(2n+m)).
Since m ≤ n(n − 1)/2 = O(n2), the bound becomes O((n + m) log n).
Since the näıve approach to find all intersections runs in time O(n2), the
algorithm is not suitable to process a set of line segments whose number
of intersections is known apriori to be Ω(n2/logn). On the other hand, if
m = O(n), then the algorithm runs in O(n log n) time.

17.5 The Convex Hull Problem

In this section, we consider, perhaps, the most fundamental problem in com-
putational geometry: Given a set S of n points in the plane, find CH (S),
the convex hull of S. We describe here a well-known geometric sweeping
algorithm called “Graham scan”.

In its simplest form, Graham scan uses a line centered at a certain point
and makes one rotation that sweeps the whole plane stopping at each point
to decide whether it should be included in the convex hull or not. First,
in one scan over the list of points, the point with minimum y-coordinate
is found, call it p0. If there are two or more points with the minimum
y-coordinate, p0 is chosen as the rightmost one. Clearly, p0 belongs to the
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Algorithm 17.2 intersectionsls
Input: A set L = {l1, l2, . . . , ln} of n line segments in the plane.

Output: The intersection points of the line segments in L.

1. Sort the endpoints in nondecreasing order of their x-coordinates and
insert them into a heap E (the event point schedule).

2. while E is not empty
3. p← delete-min(E)
4. if p is a left endpoint then
5. let l be the line segment whose left endpoint is p
6. insert(l, S)
7. l1← above(l, S)
8. l2← below(l, S)
9. if l intersects l1 at point q1 then process(q1)

10. if l intersects l2 at point q2 then process(q2)
11. else if p is a right endpoint then
12. let l be the line segment whose right endpoint is p
13. l1← above(l, S)
14. l2← below(l, S)
15. delete(l, S)
16. if l1 intersects l2 at point q to the right of p then process(q)
17. else {p is an intersection point}
18. Let the two intersecting line segments at p be l1 and l2
19. where l1 is above l2 to the left of p
20. l3← above(l1, S) {to the left of p}
21. l4← below(l2, S) {to the left of p}
22. if l2 intersects l3 at point q1 then process(q1)
23. if l1 intersects l4 at point q2 then process(q2)
24. interchange the ordering of l1 and l2 in S
25. end if
26. end while

convex hull. Next, the coordinates of all points are transformed so that p0

is at the origin. The points in S−{p0} are then sorted by polar angle about
the origin p0. If two points pi and pj form the same angle with p0, then the
one that is closer to p0 precedes the other in the ordering. Note that here
we do not have to calculate the real distance from the origin, as it involves
computing the square root which is costly; instead, we only need to compare
the squares of the distances. Let the sorted list be T = {p1, p2, . . . , pn−1},
where p1 and pn−1 form the least and greatest angles with p0, respectively.
Figure 17.7 shows an example of a set of 13 points after sorting them by
polar angle about p0.

Now, the scan commences with the event point schedule being the sorted
list T , and the sweep line status being implemented using a stack St.
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Fig. 17.7. A set of points sorted in polar angle about p0.

The stack initially contains (pn−1, p0), with p0 being on top of the stack.
The algorithm then traverses the points starting at p1 and ending at pn−1.
At any moment, let the stack content be

St = (pn−1, p0, . . . , pi, pj)

(i.e., pi and pj are the most recently pushed points), and let pk be the next
point to be considered. If the triplet pi, pj , pk forms a left turn, then pk is
pushed on top of the stack and the sweep line is moved to the next point. If
pi, pj, pk form a right turn or are collinear, then pj is popped off the stack
and the sweep line is kept at point pk.

Figure 17.8 shows the resulting convex hull just after p5 has been pro-
cessed. At this point, the stack content is

(p12, p0, p1, p3, p4, p5).

After processing point p6, the points p5, p4, and p3 are successively
popped off the stack, and the point p6 is pushed on top of the stack (see
Fig. 17.9). The final convex hull is shown in Fig. 17.10.

Given below is a more formal description of the algorithm. At the end
of the algorithm, the stack St contains the vertices of CH (S), so it can be
converted into a linked list to form a convex polygon.

The running time of Algorithm convexhull is computed as follows.
The sorting step costs O(n log n) time. As to the while loop, we observe
that each point is pushed exactly once and is popped at most once. More-
over, checking whether three points form a left turn or a right turn amounts



January 14, 2016 14:22 Algorithms: Design Techniques and Analysis - 9in x 6in b2305-ch17 page 463

Geometric Sweeping 463

x

y

p


p


p


p


p


p


p


p


p


p


Sweep line

p


p


p


Fig. 17.8. The convex hull after processing point p5.
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Fig. 17.9. The convex hull after processing point p6.

to computing their signed area in Θ(1) time. Thus the cost of the while loop
is Θ(n). It follows that the time complexity of the algorithm is O(n log n).
See Exercise 17.9 for an alternative approach that avoids computing the
polar angles. Other algorithms for computing the convex hull are outlined
in Exercises 17.10 and 17.13.

17.6 Computing the Diameter of a Set of Points

Let S be a set of points in the plane. The diameter of S, denoted by
Diam(S), is defined to be the maximum distance realized by two points
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Fig. 17.10. The final convex hull.

Algorithm 17.3 convexhull
Input: A set S of n points in the plane.

Output: CH (S), the convex hull of S stored in a stack St.

1. Let p0 be the rightmost point with minimum y-coordinate.
2. T [0]← p0

3. Let T [1..n − 1] be the points in S − {p0} sorted in increasing polar
angle about p0. If two points pi and pj form the same angle with p0,
then the one that is closer to p0 precedes the other in the ordering.

4. push (St, T [n− 1]); push (St, T [0])
5. k← 1
6. while k < n− 1
7. Let St = (T [n− 1], . . . , T [i], T [j]), T [j] is on top of the stack.
8. if T [i], T [j], T [k] is a left turn then
9. push (St, T [k])

10. k← k + 1
11. else pop (St)
12. end if
13. end while

in S. A straightforward algorithm to solve this problem compares each
pair of points and returns the maximum distance realized by two points
in S. This approach leads to a Θ(n2) time algorithm. In this section, we
study an algorithm to find the diameter of a set of points in the plane in
time O(n log n).

We start with the following observation, which seems to be intuitive
(see Fig. 17.11).
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Fig. 17.11. The diameter of a set of points is the diameter of its convex hull.

Fig. 17.12. Some supporting lines of a convex polygon.

Observation 17.1 The diameter of a point set S is equal to the diameter
of the vertices of its convex hull, i.e., Diam(S) = Diam(CH (S)).

Consequently, to compute the diameter of a set of points in the plane,
we only need to consider the vertices on its convex hull. Therefore, in
what follows we will be concerned primarily with the problem of finding
the diameter of a convex polygon.

Definition 17.3 Let P be a convex polygon. A supporting line of P is
a straight line l passing through a vertex of P such that the interior of P

lies entirely on one side of l (see Fig. 17.12).

A useful characterization of the diameter of a convex polygon is given
in the following theorem (see Fig. 17.13).

Theorem 17.1 The diameter of a convex polygon P is equal to the great-
est distance between any pair of parallel supporting lines of P .

Definition 17.4 Any two points that admit two parallel supporting lines
are called antipodal pair.
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p

q

Fig. 17.13. Two parallel supporting lines with largest separation.

We have the following corollary of Theorem 17.1.

Corollary 17.1 Any pair of vertices realizing the diameter in a convex
polygon is an antipodal pair.

By the above corollary, the problem now reduces to finding all antipodal
pairs and selecting the one with maximum separation. It turns out that we
can accomplish that in optimal linear time.

Definition 17.5 We define the distance between a point p and a line
segment qr, denoted by dist(q, r, p) to be the distance of p from the straight
line on which the line segment qr lies. A vertex p is farthest from a line
segment qr if dist(q, r, p) is maximum.

Consider Fig. 17.14(a) in which a convex polygon P is shown. From
the figure, it is easy to see that p5 is the farthest vertex from edge p12p1.
Similarly, vertex p9 is the farthest from edge p1p2.

It can be shown that a vertex p forms an antipodal pair with p1 if and
only if it is one of the vertices p5, p6, . . . , p9. In general, let the vertices
on the convex hull of the point set be p1, p2, . . . , pm for some m ≤ n, in
counterclockwise ordering. Let pk be the first farthest vertex from edge
pmp1, and pl the first farthest vertex from edge p1p2 when traversing the
boundary of CH (S) in counterclockwise order (see Fig. 17.14(b)). Then,
any vertex between pk and pl (including pk and pl) forms an antipodal
pair with p1. Moreover, all other vertices do not form an antipodal pair
with p1.

This important observation suggests the following method for finding
all antipodal pairs. First, we traverse the boundary of CH (S) in counter-
clockwise order starting at p2 until we find pk, the farthest vertex from
pmp1. We add the pair (p1, pk) to an initially empty set for holding the
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Fig. 17.14. Computing the set of antipodal pairs.

antipodal pairs. We then keep traversing the boundary and include the pair
(p1, pj) for each vertex pj encountered until we reach pl, the vertex farthest
from p1p2. It may be the case that l = k + 1 or even l = k, i.e., pl = pk.
Next, we advance to the edge p2p3 to find the vertices that form antipo-
dal pairs with p2. Thus, we are simultaneously doing two counterclockwise
traversals of the boundary: one from p1 to pk and the other from pk to pm.
The traversal ends when the antipodal pair (pk, pm) is detected. Finally,
a linear scan over the set of antipodal pairs is clearly sufficient to find the
diameter of the convex hull, which by Observation 17.1 is the desired diam-
eter of the point set. This method is described more formally in Algorithm
diameter.

If the convex hull contains no parallel edges, the number of antipodal
pairs will be exactly m, which is the size of the convex hull. If there are
pairs of parallel edges, then their number is at most �m/2� and hence the
total number of antipodal pairs is at most �3m/2�.

When comparing the distance between a vertex and a line segment,
we do not compute the actual distance (which involves taking the square
roots); instead, we compare the signed area since it is proportional to the
actual distance (see Sec. 17.3 for the definition of the signed area). For
example, the comparison

dist(pi, pi+1, pj+1) ≥ dist(pi, pi+1, pj)
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Algorithm 17.4 diameter
Input: A set S of n points in the plane.

Output: Diam(S), the diameter of S.

1. {p1, p2, . . . , pm}← CH (S) {Compute the convex hull of S}
2. A←{} {Initialize the set of antipodal pairs}
3. k← 2
4. while dist(pm, p1, pk+1) > dist(pm, p1, pk) {Find pk}
5. k← k + 1
6. end while
7. i← 1; j← k
8. while i ≤ k and j ≤ m
9. A←A ∪ {(pi, pj)}

10. while dist(pi, pi+1, pj+1) ≥ dist(pi, pi+1, pj) and j < m
11. A←A ∪ {(pi, pj)}
12. j← j + 1
13. end while
14. i← i + 1
15. end while
16. Scan A to obtain an antipodal pair (pr, ps) with maximum separation.
17. return the distance between pr and ps.

in the algorithm can be replaced with the comparison

area(pi, pi+1, pj+1) ≥ area(pi, pi+1, pj),

where area(q, r, p) is the area of the triangle formed by the line segment qr

and the point p. This area is half the magnitude of the signed area of these
three points.

The running time of the algorithm is computed as follows. Finding the
convex hull requires O(n log n) time. Since the two nested while loops
consist of two concurrent sweeps of the boundary of the convex hull, the
time taken by these nested while loops is Θ(m) = O(n), where m is the size
of the convex hull. It follows that the overall running time of the algorithm
is O(n log n).

17.7 Exercises

17.1. Let S be a set of n points in the plane. Design an O(n log n) time algo-
rithm to compute for each point p the number of points in S dominated
by p.
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17.2. Let I be a set of intervals on the horizontal line. Design an algorithm to
report all those intervals that are contained in another interval from I .
What is the running time of your algorithm?

17.3. Consider the decision problem version of the line segment intersection
problem: Given n line segments in the plane, determine whether two of
them intersect. Give an O(n log n) time algorithm to solve this problem.

17.4. Give an efficient algorithm to report all intersecting pairs of a set of n
horizontal line segments. What is the time complexity of the algorithm?

17.5. Give an efficient algorithm to report all intersecting pairs of a given set
of n horizontal and vertical line segments. What is the time complexity
of the algorithm?

17.6. Explain how to determine whether a given polygon is simple. Recall that
a polygon is simple if and only if no two of its edges intersect except at
its vertices.

17.7. Let P and Q be two simple polygons whose total number of vertices
is n. Give an O(n log n) time algorithm to determine whether P and Q
intersect.

17.8. Give an O(n) time algorithm to solve the problem in Exrcise 17.7 in the
case where the two polygons are convex.

17.9. In Graham scan for finding the convex hull of a point set, the points
are sorted by their polar angles. However, computing the polar angles is
costly. One alternative to computing the convex hull is to sort using the
sines or cosines of the angles instead. Another alternative is to sort the
points around the point (0,−∞) instead. This is equivalent to sorting
the points by x-coordinates. Explain how to use this idea to come up
with another algorithm for computing the convex hull.

17.10. Another algorithm for finding the convex hull is known as Jarvis march.
In this algorithm, the edges of the convex hull are found instead of
its vertices. The algorithm starts by finding the point with the least
y-coordinate, say p1, and finding the point p2 with the least polar angle
with respect to p1. Thus, the line segment p1p2 defines an edge of the
convex hull. The next edge is determined by finding the point p3 with
the least polar angle with respect to p2, and so on. From its description,
the algorithm resembles Algorithm selectionsort. Give the details of
this method. What is its time complexity?

17.11. What are the merits and demerits of Jarvis march for finding the convex
hull as described in Exercise 17.10?

17.12. Let p be a point external to a convex polygon P . Given CH (P ), explain
how to compute in O(log n) time the convex hull of their union, i.e., the
convex hull of P ∪ {p}.
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17.13. Use the result of Exercise 17.12 to devise an incremental algorithm for
computing the convex hull of a set of points. The algorithm builds the
convex hull by testing one point at a time and deciding whether it belongs
to the current convex hull or not. The algorithm should run in time
O(n log n).

17.14. Design an O(n) time algorithm to find the convex hull of two given convex
polygons, where n is the total number of vertices in both polygons.

17.15. Give an O(n) time algorithm that decides whether a point p is inside a
simple polygon P . (Hint: Draw a horizontal line passing by p and count
the number of intersections it has with P .)

17.16. Prove or disprove the following statement: Given a set of points S in
the plane, there is only one unique simple polygon whose vertices are the
points in S.

17.17. Given a set of n points in the plane, show how to construct a simple
polygon having them as its vertices. The algorithm should run in time
O(n log n).

17.18. Referring to the algorithm for finding the diameter of a given point set S
in the plane, prove that the diameter is the distance between two points
on their convex hull.

17.19. Prove Theorem 17.1.

17.20. Let P be a simple polygon with n vertices. P is called monotone with
respect to the y-axis if for any line l perpendicular to the y-axis, the
intersection of l and P is either a line segment or a point. For example,
any convex polygon is monotone with respect to the y-axis. A chord
in P is a line segment that connects two nonadjacent vertices in P and
lies entirely inside P . The problem of triangulating a simple polygon is to
partition the polygon into n−2 triangles by drawing n−3 nonintersecting
chords inside P (see Fig. 6.8 for the special case of convex polygons). Give
an algorithm to triangulate a simple and monotone polygon P . What is
the time complexity of your algorithm?

17.8 Bibliographic Notes

Some books on computational geometry include Berg (1957), Edelsbrunner
(1987), Mehlhorn (1984c), O’Rourke (1994), Preparata and Shamos (1985),
and Toussaint (1984). The algorithm for computing line segment intersec-
tions is due to Shamos and Hoey (1975). The convex hull algorithm is
due to Graham (1972). Theorem 17.1 is due to Yaglom and Boltyanskii
(1986). The algorithm of finding the diameter can be found in Preparata
and Shamos (1985). The problem of triangulating a simple polygon is
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fundamental in computational geometry. The solution to the problem of
triangulating a monotone polygon in Θ(n) time (Exercise 17.20) can be
found in Garey et al. (1978). In this paper, it was also shown that triangu-
lating a simple polygon can be achieved in O(n log n) time. Later, Tarjan
and Van Wyk (1988) gave an O(n log log n) time algorithm for triangulat-
ing a simple polygon. Finally, Chazelle (1990, 1991) gave a linear time
algorithm, which is quite complicated. The Voronoi diagram can also be
computed using line sweeping in O(n log n) time (Fortune, 1992).



May 2, 2013 14:6 BC: 8831 - Probability and Statistical Theory PST˙ws

This page intentionally left blankThis page intentionally left blank



January 14, 2016 14:22 Algorithms: Design Techniques and Analysis - 9in x 6in b2305-ch18 page 473

Chapter 18

Voronoi Diagrams

18.1 Introduction

In this chapter, we study a fundamental geometric structure that aids in
solving numerous proximity problems in computational geometry. This
structure is referred to as the Voronoi diagram. Although there are many
types of Voronoi diagrams, the phrase “Voronoi diagram” with no modifiers
is commonly used to refer to the nearest-point Voronoi diagram. This con-
struct is usually used to solve problems that are concerned with “nearness”.
In this chapter, we will also study another type of Voronoi diagram called
the farthest-point Voronoi diagram. This construct is basically used to solve
problems that have to do with “farthness”. We will demonstrate the power
of these two diagrams by outlining some of their important applications.

18.2 Nearest-Point Voronoi Diagram

Let S = {p1, p2, . . . , pn} be a set of n points in the plane. The locus of
all points in the plane closer to a point pi in S than to any other point
in S defines a polygonal region V (pi) called the Voronoi region of pi. It
is a convex polygon that may be unbounded. It has at most n − 1 edges
with each edge lying on the perpendicular bisector of pi and another point
in S. Figure 18.1(a) shows the Voronoi region V (p) of a point p. The
collection of all n Voronoi regions, one for each point, constitute the nearest-
point Voronoi diagram, or simply the Voronoi diagram, of the point set S,
denoted by V(S). The Voronoi diagrams of sets of two, three, and four

473
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Fig. 18.1. (a) Voronoi region. (b)–(d) Voronoi diagrams of two, three, and four points.

points are shown in Fig. 18.1(b)–(d). The Voronoi diagram of two points
p1 and p2 is just the perpendicular bisector of the line segment p1p2. As
shown in Fig. 18.1(c), the Voronoi diagram of three points that are not
collinear consists of three bisectors that meet at one point. The region
V (p4) associated with p4 in Fig. 18.1(d) is bounded.

In general, let pi and pj be two points in S. The half-plane H(pi, pj)
containing pi and defined by the perpendicular bisector of pi and pj is
the locus of all points in the plane closer to pi than to pj . The Voronoi
region V (pi) associated with point pi is the intersection of n−1 half-planes.
That is

V (pi) =
⋂
i�=j

H(pi, pj).
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Fig. 18.2. The Voronoi diagram of a set of points.

The Voronoi regions V1, V2, . . . , Vn define V(S), the Voronoi diagram of S.
Figure 18.2 shows the Voronoi diagram of a number of points chosen ran-
domly in the plane.

The Voronoi diagram of a point set S is a planar graph whose vertices
and edges are, respectively, called Voronoi vertices and Voronoi edges. By
construction, each point p ∈ S belongs to a unique region V (p), and hence
for any point q in the interior of V (p), q is closer to p than to any other
point in S. The Voronoi diagram of a point set enjoys a number of inter-
esting properties and can be used to answer several questions that have
to do with proximity relationships. To simplify the discussion and make
the justifications easier, we will assume henceforth that the points are in
general position in the sense that no three points are collinear and no four
points are cocircular, i.e., lie on the circumference of a circle.

Consider Fig. 18.3, which is a redrawn of Fig. 18.1(c) with more details.
It is well known that the three perpendicular bisectors of the three sides of
the triangle defined by the three points intersect at one point, the center of
the circle that passes through these three points. Indeed, every vertex
of the voronoi diagram is the common intersection of exactly three edges
of the Voronoi diagram (see Fig. 18.2). These edges lie on the perpendicular
bisectors of the sides of the triangle defined by the three points and hence
Voronoi vertex is the center of the unique circle passing through these three
points.

Let v be a vertex in a Voronoi diagram V(S) for some planar point set
S, and let C(v) denote the circle centered at v and passing through the



January 14, 2016 14:22 Algorithms: Design Techniques and Analysis - 9in x 6in b2305-ch18 page 476

476 Algorithms: Design Techniques and Analysis


p


p


p

V(  )
p

V(  )

p

V(  )
p

Fig. 18.3. The Voronoi diagram of three points.

points p1, p2, and p3 (see, for example, Fig. 18.3). If some other point p4

is inside C(v), then v is closer to p4 than to any of the three points p1, p2,
and p3. This means that v must lie in V (p4), which contradicts the fact
that v is common to V (p1), V (p2), and V (p3). It follows that C(v) contains
no other point in S. These facts are summarized in the following theorem
(here S is the original point set).

Theorem 18.1 Every Voronoi vertex v is the common intersection of
three Voronoi edges. Thus, v is the center of a circle C(v) defined by three
points in S. Moreover, C(v) contains no other point in S.

18.2.1 Delaunay triangulation

Let V(S) be a Voronoi diagram of a planar point set S. Consider the
straight-line dual D(S) of V(S), i.e., the graph embedded in the plane
obtained by adding a straight-line segment between each pair of points in S

whose Voronoi regions share an edge. The dual of an edge in V(S) is an edge
in D(S), and the dual of a vertex in V(S) is a triangular region in D(S).
D(S) is a triangulation of the original point set and is called the Delaunay
triangulation after Delaunay who proved this result in 1934. Figure 18.4
shows the dual of the Voronoi diagram in Fig. 18.2, i.e., the Delaunay tri-
angulation of the set of points in Fig. 18.2. Figure 18.5 shows the Delaunay
triangulation superimposed on its corresponding Voronoi diagram. Note
that an edge in the Voronoi diagram and its dual in the Delaunay tri-
angulation need not intersect, as is evident in the figure. In a Delaunay
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Fig. 18.4. The Delaunay triangulation of a set of points.

Fig. 18.5. The Voronoi diagram and Delaunay triangulation of a set of points.

triangulation, the minimum angle of its triangles is maximum over all pos-
sible triangulations. Another property of the Delaunay triangulation D(S)
of a planar point set S is that its boundary is CH (S), the convex hull of S.

Let m and r be the number of edges and regions in a Delaunay triangu-
lation D(S), respectively, where |S| = n. Clearly, D(S) is a planar graph,
and hence by Euler’s formula (page 79), we have

n−m + r = 2

and, for n ≥ 3,

m ≤ 3n− 6.
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Thus, its number of regions satisfies the inequality

r ≤ 2n− 4.

Since each edge in a Delaunay triangulation is the dual of an edge in its
corresponding Voronoi diagram, the number of edges in the latter is also
no more than 3n−6. Since each region (except the unbounded region) in a
Delaunay triangulation is the dual of a vertex in its corresponding Voronoi
diagram, the number of vertices of the latter is at most 2n− 5. Thus, we
have the following theorem.

Theorem 18.2 Let V(S) and D(S) be, respectively, the Voronoi diagram
and Delaunay triangulation of a planar point set S, where |S| = n ≥ 3.
Then,

(1) The number of vertices and edges in V(S) is at most 2n−5 and 3n−6,

respectively.
(2) The number of edges in D(S) is at most 3n− 6.

It follows that the size of V(S) or D(S) is Θ(n), which means that both
diagrams can be stored using only Θ(n) of space.

18.2.2 Construction of the Voronoi diagram

A straightforward approach to the construction of the Voronoi diagram is
the construction of each region one at a time. Since each region is the
intersection of n − 1 half-planes, the construction of each region can be
achieved in O(n2) time, leading to an O(n3) algorithm to construct the
Voronoi diagram. Indeed, the intersection of n− 1 half-planes can be con-
structed in O(n log n) time, thereby resulting in an overall time complexity
of O(n2 log n).

It turns out that the entire Voronoi diagram can be constructed in
O(n log n) time. One method that we will describe in this section uses
the divide-and-conquer technique to construct the diagram in O(n log n)
time. In what follows, we will illustrate the method in connection with an
example and give only the high-level description of the algorithm. More
detailed description of the algorithm can be found in the references (see
the bibliographic notes).
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Let S be a set of n points in the plane. If n = 2, then the Voronoi
diagram is the perpendicular bisector of the two points (see Fig. 18.1(b)).
Otherwise, S is partitioned into two subsets SL and SR consisting of �n/2�
and �n/2� points, respectively. The Voronoi diagrams V(SL) and V(SR)
are then computed and merged to obtain V(S) (see Fig. 18.6).

In this figure, a set of 16 points {1, 2, . . . , 16} is partitioned into two
subsets SL = {1, 2, . . . , 8} and SR = {9, 10, . . . , 16} using the median
x-coordinate as a separator, that is, the x-coordinate of any point in SL

is less than the x-coordinate of any point in SR. Figure 18.6(a) and (b)
shows V(SL) and V(SR), the Voronoi diagrams of SL and SR. Figure 18.6(c)
shows how the merge step is carried out. The basic idea of this step is to
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Fig. 18.6. Construction of the Voronoi diagram.
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find the dividing chain C, which is a polygonal curve with the property that
any point to its left is closest to some point in SL and any point to its right
is closest to some point in SR. C is shown in Fig. 18.6(c) as a heavy polyg-
onal path running from +∞ to −∞. Since S is partitioned into SL and SR

by the median x-coordinate, the dividing chain C is monotonic in y, that
is, each horizontal line intercepts C at exactly one point. C consists of a
ray, some line segments, and another ray, which are all part of the final con-
structed Voronoi diagram. Let CH (SL) and CH (SR) be the convex hulls
of SL and SR, respectively. In order to compute the dividing chain, these
two convex hulls are first merged to form CH (S), the convex hull of the
entire set S. In CH (S), there are two line segments on the upper and lower
supporting lines that join a point in CH (SL) to a point in CH (SR) (6, 10
and 5, 12 in Fig. 18.6(c)). The perpendicular bisectors of these two edges
are precisely the two rays of C extending to +∞ and −∞. Once these two
rays have been found, the remaining line segments of C, which are edges of
the final Voronoi diagram, are computed as follows. We imagine a point p

moving from +∞ inward along the ray extending to +∞. Initially, p lies
in V (6) and V (10) and proceeds along the locus of points equidistant from
points 6 and 10 until it becomes closer to a different point. This occurs
when p hits the edge of one of the polygons. Referring to Fig. 18.6(c), as p

moves downward, it hits the edge shared by V (6) and V (8) before crossing
any edge of V (10). At this point, p is closer to 8 than to 6 and therefore
it must continue along the 8,10 bisector. Moving further, p crosses an edge
of V (10), and moves off along the 8,11 bisector. Referring again to the
figure, we see that p continues on the 8,11 bisector, then the 7,11 bisector,
and so on until it reaches the 5,12 bisector, at which point it has traced
out the desired polygonal path C. Once C has been found, the construc-
tion ends by discarding those rays of V(SL) to the right of C and those
rays of V(SR) to the left of C. The resulting Voronoi diagram is shown in
Fig. 18.6(d).

The outline of the construction is given in Algorithm voronoid. It can
be shown that the combine step, which essentially consists of finding the
dividing chain, takes O(n) time. Since the sorting step takes O(n log n)
time, the overall time taken by the algorithm is O(n log n). This implies
the following theorem.

Theorem 18.3 The Voronoi diagram of a set of n points in the plane
can be constructed in O(n log n) time.
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Algorithm 18.1 voronoid
Input: A set S of n points in the plane.

Output: V(S), the Voronoi diagram of S.

1. Sort S by nondecreasing order of x-coordinates.
2. V(S)← vd(S, 1, n)

Procedure vd(S, low , high)

1. If |S| ≤ 3, then compute V(S) by a straightforward method and
return V(S); otherwise continue.

2. mid← �(low + high)/2�
3. SL← S[low ..mid ]; SR← S[mid + 1..high ]
4. V(SL)← vd(S, low ,mid)
5. V(SR)← vd(S,mid + 1, high)
6. Construct the dividing chain C.
7. Remove those rays of V(SL) to the right of C and those rays of V(SR)

to the left of C.
8. return V(S)

18.3 Applications of the Voronoi Diagram

The Voronoi diagram of a point set is a versatile and powerful geomet-
ric construct that contains almost all the proximity information. In this
section, we list some of the problems that can be solved efficiently if the
(nearest-point) Voronoi diagram is already available. Some problems can
be solved efficiently by first computing the Voronoi diagram.

18.3.1 Computing the convex hull

An important property of the Voronoi diagram V(S) of a point set S is given
in the following theorem, whose proof is left as an exercise (Exercise 18.6).

Theorem 18.4 A Voronoi region V (p) is unbounded if and only if its
corresponding point p is on the boundary of CH (S), the convex hull of S.

Equivalently, the convex hull of S is defined by the boundary of D(S),
the Delaunay triangulation of S. Thus, in O(n) time, it is possible to
construct CH (S) from either V(S) or D(S). An outline of an algorithm that
constructs the convex hull from the Voronoi diagram is as follows. Starting
from an arbitrary point p in S, we search for a point whose Voronoi region
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is unbounded. Once p has been found, its neighbor in CH (S) is that point
q whose Voronoi region is separated from that of p by a ray. Continuing
this way, we traverse the boundary of the Voronoi diagram until we return
back to the initial point p. At this point, the construction of the convex
hull is complete.

18.3.2 All nearest neighbors

Definition 18.1 Let S be a set of points in the plane, and p and q in S.
q is said to be a nearest neighbor of p if q is closest to p among all points
in S − {p}. That is, q is said to be a nearest neighbor of p if

d(p, q) = min
r∈S−{p}

d(p, r),

where d(p, x) is the Euclidean distance between point p and point x ∈ S.

The “nearest neighbor” is a relation on a set S. Observe that this
relation is not necessarily symmetric, as is evident from Fig. 18.7. In this
figure, p is the nearest neighbor of q, while q is not the nearest neighbors
of p.

The all nearest-neighbors problem is as follows. Given a set S of n

planar points, find a nearest neighbor for each point in S. The solution to
this problem is immediate from the following theorem whose proof is left
as an exercise (Exercise 18.7).

Theorem 18.5 Let S be a set of points in the plane, and p in S. Every
nearest neighbor of p defines an edge of the Voronoi region V (p).

By Theorem 18.5, given V(S) and a point p in S, its nearest neighbor can
be found by examining all its neighbors and returning one with the smallest
distance from p. This takes O(n) time, as V (p) may consist of O(n) edges.
To find a nearest neighbor for every point in S, we need to examine all

p

q

r

Fig. 18.7. The nearest-neighbor relation.
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the Voronoi edges. Since each edge is examined no more than twice (once
for each Voronoi region sharing that edge), all nearest neighbors can be
found in time proportional to the number of edges in V(S), i.e., Θ(n). It
is interesting that, in the worst case, the time complexity of finding one
nearest neighbor is the same as that for finding all nearest neighbors.

18.3.3 The Euclidean minimum spanning tree

Given a set S of n points in the plane, the Euclidean minimum spanning
tree problem (emst) asks for a minimum cost spanning tree whose vertices
are the given point set and such that the cost between two points is the
Euclidean distance between them. The brute-force method is to compute
the distance between each pair of points and use one of the known algo-
rithms for computing the minimum cost spanning tree in general graphs (see
Sec. 7.3). Using Prim’s or Kruskal’s algorithms results in time complexities
Θ(n2) and O(n2 log n), respectively. If, however, we have the Delaunay
triangulation of the point set, then we can compute the tree in O(n log n)
time. Indeed, an algorithm exists for constructing the minimum spanning
tree from the Delaunay triangulation in only Θ(n) time, but we will not
discuss such an algorithm here. The key idea comes from the following
theorem, which says that we do not have to examine all the Θ(n2) dis-
tances between pairs of points; examining those pairs that are connected
by a Delaunay triangulation edge is all that we need.

Theorem 18.6 Let S be a set of points in the plane and let {S1, S2} be
a partition of S. If pq is the shortest line segment between points of S1 and
points of S2, then pq is an edge in D(S), the Delaunay triangulation of S.

Proof. Suppose that pq realizes the shortest distance between points in
S1 and points in S2, where p ∈ S1 and q ∈ S2, but it is not in D(S). Let
m be the midpoint of the line segment pq. Suppose that pq intersects V (p)
at edge e. Let r be the neighbor of p such that V (p) and V (r) share the
edge e (see Fig. 18.8). It is not hard to show that r lies in the interior of the
disk centered at m with diameter pq. Consequently, pq > pr and pq > qr.
We have two cases. If r ∈ S2, then pq does not realize the shortest distance
between S1 and S2, since pr < pq. If r ∈ S1, then pq does not realize the
shortest distance between S1 and S2, since qr < pq. As both cases lead to a
contradiction, we conclude that p and q must be neighbors in V(S), i.e., pq

is an edge in D(S). �
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Fig. 18.8. Illustration of the proof of Theorem 18.6.

Now, to obtain an O(n log n) time algorithm, we only need to apply
Kruskal’s algorithm to the Delaunay triangulation of the point set. Recall
that the time complexity of Kruskal’s algorithm is O(m log m), where m

is the number of edges, and in any Delaunay triangulation, m = O(n)
(Theorem 18.2).

18.4 Farthest-Point Voronoi Diagram

Let S = {p1, p2, . . . , pn} be a set of n points in the plane. The locus of all
points in the plane farthest from a point pi in S than from any other point in
S defines a polygonal region Vf (pi) called the farthest-point Voronoi region
of pi. It is an unbounded region and is defined only for points on the convex
hull of S (see Exercises 18.12 and 18.13). The collection of all farthest-point
Voronoi regions constitute the farthest-point Voronoi diagram of the point
set, denoted by Vf (S). The Voronoi diagrams of sets of two and three
points are shown in Fig. 18.9. The farthest-point Voronoi diagram of two
points p1 and p2 is just the perpendicular bisector of the line segment
p1p2. As shown in Fig. 18.9(b), the farthest-point Voronoi diagram of three
points that are not collinear consists of three bisectors that meet at one
point. Compare these two diagrams with the Voronoi diagrams shown in
Fig. 18.1(b) and (c), in which the same point sets were used.

Figure 18.10 shows the farthest-point Voronoi diagram of a number of
points chosen randomly in the plane. As in the case of Voronoi diagrams, we
will assume that the points are in general position, that is, no three points
are collinear and no four points are cocircular, i.e., lie on the circumference
of a circle. The following theorem is similar to Theorem 18.1.
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Fig. 18.9. Farthest-point Voronoi diagrams of two and three points.
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Fig. 18.10. The farthest-point Voronoi diagram of a set of points.
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Theorem 18.7 Every farthest-point Voronoi vertex v is the common
intersection of three Voronoi edges. Thus, v is the center of a circle C(v)
defined by three points in S. Moreover, C(v) contains all other points.

18.4.1 Construction of the farthest-point Voronoi diagram

The construction of the farthest-point Voronoi diagram Vf (S) of a set of
points S starts by discarding all points not on the convex hull, and the rest
of the construction is similar to that of the nearest-point Voronoi diagram
V(S) described in Sec. 18.2.2. There are minor modifications that reflect
the transition from “nearness” to “farthness”. These modifications will be
clear from the construction shown in Fig. 18.11.
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Fig. 18.11. Construction of the farthest-point Voronoi diagram.
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The first modification is in finding the dividing chain C (refer to
Fig. 18.11(a)–(c)). When constructing Vf (S) from Vf (SL) and Vf (SR),
the ray coming from +∞ inward is perpendicular to the bottom supporting
line of CH (SL) and CH (SR), that is, the line segment connecting points 1
and 12 in the figure. This means that the ray originates in V (1) of Vf (SL)
and V (12) of Vf (SR). It then intersects the boundary between V (11) and
V (12) of Vf (SR), and hence follows the 1,11 bisector. After that it inter-
sects the boundary between V (1) and V (2) of Vf (SL), and hence follows the
2,11 bisector. The dividing chain continues this way until it finally becomes
perpendicular to the upper supporting line that connects the points 3 and 8.
It then continues in this direction indefinitely.

The second modification is in removing rays of Vf (SL) and Vf (SR) when
merging them to obtain Vf (S). In this case, the rays of Vf (SL) to the left
of the dividing chain and the rays of Vf(SR) to the right of the dividing
chain are removed. The resulting farthest-point Voronoi diagram is shown
in Fig. 18.11(d). Thus, the algorithm for the construction of the farthest-
point Voronoi diagram is identical to that for constructing the Voronoi
diagram except for the two modifications stated above.

The outline of the construction is given in Algorithm fpvoronoid.

Algorithm 18.2 fpvoronoid
Input: A set S of n points in the plane.

Output: Vf (S), the farthest-point Voronoi diagram of S.

1. Sort S by nondecreasing order of x-coordinates.
2. Vf (S)← fpvd(S, 1, n)

Procedure fpvd(S, low , high)

1. If |S| ≤ 3, then compute Vf (S) by a straightforward method and
return Vf (S); otherwise continue.

2. mid← �(low + high)/2�
3. SL← S[low ..mid ]; SR← S[mid + 1..high ]
4. Vf (SL)← fpvd(S, low ,mid)
5. Vf (SR)← fpvd(S,mid + 1, high)
6. Construct the dividing chain C.
7. Remove those rays of Vf (SL) to the left of C and those rays of Vf (SR)

to the right of C.
8. return Vf (S)
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18.5 Applications of the Farthest-Point Voronoi Diagram

The farthest-point Voronoi diagram is used to answer questions or compute
some results that have to do with “farthness”, e.g., clustering and covering.
In this section, we touch on two problems that can be solved efficiently by
means of the farthest-point Voronoi diagram.

18.5.1 All farthest neighbors

Definition 18.2 Let S be a set of points in the plane, and p and q in S.
q is said to be a farthest neighbor of p if q is farthest from p among all other
points in S − {p}. That is, q is said to be a farthest neighbor of p if

d(p, q) = max
r∈S−{p}

d(p, r),

where d(p, x) is the Euclidean distance between point p and point x ∈ S.

The “farthest neighbor” is a relation on a set S that is not necessarily
symmetric. For each point p, we need to find in what farthest-point Voronoi
region p lies. If p lies in V (q), then q is the farthest neighbor of p. Thus, the
problem becomes a point location problem, which we will not pursue here.
It suffices to say that the diagram can be preprocessed in O(n log n) time
to produce a data structure that can be used to answer in O(log n) time
any query of the form: Given any point x (not necessarily in S), return
the region in which x lies. It follows that, after preprocessing Vf (S), the
farthest neighbors of all the points in S can be computed in O(n log n) time.

18.5.2 Smallest enclosing circle

Consider the following problem. Given a set S of n points in the plane,
find the smallest circle that encloses them. This problem has received a
lot of attention and is familiar in operations research as the facilities loca-
tion problem. The smallest enclosing circle is unique and is either the
circumcircle of three points in S or is defined by two points as the diam-
eter. The obvious brute-force approach, which considers all two-element
and three-element subsets of S, leads to a Θ(n4) time algorithm. Using
Vf (S), finding the smallest enclosing circle becomes straightforward. First,
find CH (S) and compute D = diam(S), the diameter of S (see Sec. 17.6).
If the circle with diameter D encloses the points, then we are done. Oth-
erwise, we test every vertex of Vf (S) as a candidate for the center of the
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enclosing circle and return the smallest circle; recall that a vertex of a
farthest-point Voronoi diagram is the center of a circle that is defined by
three points on CH (S) and encloses all other points (Theorem 18.7). Com-
puting CH (S) takes O(n log n) time. Computing the diameter from CH (S)
takes Θ(n) time. Constructing Vf (S) from CH (S) takes O(n log n) time.
In fact, Vf (S) can be constructed from CH (S) in O(n) time. Finally, since
the diagram consists of O(n) vertices, finding the smallest enclosing circle
takes only O(n) time. It follows that finding the smallest enclosing circle
using the farthest-point Voronoi diagram takes O(n log n) time. Finally, we
remark that finding the smallest enclosing circle can be solved in Θ(n) time
by solving a variant of a three-dimensional linear programming problem.

18.6 Exercises

18.1. Draw the Voronoi diagram of four points that are the corners of a square.

18.2. Give a brute-force algorithm to compute the Voronoi diagram of a planar
point set.

18.3. Given a diagram on n vertices with degree 3, develop an efficient algorithm
to decide whether it is a Voronoi diagram of a set of points S. If it is, the
algorithm should also construct the set of points S.

18.4. Prove Theorem 18.1.

18.5. Which of the two triangulations shown in Fig. 18.12 is a Delaunay trian-
gulation? Explain.

18.6. Prove Theorem 18.4.

18.7. Prove Theorem 18.5.

18.8. Let V(S) be the Voronoi diagram of a point set S. Let x and y be two
points such that x ∈ S but y /∈ S. Assume further that y lies in the
Voronoi polygon of x. Explain how to construct efficiently V(S ∪ {y}).

(b)(a)

Fig. 18.12. Two triangulations of a set of four points.
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18.9. Use the result of Exercise 18.8 to find an incremental algorithm that
constructs V(S) by processing the points in S one point at a time. What
is the time complexity of your algorithm?

18.10. Let V(S) be the Voronoi diagram of a planar point set S. Let x ∈ S.
Explain how to construct efficiently V(S − {x}).

18.11. Explain how to obtain the Euclidean minimum spanning tree of a set of
points in the plane S directly from D(S) in Θ(n) time.

18.12. Prove that the farthest neighbor of a point p in a point set S is one of
the vertices of the convex hull of S.

18.13. Prove that for any set of points in the plane, Vf (S) = Vf (CH (S)) (see
Exercise 18.12).

18.14. Let P be a convex polygon. Assume for simplicity that each of its vertices
has only one farthest neighbor. For any vertex x of P , denote by f(x)
the farthest neighbor of x. Show that for two vertices x and y that are
the endpoints of an edge, the two line segments xf(x) and yf(y) must
intersect.

18.15. Modify Algorithm fpvoronoid for the construction of the farthest-point
Voronoi diagram of a set of points S so that in each recursive call, the
algorithm discards all points that are not on the convex hull.

18.16. Show that the minimum enclosing circle of a set of points S is defined
either by the diameter of the set or by three points in the set.

18.17. Let S be a set of points in the plane. Assume for simplicity that each
point has only one farthest neighbor. For each point x ∈ S denote by
f(x) the farthest neighbor of x. Let d(x, y) denote the Euclidean distance
between x and y. Let x, y, and z be three distinct points in S such that
f(x) = y and f(y) = z. Prove that d(x, y) < d(y, z).

18.18. This exercise is a generalization of Exercise 18.17. For a point x ∈ S,
show that the finite sequence

d(x, f(x)), d(f(x), f(f(x))), d(f(f(x)), f(f(f(x)))), . . .

is strictly increasing except the last two elements of the sequence, which
must be equal.

18.7 Bibliographic Notes

The subject of Voronoi diagrams, especially the nearest-point Voronoi dia-
grams, can be found in several books on computational geometry including
de Berg, van Kreveld, Overmars, and Schwarzkopf (1997), Edelsbrunner
(1987), Mehlhorn (1984c), O’Rourke (1994), Preparata and Shamos (1985),
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and Toussaint (1984). The divide-and-conquer algorithm for the construc-
tion of Voronoi diagrams appeared first in Shamos and Hoey (1975). The
Voronoi diagram can also be computed using line sweeping (see Chapter 17)
in O(n log n) time. This algorithm appears in Fortune (1978). An algo-
rithm for computing the Delaunay triangulation of a point set in the plane
(and hence its Voronoi diagram) from three-dimensional convex hull is
due to Edelsbrunner and Seidel (1986), although Brown (1979) was the
first to establish a connection of Voronoi diagrams to convex hulls in one
higher dimension. This algorithm is detailed in O’Rourke (1994). A sim-
ple O(n log n) iterative algorithm for the construction of the farthest-point
Voronoi diagram can be found in Skyum (1991). This algorithm was used to
generate the drawings of the farthest-point Voronoi diagrams in this chap-
ter. It is a modification of a simple algorithm for computing the smallest
enclosing circle. Two survey papers on Voronoi diagrams are Aurenham-
mer (1991) and Fortune (1992). The book by Okabe, Boots, and Sugihara
(1992) covers algorithms as well as applications of Voronoi diagrams.
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Appendix A

Mathematical Preliminaries

When analyzing an algorithm, the amount of resources required is usually
expressed as a function of the input size. A nontrivial algorithm typi-
cally consists of repeating a set of instructions either iteratively, e.g., by
executing a for or while loop, or recursively by invoking the same algo-
rithm again and again, each time reducing the input size until it becomes
small enough, in which case the algorithm solves the input instance using
a straightforward method. This implies that the amount of resources used
by an algorithm can be expressed in the form of summation or recursive
formula. This mandates the need for the basic mathematical tools that
are necessary to deal with these summations and recursive formulas in the
process of analyzing an algorithm.

In this appendix, we review some of the mathematical preliminaries
and discuss briefly some of these mathematical tools that are frequently
employed in the analysis of algorithms.

A.1 Sets, Relations, and Functions

When analyzing an algorithm, its input is considered to be a set drawn
from some particular domain, e.g., the set of integers. An algorithm, in
the formal sense, can be thought of as a function, which is a constrained
relation, that maps each possible input to a specific output. Thus, sets and
functions are at the heart of algorithmic analysis. In this section, we briefly
review some of the basic concepts of sets, relations, and functions that arise
naturally in the design and analysis of algorithms. More detailed treatments
can be found in most books on set theory and discrete mathematics.

493
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A.1.1 Sets

The term set is used to refer to any collection of objects, which are called
members or elements of the set. A set is called finite if it contains n

elements, for some constant n ≥ 0, and infinite otherwise. Examples of
infinite sets include the set of natural numbers {1, 2, . . . } and the sets of
integers, rationals, and reals.

Informally, an infinite set is called countable if its elements can be listed
as the first element, second element, and so on; otherwise, it is called
uncountable. For example, the set of integers {0, 1,−1, 2,−2, . . .} is count-
able, while the set of real numbers is uncountable.

A finite set is described by listing its elements in some way and enclosing
this list in braces. If the set is countable, three dots may be used to indicate
that not all the elements have been listed. For example, the set of integers
between 1 and 100 can be stated as {1, 2, 3, . . . , 100} and the set of natural
numbers can be stated as {1, 2, 3, . . .}. A set may also be denoted by
specifying some property. For example, the set {1, 2, . . . , 100} can also be
denoted by {x | 1 ≤ x ≤ 100 and x is integer}. An uncountable set can
only be described this way. For example, the set of real numbers between 0
and 1 can be expressed as {x | x is a real number and 0 ≤ x ≤ 1}. The
empty set is denoted by { } or φ.

If A is a finite set, then the cardinality of A, denoted by |A|, is the
number of elements in A. We write x ∈ A if x is a member of A, and x /∈ A

otherwise. We say that a set B is a subset of a set A, denoted by B ⊆ A,
if each element of B is an element of A. If, in addition, B �= A, we say
that B is a proper subset of A, and we write B ⊂ A. Thus, {a, {2, 3}} ⊂
{a, {2, 3}, b}, but {a, {2, 3}} �⊆ {a, {2}, {3}, b}. For any set A, A ⊆ A and
φ ⊆ A. We observe that if A and B are sets such that A ⊆ B and B ⊆ A,
then A = B. Thus, to prove that two sets A and B are equal, we only need
to prove that A ⊆ B and B ⊆ A.

The union of two sets A and B, denoted by A ∪ B, is the set {x | x ∈
A or x ∈ B}. The intersection of two sets A and B, denoted by A ∩ B, is
the set {x | x ∈ A and x ∈ B}. The difference of a set A from a set B,
denoted by A − B, is the set {x | x ∈ A and x /∈ B}. The complement of
a set A, denoted by A, is defined as U − A, where U is the universal set
containing A, which is usually understood from the context. If A, B, and
C are sets, then A∪ (B ∪C) = (A∪B)∪C, and A∩ (B∩C) = (A∩B)∩C.
We say that two sets A and B are disjoint if A∩B = φ. The power set of a
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set A, denoted by P (A), is the set of all subsets of A. Note that φ ∈ P (A)
and A ∈ P (A). If |A| = n, then |P (A)| = 2n.

A.1.2 Relations

An ordered n-tuple (a1, a2, . . . , an) is an ordered collection that has a1 as
its first element, a2 as its second element, . . . , and an as its nth element. In
particular, 2-tuples are called ordered pairs . Let A and B be two sets. The
Cartesian product of A and B, denoted by A×B, is the set of all ordered
pairs (a, b), where a ∈ A and b ∈ B. In set notation,

A×B = {(a, b) | a ∈ A and b ∈ B}.

More generally, the Cartesian product of A1, A2, . . . , An is defined as

A1 ×A2 × · · · ×An = {(a1, a2, . . . , an) | ai ∈ Ai, 1 ≤ i ≤ n}.

Let A and B be two nonempty sets. A binary relation, or simply a relation,
R from A to B is a set of ordered pairs (a, b), where a ∈ A and b ∈ B, that
is, R ⊆ A × B. If A = B, we say that R is a relation on the set A. The
domain of R, sometimes written Dom(R), is the set

Dom(R) = {a | for some b ∈ B (a, b) ∈ R}.

The range of R, sometimes written Ran(R), is the set

Ran(R) = {b | for some a ∈ A, (a, b) ∈ R}.

Example A.1 Let R1 = {(2, 5), (3, 3)}, R2 = {(x, y) | x, y are positive
integers and x ≤ y}, and R3 = {(x, y) | x, y are real numbers and x2 +y2 ≤
1}. Then, Dom(R1) = {2, 3}, Ran(R1) = {5, 3}, Dom(R2) = Ran(R2) is
the set of natural numbers, and Dom(R3) = Ran(R3) is the set of real
numbers in the interval [−1..1].

Let R be a relation on a set A. R is said to be reflexive if (a, a) ∈ R

for all a ∈ A. It is irreflexive if (a, a) /∈ R for all a ∈ A. It is symmetric
if (a, b) ∈ R implies (b, a) ∈ R. It is asymmetric if (a, b) ∈ R implies
(b, a) /∈ R. It is antisymmetric if (a, b) ∈ R and (b, a) ∈ R implies a = b.
Finally, R is said to be transitive if (a, b) ∈ R and (b, c) ∈ R implies
(a, c) ∈ R. A relation that is reflexive, antisymmetric, and transitive is
called a partial order .
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Example
A.2 Let R1 = {(x, y) | x, y are positive integers and x divides y}. Let
R2 = {(x, y) | x, y are integers and x ≤ y}. Then, both R1 and R2 are
reflexive, antisymmetric, and transitive, and hence both are partial orders.

A.1.2.1 Equivalence relations

A relation R on a set A is called an equivalence relation if it is reflexive,
symmetric, and transitive. In this case, R partitions A into equivalence
classes C1, C2, . . . , Ck such that any two elements in one equivalence class
are related by R. That is, for any Ci, 1 ≤ i ≤ k, if x ∈ Ci and y ∈ Ci,
then (x, y) ∈ R. On the other hand, if x ∈ Ci, y ∈ Cj , and i �= j, then
(x, y) /∈ R.

Example A.3 Let x and y be two integers, and let n be a positive integer.
We say that x and y are congruent modulo n, denoted by

x ≡ y (mod n)

if x− y = kn for some integer k. In other words, x ≡ y (mod n) if both x

and y leave the same (positive) remainder when divided by n. For example,
13 ≡ 8 (mod 5) and 13 ≡ −2 (mod 5). Now define the relation

R = {(x, y) | x, y are integers and x ≡ y (mod n)}.
Then, R is an equivalence relation. It partitions the set of integers into n

classes C0, C1, . . . , Cn−1 such that x ∈ Ci and y ∈ Ci if and only if x ≡ y

(mod n).

A.1.3 Functions

A function f is a (binary) relation such that for every element x ∈ Dom(f)
there is exactly one element y ∈ Ran(f) with (x, y) ∈ f . In this case, one
usually writes f(x) = y instead of (x, y) ∈ f and says that y is the value or
image of f at x.

Example A.4 The relation {(1, 2), (3, 4), (2, 4)} is a function, while the
relation {(1, 2), (1, 4)} is not. The relation {(x, y) | x, y are positive integers
and x = y3} is a function, while the relation {(x, y) | x is a positive integer,
y is integer and x = y2} is not. In Example A.1, R1 is a function, while R2

and R3 are not.
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Let f be a function such that Dom(f) = A and Ran(f) ⊆ B for some
nonempty sets A and B. We say that f is one to one if for no different
elements x and y in A, f(x) = f(y). That is, f is one to one if f(x) = f(y)
implies x = y. We say that f is onto B if Ran(f) = B. f is said to be a
bijection or one-to-one correspondence between A and B if it is both one to
one and onto B.

A.2 Proof Methods

Proofs constitute an essential component in the design and analysis of algo-
rithms. The correctness of an algorithm and the amount of resources needed
by the algorithm such as its computing time and space usage are all estab-
lished by proving postulated assertions. In this section, we briefly review
the most common methods of proof used in the analysis of algorithms.

Notation

A proposition or an assertion P is simply a statement that can be either
true or false, but not both. The symbol “¬” is the negation symbol. For
example, ¬P is the converse of proposition P . The symbols “→”and “↔”
are used extensively in proofs. “→” is read “implies” and “↔” is read “if
and only if”. Thus, if P and Q are two propositions, then the statement
“P → Q” stands for “P implies Q” or “if P then Q”, and the statement
“P ↔ Q”, stands for “P if and only if Q”, that is, “P is true if and
only if Q is true”. The statement “P ↔ Q” is usually broken down into
two implications: “P → Q” and “Q → P”, and each statement is proved
separately. If P → Q, we say that Q is a necessary condition for P , and P

is a sufficient condition for Q.

A.2.1 Direct proof

To prove that “P → Q”, a direct proof works by assuming that P is true

and then deducing the truth of Q from the truth of P . Many mathematical
proofs are of this type.

Example A.5 We wish to prove the assertion: If n is an even integer,
then n2 is an even integer. A direct proof for this claim is as follows. Since
n is even, n = 2k for some integer k. So, n = 4k2 = 2(2k2). It follows
that n2 is an even integer.
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A.2.2 Indirect proof

The implication “P → Q” is logically equivalent to the contrapositive impli-
cation “¬Q → ¬P”. For example, the statement “if it is raining then it is
cloudy” is logically equivalent to the statement “if it is not cloudy then it
is not raining”. Sometimes, proving “if not Q then not P” is much easier
than using a direct proof for the statement “if P then Q”.

Example A.6 Consider the assertion: If n2 is an even integer, then n

is an even integer. If we try to use the direct proof technique to prove
this theorem, we may proceed as in the proof in Example A.5. An alter-
native approach, which is much simpler, is to prove the logically equiv-
alent assertion: If n is an odd integer, then n2 is an odd integer. We
prove the truth of this statement using the direct proof method as fol-
lows. If n is an odd integer, then n = 2k + 1 for some integer k. Thus,
n2 = (2k+1)2 = 4k2+4k+1 = 2(2k2+2k)+1. That is, n2 is an odd integer.

A.2.3 Proof by contradiction

This is an extremely powerful method and is widely used to make proofs
short and simple to follow. To prove that the statement “P → Q” is true

using this method, we start by assuming that P is true but Q is false. If
this assumption leads to a contradiction, it means that our assumption that
“Q is false” must be wrong, and hence Q must follow from P . This method
is based on the following logical reasoning. If we know that P → Q is true

and Q is false, then P must be false. So, if we assume at the beginning
that P is true, Q is false, and reach the conclusion that P is false, then we
have that P is both true and false. But P cannot be both true and false,
and hence this is a contradiction. Thus, we conclude that our assumption
that Q is false is wrong, and it must be the case that Q is true after all.
It should be noted that this is not the only contradiction that may result;
for example, after assuming that P is true and Q is false, we may reach
the conclusion that, say, 1 = −1. The following example illustrates this
method of proof. In this example, we make use of the following theorem.
If a, b, and c are integers such that a divides both b and c, then a divides
their difference, that is, a divides b− c.

Example A.7 We prove the assertion: There are infinitely many primes.
We proceed to prove this assertion by contradiction as follows. Suppose to
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the contrary that there are only k primes p1, p2, . . . , pk, where p1 = 2, p2 =
3, p3 = 5, etc. and that all other integers greater than 1 are composite. Let
n = p1p2 . . . pk + 1 and let p be a prime divisor of n (recall that n is not a
prime by assumption since it is larger than pk). Since n is not a prime, one of
p1, p2, . . . , pk must divide n. That is, p is one of the numbers p1, p2, . . . , pk,
and hence p divides p1p2 . . . pk. Consequently, p divides n−p1p2 . . . pk. But
n − p1p2 . . . pk = 1, and p does not divide 1 since it is greater than 1, by
definition of a prime number. This is a contradiction. It follows that the
number of primes is infinite.

The proof of Theorem A.3 provides an excellent example of the method
of proof by contradiction.

A.2.4 Proof by counterexample

This method provides quick evidence that a postulated statement is false.
It is usually employed to show that a proposition that holds true quite
often is not always true. When we are faced with a problem that requires
proving or disproving a given assertion, we may start by trying to disprove
the assertion with a counterexample. Even if we suspect that the assertion
is true, searching for a counterexample might help to see why a coun-
terexample is impossible. This often leads to a proof that the given state-
ment is true. In the analysis of algorithms, this method is frequently used
to show that an algorithm does not always produce a result with certain
properties.

Example A.8 Let f(n) = n2 + n + 41 be a function defined on the
set of nonnegative integers. Consider the assertion that f(n) is always a
prime number. For example, f(0) = 41, f(1) = 43, . . . f(39) = 1601 are all
primes. To falsify this statement, we only need to find one positive integer
n such that f(n) is composite. Since f(40) = 1681 = 412 is composite, we
conclude that the assertion is false.

Example A.9 Consider the assertion that
⌈√�x⌉ = �√ x� holds for all

nonnegative real numbers. For example,
⌈√�π⌉ = �√ π�. To prove that

this assertion is false, we only need to come up with a counterexample, that
is, a nonnegative real number x for which the equality does not hold. This
counterexample is left as an exercise (Exercise A.11).
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A.2.5 Mathematical induction

Mathematical induction is a powerful method for proving that a property
holds for a sequence of natural numbers n0, n0 +1, n0 +2, . . . . Typically, n0

is taken to be 0 or 1, but it can be any natural number. Suppose we want
to prove a property P (n) for n = n0, n0 + 1, n0 + 2, . . . whose truth follows
from the truth of property P (n−1) for all n > n0. First, we prove that the
property holds for n0. This is called the basis step. Then, we prove that
whenever the property is true for n0, n0 + 1, . . . , n− 1, then it must follow
that the property is true for n. This is called the induction step. We then
conclude that the property holds for all values of n ≥ n0. In general, if
we want to prove P (n) for n = nk, nk+1, nk+2, . . . whose truth follows from
the truth of properties P (n − 1), P (n − 2), . . . , P (n − k), for some k ≥ 1,
then, we must prove P (n0), P (n0 + 1), . . . , P (n0 + k − 1) directly before
proceeding to the induction step. The following examples illustrate this
proof technique.

Example A.10 We prove Bernoulli’s inequality: (1 + x)n ≥ 1 + nx for
every real number x ≥ −1 and every natural number n.

Basis step: If n = 1, then 1 + x ≥ 1 + x.

Induction step: Suppose the hypothesis holds for all k, 1 ≤ k < n, where
n > 1. Then,

(1 + x)n = (1 + x)(1 + x)n−1

≥ (1 + x)(1 + (n− 1)x) {by induction and since x ≥ −1}
= (1 + x)(1 + nx− x)

= 1 + nx− x + x + nx2 − x2

= 1 + nx + (nx2 − x2)

≥ 1 + nx. {since (nx2 − x2) ≥ 0 for n ≥ 1}

Hence, (1 + x)n ≥ 1 + nx for all n ≥ 1.

Example A.11 Consider the Fibonacci sequence 1, 1, 2, 3, 5, 8, . . . ,

defined by

f(1) = f(2) = 1, and f(n) = f(n− 1) + f(n− 2) if n ≥ 3,
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and let

φ =
1 +
√

5
2

.

We prove that f(n) ≤ φn−1 for all n ≥ 1.
Basis step: If n = 1, we have 1 = f(1) ≤ φ0 = 1. If n = 2, we have
1 = f(2) ≤ φ1 = (1 +

√
5)/2.

Induction step: Suppose the hypothesis holds for all k, 1 ≤ k < n, where
n > 2. First, note that

φ2 =

(
1 +
√

5
2

)2

=

(
1 + 2

√
5 + 5

4

)
=

(
2 + 2

√
5 + 4

4

)
= φ + 1.

Consequently,

f(n) = f(n−1)+f(n−2)≤ φn−2 +φn−3 = φn−3(φ+1) = φn−3φ2 = φn−1.

Hence, f(n) ≤ φn−1 for all n ≥ 1.

Example A.12 This example shows that if the problem has two or more
parameters, then the choice of the parameter on which to use induction
is important. Let n, m, and r denote, respectively, the number of ver-
tices, edges, and regions in an embedding of a connected planar graph (see
Sec. 2.3.2). We will prove Euler’s formula:

n−m + r = 2

stated on page 79. We prove the formula by induction on m, the number
of edges.
Basis step: If m = 1, then there is only one region and two vertices; so
2− 1 + 1 = 2.
Induction step: Suppose the hypothesis holds for 1, 2, . . . , m− 1. We show
that it also holds for m. Let G be a connected planar graph with n vertices,
m−1 edges, and r regions, and assume that n−(m−1)+r = 2. Suppose we
add one more edge. Then, we have two cases to consider. If the new edge
connects two vertices that are already in the graph, then one more region
will be introduced and consequently the formula becomes n−m+(r+1) =
n−(m−1)+r = 2. If, on the other hand, the added edge connects a vertex
in the graph with a new added vertex, then no more regions are introduced,
and the formula becomes (n + 1) −m + r = n − (m − 1) + r = 2. Thus,
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the hypothesis holds for m, and hence for all connected planar graphs with
m ≥ 1.

A.3 Logarithms

Let b be a positive real number greater than 1, x a real number, and suppose
that for some positive real number y we have y = bx. Then, x is called the
logarithm of y to the base b, and we write this as

x = logb y.

Here b is referred to as the base of the logarithm. For any real numbers x

and y greater than 0, we have

logb xy = logb x + logb y,

and

logb (cy) = y logb c, if c > 0.

When b = 2, we will write log x instead of log2 x.

Another useful base is e, which is defined by

e = lim
n→∞

(
1 +

1
n

)n

= 1 +
1
1!

+
1
2!

+
1
3!

+ · · · = 2.7182818 . . . . (A.1)

It is common to write lnx instead of loge x. The quantity lnx is called the
natural logarithm of x. The natural logarithm is also defined by

ln x =

x∫
1

1
t

dt.

To convert from one base to another, we use the chain rule:

loga x = logb x loga b or logb x =
loga x

loga b
.

For example,

log x =
ln x

ln 2
and lnx =

log x

log e
.
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The following important identity can be proved by taking the logarithms
of both sides:

xlogb y = ylogb x, x, y > 0. (A.2)

A.4 Floor and Ceiling Functions

Let x be a real number. The floor of x, denoted by �x, is defined as the
greatest integer less than or equal to x. The ceiling of x, denoted by �x�,
is defined as the least integer greater than or equal to x. For example,

�√2 = 1, �√2� = 2, �−2.5 = −3, �−2.5� = −2.

We list the following identities without proofs:

�x/2�+ �x/2 = x.

�−x = −�x�.
�−x� = −�x.

The following theorem is useful.

Theorem A.1 Let f(x) be a monotonically increasing function such that
if f(x) is integer, then x is integer. Then,

�f(�x) = �f(x) and �f(�x�)� = �f(x)�.

For example,⌈√
�x�
⌉

=
⌈√

x
⌉

and �log �x = �log x.

The following formula follows from Theorem A.1:

��x/n = �x/n and ��x�/n� = �x/n�, n a positive integer. (A.3)

For example,

���n/2/2/2 = ��n/4/2 = �n/8.
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A.5 Factorial and Binomial Coefficients

In this section, we briefly list some of the important combinatorial proper-
ties that are frequently used in the analysis of algorithms, especially those
designed for combinatorial problems. We will limit the coverage to per-
mutations and combinations, which lead to the definitions of factorials and
binomial coefficients.

A.5.1 Factorials

A permutation of n distinct objects is defined to be an arrangement of the
objects in a row. For example, there are six permutations of a, b, and c,
namely

a b c, a c b, b a c, b c a, c a b, c b a.

In general, let there be n > 0 objects, and suppose we want to count the
number of ways to choose k objects and arrange them in a row, where
1 ≤ k ≤ n. Then, there are n choices for the first position, n − 1 choices
for the second position, . . . , and n − k + 1 choices for the kth position.
Therefore, the number of ways to choose k ≤ n objects and arrange them
in a row is

n(n− 1) . . . (n− k + 1).

This quantity, denoted by Pn
k , is called the number of permutations of n

objects taken k at a time. When k = n, the quantity becomes

Pn
n = n× (n− 1)× · · · × 1,

and is commonly called the number of permutations of n objects . Because
of its importance, this quantity is denoted by n!, read “n factorial”. By con-
vention, 0! = 1, which gives the following simple recursive definition of n!:

0! = 1, n! = n(n− 1)! if n ≥ 1.

n! is an extremely fast growing function. For example,

30! = 265252859812191058636308480000000.

A useful approximation to n! is Stirling’s formula:

n! ≈ √2πn
(n

e

)n

, (A.4)
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where e = 2.7182818 . . . is the base of the natural logarithm. For example,
using Stirling’s formula, we obtain

30! ≈ 264517095922964306151924784891709,

with a relative error of about 0.27%.

A.5.2 Binomial coefficients

The possible ways to choose k objects out of n objects, disregarding order,
is customarily called the combinations of n objects taken k at a time. It is
denoted by Cn

k . For example, the combinations of the letters a, b, c, and d

taken three at a time are

a b c, a b d, a c d, b c d.

Since order does not matter here, the combinations of n objects taken k at
a time is equal to the number of permutations of n objects taken k at a
time divided by k!. That is,

Cn
k =

Pn
k

k!
=

n(n− 1) . . . (n− k + 1)
k!

=
n!

k!(n− k)!
, n ≥ k ≥ 0.

This quantity is denoted by
(
n
k

)
, read “n choose k”, which is called the

binomial coefficient . For example, the number of combinations of 4 objects
taken 3 at a time is (

4
3

)
=

4!
3!(4− 3)!

= 4.

Equivalently,
(
n
k

)
is the number of k-element subsets in a set of n elements.

For example, the 3-element subsets of the set {a, b, c, d} are

{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}.

Since the number of ways to choose k elements out of n elements is equal
to the number of ways not to choose n− k elements out of n elements, we
have the following identity:(

n

k

)
=
(

n

n− k

)
, in particular

(
n

n

)
=
(
n

0

)
= 1. (A.5)
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The following identity is important:(
n

k

)
=
(
n− 1

k

)
+
(
n− 1
k − 1

)
. (A.6)

Equation (A.6) can be proved using the following argument. Let A =
{1, 2, . . . , n}. Then the k-element subsets can be partitioned into those
subsets containing n, and those that do not contain n. The number of
subsets not containing n is the number of ways to choose k elements from
the set {1, 2, . . . , n−1}, which is

(
n − 1

k

)
. The number of subsets containing

n is the number of ways to choose k−1 elements from the set {1, 2, . . . , n−
1}, which is

(
n − 1
k − 1

)
. This establishes the correctness of Eq. (A.6).

The binomial theorem, stated below, is one of the fundamental tools in
the analysis of algorithms. For simplicity, we will state only the special case
when n is a positive integer.

Theorem A.2 Let n be a positive integer. Then,

(1 + x)n =
n∑

j=0

(
n

j

)
xj .

If we let x = 1 in Theorem A.2, we obtain(
n

0

)
+
(
n

1

)
+ · · ·+

(
n

n

)
= 2n.

In terms of combinations, this identity states that the number of all sub-
sets of a set of size n is equal to 2n, as expected. If we let x = −1 in
Theorem A.2, we obtain(

n

0

)
−
(

n

1

)
+
(

n

2

)
− · · · ±

(
n

n

)
= 0.

or ∑
j even

(
n

j

)
=
∑

j odd

(
n

j

)
.

Letting n = 1, 2, 3, . . . in Theorem A.2, we obtain the expansions: (1 +
x) = 1 + x, (1 + x)2 = 1 + 2x + x2, (1 + x)3 = 1 + 3x + 3x2 + x3, and so
on. If we continue this way indefinitely, we obtain Pascal triangle, which
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1
1 1

1 1

1 3 3 1

1

2

4 6

10

1 4

1        5 01 5 1

Fig. A.1. The first six rows of Pascal triangle.

is shown in Fig. A.1. In this triangle, each row after the first is computed
from the previous row using Eq. (A.6).

A.6 The Pigeonhole Principle

This principle, although easy and intuitive, is extremely powerful and is
indespensible in the analysis of algorithms.

Theorem A.3 If n balls are distributed into m boxes, then

(1) one box must contain at least �n/m� balls and
(2) one box must contain at most �n/m balls.

Proof. (1) If all boxes have less than �n/m� balls, then the total number
of balls is at most

m
(⌈ n

m

⌉
− 1
)
≤ m

((
n

m
+

m− 1
m

)
− 1
)

= n + m− 1−m = n− 1 < n,

which is a contradiction.

(2) If all boxes have greater than �n/m balls, then the total number of
balls is at least

m
(⌊ n

m

⌋
+ 1
)
≥ m

((
n

m
− m− 1

m

)
+ 1
)

= n−m + 1 + m = n + 1 > n,

which is also a contradiction. �
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Example A.13 Let G = (V, E) be a connected undirected graph with
m vertices (see Sec. 2.3). Let p be a path in G that visits n > m vertices.
We show that p must contain a cycle. Since �n/m� > 2, there is at least
one vertex, say v, that is visited by p more than once. Thus, the portion
of the path that starts and ends at v constitutes a cycle.

A.7 Summations

A sequence a1, a2, . . . , is defined formally as a function whose domain
is the set of natural numbers. It is useful to define a finite sequence
{a1, a2, . . . , an} as a function whose domain is the set {1, 2, . . . , n}.
Throughout this book, we will assume that a sequence is finite, unless
stated otherwise. Let S = a1, a2, . . . , an be any sequence of numbers. The
sum a1 + a2 + · · ·+ an can be expressed compactly using the notation

n∑
j=1

af(j) or
∑

1≤j≤n

af(j),

where f(j) is a function that defines a permutation of the elements
1, 2, . . . , n. For example, the sum of the elements in the above sequence
can be stated as

n∑
j=1

aj or
∑

1≤j≤n

aj .

Here, f(j) is simply j. If, for example, f(j) = n − j + 1, then the sum
becomes

n∑
j=1

an−j+1.

This sum can be simplified as follows

n∑
j=1

an−j+1 = an−1+1, an−2+1, . . . , an−n+1 =
n∑

j=1

aj.

Using the other notation, it is simpler to change indices, as in the fol-
lowing example.
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Example A.14

n∑
j=1

an−j =
∑

1≤j≤n

an−j {Rewrite summation in other form.}

=
∑

1≤n−j≤n

an−(n−j) {Substitute n− j for j.}

=
∑

1−n≤n−j−n≤n−n

an−(n−j) {Subtract n from inequalities.}

=
∑

1−n≤−j≤0

aj {Simplify}

=
∑

0≤j≤n−1

aj {Multiply inequalities by −1}

=
n−1∑
j=0

aj .

The above procedure applies to any permutation function f(j) of the
form k ± j, where k is an integer that does not depend on j.

In what follows, we list closed-form formulas for some of the summa-
tions that occur quite often when analyzing algorithms. The proofs of these
formulas can be found in most standard books on discrete mathematics.
The arithmetic series:

n∑
j=1

j =
n(n + 1)

2
= Θ(n2). (A.7)

The sum of squares:

n∑
j=1

j2 =
n(n + 1)(2n + 1)

6
= Θ(n3). (A.8)

The geometric series

n∑
j=0

cj =
cn+1 − 1

c− 1
= Θ(cn), c �= 1. (A.9)
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If c = 2, we have
n∑

j=0

2j = 2n+1 − 1 = Θ(2n). (A.10)

If c = 1/2, we have

n∑
j=0

1
2j

= 2− 1
2n

< 2 = Θ(1). (A.11)

When | c | < 1 and the sum is infinite, we have the infinite geometric series
∞∑

j=0

cj =
1

1− c
= Θ(1), | c | < 1. (A.12)

Differentiating both sides of Eq. (A.9) and multiplying by c yields
n∑

j=0

jcj =
n∑

j=1

jcj =
ncn+2 − ncn+1 − cn+1 + c

(c− 1)2
= Θ(ncn), c �= 1.

(A.13)

Letting c = 1/2 in Eq. (A.13) yields
n∑

j=0

j

2j
=

n∑
j=1

j

2j
= 2− n + 2

2n
= Θ(1). (A.14)

Differentiating both sides of Eq. (A.12) and multiplying by c yields

∞∑
j=0

jcj =
c

(1− c)2
= Θ(1), | c | < 1. (A.15)

A.7.1 Approximation of summations by integration

Let f(x) be a continuous function that is monotically decreasing or increas-
ing, and suppose we want to evaluate the summation

n∑
j=1

f(j).

We can obtain upper and lower bounds by approximating the summation
by integration as follows.
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  n n+

(b)

  n

(a)


x


x

Fig. A.2. Approximation of the sum
∑n

j=1
1
j
.

(b)

n-  

log x

(a)

n- n

log x

n

Fig. A.3. Approximation of the sum
∑n

j=1
log j.

If f(x) is decreasing, then we have (see Fig. A.2, for example)

n+1∫
m

f(x) dx ≤
n∑

j=m

f(j) ≤
n∫

m−1

f(x) dx.

If f(x) is increasing, then we have (see Fig. A.3, for example)

n∫
m−1

f(x) dx ≤
n∑

j=m

f(j) ≤
n+1∫
m

f(x) dx.



January 14, 2016 14:23 Algorithms: Design Techniques and Analysis - 9in x 6in b2305-appa page 512

512 Algorithms: Design Techniques and Analysis

Example A.15 We derive an upper and lower bounds for the summation

n∑
j=1

jk, k ≥ 1

as follows. Since jk is increasing, we have

n∫
0

xk dx ≤
n∑

j=1

jk ≤
n+1∫
1

xk dx.

That is,

nk+1

k + 1
≤

n∑
j=1

jk ≤ (n + 1)k+1 − 1
k + 1

.

Hence, by definition of the Θ-notation, we have

n∑
j=1

jk = Θ(nk+1), k ≥ 1.

Example A.16 In this example, we derive upper and lower bounds for
the harmonic series

Hn =
n∑

j=1

1
j
.

From Fig. A.2(a), it is clear that

n∑
j=1

1
j

= 1 +
n∑

j=2

1
j

≤ 1 +

n∫
1

dx

x

= 1 + lnn.

Similarly, from Fig. A.2(b), we obtain

n∑
j=1

1
j
≥

n+1∫
1

dx

x
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= ln(n + 1).

It follows that

ln(n + 1) ≤
n∑

j=1

1
j
≤ ln n + 1, (A.16)

or

log(n + 1)
log e

≤
n∑

j=1

1
j
≤ log n

log e
+ 1. (A.17)

Hence, by definition of the Θ-notation, we have

Hn =
n∑

j=1

1
j

= Θ(log n).

Example A.17 In this example, we derive upper and lower bounds for
the series

n∑
j=1

log j.

From Fig. A.3(a), it is clear that

n∑
j=1

log j = log n +
n−1∑
j=1

log j

≤ log n +

n∫
1

log x dx

= log n + n logn− n log e + log e.

Similarly, from Fig. A.3(b), we obtain

n∑
j=1

log j =
n∑

j=2

log j

≥
n∫

1

log x dx

= n logn− n log e + log e.
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It follows that

n log n−n log e+log e ≤
n∑

j=1

log j ≤ n log n−n log e+logn+log e. (A.18)

Hence, by definition of the Θ-notation, we have

n∑
j=1

log j = Θ(n log n).

This is the same bound derived in Example 1.12. However, the derivation
here is more precise. For example, taking exponentials in Eq. (A.18) yields

2n log n−n log e+log e ≤ n! ≤ 2n log n−n log e+log n+log e,

or

e
(n

e

)n

≤ n! ≤ ne
(n

e

)n

,

which is fairly close to Stirling approximation formula (Eq. (A.4)).

A.8 Recurrence Relations

In virtually all recursive algorithms, the bound on the running time is
expressed recursively. This makes solving recursive formulas of paramount
importance to the algorithm analyst. A recursive formula is simply a for-
mula that is defined in terms of itself. In this case, we call such a definition
a recurrence relation or simply a recurrence. For example, the sequence of
odd positive integers can be described by the recurrence

f(n) = f(n− 1) + 2, if n > 1 and f(1) = 1.

Computing f(n) for large values of n using the recurrence directly is
tedious, and hence it is desirable to express the sequence in a closed form
from which f(n) can be computed directly. When such a closed form is
found, we say that the recurrence has been solved. In what follows, we give
some techniques for solving some elementary recurrences.

A recurrence relation is called linear homogeneous with constant coeffi-
cients if it is of the form

f(n) = a1f(n− 1) + a2f(n− 2) + . . . + akf(n− k).
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In this case, f(n) is said to be of degree k. When an additional term
involving a constant or a function of n appears in the recurrence, then it is
called inhomogeneous .

A.8.1 Solution of linear homogeneous recurrences

Let

f(n) = a1f(n− 1) + a2f(n− 2) + · · ·+ akf(n− k). (A.19)

The general solution to Eq. (A.19) involves a sum of individual solutions of
the form f(n) = xn. Substituting xn for f(n) in Eq. (A.19) yields

xn = a1x
n−1 + a2x

n−2 + · · ·+ akxn−k.

Dividing both sides by xn−k yields

xk = a1x
k−1 + a2x

k−2 + · · ·+ ak,

or equivalently

xk − a1x
k−1 − a2x

k−2 − · · · − ak = 0. (A.20)

Equation (A.20) is called the characteristic equation of the recurrence
relation (A.19).

In what follows, we will confine our attention to first and second lin-
ear homogeneous recurrences. The solution to the first-order homogeneous
recurrence is straightforward. Let f(n) = af(n− 1), and suppose that the
sequence starts from f(0). Since

f(n) = af(n− 1) = a2f(n− 2) = · · · = anf(0),

it is easy to see that f(n) = anf(0) is the solution to the recurrence.
If the degree of the recurrence is 2, then the characteristic equation

becomes x2 − a1x− a2 = 0. Let the roots of this quadratic equation be r1

and r2. Then the solution to the recurrence is

f(n) = c1r
n
1 + c2r

n
2 , if r1 �= r2, and f(n) = c1r

n + c2nrn if r1 = r2 = r.

Here, c1 and c2 are determined by the initial values of the sequence: f(n0)
and f(n0 + 1).
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Example A.18 Consider the sequence 1, 4, 16, 64, 256, . . . , which can be
expressed by the recurrence f(n) = 3f(n−1)+4f(n−2) with f(0) = 1 and
f(1) = 4. The characteristic equation is x2−3x−4 = 0, and hence r1 = −1
and r2 = 4. Thus, the solution to the recurrence is f(n) = c1(−1)n + c24n.
To find the values of c1 and c2, we solve the two simultaneous equations:

f(0) = 1 = c1 + c2 and f(1) = 4 = −c1 + 4c2.

Solving the two simultaneous equations, we obtain c1 = 0 and c2 = 1. It
follows that f(n) = 4n.

Example A.19 Consider the sequence 1, 3, 5, 7, 9, . . . of odd integers,
which can be expressed by the recurrence f(n) = 2f(n − 1) − f(n − 2)
with f(0) = 1 and f(1) = 3. The characteristic equation is x2−2x+1 = 0,
and hence r1 = r2 = 1. Thus, the solution to the recurrence is f(n) =
c11n + c2n1n = c1 + c2n. To find the values of c1 and c2, we solve the two
simultaneous equations:

f(0) = 1 = c1 and f(1) = 3 = c1 + c2.

Solving the two simultaneous equations, we obtain c1 = 1 and c2 = 2. It
follows that f(n) = 2n + 1.

Example A.20 Consider the Fibonacci sequence 1, 1, 2, 3, 5, 8, . . . , which
can be expressed by the recurrence f(n) = f(n− 1)+ f(n− 2) with f(1) =
f(2) = 1. To simplify the solution, we may introduce the extra term f(0) =
0. The characteristic equation is x2−x−1 = 0, and hence r1 = (1+

√
5)/2

and r2 = (1−√5)/2. Thus, the solution to the recurrence is

f(n) = c1

(
1 +
√

5
2

)n

+ c2

(
1−√5

2

)n

.

To find the values of c1 and c2, we solve the two simultaneous equations:

f(0) = 0 = c1 + c2 and f(1) = 1 = c1

(
1 +
√

5
2

)
+ c2

(
1−√5

2

)
.

Solving the two simultaneous equations, we obtain c1 = 1/
√

5 and c2 =
−1/
√

5. It follows that

f(n) =
1√
5

(
1 +
√

5
2

)n

− 1√
5

(
1−√5

2

)n

.
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Since (1 − √5)/2) ≈ −0.618034, when n is large, the second term
approaches 0, and hence when n is large enough,

f(n) ≈ 1√
5

(
1 +
√

5
2

)n

≈ 0.447214(1.61803)n.

The quantity φ = (1 +
√

5)/2 ≈ 1.61803 is called the golden ratio. In
Example A.11, we have proved that f(n) ≤ φn−1 for all n ≥ 1.r

A.8.2 Solution of inhomogeneous recurrences

Unfortunately, there is no convenient method for dealing with inhomoge-
neous recurrences in general. Here, we will confine our attention to some
elementary inhomogeneous recurrences that arise frequently in the analysis
of algorithms. Perhaps, the simplest inhomogeneous recurrence is

f(n) = f(n− 1) + g(n), n ≥ 1, (A.21)

where g(n) is another sequence. It is easy to see that the solution to
recurrence (A.21) is

f(n) = f(0) +
n∑

i=1

g(i).

For example, the solution to the recurrence f(n) = f(n − 1) + 1 with
f(0) = 0 is f(n) = n.
Now, consider the homogeneous recurrence

f(n) = g(n)f(n− 1), n ≥ 1. (A.22)

It is also easy to see that the solution to recurrence (A.22) is

f(n) = g(n)g(n− 1) . . . g(1)f(0)

For example, the solution to the recurrence f(n) = nf(n−1) with f(0) = 1
is f(n) = n!.
Next, consider the inhomogeneous recurrence

f(n) = g(n)f(n− 1) + h(n), n ≥ 1, (A.23)

where h(n) is also another sequence. We define a new function f ′(n) as
follows. Let

f(n) = g(n)g(n− 1) . . . g(1)f ′(n), n ≥ 1; f ′(0) = f(0).
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Substituting for f(n) and f(n− 1) in recurrence (A.23), we obtain

g(n)g(n− 1) . . . g(1)f ′(n) = g(n)(g(n− 1) . . . g(1)f ′(n− 1)) + h(n),

which simplifies to

f ′(n) = f ′(n− 1) +
h(n)

g(n)g(n− 1) . . . g(1)
, n ≥ 1.

Consequently,

f ′(n) = f ′(0) +
n∑

i=1

h(i)
g(i)g(i− 1) . . . g(1)

, n ≥ 1.

It follows that

f(n) = g(n)g(n− 1) . . . g(1)

(
f(0) +

n∑
i=1

h(i)
g(i)g(i− 1) . . . g(1)

)
, n ≥ 1.

(A.24)

Example A.21 Consider the sequence 0, 1, 4, 18, 96, 600, 4320, 35280,
. . . , which can be expressed by the recurrence

f(n) = nf(n− 1) + n!, n ≥ 1; f(0) = 0.

We proceed to solve this inhomogeneous recurrence as follows. Let f(n) =
n!f ′(n) (f ′(0) = f(0) = 0). Then,

n!f ′(n) = n(n− 1)!f ′(n− 1) + n!,

which simplifies to

f ′(n) = f ′(n− 1) + 1,

whose solution is

f ′(n) = f ′(0) +
n∑

i=1

1 = 0 + n.

Hence,

f(n) = n!f ′(n) = nn!.
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Example A.22 Consider the sequence 0, 1, 4, 11, 26, 57, 120, . . . , which
can be expressed by the recurrence

f(n) = 2f(n− 1) + n, n ≥ 1; f(0) = 0.

We proceed to solve this inhomogeneous recurrence as follows. Let f(n) =
2nf ′(n) (f ′(0) = f(0) = 0). Then,

2nf ′(n) = 2(2n−1f ′(n− 1)) + n,

which simplifies to

f ′(n) = f ′(n− 1) +
n

2n
,

whose solution is

f ′(n) = f ′(0) +
n∑

i=1

i

2i
.

Hence (since f ′(0) = f(0) = 0),

f(n) = 2nf ′(n) = 2n
n∑

i=1

i

2i
.

By Eq. (A.14),

f(n) = 2n
n∑

i=1

i

2i
= 2n

(
2− n + 2

2n

)
= 2n+1 − n− 2.

A.9 Divide-and-Conquer Recurrences

See Sec. 1.15.

A.10 Exercises

A.1. Let A and B be two sets. Prove the following properties, which are known
as De Morgan’s laws.

(a) A ∪B = A ∩B.

(b) A ∩B = A ∪B.



January 14, 2016 14:23 Algorithms: Design Techniques and Analysis - 9in x 6in b2305-appa page 520

520 Algorithms: Design Techniques and Analysis

A.2. Let A, B, and C be finite sets.

(a) Prove the principle of inclusion–exclusion for two sets:

|A ∪ B| = |A|+ |B| − |A ∩B|.

(b) Prove the principle of inclusion-exclusion for three sets:

|A ∪B ∪ C| = |A|+|B|+|C|−|A ∩ B|−|A ∩ C|−|B ∩ C|+|A ∩B ∩ C|.

A.3. Show that if a relation R on a set A is transitive and irreflexive, then R
is asymmetric.

A.4. Let R be a relation on a set A. Then, R2 is defined as {(a, b) | (a, c) ∈
R and (c, b) ∈ R for some c ∈ A}. Show that if R is symmetric, then R2

is also symmetric.

A.5. Let R be a nonempty relation on a set A. Show that if R is symmetric
and transitive, then R is not irreflexive.

A.6. Let A be a finite set and P (A) the power set of A. Define the relation R
on the set P (A) by (X, Y ) ∈ R if and only if X ⊆ Y . Show that R is a
partial order.

A.7. Let A = {1, 2, 3, 4, 5} and B = A×A. Define the relation R on the set B
by {((x, y), (w, z)) ∈ B} if and only if xz = yw.

(a) Show that R is an equivalence relation.

(b) Find the equivalence classes induced by R.

A.8. Given the sets A and B and the function f from A to B, determine whether
f is one to one, onto B or both (i.e., a bijection).

(a) A = {1, 2, 3, 4, 5}, B = {1, 2, 3, 4}, and
f ={(1, 2), (2, 3), (3, 4), (4, 1), (5, 2)}.

(b) A is the set of integers, B is the set of even integers, and f(n) = 2n.

(c) A = B is the set of integers, and f(n) = n2.

(d) A = B is the set of real numbers with 0 excluded and f(x) = 1/x.

(e) A = B is the set of real numbers and f(x) = |x |.

A.9. A real number r is called rational if r = p/q, for some integers p and
q, otherwise it is called irrational . The numbers 0.25, 1.3333333 . . . are
rational, while π and

√
p, for any prime number p, are irrational. Use the

proof by contradiction method to prove that
√

7 is irrational.
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A.10. Prove that for any positive integer n

�log n�+ 1 = �log(n + 1)	.

A.11. Give a counterexample to disprove the assertion given in Example A.9.

A.12. Use mathematical induction to show that n! > 2n for n ≥ 4.

A.13. Use mathematical induction to show that a tree with n vertices has exactly
n− 1 edges.

A.14. Prove that φn = φn−1 + φn−2 for all n ≥ 2, where φ is the golden ratio
(see Example A.11).

A.15. Prove that for every positive integer k,
∑n

i=1
ik log i = O(nk+1 log n).

A.16. Show that
n∑

j=1

j log j = Θ(n2 log n)

(a) using algebraic manipulations.

(b) using the method of approximating summations by integration.

A.17. Show that
n∑

j=1

log(n/j) = O(n),

(a) using algebraic manipulations.

(b) using the method of approximating summations by integration.

A.18. Solve the following recurrence relations.

(a) f(n) = 3f(n− 1) for n ≥ 1; f(0) = 5.

(b) f(n) = 2f(n− 1) for n ≥ 1; f(0) = 2.

(c) f(n) = 5f(n− 1) for n ≥ 1; f(0) = 1.

A.19. Solve the following recurrence relations.

(a) f(n) = 5f(n− 1)− 6f(n− 2) for n ≥ 2; f(0) = 1, f(1) = 0.

(b) f(n) = 4f(n− 1)− 4f(n− 2) for n ≥ 2; f(0) = 6, f(1) = 8.

(c) f(n) = 6f(n− 1)− 8f(n− 2) for n ≥ 2; f(0) = 1, f(1) = 0.

(d) f(n) = −6f(n− 1)− 9f(n− 2) for n ≥ 2; f(0) = 3, f(1) = −3.

(e) 2f(n) = 7f(n − 1) − 3f(n− 2) for n ≥ 2; f(0) = 1, f(1) = 1.

(f) f(n) = f(n− 2) for n ≥ 2; f(0) = 5, f(1) = −1.
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A.20. Solve the following recurrence relations.

(a) f(n) = f(n− 1) + n2 for n ≥ 1; f(0) = 0.

(b) f(n) = 2f(n− 1) + n for n ≥ 1; f(0) = 1.

(c) f(n) = 3f(n− 1) + 2n for n ≥ 1; f(0) = 3.

(d) f(n) = 2f(n− 1) + n2 for n ≥ 1; f(0) = 1.

(e) f(n) = 2f(n− 1) + n + 4 for n ≥ 1; f(0) = 4.

(f) f(n) = −2f(n− 1) + 2n − n2 for n ≥ 1; f(0) = 1.

(g) f(n) = nf(n− 1) + 1 for n ≥ 1; f(0) = 1.
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Appendix B

Introduction to Discrete Probability

B.1 Definitions

The sample space Ω is the set of all possible outcomes (also called occur-
rences or points) of an experiment. An event E is a subset of the sam-
ple space. For example, when tossing a die, Ω = {1, 2, 3, 4, 5, 6} and
E = {1, 3, 5} is one possible event.

Let E1 and E2 be two events. Then, E1 ∪ E2 is the event consisting of
all points either in E1 or in E2 or both, and E1 ∩ E2 is the event consisting
of all points that are in both E1 and E2. Other set operations are defined
similarly. E1 and E2 are called mutually exclusive if E1 ∩ E2 = φ.

Let x1, x2, . . . , xn be the set of all n possible outcomes of an experiment.
Then, we must have 0 ≤ Pr[xi] ≤ 1 for 1 ≤ i ≤ n and

∑n
i=1 Pr[xi] = 1.

Here Pr, the function from the set of all events of the sample space to a
subset of [0..1], is called a probability distribution. For many experiments,
it is natural to assume that all outcomes have the same probability. For
example, in the experiment of tossing a die, Pr[k] = 1

6
for 1 ≤ k ≤ 6.

B.2 Conditional Probability and Independence

Let E1 and E2 be two events. Then, the conditional probability of E1 given
E2, denoted by Pr[E1 | E2], is defined as

Pr[E1 | E2] =
Pr[E1 ∩ E2]

Pr[E2] . (B.1)

523
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E1 and E2 are called independent if

Pr[E1 ∩ E2] = Pr[E1]Pr[E2],
and they are called dependent if they are not independent. Equivalently,
E1 and E2 are independent if

Pr[E1 | E2]×Pr[E2] = Pr[E1]Pr[E2].
Example B.1 Consider the experiment of flipping two coins, where
all outcomes are assumed to be equally likely. The sample space is
{HH, HT, TH, TT }. Let E1 be the event that the first coin lands heads
and let E2 be the event that at least one coin lands tails. Now, Pr[E1] =
Pr[{HT, HH}] = 1

2 , and Pr[E2] = Pr[{HT, TH, TT }] = 3
4 . Hence,

Pr[E1 | E2] =
Pr[{HT, HH} ∩ {HT, TH, TT }]

Pr[{HT, TH, TT }]

=
Pr[{HT }]

Pr[{HT, TH, TT }] = 1
3
.

Since Pr[E1 ∩ E2] = 1
4 �= 3

8 = Pr[E1]Pr[E2], we conclude that E1 and E2 are
not independent.

Now, consider changing E2 to the event that the second coin lands tails.
Then, Pr[E2] = Pr[{HT, TT }] = 1

2 . Hence,

Pr[E1 | E2] =
Pr[{HT, HH} ∩ {HT, TT }]

Pr[{HT, TT }] =
Pr[{HT }]

Pr[{HT, TT }] = 1
2 .

Since Pr[E1 ∩E2] = 1
4

= 1
2
× 1

2
= Pr[E1]Pr[E2], we conclude that E1 and E2

are independent.

Example B.2 Consider the experiment of tossing two dice, where all
outcomes
are assumed to be equally likely. The sample space is {(1, 1), (1, 2), . . . ,
(6, 6)}. Let E1
be the event that the sum of the two dice is 6 and let E2 be the event
that the first die equals 4. Then, Pr[E1] = Pr[{(1, 5), (2, 4), (3, 3), (4, 2),
(5, 1)}] = 5

36 , and Pr[E2] = Pr[{(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)}] = 1
6 .

Since Pr[E1 ∩ E2] = Pr[{(4, 2)}] = 1
36
�= 5

36
× 1

6
= 5

216
= Pr[E1]Pr[E2], we

conclude that E1 and E2 are not independent.

Now, change E1 to the event that the sum of the two dice equals 7. Then,
Pr[E1] = Pr[{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}] = 1

6
. Since Pr[E1 ∩
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E2] = Pr[{(4, 3)}] = 1
36

= 1
6
× 1

6
= Pr[E1]Pr[E2], we conclude that E1 and

E2 are independent.

B.2.1 Multiplication rule for conditional probability

Rearranging (B.1), one obtains

Pr[E1 ∩ E2] = Pr[E1 | E2]Pr[E2]
or

Pr[E1 ∩ E2] = Pr[E1]Pr[E2 | E1]. (B.2)

In the case of three events, Eq. (B.2) can be extended to

Pr[E1 ∩ E2 ∩ E3] = Pr[E1] Pr[E2 | E1] Pr[E3 | E1 ∩ E2].
In general, we have

Pr[E1 ∩ · · · ∩ En] = Pr[E1] Pr[E2 | E1] . . .Pr[En | E1 ∩ E2 ∩ · · · ∩ En−1].

(B.3)

B.3 Random Variables and Expectation

A random variable X is a function from the sample space to the set of
real numbers. For example, we may let X denote the number of heads
appearing when throwing three coins. Then, the random variable X takes
on one of the values 0, 1, 2, and 3 with probabilities

Pr[X = 0] = Pr[{TTT }] = 1
8 , Pr[X = 1] = Pr[{HTT, THT, TTH}] =

3
8 , Pr[X = 2] = Pr[{HHT, HTH, THH}] = 3

8 and Pr[X = 3] =
Pr[{HHH}] = 1

8
.

The expected value of a (discrete) random variable X with range S is
defined as

E[X ] =
∑
x∈S

xPr[X = x].

For example, if we let X denote the number appearing when throwing a
die, then the expected value of X is

E[X ] =
6∑

k=1

kPr[X = k] =
1
6
(1 + 2 + 3 + 4 + 5 + 6) =

7
2
. (B.4)
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E[X ] represents the mean of the random variable X and is often writ-
ten as µX or simply µ. An important and useful property is linearity of
expectation:

E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi],

which is always true regardless of independence.
Another important measure is the variance of X , denoted by var[X ] or

σ2
X , which is defined as

var[X ] = E[(X − µ)2] =
∑
x∈S

(x− µ)2Pr[X = x],

where S is the range of X . It can be shown that var[X ] = E[X2]−µ2. For
example, in the experiment of throwing a die,

var[X ] =

(
6∑

k=1

k2 Pr[X = k]

)
−
(

7
2

)2

=
1
6
(1 + 22 + 32 + 42 + 52 + 62)−

(
7
2

)2

=
91
6
− 49

4

=
35
12

.

σX , or simply σ, is called the standard deviation. So, in the above
example, σ =

√
35/12 ≈ 1.7.

B.4 Discrete Probability Distributions

B.4.1 Uniform distribution

The uniform distribution is the simplest of all probability distributions in
which the random variable assumes all its values with equal probability. If
X takes on the values x1, x2, . . . , xn with equal probability, then for all k,
1 ≤ k ≤ n, Pr[X = k] = 1

n
. The random variable denoting the number

that appears when a die is rolled is an example of such a distribution.
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B.4.2 Bernoulli distribution

A Bernoulli trial is an experiment with exactly two outcomes, e.g., flipping
a coin. These two outcomes are often referred to as success and failure with
probabilities p and q = 1 − p, respectively. Let X be the random variable
corresponding to the toss of a biased coin with probability of heads 1

3 and
probability of tails 2

3 . If we label the outcome as success when heads appear,
then

X =

{
1 if the trial succeeds,
0 if it fails.

A random variables that assumes only the numbers 0 and 1 is called an
indicator random variable. The expected value and variance of an indicator
random variable with probability of success p are given by

E[X ] = p and var[X ] = pq = p(1− p).

B.4.3 Binomial distribution

Let X =
∑n

i=1Xi, where the Xi’s are indicator random variables
corresponding to n independent Bernoulli trials with a parameter p (iden-
tically distributed). Then, X is said to have the binomial distribution with
parameters p and n. The probability that there are exactly k successes is
given by

Pr[X = k] =
(
n

k

)
pkqn−k,

where q = 1− p. The expected value and variance of X are given by

E[X ] = np and var[X ] = npq = np(1− p).

The first equality follows from the linearity of expectations, and the second
follows from the fact that all Xi’s are pairwise independent.

For example, the probabilities of getting k heads, 0 ≤ k ≤ 4, when
tossing a fair coin four times are

1
16

,
1
4
,
3
8
,
1
4
,

1
16

.

E[X ] = 4× (1/2) = 2, and var[X ] = 4× (1/2)× (1/2) = 1.
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B.4.4 Geometric distribution

Suppose we have a (biased) coin with a probability p of heads. Let the
random variable X denote the number of coin tosses until heads appear
for the first time. Then X is said to have the geometric distribution with
a parameter p. The probability of having a success after k ≥ 1 trials is
P[X = k] = qk−1p, where q = 1−p. The expected value of X is E[X ] = 1/p

and its variance is var[X ] = q/p2.
Consider the experiment of tossing a coin until heads appear for the

first time. Suppose we toss a coin 10 times with no success, that is, tails
appear 10 times. What is the probability of getting heads in the 11th toss?
The answer is 1

2 . This observation about the geometric distribution is called
the memoryless property: the probability of having an event in the future
is independent of the past.

B.4.5 Poisson distribution

A discrete random variable X that takes on one of the values 0, 1, 2, . . . is
called a Poisson random variable with parameter λ > 0 if

Pr[X = k] =
e−λλk

k!
, k ≥ 0.

If X is a Poisson random variable with a parameter λ, then E[X ] =
var[X ] = λ. That is, both the expected value and variance of a Poisson
random variable with parameter λ are equal to λ.
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NP-hard problems, 173

2-coloring problem, 252–253, 265, 301

2-sat problem, 253, 267
3-coloring problem, 251, 262, 267,

319, 321–325, 329, 335
3-coloriter algorithm, 324–325

3-colorrec algorithm, 323–324

3-sat problem, 262, 267
4-queens algorithm, 326–327, 335

4-queens problem, 326

8-queens problem, 325–329, 335

A

adjacency lists, 80, 88

adjacency matrix, 80, 241
algebraic decision tree

connected component, 310

definition of, 309
height of, 310

linear, 309–310

model of computation, 309–311
order of, 309

algorithm

adaptive, 172
analysis of, see algorithm

analysis
cryptography, 54

definition of, 5

deterministic, 5, 252
exact order of, 28

exponential, 54–55
graph, 48, 54
network, 48
nondeterministic, 253, 263
number theory, 54
optimal, see optimal algorithm
probabilistic, 382
randomized, see randomized

algorithm
recursive, 44

algorithm analysis, 45–53
amortized, see amortized

analysis
average case, see average case

analysis
worst case, see worst case

analysis
algorithm design technique

approximation algorithms, 383
backtracking, 321
divide and conquer, 117, 131
dynamic programming, 117,

173
geometric sweeping, 453
graph traversal, 227
greedy approach, 201
induction, 117, 130
iterative improvement (flow in

network), 409
iterative improvement

(matching), 427

539
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randomized algorithms, 339

Voronoi diagrams, 473
all-pairs shortest path problem,

185–186, 192–193, 195–196
almost-complete binary tree, 84, 89

alternating path, 428
augmenting, see augmenting

path

cycle, 428
length of, 428

alternating path tree, 431
amortized analysis, 50–53

ancestor (of a vertex), 82

antipodal pair, 465–466
applications of the farthest-point

Voronoi diagram, 488–489

computing all farthest
neighbors, 488

computing the smallest
enclosing circle, 488–489

applications of the Voronoi diagram,
481–484

computing all nearest neighbors,
482–483

computing the convex hull,
481–482

computing the Euclidean
minimum spanning tree,
483–484

approximation algorithm, 383

definition of, 384
difference bound, 385–386

fully polynomial approximation
scheme, 397–400, 403

performance bound, 383
polynomial approximation

scheme, 394–397, 403
relative bound, 386–393

articpoints algorithm, 233–235
articulation point, 233–236, 241

assignment problem, 336
asymptotic running time, 22, 24

augmenting path, 412, 428–429
bottleneck capacity of, 412

vertex-disjoint, 429, 440–441,
446

average case analysis, 46, 48–50, 76

B

backtracking, 321, 337
advance step, 329
backtrack step, 330
depth-first search, 323
general method, 328–330
search tree, 323

backtrackiter algorithm, 330–331
backtrackrec algorithm, 330
basic operation, 41–42
Bernoulli distribution, 527
Bernoulli trial, 527
best case, 46
bfs algorithm, 237–239, 242
bimatch1 algorithm, 430–431
bimatch2 algorithm, 433–434, 438,

446
bimatch3 algorithm, 442–443, 445
bin packing problem, 262, 266, 384,

387–389, 400, 403
approximation algorithms for,

387–389
binary search, 8–12, 42–43, 48

randomized, 380
recursive algorithm, 133–135

binary search tree, 86–88
binary tree, 84–86

almost-complete, see
almost-complete binary tree

complete, see complete binary
tree

full, see full binary tree
height of, see height (of a binary

tree)
levels in, see levels (in binary

tree)
quantitative aspects of, 85–86

binarysearch algorithm, 9–10, 12,
33–34, 42–43, 45, 48, 67, 306–307,
380



January 14, 2016 14:23 Algorithms: Design Techniques and Analysis - 9in x 6in b2305-index page 541

Index 541

binarysearchrec algorithm,
133–135, 140, 169–170

binomial coefficient, 175, 190, 505
binomial distribution, 527
binomial theorem, 506
bipartite graph, 80, 87, 242

complete (Km,n), 80
edge cover for, 426
independent set in, 426, 446

birthday paradox, 350
blossom, 435, 447

expanding of, 436
shrinking of, 435–436

Boole’s inequality, 360
bottom-up merge sorting, 17–20
bottomupsort algorithm, 18–21, 28,

33–35, 42, 68, 115, 129, 135, 137,
139–140, 157, 169, 172

bound
exact, 28, 35, 50
lower, 35, 47
tight, 35
upper, 35, 47–48

branch and bound, 330–335, 337
breadth-first search, 237–239,

241–243
applications of, 239
back edge, 237
cross edge, 237
time complexity, 239
tree edge, 237

brute-force primalitytest
algorithm, 31, 54

bubblesort algorithm, 69–70,
128–129, 172

bucketsort, 129

C

Carmichael numbers, 376, 382
ceiling function, 503
Chebyshev inequality, 353–354
Chernoff bounds, 354–357

lower tail, 354–356
upper tail, 356

child (of a vertex), 82
chromatic number, 251
chromatic number problem, 251, 299
Church Thesis, 6

Church, A., 6
circuit value problem, 294, 304
class of problems

co-NP, see co-NP
DEXT, see DEXT
EXPTIME, see EXPTIME
LOGSPACE, see LOGSPACE
NC, see NC

NEXPTIME, see NEXPTIME
NEXT, see NEXT
NLOGSPACE, see

NLOGSPACE
NP, see NP, see NP
NSPACE, see NSPACE
P, see P, see P

POLYLOGSPACE, see
POLYLOGSPACE

PSPACE, see PSPACE
clique, 251

maximum, see max-clique
clique problem, 251, 258–259, 261,

266, 392
closed form, 514
closest pair problem, 163–167,

172–173, 313–314, 316
lower bound on, 313–314

closestpair algorithm, 167

closure of a class of problems, 285
co-NP (class of problems), 263–264
co-NP-complete, 263
collinear, 457
coloring

of planar graph, 385
coloring problem, 250, 254, 262, 265,

299, 392, 402
combine step, 141
complete binary tree, 84
complete bipartite graph, 242
complete problem, 288–295

definition of, 288
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for co-NP, see co-NP-complete
for LOGSPACE, see

LOGSPACE-complete
for NLOGSPACE, see

NLOGSPACE-complete
for NP, see NP-complete
for P, see P-complete
for PSPACE, see

PSPACE-complete
complexity

space, see space complexity
time, see time complexity

complexity classes, 32
computability theory, 7
computational complexity, 7, 21, 269,

276, 303–304
computational geometry, 54, 470
computer science, 5
conditional probability, 523
connected component, 79

finding, 241
listing vertices in, 241

connected graph, 79
conquer step, 140
convex hull, 456, 477

computing the, 460–463,
470

convex hull problem, 312–313
lower bound on, 312–313

convex polygon
chord in, 195
triangulation of, see

triangulation of a convex
polygon

convexhull algorithm, 462, 464
csg recognition problem, 290, 303
cycle (in a graph), 79

even-length, 79
odd-length, 79
of shortest length, 242

D

decidability, 7
decision problem, 250, 269, 309

decision tree, 11

height of, 308

model of computation, 306

Delaunay triangulation, 476–478

delete operation, 90, 460–461

delete procedure, 93–95

delete-max operation, 90, 98, 108

delete-min operation, 459, 461

deletemax procedure, 94–95

depth (of a vertex), 82

depth-first search, 227–237, 239–241,
243

back edge, 229–230

cross edge, 230

forward edge, 230

in directed graphs, 229

in undirected graphs, 229

iterative, 240

postorder numbering, 229

preorder numbering, 229

spanning tree, 229, 242

time complexity of, 231

tree edge, 229–230

depth-first search applications,
232–237

depth-first search applications of

articulation points, see
articulation point

connected components, see
connected component

graph acyclicity, 232

strongly connected components,
see strongly connected
component

topological sorting, see
topological sorting

descendant (of a vertex), 82

DEXT (class of problems), 272

dfs algorithm, 228, 231–232, 240–241

diameter algorithm, 467–468

diameter of a set of points, 316, 463,
470

computing the, 463–468, 470
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dijkstra algorithm, 204–207, 216,
222–223, 225

dinic algorithm, 419, 421

disjoint sets data structure, 51,
100–108, 112

divide and conquer

combine step, 141

conquer step, 140

divide step, 140

general format, 142

paradigm, 139

threshold in, 142

divide and conquer recurrence, 55–67

change of variables, 64–67

expanding of, 56–60

substitution, 60–64

divide step, 140

dominance relation, 453

DTIME, 272

dynamic programming, 173, 201

paradigm, 184–185

principle of optimality, see
principle of optimality

E

edge

free, 427

matched, 427

unmatched, 427

edge cover, 426, 447

effective procedure, 6

element assignment, 14

element comparison, 13, 42

element uniqueness problem, 72, 250,
311–314

elementary operation, 24–25, 35,
41–42

equivalence relation, 32, 496

etsp problem, 389

etspapprox algorithm, 390–391

euclid algorithm, 73–74

Euclidean minimum spanning tree
problem, 314

euclidean minimum spanning tree
problem

lower bound on, 314
Euclidean traveling salesman problem

approximation algorithm for,
389–391

minimum spanning tree
heuristic, 389, 401

nearest neighbor heuristic, 389,
401

euclidean traveling salesman problem,
389–391

Euler’s formula, 81, 477
event, 523
event point schedule, 454
exp algorithm, 120, 128
expectation, 525–526
expected value, 525
expmod algorithm, 374–377, 379
exponentiation (integer), 119–120
exprec algorithm, 119–120, 128
EXPTIME (class of problems), 272
extreme points, 456

F

factorial, 504–505
farthest-point Voronoi diagram,

484–486
a simple algorithm for, 491
applications of, see applications

of the farthest-point Voronoi
diagram

construction of, 486–487
regions, 484
vertices, 486

Fermat’s theorem, 375
Fibonacci sequence, 66, 127–128,

173–174, 190, 500, 516
file compression, 218–220, 225
find algorithm, 104
find operation, 100–105, 107–108,

110–111, 212
fixed points, 349
floor function, 503
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flow in network
augmenting path, see

augmenting path
blocking flow, 419
cut, 410
definition of, 409
Dinic’s algorithm, 419–423
Ford-Fulkerson method, 413–414
level graph, 416
maximum capacity

augmentation, 414–416
MPM algorithm, 423–425
residual capacity, 411
residual graph, 411
shortest path augmentation,

416–419
value of, 410

floyd algorithm, 186–187
ford–fulkerson algorithm,

413–414, 425
forest, 82
formula

satisfiable, 253, 256, 262
tautology, 264
unsatisfiable, 264

fpvoronoid algorithm, 487, 490
full binary tree, 84, 86
function, 496–497

cubic, 23
linear, 23
logarithmic, 23
quadratic, 23
space constructible, 277
sublinear, 24
subquadratic, 24
time constructible, 277,

301

G

Gödel, K., 6
gap problem, 275–276, 280, 289,

301–302, 304
geometric distribution, 528
gmatch algorithm, 438–440

golden ratio, 174

Graham scan, 460, 469

graph, 78–82

2-colorable, 385

3-colorable, see also 3-color

4-colorable, 385

acyclic, 79

acyclicity, 232

bipartite, see bipartite graph

bridge, 241

chromatic number of, 251

clique in, 251

coloring, 250–251

complete (Kn), 80

connected, see connected graph

connected component in, see
connected component

connectivity of, 426

cycle in, see cycle (in a graph)

directed, 78

disconnected, 79

k-regular, 445

path in, see path (in a graph)

planar, see planar graph, 477

representation of, 80–81

strongly connected, see strongly
connected component

traversal, 42

triangulated, see triangulated
graph

undirected, 78

graph accissibility problem, 304

graph representation

adjacency lists, see adjacency
lists

adjacency matrix, see adjacency
matrix

graph traversal, 42, 243

breadth-first search, see
breadth-first search

depth-first search, see
depth-first search, 243

greatest common divisor, 73
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H

Hall’s theorem, 445–446
Hamiltonian cycle problem, 257–258,

336, 393
Hamiltonian path problem, 262
hashing, 381
heap, 89–99, 111

creating a, 94–98, 111
delete-max, 94
deletion, 93
d-heap, 110
insertion, 93
min and max-heaps, 99
operations on, 90–94
property, 89
variants of, 111

heapsort, 98–99, 111
heapsort algorithm, 3, 35, 99,

109–110, 129, 153, 172, 308
height (of a binary tree), 85–86, 173
height (of a tree), 82
height (of a vertex), 82
horner algorithm, 121
huffman algorithm, 220–222,

224–225
Huffman tree, 219–220
Hungarian tree, 431

removal of, 432

I

independent set, 401
in bipartite graph, 446
of maximum cardinality, 446

independent set problem, 259, 261,
392–393, 402

indepenence, 523–524
indicator random variable, 527
induction design technique, 117
inorder traversal, 83
input

distribution, 53
order, 53
size, 53–54

insert operation, 90, 108, 459–461

insert procedure, 93–94
insertion sort, 15–17

average case analysis of, 49
insertionsort algorithm, 15–17,

25–26, 28, 33, 42–43, 45–47, 49–50,
54, 68, 87, 128–129, 140, 170, 172,
308, 315

internal vertex, 82
intersections of line segments,

457–460, 470
intersectionsls algorithm, 460–461
intractable problem, 249

J

Jarvis march, 469

K

König’s theorem, 446
k-clique problem, 291, 300
knapsack algorithm, 188–189, 193
knapsack problem, 187–190, 193–194,

196, 262, 266, 336, 385, 394, 403
0/1, 187
another version of, 193
fractional, 202
hardness result, 385–386
polynomial approximation

scheme for, 394–397
two dimensional, 196

knapsackgreedy algorithm, 395,
401

knight tour problem, 335
Knuth, D. E., 5
kruskal algorithm, 3, 211–212, 223,

225

L

λ-calculus, 6
lba acceptance problem, 291, 303
lcs algorithm, 177, 190
leading constants, 22
leaf vertex, 82
left turn, 457
levels (in binary tree), 84
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line segment, 455

linear programming problem, 268,
294, 304

linear search, 8, 42, 48

average case analysis of, 49

linearity of expectation, 526

linearsearch algorithm, 8, 33,
47–49, 168, 306–307, 315

linked list, 77

logarithm, 502–503

LOGSPACE (class of problems), 275

LOGSPACE-complete, 288

longest common subsequence,
175–177

longest path problem, 263, 267

longest simple path, 185, 192

in a directed acyclic graph, 195

lower bound, 47

on a problem, 305

trivial, 305

lower order terms, 22

M

majority algorithm, 119, 128

majority element, 118–119, 130, 380

makeheap algorithm, 97–99, 109

Markov inequality, 352

marriage theorem, 445

matchain algorithm, 182–183, 191

matching

alternating path, see alternating
path

definition of, 427

in bipartite graph, see matching
in bipartite graph

in general graph, see matching
in general graph

maximum, 428–429, 447

maximum-weight, 447

perfect, 428, 446

size of, 428

matching in bipartite graph

algorithms for, 447

an improved algorithm for,
440–445

maximum, 434, 445

the Hungarian tree algorithm
for, 431–434

the network flow method, 430

matching in general graph

an algorithm for, 434–440

blossom, see blossom

maximum, 440

mathematical notations, 25

examples, 29–32

O-notation, see O-notation

o-notation, see o-notation

Ω-notation, see Ω-notation

Θ-notation, see Θ-notation

matrix chain multiplication, 178–184,
191–192, 195–196

matrix multiplication, 35, 42,
161–163, 306

comparison of algorithms for,
163

randomized verification of, 380

Strassen’s algorithm, 161–162,
172–173

traditional algorithm, 161, 172

max-clique, 401

max-clique problem, 251, 303

max-flow, see flow in network

max-flow min-cut theorem, 412, 446

max-flow problem, 294, 304, 409

maxima algorithm, 454

maximal point, 454

mca algorithm, 414–415

mean, 526

median, 142

median finding algorithm, see
selection

memoryless property, 528

merge algorithm, 13–14, 19, 33,
41–42, 136, 141, 151–152, 169, 222

mergesort, 135–139, 169, 173
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mergesort algorithm, 115, 136–137,
139–141, 148, 151–152, 157, 166,
169–173, 308–309, 315

merging, 12–14

lower bound on, 316

minimum equivalent expression
problem, 299–300

minimum spanning tree

Euclidean, see Euclidean
minimum spanning tree
problem

minimum-cost spanning tree,
209–218, 227

an efficient algorithm for,
216–218

Kruskal’s algorithm, 209–212

Prim’s algorithm, 212–216

minmax algorithm, 132, 168

model of computation, 252

algebraic decision tree, 309–311

decision tree, 306

λ-calculus, 6

parallel, 7

Post machines, 6

RAM, 6

recursive functions, 6

Turing machine, 6, 252, 269

money change problem, 194, 221,
336

mpla algorithm, 416–419, 421

mpm algorithm, 424–425, 430

mst algorithm, 217–218

multiplication

matrix chain, see matrix chain
multiplication

of complex numbers, 172

of large integers, 159–161, 173

of matrices, see matrix
multiplication

multiprocessor scheduling problem,
263, 394, 402

multiselection, 157–357

analysis of randomized, 361–364

randomized algorithm for,
357–360

mutually exclusive event, 523

N

NC (class of problems), 292
nearest point problem, 316
neighbor

farthest, 488, 490
nearest, 482

network, 409
network flow, see flow in network
NEXPTIME (class of problems), 272
NEXT (class of problems), 272
NLOGSPACE (class of problems),

275
NLOGSPACE-complete, 289–290
NP (class of problems), 253–263, 272

definition of, 254–255
NP-complete, 249, 255–263, 267–268,

288
NP-hard, 255, 385
NSPACE (class of problems), 275
NTIME, 272

O

O-notation, 25–26
o-notation, 32
occupancy problems, 348–351
Ω-notation, 26–27, 76
operation

amortized running time of, 50
average cost of, 50
basic, see basic operation
element assignment, see element

assignment
element comparison, see element

comparison
elementary, see elementary

operation
optimal algorithm, 34–35, 305
optimal solution, 201–202, 384
optimization problem, 173, 184, 201,

250, 383–384
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oracle Turing machine, 295

order of growth, 21–25

ordered depth-first search problem,
294, 304

P

P (class of problems), 252–253, 272

definition of, 252, 255

P-complete, 291–294, 304

definition of, 291–292

padding argument, 282–284

parent (of a vertex), 82

partial order, 495

partition problem, 262, 266, 329, 336

partitioning

a set of points, 316

Pascal triangle, 175

path

alternating, see alternating path

augmenting, see augmenting
path

longest, see longest simple path

shortest, see shortest path

path (in a graph), 79

length of, 79

simple, 79

path compression heuristic, 101,
103–105, 107–108, 110–112

pattern matching, 371–373

patternmatching algorithm, 372

performance ratio

absolute, 387

asymptotic, 387

constant, 387

relative, 386

permutation, 34, 123

algorithms for generating,
124–127

generating using backtracking,
335

random, 379

permutations1 algorithm, 124,
129–130

permutations2 algorithm, 126,
129–130

pigeonhole principle, 507–508
planar graph, 81–82

coloring of, 385
Euler’s formula, see Euler’s

formula
point, 455

maximal, 454

Poisson approximation, 349
Poisson distribution, 349, 528
polygon, 455

boundary of, 456
chord in, 470
convex, 456
edges of, 456
interior of, 456

monotone, 470
nonsimple, 456
simple, 456, 469
vertices of, 456

polygonal path, 455
POLYLOGSPACE (class of

problems), 302

polynomial
representation of, 87
testing, 340, 379

polynomial evaluation
(Horner’s rule), 120–121, 128,

130
polynomial time hierarchy, 295–300,

304
definition of, 296
problems in the, 298
properties of, 296

Post machines, 6
Post, E. L., 6
postorder traversal, 83

≺ relation, 32
preorder traversal, 83, 227
prim algorithm, 215–216, 223–225
primality test, 374–379, 382
primality test problem, 31
primalitytest algorithm, 378–379
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principle
of inclusion-exclusion, 521
of optimality, see principle of

optimality
pigeonhole, see pigeonhole

principle
principle of optimality, 184
priority queue, 89, 112
probability distribution, 523
problem

NP-hard, see NP-hard problems
complete, see complete problem
decision, 250, 269
intractable, 249
lower bound on, 27
optimization, see optimization

problem, 250
solvable, 6–7
tractable, 249
unsolvable, 6–7
well-parallelizable, 292

problem instance, 53
proof method, 497–502

by contradiction, 498–499
by counterexample, 499
direct, 497–498
indirect, 498
induction, 500–502

PSPACE (class of problems), 275
PSPACE-complete, 290–291
ptest1 algorithm, 375–376
ptest2 algorithm, 376, 378
ptest3 algorithm, 377–378

Q

quantified boolean formula problem,
290–291

queue, 78
quickmultiselect algorithm,

358–359
quickselect algorithm, 345–347
quicksort, 148–157, 172–173

expected running time, 344
partitioning algorithm for, 148

randomized algorithm, 342–345,
382

quicksort algorithm, 115, 141, 148,
151–154, 157, 171–173, 319,
342–343, 379

R

radix sort, 121–123, 130
radixsort algorithm, 122–123,

128–129, 172
RAM, 6
random sampling, 364–366
random variables, 525–526
randomized algorithm, 339–340,

382
definition of, 339
expected running time of, 341
Las Vegas, 340, 342, 380
Monte Carlo, 340–341, 380

randomized select
expected running time, 345–347

randomizedquicksort algorithm,
343, 345, 379

randomsampling algorithm,
364–365, 381

rate of growth, see order of growth
recurrence relation, 44–45, 67, 514

definition of, 514
degree of, 515
divide and conquer, see divide

and conquer recurrence
homogeneous, 514
linear, 514
linear homogeneous, 515–517
linear inhomogeneous, 517–520
with constant coefficients, 514

recursive function, 6
reduction, 284–288

definition of, 284
linear time, 312
log space, 284
NC, 292
polynomial time, 255, 257, 284
Turing, 296
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relation, 495–496

equivalence, see equivalence
relation

partial order, see partial order

right turn, 457

running time, 20–32, 35

asymptotic, see asymptotic
running time

counting basic operations, 40–44

counting number of iterations,
35–40

dependent on input values, 45

estimate of, 35–45

exact bound of, 28, 35

lower bound on, 26, 35

upper bound on, 25, 35

S

sample space, 523

sampling, 350, see random sampling

satisfiability problem, 256–257,
259–260, 263–268, 290, 299–300

scaling and rounding, 193, 398

searching, 35, 42, 54

lower bound on, 306–307

second largest element, 168, 315

select algorithm, 115, 143, 145,
147–148, 158, 170–171, 320,
345

selection, 142–148, 170–171, 173

lower bound on, 316

randomized algorithm, 345, 382

selection sort, 14–15

selectionsort algorithm, 14–17, 21,
27–28, 33, 46, 67–68, 98, 128–129,
172, 469

sequence, 508

finite, 508

sequential search, see linear search

set, 494–495

set cover problem, 262, 267, 402

set disjointness problem, 252, 265,
315

shortest path, 185, 192, 201–209, 213,
225, 227

all-pairs, see all-pairs shortest
path problem

an efficient algorithm for,
207–209

Dijkstra’s algorithm, 203–207

tree, see shortest path tree
shortest path problem, 252

shortest path tree, 223–224
shortestpath algorithm, 207–209,

217–218, 223
siblings, 82

sift-down operation, 92–93, 99
sift-down procedure, 92–94, 97–99,

109–110

sift-up operation, 91–92
sift-up procedure, 91, 94, 110

signed area, 457
simple polygon

triangulation of, see
triangulation of a simple
polygon

solution
optimal, see optimal solution

solvability, 7
solvable problem, 6–7
sorting, 7, 35, 42, 46, 54, 76

bottom-up merge, see
bottom-up merge sorting

bucketsort, see bucketsort
by comparisons, 307

comparison of algorithms for,
157

comparison-based, 27, 34

comparison-based algorithm for,
309

heapsort, see heapsort
insertion sort, see insertion sort
lower bound on, 307–309, 311,

316
mergesort, see mergesort

quicksort, see quicksort
radix sort, see radix sort
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selection sort, see selection sort

stable, 129, 172

topological, see topological
sorting

sorting problem, 252, 265, 308,
312–314, 316

space

complexity, see space complexity

definition of, 33

hierarchy, see space and time
hierarchy theorems

hierarchy theorems, 280, 283,
303

work, 33–34

space and time hierarchy theorems,
280–282

space complexity, 33–35

spanning tree

depth-first search, 228–229

minimum-cost, see
minimum-cost spanning tree

split algorithm, 149–153, 171, 343

stable marriage problem, 446

stack, 78

standard deviation, 353, 526

string equality, 369–371

stringequalitytest algorithm, 370

strongconnectcomp algorithm,
236, 243

strongly connected component, 79,
236–237, 241, 243

subset-sum problem, 394, 403

fully polynomial approximation
scheme for, 398–400

subsetsum algorithm, 398–399

subtree, 82

summation, 508–514

approximation by inegration,
510–514

formulas, 509–510

supporting line, 465

sweep line status, 455

system of distinct representatives, 447

T

tail bounds, 352–357
tail recursion, 117
tautology problem, 264, 267
theory of computation, 7, 21
Θ-notation, 27–29, 76
tight bound, 35
time

complexity, see time complexity
hierarchy, see space and time

hierarchy theorems
hierarchy theorems, 280–281,

303
time complexity, 20–32
time-space tradeoff, 34
tmaximal matching, 392
topological sorting, 232–233
tractable problem, 249
transformation, see reduction
traveling salesman problem, 173,

195–196, 257–258, 263, 265, 267,
331–332, 334, 336–337, 392–393,
403

branch and bound solution, 331
hardness result, 392–393

tree, 82–86
binary, see binary tree
binary search, see binary search

tree
height of, see height (of a tree)
Hungarian, see Hungarian tree
root of, 82
rooted, 82
siblings, see siblings
subtree, see subtree
traversal, see tree traversal

tree traversal, 83
inorder, see inorder traversal
postorder, see postorder

traversal
preorder, see preorder traversal

triangulated graph, 81
triangulation

of a set of points, 316
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triangulation of a convex polygon,
195

minimum weight, 195
number of ways, 195

triangulation of a simple polygon, 470
O(n) time algorithm, 471
O(n log log n) time algorithm,

471
O(n log n) time algorithm, 471

Turing machine, 6, 53, 252, 269–270
configuration of, 271
deterministic, 271
encoding of, 280
k-tape, 270–273
off-line, 273–275
space used by, 274
standard, 270
time taken by, 272

Turing reduction, 296
Turing, A. M., 6

U

uniform distribution, 526
union algorithm, 104–105
union by rank heuristic, 101–103,

105, 108, 110–112
union operation, 100–105, 107–108,

110–111, 212
union-find algorithms, 51, 104–108

analysis of, 105–108
unsolvable problem, 7
upper bound, 47–48

V

variance, 353, 526
vcoverapprox algorithm, 392–393,

402
vertex (in a graph), 78

adjacent, 79
degree of, 79
free, 428
indegree of, 79

matched, 427
outdegree of, 79
reachable, 79
unmatched, 427

vertex (in a tree)
ancestor of, see ancestor (of a

vertex)
child of, see child (of a vertex)
depth of, see depth (of a vertex)
descendant of, see descendant

(of a vertex)
height of, see height (of a

vertex)
internal, see internal vertex

vertex cover, 401
in a tree, 402
minimum size of, 445

vertex cover problem, 258, 260–261,
266–267, 393

approximation algorithm for,
391–392

Voronoi diagram, 473–476, 491
applications of, see applications

of the Voronoi diagram
computing from

three-dimensional convex hull,
491

construction of, 478–481
divide-and-conquer algorithm

for, 491
dividing chain, 480
edges, 475
line sweeping algorithm for, 491
regions, 473
vertices, 475

voronoid algorithm, 480–481

W

weight-balancing rule, 110
word length, 24
work space, 33–34
worst case analysis, 46–48
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