

Data Mining and Data Warehousing

This textbook is written to cater to the needs of undergraduate students of computer science, engineering,
and information technology for a course on data mining and data warehousing. It brings together
fundamental concepts of data mining and data warehousing in a single volume. Important topics including
information theory, decision tree, Naïve Bayes classifier, distance metrics, partitioning clustering, associate
mining, data marts and operational data store are discussed comprehensively. The text simplifies the
understanding of the concepts through exercises and practical examples. Chapters such as classification,
associate mining and cluster analysis are discussed in detail with their practical implementation using
Weka and R language data mining tools. Advanced topics including big data analytics, relational data
models, and NoSQL are discussed in detail. Unsolved problems and multiple-choice questions are
interspersed throughout the book for better understanding.

Parteek Bhatia is Associate Professor in the Department of Computer Science and Engineering at
the Thapar Institute of Engineering and Technology, Patiala, India. He has more than twenty years’
teaching experience. His current research includes natural language processing, machine learning, and
human–computer interface. He has taught courses including, data mining and data warehousing, big
data analysis, and database management systems, at undergraduate and graduate levels.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592
https://www.cambridge.org/core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592
https://www.cambridge.org/core

Data Mining and Data
Warehousing

Principles and Practical Techniques

Parteek Bhatia

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592
https://www.cambridge.org/core

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, vic 3207, Australia

314 to 321, 3rd Floor, Plot No.3, Splendor Forum, Jasola District Centre, New Delhi 110025, India

79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781108727747

© Cambridge University Press 2019

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2019

Printed in India

A catalogue record for this publication is available from the British Library

ISBN 978-1-108-72774-7 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy
of URLs for external or third-party internet websites referred to in this publication,
and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592
https://www.cambridge.org/core

To
my parents, Mr Ved Kumar and Mrs Jagdish Bhatia

my supportive wife, Dr Sanmeet Kaur
loving sons, Rahat and Rishan

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592
https://www.cambridge.org/core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592
https://www.cambridge.org/core

List of Figures xv
List of Tables xxv
Preface xxxi
Acknowledgments xxxiii

 1. Beginning with Machine Learning 1
1.1 Introduction to Machine Learning 1
1.2 Applications of Machine Learning 2
1.3 Defining Machine Learning 5
1.4 Classification of Machine Learning Algorithms 5

1.4.1 Supervised learning 5
1.4.2 Unsupervised learning 10
1.4.3 Supervised and unsupervised learning in real life scenario 12
1.4.4 Reinforcement learning 14

 2. Introduction to Data Mining 17
2.1 Introduction to Data Mining 17
2.2 Need of Data Mining 18
2.3 What Can Data Mining Do and Not Do? 19
2.4 Data Mining Applications 20
2.5 Data Mining Process 21
2.6 Data Mining Techniques 23

2.6.1 Predictive modeling 24
2.6.2 Database segmentation 24
2.6.3 Link analysis 24
2.6.4 Deviation detection 24

2.7 Difference between Data Mining and Machine Learning 25

 3. Beginning with Weka and R Language 28
3.1 About Weka 28
3.2 Installing Weka 29
3.3 Understanding Fisher’s Iris Flower Dataset 29
3.4 Preparing the Dataset 31

Contents

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592
https://www.cambridge.org/core

viii Contents

3.5 Understanding ARFF (Attribute Relation File Format) 32
3.5.1 ARFF header section 32
3.5.2 ARFF data section 33

3.6 Working with a Dataset in Weka 33
3.6.1 Removing input/output attributes 35
3.6.2 Histogram 37
3.6.3 Attribute statistics 39
3.6.4 ARFF Viewer 40
3.6.5 Visualizer 41

3.7 Introduction to R 42
3.7.1 Features of R 42
3.7.2 Installing R 43

3.8 Variable Assignment and Output Printing in R 44
3.9 Data Types 44
3.10 Basic Operators in R 45

3.10.1 Arithmetic operators 46
3.10.2 Relational operators 46
3.10.3 Logical operators 47
3.10.4 Assignment operators 47

3.11 Installing Packages 47
3.12 Loading of Data 49

3.12.1 Working with the Iris dataset in R 50

 4. Data Preprocessing 55
4.1 Need for Data Preprocessing 55
4.2 Data Preprocessing Methods 58

4.2.1 Data cleaning 59
4.2.2 Data integration 61
4.2.3 Data transformation 61
4.2.4 Data reduction 62

 5. Classification 65
5.1 Introduction to Classification 65
5.2 Types of Classification 66

5.2.1 Posteriori classification 66
5.2.2 Priori classification 66

5.3 Input and Output Attributes 66
5.4 Working of Classification 67
5.5 Guidelines for Size and Quality of the Training Dataset 69
5.6 Introduction to the Decision Tree Classifier 69

5.6.1 Building decision tree 70
5.6.2 Concept of information theory 70
5.6.3 Defining information in terms of probability 71
5.6.4 Information gain 72
5.6.5 Building a decision tree for the example dataset 73

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592
https://www.cambridge.org/core

Contents ix

5.6.6 Drawbacks of information gain theory 90
5.6.7 Split algorithm based on Gini Index 90
5.6.8 Building a decision tree with Gini Index 93
5.6.9 Advantages of the decision tree method 110
5.6.10 Disadvantages of the decision tree 110

5.7 Naïve Bayes Method 110
5.7.1 Applying Naïve Bayes classifier to the ‘Whether Play’ dataset 113
5.7.2 Working of Naïve Bayes classifier using the Laplace Estimator 117

5.8 Understanding Metrics to Assess the Quality of Classifiers 119
5.8.1 The boy who cried wolf 119
5.8.2 True positive 120
5.8.3 True negative 120
5.8.4 False positive 120
5.8.5 False negative 120
5.8.6 Confusion matrix 120
5.8.7 Precision 121
5.8.8 Recall 121
5.8.9 F-Measure 122

 6. Implementing Classification in Weka and R 128
6.1 Building a Decision Tree Classifier in Weka 128

6.1.1 Steps to take when applying the decision tree classifier on the Iris
dataset in Weka 130

6.1.2 Understanding the confusion matrix 136
6.1.3 Understanding the decision tree 136
6.1.4 Reading decision tree rules 138
6.1.5 Interpreting results 139
6.1.6 Using rules for prediction 139

6.2 Applying Naïve Bayes 139
6.3 Creating the Testing Dataset 142
6.4 Decision Tree Operation with R 148
6.5 Naïve Bayes Operation using R 151

 7. Cluster Analysis 155
7.1 Introduction to Cluster Analysis 155
7.2 Applications of Cluster Analysis 156
7.3 Desired Features of Clustering 156
7.4 Distance Metrics 157

7.4.1 Euclidean distance 157
7.4.2 Manhattan distance 159
7.4.3 Chebyshev distance 160

7.5 Major Clustering Methods/Algorithms 161
7.6 Partitioning Clustering 162

7.6.1. k-means clustering 162
7.6.2 Starting values for the k-means algorithm 179

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592
https://www.cambridge.org/core

x Contents

7.6.3 Issues with the k-means algorithm 179
7.6.4 Scaling and weighting 180

7.7 Hierarchical Clustering Algorithms (HCA) 181
7.7.1 Agglomerative clustering 182
7.7.2 Divisive clustering 195
7.7.3 Density-based clustering 199
7.7.4 DBSCAN algorithm 203
7.7.5 Strengths of DBSCAN algorithm 203
7.7.6 Weakness of DBSCAN algorithm 203

 8. Implementing Clustering with Weka and R 206
8.1 Introduction 206
8.2 Clustering Fisher’s Iris Dataset with the Simple k-Means Algorithm 208
8.3 Handling Missing Values 209
8.4 Results Analysis after Applying Clustering 209

8.4.1 Identification of centroids for each cluster 213
8.4.2 Concept of within cluster sum of squared error 214
8.4.3 Identification of the optimum number of clusters using within

cluster sum of squared error 215
8.5 Classification of Unlabeled Data 216

8.5.1 Adding clusters to dataset 216
8.5.2 Applying the classification algorithm by using added cluster

attribute as class attribute 219
8.5.3 Pruning the decision tree 220

8.6 Clustering in R using Simple k-Means 221
8.6.1 Comparison of clustering results with the original dataset 224
8.6.2 Adding generated clusters to the original dataset 225
8.6.3 Apply J48 on the clustered dataset 225

 9. Association Mining 229
9.1 Introduction to Association Rule Mining 229
9.2 Defining Association Rule Mining 232
9.3 Representations of Items for Association Mining 233
9.4 The Metrics to Evaluate the Strength of Association Rules 234

9.4.1 Support 234
9.4.2 Confidence 235
9.4.3 Lift 237

9.5 The Naïve Algorithm for Finding Association Rules 240
9.5.1 Working of the Naïve algorithm 240
9.5.2 Limitations of the Naïve algorithm 242
9.5.3 Improved Naïve algorithm to deal with larger datasets 242

9.6 Approaches for Transaction Database Storage 243
9.6.1 Simple transaction storage 244
9.6.2 Horizontal storage 244
9.6.3 Vertical representation 245

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592
https://www.cambridge.org/core

Contents xi

9.7 The Apriori Algorithm 246
9.7.1 About the inventors of Apriori 246
9.7.2 Working of the Apriori algorithm 247

9.8 Closed and Maximal Itemsets 280
9.9 The Apriori–TID Algorithm for Generating Association Mining Rules 282
9.10 Direct Hashing and Pruning (DHP) 285
9.11 Dynamic Itemset Counting (DIC) 297
9.12 Mining Frequent Patterns without Candidate Generation (FP Growth) 301

9.12.1 Advantages of the FP-tree approach 314
9.12.2 Further improvements of FP growth 314

 10. Implementing Association Mining with Weka and R 319
10.1 Association Mining with Weka 319
10.2 Applying Predictive Apriori in Weka 321
10.3 Rules Generation Similar to Classifier Using Predictive Apriori 325
10.4 Comparison of Association Mining CAR Rules with J48 Classifier Rules 327
10.5 Applying the Apriori Algorithm in Weka 330
10.6 Applying the Apriori Algorithm in Weka on a Real World Dataset 333
10.7 Applying the Apriori Algorithm in Weka on a Real World Larger Dataset 339
10.8 Applying the Apriori Algorithm on a Numeric Dataset 344
10.9 Process of Performing Manual Discretization 351
10.10 Applying Association Mining in R 357
10.11 Implementing Apriori Algorithm 357
10.12 Generation of Rules Similar to Classifier 359
10.13 Comparison of Association Mining CAR Rules with J48 Classifier Rules 360
10.14 Application of Association Mining on Numeric Data in R 362

 11. Web Mining and Search Engines 368
11.1 Introduction 368
11.2 Web Content Mining 369

11.2.1 Web document clustering 369
11.2.2 Suffix Tree Clustering (STC) 369
11.2.3 Resemblance and containment 370
11.2.4 Fingerprinting 371

11.3 Web Usage Mining 371
11.4 Web Structure Mining 372

11.4.1 Hyperlink Induced Topic Search (HITS) algorithm 372
11.5 Introduction to Modern Search Engines 375
11.6 Working of a Search Engine 376

11.6.1 Web crawler 377
11.6.2 Indexer 377
11.6.3 Query processor 378

11.7 PageRank Algorithm 379
11.8 Precision and Recall 385

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592
https://www.cambridge.org/core

xii Contents

 12. Data Warehouse 388
12.1 The Need for an Operational Data Store (ODS) 388
12.2 Operational Data Store 389

12.2.1 Types of ODS 390
12.2.2 Architecture of ODS 391
12.2.3 Advantages of the ODS 393

12.3 Data Warehouse 393
12.3.1 Historical developments in data warehousing 394
12.3.2 Defining data warehousing 395
12.3.3 Data warehouse architecture 395
12.3.4 Benefits of data warehousing 397

12.4 Data Marts 398
12.5 Comparative Study of Data Warehouse with OLTP and ODS 401

12.5.1 Data warehouses versus OLTP: similarities and distinction 401

 13. Data Warehouse Schema 405
13.1 Introduction to Data Warehouse Schema 405

13.1.1 Dimension 405
13.1.2 Measure 407
13.1.3 Fact Table 407
13.1.4 Multi-dimensional view of data 408

13.2 Star Schema 408
13.3 Snowflake Schema 410
13.4 Fact Constellation Schema (Galaxy Schema) 412
13.5 Comparison among Star, Snowflake and Fact Constellation Schema 413

 14. Online Analytical Processing 416
14.1 Introduction to Online Analytical Processing 416

14.1.1 Defining OLAP 417
14.1.2 OLAP applications 417
14.1.3 Features of OLAP 417
14.1.4 OLAP Benefits 418
14.1.5 Strengths of OLAP 418
14.1.6 Comparison between OLTP and OLAP 418
14.1.7 Differences between OLAP and data mining 419

14.2 Representation of Multi-dimensional Data 420
14.2.1 Data Cube 421

14.3 Implementing Multi-dimensional View of Data in Oracle 423
14.4 Improving efficiency of OLAP by pre-computing the queries 427
14.5 Types of OLAP Servers 429

14.5.1 Relational OLAP 430
14.5.2 MOLAP 431
14.5.3 Comparison of ROLAP and MOLAP 432

14.6 OLAP Operations 433
14.6.1 Roll-up 433

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592
https://www.cambridge.org/core

Contents xiii

14.6.2 Drill-down 433
14.6.3 Slice and dice 435
14.6.4 Dice 437
14.6.5 Pivot 438

 15. Big Data and NoSQL 442
15.1 The Rise of Relational Databases 442
15.2 Major Issues with Relational Databases 443
15.3 Challenges from the Internet Boom 445

15.3.1 The rapid growth of unstructured data 445
15.3.2 Types of data in the era of the Internet boom 445

15.4 Emergence of Big Data due to the Internet Boom 448
15.5 Possible Solutions to Handle Huge Amount of Data 449
15.6 The Emergence of Technologies for Cluster Environment 451
15.7 Birth of NoSQL 452
15.8 Defining NoSQL from the Characteristics it Shares 453
15.9 Some Misconceptions about NoSQL 453
15.10 Data Models of NoSQL 453

15.10.1 Key-value data model 454
15.10.2 Column-family data model 456
15.10.3 Document data model 457
15.10.4 Graph databases 459

15.11 Consistency in a Distributed Environment 461
15.12 CAP Theorem 461
15.13 Future of NoSQL 462
15.14 Difference between NoSQL and Relational Data Models (RDBMS) 464

Index 467
Colour Plates 469

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592
https://www.cambridge.org/core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592
https://www.cambridge.org/core

 1.1 Classification of machine learning algorithms 5
 1.2 Data plot for size of plot and cost 6
 1.3 Estimation (prediction) of cost of house with a small dataset 6
 1.4 Prediction of cost of house with large dataset 7
 1.5 Data plot for tumor size and malignancy 7
 1.6 Prediction about a tumor of size A 8
 1.7 Considering tumor size and age as features for classification 8
 1.8 Prediction for a tumor of size B 9
 1.9 Prediction for tumor size B being benign 9
 1.10 Google news 11
 1.11 Applications of unsupervised learning 11

 2.1 Per minute generation of data over the Internet according to a 2017 report 18
 2.2 Data mining process 22

 3.1 Downloading Weka 29
 3.2 Downloading the Iris dataset 30
 3.3 Sample of the Iris f lower 30
 3.4 Sample of Fisher’s dataset 31
 3.5 Save as ‘Other Format’ 31
 3.6 ARFF format of IRIS dataset 32
 3.7 Weka GUI Chooser screen 34
 3.8 Weka Explorer screen 34
 3.9 Loading Fisher’s dataset 35
 3.10 Fisher’s dataset after removal of instance number 36
 3.11 Elements of the Explorer screen 36
 3.12 Expansion of class designator 37
 3.13 Histogram for Petal width 38
 3.14 Histograms for all attributes of Iris dataset 38
 3.15 Attribute statistics 39
 3.16 Distinct and Unique values 40
 3.17 (a) Selecting ARFF Viewer from GUI Chooser and (b) opening the file in ARFF Viewer 40
 3.18 ARFF Viewer of Fisher’s dataset 41

Figures

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592
https://www.cambridge.org/core

xvi Figures

 3.19 Visualization of dataset 41
 3.20 Plotting of dataset 42
 3.21 Screenshot of download link for R 43
 3.22 Console screen of R 43
 3.23 Basic syntax in R 44
 3.24 Data type of a variable 45
 3.25 Screenshot of basic arithmetic operators 46
 3.26 Relational operators in R 46
 3.27 Working of logical operators 47
 3.28 Checking of already installed packages 47
 3.29 Installation of a new package 48
 3.30 Console after successful installation of package 48
 3.31 Attribute names of a dataset 50
 3.32 Statistics of Iris dataset 50
 3.33 Viewing of dataset 51
 3.34 Identification of unique and missing values for Sepal width 51
 3.35 Plotting the Iris dataset 52
 3.36 Plotting between Petal width and Petal length 52
 3.37 Histogram for Sepal width 53

 4.1 Various stages of preprocessing 58
 4.2 Chemical composition of wine samples 62

 5.1 Input and output attributes 67
 5.2 Training and testing of the classifier 68
 5.3 Building a classifier to approve or reject loan applications 68
 5.4 Predicting the type of customer based on trained classifier 68
 5.5 Training and testing of the classifier 69
 5.6 Decision tree to predict whether a customer will buy a laptop or not 70
 5.7 Dataset for class C prediction based on given attribute condition 73
 5.8 Data splitting based on Y attribute 75
 5.9 Decision tree after splitting of attribute Y having value ‘1’ 76
 5.10 Decision tree after splitting of attribute Y value ‘0’ 76
 5.11 Dataset for play prediction based on given day weather conditions 77
 5.12 Selection of Outlook as root attribute 80
 5.13 Data splitting based on the Outlook attribute 81
 5.14 Humidity attribute is selected from dataset of Sunny instances 84
 5.15 Decision tree after spitting of data on Humidity attribute 85
 5.16 Decision tree after analysis of Sunny and Overcast dataset 85
 5.17 Decision tree after analysis of Sunny, Overcast and Rainy dataset 89
 5.18 Final decision tree after analysis of Sunny, Overcast and Rainy dataset 89
 5.19 Prediction of Play for an unknown instance 90
 5.20 Gini Index representing perfect equality 91
 5.21 Lorenz curve 92
 5.22 Lorenz curves with varying income distributions 92
 5.23 Dataset for class C prediction based on given attribute condition 94
 5.24 Data splitting based on Y attribute 96

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592
https://www.cambridge.org/core

Figures xvii

 5.25 Decision tree after splitting of attribute Y having value ‘1’ 96
 5.26 Decision tree after splitting of attribute Y value ‘0’ 97
 5.27 Dataset for play prediction based on given day weather conditions 98
 5.28 Selection of Outlook as root attribute 101
 5.29 Data splitting based on Outlook attribute 101
 5.30 Humidity attribute is selected from dataset of Sunny instances 104
 5.31 Decision tree after spitting data on the Humidity attribute 105
 5.32 Decision tree after analysis of Sunny and Overcast datasets 105
 5.33 Decision tree after analysis of Sunny, Overcast and Rainy datasets 108
 5.34 Final decision tree after analysis of Sunny, Overcast and Rainy datasets 109
 5.35 Prediction of play for unknown instance 109
 5.36 Dataset for play prediction based on a given day’s weather conditions 114
 5.37 Probability of whether play will be held or not on a Sunny day 114
 5.38 Summarization of count calculations of all input attributes 115
 5.39 Probability of play held or not for each value of attribute 115
 5.40 Probability for play ‘Yes’ for an unknown instance 116
 5.41 Probability for play ‘No’ for an unknown instance 117
 5.42 Probability of play not being held when outlook is overcast 117
 5.43 Values of attributes after adding Laplace estimator 118
 5.44 Probability of play held or not for each modified value of attribute 118
 5.45 Attribute values for given example instance 118
 5.46 Confusion matrix for bird classifier 119
 5.47 Confusion matrix for tumor prediction 120

 6.1 Classification using Weka’s decision tree 128
 6.2 Classification of an unknown sample using Weka’s decision tree 129
 6.3 Working of the decision tree 130
 6.4 Loading the iris.arff file 130
 6.5 Selecting Weka J48 algorithm 131
 6.6 Selection of the Weka J48 algorithm 131
 6.7 Selection of percentage split test option 132
 6.8 Saving output predictions 132
 6.9 Original Fisher’s Iris dataset 133
 6.10 Building the decision tree 134
 6.11 Decision tree accuracy statistics 134
 6.12 Visualization of the tree 135
 6.13 Decision tree for the Iris dataset 135
 6.14 Confusion matrix 136
 6.15 Decision tree showing condition for Setosa 136
 6.16 Decision tree showing conditions for Virginica 137
 6.17 Decision tree showing condition for Versicolor 137
 6.18 Rules identified by the decision tree 138
 6.19 Classification of an unknown sample according to decision tree rules 138
 6.20 Size and leaves of the tree 139
 6.21 Selecting dataset file 140
 6.22 Selecting the classifier and setting classifier evaluation options 140

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592
https://www.cambridge.org/core

xviii Figures

 6.23 Classifier results after processing 141
 6.24 Naïve Bayes classifier with Laplace estimator 141
 6.25 Selecting ArffViewer option 142
 6.26 Opening the arff file 142
 6.27 Selecting and deleting the rows 143
 6.28 Setting the values of the testing record 143
 6.29 Setting class attribute to blank 144
 6.30 Saving the test.arff file 144
 6.31 Opening the weather.nominal.arff file 145
 6.32 Building the Naïve Bayes classifier 145
 6.33 Supplying test dataset for predicting the value of known instance(s) 146
 6.34 Predicting the value of an unknown sample as Play: Yes 147
 6.35 Building J48 on the training dataset 147
 6.36 Predicting the value of an unknown sample as Play: Yes by J48 148
 6.37 Implementation of the decision tree in R 149
 6.38 Decision tree rules in R 149
 6.39 Plotting the decision tree 150
 6.40 Prediction by the decision tree on testing dataset 151
 6.41 Summary of testing the dataset 151
 6.42 Instances of Weather dataset 152
 6.43 Results of Naïve Bayes on Weather dataset 152
 6.44 The confusion matrix 153

 7.1 Characteristics of clusters 156
 7.2 Representation of Euclidean distance 159
 7.3 Representation of Manhattan distance 160
 7.4 Representation of Chebyshev distance 161
 7.5 Major clustering methods/algorithms 161
 7.6 Flowchart for k-means algorithm 163
 7.7 Database after initialization 164
 7.8 Plot of data for k=2 166
 7.9 Plot of data for k=3 167
 7.10 Illustration of agglomerative and divisive clustering 181
 7.11 Raw data for agglomerative clustering 182
 7.12 Complete hierarchical clustering tree diagram 183
 7.13 Single linkage 183
 7.14 Complete linkage 184
 7.15 Average linkage 184
 7.16 Hierarchical tree of clustering of Indian cities on the basis of distance 187
 7.17 Hierarchical tree of clustering of students on the basis of their marks 195
 7.18 (a) Distance matrix at m: 0 (b) Data objects split after two clusters 197
 7.19 Concept of neighborhood and MinPts 200
 7.20 Concept of core, border and outlier 200
 7.21 Concept of density reachability 201
 7.22 Concept of directly and indirectly density-reachable 201
 7.23 Another case of density reachability 202
 7.24 Some more examples of DBSCAN 202

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592
https://www.cambridge.org/core

Figures xix

 8.1 Classification of an unknown sample 207
 8.2 Clustering 207
 8.3 Clustering process 208
 8.4 Applying the simple k-means algorithm in Weka 208
 8.5 Applying the simple k-means algorithm in Weka: the next step 209
 8.6 Clustering of Iris samples 210
 8.7 Class to cluster evaluation and confusion matrix 210
 8.8 Cluster visualization 211
 8.9 Cluster visualization for Petal length vs. Petal width 212
 8.10 Cluster visualization with respect to Petal length vs. Petal width 212
 8.11 Cluster visualization with respect to Sepal length vs. Sepal width 213
 8.12 Cluster visualization with respect to Sepal length vs. Sepal width 213
 8.13 Cluster visualization with respect to Sepal length vs. Sepal width 214
 8.14 Within cluster sum of squared error 214
 8.15 Error vs. number of clusters 215
 8.16 Classification process of unlabeled data 216
 8.17 Choosing AddCluster filter 217
 8.18 Configuration settings of AddCluster filter 217
 8.19 Application of AddCluster filter 218
 8.20 Comparison of values of the new added cluster attribute with the

already existing class column 218
 8.21 Prediction rules generated by J48 219
 8.22 Decision tree 219
 8.23 Comparison of rules of clustering with rules of the decision tree 220
 8.24 Pruning the decision tree 220
 8.25 Analysis of rules after increasing minNumObj 221
 8.26 Iris dataset statistics 221
 8.27 Iris dataframe statistics 222
 8.28 Iris dataframe statistics after removal of species variable 222
 8.29 Results after applying k-means clustering 223
 8.30 Cluster size 223
 8.31 Cluster centroids 224
 8.32 Plot of Petal length vs. Petal width after clustering 224
 8.33 Confusion matrix 225
 8.34 Iris dataset after adding results of the clustering analysis 225
 8.35 Apply decision tree on clustered results by simple k-means algorithm 226

 9.1 Need for association mining 230
 9.2 Association of sale of beer and diapers 230
 9.3 Association of sale of beer and diapers 231
 9.4 Association of sale of beer and diapers 231
 9.5 Association and customer purchase bills 232
 9.6 Representation of association rules 239
 9.7 Process for identification of frequent itemsets 252
 9.8 C1, candidate 1-itemset and their count 256
 9.9 L1, frequent 1-itemset 257

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592
https://www.cambridge.org/core

xx Figures

 9.10 Lattice structure of frequent itemsets 260
 9.11 Generation of C2 and L2 261
 9.12 Generation of C3 and L3 263
 9.13 Illustration of closed and maximal frequent itemsets 280
 9.14 Process by the Aprioiri algorithm method 292
 9.15 Process by the DHP algorithm method 293
 9.16 Identifying frequent item pairs and groups by Apriori algorithm 295
 9.17 FP-tree for first transaction, i.e., 100 only 303
 9.18 FP-tree for the first two transactions 303
 9.19 FP-tree for first three transactions 304
 9.20 FP-tree for first four transactions 304
 9.21 The final FP-tree for the example database after five transactions 304
 9.22 Illustrating the step-by-step creation of the FP-tree 308
 9.23 Final FP-tree for database given in Table 9.105 308
 9.24 Illustrating the step-by-step creation of the FP-tree 312
 9.25 FP-tree for the example database 312

 10.1 Snapshot of the ‘play-or-no-play’ dataset 319
 10.2 Associations between items 320
 10.3 Working of Predictive Apriori 320
 10.4 Loading the weather.nominal.arff 321
 10.5 Selecting the Predictive Apriori algorithm for association mining 322
 10.6 Changing parameters for Predictive Apriori 322
 10.7 Parameters of the Predictive Apriori algorithm 323
 10.8 Association mining rules 324
 10.9 Analysis of rule 2 325
 10.10 Setting CAR to true for getting class association rules 326
 10.11 Application of the J48 algorithm on dataset ‘play-or-no-play’ 327
 10.12 Selection of use training set to build the model 328
 10.13 Select the ‘Visualize tree’ to get a decision tree 328
 10.14 Decision tree for dataset ‘play-or-no-play’ 329
 10.15 Selection of the Apriori algorithm 330
 10.16 Generic Object Editor to change the default values of the Apriori algorithm 331
 10.17 Default values of the properties of the Apriori algorithm 332
 10.18 Daily item dataset 334
 10.19 Saving the file in CSV format 334
 10.20 Weka GUI Chooser Panel 335
 10.21 Dataset uploaded in Weka 335
 10.22 Choosing numeric to nominal filter in Weka 336
 10.23 Changing from numeric to nominal filter 336
 10.24 Removing the Transaction attribute 337
 10.25 Applying the Apriori algorithm 337
 10.26 Opening the Generic Object Editor 338
 10.27 Starting the Apriori algorithm 338
 10.28 Results after running the Apriori algorithm 339
 10.29 Saving the file in CSV format 340

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592
https://www.cambridge.org/core

Figures xxi

 10.30 Saving the file in CSV format 340
 10.31 Weka GUI Chooser Panel 341
 10.32 Dataset uploaded in Weka 341
 10.33 Weka numeric to nominal filter applied 342
 10.34 Removing the Transaction attribute 342
 10.35 Choosing the Apriori algorithm 343
 10.36 Results after running the Apriori algorithm on DailyDataset2 343
 10.37 Saving in CSV format 345
 10.38 Loading the student performance dataset 346
 10.39 Removal of Roll No. and Name columns 346
 10.40 Association mining algorithms are disabled for numeric data 347
 10.41 Selection of the Discretize filter 348
 10.42 Discretization of numeric data 348
 10.43 Generic Object Editor for changing properties of the Discretize filter 349
 10.44 Discretization of data 350
 10.45 Application of the Predictive Apriori algorithm on nominal data 350
 10.46 Manual Discretization 352
 10.47 Modified cut off when more than one student has the same marks at the cut 352
 10.48 Dataset with Manual Discretization 353
 10.49 Loading the marks file 353
 10.50 Replacing M with ‘?’ 355
 10.51 Installation of the ‘arules’ library 357
 10.52 Loading the dataset 358
 10.53 Loading the dataset and running Apriori 358
 10.54 First 20 Association Rules 359
 10.55 Best 20 rules sorted according to lift 359
 10.56 Decision tree rules 360
 10.57 Summary of decision tree nodes 361
 10.58 Plotting the decision tree 361
 10.59 Summary of the marks dataset 362
 10.60 Removal of columns 363
 10.61 Converting the dataset into a data frame 363
 10.62 Discretization of data 364
 10.63 Applying Apriori 364

 11.1 Categories of web mining 369
 11.2 Suffix tree clustering example 370
 11.3 Hubs and Authority 373
 11.4 Example of a Web Page Structure 373
 11.5 Adjacency matrix representing web structure shown in Figure 11.4 373
 11.6 Transpose Matrix of A 374
 11.7 Obtaining the Authority Weight Matrix 374
 11.8 Updated Hub Weight Vector 374
 11.9 Web page structure with Hub and Authority Weights 374
 11.10 Search engines market share 376
 11.11 Architecture of a search engine 376

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592
https://www.cambridge.org/core

xxii Figures

 11.12 Four web pages with hyperlinks 380
 11.13 Five web pages with hyperlinks 382
 11.14 Venn diagram showing relevant and retrieved results 385

 12.1 Architecture of an Operation Data Store 391
 12.2 Relationship between OLTP, ODS and data warehouse systems 393
 12.3 Answering management queries 394
 12.4 Historical developments of data warehouse 394
 12.5 Architecture of a data warehouse 396
 12.6 Limitations of data warehousing 399
 12.7 Data mart and data warehouse 399
 12.8 Relationship between data mart and data warehouse 400

 13.1 (a) location dimension, (b) item dimension 406
 13.2 Normalized view 406
 13.3 Representation of fact and dimension tables 407
 13.4 The sales fact table 407
 13.5 Graphical representation of Star schema 408
 13.6 Star schema for analysis of sales 409
 13.7 Snowflake schema for analysis of sales 410
 13.8 Snowflake schema 411
 13.9 Fact constellation schema for analysis of sales 412

 14.1 (a) Relational model, (b) Two dimensional view 420
 14.2 (a) Relational model representation, (b) Three dimensional view 421
 14.3 Two dimensional view of sale data, i.e., Item and Time 422
 14.4 Three dimensional view of sale data, i.e., Item, Time and Location 422
 14.5 Cubical three dimensional view of sale data 423
 14.6 Emp database 423
 14.7 Total number of employees in each job within each department 424
 14.8 Two dimensional view of employee data 424
 14.9 Use of ROLLUP for aggregation of data 425
 14.10 Use of CUBE for aggregation of data 425
 14.11 Employee database with third dimension state 426
 14.12 Three dimensional view of the employee database 426
 14.13 Cubical three dimensional representation of the employee database 427
 14.14 Pre-computation of only queries of type (d, j, s) 429
 14.15 No zero value facts returned by Group By query 430
 14.16 ROLAP architecture 430
 14.17 MOLAP Implementation 431
 14.18 MOLAP architecture 432
 14.19 Working of the Roll-up operation 434
 14.20 Working of the Drill-down operation 434
 14.21 Working of the Slice operation 435
 14.22 The Slice operation 436
 14.23 Working of the Dice operation 437
 14.24 Dice operation 438
 14.25 Workings of the Pivot operation 439

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592
https://www.cambridge.org/core

Figures xxiii

 15.1 Rise of the relational model 443
 15.2 An order, which looks like a single aggregate structure in the UI, is split into

many rows from many tables in a relational database 443
 15.3 Rise of Object databases 444
 15.4 Relational dominance in the late 1990s and early 2000s 444
 15.5 Generation of lots of traffic during the internet boom 445
 15.6 Types of data 446
 15.7 Structured data 446
 15.8 Percentage distribution of different types of data 447
 15.9 Info graphic of 4 V’s of big data 449
 15.10 Scaling up using a large centralized server 450
 15.11 Handling of huge data volume through the relational model 450
 15.12 Cluster computing emerged as a winner 450
 15.13 SQL in cluster environment 451
 15.14 BigTable and Dynamo for cluster environments 451
 15.15 NoSQL Meet 452
 15.16 Participants of NoSQL meet 452
 15.17 Features of NoSQL 453
 15.18 NoSQL data models 454
 15.19 Key-value data model 454
 15.20 Key-value model to store account information 456
 15.21 Column-family data model 456
 15.22 Representing customer information in a Column-family structure 457
 15.23 Document model 458
 15.24 Document data model 458
 15.25 NoSQL data models 459
 15.26 An example of the Graph structure 460
 15.27 RDBMS versus NoSQL 461
 15.28 CAP theorem 461
 15.29 Consistency in a distributed environment 462
 15.30 Future of NoSQL? 462
 15.31 Strengths of NoSQL 462
 15.32 The future is Polyglot persistence 463
 15.33 Polyglot persistence in a real environment 463

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592
https://www.cambridge.org/core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592
https://www.cambridge.org/core

 1.1 Fruit data for supervised learning 13
 1.2 Fruit data for unsupervised learning 14

 2.1 Tabular comparison of data mining and machine learning 25

 3.1 WEKA GUI applications 34
 3.2 Description about basic data types 45
 3.3 Summary about basic operators of R 45
 3.4 Some of the important machine learning packages 49

 4.1 Vendor’s record extracted from the first source system 56
 4.2 Vendor’s record extracted from the second source system by Supplier ID 56
 4.3 Vendor’s record extracted from the third source system 57
 4.4 Vendor’s record after pre-processing 57

 5.1 Information and Gini Index for a number of events 93

 6.1 Iris dataset sample 129

 7.1 Data to calculate Euclidean distances among three persons 158
 7.2 Database for the k-means algorithm example 163
 7.3 Database after first iteration 164
 7.4 Database after the second iteration 165
 7.5 Database after the second iteration 166
 7.6 Initial dataset for k = 3 167
 7.7 Final assigned cluster for k = 3 167
 7.8 Dataset after first iteration 168
 7.9 Dataset after second iteration 169
 7.10 Dataset after third iteration 170
 7.11 Dataset after fourth iteration 171
 7.12 Record of students’ performance 172
 7.13 Seed records 172
 7.14 First iteration-allocation of each object to its nearest cluster 173
 7.15 Updated centroids after first iteration 174
 7.16 Second iteration-allocation of each object to its nearest cluster 174

Tables

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592
https://www.cambridge.org/core

xxvi Tables

 7.17 Final allocation 175
 7.18 Within (intra) cluster and between (inter) clusters distance 176
 7.19 Calculations for within-cluster and between-cluster variance using Euclidean distance 176
 7.20 Chemical composition of wine samples 180
 7.21 Input distance matrix (L = 0 for all the clusters) 185
 7.22 Input distance matrix, with m: 1 185
 7.23 Input distance matrix, with m: 2 186
 7.24 Input distance matrix, with m: 3 186
 7.25 Input distance matrix, with m: 4 186
 7.26 Record of students’ performance 187
 7.27 Distance matrix at m: 0 188
 7.28 Cells involved in C1 189
 7.29 Input distance matrix, with m: 2 189
 7.30 Cells involved in C2 190
 7.31 Input distance matrix, with m: 3 190
 7.32 Cells involved in creating C3 191
 7.33 Input distance matrix, with m: 4 191
 7.34 Cells involved in creating C4 192
 7.35 Input distance matrix, with m: 5 192
 7.36 Cells involved in creating C5 192
 7.37 Input distance matrix, with m: 6 193
 7.38 Cells involved in creating C6 193
 7.39 Input distance matrix, with m: 7 193
 7.40 Cells involved in creating C7 194
 7.41 Input distance matrix, with m: 8 194
 7.42 Cells involved in creating C8 194
 7.43 Input distance matrix, with m: 9 194
 7.44 Record of students’ performance 195
 7.45 Distance matrix at m: 0 196
 7.46 Distance matrix for cluster C1 198
 7.47 Splitting of cluster C1 into two new clusters of S7 and S8 198
 7.48 Distance matrix for cluster C2 198
 7.49 Splitting of cluster C2 into two new clusters of S3 and S9 199
 7.50 Distance matrix for cluster C4 199
 7.51 Splitting of cluster C4 into two new clusters of S6 and S8 199

 9.1 Sale database 233
 9.2 Sale database 234
 9.3 Example of the support measure 235
 9.4 Example of the confidence measure 236
 9.5 Database for identification of association rules 236
 9.6 Dataset 238
 9.7 Modified dataset 239
 9.8 Sale record of grocery store 240
 9.9 List of all itemsets and their frequencies 240
 9.10 The set of all frequent items 241

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592
https://www.cambridge.org/core

Tables xxvii

 9.11 All possible combinations with nonzero frequencies 242
 9.12 Frequencies of all itemsets with nonzero frequencies 243
 9.13 A simple representation of transactions as an item list 244
 9.14 Horizontal storage representation 244
 9.15 Vertical storage representation 245
 9.16 Frequency of item pairs 245
 9.17 Transactions database 247
 9.18 Candidate one itemsets C1 248
 9.19 Frequent items L1 248
 9.20 Candidate item pairs C2 249
 9.21 Frequent two item pairs L2 250
 9.22 L1 for generation of C2 having only one element in each list 251
 9.23 L2 for generation of C3 (i.e., K=3) having two elements in each list 251
 9.24 L3 for generation of C4 (i.e., K = 4) having three elements in each list 251
 9.25 L1 253
 9.26 L2 253
 9.27 L3 253
 9.28 L1 254
 9.29 Generation of C2 254
 9.30 Generated C2 255
 9.31 L2 255
 9.32 C3 255
 9.33 L3 256
 9.34 C4 256
 9.35 Transaction database 256
 9.36 Generation of C2 257
 9.37 Generation L2 257
 9.38 Generation of C3 257
 9.39 Calculation of confidence 259
 9.40 Transaction database for identification of association rules 261
 9.41 C1 261
 9.42 Generation of C3 262
 9.43 Pruning of candidate itemset C3 262
 9.44 Pruned C3 263
 9.45 C4 263
 9.46 Pruned C4 263
 9.47 Generation of association rules 265
 9.48 Frequent 2-itemsets, i.e., L2 266
 9.49 List of grocery items 267
 9.50 Transaction data 268
 9.51 Frequency count for all items 269
 9.52 The frequent 1-itemset or L1 269
 9.53 The 21 candidate 2-itemsets or C2 270
 9.54 Frequency count of candidate 2-itemsets 271
 9.55 The frequent 2-itemsets or L2 272
 9.56 Candidate 3-itemsets or C3 272

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592
https://www.cambridge.org/core

xxviii Tables

 9.57 Pruning of candidate itemset C3 273
 9.58 Pruned candidate itemset C3 273
 9.59 Candidate 3-itemsets or C3 and their frequencies 273
 9.60 The frequent 3-itemsets or L3 274
 9.61 Confidence of association rules from {Bournvita, Butter, Cornflakes} 274
 9.62 Confidence of association rules from {Bournvita, Bread} 275
 9.63 Identified rules from {Bournvita, Butter, Cornflakes}

having confidence more than 70% 275
 9.64 List of all possible rules from rules given in Table 9.61 275
 9.65 Confidence of association rules from {Coffee, Chocolate, Eggs} 277
 9.66 List of all possible rules from rules given in Table 9.65 278
 9.67 All association rules for the given database 279
 9.68 A transaction database to illustrate closed and maximal itemsets 280
 9.69 Frequent itemsets for the database in Table 9.68 281
 9.70 Transaction database 283
 9.71 Transaction database T1 283
 9.72 L1 283
 9.73 C2 284
 9.74 Transaction database T2 284
 9.75 Support for C2 284
 9.76 L2 285
 9.77 Transaction database 287
 9.78 Frequent 1-itemset L1 287
 9.79 Candidate 2 itemsets C2 287
 9.80 Possible 2-itemsets for each transaction 288
 9.81 Frequent itemsets for a support of 50% 288
 9.82 Code for each item 288
 9.83 Coded representation for each item pair 288
 9.84 Assigning item pairs to buckets based on hash function modulo 8 289
 9.85 Pruning of C2 289
 9.86 Finding L2 290
 9.87 Finding three itemsets 290
 9.88 Transaction database for Apriori and DHP 292
 9.89 Code for each item 293
 9.90 Coded representation for each item pair 293
 9.91 Assigning of item pairs to buckets based on hash function modulo 7 294
 9.92 Pruning of C2 294
 9.93 Finding L2 294
 9.94 Identifying three itemsets 295
 9.95 Transaction database 295
 9.96 Coded item pairs for DHP 296
 9.97 Assigning of item pairs to buckets based on hash function modulo 11 296
 9.98 Pruning of C2 296
 9.99 Finding L2 297
 9.100 Finding three itemsets 297
 9.101 Working of the DIC algorithm for the example database 299

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592
https://www.cambridge.org/core

Tables xxix

 9.102 Transaction database 302
 9.103 Frequency of each item in sorted order 302
 9.104 Updated database after eliminating the non-frequent items and reorganising it

according to support 303
 9.105 Frequent item pairs for database example given in table 306
 9.106 Transaction database 307
 9.107 Count for each data item 307
 9.108 Frequency of each item in sorted order 307
 9.109 Modified database after eliminating the non-frequent items and reorganising 308
 9.110 Frequent item pairs for the example database 309
 9.111 Calculation of confidence for identification of association rules 310
 9.112 Transaction database 310
 9.113 Frequency of each item 310
 9.114 Frequency of each item in sorted order 311
 9.115 Modified database after eliminating the non-frequent items and reorganizing 311
 9.116 Frequent item pairs for example database 313
 9.117 Association rules for database given in Table 9.76 314

 10.1 Description of parameters 323
 10.2 Description of available property options of the Apriori algorithm 331
 10.3 Transaction database of a store 333
 10.4 Sample dataset of a store 340
 10.5 Performance record of students in a data warehouse and data mining course 344

 11.1 Sequences of length two 371
 11.2 Important parameters for web usage mining 372
 11.3 Index showing keywords and related web pages 378

 12.1 Generalized distinction between ODS and data warehouse 401
 12.2 Comparison of OLTP systems and data warehousing systems 402
 12.3 Comparing OLTP and data warehouse system 402

 13.1 Comparison among Star, Snowflake and Fact Constellation Schema 413

 14.1 Applications of OLAP 417
 14.2 Difference between OLTP and OLAP 419
 14.3 Possible number of queries on given scenario 427
 14.4 Pre-computation of query analysis 428
 14.5 Comparison of ROLAP and MOLAP 433
 14.6 Result of the slice operation for degree = BE 436

 15.1 The relational model to store account information 455
 15.2 Comparison of terminologies used in Oracle and Riak 455
 15.3 Comparison of terminologies used in RDBMS and Cassandra 457
 15.4 Comparison of terminologies used in MongoDB and RDBMS 458
 15.5 Friends database 459

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592
https://www.cambridge.org/core

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:33:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592
https://www.cambridge.org/core

In the modern age of artificial intelligence and business analytics, data is considered as the oil of
this cyber world. The mining of data has huge potential to improve business outcomes, and to carry
out the mining of data there is a growing demand for database mining experts. This book intends
training learners to fill this gap.

This book will give learners sufficient information to acquire mastery over the subject. It covers
the practical aspects of data mining, data warehousing, and machine learning in a simplified
manner without compromising on the details of the subject. The main strength of the book is the
illustration of concepts with practical examples so that the learners can grasp the contents easily.
Another important feature of the book is illustration of data mining algorithms with practical
hands-on sessions on Weka and R language (a major data mining tool and language, respectively).
In this book, every concept has been illustrated through a step-by-step approach in tutorial form
for self-practice in Weka and R. This textbook includes many pedagogical features such as chapter
wise summary, exercises including probable problems, question bank, and relevant references, to
provide sound knowledge to learners. It provides the students a platform to obtain expertise on
technology, for better placements.

Video sessions on data mining, machine learning, big data and DBMS are also available on my
YouTube channel. Learners are requested to subscribe to this channel https://www.youtube.com/
user/parteekbhatia to get the latest updates through video sessions on these topics.

Your suggestions for further improvements to the book are always welcome. Kindly e-mail your
suggestions to parteek.bhatia@gmail.com.

I hope you enjoy learning from this book as much as I enjoyed writing it.

Preface

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.001
https://www.cambridge.org/core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.001
https://www.cambridge.org/core

Writing the acknowledgments is the most emotional part of book writing. It provides an opportunity
to pay gratitude to all those who matter in your life and have helped you achieve your dream and
aspirations. With the grace of God and three years of effort, I have reached this stage.

I would like to express my gratitude to the many people who saw me through this book, who
motivated me directly or indirectly to write this book, to all those who provided support, talked
things over, read, wrote, offered comments, and assisted in the editing, proofreading, and design.

Writing a textbook is an enormous task and it requires a great deal of motivation. I appreciate
the writings of great authors like Dr A. P. J. Abdul Kalam, Mr Robin Sharma, Mr Shiv Kehra and
Mr Jack Canfield, who have inspired me to contribute to the education of our young generation by
writing simplified content without compromising on the depth of the subject.

Writing a book is not possible without the support and motivation of one’s family. I feel blessed to
have Dr Sanmeet Kaur as my wife; she has always been there to support and encourage me, despite
all the time it took me, on this project. Since we both belong to the same field and same profession,
having long discussions with her on different aspects of the subject is the most beautiful part of
learning. These discussions helped me a long way in shaping the contents of the book. Secondly,
she has always been there to take care of our whole family during my engagement with this book.

I am blessed to be born into a family of teachers. My parents, Mr Ved Kumar and Mrs Jagdish
Bhatia have always provided a guiding path for excellence in life. Their life journey, in itself, is a
learning path for me. I thank the almighty for providing me two loving sons, Rahat and Rishan,
who filled our life with love and happiness. I thank my parents-in-laws, Mr Dalip Singh and Mrs
Joginder Kaur whose daughter Sanmeet filled our home with love and affection. I thank my elder
brother Mr Suneet Kumar and bhabi ji Mrs Dimple Bhatia, for always showering their love and
blessings on me.

I am blessed to have mentors like M. L. Aeri, former Principal, DAV College, Amritsar; Mr O.
P. Bhardwaj, former Head, Department of Computer Science, DAV College, Amritsar; Dr R. K.
Sharma Professor, DCSE, TIET; Dr Seema Bawa, Professor DCSE, TIET; Dr Maninder Singh,
Head CSED, TIET, and Dr Deepak Garg, former Head CSED, TIET, who groomed me as a
teacher. I wish to thank my friends Dr Amardeep Gupta and Mr V. P. Singh, who always lend their
ears to my thoughts and aspirations. I would like to thank my colleagues at TIET who motivate
and provide an excellent environment for growth.

Acknowledgments

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592
https://www.cambridge.org/core

xxxiv Acknowledgments

The production of this book involved a lot of help from my team of students consisting of Ms
Sujata Singla, Mr Divanshu Singh, Ms Suhandhi, Mr Aditya and Ms Sawinder Kaur, who read the
whole manuscript and helped me in editing and refining the text. I acknowledge the contribution
of Ms Sujata in implementing the data mining algorithms in R and her assistance in finalizing the
contents. There were great insights form Mr Divanshu Singh, who provided feedback and helped
me refine the contents in the portions on web mining and search engine.

I would like to express my gratitude to my students at Thapar Institute of Engineering and
Technology, Patiala, for their curiosity and zeal for learning which motivated me to write on this
topic. I also want to thank the students at other institutes with whom I had the opportunity to
interact during my ‘invited talks’. They provided much-needed motivation, without which this book
would have been impossible.

I want to acknowledge Dr Mark Polczynski, former Director of the MS at Marquette University,
USA; Dr Saed Sayad, an Adjunct Professor at the University of Toronto; Mr Martin Fowler,
ThoughtWorks, USA, for granting permission to use content from some of their published works.

I thank my publisher, Cambridge University Press, for publishing this book. I thank Mr Gauravjeet
Singh of Cambridge University Press and his team for editing, refining and designing the contents,
thereby providing life to the manuscript in the form of a book.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592
https://www.cambridge.org/core

Chapter Objectives
 To understand the concept of machine learning and its applications.

 To understand what are supervised and unsupervised machine learning strategies.

 To understand the concept of regression and classification.

 To identify the strategy to be applied to a given problem.

1.1 Introduction to Machine Learning

Machine Learning (ML) has emerged as the most extensively used tool for web-sites to classify
surfers and address them appropriately. When we surf the Net, we are exposed to machine learning
algorithms multiple times a day, often without realizing it. Machine learning is used by search
engines such as Google and Bing to rank web pages or to decide which advertisement to show to
which user. It is used by social networks such as Facebook and Instagram to generate a custom feed
for every user or to tag the user by the picture that was uploaded. It is also used by banks to detect
whether an online transaction is genuine or fraudulent and by e-commerce websites such as Amazon
and Flipkart to recommend products that we are most likely to buy. Even email providers such as
Gmail, Yahoo, and Hotmail use machine learning to decide which emails are spam and which are
not. These are only a few examples of applications of machine learning.

The ultimate aim of machine learning is to build an Artificial Intelligence (AI) platform that
is as intelligent as the human mind. We are not very far from this dream and many AI researchers
believe that this goal can be achieved through machine learning algorithms that try to mimic the
learning processes of a human brain.

Actually, ML is a branch of AI. Many years ago researchers tried to build intelligent programs
with pre-defined rules like in the case of a normal program. But this approach did not work as there
were too many special cases to be considered. For instance, we can define rules to find the shortest

Beginning with
Machine Learning

1

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.002
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:36:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.002
https://www.cambridge.org/core

2 Data Mining and Data Warehousing

path between two points. But it is very difficult to make rules for programs such as photo tagging,
classifying emails as spam or not spam, and web page ranking. The only solution to accomplish
these tasks was to write a program that could generate its own rules by examining some examples
(also called training data). This approach was named Machine Learning. This book will cover state
of art machine learning algorithms and their deployment.

1.2 Applications of Machine Learning

Machine Learning or ML is everywhere. It is a definite possibility that one is using it in one way
or the other and doesn’t even know about it. Some common applications of machine learning that
we come across every day are:

Virtual Personal Assistants

There are many Virtual Personal Assistants such as Siri, Alexa, or Google Assistant that we interact
with in our daily life. As the term suggests, they help in discovering information, when asked by
voice. You have to train them before asking ‘What is my calendar for now?’, ‘How is climate today’,
or similar inquiries. For answering, the personal assistant searches for the information over the
Internet and recalls your related queries, to solve your request. These assistants can be trained for
certain tasks like ‘Set an alarm for 5 AM next morning’, ‘Remind me to visit doctor tomorrow at
6 PM’, and so on. Smart Speakers like Amazon Echo and Google Home are the outcomes of this
innovation. Above-mentioned assistants use machine learning to achieve these objectives.

Traffic predictions

All of us are familiar with Google maps; it uses machine learning to predict the expected time of
arrival at the destination and also to model traffic congestion on real time basis.

Online transportation networks

We all book cabs by using mobile apps like Ola and Uber. These apps estimate the price of the
ride by using machine learning. They also use ML to determine price surge hours by predicting
the rider’s demand.

Video surveillance

CCTV cameras have become common for video surveillance. The manual monitoring of these
cameras is a very difficult job and boring as well. This is why the idea of training computers to do this
job makes sense and machine learning helps to achieve this objective. ML based video surveillance
systems can even detect crime before it happens. It can track unusual behavior in people such as
standing motionless for an unnaturally long time, hesitancy, or napping on benches and such-like.
The system can thus alert human attendants, for suitable response.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.002
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:36:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.002
https://www.cambridge.org/core

Beginning with Machine Learning 3

Social media services

Machine learning is also playing a vital role in personalizing news feed in order to better advertisement
targeting over social media. Facebook uses machine learning to show news feed to the user based on
his or her interests by considering items clicked earlier by that user. Facebook also continuously takes
note of the friends that you connect with, the profiles that you often visit, your interests, workplace,
and such; and, on the basis of this continuous learning, a list of Facebook users are suggested for
you to become friends with.

The Face Recognition feature of Facebook also uses ML to tag the friends in a picture. Facebook
checks the poses and projections in the picture, notices the unique features, and then matches them
with the people in your friends list. The entire process is performed with the help of ML and is
performed so quickly at the backend that it tags the person as soon as we upload his or her picture.

Pinterest also uses ML for computer vision to identify the objects (or pins) in the images and
recommend similar pins accordingly.

Email spam and malware filtering

Email spam and malware filters have inbuilt machine learning to identify spam emails. On the
basis of emails we earlier marked as spam or not, the system learns and identifies new mail as spam
or not, automatically.

Usually, a malware’s code is 90–98% similar to its previous versions. The system security programs
that incorporate machine learning understand the coding pattern and detect new malware very
efficiently and offer protection against them.

Online customer support

Many sites these days offer the surfer the option to talk with them. While doing so, these sites have
‘bots’ hunting the website internals to come up with an appropriate response. In any case, very few
sites have a live official to answer your questions. In most cases, you converse with a chatbot. These
bots extract data from the site and present it to clients through machine learning.

Search engine result refining

Google and other search engines use machine learning to improve search results for you. Every
time you execute a search, the algorithms at the backend keep a watch on how you respond to the
results. If you open the top results and stay on the web page for long, the search engine assumes
that the results it displayed were in accordance with the query. Similarly, if you reach the second or
third page of the search results but do not open any of the results, the search engine estimates that
the results served did not match requirement. This is the way, machine learning trains itself at the
backend to improve search results.

Product recommendations

Whenever we make an online purchase on websites such as Amazon or Flipkart or similar, we usually
keep receiving emails from them with shopping suggestions. They also recommend us items that

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.002
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:36:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.002
https://www.cambridge.org/core

4 Data Mining and Data Warehousing

somehow match our tastes. This improves the shopping experience and again it is machine learning
that makes it happen. On the basis of our behavior on the website or app, past purchases, items liked
or added to the cart, brand preferences and other such factors, the product recommendations are made.

Online fraud detection

Machine learning is also helping in making cyberspace more secure and tracking monetary frauds
online. For example, Paypal is using ML for protection against money laundering. The company uses
a set of ML tools that helps them to compare millions of transactions taking place and distinguish
between legitimate or illegitimate transactions taking place between the buyers and sellers.

Medicine

With the advent of automation, medical records are now available in electronic form. The ML
algorithms are helping doctors to understand diseases in a better manner by turning the medical
records into medical knowledge.

Computational biology

Biologists are also collecting an enormous amount of data about human DNA. The ML algorithms
are helping them understand and identify the relationship between various genes and related human
features.

Handwriting recognition

ML can not only recognize handwriting but also read different ones. So, it is a versatile tool for
many applications. For instance it can be used to route postal mail all over the country once it has
been trained to read addresses written in anyone’s handwriting.

Machine translation

We use Google Translate that translates text/website instantly between 100 different human
languages as if by magic. Available on our phones and smart watches, the technology behind Google
Translate is Machine Translation. It has changed the world by allowing people with different
language to communicate with each other.

Driverless cars and autonomous helicopters

As pointed out, ML is used for programs in situations for which it is very difficult to define rules.
One such application is self-driving cars or autonomous helicopters. It takes years of experience
for a person to become a good driver and much of this is intuitive. It is very difficult to define this
experience in terms of formulating all the myriad rules which are necessary for a program to drive
a car on its own. The only possible solution is machine learning, i.e., having a computer program
that can learn by itself how to drive a car or f ly a helicopter.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.002
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:36:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.002
https://www.cambridge.org/core

Beginning with Machine Learning 5

With such enormous scope for employing machine learning there is a corresponding huge demand
for machine learning experts all over world. It is one of the top ten most required IT skills.

1.3 Defining Machine Learning

There are two commonly used definitions of machine learning.
Arthur Samuel (1959) coined the term machine learning and defined it as: ‘the field of study that

gives computers the ability to learn without being explicitly programmed.’ This is an informal and old
definition of machine learning.

From this definition, formulated more than half a century ago, it is evident that machine
learning is not a new field. But during those times computers were not fast enough to implement
the proposed techniques. The concept of machine learning gained popularity in the early 1990s due
to the availability of the computers with huge storage space and processing powers.

In 1998, Tom Mitchell redefined the concept of machine learning as ‘[A] computer program is
said to learn from experience E with respect to some class of tasks T and performance measures P,
if its performance at tasks in T, as measured by P, improves with experience E.’

For instance, let’s say there is an email program which tracks the emails that a person marks as
spam or not spam and based on that learns how spam can be filtered in a better way.

Thus, Classification of emails as spam or not spam is the Task T.
Tracking the user and marking emails as spam or not spam becomes Experience E.
The number of emails correctly classified as spam or not spam is Performance P.

1.4 Classification of Machine Learning Algorithms

The classification of machine learning algorithms is shown in Figure 1.1 below.

Figure 1.1 Classification of machine learning algorithms

Some examples are given below for better understanding of these classifications. Further definition
will follow in a later section.

1.4.1 Supervised learning

Suppose Sonam wants to accurately estimate the price of some houses in New Delhi. She first
compiles a dataset having covered area of each house with its corresponding price from the city of

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.002
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:36:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.002
https://www.cambridge.org/core

6 Data Mining and Data Warehousing

New Delhi. She does this for a number of houses of different sizes and plots this data as shown
in Figure 1.2. Here, the Y-axis represents the price of different houses in lakhs of rupees and the
X-axis indicates the size of different houses in square feet.

Figure 1.2 Data plot for size of plot and cost

Let’s suppose Sonam’s friend owns a house that is 850 square feet in size and she wants to know
the selling price for the house. In this case, how can a machine learning algorithm help her? An
ML algorithm might be able to do so by fitting a straight line through the plotted data and based
on the curve obtained it can be observed that house can be sold about approximately 18 lakh rupees
as shown in Figure 1.3. But this is just an opening step.

Figure 1.3 Estimation (prediction) of cost of house with a small dataset

As more and more data is added to this dataset, i.e., as the number of experiences plotted are
increased, the graph looks as shown in Figure 1.4. Then, instead of fitting a straight line, a second
order polynomial will make a better fit for this data. By using a second order polynomial, we get
better prediction and it seems that Sonam’s friend should expect a price of close to 20 lakhs as
shown in Figure 1.4.

It is important to note that, here, by increasing the dataset, i.e., the experience of the machine,
the performance of the system for the task ‘predicting house price’ has improved. And thus, the
machine has learnt how to better estimate or predict the prices of houses. The example discussed

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.002
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:36:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.002
https://www.cambridge.org/core

Beginning with Machine Learning 7

above is an example of supervised machine learning and the term ‘supervised’ signifies the fact that
the dataset with the ‘right answers’ is given to the algorithm. The example given above is also a
case of regression problem. In a regression problem, the system predicts a continuous–valued output
(here, it is the price of the house).

Figure 1.4 Prediction of cost of house with large dataset

Take another example of supervised learning: suppose a doctor looks at a dataset of medical
records to try and find out whether a tumour is benign or malignant. A benign tumor is a harmless
tumor and a malignant tumor is a tumor that is dangerous and harmful.

Now the doctor wishes to predict whether a tumor is cancerous or not based on the tumor size.
For this, the doctor can collect the data of breast tumor patients and plot a graph in which size of
the tumor is on X-axis and type of tumor, i.e, cancerous or not, is on Y-axis as shown in Figure
1.5. In this example, we don’t try to predict a continuous value but rather try to classify a tumor as
being either benign or malignant.

Figure 1.5 Data plot for tumor size and malignancy

In the above plot, we have five examples of malignant or cancerous tumors having value one
and five samples of benign or non-cancerous tumors with a value of zero on the Y-axis. Suppose a
person has a breast tumor and the size of the tumor is somewhere around the value marked as A as
shown in Figure 1.6. The machine learning question here is to predict the chances of that tumor
being benign or malignant?

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.002
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:36:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.002
https://www.cambridge.org/core

8 Data Mining and Data Warehousing

Figure 1.6 Prediction about a tumor of size A

This then is a ‘Classification’ issue. The term ‘classification’ signifies that the system has to predict
the output as a discrete value, i.e., one or zero (either benign or malignant in the above example). It
should be noted that in a classification problem, the output can have more than two possible values.
For example, there may be three types of breast cancers and one can try to predict the discrete
value, i.e., zero, one or two. Here, zero may represent a benign tumor or not harmful cancer, one
may represent type one cancer and the discrete value two may indicate a type two cancer. Hence,
in a classification problem, we may have N classes in the output where N is always a finite number.

In this example, only one attribute or feature namely the tumor size has been used with the aim
to predict whether the type of tumor is benign or malignant. In other machine learning situations,
there can be more than one attribute or feature. For example, the age of the patient can also be
considered instead of just knowing the size of tumor only. In that case, our dataset would look like
as shown in Figure 1.7.

Figure 1.7 Considering tumor size and age as features for classification

Let’s suppose a person has a tumour, of size and age as depicted by B in Figure 1.8.
In this dataset, the ML algorithm is able to fit a straight line to separate out the benign tumors

from the malignant tumors as shown in Figure 1.9. Thus, according to ML algorithm, a straight line
can, hopefully, help us determine a person’s tumor by separating out the tumors. And if a person’s
tumor falls in this benign area then the type of cancer is more likely to be benign than malignant.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.002
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:36:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.002
https://www.cambridge.org/core

Beginning with Machine Learning 9

Figure 1.8 Prediction for a tumor of size B

Figure 1.9 Prediction for tumor size B being benign

In this example, two features such as patient’s age and tumor size have been considered. However,
we can increase the number of features to further increase the accuracy of prediction. It is important
to note that as more and more relevant features are added into a model, the model will become
more complex but the accuracy may increase. Commonly, machine learning algorithms have more
than one feature.

Test your progress

Imagine that you own a company and to address each of its problems, you wish to develop a machine
learning algorithm.

Problem 1: For each customer account, you’d like to have a software to check the account and
decide if it has been compromised (hacked).

Problem 2: You have a large stock of similar goods. You wish to know that in the next three
months how many of these goods will sell.

You have the following options:
 (a) Option A: First problem is regression problem and second problem is a classification problem.
 (b) Option B: Both are classification problems.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.002
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:36:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.002
https://www.cambridge.org/core

10 Data Mining and Data Warehousing

 (c) Option C: Both are regression problems.
 (d) Option D: First problem is a classification problem and second problem as a regression problem.

The correct answer is option D.
In Problem 1, we have to predict whether the account has been hacked or not. So, if we consider

0 as not hacked and 1 as hacked then we have to predict either 0 or 1. Thus, this is a case of binary
classifier (having only two possible outputs). In Problem 2, we have to predict the number of goods
that will be sold in next 3 months, so it will be a continuous value, thus it is a case of regression.

Thus, supervised learning problems are categorized into either ‘classification’ or ‘regression’
problems. In a regression problem, we try to predict the results within a continuous output. This
means that we try to map input variables to some continuous function. In a classification problem
instead, we try to predict results in a discrete output. In other words, we try to map input variables
into discrete classes or categories.

In the example about predicting the price of houses based on given data about their size: the price
as a function of house size is a continuous output, so this is a regression problem.

We could turn this example into a classification problem by instead asking whether a house will
sell for more than or less than a certain amount. Here, we are classifying the houses based on price
into two discrete categories.

Further examples should help in better understanding regression and classification. The
prediction of marks of a student is a case of regression while prediction about his grades or division
is classification. The prediction of a score in a cricket match is an example of regression while to
predict if the team will win or lose the match is an example of classification. The prediction about
tomorrow’s temperature is a case of regression, while to predict whether tomorrow will be cooler or
hotter than today is an example of a classification problem.

1.4.2 Unsupervised learning

Unsupervised learning, on the other hand, allows us to approach problems with little or no idea
about what the results will look like. We can derive structure from data where we don’t necessarily
know the effect of the variables.

In unsupervised learning data is not labeled, it means that there is no output attribute. We only
have input attributes and on the basis of values of input attributes grouping or clustering is performed
on the input data to group them into similar classes.

We can only construct the clusters of data based on relationships among the variables in the
data. With unsupervised learning, there is no feedback about the results predicted, i.e., there is no
teacher to correct you.

Examples of unsupervised learning

Google news as depicted in Figure 1.10 is an excellent example of clustering that uses unsupervised
learning to group news items based on their contents. Google has a collection of millions of news
items written on different topics and their clustering algorithm automatically groups these news items
into a small number that are somehow similar or related to each other by using different attributes,
such as word frequency, sentence length, page count, and so on.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.002
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:36:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.002
https://www.cambridge.org/core

Beginning with Machine Learning 11

Figure 1.10 Google news

The other examples of unsupervised learning applications are illustrated in Figure 1.11 and are
discussed below.

Figure 1.11 Applications of unsupervised learning

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.002
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:36:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.002
https://www.cambridge.org/core

12 Data Mining and Data Warehousing

Organize computing clusters

The geographic location of servers is decided on the basis of clustering of web requests received
from a particular region of the world. The local server will then contain only the data frequently
accessed by people of that region.

Social network analysis

Social network analysis is conducted to create clusters of friends based on the frequency of
communication among them. Such analysis reveals the links among the users of any social networking
website.

Market segmentation

Sales organizations can cluster or group their customers into different segments on the basis of their
previous billed items. For example, a big superstore may want to send an SMS about grocery items
specifically to its customers of grocery instead of sending that SMS to all its customers. Not only
is it cheaper but also better; after all it might be an irrelevant irritant to those who only purchase
clothing from the store. The grouping of customers into different segments based on their purchase
history will help the store to target the correct customers for increasing sales and improving its profits.

Astronomical data analysis

Astronomers use large telescopes to study galaxies and stars. The patterns in light or grouping of
lights received from different parts of the sky help to identify different galaxies, planets, and satellites.

1.4.3 Supervised and unsupervised learning in real life scenario

To understand the difference between supervised and unsupervised learning let us consider the
learning process of Adam and Eve who are considered to be the first human beings on Earth
according to Biblical texts.

Adam and Eve might have learned by analyzing the attributes or features of the various objects
because at that time no item had a name or label attached to it. They might have associated an object
to be a part of a group or cluster of items based on their features like colour, shape, size, smell, taste,
etc. First, they might have categorized the things into living and nonliving groups. Then they might
have further analyzed each group and divided it into subgroups and so on. For example, they might
have identified one group as ‘animals’ which they might have further sub-grouped as a tiger, dog,
cat and so on. In simple terms, they performed clustering of objects based on their features and
later on with the development of language, they assigned names to these groups and subgroups.

Thus, Adam and Eve learned through unsupervised learning because during that time nothing
was labeled and based on their analysis of things they made groups and subgroups and only later
did they give names to these groups and subgroups.

On the other hand, in today’s world, when a child is born in a family, its learning process is
different from Adam and Eve’s learning process because now everything has already been labeled,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.002
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:36:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.002
https://www.cambridge.org/core

Beginning with Machine Learning 13

i.e., has a name. We show different items to a child and tell the child what an item’s name is, such
as a pen, pencil, chair, table, car, bus, and so on. During this learning process along with all the
features of an object, the child also gets to know the name or label of that item. The child does not
need to see all the pencils in the world to identify it, after being trained on three or four of them;
with just an initial few reminders the child will be able to differentiate between pen/pencil/car/bus
or whatever. Thus the child’s learning is supervised learning because labeled data is provided with
all attributes of the items. In supervised machine learning, a system gets trained on some sample
data (training data), and whenever it comes across unknown sample data, the system will be able to
predict based on experience gained by analyzing training data.

In simple words, when data is labeled, it is considered as supervised learning but when data is
unlabeled then it is known as unsupervised learning. In supervised learning, the system makes
predictions, i.e., classification or regression and in case of unsupervised learning, clustering is
performed based on the features of the object.

As another example, assume you have different kinds of fruits filled in a basket. You have to
organize them into different groups. Let’s suppose there are 4 types of fruits in the basket, which
are as follows – cherry, mango, grapes, and banana.

Supervised learning

From your prior knowledge, you might have learned about the physical characters of the fruits. So,
it may be very easy to organize the similar type of fruits into one group. In machine learning, the
prior work of analyzing sample data is known as training. As a result of this training, it is able to
associate a label with every fruit i.e. FRUIT NAME as shown in Table 1.1.

Table 1.1 Fruit data for supervised learning

No. Shape Colour Size Fruit Name

1 Heart-shaped to nearly globular Red Small Cherry

2 Kidney shaped Yellow Big Mango

3 Round to oval, bunch shaped cylindrical Green Small Grapes

4 Long curving cylinder Green Big Banana

Assume from the basket of fruits, you picked a new fruit and observed the shape, size, and colour
of that particular fruit. If the fruit is kidney-shaped, bigger in size and yellow in colour, then the fruit
is classified as mango. Similarly, this process is repeated for other fruits present in the basket. This
is a case of the classification problem. If any prior knowledge acquired by analyzing training data is
then used for making predictions about unseen data then it is known as supervised machine learning.

Unsupervised learning

Let us take the basket that is filled with some distinctive types of fruits and you have to organize
them into groups. Assume that this is the first time you have seen these fruits and you don’t know
anything about them. It means data is not labeled and it will appear like as shown in Table 1.2. This

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.002
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:36:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.002
https://www.cambridge.org/core

14 Data Mining and Data Warehousing

is the same situation that Adam and Eve had when nothing was labeled. So, having no clue about
the fruits how will you start the process of organizing them into different groups?

Table 1.2 Fruit data for unsupervised learning

No. Shape Colour Size

1 Heart-shaped to nearly globular Red Small

2 Kidney-shaped Yellow Big

3 Round to oval, bunch shape cylindrical Green Small

4 Long curving cylinder Green Big

You may organize them on the basis of their physical characteristics. Assume that you organize
them on the basis of their respective size and colour.

Then the groups will be like this.
SMALL SIZE AND RED COLOUR: cherry fruits.
BIG SIZE AND YELLOW COLOUR: mango.
SMALL SIZE AND GREEN COLOUR: grapes.
BIG SIZE AND GREEN COLOUR: banana.
Now, on the basis of colour, the groups will be.
GREEN COLOUR GROUP: grapes and banana.
RED COLOUR GROUP: cherry.
YELLOW COLOUR GROUP: mango.
This example is a case of clustering problem fall under unsupervised learning.
When you don’t have any prior knowledge or labeled data then it is called as unsupervised learning.

1.4.4 Reinforcement learning

Reinforcement learning is used in applications like computer games (where the machine plays with
a human), driverless cars, robot navigation, etc. It works through trial and error, and the machine
selects those actions that yield the greatest rewards. These algorithms have three major components
mentioned as follows.

Agent: It is used for learning and decision making. The agent chooses actions that maximize some
specified reward metric over a given amount of time.

Environment: It defines the outer world with which the agent interacts.

Actions: It defines the tasks to be performed by the agent.

Thus, reinforcement learning allows machines and software agents to automatically determine
the ideal behavior within a specific context, in order to maximize its performance. Simple reward
feedback is required for the agent to learn its behavior and this is known as the reinforcement signal.
Google’s AlphaGo program which defeated the world champion in the game of Go, the self-driving
car from Tesla Motors and Amazon’s prime air delivery are all based on reinforcement learning.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.002
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:36:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.002
https://www.cambridge.org/core

Beginning with Machine Learning 15

 Remind Me
 Machine Learning (ML) is a field that has grown out of Artificial Intelligence (AI).
 Machine learning is the field of study that gives computers the ability to learn without being explicitly

programmed.
 Machine learning algorithms are broadly classified into two classes such as supervised learning and

unsupervised learning.

 Point Me (Books)
 Mitchell, Tom M. 2017. Machine Learning. Chennai: McGraw Hill Education.
 Witten, Ian H., Eibe Frank, Mark A. Hall, and Christopher Pal. 2016. Data Mining: Practical Machine

Learning Tools and Techniques, 4th ed. Burlington: Morgan Kaufmann.

 Point Me (Video)
 Machine Learning Tutorial, Parteek Bhatia, https://youtu.be/K488fqToBbE

 Connect Me (Internet Resources)
 http://www.expertsystem.com/machine-learning-definition/
 https://www.techemergence.com/what-is-machine-learning/
 http://dataaspirant.com/2014/09/19/supervised-and-unsupervised-learning/
 https://www.datascience.com/blog/supervised-and-unsupervised-machine-learning-algorithms

 Test Me
 Answer these multiple choice questions based on what you learnt in this chapter.
 1. A computer program is said to learn from experience E with respect to some performance measure P

and some task T, if this improves with experience E when its performance on T is measured by P. Let
us feed a machine learning algorithm to predict the weather by providing a lot of historical weather
data. What would be a reasonable choice for P in this case?

 (a) The process of the algorithm examining a large amount of historical weather data.
 (b) The probability of it correctly predicting a future date’s weather.
 (c) The weather prediction task.
 (d) None of these.
 2. Suppose you are working on weather prediction and your weather station makes one of given three

predictions for each day’s weather: Cloudy, Rainy or Sunny. You’d like to use a machine learning
algorithm to predict tomorrow’s weather. Would you treat this as a regression or a classification
problem?

 (a) Regression (b) Classification
 3. Assume that you work at a stock trading company and you have to estimate whether or not a particular

stock’s price will be higher or not on next day than today. You wish to use a machine learning algorithm
for this. Would you treat this as a regression or a classification problem?

 (a) Regression (b) Classification
 4. Some of the problems given below are best addressed using a supervised machine learning algorithm

and the others with an unsupervised machine learning algorithm. In which of the following case would
you apply supervised learning? (Select all that apply.) Assume that to learn from each case, some
suitable dataset is accessible for your algorithm.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.002
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:36:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.002
https://www.cambridge.org/core

16 Data Mining and Data Warehousing

 (a) Have a computer inspect an audio clip of music and classify whether or not there are vocals (i.e., a
human voice singing) in that audio clip or if it is a clip of only musical instruments (and no vocals).

 (b) Find a way to automatically group the essays taken from a group of thousand essays written on the
Indian Economy into a small number of groups of essays that are somehow ‘related’ or ‘similar’.

 (c) Examine a web page and classify whether the content on that web page should be considered
‘child-friendly’ (e.g., non-pornographic, etc.) or ‘adult’.

 (d) To discover if there are sub-types of spam mail, examine a large collection of emails that are
labeled as spam email.

 5. Which of these is a reasonable definition of machine learning?
 (a) Machine learning means learning from labeled data.
 (b) Machine learning is the field of study that gives computers the ability to learn without being

explicitly programmed.
 (c) Machine learning is the science of programming computers.
 (d) Machine learning is the field of allowing robots to act intelligently.
 6. What is training data?
 (a) The dataset used to check the accuracy of an algorithm
 (b) The data that algorithm will receive to make predictions in a production environment
 (c) A subset of the whole dataset that we have
 (d) The data generated as output by the algorithm

 Answer Keys:
 1. (b) 2. (b) 3. (b) 4. (a, c, d)
 5. (b) 6. (b)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.002
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:36:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.002
https://www.cambridge.org/core

Chapter Objectives
 To learn about the concepts of data mining.

 To understand the need for, and the applications of data mining

 To differentiate between data mining and machine learning

 To understand the process of data mining.

 To understand the difference between data mining and machine learning.

2.1 Introduction to Data Mining

In the age of information, an enormous amount of data is available in different industries and
organizations. The availability of this massive data is of no use unless it is transformed into valuable
information. Otherwise, we are sinking in data, but starving for knowledge. The solution to this
problem is data mining which is the extraction of useful information from the huge amount of data
that is available.

 Data mining is defined as follows:
‘Data mining is a collection of techniques for efficient automated discovery of previously unknown, valid,

novel, useful and understandable patterns in large databases. The patterns must be actionable so they may
be used in an enterprise’s decision making.’

From this definition, the important take aways are:
	 •	 Data	mining	 is	 a	process	of	 automated	discovery	of	previously	unknown	patterns	 in	 large	

volumes of data.
	 •	 This	large	volume	of	data	is	usually	the	historical	data	of	an	organization	known	as	the	data	

warehouse.
	 •	 Data	mining	deals	with	large	volumes	of	data,	in	Gigabytes	or	Terabytes	of	data	and	sometimes	

as much as Zetabytes of data (in case of big data).

Introduction to Data Mining

2

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.003
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.003
https://www.cambridge.org/core

18 Data Mining and Data Warehousing

	 •	 Patterns	must	be	valid,	novel,	useful	and	understandable.
	 •	 Data	mining	allows	businesses	to	determine	historical	patterns	to	predict	future	behaviour.
	 •	 Although	data	mining	is	possible	with	smaller	amounts	of	data,	the	bigger	the	data	the	better	

the accuracy in prediction.
	 •	 There	is	considerable	hype	about	data	mining	at	present,	and	the	Gartner	Group	has	listed	

data mining as one of the top ten technologies to watch.

2.2 Need of Data Mining

Data mining is a recent buzz word in the field of Computer Science. It is a computing process that
uses intelligent mathematical algorithms to extract the relevant data and computes the probability
of future actions. It is also known as Knowledge Discovery in Data (KDD).

Although data mining has existed for 50 years, it has become a very important technology only
recently due to the Internet boom. Database systems are being used since the 1960s in the Western
countries (perhaps, since the 1980s in India). These systems have generated mountains of data.
There is a broad agreement among all sources that the size of the digital universe will double every
two years at least. Therefore, there will be a 50-fold growth from 2010 to 2020.

Every minute, huge data is generated over Internet as depicted in Figure 2.1. The analysis of
this huge amount of data is an important task and it is performed with the help of data mining.
This analysis of data has significant potential to improve business outcomes for an organization.

Figure 2.1 Per minute generation of data over the Internet according to a 2017 report

[Credit: http://www.iflscience.com/technology/how-much-data-does-the-world-generate-every-
minute/]

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.003
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.003
https://www.cambridge.org/core

Introduction to Data Mining 19

Some facts about this rapid growth of data are as follows.
	 •	 48	hours	of	new	videos	are	uploaded	by	YouTube	users	every	minute	of	the	day.	
	 •	 571	new	websites	are	created	every	minute	of	the	day.	
	 •	 90%	of	world’s	data	has	been	produced	in	the	last	two	years.
	 •	 The	production	of	data	will	be	44	times	greater	in	2020	than	it	was	in	2010.	
	 •	 Brands	and	organizations	on	Facebook	receive	34,722	‘Likes’	every	minute	of	the	day.	
	 •	 100	terabytes	of	data	is	uploaded	daily	to	Facebook.	
	 •	 In	early	2012,	there	were	more	than	465	million	accounts	and	175	million	tweets	were	shared	

by people on Twitter every day, according to Twitter’s own research.
	 •	 Every	month,	30	billion	pieces	of	content	are	shared	by	people	on	Facebook.
	 •	 By	late	2011, approximately	1.8	zetta	byte	of	data	had	been	created	in	that	year	alone,	according	

the report published by IDC Digital Universe.
The analysis of such huge amounts of data is a challenging task that requires suitable analytics

to sieve it for the bits that will be useful for business purposes. From the start, data mining was
designed to find data patterns from data warehouses and data mining algorithms are tuned so that
they can handle large volumes of data. The boom in big data volumes has led to great interest in
data mining all over the world.

The other allied reasons for popularity of data mining are as follows.
	 •	 Growth	in	generation	and	storage	of	corporate	data
	 •	 Need	for	sophisticated	decision	making
	 •	 Evolution	of	technology
	 •	 Availability	of	much	cheaper	storage,	easier	data	collection	and	better	database	management	

for data analysis and understanding
	 •	 Point	 of	 sale	 terminals	 and	 bar	 codes	 on	many	 products,	 railway	 bookings,	 educational	

institutions, mobile phones, electronic gadgets, e-commerce, etc., all generate data.
	 •	 Great	volumes	of	data	generated	with	the	recent	prevalence	of	Internet	banking,	ATMs,	credit	

and debit cards; medical data, hospitals; automatic toll collection on toll roads, growing air
travel; passports, visas, etc.

	 •	 Decline	in	the	costs	of	hard	drives
	 •	 Growth	in	worldwide	disk	capacities

Thus, the need for analyzing and synthesizing information is growing in the fiercely competitive
business environment of today.

2.3 What Can Data Mining Do and Not Do?

Data mining is a powerful tool that helps to determine the relationships and patterns within data.
However, it does not work by itself and does not eliminate the requirement for understanding data,
analytical methods and to know business. Data mining extracts hidden information from the data,
but it is not able to assess the value of the information.

One should know the important patterns and relationships to work with data over time. In
addition to discovering new patterns, data mining can also highlight other empirical observations
that are not instantly visible through simple observation.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.003
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.003
https://www.cambridge.org/core

20 Data Mining and Data Warehousing

It is important to note that the relationships or patterns predicted through data mining are not
necessarily causes for an action or behavior. For example, data mining may help in determining
that males with income between Rs 20,000 and Rs 75,000 who contribute to certain journals or
magazines, may be expected to purchase such-and-such a product. This information can be helpful in
developing a marketing strategy. However, it is not necessary that the population identified through
data mining will purchase the product simply because they belong to this category.

2.4 Data Mining Applications

The applications of data mining exist in almost every field. Some of the important applications of
data mining are in finance, telecom, insurance and retail sectors include loan/credit card approval,
fraud detection, market segmentation, trend analysis, better marketing, market basket analysis,
customer churn and web site design and promotion. These are discussed below.

Loan/Credit card approvals

Banks are able to assess the credit worthiness of their customers by mining a customer’s historical
records of business transactions. So, credit agencies and banks collect a lot of customer’ behavioural data
from many sources. This information is used to predict the chances of a customer paying back a loan.

Market segmentation

A huge amount of data about customers is available from purchase records. This data is very useful to
segment customers on the basis of their purchase history. Let us suppose a mega store sells multiple
items ranging from grocery to books, electronics, clothing et al. That store now plans to launch a
sale on books. Instead of sending SMS texts to all the customers it is logical and more efficient to
send the SMS only to those customers who have demonstrated interest in buying books, i.e., those
who had earlier purchased books from the store. In this case, the segmentation of customers based
on their historical purchases will help to send the message to those who may find it relevant. It will
also give a list of people who are prospects for the product.

Fraud detection

Fraud detection is a very challenging task because it’s difficult to define the characteristics for
detection of fraud. Fraud detection can be performed by analyzing the patterns or relationships
that deviate from an expected norm. With the help of data mining, we can mine the data of an
organization to know about outliers as they may be possible locations for fraud.

Better marketing

Usually all online sale web portals provide recommendations to their users based on their previous
purchase choices, and purchases made by customers of similar profile. Such recommendations
are generated through data mining and help to achieve more sales with better marketing of their
products. For example, amazon.com uses associations and provides recommendations to customers

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.003
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.003
https://www.cambridge.org/core

Introduction to Data Mining 21

on the basis of past purchases and what other customers are purchasing. To take another example,
a shoe store can use data mining to identify the right shoes to stock in the right store on the basis
of shoe sizes of the customers in the region.

Trend analysis

In a large company, not all trends are always visible to the management. It is then useful to use
data mining software that will help identify trends. Trends may be long term trends, cyclic trends
or seasonal trends.

Market basket analysis

Market basket analysis is useful in designing store layouts or in deciding which items to put on sale.
It aims to find what the customers buy and what they buy together.

Customer churn

If an organization knows its customers better then it can retain them longer. In businesses like
telecommunications, companies very hard to retain their good customers and to perhaps persuade
good customers of their competitors to switch to them. In such an environment, businesses want to
rate customers (whether they are worthwhile to be retained), why customers switch over and what
makes customers loyal. With the help of this information some businesses may wish to get rid of
customers that cost more than they are worth, e.g., credit card holders that don’t use the card; bank
customers with very small amounts of money in their accounts.

Website design

A web site is effective only if the visitors easily find what they are looking for. Data mining can help
discover affinity of visitors to pages and the site layout may be modified based on data generated
from their web clicks.

Corporate analysis and risk management

Data mining can be used to perform cash f low analysis to plan finance and estimate assets. The
analysis of data can be performed by comparing and summarizing the spending and planning of
resources. It helps to analyze market directions and monitor competitors to analyze the competition.

Thus, one can conclude that the applications of data mining are numerous and it is worthwhile
for an organization to invest in data mining for generating better business revenue. This is the
reason that many organizations are investing in this field and there is a huge demand for data
mining experts in the world.

2.5 Data Mining Process

Data mining process consists of six phases, as illustrated in Figure 2.2.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.003
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.003
https://www.cambridge.org/core

22 Data Mining and Data Warehousing

Figure 2.2 Data mining process

A brief description about these phases is as follows.

Problem definition phase

The main focus of the first phase of a data mining process is to understand the requirements and
objectives of such a project. Once the project has been specified, it can be formulated as a data
mining problem. After this, a preliminary implementation plan can be developed.

Let us consider a business problem such as ‘How can I sell more of my product to customers?’
This business problem can be translated into a data mining problem such as ‘Which customers are
most likely to buy the product?’ A model that predicts the frequent customers of a product must
be built on the previous records of customers’ data. Before building the model, the data must be
assembled that consists of relationships between customers who have purchased the product and
customers who have not purchased the product. The attributes of customers might include age,
years of residence, number of children, owners/renters, and so on.

Data understanding phase

The next phase of the data mining process starts with the data collection. In this phase, data is
collected from the available sources and in order to make data collection proper, some important
activities such as data loading and data integration are performed. After this, the data is analyzed
closely to determine whether the data will address the business problem or not. Therefore, additional
data can be added or removed to solve the problem effectively. At this stage missing data is also
identified. For example, if we require the AGE attribute for a record then column DATE_OF_
BIRTH can be changed to AGE. We can also consider another example in which average income

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.003
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.003
https://www.cambridge.org/core

Introduction to Data Mining 23

can be inserted if value of column INCOME is null. Moreover, new computed attributes can be
added in the data in order to obtain better focused information. For example, a new attribute such as
‘Number of Times Amount Purchased Exceeds Rs. 500 in a 12 month time period.’ can be created
instead of using the purchase amount.

Data preparation phase

This phase generally consumes about 90% of the time of a project. Once available data sources are
identified, they need to be selected, cleaned, constructed and formatted into the desired form for
further processing.

Modeling phase

In this phase, different data mining algorithms are applied to build models. Appropriate data mining
algorithms are selected and applied on given data to achieve the objectives of proposed solution.

Evaluation phase

In the evaluation phase, the model results are evaluated to determine whether it satisfies the originally
stated business goal or not. For this the given data is divided into training and testing datasets. The
models are trained on training data and tested on testing data. If the accuracy of models on testing
data is not adequate then one goes back to the previous phases to fine tune those areas that may be
the reasons for low accuracy. Having achieved a satisfactory level of accuracy, the process shifts to
the deployment phase.

Deployment phase

In the deployment phase, insights and valuable information derived from data need to be presented
in such a way that stakeholders can use it when they want to. On the basis of requirements of the
project, the deployment phase can be simple (just creating a report) or complex (requiring further
iterative data mining processing). In this phase, Dashboards or Graphical User Interfaces are built
to solve all the requirements of stakeholders.

2.6 Data Mining Techniques

Data mining can be classified into four major techniques as given below.
	 •	 Predictive	modeling
	 •	 Database	segmentation
	 •	 Link	analysis
	 •	 Deviation	detection

To brief ly discuss each technique:

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.003
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.003
https://www.cambridge.org/core

24 Data Mining and Data Warehousing

2.6.1 Predictive modeling

Predictive modeling is based on predicting the outcome of an event. It is designed on a pattern
similar to the human learning experience in using observations to form a model of the important
characteristics of some task. It is developed using a supervised learning approach, where we have
some labeled data and we use this data to predict the outcome of unknown instances. It can be of
two types, i.e., classification or regression as discussed in Chapter 1.

Some of the applications of predictive modeling are: predicting the outcome of an event, predicting
the sale price of a property, predicting placement of students, predicting the score of any team during
a cricket match and so on.

2.6.2 Database segmentation

Database segmentation is based on the concept of clustering of data and it falls under unsupervised
learning, where data is not labeled. This data is segmented into groups or clusters based on its features
or attributes. Segmentation is creating a group of similar records that share a number of properties.

Applications of database segmentation include customer segmentation, customer churn, direct
marketing, and cross-selling.

2.6.3 Link analysis

Link analysis aims to establish links, called associations, between the individual record, or sets of
records, in a database. There are three specialisations of link analysis.
	 •	 Associations	discovery
	 •	 Sequential	pattern	discovery	
	 •	 Similar	time	sequence	discovery

Associations discovery locates items that imply the presence of other items in the same event.
There are association rules which are used to define association. For example, ‘when a customer
rents property for more than two years and is more than 25 years old, in 40% of cases, the customer
will buy a property. This association happens in 35% of all customers who rent properties’.

Sequential pattern discovery finds patterns between events such that the presence of one set of
items is followed by another set of items in a database of events over a period of time. For example,
this approach can be used to understand long-term customer buying behavior.

Time sequence discovery is used to determine whether links exist between two sets of data that
are time-dependent. For example, within three months of buying property, new home owners will
purchase goods such as cookers, freezers, and washing machines.

Applications of link analysis include market basket analysis, recommendation system, direct
marketing, and stock price movement.

2.6.4 Deviation detection

Deviation detection is a relatively new technique in terms of commercially available data mining
tools. It is based on identifying the outliers in the database, which indicates deviation from some

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.003
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.003
https://www.cambridge.org/core

Introduction to Data Mining 25

previously known expectation and norm. This operation can be performed using statistics and
visualization techniques.

Applications of deviation detection include fraud detection in the use of credit cards and insurance
claims, quality control, and defects tracing.

2.7 Difference between Data Mining and Machine Learning

Data mining refers to extracting knowledge from a large amount of data, and it is a process to discover
various types of patterns that are inherent in the data and which are accurate, new and useful. It is
an iterative process and is used to uncover previously unknown trends and patterns in vast amount
of data in order to support decision making.

Data mining is the subset of business analytics; it is similar to experimental research. The origins
of data mining are databases and statistics. Two components are required to implement data mining
techniques: the first is the database and the second is machine learning.

Data mining as a process includes data understanding, data preparation and data modeling;
while machine learning takes the processed data as input and performs predictions by applying
algorithms. Thus, data mining requires involvement of human beings to clean and prepare the data
and to understand the patterns. While in machine learning human effort is involved only to define
an algorithm, after which the algorithm takes over operations. Tabular comparison of data mining
and machine learning is given in Table 2.1.

Table 2.1 Tabular comparison of data mining and machine learning

Basic for comparison Data mining Machine learning

Meaning It involves extracting useful
knowledge from a large amount of
data.

It introduces new algorithm from
data as well as past experience.

History Introduced in 1930 it was initially
called knowledge discovery in
databases.

It was introduced in 1959.

Responsibility Data mining is used to examine
patterns in existing data. This can
then be used to set rules.

Machine learning teaches the
computer to learn and understand
the given rules.

Nature It involves human involvement and
intervention.

It is automated, once designed it is
self-implementing and no or very
little human effort is required.

In conclusion the analysis of huge amounts of data generated over Internet or by traditional
database management systems is an important task. This analysis of data has the huge potential to
improve business returns. Data mining and machine learning play vital roles in understanding and
analyzing data. Thus, if data is considered as oil, data mining and machine learning are equivalent
to modern day oil refineries that make this data more useful and insightful.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.003
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.003
https://www.cambridge.org/core

26 Data Mining and Data Warehousing

 Remind Me
 Data mining is a process of automated discovery of previously unknown patterns in large volumes of

data.
 Data mining process consists of six phases, namely problem definition, data understanding, data

preparation, modeling, evaluation and deployment.
 The important applications of data mining are in finance, telecom, insurance and retail sectors; and

include loan/credit card approval, fraud detection, market segmentation, trend analysis, focused
marketing, market basket analysis, customer churn and web-site design.

 There are four main operations associated with data mining techniques, namely, predictive modeling,
database segmentation, link analysis and deviation Detection.

 Point Me (Books)
 Han, Jiawei, Micheline Kamber, and Jian Pei. 2011. Data Mining: Concepts and Techniques, 3rd ed.

Amsterdam: Elsevier.
 Gupta, G. K. 2014. Introduction to Data Mining with Case Studies. Delhi: PHI Learning Pvt. Ltd.
 Mitchell, Tom M. 2017. Machine Learning. Chennai: McGraw Hill Education.
 Witten, Ian H., Eibe Frank, Mark A. Hall, and Christopher Pal. 2016. Data Mining: Practical Machine

Learning Tools and Techniques, 4th ed. Burlington: Morgan Kaufmann.

 Connect Me (Internet Resources)
 https://www.kdnuggets.com/data_mining_course/x1-intro-to-data-mining-notes.html
 https://www.cse.iitb.ac.in/infolab/Data/Talks/datamining-intro-IEP.ppt
 https://tutorials.datasciencedojo.com/data-mining-fundamentals-part-1-3/

 Test Me
 1. What is the full form of KDD
 2. Which learning approach is used by Database Segmentation?
 (a) Supervised Learning (b) Unsupervised Learning
 3. Links between the individual record, or sets of records in a database is called
 4. What are the two types of predictive modeling?
 (a) (b)
 5. Deviation detection can be performed by using and techniques.
 6. Predictive Modeling is developed using a supervised learning approach.
 (a) True (b) False
 7. Data mining is
 (a) The process of automated discovery of previously unknown patterns in large volumes of data.
 (b) The stage of selecting the right data for a KDD process
 (c) A subject-oriented integrated time variant non-volatile collection of data in support of management
 (d) None of these
 8. Value prediction uses the traditional statistical techniques of and .
 9. Classification falls under which technique of data mining?
 (a) Predictive modeling (b) Database segmentation
 (c) Link analysis (d) Deviation detection.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.003
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.003
https://www.cambridge.org/core

Introduction to Data Mining 27

 10. Regression falls under which technique of data mining?
 (a) Predictive modeling (b) Database segmentation
 (c) Link analysis (d) Deviation detection.
 11. Clustering falls under which technique of data mining?
 (a) Predictive modeling (b) Database segmentation
 (c) Link analysis (d) Deviation detection.
 12. Visualization is core part for which of following data mining technique?
 (a) Predictive modeling (b) Database segmentation
 (c) Link analysis (d) Deviation detection.
 13. Association mining falls under which technique of data mining?
 (a) Predictive modeling (b) Database segmentation
 (c) Link analysis (d) Deviation detection.

 Answer Keys:
 1. Knowledge Discovery in Database; 2. (b); 3. Associations;
 4. (a) Classification (b) Value prediction 5. Statistics, Visualization
 6. (a); 7. (a); 8. Linear regression, Nonlinear regression;
 9. (a); 10. (a); 11. (b); 12. (d);
 13. (c).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.003
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.003
https://www.cambridge.org/core

Chapter Objectives

 To learn to install Weka and the R language

 To demonstrate the use of Weka software

 To experiment with Weka on the Iris dataset

 To introduce basics of R language

 To experiment with R on the Iris dataset

3.1 About Weka

In this book, all data mining algorithms are explained with Weka and R language. The learner can
perform and apply these algorithms easily using these well-know data mining tool and language.
Let’s first discuss the Weka tool.

Weka is an open-source software under the GNU General Public License System. It was developed
by the Machine Learning Group, University of Waikato, New Zealand. Although named after a
f lightless New Zealand bird, ‘WEKA’ stands for Waikato Environment for Knowledge Analysis.
The system is written using the object oriented language Java. Weka is data mining software and it
is a set of machine learning algorithms that can be applied to a dataset directly, or called from your
own Java code. Weka contains tools for data pre-processing, classification, regression, clustering,
association rules, and visualization.

The story of the development of Weka is very interesting. It was initially developed by students
of University of Waikato, New Zealand, as part of their course work on data mining. They had
implemented all major machine learning algorithms as part of lab work for this course. In 1993,
the University of Waikato began development of the original version of Weka, which became a mix
of Tcl/Tk, C, and Makefiles. In 1997, the decision was made to redevelop Weka from scratch in
Java, including implementations of modeling algorithms. In 2006, Pentaho Corporation acquired
an exclusive license to use Weka for business intelligence.

Beginning with
Weka and R Language

3

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.004
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.004
https://www.cambridge.org/core

Beginning with Weka and R Language 29

This chapter will cover the installation of Weka, datasets available and will guide the learner
about how to start experimentation using Weka. Later on we will discuss another data mining tool,
R. Let us first discuss the installation process for Weka, step-by-step.

3.2 Installing Weka

Weka is freely available and its latest version can be easily downloaded from https://www.cs.waikato.
ac.nz/ml/weka/downloading.html as shown in Figure 3.1.

Figure 3.1 Downloading Weka

To work more smoothly, you must first download and install Java VM before downloading Weka.

3.3 Understanding Fisher’s Iris Flower Dataset

R. A. Fisher’s Iris Flower dataset is one of the most well-known datasets in data mining research.
The Iris dataset is commonly used in texts on data mining to illustrate various approaches and tools.
Becoming familiar with this dataset will aid you in using the data mining literature to advance
your knowledge of the subject. Fisher’s Iris dataset is available inside the ‘data’ folder of the Weka
directory as ‘iris.arff ’ or you can find it at link http://archive.ics.uci.edu/ml/datasets/Iris and can
be downloaded as shown in Figure 3.2.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.004
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.004
https://www.cambridge.org/core

30 Data Mining and Data Warehousing

Figure 3.2 Downloading the Iris dataset

The origins of Fisher’s dataset can be traced to Anderson’s Iris dataset because Edgar Anderson
collected the data to quantify the morphologic variation of Iris f lowers of three related species. This
dataset contains 50 samples of each of the three species, for a total of 150 samples. A sample of the
Iris dataset is shown in Figure 3.3.

Figure 3.3 Sample of the Iris flower [see colour plate]

Anderson performed measurements on the three Iris species (i.e., Setosa, Versicolor, and Virginica)
using four iris dimensions, namely, Sepal length, Sepal width, Petal length, and Petal width. He
had observed that species of the f lower could be identified on the basis of these four parameters.
So, he prepared a dataset for its analysis. In data mining terminology, these four iris dimensions
are termed as ‘attributes’ or ‘input attributes’. The three iris species are known as ‘classes’, or ‘output
attributes’ and each example of an iris is termed as ‘sample’, or ‘instance’.

A section of the Fisher’s dataset spreadsheet is given in Figure 3.4, showing the four input
attributes and one output attribute, or class. This figure only shows five of the 150 instances, or

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.004
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.004
https://www.cambridge.org/core

Beginning with Weka and R Language 31

samples, of irises. For this dataset, the input attributes are numerical attributes, meaning that the
attributes are given as real numbers, in this case in centimeters. The output attribute is a nominal
attribute, in other words, a name for a particular species of Iris.

Figure 3.4 Sample of Fisher’s dataset

3.4 Preparing the Dataset

The preferred Weka dataset file format is an Attribute Relation File Format (ARFF) format.
Weka also accepts several alternative dataset file formats, one of them being the Comma Separated
Values (CSV) file format. Commonly dataset is available in XLS (Excel file) format, and in order
to process excel data with Weka, the first step we need to do is convert our XLS file into a CSV
file. For this open the dataset spreadsheet by using excel in XLS format, and then choose Save As,
and then Other Formats. On this screen, we choose the file type as CSV as shown in Figure 3.5.
When the information box appears, select Yes. In this way, we can open any XLS file in Weka by
first converting it into CSV.

Figure 3.5 Save as ‘Other Format’

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.004
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.004
https://www.cambridge.org/core

32 Data Mining and Data Warehousing

3.5 Understanding ARFF (Attribute Relation File Format)

An ARFF file is an ASCII text file that describes a list of instances sharing a set of attributes.
ARFF files were developed for use with the Weka machine learning software. ARFF files have
two distinct sections. The first section is the Header information, which is followed by the Data
information as shown in Figure 3.6.

Figure 3.6 ARFF format of IRIS dataset

3.5.1 ARFF header section

The header of the ARFF file contains the name of the relation, a list of the attributes (the columns
in the data), and their types. The first line in the ARFF file defines the relation and its format is
given as follows.

@relation <relation-name>
Where <relation-name> is a string and if the relation name consists of spaces then it must be

quoted. The declaration of attributes includes an ordered sequence of @attribute statements. Each
attribute of the dataset is defined by @attribute statement in the ARFF file which uniquely defines
the name and data type of attribute. The format for the @attribute statement is given as follows.

@attribute <attribute-name> <datatype>
Where the <attribute-name> must start with an alphabetic character and if attribute-name consists

of spaces then it must be quoted. The <datatype> can be of any types such as numeric, string, date
and nominal. The keywords numeric, string and date are case insensitive. Numeric attributes can

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.004
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.004
https://www.cambridge.org/core

Beginning with Weka and R Language 33

be real or integer numbers and string attributes consist of textual values. Date attribute is declared
according to the format given as follows.

@attribute <name> date [<date-format>]
Where <name> represents attribute name and <date-format> is an optional string which represents

that how date values should be printed. The default format string is ‘yyyy-mm-dd hh:mm:ss’ as
shown below.

@RELATION Timestamps
@ATTRIBUTE timestamp DATE ‘yyyy-mm-dd hh:mm:ss’
@DATA
‘2018-05-15 10:15:10’
‘2018-05-14 09:50:55’
Nominal values are defined by providing an <nominal-specification> listing the possible values:

{<nominal-name1>, <nominal-name2>, <nominal-name3>, ...} as shown below.
For example, the class value of the Iris dataset can be defined as follows:
@ATTRIBUTE class {Iris-setosa, Iris-versicolor, Iris-virginica}
The values that contain spaces must be quoted.
The order sequence of declaration of the attributes indicates the column position of the attribute

in the data section of the ARFF file. For example, if an attribute is declared at second position then
Weka expects that all that attributes values will be found in the second comma delimited column.

3.5.2 ARFF data section

The ARFF Data section of the file contains the data declaration line and the actual instance lines.
The data declaration line consists of @data statement that is a single line representing the start

of the data segment in the ARFF file. Each instance of the dataset is represented on a single line
and the end of the instance is specified with carriage return. All the values of the attributes for each
instance are delimited by commas and the missing values are represented by a single question mark.
The format of the data section of ARFF file is given as follows.

 @data
 1.4, 2.3, 1.8, 1.5, ABC
The values of string and nominal attributes are case sensitive, and any that contain space must

be quoted. For example, the ARFF format of IRIS dataset looks like as shown in Figure 3.6.

3.6 Working with a Dataset in Weka

When you install Weka, you can expect to find a Weka icon on your desktop. When you start up
Weka, you will see the Weka GUI Chooser screen as shown in Figure 3.7.

From Weka Chooser, we can select any of the applications such as Explorer, Experimenter,
KnowledgeFlow, Workbench and Simple CLI. The brief description about these applications is
given in Table 3.1.

In this chapter, we will cover the application Explorer only as we can directly apply data mining
algorithms through this option.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.004
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.004
https://www.cambridge.org/core

34 Data Mining and Data Warehousing

Figure 3.7 Weka GUI Chooser screen

Table 3.1 WEKA GUI applications

Application Description

Explorer It is an environment for exploring data.

Experimenter This interface is for designing experiments with your selection of algorithms
and datasets, running experiments and analyzing the results.

Knowledge
Flow

It is a Java-Beans based interface to design configurations for streamed data
processing.

Workbench It is a unified graphical user interface that combines the other three such as
Explorer, Experimenter and Knowledge Flow (and any plugins that the user
has installed) into one application.

Simple CLI It provides a simple command-line interface and allows direct execution of
Weka commands.

Figure 3.8 Weka Explorer screen

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.004
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.004
https://www.cambridge.org/core

Beginning with Weka and R Language 35

Select the Explorer application. Selecting the Explorer application displays the Weka Explorer
screen as shown in Figure 3.8. Select the Preprocess tab to load the dataset to Weka. On the Preprocess
tab, select Open file… and then select the FishersIrisDataset.csv file.

Note that all six attribute columns in our dataset have been recognized, and that all 150 instances
have been read as shown in Figure 3.9. For the purpose of analysis, remove the instance number
attribute by selecting it in the Attributes check box, or by clicking on it, as it does not play any role
as shown in Figure 3.9.

Figure 3.9 Loading Fisher’s dataset

3.6.1 Removing input/output attributes

Since we have just removed an attribute, this would be a good point to save. Here, we choose to save
our modified dataset in the preferred Weka.arff file format. As expected, we are now working on
just 5 total attributes, having removed the ‘Instance’ attribute as shown in Figure 3.10.

The Explorer Preprocess screen provides several types of information about our dataset. There
are three main elements of this screen as shown in Figure 3.11.
 i. The class designator,
 ii. The attribute histogram,
 iii. The attribute statistics.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.004
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.004
https://www.cambridge.org/core

36 Data Mining and Data Warehousing

Figure 3.10 Fisher’s dataset after removal of instance number

Figure 3.11 Elements of the Explorer screen

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.004
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.004
https://www.cambridge.org/core

Beginning with Weka and R Language 37

Expand the Class Designator box as shown in Figure 3.12. By default, the last (rightmost) column
in the dataset is used as the output attributes, or class attribute. Here, class is by default considered
as the output attribute to be used for classifying iris samples. Weka allows you to change the class
attribute to any attribute in the dataset.

Figure 3.12 Expansion of class designator

3.6.2 Histogram

To see a histogram for any attribute, select it in the Attributes section of the Preprocess tab.
Figure 3.13 represents the histogram that shows us the distribution of Petal widths for all three

species. As it turns out for this histogram, dark blue is Setosa, red is Versicolor, and bright blue is
Virginica. The histogram shows that there are, for example, 49 samples in the lower histogram
bin for Petal width, all of which are Iris-Setosa, and shows that there are 23 samples in the
highest bin, all of which are Virginica. The histogram also shows that there are 41 samples in
the middle bin, in which most of the samples belong to Versicolor irises and rest are Virginica.
Now, click on the Visualize All (as shown in Figure 3.13) button to see the histograms of all the
attributes together.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.004
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.004
https://www.cambridge.org/core

38 Data Mining and Data Warehousing

Figure 3.13 Histogram for Petal width [see colour plate]

Figure 3.14 Histograms for all attributes of Iris dataset [see colour plate]

Figure 3.14 shows histograms for all input attributes of the iris dataset. By comparing the
histograms for all of the input attributes, we can begin to get a sense of how the four input attributes
vary with different iris species. For example, it appears that Iris Setosa tends to have relatively small
Sepal length, Petal length, and Petal width, but relatively large Sepal width. These are the sorts of
patterns that data mining algorithms use to perform classification and other functions. Notice also
that the species histogram verifies that we have 50 of each iris species in our dataset.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.004
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.004
https://www.cambridge.org/core

Beginning with Weka and R Language 39

3.6.3 Attribute statistics

In statistics for attributes, for example in case of Petal width attribute as shown in Figure 3.15, we
see that we have no missing data, in other words, there are no instances in the dataset which are
without Petal width measurement. It also shows basic statistics of the selected attribute in the form
of its minimum, maximum, mean and standard deviation values as shown in Figure 3.15. It also
provides values for two characteristics termed Distinct and Unique.

Figure 3.15 Attribute statistics [see colour plate]

First, consider the Distinct characteristic. The distinct characteristic shows how many different
values are taken on by a particular attribute in the dataset. In case of Petal width attribute, we see
a segment of the Iris Dataset showing seven of the 150 samples in the dataset as shown in Figure
3.16. For just this segment of seven samples in the iris dataset, we see four distinct values for Petal
width, i.e., 0.1, 0.2, 0.6 and 0.3. There are a total of 22 distinct values for Petal width in the entire
dataset of 150 samples.

The Unique characteristic on the Explorer screen tells us the total of Petal measurement values
that appear only once in the full dataset, i.e. out of 150 samples. In the case of attribute ‘Petal Width’
we have three samples with Petal width of 0.1, 0.6 and 0.3 that are unique in selected instances of
the dataset as shown in Figure 3.16. However, overall we have only 2 unique samples in the entire
dataset of 150 samples as indicated in Figure 3.15.

To practice this concept, let us find distinct and unique values for the following dataset:
23, 45, 56, 23, 78, 90, 56, 34, 90
Solution:
Distinct: 6 (23, 45, 56, 78, 90, 34)
Unique: 3 (45, 78, 34)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.004
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.004
https://www.cambridge.org/core

40 Data Mining and Data Warehousing

Figure 3.16 Distinct and Unique values

3.6.4 ARFF Viewer

With the ARFF Viewer, we can view the attributes and data of a dataset without loading of the
dataset. When the ARFF Viewer opens up, select Open, then find and open the Fisher’s Iris dataset
file. Figure 3.17 (a) shows how to open the ARFF Viewer from Weka GUI Chooser and further,
Figure 3.17 (b) shows how to open a file in ARFF Viewer.

Figure 3.17 (a) Selecting ARFF Viewer from GUI Chooser and (b) opening the file in ARFF Viewer

Note that Weka has identified the Sepal and Petal values as numeric, and species as a nominal
attribute. The highlighting of the label ‘species’ shows that this is specified as the class attribute
for the dataset. It is important to note that we can perform a number of operations on the dataset
using the AARF Viewer’s File, Edit, and View functions. Figure 3.18 shows the ARFF Viewer of
Fisher’s dataset.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.004
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.004
https://www.cambridge.org/core

Beginning with Weka and R Language 41

Figure 3.18 ARFF Viewer of Fisher’s dataset

3.6.5 Visualizer

It is also possible to do data visualization on our dataset from the Weka GUI Chooser. On the GUI
Chooser, choose Visualization, and then Plot as shown in Figure 3.19.

Figure 3.19 Visualization of dataset

Figure 3.20 shows the plot between Sepal length and Sepal width. Here, Sepal length is displayed
on the x-axis, and Sepal width on the y-axis. Using the drop-down boxes, we can change the axes
to other attributes.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.004
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.004
https://www.cambridge.org/core

42 Data Mining and Data Warehousing

Figure 3.20 Plotting of dataset [see colour plate]

Jitter: Sometimes there are some overlapping data points in the dataset and it becomes difficult
to analyze these points, therefore we add artificial random noise to the coordinates of the plotted
points in order to spread the data slightly and the process of adding noise is called as Jitter.

In Weka, jitter slider can be used if we have points with the same or similar x-y coordinates.
Increasing jitter adds noise to the values, thereby separating overlapping points. The plot screen also
shows us which colors are associated with which classes on the various Weka screens. Note that plots
of attributes can also be obtained by using the Weka Explorer option. To do this, switch from the
Preprocess tab to the Visualize tab. The screenshots of Weka plots can be taken by left-clicking in
the plot area that you want to capture. This brings up a Save screen with several file type options. If
you want to get a screenshot of the entire screen, you can use your computer’s Print Screen feature.

In the next section, the well known programming language R for implementing data mining
algorithms has been discussed.

3.7 Introduction to R

R is a programming language for statistical computing and graphics. It was named R on the basis
of the first letter of first name of the two R authors (Robert Gentleman and Ross Ihaka). It was
developed at the University of Auckland in New Zealand. R is freely available under the GNU
General Public License, and pre-compiled binary versions are provided for various operating systems
like Linux, Windows and Mac.

This section will cover the installation of R, basic operations in R, loading of datasets in R. Let
us discuss each process step-by-step.

3.7.1 Features of R

The basic features of R are given as follows.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.004
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.004
https://www.cambridge.org/core

Beginning with Weka and R Language 43

	 •	 R	is	a	well-developed,	simple	and	effective	programming	language	which	includes	conditionals,	
loops, user defined recursive functions and input and output facilities.

	 •	 R	has	an	effective	data	handling	and	storage	facility.
	 •	 R	provides	a	suite	of	operators	for	calculations	on	arrays,	lists,	vectors	and	matrices.
	 •	 R	provides	a	 large,	coherent	and	integrated	collection	of	tools	for	classification,	clustering,	

time-series analysis, linear and non-linear modeling.
	 •	 R	provides	graphical	 facilities	 for	data	analysis	and	display	either	directly	at	 the	computer	

screen or for printing on paper.

3.7.2 Installing R

R can be downloaded from one of the mirror sites available at http://cran.r-project.org/mirrors.html
as shown in Figure 3.21.

Figure 3.21 Screenshot of download link for R

After installation of R, the console screen of R will look as shown below in Figure 3.22.

Figure 3.22 Console screen of R

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.004
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.004
https://www.cambridge.org/core

44 Data Mining and Data Warehousing

Depending on the needs, you can program either at R command prompt or you can use an R
script file to write your program. After R is started, there is a console waiting for input. At the
prompt (>), you can start typing your program.

3.8 Variable Assignment and Output Printing in R

In R, a variable name consists of letters, numbers and the dot or underline characters. The variable
name starts with a letter or the dot not followed by a number. The variables can be assigned values
using leftward, rightward and equal to operator. The values of the variables can be printed using
print() or cat() function. cat() function combines multiple items into a continuous print output as
shown in Figure 3.23.

Figure 3.23 Basic syntax in R

3.9 Data Types

In R, there is no need to declare the data type of variables as we do in other programming languages
such as Java and C. The variables are assigned with R-Objects and the data type of the R-object
becomes the data type of the variable.

The data type of a variable can be identified using the class() function as shown in Figure 3.24.
Here, the variables var1 and var3 represent the data type numeric as we have assigned a numeric
value 5 and 23.5 to variable var1 and var3 respectively. Similarly, var2 represents the data type
character as a character string is being assigned to var2.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.004
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.004
https://www.cambridge.org/core

Beginning with Weka and R Language 45

Figure 3.24 Data type of a variable

There are five basic data types in R such as numeric (real or decimal), integer, classic, logical
and character. The brief description about these data types with examples is given in Table 3.2.

Table 3.2 Description about basic data types

Data Type Description Examples

Character A character object is used to represent string
values.

‘A’, ’I am learning programming’

Numeric Numeric stores the real or decimal values. 10, 25.2

Integer Integer is used to store integer values. 2L (the L tells R to store this as an
integer)

Logical A logical value is created via comparison
between variables.

TRUE, FALSE

Complex A complex value in R is defined via the pure
imaginary value i.

2+5i (complex numbers with real
and imaginary parts)

3.10 Basic Operators in R

R has many operators to carry out different operations and can be classified into the following
categories such as arithmetic, relational, logical and assignment operators. These basic operators
are summarized in Table 3.3.

Table 3.3 Summary about basic operators of R

Type Operators

Arithmetic +, -, *, %%, ^

Relational <. >, <=, >=, !=

Logical &, |, &&, ||, !

Assignment =, <-, ->

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.004
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.004
https://www.cambridge.org/core

46 Data Mining and Data Warehousing

A brief description about the working of these operators is given as follows.

3.10.1 Arithmetic operators

The arithmetic operators available in R are addition (+), subtraction (-), division (/), multiplication
(*), exponent (̂) and modulus (%%). Figure 3.25 shows the execution of basic arithmetic operations
in the R console.

Figure 3.25 Screenshot of basic arithmetic operators

3.10.2 Relational operators

Relational operators are used to compare values. In R, relational operators are less than (<), greater
than (>), less than equal to (<=), greater than equal to (>=) and not equal to (!=). Figure 3.26 shows
the working of basic relational operators at R console.

Figure 3.26 Relational operators in R

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.004
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.004
https://www.cambridge.org/core

Beginning with Weka and R Language 47

3.10.3 Logical operators

In case of logical operators, Zero is considered FALSE and non-zero numbers are taken as TRUE.
The basic logical operators are logical not (!), logical AND (&&), logical OR (||), element-wise AND
(&) and element-wise OR (|). Figure 3.27 shows the working of logical operators at R console.

Figure 3.27 Working of logical operators

3.10.4 Assignment operators

The main assignment operators are equal to (=), leftward (<-) and rightward (->) direction. The
working of these operators has already been shown in Figure 3.23.

3.11 Installing Packages

R packages are a collection of R functions, compiled code and sample data. They are stored under
a directory called ‘library’ in the R environment. The already installed packages can be checked
using the library() command as shown in Figure 3.28.

Figure 3.28 Checking of already installed packages

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.004
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.004
https://www.cambridge.org/core

48 Data Mining and Data Warehousing

Sometimes, we need additional functionality beyond those offered by the core R library. In order
to install an extension package, you should invoke the install.packages() function at the prompt
and follow the instruction. R packages can be installed in two ways,either directly from the CRAN
(Comprehensive R Archive Network) directory; Or, by downloading the package to your local
system and installing it manually. The most frequently used method is installation from the CRAN
directory. So, in this chapter, we will discuss the installation of R packages through this method.

The following command gets the packages directly from CRAN webpage and installs the package
in the R environment. You may be prompted to choose a nearest mirror.

install.packages(“Package Name”)

When the command install.packages (‘XML’) is executed to install the package, a window prompts
for the selection of nearest CRAN mirror as shown in Figure 3.29. Then, select any nearest mirror
and click OK.

Figure 3.29 Installation of a new package

Figure 3.30 represents the successful installation of package XML.

Figure 3.30 Console after successful installation of package

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.004
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.004
https://www.cambridge.org/core

Beginning with Weka and R Language 49

Some of the important machine learning or data mining packages

Table 3.4 provides some of the important machine learning packages along with their description
that need to be installed for performing data analysis such as classification, clustering, association
mining, etc. More details about these topics will be presented in subsequent chapters.

Table 3.4 Some of the important machine learning packages

Sr. No. Package Name Description

1. e1071 This package is used for implementing Naïve Bayes (conditional
probability), SVM, Fourier Transforms, Bagged Clustering, Fuzzy
Clustering, etc.

2. CORElearn It is used for classification, regression, feature evaluation and
ordinal evaluation.

3. randomForest It is used to create large number of decision trees and then each
observation is inputted into the decision tree.

4. Arules This package is used for Mining Association Rules and Frequent
Itemsets.

5. MICE This package is used to assign missing values by using multiple
techniques, depending on the kind of data.

6. RPART (Recursive
Partitioning and
Regression Trees)

It is used to build classification or regression models using a two
stage procedure and the resultant models are represented in the
form of binary trees.

7. nnet This package is used for Feed-forward Neural Networks and
Multinomial Log-Linear Models.

Further details about concepts like classification, clustering, association mining and otherswill
follow in subsequent chapters.

3.12 Loading of Data

In R, we can upload the data using any file format such as .xls, .csv or .arff format. For this, we
can use the function read function from the ‘gdata’ package. It reads from an Excel spreadsheet or
Comma Separated Values (CSV) or Attribute-Relation File Format (ARFF) format and returns a
data frame. The following commands show how to load data named ‘mydata’ using any of formats
such as .xls, .csv or .arff.

>library(gdata) # load gdata package

>mydata = read.xls(“mydata.xls”) # read from first sheet

Or

>mydata = read.csv(“mydata.csv”) # read from csv format

Or

>mydata = read.arff(“mydata.arff”) # read from arff format

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.004
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.004
https://www.cambridge.org/core

50 Data Mining and Data Warehousing

3.12.1 Working with the Iris dataset in R

In R, some of the datasets are available in datasets library. The dataset library is first loaded to include
any dataset of your choice. Then use the command data to load dataset as given below.

>library (datasets) # load datasets package
> data (iris) # load dataset
> names (iris) # display attribute names

The execution of above commands for the Iris dataset is shown in Figure 3.31.

Figure 3.31 Attribute names of a dataset

The statistics of a dataset can be found using the summary() function. We can find the statistics
about the whole dataset as well as of single column as given below. For example, Figure 3.32 shows
the statistics of iris dataset as well as statistics of attribute Sepal Length.

> summary (iris)
> summary (iris$Sepal.Width)

Figure 3.32 Statistics of Iris dataset

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.004
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.004
https://www.cambridge.org/core

Beginning with Weka and R Language 51

The dataset can be viewed using the function View() as shown in Figure 3.33. This figure shows
the first 18 records of the iris dataset.

> View(iris) #To view the dataset instances

Figure 3.33 Viewing of dataset

We can also find the missing and unique values of an attribute in a dataset by using is.na() and
unique() functions. Figure 3.34 shows that there are 23 unique values for the column Sepal Width
and no missing value.

> is.na(iris$Sepal.Width) # To find the missing values
>length(unique(iris$Sepal.Width)) #To find the unique values

Figure 3.34 Identification of unique and missing values for Sepal width

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.004
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.004
https://www.cambridge.org/core

52 Data Mining and Data Warehousing

The graph can be plotted for a dataset using the plot() function. For example, Figure 3.35 shows
the plotting of Iris dataset in R.

> plot(iris) #To plot the graph of complete dataset

Figure 3.35 Plotting the Iris dataset

Similarly, a graph can also be plotted between any two columns using the plot() function. For
example, Figure 3.36 shows the graph between columns Petal width and Petal length.

> plot(iris$Petal.Width, iris$Petal.Length) #To plot the graph of between any two
attributes of dataset

Figure 3.36 Plotting between Petal width and Petal length

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.004
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.004
https://www.cambridge.org/core

Beginning with Weka and R Language 53

We can also draw the histogram in R using the hist () function as shown in Figure 3.37.
> hist(iris$Sepal.Width) #To draw the histogram

Figure 3.37 Histogram for Sepal width

 Remind Me
 WEKA (Waikato Environment for Knowledge Analysis) is open-source software and named after a

flightless New Zealand bird.
 Fisher’s dataset is sometimes called Anderson’s Iris dataset because Edgar Anderson collected the

data to quantify the morphologic variation of Iris flowers of three related species.
 Weka accepts Attribute-Relation File Format (ARFF) format but it also accepts several alternative

dataset file formats such as Comma Separated Values (CSV) file format.
 The process of adding noise to the coordinates of the plotted points in order to spread the data out a

bit is called Jitter.
 R is a programming language for statistical computing and graphics and named on the basis of the

first letter of the first name of the two R authors (Robert Gentleman and Ross Ihaka) at the University
of Auckland, New Zealand.

 In R, there is no need to declare the data type of variables as we do in other programming languages
such as Java and C.

 The five basic data types in R are numeric (real or decimal), integer, classic, logical and character.

 Point Me (Books)
 Witten, Ian H., Eibe Frank, Mark A. Hall, and Christopher Pal. 2016. Data Mining: Practical Machine

Learning Tools and Techniques, 4th ed. Burlington: Morgan Kaufmann.
 Lesmeister, Cory. 2015. Mastering Machine Learning with R. Birmingham: Packt Publishing Ltd.

 Point Me (Video)
 Introduction to Weka, Parteek Bhatia, https://youtu.be/BxhPtYguXus

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.004
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.004
https://www.cambridge.org/core

54 Data Mining and Data Warehousing

 Connect Me (Internet Resources)
 https://www.slideshare.net/wekacontent/an-introduction-to-weka-2875221
 https://www.cs.auckland.ac.nz/courses/compsci367s1c/tutorials/IntroductionToWeka.pdf
 https://www.cs.waikato.ac.nz/ml/weka/
 https://onlinecourses.science.psu.edu/statprogram/r
 http://www.r-tutor.com/r-introduction

 Do It Yourself
 The purpose of this hands-on session is to verify that you have Weka installed and running.
 1. Go to www.technologyforge.net/Datasets and download WineQuality.zip.
 2. Unzip the folder and read WineQuality.pdf.
 3. Convert WineQuality.xls file to .csv format and save as WineQuality.csv.
 4. Open WineQuality.csv in Weka Explorer.
 5. Save as WineQuality.arff (do not overwrite WineQuality.arff).
 6. Using the ‘Visualize All’ button, display histograms of all attributes on one screen.
 7. Perform the same operations by using the R Language.

 Test Me
 Answer these multiple choice questions based on your learning in this chapter.
 1. What is total number of distinct values in the following dataset?
 12, 13, 14, 154, 14, 23, 13
 (a) 5 (b) 3 (c) 7 (d) none of the above

 2. What is total number of unique values in the following dataset?
 12, 13, 14, 154, 14, 23, 13
 (a) 5 (b) 3 (c) 7 (d) none of the above

 3. What would be the result of following R code?
 > x<-1

 > print(x)

 (a) 1 (b) 2 (c) 3 (d) All of the mentioned

 4. The primary R system is available from the
 (a) CRAN (b) CRWO (c) GNU (d) All of the mentioned

 5. In 1991, R was created by Ross Ihaka and Robert Gentleman in the Department of Statistics at the
University of .

 (a) John Hopkins (b) California (c) Harvard (d) Auckland

 6. If you explicitly want an integer, you need to specify the suffix.
 (a) D (b) R (c) L (d) All of the mentioned

 7. Which of the following is not an open source data mining tool.
 (a) WEKA (b) R (c) RapidMiner (d) KnowledgeMiner

Answer Keys:
 1. (a) 2. (b) 3. (a) 4. (a)
 5. (d) 6. (c) 7. (d)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.004
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.004
https://www.cambridge.org/core

Chapter Objectives
 To understand the need for data preprocessing.

 To identify different phases of data preprocessing such as data cleaning, data integration,
data transformation and data reduction

4.1 Need for Data Preprocessing
For any data analyst, one of the most important concerns is ‘Data’. In fact, the representation and
quality of data which is being used for carrying out an analysis is the first and foremost concern
to be addressed by any analyst. In the context of data mining and machine learning, ‘Garbage in,
Garbage out’, is a popular saying while working with large quantities of data.

Commonly, we end up having lot of noisy data; as an example, income: -400 i.e. negative income.
Sometimes, we may have unrealistic and impossible combinations of data, for example, in a record,
Gender-Male may be entered as Pregnant-Yes. Obviously absurd! because males do not get pregnant.
We also suffer due to missing values and other data anomalies. Analyzing such sets of data, that
have not been screened before analysis can cause misleading results. Hence, data preprocessing is
the first step for any data mining process.

Data preprocessing is a data mining technique that involves transformation of raw data into
an understandable format, because real world data can often be incomplete, inconsistent or even
erroneous in nature. Data preprocessing resolves such issues. Data preprocessing ensures that further
data mining process are free from errors. It is a prerequisite preparation for data mining, it prepares
raw data for the core processes.

The University Management System Example

For any University Management System, a correct set of information about their students or vendors
is of utmost importance in order to contact them. Hence, accurate and up to date student information

Data Preprocessing

4

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.005
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.005
https://www.cambridge.org/core

56 Data Mining and Data Warehousing

is always maintained by a university. Correspondence sent to wrong address would, for instance,
lead to a bad impression about the respective university.

Millions of Customer Support Centres across the globe also maintain correct and consistent data
about their customers. Imagine a case where a call centre executive is not able to identify the client
or customer that he is handling, through his phone number. Such scenarios suggest how reputation
is at stake when it comes to accuracy of data. But, on the other hand obtaining the correct details
of students or customers is a very challenging task. As most of the data is entered by data entry
operators who are not paid well and consequently poorly motivated, these operators make a lot of
mistakes while feeding the data into the systems, leading to data which is full of errors. Mistakes
like same customer or student’s entry might be visible twice in the system. These and other mistakes,
are quite common due to data entry negligence. Hence, identification and correction of the data
entry done by these operators is one of the basic challenges.

As example, let us consider the records of a vendor providing services to a university stored in
different forms in different tables.

Table 4.1 Vendor’s record extracted from the first source system

Supplier Name Jugnoo Food Limited

Address 86 Gandhi Road

City Indore

State Madhya Pradesh

PIN 452001

Mobile Number 0731-7766028

Fax 0731-77766022

Email info@jugnoo.co.in

Owner Samitra nandan Singh

Last updated 7/12/2017

Table 4.2 Vendor’s record extracted from the second source system by Supplier ID

Supplier ID 23234

Business name JF Limited

Address 855 Gandhi Road

City Indore

State Madhya Pradesh

PIN 452001

Telephone 0731-77766028

Fax 0731-77766022

Email info@jugnoo.co.in

Owner Samitra N. Singh

Last updated 7/06/2018

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.005
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.005
https://www.cambridge.org/core

Data Preprocessing 57

Table 4.3 Vendor’s record extracted from the third source system

Business name Jugnoo Food Limited

Address 86 Gandhi Road

City Indore

State MP

PIN Null

Telephone 0731-7766028

Fax 0731-7766022

Email info@jugnoo.co.in

Owner Samitra nandan Singh

Postal Address PO Box 124

Last updated 7/12/2017

There are many errors and missing values in the records extracted from three different source
systems. Compare with what the record should look like after it has gone through a preprocessing
process.

Table 4.4 Vendor’s record after pre-processing

Supplier ID 23234

Business Name Jugnoo Food Ltd.

Address 86 Gandhi Road

City Indore

State Madhya Pradesh

PIN 452001

Postal address PO Box 124

Telephone 0731-7766028

Fax 0731-7766022

Owner Samitra Nandan Singh

Last updated 7/06/2018

Table 4.4 is the best information which we could derive from Tables 4.1, 4.2 and 4.3. There is
still the possibility that it might contain errors, to remove which further information is required.

Data preprocessing is part of a very complex phase known as ETL (Extraction, Transformation
and Loading). It involves extraction of data from multiple sources of data, transforming it to a
standardized format and loading it to the data mining system for analysis.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.005
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.005
https://www.cambridge.org/core

58 Data Mining and Data Warehousing

4.2 Data Preprocessing Methods

Raw data is highly vulnerable to missing values, noise and inconsistency and the quality of data
affects the data mining results. So, there is a need to improve the quality of data, in order to improve
mining results. For achieving better results, raw data is pre-processed so as to enhance its quality
and make it error free. This eases the mining process.

As depicted in Figure 4.1 the various stages in which data preprocessing is performed.

	 •	 Data	Cleaning
	 •	 Data	Integration
	 •	 Data	Transformation
	 •	 Data	Reduction

Figure 4.1 Various stages of preprocessing

Let’s discuss the details of each phase one by one.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.005
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.005
https://www.cambridge.org/core

Data Preprocessing 59

4.2.1 Data cleaning

First the raw data or noisy data goes through the process of cleansing. In data cleansing missing
values are filled, noisy data is smoothened, inconsistencies are resolved, and outliers are identified
and removed in order to clean the data. To elaborate further:

Handling missing values

It is often found that many of the database tuples or records do not have any recorded values for
some attributes. Such cases of missing values are filled by different methods, as described below.

 i. Fill in the missing value manually: Naturally, manually filling each missing value is laborious
and time consuming and so it is practical only when the missing values are few in number.
There are other methods to deal with the problem of missing values when the dataset is very
large or when the missing values are very many.

 ii. Use of some global constant in place of missing value: In this method, missing values are replaced
by some global label such as ‘Unkown’ or -∞. Although one of the easiest approaches to deal
with the missing values, it should be avoided when mining program presents a pattern due to
repetitive occurrences of global labels such as ‘Unknown’. Hence, this method should be used
with caution.

 iii. Use the attribute mean to fill in the missing value: Fill in the missing values for each attribute
with the mean of other data values of the same attribute. This is a better way to handle missing
values in a dataset.

 iv. Use some other value which is high in probability to fill in the missing value: Another efficient method
is to fill in the missing values with values determined by tools such as Bayesian Formalism or
Decision Tree Induction or other inference based tools. This is one of the best methods, as it
uses most of the information already present to predict the missing values, although it is not
biased like previous methods. The only difficulty with this method is complexity in performing
the analysis.

 v. Ignore the tuple: If the tuple contains more than one missing value and all other methods are
not applicable, then the best strategy to cope with missing values is to ignore the whole tuple.
This is commonly used if the class label goes missing or the tuple contains missing values for
most of the attributes. This method should not be used, if the percentage of values that are
missing per attribute varies significantly.

So, we can conclude that use the attribute mean to fill in the missing value is most common
technique used by most data mining tools to handle the missing values. However, one can always
use knowledge of probability to fill these values.

Handling noisy data

Most data mining algorithms are affected adversely due to noisy data. The noise can be defined as
unwanted variance or some random error that occurred in a measurable variable. Noise is removed
from the data by the method of ‘smoothing’. The methods used for data smoothing are as follows:

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.005
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.005
https://www.cambridge.org/core

60 Data Mining and Data Warehousing

i. Binning methods

The Binning method is used to divide the values of an attribute into bins or buckets. It is commonly
used to convert one type of attribute to another type. For example, it may be necessary to convert a
real-valued numeric attribute like temperature to a nominal attribute with values cold, cool, warm,
and hot before its processing. This is also called ‘discretizing’ a numeric attribute. There are two
types of discretization, namely, equal interval and equal frequency.

In equal interval binning, we calculate a bin size and then put the samples into the appropriate bin.
In equal frequency binning, we allow the bin sizes to vary, with our goal being to choose bin sizes so
that every bin has about the same number of samples in it. The idea is that if each bin has the same
number of samples, no bin, or sample, will have greater or lesser impact on the results of data mining.

To understand this process, consider a dataset of the marks of 50 students. . The process divides
this dataset on the basis of their marks into, for this example, 10 bins.

In case of equal interval binning, we will create bins from 0-10, 10-20, 20-30, 30-40, 40-50, 50-
60, 60-70, 70-80, 80-90, 90-100. If most students commonly have marks between 60 to 80, some
bins may be full and most bins may have very few entries e.g., 0-10, 10-20, 90-100.

Thus, it might be better to divide this dataset on the equal frequency basis. It means that with
the same 50 students in class and we want to put these into 10 bins on the basis of their marks then
instead of creating the bins for marks like 0-10, 10-20 and so on, here we will first sort the records
of students on the basis of their marks in descending order (or ascending order as we prefer). The
first 5 students having highest marks will put into one bin and next 5 students on the basis of their
marks will put into another and so on. If our boundary students have same marks then bin range
can be shifted to accommodate students with the same marks into one common bin. For example,
let us suppose that after arranging the data in descending order of marks and we found that marks
of 5th and 6th students are same of 85. Then we cannot put one student in one bin and other in a
different bin because both have the same marks. So, we either shift our bin range may be up (i.e., 86
in this case) to accommodate the first 4 students in one bin and next 5 into another. Similarly, we
can shift our bin range down to accommodate first 6 students in one bin (i.e., 85 in this case so that
5th and 6th student falls in same bin) and next 5 into another. Thus, in this case of equal frequency
most of bins will have a count of approximately 5, while in case of equal interval some bins will be
heavily loaded while most will be lightly loaded.

Thus, the idea of having same number of samples in each bin works better as no bin, or sample,
will have greater or lesser impact on the results of data mining.

ii. Clustering or outlier analysis

Clustering or outlier analysis is a method that allows detection of outliers by clustering. In clustering,
values which are common or similar are organized into groups or ‘clusters’, and those values which
lie outside these clusters are termed as outliers or noise.

iii. Regression

Regression is another such method which allows data smoothing by fitting it to some function. For
example, Linear Regression is one of the most used methods that aims at finding the most suitable

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.005
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.005
https://www.cambridge.org/core

Data Preprocessing 61

line to fit values of two variables or attributes (i.e., best fit). The primary purpose of this is to predict
the value of other variable using the first one. Similarly, Multiple Regression is used when more
than two variables are involved. Regression allows data fitting which in turn removes noise from
data and hence smoothens the dataset using mathematical equations.

iv. Combined computer and human inspection

Using both computers and human inspection one can detect suspicious values and outliers.

Handling of inconsistent data

Many times data inconsistencies are encountered when data is recorded during some transaction.
Such inconsistencies can be manually removed by using external references. As an example: errors
that have been made at the time of data entry be corrected manually by performing a paper trace
operation.

4.2.2 Data integration

A most necessary step to be taken during data analysis is Data Integration. Data integration is a
process which combines data from a plethora of sources (such as multiple databases, f lat files or
data cubes) into a unified data store.

The example of the University Database system discussed under section 4.1 refers to the issues
of data integration.

During data integration, a number of tricky issues have to be considered. For example, how does
the data analyst or the analyzing machine be sure that student_id of one database and student_number
of another database refer to the same entity? This is referred to as the problem of entity identification.
Solution to the problem lies with the term ‘metadata’. Databases and data warehouses consist of
metadata, which is data about data. This metadata is taken as a reference and referred by the data
analyst to avoid errors during the process of data integration.

Another such issue which may be caused due to schema integration is redundancy. In the language
of database, an attribute is said to be redundant if it is derivable from some other table (of the same
database). Mistakes in attribute naming can also lead to data redundancies in the resulting dataset.
We use a number of tools to perform data integration from different sources into one unified schema.

4.2.3 Data transformation

When the value of one attribute is small as compared to other attributes, then that attribute will
not have much influence on mining of information, since the values of this attribute were smaller
than other attributes and the variation within the attribute will also be small.

Thus, data transformation is a process in which data is consolidated or transformed into some
other standard forms which are better suited for data mining.

For example, the dataset given in Figure 4.2 is for the chemical composition of wine samples.
Note that the values for different attributes cover a range of six orders of magnitude. It turns out
that data mining algorithms struggle with numeric attributes that exhibit such ranges of values.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.005
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.005
https://www.cambridge.org/core

62 Data Mining and Data Warehousing

Figure 4.2 Chemical composition of wine samples

All attributes should be transformed to a similar scale for clustering to be effective unless we wish
to give more weight to some attributes that are comparatively large in scale. Commonly, we use two
techniques to convert the attributes: Normalization and Standardization are the most popular and
widely used data transformation methods.

Normalization

In case of normalization, all the attributes are converted to a normalized score or to a range (0, 1).
The problem of normalization is an outlier. If there is an outlier, it will tend to crunch all of the
other values down toward the value of zero. In order to understand this, let’s suppose the range of
students’ marks is 35 to 45 out of 100. Then 35 will be considered as 0 and 45 as 1, and students
will be distributed between 0 to 1 depending upon their marks. But if there is one student having
marks 90, then it will act as an outlier and in this case, 35 will be considered as 0 and 90 as 1. Now,
it will crunch most of the values down toward the value of zero. In this scenario, the solution is
standardization.

Standardization

In case of standardization, the values are all spread out so that we have a standard deviation of 1.
Generally, there is no rule for when to use normalization versus standardization. However, if your

data has outliers, use standardization, otherwise use normalization. Using standardization tends to
make the remaining values for all of the other attributes fall into similar ranges since all attributes
will have the same standard deviation of 1.

4.2.4 Data reduction

It is often seen that when the complex data analysis and mining processes are carried out over
humongous datasets, they take such a long time that the whole data mining or analysis process

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.005
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.005
https://www.cambridge.org/core

Data Preprocessing 63

becomes unviable. Data reduction techniques come to the rescue in such situations. Using data
reduction techniques a dataset can be represented in a reduced manner without actually compromising
the integrity of original data.

Data reduction is all about reducing the dimensions (referring to the total number of attributes)
or reducing the volume. Moreover, mining when carried out on reduced datasets often results in
better accuracy and proves to be more efficient. There are many methods to reduce large datasets
to yield useful knowledge. A few among them are:

i. Dimension reduction

In data warehousing, ‘dimension’ equips us with structured labeling information. But not all
dimensions (attributes) are necessary at a time. Dimension reduction uses algorithm such as Principal
Component Analysis (PCA) and others. With the usage of such algorithms one can detect and
remove redundant and weakly relevant, attributes or dimensions.

ii. Numerosity reduction

It is a technique which is used to choose smaller forms of data representation for reducing the
dataset volume.

iii. Data compression

We can also use data compression techniques to reduce the dataset size. These techniques are
classified as lossy and loseless compression techniques where some encoding mechanisms (e.g.
Huffman coding) are used.

 Remind Me
 Data preprocessing is a data mining technique that involves transformation of raw data into an

understandable format.
 The various phases of data preprocessing are data cleaning, data integration, data transformation and

data reduction.
 In data cleansing, missing values are filled, noisy data is smoothened, inconsistencies are resolved,

outliers are identified and removed in order to clean the data.
 Data integration is a method which combines data from a plethora of sources (such as multiple

databases, flat files or data cubes) into a unified data store.
 Data transformation is a process in which data is consolidated or transformed into some other standard

forms which are suitable for data mining.
 Using data reduction techniques a large dataset can be represented in a reduced manner without

actually compromising the integrity of original data.

 Point Me (Books)
 Han, Jiawei, Micheline Kamber, and Jian Pei. 2011. Data Mining: Concepts and Techniques, 3rd ed.

Amsterdam: Elsevier.
 Gupta, G. K. 2014. Introduction to Data Mining with Case Studies. Delhi: PHI Learning Pvt. Ltd.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.005
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.005
https://www.cambridge.org/core

64 Data Mining and Data Warehousing

 Mitchell, Tom M. 2017. Machine Learning. Chennai: McGraw Hill Education.
 Witten, Ian H., Eibe Frank, Mark A. Hall, and Christopher Pal. 2016. Data Mining: Practical Machine

Learning Tools and Techniques, 4th ed. Burlington: Morgan Kaufmann.

 Connect Me (Internet Resources)
 https://www.kdnuggets.com/data_mining_course/x1-intro-to-data-mining-notes.html
 https://www.cse.iitb.ac.in/infolab/Data/Talks/datamining-intro-IEP.ppt
 https://tutorials.datasciencedojo.com/data-mining-fundamentals-part-1-3/

 Test Me
 1. What is the need for a data cleaning phase in any data mining process? Justify your answer with

examples.
 2. What is the difference between normalization and standardization?
 3. What is meant by discretization? Why is it performed?
 4. What is the difference between equal interval binning and equal frequency binning? Explain with

examples.
 5. Explain the different phases of data preprocessing with examples.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.005
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:38:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.005
https://www.cambridge.org/core

Chapter Objectives

 To comprehend the concept, types and working of classification

 To identify the major differences between classification and regression problems

 To become familiar about the working of classification

 To introduce the decision tree classification system with concepts of information gain and
Gini Index

 To understand the workings of the Naïve Bayes method

5.1 Introduction to Classification

Nowadays databases are used for making intelligent decisions. Two forms of data analysis namely
classification and regression are used for predicting future trends by analyzing existing data.
Classification models predict discrete value or class, while Regression models predict a continuous
value. For example, a classification model can be built to predict whether India will win a cricket
match or not, while regression can be used to predict the runs that will be scored by India in a
forthcoming cricket match.

Classification is a classical method which is used by machine learning researchers and statisticians
for predicting the outcome of unknown samples. It is used for categorization of objects (or things)
into given discrete number of classes. Classification problems can be of two types, either binary
or multiclass. In binary classification the target attribute can only have two possible values. For
example, a tumor is either cancerous or not, a team will either win or lose, a sentiment of a sentence
is either positive or negative and so on. In multiclass classification, the target attribute can have
more than two values. For example, a tumor can be of type 1, type 2 or type 3 cancer; the sentiment
of a sentence can be happy, sad, angry or of love; news stories can be classified as weather, finance,
entertainment or sports news.

Classification

5

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

66 Data Mining and Data Warehousing

Some examples of business situations where the classification technique is applied are:
	 •	 To	analyze	the	credit	history	of	bank	customers	to	identify	if	it	would	be	risky	or	safe	to	grant	

them loans.
	 •	 To	analyze	the	purchase	history	of	a	shopping	mall’s	customers	to	predict	whether	they	will	

buy a certain product or not.
In first example, the system will predict a discrete value representing either risky or safe, while

in second example, the system will predict yes or no.
Some more examples to distinguish the concept of regression from classification are:

	 •	 To	predict	how	much	a	given	customer	will	spend	during	a	sale.
	 •	 To	predict	the	salary-package	of	a	student	that	he/she	may	get	during	his/her	placement.

In these two examples, there is a prediction of continuous numeric value. Therefore, both are
regression problems.

In this chapter, we will discuss the basic approaches to perform the classification of data.

5.2 Types of Classification

Classification is defined as two types. These are:
	 •	 Posteriori	classification
	 •	 Priori	classification	

5.2.1 Posteriori classification

The word ‘Posteriori ’ means something derived by reasoning from the observed facts. It is a supervised
machine learning approach, where the target classes are already known, i.e., training data is already
labeled with actual answers.

5.2.2 Priori classification

The word ‘Priori ’ means something derived by reasoning from self-evident propositions. It is an
unsupervised machine learning approach, where the target classes are not given. The question is
‘Is it possible to make predictions, if labeled data is not available?’

The answer is yes. If data is not labeled, then we can use clustering (unsupervised technique) to
divide unlabeled data into clusters. Then these clusters can be assigned some names or labels and
can be further used to apply classification to make predictions based on this dataset. Thus, although
data is not labeled, we can still make predictions based on data by first applying clustering followed
by classification. This approach is known as Priori classification.

In this chapter, we will learn posteriori classification, a supervised machine learning approach
to predict the outcome when training dataset is labeled.

5.3 Input and Output Attributes

In any machine learning approach the input data is very important. Data contains two types of
attributes, namely, input attributes and output attributes. The class attribute that represents the

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

Classification 67

output of all other attributes is known as an output attribute or dependent attribute, while all other
attributes are known as input attributes or independent attributes. For example, the dataset for iris
plant’s f lowers given in Figure 5.1 has Sepal length, Sepal width, Petal length and Petal width as
input attributes and species as an output attribute.

Figure 5.1 Input and output attributes

The attributes can be of different types. The attributes having numbers are called numerical
attributes while attributes whose domain is not numerical are known as nominal or categorical
attributes. Here, input attributes are of numerical type while species, i.e., the output attribute is of
nominal type (as shown in Figure 5.1).

During classification, it is important to have a database of sufficient size for training the model
accurately. The next section covers how a classification model is built.

5.4 Working of Classification

Classification is a two-step process. The first step is training the model and the second step is testing
the model for accuracy. In the first step, a classifier is built based on the training data obtained by
analyzing database tuples and their associated class labels. By analyzing training data, the system
learns and creates some rules for prediction. In the second step, these prediction rules are tested on
some unknown instances, i.e., test data. In this step, rules are used to make the predictions about
the output attribute or class. In this step, the predictive accuracy of the classifier is calculated. The
system performs in an iterative manner to improve its accuracy, i.e., if accuracy is not good on test
data, the system will reframe its prediction rules until it gets optimized accuracy on test data as
shown in Figure 5.2.

The test data is randomly selected from the full dataset. The tuples of the test data are independent
of the training tuples. This means that the system has not been exposed to testing data during the
training phase. The accuracy of a classifier on a given test data is defined as the percentage of test
data tuples that are correctly classified by the classifier. The associated class label of each test tuple is
compared with the class prediction made by the classifier for that particular tuple. If the accuracy of
the classifier is satisfactory then it can be used to classify future data tuples with unknown class labels.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

68 Data Mining and Data Warehousing

Figure 5.2 Training and testing of the classifier

For example, by analyzing the data of previous loan applications as shown in Figure 5.3, the
classification rules obtained can be used to approve or reject the new or future loan applicants as
shown in Figure 5.4.

Figure 5.3 Building a classifier to approve or reject loan applications

Figure 5.4 Predicting the type of customer based on trained classifier

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

Classification 69

The same process of training and testing the classifier has also been illustrated in Figure 5.5.

Figure 5.5 Training and testing of the classifier

5.5 Guidelines for Size and Quality of the Training Dataset

There should be a balance between the number of training samples and independent attributes. It has
been observed that generally, the number of training samples required is likely to be relatively small
if the number of independent or input attributes is small and similarly, number of training samples
required is likely to be relatively large if the number of independent or input attributes is large. The
quality of the classifier depends upon the quality of the training data. If there are two or more than
two classes, then sufficient training data should be available belonging to each of these classes.

Researchers have developed a number of classifiers that include: Decision Tree, Naïve Bayes,
Support Vector Machine and Neural Networks. In this chapter, two important classification methods,
namely, Decision Tree and Naive Bayes are discussed in detail, as these are widely used by scientists
and organizations for classification of data.

5.6 Introduction to the Decision Tree Classifier

In the decision tree classifier, predictions are made by using multiple ‘if…then...’ conditions which
are similar to the control statements in different programming languages, that you might have learnt.
The decision tree structure consists of a root node, branches and leaf nodes. Each internal node
represents a condition on some input attribute, each branch specifies the outcome of the condition
and each leaf node holds a class label. The root node is the topmost node in the tree.

The decision tree shown in Figure 5.6 represents a classifier tasked for predicting whether a
customer will buy a laptop or not. Here, each internal node denotes a condition on the input attributes
and each leaf node denotes the predicted outcome (class). By traversing the decision tree, one can
analyze that if a customer is middle aged then he will probably buy a laptop, if a customer is young
and a student then he will probably not buy a laptop. If a customer is a senior citizen and has an
excellent credit rating then he can probably buy a laptop. The system makes these predictions with
a certain level of probability.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

70 Data Mining and Data Warehousing

Figure 5.6 Decision tree to predict whether a customer will buy a laptop or not

Decision trees can easily be converted to classification rules in the form of if-then statements.
Decision tree based classification is very similar to a ‘20 questions game’. In this game, one player
writes something on a page and other player has to find what was written by asking at most 20
questions; the answers to which can only be yes or no. Here, each node of the decision tree denotes
a choice between numbers of alternatives and the choices are binary. Each leaf node specifies a
decision or prediction. The training process that produces this tree is known as induction.

5.6.1 Building decision tree

J. Ross Quinlan, a researcher in machine learning, developed a decision tree algorithm known as
ID3 (Iterative Dichotomiser) during the late 1970s and early 1980s. Quinlan later proposed C4.5
(a successor of ID3), which became a benchmark to which newer supervised learning algorithms are
often compared. Decision tree is a common machine learning technique which has been implemented
in many machine learning tools like Weka, R, Matlab as well as some programming languages such
as Python, Java, etc.

These algorithms are based on the concept of Information Gain and Gini Index. So, let us first
understand the role of information gain in building the decision tree.

5.6.2 Concept of information theory

Decision tree algorithm works on the basis of information theory. It has been observed that
information is directly related with uncertainty. If there is uncertainty then there is information and
if there is no uncertainty then there is no information. For example, if a coin is biased having a head
on both sides, then the result of tossing it does not give any information but if a coin is unbiased
having a head and a tail then the result of the toss provides some information.

Usually the newspaper carries the news that provides maximum information. For example,
consider the case of an India-UAE world cup cricket match. It appears certain that India will beat
UAE, so this news will not appear on front page as main headlines, but if UAE beats India in a
world cup cricket match then this news being very unexpected (uncertain) will appear on the first
page as headlines.

Let us consider another example, if in your university or college, there is holiday on Sunday then a
notice regarding the same will not carry any information (because it is certain) but if some particular
Sunday becomes a working day then it will be information and henceforth becomes a news.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

Classification 71

From these examples we can observe that information is related to the probability of occurence
of an event. Another important question to consider is, whether the probability of occurrence of an
event is more. Then, the information gain will be more frequent or less frequent?

It is certain from above examples that ‘more certain’ events such as India defeating UAE in
cricket or Sunday being a holiday carry very little information. But if UAE beats India or Sunday
is working, then even though the probability of these events is lesser than the previous event, it will
carry more information. Hence, less probability means more information.

5.6.3 Defining information in terms of probability

Information theory was developed by Claude Shannon. Information theory defines entropy which
is average amount of information given by a source of data. Entropy is measured as follows.

entropy (p1, p2, …, pn) = – p1 log(p1) – p2 log(p2) – … – pn log(pn)

Therefore, the total information for an event is calculated by the following equation:

 I = −()∑ p pi i
i

log

In this, information is defined as -pi log pi where pi is the probability of some event. Since,
probability pi is always less than 1, log pi is always negative; thus negating log pi we get the overall
information gain (–pi log pi) as positive.

It is important to remember that the logarithm of any number greater than 1 is always positive
and the logarithm of any number smaller than 1 is always negative. Logarithm of 1 is always zero,
no matter what the base of logarithm is. In case of log with base 2, following are some examples.

 log2(2) = 1

 log2(2n) = n

 log2(1/2) = -1

 log2(1/2n) = -n

Let us calculate the information for the event of throwing a coin. It has two possible values, i.e.,
head (p1) or tail (p2). In case of unbiased coin, the probability of head and tail is 0.5 respectively.
Thus, the information is

 I = -0.5 log(0.5) - 0.5 log(0.5)

 = - (0.5) * (-1) - (0.5) * (-1) [As, log2(0.5) = -1]

 = 0.5 + 0.5=1
The result is 1.0 (using log base 2) and it is the maximum information that we can have for an

event with two possible outcomes. This is also known as entropy.
But if the coin is biased and has heads on both the sides, then probability for head is 1 while the

probability of tails will be 0. Thus, total information in tossing this coin will be as follows.

 I = -1 log(1) - 0 log(0) = 0 [As, log2(1) = 0]
You can clearly observe that tossing of biased coin carries no information while tossing of unbiased

coin carries information of 1.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

72 Data Mining and Data Warehousing

Suppose, an unbiased dice is thrown which has six possible outcomes with equal probability,
then the information is given by:

 I = 6(-1/6) log(1/6) = 2.585
[the probability of each possible outcome is 1/6 and there are in

total six possible outcomes from 1 to 6]
But, if dice is biased such that there is a 50% chance of getting a 6, then the information content

of rolling the die would be lower as given below.
 I = 5(-0.1) log(0.1) – 0.5 log(0.5) = 2.16

[One event has a probability of 0.5 while 5 other events has probability of 0.5,
which makes 0.5/5 = 0.1 as the probability of each of remaining 5 events.]

And if the dice is further biased such that there is a 75% chance of getting a 6, then the information
content of rolling the die would be further low as given below.

 I = 5(-0.05) log(0.05) - 0.75 log(0.75) = 1.39
[One event has a probability of 0.75 while 5 other events has probability of 0.25,

which makes 0.25/5 = 0.05 as probability of each of remaining 5 events.]
We can observe that as the certainty of an event goes up, the total information goes down.
Information plays a key role in selecting the root node or attribute for building a decision tree.

In other words, selection of a split attribute plays an important role. Split attribute is an attribute
that reduces the uncertainty by largest amount, and is always accredited as a root node. So, the
attribute must distribute the objects such that each attribute value results in objects that have as
little uncertainty as possible. Ideally, each attribute value should provide us with objects that belong
to only one class and therefore have zero information.

5.6.4 Information gain

Information gain specifies the amount of information that is gained by knowing the value of the
attribute. It measures the ‘goodness’ of an input attribute for predicting the target attribute. The
attribute with the highest information gain is selected as the next split attribute.

Mathematically, it is defined as the entropy of the distribution before the split minus the entropy
of the distribution after split.

Information gain = (Entropy of distribution before the split)
– (Entropy of distribution after the split)

The largest information gain is equivalent to the smallest entropy or minimum information. It
means that if the result of an event is certain, i.e., the probability of an event is 1 then information
provided by it is zero while the information gain will be the largest, thus it should be selected as a
split attribute.

Assume that there are two classes, P and N, and let the set of training data S (with a total number
of records s) contain p records of class P and n records of class N. The amount of information is
defined as

 I = - (p/s)log(p/s) - (n/s)log(n/s)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

Classification 73

Obviously if p = n, i.e., the probability is equally distributed then I is equal to 1 and if p = s or n =
0, i.e., training data S contains all the elements of a single class only, then I = 0. Therefore if there
was an attribute for which all the records had the same value (for example, consider the attribute
gender, when all people are male), using this attribute would lead to no information gain that is, no
reduction in uncertainty. On the other hand, if an attribute divides the training sample such that
all female records belong to Class A, and male records belong to Class B, then uncertainty has been
reduced to zero and we have a large information gain.

Thus after computing the information gain for every attribute, the attribute with the highest
information gain is selected as split attribute.

5.6.5 Building a decision tree for the example dataset

Let us build decision tree for the dataset given in Figure 5.7.

Instance Number X Y Z Class

1 1 1 1 A

2 1 1 0 A

3 0 0 1 B

4 1 0 0 B

X Y Z Class

1 = 3 1 = 2 1 = 2 A = 2

0 = 1 0 = 2 0 = 2 B = 2

Figure 5.7 Dataset for class C prediction based on given attribute condition

The given dataset has three input attributes X, Y, Z and one output attribute Class. The instance
number has been given to show that the dataset contains four records (basically for convenience
while making references). The output attribute or class can be either A or B.

There are two instances for each class so the frequencies of these two classes are given as follows:
 A = 2 (Instances 1, 2)

 B = 2(Instances 3, 4)
The amount of information contained in the whole dataset is calculated as follows:
I = - probability for Class A * log (probability for class A)

- probability for class B * log (probability for class N)
Here, probability for class A = (Number of instances for class A/Total number of instances) = 2/4
And probability for class B = (Number of instances for class B/Total number of instances) = 2/4
Therefore, I = (-2/4) log (2/4) – (2/4) log (2/4) = 1
Let us consider each attribute one by one as a split attribute and calculate the information for

each attribute.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

74 Data Mining and Data Warehousing

Attribute ‘X’

As given in the dataset, there are two possible values of X, i.e., 1 or 0. Let us analyze each case one
by one.

For X= 1, there are 3 instances namely instance 1, 2 and 4. The first two instances are labeled as
class A and the third instance, i.e, record 4 is labeled as class B.

For X = 0, there is only 1 instance, i.e, instance number 3 which is labeled as class B.
Given the above values, let us compute the information given by this attribute. We divide the

dataset into two subsets according to X either being 1 or 0. Computing information for each case,
 I (for X = 1) = I(X1) = - (2/3) log(2/3) - (1/3) log(1/3) = 0.92333
 I (for X = 0) = I(X0) = - (0/1) log(0/1) - (1/1) log(1/1) = 0
Total information for above two sub-trees = probability for X having value 1 * I(X1) + probability

for X having value 0 * I(X0)
Here, probability for X having value 1 = (Number of instances for X having value 1/Total number

of instances) = 3/4
And probability for X having value 0 = (Number of instances for X having value 0/Total number

of instances) = 1/4
Therefore, total information for the two sub-trees = (3/4) I(X1) + (1/4) I(X0)

= 0.6925 + 0
= 0.6925

Attribute ‘Y’

There are two possible values of Y attribute, i.e., 1 or 0. Let us analyze each case one by one.
There are 2 instances where Y has value 1. In both cases when Y=1 the record belongs to class A

and, in the 2 instances when Y = 0 both records belong to class B.
Given the above values, let us compute the information provided by Y attribute. We divide the

dataset into two subsets according to Y either being 1 and 0. Computing information for each case,
 I (For Y = 1) = I (Y1) = - (2/2) log(2/2) - (0/2) log(0/2) = 0
 I (For Y = 0) = I (Y0) = - (0/2) log(0/2) - (2/2) log(2/2) = 0
Total information for the two sub-trees = probability for Y having value 1* I(Y1) + probability

for Y having value 0 * I(Y0)
Here, probability for Y in 1 = (Number of instances for Y having 1/Total number of instances) = 2/4
And probability for Y in 0 = (Number of instances for Y having 0/Total number of instances) = 2/4
Therefore, the total information for the two sub-trees = (2/4) I(Y1) + (2/4) I(Y0)

= 0 + 0
= 0

Attribute ‘Z’

There are two possible values of Z attribute, i.e., 1 or 0. Let us analyze each case one by one.
There are 2 instances where Z has value 1 and 2 instances where Z has value 0. In both cases,

there exists a record belonging to class A and class B with Z is either 0 or 1.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

Classification 75

Given the above values, let us compute the information provided by the Z attribute. We divide the
dataset into two subsets according to Z either being 1 or 0. Computing information for each case,

 I (For Z = 1) = I (Z1) = - (1/2) log(1/2) - (1/2) log(1/2) = 1.0
 I (For Z = 0) = I (Z0) = - (1/2) log(1/2) - (1/2) log(1/2) = 1.0
Total information for the two sub-trees = probability for Z having value 1 * I(Z1) + probability

for Z having value 0 * I(Z0)
Here, probability for Z having value 1 = (Number of instances for Z having value 1/Total number

of instances) = 2/4
And probability for Z having value 0 = (Number of instances for Z having value 0/Total number

of instances) = 2/4
Therefore, total information for two sub-trees = (2/4) I(Z1) + (2/4) I(Z0)

= 0.5 + 0.5
= 1.0

The Information gain can now be computed:

Potential Split attribute Information before split Information after split Information gain

X 1.0 0.6925 0.3075

Y 1.0 0 1.0

Z 1.0 1.0 0

Hence, the largest information gain is provided by the attribute ‘Y’ thus it is used for the split
as depicted in Figure 5.8.

Figure 5.8 Data splitting based on Y attribute

For Y, as there are two possible values, i.e., 1 and 0, therefore the dataset will be split into two
subsets based on distinct values of the Y attribute as shown in Figure 5.8.

Dataset for Y = ‘1’

Instance Number X Z Class

1 1 1 A

2 1 0 A

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

76 Data Mining and Data Warehousing

There are 2 samples and the frequency of each class is as follows.

 A = 2 (Instances 1, 2)
 B = 0 Instances

Information of the whole dataset on the basis of class is given by

 I = (-2/2) log (2/2) – (0/2) log(0/2) = 0

As it represents the same class ‘A’ for all recorded combinations of X and Z, therefore, it represents
class ‘A’ as shown in Figure 5.9.

Figure 5.9 Decision tree after splitting of attribute Y having value ‘1’

Dataset for Y = ‘0’

Instance Number X Z Class

3 0 1 B

4 1 0 B

For Y having value 0, it represents the same class ‘B’ for all the records. Thus, the decision tree
will look like as shown in Figure 5.10 after analysis of Y dataset.

 Figure 5.10 Decision tree after splitting of attribute Y value ‘0’

Let us consider another example and build a decision tree for the dataset given in Figure 5.11. It
has 4 input attributes outlook, temperature, humidity and windy. As before we have added instance
number for explanation purposes. Here, ‘play’ is the output attribute and these 14 records contain
the information about weather conditions based on which it was decided if a play took place or not.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

Classification 77

 Instance
Number

Outlook Temperature Humidity Windy Play

1 sunny hot high false No

2 sunny hot high true No

3 overcast hot high false Yes

4 rainy mild high false Yes

5 rainy cool normal false Yes

6 rainy cool normal true No

7 overcast cool normal true Yes

8 sunny mild high false No

9 sunny cool normal false Yes

10 rainy mild normal false Yes

11 sunny mild normal true Yes

12 overcast mild high true Yes

13 overcast hot normal false Yes

14 rainy mild high true No

Figure 5.11 Dataset for play prediction based on given day weather conditions

In the dataset, there are 14 samples and two classes for target attribute ‘Play’, i.e., Yes or No. The
frequencies of these two classes are given as follows:

Yes = 9 (Instance number 3,4,5,7,9,10,11,12,13 and 14)
No = 5 (Instance number 1,2,6,8 and 15)
Information of the whole dataset on the basis of whether play is held or not is given by
I = - probability for play being held * log (probability for play being held) - probability for play

not being held * log (probability for play not being held)
Here, probability for play having value Yes = (Number of instances for Play is Yes/Total number

of instances) = 9/14
And probability for play having value No = (Number of instances for Play is No/Total number

of instances) = 5/14
Therefore, I = - (9/14) log (9/14) – (5/14) log (5/14) = 0.9435142
Let us consider each attribute one by one as split attributes and calculate the information for

each attribute.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

78 Data Mining and Data Warehousing

Attribute ‘Outlook’

As given in dataset, there are three possible values of outlook, i.e., sunny, overcast and rainy. Let
us analyze each case one by one.

There are 5 instances where outlook is sunny. Out of these 5 instances, in 2 instances (9 and 11)
the play is held and in remaining 3 instances (1, 2 and 8) the play is not held.

There are 4 instances where outlook is overcast and in all these instances the play always takes
place.

There are 5 instances where outlook is rainy. Out of these 5 instances, in 3 instances (4, 5 and
10) the play is held whereas in remaining 2 instances (6 and 14) the play is not held.

Given the above values, let us compute the information provided by the outlook attribute. We
divide the dataset into three subsets according to outlook conditions being sunny, overcast or rainy.
Computing information for each case,

 I (Sunny) = I (S) = - (2/5) log (2/5) - (3/5) log(3/5) = 0.97428
 I (Overcast) = I (O) = - (4/4) log(4/4) - (0/4) log(0/4) = 0
 I (Rainy) = I (R) = - (3/5) log(3/5) - (2/5) log(2/5) = 0.97428
Total information for these three sub-trees = probability for outlook Sunny * I(S) + probability

for outlook Overcast * I(O) + probability for outlook Rainy * I(R)
Here, probability for outlook Sunny = (Number of instances for outlook Sunny/Total number

of instances) = 5/14
And probability for outlook Overcast = (Number of instances for outlook Overcast/Total number

of instances) = 4/14
And probability for outlook Rainy = (Number of instances for outlook Rainy/Total number of

instances) = 5/14
Therefore, total information for three sub-trees = (5/14) I(S) + (4/14) I(O) + (5/14) I(R)

= 0.3479586 + 0.3479586
= 0.695917

Attribute ‘Temperature’

There are three possible values of the Temperature attribute, i.e., Hot, Mild and Cool. Let us
analyze each case one by one.

There are 4 instances for Temperature hot. Play is held in case of 2 of these instances (3 and 13)
and is not held in case of the other 2 instances (1 and 2).

There are 6 instances for Temperature mild. Play is held in case of 4 instances (4, 10, 11 and 12)
and is not held in case of 2 instances (8 and 14).

There are 4 instances for Temperature cool. Play is held in case of 3 instances (5, 7 and 9) and
is not held in case of 1 instance (6).

Given the above values, let us compute the information provided by Temperature attribute. We
divide the dataset into three subsets according to temperature conditions being Hot, Mild or Cool.
Computing information for each case,

 I (Hot) = I (H) = - (2/4) log(2/4) - (2/4) log(2/4) = 1.003433
 I (Mild) = I (M) = - (4/6) log(4/6) - (2/6) log(2/6) = 0.9214486

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

Classification 79

 I (Cool) = I (C) = - (3/4) log(3/4) - (1/4) log(1/4) = 0.814063501
Total information for the three sub-trees = probability for temperature hot * I(H) + probability

for temperature mild * I(M) + probability for temperature cool * I(C)
Here, probability for temperature hot = (Number of instances for temperature hot/Total number

of instances) = 4/14
And probability for temperature mild = (Number of instances for temperature mild/Total number

of instances) = 6/14
And probability for temperature cool = (Number of instances for temperature cool/Total number

of instances) = 4/14
Therefore, total information for these three sub-trees
 = (4/14) I(H) + (6/14) I(M) + (4/14) I(C)

 = 0.2866951429 + 0.3949065429 + 0.23258957
 = 0.9141912558

Attribute ‘Humidity’

There are two possible values of the Humidity attribute, i.e., High and Normal. Let us analyze
each case one by one.

There are 7 instances where humidity is high. Play is held in case of 3 instances (3, 4 and 12)
and is not held in case of 4 instances (1, 2, 8 and 14).

There are 7 instances where humidity is normal. Play is held in case of 6 instances (5, 7, 9, 10,
11 and 13) and is not held in case of 1 instance (6).

Given the above values, let us compute the information provided by the humidity attribute.
We divide the dataset into two subsets according to humidity conditions being high or normal.
Computing information for each case,

 I (High) = I (H) = - (3/7) log(3/7) - (4/7) log(4/7) = 0.98861
 I (Normal) = I (N) = - (6/7) log(6/7) - (1/7) log(1/7) = 0.593704
Total information for the two sub-trees = probability for humidity high * I(H) + probability for

humidity normal * I(N)
Here, probability for humidity high = (Number of instances for humidity high/Total number

of instances) = 7/14
And probability for humidity normal = (Number of instances for humidity normal/Total number

of instances) = 7/14
Therefore, Total information for the two sub-trees = (7/14) I(H) + (7/14) I(N)

= 0.494305 + 0.29685
= 0.791157

Attribute ‘Windy’

There are two possible values for this attribute, i.e., true and false. Let us analyze each case one by one.
There are 6 instances when it is windy. On windy days, play is held in case of 3 instances (7, 11

and 12) and is not held in case of remaining 3 instances (2, 6 and 14).
For non-windy days, there are 8 instances. On non-windy days, the play is held in case of 6

instances (3, 4, 5, 9, 10 and 13) and is not held in case of 2 instances (1 and 8).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

80 Data Mining and Data Warehousing

Given the above values, let us compute the information provided by the windy attribute. We
divide the dataset into two subsets according to windy being true or false. Computing information
for each case,

 I (True) = I (T) = - (3/6) log(3/6) - (3/6) log(3/6) = 1.003433
 I (False) = I (F) = - (6/8) log(6/8) - (2/8) log(2/8) = 0.81406
Total information for the two sub-trees = probability for windy true * I(T) + probability for

windy true * I(F)
Here, The probability for windy being True = (Number of instances for windy true/Total number

of instances) = 6/14
And probability for windy being False = (Number of instances for windy false/Total number of

instances) = 8/14
Therefore, Total information for the two sub-trees = (6/14) I(T) + (8/14) I(F)

= 0.4300427 + 0.465179
= 0.89522

The information gain can now be computed:

Potential Split attribute Information before split Information after split Information gain

Outlook 0.9435 0.6959 0.2476

Temperature 0.9435 0.9142 0.0293

Humidity 0.9435 0.7912 0.15234

Windy 0.9435 0.8952 0.0483

From the above table, it is clear that the largest information gain is provided by the attribute
‘Outlook’ so it is used for the split as depicted in Figure 5.12.

Figure 5.12 Selection of Outlook as root attribute

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

Classification 81

For Outlook, as there are three possible values, i.e., Sunny, Overcast and Rain, the dataset will
be split into three subsets based on distinct values of the Outlook attribute as shown in Figure 5.13.

Figure 5.13 Data splitting based on the Outlook attribute

Dataset for Outlook ‘Sunny’

Instance Number Temperature Humidity Windy Play

1 Hot high false No

2 Hot high true No

3 Mild high false No

4 Cool normal false Yes

5 Mild normal true Yes

Again, in this dataset, a new column instance number is added to the dataset for making
explanation easier. In this case, we have three input attributes Temperature, Humidity and Windy.
This dataset consists of 5 samples and two classes, i.e., Yes and No for the Play attribute. The
frequencies of classes are as follows:

Yes = 2 (Instances 4, 5)
No = 3 (Instances 1, 2, 3)
Information of the whole dataset on the basis of whether play is held or not is given by
I = - probability for Play Yes * log (probability for Play Yes)

- probability for Play No * log (probability for Play No)
Here, probability for play being Yes = (Number of instances for Play Yes/Total number of

instances) = 2/5
And probability for Play being No = (Number of instances for Play No/Total number of instances)

= 3/5
Therefore, I = (-2/5) log (2/5) – (3/5) log(3/5) = 0.97
Let us consider each attribute one by one as a split attribute and calculate the information for

each attribute.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

82 Data Mining and Data Warehousing

Attribute ‘Temperature’

There are three possible values of Temperature attribute, i.e., hot, mild and cool. Let us analyze
each case one by one.

There are 2 instances for temperature hot. Play is never held when the temperature is hot as
shown in 2 instances (1 and 2).

There are 2 instances when temperature is mild. Play is held in case of 1 instance (5) and is not
held in case of 1 instance (3).

There is 1 instance when temperature is cool. Play is held in this case as shown in instance 4.
Given the above values, let us compute the information provided by this attribute. We divide the

dataset into three subsets according to temperature conditions being hot, mild or cool. Computing
information for each case,

 I (Hot) = I (H) = - (0/2) log(0/2) - (2/2) log(2/2) = 0

 I (Mild) = I (M) = - (1/2) log(1/2) - (1/2) log(1/2) = 1.003433

 I (Cool) = I (C) = - (1/1) log(1/1) - (0/1) log(1/1) = 0

Total information for these three sub-trees = probability for temperature hot * I(H) + probability
for temperature mild * I(M) + probability for temperature cool * I(C)

Here, probability for temperature hot = (No of instances for temperature hot/Total no of instances)
= 2/5

And probability for temperature mild = (Number of instances for temperature mild/Total number
of instances) = 2/5

And probability for temperature cool = (Number of instances for temperature cool/Total number
of instances) = 1/5

Therefore, total information for three subtrees = (2/5) I(H) + (2/5) I(M) + (1/5) I(C)
= 0 + (0.4) * (1.003433) + 0
= 0.40137

Attribute ‘Humidity’

There are two possible values of Humidity attribute, i.e., High and Normal. Let us analyze each
case one by one.

There are 3 instances when humidity is high. Play is never held when humidity is high as shown
in case of 3 instances (1, 2 and 3).

There are 2 instances when humidity is normal. Play is always held as shown in case of 2 instances
(4 and 5).

Given the above values, let us compute the information provided by this attribute. We divide
the dataset into two subsets according to humidity conditions being high or normal. Computing
information for each case,

 I (High) = I (H) = -(0/3) log(0/3)-(3/3) log(3/3) = 0

 I (Normal) = I (N) = -(2/2) log(2/2)-(0/2) log(0/2) = 0

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

Classification 83

Total information for these two sub-trees = probability for humidity high * I(H) + probability
for humidity normal * I(N)

Here, probability for humidity high = (Number of instances for humidity high/Total number
of instances) = 3/5

And probability for humidity normal = (Number of instances for humidity normal/Total number
of instances) = 2/5

Therefore, total information for these two sub-trees = (3/5) I(H) + (2/5) I(N) = 0

Attribute ‘Windy’

There are two possible values for this attribute, i.e., true and false. Let us analyze each case one by one.
There are 2 instances when windy is true. On windy days play is held in case of 1 instance (5)

and it is not held in case of another 1 instance (2).
There are 3 instances when windy is false. The play is held in case of 1 instance (4) and is not

held in case of 2 instances (1 and 3).
Given the above values, let us compute the information by using this attribute. We divide the

dataset into two subsets according to windy being true or false. Computing information for each case,

 I (True) = I (T) = - (1/2) log(1/2) - (1/2) log(1/2) = 1.003433

 I (False) = I (F) = - (1/3) log(1/3) - (2/3) log(2/3) = 0.9214486

Total information for these two sub-trees = probability for windy true * I(T) + probability for
windy true * I(F)

Here, the probability for windy true = (Number of instances for windy true/Total number of
instances) = 2/5

And probability for windy false = (Number of instances for windy false/Total number of instances)
= 3/5

Therefore, total information for two sub-trees = (2/5) I(T) + (3/5) I(F)
= 0.40137 + 0.55286818
= 0.954239

The Information gain can now be computed:

Potential Split attribute Information before split Information after split Information gain

Temperature 0.97 0.40137 0.56863

Humidity 0.97 0 0.97

Windy 0.97 0.954239 0.015761

Thus, the largest information gain is provided by the attribute ‘Humidity’ and it is used for the
split. This algorithm can be tuned by stopping when we get the 0 value of information as in this
case to reduce the number of calculations for big datasets. Now, the Humidity attribute is selected
as split attribute as depicted in Figure 5.14.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

84 Data Mining and Data Warehousing

Figure 5.14 Humidity attribute is selected from dataset of Sunny instances

There are two possible values of humidity so data is split into two parts, i.e. humidity ‘high’ and
humidity ‘low’ as shown below.

Dataset for Humidity ‘High’

Instance Number Temperature Windy Play

1 hot false No

2 hot true No

3 mild false No

Again, in this dataset a new column instance number has been introduced for explanation
purposes. For this dataset, we have two input attributes Temperature and Windy. As the dataset
represents the same class ‘No’ for all the records, therefore for Humidity value ‘High’ the output
class is always ‘No’.

Dataset for Humidity ‘Normal’

Instance No Temperature Windy Play

1 cool false Yes

2 mild true Yes

When humidity’s value is ‘Normal’ the output class is always ‘Yes’. Thus, decision tree will look
like as shown in Figure 5.15 after analysis of the Humidity dataset.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

Classification 85

Figure 5.15 Decision tree after spitting of data on Humidity attribute

Now, the analysis of Sunny dataset is over. From the decision tree shown in Figure 5.15, it has
been analyzed that if the outlook is ‘Sunny’ and humidity is ‘normal’ then play is always held while
on the other hand if the humidity is ‘high’ then play is not held.

Let us take next subset which has Outlook as ‘Overcast’ for further analysis.

Dataset for Outlook ‘Overcast’

Instance Number Temperature Humidity Windy Play

1 hot high false Yes

2 cool normal true Yes

3 mild high true Yes

For outlook Overcast, the output class is always ‘Yes’. Thus, decision tree will look like Figure
5.16 after analysis of the overcast dataset.

Figure 5.16 Decision tree after analysis of Sunny and Overcast dataset

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

86 Data Mining and Data Warehousing

Therefore, it has been concluded that if the outlook is ‘Overcast’ then play is always held. Now
we have to select another split attribute for the outlook rainy and subset of the dataset for this is
given below.

Dataset for Outlook ‘Rainy’

Instance Number Temperature Humidity Windy Play

1 Mild High False Yes

2 Cool Normal False Yes

3 Cool Normal True No

4 Mild Normal False Yes

5 Mild High True No

In the above dataset, a new column for instance numbers has again been added for ease of
explanation. This dataset consists of 5 samples having input attributes Temperature, Humidity
and Windy; and the single output attribute Play has two classes, i.e., Yes and No. The frequencies
of these classes are as follows:

Yes = 3 (Instances 1, 2, 4)
No = 2 (Instances 3, 5)
Information of the whole dataset on the basis of whether play is held or not is given by

I = - probability for Play Yes * log (probability for Play Yes)
- probability for Play No * log (probability for Play No)

Here, probability for Play Yes = (Number of instances for Play Yes/Total number of instances) = 3/5
And probability for Play No = (Number of instances for Play No/Total number of instances) = 2/5
Therefore, I = (-3/5) log (3/5) – (2/5) log (2/5) = 0.97428
Let us consider each attribute one by one as split attributes and calculate the information provided

for each attribute.

Attribute ‘Temperature’

There are two possible values of Temperature attribute, i.e., mild and cool. Let us analyze each
case one by one.

There are 3 instances with temperature value mild. Play is held in case of 2 instances (1 and 4)
and is not held in case of 1 instance (5).

There are 2 instances with temperature value cool. Play is held in case of 1 instance (2) and is
not held in case of other instance (3).

Given the above values, let us compute the information provided by this attribute. We divide
the dataset into two subsets according to temperature being mild and cool. Computing information
for each case,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

Classification 87

 I (Mild) = I(M) = - (2/3) log(2/3) - (1/3) log(1/3) = 0.921545

 I (Cool) = I(C) = - (1/2) log(1/2) - (1/2) log(1/2) = 1.003433

Total information for the two sub-trees = probability for temperature mild * I(M) + probability
for temperature cool * I(C)

And probability for temperature mild = (Number of instances for temperature mild/Total number
of instances) = 3/5

And probability for temperature cool = (Number of instances for temperature cool/Total number
of instances) = 2/5

Therefore, total information for three subtrees = (3/5) I(M) + (2/5) I(C)
= 0.552927 + 0.40137
= 0.954297

Attribute ‘Humidity’

There are two possible values of Humidity attribute, i.e., High and Normal. Let us analyze each
case one by one.

There are 2 instances with high humidity. Play is held in case of 1 instance (1) and is not held
in case of another instance (5).

There are 3 instances with normal humidity. The play is held in case of 2 instances (2 and 4) and
is not held in case of single instance (3).

Given the above values, let us compute the information provided by this attribute. We divide
the dataset into two subsets according to humidity being high or normal. Computing information
for each case,

 I (High) = I (H) = - (1/2) log(1/2) - (1/2) log(1/2)= 1.0

 I (Normal) = I (N) = -(2/3) log(2/3)-(1/3) log(1/3)= 0.9187

Total information for the two sub-trees = probability for humidity high * I(H) + probability for
humidity normal * I(N)

Here, probability for humidity high = (Number of instances for humidity high/Total number
of instances) = 2/5

And probability for humidity normal = (Number of instances for humidity normal/Total number
of instances) = 3/5

Therefore, total information for the two sub-trees = (2/5) I(H) + (3/5) I(N)
= 0.4 + 0.5512 = 0.9512

Attribute ‘Windy’

There are two possible values for this attribute, i.e., true and false. Let us analyze each case one by
one.

There are 2 instances where windy is true. Play is not held in case of both of the 2 instances (3
and 5).

For non-windy days, there are 3 instances. Play is held in all of the 3 instances (1, 2 and 4).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

88 Data Mining and Data Warehousing

Given the above values, let us compute the information provided by this attribute. We divide
the dataset into two subsets according to windy being true or false. Computing information for
each case,

 I (True) = I (T) = - (0/2) log(0/2) - (2/2) log(2/2) = 0
 I (False) = I (F) = - (3/3) log(3/3) - (0/3) log(0/3) = 0
Total information for the two sub-trees = probability for windy true * I(T) + probability for

windy false * I(F)
Here, probability for windy true = (Number of instances for windy true/Total number of instances)

= 2/5
And, probability for windy false = (Number of instances for windy false/Total number of

instances) = 3/5
Therefore, total information for the two sub-trees = (2/5) I(T) + (3/5) I(F) = 0
The Information gain can now be computed:

Potential Split
attribute

Information before
split

Information after split Information gain

Temperature 0.97428 0.954297 0.019987

Humidity 0.97428 0.9512 0.02308

Windy 0.97428 0 0.97428

Hence, the largest information gain is provided by the attribute ‘Windy’ and this attribute is
used for the split.

Dataset for Windy ‘TRUE’

Instance Number Temperature Humidity Play

1 cool normal No

2 mild high No

From above table it is clear that for Windy value ‘TRUE’, the output class is always ‘No’.

Dataset for Windy ‘FALSE’

Instance Number Temperature Humidity Play

1 Mild High Yes

2 Cool Normal Yes

3 Mild Normal Yes

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

Classification 89

Also for Windy value ‘FALSE’, the output class is always ‘Yes’. Thus, the decision tree will look
like Figure 5.17 after analysis of the rainy attribute.

Figure 5.17 Decision tree after analysis of Sunny, Overcast and Rainy dataset

We have concluded that if the outlook is ‘Rainy’ and value of windy is ‘False’ then play is held
and on the other hand, if value of windy is ‘True’ then it means that play is not held in that case.

Figure 5.18 represents the final tree view of all the 14 records of the dataset given in Figure 5.11
when it is generated using Weka for the prediction of play on the basis of given weather conditions.
The numbers shown along with the classes in the tree represent the number of instances that are
classified under that node. For example, for outlook ‘overcast’, play is always held and there are total
4 instances in the dataset which agree with this rule. Similarly, there are 2 instances in the dataset
for which play is not held if outlook is rainy and windy is true.

Figure 5.18 Final decision tree after analysis of Sunny, Overcast and Rainy dataset

Suppose, we have to predict whether the play will be held or not for an unknown instance having
Temperature ‘mild’, Outlook ‘sunny’, Humidity ‘normal’ and windy ‘false’, it can be easily predicted
on the basis of decision tree shown in Figure 5.18. For the given unknown instance, the play will
be held based on conditional checks as shown in Figure 5.19.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

90 Data Mining and Data Warehousing

Figure 5.19 Prediction of Play for an unknown instance

5.6.6 Drawbacks of information gain theory

Though information gain is a good measure for determining the significance of an attribute, it
has its own limitations. When it is applied to attributes with a large number of distinct values, a
noticeable problem occurs. For example, while building a decision tree for a dataset consisting of
the records of customers. In this case, information gain is used to determine the most significant
attributes so that they can be tested for the root of the tree. Suppose, customers’ credit card number
is one of the input attributes in the customer dataset. As this input attribute uniquely identifies each
customer, it has high mutual information. However, it cannot be included in the decision tree for
making decisions because not all customers have credit cards and there is also a problem of how to
treat them on the basis of their credit card number. This method will not work for all the customers.

5.6.7 Split algorithm based on Gini Index

The Gini Index is used to represent level of equality or inequality among objects. It can also be used
to make decision trees. It was developed by Italian scientist Corrado Gini in 1912 and was used
to analyze equality distribution of income among people. We will consider the example of wealth
distribution in society in order to understand the concept of the Gini Index. The Gini Index always
ranges between 0 and 1. It was designed to define the gap between the rich and the poor, with 0
signifying perfect equality where all people have the same income while 1 demonstrating perfect
inequality where only one person gets everything in terms of income and rest of the others get nothing.

From this, it is evident that if Gini Index is very high, there will be huge inequality in income
distribution. Therefore, we will be interested in knowing person’s income. But in a society where
everyone has same income then no one will be interested in knowing each other’s income because

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

Classification 91

they know that everyone is at the same level. Thus, the attribute of interest can be decided on the
basis that if attribute has a high value Gini Index then it carriers more information and if it has a
low value Gini Index then its information content is low.

To define the index, a graph is plotted by considering the percentage of income of the population
as the Y-axis and the percentage of the population as the X-axis as shown in Figure 5.20.

Figure 5.20 Gini Index representing perfect equality

In case of total equality in society, 5% of the people own 5% of the wealth, 20% of the people
own 20% of the wealth similarly 90% of people own 90% of wealth. The line at 45 degrees thus
represents perfect equal distribution of income in society.

The Gini Index is the ratio of the area between the Lorenz curve and the 45 degree line to the
area under the 45 degree line given as follows.

 Gini Index (G) = area between the Lorenz curve and the degree line
area u

45 −
nnder the degree line45 −

As shown in Figure 5.21, the area that lies between the line of equality and the Lorenz curve is
marked with A and the total area under the line of equality is represented by (A + B) in the figure.
Therefore,

 G = A
A B+()

Smaller the ratio, lesser is the area between the two curves and more evenly distributed is the
wealth in the society.

The most equal society will be the one in which every person has the same income, making A
= 0, thus making G = 0.

However, the most unequal society will be the one in which a single person receives 100% of
the total wealth thus making B = 0 and G = A/A = 1. From this, we can observe that G always lies
between 0 and 1.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

92 Data Mining and Data Warehousing

Cumulative share of people starting from lower income

Figure 5.21 Lorenz curve

The more nearly equal a country’s income distribution is, the closer is its Lorenz curve to the 45
degree line and the lower is its Gini Index. The more unequal a country’s income distribution is, the
farther is its Lorenz curve from the 45 degree line and the higher is its Gini Index. For example, as
shown in Figure 5.22 (a), the bottom 10% of the people have 90% of total income, therefore Gini
Index will be larger as the area between the equality line and the Lorenz curve is larger because
there is large inequality in income distribution. Similarly, as shown in Figure 5.22 (b), the bottom
20% of the people have 80% of the total income and the bottom 30% of the people have 70% of the
total income is shown in Figure 5.22 (c).

Figure 5.22 Lorenz curves with varying income distributions

From this, it can be concluded that, if income were distributed with perfect equality, the Lorenz
curve would coincide with the 45 degree line and the Gini Index would be zero. However, if income
were distributed with perfect inequality, the Lorenz curve would coincide with the horizontal axis
and the right vertical axis and the index would be 1.

Gini Index can also be calculated in terms of probability and if a dataset D contains instances
from n classes, the Gini Index, G(D), is defined as

 G(D) = 1 – ∑(pi)No. of classes

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

Classification 93

Here, pi is the relative frequency or probability of class i in D. Let us calculate the Gini Index for
tossing an unbiased coin.

G = 1 - (Probability of getting head)No of classes - (Probability of getting tail)No of classes

G = 1 - (0.5)2 - (0.5)2 = 0.5
But if coin is biased having head on both sides, then there is 100% chance of a head and 0%

chance of tail then the Gini Index is:
 G = 1 - (1)2 = 0
As there is no uncertainty about the coin in this case so the index is 0. It is maximum at a value

of 0.5 in case of an unbiased coin. If the coin is biased, such that head occurs 60% of the times. then
the Gini Index is reduced to 0.48.

Similarly we can calculate the Gini Index for a dice with six possible outcomes with equal
probability as

 G = 1 - 6(1/6)2 = 5/6 = 0.833
If the dice is biased, let us say there is 50% chance of getting 6 and remaining 50% is being

shared by other 5 numbers leaving only a 10% chance of getting each number other than 6 then
the Gini Index is

 G = 1 - 5(0.1)2 - (0.5)2 = 0.70

 G = 1 - 5(0.05)2 - (0.75)2 = 0.425
Here, Gini Index has been reduced from 0.833 to 0.70. Clearly, the high value of index means

high uncertainty.
It is important to observe that the Gini Index behaves in the same manner as the information

gain discussed in Section 5.6.4. Table 5.1 clearly shows that same trend in both the cases.

Table 5.1 Information and Gini Index for a number of events

Event Information Gini Index

Toss of a unbiased coin 1.0 0.5

Toss of a biased coin (60% heads) 0.881 0.42

Throw of a unbiased dice 2.585 0.83

Throw of a biased die (50% chance of a 6) 2.16 0.7

5.6.8 Building a decision tree with Gini Index

Let us build the decision tree for the dataset given in Figure 5.23.
It has 3 input attributes X, Y, Z and one output attribute ‘Class’. We have added a new column

for instance numbers for easy explanation. The dataset contains four records and the output attribute
or class can be either A or B.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

94 Data Mining and Data Warehousing

Instance Number X Y Z Class

1 1 1 1 A

2 1 1 0 A

3 0 0 1 B

4 1 0 0 B

X Y Z Class

1 = 3 1 = 2 1 = 2 A = 2

0 = 1 0 = 2 0 = 2 B = 2

Figure 5.23 Dataset for class C prediction based on given attribute condition

The frequencies of the two output classes are given as follows:
A = 2 (Instances 1,2)
B = 2 (Instances 3,4)
The Gini Index of the whole dataset is calculated as follows:

G = 1 - (probability for Class A) No of classes - (probability for Class B) No of classes

Here, probability for class A = (No of instances for class I/Total no of instances) = 2/4
And probability for class B = (No of instances for class II/Total no of instances) = 2/4
Therefore, G = 1 - (2/4)2 –(2/4)2 = 0.5
Let us consider each attribute one by one as split attribute and calculate Gini Index for each

attribute.

Attribute ‘X’

As given in dataset, there are two possible values of X, i.e., 1, 0. Let us analyze each case one by one.
For X = 1, there are 3 instances namely instance 1, 2 and 4. The first two instances are labeled

as class A and the third instance, i.e, record number 4 is labeled as class B.
For X = 0, there is only 1 instance, i.e, instance number 3 which is labeled as class B.
Given the above values, let us compute the Gini Index by using this attribute. We divide the

dataset into two subsets according to X being 1 or 0.
Computing the Gini Index for each case,
 G (X1) = 1 - (2/3)2 - (1/3)2 = 0.44444
 G (X0) = 1 - (0/1)2 - (1/1)2 = 0
Total Gini Index for the two sub-trees = probability for X having value 1 * G(X1) + probability

for X having value 0 * G(X0)
Here, probability for X having value 1 = (Number of instances for X having value 1/Total number

of instances) = 3/4

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

Classification 95

And probability for X having value 0 = (Number of instances for X having value 0/Total number
of instances) = 1/4

Therefore, total Gini Index for two subtrees = (3/4) G(X1) + (1/4) G(X0)
= 0.333333+0
= 0.333333

Attribute ‘Y’

There are two possible values of the Y attribute, i.e., 1 or 0. Let us analyze each case one by one.
There are 2 instances where Y has value 1. In both cases when Y = 1, the record belongs to class

A and in 2 instances when Y = 0 both records belong to class B.
Given the above values, let us compute Gini Index by using this attribute. We divide the dataset

into two subsets according to Y being 1 or 0.
Computing the Gini Index for each case,
 G(Y1) = 1 - (2/2)2 - (0/2)2 = 0
 G(Y0) = 1 - (0/2)2 - (2/2)2 = 0
Total Gini Index for two sub-trees = probability for Y having value 1* G(Y1) + probability for

Y having value 0 * G(Y0)
Here, probability for Y in 1 = (Number of instances for Y having 1/Total number of instances) = 2/4
And probability for Y in 0 = (Number of instances for Y having 0/Total number of instances) = 2/4
Therefore, Total Gini Index for the two sub-trees = (2/4) G(Y1) + (2/4) G(Y0)

= 0 + 0 = 0

Attribute ‘Z’

There are two possible values of the Z attribute, i.e., 1 or 0. Let us analyze each case one by one.
There are 2 instances where Z has value 1 and 2 instances where Z has value 0. In both cases,

there exists a record belonging to class A and class B with Z either being 0 or 1.
Given the above values, let us compute the information by using this attribute. We divide the

dataset into two subsets according to Z conditions, i.e., 1 and 0.
Computing the Gini Index for each case,
 G (Z1) = 1 - (1/2)2 - (1/2)2 = 0.5
 G(Z0) = 1 - (1/2)2 - (1/2)2 = 0.5
Total Gini Index for the two sub-trees = probability for Z having value 1 * G(Z1) + probability

for Z having value 0 * G(Z0)
Here, probability for Z having value 1 = (Number of instances for Z having value 1/Total number

of instances) = 2/4
And probability for Z having value 0 = (Number of instances for Z having value 0/Total number

of instances) = 2/4
Therefore, total information for the two subtrees = (2/4) G(Z1) + (2/4) G(Z0)

= 0.25 + 0.25 = 0.50
The Gain can now be computed:

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

96 Data Mining and Data Warehousing

Potential Split attribute Gini Index before split Gini Index after split Gain

X 0.5 0.333333 0.166667

Y 0.5 0 0.5

Z 0.5 0.50 0

Since the largest Gain is provided by the attribute ‘Y’ it is used for the split as depicted in Figure 5.24.

 Figure 5.24 Data splitting based on Y attribute

There are two possible values for attribute Y, i.e., 1 or 0, and so the dataset will be split into two
subsets based on distinct values of Y attribute as shown in Figure 5.24.

Dataset for Y ‘1’

Instance Number X Z Class

1 1 1 A

2 1 0 A

There are 2 samples records both belonging to class A. Thus, frequencies of classes are as follows:
A = 2 (Instances 1, 2)
B = 0
Information provided by the whole dataset on the basis of class is given by
 I = - (2/2) log (2/2) – (0/2) log(0/2) = 0
As irrespective of value of X and Z both the records belong to class ‘A’ hence for Y = 1 the tree

will classify as class ‘A’ as shown in Figure 5.25.

Figure 5.25 Decision tree after splitting of attribute Y having value ‘1’

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

Classification 97

Dataset for Y ‘0’

Instance Number X Z Class

3 0 1 B

4 1 0 B

Here, for Y having value 0, both records are classified as class ‘B’ irrespective of value of X and
Z. Thus, the decision tree will look like as shown in Figure 5.26 after analysis of the Y = 0 subset.

 Figure 5.26 Decision tree after splitting of attribute Y value ‘0’

Let us consider another example to build a decision tree for the dataset given in Figure 5.27. It
has four input attributes outlook, temperature, humidity and windy. Instance numbers have been
added for easier explanation. Here, ‘Play’ is the class or output attributes and there are 14 records
containing the information if play was held or not, based on weather conditions.

 Instance Number Outlook Temperature Humidity Windy Play

1 sunny hot high false No

2 sunny hot high true No

3 overcast hot high false Yes

4 rainy mild high false Yes

5 rainy cool normal false Yes

6 rainy cool normal true No

7 overcast cool normal true Yes

8 sunny mild high false No

9 sunny cool normal false Yes

10 rainy mild normal false Yes

11 sunny mild normal true Yes

12 overcast mild high true Yes

13 overcast hot normal false Yes

14 rainy mild high true No

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

98 Data Mining and Data Warehousing

Attribute, Values and Counts

Outlook Temperature Humidity Windy Play

sunny = 5 hot = 4 high = 7 true = 6 yes = 9

overcast = 4 mild = 6 normal = 7 false = 8 no = 5

rainy = 5 cool = 4

Figure 5.27 Dataset for play prediction based on given day weather conditions

In this dataset, there are 14 samples and two classes for target attribute Play, i.e., Yes and No.
The frequencies of these two classes are given as follows:

Yes = 9 (Instances 3,4,5,7,9,10,11,12,13 and 14)
No = 5(Instances 1,2,6,8 and 15)
The Gini Index of the whole dataset is given by

G = 1 – (probability for Play Yes)No of classes – (probability for Play No)No of classes

Here, probability for Play Yes = 9/14
And, probability for Play No = 5/14
Therefore, G = 1-(9/14)2 – (5/14)2 = 0.45918
Let us consider each attribute one by one as split attributes and calculate the Gini Index for each

attribute.

Attribute ‘Outlook’

As given in the dataset, there are three possible values of outlook, i.e., Sunny, Overcast and Rainy.
Let us analyze each case one by one.

There are 5 instances for outlook having value sunny. Play is held in case of 2 instances (9 and
11) and is not held in case of 3 instances (1, 2 and 8).

There are 4 instances for outlook having value overcast. Play is held in case of all the 4 instances
(3, 7, 12 and 13).

There are 5 instances for outlook having value rainy. Play is held in case of 3 instances (4, 5 and
10) and is not held in case of 2 instances (6 and 14).

Given the above values, let us compute the Gini Index by using this ‘Outlook’ attribute. We
divide the dataset into three subsets according to outlook being sunny, overcast or rainy. Computing
Gini Index for each case,

 G(Sunny) = G(S) = 1- (2/5)2 - (3/5)2 = 0.48
 G(Overcast) = G (O) = 1 - (4/4)2 - (0/4)2 = 0
 G(Rainy) = G (R) = 1 - (3/5)2 - (2/5)2 = 0.48
Total Gini Index for three sub-trees = probability for outlook Sunny * G(S) + probability for

outlook Overcast * G(O) + probability for outlook Rainy * G (R)
The probability for outlook Sunny = (Number of instances for outlook Sunny/Total number of

instances) = 5/14

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

Classification 99

The probability for outlook Overcast = (Number of instances for outlook Overcast/Total number
of instances) = 4/14

The probability for outlook Rainy = (Number of instances for outlook Rainy/Total number of
instances) = 5/14

Therefore, the total Gini Index for the three sub-trees = (5/14) G(S) + (4/14) G(O) + (5/14) G(R)
= 0.171428+ 0 + 0.171428
= 0.342857

Attribute ‘Temperature’

There are three possible values of the ‘Temperature’ attribute, i.e., Hot, Mild or Cool. Let us analyze
each case one by one.

There are 4 instances for temperature having value hot. Play is held in case of 2 instances (3 and
13) and is not held in case of other 2 instances (1 and 2).

There are 6 instances for temperature having value mild. Play is held in case of 4 instances (4,
10, 11 and 12) and is not held in case of 2 instances (8 and 14).

There are 4 instances for temperature having value cool. Play is held in case of 3 instances (5, 7
and 9) and is not held in case of 1 instance (6).

Given the above values, let us compute the Gini Index by using this attribute. We divide the
dataset into three subsets according to temperature conditions, i.e., hot, mild and cool. Computing
the Gini Index for each case,

 G (Hot) = G (H) = 1 - (2/4)2 - (2/4)2 = 0.50
 G (Mild) = G (M) = 1 - (4/6)2 - (2/6)2 = 0.444
 G (Cool) = G(C) = 1 - (3/4)2 - (1/4)2 = 0.375
Total Gini Index of 3 sub-trees = probability for temperature hot * G(H) + probability for

temperature mild * G(M) + probability for temperature cool * G(C)
Here, probability for temperature hot = (Number of instances for temperature hot/Total number

of instances) = 4/14
And probability for temperature mild = (Number of instances for temperature mild/Total number

of instances) = 6/14
And probability for temperature cool = (Number of instances for temperature cool/Total number

of instances) = 4/14
Therefore, the total Gini Index of the three sub-trees = (4/14) G(H) + (6/14) G(M) + (4/14) G(C)

= 0.44028

Attribute ‘Humidity’

There are two possible values of the ‘Humidity’ attribute, i.e., High and Normal. Let us analyze
each case one by one.

There are 7 instances for humidity having high value. Play is held in case of 3 instances (3, 4 and
12) and is not held in case of 4 instances (1, 2, 8 and 14).

There are 7 instances for humidity having normal value. Play is held in case of 6 instances (5, 7,
9, 10, 11 and 13) and is not held in case of 1 instance (6).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

100 Data Mining and Data Warehousing

Given the above values, let us compute the Gini Index by using this attribute. We divide the
dataset into two subsets according to humidity conditions, i.e., high and normal. Computing Gini
Index for each case,

 G (High) = G(H) =1 - (3/7)2 - (4/7)2 = 0.48979
 G (Normal) = G(N) =1 - (6/7)2 - (1/7)2 = 0.24489
Total Gini Index for the two sub-trees = probability for humidity high* G(H) + probability for

humidity normal * G(N)
Here, probability for humidity high = (Number of instances for humidity high/Total number

of instances) = 7/14
The probability for humidity normal = (Number of instances for humidity normal/Total number

of instances) = 7/14
Therefore, the total Gini Index for two sub-trees = (7/14) G(H) + (7/14) G(N)

= 0.3673439

Attribute ‘Windy’

There are two possible values for this attribute, i.e., true and false. Let us analyze each case one by one.
There are 6 instances for windy having value true. Play is held in case of 3 instances (7, 11 and

12) and is not held in case of another 3 instances (2, 6 and 14).
There are 8 instances for windy having value false. Play is held in case of 6 instances (3, 4, 5, 9,

10 and 13) and is not held in case of 2 instances (1 and 8).
Given the above values, let us compute the Gini Index by using this attribute. We divide the

dataset into two subsets according to windy being true or false. Computing Gini Index for each case,
 G (True) = G(T) = 1 - (3/6)2 - (3/6)2 = 0.5
 G (False) = G(F) = 1 - (6/8)2 - (2/8)2 = 0.375
Total Gini Index for the two sub-trees = probability for windy true * G(T) + probability for

windy false * G(F)
Here, The probability for windy true = (Number of instances for windy true/Total number of

instances) = 6/14
And the probability for windy false = (Number of instances for windy false/Total number of

instances) = 8/14
Therefore, total Gini Index for the two sub-trees = (6/14) G(T) + (8/14) G(F)

= 0.42857
The gain can now be computed as follows:

Potential Split attribute Gini Index before split Gini Index after split Gain

Outlook 0.45918 0.342857 0.116323

Temperature 0.45918 0.44028 0.0189

Humidity 0.45918 0.3673439 0.0918361

Windy 0.45918 0.42857 0.03061

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

Classification 101

Hence, the largest gain is provided by the attribute ‘Outlook’ and it is used for the split as depicted
in Figure 5.28.

Figure 5.28 Selection of Outlook as root attribute

For Outlook, as there are three possible values, i.e., sunny, overcast and rainy, the dataset will be
split into three subsets based on distinct values of the Outlook attribute as shown in Figure 5.29.

Figure 5.29 Data splitting based on Outlook attribute

Dataset for Outlook ‘Sunny’

Instance Number Temperature Humidity Windy Play

1 hot high false No

2 hot high true No

3 mild high false No

4 cool normal false Yes

5 mild normal true Yes

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

102 Data Mining and Data Warehousing

In this case, we have three input attributes Temperature, Humidity and Windy. This dataset
consists of 5 samples. The frequencies of the classes are as follows:

Yes = 2 (Instances 4, 5)
No = 3 (Instances 1,2,3)
The Gini Index of the whole dataset is given by

G = 1 – (probability for Play Yes)Number of classes - (probability for Play No)Number of classes

Here, probability for Play Yes = 2/5
And probability for Play No = 3/5
Therefore, G =1 – (2/5)2 – (3/5)2 = 0.48
Let us consider each attribute one by one as split attributes and calculate the Gini Index for each

attribute.

Attribute ‘Temperature’

There are three possible values of Temperature attribute, i.e., hot, mild and cool. Let us analyze
each case one by one.

There are 2 instances for temperature having value hot. Play is not held in both of 2 instances
(1 and 2).

There are 2 instances for temperature having value mild. Play is held in case of 1 instance (5)
and is not held in case of another instance (3).

There is only 1 instance for temperature having value cool. Play is held in this single instance (4).
Given the above values, let us compute the Gini Index by using this attribute. We divide the

dataset into three subsets according to temperature being hot, mild or cool. Computing Gini Index
for each case,

 G (Hot) = G(H) = 1 - (0/2)2 - (2/2)2 = 0
 G (Mild) = G(M) = 1 -(1/2)2 - (1/2)2 = 0.5
 G (Cool) = G(C) =1 - (1/1)2 - (0/1)2 = 0
Total Gini Index for the three sub-trees = probability for temperature hot * G(H) + probability

for temperature mild * G(M) + probability for temperature cool *G(C)
Here, probability for temperature hot = (Number of instances for temperature hot/Total number

of instances) = 2/5
And probability for temperature mild = (Number of instances for temperature mild/Total number

of instances) = 2/5
And probability for temperature cool = (Number of instances for temperature cool/Total number

of instances) = 1/5
Therefore, total Gini Index for these three sub-trees = (2/5)G(H) + (1/5) G(M) + (2/5) G(C)

= 0 + 0.1 + 0 = 0.1

Attribute ‘Humidity’

There are two possible values of Humidity attribute, i.e., High and Normal. Let us analyze each
case one by one.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

Classification 103

There are 3 instances when humidity is high. Play is not held in any of these 3 instances (1, 2 and 3).
There are 2 instances when humidity is normal. Play is held in both of 2 instances (4 and 5).
Given the above values, let us compute the Gini Index by using this attribute. We divide the dataset

into two subsets according to humidity being high or normal. Computing Gini Index for each case,
 G (High) = G(H) = 1 - (0/3)2 - (3/3)2 = 0
 G (Normal) = G(N) = 1 - (2/2)2 - (0/2)2 = 0
Total Gini Index for the two sub-trees = probability for humidity high * G(H) + probability for

humidity normal * G(N)
Here, probability for humidity high = (Number of instances for humidity high/Total number

of instances) = 3/5
And probability for humidity normal = (Number of instances for humidity normal/Total number

of instances) = 2/5
Therefore, total Gini Index for the two sub-trees = (3/5) G(H) + (2/5) G(N) = 0

Attribute ‘Windy’

There are two possible values for this attribute, i.e., true and false. Let us analyze each case one by one.
There are 2 instances when it is windy. Play is held in case of 1 instance (5) and is not held in

case of another 1 instance (2).
There are 3 instances when it is not windy. Play is held in case of 1 instance (4) and is not held

in case of 2 instances (1 and 3).
Given the above values, let us compute the Gini Index by using this attribute. We divide the

dataset into two subsets according to windy being true or false. Computing Gini Index for each case,
 G (True) = G (T) = 1 - (1/2)2 - (1/2)2 = 0.5
 G (False) = G (F) =1 - (1/3)2 - (2/3)2 = 0.4444
Total Gini Index for the two sub-trees = probability for windy true * G(T) + probability for

windy false * G(F)
Here, probability for windy true = (Number of instances for windy true/Total number of instances)

= 2/5
And probability for windy false = (Number of instances for windy false/Total number of instances)

= 3/5
Therefore, total Gini Index for the two sub-trees = (2/5) G(T) + (3/5) G(F) = 0.2 + 0.2666 = 0.4666
The Gain can now be computed:

Potential Split attribute Gini Index before split Gini Index after split Gain

Temperature 0.48 0.1 0.38

Humidity 0.48 0 0.48

Windy 0.48 0.4666 0.014

The largest gain is provided by the attribute ‘Humidity’ and so, it is used for the split. Here, the
algorithm is to be tuned in such a way that it should stop when we get the 0 value of the Gini Index

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

104 Data Mining and Data Warehousing

to reduce the calculations for larger datasets. Now, the Humidity attribute is selected as the split
attribute as depicted in Figure 5.30.

Figure 5.30 Humidity attribute is selected from dataset of Sunny instances

As the dataset consists of two possible values of humidity so data is split in two parts, i.e. humidity
‘high’ and humidity ‘low’ as shown below.

Dataset for Humidity ‘High’

Instance Number Temperature Windy Play

1 Hot false No

2 Hot true No

3 Mild false No

We can clearly see that all records with high humidity are classified as play having ‘No’
value. On the other hand, all records with normal humidity value are classified as play having
‘Yes’ value.

Dataset for Humidity ‘Normal’

Instance Number Temperature Windy Play

1 cool false Yes

2 mild true Yes

Thus, the decision tree will look like as shown in Figure 5.31 after analysis of the Humidity
attribute.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

Classification 105

Figure 5.31 Decision tree after spitting data on the Humidity attribute

The analysis of the ‘Sunny’ dataset is now over and has allowed the the generation of the decision
tree shown in Figure 5.31. It has been analyzed that if the outlook is ‘Sunny’ and humidity is ‘Normal’
then play will be held while on the other hand if the humidity is ‘high’ then play will not be held.

Now, let us take next dataset of where Outlook has value overcast for further analysis.

Dataset for Outlook ‘Overcast’

Instance Number Temperature Humidity Windy Play

1 hot high false Yes

2 cool normal true Yes

3 mild high true Yes

This dataset consists of 3 records. For outlook overcast all records belong to the ‘Yes’ class only.
Thus, the decision tree will look like Figure 5.32 after analysis of the overcast dataset.

Figure 5.32 Decision tree after analysis of Sunny and Overcast datasets

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

106 Data Mining and Data Warehousing

Therefore, it may be concluded that if the outlook is ‘Overcast’ then play is held. Now we have
to select another split attribute for the outlook rainy and dataset for this is given as follows.

Dataset for Outlook ‘Rainy’

Instance Number Temperature Humidity Windy Play

1 Mild High False Yes

2 Cool Normal False Yes

3 Cool Normal Ttrue No

4 Mild Normal False Yes

5 Mild High True No

This dataset consists of 5 records. The frequencies of the classes are as follows:
Yes= 3 (Instances 1,2 and 4)
No= 2 (Instances 3 and 5)
Gini Index of the whole dataset on the basis of whether play held or not is given by

G = 1 – (probability for Play Yes)Number of classes - (probability for Play No)Number of classes

Here, probability for Play Yes = 3/5
And probability for Play No = 2/5
Therefore, G = 1 – (3/5)2 – (2/5)2 = 0.48
Let us consider each attribute one by one as split attributes and calculate the Gini Index for each

attribute.

Attribute ‘Temperature’

There are two possible values of Temperature attribute, i.e., mild and cool. Let us analyze each
case one by one.

There are 3 instances for temperature having value mild. Play is held in case of 2 instances (1
and 4) and is not held in case of 1 instance (5).

There are 2 instances for temperature having value cool. Play is held in case of 1 instance (2) and
is not held in case of another 1 instance (3).

Given the above values, let us compute the Gini Index by using this attribute. We divide the dataset
into two subsets according to temperature being mild or cool. Computing Gini Index for each case,

 G (Mild) = G(M) =1 - (2/3)2 - (1/3)2 = 0.444
 G (Cool) = G(C) = 1 - (1/2)2 - (1/2)2 = 0.5
Total Gini Index for the two sub-trees = probability for temperature mild * G(M) + probability

for temperature cool * G (C)
Here, probability for temperature mild = (Number of instances for temperature mild/Total

number of instances) = 3/5

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

Classification 107

And probability for temperature cool = (Number of instances for temperature cool/Total number
of instances) = 2/5

Therefore, Total Gini Index for the two sub-trees = (3/5) G(M) + (2/5) G(C) = 0.2666 + 0.2 =
0.4666

Attribute ‘Humidity’

There are two possible values of Humidity attribute, i.e., High and Normal. Let us analyze each
case one by one.

There are 2 instances for humidity having high value. Play is held in case of 1 instance (1) and
is not held in case of 1 instance (5).

There are 3 instances for humidity having normal value. Play is held in case of 2 instances (2 and
4) and is not held in case of 1 instance (3).

Given the above values, let us compute the Gini Index by using this attribute. We divide the
dataset into two subsets according to humidity being high or normal. Computing the Gini Index
for each case,

 G (High) = G(H) = 1 - (1/2)2 - (1/2)2 = 0.5
 G (Normal) = G(N) = 1 - (2/3)2 - (1/3)2 = 0.4444
Total Gini Index for the two sub-trees = probability for humidity high* G(H) + probability for

humidity normal * G(N)
Here, probability for humidity high = (Number of instances for humidity high/Total number

of instances) = 2/5
And probability for humidity normal = (Number of instances for humidity normal/Total number

of instances) = 3/5
Therefore, Total Gini Index for the two sub-trees = (2/5) G(H) + (3/5) G(N) = 0.2 + 0.2666

=0.4666

Attribute ‘Windy’

There are two possible values for this attribute, i.e., true and false. Let us analyze each case one by one.
There are 2 instances where windy is true. Play is not held in case of both of 2 instances (3 and 5).
There are 3 instances where windy is false. Play is held in case of all 3 instances (1, 2 and 4).
Given the above values, let us compute the Gini Index by using this attribute. We divide the dataset

into two subsets according to windy being true or false. Computing the Gini Index for each case,
 G (True) = G(T) = 1 - (0/2)2 - (2/2)2 = 0
 G (False) = G(F) = 1 - (3/3)2 - (0/3)2 = 0
Total Gini Index for the two sub-trees = probability for windy true * G(T) + probability for

windy false * G(F)
Here, probability for windy true = (Number of instances for windy true/Total number of instances)

= 2/5
And probability for windy false = (Number of instances for windy false/Total number of instances)

= 3/5

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

108 Data Mining and Data Warehousing

Therefore, total Gini Index for these two subtrees = (2/5) G(T) + (3/5) G(F) = 0
The Gain can now be computed:

Potential Split attribute Gini Index before split Gini Index after split Gain

Temperature 0.48 0.4666 0.0134

Humidity 0.48 0.4666 0.0134

Windy 0.48 0 0.48

Hence, the largest gain is provided by the attribute ‘Windy’ and it is used for the split. Now, the
Windy attribute is selected as split attribute.

Dataset for Windy ‘TRUE’

Instance Number Temperature Humidity Play

1 cool normal No

2 mild high No

It is clear from the data that whenever it is windy the play is not held. Play is held whenever
conditions are otherwise.

Dataset for Windy ‘FALSE’

Instance Number Temperature Humidity Play

1 mild high Yes

2 cool normal Yes

3 mild normal Yes

Thus, the decision tree will look like Figure 5.33 after analysis of the ’Rainy’ attribute.

Figure 5.33 Decision tree after analysis of Sunny, Overcast and Rainy datasets

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

Classification 109

It has been concluded that if the outlook is ‘Rainy’ and value of windy is ‘False’ then play will be
held and on the other hand, if value of windy is ‘True’ then the play will not be held.

Figure 5.34 represents the final tree view of all the 14 records of the dataset given in Figure 5.27
when it is generated using Weka for the prediction of play on the basis of given weather conditions.
The numbers shown along with the classes in the tree represent the number of instances that are
classified under that node. For example, for outlook overcast, play is always held and there are total
4 instances in the dataset which agree with this rule. Similarly, there are 2 instances in the dataset
for which play is not held if outlook is rainy and windy is true.

Figure 5.34 Final decision tree after analysis of Sunny, Overcast and Rainy datasets

If we have to predict whether play will be held or not for an unknown instance having Temperature
‘mild’, Outlook ‘sunny’, Humidity ‘normal’ and Windy ‘false’, it can be easily predicted on the basis
of decision tree shown in Figure 5.34. For the given unknown instance, play will be held as shown
in Figure 5.35.

Figure 5.35 Prediction of play for unknown instance

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

110 Data Mining and Data Warehousing

5.6.9 Advantages of the decision tree method

The main advantages of a decision tree classifier are as follows:.
	 •	 The	rules	generated	by	a	decision	tree	classifier	are	easy	to	understand	and	use.
	 •	 Domain	knowledge	is	not	required	by	the	decision	tree	classifier.
	 •	 Learning	and	classification	steps	of	the	decision	tree	are	simple	and	quick.

5.6.10 Disadvantages of the decision tree

The disadvantages of a decision tree classifier can be:
	 •	 Decision	trees	are	easy	to	use	compared	to	other	decision-making	models,	but	preparing	decision	

trees, especially large ones with many branches, are complex and time-consuming affairs.
	 •	 They	are	unstable,	meaning	that	a	small	change	in	the	data	can	lead	to	a	large	change	in	the	

structure of the optimal decision tree.
	 •	 They	are	often	relatively	inaccurate.	Many	other	predictors	perform	better	with	similar	data.	
	 •	 Decision	trees,	while	providing	easy	to	view	illustrations,	can	also	be	unmanageable.	Even	data	

that is perfectly divided into classes and uses only simple threshold tests may require a large
decision tree. Large trees are not intelligible, and pose presentation difficulties.

The other important classification technique is the Naïve Bayes Method which is based on Bayes
theorem. The details of Naïve Bayes method have been discussed in next section.

5.7 Naïve Bayes Method

It is based on Bayes theorem given by Thomas Bayes in middle of the eighteenth century. It is
amazing that despite being such an old theorem it has found its way into many modern fields such
as AI and machine learning. Classification using Bayes theorem is different from the decision tree
approach. It is based on a hypothesis that the given data belongs to a particular class. In this theorem
probability is calculated for the hypothesis to be true.

Our understanding of this theorem begins with the fact that the Bayes Theorem in based on
probabilities and so it is important to define some notations in the beginning.

P(A) refers to the probability of occurrence of event A, while P(A|B) refers to the conditional
probability of event A given that event B has already occurred.

Bayes theorem is defined as follows …
 P(A|B) = P(B|A) P(A)/P(B) …(1)
Let us first prove this theorem.
We already know that
 P(A|B) = P(A & B)/P(B) …(2)
[It is the probability that next event will be A when B has already happened]
Similarly, P(B|A) = P (B & A)/P(A) …(3)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

Classification 111

From equation (3):
Thus, P (B & A) = P(B|A) * P(A)
By putting this value of P (B & A) in equation (2), we get ….
 P(A|B) = P(B|A) P(A)/P(B)
This proves the Bayes theorem.
Now let us consider that we have to predict the class of X out of three given classes C1, C2 and

C3. Here, the hypothesis is that event X has already occurred. Thus, we have to calculate P(Ci|X),
conditional probability of class being Ci when X has already occurred.

According to Bayes theorem:
 P(Ci |X) = P(X|Ci) P(Ci)/P(X)
In this equation:
P(Ci|X) is the conditional probability of class being Ci when X has already occurred or it is

probability that X belongs to class Ci.
P(X|Ci) is the conditional probability of record being X when it is known that output class is Ci
P (Ci) is probability that object belongs to class Ci.
P(X) is the probability of occurrence of record X.
Here, we have already made the hypothesis that X has already occurred so P(X) is 1 so we have

to calculate P(X|Ci) and P(Ci) in order to find required value.
To further understand this concept let us consider the following database, where the class of

customer is defined based on his/her marital status, gender, employment status and credit rating
as shown below.

Owns Home Married Gender Employed Credit rating Class

Yes Yes Male Yes A II

No No Female Yes A I

Yes Yes Female Yes B III

Yes No Male No B II

No Yes Female Yes B III

No No Female Yes B I

No No Male No B II

Yes No Female Yes A I

No Yes Female Yes A III

Yes Yes Female Yes A III

Here, we have to predict the class of occurrence of X and let us suppose X is as shown below.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

112 Data Mining and Data Warehousing

Owns Home Married Gender Employed Credit rating Class

Yes No Male Yes A ?

Then we have to calculate the probability for class Ci, when X has already occurred. Thus it is
 P(Ci | Yes, No, Male, Yes, A) = P(Yes, No, Male, Yes, A | Ci) * P (Ci)
Let us first calculate probability of each class, i.e., P(Ci). Here, we have three classes, i.e., I, II

and III. There are total 10 instances in the given dataset and there are three instances for class I,
three for class II and four for class III. Thus,

Probability of class I, i.e., P(I) = 3/10 = 0.3
Probability of class II, i.e., P(II) = 3/10 = 0.3
Probability of class III, i.e., P(III) = 4/10 = 0.4
Now, let us calculate P(X|Ci), i.e., P(Yes, No, Male, Yes, A | Ci)
P(Yes, No, Male, Yes, A | Ci) = P(Owns Home = Yes| Ci) * P(Married = No| Ci) * P(Gender = Male|

Ci) * P(Employed = Yes| Ci) * P (Credit rating = A| Ci)
Thus, we need to calculate
P(Owns Home = Yes|Ci),
P(Married = No| Ci),
P(Gender = Male|Ci),
P(Employed = Yes|Ci),
P (Credit rating = A|Ci).

Owns Home Married Gender Employed Credit rating Class

No No Female Yes A I

No No Female Yes B I

Yes No Female Yes A I

Yes No Male Yes A ? [To be found]

1/3 1 0 1 2/3 Probability of having{Yes, No,
Male, Yes, A} Attribute value

given the risk Class I

Yes Yes Male Yes A II

Yes No Male No B II

No No Male No B II

Yes No Male Yes A ? [To be found]

Contd.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

Classification 113

Owns Home Married Gender Employed Credit rating Class

2/3 2/3 1 1/3 1/3 Probability of having{Yes, No,
Male, Yes, A} Attribute value

given the risk Class II

Yes Yes Female Yes B III

No Yes Female Yes B III

No Yes Female Yes A III

Yes Yes Female Yes A III

Yes No Male Yes A ? [To be found]

1/2 0 0 1 1/2 Probability of having{Yes, No,
Male, Yes, A} Attribute value

given the risk Class III

Thus, P(X|I) = 1/3 * 1 * 0 * 1 * 2/3 = 0
P(X|II) = 2/3 * 2/3 * 1 * 1/3 * 1/3 = 4/81
P(X|III) = 1/2 * 0 * 0 * 1 * 1/2 = 0
P(I | Yes, No, Male, Yes, A) = P(Yes, No, Male, Yes, A | I) * P (I) = 0*0.3 = 0
P(II | Yes, No, Male, Yes, A) = P(Yes, No, Male, Yes, A | II) * P (II) = 4/81*0.3 = 0.0148
P(III | Yes, No, Male, Yes, A) = P(Yes, No, Male, Yes, A | III) * P (III) = 0*0.4 = 0
Therefore, X is assigned to Class II. It is very unlikely in real life datasets that the probability of

class comes out to be 0 as in this example.

5.7.1 Applying Naïve Bayes classifier to the ‘Whether Play’ dataset

Let us consider another example of Naïve Bayes classifier for the dataset shown in Figure 5.36. It
has 4 input attributes outlook, temperature, humidity and windy. Play is the class or output attribute.
These 14 records contain the information if play has been held or not on the basis of any given day’s
weather conditions.

Instance
Number

Outlook Temperature Humidity Windy Play

1 sunny hot high false No

2 sunny hot high true No

3 overcast hot high false Yes

4 rainy mild high false Yes

5 rainy cool normal false Yes

Contd.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

114 Data Mining and Data Warehousing

Instance
Number

Outlook Temperature Humidity Windy Play

6 rainy cool normal true No

7 overcast cool normal true Yes

8 sunny mild high false No

9 sunny cool normal false Yes

10 rainy mild normal false Yes

11 sunny mild normal true Yes

12 overcast mild high true Yes

13 overcast hot normal false Yes

14 rainy mild high true No

Attribute values and counts

Outlook Temperature Humidity Windy Play

sunny = 5 hot = 4 high = 7 true = 6 yes = 9

overcast = 4 mild = 6 normal = 7 false = 8 no = 5

rainy = 5 cool = 4

Figure 5.36 Dataset for play prediction based on a given day’s weather conditions

From this dataset, we can observe that when the outlook is sunny, play is not held on 3 out of
the 5 days as shown in Figure 5.37.

Instance
Number

Outlook Temperature Humidity Windy Play

1 Sunny Hot High False No

2 Sunny Hot High True No

8 Sunny Mild High False No

9 Sunny Cool Normal False Yes

11 Sunny Mild Normal True Yes

Figure 5.37 Probability of whether play will be held or not on a Sunny day

Therefore, it can be concluded that there are 60% chances that Play will not be held when it is
a sunny day.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

Classification 115

The Naïve Bayes theorem is based on probabilities, so we need to calculate probabilities for
each occurrence in the instances. So, let us calculate the count for the each occurrence as shown
in Figure 5.38.

Figure 5.38 Summarization of count calculations of all input attributes

Now, we can calculate the probability of play being held or not for each value of input attribute
as shown in Figure 5.39. For example, we have 2 instances for play not being held when outlook is
rainy and there are in total 5 instances for the outlook attribute where play is not held.

Probability for play no given outlook rainy

 = occurrences of play no. given outlook rainy
total no. of oc

=
ccurrences for play no. for attribute outlook = 2/5 = 0.40

Figure 5.39 Probability of play held or not for each value of attribute

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

116 Data Mining and Data Warehousing

Here, we have to predict the output class for some X. Let us suppose X is as given below.

Outlook Temperature Humidity Windy Play

sunny cool high true ?

Then, we have to calculate probability of class Ci, when X has already occurred. Thus, it is
 P(Ci | sunny, cool, high, true) = P(sunny, cool, high, true | Ci) * P(Ci)
Let us first calculate probability of each class, i.e., P(Ci). Here, we have two classes, i.e., Yes and

No. There are total 14 instances in the given dataset from which 9 instances are for class Yes and
5 for class No. Thus,

Probability of class Yes, i.e., P(Yes) = 9/14=0.64
Probability of class No, i.e., P(No) = 5/14=0.36
Now, let us calculate P(X|Ci), i.e., P(sunny, cool, high, true |Ci)
 P(sunny, cool, high, true|Ci) = P(outlook = sunny|Ci)*P(Temperature
 = cool|Ci)* P(humidity
 = high|Ci) * P(windy = true|Ci)
Therefore, probability of play to be held under these weather conditions is as shown in Figure 5.40.
P(outlook = sunny|Yes) = 0.22
P(Temperature = cool|Yes) = 0.33
P(humidity = high|Yes) = 0.33
P(windy = true|Yes) = 0.33
P(Yes) = 0.64

Figure 5.40 Probability for play ‘Yes’ for an unknown instance

Likelihood of play being held = P(X|Yes) * P(Yes) = 0.22 * 0.33 * 0.33 * 0.33 * 0.64 = 0.0053
Similarly, probability of play not being held under these weather conditions is as shown in Figure

5.41.
P(outlook = sunny|No) = 0.60
P(Temperature = cool|No) = 0.20
P(humidity = high|No) = 0.80
P(windy = true|No) = 0.60
P(No) = 0.36

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

Classification 117

Figure 5.41 Probability for play ‘No’ for an unknown instance

Likelihood of play being held = P(X|No) * P(No) = 0.60 * 0.20 * 0.80 * 0.60 * 0.36 = 0.0206
Now, above calculated likelihoods are converted to probabilities to decide whether the play is

held or not under these weather conditions.
Probability of play Yes = Likelihood for play Yes/(Likelihood for play Yes + Likelihood for play

No) = 0.0053/(0.0053 + 0.0206) = 20.5%
Probability of play No = Likelihood for play No/(Likelihood for play Yes + Likelihood for play

No) = 0.0206/(0.0053 + 0.0206) = 79.5%
From this, we can conclude that there are approximately 80% chances that play will not be

held and 20% chances that play will be held. This makes a good prediction and Naïve Bayes has
performed very well in this case.

But Naïve Bayes has a drawback to understand which, let us consider another example from
this dataset under same weather conditions except that now the outlook is overcast instead of rainy.
The problem here is that there is no instance in the dataset when outlook is overcast and play is No
which indicates that play is always held on overcast day as shown in Figure 5.38. This result about
likelihood of play not being held on overcast days is 0 which causes all the other attributes to be
rejected. Simply put, we can say that play is always being held when outlook is overcast, regardless
of what the other attributes are. The calculations for this are shown in Figure 5.42.

Therefore, likelihood of play not being held under these weather conditions = 0.00 * 0.20 * 0.80
* 0.60 * 0.36 = 0

Figure 5.42 Probability of play not being held when outlook is overcast

However, we may have reached this result because we may not have enough instances in the
dataset especially of cases where play was not held when the outlook was overcast. To solve this
issue, a Laplace estimator is used which simply adds a value of 1 to each count of attribute values.

5.7.2 Working of Naïve Bayes classifier using the Laplace Estimator

After adding 1 to each count of attribute values, the modified values are shown in Figure 5.43.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

118 Data Mining and Data Warehousing

Figure 5.43 Values of attributes after adding Laplace estimator

Now, probability of play being held or not for each modified value of input attribute is recomputed
as shown in Figure 5.44.

Figure 5.44 Probability of play held or not for each modified value of attribute

Now, probability of play whether held or not for the given weather conditions such as Outlook =
overcast, Temperature = cool, Humidity = high, Windy = true can be calculated from the Figure 5.45.

Figure 5.45 Attribute values for given example instance

Likelihood for play Yes = 0.42 * 0.33 * 0.36 * 0.36* 0.64 = 0.0118
Likelihood for play No = 0.13 * 0.25 * 0.71 * 0.57 * 0.36 = 0.0046
Probability of play Yes = 0.0118/(0.0118+0.0046) = 72%
Probability of play No = 0.0046/(0.0118+0.0046) =28%
From this, it can be concluded that instead of 100% chance of play being held whenever outlook

is overcast, we now calculate the probability of 72% for this combination of weather conditions,
which is more realistic.

Thus, the Laplace estimator has been used to handle the case of zero probabilities which commonly
occurs due to insufficient training data.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

Classification 119

5.8 Understanding Metrics to Assess the Quality of Classifiers

The quality of any classifier is measured in terms of True Positive, False Positive, True Negative
and False Negative, Precision, Recall and F-Measure.

To understand this concept, let us first consider the story of boy who shouted ‘Wolf ’ to fool the
villagers. The story goes as follows.

5.8.1 The boy who cried wolf

Once a boy was getting bored and thought of making fools out of fellow villagers. To have some
fun, he shouted out, ‘Wolf!’ even though no wolf was in sight. The villagers ran to rescue him, but
then got angry when they realized that the boy was playing a joke on them. The boy repeated the
same prank a number of times and each time the villagers rushed out. They got angrier when they
found he was joking.

One night, the boy saw a real wolf approaching and shouted ‘Wolf!’. This time villagers stayed
in their houses and the hungry wolf turned the f lock into lamb chops.

Let’s make the following definitions: Here, ‘Wolf ’ is a positive class and ‘No wolf ’ is a negative
class. We can summarize our ‘wolf-prediction’ model using a 2x2 confusion matrix that depicts all
four possible outcomes as shown below.

True Positive (TP):
Reality: A wolf threatened.
Boy said: ‘Wolf.’
Outcome: Boy is a hero.

False Positive (FP):
Reality: No wolf threatened.
Boy said: ‘Wolf.’
Outcome: Villagers are angry at Boy for waking them up.

False Negative (FN):
Reality: A wolf threatened.
Boy said: ‘No wolf.’
Outcome: The wolf ate all the flock.

True Negative (TN):
Reality: No wolf threatened.
Boy said: ‘No wolf.’
Outcome: Everyone is fine.

Now consider a classifier, whose task is to predict whether the image is of a bird or not. In this
case, let us assume, ‘Bird’ is a positive class and ‘Not a Bird’ is a negative class.

Let us suppose we have a dataset of 15,000 images having 6000 images of birds and 9000 images
of anything that is not a bird. The matrix illustrating actual vs. predicted results also known as
confusion matrix is given in Figure 5.46 below.

Results for 15,000 Validation Images

(6000 images are birds, 9000 images are not birds)

Predicted ‘bird’ Predicted ‘not a bird’

Bird 5,450
True Positives

550
False Negatives

Not a Bird 162
False Positives

8,838
True Negatives

Figure 5.46 Confusion matrix for bird classifier

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

120 Data Mining and Data Warehousing

5.8.2 True positive

Those instances where predicted class is equal to the actual class are called as true positive or a true
positive is an outcome where the model correctly predicts the positive class.

For example in the case of our bird classifier, the birds that are correctly identified as birds are
called true positive.

5.8.3 True negative
Those instances where predicted class and actual class are both negative are called as true negative
or a true negative is an outcome where the model correctly predicts the negative class.

For example, in the case of our bird classifier there are images that are not of birds which our
classifier correctly identified as ‘not a bird’ are called true negatives.

5.8.4 False positive
Those instances where predicted class/answer is positive, but actually the instances are negative or
a false positive is an outcome where the model incorrectly predicts the positive class.

For example, in case of our bird classifier there are some images that the classifier predicted as
birds but they were something else. These are our false positives.

5.8.5 False negative
Those instances where predicted class is negative, but actually the instances are positive or a false
negative is an outcome where the model incorrectly predicts the negative class.

For example, in case of our bird classifier there are some images of birds that the classifier did
not correctly recognize as birds. These are our false negatives.

In simple words, predicted ‘bird’ column is considered as Positive and if the prediction is correct
then cell is labeled as true positive, otherwise it is false positive. The column where prediction is
‘not a bird’ is considered as negative and if prediction is correct, the cell is labeled as true negative
otherwise it is false negative as shown in Figure 5.46.

5.8.6 Confusion matrix
Confusion matrix is an N × N table that summarizes the accuracy of a classification model’s
predictions. Here, N represents the number of classes. In a binary classification problem, N = 2. In
simple words, it is a correlation between the actual labels and the model’s predicted labels. One axis
of a confusion matrix is the label that the model predicted, and the other axis is the actual label.

For example, consider a sample confusion matrix for a binary classification problem to predict
if a patient has a tumor or not.

Tumor (predicted) No-Tumor (predicted)

Tumor (actual) 18 (TP) 1 (FN)

No-Tumor (actual) 6 (FP) 452 (TN)

Figure 5.47 Confusion matrix for tumor prediction

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

Classification 121

The confusion matrix shown in Figure 5.47 has 19 samples that actually had tumor, the model
correctly classified 18 as having tumor (18 true positives), and incorrectly classified 1 as not having
a tumor (1 false negative). Similarly, of 458 samples that actually did not have tumor, 452 were
correctly classified (452 true negatives) and 6 were incorrectly classified (6 false positives).

Confusion matrices contain sufficient information to calculate a variety of performance metrics,
including precision, recall and F-Measure. Instead of just looking at overall accuracy, we usually
calculate precision, recall and F-Measure. These metrics give us a clear picture of how well the
classifier performed.

5.8.7 Precision

Precision identifies the frequency with which a model was correct when predicting the positive
class. It is defined as:

 Precision = True Positive
True Positive False Positive+

Or we can say that Precision = True Positives/All Positive predicted. In other words, if we predict
positive then how often was it really a positive instance.

For example, in case of our bird classifier, it refers to the situation where a bird was predicted,
but how often was it really a bird.

For classifier shown in Figure 5.46, the Precision = 5450/(5450 + 162) =5450/5612 =0.9711. In
terms of percentage it is 97.11%.

5.8.8 Recall

Recall identifies out of all the possible positive labels, how many did the model correctly identify?
In simple word, it refers to what percentage of actual positive instances we are able to find.

For example, In case of our bird classifier, it refers what percentage of the actual birds did we find?

So, Recall = True Positive
All actual positive instances = True Positive

True Positive False Negatives+

For classifier shown in Figure 5.46, the Recall = 5450/(5450 + 550) = 5450/6000 = 0.9083 and
in terms of percentage it is 90.83%.

The table below shows both precision and recall for the bird classifier discussed above.

Precision
If we predicted ‘bird’, how often was

it really a bird?

97.11%
(True positives ÷ All Positive Guesses)

Recall
What percentage of the actual birds

did we find?

90.83%
(True positives ÷ Total Bird in Dataset)

In our example of bird classifier, this tells us that 97.11% of the time the prediction was right!
But it also tells us that we only found 90.83% of the actual birds in the dataset. In other words, we
might not find every bird but we are pretty sure about it when we do find one!

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

122 Data Mining and Data Warehousing

Now, let us consider a multi class classifier, where a classifier has to predict one class out of three
classes. Here, we have three classes A, B and C.

Predicted Class

A B C

Actual Class A 25 3 2

B 2 34 5

C 2 3 20

Let’s calculate Precision and Recall for each predicted class.
For Class A
Precision = True Positives/All Positive Predicted
Precision = 25/29
Recall = True Positive/All actual positive instances = 25/30
For Class B
Precision = True Positives/All Positive Predicted
Precision = 34/40
Recall = True Positive/All actual positive instances =34/41
For Class C
Precision = True Positives/All Positive Predicted
Precision = 20/27
Recall = True Positive/All actual positive instances =20/25

5.8.9 F-Measure

In statistical analysis of binary classification, the F-Measure (also known as F-score or F-1 score)
is a measure of a test’s accuracy. It considers both the precision p and the recall r of the test to
compute the score. Here, p is the number of correct positive results divided by the number of all
positive results returned by the classifier, and r is the number of correct positive results divided by
the number of all relevant samples (all samples that should have been identified as positive). The
F1 score is the harmonic average of the precision and the recall, where, an F1 score reaches its best
value at 1 (perfect precision and recall), and its worst at 0.

 F = 2 ⋅
⋅
+

precision recall
precision recall

 Remind Me
 Classification and regression are two main techniques generally used for data analysis. Classification

predicts categorical values, while regression models predict continuous values.
 Classification is further defined as two types that are posteriori classification and priori classification.

Posterior classification is supervised machine learning approach, where classes are already given. On

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

Classification 123

the other hand, priori classification is unsupervised machine learning approach, where classes are not
given.

 Information gain measures the quality of an attribute for predicting the class of each sample of the
training data. The attribute with the highest information gain is selected as the next split attribute.

 Gini Index was developed by Italian scientist Corrado Gini in 1912. It is basically used to represent level
of equality or inequality among objects and it can also be used to develop the decision tree. It always
ranges between 0 and 1.

 Bayes theorem was postulated by Thomas Bayes and the classification system using Bayes theorem is
based on a hypothesis that the given data belongs to a particular class. In this theorem, probability is
calculated for the hypothesis to be true.

 Point Me (Books)
 Han, Jiawei, Micheline Kamber, and Jian Pei. 2011. Data Mining: Concepts and Techniques, 3rd ed.

Amsterdam: Elsevier.
 Gupta, G. K. 2014. Introduction to Data Mining with Case Studies. Delhi: PHI Learning Pvt. Ltd.
 Mitchell, Tom M. 2017. Machine Learning. Chennai: McGraw Hill Education.
 Witten, Ian H., Eibe Frank, Mark A. Hall, and Christopher Pal. 2016. Data Mining: Practical Machine

Learning Tools and Techniques, 4th ed. Burlington: Morgan Kaufmann.

 Connect Me (Internet Resources)
 https://medium.com/machine-learning-101/chapter-1-supervised-learning-and-naive-bayes-

classification-part-2-coding-5966f25f1475
 https://medium.com/machine-learning-101/chapter-3-decision-tree-classifier-coding-ae7df4284e99
 https://www.tutorialspoint.com/data_mining/dm_classification_prediction.htm
 Weka Tutorial 5 - Naive Bayes Classifier By Mark Polczynski

 Test Me
 Answer these questions based on your learning in this chapter.
 1. Suppose you are working on weather prediction, and your weather station makes one of three

predictions for each day’s weather: Sunny, Cloudy or Rainy. You’d like to use a learning algorithm to
predict tomorrow’s weather. Identify the type of problem.

 (a) Classification problem (b) Regression problem
 2. Suppose you are working on stock market prediction, and you would like to predict whether or not a

particular stock’s price will be higher tomorrow than it is today. You want to use a learning algorithm
for this. Identify the type of problem.

 (a) Classification problem (b) Regression problem
 3. Which type of machine learning technique will be used for the following?
 I. Predicting the price of a house.
 II. Predicting the type of a disease.
 III. Predicting tomorrow’s temperature.
 IV. Predicting if tomorrow will be cooler or hotter than today.
 4. During calculation of probability P(C | X) which probability does not play vital role in working of

classifier and why?
 5. High False Negative signifies:
 (a) Good classifier (b) Bad classifier

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

124 Data Mining and Data Warehousing

 6. Let us suppose that there are 200 pages available on Internet for Machine Learning. The search on
this term returns total 210 pages, out of which 190 belongs to Machine Learning, calculate precision
and recall for our algorithm.

 7. What is the formula for calculation of Gini Index and total information?
 8. Draw a decision tree for following database with information theory and Gini Index? Indicate all the

intermediate steps.

Day Temperature Outlook Humidity Windy Play Golf?

07-05 hot sunny high false no

07-06 hot sunny high true no

07-07 hot overcast high false yes

07-09 cool rain normal false yes

07-10 cool overcast normal true yes

07-12 mild sunny high false no

07-14 cool sunny normal false yes

07-15 mild rain normal false yes

07-20 mild sunny normal true yes

07-21 mild overcast high true yes

07-22 hot overcast normal false yes

07-23 mild rain high true no

07-26 cool rain normal true no

07-30 mild rain high false yes

 9. Predict that X will buy the computer or not, for following training database by using Naïve Bayes.
 X= (age = 31...40, income = medium, student = yes, credit-rating = fair)

rec Age Income Student Credit_rating Buys_computer

r1 <=30 High no Fair no

r2 ≤30 High no Excellent no

r3 30…40 High no Fair yes

r4 >40 Medium no Fair yes

r5 >40 Low yes Fair yes

r6 >40 Low yes Excellent no

r7 30…40 Low yes Excellent yes

Contd.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

Classification 125

rec Age Income Student Credit_rating Buys_computer

r8 <=30 Medium no Fair no

r9 <=30 Low yes Fair yes

r10 >40 Medium yes Fair yes

r11 <=30 Medium yes Excellent yes

r12 30…40 Medium no Excellent yes

r13 30…40 high yes Fair yes

r14 >40 Medium no Excellent no

 10. Identify the attribute that will act as the root node of a decision tree to predict golf play for following
database with Gini Index. Indicate all the intermediate steps.

Outlook Wind PlayGolf

rain strong no

sunny weak yes

overcast weak yes

rain weak yes

sunny strong yes

rain strong no

overcast strong no

 11. What is the role of information theory in building the decision tree?
 12. Why is Naïve Bayes called naïve? Explain the working of the NB algorithm by proving the Bayes theorem.
 13. Make a decision tree for the following database using Gini Index. Indicate all intermediate steps.

Example Colour Shape Size Class

1 Red Square Big +

2 Blue Square Big +

3 Red Circle Big +

4 Red Circle Small –

5 Green Square Small –

6 Green Square Big –

 14. What is the major change made in the Naïve Bayes algorithm to improve its performance?
 15. Calculate the information gain when splitting on A and B. Which attribute would the decision tree

induction algorithm choose?

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

126 Data Mining and Data Warehousing

A B Class Lable

T F +

T T +

T T +

T F –

T T +

F F –

F F –

F F –

T T –

T F –

 Calculate the gain in the Gini Index when splitting on A and B. Which attribute would the decision tree
induction algorithm choose?

 16. What is the need of Laplace estimator? Give examples.
 17. Consider the training examples shown in below Table for classification problem.

Gender Car Type Shirt Size Class

M Family Small C0

M Sports Medium C0

M Sports Medium C0

M Sports Large C0

M Sports Extra Large C0

M Sports Extra Large C0

F Sports Small C0

F Sports Small C0

F Sports Medium C0

F Luxury Large C0

M Family Large C1

M Family Extra Large C1

M Family Medium C1

M Luxury Extra Large C1

F Luxury Small C1

Contd.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

Classification 127

F Luxury Small C1

F Luxury Medium C1

F Luxury Medium C1

F Luxury Medium C1

F Luxury Large C1

	 	 •	 		Apply	the	split	algorithm	based	on	information	theory	to	perform	classification	of	the	given	dataset.	
Indicate all intermediate steps properly.

 18. During calculation of P(Ci|X) which probability does not play vital role in working of classifier and why?
 19. At the Krispie Foods factory, cookies are tested for crispness with the following results:

•	 	For	cookies	that	are	really	crispy,	the	test	says	‘Yes’	90%	of	the	time
	 	 •	 	For	cookies	that	are	not	crispy,	the	test	says	‘Yes’	15%	of	the	time	
 Prepare confusion matrix for the above given results.

Answer Keys:
 1. (a) 2. (a)
 3. I. Regression II. Calssification III. Regression IV. Classification
 5. b. 6. Precision = 190/210 Recall = 190/200

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.006
https://www.cambridge.org/core

Chapter Objectives

 To demonstrate the use of the decision tree

 To apply the decision tree on a sample dataset

 To implement a decision tree process using Weka and R

6.1 Building a Decision Tree Classifier in Weka

In this chapter, we will learn how Weka’s decision tree feature helps to classify unknown samples of
a dataset based on its attribute values. When Weka’s decision tree is applied to an unknown sample,
the decision tree classifies the sample into different classes such as Class A, Class B and Class C
as shown in Figure 6.1.

Figure 6.1 Classification using Weka’s decision tree

For example, if we want to predict the class of an unknown sample of a f lower based on the
length and width dimensions of its Sepal and Petal. The first step would be to measure Sepal length
and width and Petal length and width of an unknown f lower and compare these dimensions to
the values of the samples in our dataset of known species. The decision tree algorithm of Weka

Implementing
Classification in Weka and R

6

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.007
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.007
https://www.cambridge.org/core

Implementing Classification in Weka and R 129

will help in creating decision rules to predict the class of unknown f lower automatically as shown
in Figure 6.2.

Figure 6.2 Classification of an unknown sample using Weka’s decision tree

As shown in Figure 6.2, the dimensions of an unknown sample of f lower will be matched with
the rules generated by the decision tree. First, the rules will be matched to determine whether the
sample belongs to Setosa class or not, if yes, the unknown sample will be classified as setosa. If not,
the unknown sample will be checked for being of the Virginica class. If it matches with the conditions
of the Virginica class, it will be labeled as Virginica, otherwise Versicolor. It is important to note
that it would not be simple to create these rules on the basis of the values of single attribute as shown
in Table 6.1. It is clear that for the same Sepal width, the f lower may be of Setosa or Versicolor or
Virginica, making it unclear which species an unknown flower belongs to on the basis of Sepal
width alone. Thus, the decision tree must make its prediction based on all four f lower dimensions.

Table 6.1 Iris dataset sample

Due to such overlaps, the decision tree cannot predict with 100% accuracy the class of f lower,
but can only determine the likelihood of an unknown sample belonging to a particular class. In real
situations the decision tree algorithm works on the basis of probability.

For example, an unknown sample of f lower might be either Setosa, Versicolor or Virginica as
shown in Figure 6.3. The probability of belonging to a particular class depends upon the parameters
of the unknown sample.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.007
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.007
https://www.cambridge.org/core

130 Data Mining and Data Warehousing

Figure 6.3 Working of the decision tree

Weka operates its decision tree with the J4.8 or J48 decision tree learner, which is based on J. Ross
Quinlan’s landmark decision tree program called C4.5. Weka operates this algorithm in Java and the
current version of this algorithm is 4.8, which is why Weka named its decision tree learner as the J48.

6.1.1 Steps to take when applying the decision tree classifier on the Iris
dataset in Weka

The Iris dataset is available in the data folder of Weka for experimentation. We can avail this
dataset by following the path: C:\Program Files\Weka_folder\data [In our case, we have Installed
weka-3-6 in C: drive under Program files folder]. The step-by-step procedure to apply the decision
tree classifier is as follows:
 1. Start Weka Explorer and go to the Preprocess tab.
 2. Under Open File tab, select the data source as given in Figure 6.4

Figure 6.4 Loading the iris.arff file

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.007
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.007
https://www.cambridge.org/core

Implementing Classification in Weka and R 131

 3. Move from the Preprocess tab to the Classify tab. To select the Weka J48 algorithm, click on
Choose. Then follow the path:

 Weka -> classifiers -> trees -> J48

 After selecting J48, click Close to return to the Classify tab as shown in below Figure 6.5.

Figure 6.5 Selecting Weka J48 algorithm

 4. After loading the J48 decision tree, left-click on J48 to open up the Weka Generic Object Editor.
For our first try to build a decision tree, we will accept all of the defaults here, except that we
will change saveInstanceData to true. This will allow us to find out how each iris sample is
classified after building the tree. By clicking More, you can find further information on the
items.

Figure 6.6 Selection of the Weka J48 algorithm

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.007
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.007
https://www.cambridge.org/core

132 Data Mining and Data Warehousing

 5. Select Percentage split from test options as shown in Figure 6.7. Keep default value 66%. It
means 66% records, i.e., 2/3 of records from whole Iris dataset (containing 150 records), will
be used for training purpose and remaining records in the dataset will be used for testing
purpose. Since the Iris dataset has a total of 150 records, 99 records will be used for training
the decision tree model, while the remaining 51 records will be used to test the decision tree.
In other words, the decision tree will be created by examining 99 records of this Iris dataset
and will then be evaluated on the remaining 51 records.

Figure 6.7 Selection of percentage split test option

Figure 6.8 Saving output predictions

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.007
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.007
https://www.cambridge.org/core

Implementing Classification in Weka and R 133

 In order to choose random 99 records for training the system, it is important to unselect
preserve order for % split as shown in below Figure 6.8; otherwise the system will consider
first 99 records for training and last 51 records for testing.

 Recall that in our original Fisher’s Iris Dataset, all the Setosa samples were at the top of the
dataset, the VVersicolor samples were in the middle, and the virginica samples were all at the
end as shown in Figure 6.9.

Figure 6.9 Original Fisher’s Iris dataset

 Also, note that 1/3 of the samples were Setosa, 1/3 Versicolor, and 1/3 Virginica. Morever, we
also specified that Weka is to use 2/3 of the samples to train the classifier, and 1/3 to test the
classifier after training is completed. But when Weka splits the original dataset into training
and test datasets, we need to have a mixture of species in the training set and also in the test
set. If we select Preserve order for % Split, then the training dataset will have only Setosa and
Versicolor samples, and the test set would have only Virginica. Regardless of how J48 works,
it is obvious that this situation will result in a poor quality decision tree.

 6. Now we are ready to run the J48 decision tree learner. Click Start on the Classify tab as shown
in Figure 6.10. The Classifier output box shows the results of classification. The portion of
the Classifier output box seen here verifies that we have analyzed the correct dataset.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.007
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.007
https://www.cambridge.org/core

134 Data Mining and Data Warehousing

Figure 6.10 Building the decision tree

The classifier’s accuracy statistics can be found in the classifier output section as shown in Figure
6.11.

Figure 6.11 Decision tree accuracy statistics [see colour plate]

 7. To see the tree, right-click on the highlighted Result list entry for the tree we just built, and
then click Visualize tree as shown in Figure 6.12.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.007
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.007
https://www.cambridge.org/core

Implementing Classification in Weka and R 135

Figure 6.12 Visualization of the tree

 8. Finally, we have our long-awaited decision tree for our Fisher’s Iris Dataset. As given in Figure
6.13 you can see that it is quite easy to read.

Figure 6.13 Decision tree for the Iris dataset

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.007
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.007
https://www.cambridge.org/core

136 Data Mining and Data Warehousing

6.1.2 Understanding the confusion matrix

There are a total of 51 instances for which we have tested using J48. Of these, the confusion matrix
shown in Figure 6.14, tells us that us that J48 properly classified 15 Setosa, 19 Versicolor and 15
Virginica. However it classified incorrectly, 2 Virginica as Versicolor as shown in Figure 6.14.

Figure 6.14 Confusion matrix [see colour plate]

6.1.3 Understanding the decision tree

Examining the decision tree created by Weka leads us to the following conclusions:
	 •	 Starting	at	the	top	of	the	tree,	it	says	that	if	Petal	width	is	less	than	or	equal	to	0.6	cm,	then	

the Iris species is Setosa as shown in Figure 6.15.

Figure 6.15 Decision tree showing condition for Setosa

	 •	 Next,	we	see	that	if	Petal	width	is	>	0.6	cm,	and	also	>	1.7	cm,	then	the	Iris	is	Virginica	as	
shown in Figure 6.16.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.007
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.007
https://www.cambridge.org/core

Implementing Classification in Weka and R 137

Figure 6.16 Decision tree showing conditions for Virginica

	 •	 Now,	if	Petal	width	is	>	0.6	cm,	and	Petal	width	is	<=	1.7	cm,	we	check	Petal	length.	If	Petal	
length is <= 4.9 cm, the Iris is Versicolor as shown in Figure 6.17.

Figure 6.17 Decision tree showing condition for Versicolor

	 •	 However,	if	Petal	length	is	>	4.9	cm,	we	go	back	to	checking	Petal	width.	Now,	if	Petal	width	
is <= 1.5 cm, the Iris is Virginica, otherwise it is Versicolor.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.007
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.007
https://www.cambridge.org/core

138 Data Mining and Data Warehousing

6.1.4 Reading decision tree rules

Weka also produces the decision tree structure in terms of rules. Scroll through the Classifier output
box on the Classify tab to find the rules that govern the tree as shown in Figure 6.18.

Figure 6.18 Rules identified by the decision tree

Suppose we have an unknown iris with Petal width of 1.6 cm, and Petal length of 5.0 cm. Well,
Petal width is > 0.6 cm, and Petal width is <= 1.7 cm. Also, Petal length is > 4.9 cm, and Petal width
is > 1.5 cm. So, the Iris is Versicolor according to the rules as shown in Figure 6.19.

Figure 6.19 Classification of an unknown sample according to decision tree rules

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.007
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.007
https://www.cambridge.org/core

Implementing Classification in Weka and R 139

6.1.5 Interpreting results

We see that the tree has 5 leaves, and that the total size of the tree is 9 elements as shown in Figure
6.20.

Figure 6.20 Size and leaves of the tree [see colour plate]

6.1.6 Using rules for prediction

The rules shown in Figure 6.18 can be coded into any programming language such as Java, C++, C#,
Python and others, and can be used to predict the class of unknown samples. A GUI can be built
consisting of text boxes for receiving values of input attributes and a button, namely predict, can be
created such that clicking on it will help in displaying the output after applying decision tree rules
on input attributes. Thus, we will be able to build applications such as sentiment analysis, financial
analysis, agriculture, placement prediction of students and match prediction and such, from the
rules built by the decision tree classifier.

6.2 Applying Naïve Bayes

To apply Naïve Bayes on any given dataset, the following steps need to be taken:
 1. Start Weka Explorer and go to the Preprocess tab.
 2. Now select the Open file tab and select the weather.nominal.arff as given in Figure 6.21.
 3. Now select the Classify tab and choose Naivebayes classifier as shown in Figure 6.22.
 4. Click on More Options button and set options in classifier evaluation options as given in Figure

6.22.
 5. Select Use Training Set option as given in Figure 6.22.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.007
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.007
https://www.cambridge.org/core

140 Data Mining and Data Warehousing

Figure 6.21 Selecting dataset file

Figure 6.22 Selecting the classifier and setting classifier evaluation options

 6. Click on Start button
 After the processing, the output will appear as shown in Figure 6.23, where it shows that the

correctly classified instances are 13 and incorrect instance is 1 and the overall result is 92.8571%.
The incorrect instance is shown in the above figure as a plus (+) symbol in the error column
and is the 6th instance.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.007
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.007
https://www.cambridge.org/core

Implementing Classification in Weka and R 141

Figure 6.23 Classifier results after processing

This result also shows that the Naïve Bayes classifier of Weka has automatically applied a Laplace
estimator as shown in the modified count as given in Figure 6.24.

Figure 6.24 Naïve Bayes classifier with Laplace estimator

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.007
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.007
https://www.cambridge.org/core

142 Data Mining and Data Warehousing

6.3 Creating the Testing Dataset

To test the classifier on unknown instance(s) we have to create the test data. In this section, a process
has been illustrated to create a test dataset from an existing dataset.

In order to create test instance(s) follow the following steps.
 1. Click on tool option in menu tab and select ArffViewer as shown in Figure 6.25.

Figure 6.25 Selecting ArffViewer option

 2. Now click on File → Open → then select the file weather.nominal.arff as shown in Figure
6.26.

Figure 6.26 Opening the arff file

 3. Select all of the records in ArffViewer except one record because we wish to keep that as a
testing record instance. In case you want to have n records as testing dataset then select all the
records except first n records.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.007
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.007
https://www.cambridge.org/core

Implementing Classification in Weka and R 143

 4. Click on Edit → Delete Instances as shown in Figure 6.27.

Figure 6.27 Selecting and deleting the rows

 5. Now change the values of one record and set it according to values that we want to have for the
testing record by using the drop down option for setting the value of the attributes as shown
in Figure 6.28.

Figure 6.28 Setting the values of the testing record

 6. Keep the class attribute blank because we wish to predict its values by the classifier as shown
in Figure 6.29.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.007
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.007
https://www.cambridge.org/core

144 Data Mining and Data Warehousing

Figure 6.29 Setting class attribute to blank

 7. After changing the values of row(s), Save the file as test.arff as shown in Figure 6.30.

Figure 6.30 Saving the test.arff file

 8. Now move to Preprocess tab and click on Open file option and select the weather.nominal.arff
file as shown in Figure 6.31.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.007
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.007
https://www.cambridge.org/core

Implementing Classification in Weka and R 145

Figure 6.31 Opening the weather.nominal.arff file

 9. Select the Classify tab and choose NaiveBayes Classifier.
 10. Click on the Start button, it will build the classifier as shown in Figure 6.32.

Figure 6.32 Building the Naïve Bayes classifier

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.007
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.007
https://www.cambridge.org/core

146 Data Mining and Data Warehousing

 11. Now select the Supplied test set option and click on the Set button as shown in Figure 6.33.
 12. Then Open File → select test.arff file. Once the test file has been selected, it will show details

about file, i.e., name of relation, number of attribute and instances, etc. as shown in Figure 6.33.

Figure 6.33 Supplying test dataset for predicting the value of known instance(s)

 13. Now click on the Start button and apply the classifier on test instance(s). In this case, classifier
has predicted an unkown instance as Play: Yes as shown in Figure 6.34.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.007
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.007
https://www.cambridge.org/core

Implementing Classification in Weka and R 147

In your case, the predicted value may be different as it depends upon the values of attributes set
during the creation of the test dataset.

Figure 6.34 Predicting the value of an unknown sample as Play: Yes

Now, let us apply the J48 classifier on this test dataset to verify whether it shows the same
prediction or not by performing the following steps.
 1. Change the classifier to J48 by using following steps.
 Click on Choose → Weka → classifiers → trees → J48
 2. Select the Use Training Set option and click on Start button to build the J48 classifier as shown

in Figure 6.35.

Figure 6.35 Building J48 on the training dataset

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.007
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.007
https://www.cambridge.org/core

148 Data Mining and Data Warehousing

 3. Now select the supplied test set option and select the test dataset as test.arff and then click on
the start button to apply J48 on the test dataset as shown in Figure 6.38. You can verify that J48
has also predicted the value of Play as Yes, which is the same as in the Naïve Bayes Classifier.
However, J48 is surer about its prediction as compared to Naïve Bayes as it predicted with the
probability of 1.0 while Naïve Bayes predicted the same with probability of 0.824. You can
find these values in the output as shown in Figure 6.36 and Figure 6.38.

Figure 6.36 Predicting the value of an unknown sample as Play: Yes by J48

6.4 Decision Tree Operation with R

Decision trees in R can be implemented using different packages. Here, we are using the ‘party’
package to operate the decision tree on the Iris dataset. The function ‘ctree’ has been used to build
a decision tree on the Iris dataset as given below.

> library(party) # Load package party
>
> target = Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width
>
> cdt <- ctree(target, iris) #Build tree
>
> table(predict(cdt), iris$Species) # Create confusion matrix

As given above, first load the ‘party’ package to build the decision tree. In the next line, the
‘target’ variable specifies that Species is the class variable and all other variables are independent
variables. Function ctree() provides some parameters, such as MinSplit, MinBusket, MaxSurrogate
and MaxDepth, to control the training of decision trees. Here, we have used the default settings
such as it takes two parameters such as the ‘target’ variable and the dataset on which it will train the

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.007
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.007
https://www.cambridge.org/core

Implementing Classification in Weka and R 149

decision tree. In this example, we have used the Iris dataset. In the next line, the predict () function
is used to check the prediction on trained data itself. Function table () creates the confusion matrix
and misclassification errors.

Figure 6.37 shows the operation of the decision tree in R. After applying the decision tree, the
confusion matrix helps in summarizing the results of testing the algorithm for further inspection.
For the Iris dataset, we have a total of 50 Setosa, 50 Versicolor and 50 Virginica. In the confusion
matrix, horizontal rows represent the actual classification and vertical columns show the prediction done
by the system. Here, the confusion matrix tells us that decision tree properly classified 50 Setosa,
49 Versicolor and 45 Virginica. However, it classified 1 Versicolor as Virginica and 5 Virginica as
Versicolor.

Figure 6.37 Implementation of the decision tree in R [see colour plate]

> cdt #To display decision tree rules

The rules based on which the decision tree is trained using the ctree () function can be checked
by just typing the variable name at the console of R. In the above example, we have stored the rules
in the ‘cdt’ variable.

Figure 6.38 shows the rules based on which classification has been performed by the decision tree.

Figure 6.38 Decision tree rules in R

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.007
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.007
https://www.cambridge.org/core

150 Data Mining and Data Warehousing

> plot(cdt, type=”simple”) #Plotting of decision tree

The decision tree can be plotted using the plot () function by passing the results of the built
decision tree as an argument as shown in Figure 6.39. The ‘type’ parameter is optional.

Figure 6.39 Plotting the decision tree

Training and testing of the dataset

Earlier, we trained the whole dataset to implement the decision tree. In this section, suppose we
want to train the decision tree on approximately 2/3 of the samples of the dataset and test the built
decision tree on the remaining samples. For example, in this case, the dataset has been trained on
99 instances and tested on the remaining 51 samples out of 150 samples in total.

> library(party)
>
> indexes = sample(150, 99) #select ~2/3 of the instances of iris dataset
>
> iris _ train = iris[indexes,] # training of instances
>
> iris _ test = iris[-indexes,] #testing of instances
>
> target = Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width
>
> cdt <- ctree(target, iris _ train) #Training of decision tree
>
> table(predict(cdt, newdata=iris _ test), iris _ test$Species) # testing of dataset

First of all, load the ‘party’ package. Then split the samples into training and testing dataset.
For this, we used the sample () function. This function takes a sample of the specified size from
the elements of x either with or without replacement. In our case, we selected the 99 samples out
of 150 samples in ‘indexes’ variable. Then, we used this ‘indexes’ variable to retrieve training and
testing dataset. Iris[indexes,] indicates that the random indexes selected by sample () are retrieved
from the Iris dataset and ‘-’ sign indicates that the remaining samples retrieved from iris dataset are
stored for testing. Similarly as previously discussed, the tree is built using the ctree() function and
tested on the test dataset as shown in Figure 6.40.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.007
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.007
https://www.cambridge.org/core

Implementing Classification in Weka and R 151

Figure 6.40 Prediction by the decision tree on testing dataset [see colour plate]

> summary(iris _ test) #To print summary of results

Function summary () shows the results of dataset passed as argument. Figure 6.25 shows the
summary about the testing dataset. It shows that the testing dataset consists of 14 Setosa, 19
Versicolor and 17 Virginica. When we tested this dataset, it was observed that the decision tree
properly classified 14 Setosa, 19 Versicolor and 16 Virginica. However, it classified 1 Virginica as
Versicolor as shown in Figure 6.41.

Figure 6.41 Summary of testing the dataset

6.5 Naïve Bayes Operation using R

Naïve Bayes in R can be implemented using different packages. Here, we are using the ‘e1071’
package to implement Naïve Bayes on a weather dataset. The e1071 package contains the Naïve
Bayes function. It allows numeric and factor variables to be used in the Naïve Bayes model. If the
package ‘e1071’ is not installed, then first install the package using the following command.

> install.packages(“e1071”) ##Installation of package “e1071”

After installation, load the package using the ‘library’ command given as follows.
> library(“e1071”) ##Load the package “e1071”

Then, the ‘Weather’ dataset may be employed to illustrate how the Naïve Bayes classification
can be performed in R. After loading, convert the dataset into a data frame

> library(“e1071”) ##Load the package “e1071”
> data<-read.csv(“F:\\dataset\\weather.csv”,header=TRUE) ##Load the .csv file of dataset
> weather _ df=as.data.frame(data) #Conversion of dataset into data frame

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.007
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.007
https://www.cambridge.org/core

152 Data Mining and Data Warehousing

The following command displays the instances of dataset as shown in Fig. 6.42.
> weather _ df #To display instances of weather dataset

Figure 6.42 Instances of Weather dataset

After applying the Naïve Bayes function on weather dataset, the results obtained are shown in
Figure 6.43.

> Naive _ Bayes _ Model=naiveBayes(play ~., data=weather _ df)
> Naive _ Bayes _ Model

Figure 6.43 Results of Naïve Bayes on Weather dataset

After applying Naïve Bayes, a confusion matrix can be created which helps in summarizing the
results of testing the algorithm for further inspection using the following commands. The confusion
matrix is shown in Figure 6.44.

> NB _ Predictions=predict(Naive _ Bayes _ Model,weather _ df)
> table(NB _ Predictions,weather _ df$play, dnn=c(“Prediction”,”Actual”))

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.007
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.007
https://www.cambridge.org/core

Implementing Classification in Weka and R 153

Figure 6.44 The confusion matrix

For the weather dataset, we have a total of 14 instances. Out of which, there are 9 instances that
specify that play will be held in the given weather conditions and 5 instances that specify that play
will not be held. Here, the confusion matrix tells us that Naïve Bayes properly classified 9 instances
for play to be held and 4 instances for play not to be held. However, it classified 1 instance of play
into the ‘Yes’ class that actually belongs to the ‘No’ play class.

The Naive Bayes function includes the Laplace parameter. Whatever positive integer this is set
to will be added into for every class. In this example, we set the Laplace parameter to 1 as given in
the following commands.

> nb _ laplace1 <- naiveBayes(play~., data=weather _ df, laplace=1)
> laplace1 _ pred <- predict(nb _ laplace1, weather _ df, type=”class”)
> table(laplace1 _ pred, weather _ df$play,dnn=c(“Prediction”,”Actual”))

Acknowledgement

We acknowledge the consent of Mr Mark Polczynski to use the ideas and illustration given in his
Weka Tutorial 3 - Classification Using the Decision Tree.

 Remind Me
 J48 is used in Weka to apply classification.
 This algorithm can be applied in Weka by selecting Weka–>classifiers–>trees–>J48
 Select Percentage split from test options to use 2/3 of records for training and remaining for testing.
 To see the tree, right-click on the highlighted Result list entry for the tree we just built, and then click

Visualize tree.
 Decision tree in R can be implemented using the ‘party’ package.
 The function ‘ctree’ can be used to build the decision tree
 The predict () function is used to check the prediction on trained data itself.
 The table () creates the confusion matrix and misclassification errors.
 The decision tree can be plotted using the plot () function
 The sample () function can be used to split the samples into training and testing datasets.
 Function summary () shows the results of dataset passed as argument.

 Point Me (Books)
 Witten, Ian H., Eibe Frank, and Mark A. Hall. 2010. Data Mining: Practical Machine Learning Tools and

Techniques, 3rd ed. Amsterdam: Elsevier.
 Lesmeister, Cory. 2015. Mastering Machine Learning with R. Birmingham: Packt Publishing Ltd.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.007
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.007
https://www.cambridge.org/core

154 Data Mining and Data Warehousing

 Connect Me (Internet Resources)
 http://technobium.com/decision-trees-explained-using-weka/
 http://www.cs.miami.edu/home/geoff/Courses/COMP6210-10M/Content/DecisionTrees.shtml
 https://machinelearningmastery.com/how-to-run-your-first-classifier-in-weka/
 http://kt.ijs.si/PetraKralj/IPS_DM_0910/HandsOnWeka-Part1.pdf
 http://art.uniroma2.it/basili/MLWM09/002_DecTree_Weka.pdf
 https://www.cs.cmu.edu/afs/cs/academic/class/15381-s07/www/slides/041007decisionTrees1.pdf
 http://www.cs.ukzn.ac.za/~hughm/dm/content/slides06.pdf

 Do It Yourself
 1. The purpose of this assignment is to verify that you have learnt the concepts of classification. Implement

this assignment in both Weka and R to check your learning.
 Task 1. Go to http://www3.dsi.uminho.pt/pcortez/wine/ and download WineQuality.zip.
 Task 2. Unzip the folder and read WineQuality.pdf.
 Task 3. Convert WineQuality.xls file to .csv format and save as WineQuality.csv.
 Task 4. Open WineQuality.csv in Weka Explorer.
 Task 5. Save as WineQuality.arff (do not overwrite WineQuality.arff).
 Task 6. Using the “Visualize All” button, display histograms of all attributes on one screen.
 Task 7. Using all the default settings, apply the J48 classifier to the dataset.
 Task 8. Cut and paste a screenshot of the resulting confusion matrix on the following designated slide.
 Task 9. Perform the decision tree classification on the same dataset in R language.
 2. Why is J48 called J48? Justify your answer.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.007
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.007
https://www.cambridge.org/core

Chapter Objectives
 To comprehend the concept of clustering, its applications, and features.

 To understand various distance metrics for clustering of data.

 To comprehend the process of K-means clustering.

 To comprehend the process of hierarchical clustering algorithms.

 To comprehend the process of DBSCAN algorithms.

7.1 Introduction to Cluster Analysis

Generally, in the case of large datasets, data is not labeled because labeling a large number of
records requires a great deal of human effort. The unlabeled data can be analyzed with the help
of clustering techniques. Clustering is an unsupervised learning technique which does not require
a labeled dataset.

Clustering is defined as grouping a set of similar objects into classes or clusters. In other words,
during cluster analysis, the data is grouped into classes or clusters, so that records within a cluster
(intra-cluster) have high similarity with one another but have high dissimilarities in comparison to
objects in other clusters (inter-cluster), as shown in Figure 7.1.

The similarity of records is identified on the basis of values of attributes describing the objects.
Cluster analysis is an important human activity. The first human beings Adam and Eve actually
learned through the process of clustering. They did not know the name of any object, they simply
observed each and every object. Based on the similarity of their properties, they identified these
objects in groups or clusters. For example, one group or cluster was named as trees, another as fruits
and so on. They further classified the fruits on the basis of their properties like size, colour, shape,
taste, and others. After that, people assigned labels or names to these objects calling them mango,
banana, orange, and so on. And finally, all objects were labeled. Thus, we can say that the first

Cluster Analysis

7

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

156 Data Mining and Data Warehousing

human beings used clustering for their learning and they made clusters or groups of physical objects
based on the similarity of their attributes.

Figure 7.1 Characteristics of clusters

7.2 Applications of Cluster Analysis

Cluster analysis has been widely used in various important applications such as:
	 •	 Marketing:	It	helps	marketers	find	out	distinctive	groups	among	their	customer	bases,	and	

this knowledge helps them improve their targeted marketing programs.
	 •	 Land	use:	Clustering	is	used	for	identifying	areas	of	similar	land	use	from	the	databases	of	

earth observations.
	 •	 Insurance:	Clustering	is	helpful	for	recognizing	clusters	of	insurance	policyholders	with	a	high	

regular claim cost.
	 •	 City-planning:	It	also	helps	in	identifying	clusters	of	houses	based	on	house	type,	geographical	

location, and value.
	 •	 Earthquake	studies:	Clustering	is	helpful	for	analysis	of	earthquakes	as	it	has	been	noticed	

that earthquake epicenters are clustered along continent faults.
	 •	 Biology	studies:	Clustering	helps	in	defining	plant	and	animal	classifications,	identifying	genes	

with similar functionalities, and in gaining insights into structures inherent to populations.
	 •	 Web	discovery:	Clustering	is	helpful	in	categorizing	documents	on	the	web	for	information	

discovery.
	 •	 Fraud	detection:	Clustering	is	also	helpful	in	outlier	detection	applications	such	as	credit	card	

fraud detection.

7.3 Desired Features of Clustering

The desired feature of an ideal clustering technique is that intra-cluster distances should be minimized
and inter-cluster distances should be maximized. Following are the other important features that
an ideal cluster analysis method should have:
	 •	 Scalability: Clustering algorithms should be capable of handling small as well as large datasets

smoothly.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

Cluster Analysis 157

 •	 Ability to handle different types of attributes: Clustering algorithms should be able to handle
different kinds of data such as binary, categorical and interval-based (numerical) data.

	 •	 Independent of data input order: The clustering results should not be dependent on the ordering
of input data.

	 •	 Identification of clusters with different shapes: The clustering algorithm should be capable of
identifying clusters of any shape.

	 •	 Ability to handle noisy data: Usually, databases consist of noisy, erroneous or missing data, and
algorithm must be able to handle these.

	 •	 High performance: To have a high performance algorithm, it is desirable that the algorithm
should need to perform only one scan of the dataset. This capability would reduce the cost of
input-output operations.

	 •	 Interpretability: The results of clustering algorithms should be interpretable, logical and usable.
	 •	 Ability to stop and resume: For a large dataset, it is desirable to stop and resume the task as it

can take a huge amount of time to accomplish the full task and breaks may be necessary.
	 •	 Minimal user guidance: The clustering algorithm should not expect too much supervision from

the analyst, because commonly the analyst has a limited knowledge of the dataset.
In clustering, distance metrics play a vital role in comprehending the similarity between the

objects. In the next section, we will discuss different distance metrics that play an important role
in the process of clustering of objects.

7.4 Distance Metrics

A distance metric is a function d(x, y) that specifies the distance between elements of a set as a
non-negative real number. Two elements are equal under a particular metric if the distance between
them is zero. Distance functions present a method to measure the closeness of two elements. Here,
elements can be matrices, vectors or arbitrary objects and do not necessarily need to be numbered.

In the following subsections, important distance metrics used in the measuring similarity among
objects have been illustrated.

7.4.1 Euclidean distance

Euclidean distance is mainly used to calculate distances. The distance between two points in the
plane with coordinates (x, y) and (a, b) according to the Euclidean distance formula is given by:

 Euclidean dist((x, y), (a, b)) = √(x - a)² + (y - b)²

For example, the (Euclidean) distance between points (-2, 2) and (2, -1) is calculated as
 Euclidean dist((-2, 2), (2, - 1)) = √(-2 - (2))² + (2 - (-1))²
 = √(-4)² + (3)²
 = √16 + 9
 = √25
 = 5

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

158 Data Mining and Data Warehousing

Let’s find the Euclidean distance among three persons to find the similarities and dissimilarities
among them, on the basis of two variables. The data is given in Table 7.1.

Table 7.1 Data to calculate Euclidean distances among three persons

Variable 1 Variable 2

Person 1 30 70

Person 2 40 54

Person 3 80 50

Using the formula of Euclidean distance, we can calculate the similarity distance among persons.
The calculation for the distance between person 1 and 2 is:
 Euclidean dist((30, 70), (40, 54)) = √(30 - 40)² + (70 - 54)²
 = √(- 10)² + (16)²
 = √100+256
 = √356
 = 18.86
The calculation for the distance between person 1 and 3 is:
 Euclidean dist((30, 70), (80, 50)) = √(30 - 80)² + (70 - 50)²
 = √(- 50)² + (20)²
 = √2500 + 400
 = √2900
 = 53.85
The calculation for the distance between person 2 and 3 is:
 Euclidean dist((40, 54), (80, 50)) = √(40 - 80)² + (54 - 50)²
 = √(- 40)² + (4)²
 = √1600+16
 = √1616
 = 40.19
This indicates that the persons 1 and 2 are most similar while person 1 and person 3 are most

dissimilar. Thus, Euclidean distance is used to determine the dissimilarity between two objects by
comparing them across a range of variables. These two objects might be profiles of two persons,
e.g., a person and a target profile, or in fact, any two vectors taken across equivalent variables.

In the Euclidean distance, the attribute with the largest value may dominate the distance. Thus,
it’s important that attributes should be properly scaled before the application of the formula. It is also
possible to use the Euclidean distance formula without the square root if one wishes to place greater
weightage on large differences. Euclidean distance can also be represented as shown in Figure 7.2.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

Cluster Analysis 159

Figure 7.2 Representation of Euclidean distance [see colour plate]

[Credits: https://numerics.mathdotnet.com/Distance.html]

7.4.2 Manhattan distance

Manhattan distance is also called L1-distance. It is defined as the sum of the lengths of the projections
of the line segment between the two points on the coordinate axes.

For example, the distance between two points in the plane with coordinates (x, y) and (a, b)
according to the Manhattan distance formula, is given by:

Manhattan dist((x, y), (a, b)) = | x – a | + | y – b |

Let’s do the calculations for finding the Manhattan distance among the same three persons, on
the basis of their scores on two variables as shown in Table 7.1.

Using the formula of Manhattan distance, we can calculate the similarity distance among persons.
The calculation for the distance between person 1 and 2 is:

 Manhattan dist((30, 70), (40, 54)) = |30 - 40| + |70 – 54|
 = |- 10 | + | 16|
 = 10+16
 = 26
The calculation for the distance between person 1 and 3 is:
 Manhattan dist ((30, 70), (80, 50)) = |30 – 80| + |70 – 50|
 = 50+20
 = 70
The calculation for the distance between person 2 and 3 is:
 Manhattan dist((40, 54), (80, 50)) = |40 –80| + |54 – 50|
 = 40+4 = 44
This indicates that the persons 1 and 2 are most similar while person 1 and person 3 are most

dissimilar and it produces the same conclusion as Euclidean distance.
Manhattan distance is also called city block distance because like Manhattan, it is the distance

a car would drive in a city laid out in square blocks. In Manhattan city, one-way, oblique streets
and real streets only exist at the edges of blocks. The Manhattan distance can be represented as
shown in Figure 7.3.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

160 Data Mining and Data Warehousing

Figure 7.3 Representation of Manhattan distance [see colour plate]

[Credits: https://numerics.mathdotnet.com/Distance.html]

In Manhattan distance, the largest valued attribute can again dominate the distance, although
not as much as in the Euclidean distance.

7.4.3 Chebyshev distance

It is also called as chessboard distance because, in a game of chess, the minimum number of moves
required by a king to go from one square to another on a chessboard equals Chebyshev distance
between the centers of the squares. Chebyshev distance is defined on a vector space, where the distance
between two vectors is the maximum value of their differences along any coordinate dimension.

Formula of Chebyshev distance is given by:

Chebyshev dist((r1, f1), (r2, f2)) = max(|r2−r1|,|f2-f1|)

Using the formula of Chebyshev distance, let us find the distance between object A and object B.

Features Coord1 Coord2 Coord3 Coord4

Object A 0 1 2 3

Object B 6 5 4 -2

Object A coordinate = {0,1,2,3}
Object B coordinate = {6,5,4,-2}
According to Chebyshev distance formula
 D = max(|r2−r1|,|f 2−f1|)
 = max(|6-0|,|5-1|,|4-2|,|-2-3)|)
 = max(6,4,2,5) = 6
Let’s compute the calculations for finding the Chebyshev distance among three persons, on the

basis of their scores on two variables as shown in Table 7.1.
The calculation for the distance between person 1 and 2 is:
 Chebyshev dist((30, 70), (40, 54)) = max(|30 - 40|, |70 – 54|)
 = max(|- 10 |, | 16|) = 16
The calculation for the distance between person 1 and 3 is:
 Chebyshev dist((30, 70), (80, 50)) = max(|30 – 80| , |70 – 50|)
 = max(50,20) = 50

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

Cluster Analysis 161

The calculation for the distance between person 2 and 3 is:
 = max(|40 – 80|, |54 – 50|)
 Chebyshev dist((40, 54), (80, 50)) = max(40,4) = 40
This indicates that the persons 1 and 2 are most similar while person 1 and person 3 are most

dissimilar and it produces the same conclusion as Euclidean and Manhattan distance.
The Chebyshev distance can be represented as shown in Figure 7.4.

Figure 7.4 Representation of Chebyshev distance [see colour plate]

[Credits: https://numerics.mathdotnet.com/Distance.html]

7.5 Major Clustering Methods/Algorithms

Clustering methods/algorithms can be categorized into five categories which are given as follows:
	 •	 Partitioning method: It constructs random partitions and then iteratively refines them by some

criterion.
	 •	 Hierarchical method: It creates a hierarchical decomposition of the set of data (or objects) using

some criterion.
	 •	 Density-based method: It is based on connectivity and density functions.
	 •	 Grid based method: It is based on a multiple-level granularity structure.
	 •	 Model based method: A model is considered for each of the clusters and the idea is to identify

the best fit for that model.
The categorization of clustering algorithms is shown in Figure 7.5.

Figure 7.5 Major clustering methods/algorithms

Now, let us understand each method one by one.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

162 Data Mining and Data Warehousing

7.6 Partitioning Clustering

Clustering is the task of splitting a group of data or dataset into a small number of clusters. For
example, the items in a grocery store are grouped into different categories (butter, milk, and cheese
are clustered in dairy products). This is a qualitative kind of partitioning. A quantitative approach
on the other hand, measures certain features of the products such as the percentage of milk and
suchlike, i.e., products having a high percentage of milk would be clustered together.

In the partitioning method, we cluster objects based on attributes into a number of partitions.
The k-means clustering is an important technique which falls under partitioning clustering.

7.6.1. k-means clustering

In the k-means clustering algorithm, n objects are clustered into k clusters or partitions on the basis
of attributes, where k < n and k is a positive integer number. In simple words, in k-means clustering
algorithm, the objects are grouped into ‘k’ number of clusters on the basis of attributes or features.
The grouping of objects is done by minimizing the sum of squares of distances, i.e., a Euclidean
distance between data and the corresponding cluster centroid.

Working of the k-means algorithm

The working of k-means clustering algorithm can be illustrated in five simple steps, as given
below.

Step 1: Start with a selection of the value of k where k = number of clusters

In this step, the k centroids (or clusters) are initiated and then the first k training samples out of n
samples of data are taken as single-element clusters. Each of the remaining (n-k) training samples
are assigned to the cluster with the nearest centroid and the centroid of the gaining cluster is
recomputed after each assignment.

Step 2: Creation of distance matrix between the centroids and each pattern

In this step, distance is computed from each sample of data to the centroid of each of the clusters.
The heavy calculation involved is the major drawback of this step since there are k centroids and n
samples, the algorithm will have to compute n*k distances.

Step 3: Assign each sample in the cluster with the closest centroid (minimal
distance)

Now, the samples are grouped on the basis of their distance from the centroid of each of the clusters.
If currently, the sample is not in the cluster then switch it to the cluster with the closest centroid.
When there is no movement of samples to another cluster anymore, the algorithm will end.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

Cluster Analysis 163

Step 4: Update the new centroids for each cluster

In this step, the locations of centroids are updated. Update the location for each centroid of the
cluster that has gained or lost a sample by computing the mean of each attribute of all samples
belonging to respective clusters.

Step 5: Repeat until no further change occurs

Return to Step 2 of the algorithm and repeat the updating process of each centroid location until
a convergence condition is satisfied, which is until a pass through the training sample causes no
new changes.

The f low chart of k-means algorithm is illustrated in Figure 7.6.

Figure 7.6 Flowchart for k-means algorithm

Example 7.1: Let’s understand this procedure through an example; the database for which is given
in Table 7.2. Here k=2 (there are just going to be two clusters).

Table 7.2 Database for the k-means algorithm example

Individual Variable 1 Variable 2

1 1.0 1.0

2 1.5 2.0

3 3.0 4.0

4 5.0 7.0

5 3.5 5.0

6 4.5 5.0

7 3.5 4.5

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

164 Data Mining and Data Warehousing

Step 1:

The first step will be to choose the value of k. In this problem, let’s suppose, k=2, i.e., we are going
to create two clusters C1 and C2 from this database. Let’s suppose, record number 1st and 4th are
randomly chosen as candidates for clusters (By just browsing the database given in Table 7.2, we can
conclude that 1st and 4th are the most dissimilar records or farthest from each other. Otherwise,
we can choose any two records as the starting point for initialization of this algorithm).

In this case, the two centroids are: centroid 1 (first record) = (1.0,1.0) and centroid 2 (fourth
record) = (5.0,7.0) as shown in Figure 7.7.

Individual Variable 1 Variable 2

1 1.0 1.0

2 1.5 2.0

3 3.0 4.0

4 5.0 7.0

5 3.5 5.0

6 4.5 5.0

7 3.5 4.5

Individual Mean Vector

Group 1 1 (1.0, 1.0)

Group 2 4 (5.0,7.0)

Figure 7.7 Database after initialization

Step 2:

Now, the distance of each object is calculated from the other objects in this database on the basis
of Euclidean distance as shown in Table 7.3.

The Euclidean distance of record 2 (1.5,2.0) from centroid 1 and centroid 2 has been given below.

Table 7.3 Database after first iteration

Individual Centroid1 (1,1) for C1 Centroid2 (5,7) for C2 Assigned Cluster

1 (1.0,1.0) 0 √|1-5|2+|1-7|2

= √16+36
= √52
= 7.21

C1

2 (1.5,2.0) √|1.5-1|2+|2.0-1|2

= √0.25+1
= √1.25
= 1.12

√|1.5-5|2+|2.0-7|2

= √12.25+25
= √37.25
= 6.10

C1

Contd.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

Cluster Analysis 165

Individual Centroid1 (1,1) for C1 Centroid2 (5,7) for C2 Assigned Cluster

3 (3.0,4.0) √|3-1|2+|4-1|2

= √4+9
= √13
= 3.61

√|3-5|2+|4.0-7|2

= √4+9
= √13
= 3.61

C1

4 (5.0, 7.0) √|5-1|2+|7-1|2

= √16+36
= √52
= 7.21

√|5-5|2+|7.0-7|2

= √0
= 0

C2

5 (3.5, 5.0) √|3.5-1|2+|5-1|2

= √6.25+16
= √22.25
= 4.72

√|3.5-5|2+|5.0-7|2

= √2.25+4
= 2.5

C2

6 (4.5, 5.0) √|4.5-1|2+|5.0-1|2

= √12.25+16
= √28.25
= 5.31

√|4.5-5|2+|5.0-7|2

= √0.25+4
= 2.06

C2

7 (3.5, 4.5) √|3.5-1|2+|4.5-1|2

= √6.25+12.25
= √18.5
= 4.30

√|3.5-5|2+|4.5-7|2

= √2.25+6.25
= √8.5
= 2.92

C2

Thus, we obtain two clusters containing: {1,2,3} and {4,5,6,7}.
The updated centroid for cluster 1 will be average of instances 1, 2 and 3 and for cluster 2 it will

be average of instances 4, 5, 6 and 7 as shown below.

centroid1 = 1
3
1 0 1 5 3 0 1

3
1 0 2 0 4 0. . . , . . .+ +() + +()() = (1.83, 2.33)

centroid2 = 1
4

5 0 3 5 4 5 3 5 1
4

7 0 5 0 5 0 4 5. . . . ,+ + +() + + +()() = (4.12, 5.38)

Now, the distance of each object to the modified centroid is calculated as shown in Table 7.4.

Table 7.4 Database after the second iteration

Individual Centroid1 (1.83,2.33) for C1 Centroid2 (4.12,5.38) for C2 Assigned Cluster

1 (1.0,1.0) √|1.0-1.83|2+|1.0-2.33|2 = 1.56 √|1.0-4.12|2+|1.0-5.83|2 = 4.83 C1

2 (1.5,2.0) √|1.5-1.83|2+|2.0-2.33|2 = 0.46 √|1.5-4.12|2+|2.0-5.83|2 = 4.64 C1

3 (3.0,4.0) √|3.0-1.83|2+|4.0-2.33|2 = 2.03 √|3.0-4.12|2+|4.0-5.83|2 = 2.14 C2

4 (5.0,7.0) √|5.0-1.83|2+|7.0-2.33|2 = 5.64 √|5.0-4.12|2+|7.0-5.83|2 = 1.84 C2

5 (3.5,5.0) √|3.5-1.83|2+|5.0-2.33|2 = 3.14 √|3.5-4.12|2+|5.0-5.83|2 = 1.03 C2

6 (4.5,5.0) √|4.5-1.83|2+|5.0-2.33|2 = 3.77 √|4.5-4.12|2+|5.0-5.83|2 = 0.91 C2

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

166 Data Mining and Data Warehousing

The clusters obtained are: {1,2} and {3,4,5,6,7}
The updated centroid for cluster 1 will be average of instances 1 and 2 and for cluster 2 it will be

average of instances 3, 4, 5, 6 and 7 as shown below.
centroid1 = (1/2 (1.0+1.5), 1/2 (1.0+2.0)) = (1.25,1.5)
centroid2 = (1/5 (3.0+5.0+3.5+4.5+3.5), 1/5 (4.0+7.0+5.0+5.0+4.5)) = (3.9,5.1)
Now, the distance of each object to the modified centroid is calculated as shown in Table 7.5.

Table 7.5 Database after the second iteration

Individual Centroid1 (1.25, 1.5) for C1 Centroid2 (3.9, 5.1) for C2 Assigned Cluster

1 (1.0,1.0) √|1-1.25|2+|1.0-1.5|2 = 0.56 √|1-3.9|2+|1-5.1|2 = 5.02 C1

2 (1.5,2.0) √|1.5-1.25|2+|2.0-1.5|2 = 0.56 √|1.5-3.9|2+|2.0-5.1|2 = 3.92 C1

3 (3.0,4.0) √|3-1.25|2+|4-1.5|2 = 3.05 √|3-3.9|2+|4.0-5.1|2 = 1.42 C2

4 (5.0, 7.0) √|5-1.25|2+|7-1.5|2 = 6.66 √|5-3.9|2+|7.0-5.1|2 = 2.20 C2

5 (3.5, 5.0) √|3.5-1.25|2+|5-1.5|2 = 4.16 √|3.5-3.9|2+|5.0-5.1|2 = 0.41 C2

6 (4.5, 5.0) √|4.5-1.25|2+|5.0-1.5|2 = 4.78 √|4.5-3.9|2+|5.0-5.1|2 = 0.61 C2

7 (3.5, 4.5) √|3.5-1.25|2+|4.5-1.5|2 = 3.75 √|3.5-3.9|2+|4.5-5.1|2 = 0.72 C2

The clusters obtained are: {1,2} and {3,4,5,6,7}
At this iteration, there is no further change in the clusters. Thus, the algorithm comes to a halt

here and final result consists of 2 clusters, {1,2} and {3,4,5,6,7} respectively. These instances can be
plotted as two clusters as shown in Figure 7.8.

Figure 7.8 Plot of data for k=2 [see colour plate]

Step 3: Implementation of the k-means algorithm (using k=3)

For the same database, if k = 3; it means that there will be three clusters for this database. Let’s
randomly choose first three records as candidates for clusters. This time, readers are advised to
perform the calculations and compare their results with final clusters data given in Table 7.6.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

Cluster Analysis 167

Table 7.6 Initial dataset for k = 3

Individual Centroid1 = 1 Centroid2 = 2 Centroid3 = 3 Assigned cluster

1 0 1.11 3.61 C1

2 1.12 0 2.5 C2

3 3.61 2.5 0 C3

4 7.21 6.10 3.61 C3

5 4.72 3.61 1.12 C3

6 5.31 4.24 1.80 C3

7 4.30 3.20 0.71 C3

Clustering with initial centroids (1,2,3)
Now, if we calculate the centroid distances as discussed above, the algorithm will stop at the

state of the database as shown in Table 7.7, by putting instance 1 in cluster 1, instance 2 in cluster
2 and instances 3,4,5,6 and 7 in cluster 3 as shown below.

Table 7.7 Final assigned cluster for k = 3

Individual Centroid1(0.56,0.55,3.05)
for C1

Centroid2(4.21,
3.10, 0.61) for C2

Centroid3(6.26,5.17,0.56)
for C3

Assigned
cluster

1 0 1.11 5.02 C1

2 1.12 0 3.92 C2

3 3.61 2.5 1.42 C3

4 7.21 6.10 2.20 C3

5 4.72 3.61 0.41 C3

6 5.31 4.24 0.61 C3

7 4.30 3.20 0.72 C3

The plot of this data for k = 3 is shown below in Figure 7.9.

Figure 7.9 Plot of data for k=3 [see colour plate]

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

168 Data Mining and Data Warehousing

Example 7.2: Suppose the visitors visiting a website are to be grouped on the basis of their age
given as follows:

15,15,16,19,19,20,20,21,22,28,35,40,41,42,43,44,60,61,65
To perform clustering for the given data, the first step will be to choose the value of k. In this

case, let’s suppose, k = 2, i.e., we are going to create just two clusters for this database and suppose we
randomly choose the 3rd record i.e, 16 and the 9th , i.e., 22 as the initial centroids for the two clusters.

Thus: Centroid for C1 = 16 [16]
 Centroid for C2 = 22 [22]
The distances of each record from centroid 1 and centroid 2 is given in Table 7.8. Here, the

Manhattan distance has been used to calculate the distance metric which is the absolute distance
between the points in this case. It has been used to make the calculations simple.

Table 7.8 Dataset after first iteration

Instances Centroid 16 for C1 Centroid 22 for C2 Assigned Cluster

15 1 7 C1

15 1 7 C1

16 0 6 C1

19 3 3 C2

19 3 3 C2

20 4 2 C2

20 4 2 C2

21 5 1 C2

22 6 0 C2

28 12 6 C2

35 19 13 C2

40 24 18 C2

41 25 19 C2

42 26 20 C2

43 27 21 C2

44 28 22 C2

60 44 38 C2

61 45 39 C2

65 49 43 C2

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

Cluster Analysis 169

Thus, we obtain two clusters containing:
 {15, 15, 16} and {19,19,20,20,21,22,28,35,40,41,42,43,44,60,61,65}.
The updated centroid for clusters will be as follows:
Centroid1 = avg(15, 15, 16) = 15.33
Centroid2 = avg(19,19,20,20,21,22,28,35,40,41,42,43,44,60,61,65) = 36.25
Now, the distance of each object to modified centroid is calculated as shown in Table 7.9.
The least actual distances from the instance to the centroid have been highlighted.

Table 7.9 Dataset after second iteration

Instances Centroid 15.33 for C1 Centroid 36.25 for C2 Assigned Cluster

15 0.33 21.25 C1

15 0.33 21.25 C1

16 0.67 20.25 C1

19 3.67 17.25 C1

19 3.67 17.25 C1

20 4.67 16.25 C1

20 4.67 16.25 C1

21 5.67 15.25 C1

22 6.67 14.25 C1

28 12.67 8.25 C2

35 19.67 1.25 C2

40 24.67 3.75 C2

41 25.67 4.75 C2

42 26.67 5.75 C2

43 27.67 6.75 C2

44 28.67 7.75 C2

60 44.67 23.75 C2

61 45.67 24.75 C2

65 49.67 28.75 C2

Now, we have obtain two fresh clusters containing:
{15,15,16,19,19,20,20,21,22} and {28,35,40,41,42,43,44,60,61,65}.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

170 Data Mining and Data Warehousing

The updated centroids for these fresh clusters will be as follows:
Centroid 1 = avg(15,15,16,19,19,20,20,21,22) = 18.55
Centroid 2 = avg(28,35,40,41,42,43,44,60,61,65) = 45.9
Next, the distance of each object to the modified centroid is calculated as shown in Table 7.10

Table 7.10 Dataset after third iteration

Instances Centroid 18.55 for C1 Centroid 45.9 for C2 Assigned Cluster

15 3.55 30.9 C1

15 3.55 30.9 C1

16 2.55 29.9 C1

19 0.45 26.9 C1

19 0.45 26.9 C1

20 1.45 25.9 C1

20 1.45 25.9 C1

21 2.45 24.9 C1

22 3.45 23.9 C1

28 9.45 17.9 C1

35 16.45 10.9 C2

40 21.45 5.9 C2

41 22.45 4.9 C2

42 23.45 3.9 C2

43 24.45 2.9 C2

44 25.45 1.9 C2

60 41.45 14.1 C2

61 42.45 15.1 C2

65 46.45 19.1 C2

Here, we obtain two clusters with still fresher changes containing:
{15,15,16,19,19,20,20,21,22,28} and {35,40,41,42,43,44,60,61,65}.
The updated centroid for clusters will be as follows:
Centroid 1 = avg(15,15,16,19,19,20,20,21,22,28) =19.5
Centroid 2 = avg(35,40,41,42,43,44,60,61,65) = 47.89
Now, the distance of each object to the most recently modified centroids is calculated as shown

in Table 7.11.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

Cluster Analysis 171

Table 7.11 Dataset after fourth iteration

Instances Centroid 19.50 for C1 Centroid 47.89 for C2 Assigned Cluster

15 4.5 32.89 C1

15 4.5 32.89 C1

16 3.5 31.89 C1

19 0.5 28.89 C1

19 0.5 28.89 C1

20 0.5 27.89 C1

20 0.5 27.89 C1

21 1.5 26.89 C1

22 2.5 25.89 C1

28 8.5 19.89 C1

35 15.5 12.89 C2

40 20.5 7.89 C2

41 21.5 6.89 C2

42 22.5 5.89 C2

43 23.5 4.89 C2

44 24.5 3.89 C2

60 40.5 12.11 C2

61 41.5 13.11 C2

65 45.5 17.11 C2

At this iteration, no object has shifted from one cluster to another, i.e., no change has been found
between iterations 3 and 4. Thus, the algorithm will stop at fourth iteration and the final clusters
will be as follows.

Cluster 1 = [15,15,16,19,19,20,20,21,22,28]
Cluster 2 = [35,40,41,42,43,44,60,61,65]

 [see colour plate]

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

172 Data Mining and Data Warehousing

Hence, two groups, i.e., 15-28 and 35-65 have been found by using clustering. The output clusters
can be affected by the initial choice of centroids. The algorithm is run several times with different
starting conditions in order to get a fair view of clusters.

Example 7.3: Clustering of Students record with the k-means algorithm
Let us consider another database containing the result of students’ examination in a given course.

Here, we wish to cluster the students according to their performance in the course. The students’
marks (obtained out of 100) across Quiz1, MSE (Mid Semester Exam), Quiz2, and ESE (End
Semester Exam) are given in Table 7.12.

Table 7.12 Record of students’ performance

Sr. No Quiz1 MSE Quiz2 ESE

S1 8 20 6 45

S2 6 18 7 42

S3 5 15 6 35

S4 4 13 5 25

S5 9 21 8 48

S6 7 20 9 44

S7 9 17 8 49

S8 8 19 7 39

S9 3 14 4 22

S10 6 15 7 32

Steps 1 and 2:

Let’s consider the first three students as the three seeds as shown in Table 7.13.

Table 7.13 Seed records

Sr. no Quiz1 MSE Quiz2 ESE

S1 8 20 6 45

S2 6 18 7 42

S3 5 15 6 35

Steps 3 and 4:

In this step, calculate the distance using the four attributes as well as the sum of absolute differences
for simplicity, i.e., Manhattan distance. Table 7.14 shows the distance values for all the objects,
wherein columns 7, 8 and 9 represent the three distances from the three seed records respectively.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

Cluster Analysis 173

On the basis of distances computed, each student is allocated to the nearest cluster, i.e., C1, C2 or
C3. The result of the first iteration is given in Table 7.14.

Table 7.14 First iteration-allocation of each object to its nearest cluster

Quiz1 MSE Quiz2 ESE Distances from Cluster Allocation
to the

nearest
ClusterSeed

Records

C1 8 20 6 45

C2 6 18 7 42

C3 5 15 6 35 C1 C2 C3

S1 1 8 20 6 45 (|8-8|+|20-
20|+|6-
6|+|45-45|)
= 0

(|8-6|+|20-
18|+|6-
7|+|45-42|)
= 8

(|8-5|+|20-
15|+|6-
6|+|45-35|)
= 18

C1

S2 2 6 18 7 42 (|6-8|+|18-
20|+|7-
6|+|42-45|)
= 8

(|6-6|+|18-
18|+|7-
7|+|42-42|)
= 0

(|6-5|+|18-
15|+|7-
6|+|42-35|)
= 12

C2

S3 3 5 15 6 35 (|5-8|+|15-
20|+|6-
6|+|35-45|)
= 18

(|5-6|+|15-
18|+|6-
7|+|35-42|)
= 12

(|5-5|+|15-
15|+|6-
6|+|35-35|)
= 0

C3

S4 4 4 13 5 25 32 26 14 C3

S5 5 9 21 8 48 7 13 25 C1

S6 6 7 20 9 44 5 7 19 C1

S7 7 9 17 8 49 10 12 22 C1

S8 8 8 19 7 39 8 6 12 C2

S9 9 3 14 4 22 36 30 18 C3

S10 10 6 15 7 32 21 13 5 C3

Instances in Cluster 1, i.e., C1 are 1, 5, 6 and 7
Instances in Cluster 2, i.e., C2 are 2 and 8
Instances in Cluster 3, i.e., C3 are 3, 4, 9 and 10
The first iteration results in four, two and four students in the first, second and third cluster,

respectively.

Step 5:

New centroids for each attribute/column are updated after the first iteration as shown in Table 7.15.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

174 Data Mining and Data Warehousing

Table 7.15 Updated centroids after first iteration

Quiz1 MSE Quiz2 ESE

C1
(record 1,5,6,7)

8.25
Avg(8,9,7,9)

19.5
Avg(20,21,20,17)

7.75
Avg(6,8,9,7)

46.5
Avg(45,48,44,39)

C2
(record 2,8)

7
Avg(6,8)

18.5
Avg(18,19)

7
Avg(7,7)

40.5
Avg(42,39)

C3
(record 3,4,9, 10)

4.5
Avg(5,4,3,6)

14.25
Avg(15,13,14,15)

5.5
Avg(6,5,4,7)

28.5
Avg(35,25,22,32)

It is interesting to note that the mean marks for cluster C3 are significantly lower than for clusters
C1 and C2. So, the distances of each object to each of the means using new cluster are again re-
computed and allocate each object to the nearest cluster. The results of the second iteration are
shown in Table 7.16.

Table 7.16 Second iteration-allocation of each object to its nearest cluster

Seed
Records

Quiz1 MSE Quiz2 ESE Distances from Cluster Allocation
to the

nearest
Cluster

C1 8.25 19.5 7.75 46.5

C2 7 18.5 7 40.5

C3 4.5 14.25 5.5 28.5 C1 C2 C3

Student 1 1 8 20 6 45 (|8-
8.25|+|20-
19.5|+|6-
7.75|+|45-
46.5|)
= 4

(|8-7|+|20-
18.5|+|6-
7|+|45-
40.5|)
= 8

(|8-
4.5|+|20-
14.25|+|6-
5.5|+|45-
28.5|)
= 26.25

C1

Student 2 2 6 18 7 42 (|6-
8.25|+|18-
19.5|+|7-
7.75|+|42-
46.5|)
 = 9

(|6-7|+|18-
18.5|+|7-
7|+|42-
40.5|)
= 3

(|6-
4.5|+|18-
14.25|+|7-
5.5|+|42-
28.5|)
= 20.25

C2

Student 3 3 5 15 6 35 21 12 8.25 C3

Student 4 4 4 13 5 25 35 26 5.75 C3

Student 5 5 9 21 8 48 4 13 33.25 C1

Student 6 6 7 20 9 44 5.5 7 27.25 C1

Student 7 7 9 17 8 49 6 13 30.25 C1

Student 8 8 8 19 7 39 9 3 20.25 C2

Student 9 9 3 14 4 22 39 30 9.75 C3

Student 10 10 6 15 7 32 22 13 7.25 C3

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

Cluster Analysis 175

Again, there are four, two and four students in clusters C1, C2 and C3, respectively. A more
careful look shows that there is no change in clusters at all. Therefore, the method has converged
quite quickly for this very simple dataset. For more clarity, the final assigned cluster has been
reproduced in Table 7.17.

Table 7.17 Final allocation

Seed
Records

Quiz1 MSE Quiz2 ESE Allocation
to Cluster

C1 8.25 19.5 7.75 46.5

C2 7 18.5 7 40.5

C3 4.5 14.25 5.5 28.5

S1 1 8 20 6 45 C1

S2 2 6 18 7 42 C2

S3 3 5 15 6 35 C3

S4 4 4 13 5 25 C3

S5 5 9 21 8 48 C1

S6 6 7 20 9 44 C1

S7 7 9 17 8 49 C1

S8 8 8 19 7 39 C2

S9 9 3 14 4 22 C3

S10 10 6 15 7 32 C3

The membership of clusters is as follows:
Cluster 1, i.e., C1 - 1,5,6,7
Cluster 2, i.e., C2 - 2, 8
Cluster 3, i.e., C3 - 3, 4, 9, 10
It should be noted that the above method was k-median rather than k-means because we wanted

to use a simple distance measure that a reader could check without using a computer or a calculator.
Interestingly, when k-means is used, the result is exactly the same and the method again converges

rather quickly.
Another point worth noting is about the intra (within) cluster variance and inter (between)

cluster variance. The average Euclidean distance of objects in each cluster to the cluster centroids
is presented in Table 7.18. The average distance of objects within clusters C1, C2, and C3 from
their centroids is 2.89, 1.87 and 5.51, respectively. Although these numbers do not indicate which
result is better, they help however, in analyzing that the clustering method has performed well in
maximizing inter (between) cluster variance and minimizing intra (within) cluster variance. Here,
one can notice that the Euclidean distance between C1 and C2 is 6.89, while it is 44.89 in case
of C1 and C3. The intra cluster distance in the case of C1, is the minimum i.e., 2.89 between the
instances of C1. Similarly, the intra cluster distance is minimum in case of C2 and C3.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

176 Data Mining and Data Warehousing

We can get different results with different seed records.

Table 7.18 Within (intra) cluster and between (inter) clusters distance

Cluster C1 C2 C3

C1 2.89 6.89 19.46

C2 6.52 1.87 13.19

C3 20.02 14.17 5.51

The detail of calculations for the identification of within (intra) cluster and between (inter) cluster
variance is shown in Table 7.19.

Table 7.19 Calculations for within-cluster and between-cluster variance using Euclidean distance

Calculation Quiz1 MSE Quiz2 ESE Description

xi-yi for S1 of C1 -0.25
[8-8.25]

0.5
[20-19.5]

-1.75
[6-7.75]

-1.5
[45-46.5]

For Cluster C1

xi-yi for S5 of C1 0.75 1.5 0.25 1.5

xi-yi for S6 of C1 -1.25 0.5 1.25 -2.5

xi-yi for S7 of C1 0.75 -2.5 0.25 2.5

sumsqr(xi-yi) 5.625
sumsqr(-0.25,0.5,-1.75,-1.5)

for S1

sumsqr(xi-yi) 5.125
sumsqr(0.75,1.5,0.25, 1.5)

for S5

sumsqr(xi-yi) 9.625 for S6

sumsqr(xi-yi) 13.125 for S7

avg(1,56,7) 8.375
avg (5.625, 5.125, 9.625,
13.125)

for 1,5,6,7 of c1 from Cluster C1

sqrt (avg(1,56,7)) 2.893959 for 1,5,6,7 of c1,
Thus within-cluster variance of C1 is 2.89

xi-yi for S1 of C1 1 1.5 -1 4.5 For Cluster C2

xi-yi for S5 of C1 2 2.5 1 7.5

xi-yi for S6 of C1 0 1.5 2 3.5

xi-yi for S7 of C1 2 -1.5 1 8.5

Contd.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

Cluster Analysis 177

Calculation Quiz1 MSE Quiz2 ESE Description

sqr(xi-yi) 24.5 for S1

sqr(xi-yi) 67.5 for S5

sqr(xi-yi) 18.5 for S6

sqr(xi-yi) 79.5 for S7

avg(1,56,7) 47.5 for 1,5,6,7 of C1 from C2

sqrt (avg(1,56,7)) 6.892024 for 1,5,6,7 of C1 from C2
Thus variance between C1 and C2 is 6.89

xi-yi for S1 of C1 3.5 5.75 0.5 16.5 For Cluster C3

xi-yi for S5 of C1 4.5 6.75 2.5 19.5

xi-yi for S6 of C1 2.5 5.75 3.5 15.5

xi-yi for S7 of C1 4.5 2.75 2.5 20.5

sqr(xi-yi) 317.8125 for S1 from C3

sqr(xi-yi) 452.3125 for S5 from C3

sqr(xi-yi) 291.8125 for S6 from C3

sqr(xi-yi) 454.3125 for S7 from C3

avg(1,56,7) 379.0625 for 1,5,6,7 of C1 from C3

sqrt(avg(1,56,7)) 19.4695 for 1,5,6,7 of C1 from C3
Thus variance between C1 and C3 is 19.4695

xi-yi for S2 of C2 -2.25 -1.5 -0.75 -4.5 For Cluster C1

xi-yi for S8 of C2 -0.25 -0.5 -0.75 -7.5

sqr(xi-yi) 28.125 for S2 of C2 from C1

sqr(xi-yi) 57.125 for S8 of C2 from C1

avg(2,8) 42.625 for 2,8 of C2 from C1

sqrt(avg(2,8)) 6.528782 for 2,8 of C2 from C1
Thus variance between C2 and C1 is 6.52

xi-yi for S2 of C2 -1 -0.5 0 1.5 For Cluster C2

xi-yi for S8 of C2 1 0.5 0 -1.5

sqr(xi-yi) 3.5 for S2 of C2 from C2

sqr(xi-yi) 3.5 for S8 of C2 from C2

avg(2,8) 3.5 for 2,8 of C2 from C2

Contd.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

178 Data Mining and Data Warehousing

Calculation Quiz1 MSE Quiz2 ESE Description

sqrt(avg(2,8)) 1.870829 for 2,8 of C2 from C2
Thus within cluster variance of C2, i.e. from C2 to
C2 is 1.87

xi-yi for S2 of C2 1.5 3.75 1.5 13.5 For Cluster C3

xi-yi for S8 of C2 3.5 4.75 1.5 10.5

sqr(xi-yi) 200.8125 for S2 of C2 from C3

sqr(xi-yi) 147.3125 for S8 of C2 from C3

avg(2,8) 174.0625 for 2,8 of C2 from C3

sqrt(avg(2,8)) 13.19327 for 2,8 of C2 from C3
Thus variance between C2 and C3 is 13.19

xi-yi for S3 of C3 -3.25 -4.5 -1.75 -11.5 For Cluster C1

xi-yi for S4 of C3 -4.25 -6.5 -2.75 -21.5

xi-yi for S9 of C3 -5.25 -5.5 -3.75 -24.5

xi-yi for S10 of C3 -2.25 -4.5 -0.75 -14.5

sqr(xi-yi) 166.125 for S3 of C3 from C1

sqr(xi-yi) 530.125 for S4 of C3 from C1

sqr(xi-yi) 672.125 for S9 of C3 from C1

sqr(xi-yi) 236.125 for S10 of C3 from C1

avg(3,4,9,10) 401.125 for 3,4,9,10 of C3 from C1

sqrt(avg(3,4,9,10)) 20.02811 for 3,4,9,10 of C3 from C1
Thus variance between C3 and C1 is 20.02

xi-yi for S3 of C3 -2 -3.5 -1 -5.5 For Cluster C2

xi-yi for S4 of C3 -3 -5.5 -2 -15.5

xi-yi for S9 of C3 -4 -4.5 -3 -18.5

xi-yi for S10 of C3 -1 -3.5 0 -8.5

sqr(xi-yi) 47.5 for S3 of C3 from C2

sqr(xi-yi) 283.5 for S4 of C3 from C2

sqr(xi-yi) 387.5 for S9 of C3 from C2

sqr(xi-yi) 85.5 for S10 of C3 from C2

avg(3,4,9,10) 201 for 3,4,9,10 of C3 from C2

Contd.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

Cluster Analysis 179

Calculation Quiz1 MSE Quiz2 ESE Description

sqrt(avg(3,4,9,10)) 14.17745 for 3,4,9,10 of C3 from C2
Thus variance between C3 and C2 is 14.17

xi-yi for S3 of C3 0.5 0.75 0.5 6.5 For Cluster C3

xi-yi for S4 of C3 -0.5 -1.25 -0.5 -3.5

xi-yi for S9 of C3 -1.5 -0.25 -1.5 -6.5

xi-yi for S10 of C3 1.5 0.75 1.5 3.5

sqr(xi-yi) 43.3125 for S3 of C3 from C3

sqr(xi-yi) 14.3125 for S4 of C3 from C3

sqr(xi-yi) 46.8125 for S9 of C3 from C3

sqr(xi-yi) 17.3125 for S10 of C3 from C3

avg(3,4,9,10) 30.4375 for 3,4,9,10 of C3 from C3

sqrt(avg(3,4,9,10)) 5.517019 for 3,4,9,10 of C3 from C3
Thus within cluster variance of C3, i.e. from C3 to
C3 is 5.51

7.6.2 Starting values for the k-means algorithm

Normally we have to specify the number of starting seeds and clusters at the start of the k-means
algorithm. We can use an iterative approach to overcome this problem. For example, first select three
starting seeds randomly and choose three clusters. Once the final clusters have been found, the process
may be repeated several times with a different set of seeds. We should select the seed records that
are at maximum distance from each other or are as far as possible. If two clusters are identified to be
close together during the iterative process, it is appropriate to merge them. Also, a large cluster may
be partitioned into two smaller clusters if the intra-cluster variance is above some threshold value.

7.6.3 Issues with the k-means algorithm

There are a number of issues with the k-Means algorithm that should be understood. Some of
these are:
	 •	 The	results	of	the	k-means	algorithm	intensively	depends	on	the	 initial	guesses	of	the	seed	

records.
	 •	 The	k-means	algorithm	is	sensitive	to	outliers.	Thus,	it	may	give	poor	results	if	an	outlier	is	

selected as a starting seed record.
	 •	 The	k-means	algorithm	works	on	the	basis	of	Euclidean	distance	and	the	mean(s)	of	the	attribute	

values of intra-cluster objects. Thus, it is only suitable for continuous data as it is restricted to
data for which there is the notion of a center (centroid).

	 •	 The	k-means	algorithm	does	not	take	into	account	the	size	of	the	clusters.	Clusters	may	be	
either large or small.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

180 Data Mining and Data Warehousing

	 •	 It	does	not	deal	with	overlapping	clusters.
	 •	 It	does	not	work	well	with	clusters	of	different	sizes	and	density.

7.6.4 Scaling and weighting

Sometimes during clustering, the value of one attribute may be small as compared to other attributes.
In such cases, that attribute will not have much influence on determining which cluster the object
belongs to, as the values of this attribute are smaller than other attributes and hence, the variation
within the attribute will also be small.

Consider the dataset given in Table 7.20 for the chemical composition of wine samples. Note that
the values for different attributes cover a range of six orders of magnitude. It is also important to
notice that for wine density, values vary by only 5% of the average value. It turns out that clustering
algorithms struggle with numeric attributes that exhibit such ranges of values.

Table 7.20 Chemical composition of wine samples

[Source: Witten et. al.]

All attributes should be transformed to a similar scale for clustering to be effective unless we want
to give more weight to some attributes that are comparatively large in scale. Commonly, we use two
techniques to convert the attributes. These are Normalization and Standardization.

Normalization

In case of normalization, all the attributes are converted to a normalized score or to a range (0, 1).
The problem of normalization is an outlier. If there is an outlier, it will tend to crunch all of the
other values down toward the value of zero. In order to understand this case, let’s suppose the range
of students’ marks is 35 to 45 out of 100. Then 35 will be considered as 0 and 45 as 1, and students
will be distributed between 0 to 1 depending upon their marks. But if there is one student having
marks 90, then it will act as an outlier and in this case, 35 will be considered as 0 and 90 as 1. Now,
it will crunch most of the values down toward the value of zero. In this scenario, the solution is
standardization.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

Cluster Analysis 181

Standardization

In case of standardization, the values are all spread out so that we have a standard deviation of 1.
Generally, there is no rule for when to use normalization versus standardization. However, if your

data does have outliers, use standardization otherwise use normalization. Using standardization
tends to make the remaining values for all of the other attributes fall into similar ranges since all
attributes will have the same standard deviation of 1.

In next section, another important clustering technique, i.e., Hierarchical Clustering has been
discussed.

7.7 Hierarchical Clustering Algorithms (HCA)

Hierarchical clustering is a type of cluster analysis which seeks to generate a hierarchy of clusters. It
is also called Hierarchical Cluster Analysis (HCA). Hierarchical clustering methods build a nested
series of clusters in comparison to partitioned methods that generate only a f lat set of clusters.

There are two types of Hierarchical clustering: agglomerative and divisive.

Agglomerative

This is a ‘bottom-up’ approach. In this approach, each object is a cluster by itself at the start and its
nearby clusters are repetitively combined resulting in larger and larger clusters until some stopping
criterion is met. The stopping criterion may be the specified number of clusters or a stage at which
all the objects are combined into a single large cluster that is the highest level of hierarchy as shown
in Figure 7.10.

Divisive

This is a ‘top-down’ approach. In this approach, all objects start from one cluster, and partitions
are performed repeatedly resulting in smaller and smaller clusters until some stopping criterion is
met or each cluster consists of the only object in it as shown in Figure 7.10. Generally, the mergers
and partitions are decided in a greedy manner.

Figure 7.10 Illustration of agglomerative and divisive clustering

[Credits: http://chem-eng.utoronto.ca/~datamining/dmc/clustering_hierarchical.htm]

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

182 Data Mining and Data Warehousing

Let’s discuss agglomerative and divisive clustering in detail.

7.7.1 Agglomerative clustering

In agglomerative clustering, suppose a set of N items are given to be clustered, the procedure of
clustering is given as follows:
 1. First of all, each item is allocated to a cluster. For example, if there are N items then, there

will be N clusters, i.e., each cluster consisting of just one item. Assume that the distances
(similarities) between the clusters are same as the distances (similarities) between the items
they contain.

 2. Identify the nearest (most similar) pair of clusters and merge that pair into a single cluster, so
that now we will have one cluster less.

 3. Now, the distances (similarities) between each of the old clusters and the new cluster are
calculated.

 4. Repeat steps 2 and 3 until all items are merged into a single cluster of size N.
As this type of hierarchical clustering merges clusters recursively, it is therefore known

as agglomerative.
Once the complete hierarchical tree is obtained, then there is no point of grouping N items in a

single cluster. You just have to cut the k-1 longest links to get k clusters.
Let’s understand the working of agglomerative clustering by considering the following raw data

given in Figure 7.11.

Figure 7.11 Raw data for agglomerative clustering

This method generates the hierarchy by recursively combining clusters from the individual items.
For example, there are six items {r}, {s}, {t}, {x}, {y} and {z}. The first step is to identify the items to
be combined into a cluster. Normally, the two closest elements are taken on the basis of the chosen
distance.

When the tree is cut at a given height, it gives a partitioning clustering at a selected precision.
In this case, cutting the tree after the second row produces clusters {r} {s t} {x y} and {z} as shown
in Figure 7.12. Cutting the tree after the third row will produce clusters {r} {s t} and {x y z}, which
is called as coarser clustering, with a smaller number of clusters, but which are larger in size. The
complete hierarchical clustering tree diagram is as given in Figure 7.12.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

Cluster Analysis 183

Figure 7.12 Complete hierarchical clustering tree diagram

7.7.1.1 Role of linkage metrics

It is required to compute the distance between clusters by using some metrics before any clustering
is performed. These metrics are called linkage metrics.

It will be beneficial to identify the proximity matrix consisting of the distance between each
point using a distance function.

The important linkage metrics to measure the distance between each cluster are given below:

Single linkage

In single linkage hierarchical clustering, the shortest distance between two points in each cluster
is considered as the distance between two clusters. For example, the distance between two clusters
‘r’ and ‘s’ to the left is equal to the length of the arrow between their two closest points as shown in
Figure 7.13 and the formula of calculation of distance using single-linkage hierarchical clustering
is given by:

L(r,s) = min(D(xri, xsj))

Figure 7.13 Single linkage

[Credits: http://chem-eng.utoronto.ca/~datamining/dmc/clustering_hierarchical.htm]

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

184 Data Mining and Data Warehousing

Complete linkage

In complete linkage hierarchical clustering, the longest distance between two points in each cluster
is considered as the distance between two clusters. For example, the distance between clusters ‘r’
and ‘s’ to the left is equal to the length of the arrow between their two farthest points as shown in
Figure 7.14 and the formula of calculation of distance using complete linkage hierarchical clustering
is given by:

L(r,s) = max(D(xri, xsj))

Figure 7.14 Complete linkage

[Credits: http://chem-eng.utoronto.ca/~datamining/dmc/clustering_hierarchical.htm]

Average linkage

In average linkage hierarchical clustering, the average distance between each point in one cluster to
every point in the other cluster is considered as the distance between two clusters. For example, the
distance between clusters ‘s’ and ‘r’ to the left is equal to the average length of each arrow connecting
the points of one cluster to the other as shown in Figure 7.15 and the formula of calculation of
distance using average linkage hierarchical clustering is given by:

L(r,s) = 1
11n n D x x

r s
ri sj

j

n

i

n SY
,()∑∑

==

Figure 7.15 Average linkage

[Credits: http://chem-eng.utoronto.ca/~datamining/dmc/clustering_hierarchical.htm]

Example of Single-linkage hierarchical clustering

Let’s perform a hierarchical clustering of some Indian cities on the basis of distance in kilometers
between them. In this case, single-linkage clustering is used to calculate the distance between clusters.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

Cluster Analysis 185

The distance matrix (with a sequence number, m: 0) shown in Table 7.21 represents the distance in
kilometers among some of the Indian cities. Suppose initially the level (L) is 0 for all the clusters.

Table 7.21 Input distance matrix (L = 0 for all the clusters)

 Delhi Jammu Srinagar Patiala Amritsar Pahalgam

Delhi 0 575 853 267 452 842

Jammu 575 0 294 359 203 285

Srinagar 853 294 0 627 469 98

Patiala 267 359 627 0 235 610

Amritsar 452 203 469 235 0 456

Pahalgam 842 285 98 610 456 0

The nearest pair of cities is Srinagar and Pahalgam as the distance between them is 98. These
cities are combined into a single cluster called ‘Srinagar/Pahalgam’. Then, the distance is calculated
from this new compound object to all other objects. In case of single link clustering, the shortest
distance from any object of the cluster to the outside object is considered as the distance from the
compound object to another object. Therefore, distance from ‘Srinagar/Pahalgam’ to Delhi is picked
to be 842, i.e., min(853,842), which is the distance from Pahalgam to Delhi.

Now, the level of the new cluster is L(Srinagar/Pahalgam) = 98 and m: 1 is the new sequence
number. By following the same method, new distance from the compound object is calculated as
shown in Table 7.22 and the description of calculation is given as follows.

*min(853,842) **min(294,285) ***min(627,610)

Table 7.22 Input distance matrix, with m: 1

 Delhi Jammu Srinagar/
Pahalgam

Patiala Amritsar

Delhi 0 575 842 267 452

Jammu 575 0 285 359 203

Srinagar/Pahalgam 842* 285** 0 610*** 456

Patiala 267 359 610 0 235

Amritsar 452 203 456 235 0

At the level of m:1, the minimum distance (min(Jammu, Amritsar)) in the distance matrix is
203, i.e., the distance between Jammu and Amritsar so, Jammu and Amritsar will be merged into
a new cluster called Jammu/Amritsar with new L(Jammu/Amritsar) = 203 and m = 2 as shown in

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

186 Data Mining and Data Warehousing

Table 7.23. The description of the calculation of the new distance from the compound object to
other objects is given as follows.

*min(575,452) **min(285,456) ***min(359,235)

Table 7.23 Input distance matrix, with m: 2

 Delhi Jammu/Amritsar Srinagar/
Pahalgam

Patiala

Delhi 0 452 842 267

Jammu/Amritsar 452* 0 285** 235**

Srinagar/Pahalgam 842 285 0 610

Patiala 267 235 610 0

At the level of m:2, the minimum distance (min (Jammu/Amritsar, Patiala)) in the distance matrix
is 235, i.e., distance between Jammu/Amritsar and Patiala so, Jammu/Amritsar will be merged with
Patiala into a new cluster called Jammu/Amritsar/Patiala with L(Jammu/Amritsar/Patiala) = 235

and m = 3 as shown in Table 7.24. The description of the calculation of the new distance from
the compound object to other objects is given as follows.

*min(452,267) **min(285,610)

Table 7.24 Input distance matrix, with m: 3

 Delhi Jammu/Amritsar/Patiala Srinagar/Pahalgam

Delhi 0 267 842

Jammu/Amritsar/Patiala 267* 0 285**

Srinagar/Pahalgam 842 285 0

At the level of m:3, the minimum distance (min(Jammu/Amritsar/Patiala, Delhi)) in the distance
matrix is 267, i.e., the distance between Jammu/Amritsar/Patiala and Delhi so, Jammu/Amritsar/
Patiala will be merged with Delhi into a new cluster called Delhi/Jammu/Amritsar/Patiala with
L(Delhi/Jammu/Amritsar/Patiala) = 267 and m = 4 as shown in Table 7.25. The description of
the calculation of the new distance from the compound object to other objects is given as follows.

*min(285,842)

Table 7.25 Input distance matrix, with m: 4

 Delhi/ Jammu/Amritsar/Patiala Srinagar/Pahalgam

Delhi/Jammu/Amritsar/Patiala 0 285*

Srinagar/Pahalgam 285 0

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

Cluster Analysis 187

Finally, the last two clusters are merged at level 285. The whole procedure is outlined by the
hierarchical tree as shown in Figure 7.16.

Figure 7.16 Hierarchical tree of clustering of Indian cities on the basis of distance

Example of clustering of students record with the agglomerative algorithm

Let us apply the Agglomerative algorithm on the database containing results of students’ examination
in a given course (earlier discussed for the k-mean algorithm). The students’ performance on the
basis of marks obtained out of 100 marks distributed across Quiz1, MSE, Quiz2, and ESE is given
again in Table 7.26.

Table 7.26 Record of students’ performance

Instances Quiz 1 MSE Quiz2 ESE

S1 8 20 6 45

S2 6 18 7 42

S3 5 15 6 35

S4 4 13 5 25

S5 9 21 8 48

S6 7 20 9 44

S7 9 17 8 49

S8 8 19 7 39

S9 3 14 4 22

S10 6 15 7 32

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

188 Data Mining and Data Warehousing

Step 1:

In this step, the distance matrix is computed from the above data using the centroid method between
every pair of instances that are to be clustered. Due to the symmetric nature of the distance matrix
(because the distance between p and q is same as the distance between q and p), only the lower
triangular matrix is shown in Table 7.27 as the upper triangle can be filled in by ref lection. The
distance matrix consists of zeroes on the diagonal because every instance is at zero distance from itself.

The description of some of the calculations for cells of the second and third row of the distance
matrix given in Table 7.27 drawn from Table 7.26 is given as follows.

*Second row S2: [S2-S1] = [|6-8|+|18-20|+|7-6|+|42-45|] = 8
**Third row S3: [S3-S1] = [|5-8|+|15-20|+|6-6|+|35-45|] = 18
***Third row S3: [S3-S2] = [|5-6|+|15-18|+|6-7|+|35-42|] = 12

Table 7.27 Distance matrix at m: 0

Instances S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S1 0

S2 8* 0

S3 18** 12*** 0

S4 32 26 14 0

S5 7 13 25 39 0

S6 5 7 19 33 8 0

S7 10 12 22 36 5 11 0

S8 8 6 12 26 13 9 14 0

S9 36 30 18 6 43 37 40 30 0

S10 21 13 5 13 26 20 23 13 17 0

Step 2:

Apply the agglomerative method on this distance matrix and calculate the minimum distance between
clusters and combine them. The minimum distance in the distance matrix is 5. Let’s randomly select
the minimum distance, i.e., 5 between S7 and S5.

Thus, the instances S7 and S5 are merged into a cluster called C1 and the distance is calculated
from this new compound object to all other objects by following the single link hierarchical clustering
approach for calculation. To attain a new distance matrix, the instances S5 and S7 need to be removed
and are replaced by cluster C1. Since single link hierarchical clustering is used, the distance between
cluster C1 and every other instance is the shortest of the distance between an instance and S5; and
an instance and S7. The cells involved in merging record number S5 and S7 for the creation of a
new cluster are highlighted in Table 7.28.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

Cluster Analysis 189

Table 7.28 Cells involved in C1

Instances S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S1 0

S2 8* 0

S3 18** 12*** 0

S4 32 26 14 0

S5 7 13 25 39 0

S6 5 7 19 33 8 0

S7 10 12 22 36 5 11 0

S8 8 6 12 26 13 9 14 0

S9 36 30 18 6 43 37 40 30 0

s10 21 13 5 13 26 20 23 13 17 0

The description of the some of the calculations to create a new distance matrix with m : 2 is
given as follows.

For example, to create a new distance matrix after merging S5 and S7, calculations will be as:
d (S1, S5) = 7 and d (S1, S7) = 10, so d (S1, C1) = min (7, 10) = 7*

Similarly, d (S2, S5) = 13 and d (S2, S7) = 12, so d (S2, C1) = min (13, 12) = 12**
The distance between S6 and C1 will be (minimum of distance between S6-S5 and S7-S6, i.e.

min (8, 11), i.e., 8***). By using the highlighted cells, the data in C1 is filled as shown in Table 7.29.
d(S8, S5) = 13 and d(S8, S7) = 14, so d(S8, C1) = min (13, 14) =13****

Similarly, d(S9, S5) = 43 and d(S9, S7) = 40, so d(S9, C1) = min (43, 40) =40*****
The instances with the smallest distance get clustered next.

Table 7.29 Input distance matrix, with m: 2

Instances S1 S2 S3 S4 C1 S6 S8 S9 S10

S1 0

S2 8 0

S3 18 12 0

S4 32 26 14 0

C1 7* 12** 22 36 0

S6 5 7 19 33 8*** 0

S8 8 6 12 26 13**** 9 0

S9 36 30 18 6 40***** 37 30 0

S10 21 13 5 13 23 20 13 17 0

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

190 Data Mining and Data Warehousing

Step 3: Repeat Step 2 until all clusters are merged.

Combine S3 and S10 clusters into C2 as it has the minimum distance. The cells involved in merging
record number 3 and 10 for the creation of C2 have been highlighted in Table 7.30.

Table 7.30 Cells involved in C2

Instances S1 S2 S3 S4 C1 S6 S8 S9 S10

S1 0

S2 8 0

S3 18 12 0

S4 32 26 14 0

C1 7 12 22 36 0

S6 5 7 19 33 8 0

S8 8 6 12 26 13 9 0

S9 36 30 18 6 43 37 30 0

s10 21 13 5 13 23 20 13 17 0

The description of the some of the calculations to create a new distance matrix with m : 3 is
given as follows.

For example, to create a new distance matrix after merging S3 and S10, calculations will be as:
d(S1, S3) = 18 and d(S1, S10) = 21, so d(S1, C2) = min(18, 21) = 18*

Similarly, d(S2, S3) = 12 and d(S2, S10) = 13, so d(S2, C2) = min(12, 13) = 12**

The distance between S4 and C2 will be (minimum of distance between S4-S3 and S10-S4, i.e.
min(14,13), i.e., 13***). By using the highlighted cells, the data in C2 is filled as shown in Table 7.30.

d(C1, S3) = 22 and d(C1, S10) = 23, so d(C1, C2) = min (22, 23) = 22****

Similarly, d(S6, S3) = 19 and d(S6, S10) = 20, so d(S6, C2) = min (19, 20) = 19*****

The input matrix at m: 3 is shown in Table 7.31.

Table 7.31 Input distance matrix, with m: 3

Instances S1 S2 C2 S4 C1 S6 S8 S9

S1 0

S2 8 0

C2 18* 12** 0

S4 32 26 13*** 0

C1 7 12 22**** 36 0

S6 5 7 19***** 33 8 0

S8 8 6 12 26 13 9 0

S9 36 30 17 6 40 37 30 0

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

Cluster Analysis 191

At the level of m: 3, the minimum distance in the distance matrix is 5 between S6 and S1, so S6
and S1 will be merged into C3. The cells involved in the merging of S6 and S1 for the creation of
C3 have been highlighted in Table 7.32.

Table 7.32 Cells involved in creating C3

Instances S1 S2 C2 S4 C1 S6 S8 S9

S1 0

S2 8 0

C2 18* 12** 0

S4 32 26 13*** 0

C1 7 12 22**** 36 0

S6 5 7 19 33 8 0

S8 8 6 12 26 13 9 0

S9 36 30 17 6 40 37 30 0

The description of calculation of some of new distances from compound object C3 to other
objects is given below.

d(S2, S1) = 8 and d(S2, S6) = 7 so, d(S2, C3) = min (8, 7) = 7*
d (C2, S1) = 18 and d(C2, S6) = 19 so, d(C2, C3) = min (18, 19) =18**
Similarly, d(S8, S1) = 8 and d (S8, S6) = 9 so, min (S8, C3) = min (8, 9) = 8***
The input matrix at m: 4 is shown in Table 7.33.

Table 7.33 Input distance matrix, with m: 4

Instances C3 S2 C2 S4 C1 S8 S9

C3 0

S2 7* 0

C2 18** 12 0

S4 32 26 13 0

C1 7 12 22 36 0

S8 8*** 6 12 26 13 0

S9 36 30 17 6 40 30 0

At the level of m: 4, the minimum distance in the distance matrix is 6, so S9 and S4 will be
merged into C4, and the cells involved in C4 are highlighted in Table 7.34.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

192 Data Mining and Data Warehousing

Table 7.34 Cells involved in creating C4

Instances C3 S2 C2 S4 C1 S8 S9

C3 0

S2 7* 0

C2 18 12 0

S4 32 26 13 0

C1 7 12 22 36 0

S8 8 6 12 26 13 0

S9 36*** 30 17 6 40 30 0

The calculation of some of new distances from the compound object C4 to other objects is given below.
d(C3, S4) = 32 and d(C3, S9) = 36 so, d(C3, C4) = min(32, 36) = 32*
d (C2, S4) = 13 and d(C2, S9) = 17 so, d(C2, C4) = min(13, 17) =13**

Similarly, d(C1, S4) = 36 and d (C1, S9) = 40 so, min(C1, C4) = min(36, 40) = 36***
The input matrix at m: 5 is shown in Table 7.35.

Table 7.35 Input distance matrix, with m: 5

Instances C3 S2 C2 C4 C1 S8

C3 0

S2 7 0

C2 18 12 0

C4 32* 26 13** 0

C1 7 12 22 36*** 0

S8 8 6 12 26 13 0

At the level of m: 5, the minimum distance in the distance matrix is 6, so S8 and S2 will be
merged into C5, and the cells involved in C5 are highlighted in Table 7.36.

Table 7.36 Cells involved in creating C5

Instances C3 S2 C2 C4 C1 S8

C3 0

S2 7 0

C2 18 12 0

C4 32* 26 13** 0

C1 7 12 22 36*** 0

S8 8 6 12 26 13 0

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

Cluster Analysis 193

The description of calculation of new distances from compound object C5 to other objects is
given below. The input matrix at m:6 is shown in Table 7.37.

*min(12,12) **min(26,26) ***min(12,13)

Table 7.37 Input distance matrix, with m: 6

Instances C3 C5 C2 C4 C1

C3 0

C5 7 0

C2 18 12* 0

C4 32 26** 13 0

C1 7 12*** 22 36 0

At the level of m: 6, the minimum distance in the distance matrix is 7, so C1 and C3 will be
merged into C6, and the cells involved in C6 are highlighted in Table 7.38.

Table 7.38 Cells involved in creating C6

Instances C3 C5 C2 C4 C1

C3 0

C5 7 0

C2 18 12* 0

C4 32 26** 13 0

C1 7 12*** 22 36 0

The calculation of some of new distances from compound object C6 to other objects is given
below. The input matrix at m: 7 is shown in Table 7.39.

*min(12,7) **min(22,18) ***min(36,32)

Table 7.39 Input distance matrix, with m: 7

Instances C6 C5 C2 C4

C6 0

C5 7* 0

C2 18** 12 0

C4 32*** 26 13 0

At the level of m: 7, the minimum distance in the distance matrix is 7, so C5 and C6 will be
merged into C7, and the cells involved in C7 are highlighted in Table 7.40.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

194 Data Mining and Data Warehousing

Table 7.40 Cells involved in creating C7

Instances C6 C5 C2 C4

C6 0

C5 7* 0

C2 18** 12 0

C4 32*** 26 13 0

The calculation of some of new distances from compound object C7 is given below. The input
matrix at m: 8 is shown in Table 7.41.

*min(12, 18) **min(26,32)

Table 7.41 Input distance matrix, with m: 8

Instances C7 C2 C4

C7 0

C2 12* 0

C4 26** 13 0

At the level of m:8, the minimum distance in the distance matrix is 12, so C2 and C7 will be
merged into C8, and the cells involved in C8 are highlighted in Table 7.42.

Table 7.42 Cells involved in creating C8

Instances C7 C2 C4

C7 0

C2 12* 0

C4 26** 13 0

The input matrix at m: 9 is shown in Table 7.43.

Table 7.43 Input distance matrix, with m: 9

Instances C8 C4

C8 0

C4 13 0

Finally, the last two clusters are merged at level 8. The whole procedure is outlined by the
hierarchical tree as shown in Figure 7.17. Thus, all clusters are eventually combined.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

Cluster Analysis 195

Figure 7.17 Hierarchical tree of clustering of students on the basis of their marks

7.7.1.2 Weakness of agglomerative clustering methods

The major weaknesses of agglomerative clustering methods are given as follows:
	 •	 Agglomerative	clustering	methods	do	not	scale	well	as	they	have	a	high	time	complexity	of	at	

least O(n2) as the algorithm will have to compute n*n distances, where n is the number of total
objects.

	 •	 There	is	no	undo	mechanism	to	undo	what	was	done	previously.

7.7.2 Divisive clustering

As discussed earlier, in divisive clustering, all the objects or observations are assigned to a single
cluster and then that single cluster is partitioned into two least similar clusters. This approach is
repeatedly followed on each cluster until there is only one cluster for each object or observation.

Let us now apply a divisive algorithm on the same database discussed earlier for k-means and
agglomerative clustering that contains the results of student examination in a given course. The
students’ performance on the basis of marks obtained out of 100 marks distributed across Quiz1,
MSE, Quiz2, and ESE is given again in Table 7.44.

Table 7.44 Record of students’ performance

Roll no Quiz1 MSE Quiz2 ESE

1 8 20 6 45

2 6 18 7 42

Contd.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

196 Data Mining and Data Warehousing

Roll no Quiz1 MSE Quiz2 ESE

3 5 15 6 35

4 4 13 5 25

5 9 21 8 48

6 7 20 9 44

7 9 17 8 49

8 8 19 7 39

9 3 14 4 22

10 6 15 7 32

Step 1:

The distance matrix is calculated in the same way as we did in agglomerative clustering by using the
centroid method to calculate the distance between the clusters. For representation, Roll numbers
have been converted to Instances S1 to S10. Due to the symmetric nature of the distance matrix,
we need to repres ent only the lower triangular matrix as shown in Table 7.45.

Table 7.45 Distance matrix at m: 0

Instances S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S1 0

S2 8 0

S3 18 12 0

S4 32 26 14 0

S5 7 13 25 39 0

S6 5 7 19 33 8 0

S7 10 12 22 36 5 11 0

S8 8 6 12 26 13 9 14 0

S9 36 30 18 6 43 37 40 30 0

S10 21 13 5 13 26 20 23 13 17 0

Step 2:

Pick up the two objects with the largest distance, i.e., 43 in this case between S5 and S9. Now, these
two objects become the seed records of two new clusters. Split the entire group into two clusters
based on the distances in the distance matrix as shown in Figure 7.18.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

Cluster Analysis 197

The details about some of the calculations of the distance matrix (referring to Table 7.45) for
cluster C1 have been shown in Figure 7.18 (b) and similarly, the distances, for instance S9, i.e., C2
from other instances are computed.

(a)

Instances S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S1 0

S2 8 0

S3 18 12 0

S4 32 26 14 0

S5 7 13 25 39 0

S6 5 7 19 33 8 0

S7 10 12 22 36 5 11 0

S8 8 6 12 26 13 9 14 0

S9 36 30 18 6 43 37 40 30 0

S10 21 13 5 13 26 20 23 13 17 0

(b)

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S5, i.e., C1 7* 13 25** 39 0 8 5 13 43 26

S9, i.e., C2 36 30 18 6 43 37 40 30 0 17

Assigned Cluster C1 C1 C2 C2 C1 C1 C1 C1 C2 C2

Figure 7.18 (a) Distance matrix at m: 0 (b) Data objects split after two clusters

In Figure 7.18 (b), the instances with minimum distance from cluster C1 and C2 are assigned
to that cluster, For example,

*d(S1, C1) = 7 and d(S1, C2) = 36, so, min(7, 36) = 7, i.e., C1
**Similarly, d(S3, C1) = 25 and d(S3, C2) = 18, so, min(25, 18) = 18, i.e., C2
From the figure, it has been observed that
Cluster C1 includes – S1, S2, S5, S6, S7, S8, and
Cluster C2 includes – S3, S4, S9, S10
Since the stopping criterion hasn’t been met, we will split up the largest cluster, i.e., C1. For this

distance matrix will be computed for C1 as given in Table 7.46.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

198 Data Mining and Data Warehousing

Table 7.46 Distance matrix for cluster C1

S1 S2 S5 S6 S7 S8

S1 0

S2 8 0

S5 7 13 0

S6 5 7 8 0

S7 10 12 5 11 0

S8 8 6 13 9 14 0

Since, the largest distance is 14, so C1 is split with S7 and S8 as seeds. They become the seeds
of two new clusters. Splitting the entire group into these two clusters based on the distances in the
distance matrix is shown in Table 7.47.

Table 7.47 Splitting of cluster C1 into two new clusters of S7 and S8

S1 S2 S5 S6 S7 S8

S7,i.e, C3 10 12 5 11 0 14

S8, i.e., C4 8 6 13 9 14 0

Assigned Cluster C4 C4 C3 C4 C3 C4

Here, Cluster C3 includes S5, S7 and cluster C4 includes S1, S2, S6, S8.
We already have another cluster as C2 (as described in Figure 7.18 (b)) which includes S3, S4,

S9, S10. We can divide the cluster C3 further into two elementary clusters.
Now, the largest cluster, in this case is either C2 or C4 (both have the same number of objects).

Here, we are considering cluster C2 as a candidate for a further split. For this the distance matrix
is computed for cluster C2 as given in Table 7.48.

Table 7.48 Distance matrix for cluster C2

S3 S4 S9 S10

S3 0

S4 14 0

S9 18 6 0

S10 5 13 17 0

The largest distance is 18, so C2 has S3 and S9 as seeds for a further split. The result of splitting
the entire group into these two clusters based on the distance in the distance matrix is given in
Table 7.49.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

Cluster Analysis 199

Table 7.49 Splitting of cluster C2 into two new clusters of S3 and S9

S3 S4 S9 S10

S3, i.e., C5 0 14 18 5

S9, i.e., C6 18 6 0 17

Assigned Cluster C5 C6 C6 C5

Here, cluster C5 includes S3, S10 and cluster C6 includes S4, S9.
Both clusters C5 and C6 can be divided into two more elementary clusters. We already have

other clusters namely cluster C3 that includes S5, S7 and cluster C4 that includes S1, S2, S6, S8.
Now, the largest cluster is C4 thus, C4 is the candidate for the further split. For this the distance
matrix is computed for C4 as given in Table 7.50.

Table 7.50 Distance matrix for cluster C4

S1 S2 S6 S8

S1 0

S2 8 0

S6 5 7 0

S8 8 6 9 0

The largest distance is 9, so C4 has S6 and S8 as seeds for a further split. The result of splitting
the entire group into these two clusters based on the distance in the distance matrix is given in
Table 7.51.

Table 7.51 Splitting of cluster C4 into two new clusters of S6 and S8

S1 S2 S6 S8

S6, i.e., C7 5 7 0 9

S8, i.e., C8 8 6 9 0

Assigned Cluster C7 C8 C7 C8

Here, Cluster C7 includes S1, S6 and cluster C8 includes S2, S8.
We already have other clusters as cluster C5 includes S3, S10 and cluster C6 includes S4, S9.

At this stage each cluster can be divided into two clusters each of one object. Thus, the stopping
criterion has been reached.

7.7.3 Density-based clustering

Density-based clustering algorithms perform the clustering of data by forming the cluster of nodes
on the basis of the estimated density distribution of corresponding nodes in the region. In density-

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

200 Data Mining and Data Warehousing

based clustering, clusters are dense regions in the data space. These clusters are separated by regions
of lower object density. A cluster is defined as a maximal set of density-connected points.

In 1996, Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu proposed a Density-
based clustering algorithm. The major strength of this approach is that it can identify clusters of
arbitrary shapes. A Density-based clustering method is known as DBSCAN (Density-Based Spatial
Clustering of Applications with Noise).

Familiarity with the following terms is a must in order to understand the workings of the
DBSCAN algorithm.

Neighborhood (e)

Neighborhood is an important term used in DBSCAN. It represents objects within a certain radius
of from a centroid type object. The high-density neighborhood results if an object contains at least
MinPts (minimum points) of objects in its neighborhood.

This concept is illustrated in Figure 7.19.

Figure 7.19 Concept of neighborhood and MinPts

Core, Border, and Outlier

A point is known as a core point if it has more than a specified number of points (MinPts) within
neighborhood (e). These points must lie at the interior of a cluster. A border point is a point if it
has fewer than MinPts within neighborhood (e), but it is in the neighborhood of a core point. A
point is a noise or outlier point if it is neither a core point nor a border point. The concept of Core,
Border, and Outlier is illustrated by considering Minpts = 4 in Figure 7.20.

Figure 7.20 Concept of core, border and outlier

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

Cluster Analysis 201

Density reachability; Directly and Indirectly density-reachable

DBSCAN’s definition of a cluster is defined based on the concept of density reachability. Generally,
a point q is directly density-reachable from a point p if it is not more distant than a given distance
e (i.e., is part of its e-neighborhood). However, one may consider that p and q belong to the same
cluster if point p is surrounded by necessarily many points.

Figure 7.21 Concept of density reachability

As shown in Figure 7.21, if p is a core point and point q is in neighborhood e of p then we can
say that point q is directly density-reachable from point p.

Following are some important observations that can be drawn from data points given in Figure
7.21.
	 •	 Point	q is directly density-reachable from point ‘core point’ p.
	 •	 Point	q is not a core point as it has only 3 nodes in the neighborhood while MinPts is 4,

therefore, p is not directly density-reachable from point q.
	 •	 Thus,	Density-reachability	is	asymmetric

To further understand the concept of directly and indirectly density-reachable, let us consider
Figure 7.22. Here, MinPts are 7.

Figure 7.22 Concept of directly and indirectly density-reachable

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

202 Data Mining and Data Warehousing

As shown in Figure 7.22, following are some important observations:
	 •	 Point	p2 is a core point as it has more than 7 points within its neighborhood and point p is

directly density-reachable from it.
	 •	 Point	p1 is also a core point and point p2 is directly density-reachable from it.
	 •	 Point	q is also a core point and point p1 is directly density-reachable from it.
	 •	 Here,	p → p2 → p1 → q form a chain.
	 •	 Point	p is indirectly (through intermediate points p1 and p2) density-reachable from point q.
	 •	 Because	p is not a core point as point q is not density-reachable from it. Point p has 6 nodes in

the neighborhood while MinPts value is 7.
It is important to notice that the relation of density-reachable is not symmetric.
Let us consider another case given in Figure 7.23.

Figure 7.23 Another case of density reachability [see colour plate]

Here, in Figure 7.23, minPts = 4. Point A and the other red points are core points, because the
area surrounding these points in an epsilon (e) radius, contain at least 4 points (including the point
itself). Because they are all reachable from one another, they form a single cluster. Points B and C
are not core points, but are reachable from A (via other core points) and thus belong to the cluster
as well. Point N is a noise point that is neither a core point nor directly-reachable.

Some more examples of DBSCAN are presented in Figure 7.24.

Figure 7.24 Some more examples of DBSCAN [see colour plate]

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

Cluster Analysis 203

Thus, we can conclude that, a cluster then satisfies two properties:
	 •	 All	points	within	the	cluster	are	mutually	density-connected.
	 •	 If	a	point	is	density-reachable	from	any	point	of	the	cluster,	it	is	part	of	the	cluster	as	well.

7.7.4 DBSCAN algorithm

After the understanding of concepts of neighborhood, core, border, outlier points and density
reachability, DBSCAN algorithm can be summarized as given below.

Algorithm for DBSCAN
1. Find the e (epsilon) neighbors of every point, and identify the core points with more than

minPts neighbors.
2. Find the connected components of core points on the neighbourhood graph, ignoring all

non-core points.
3. Assign each non-core point to a nearby cluster if the cluster is an e (eps) neighbor, otherwise

assign it to noise.

7.7.5 Strengths of DBSCAN algorithm

DBSCAN algorithm has following advantages.
	 •	 It	is	not	required	to	specify	the	number	of	clusters	in	the	data	at	the	start	in	case	of	the	DBSCAN	

algorithm.
	 •	 It	 requires	only	 two	parameters	and	does	not	depend	on	 the	ordering	of	 the	points	 in	 the	

database.
	 •	 It	can	 identify	clusters	of	arbitrary	shape.	It	 is	also	able	 to	 identify	 the	clusters	completely	

surrounded by a different cluster.
	 •	 DBSCAN	is	robust	to	outliers	and	has	a	notion	of	noise.

7.7.6 Weakness of DBSCAN algorithm

DBSCAN algorithm has following disadvantages.
	 •	 The	DBSCAN	algorithm	is	sensitive	to	the	parameter,	i.e.,	it	is	difficult	to	identify	the	correct	

set of parameters.
	 •	 The	quality	of	the	DBSCAN	algorithm	depends	upon	the	distance	measures	like	neighborhood	

(e) and MinPts.
	 •	 	The	DBSCAN	algorithm	cannot	cluster	datasets	accurately	with	varying	densities	or	large	

differences in densities.

 Remind Me
 Clustering is defined as grouping a set of similar objects into classes or clusters.
 A distance metric is a function d(x, y) that specifies the distance between elements of a set as a non-

negative real number.
 Clustering methods/algorithms can be categorized into five categories. These are the: Partitioning

method, Hierarchical method, Density-based method, Grid based method and Model based method.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

204 Data Mining and Data Warehousing

 In k-means clustering algorithm, the objects are grouped into k number of clusters on the basis of
attributes or features.

 Hierarchical clustering is a type of cluster analysis which seeks to generate a hierarchy of clusters. It
is also called as Hierarchical Cluster Analysis (HCA).

 There are two types of Hierarchical clustering: agglomerative and divisive.
 Agglomerative is a ‘bottom-up’ approach. In this approach, each object is a cluster by itself at the start

and its nearby clusters are repetitively combined resulting in larger and larger clusters until some
stopping criterion is met.

 Divisive is a ‘top-down’ approach. In this approach, all objects start from one cluster, and partitions are
performed repeatedly resulting in smaller and smaller clusters until some stopping criterion is met.

 The Density-based clustering algorithm performs the clustering of data by forming the cluster of nodes
on the basis of the estimated density distribution of corresponding nodes in the region.

 Neighborhood represents objects within a radius from an object.
 Point is known as a core point if it has more than a specified number of points (MinPts) within

neighborhood (e). These points must lie at the interior of a cluster.
 A border point is a point if it has fewer than MinPts within neighborhood (e), but it is in the neighborhood

of a core point. Machine learning is a field that has grown out of AI.

 Point Me (Books)
 Han, Jiawei, Micheline Kamber, and Jian Pei. 2011. Data Mining: Concepts and Techniques, 3rd ed.

Amsterdam: Elsevier.
 Gupta, G. K. 2014. Introduction to Data Mining with Case Studies. Delhi: PHI Learning Pvt. Ltd.
 Mitchell, Tom M. 2017. Machine Learning. Chennai: McGraw Hill Education.
 Witten, Ian H., Eibe Frank, Mark A. Hall, and Christopher Pal. 2016. Data Mining: Practical Machine

Learning Tools and Techniques, 4th ed. Burlington: Morgan Kaufmann.

 Point Me (Video)
 K-Means Clustering Algorithm - Cluster Analysis | Machine Learning Algorithm | Data Science |Edureka,

https://www.youtube.com/watch?v=4R8nWDh-wA0
 Hierarchical Clustering (Agglomerative and Divisive Clustering), https://www.youtube.com/

watch?v=2z5wwyv0Zk4

 Connect Me (Internet Resources)
 https://www.tutorialspoint.com/data_mining/dm_cluster_analysis.htm
 https://en.wikipedia.org/wiki/Hierarchical_clustering
 http://www.saedsayad.com/clustering.htm
 https://blogs.sas.com/content/subconsciousmusings/2016/05/26/data-mining-clustering/

 Test Me
 Answer these multiple choice questions based on your learning in this chapter.
 1. Given two objects represented by the attribute values (1,6,2,5,3) and (3,5,2,6,6), compute the Manhattan

distance between these two objects.
 2. Given two objects represented by the attribute values (1,6,2,5,3) and (3,5,2,6,6), compute the Euclidean

distance between these two objects.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

Cluster Analysis 205

 3. Create four clusters for the given dataset using K-means algorithm, indicate all the intermediate steps.

Food item # Protein content, P Fat content, F

Food item #1 1.1 60

Food item #2 8.2 20

Food item #3 4.2 35

Food item #4 1.5 21

Food item #5 7.6 15

Food item #6 2.0 55

Food item #7 3.9 39

 4. What is the importance of the sum of squared errors in a cluster?
 5. The distances between some Indian cities are given below, Apply the clustering algorithm to make

three clusters. Indicate intermediate steps.

Bathinda Patiala Delhi Amritsar Mathura

Bathinda 0 190 400 250 460

Patiala 190 0 240 225 300

Delhi 400 240 0 450 60

Amritsar 250 225 450 0 510

Mathura 460 300 60 510 0

 6. Use single link agglomerative clustering to group the data, describe by the following distance matrix.

A B C D

A 0 1 4 5

B 0 2 6

C 0 3

D 0

 7. How do we decide which cluster to split next in case of divisive hierarchical method?
 8. What are the strengths and weakness of DBSCAN? Why is it named DBSCAN?
 9. Differentiate between border point and core point with an example.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:39:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.008
https://www.cambridge.org/core

Chapter Objectives

 To apply the K-means algorithm in Weka and R language

 To interpret the results of clustering

 To identify the optimum number of clusters

 To apply classification on un-labeled data by using clustering as an intermediate step

8.1 Introduction

As discussed earlier, if data is not labeled then we can analyze this data by performing a clustering
analysis, where clustering refers to the task of grouping a set of objects into classes of similar objects.

In this chapter, we will apply clustering on Fisher’s Iris dataset. We will use clustering algorithms
to group f lower samples into clusters with similar f lower dimensions. These clusters then become
possible ways to group f lowers samples into species. We will implement a simple k-means algorithm
to cluster numerical attributes with the help of Weka and R.

In the case of classification, we know the attributes and classes of instances. For example, the
f lower dimensions and classes were already known to us for the Iris dataset. Our goal was to predict
the class of an unknown sample as shown in Figure 8.1.

Earlier, we used the Weka J48 classification algorithm to build a decision tree on Fisher’s Iris
dataset using samples with known class, which helped in predicting the class of unknown samples.
We used the flower’s Sepal length and width, and the Petal length and width as the specific attributes
for this. Based on f lower dimensions and using this tree, we can identify an unknown Iris as one of
three species, Setosa, Versicolor, and Virginica.

Implementing
Clustering with Weka and R

8

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.009
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:41:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.009
https://www.cambridge.org/core

Implementing Clustering with Weka and R 207

Figure 8.1 Classification of an unknown sample

In clustering, we know the attributes for the instances, but we don’t know the classes. For example,
we know the f lower dimensions for samples of the Iris dataset but we don’t know what classes exist
as shown in Figure 8.2. Therefore, our goal is to group instances into clusters with similar attributes
or dimensions and then identify the class.

Figure 8.2 Clustering

In this chapter, we will learn what happens if we don’t know what classes the samples belong
to, or even how many classes there are, or even what defines a class? Since, Fisher’s Iris dataset is
already labeled, we will first make this dataset unlabeled by removing the class attribute, i.e., the
species column. Then, we will apply clustering algorithms to cluster this data on the basis of its
input attributes, i.e., Sepal length, Sepal width, Petal length, and Petal width. The advantage of
using this dataset is that we can compare the results of our clustering algorithms with the labeled
data to judge the accuracy of our clustering algorithms as depicted in Figure 8.3. For example,
Anderson classified each of the samples, so after clustering the samples, we can compare the results
of clustering with the assigned classes in the original dataset.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.009
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:41:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.009
https://www.cambridge.org/core

208 Data Mining and Data Warehousing

Figure 8.3 Clustering process

8.2 Clustering Fisher’s Iris Dataset with the Simple k-Means
Algorithm

Let’s apply clustering on Fisher’s Iris dataset using Weka’s simple k-means algorithm. Since, Fisher’s
Iris dataset consists of samples belonging to three different species in the dataset, we will specify
numClusters to be three. To help us interpret results, we’ll set displayStdDevs to true so that we can
see the standard deviations for the instance cluster assignments as shown in Figure 8.4.

Figure 8.4 Applying the simple k-means algorithm in Weka

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.009
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:41:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.009
https://www.cambridge.org/core

Implementing Clustering with Weka and R 209

For clustering, as we are not doing any training or testing of dataset, so we will select Use training
set in cluster mode. We also want to Store clusters for visualization.

As discussed earlier, for clustering, data should be unlabeled, so let us ignore the label attribute, i.e.,
the Species class attribute during application of the clustering algorithm, by using Ignore attributes
and selecting Class in the Select items dialogue box as shown in Figure 8.5.

Figure 8.5 Applying the simple k-means algorithm in Weka: the next step

8.3 Handling Missing Values

In case, there exist any missing values in the dataset, it is handled by the simple k-Means clustering
algorithm by itself. For missing numerical attributes, the missing value is filled in by the average
value of all other values of the attribute. For nominal attributes, the missing value is replaced by the
most commonly occurring nominal value for the attribute.

8.4 Results Analysis after Applying Clustering

After applying the simple k-means clustering algorithm, we see the centroids of the three clusters and
standard deviations for the sample values in each cluster as shown in Figure 8.6. For the results, we
can verify that the k-means clustering algorithm identifies three clusters of data having 61 instances
in first cluster, 50 instances in second cluster and 39 instances in third cluster. Since, we are using
the Iris dataset, we know that there are three clusters (Setosa, Versicolor and Verginica) having 50
instances each. Thus, out of three clusters, one cluster has been identified perfectly while there is

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.009
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:41:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.009
https://www.cambridge.org/core

210 Data Mining and Data Warehousing

shifting of 11 instances from one cluster to another, because identified count of clusters is 61, 50
and 39 as shown in Figure 8.6.

Figure 8.6 Clustering of Iris samples

To compare the results given by the clustering algorithm with the actual clusters, we select the
Classes to cluster evaluation in cluster mode and re-run the clustering algorithm as shown in Figure
8.7. Using this, we can get more information on where Weka put each Iris sample.

Figure 8.7 Class to cluster evaluation and confusion matrix

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.009
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:41:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.009
https://www.cambridge.org/core

Implementing Clustering with Weka and R 211

From the confusion matrix in Figure 8.7, it can be observed that all the Setosa fall into a distinct
cluster, i.e., cluster 1. We also see that the algorithm got most of the Versicolor and Virginica right in
cluster 0 and cluster 2, respectively. But some of the Versicolor and Virginica did get mixed up with
each other, i.e., 3 Versicolor fall into the Virginica cluster and 14 Virginica fall into the Versicolor
cluster. By specifying the numClusters to value 3, we can analyze that the simple k-means algorithm
did a pretty good job of distinguishing between the different Iris species. We got 17 samples out of
150 samples that were classified wrongly according to Anderson’s classification.

The clusters assigned by the clustering algorithm can be visualized across any of the input
attributes. For example, Figure 8.8 shows the visualization of clusters along with the plot axis selected
as Petal length and Petal width. Jitter may be increased to see all the samples.

Figure 8.8 Cluster visualization [see colour plate]

The samples which are classified correctly are shown by cross symbols and wrongly classified
samples are shown by squares in Figure 8.8. As we discussed earlier, Setosa got classified correctly
and ended up in the right cluster. But we have some errors for Vrsicolor and Virginica, as indicated
by the square boxes. If you right-click on any point on the plot, you can find out more about the
associated sample.

Let us consider the plot of Petal length versus Petal width as shown in Figure 8.9. Through visual
examination, it can be analyzed that some of the Versicolor instances that have been identified in
the Virginica cluster, while it appears that on the basis of their Petal length vs. Petal width, they
should be identified differently. And similarly, there are some Verginica instances identified as
Versicolor while it appears that on the basis of the plot of Petal length vs. Petal width, they should
be identified differently.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.009
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:41:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.009
https://www.cambridge.org/core

212 Data Mining and Data Warehousing

Figure 8.9 Cluster visualization for Petal length vs. Petal width [see colour plate]

Through visual examination shown in Figure 8.10, we have drawn boundaries which seems to
separate the three species pretty reliably, based on just two of these attributes, i.e., Petal length and
Petal width. Consider the example of sample 50 that is classed as Versicolor by Anderson, and lies
on the Versicolor side of the species boundary. Therefore, the clustering algorithm should have put
this sample in the Versicolor cluster. But the simple k-means put this sample in the Virginica cluster
as shown in Figure 8.10.

Figure 8.10 Cluster visualization with respect to Petal length vs. Petal width [see colour plate]

Now the question arises that why certain samples which clearly seem to belong to one cluster on
this plot end up being put into a different cluster? The reason is that the clustering algorithm used
information from all four f lower dimensions to form the clusters, not just the two attributes shown
in Figure 8.11, the plot of Sepal length vs. Sepal width. Again, species boundaries drawn by visual
inspection are shown in Figure 8.11.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.009
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:41:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.009
https://www.cambridge.org/core

Implementing Clustering with Weka and R 213

Figure 8.11 Cluster visualization with respect to Sepal length vs. Sepal width [see colour plate]

So, if we look at Petal length and Petal width, sample 50 looks like Versicolor, but if we look at
Sepal length and Sepal width, it looks like Virginica. The point is that the clustering algorithm
takes into account all attributes (except class attributes) when clustering samples. So, when all
f lower dimensions are taken into consideration, the simple k-means algorithm puts sample 50 in
the Virginica cluster, not Versicolor.

In contrast, recall that for our decision tree classifier, it made decisions only on the basis of Petal
length and Petal width measurements. It did not consider Sepal length and width in the classifier.

8.4.1 Identification of centroids for each cluster

The dimensions of the centroid of each of the clusters built by the clustering algorithm can be
seen in the clustering output window along with standard deviation as shown in Figure 8.12. The
centroid is the center of mass of the measurements for a particular attribute and particular cluster.

Figure 8.12 Cluster visualization with respect to Sepal length vs. Sepal width

Let us observe the plot of Sepal length vs. Sepal width, with the centroid and standard deviation
statistics as shown in Figure 8.13. This information tells us something about the ‘quality’ of the
clusters formed. First, the farther apart the centroids are, the less the clusters overlap, so, logically,
the higher the quality of the clusters. Second, the lower the standard deviations, the more tightly
the samples in a cluster are grouped around the centroid, which also means high quality clusters.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.009
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:41:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.009
https://www.cambridge.org/core

214 Data Mining and Data Warehousing

Figure 8.13 Cluster visualization with respect to Sepal length vs. Sepal width [see colour plate]

The simple k-means clustering algorithm provides another useful measure for assessing clustering
results and it is the within cluster sum of squared errors.

8.4.2 Concept of within cluster sum of squared error

To understand the concept of within cluster sum of square error, let us consider the error for Petal
width on sample 5 as shown in Figure 8.14. The Petal width for sample 5 is 3.6. The clustering
algorithm put sample 5 in cluster 1. The Petal width centroid for cluster 1 is 3.418. The error is
simply the difference between these two values, i.e, 3.6 - 3.418 = 0.182. We do the squaring to make
sure all the errors are positive numbers.

Figure 8.14 Within cluster sum of squared error

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.009
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:41:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.009
https://www.cambridge.org/core

Implementing Clustering with Weka and R 215

If you square that error for each sample in the cluster and add this up for all the samples in the
dataset, you get the within cluster sum of squared errors for that clustering run. Obviously, lower
the error, the better the results of the run.

8.4.3 Identification of the optimum number of clusters using within cluster
sum of squared error

In our example Iris database for clustering, we already know that there are three specifies of f lowers
so we have set number of the cluster to 3 for the application of the k-means clustering algorithm.
But in case the dataset is unlabeled, how do we decide about the optimum number of clusters. To
decide about an optimum number of clusters for unlabeled data, Within Cluster Sum of Squared
Error plays a very important role.

To identify this optimum number, we first set k = 1 (number of clusters) and find corresponding
within cluster sum of square error. Then we change k to 2 and find corresponding within cluster
sum of square error. We repeat this step by increasing the value of k by 1 and plot a graph for the
value of k and corresponding within cluster sum of square error as shown in Figure 8.15.

Figure 8.15 Error vs. number of clusters

In the graph, we have to identify the point where the improvement in within cluster sum of square
error stops improving. In our example database, it appears that till 3 clusters, we see a significant
reduction in error, with diminishing returns setting in at about the fourth cluster. So, it appears
that perhaps 3 clusters would be a good conclusion, based on this dataset and clustering algorithm.

It is important to note that if we continue to increase the number of clusters then within cluster
sum of square error further reduces and if we make the number of clusters equal to the number
of instances in the dataset then within cluster sum of square error is reduced to zero. This case is
another form of over-fitting of clusters. So, reducing the within cluster sum of square error should
not be the only criteria to identify the number of clusters as it may result in over-fitting of clusters.

So, the number of clusters should be chosen at a point where the improvement of reduction in
within cluster sums of square error is diminishing, i.e., where the slope appears to f latten out sharply.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.009
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:41:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.009
https://www.cambridge.org/core

216 Data Mining and Data Warehousing

8.5 Classification of Unlabeled Data

We have already discussed in previous chapters, that to apply classification on data to make a
prediction, the important requirement is labeled data. In simple words, we can only apply classification
if data is labeled. But in most of the cases, data may be unlabeled, as it is a very costly affair in terms
of manpower hours to prepare labeled data.

Then the question arises, Is it possible to apply classification on unlabeled data?
Let us ponder on this question for a moment.
The answer to this question is Yes! It is possible to apply classification on unlabeled data by

following some intermediate steps.
Of course, we cannot directly apply classification on unlabeled data, but we can apply the clustering

algorithm on this data to make clusters or groups based on input attributes. Then these clusters can
be added to the dataset and to set it as a class attribute, or, as an output attribute to make predictions
by using classification algorithms.

Now, in the coming section, we will discuss this process of applying classification on unlabeled
data. This process has been depicted in Figure 8.16 by considering the Iris dataset.

Figure 8.16 Classification process of unlabeled data

Till this point, we have completed the first three steps and successfully made three clusters of data
by applying the simple k-means algorithm. Now, let us perform steps 4 and 5 as discussed below.

8.5.1 Adding clusters to dataset

Once we have determined the optimum number of clusters, we can group the samples into these
clusters, and then we can come up with cluster names, like, say, Cluster1, Cluster2, Cluster3 and
so on and can add it to our dataset.

In this section, we will discuss how we can add clusters found by a clustering algorithm to the dataset.
To add clusters to the dataset as one of the attributes, we have to use the Preprocess tab; upload the

Iris dataset and then select No class. We choose this option because we don’t want Weka to assume

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.009
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:41:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.009
https://www.cambridge.org/core

Implementing Clustering with Weka and R 217

any of the attributes as a class attribute. Now, we have to add an attribute to our dataset that will hold
the name of the cluster that Weka will put each sample into. So, still on the Preprocess tab, we go to
Choose, and then select the AddCluster filter, but do not Apply the filter yet as shown in Figure 8.17.

Note: Make sure that No class is still selected, or you won’t be able to select AddCluster.

Figure 8.17 Choosing AddCluster filter

Before applying the AddCluster filter, we need to configure it. Here, we will Choose the
SimpleKMeans clusterer, and specify numClusters as 3. Now, we still need to ignore the Species
attribute, which we do by settingIgnoredAttributeIndices to 5, since Species is the 5th column in
the dataset as shown in Figure 8.18.

Figure 8.18 Configuration settings of AddCluster filter

Go ahead and Apply the AddCluster filter. Applying the AddCluster filter automatically runs the
selected algorithm. In other words, we do not need to go to the Cluster tab and run SimpleKMeans,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.009
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:41:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.009
https://www.cambridge.org/core

218 Data Mining and Data Warehousing

since applying the filter does this automatically. When we Apply the filter, we do see a new attribute
called cluster pop up in the Attributes box as shown in Figure 8.19.

Figure 8.19 Application of AddCluster filter

To further analyze this clustering process, we can compare the values of cluster attribute (added
by the clustering algorithm) with the already existing Species column, by clicking the Edit button.
The label is highlighted, indicating that it is now the class attribute as shown in Figure 8.20. If you
scroll around, you can find the 17 samples that Weka clustered differently than the species given in
the original dataset. So, our results are the same regardless of which way we run SimpleKMeans,
except that now we have the cluster assignments added to the dataset.

Figure 8.20 Comparison of values of the new added cluster attribute with the
already existing class column

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.009
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:41:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.009
https://www.cambridge.org/core

Implementing Clustering with Weka and R 219

8.5.2 Applying the classification algorithm by using added cluster attribute
as class attribute

We have a dataset where Weka has separated all the samples into three clusters, so what we will
now do is build a J48 decision tree using the new cluster assignments as class values.

We start this by hopping over to the Preprocess tab and removing the Class attribute, which we
do not want J48 to use when building its tree. Now we just go over to Classify, choose J48 with
default settings, and run it.

Wow! J48 generates prediction rules as shown in Figure 8.21.

Figure 8.21 Prediction rules generated by J48

Now, by right clicking on the model, we get a visual depiction of the decision tree generated by
the classifier as shown in Figure 8.22.

Figure 8.22 Decision tree

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.009
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:41:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.009
https://www.cambridge.org/core

220 Data Mining and Data Warehousing

Now, let us compare the rules generated
using clustering compared to the rules
generated from the original dataset which
contained Fisher’s species attribute. It
appears that when creating our decision
tree from clustering results, Sepal length
becomes important in distinguishing
among species as shown in Figure 8.23
as clustering considers all four attributes
to divide the instances into clusters and
then these clusters are used to prepare
the decision tree. Thus, all attributes
appeared in the decision tree derived from
clustering.

8.5.3 Pruning the decision tree

We can further simplify the generated decision tree by using the pruning property. Pruning is
actually used to simplify the tree because normally J48 creates the branch of the tree if there are a
minimum of two instances to follow the path. We can reduce the number of branches by increasing
this number so that branch will be created only if more than n numbers of instances follow that path.

In the generic object editor for J48 (which will appear if we double click on the J48 classifier
option as shown in Figure 8.24), increase minNumObj from the default value of 2 to a value of 10.
What this means is that J48 will prune the tree that it builds so that no leaf at the bottom of the
tree will have any fewer than 10 iris samples in it as shown in Figure 8.24.

Figure 8.24 Pruning the decision tree

Figure 8.23 Comparison of rules of clustering with
rules of the decision tree

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.009
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:41:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.009
https://www.cambridge.org/core

Implementing Clustering with Weka and R 221

The result of increasing minNumObj from 2 to 10 is shown in Figure 8.25. Note that we do have
a few additional misclassified samples, but we have also greatly simplified our rules.

Figure 8.25 Analysis of rules after increasing minNumObj

We have performed clustering on Fisher’s Iris dataset using Weka and in the next section, we
will implement the same concept using R language.

8.6 Clustering in R using Simple k-Means

The following steps are followed to perform k-means clustering in R.

Step1: Loading the dataset

We will first load the Iris dataset to perform clustering. Since the Iris dataset is widely used, the
CRAN community has already provided the dataset in R’s base data and we can immediately start
using it in R.

The following command shows the Iris dataset statistics as shown in Figure 8.26.
> str(iris)

Figure 8.26 Iris dataset statistics

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.009
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:41:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.009
https://www.cambridge.org/core

222 Data Mining and Data Warehousing

Figure 8.26 shows that dataset contains 150 observations and five variables such as Sepal length,
Sepal width, Petal length, Petal width, and species.

The following command converts the iris datset into dataframe and its output is shown in shown
in Figure 8.27.

> iris _ df <- iris
> iris _ df

Figure 8.27 Iris dataframe statistics

Step 2: Removal of the class variable from dataset

Out of these five attributes, four of our attributes are quantitative and one attributes (species) is
categorical. Therfore, to perform clustering, we will remove the sepcies attribute from the dataset
and save it in a different list for later use by using the following commands.

> species <- as.list(iris _ df$Species)
> species <- unlist(species)
> iris _ df <- iris _ df[1:4]

After running the above commmands, the fifth attribute (which is species) gets removed. Now
the iris dataframe consists of four attributes as shown in Figure 8.28.

Figure 8.28 Iris dataframe statistics after removal of species variable

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.009
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:41:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.009
https://www.cambridge.org/core

Implementing Clustering with Weka and R 223

Step 3: Apply k-means clustering

Now, we apply k-means clustering on the Iris data frame by specifying the number of clusters to 3
and number of iterations to 20 as given in following commands.

> irisCluster <- kmeans(iris _ df, 3, nstart = 20)
> irisCluster

The output after running above commands is shown in Figure 8.29.

Figure 8.29 Results after applying k-means clustering

From Figure 8.29, it has been observed that clustering algorithm has identified 3 clusters such
as 1, 2 and 3. The algorithm has put 62 samples in cluster 1, 50 samples in cluster 2 and 38 samples
in cluster 3. We already know each class of Iris dataset consists of 50 samples. After analyzing
the results shown in Figure 8.29, we can observe that 50 samples of one class has been identified
correctly and 12 samples have been classified wrongly and assigned to a different class. The cluster
size can also be identified using the following command and its output is shown in Figure 8.30.

> table(irisCluster$cluster)

Figure 8.30 Cluster size

Similarly, the centroids of clusters are shown in Figure 8.29 and can also be identified using the
following commands. The output of following command is shown in Figure 8.31.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.009
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:41:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.009
https://www.cambridge.org/core

224 Data Mining and Data Warehousing

> irisCluster$centers

Figure 8.31 Cluster centroids

Figure 8.32 shows the plot between Petal Length and Petal Width after clustering using the
following commnad.

> irisCluster$cluster <- as.factor(irisCluster$cluster)
> plot(iris _ df [, 3:4], col =(irisCluster$cluster) , main=”K-Means result with 3

clusters”, pch=20, cex=2)

Figure 8.32 Plot of Petal length vs. Petal width after clustering [see colour plate]

8.6.1 Comparison of clustering results with the original dataset

Let’s cross validate the results of clustering with original dataset. It can be done using the following
command.

> table(irisCluster$cluster, iris$Species)

The output of this comparison is represented through a confusion matrix as shown in Figure 8.33.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.009
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:41:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.009
https://www.cambridge.org/core

Implementing Clustering with Weka and R 225

Figure 8.33 Confusion matrix

As we can see, the data belonging to the Setosa species got grouped into cluster 2, Versicolor into
cluster 3, and Virginica into cluster 1. The algorithm wrongly classified two samples belonging to
Versicolor and four samples belonging to Virginica.

8.6.2 Adding generated clusters to the original dataset

The graphic expression of clusters can help us to evaluate whether the result makes sense. If we
determine that it does, we can also include the results of cluster analysis in the original dataset. Thus,
we bind the results of clustering analysis with the original dataset using the following command
and its output is shown in Figure 8.34

add cluster to original dataset
> iris.cluster = cbind(iris _ df, irisCluster[1])
> iris.cluster

Figure 8.34 Iris dataset after adding results of the clustering analysis

8.6.3 Apply J48 on the clustered dataset

The following commands are run to apply the decision tree and the classes predicted by its application
are shown in Figure 8.35.

> library(party)
>

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.009
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:41:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.009
https://www.cambridge.org/core

226 Data Mining and Data Warehousing

> iris.cluster$cluster <- as.factor(iris.cluster$cluster) # Convert “integer”
 data type to “factor” datatype
>
> target = cluster ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width
>
> cdt <- ctree(target, iris.cluster) #Application of decision tree
>
> table(predict(cdt), iris.cluster$cluster) # Prediction of class

Figure 8.35 Apply decision tree on clustered results by simple k-means algorithm

The confusion matrix in Figure 8.35 shows that 50 instances of Setosa are classified correctly
and 16 other instances are classified incorrectly.

Acknowledgement

We acknowledge the consent of Mr Mark Polczynski to use the ideas and illustrations given at Mark
Polczynski in his Weka Tutorial 4 - Clustering.

 Remind Me
 The simple k-means algorithm can be applied by selecting this algorithm in the clustering tab after

loading the dataset.
 User can set the value of k, i.e, number of clusters by changing its settings.
 In k-means algorithm at Weka, the missing numeric value is filled by the average value of all other

values of the attribute. For nominal attributes, the missing value is replaced by the most commonly
occurring nominal value for the attribute.

 Optimum number of clusters can be selected by analyzing within cluster sum of squared error.
 Adding clusters to dataset is used to apply classification on un-labeled data.
 To prune the decision tree minNumObj value can be increased in the setting of the J48 algorithm.
 To apply k-means algorithm in R language kmeans() is used.
 The Table function is used in R to cross-validate the results of clustering with the original dataset.
 In R cbind() can be used to save all results of clustering to the original dataset.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.009
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:41:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.009
https://www.cambridge.org/core

Implementing Clustering with Weka and R 227

 Point Me (Books)
 Witten, Ian H., Eibe Frank, and Mark A. Hall. 2010. Data Mining: Practical Machine Learning Tools and

Techniques, 3rd ed. Amsterdam: Elsevier.
 Bouckaert, Remco R., Eibe Frank, Mark Hall, Richard Kirkby, Peter Reutemann, Alex Seewald, and David

Scuse. 2008. WEKA Manual for Version 3-6-0. Hamilton: University of Waikato.
 Lesmeister, Cory. 2015. Mastering Machine Learning with R. Birmingham: Packt Publishing Ltd.

 Connect Me (Internet Resources)
 https://www.ibm.com/developerworks/library/os-weka2/index.html
 http://facweb.cs.depaul.edu/mobasher/classes/ect584/WEKA/k-means.html
 http://www.cs.ccsu.edu/~markov/ccsu_courses/datamining-ex3.html
 http://modelai.gettysburg.edu/2016/kmeans/assets/iris/Clustering_Iris_Data_with_Weka.pdf

 Test Me
 The purpose of this assignment is to verify that you have learnt the concepts of clustering. Carry out this
assignment in both Weka and R to check your learning.

 Task 1
 Consider the dataset given below. It has 4 input attributes outlook, temperature, humidity and windy. Here,
‘play’ is the output attribute and these 14 records contain the information about weather conditions based
on which it decides whether play took place or not.

 Instance
Number

Outlook Temperature Humidity Windy Play

1 sunny hot High false No

2 sunny hot High true No

3 overcast hot High false Yes

4 rainy mild High false Yes

5 rainy cool Normal false Yes

6 rainy cool Normal true No

7 overcast cool Normal true Yes

8 sunny mild High false No

9 sunny cool Normal false Yes

10 rainy mild Normal false Yes

11 sunny mild Normal true Yes

12 overcast mild High true Yes

13 overcast hot Normal false Yes

14 rainy mild High true No

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.009
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:41:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.009
https://www.cambridge.org/core

228 Data Mining and Data Warehousing

	 •	 Apply	classification	on	given	data.
	 •	 Remove	label	and	then	apply	clustering.
	 •	 Perform	class	to	cluster	evaluation.
	 •	 Apply	classification	on	un-labeled	dataset	by	removing	play	attribute.
	 •	 Compare	the	results	of	classification	obtained	in	step	1	and	step	4.
	 •	 Perform	same	operations	in	Weka	and	R.
	 •	 Prepare	an	analysis	report	for	the	same.
 Task 2
	 •	 Consider	the	student	performance	of	your	class	having	following	attributes.
 Rno, Name, Quiz1, MSE, Quiz2, Lab, ESE, Total
 Insert 30 dummy records in this excel file.
	 •	 Perform	clustering	on	this	dataset.
	 •	 Identify	optimum	number	of	clusters.
	 •	 After	identification	of	optimum	number	of	clusters,	prepare	clustering	on	this	number.
	 •	 Perform	same	operations	in	Weka	and	R.
	 •	 Perform	data	analysis	on	the	result	obtained	and	prepare	an	analysis	report	for	the	same.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.009
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:41:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.009
https://www.cambridge.org/core

Chapter Objectives
 To comprehend the concept of association mining and its applications

 To understand the role of support, confidence and lift

 To comprehend the Naïve algorithm, Its limitations and improvements

 To learn about approaches for transaction database storage

 To understand and demonstrate the use of the apriori algorithm and the direct hashing and
pruning algorithm

 To use dynamic Itemset counting to identify association rules

 To use FP growth for mining frequent patterns without candidate generation

9.1 Introduction to Association Rule Mining

Association rule mining often known as ‘market basket’ analysis is very effective technique to find
the association of sale of item X with item Y. In simple words, market basket analysis consists of
examining the items in the baskets of shoppers checking out at a market to see what types of items
‘go together’ as illustrated in Figure 9.1.

It would be useful to know, when people make a trip to the store, what kind of items do they
tend to buy during that same shopping trip? For example, as shown in Figure 9.1, a database of
customer transactions (i.e., shopping baskets) is given where each transaction consists of a set of
items (i.e., products purchased during a visit). Association rule mining is used to identify groups of
items which are frequently purchased together (customers’ purchasing behavior). For example, ‘IF
one buys bread and milk, THEN he/she also buys eggs with high probability.’ This information
is useful for the store manager for better planning of stocking items in the store to improve its sale
and efficiency.

Let us suppose that the store manager, receives customer complaints about heavy rush in his store
and its consequent slow working. He may then decide to place associated items such as bread and

Association Mining

9

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

230 Data Mining and Data Warehousing

milk together, so that customers can buy the items easier and faster than if these were at a distance.
It also improves the sale of each product. In another scenario, let us suppose his store is new and
the store manager wishes to display all its range of products to prospective customers. He may then
decide to put the associated items, i.e., bread and milk, at opposite ends of the store and would place
other new items and items being promoted in between them, thereby ensuring that many customers,
on the way from bread to milk, would take notice of these and some would end up buying them.

Figure 9.1 Need for association mining

Sometimes analysis of sale records leads to very interesting and unexpected results. In one very
popular case study by Walmart USA, they had identified that people buying diapers often also
bought beer. By putting the beer next to the diapers in their stores, it was found that the sales of
each skyrocketed as depicted in Figures 9.2, 9.3 and 9.4.

Figure 9.2 Association of sale of beer and diapers

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 231

 One may make multiple conclusions about the association of bear and diapers. It may be funny
to assume that ‘A beer before bed means a better night’s sleep for the whole family.’ But serious
analysis could lead to ‘Young couples prepare for the weekend by stocking up on diapers for the
infants and beer for dad’.

Figure 9.3 Association of sale of beer and diapers

Nevertheless, this story aptly illustrates the market basket concept of things ‘going together’,
which is the basis of the data mining association function.

Figure 9.4 Association of sale of beer and diapers

Some other interesting findings of association mining may be trivial, for example, ‘Customers
who purchase maintenance agreements are very likely to purchase large appliances.’ Or it may be
unexplicable and unexpected, as in ‘When a new restaurant opens, one of the most sold items is
coffee’. This may be due to the reason that coffee is the cheapest item in the menu. So, to get the

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

232 Data Mining and Data Warehousing

feel of the restaurant, people only order coffee. This type of finding suggests to the manager to
increase the cost of coffee. It happens to be the reason why in many good restaurants, the price of
coffee is alarming high.

Often, while conducting market basket analysis or association rule mining, the only source of
data available on customers is the bills of purchase, which tells what items go together in a shopping
cart, and can also show what items ‘go together’ at certain times of the day, days of the week,
seasons of the year, credit versus cash versus check payment, geographical locations of stores, and
so on. Discovering associations among these attributes can lead to fact-based marketing strategies
for things like store f loor plans, special discounts, coupon offerings, product clustering, catalog
design, identifying items that need to be put in combo packs and can be used to compare stores as
shown in Figure 9.5.

Figure 9.5 Association and customer purchase bills

Nowadays, recommendations given by online stores like Amazon and Flipkart also make use of
association mining to recommend products related with your purchase and the system offers the
list of products that others often buy together with the product you have just purchased. Besides
the examples from market basket analysis given above, association rules are used today in many
application areas such as intrusion detection, Web usage mining, bioinformatics and continuous
production. Programmers use association rules to build programs capable of machine learning.

 This is commonly known as market basket data analysis.
Association rule mining can also be used in applications like marketing, customer segmentation,

web mining, medicine, adaptive learning, finance and bioinformatics, etc.

9.2 Defining Association Rule Mining

Association rule mining can be defined as identification of frequent patterns, correlations,
associations, or causal structures among sets of objects or items in transactional databases, relational
databases, and other information repositories.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 233

Association rules are generally if/then statements that help in discovering relationships between
seemingly unrelated data in a relational database or other information repository. For example, ‘If
a customer buys a dozen eggs, he is 80% likely to also purchase milk.’

An association rule consists of two parts, i.e., an antecedent (if) and a consequent (then). An
antecedent is an object or item found in the data while a consequent is an object or item found in
the combination with the antecedent.

Association rules are often written as X → Y meaning that whenever X appears Y also tends to
appear. X and Y may be single items or sets of items. Here, X is referred to as the rule’s antecedent
and Y as its consequent.

For example, the rule found in the sales data of a supermarket could specify that if a customer buys
onions and potatoes together, he or she will also like to buy burgers. This rule will be represented
as onions, potatoes → burger.

The concept of association rules was formulated by two Indian scientists Dr Rakesh Agrawal
and Dr R. Srikant. The detail about their brief profile is given in Section 9.7.1.

9.3 Representations of Items for Association Mining

Let us assume that the number of items in the shop stocks is n. In Table 9.1, there are 6 items in
stock, namely, bread, milk, diapers, beer, eggs, cola, thus n = 6 for this shop.

The item list is represented by I and its items are represented by {i1,i2,…in}.
The number of transactions are represented by N transactions, i.e., N = 5 for the shop data as

given in Table 9.1.

Table 9.1 Sale database

TID Items

1 {Bread, Milk}

2 {Bread, Diapers, Beer, Eggs}

3 {Milk, Diapers, Beer, Cola}

4 {Bread, Milk, Diapers, Beer}

5 {Bread, Milk, Diapers, Cola}

Each transaction is denoted by T {t1, t2, ...,tN} each with a unique identifier (TID) and each
transaction consists of a subset of items (possibly a small subset) purchased by one customer.

Let each transaction of m items be {i1,i2, …, im}, where m <= n [number of items in a transaction
should be less than or equal to total items in the shop]. Typically, transactions differ in the number
of items.

As shown in Table 9.1, the first transaction is represented as T1 and it has two items, i.e., m =
2, with i1 = Bread and i2 = Milk. Similarly transaction T4, has four items, having m = 4, with i1 =
Bread, i2 = Milk, i3 = Diapers and i4 = Beer.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

234 Data Mining and Data Warehousing

Our task will be to find association relationships, given a large number of transactions, such that
items that tend to occur together are identified. It is important to note that association rules mining
does not take into account the quantities of items bought.

9.4 The Metrics to Evaluate the Strength of Association Rules

The metrics to judge the strength and accuracy of the rule are as follows:
	 •	 Support
	 •	 Confidence	
	 •	 Lift

9.4.1 Support

Let N is the total number of transactions. Support of X is represented as the number of times X
appears in the database divided by N, while the support for X and Y together is represented as the
number of times they appear together divided by N as given below.

Support(X) = (Number of times X appears) / N = P(X)
Support(XY) = (Number of times X and Y appear together) / N = P(X ∩ Y)
Thus, Support of X is the probability of X while the support of XY is the probability of X ∩ Y.
Table 9.1, has been reproduced as Table 9.2 to calculate the supports for each item as given below:

Table 9.2 Sale database

TID Items

1 {Bread, Milk}

2 {Bread, Diapers, Beer, Eggs}

3 {Milk, Diapers, Beer, Cola}

4 {Bread, Milk, Diapers, Beer}

5 {Bread, Milk, Diapers, Cola}

Support(Bread) = Number of times Bread appears / total number of translations = 4/5 = P(Bread)
Support(Milk) = Number of times Milk appears / total number of translations = 4/5 = P(Milk)
Support(Diapers) = Number of times Diapers appears / total number of translations = 4/5 =

P(Diapers)
Support(Beer) = Number of times Beer appears / total number of translations =3/5 = P(Beer)
Support(Eggs) = Number of times Eggs appears / total number of translations =1/5 = P(Eggs)
Support(Cola) = Number of times Cola appears / total number of translations = 2/5 = P(Cola)
Support(Bread, Milk) = Number of times Bread, Milk appear together / total number of

translations = 3/5 = P(Bread ∩ Milk)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 235

Support(Diapers, Beer) = Number of times Diapers, Beer appears together / total number of
translations = 3/5 = P(Diapers ∩ Beer)

A high level of support indicates that the rule is frequent enough for the business to take interest
in it.

Support is very important metric because if a rule has low support then it may be the case that the
rule occurs by chance and it will not be logical to promote items that customers seldom buy together.
But if a rule has high support then that association becomes very important and if implemented
properly will result in increase in revenue, efficiency and customer satisfaction.

9.4.2 Confidence

To understand the concept of confidence, let us suppose that support for X→Y is 80%, then it
means that X→Y is very frequent and there are 80% chances that X and Y will appear together in
a transaction. This would be of interest to the sales manager.

Let us suppose we have another pairs of items (A and B) and support for A→B is 50%.
Of course it is not as frequent as X→Y, but if this was higher, such as whenever A appears there

is 90% chance that B also appears, then of course it would be of great interest.
Thus, not only the probability that A and B appear together matters, but also the conditional

probability of B when A has already occurred plays a significant role. This conditional probability
that B will follow when A has already been occurred is considered during determining the confidence
of the rule.

Thus, Support and Confidence are important metrics to judge the quality of the association
mining rule.

A high level of confidence shows that the rule is true often enough to justify a decision based on it.
Confidence for X→Y is defined as the ratio of the support for X and Y together to the support for

X (which is same as the conditional probability of Y when X has already been occurred). Therefore
if X appears much more frequently than X and Y appearing together, the confidence will be low.

Confidence of (X→Y) = Support(XY) / Support(X) = P(X ∩ Y) / P(X) = P(Y | X)
P(Y | X) is the probability of Y once X has taken place, also called the conditional probability of Y.
Let us consider Table 9.3 and Ttable 9.4 to further understand the concept of support and

confidence.

Table 9.3 Example of the support measure

TID Items Support = Occurence / Total Support

1 ABC

Total Support = 5
Support {AB} = 2/5 = 40%
Support {BC} = 3/5 = 60%
Support {ABC} = 1/5 = 20%

2 ABD

3 BC

4 AC

5 BCD

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

236 Data Mining and Data Warehousing

Table 9.4 Example of the confidence measure

TID Items Given X ⇒ Y
Confidence = Occurence {X and Y}/ Occurence of (X)

1 ABC

Confidence {A ⇒ B} = 2/3 = 66%
Confidence {B ⇒ C} = 3/4 = 75%
Confidence {AB ⇒ C} = 1/2 = 50%

2 ABD

3 BC

4 AC

5 BCD

Let us consider the database given in Table 9.5 for further understanding support and confidence.

Table 9.5 Database for identification of association rules

Antecedent Consequent

A 0

A 0

A 1

A 0

B 1

B 0

B 1

There are two rules derived from the association of these combinations:
Rule 1: A implies 0, i.e., A→0
Rule 2: B implies 1, i.e., B→1
The support for Rule 1 is the Number of times A and 0 appear together / Total Number of

transactions.
Thus, Support of Rule 1 = 3/7
The Support for Rule 2 is the Number of times B and 1 appear together / Total Number of

transactions.
Support of Rule 2 = 2/7
The Confidence for Rule 1 is Support of (A,0) / Support A, i.e.,
(Number of times A and 0 appear together / Total number of items) DIVIDED BY
(Number of times A appears / Total number of items)
Here, total number of items get cancelled.
Thus, the Confidence for Rule 1 is the Number of times A and 0 appear together / Number of

times A appears.
So the Confidence for Rule 1 is 3/4
Similarly, the Confidence for Rule 2 is 2/3

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 237

Going back to our general example involving ‘X’ (the Antecedent) and ‘Y’ (the Consequence), the
Confidence of the rule does not depend on the frequency of ‘Y’ appearing. But in order to identify
the strength of the rule it is important to consider the frequency of X and Y; X only; and Y only. In
simple words, it is important to consider the whole dataset.

TheLift of the rule however considers the whole dataset, by taking into account the probability
of Y also, in deciding the strength of the rule. So, Lift is the third important metric to check the
strength or power of the rule.

9.4.3 Lift

It is very important to consider the frequency of Y or probability of Y for the effectiveness of the
association mining rule X→Y.

As already explained, Confidence is the conditional probability of Y when X has already occurred.
It is very important to consider how frequent Y is to guage the effectiveness of the confidence.

Thus, Lift is the ratio of conditional probability of Y when X is given to the unconditional
probability of Y in the dataset. In simple words, it is Confidence of X→Y divided by the probability
of Y.

Lift = P(Y | X) / P(Y)
Or
Lift = Confidence of (X→Y) / P(Y)
Or
Lift = (P(X ∩ Y) / P(X))/P(Y)
Thus, lift can be computed by dividing the confidence by the unconditional probability of

consequent Y.
Let us suppose that Coke is a very common sales item in a store and that it usually appears in

most of the transactions. Let us suppose that we have a rule of Candle→Coke which has a support
of 20% and has a confidence of 90%. It is very logical to think that if coke is very popular and it
appears in 95% of transactions, then obviously it also appears quite often with the candle as well. So,
the rule for association of candle and coke will not be all that useful. But if we find that Candle→
Matchbox also has a support of 20% and a confidence of 90% then it is logical to suppose that the
frequency of matchbox sales is very little as compared to the sale of coke. And the rule suggests
that when we make a sale of candles, 90% chance indicates that a matchbox will also be sold in the
same transaction. It is more effective and logical to conclude that when we sell a candle then we
also sell a coke (coke is popular and will appear with every item not just with candle). As support
and confidence are unable to handle this case, it is handled by the lift of the rule.

In this case, the probability of Y is very low in case of Candle→ Matchbox (Here, Y is matchbox)
and will be very high in case of Candle→Coke (Here, Y is coke).

One can note that the low probability of Y, makes the X→Y rule more effective as compared to
high probability of Y. Lift takes the note of this, and is defined as follows.

Lift = P(Y | X) / P(Y)
Or
Lift = Confidence of (X→Y) / P(Y)
Or

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

238 Data Mining and Data Warehousing

Lift = (P(X ∩ Y) / P(X)) / P(Y)
Thus, the high probability of Y, i.e., P(Y) makes lift less effective and its low value makes it

more effective.
Let us again consider the data given in Table 9.5, which has been reproduced in Table 9.6 for

quick reference to calculate the lift of Rule 1 and Rule 2 as discussed earlier.

Table 9.6 Dataset

Antecedent Consequent

A 0

A 0

A 1

A 0

B 1

B 0

B 1

Lift for Rule1, i.e., A→0 = P (0 | A) / P(0) = (P (A ∩ 0) / P(A))/ P(0) = (3/4) / (4/7)=1.3125
Lift for Rule2, i.e., B→1= P (1|B) / P(1) = (P (B ∩ 1) / P (B))/ P(1) = (2/3) / (3/7) =1.55
As discussed earlier, the confidence for Rule 1 is 3/4=0.75 and confidence for Rule 2 is 0.66.
It should be observed that although the Rule 1 has higher confidence as compared to Rule 2, but

it has lower lift as compared to Rule 2.
Naturally, it would appear that Rule1 is more valuable because of having higher confidence; it

appears more accurate (better supported). But, the accuracy of the rule can be misleading if it is
independent of the dataset. Lift, as a metric is important because it considers both the confidence
of the rule and the overall dataset.

In order to understand the importance of lift let us consider modified dataset given in Table 9.7.
In this modified database another five records have been added to the existing database (the five

at the bottom). In these five records 0 appears four times, i.e., in the modified database 0 becomes
more frequent; so, its probability has been increased, while the probability of 1 has been reduced.

Thus for first rule, i.e., A→0 the lift of the rule has been reduced in the modified database while
it has same value of confidence as calculated below.

Support of A→0 = 3/12
Confidence of A→0 = Support(A,0) / Support(A) = 3/4 = 0.75
Lift = Confidence (A,0) / Support(0) = (3/4) / (8/12) = 36/32 = 1.125
Here, the lift of rule 1 has been reduced from 1.312 in the original dataset to 1.125 in the modified

dataset, so the strength of rule 1 has been decreased in the modified dataset.
For Rule 2, i.e., B→1, the lift rule has been improved in the modified database while it has same

value of confidence as calculated below.
Support of B→1 = 2/12
Confidence of B→1 = Support(B,1) / Support(B) = 2/3 = 0.66

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 239

Lift = Confidence / Support(1) = (2/3) / (4/12) =2
Here, the lift of Rule 2 has been increased from 1.555 in the original dataset to 2 in the modified

dataset, so the strength of Rule 2 has been improved in the modified dataset. Thus, lift considers
both the confidence of the rule and the overall dataset.

Table 9.7 Modified dataset

Antecedent Consequent

A 0

A 0

A 1

A 0

B 1

B 0

B 1

C 0

D 0

C 0

C 1

E 0

Another representation of association rules

Sometimes, the representation of association rules also includes support and confidence as shown
in Figure 9.6.

Figure 9.6 Representation of association rules

diapers ⇒ beer [0.5%, 60%]
Here,

 1. Antecedent, left-hand side (LHS), body
 2. Consequent, right-hand side (RHS), head
 3. Support, frequency
 4. Confidence, strength

Five new records
inserted into the

database

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

240 Data Mining and Data Warehousing

9.5 The Naïve Algorithm for Finding Association Rules

To understand the Naïve Algorithm, let us consider the sales record of a grocery store. For simplicity,
only four sale transactions of it are considered which deal with only four items for sale (Bread,
Cornflakes, Jam and Milk) as shown in Table 9.8 and a naïve brute force algorithm is used to
perform the task to identify the association of items in this sale record.

Let us find the association rules having minimum ‘support’ of 50% and minimum ‘confidence’
of 75%.

Table 9.8 Sale record of grocery store

Transaction ID Items

100 Bread, Cornflakes

101 Bread, Cornflakes, Jam

102 Bread, Milk

103 Cornflakes, Jam, Milk

9.5.1 Working of the Naïve algorithm

In order to find association rules, the first step of the naïve algorithm is to list all the combinations
of the items that are in stock and then identify the frequent combinations or combinations having
frequency more than or equal to a specified support limit. Using this approach, the association rules
that have the ‘confidence’ more than the threshold limit are identified.

Here, we have four items in stock, thus there are 24 possible combinations that we can create by
considering null as one combination and if we ignore null then the following 15 combinations are
possible as given in Table 9.9 along with their frequencies of occurrence in the transaction database.

Table 9.9 List of all itemsets and their frequencies

Itemsets Frequency

Bread 3

Cornflakes 3

Jam 2

Milk 2

(Bread, Cornflakes) 2

(Bread, Jam) 1

(Bread, Milk) 1

(Cornflakes, Jam) 2

Contd.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 241

Itemsets Frequency

(Cornflakes, Milk) 1

(Jam, Milk) 1

(Bread, Cornflakes, Jam) 1

(Bread, Cornflakes, Milk) 0

(Bread, Jam, Milk) 0

(Cornflakes, Jam, Milk) 1

(Bread, Cornflakes, Jam, Milk) 0

Here, the minimum required support is 50% and we have to identify the frequent itemsets
that appear in at least two transactions. The list of frequencies shows that all four items Bread,
Cornflakes, Jam and Milk are frequent. It has been observed that the frequency goes down when
we look at 2-itemsets and only two 2-itemsets such as (Bread, Cornflakes) and (Cornflakes, Jam)
are frequent. All the frequent itemsets has been shown in bold in Table 9.8. There are no three or
four itemsets that are frequent. The frequent itemsets are provided in Table 9.10.

Table 9.10 The set of all frequent items

Itemsets Frequency

Bread 3

Cornflakes 3

Jam 2

Milk 2

(Bread, Cornflakes) 2

(Cornflakes, Jam) 2

As we are interested in association rules that can only occur with item pairs, thus individual
frequent items Bread, Cornflakes, Jam and Milk are ignored, and item pairs (Bread, Cornflakes)
and (Cornflakes, Jam) are considered for association rule mining.

Now, the association rules for the two 2-itemsets (Bread, Cornflakes) and (Cornflakes, Jam) are
determined with a required confidence of 75%.

It is important to note that every 2-itemset (A, B) can lead to two rules A→B and B→A if both
satisfy the required confidence. As stated earlier, confidence of A→B is given by dividing the support
for A and B together, by the support for A.

Therefore, we have four possible rules which are given as follows along with their confidence:
Bread→Cornflakes
Confidence = Support of (Bread, Cornflakes) / Support of (Bread) = 2/3 = 67%
Cornflakes→Bread

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

242 Data Mining and Data Warehousing

Confidence = Support of (Cornflakes, Bread) / Support of (Cornflakes) = 2/3 = 67%
Cornflakes→Jam
Confidence = Support of (Cornflakes, Jam) / Support of (Cornflakes) = 2/3 = 67%
Jam→Cornflakes
Confidence = Support of (Jam, Cornflakes) / Support of (Jam) = 2/2 = 100%
Therefore, only the last rule Jam→Cornflakes has more than the minimum required confidence,

i.e., 75% and it qualifies. The rules having more than the user-specified minimum confidence are
known as confident.

9.5.2 Limitations of the Naïve algorithm

We can observe that in Table 9.7, we had a small number of items. However, the number of all
possible combinations for which we have to calculate the frequency grows enormously as the number
of items increase in the dataset. When dealing with 4 itemsets, it produces 15 different combinations
in Table 9.8 and if we include a null combination (a combination with no items) as well, we would
obtain 16. If there are six items it would have produced 64 combinations and if the number of items
were 10 then we would have a table with 1024 combinations.

This simple algorithm works well with four items but if the number of items is say 100, the
number of combinations is much larger, in billions. The number of combinations becomes about
a million with 20 items since the number of combinations is 2n with n items. The naive algorithm
can be improved to deal more effectively with larger datasets.

9.5.3 Improved Naïve algorithm to deal with larger datasets

Rather than counting all the possible item combinations in the stock it will be better to focus only on
the items that are sold in transactions. Because, we may have hundreds of items in stock but we are
concerned with finding associations only for the items that are being sold together. Thus, it is natural
to to focus only on the items that are sold in transactions instead of all the items available in stock.

We can look at each transaction and count only the combinations that actually occur; with this
approach we do not count itemsets with zero frequency. And that will be an improvement.

As an example, Table 9.11 lists all the actual combinations occurring within the transactions
given in Table 9.8.

Table 9.11 All possible combinations with nonzero frequencies

Transaction ID Items Combinations

100 Bread, Cornflakes (Bread, Cornflakes)

200 Bread, Cornflakes, Jam (Bread, Cornflakes), (Bread, Jam), (Cornflakes,
Jam), (Bread, Cornflakes, Jam)

300 Bread, Milk (Bread, Milk)

400 Cornflakes, Jam, Milk (Cornflakes, Jam), (Cornflakes, Milk), (Jam, Milk),
(Cornflakes, Jam, Milk)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 243

We therefore only need to look at the following combinations and their frequencies are given
in Table 9.12.

Table 9.12 Frequencies of all itemsets with nonzero frequencies

Itemsets Frequency

Bread 3

Cornflakes 3

Jam 2

Milk 2

(Bread, Cornflakes) 2

(Bread, Jam) 1

(Cornflakes, Jam) 2

(Bread, Cornflakes, Jam) 1

(Bread, Milk) 1

(Cornflakes, Milk) 1

(Jam, Milk) 1

(Cornflakes, Jam, Milk) 1

We can now proceed as before. This would work better since the list of item combinations is
significantly reduced from 15 (as given in Table 9.8) to 12 (as given in Table 9.11) and this reduction
is likely to be much larger for bigger problems. Regardless of the extent of the reduction, this list will
also become very large for, say, 1000 items since it includes all the nonzero itemsets that exist in the
transactions database whether they have minimum support or not. Therefore, the naïve algorithm or
any improvement of it is not suitable for large problems. We will discuss a number of algorithms for
more efficiently solving the association rule problem starting with the classical Apriori algorithm.

Before starting with the Apriori algorithm, it is important to discuss different ways to store our
transaction database in computer memory because, it will have an impact on performance if we are
processing a large number of transactions. In the next section, implementation issues of transition
storage have been discussed.

9.6 Approaches for Transaction Database Storage

It is important to understand different ways to store a dataset of transactions before processing it
using algorithms, as storage is an important issue for its performance.

There are three ways to store datasets of transactions. These are as follows.
	 •	 Simple	Storage
	 •	 Horizontal	Storage
	 •	 Vertical	Storage

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

244 Data Mining and Data Warehousing

Let us suppose the number of items be five; to demonstrate the different options. Let them be
{I1, I2, I3, I4, I5}. Let there be only seven transactions with transaction IDs {T1, T2, T3, T4, T5,
T6, T7}. This set of seven transactions with five items can be stored using three different methods
given as follows.

9.6.1 Simple transaction storage

The first representation is commonly used and known as Simple Transaction Storage. Each row of
the table shows the transaction ID and the purchased items as given in Table 9.13.

Table 9.13 A simple representation of transactions as an item list

Transaction ID Items

T1 I1, I2, I4

T2 I4, I5

T3 I1, I3

T4 I2, I4, I5

T5 I4, I5

T6 I2, I3, I5

T7 I1, I3, I4

9.6.2 Horizontal storage

In this representation, each row is still a transaction, but columns have been created for each item.
In the cell, 1 is filled against the item that occurs in a transaction and 0 against the rest as shown
in Table 9.14.

Table 9.14 Horizontal storage representation

TID I1 I2 I3 I4 I5

T1 1 1 0 1 0

T2 0 0 0 1 1

T3 1 0 1 0 0

T4 0 1 0 1 1

T5 0 0 0 1 1

T6 0 1 1 0 1

T7 1 0 1 1 0

The advantage of this storage system is that we can count the frequency of each item by counting
the ‘1’s in the given column. As we can easily calculate the frequency of item I1 as 3 and item I4 as

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 245

5. We can also easily calculate the frequency of item pairs by counting the 1’s that result after an
‘AND’ operation on corresponding columns. For example, the frequency of item pairs I1 and I2 is
1 (By AND operation on column of I1 and I2 we will get only one 1, i.e., T1).

9.6.3 Vertical representation

In this representation as given in Table 9.15, the transaction list is turned around. Rather than using
each row to represent a transaction of the items purchased, each row now represents an item and it
indicates transactions in which the item appears. The columns now represent the transactions. This
representation is also called a TID-list since for each item it provides a list of TIDs (Transition Ids).

Table 9.15 Vertical storage representation

Item TID

T1 T2 T3 T4 T5 T6 T7

I1 1 0 1 0 0 0 1

I2 1 0 0 1 0 1 0

I3 0 0 1 0 0 1 1

I4 1 1 0 1 1 0 1

I5 0 1 0 1 1 1 0

A vertical representation also facilitates counting of items by counting the number of 1s in each
row and in case of 2-itemsets, where you want to find out the frequency of occurrences of 2 items
together in a transaction, you have to refer to the intersection of 2 rows corresponding to the items,
and inspect one column at a time.

Example: If you want to find out frequency of item pairs (I1,I2) just look at rows I1 and I2 for
each column if values of both I1 and I2 is 1 then this means I1 and I2 are occurring together in a
transaction hence write their count as 1, move further in some way for each transaction. Finally
you will get Table 9.16.

From the table it can be seen that the count for item pair {I1,I2}is 1; similarly the count of item
pair {I1, I4} is 2. (Table 9.16)

Table 9.16 Frequency of item pairs

T1 T2 T3 T4 T5 T6 T7

I1, I2 1 0 0 0 0 0 0

I1, I4 1 0 0 0 0 0 1

The vertical representation is not storage efficient in case of very large number of transactions.
Also, if an algorithm needs data in the vertical representation then there would be a cost in
transforming data from the horizontal representation to the vertical one.

With this we can move on to the concept of the Apriori algorithm.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

246 Data Mining and Data Warehousing

9.7 The Apriori Algorithm

The Apriori algorithm was developed by two Indians Rakesh Agrawal and Ramakrishnan Srikant
in 1994, to mine frequent itemsets for identifying association rules.

It should be a matter of pride and motivation to have two Indians as inventors of association
mining. Their work is the base for commonly used recommendation systems for modern applications
such as product recommendations for online purchases and video recommendation and so on.

A brief profile of these two scientists, based on Wikipedia, has been presented below to motivate
readers and in appreciation of their efforts.

9.7.1 About the inventors of Apriori

Rakesh Agrawal is the President and Founder of the Data Insights Laboratories.
He is also the President of the Professor Ram Kumar Memorial Foundation.

Rakesh is an innovator and thought leader driven by the desire to make the
world better through scientific breakthroughs and by building practical working
systems. He is the recipient of the ACM-SIGKDD Inaugural Innovation Award,
ACM-SIGMOD Edgar F. Codd Innovations Award, VLDB 10-Yr Most Influential Paper Award.
Scientific American has included him in its first list of 50 top scientists and technologists.

Until recently, Rakesh was a Microsoft Technical Fellow and headed the Search Labs in Microsoft
Research. Prior to joining Microsoft in March 2006, Rakesh was an IBM Fellow and led the Quest
group at the IBM Almaden Research Center. Earlier, he was with the Bell Laboratories, Murray
Hill from 1983 to 1989. He also worked for three years at a leading Indian, namely Bharat Heavy
Electricals Ltd. He received the M.S. and Ph.D. degrees in Computer Science from the University
of Wisconsin-Madison in 1983. He also holds a B.E. degree in Electronics and Communication
Engineering from IIT-Roorkee, and a two-year Post Graduate Diploma in Industrial Engineering
from the National Institute of Industrial Engineering (NITIE), Bombay. Both IIT-Roorkee and
NITIE have decorated him with their distinguished alumni awards.

Rakesh has been granted 83 patents. He has published more than 200 research papers, many of
them considered seminal. He has written the 1st as well as the 2nd highest cited of all papers in the
fields of databases and data mining (18th and 26th most cited across all computer science). Wikipedia
lists one of his papers as one of the most influential database papers. His papers have been cited
more than 80,000 times, with more than 25 of them receiving more than 500 citations each and
three of them receiving 5,000 citations each (Google Scholar). He is the most cited author in the
field of database systems and the 26th most cited author across all of Computer Science (Citeseer).
His research has been featured in N.B.C., New York Times, and several other media channels.

It is rare that a researcher’s work creates not only a product, but a whole new industry. IBM’s
data mining product, Intelligent Miner, grew straight out of Rakesh’s research. IBM’s introduction
of Intelligent Miner and associated services created a new category of software and services. His
research has been incorporated into many other commercial products, including DB2 Mining
Extender, DB2 OLAP Server, WebSphere Commerce Server, and Microsoft Bing Search engine,
as well as many research prototypes and applications.

To know more, please visit http://rakeshagrawal.org/

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 247

Ramakrishnan Srikant is a Distinguished Research Scientist at Google. His
research interests include data mining, online advertising, and user modeling.
He previously managed the Privacy Research group, part of the Intelligent
Information Systems Research department at IBM’s Almaden Research Center.

Srikant has published more than 30 research papers that have been extensively
cited. He has been granted 25 patents. Dr Srikant was a key architect for the IBM
Intelligent Miner, and contributed the association rules and sequential patterns
modules to the product.

Srikant received the ACM SIGKDD Innovation Award (2006) for his seminal work on mining
association rules and privacy preserving data mining, the 2002 ACM Grace Murray Hopper Award
for his work on mining association rules, the VLDB 2004 Ten Year Best Paper Award, and the
ICDE 2008 Influential Paper Award. He was named an IBM Research Division Master Inventor
in 1999. He has received 2 Outstanding Technical Achievement Awards for his contributions to the
Intelligent Miner, and an Outstanding Innovation Award for his work on Privacy in Data Systems.

Srikant received his M.S. and Ph.D. from the University of Wisconsin, Madison and his B. Tech.
from the Indian Institute of Technology, Madras.

To know more, please visit http://www.rsrikant.com/index.html

9.7.2 Working of the Apriori algorithm

The Apriori algorithm has been named so on the basis that it uses prior knowledge of frequent
itemset properties. This algorithm consists of two phases. In the first phase, the frequent itemsets,
i.e., the itemsets that exceed the minimum required support are identified. In the second phase,
the association rules meeting the minimum required confidence are identified from the frequent
itemsets. The second phase is comparatively straight forward – therefore, the major focus of research
in this field is to improve the first phase.

To understand the Apriori algorithm, let us follow the learn by example approach. We will first
apply this algorithm on a simple database to illustrate its working and then we will go into detail
to learn the concept more deeply.

Example: Let us consider an example of only five transactions and six items. We want to identify
association rules with 50% support and 75% confidence with the Apriori algorithm. The transactions
are given in Table 9.17.

Table 9.17 Transactions database

Transaction ID Items

T1 Bread, Cornflakes, Eggs, Jam

T2 Bread, Cornflakes, Jam

T3 Bread, Milk, Tea

T4 Bread, Jam, Milk

T5 Cornflakes, Jam, Milk

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

248 Data Mining and Data Warehousing

For 50% support each frequent item must appear in at least three transactions. The first phase
of the Apriori algorithm will be to find frequent itemsets.

Phase 1: Identification of frequent itemsets

It starts with the identification of candidate 1 itemsets, represented by C1 (one itemsets that may
be frequent) and it is always the items in the stock which the store deals with, Here, we have six
items, so C1 will be as shown below.

Table 9.18 Candidate one itemsets C1

Item

Bread

Cornflakes

Eggs

Milk

Jam

Tea

From Candidate 1 itemsets, frequent one-itemsets are represented by L1 and found by calculating
the count of each candidate item and selecting only those counts which are equal to or more than
the threshold limit of support, i.e., 3 in this case. Thus, frequent single itemsets, L1, will be as
shown in Table 9.19.

Table 9.19 Frequent items L1

Item Frequency

Bread 4

Cornflakes 3

Milk 3

Jam 4

Then, the candidate 2-itemsets or C2 are determined per the process illustrated below:
C2 = L1 JOIN L1.
The joining of L1 with itself has been illustrated below.

Bread

JOIN

Bread

Cornflakes Cornflakes

Milk Jam

Jam Milk

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 249

In the Join operation the first step will be to perform a Cartesian product, i.e., to make all possible
pairs between L1 and L1 as shown below.

Bread, Bread
Bread, Cornflakes
Bread, Milk
Bread, Jam
Cornflakes, Bread
Cornflakes, Cornflakes
Cornflakes, Milk
Cornflakes, Jam
Milk, Bread
Milk, Cornflakes
Milk, Milk
Milk, Jam
Jam, Bread
Jam, Cornflakes
Jam, Milk
Jam, Jam
Here, we have 16 possible pairs. In association mining, we are interested in item pairs, so the pairs

having same itemsets (like Bread, Bread) need to be considered for removal from the list. Similarly,
if we already have an item pair of Milk, Jam then there is no need to list item pair Jam, Milk so it
will also be removed from the list.

Thus, to create C2 the following steps are applied:
	 •	 Perform	Cartesian	product	of	L1	with	itself
	 •	 Some	item	pairs	may	have	identical	items.	Keep	just	one.	Remove	the	extras.
	 •	 Select	only	those	item	pairs	in	which	items	are	in	lexical	order	(so	that	if	we	have	Milk,	Jam	

then Jam, Milk should not appear).
Thus, the final C2 will be as shown below:
Bread, Cornflakes
Bread, Milk
Bread, Jam
Cornflakes, Milk
Cornflakes, Jam
Milk, Jam
The frequency of each of these item pairs will be found as shown in the table given below.

Table 9.20 Candidate item pairs C2

Item pairs Frequency

(Bread, Cornflakes) 2

(Bread, Milk) 2

(Bread, Jam) 3

Contd.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

250 Data Mining and Data Warehousing

Item pairs Frequency

(Cornflakes, Milk) 1

(Cornflakes, Jam) 3

(Milk, Jam) 2

We therefore have only two frequent item pairs in L2 as shown in Table 9.21.

Table 9.21 Frequent two item pairs L2

Item pairs Frequency

(Bread, Jam) 3

(Cornflakes, Jam) 3

Generation of C3 from L2
C3 is generated from L2 by carrying out a JOIN operation over L2 as shown below.
C3 = L2 JOIN L2
It will involve the same steps as performed for C2, but it has one important pre-requisite for Join,

i.e., two items are joinable if their first item is common. In a generalized case:
Ck = Lk-1 JOIN Lk-1
And they are joinable if their first k-2 items are the same. So, in case of C3, the first item should

be the same in L2, while in case of C2 there is no requirement of first item similarity because k-2
in the C2 case is 0.

From {Bread, Jam} and {Cornflakes, Jam} two frequent 2-itemsets, we do not obtain a candidate
3-itemset since we do not have two 2-itemsets that have the same first item. This completes the
first phase of the Apriori algorithm.

Phase 2: Generation of rules

The two frequent 2-itemsets given above lead to the following possible rules.
Bread→Jam
Jam→Bread
Cornflakes→Jam
Jam→Cornflakes
The confidence of these rules is obtained by dividing the support for both items in the rule by the

support for the item on the left-hand side of the rule. The confidence of the four rules therefore are
3/4 = 75%, 3/4 = 75%, 3/3 = 100%, and 3/4 = 75% respectively. Since all of them have a minimum
75% confidence, they all qualify.

In order to generalize the Apriori algorithm, let us define the representation of itemsets.

Representation of Itemsets

To generate Ck, let us first define Lk-1.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 251

Let l1 and l2 be itemsets in list Lk-1 and the notation li[j] refers to the jth item in li.
To generate C2 from L1, C2 is represented as Ck and L1 as Lk-1. Let us consider L1 as shown in

Table 9.22, the description of each item list has been given below.

Table 9.22 L1 for generation of C2 having only one element in each list

L1

1 represented as item list l1 and its item, i.e., 1 is represented as l1[1].

2 represented as item list l2 and its item, i.e., 2 is represented as l2[1].

3 represented as item list l3 and its item, i.e., 3 is represented as l3[1].

5 represented as item list l4 and its item, i.e., 5 is represented as l4[1].

Let us consider L2 given in Table 9.23.

Table 9.23 L2 for generation of C3 (i.e., K=3) having two elements in each list

L2

1,2 represented as item list l1 and its item, 1 is represented as l1[1] or l1[k-2] and 2 is
represented as l1[2] or l1[k-1]

4,5 represented as item list l2 and its item, 4 is represented as l2[1] or l2[k-2] and 5 is
represented as l2[2] or l2[k-1]

2,6 represented as item list l3 and its item, 2 is represented as l3[1] or l3[k-2] and 6 is
represented as l3[2] or l3[k-1]

Let us consider L3 given in Table 9.24.

Table 9.24 L3 for generation of C4 (i.e., K = 4) having three elements in each list

L3

1,2,3 represented as item list l1 and its item, 1 is represented as l1[1] or l1[k-3] and 2 is
represented as l1[2] or l1[k-2] and 3 is represented as l1[3] or l1[k-1]

1,2,5 represented as item list l2 and its item, 1 is represented as l2[1] or l2[k-3] and 2 is
represented as l2[2] or l2[k-2] and 5 is represented as l2[3] or l2[k-1]

2,3,6 represented as item list l3 and its item, 2 is represented as l3[1] or l3[k-3] and 3 is
represented as l3[2] or l3[k-2] and 6 is represented as l1[3] or l1[k-1]

Defining Phase 1: Identification of frequent itemsets

The Apriori algorithm uses an iterative approach and is also known as a level-wise search where
k-itemsets are used to search (k+1) itemsets. First, the database is scanned to find the set of frequent
1-itemsets to accumulate the count for each item denoted as C1, known as candidate 1-itemset,
and gathering those items satisfying minimum required support denoted as L1, frequent 1-itemset.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

252 Data Mining and Data Warehousing

Next, L1 is used to find C2, candidate 2-itemsets and collecting those items that satisfy minimum
support denoted as L2, frequent 2-itemsets; which is used to find C3, candidate 3-itemsets; which
is used further to identify L3, frequent 3-itemsets and so on, until no more frequent k-itemsets can
be found. This process has been illustrated in Figure 9.7. The finding of each Lk requires one full
scan of the database.

Figure 9.7 Process for identification of frequent itemsets

To proceed further, we have to generate C2 based on L1. To understand the generation of candidate
itemsets, it is important to understand the representation of items in the item lists.

Step 3: Form candidate 2 itemset pair, i.e., C2.
C2 is created by joining L1 with itself by using following joining rule.

The join step

To find Ck, a set of candidate k-itemsets denoted as Ck is generated by joining Lk-1 with itself. Let
l1 and l2 be itemsets in Lk-1, the notation li[j] refers to the jth item in li, e.g., l1[k-2] refers to the
second last item in l1. By convention, the prior assumption is that items within a transaction or
itemset are sorted in lexicographic order. For the (k-1) itemset, li, this means that the items are
sorted such that li[1] < li[2] < : : : < li[k-1].

The join, Lk-1 on Lk-1, is performed, where members of Lk-1 are joinable if their first (k-2) items
are in common.

That is, members l1 and l2 of Lk-1 are joined if (l1[1] = l2[1]) ̂ (l1[2] =l2[2]) ̂ : : : ̂ (l1[k-2] = l2[k-2])
^ (l1[k-1] < l2[k-1]). The condition l1[k-1] < l2[k-1] simply ensures that no duplicates are generated.

The resulting itemset formed by joining l1 and l2 is l1[1], l1[2], : : : , l1[k-2], l1[k-1], l2[k-1].
Thus, there are three important points that make items of Lk-1 joinable and these are as follows.

Point 1: The members of Lk-1 are joinable if their first (k-2) items are in common

It means for C2 = L1 JOIN L1, with k = 2, there is no requirement for having the first common
data item, because k-2 = 0.

For C3 = L2 JOIN L2, with k = 3, the first k-2, i.e., first 1 item should be the same in the itemset.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 253

For C4 = L3 JOIN L3, having k = 4, the first k-2, i.e., first 2 items should be the same in the
itemset.

For example, Let us verify whether L1 given in Table 9.25 is joinable or not, to create C2.

Table 9.25 L1

L1

1

2

3

C2 = L1 JOIN L1
*There is no requirement for first common item because k-2 = 0 in this case and all itemsets,

i.e., 1, 2 and 3 are joinable.
Now, let us verify whether L2 given in Table 9.26 is joinable or not to create C3.

Table 9.26 L2

L2

1,2 represented as item list l1 and its item, i.e.,1 is represented as l1[1] or l1[k-2] and 2 is
represented as l1[2] or l1[k-1]

1,3 represented as item list l2 and its item, i.e.,1 is represented as l2[1] or l2[k-2] and 3 is
represented as l2[2] or l2[k-1]

2,5 represented as item list l3 and its item, 2 is represented as l3[1] or l3[k-2] and 5 is
represented as l3[2] or l3[k-1]

C3 = L2 JOIN L2 [Here, k = 3]
Itemsets are joinable only if their first k-2 itemsets, i.e., first 1 item is common. Thus, itemsets

1, 2 and 1, 3 are joinable as their first element is 1 in both the itemsets.
Now, let us identify that L3 given in Table 9.27 is joinable or not to create C4.

Table 9.27 L3

L3

1,2,3 represented as item list l1 and its item, i.e.,1 is represented as l1[1] or l1[k-3] and 2 is
represented as l1[2] or l1[k-2] and 3 is represented as l1[3] or l1[k-1]

1,2,5 represented as item list l2 and its item, i.e.,1 is represented as l2[1] or l2[k-3] and 2 is
represented as l2[2] or l2[k-2] and 5 is represented as l2[5] or l2[k-1]

1,3,5 represented as item list l3 and its item, 1 is represented as l3[1] or l3[k-3] and 3 is
represented as l3[2] or l3[k-2] and 5 is represented as l1[3] or l1[k-1]

C4 = L3 JOIN L3 [Here, k = 4]

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

254 Data Mining and Data Warehousing

Itemsets are joinable only if their first k-2 itemsets, i.e., first 2 items are common in this case.
Thus, itemsets 1, 2, 3 and 1, 2, 5 are joinable as their first two elements, i.e., 1 and 2 are common
in both the itemsets.

Point 2

In joinable item lists l1(k-1) should be less than l2(k-1), i.e., l1(k-1)<l2(k-1): this rule ensures that
items in the itemset should be in lexicographic order and there is no repetition.

To understand this condition, let us find C2 for given L1 in Table 9.28.

Table 9.28 L1

L1

1

2

3

5

As discussed earlier, there is no requirement for the first common item, because k-2 = 0 in this
case and all itemsets, i.e., 1, 2, 3 and 5 are joinable.

Thus, C2 = L1 JOIN L1 (the base for join is the Cartesian product of two itemsets) as illustrated
in Table 9.29.

Table 9.29 Generation of C2

1

JOIN

1

2 2

3 3

5 5

Possible pairs for 1 are 11*, 12, 13&15
*11 will not appear in the final list because, here l1(1) = l2(1) and according to the joining rule

l1(1) should be less than l2(1) [1 is not less than 1].
Thus, selected pairs for 1 are 12, 13 & 15
Possible pairs for 2 are 21*, 22*, 23 & 25
21 and 22 will not be selected because, l1(1) is not less than l2(1) [2 is not less than 1 and 2 is

not less than 2].
Thus, selected pairs for 2 are 23 & 25
Possible pairs for 3 are 31*, 32*, 33* & 35
31, 32 and 33 will not be selected because , l1(1) is not less than l2(1) [3 is not less than 1; 3 is

not less than 2; and 3 is not less than 3].

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 255

Thus, the selected pair for 3 is 35
Possible pairs for 5 are 51*, 52*, 53* & 55*
*No item will be selected because, l1(1) in not less than l2(1) [5 is not less than 1,2,3 and 5].
Thus, C2 will be as shown in Table 9.30.

Table 9.30 Generated C2

C2

12

13

15

23

25

35

Point 3

The resulting itemset formed by joining l1 and l2 is l1[1], l1[2], : : : , l1[k-2], l1[k-1], l2[k-1].
It means that, resulting itemset will contain all the items of the first item list, i.e., from item 1

to k-1 and last item of the second item list, i.e., k-1 item of second list, because other k-2 items of
second list are already there, as they are common with first list.

To illustrate this point, let us identify C3 for given L2 in Table 9.31.

Table 9.31 L2

L2

1,2

1,3

2,3

Here, itemsets 1, 2 (first list) and 1, 3 (second list) are joinable. The final item list for C3 will be
all items of first list and last item of second list.

Thus, C3 will be as shown in Table 9.32.

Table 9.32 C3

C3

1, 2, 3

Let us identify C4 for the given L3 in Table 9.33.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

256 Data Mining and Data Warehousing

Table 9.33 L3

L3

1, 2, 4

1, 2, 5

1, 2, 7

1, 3, 6

Here, itemsets (1, 2, 4), (1, 2, 5) and (1, 2, 7) are joinable. The resultant C4 will be as shown in
Table 9.34.

Table 9.34 C4

C4

1, 2, 4, 5 Considering (1, 2, 4) as first list and (1, 2, 5) second list

1, 2, 4, 7 Considering (1, 2, 4) as first list and (1, 2, 7) second list

1, 2, 5, 7 Considering (1, 2, 5) as first list and (1, 2, 7) second list

Example

Let us understand the process for identification of frequent itemsets for the given transaction database
of Table 9.35. The threshold value of support is 50% and confidence is 70%,

Table 9.35 Transaction database

 T1 1,3,4

T2 2,3,5

T3 1,2,3,5

T4 2,5

Step 1

Create C1 candidate 1-itemsets. It is all the items in the transaction database as shown in Figure
9.11. Figure 9.8 also contains the frequency of each item.

Figure 9.8 C1, candidate 1-itemset and their count

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 257

Step 2

Create frequent 1-itemset, i.e., list of 1-itemsets whose frequency is more than the threshold value
of support, i.e., 2 as shown in Figure 9.9.

Figure 9.9 L1, frequent 1-itemset

Candidate two itemsets, C2 with its frequency count as given in Table 9.36.

Table 9.36 Generation of C2

C2 Count

1, 2 1

1, 3 2

1, 5 1

2, 3 2

2, 5 3

3, 5 2

L2 is created by selecting those candidate pairs having support of 2 or more as shown in Table 9.37.

Table 9.37 Generation L2

L2

1, 3

2, 3

2, 5

3, 5

From the given L2, the next step will be to generate C3 by using L2 JOIN L2
Thus, C3 will be as shown in Table 9.38.

Table 9.38 Generation of C3

C3

2, 3, 5

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

258 Data Mining and Data Warehousing

The frequency of candidate three itemset 2, 3, 5 is 2, so C3 is qualified as L3. Thus, frequent
three itemset is 2, 3, 5 for given dataset.

This is the final frequent item list and it completes the first phase of the Aproiri algorithm to
find the frequent itemsets.

Phase 2: Generating association rules from frequent itemsets

To understand the process of generation of association rules from the frequent itemset, let us consider
frequent itemset l.
	 •	 For	each	frequent	itemset	l generates all non-empty subsets of l.
	 •	 For	every	non-empty	subset	s of l, output the rule s→l-s and if the confidence of the rule is

more than the threshold value of the confidence, then, this rule will be selected as the final
association rule.

Let us generate the rules for the frequent itemset (2, 3, 5) represented as l. Here, non-empty
subsets are {{2},{3},{5},{(2, 3)}, {(2, 5)},{(3, 5)}.

For every non-empty subset, the rule will be generated as follows.
2→3, 5 [Here, (2) is s and (3, 5) is l-s]
3→2, 5
5→2, 3
2, 3→5
2, 5→3
3, 5→2
The next step will be to calculate the confidence for each rule as shown below.
2→3, 5; Confidence = S(2∩3∩5) / S(2) = 2/3 = 0.67
3→2, 5; Confidence = S(2∩3∩5) / S(3) = 2/3 = 0.67
5→2, 3; Confidence = S(2∩3∩5) / S(5) = 2/3 = 0.67
2, 3→5; Confidence = S(2∩3∩5) / S(2∩3) = 2/2 = 1.0
2, 5→3; Confidence = S(2∩3∩5) / S(2∩5) = 2/3 = 0.67
3, 5→2; Confidence = S(2∩3∩5) / S(3∩5) = 2/2 = 1.0
Here, the minimum threshold for confidence is 70%, thus selected association rules are as follows.
2, 3→5;
3, 5→2;

The possible rules from 2, 3→5

It is intuitive to create two new rules as 2→5 and 3→5 from the given rule. Since 2, 3→5 has
confidence more than the threshold limit, in this case, it is not implicit or guaranteed that 2→3
and 3→5 will have confidence more than the threshold limit as there is no correlation between
denominator and quotient of both the rules as shown below.

Confidence of 2, 3→5 = S(2∩3∩5) / S(2∩3)
Confidence of 2→5 = S(2∩5) / S(2)
Same is the case for 3→5 as shown below.
Confidence of 3→5 = S(3∩5) / S(3)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 259

Thus, the given high confidence rule 2, 3→5 does not implicitly state that 2→5 and 3→5 will
have its confidence more than the threshold limit. Thus, there is a need to calculate the confidence
of these rules as shown in Table 9.39.

Similarly, the given high confidence rule 3, 5→2 does not implicitly state that 3→2 and 5→2
will have its confidence more than the threshold limit. Thus, again there is a need to calculate the
confidence of these rules as shown in Table 9.39.

Table 9.39 Calculation of confidence

Rule Confidence

2, 3→5 1.0

2→5 S(2∩5) / S(2) = 3/3 = 1.0

3→5 S(2∩5) / S(3) = 3/3 = 1.0

3, 5→2 1.0

3→2 S(3∩2) / S(3) = 2/3 = 0.67

5→2 S(5∩2) / S(5) = 3/3 = 1.0

Thus, final rules having confidence more than the threshold limit, i.e., 75% are as follows.

Selected Association rules are

2, 3→5

2→5

3→5

3, 5→2

5→2

Apriori property

Apriori property states that all nonempty subsets of a frequent itemset must also be frequent.
It means all the subsets of the candidate itemset should be frequent otherwise that itemset will

be removed from the candidate itemset. This step is called pruning of the candidate itemset and it
will help to reduce the search space and to improve the performance of the algorithm because now
the frequency of fewer item pairs need to be computed.

Lattice structure of frequent itemsets

The Apriori property that defines an itemset can be frequent only if all the subsets of the itemset
are frequent. This can be illustrated by a lattice structure. Let us suppose there are four items A,
B, C and D in the dataset. Then, the four-itemset ABCD will be frequent only if three itemsets

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

260 Data Mining and Data Warehousing

ABC, ABD, ACD and BCD are frequent. These three itemsets are frequent only if their subsets,
i.e., AB, AC, BC, BD, AD and CD are frequent. And these two itemsets are frequent only if their
subsets, i.e., A, B, C and D items are also frequent as shown in Figure 9.10.

From the lattice structure we can conclude that the Apriori algorithm works bottom up one
level at a time, i.e., it first computes frequent 1-itemsets, the candidate 2-itemsets and then frequent
2-temsets and so on. The number of scans of the transaction database is equal to the maximum
number of items in the candidate itemsets.

Figure 9.10 Lattice structure of frequent itemsets

For example, Apriori property states that for a frequent three itemset (1, 2, 3) all of its non empty
subsets, i.e., (1, 2), (2, 3) and (1, 3) must be frequent, because, support of a superset is always less
than or equal to support of its subset. It means that if (1, 3) is not frequent then (1, 2, 3) will also
not be frequent.

This Apriori property also explains the significance of having first k-2 items common in a joining
principle.

Let us suppose, we have L2 that is (1, 2) and (2, 3), then, one may suppose that it could produce
a set (1,2,3) as C3. But as discussed earlier, (1, 2, 3) should be frequent only if all of its nonempty
subsets, i.e., (1, 2), (2, 3) and (1, 3) are frequent. Here, as given in L2 (1, 3) is not frequent. So,
itemsets given in L2 are considered as non joinable and the condition of having first k-2 items
common is enforced to ensure it.

Now, what would happen if L2 has (1, 2) and (1, 3) but not (2, 3)? Then, according to the joining
principle C3 will be generated as (1, 2, 3), but it will be discarded by the Apriori property because
one of its nonempty subset, i.e., (2, 3) is not frequent. Thus, the combination of joining principle
and apriori property make the whole process complete.

In conclusion, it is not the only joining principle that decides about the candidate itemsets, the
joining principle can produce some extra items sets that can be removed further by the pruning or
apriori property.

Example: Find association rules for the transaction data given in Table 9.40 for having support
15% and confidence 70%.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 261

Table 9.40 Transaction database for identification of association rules

TID List of Items

10 I1, I2, I5

20 I2, I4

30 I2, I3

40 I1, I2, I4

50 I1, I3

60 I2, I3

70 I1, I3

80 I1, I2, I3, I5

90 I1, I2, I4

The frequency count for each item, C1 is given in Table 9.41.

Table 9.41 C1

C1 Count

I1 6

I2 7

I3 5

I4 3

I5 2

All the items have frequency more than the specified support limit, thus all 1-item candidate sets

given as C1 qualify as 1-item frequent itemset L1. The next step will be to generate C2.
C2 = L1 JOIN L1
The process of creation of C2 and L2 is illustrated in Figure 9.11.

Figure 9.11 Generation of C2 and L2

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

262 Data Mining and Data Warehousing

From the given L2, C3 is generated by considering those item pairs whose first k-2 items, i.e.
first 1 item is common as shown in Table 9.42.

Table 9.42 Generation of C3

C3

I1, I2, I3

I1, I2, I5

I1, I3, I5

I2, I3, I4

I2, I3, I5

I2, I4, I5

Before finding the frequency of each candidate item pair, the Apriori property will be applied
to prune the candidate list.

Prune using the Apriori property: All nonempty subsets of a frequent itemset must also be frequent.
Do any of the candidates have a subset that is not frequent? Let us check that as shown in Table 9.43.

Table 9.43 Pruning of candidate itemset C3

I1, I2, I3 The 2-item subsets of I1, I2 and I3 are (I1, I2), (I1, I3), and (I2, I3). All
2-item subsets are members of L2. Therefore, keep I1, I2 and I3 in C3.

Qualify

I1, I2, I5 The 2-item subsets of I1, I2 and I5 are (I1, I2), (I1, I5), and (I2, I5). All
2-item subsets are members of L2. Therefore, keep I1, I2 and I5 in C3.

Qualify

I1, I3, I5 The 2-item subsets of I1, I3 and I5 are (I1, I3), (I1, I5), and (I3, I5). Since,
(I3, I5) is not a member of L2, and so it is not frequent. Therefore,
remove I1, I3 and I5 from C3.

Does not qualify

I2, I3, I4 The 2-item subsets of I2, I3 and I4 are (I2, I3), (I2, I4), and (I3, I4). Since,
(I3, I4) is not a member of L2, and so it is not frequent. Therefore,
remove I2, I3 and I4 from C3.

Does not qualify

I2, I3, I5 The 2-item subsets of I2, I3 and I5 are (I2, I3), (I2, I5), and (I3, I5). Since,
(I3, I5) is not a member of L2, so it is not frequent. Therefore, remove
I2, I3 and I5 from C3.

Does not qualify

I2, I4, I5 The 2-item subsets of I2, I4 and I5 are (I2, I4), (I2, I5), and (I4, I5). Since,
(I4, I5) is not a member of L2, it is not frequent. Therefore, remove I2,
I4 and I5 from C3.

Does not qualify

Thus pruned C3 will be as shown in Table 9.44.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 263

Table 9.44 Pruned C3

Pruned C3

I1, I2, I3

I1, I2, I5

It is important to note that pruning results into improving the efficiency of the algorithm, as in
this case instead of finding the count of six three item pairs, there is a need to find the count for only
2 three item pairs (pruned list) which is a significant improvement in the efficiency of the system.

The process of creation of L3 from C3 by identifying those 3 itemsets that has a frequency
more than or equal to the given value of threshold value of support, i.e., 2 has been shown below
in Figure 9.12.

Figure 9.12 Generation of C3 and L3

The next step will be to generate C4 as shown below.
C4 = L3 JOIN L3
C4 will be I1, I2, I3 & I5, because 2 items are common as shown in Table 9.45.

Table 9.45 C4

C4

I1, I2, I3, I5

But this itemset is pruned by the Apriori property because its subset (I2, I3, I5) is not frequent
as it is not present in L3. Thus, C4 is null and the algorithm terminates at this point, having found
all of frequent itemsets as shown in Table 9.46.

Table 9.46 Pruned C4

C4

NULL

In this case, instead of finding the count of 1 four-item pair, pruning indicates that there is no
need to find its count as all its subsets are not frequent.

With this, the first phase of the Apriori algorithm has been completed. Now the next phase to
generate association rules from frequent itemsets will be performed.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

264 Data Mining and Data Warehousing

Phase 2: Generating association rules from frequent itemsets

Let us apply this rule to frequent 3-itemsets (I1, I2, I3) and (I1, I2, I5) found in case of example
given in Table 9.40.

For first frequent itemset (I1, I2, I3), non-empty subsets are {{I1},{I2},{I3},{(I1, I2)}, {(I1, I3)},{(I2,
I3)}.

For every non-empty set, the rule will be generated as follows:
I1→I2, I3 [Here, (I1) is s and I2 and I3 are l-s]
I2→I1, I3
I3→I1, I2
I1, I2→I3
I1, I3→I2
I2, I3→I1
The next will be to calculate the confidence for each rule as shown below.
I1→I2, I3; Confidence = S(I1∩I2∩I3) / S(I1) = 2/6 = 0.3
I2→I1, I3; Confidence = S(I1∩I2∩I3) / S(I2) = 2/7 = 0.28
I3→I1, I2; Confidence = S(I1∩I2∩I3) / S(I3) = 2/5 = 0.4
I1, I2→I3; Confidence = S(I1∩I2∩I3) / S(I1∩I2) = 2/4 = 0.5
I1, I3→I2; Confidence = S(I1∩I2∩I3) / S(I1∩I3) = 2/4 = 0.5
I2, I3→I1; Confidence = S(I1∩I2∩I3) / S(I2∩I3) = 2/4 = 0.5
Since, the minimum threshold is 70%, there are no rules that qualify from the frequent itemset

{1, 2, 3}.
Now, let us apply this rule to second frequent 3-itemset (I1, I2, I5). For this frequent itemset,

non-empty subsets are {I1}, {I2}, {I5}, {(I1, I2)}, {(I1, I5)}, {(I2, I5)}.
For every non-empty set the rule will be generated as follows:
I1→I2, I5 (Here, (I1) is s and I2 and I5 are l-s]
I2→I1, I5
I5→I1, I2
I1, I2→I5
I1, I5→I2
I2, I5→I1
The next step will be to calculate the confidence for each rule as shown below.
I1→I2, I5; Confidence = S(I1∩I2∩I5) / S(I1) = 2/6 = 0.3
I2→I1, I5; Confidence = S(I1∩I2∩I5) / S(I2) = 2/7 = 0.28
I5→I1, I2; Confidence = S(I1∩I2∩I5) / S(I5) = 2/2 = 1
I1, I2→I5; Confidence = S(I1∩I2∩I5) / S(I1∩I2) = 2/4 = 0.5
I1, I5→I2; Confidence = S(I1∩I2∩I5) / S(I1∩I5) = 2/2 = 1
I2, I5→I1; Confidence = S(I1∩I2∩I5) / S(I2∩I5) = 2/2 = 1
Now, there are three rules whose confidence is more than minimum threshold value of 70%,

and these rules are as follows:
I5→I1, I2
I1, I5→I2
I2, I5→I1

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 265

The possible rules from I5→I1, I2

It is intuitive to create two new rules as I5→I1 and I5→I2 from the given rule.
Since, I5→I1, I2 has confidence more than threshold limit, so it is implicit that I5→I1 and I5→I2

will also have their confidence more than the threshold limit as justified below.
Confidence of I5→I1,I2 = S(I5∩I1∩I2) / S(I5)
Confidence of I5→I1 = S(I5∩I1) / S(I5)
Since, Support of subset (I5, I1) will be more than or equal to Support of superset (I5, I1, I2), it

is implicit that Confidence of I5→I1 will be more than equal to Confidence of I5→I1, I2.
Similarly, Confidence of I5→I2 = S(I5∩I2) / S(I5) will be more than equal to Confidence of

I5→I1,I2.
Thus, I5→I1 and I5→I2 will also have their confidence more than the threshold limit.

Discussing possible rules from I2, I5→I1

It is intuitive to create two new rules as I2→I1 and I5→I1 from the given rule. I2, I5→I1 has
confidence more than the threshold limit, but it is not implicit or guaranteed that I2→I1 and I5→I1
will have their confidence more than the threshold limit as explained below.

Confidence of I2, I5→I1 = S(I2∩I5∩I1) / S(I2∩I5)
Confidence of I2→I1 = S(I2∩I1) / S(I2)
Here, there is no correlation between denominator and quotient of both the rules, so it is not

implicit that this rule will also have its confidence more than the threshold.
Similarly, the Confidence of I5→I1 = S(I5∩I1) / S(I5)
Again, there is no correlation between denominator and quotient of this rule with I2, I5→I1

rules, so it is not implicit that this rule will also have its confidence more than the threshold.
The given high confidence rule I2, I5→I1 does not implicitly state that I2→I1 and I5→I1 will

have their confidence more than the threshold limit. Thus, there is a need to calculate the confidence
of these rules.

Similarly, the given high confidence rule I1, I5→I2 does not implicitly state that I1→I2 and
I5→I2 will have their confidence more than the threshold limit. Thus, again there is a need to
calculate the confidence of these rules.

The process of generation of all association rules from I5→I1, I2; I2, I5→I1 and I1, I5→I2 rules
has been illustrated in Table 9.47.

Table 9.47 Generation of association rules

Association
Rule

Discussion Confidence More than threshold
limit Or Not

I5→I1, I2 Already identified 1.0 Yes

I5→I1 Implicit No need to calculate it will be
more than or equal to I5→I1, I2

Yes

I5→I2 Implicit No need to calculate it will be
more than or equal to I5→I1, I2

Yes

Contd.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

266 Data Mining and Data Warehousing

Association
Rule

Discussion Confidence More than threshold
limit Or Not

I2, I5→I1 Already identified 1.0 Yes

I2→I1 Not found earlier,
confidence need to be
calculated

Confidence of I2→I1
= S(I2∩I1) / S(I1) = 4/6 = 67%

No

I5→I1 Already found from I5→I1,
I2 given in row 2

No need to calculate it will be
more than or equal to I5→I1, I2

Yes (Already listed)

I1, I5→I2 Already identified 1.0 Yes

I1→I2 Not found earlier, so
confidence needs to be
calculated

Confidence of I1→I2
= S(I2∩I1) / S(I2) = 4/7 = 57%

No

I5→I2 Already found from I5→I1,
I2 given in row 3

Yes (Already listed)

During generation of the final rules, it is important to look at L2 because there may be some
frequent 2-itemsets that have not appeared in three itemsets and may be left out. The frequent 2
itemsets generated earlier have been reproduced in Table 9.48 from Figure 9.10.

Table 9.48 Frequent 2-itemsets, i.e., L2

L2 Discussion New Rules Identified

I1, I2 This item pair has already been covered as it is a sub set of
I5→I1, I2; I2, I5→I1 and I1, I5→I2 rules discussed in Table 9.47.

NIL

I1, I3 This item pair has not already been covered. So, confidence
needs to be calculated for possible rules of this item pair I1, I3.
I1→I3, Confidence = S(I1∩I3) / S(I1) = 4/6 = 66%
I3→I1, Confidence = S(I3∩I1) / S(I3) = 4/5 = 80%

Since, I3→I1 has
confidence more than the
threshold limit. So, the new
rule identified is I3→I1.

I1, I5 This item pair has already been covered as it is a sub set of
I5→I1, I2; I2, I5→I1 and I1, I5→I2 rules.

NIL

I2, I3 This item pair has not already been covered. So, confidence
needs to be calculated for possible rules of this item pair I2, I3.
I2→I3, Confidence = S(I2∩I3) / S(I2) = 4/7 = 57%
I3→I2, Confidence = S(I2∩I3) / S(I3) = 4/5 = 80%

I3→I2

I2, I4 This item pair has not already been covered. So, confidence
needs to be calculated for possible rules of this item pair I2,
I4.
I2→I4, Confidence = S(I2 I4) / S(I2) = 2/7 = 28%
I4→I2, Confidence = S(I4 I2) / S(I4) = 2/3 = 66%

NIL, because the
confidence of both
the rules is less than
threshold limit; so, no new
rule has been found.

I2, I5 This item pair has already been covered as it is a sub set of
I5→I1, I2; I2, I5→I1 and I1, I5→I2 rules.

NIL

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 267

Here, we have identified two new rules by considering L2 and these are I3→I1 and I3→I2, both
of which has its confidence more than threshold limit of 70%.

The final association rules having support more than 20% and confidence more than 70% are
given below.

I5→I1, I2
I2, I5→I1
I1, I5→I2
I5→I1
I5→I2
I3→I1
I3→I2.
Example: Consider a store having 16 items for sale as listed in Table 9.49. Now consider the

25 transactions on the sale of these items as given in Table 9.50. As usual, each row in the table
represents one transaction, that is, the items bought by one customer. In this example, we want to
find association rules that satisfy the requirement of 25% support and 70% confidence.

Table 9.49 List of grocery items

Item number Item name

1 Biscuit

2 Bournvita

3 Bread

4 Butter

5 Coffee

6 Cornflakes

7 Chocolate

8 Curd

9 Eggs

10 Jam

11 Juice

12 Milk

13 Rice

14 Soap

15 Sugar

16 Tape

In Table 9.50 showing 25 transactions, we list the names of items of interest but it would be more
storage efficient to use item numbers.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

268 Data Mining and Data Warehousing

Table 9.50 Transaction data

TID Items

1 Biscuit, Bournvita, Butter, Cornflakes, Tape

2 Bournvita, Bread, Butter, Cornflakes

3 Butter, Coffee, Chocolate, Eggs, Jam

4 Bournvita, Butter, Cornflakes, Bread, Eggs

5 Bournvita, Bread, Coffee, Chocolate, Eggs

6 Jam, Sugar

7 Biscuit, Bournvita, Butter, Cornflakes, Jam

8 Curd, Jam, Sugar

9 Bournvita, Bread, Butter, Coffee, Cornflakes

10 Bournvita, Bread, Coffee, Chocolate, Eggs

11 Bournvita, Butter, Eggs

12 Bournvita, Butter, Cornflakes, Chocolate, Eggs

13 Biscuit, Bournvita, Bread

14 Bread, Butter, Coffee, Chocolate, Eggs

15 Coffee, Cornflakes

16 Chocolate

17 Chocolate, Curd, Eggs

18 Biscuit, Bournvita, Butter, Cornflakes

19 Bournvita, Bread, Coffee, Chocolate, Eggs

20 Butter, Coffee, Chocolate, Eggs

21 Jam, Sugar, Tape

22 Bournvita, Bread, Butter, Cornflakes

23 Coffee, Chocolate, Eggs, Jam, Juice

24 Juice, Milk, Rice

25 Rice, Soap, Sugar

Computing C1

All 16 items are candidate items for a frequent single-itemset. So, all the items listed in Table 9.49
will act as C1.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 269

Computing L1

To find the frequent single itemset, we have to scan the whole database to count the number of
times each of the 16 items has been sold. Scanning transaction database only once, we first set up
the list of items and one transaction at a time, update the count of every item that appears in that
transaction as shown in Table 9.51.

Table 9.51 Frequency count for all items

Item no. Item name Frequency

1 Biscuit 4

2 Bournvita 13

3 Bread 9

4 Butter 12

5 Coffee 9

6 Cornflakes 9

7 Chocolate 10

8 Curd 2

9 Eggs 11

10 Jam 6

11 Juice 2

12 Milk 1

13 Rice 2

14 Soap 1

15 Sugar 4

16 Tape 2

The items that have the necessary support (25% support in 25 transactions) must occur in at least
7 transactions. The frequent 1-itemset or L1 is now given in Table 9.52.

Table 9.52 The frequent 1-itemset or L1

Item Frequency

Bournvita 13

Bread 9

Butter 12

Contd.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

270 Data Mining and Data Warehousing

Item Frequency

Coffee 9

Cornflakes 9

Chocolate 10

Eggs 11

Computing C2

C2 = L1 JOIN L1
This will produce 21 pairs as listed in Table 9.53. These 21 pairs are the only ones worth

investigating since they are the only ones that could be frequent.

Table 9.53 The 21 candidate 2-itemsets or C2

{Bournvita, Bread}

{Bournvita, Butter}

{Bournvita, Coffee}

{Bournvita, Cornflakes}

{Bournvita, Chocolate}

{Bournvita, Eggs}

{Bread, Butter}

{Bread, Coffee}

{Bread, Cornflakes}

{Bread, Chocolate}

{Bread, Eggs}

{Butter, Coffee}

{Butter, Cornflakes}

{Butter, Chocolate}

{Butter, Eggs}

{Coffee, Cornflakes}

{Coffee, Chocolate}

{Coffee, Eggs}

{Cornflakes, Chocolate}

{Cornflakes, Eggs}

{Chocolate, Eggs}

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 271

Computing L2

This step is the most resource intensive step. We scan the transaction database once and look at each
transaction and find out which of the candidate pairs occur in that transaction. This then requires
scanning the list C2 for every pair of items that appears in the transaction that is being scanned.
Table 9.54 presents the number of times each candidate 2-itemset appears in the transaction database
example given in Table 9.50.

Table 9.54 Frequency count of candidate 2-itemsets

Candidate 2-itemset Frequency

{Bournvita, Bread} 8

{Bournvita, Butter} 9

{Bournvita, Coffee} 4

{Bournvita, Cornflakes} 8

{Bournvita, Chocolate} 4

{Bournvita, Eggs} 6

{Bread, Butter} 5

{Bread, Coffee} 5

{Bread, Cornflakes} 3

{Bread, Chocolate} 4

{Bread, Eggs} 5

{Butter, Coffee} 4

{Butter, Cornflakes} 8

{Butter, Chocolate} 4

{Butter, Eggs} 6

{Coffee, Cornflakes} 2

{Coffee, Chocolate} 7

{Coffee, Eggs} 7

{Cornflakes, Chocolate} 1

{Cornflakes, Eggs} 2

{Chocolate, Eggs} 9

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

272 Data Mining and Data Warehousing

From this list we can find the frequent 2-itemsets or the set L2 by selecting only those item
pairs from Table 9.54 given above, having a frequency equal to or more than 7. Therefore the list of
frequent-2 itemsets or L2 is given in Table 9.55. Usually L2 is smaller than L1 but in this example
they both have seven itemsets and each member of L1 appears as a subset of some member of L2.
This is unlikely to be true when the number of items is large.

Table 9.55 The frequent 2-itemsets or L2

Frequent 2-itemset Frequency

{Bournvita, Bread} 8

{Bournvita, Butter} 9

{Bournvita, Cornflakes} 8

{Butter, Cornflakes} 8

{Coffee, Chocolate} 7

{Coffee, Eggs} 7

{Chocolate, Eggs} 9

Computing C3

C3 = L2 JOIN L2 (First item should be common)
To find the candidate 3-itemsets or C3, we combine the appropriate frequent 2-itemsets from L2

(these must have the same first item) and obtain four such itemsets as given in Table 9.56.

Table 9.56 Candidate 3-itemsets or C3

Candidate 3-itemset

{Bournvita, Bread, Butter}

{Bournvita, Bread, Cornflakes}

{Bournvita, Butter, Cornflakes}

{Coffee, Chocolate, Eggs}

Pruning C3

Before processing further to calculate the frequency of each 3-item pairs, it is important to apply
the Apriori property to prune the candidate 3-itemsets as shown in Table 9.57.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 273

Table 9.57 Pruning of candidate itemset C3

Candidate Item Pair Discussion Qualify or Not

{Bournvita, Bread,
Butter}

Its subsets are (Bournvita, Bread), (Bournvita, Butter)
and (Bread, Butter). Out of these subsets (Bread,
Butter) is not frequent as it is not in L2 given in Table
9.55. Thus, {Bournvita, Bread, Butter} will be removed
from C3.

Not Qualified, so
will be pruned

{Bournvita, Bread,
Cornflakes}

Its subsets are (Bournvita, Bread), (Bournvita,
Cornflakes) and (Bread, Cornflakes). Out of these
subsets, (Bread, Cornflakes) is not frequent as it is
not in L2. Thus, {Bournvita, Bread, Cornflakes} will be
removed from C3.

Not Qualified, so
will be pruned

{Bournvita, Butter,
Cornflakes}

Its subsets are (Bournvita, Butter), (Bournvita,
Cornflakes) and (Butter, Cornflakes). Here all subsets
are frequent as they are in L2. Thus, {Bournvita,
Butter, Cornflakes} will be retained in C3.

Qualified

{Coffee, Chocolate,
Eggs}

Its subsets are (Coffee, Chocolate), (Coffee, Eggs)
and (Chocolate, Eggs). Here, all subsets are frequent
as they are in L2. Thus, {Coffee, Chocolate, Eggs} will
be retained in C3.

Qualified

Thus, pruned C3 will be as shown in Table 9.58.

Table 9.58 Pruned candidate itemset C3

{Bournvita, Butter, Cornflakes}

{Coffee, Chocolate, Eggs}

As observed, this pruning step has reduced the candidate items from 4 to 2 and it improves the
performance of the algorithm. Table 9.59 shows candidate 3-itemsets or C3 and their frequencies.

Table 9.59 Candidate 3-itemsets or C3 and their frequencies

Candidate 3-itemset Frequency

{Bournvita, Butter, Cornflakes} 8

{Coffee, Chocolate, Eggs} 7

Computing L3

Table 9.60 now presents the frequent 3-itemsets or L3. Note that only one member of L2 is not a
subset of any itemset in L3. That 2-itemset is {Bournvita, Bread}.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

274 Data Mining and Data Warehousing

Table 9.60 The frequent 3-itemsets or L3

Frequent 3-itemset Frequency

{Bournvita, Butter, Cornflakes} 8

{Coffee, Chocolate, Eggs} 7

Computing C4

C4 = L3 JOIN L3 (First two items should be common)
Since, no first two items are common, thus, C4 is null.
This is the end of frequent itemset generation since there cannot be any candidate 4-itemsets.

Finding the rules

The rules obtained from frequent 3-itemsets would always include some rules that we could obtain
from L2 embedded in them, but some additional rules will be obtainable from itemsets in L2 which
are not subsets of itemsets in L3, for example, {Bournvita, Bread} in this case.

Here, the frequent itemset is {Bournvita, Butter, Cornflakes} whose resulting subsets are as followed:
{Bournvita},{Butter},{Cornf lakes},{Bournvita, Butter},{Butter, Cornf lakes},{Bournvita,

Cornflakes} [represented by s, and the superset or whole list {Bournvita, Butter, Cornflakes} is
represented as l, and the rules will be generated in the form of s→l-s].

The rules generated from {Bournvita, Butter, Cornflakes} are as follows.
Bournvita→Butter, Cornflakes
Butter→Bournvita, Cornflakes
Cornflakes→Bournvita, Butter
Bournvita, Butter→Cornflakes
Bournvita, Cornflakes→Butter
Butter, Cornflakes→Bournvita
Now, let us calculate the confidence of these rules as shown in Table 9.61.

Table 9.61 Confidence of association rules from {Bournvita, Butter, Cornflakes}

Rule Support
of Both

together

Frequency of
Antecedent LHS
(Refer to Table
9.52 and 9.55)

Confidence Whether
Confidence is more

than threshold
limit or not

Bournvita→Butter, Cornflakes 8 13 8/13 = 0.61 No

Butter→Bournvita, Cornflakes 8 12 8/12 = 0.67 No

Cornflakes→Bournvita, Butter 8 9 8/9 = 0.89 Yes

Bournvita, Butter→Cornflakes 8 9 8/9 = 0.89 Yes

Bournvita, Cornflakes→Butter 8 8 8/8 = 1.0 Yes

Butter, Cornflakes→Bournvita 8 8 8/8 = 1.0 Yes

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 275

We also have two rules from L2 for a frequent item pair {Bournvita, Bread} let us calculate its
confidence as shown in Table 9.62.

Table 9.62 Confidence of association rules from {Bournvita, Bread}

Rule Support
of Both

together

Frequency of
Antecedent LHS
(Refer to Tables
9.52 and 9.55)

Confidence Whether Confidence is more
than threshold limit or not

Bournvita →Bread 8 13 8/13 = 0.61 No

Bread→Bournvita 8 9 8/9 = 0.89 Yes

Thus, from this discussion we have found out five rules having confidence more than 70% as
shown below in Table 9.63.

Table 9.63 Identified rules from {Bournvita, Butter, Cornflakes}
having confidence more than 70%

Cornflakes→Bournvita, Butter

Bournvita, Butter→Cornflakes

Bournvita, Cornflakes→Butter

Butter, Cornflakes→Bournvita

Bread→Bournvita

 Now, let us find all possible rules from these identified rules as shown in Table 9.64.

Table 9.64 List of all possible rules from rules given in Table 9.61

Rules Discussion Rules having
confidence
more than the
threshold value

Cornflakes→
Bournvita, Butter

It has confidence 0.89 as discussed in Table 9.61. [Formula
= S (Cornflakes, Bournvita, Butter) / S(Cornflakes)]

Cornflakes→
Bournvita,
Butter

Cornflakes→
Bournvita

It is intuitive that this rule will have confidence greater
than the threshold limit as its formula is S (Cornflakes,
Bournvita) / S(Cornflakes). Since, support of subset,
i.e, Cornflakes, Bournvita, should be equal to or more
than superset, Cornflakes, Bournvita, Butter so this rule
qualifies. (Resulting confidence = 0.89)

Cornflakes→
Bournvita

Contd.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

276 Data Mining and Data Warehousing

Rules Discussion Rules having
confidence
more than the
threshold value

Cornflakes→Butter It is also intuitive that this rule will have confidence
greater than the threshold limit as its formula is S
(Cornflakes, Butter) / S(Cornflakes). Since, support of
subset, i.e, Cornflakes, Butter should be equal to or more
than superset, Cornflakes, Bournvita, Butter so this rule
qualifies. (Resulting confidence = 0.89)

Cornflakes→
Butter

Bournvita, Butter→
Cornflakes

It has confidence 0.89 as shown in Table 9.61. [Formula =
S (Bournvita, Butter, Cornflakes) / S(Bournvita, Butter)]

Bournvita,
Butter→
Cornflakes

Bournvita→
Cornflakes

It is not intuitive that this rule will have confidence more
than the threshold limit as its formula is S (Bournvita,
Cornflakes) / S(Bournvita).
So, let us calculate its confidence. Confidence= S (Bournvita,
Cornflakes) / S(Bournvita) = 8/13 = 0.61. This rule has
confidence less than threshold limit, so it will be discarded.

Discarded

Butter→
Cornflakes

It is not intuitive that this rule will have confidence
more than the threshold limit as its formula is S (Butter,
Cornflakes)/S(Butter).
So, let us calculate its confidence.
Confidence = S (Butter, Cornflakes) / S(Butter) = 8/12 = 0.67
This rule has confidence less than threshold limit, so it
will be discarded.

Discarded

Bournvita,
Cornflakes→Butter

It has confidence 1.0 as shown in Table 9.61. Bournvita,
Cornflakes→
Butter

Bournvita→Butter It is not intuitive that this rule will have confidence more
than the threshold limit.
So, let us calculate its confidence.
Confidence = S (Bournvita, Butter) / S(Bournvita) = 9/13 =
0.69
This rule has confidence less than threshold limit, so it
will be discarded.

Discarded

Cornflakes→Butter It is not intuitive that this rule will have confidence more
than the threshold limit.
So, let us calculate its confidence.
Confidence = S (Cornflakes, Butter) / S(Cornflakes) = 8/9
= 0.88
This rule has confidence more than threshold limit, so it
will be selected.

Cornflakes→
Butter

Contd.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 277

Rules Discussion Rules having
confidence
more than the
threshold value

Butter,
Cornflakes→
Bournvita

It has confidence 1.0 as shown in Table 9.61. Butter,
Cornflakes→
Bournvita

Butter→ Bournvita It is not intuitive that this rule will have confidence more
than the threshold limit.
So, let us calculate its confidence.
Confidence = S (Butter, Bournvita) / S(Butter) = 8/12 = 0.67
This rule has confidence less than threshold limit, so it
will be discarded.

Discarded

Cornflakes→
Bournvita

It is not intuitive that this rule will have confidence more
than the threshold limit.
So, let us calculate its confidence.
Confidence = S (Cornflakes, Bournvita) / S(Cornflakes) =
8/9 = 0.89
This rule has confidence more than threshold limit, so it
will be selected.

Cornflakes→
Bournvita

Similarly, we will examine the other 3-itemset {Coffee, Chocolate, Eggs}.

Table 9.65 Confidence of association rules from {Coffee, Chocolate, Eggs}

Rule Support Frequency of LHS
(Antecedent)

Confidence

Coffee→Chocolate, Eggs 7 9 0.78

Chocolate→Coffee, Eggs 7 10 0.70

Eggs→Coffee, Chocolate 7 11 0.64

Chocolate, Eggs→Coffee 7 9 0.78

Coffee, Eggs→Chocolate 7 7 1.0

Coffee, Chocolate→Eggs 7 7 1.0

Again, the confidence of all these rules, except the third, is higher than 70%, and so five of
them also qualify.

List of all possible rules for three item pairs {Coffee, Chocolate, Eggs} has been explained in
Table 9.66, given below.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

278 Data Mining and Data Warehousing

Table 9.66 List of all possible rules from rules given in Table 9.65

Rules Discussion Rules having confidence more
than the threshold value

Coffee→Chocolate,
Eggs

It has confidence of 0.78 as shown in
Table 9.65.

Coffee→Chocolate, Eggs

Coffee→Eggs It is intuitive from rule Coffee→Chocolate,
Eggs

Coffee→Eggs

Chocolate→Coffee,
Eggs

It has confidence of 0.70 as shown in
Table 9.65.

Chocolate→Coffee, Eggs

Chocolate→Coffee It is intuitive from rule
Chocolate→Coffee, Eggs

Chocolate→Coffee

Chocolate→Eggs It is intuitive from rule
Chocolate→Coffee, Eggs

Chocolate→Eggs

Chocolate,
Eggs→Coffee

It has confidence of 0.78 as shown in
Table 9.65.

Chocolate, Eggs→Coffee

Chocolate→Coffee It is non intuitive, so let us calculate its
confidence.
Confidence = S(Chocolate, Coffee) /
S(Coffee) = 7/9 = 0.77
Since, confidence is more than the
threshold so this rule will be selected.

Chocolate→Coffee

Eggs→Coffee It is non intuitive, so let us calculate its
confidence.
Confidence = S(Eggs, Coffee) / S(Eggs) =
7/11 = 0.64
Since, confidence is less than the
threshold so this rule will be discarded.

Discarded

Coffee,
Eggs→Chocolate

It has confidence 1.0 as discussed in Table
9.65.

Coffee, Eggs→Chocolate

Coffee→Chocolate It is non intuitive, so let us calculate its
confidence.
Confidence = S(Coffee, Chocolate) /
S(Coffee) =7/9 = 0.77
Since, confidence is more than the
threshold so this rule will be selected.

Coffee→Chocolate

Eggs→Chocolate It is non intuitive, so let us calculate its
confidence.
Confidence = S(Eggs, Chocolate) / S(Eggs)
= 9/11= 0.81
Since, confidence is more than the
threshold so this rule will be selected.

Eggs→Chocolate

Contd.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 279

Rules Discussion Rules having confidence more
than the threshold value

Coffee,
Chocolate→Eggs

It has confidence 1.0 as shown in Table
9.65.

Coffee, Chocolate→Eggs

Coffee→Eggs This rule is non intuitive, but it is already
selected as given in row 2 from rule
Coffee→Chocolate, Eggs

Coffee→Eggs

Chocolate→Eggs This rule is non intuitive, but it is already
selected as given in row 5 from rule
Chocolate→Coffee, Eggs

Chocolate→Eggs

Thus, all association mining rules for the given database and having confidence of more than
70% are listed in Table 9.67.

Table 9.67 All association rules for the given database

Rule No. Rule Confidence

1 Bread→Bournvita 0.89

2 Cornflakes→ Bournvita, Butter 0.89

3 Cornflakes→ Bournvita 0.89

4 Cornflakes→ Butter 0.89

5 Bournvita, Butter→ Cornflakes 0.89

6 Bournvita, Cornflakes→ Butter 1

7 Cornflakes→ Butter 0.89

8 Butter, Cornflakes→ Bournvita 1

9 Coffee→Chocolate, Eggs 0.78

10 Coffee→Chocolate 0.78

11 Coffee→Eggs 0.78

12 Chocolate→Coffee, Eggs 0.7

13 Chocolate→Coffee 0.7

14 Chocolate→Eggs 0.9

15 Chocolate, Eggs→Coffee 1

16 Coffee, Eggs→Chocolate 1

17 Eggs→Chocolate 0.82

18 Coffee, Chocolate→Eggs 1

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

280 Data Mining and Data Warehousing

9.8 Closed and Maximal Itemsets

To further improve the efficiency of the association mining process, frequent itemsets can be divided
into closed and maximal itemsets.

A frequent closed itemset is a frequent itemset X such that there exists no superset of X with the
same support count as X.

A frequent itemset Y is maximal if it is not a proper subset of any other frequent itemset. Therefore
a maximal itemset is a closed itemset, but a closed itemset is not necessarily a maximal itemset as
shown in Figure 9.13.

Figure 9.13 Illustration of closed and maximal frequent itemsets

The concept of Closed and maximal itemsets have been explained with an example database.
Example: Consider the transaction database in Table 9.68 with minimum support required to

be 40%.

Table 9.68 A transaction database to illustrate closed and maximal itemsets

100 Butter, Curd, Jam

200 Butter, Curd, Jam, Muffin

300 Curd, Jam, Nuts

400 Butter, Jam, Muffin, Nuts

500 Muffin, Nuts

There are a total of 14 frequent itemsets as shown in Table 9.69 and the closed and maximal
itemsets for the given database have also been presented there.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 281

Table 9.69 Frequent itemsets for the database in Table 9.68

Itemset Support Closed? Maximal? Both?

{Butter} 3 No, there exists a superset of
Butter with the same support
3, i.e., {Butter, Jam}

No, it is a proper subset of
another frequent itemset, i.e,
{Butter, Curd, Jam}

No

{Curd} 3 No, there exists a superset of
Curd with the same support
3, {Curd, Jam}

No, it is a proper subset of
another frequent itemset, i.e,
{Butter, Curd, Jam}

No

{Jam} 4 Yes, there exists no superset
of Jam with the same support
4

No, it is a proper subset of
another frequent itemset, i.e,
{Butter, Curd, Jam}

No

{Muffin} 3 Yes, there exists no superset
of Muffin with the same
support 3

No, it is a proper subset of
another frequent itemset, i.e,
{Muffin, Nuts}

No

{Nuts} 3 Yes, there exists no superset
of Nuts with the same
support 3

No, it is a proper subset of
another frequent itemset, i.e,
{Muffin, Nuts}

No

{Butter, Curd} 2 No, there exists a superset
of Butter, Jam with the same
support 2, i.e., {Butter, Curd,
Jam}

No, it is a proper subset of
another frequent itemset, i.e,
{Butter, Curd, Jam}

No

{Butter, Jam} 3 Yes, there exists no superset
of Butter, Jam with the same
support 3

No, it is a proper subset of
another frequent itemset, i.e,
{Butter, Curd, Jam}

No

{Butter,
Muffin}

2 No, there exists a superset of
Butter, Muffin with the same
support 2, i.e., {Butter, Jam,
Muffin}

No, it is a proper subset of
another frequent itemset, i.e,
{Butter, Jam, Muffin}

No

{Curd, Jam} 3 Yes, there exists no superset
of Curd, Jam with the same
support 3

No, it is a proper subset of
another frequent itemset, i.e,
{Butter, Curd, Jam}

No

{Jam, Muffin} 2 No, there exists a superset
of Jam, Muffin with the same
support 2, i.e., {Butter, Jam,
Muffin}

No, it is a proper subset of
another frequent itemset, i.e,
{Butter, Jam, Muffin}

No

{Jam, Nuts} 2 Yes, there exists no superset
of Jam, Nuts with the same
support 2

Yes, it is not proper subset of
any other frequent itemset

Yes

Contd.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

282 Data Mining and Data Warehousing

Itemset Support Closed? Maximal? Both?

{Muffin, Nuts} 2 Yes, there exists no superset
of Muffin, Nuts with the same
support 2

Yes, it is not proper subset of
any other frequent itemset

Yes

{Butter, Curd,
Jam}

2 Yes, there exists no superset
of Butter, Curd, Jam with the
same support 2

Yes, it is not proper subset of
any other frequent itemset

Yes

{Butter, Jam,
Muffin}

2 Yes, there exists no superset
of Butter, Jam, Muffin with
the same support 2

Yes, it is not proper subset of
any other frequent itemset

Yes

One can observe that there are 9 closed frequent itemsets and 4 maximal frequent itemsets as
shown in Table 9.69.

It is important to note that closed and maximal frequent itemsets are often smaller than all frequent
itemsets and association rules can be generated directly from them. Thus, it is desirable that instead
of mining every frequent itemset, an efficient algorithm should mine only maximal frequent itemsets.
The association of frequent itemsets, closed frequent itemsets and maximal frequent itemsets has
been illustrated in Figure 9.16 for better understanding. From this one can observe that a maximal
itemset is a closed itemset, but a closed itemset is not necessarily a maximal itemset.

9.9 The Apriori–TID Algorithm for Generating Association
Mining Rules

Apriori–TID uses the Apriori algorithm to generate the candidate and frequent itemsets, but the
difference is that it uses the TID or vertical storage approach (discussed in Section 9.6.3) for its
implementation.

The working of the Apriori–TID algorithm is given as follows.
 1. Scan the whole transaction database to convert it into TID storage and represent it as T1 (i.e.,

each entry of T1 consists of all items in the transaction along with the corresponding TID).
 2. Calculate the frequent 1-itemset L1 using T1.
 3. Obtain C2 by applying the joining principle discussed under the Apriori algorithm.
 4. Calculate the support for the candidates in C2 with the help of T1 by intersecting corresponding

rows and a new TID dataset is created and represent it as T2 containing two item pairs.
 5. Generate L2 from C2 by the usual means and then generate C3 from L2, again by using the

joining principle.
 6. Generate T3 using T2 and C3. This process is repeated until the set of candidate k-itemsets

is an empty set.
Example of Apriori–TID: Let us understand this concept with an example database of

transactions given in Table 9.70 for finding frequent itemsets with the Apriori–TID algorithm.
Here, minimum support is 50% and minimum confidence is 75%.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 283

Table 9.70 Transaction database

100 Butter, Curd, Eggs, Jam

200 Butter, Curd, Jam

300 Butter, Muffin, Nuts

400 Butter, Jam, Muffin

500 Curd, Jam, Muffin

Step 1:

Scan the entire transaction database to convert it into TID storage represented as T1 as given in
Table 9.71.

Table 9.71 Transaction database T1

100 200 300 400 500

Butter 1 1 1 1 0

Curd 1 1 0 0 1

Eggs 1 0 0 0 0

Jam 1 1 0 1 1

Muffin 0 0 1 1 1

Nut 0 0 1 0 0

Step 2:

Frequent 1-itemset L1 is calculated using T1.
Since, the minimum support is 3, all items have been selected as frequent items having support

equal or more than threshold limit of support, i.e., 3 with the help of T1.
Thus, L1 is as shown in Table 9.72.

Table 9.72 L1

Itemset Support

Butter 4

Curd 3

Jam 4

Muffin 3

Step 3:
C2 is obtained by applying the joining principle, i.e., L1 JOIN L1

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

284 Data Mining and Data Warehousing

Thus, C2 will be as given in Table 9.73.

Table 9.73 C2

Itemsets

Butter, Curd

Butter, Jam

Butter, Muffin

Curd, Jam

Curd, Muffin

Jam, Muffin

Step 4:

Support for the candidates in C2 is then calculated with the help of T1 by intersecting corresponding
rows and a new TID dataset is created represented as T2 containing two item pairs as illustrated
in Table 9.74.

Table 9.74 Transaction database T2

100 200 300 400 500

Butter, Curd 1 1 0 0 0

Butter, Jam 1 1 0 1 0

Butter, Muffin 0 0 1 1 0

Curd, Jam 1 1 0 0 1

Curd, Muffin 0 0 0 0 1

Jam, Muffin 0 0 0 1 1

Thus, support for C2 is given in Table 9.75.

Table 9.75 Support for C2

Itemsets Support

Butter, Curd 2

Butter, Jam 3

Butter, Muffin 2

Curd, Jam 3

Curd, Muffin 1

Jam, Muffin 2

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 285

Step 5:

L2 is then generated from C2 as shown in Table 9.76.

Table 9.76 L2

Itemsets Support

Butter, Jam 3

Curd, Jam 3

Thus, {Butter, Jam} and {Curd, Jam} are the frequent pairs and they generate L2. C3 may also be
generated but it is observed that C3 is empty because the first item is not common in the L2 item
.pairs. If C3 was not empty then it would be used to identify T3 using the transaction set T2. That
would result in a smaller T3 and it might have resulted in the removal of a transaction or two. In
the example database, all the records of T2 have been removed and T3 is null.

The generation of association rules from the derived frequent set can be done in the usual way.

Advantages of the Apriori–TID algorithm

The advantage of Apriori–TID algorithm is in the storage structure because it facilitates counting
of items by counting the number of 1s in each row and the number of 2-itemsets can be counted by
finding the intersection of the two rows.

The other main advantage of the Apriori–TID algorithm is that the size of Tk is generally smaller
than the transaction database.

Because the support for each candidate k-itemset is counted using the corresponding Tk, therefore
this algorithm runs faster than the basic Apriori algorithm. It is important to note that both Apriori
and Apriori–TID use the same candidate generation algorithm, and therefore they count the same
itemsets.

9.10 Direct Hashing and Pruning (DHP)

A major shortcoming of the Apriori algorithm is that it cannot prune 2 itemset candidate items. As
C2 is derived from L1 by using following formula:

C2 = L1 Join L1.
Since, every subset of C2 is a member of L1, C2 cannot be pruned by the Apriori property, i.e.,

subset of frequent itemsets should also be frequent. In case of C2, all the subsets are frequent, i.e.,
member of L1, so it cannot be pruned. However, Apriori property is very helpful in pruning higher
order candidate itemsets like C3 or C4.

The DHP algorithm is useful as it overcomes this limitation since it has the capability to prune
C2; this is important to improve performance.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

286 Data Mining and Data Warehousing

Working of the DHP algorithm

This algorithm employs a hash-based technique for reducing the count of candidate itemsets
generated in the first pass (i.e., a significantly smaller C2 is generated). The number of itemsets in
C2 generated using DHP can be smaller in magnitude; therefore the scan to identify L2 is more
efficient.

The steps to be taken to operate DHP are:
 1. Find all frequent 1-itemsets and all the candidate 2-itemsets by using the same steps as the

Apriori algorithm, i.e., C2 is generated by L1 JOIN L1.
 2. Generate all possible 2-itemsets in each transaction and assign a code to each item and itemsets.
 3. All the possible 2-itemsets are hashed to a hash table by using the code of each itemset. For

hashing, a hash function is applied on each code and a bucket is assigned to each itemset based
on the output of the hash function. The count of each bucket in the hash table is increased by
one, each time when an itemset is hashed to that bucket. When different itemsets are hashed
to the same bucket then collisions can occur. To assign a f lag for each bucket, a bit vector is
associated with the hash table. If the bucket count is equal or above the minimum required
support count, then accordingly f lag in the bit vector is set to 1, otherwise it is set to 0.

 4. In this step C2 is pruned. Each item pair of C2 generated in step 1 is checked for the bit
vector of its corresponding bucket to which it was assigned in step 3. If its bit vector is 0,
then the item pair will be pruned and removed from C2, while all those item pairs having a
bit vector of 1 are retained in C2. This step helps to prune C2 and this pruning of C2 is the
major objective of the DHP algorithm.

 It is important to note that, having the corresponding bit vector or bit set does not guarantee
that the itemset is frequent; this is due to collisions. The hash table filtering does reduce C2,
significantly.

 5. Then, from the pruned C2, frequent item pairs, L2 is generated and process continues as in
Aproiroi property.

 6. In this step, the hash table for the next step is generated. Only those itemsets that are frequent,
i.e. in L2, are kept in the database. The pruning not only trims each transaction by removing
the unwanted itemsets but also removes transactions that have no itemsets that could be
frequent.

 7. The algorithm is continued till no more candidate itemsets are identified. The whole
transaction database is scanned to identify the support count for each itemset despite using a
hash table to identify the frequent itemsets. Now, the database seems relatively smaller because
of the pruning. The algorithm identifies the frequent itemsets as earlier by checking against
the minimum support when the support count is calculated. The algorithm then produces
candidate itemsets similar to what the Apriori algorithm does.

To get a clear idea about the working of DHP algorithm, let us consider some case studies by
way of examples. After going through these examples, this algorithm will become clear to you.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 287

Example: Using the DHP algorithm

To understand this concept, let us identify the association rules satisfying 50% support and 75%
confidence for the transaction database given in Table 9.77 with the DHP algorithm.

Table 9.77 Transaction database

100 Butter, Curd, Eggs, Jam

200 Butter, Curd, Jam

300 Butter, Muffin, Nuts

400 Butter, Jam, Muffin

500 Curd, Jam, Muffin

Let us first find all frequent 1-itemsets and in this case it will all those items that appear 3 or
more times in the database. The L1 is given in Table 9.78.

Table 9.78 Frequent 1-itemset L1

Butter

Curd

Jam

Muffin

Then, generate C2 from L1, i.e., L1 JOIN L1. This is given in Table 9.78. Here, for simplicity
we are representing each item by its first alphabet.

Table 9.79 Candidate 2 itemsets C2

BC (’B’ for Butter and ‘C’ for Curd)

BJ

BM

CJ

CM

JM

Since, the size of C2 is 6 and the major advantage of DHP is to prune C2 so hashing is applied
on each item pair as discussed below.

To apply hashing, the next step is to generate all possible 2-itemsets for each transaction as
shown in Table 9.80.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

288 Data Mining and Data Warehousing

Table 9.80 Possible 2-itemsets for each transaction

100 (Butter, Curd), (Butter, Eggs), (Butter, Jam), (Curd, Eggs), (Curd, Jam), (Eggs, Jam)

200 (Butter, Curd), (Butter, Jam), (Curd, Jam)

300 (Butter, Muffin), (Butter, Nuts), (Muffin, Nuts)

400 (Butter, Jam), (Butter, Muffin), (Jam, Muffin)

500 (Curd, Jam), (Curd, Muffin), (Jam, Muffin)

For a support of 50%, the frequent items are Butter, Curd, Jam, and Muffin as shown in Table 9.81.
Now, to hash the possible 2-itemsets, a code is assigned to each item as given in Table 9.82.

 Table 9.82 Code for each item

Code Item Name

1 Butter

2 Curd

3 Eggs

4 Jam

5 Muffin

6 Nuts

For each pair, a numeric value is obtained by representing Butter by 1, Curd by 2 and so on as
shown in the above table. Then, each pair is represented by a two-digit number, for example, (Butter,
Curd) is represented by 12; (Curd, Jam) is represented by 24 and so on.

The coded value for each item pair is given in Table 9.83.

Table 9.83 Coded representation for each item pair

100 12, 13, 14, 23, 24, 34

200 12, 14, 24

300 15, 16, 56

400 14, 15, 45

500 24, 25, 45

Now, the hash function is applied on coded values so that these items can be assigned to different
buckets. Here, we are using modulo 8 number, i.e., dividing the code by 8 and using the remainder
as hash function for the given dataset.

Hash function: Modulo 8, i.e., divide the concerned item pair code by 8 and use the remainder
as its bucket number.

Table 9.81 Frequent itemsets for a
support of 50%

Bread

Curd

Jam

Muffin

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 289

The guidelines to decide about hash function have been discussed later. For the moment, let’s
apply hash function to each item pair and assign the item pairs to each bucket on the basis of modulo
8 as shown in Table 9.60.

Applying the hash function to each item pair in transaction 100, the first item pair is 12, and
when modulo 8 hash function is applied on 12, it gives a remainder of 4, so 12 is assigned to bucket
4. The next item pair in transaction 100 is 13, and gives a remainder of 5 after dividing it by 8, so
13 is assigned to bucket 5. Similarly, 14 has a remainder of 6, 23 has a remainder of 7, 24 has the
remainder 0 and 34 has a remainder of 2, so these item pairs are assigned corresponding bucket
numbers as shown in Table 9.84. This process is repeated for each transaction and every item pair
is assigned to its corresponding bucket.

Table 9.84 Assigning item pairs to buckets based on hash function modulo 8

0 1 2 3 4 5 6 7 Bucket address

24
24
16
56
24

25 34 12
12

13
45
45

14
14
14

23
15
15

Item pairs

5 1 1 0 2 3 3 3 Support of bucket

1 0 0 0 0 1 1 1 Bit Vector (it refers to a sequence of
numbers which are either 0 or 1 and
stored contiguously in memory)

After assigning every item pair to its corresponding bucket, the support or count for each bucket
has been calculated and if its support is equal to the threshold value then the corresponding bit
vector is set 1 as shown in Table 9.84.

Now, C2 is pruned by checking the bit vector of the corresponding bucket for each candidate
item pair. And only those item pairs are retained in C2 which have the corresponding bit vector as
1. The process of pruning of C2 has been illustrated in Table 9.85.

It has been noted that pair BC, i.e, 12 belong to the bucket with support of 2, since its support is
less than threshold value of support so its corresponding bit vector is 0 and this item pair has been
removed from C2; in other words, C2 has been pruned.

Similarly, this analysis is performed for each item pair of C2 as shown in Table 9.85.

Table 9.85 Pruning of C2

Item Pairs in C2 Bucket Bit Vector Remarks Pruned C2

BC, i.e., 12 4 0 Removed from C2

BJ, i.e., 14 6 1 Will be retained BJ

BM, i.e., 15 7 1 Will be retained BM

CJ, i.e., 24 0 1 Will be retained CJ

CM, i.e., 25 1 0 Removed from C2

JM, i.e., 45 5 1 Will be retained JM

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

290 Data Mining and Data Warehousing

These candidate pairs are then hashed to the hash table and those candidate pairs are removed
that are hashed to locations where the bit vector bit is not set. Table 9.85 illustrates that (B, C)
and (C, M) have been eliminated from C2. Now, only four candidate item pairs are left instead of
six item pairs in C2 and thus, C2 has been pruned as given in the last column of Table 9.85. After
that, analyze the transaction database and modify it to include only these candidate pairs as given
in Table 9.86.

Now, from the pruned C2, let us find L2 as shown in Table 9.86.

Table 9.86 Finding L2

Itemset Count

BJ 3

BM 2

CJ 3

JM 2

Thus, L2 has two item pairs, i.e, BJ and CJ. Now, let us use L2 by selecting only those item pairs
of the transaction database that qualify by being above the threshold value of support. The method
of finding three itemsets is shown in Table 9.87.

Table 9.87 Finding three itemsets

TID Original Item groups Selected Item pairs
according to L2

Three Item groupings
(sets)

100 (Butter, Curd), (Butter, Eggs),
(Butter, Jam), (Curd, Eggs),
(Curd, Jam), (Eggs, Jam)

(Butter, Jam), (Curd, Jam) NIL

200 (Butter, Curd), (Butter, Jam),
(Curd, Jam)

 (Butter, Jam), (Curd, Jam) NIL

300 (Butter, Muffin), (Butter,
Nuts), (Muffin, Nuts)

NIL NIL

400 (Butter, Jam), (Butter, Muffin),
(Jam, Muffin)

(Butter, Jam) NIL

500 (Curd, Jam), (Curd, Muffin),
(Jam, Muffin)

(Curd, Jam) NIL

As shown above in Table 9.87, there are no 3-Item groups, and this complete the process of
identifying frequent item pairs .So, in this case, there are two item pairs (Butter, Jam) and (Curd,
Jam).We will find out the rules for selected item pairs in the same way as we did in the Apriori
algorithm, previously. Proceed as follow:

These item pairs produce four rules as shown below.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 291

Butter → Jam
Jam → Butter
Curd → Jam
Jam → Curd
Now, let us calculate their confidence as shown below.
Confidence of Butter → Jam = S (Butter, Jam) / S(Butter) = 3/4 = 0.75
Jam → Butter = S (Jam, Butter) / S(Jam) = 3/4 = 0.75
Curd → Jam = S (Curd, Jam) / S(Curd) = 3/3 = 1.0
Jam → Curd = S (Jam, Curd) / S(Jam) = 3/4 =1.0
Based on given threshold value of confidence we can select the qualified rules.
It is important to note that, the DHP algorithm usually performs better than the Apriori

algorithm during the initial stages, especially during L2 generation. Added to this improvement is
also the feature that trims and prunes the transaction set progressively, thereby improving the overall
efficiency of the algorithm. The startup phase of DHP does consume some extra resources when
the hash table is constructed but this is outweighed by the advantages gained during the later phases
when both the number of candidate itemsets and the transaction set are reduced (pruned better).

Guidelines for selection of the hash function

As one of the major objectives of the DHP algorithm is to reduce the size of C2, it is essential that
the hash table is large enough so that the collisions are low, i.e., different item pairs should not be
hashed into the same bucket. In case of collisions, the bit vector is not very effective because in this
case more than one item pair is contributing to support for the bucket and in ideal case it should
be the support of only one item pair that should contribute, so that candidate item pairs are close
to frequent item pairs.

If the hash table is too small and the collisions are high then more than one itemset will hash to
most of the buckets. It will result into loss of effectiveness of the hash table in reducing the number
of candidate itemsets C2. This is what happened in the example above in which we had collisions
in three of the eight buckets. If the minimum support count is low, it is even more important that
all collisions should be avoided.

If the hash table is too large then calculation will increase as we have to calculate the values for
each bucket. Thus, the hash function should be selected in such a manner that it results in the least
collisions.

Increasing the efficiency of the DHP algorithm

For efficient working of DHP, it is best to ensure that the hash table resides in the main memory.
If the hash table does not fit in the main memory, additional disk I/O costs will apply which may
again reduce the efficiency. This algorithm is most efficient when the number of itemsets in L2 is
lot smaller than C2. This reduction in database size will have a positive impact on the efficiency
of the algorithm.

The efficient pruning of the database, particularly C2, helps DHP to achieve a significantly
shorter execution time than the Apriori algorithm.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

292 Data Mining and Data Warehousing

Some more examples of DHP and Apriori algorithms

Another example will help in comparing Apriori with the DHP algorithm. In this example, we
will first apply the Apriori algorithm to identify frequent item pairs; then we will apply the DHP
algorithm for the same identification to illustrate differences in the process. Here, we have to find
frequent item pairs with support more than 40% for the database given in Table 9.88.

By applying both the algorithms on the same database, comparison of the workings of both
algorithms will be easy.

Table 9.88 Transaction database for Apriori and DHP

TID Items

100 A C D

200 B C E

300 A B C E

400 B E

The process to identify frequent item pairs through the Apriori algorithm has been illustrated
in Figure 9.14.

Figure 9.14 Process by the Aprioiri algorithm method

The process to identify frequent item pairs through DHP algorithm has been illustrated in
Figure 9.15.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 293

Figure 9.15 Process by the DHP algorithm method

Now, to hash the possible 2-itemsets, the code is assigned to each item. Let us assign code to
each item as given in Table 9.89.

Table 9.89 Code for each item

Item Code

A 1

B 2

C 3

D 4

E 5

F 6

A numeric value is attained for each pair by representing A by 1, B by 2 and so on as given in
above table. Then each pair is represented by a two-digit number, for example, AC by 13 and AD
by 14. The coded value for each item pair is given in Table 9.90.

Table 9.90 Coded representation for each item pair

TID Item pairs code

100 13 (AC), 14(AD), 34 (CD)

200 23 (BC), 25 (BE), 35 (CE)

300 12 (AB), 13 (AC), 15 (AE), 23 (BC), 25 (BE), 35 (CE)

400 25 (BE)

Now, hash function is applied on the coded values so that these items can be assigned to different
buckets. Here, we are using modulo 7 number, i.e., dividing by 7 and using the remainder as hash
function for the given dataset as given in Table 9.91.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

294 Data Mining and Data Warehousing

Table 9.91 Assigning of item pairs to buckets based on hash function modulo 7

0 1 2 3 4 5 6 Bucket address

14
35
35

15 23
23

25
25
25

12 13
34
13

Item pairs

3 1 2 0 3 1 3 Support of bucket

1 0 1 0 1 0 1 Bit Vector

The process of pruning C2 based on bit vector has been shown in Table 9.92.

Table 9.92 Pruning of C2

Item Pairs in C2 Bucket Bit Vector Remarks Pruned C2

AB, i.e., 12 5 0 Removed from C2

AC, i.e., 13 6 1 Will be retained AC

AE, i.e., 15 1 0 Removed from C2

BC, i.e., 23 2 1 Will be retained BC

BE, i.e., 25 4 1 Will be retained BE

CE, i.e., 35 0 1 Will be retained CE

This pruned C2 is used to find L2 as shown in Table 9.93.

Table 9.93 Finding L2

Item pairs Count

AC 2

BC 2

BE 3

CE 2

All these item pairs have support more than threshold limit. This L2 will be used for identifying
three item pairs by selecting only those item pairs from Table 9.90 which are having support more
than the threshold limit, as shown below in Table 9.94

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 295

Table 9.94 Identifying three itemsets

TID Original Item Pairs Selected Item Pairs according to L2 Three Itemsets

100 AC, AD, CD AC NIL

200 BC, BE, CE BC, BE, CE BCE

300 AB, AC, AE, BC, BE, CE AC, BC, BE, CE BCE

400 BE BE NIL

Here, BCE has a support of 2; thus, the frequent item group is BCE.
In next phase, association rules for three item group BCE can be found by using the same approach

as discussed in the Apriori algorithm.
Example: Let us consider, the database given in Table 9.95 for identification of frequent item

pairs with the Apriori algorithm and the DHP algorithm for minimum support of 50%.

Table 9.95 Transaction database

TID Item Bought

100 1, 2, 3, 4

200 5, 6, 7, 8, 9

300 6, 8, 9, 10

400 2, 3, 9

The process to identify frequent item pairs through Apriori algorithm has been illustrated in
Figure 9.16.

Figure 9.16 Identifying frequent item pairs and groups by Apriori algorithm

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

296 Data Mining and Data Warehousing

Thus, the process of the Apriori algorithm has produced a frequent three item group {6, 8, 9}.
The process to identify frequent item pairs and groups through the DHP algorithm has been

illustrated in Table 9.96.

Table 9.96 Coded item pairs for DHP

TID Items bought Item pairs code

100 1,2,3,4 12,13,14,23,24,34

200 5,6,7,8,9 56,57,58,59,67,68,69,78,79,89

300 6,8,9,10 68,69,610,89,810,910

400 2,3,9 23,29,39

Now, the hash function is applied on coded values so that these items can be assigned to different
buckets. Here, we are going to use Modulo 11 number, i.e., dividing by 11 and using the remainder
as hash function to assign buckets for the given dataset.

Let’s apply hash function to each item pair and assign the item pairs to each bucket on the basis
of modulo 11 as shown in Table 9.97.

Table 9.97 Assigning of item pairs to buckets based on hash function modulo 11

0 1 2 3 4 5 6 7 8 9 10 Bucket address

12
23
34
56
67
89
23

13
24
57
68
68

14
58
69
69

59 610 39 29
810

910 Item pairs

0 7 5 4 1 1 1 2 1 0 0 Support of bucket

0 1 1 1 0 0 0 1 0 0 0 Bit Vector

The pruning of C2 has been illustrated in Table 9.98.

Table 9.98 Pruning of C2

Item Pairs in C2 Bucket Bit Vector Remarks Pruned C2

23 1 1 Will be retained 23

26 - - Removed from C2

28 - - Removed from C2

29 7 1 Will be retained 29

36 - - Removed from C2
Contd.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 297

Item Pairs in C2 Bucket Bit Vector Remarks Pruned C2

38 - - Removed from C2

39 6 0 Removed from C2

68 2 1 Will be retained 68

69 3 1 Will be retained 69

89 1 1 Will be retained 89

This pruned C2 is used to find L2 as shown in Table 9.99.

Table 9.99 Finding L2

Item pair Count

23 2

29 1

68 2

69 2

89 2

Thus, L2 is 23, 68, 69 and 89, which is used to find three item groups as shown in Table 9.100.

Table 9.100 Finding three itemsets

TID Original Item pairs Selected Item pairs
according to L2

Three Itemsets

100 12,13,14,23,24,34 23 NIL

200 56,57,58,59,67,68,69,78,79,89 68,69,89 689

300 68,69,610,89,810,910 68,69,89 689

400 23,39 23 NIL

Here, 689 has a support of 2 and so the frequent item grouping is 689.
We have found the identical three item grouping by using both the Apriori and the DHP

algorithms. Now, the same procedure that was discussed in the section on the Apriori algorithm
can be applied to determine rules for the three item group {6, 8, 9}.

9.11 Dynamic Itemset Counting (DIC)

The major issue with the Apriori algorithm is that it requires multiple scans of the transaction database
which is equal to the number of items in the last candidate itemset that was checked for its support.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

298 Data Mining and Data Warehousing

For example, to identify candidate 3-itemset groupings, it will require a minimum of 3 scans of the
database and to identify candidate 4-itemset groupings, it will require four scans of the database.

The major advantage of the Dynamic Itemset Counting (DIC) algorithm is that it requires only
2 scans of the database to identify frequent item pairs in the whole database. It reduces the number
of scans required by not just doing one scan for the frequent 1-itemset and another for the frequent
2-itemset but combining the counting for a number of itemsets as soon as it appears that it might
be necessary to count it.

The basic algorithm is as follows.
 1. Divide the transaction database into n number of partitions.
 2. In the first partition of the transaction database, count the 1-itemsets.
 3. Count the 1-itemsets at the beginning of the second partition of the transaction database and

also start counting the 2-itemsets using the frequent 1-itemsets from the first partition.
 4. Count the 1-itemsets and the 2-itemsets at the beginning of the third partition and also start

counting the 3-itemsets using results from the first two partitions.
 5. Continue this process until the whole database is scanned once. There will be final set of

frequent 1-itemsets once you scan the database fully.
 6. Go back to the starting of the transaction database and continue counting the 2-itemsets and

the 3-itemsets, etc.
 7. After the end of the first partition in the second scan of the database, the whole database has

been scanned for 2-itemsets. Therefore, we have the final set of frequent 2-itemsets.
 8. After the end of the second partition in the second scan of the database, the whole database

has been scanned for 3-itemsets. Therefore, we have the final set of frequent 3-itemsets.
 9. This process is continued in a similar manner until no frequent k-itemsets are identified.

Illustration on working of the DIC algorithm

Let us consider, a dataset having 100 records which is divided into a number of, say 5 equal partitions.
Now, the major assumption in DIC is that the data should be homogeneous throughout the file.
This means that all the items should appear in partitions and the percentage of each item in the
partition should be same as percentage of each item in whole dataset. In simple words, if there are 5
items A, B, C, D and E in the dataset then each of these items should appear in the each partition
and if the percentage of item A in the whole transaction dataset is 60%, then it should be the same
in each partition, i.e, if the count of data item A is 50 in whole dataset of 100 transactions, then the
item should have the count of 10 in each partition of 20 records i.e. 50% both ways.

On the assumption that data is homogenous throughout in each partition, data is processed for
the DIC algorithm.

Here, we have a database of 100 transactions which is divided into five equal partitions of 20
records each. During counting of the 1-itemsets in the first partition of the transaction database,
we have identified data items A, B, C and D in the first partition. The count of these items is
indicated as CA, CB and so on. Count the 1-itemsets at the beginning of the second partition, and
also starts counting the 2-itemsets using the frequent 1-itemsets from the first partition, i.e. we
also start counting two item pairs, i.e., AB, AC, AD, BC, BD and CD. The working of the DIC
algorithm has been illustrated in Table 9.101.

It has been observed the counting of 1-itemsets, i.e., A, B, C and D has been completed after

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

A
ssociation M

ining
299

 Table 9.101 Working of the DIC algorithm for the example database

Total
dataset
of 100
records

Partition-1
20 records

PHASE-1
1-iemsets
A-CA

B-CB

C-CC

D-CD

PHASE-2
2-itemsets
AB-CAB

AC-CAC

AD-CAD

BC-CBC

BD-CBD

CD-CCD

PHASE-2
3-itemsets
ABC-CABC

ABD-CABD

ACD-CACD

BCD-CBCD

PHASE-2
4-itemsets
ABCD-
CABCD

Count of
2-itemset
has been
completed
after first
partition of
second pass

Partition-2
20 records

1-iemsets
A-CA

B-CB

C-CC

D-CD

2-itemsets
AB-CAB

AC-CAC

AD-CAD

BC-CBC

BD-CBD

CD-CCD

PHASE-2
3-itemsets
ABC-CABC

ABD-CABD

ACD-CACD

BCD-CBCD

PHASE-2
4-itemsets
ABCD-CABCD

Count of 3-itemset has
been completed after
second partition of second
pass

Partition-3
20 records

1-iemsets
A-CA

B-CB

C-CC

D-CD

2-itemsets
AB-CAB

AC-CAC

AD-CAD

BC-CBC

BD-CBD

CD-CCD

3-itemsets
ABC-CABC

ABD-CABD

ACD-CACD

BCD-CBCD

PHASE-2
4-itemsets
ABCD-CABCD

Count of 4-itemsets has been completed
after third partition of second pass

Contd.

https://w
w

w
.cam

bridge.org/core/term
s. https://doi.org/10.1017/9781108635592.010

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core. U

niversity of Sussex Library, on 01 M
ay 2019 at 23:42:55, subject to the Cam

bridge Core term
s of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

300
D

ata M
ining and D

ata W
arehousing

Partition-4
20 records

1-iemsets
A-CA

B-CB

C-CC

D-CD

2-itemsets
AB-CAB

AC-CAC

AD-CAD

BC-CBC

BD-CBD

CD-CCD

3-itemsets
ABC-CABC

ABD-CABD

ACD-CACD

BCD-CBCD

4-itemsets
ABCD-CABCD

Partition-5
20 records

1-iemsets
A-CA

B-CB

C-CC

D-CD

2-itemsets
AB-CAB

AC-CAC

AD-CAD

BC-CBC

BD-CBD

CD-CCD

3-itemsets
ABC-CABC

ABD-CABD

ACD-CACD

BCD-CBCD

4-itemsets
ABCD-CABCD

Count of
1-itemset
has been
completed
after one
pass

https://w
w

w
.cam

bridge.org/core/term
s. https://doi.org/10.1017/9781108635592.010

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core. U

niversity of Sussex Library, on 01 M
ay 2019 at 23:42:55, subject to the Cam

bridge Core term
s of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 301

one pass, the counting of 2-itemset has been completed after the first partition of the second pass,
counting of 3-itemsets has been completed after the second partition of the second pass and counting
of 4-itemsets has been completed after the third partition of the second pass. It is clear from above
illustration that DIC will require only two scans of database while Apriori will require 4 scans for
the identification of frequent 4-itemsets.

Major condition to make DIC effective

The DIC algorithm works well when the data throughout the file is relatively homogeneous as
it starts counting of the 2-itemset before having a count of final 1-itemset. The algorithm is not
able to identify the large itemset till the whole database is scanned if the data distribution is not
homogeneous. The major benefit of DIC is that it finishes the counting of the itemset in two scans
of the database while Apriori often takes three or more scans.

9.12 Mining Frequent Patterns without Candidate Generation
(FP Growth)

As only frequent items are required for identifying the association rules, so it is best to identify
the frequent items in the dataset and ignore all others. The FP growth works on the same
principle and instead of generating candidate itemsets as in the case of the Aprioiri algorithm,
frequent pattern-growth (FP growth) only tests and generates frequent itemsets. Thus, the
major difference between the Apriori algorithm and FP growth is that FP growth does not
generate candidate itemsets, it only tests, whereas the Apriori algorithm generates candidate
itemsets and then tests them.

To improve the performance of the algorithm, it uses the principle to store frequent items in a
compact structure which does not require the need to use the original transaction database repeatedly.

The working of the FP growth algorithm is as follows:

 1. Like the Apriori algorithm, the transaction database is scanned once to identify all the 1-itemset
frequent items and their supports are noted down.

 2. Then 1-itemset frequent items are sorted in descending order of their support.
 3. After that the FP-tree is created with a ‘NULL’ root.
 4. Then the first transaction is obtained from the transaction database and all the non-frequent

items are removed. And the remaining items are listed according to the order in the sorted
frequent items.

 5. After this, the first branch of the tree is constructed using the transaction with each node
corresponding to a frequent item and by setting the frequency of each item as 1 for the first
transaction.

 6. Then the next transaction is retrieved from the transaction database and all the non-frequent
items are removed. And the remaining items are listed according to the order in the sorted
frequent items as done in step 4.

 7. Now, the transaction is inserted in the tree using any common prefix that may appear and

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

302 Data Mining and Data Warehousing

count of items is increased by 1. If no common prefix is found then the branch of the tree is
constructed using the transaction; with each node corresponding to a frequent item and by
setting the frequency of each item as 1.

 8. Step 6 is repeated until all transactions in the database have been processed.

To understand this algorithm let us find frequent item pairs by building FP-trees for the following
database.

Example: Let us consider a transaction database shown in Table 9.102. The minimum support
required is 50% and confidence is 75%.

Table 9.102 Transaction database

100 Butter, Curd, Eggs, Jam

200 Butter, Curd, Jam

300 Butter, Eggs, Muffin, Nuts

400 Butter, Eggs, Jam, Muffin

500 Curd, Jam, Muffin

According to the algorithm, the first step will be to scan the transaction database to identify all
the frequent items in the 1-itemsets and sort them in descending order of their support.

The frequent 1-itemset database sorted on the basis of frequency is shown in Table 9.103.

Table 9.103 Frequency of each item in sorted order

Item Frequency

Butter 4

Jam 4

Curd 3

Eggs 3

Muffin 3

Here, Nuts has been removed as it has a support of 1 only, which is less than the threshold limit
of support (which is 3 in our case).

To create the FP-tree, the next step will be to exclude all the items that are not frequent from
the transactions and sort the remaining frequent items in descending order of their frequency
count. The example transaction database will be processed accordingly. The updated database after
eliminating the non-frequent items and reorganising the frequent items on the basis of frequency,
is shown in Table 9.104.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 303

Table 9.104 Updated database after eliminating the non-frequent items
and reorganising it according to support

Transaction ID Items

100 Butter, Jam, Curd, Eggs

200 Butter, Jam, Curd

300 Butter, Eggs, Muffin

400 Butter, Jam, Eggs, Muffin

500 Jam, Curd, Muffin

It is important to note that in case of identical support, items are arranged according to
lexicographic or sorted order. Now, we create the FP-tree by using the algorithm discussed above.
For simplicity of discussion, we are referencing items with their first letter, i.e, Butter by B, Jam
by J and so on.

An FP-tree consists of nodes. Here, each node contains three fields, i.e, an item name, a count,
and a node link as given in Figure 9.17. To built the FP-tree let us consider first transaction, i.e., 100
having Butter, Jam, Curd, Eggs as items. Each item node will be created from the root node, i.e.,
NULL as shown in Figure 9.17. The tree is built by making a root node labeled NULL. A node is
made for each frequent item in the first transaction and the count is set to 1. For example, to build
the FP-tree of Figure 9.17, the first transaction {B, J, C, E} is inserted in the empty tree with the
root node labeled NULL. Each of these items is given a frequency count of 1.

Next, the tree is traversed for the next transaction, i.e., 200. If a path already exists then it will
follow the same path and corresponding count of item is increased by 1. If a path does not exist
then a new path will be created. Next the second transaction, which is {B, J, C} having all the items
common with first, is inserted. It changes the frequency of each item, i.e., {B, J, C} to 2. The FP
for first two transactions is shown in Figure 9.18.

Figure 9.17 FP-tree for first transaction,
i.e., 100 only

Figure 9.18 FP-tree for the first
two transactions

Similarly, third transaction is considered and {B, E, M} is inserted. This requires that nodes
for E and M be created. The counter for B goes to 3 and the counter for E and M is set to 1.The
FP-tree for first three transactions is shown in Figure 9.19.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

304 Data Mining and Data Warehousing

Figure 9.19 FP-tree for first three transactions

The next transaction {B, J, E, M} results in counters for B and J going up to 4 and 3 respectively
and a new nodes for E and M have been inserted with count of 1 under node J as shown in Figure 9.20.

Figure 9.20 FP-tree for first four transactions

The last transaction {J, C, M} results in a brand new branch for the tree which is shown on the
right-hand side in Figure 9.21 with a counter of 1 for each item.

Figure 9.21 The final FP-tree for the example database after five transactions

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 305

The count tells the number of occurrences the path (constructed from the root node to this node)
has in the transaction database. The node link is a link to the next node in the FP-tree containing
the same item name or a null pointer if this node is the last one with this name. The FP-tree also
consists of a header table with an entry for each itemset and a link to the first item in the tree with
the same name. This linking is done to make traversal of the tree more efficient. Nodes with the
same item name in the tree are linked via the dotted node-links.

The nodes near the root in the tree are more frequent than those further down the tree. Each
identical path is only stored in the FP-tree once, which often makes the size of an FP-tree smaller
than the corresponding transactional database. The height of an FP-tree is always equal to the
maximum number of itemsets in a transaction excluding the root node. The FP-tree is compact and
often orders of magnitude smaller than the transaction database. Once the FP-tree is constructed,
the transaction database is not required.

Identification of frequent itemsets from FP-tree

The mining on the FP-tree structure is performed using the Frequent Pattern growth (FP growth)
algorithm. This algorithm starts with the least frequent item, i.e., the last item in the header table.
Then the algorithm identifies all the paths from the root to this least frequent item and adjusts the
count on the basis of the item’s support count.

First, look at Figure 9.21 built using the FP-tree to identify the frequent itemsets in the example.
Start with the item M and identify the patterns given as follows:

Identification of patterns for item M

BEM(1)
BJEM(1)
JCM(1)

From this we can identify that, the support for BM is 2 (1 from BEM and 1 from BJEM), but
its support is less than the threshold limit of 3, so this item pair will be discarded and we have
identified no frequent item pairs by using item M.

Next consider the item E and identify the patterns given as follows:

Identification of patterns for item E

BJCE(1)
BJE(1)
BE(1)

From this we can identify that the support for BE is 3 (1 from BJCE, 1 from BJE and 1 from
BE). However there is also a three item pair BJE having a support of 2 (1 from BJCE and 1 BJE),
but its support is less than threshold value so will be discarded.

So, we have identified BE has two item pairs having support more than the threshold limit.
Next consider the item C and identify the following patterns:

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

306 Data Mining and Data Warehousing

Identification of patterns for item C

BJC(2)
JC(1)

From this we can identify that, the support for JC is 3 (2 from BJC and 1 from JC). There is no
other item pair having support equal to or more than 3.

So, we have identified JC has two item pairs having supports more than the threshold limit.
Next consider the item J to identify its patterns.

Identification of patterns for item J

BJ(3)
J(1)

From this we can identify that, the support for BJ is 3. There is no other item pair having support
equal to or more than 3.

So, we have identified that BJ has two item pairs having support more than the threshold limit.
Since, B is at top of the tree and cannot have any item prior to it to make a pair, so there is no

need to follow links for item B. Thus, when the tree only contains one path, the algorithm will find
all the possible combinations of the items in the itemset that support the minimum support count.
It is therefore important to start with the least frequent item the first time, otherwise the items with
the higher frequency will not be considered.

Thus, the final list of frequent item pairs for the given database of transactions is shown in Table
9.105.

Table 9.105 Frequent item pairs for database example given in table

Frequent Item pairs Count

BE 3

JC 3

BJ 3

Finding association rules

To find the association mining rules, the same approach is followed as in Apriori algorithm.
For item pair BE, the possible rules are B→E and E→B. The confidence for each rule will be

calculated and if its value is more than given threshold value of confidence then corresponding
rule will be selected otherwise it will be discarded. The same approach will be followed for other
frequent item pairs JC and BJ to find association rules for the given dataset.

The readers are advised to identify association mining rules that have confidence of more than 80%.
I hope that, you have identified it correctly and answer is E→B and C→J as explained below.
Confidence of (B→E) = S(B∩E) / S(B) = 3/4 =0.75 [support of individual items is given in

Table 9.101]
Confidence of (E→B) = S(E∩B) / S(E) = 3/3 =1.0
Confidence of (J→C) = S(J∩C) / S(J) = 3/4 = 0.75

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 307

Confidence of (C→J) = S(C∩J) / S(C) = 3/3 =1
Confidence of (B→J) = S(B∩J) / S(B) =3/4 = 0.75
Confidence of (J→B) = S(J∩B) / S(J) = 3/4 = 0.75
Example: Let us consider another database given in Table 9.106, to identify frequent item pairs

having support more than 50%.

Table 9.106 Transaction database

TID Items

100 A C D

200 B C E

300 A B C E

400 B E

The count for each item is given in Table 9.107.

Table 9.107 Count for each data item

Item Count

A 2

B 3

C 3

D 1

E 3

On the basis of the frequent items given in Table 9.108, those items are selected that have support
equal to or more than 2 and these frequent items are sorted on the basis of their frequency as shown
in Table 9.108.

Table 9.108 Frequency of each item in sorted order

Item Count

B 3

C 3

E 3

A 2

Now, the non-frequent items are removed from the transaction database and items are ordered
on the basis of their frequency as given in the above table. The database after eliminating the items
that are not frequent and reorganising them on the basis of their frequency is shown in Table 9.109.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

308 Data Mining and Data Warehousing

Table 9.109 Modified database after eliminating the non-frequent items and reorganising

TID Items

100 C A

200 B C E

300 B C E A

400 B E

The process of creating the FP-tree for the database given above has been shown in Figure 9.22
on a step-by-step basis.

FP-tree for first transaction FP-tree for first two transactions

FP-tree for first three transactions Full FP-tree for all four transactions

Figure 9.22 Illustrating the step-by-step creation of the FP-tree

Thus, the final FP-tree with nodes will be as shown in Figure 9.23.

Figure 9.23 Final FP-tree for database given in Table 9.105

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 309

Identification of Frequent Itemsets from the FP-tree

Start with the item A and identify the patterns given as follows:

Identification of patterns for item A

CA(1),
BCEA(1),

The support for CA is 2 (1 from CA and 1 from BCEA) and it is equal to the threshold limit
thus CA is identified as a frequent item pair.

Next consider the item E and identify the following patterns:

Identification of patterns for item E

BCE(2)
BE(1)

The support for BCE is 2 and it is equal to the threshold limit thus BCE is identified as a
frequent 3-itemset.

Also from E, BE is identified as a frequent 2-item pair, since it has a support of 3 (2 from BCE
and 1 from BE).

Thus, we have selected two frequent item pairs from E, i.e., BCE and BE.
Next consider the item C and examine the following patterns:

Identification of patterns for item C

BC(2)
The support for BC is 2 and it is equal to the threshold limit thus BC is identified as a frequent

item pair.
Since, B is at top of the tree and cannot have any item prior to it to make a pair, so there is no

need to follow links for item B.
The final list of frequent item pairs for the given database of transactions is as shown in Table 9.110.

Table 9.110 Frequent item pairs for the example database

Frequent Item pairs Count

CA 2

BCE 2

BE 2

BC 2

Finding association rules

The identification process of association rules having confidence more than 70% has been shown
in Table 9.111.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

310 Data Mining and Data Warehousing

Table 9.111 Calculation of confidence for identification of association rules

CA C→A = S(C∩A) / S(C) = 2/3 = 0.67
A→C = S(A∩C) / S(A) = 2/2 = 1.0

Selected rule is A→C

BCE B→CE = S(B∩C∩E) / S(B) = 2/3 = 0.67 Confidence is less then threshold value, so it
will be discarded.

CE→B = S(B∩C∩E) / S(CE) = 2/2 = 1.0
Possible other non-implied rules are:
C→E, E→B
C→E = S(C∩E) / S(C) = 2/3 = 0.67
E→B = S(E∩B) / S(E) = 2/3 = 0.67

Selected rule is CE→B.
Others are discarded

BE B→E = S(B∩E) / S(B) =2/3 = 0.67
E→B = S(E∩B) / S(E) =2/3 = 0.67

Both the rules are discarded.

BC B→C = S(B∩C) / S(B) = 2/3 = 0.67
C→B = S(C∩B) / S(C) = 2/3 = 0.67

Both the rules are discarded.

Thus, final association rules having confidence more than 70% are CE→B and A→C.
Example: Let us consider another database given in Table 9.112, to identify frequent item pairs

having support more than 50%.

Table 9.112 Transaction database

Tr. Itemsets

T1 {1,2,3,4}

T2 {1,2,4}

T3 {1,2}

T4 {2,3,4}

T5 {2,3}

T6 {3,4}

T7 {2,4}

The count for each item is given in Table 9.113.

Table 9.113 Frequency of each item

Item Support

{1} 3

{2} 6

{3} 4

{4} 5

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 311

On the basis of the frequent items given in Table 9.114, those items are selected that have support
equal to or more than 2 and these frequent items are sorted on the basis of their frequency as shown
in Table 9.114.

Table 9.114 Frequency of each item in sorted order

Item Support

{2} 6

{4} 5

{3} 4

{1} 3

Now, the non-frequent items are removed from the transactions and items are organized according
to their frequency as given in the above Table 9.114. Since, all items are frequent, transaction items
are reorganized according to their support as shown in Table 9.115.

Table 9.115 Modified database after eliminating the non-frequent items and reorganizing

T1 2 4 3 1

T2 2 4 1

T3 2 1

T4 2 4 3

T5 2 3

T6 4 3

T7 2 4

The process of creating the FP-tree for this database has been shown in Figure 9.24 on a step-
by-step basis.

FP-tree for first transaction: {2 4 3 1} FP for first and second transaction {2 4 1}

Contd.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

312 Data Mining and Data Warehousing

FP for first, second and third transaction {2 1} FP for first, second, third and fourth transaction
{2 4 3}

FP for first, second, third, fourth and fifth
transaction {2 3}

FP for first, second, third, fourth, fifth and sixth
transaction {4 3}

FP for first, second, third, fourth, fifth, sixth and
seventh transaction {2 4}

Figure 9.24 Illustrating the step-by-step creation of the FP-tree

Thus, the final FP-tree with nodes will be as shown in Figure 9.25.

Figure 9.25 FP-tree for the example database

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 313

Identification of frequent itemsets from the FP-tree

Start with the item 1 and identify the patterns given as follows.

Identification of patterns for item 1

2431(1)
241(1)
21 (1)

The support for 21 is 3 (1 from 2431, 1 from 241 and 1 from 21) and it is equal to the threshold
limit thus 21 is a identified as frequent item pair.

Next consider the item 3 and identify its patterns.

Identification of patterns for item 3

243(2)
23(1)
43(1)

The support for 43 is 3 (2 from 243 and 1 from 43) and it is equal to the threshold limit thus 43
is identified as a frequent item pair.

The support for 23 is also 3 (2 from 243 and 1 from 23) and it is equal to the threshold limit thus
23 is also identified as a frequent item pair.

Next consider the item 4 and identify its patterns.

Identifications of patterns for item 4

24(4)
The support for 24 is 4 and it is more than threshold limit, thus 24 is identified as a frequent

item pair.
The final list of frequent item pairs for given database of transactions is shown in Table 9.116.

Table 9.116 Frequent item pairs for example database

Item Support

{1,2} 3

{3,4} 3

{2,3} 3

{2,4} 4

It is important to note that the order of data items does not matter in listing frequent item pairs.

Finding association rules

The identification process of association rules having confidence more than 70% has been shown
in Table 9.117.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

314 Data Mining and Data Warehousing

Table 9.117 Association rules for database given in Table 9.76

{1, 2} 1→2 = S(1∩2) / S(1) = 3/3 =1.0
2→1 = S(2∩1) / S(1) = 3/3 = 1.0

Both the rules, i.e., 1→2 and 2→1 are selected

{3, 4} 3→4 = S(3∩4) / S(3) = 3/4 = 0.75
4→3 = S(4∩3) / S(3) = 3/4 = 0.75

Both the rules, i.e., 3→4 and 4→3 are
selected

{2, 3} 2→3 = S(2∩3) / S(2) = 3/6 = 0.50
3→2 = S(3∩2) / S(3) = 3/4 = 0.75

3→2 rule has been selected

{2, 4} 2→4 = S(2∩4) / S(2) = 4/6 = 0.67
4→2 = S(4∩2) / S(4) = 4/5 = 0.80

4→2 rule has been selected

Thus, final association rules having confidence more than 70% are 1→2, 2→1, 3→4, 4→3, 3→2
and 4→2.

9.12.1 Advantages of the FP-tree approach

The advantages of the FP-tree algorithm over the Apriori algorithm are as follows:
	 •	 The	FP-tree	algorithm	avoids	the	need	to	scan	the	database	more	than	twice	to	identify	the	

counts of support.
	 •	 The	FP-tree	completely	eliminates	the	requirement	of	costly	candidate	generation,	which	can	

be expensive in case of the Apriori algorithm for the candidate set C2.
	 •	 The	FP	growth	algorithm	is	better	than	the	Apriori	algorithm	when	the	transaction	database	is	

huge and the minimum support count is low. Because in case of low minimum support count,
there will be more items that will satisfy the support count and hence the size of the candidate
sets for Apriori will be large. As the database grows, FP growth uses an efficient structure to
mine patterns.

9.12.2 Further improvements of FP growth

In spite of the advantages there are possibilities to make the algorithm even more efficient and
scalable. Important observations to further improve the performance of FP growth are as follows:
	 •	 It	works	best	if	the	FP-tree	fits	in	the	main	memory.	However,	in	large	databases	this	will	

not always be possible, and then it is better to first divide the database and then constructs
FP-trees for each of the databases.

	 •	 Use	B+-tree to index the FP-tree for faster access to items in the FP-tree.
	 •	 If	the	same	data	is	used	multiple	times	with	different	minimum	confidence	thresholds	in	order	

to yield different association rule mining then, it could be useful to use the same FP-tree results.
This will save the initial cost of generating the FP-tree and make the algorithm overall more
efficient.

	 •	 Sometimes	the	minimum	support	count	will	be	different	in	different	tasks,	so	to	overcome	
this problem, the lowest minimum support count is used in the materialization of the FP-tree.
When a higher support count is wanted, only the top of the FP-tree is used. Because of the
structure of the FP-tree, it is easy to have different support counts.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 315

 Remind Me
 Association rule mining can be defined as identification of frequent patterns, correlations, associations,

or causal structures among sets of objects or items in transactional databases, relational databases,

and other information repositories.

 Association rule mining often known as ‘market basket’ analysis is a very effective technique to find

the association of sale of item X with item Y.

 Association rules are often written as X→Y meaning that whenever X appears Y also tends to appear.

 The metrics to evaluate the strength of association rules are support, confidence and lift.

 Let N is the total number of transactions. Support of X is represented as the number of times X appears

in the database divided by N.

 Confidence for X→Y is defined as the ratio of the support for X and Y together to the support for X

(which is same as the conditional probability of Y when X has already occurred).

 Lift is the ratio of conditional probability of Y when X is given to the unconditional probability of Y in

the dataset.

 Rather than counting all the possible item combinations in the stock, the improved Naïve algorithm

focuses only on the items that are sold in transactions.

 There are three ways to store datasets of transactions, i.e., simple storage, horizontal storage and

vertical storage.

 The name of the Apriori algorithm is assigned on the basis of the fact that it uses prior knowledge of

frequent itemset properties.

 The Apriori algorithm consists of two phases. In the first phase, the frequent itemsets, i.e., the itemsets

that exceed the minimum required support are identified. In the second phase, the association rules

meeting the minimum required confidence are identified from the frequent itemsets.

 Apriori property states that all nonempty subsets of a frequent itemset must also be frequent.

 Association rules for frequent itemset l generate all non-empty subsets of l and for every non-empty

subset s of l, the output rule is s→l-s and if the confidence of the rule is more than the threshold value

of the confidence then, this rule will be selected in the final association rules.

 Apriori–TID uses the Apriori algorithm to generate the candidate and frequent itemsets. The only

difference is that it uses TID or vertical storage approach for its implementation.

 The DHP algorithm is useful to improve the pruning of C2.This algorithm employs a hash-based

technique for reducing the count of candidate itemsets generated in the first pass.

 Point Me (Books)
 Han, Jiawei, Micheline Kamber, and Jian Pei. 2011. Data Mining: Concepts and Techniques, 3rd ed.

Amsterdam: Elsevier.

 Gupta, G. K. 2014. Introduction to Data Mining with Case Studies. Delhi: PHI Learning Pvt. Ltd.

 Mitchell, Tom M. 2017. Machine Learning. Chennai: McGraw Hill Education.

 Witten, Ian H., Eibe Frank, Mark A. Hall, and Christopher Pal. 2016. Data Mining: Practical Machine

Learning Tools and Techniques, 4th ed. Burlington: Morgan Kaufmann.

 Point Me (Video)
 https://www.coursera.org/lecture/text-mining/1-7-word-association-mining-and-analysis-Uufkz

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

316 Data Mining and Data Warehousing

 Connect Me (Internet Resources)
 https://en.wikipedia.org/wiki/Association_rule_learning
 https://www.hackerearth.com/blog/machine-learning/beginners-tutorial-apriori-algorithm-data-

mining-r-implementation/

 Test Me
 Answer these questions based on your learning in this chapter.
 1. Apply the Apriori and DHP algorithms to find frequent itemsets for the following dataset, Minimum

support is 50%.

TID List of Items

100 I1, I2, I5

200 I2, I4

300 I2, I3

400 I1, I2, I4

500 I1, I3

600 I2, I3

700 I1, I3

800 I1, I2, I3, I5

900 I1, I2, I3

 2. Identify C4 after pruning the following frequent three itemsets as L3. Justify your answer.
 {3,4,5}, {3,4,7}, {3,5,6}, {3,5,7}, {3,5,8}, {4,5,6}, {4,5,7}
 3. Show that if the rule ABC→ D does not have the minimum confidence required, then the rules like

AB→CD, A→BCD and C→ABD will also not have the minimum confidence.
 4. Compute the support for itemsets {e}, {b, d}, and {b, d, e} by treating each transaction ID as a market basket.

Customer ID Transaction ID Items Bought

1 0001 {a, d, e}

1 0024 {a, b, c, e}

2 0012 {a, b, d, e}

2 0031 {a, c, d, e}

3 0015 {b, c, e}

3 0022 {b, d, e}

4 0029 {c, d}

4 0040 {a, b, c}

5 0033 {a, d, e}

'5 0038 {a, b, e}

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Association Mining 317

 Also compute the confidence and lift for the association rules
 {b, d} → {e} and {e} → {b, d}.
 5. Consider the following group of frequent 3-itemsets and hence, identify C4 after pruning the following

frequent three itemsets as L3. Justify your answer.
 {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}, {2, 3, 5}, {3, 4, 5}.
 6. Apply the Apriori algorithm and the FP-tree growth approach for the following database to identify

frequent itemsets with minimum support of 50%. Also find association rules having confidence of more
than 75%.

Transaction ID Items Bought

1 {Milk, Beer, Diapers}

2 {Bread, Butter, Milk}

3 {Milk, Diapers, Cookies}

4 {Bread, Butter, Cookies}

5 {Beer, Cookies, Diapers}

6 {Milk, Diapers, Bread, Butter}

7 {Bread, Butter, Diapers}

8 {Beer, Diapers}

9 {Milk, Diapers, Bread, Butter}

10 {Beer, Cookies}

 7. For an Apriori algorithm the L2 is given below:

L2

Itemset Sup. count

{I1, I2} 4

{I1, I3} 4

{I1, I5} 2

{I2, I3} 4

{I2, I4} 2

{I2, I5} 2

 What will be C3 after pruning? Justify your answer.
 8. Apply the DHP algorithm to find association mining rules for the following dataset with minimum

support 50% and confidence 75%.

TID Items Bought

100 1, 2, 3, 4

200 5, 6, 7, 8, 9

300 6, 8, 9, 10

400 2, 3, 9

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

318 Data Mining and Data Warehousing

 Also apply the FP growth algorithm to find the most frequent items pair(s).
 9. What is wrong in the following L3:
 L2
 XY
 XZ

 L3
 XYZ
 10. What are rules that can be generated from the three itemset {1,2,3}?
 11. How is lift calculated in case of A->B
 12. Convert the given transaction database to TID-list representation.

Transaction ID Items Bought

100 Bread, Cheese

200 Bread, Cheese, Juice

300 Bread, Milk

400 Cheese, Juice, Milk

 13. Frequent 2-itemsets are: {1,2}, {1,3}, {1,5}, {2,3}, {2,4}, {2,5}. What will be a pruned candidate 3-itemset?
 14. Given a set of transactions, find rules to predict the occurrence of an item on the basis of the occurrences

of other items in the transaction. The value of support is 40% and confidence is 70%.

TID Items Bought

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

 Also apply the FP growth algorithm to find frequent item pairs.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:42:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.010
https://www.cambridge.org/core

Chapter Objectives

 To demonstrate the use of the association mining algorithm.

 To apply association mining on numeric data

 To comprehend the use of class association rules

 To compare the decision tree classifier with association mining

 To conduct association mining with R language

10.1 Association Mining with Weka

Let us consider the ‘to-play-or-not-to-play’ dataset given in Figure 10.1 for getting hands on
experience with association mining in Weka. This dataset is available as default dataset in the data
folder of Weka with the file name weather.nominal.arff.

Figure 10.1 Snapshot of the ‘play-or-no-play’ dataset

Implementing Association
Mining with Weka and R

10

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

320 Data Mining and Data Warehousing

This dataset has four attributes describing weather conditions and a fifth attribute is a class
attribute that indicates based on the weather conditions of the day, whether Play was held or not.
There are 14 instances, or samples in this dataset.

It is important to note that in classification, we are interested in assigning the output attribute
to play or no play. But in Association mining we are interested in finding association rules based
on the associations between all the attributes that came together. Thus, in association we do not
take class attributes into consideration.

If we compare this dataset with the transactions dataset discussed in the last chapter for market
basket analysis, you can find equivalence between transaction id and data items purchased in that
transaction.

Here, No. 1 to 14, i.e. the instances act as transaction ids and the values of attributes given in
the row corresponding to the given instance are acting as data items for that instance. Here we are
interested in finding associations by observing the facts like Outlook = sunny AND Temperature =
hot is more common than the association of Outlook = sunny AND Temperature = cool occurring
together as shown in Figure 10.2.

Figure 10.2 Associations between items

Weka contains an Associate tab which aids in applying different association algorithms in order
to find association rules from datasets. One such algorithm is the Predictive Apriori association
algorithm that optimally combines support and confidence to calculate a value called predictive
accuracy as depicted in Figure 10.3.

Figure 10.3 Working of Predictive Apriori

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

Implementing Association Mining with Weka and R 321

The user only needs to specify how many rules they would like the algorithm to generate, and
the algorithm takes care of optimizing support and confidence to find the best rules.

10.2 Applying Predictive Apriori in Weka

Objective:

To Apply the Predictive Apriori algorithm and find associations rules for the
dataset given in Figure 10.1

Steps:

1. Dataset loading:

Step 1 : Open Weka to get the Weka GUI Chooser Panel, then click on the Explorer option out
of the 4 offered options.

Step 2 : Now in the Preprocess tab click on the Open file button and choose the weather.nominal.
arff as shown in Figure 10.4.

Figure 10.4 Loading the weather.nominal.arff

Step 3 : Click on the Associate Tab inside the Weka window (top). Now click on Choose button
and select Apriori under association as shown in Figure 10.5.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

322 Data Mining and Data Warehousing

Figure 10.5 Selecting the Predictive Apriori algorithm for association mining

Step 4: Now, Left click on the Associator field where Predictive Apriori is written. This will
open the property window for Apriori; and open Generic Object Editor as shown in Figure 10.6.

Figure 10.6 Changing parameters for Predictive Apriori

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

Implementing Association Mining with Weka and R 323

It has three parameters options as shown in Figure 10.7 and description of each parameter (user
can click on the More button to view these details) is given in Table 10.1.

Figure 10.7 Parameters of the Predictive Apriori algorithm

Table 10.1 Description of parameters

car Stands for class association rules. If enabled, class association rules are mined
instead of (general) association rules.

classIndex It is the index of the class attribute. If set to -1, the last attribute will be taken as
the class attribute.

numRules It is number of rules to find. The default value of number of rules generated is 100.

Let us go with default value and keep the values same for now, press the cancel button to exit
out of this window.

Step 5 : Finally click on the Start button to start the Predictive Apriori Algorithm on our uploaded
database. The output for the algorithm results will be shown on the right hand side of Weka window
under the Associator Output as shown in Figure 10.8.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

324 Data Mining and Data Warehousing

Figure 10.8 Association mining rules

Result interpretation:

The list of top 20 rules out of 100 association rules generated by Predictive Apriori, with their
corresponding predictive accuracy is given below. It is important to note that predictive accuracy
combines support and confidence into a single value and it indicates the strength of the rule.

Best rules found have been indicated in bold-face:
 1. outlook = overcast 4 ==> play = yes 4 acc:(0.95323)
 2. temperature = cool 4 ==> humidity = normal 4 acc:(0.95323)
 3. humidity = normal windy = FALSE 4 ==> play = yes 4 acc:(0.95323)
 4. outlook = sunny humidity = high 3 ==> play = no 3 acc:(0.92093)
 5. outlook = sunny play= no 3 ==> humidity = high 3 acc:(0.92093)
 6. outlook = rainy windy = FALSE 3 ==> play = yes 3 acc:(0.92093)
 7. outlook = rainy play = yes 3 ==> windy = FALSE 3 acc:(0.92093) 8. outlook = sunny temperature

= hot 2 ==> humidity = high play = no 2 acc:(0.86233)
 9. outlook = sunny humidity=normal 2 ==> play=yes 2 acc:(0.86233)
 10. outlook = sunny play = yes 2 ==> humidity = normal 2 acc:(0.86233)
 11. outlook = overcast temperature = hot 2 ==> windy = FALSE play = yes 2 acc:(0.86233)
 12. outlook = overcast windy = FALSE 2 ==> temperature = hot play = yes 2 acc:(0.86233)
 13. outlook = rainy humidity = high 2 ==> temperature = mild 2 acc:(0.86233)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

Implementing Association Mining with Weka and R 325

 14. outlook = rainy windy = TRUE 2 ==> play = no 2 acc:(0.86233)
 15. outlook = rainy play = no 2 ==> windy = TRUE 2 acc:(0.86233)
 16. temperature = hot play =yes 2 ==> outlook = overcast windy = FALSE 2 acc:(0.86233)
 17. temperature = hot play = no 2 ==> outlook = sunny humidity = high 2 acc:(0.86233)
 18. temperature = mild humidity =normal 2 ==> play = yes 2 acc:(0.86233)
 19. temperature = mild play=no 2 ==> humidity = high 2 acc:(0.86233)
 20. temperature = cool windy = FALSE 2 ==> humidity = normal play = yes 2 acc:(0.86233)

The relation for support, confidence and predictive accuracy for rule 2 is shown in Figure 10.9.

Figure 10.9 Analysis of rule 2

By observing these rules, one can appreciate that Weka generates a vast number of association
rules by using various attributes in the dataset and some rules have multiple precedent terms or
multiple antecedent terms or both as given in rule number 5 and 8 as shown below.

 5. outlook = sunny play = no 3 ==> humidity = high 3 acc:(0.92093)
 8. outlook = sunny temperature = hot 2 ==> humidity = high play = no 2 acc:(0.86233)

10.3 Rules Generation Similar to Classifier Using Predictive Apriori

We have already discussed that association mining treats all attributes in a dataset like items in
a market basket, and so the class attribute Play in this dataset is treated like any normal data item.
But we can configure the algorithm such that it will treat the last column of the dataset, i.e., Play
(or No Play) in this case, as a class attributes and will generate rules only pertaining to this class
attribute, by keeping it as the antecedent of the rule.

In other words, association mining can also predict whether or not the Play will happen based
on weather conditions, by generating the rules like (Rule 6) as presented below.

6. outlook = rainy windy = FALSE 3 ==> play = yes 3 acc:(0.92093)

Thus, there is a linkage between classification and association. The Predictive Apriori algorithm
as implemented in Weka takes advantage of this linkage, by setting the car (class association rules)
property to true. In Weka, open up the Generic Object Editor for Predictive Apriori and set car to
true as shown in Figure 10.10.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

326 Data Mining and Data Warehousing

Figure 10.10 Setting CAR to true for getting class association rules

Click Start to generate the rules and the rules will be generated in the output of Associator and
one finds that it only produces the rules having the Play attribute as antecedent.

The top 20 rules produced by Associator are shown below.

Best rules found:

 1. outlook = overcast 4 ==> play = yes 4 acc:(0.97594)
 2. humidity = normal windy = FALSE 4 ==> play = yes 4 acc:(0.97594)
 3. outlook = sunny humidity = high 3 ==> play = no 3 acc:(0.96426)
 4. outlook = rainy windy = FALSE 3 ==> play = yes 3 acc:(0.96426)
 5. outlook = sunny temperature = hot 2 ==> play = no 2 acc:(0.94406)
 6. outlook = sunny humidity = normal 2 ==> play = yes 2 acc:(0.94406)
 7. outlook = rainy windy = TRUE 2 ==> play = no 2 acc:(0.94406)
 8. temperature = mild humidity = normal 2 ==> play = yes 2 acc:(0.94406)
 9. temperature = cool windy = FALSE 2 ==> play = yes 2 acc:(0.94406)
 10. humidity = normal 7 ==> play = yes 6 acc:(0.79098)
 11. temperature = cool 4 ==> play = yes 3 acc:(0.64898)
 12. windy = FALSE 8 ==> play = yes 6 acc:(0.6316)
 13. outlook = sunny windy = FALSE 3 ==> play = no 2 acc:(0.60315)
 14. outlook = rainy temperature = mild 3 ==> play = yes 2 acc:(0.60315)
 15. temperature = hot humidity = high 3 ==> play = no 2 acc:(0.60315)
 16. temperature = mild windy = TRUE 3 ==> play = yes 2 acc:(0.60315)
 17. humidity = high windy = TRUE 3 ==> play = no 2 acc:(0.60315)
 18. temperature = mild 6 ==> play = yes 4 acc:(0.58611)
 19. outlook = sunny 5 ==> play = no 3 acc:(0.56112)
 20. outlook = rainy 5 ==> play = yes 3 acc:(0.56112)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

Implementing Association Mining with Weka and R 327

10.4 Comparison of Association Mining CAR Rules with J48
Classifier Rules

Objective:

To compare the output of CAR (class association rules) with the J48
classifier rules (as both of them generate rules corresponding to the
class attribute.)

Steps:

Let us apply the J48 Classifier on the same dataset by following steps given below:
Step 1 : Click on Classifier tab and select J48 under trees as shown in Figure 10.11.

Figure 10.11 Application of the J48 algorithm on dataset ‘play-or-no-play’

Step 2 : Now, Select the Use training set option under Test Options. Since the dataset contains
just 14 records it is important to select the whole dataset for building the classifier.

 Next, Click on the Start button to get the output of the classifier as shown in Figure 10.12.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

328 Data Mining and Data Warehousing

Figure 10.12 Selection of use training set to build the model

Step 3 : Right click on the Result list of the classifier and select visualize tree as shown in Figure
10.13.

Figure 10.13 Select the ‘Visualize tree’ to get a decision tree

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

Implementing Association Mining with Weka and R 329

The decision tree will be generated as shown in Figure 10.14.

Figure 10.14 Decision tree for dataset ‘play-or-no-play’

The user can enlarge this window and right click on the empty area of the tree and select option
Fit to Screen to resize the size of the tree.

Result interpretation

Now, let us compare the rules given by this decision tree with the class association rules generated
by the Predictive Apriori algorithm (which was discussed earlier in Section 10.3).

One can analyze that - the rules of decision tree such as, if outlook is overcast then play is yes,
is also produced by class association rules and it is ranked as one of the best rules at rule 1.

Similarly, the rule of decision tree - if outlook = sunny and humidity = high then play is no, is
also produced by class association rules and it is given as one of the best rules being ranked at rule 3.

The rule of outlook = sunny and humidity = normal 2, then play is yes 2, is allotted to position
6 by car.

The readers are advised to look for the other two rules given by the decision tree that are also
in the rules generated by car (class association rules). Hopefully you would have identified them
correctly at positions 4 and 7. For clarity, car rules are reproduced again and out of these rules, the
rules given by the decision tree have been shown in bold.
 1. outlook = overcast 4 ==> play = yes 4 acc:(0.97594)
 2. humidity = normal windy = FALSE 4 ==> play = yes 4 acc:(0.97594)
 3. outlook = sunny humidity = high 3 ==> play = no 3 acc:(0.96426)
 4. outlook = rainy windy = FALSE 3 ==> play = yes 3 acc:(0.96426)
 5. outlook = sunny temperature = hot 2 ==> play = no 2 acc:(0.94406)
 6. outlook = sunny humidity = normal 2 ==> play = yes 2 acc:(0.94406)
 7. outlook = rainy windy = TRUE 2 ==> play = no 2 acc:(0.94406)
 8. temperature = mild humidity = normal 2 ==> play = yes 2 acc:(0.94406)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

330 Data Mining and Data Warehousing

 9. temperature = cool windy = FALSE 2 ==> play = yes 2 acc:(0.94406)
 10. humidity = normal 7 ==> play = yes 6 acc:(0.79098)
 11. temperature = cool 4 ==> play = yes 3 acc:(0.64898)
 12. windy = FALSE 8 ==> play = yes 6 acc:(0.6316)
 13. outlook = sunny windy = FALSE 3 ==> play = no 2 acc:(0.60315)
 14. outlook = rainy temperature = mild 3 ==> play = yes 2 acc:(0.60315)
 15. temperature = hot humidity = high 3 ==> play = no 2 acc:(0.60315)
 16. temperature = mild windy = TRUE 3 ==> play = yes 2 acc:(0.60315)
 17. humidity = high windy = TRUE 3 ==> play = no 2 acc:(0.60315)
 18. temperature = mild 6 ==> play = yes 4 acc:(0.58611)
 19. outlook = sunny 5 ==> play = no 3 acc:(0.56112)
 20. outlook = rainy 5 ==> play = yes 3 acc:(0.56112)

One can easily conclude that the association mining rules are more exhaustive than rules produced
by J48 classifier. And car not only produces the rules involving outlook (root attribute of the decision
tree) with other attributes but it also produce rules involving the other possible input attributes for
output attribute (play) as shown below in case of rule number 17 and rule number 18.

 17. humidity = high windy = TRUE 3 ==> play = no 2 acc:(0.60315)
 18. temperature = mild 6 ==> play = yes 4 acc:(0.58611)

10.5 Applying the Apriori Algorithm in Weka

To apply the Apriori algorithm on the given dataset of ‘play-or-no-play’ the user needs to select
Apriori algorithm under the Associate tab in Weka as shown in Figure 10.15.

Figure 10.15 Selection of the Apriori algorithm

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

Implementing Association Mining with Weka and R 331

To change the parameters or to configure the default values for this algorithm, left click on the
name of algorithm in the Associator pane (on left) and it will open Generic Object Editor of Apriori
algorithm as shown in Figure 10.16.

Figure 10.16 Generic Object Editor to change the default values of the Apriori algorithm

One can use this option to specify the threshold values of Support, Confidence, Lift and car etc.
The description of important options is given in Table 10.2.

Table 10.2 Description of available property options of the Apriori algorithm

lowerBoundMinSupport Lower boundary for minimum support. It is used to set
the threshold value of the support in the range of 0 to 1.

metricType – Conviction Set the type of metric by which to rank rules. Options
are Confidence, Lift. User can select the desired metric
and set its value in the minMetric field discussed below.
By default, it is Confidence.

minMetric -- Minimum metric score Considers only those rules with scores higher than this
value. If selected metric is confidence or lift then the
value of the selected metric can be changed through
this parameter.

numRules Number of rules to find.

removeAllMissingCols Remove columns with all missing values.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

332 Data Mining and Data Warehousing

The default values of these properties are shown in Figure 10.17.

Figure 10.17 Default values of the properties of the Apriori algorithm

One can appreciate that the default minimum support (lowerBoundMinSupport: 0.1) is 10% and
confidence (metricType: Confidence and minMtric:0.9) is 90%. Users can change the threshold
values of Support and Confidence by changing these values. To find association rules with these
default values, save all the changes you made by clicking OK in the Generic Object Editor Window.
Finally, click Start to generate the rules. The association mining rules will appear in Associator
output. Some of best rules which are found have been reproduced below.

Best rules found:

 1. outlook = overcast 4 ==> play = yes 4 conf:(1)
 2. temperature = cool 4 ==> humidity = normal 4 conf:(1)
 3. humidity = normal windy = FALSE 4 ==> play = yes 4 conf:(1)
 4. outlook = sunny play = no 3 ==> humidity = high 3 conf:(1)
 5. outlook = sunny humidity = high 3 ==> play = no 3 conf:(1)
 6. outlook = rainy play = yes 3 ==> windy = FALSE 3 conf:(1)
 7. outlook=rainy windy=FALSE 3 ==> play=yes 3 conf:(1)
 8. temperature = cool play = yes 3 ==> humidity = normal 3 conf:(1)
 9. outlook = sunny temperature = hot 2 ==> humidity = high 2 conf:(1)
 10. temperature = hot play = no 2 ==> outlook = sunny 2 conf:(1)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

Implementing Association Mining with Weka and R 333

Users are now advised to find the association mining rules having support of 40% and confidence
of 70%.

The best found association rules for above threshold values are reproduced below for verification
of with your results.

With the Apriori

=======
Minimum support: 0.4 (6 instances)
Minimum metric <confidence>: 0.7
Number of cycles performed: 12
Generated sets of large itemsets:
Size of set of large itemsets L(1): 6
Size of set of large itemsets L(2): 2

Best rules found:

 1. humidity = normal 7 ==> play = yes 6 conf:(0.86)
 2. windy = FALSE 8 ==> play = yes 6 conf:(0.75)

Similarly, readers can try several different threshold values to find a variety of association rules.
For example, find association rules for support of 30% and confidence of 80%.

10.6 Applying the Apriori Algorithm in Weka on a Real World
Dataset

Objective:

To run the Apriori algorithm on a given dataset (Table 10.3) and hence choose
the best Association Rule using Weka.

This is same dataset regarding the store which we have discussed while applying the Apriori
algorithm.Now we will apply the same algorithm in Weka and will compare the results of Weka
with the Apriori rules which we generated in the previous chapter.

Table 10.3 Transaction database of a store

Transaction ID Items

100 Bread, Cornflakes

101 Bread, Cornflakes, Jam

102 Bread, Milk

103 Cornflakes, Jam, Milk

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

334 Data Mining and Data Warehousing

Steps:

Dataset creation:

Step 1 : Open MS Excel and tabulate the data as shown in Figure 10.18.

Figure 10.18 Daily item dataset

Step 2 : Next, save the file as a CSV file. For saving a file in CSV format, switch to the File tab
in MS Excel and then click on Save As. A dialog box will pop-up, give File name as DailyItem
Dataset and choose Save as Type as CSV (Comma delimited). Finally click on Save button to save
the file on Desktop as shown in Figure 10.19.

Figure 10.19 Saving the file in CSV format

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

Implementing Association Mining with Weka and R 335

2. Running the Apriori algorithm:

Step 1 : Open Weka to get the Weka GUI Chooser Panel, now click on the Explorer option out
of the 4 offered options as shown in Figure 10.20.

Figure 10.20 Weka GUI Chooser Panel

Step 2 : Now in the Preprocess tab click on Open file button and choose the DailyItem Dataset
(.csv) we created in previous steps from Desktop. Once the dataset gets loaded into Weka you will
see the names of all the Attributes as shown in Figure 10.21.

Figure 10.21 Dataset uploaded in Weka

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

336 Data Mining and Data Warehousing

Step 3 : Once data is loaded, Weka will consider all columns as numeric but association mining
cannot be directly applied on numeric data, so it is required to convert this numeric data to nominal
form before running the programme. For this, just under the Open file button you will see a Choose
button which will help in choosing a filter to be applied on our dataset.

Select filters -> unsupervised ->Numeric to Nominal filter
Finally click on the Choose button as shown in Figure 10.22.

Figure 10.22 Choosing numeric to nominal filter in Weka

Step 4 : After selecting the Numeric to Nominal filter we have to apply it on our dataset. To do
this, click on the Apply button as shown in Figure 10.23.

Figure 10.23 Changing from numeric to nominal filter

Step 5 : After inserting a Dataset into Weka and applying the Filter on your dataset, you can
remove undesirable attributes before running the Apriori Algorithm. Since the transaction attribute
does not play any role in association mining, it is better to remove it before applying association
mining.

For doing so, just select the Transaction attribute from the left pane and correspondingly click
on Remove button to delete the attribute as shown in Figure 10.24.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

Implementing Association Mining with Weka and R 337

Figure 10.24 Removing the Transaction attribute

Step 6 : Click on the Associate Tab inside the Weka window (top). Now click on the Choose button
and select Apriori under association as shown in Figure 10.25.

Figure 10.25 Applying the Apriori algorithm

Step 7 : Now, Left click on the Associator field where Apriori is written. This will open the
property window for Apriori; i.e. it opens the Generic Object Editor as shown in Figure 10.26.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

338 Data Mining and Data Warehousing

Figure 10.26 Opening the Generic Object Editor

Step 8 : Now the values fed in Generic Object Editor will decide what rules are yielded by Apriori.
So fill the following values :
	 •	 In	the	lowerBoundMinSupport, supply the minimum threshold of support, i.e., which in this

case is 0.5.
	 •	 In	the	metricType , select Confidence.
	 •	 In	the	minMetric, enterly the minimum threshold of confidence, which in this case is 0.75.
	 •	 In	the	numRules , enter the number of rules you want Apriori to find, which in our case is 10.

Click on the OK button to save the configuration for Apriori.
Step 9 : Finally click on the Start button to start the Apriori Algorithm to run on our DailyItem

dataset. The output for the algorithm results will be shown on the right hand side of the Weka
window. (as shown in Figure 10.27)

Figure 10.27 Starting the Apriori algorithm

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

Implementing Association Mining with Weka and R 339

Step 10 : Interpret the Results which have been generated as shown in Figure 10.28.

Figure 10.28 Results after running the Apriori algorithm

Result interpretation:

The best Association Rule which we obtained after running the Predictive Apriori Algorithm on the
given DailyItem Dataset is, Jam → Cornflakes as we got 100% Predictive accuracy (confidence =1)
for this combination. This result is the same as discussed in the previous chapter under Section 9.5.1.

10.7 Applying the Apriori Algorithm in Weka on a Real World
Larger Dataset

Objective:

To run the Apriori algorithm on a given dataset with pre-defined support and
confidence, and then interpret the output.

Let us consider as an example, the dataset given in Table 10.4, consisting of only five transactions
and six items. We want to identify association rules with 50% support and 75% confidence using the
Apriori algorithm. This is the same dataset on which we have previously applied Apriori algorithm.
Now we will apply the same algorithm in Weka and will compare the results of Weka with the
Apriori rules which we found on the same dataset in the previous chapter.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

340 Data Mining and Data Warehousing

Table 10.4 Sample dataset of a store

Transaction ID Items

T1 Bread, Cornflakes, Eggs, Jam

T2 Bread, Cornflakes, Jam

T3 Bread, Milk, Tea

T4 Bread, Jam, Milk

T5 Cornflakes, Jam, Milk

Steps: Dataset creation

Step 1 : Open MS Excel and tabulate the data as shown in Figure 10.29.
Next, save the file as a CSV file. For saving a file in CSV format, switch to the File tab in MS

Excel and then click on Save As.

Figure 10.29 Saving the file in CSV format

A dialog box will pop-up, enter the File name as DailyItem2 Dataset and choose Save as Type
as CSV (Comma delimited) . Finally click on the Save button to save the file on Desktop as shown
in Figure 10.30.

Figure 10.30 Saving the file in CSV format

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

Implementing Association Mining with Weka and R 341

Running the Apriori algorithm:

Step 1 : Open Weka to get the Weka GUI Chooser Panel, now click on the Explorer option out of
the 4 offered options as shown in the Figure 10.31.

Figure 10.31 Weka GUI Chooser Panel

Step 2 : Now in the Preprocess tab click on the Open file button and choose the DailyItem2
Dataset(.CSV) we created in previous steps from Desktop. Once the dataset gets loaded into Weka
you will see the names of all the Attributes as shown in Figure 10.32.

Figure 10.32 Dataset uploaded in Weka

Step 3 : Once data is loaded, Weka will consider all columns as numeric and since association
mining cannot be directly applied on numeric data, it is required to convert this numeric data to
nominal before running the programme. For this, just under the Open file button you will see a

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

342 Data Mining and Data Warehousing

Choose button which will help us in choosing a filter to be applied on our dataset. Select filters ->
unsupervised ->Numeric to Nominal filter

and finally click on the Choose button.
Step 4 : After selecting the Numeric to Nominal filter we have to apply it on our dataset. To do

this, click on the Apply button. After this you will have something like Figure 10.33.

Figure 10.33 Weka numeric to nominal filter applied

Step 5 : After inserting a Dataset into Weka and applying the Filter on your dataset, you can
remove attributes before we run the Apriori Algorithm. For doing so, just select the Transaction
attribute from the left pane and correspondingly click on Remove button to delete the attribute as
shown in Figure 10.34.

Figure 10.34 Removing the Transaction attribute

Step 6 : Click on the Associate Tab inside the Weka window (top). Now click on the Choose button
and select Apriori under association as shown in Figure 10.35.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

Implementing Association Mining with Weka and R 343

Figure 10.35 Choosing the Apriori algorithm

Step 7 : Now, Left click on the Associator field where Apriori is written. This will open the
property window for Apriori i.e. it opens the Generic Object Editor .

Step 8 : Now the values which are fed into the Generic Object Editor will be processed leading
to rules being yielded by Apriori. So fill the following values :
	 •	 In	the	lowerBoundMinSupport, supply the minimum threshold of support, i.e., which in this

case is 0.5.
	 •	 In	the	metricType , select Confidence.
	 •	 In	the	minMetric, supply the minimum threshold of confidence, in our case it is 0.75.

Click on the OK button to save the configuration for Apriori.
Step 9 : Finally click on the Start button to start the Apriori Algorithm to run on our DailyItem2

dataset. The output for the algorithm results will be shown on the right hand side of Weka window
as shown in Figure 10.36.

Step 10 : Interpret the Results.

Figure 10.36 Results after running the Apriori algorithm on DailyDataset2

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

344 Data Mining and Data Warehousing

Result interpretation:

The best Association Rules which we obtained after running the Apriori Algorithm on the given
DailyItem Dataset can be seen in the screenshot shown above.

Some of the best rules provided out by Apriori Algorithm are as followes:
Bread→Jam
Jam→Bread
Cornflakes→Jam
Jam→Cornflakes
The confidence of these rules is obtained by dividing the support for both items in the rule by the

support for the item on the left-hand side of the rule. The confidence of the four rules therefore are
3/4 = 75%, 3/4 = 75%, 3/3 = 100%, and 3/4 = 75% respectively. Since all of them have a minimum
75% confidence, they all qualify.

One can verify that Weka has produced the same association rules that we had obtained in the
last chapter by applying the Apriori algorithm on the same dataset in Section 9.7.2.

10.8 Applying the Apriori Algorithm on a Numeric Dataset

The performance records of students in a subject can be analyzed to find interesting associations
between different attributes such as the association of MST marks with the final grade of the
student; or, the association of lab marks with ESE marks and so on.

In order to apply association mining on student performance records for a particular subject. Let
us consider the result of the data warehouse and data mining course of last semester. The attributes,
designated from A to E are: Roll Number, Name, MST (Maximum Marks 20), Quiz (Maximum
Marks 15), Lab (Maximum Marks 20), ENDSEM (Maximum Marks 45), Total (Maximum Marks
100) and Final Grade.These are given in Table 10.5. Now, the instructor wishes to find associations
between different attributes to analyze the performance of students.

Table 10.5 Performance record of students in a data warehouse and data mining course

Roll No. Name MST(20.0) Quiz (15) Lab (20.0) ENDSEM
(45.0)

Total
(100.0)

Grade

1 ******* 6 4 12 8.5 30.5 E

2 ******* 8.5 7 15 16 46.5 D

3 ******* 2.5 6.5 14 1.5 24.5 E

4 ******* 14.5 8.5 17 18 58 C

5 ******* 16 5 18 20.5 59.5 B

6 ******* 17 7.5 19 37 80.5 A

Contd.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

Implementing Association Mining with Weka and R 345

Roll No. Name MST(20.0) Quiz (15) Lab (20.0) ENDSEM
(45.0)

Total
(100.0)

Grade

7 ******* 16 7 16 25.5 64.5 B

8 ******* 16 6.5 17 18 57.5 B

…….

…….

9 ******* 20 8 19 30.5 77.5 A

Steps :
Step 1 : Open MS Excel and tabulate the data. Next, save the file as a CSV file. For saving a file

in the CSV format, switch to the File tab in MS Excel and then click on Save As. A dialog box will
pop up;, enter File name as DailyItem Dataset and choose as CSV (Comma delimited) in the Save as
Type space. Finally click on the Save button to save the file on Desktop as shown in Figure 10.37.

Figure 10.37 Saving in CSV format

Step 2 : Next, Load the CSV file created in the previous step to Weka by selecting the Open file
button in the Preprocess tab of Weka. The loaded file in Weka is shown in Figure 10.38.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

346 Data Mining and Data Warehousing

Figure 10.38 Loading the student performance dataset

Step 3: Since Roll No. and Name columns do not play any role in association mining so remove
them. To do so, select them and press the button Remove as shown in Figure 10.39.

Figure 10.39 Removal of Roll No. and Name columns

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

Implementing Association Mining with Weka and R 347

But the data is numeric in nature and association mining cannot be applied on numeric data, as
association rule mining works only on nominal values. So, it is necessary to convert the numeric
data into nominal values by the conversion process called discretizing.

Here, we are not using the filter NumerictoNominal but we still want to convert marks into
nominal values like Poor, Average, Good and such, for better analysis.

If the user tries to apply association mining on numeric dataset (as in our case), then the user
won’t be able to use the association mining algorithm option as it is disabled for numeric data as
shown in Figure 10.40.

Figure 10.40 Association mining algorithms are disabled for numeric data

Step 4 : Thus, to perform the Discretizing operation of converting numeric values to nominal,
the user can apply one of the Weka filters which discretizes the data values. There are two types
of discretization, namely, equal interval and equal frequency. Both are similar to binning
(discussed earlier). Accordingly we will use the term ‘bin’ for each different group. In equal interval
discretization, we calculate a bin size and then put the samples into the appropriate bin. In equal
frequency discretization, we allow the bin sizes to vary, where our goal is to choose bin sizes so
that every bin has about the same number of samples in it. The idea is that if each bin has the same
number of samples, no bin, or group, will have greater or lesser impact on the results of data mining.
To apply the discretization filter, click on the Choose button for selecting the filter. This brings up
a folder tree.

Follow the path: Weka→filters→unsupervised→attribute→Discretize as shown in Figure 10.41.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

348 Data Mining and Data Warehousing

Figure 10.41 Selection of the Discretize filter

When the user clicks on Discretize, he or she will be returned to the Preprocess tab, as shown
in Figure 10.42.

Figure 10.42 Discretization of numeric data

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

Implementing Association Mining with Weka and R 349

Step 5 : Click on Discretize to open the Generic Object Editor in order to change the properties
of the Discretize filter as shown in Figure 10.43.

Figure 10.43 Generic Object Editor for changing properties of the Discretize filter

For the analysis of marks, we will be interested in Low, Medium and High values for each column
so carry out the following changes:
	 •	 Set	the	number	of	bins to 3 from the default value of 10
	 •	 Set	the	useEqualFrequency attribute to True so that 1/3 of students are put into each bin of

High, Medium and Low on the basis of their marks as shown in Figure 10.44
Step 6 : Now click on apply as shown in Figure 10.44 to apply the Discretize filter.
It will convert all values of attributes to nominal and the reader can cross check these values by

selecting each column one by one and by checking its statistical values one can find that each column
has been converted to nominal as shown in case of MST column given in Figure 10.44. One can
also confirm that each column has been converted to three bins with numbers 1, 2 and 3 and the
range of marks for that bin become the label of that field. In case of MST, the label of the first bin
is ‘(-inf-13.75)’ [marks from 0 to 13.75], for the second bin it is ‘(-13.75-15.75)’ [marks from 13.75
to 15.75] and for the third bin it is ‘(15.75-inf)’ [marks from 15.75 to 20]. The number of students
in each range has been specified in the count column as shown in Figure 10.44

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

350 Data Mining and Data Warehousing

Figure 10.44 Discretization of data

Now that each column has been converted to nominal values, we can apply association mining
on our dataset. So, select the associate tab and select Predictive Apriori as shown in Figure 10.45.

Figure 10.45 Application of the Predictive Apriori algorithm on nominal data

Step 7: Now, press the button Start and run the algorithm to find association mining rules for
the given dataset. Some of best rules are shown below:

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

Implementing Association Mining with Weka and R 351

Best rules found:

 1. Total (100.0) =’(58.25-69.25]’ 20 ==> Grade = B 20 acc:(0.99441)
 2. Grade = A 13 ==> Total (100.0) = ‘(69.25-inf)’ 13 acc:(0.99297)
 3. MST(20.0) = ‘(-inf-13.75]’ ENDSEM(45.0) = ‘(-inf-21.5]’ 12 ==> Total (100.0) = ‘(-inf-58.25]’

12 acc:(0.99247)
 4. MST(20.0) = ‘(-inf-13.75]’ Lab(20.0) = ‘(-inf-15.75]’ 11 ==> Total (100.0) = ‘(-inf-58.25]’ 11

acc:(0.99182)
 5. Lab(20.0) = ‘(17.25-inf)’ Total (100.0) = ‘(69.25-inf)’ 11 ==> Grade = A 11 acc:(0.99182)
 6. Grade = C 9 ==> Total (100.0) = ‘(-inf-58.25]’ 9 acc:(0.98968)
 7. Lab(20.0) = ‘(-inf-15.75]’ ENDSEM(45.0) = ‘(-inf-21.5]’ 9 ==> Total (100.0) = ‘(-inf-58.25]’ 9

acc:(0.98968)
 8. Quiz (15) = ‘(6.75-7.75]’ ENDSEM(45.0) = ‘(21.5-27.75]’ Grade = B 9 ==>

Total (100.0) = ‘(58.25-69.25]’ 9 acc:(0.98968)
 9. Lab(20.0) = ‘(17.25-inf)’ ENDSEM(45.0) = ‘(21.5-27.75]’ Grade = B 8 ==>

Total (100.0) = ‘(58.25-69.25]’ 8 acc:(0.98791)
 10. MST(20.0) = ‘(13.75-15.75]’ ENDSEM(45.0) = ‘(21.5-27.75]’ 7 ==> Total (100.0) = ‘(58.25-

69.25]’ Grade = B 7 acc:(0.98532)

Some important observations are:

 1. Total (100.0) = ‘(58.25-69.25]’ 20 ==> Grade = B 20 acc:(0.99441)
 If the total marks secured by a student, is between 58.25 and 69.25, then hisor her grade is ‘B’.
 2. Grade = A 13 ==> Total (100.0) = ‘(69.25-inf)’ 13 acc:(0.99297)
 If the Grade is ‘A’, then the total marks secured by that student is more than 69.25.
 6. Grade = C 9 ==> Total (100.0) = ‘(-inf-58.25]’ 9 acc:(0.98968)
 If the Grade is ‘C’, then the total marks secured by that student is less than or equal to 58.25.

These rules can be made more informative and if instead of distributing the students into three
bins so that 1/3 of students put in to each bin of High, Medium and Low on the basis of their marks
in that column, it will be better to consider the top 20% students as High, the bottom 20% students
as low and the remaining 60% students as Medium based on their performance in a particular test
(a column in the case of the dataset). This can be done by performing Discretization manually.
This 20% boundary for extremely high and low values is arbitrary. We have chosen it here just to
illustrate a possible approach to applying association to this dataset.

10.9 Process of Performing Manual Discretization

First open the excel file of student performance and delete Roll No. and Name columns as they
will not play any role in association mining. Let us start with MST marks first. carry out sorting
(high to low) on the MST attribute. Since we have a total of 60 records, select the first 12 records
(20% records) and replace their MST marks with H. Next, select records from record number 49
to 60 (the last 12 records) and mark them with L. The MST marks of remaining 36 records (60%
records) will be replaced with M as shown in Figure 10.46 (a), (b) and (c).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

352 Data Mining and Data Warehousing

 (a) (b) (c)

Figure 10.46 Manual Discretization

In case the value at the cutoff point is the same for two or more students, then we have to shift
the cut off either up or down, to a point where change in the value occurs. We cannot set the same
values in two different classes. For example, if the marks of the 11th, 12th and 13th students are
same, then the cutoff for L for the MST column will need to be raised to the 10th record, i.e. 11.5
marks as shown in Figure 10.47.

Figure 10.47 Modified cut off when more than one student has the same marks at the cut

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

Implementing Association Mining with Weka and R 353

The process of manual Discretization will be followed for each column. Repeating this process for
the Quiz column, we will sort it from smallest to highest; marking the first 12 records as L, the last
12 records as H and the remaining 36 records as M. If marks for the 12th and the next consequent
records are the same, then the cutoff will be adjusted in such a way that same marks will not fall
into separate categories of L and M.

Finally, the dataset will look like what is shown in Figure 10.48 and now it is ready for processing
with Weka to find the association mining rules.

Figure 10.48 Dataset with Manual Discretization

To apply association mining on the given dataset, save it in csv file format and load this csv file
into Weka as shown in Figure 10.49.

Figure 10.49 Loading the marks file

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

354 Data Mining and Data Warehousing

Now apply the Predictive Apriori algorithm from the Associate tab in Weka. Some of the best
rules identified by the system are given below:

Best rules found:

 1. MST(20.0) = H ENDSEM(45.0) = H 7 ==> Grade = A 7 acc:(0.97376)
 2. MST(20.0) = M Quiz (15) = L 6 ==> ENDSEM(45.0) = M 6 acc:(0.96551)
 3. MST(20.0) = M Lab(20.0) = L 6 ==> ENDSEM(45.0) = M 6 acc:(0.96551)
 4. MST(20.0) = L ENDSEM(45.0) = L 5 ==> Lab(20.0) = L 5 acc:(0.95318)
 5. Quiz (15) = M Lab(20.0) = H 5 ==> MST(20.0) = H 5 acc:(0.95318)
 6. Quiz (15) = L Grade = B 5 ==> ENDSEM(45.0) = M 5 acc:(0.95318)
 7. Lab(20.0) = L ENDSEM(45.0) = L 5 ==> MST(20.0) = L 5 acc:(0.95318)
 8. Lab(20.0) = L Grade = B 5 ==> MST(20.0) = M ENDSEM(45.0) = M 5 acc:(0.95318)
 9. Lab(20.0) = M ENDSEM(45.0) = L 5 ==> MST(20.0) = M 5 acc:(0.95318)
 10. Lab(20.0) = H ENDSEM(45.0) = H 5 ==> Grade = A 5 acc:(0.95318)
 11. MST(20.0) = M Quiz (15) = H ENDSEM(45.0) = M 5 ==> Grade = B 5 acc:(0.95318)
 12. Grade = E 4 ==> MST(20.0) = L Lab(20.0) = L 4 acc:(0.93429)
 13. Grade = E 4 ==> MST(20.0) = L ENDSEM(45.0) = L 4 acc:(0.93429)
 14. MST(20.0) = L Grade = E 4 ==> Lab(20.0) = L ENDSEM(45.0) = L 4 acc:(0.93429)
 15. MST(20.0) = L Grade = C 4 ==> ENDSEM(45.0) = M 4 acc:(0.93429)
 16. MST(20.0) = H Grade = B 4 ==> ENDSEM(45.0) = M 4 acc:(0.93429)
 17. Quiz (15) = H ENDSEM(45.0) = H 4 ==> Grade = A 4 acc:(0.93429)
 18. Lab(20.0) = L Grade = C 4 ==> ENDSEM(45.0) = M 4 acc:(0.93429)
 19. MST(20.0) = M Quiz (15) = M ENDSEM(45.0) = L 4 ==> Lab(20.0) = M 4 acc:(0.93429)
 20. MST(20.0) = M Quiz (15) = M ENDSEM(45.0) = H 4 ==> Lab(20.0) = M 4 acc:(0.93429)

Now let us find the rules for grade only by enabling car to true.
The best 20 rules are given below:

Best rules found:

 1. MST(20.0) = H ENDSEM(45.0) = H 7 ==> Grade = A 7 acc:(0.97316)
 2. Lab(20.0) = H ENDSEM(45.0) = H 5 ==> Grade = A 5 acc:(0.95636)
 3. MST(20.0) = M Quiz (15) = H ENDSEM(45.0) = M 5 ==> Grade = B 5 acc:(0.95636)
 4. Quiz (15) = H ENDSEM(45.0) = H 4 ==> Grade = A 4 acc:(0.94162)
 5. Quiz (15) = H Lab(20.0) = M ENDSEM(45.0) = M 4 ==> Grade = B 4 acc:(0.94162)
 6. MST(20.0) = L Quiz (15) = M ENDSEM(45.0) = M 3 ==> Grade = C 3 acc:(0.91904)
 7. MST(20.0) = L Lab(20.0) = L ENDSEM(45.0) = M 3 ==> Grade = C 3 acc:(0.91904)
 8. MST(20.0) = H Lab(20.0) = M ENDSEM(45.0) = M 3 ==> Grade = B 3 acc:(0.91904)
 9. MST(20.0) = M Quiz (15) = M ENDSEM(45.0) = M 13 ==> Grade = B 12 acc:(0.88767)
 10. MST(20.0) = M Quiz (15) = M Lab(20.0) = L 2 ==> Grade = B 2 acc:(0.88325)
 11. MST(20.0) = M Lab(20.0) = H ENDSEM(45.0) = M 2 ==> Grade = B 2 acc:(0.88325)
 12. MST(20.0) = H Quiz (15) = H Lab(20.0) = H 2 ==> Grade = A 2 acc:(0.88325)
 13. MST(20.0) = M ENDSEM(45.0) = M 24 ==> Grade = B 21 acc:(0.82198)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

Implementing Association Mining with Weka and R 355

 14. Lab(20.0) = M ENDSEM(45.0) = M 21 ==> Grade = B 18 acc:(0.80371)
 15. ENDSEM(45.0) = H 13 ==> Grade = A 11 acc:(0.77475)
 16. MST(20.0) = H Lab(20.0) = H 7 ==> Grade = A 6 acc:(0.76918)
 17. MST(20.0) = M Lab(20.0) = L 6 ==> Grade = B 5 acc:(0.73884)
 18. MST(20.0) = M Quiz (15) = M 21 ==> Grade = B 16 acc:(0.7304)
 19. ENDSEM(45.0) = M 35 ==> Grade = B 26 acc:(0.72725)
 20. MST(20.0) = M 36 ==> Grade = B 26 acc:(0.70941)

Now, if the user is not interested with those rules which have M values, then we can reprocess
our excel data by replacing M with ‘?’ in the excel file as shown in Figure 10.50, then the records
containing ? will be ignored during generation of association rules, because ? indicates missing
values in Weka and all the records containing missing values will be ignored during generation of
association mining rules.

Figure 10.50 Replacing M with ‘?’

Save this file in csv with a different name and load it on Weka to generate association mining
rules. Some of best rules found are:

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

356 Data Mining and Data Warehousing

Best rules found:

 1. MST(20.0) = H ENDSEM(45.0) = H 7 ==> Grade = A 7 acc:(0.9856)
 2. MST(20.0) = L ENDSEM(45.0) = L 5 ==> Lab(20.0) = L 5 acc:(0.97495)
 3. Lab(20.0) = L ENDSEM(45.0) = L 5 ==> MST(20.0) = L 5 acc:(0.97495)
 4. Lab(20.0) = H ENDSEM(45.0) = H 5 ==> Grade = A 5 acc:(0.97495)
 5. Grade = E 4 ==> MST(20.0) = L Lab(20.0) = L 4 acc:(0.96357)
 6. Grade = E 4 ==> MST(20.0) = L ENDSEM(45.0) = L 4 acc:(0.96357)
 7. MST(20.0) = L Grade = E 4 ==> Lab(20.0) = L ENDSEM(45.0) = L 4 acc:(0.96357)
 8. Quiz (15) = H ENDSEM(45.0) = H 4 ==> Grade = A 4 acc:(0.96357)
 9. MST(20.0) = H Quiz (15) = H Lab(20.0) = H 2 ==> Grade = A 2 acc:(0.90132)
 10. MST(20.0) = H Lab(20.0) = H 7 ==> Grade = A 6 acc:(0.76649)
 11. Lab(20.0) = H Grade = A 7 ==> MST(20.0) = H 6 acc:(0.76649)
 12. ENDSEM(45.0) = H 13 ==> Grade = A 11 acc:(0.75458)
 13. Grade = A 14 ==> ENDSEM(45.0) = H 11 acc:(0.70253)
 14. MST(20.0) = L 10 ==> Lab(20.0) = L 8 acc:(0.68744)
 15. MST(20.0) = L ENDSEM(45.0) = L 5 ==> Lab(20.0) = L Grade = E 4 acc:(0.66253)
 16. Lab(20.0) = L ENDSEM(45.0) = L 5 ==> MST(20.0) = L Grade = E 4 acc:(0.66253)
 17. Lab(20.0) = H ENDSEM(45.0) = H 5 ==> MST(20.0) = H Grade = A 4 acc:(0.66253)
 18. MST(20.0) = H 13 ==> Grade = A 9 acc:(0.61176)
 19. Lab(20.0) = L Grade = C 4 ==> MST(20.0) = L 3 acc:(0.59941)
 20. MST(20.0) = H Grade = A 9 ==> Lab(20.0) = H 6 acc:(0.57572)

And by enabling car rules to be true we get rules which are given below:

Best rules found:

 1. MST(20.0) = H ENDSEM(45.0) = H 7 ==> Grade = A 7 acc:(0.9866)
 2. Lab(20.0) = H ENDSEM(45.0) = H 5 ==> Grade = A 5 acc:(0.98035)
 3. Quiz (15) = H ENDSEM(45.0) = H 4 ==> Grade = A 4 acc:(0.97464)
 4. MST(20.0) = H Quiz (15) = H Lab(20.0) = H 2 ==> Grade = A 2 acc:(0.94776)
 5. MST(20.0) = H Lab(20.0) = H 7 ==> Grade = A 6 acc:(0.82715)
 6. ENDSEM(45.0) = H 13 ==> Grade = A 11 acc:(0.79515)
 7. MST(20.0) = L ENDSEM(45.0) = L 5 ==> Grade = E 4 acc:(0.75507)
 8. Lab(20.0) = L ENDSEM(45.0) = L 5 ==> Grade = E 4 acc:(0.75507)
 9. MST(20.0) = H Quiz (15) = H 4 ==> Grade = A 3 acc:(0.70206)
 10. MST(20.0) = H 13 ==> Grade = A 9 acc:(0.6782)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

Implementing Association Mining with Weka and R 357

10.10 Applying Association Mining in R

Installing arules

For association mining, there is a need to install the library ‘arules’. If the library is not installed then
first install the package ‘arules’ otherwise the R console will print the message ‘there is no package
called ‘arules’ as shown in Figure 10.51.

> install.packages (“arules”) # Install the package for association mining
>
> library(arules) # load the “arules” library

Figure 10.51 Installation of the ‘arules’ library

10.11 Implementing Apriori Algorithm

Step 1: Loading the dataset
Read the weather_nominal.csv file using the read.csv function as shown in Figure 10.52. The

summary () function can be used to see instances of the loaded dataset.
> data <- read.csv(“D://weather _ nominal.csv”, header = TRUE) # Reading of weather data
>
> summary (data) # Print summary of dataset
>
> names(data) # Display column names of dataset

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

358 Data Mining and Data Warehousing

Figure 10.52 Loading the dataset

Step 2: Apply the Apriori algorithm
Run the Apriori algorithm on the dataset given; as follows. We can also set the parameters by

specifying minimum values for support and confidence as shown in Figure 10.53.
> rules<-apriori(dataset, parameter=list(target=”rules”))

OR
> rules <-apriori(dataset, parameter=list(sup=0.01, conf=0.5, target=”rules”))

Figure 10.53 Loading the dataset and running Apriori

We can also print the association rules generated by Apriori using a function called inspect () as
shown in Figure 10.54 which shows the first 20 rules.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

Implementing Association Mining with Weka and R 359

Figure 10.54 First 20 Association Rules

10.12 Generation of Rules Similar to Classifier

If we set the right hand side in the ‘appearance’parameter of the Apriori function to display class
only, then we can get the rules to predict the class of an unknown sample as shown in Figure 10.55.

> rules<- apriori(data, parameter = list(supp=0.005, conf=0.8), appearance =
list(rhs=c(“Play.golf=Yes”, “Play.golf=No”)))

>
> rules.sorted <- sort(rules, by=”lift”)
>
>inspect(rules)

The Figure 10.55 shows the 20 rules out of 45 rules identified. Sorting is on the basis of lift.

Figure 10.55 Best 20 rules sorted according to lift

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

360 Data Mining and Data Warehousing

10.13 Comparison of Association Mining CAR Rules with J48
Classifier Rules

First of all, install the ‘rpart’ package to implement decision tree. Then, the rpart() function is
applied on the loaded weather dataset to build the decision tree.

>library(rpart) ## Loading of packages
>
> data<-read.csv(“D://weather _ nominal.csv”, header=TRUE) ## Reading of Data

> fit <- rpart(Play.golf ~ Outlook + Temperature + Humidity + Windy, method=”class”,
data=data, control=rpart.control(minsplit=1))

> print(fit)

The classification performed by the decision tree is shown in Figure 10.56.

Figure 10.56 Decision tree rules

The complete summary about each node of the decision tree can be visualized using the summary()
function as shown in Figure 10.57.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

Implementing Association Mining with Weka and R 361

Figure 10.57 Summary of decision tree nodes

The decision tree can be plotted using the plot() function and then the text() function is used
to label the nodes of decision tree as shown in Figure 10.58.

> plot(fit, uniform=TRUE, main=”Decision Tree - Play?”)
> text(fit, use.n=TRUE, all=TRUE, cex=.8)

Figure 10.58 Plotting the decision tree

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

362 Data Mining and Data Warehousing

From the decision tree one can perform analysis to find similarities between rules produced by
decision tree and CAR options of association mining.

10.14 Application of Association Mining on Numeric Data in R

Figure 10.59 shows the loading of the marks dataset. It shows the summary about each attribute
of the dataset. From the Figure, it has been observed that there are 8 attributes such as Roll No.,
Name, MST, Quiz, Lab, ENDSEM, Total and Grade. The Figure also shows that there are total
69 students out of which 9 students got grade A, 29 got B, 28 got C, 2 got D and 1 got E.

> library(arules)
> data<- read.csv(“D://marks.csv”, header=TRUE)
> summary(data)

Figure 10.59 Summary of the marks dataset

Since, Roll No. and Name columns do not play any role in association mining so these columns
can be removed using the slicing in R as shown in Figure 10.60.

> data<- data [-1 : -2]
> data

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

Implementing Association Mining with Weka and R 363

Figure 10.60 Removal of columns

Since this data is numeric in nature and association mining cannot be applied on numeric data
we need to convert it into nominal by discretizing. For discretization, we first have to convert the
dataset into a data frame as shown in Figure 10.61.

> y<-data.frame(lapply(data, as.integer))

Figure 10.61 Converting the dataset into a data frame

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

364 Data Mining and Data Warehousing

And then use the discretize () function to discretize all the columns of the dataset as shown in
Figure 10.62.

> for (i in 1:6){y[,i]<-discretize(y[,i])}

Figure 10.62 Discretization of data

Now, apply the apriori () function to perform association mining as shown in Figure 10.63.

Figure 10.63 Applying Apriori

This illustrates the steps that need to be followed to apply association mining in R.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

Implementing Association Mining with Weka and R 365

 Remind Me
 Weka contains an Associate tab which aids in applying different association algorithms in order to find

association rules from datasets.
 One such algorithm is the Predictive Apriori association algorithm that optimally combines support

and confidence to calculate a value termed predictive accuracy
 We can set the value of support, confidence and number of rules using the General Object Editor of

the Apriori algorithm.
 CAR can be enabled to find the rules by considering the class attribute or the last attribute of the

dataset as a consequent of the rule.
 To apply association mining in R, there it is required to install the library ‘arules’.
 We can use apriori() in R to find association mining rules for the given dataset.

 Point Me (Books)
 Witten, Ian H., Eibe Frank, and Mark A. Hall. 2010. Data Mining: Practical Machine Learning Tools and

Techniques, 3rd ed. Amsterdam: Elsevier.
 Lesmeister, Cory. 2015. Mastering Machine Learning with R. Birmingham: Packt Publishing Ltd.

Connect Me (Internet Resources)
 https://machinelearningmastery.com/market-basket-analysis-with-association-rule-learning/
 http://facweb.cs.depaul.edu/mobasher/classes/ect584/Weka/associate.html
 https://www.r-bloggers.com/association-rule-learning-and-the-apriori-algorithm/
 http://mhahsler.github.io/arules/

 Do It Yourself
The purpose of this assignment is to verify that you have learnt the concepts of association mining. Carry
out this assignment in both Weka and R to check your learning.
 1. Apply association mining with the Apriori algorithm on the following dataset with Weka and R to find

the best rules with threshold value of support of 50% and confidence of 70%,

Transaction database

T1 1,3,4

T2 2,3,5

T3 1,2,3,5

T4 2,5

 Compare your findings with the discussion given in the previous chapter under Section 9.7.2.
 2. Find association rules with the Apriori algorithm for the transaction data base given below for having

support of more than 20% and confidence more than 70%.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

366 Data Mining and Data Warehousing

Transaction database for identification of association rules

TID List of Items

10 I1, I2, I5

20 I2, I4

30 I2, I3

40 I1, I2, I4

50 I1, I3

60 I2, I3

70 I1, I3

80 I1, I2, I3, I5

90 I1, I2, I4

 Compare your findings with the discussion given in the previous chapter under Section 9.7.2.
 3. Find association rules with the Apriori algorithm for the transaction data base given below for support

more than 25% and confidence 70%.

Transaction database for identification of association rules

TID Items

1 Biscuit, Bournvita, Butter, Cornflakes, Tape

2 Bournvita, Bread, Butter, Cornflakes

3 Butter, Coffee, Chocolate, Eggs, Jam

4 Bournvita, Butter, Cornflakes, Bread, Eggs

5 Bournvita, Bread, Coffee, Chocolate, Eggs

6 Jam, Sugar

7 Biscuit, Bournvita, Butter, Cornflakes, Jam

8 Curd, Jam, Sugar

9 Bournvita, Bread, Butter, Coffee, Cornflakes

10 Bournvita, Bread, Coffee, Chocolate, Eggs

11 Bournvita, Butter, Eggs

12 Bournvita, Butter, Cornflakes, Chocolate, Eggs

13 Biscuit, Bournvita, Bread

14 Bread, Butter, Coffee, Chocolate, Eggs

15 Coffee, Cornflakes

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

Implementing Association Mining with Weka and R 367

TID Items

16 Chocolate

17 Chocolate, Curd, Eggs

18 Biscuit, Bournvita, Butter, Cornflakes

19 Bournvita, Bread, Coffee, Chocolate, Eggs

20 Butter, Coffee, Chocolate, Eggs

21 Jam, Sugar, Tape

22 Bournvita, Bread, Butter, Cornflakes

23 Coffee, Chocolate, Eggs, Jam, Juice

24 Juice, Milk, Rice

25 Rice, Soap, Sugar

 Compare your findings with the discussion given in the previous chapter under Section 9.7.2.
 4. Find association rules with FP growth and Apriori algorithm for the transaction data base given below

for support more than 40% and confidence 70%.

 Transaction database for identification of association rules

TID Items

100 A C D

200 B C E

300 A B C E

400 B E

 Compare your findings with the discussion given in the previous chapter under Section 9.11.
 5. Find association rules with FP growth and Apriori algorithm for the transaction data base given below

for support more than 50% and confidence 70%.

 Transaction database for identification of association rules

TID Items

100 1, 2, 3, 4

200 5, 6, 7, 8, 9

300 6, 8, 9, 10

400 2, 3, 9

 Compare your findings with the discussion given in the previous chapter under Section 9.11.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:43:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.011
https://www.cambridge.org/core

Chapter Objectives

 To understand what is meant by web mining and its types

 To understand the working of the HITS algorithm

 To know the brief history of search engines

 To understand a search engine’s architecture and its working

 To understand the PageRank algorithm and its working

 To understand the concepts of precision and recall

11.1 Introduction

Since Berners-Lee (inventor of the World Wide Web) created the first web page in 1991, there has
been an exponential growth in the number of websites worldwide. As of 2018, there were 1.8 billion
websites in the world. This growth has been accompanied with another exponential increase in the
amount of data available and the need to organize this data in order to extract useful information
from it.

Early attempts to organize such data included creation of web directories to group together
similar web pages. The web pages in these directories were often manually reviewed and tagged
based on keywords. As time passed by, search engines became available which employed a variety
of techniques in order to extract the required information from the web pages. These techniques are
called web mining. Formally, web mining is the application of data mining techniques and machine
learning to find useful information from the data present in web pages.

Web mining is divided into three parts, i.e. web content mining, structure mining, and usage
mining as shown in Figure 11.1.

We will discuss each type of web mining in brief.

Web Mining
and Search Engines

11

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.012
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.012
https://www.cambridge.org/core

Web Mining and Search Engines 369

Figure 11.1 Categories of web mining

11.2 Web Content Mining

Web content mining deals with extracting relevant knowledge from the contents of a web page.
During content mining, we totally ignore how other web pages link to a given web page or how
users interact with it. A trivial approach to web content mining is based on location and frequency of
keywords. But this gives rise to two problems: first, the problem of scarcity and second, the problem
of abundance. The problem of scarcity occurs with those queries that either generate a few results or
no results at all. The problem of abundance occurs with the queries that generate too many search
results. The root cause of both the problems is the nature of data present on the web. The data is
usually present in the form of HTML which is semi-structured and useful information is generally
scattered across multiple web pages.

11.2.1 Web document clustering

Web document clustering is an approach to manage large number of documents based on keywords.
The core idea is to form meaningful clusters of the web pages instead of returning a list of web pages
arranged by their rank. Cluster analysis techniques, namely K-mean and agglomerative clustering,
can be used to achieve this goal. The input attribute set for applying clustering techniques is generally
vector of words and their frequency in a given web page. But, such clustering techniques don’t give
adequate results.

Another approach to web document clustering is based on Suffix Tree Clustering.

11.2.2 Suffix Tree Clustering (STC)

STC does clustering based upon phrases rather than frequency of keywords. STC works as follows:
Step 1: Obtain text from the web page. For every sentence in the text, filter out common words

and punctuations. Convert the remaining words into their root form.
Step 2: Make a tree based on the list of words obtained in step 1.
Step 3: Compare trees obtained from various documents. Tree having same root to leaf node

sequence of words are grouped into same cluster.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.012
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.012
https://www.cambridge.org/core

370 Data Mining and Data Warehousing

As shown in the Figure 11.2 below, STC considers the sequence of phrases in the document and
thus tries to cluster the document in a more meaningful manner.

Figure 11.2 Suffix tree clustering example

11.2.3 Resemblance and containment

Further, in order to improve query results, there is a need to remove duplicate web pages or pages
which are almost identical from the search results. The concepts of resemblance and containment
help to accomplish this purpose. Resemblance is the term for how similar two documents are to each
other. It has a value between 0 and 1 (both inclusive). A value of 1 represents the same document. A
value close to 1 represents an almost similar document and a value close to 0 represents a completely
different document. Containment is the term for the existence of one document inside another. It
also has value between 0 and 1 with value of 1 representing that the first document is present inside
the second and value of 0 stating otherwise.

To define resemblance and containment mathematically, the concept of shingles is used. The
document is divided into sets with continuous sequence of words of length L. These sequences are
called shingles. So, for given two documents X and Y, resemblance R(X, Y) and containment C(X,
Y) is defined as:

 R(X, Y) = {S(X) ∩ S(Y)} / {S(X) ∪ S(Y)}
 C(X, Y) = {S(X) ∩ S(Y)} / {S(X)}
Where, S(X) and S(Y) are sets of shingles for document X and Y respectively.
From the formulas one can understand that Resemblance is equal to the total number of shingles

that are common between two documents X and Y, divided by the total number of shingles in both
the documents.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.012
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.012
https://www.cambridge.org/core

Web Mining and Search Engines 371

Containment is equal to the total number of shingles that are common between two documents
X and Y, divided by the total number of shingles in original document X.

There are various ways to find similar web pages. One approach is to use the Linux diff tool
to compare every pair of document. Another approach is based on the concept of fingerprinting.

11.2.4 Fingerprinting

Fingerprinting works by dividing a document into a continuous sequence of words (shingles) of
every possible length. For instance, consider two documents with the respective content given below.

Document 1: I love machine learning.
Document 2: I love artificial intelligence.
For the above two documents, let us consider every sequence for the shingle length two.

Table 11.1 Sequences of length two

Document 1 Document 2

I love
love machine
machine learning

I love
love artificial
artificial intelligence

Using sequences enumerated in Table 11.1, we can clearly see that only 1 out of 3 sequences
match. This is used to find similarity between two documents. Despite being very accurate this
method is seldom used because it is very inefficient for documents with large numbers of words.

11.3 Web Usage Mining

Web usage mining deals with extracting useful information from log data about a user’s interaction
with the web pages. The main aim of web usage mining is to predict user behaviour while interacting
with a web page in order to make the web page more customer centric and for better monetization
or business strategies. For example, if the majority of visitors to a specific web page are coming from
Facebook pages as compared to Twitter, then it would be much more profitable to invest in Facebook
ads rather than investing in Twitter ads. In order to perform web usage mining, information as listed
below in Table 11.2 is usually collected.

The data collected above is analyzed either using association mining or clustering in order to
obtain hidden knowledge. Association mining can be used in discovering affinity between pages
on a website. Log data may be converted into transactions like those used in market basket analysis
with each node visited being treated like an item that is bought, but problems arise since in web
traversing it is not uncommon for a user to return to a node while in market basket there is no
equivalent structure possible.

Such analysis can reveal hidden knowledge. For instance, after analyzing data we may come
to know that whenever a user visits page A then he/she also visits page B with 75% confidence or
more. These types of associations are useful since it may be that pages A and B can be restructured
so that the information that the user is seeking from page B could even be made available on page
A; making the page A more customer centric.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.012
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.012
https://www.cambridge.org/core

372 Data Mining and Data Warehousing

Table 11.2 Important parameters for web usage mining

Important Parameters Description

Number of hits Total number of times a web page has been requested within a specific
time duration

Number of visitors Total number of visitors of the website within a specific time duration

Referer The website from which the user came to the current web page

Landing page The web page which served as entry point for the user

Session duration Time spent by the user on the website

Path analysis Pages that the user visited on the website

Browser type Browser being used by the user

Device type Type of devices being used by the user (desktop/mobile/tablet)

Operating system Operating system being used by the user (Linux/iOS/Windows/Android)

Cookies Cookie is the term for a small amount of data that can be stored within
user’s browser. It is generally used to identify user, save authentication
tokens and so on.

11.4 Web Structure Mining

Web structure mining aims at obtaining information from the hyperlinked structure of the web. The
web structure plays an important role in ranking of web pages and identifying the pages which act
as authority on certain types of information. Apart from discovering authority sites, web structure
is also used to identify hubs, i.e., the websites which link to many authority websites.

In the next section, the HITS algorithm is presented which uses web structure in order to identify
hubs and authorities. Later, the PageRank algorithm will be presented which also uses web structure
in order to rank web pages.

11.4.1 Hyperlink Induced Topic Search (HITS) algorithm

HITS algorithm (also known as hubs and authorities) is an algorithm that analyzes hyperlinked
structure of the web in order to rank web pages. It was developed by Jon Kleinberg in 1999. It was
used when the Internet was still in its nascency and web page directories were used widely.

HITS works on the basis of the concept of hubs and authority. HITS is based on the assumption
that web pages which act as directories are not themselves authority on any information but act
as a hub pointing out various web pages which may be the authority on the required information.

Let’s understand the meaning of these two terms with the help of an example. Figure 11.3 shows
a hyperlinked web structure where H1, H2 and H3 are search directories pages and A, B, C and
D are web pages to which the directory pages have an outgoing hyperlink. Here, pages like H1,
H2 and H3 act as hubs of information. They do not hold any information by themselves but they

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.012
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.012
https://www.cambridge.org/core

Web Mining and Search Engines 373

point out to other pages which according to them have the required information. In order words,
the outgoing hyperlinks from hubs certify that the page they are pointing to have some authority
on the required information. So, a good hub represents a page that points to many other pages, and
a good authority represents a page that is linked by many different hubs. Formally, if the page H1
provides a link to web page A, then H1 confers some authority on page A.

Figure 11.3 Hubs and Authority

Let us consider an example in order to understand the working of the HITS algorithm. The
Figure 11.4 below shows a web page structure where each node represents a web page and arrows
show the hyperlinks between the vertices.

Figure 11.4 Example of a Web Page Structure

Step 1: Present the given web structure as an adjacency matrix in order to perform further
calculations. Let the required adjacency matrix be A as shown in Figure 11.5.

Figure 11.5 Adjacency matrix representing web structure shown in Figure 11.4

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.012
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.012
https://www.cambridge.org/core

374 Data Mining and Data Warehousing

Step 2: Prepare the transpose of matrix A. It is given in Figure 11.6.

Figure 11.6 Transpose Matrix of A

Step 3: Assume initial hub weight vector to be 1 and calculate authority weight vector by multiplying
the transpose of matrix A with the initial hub weight vector as shown in Figure 11.7 below.

Figure 11.7 Obtaining the Authority Weight Matrix

Step 4: Calculate the updated hub weight vector by multiplying the adjacency matrix A with
authority weight matrix obtained in step 3.

Figure 11.8 Updated Hub Weight Vector

As per the calculations done above, the graph shown in Figure 11.4 can be updated with hub
and authority weights and can be represented as shown below in Figure 11.9.

Figure 11.9 Web page structure with Hub and Authority Weights

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.012
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.012
https://www.cambridge.org/core

Web Mining and Search Engines 375

This completes a single iteration of the HITS algorithm. In order to obtain much more accurate
results, steps 3 and 4 can be repeated to obtain updated authority weight vectors and updated hub
vector values.

From the above calculations, we can rank hubs and authorities and display authorities in search
results in order of decreasing authority weight value. For instance, as per Figure 11.9, we can say
that web page N4 has the highest authority for some keyword as it is hyperlinked to most high
ranking hubs.

Over the years the Internet has become increasingly sophisticated and so has the World Wide
Web with it. In the sections that fokkow, we will look at working and architecture of modern search
engines and how they go about ranking search results.

11.5 Introduction to Modern Search Engines

The human urge to seek easy ways to find new information existenced long before the age of the
computers. Libraries maintain catalogues and books come with indexes in order to facilitate easy
searching. Search engines are software that allow us to search information based on some input. The
first search engine was created in the year 1990 by Alan Emtage, a student at McGill University in
Montreal. Its name was Archie. It searches were based on keywords and it showed all the web pages
containing keywords that were given to it as input. It worked exactly like the search feature in any
modern document editor. As years passed, many new search engines such as AltaVista and Lycos
came into existence but no major improvements were made in how information was being searched
and ranked. These historical search engines did something known as directory based search. A web
directory is just a list of websites on similar topics. For instance, all websites related to food will be
in one directory whereas websites dealing with games will be in another directory. So, when a user
would enter a keyword, a list of websites from related directories would be shown.

In 1996 everything changed when two PhD students Larry Page and Sergey Brin from
Stanford University started a research project named ‘BackRub’ based on a web page ranking
algorithm developed by them. Eventually, they changed the name to Google. The name of the
search engine originated from a misspelling of the word ‘googol’ which is the number 1 followed
by 100 zeros. The algorithm used by Google to rank its search results is called PageRank. Fast
forward to present day: modern search engines such as Google or Bing use complex algorithms
based on machine learning in order to deliver the most relevant, and often personalized, content
in response to a search query.

In the year 2000, Robin Li, a software developer, launched another search engine named Baidu
from a hotel room in Beijing (China). It used a RankDex site-scoring algorithm for ranking web
pages. The algorithm was itself developed and patented by Robin Li. The name Baidu means
countless times and has been taken from a classical romantic Chinese poem. By year 2007, Baidu
became the second largest search engine in the world.

In the year 2009, Microsoft, not wanting to be left behind in the race, launched Bing. Bing
became the third largest search engine in just two years because of Microsoft’s huge share of the
personal computer’s operating system market, with Bing as default search engine on all Microsoft’s
products.

Figure 11.10 below shows top search engines according to the market size they serve.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.012
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.012
https://www.cambridge.org/core

376 Data Mining and Data Warehousing

Figure 11.10 Search engines market share

In this chapter, we will examine how a modern search engine works. We will discuss the workings
of the PageRank algorithm in detail and understand the concepts of precision and recall that are
often used to evaluate the quality of search results.

11.6 Working of a Search Engine

Figure 11.11 below shows architecture of a modern search engine. Generally every search engine
consists of the following modules: a web crawler, an indexer and a query processor. In this section,
we will examine the working of each module in detail.

Figure 11.11 Architecture of a search engine

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.012
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.012
https://www.cambridge.org/core

Web Mining and Search Engines 377

11.6.1 Web crawler

A web crawler is a simple piece of software whose responsibility is to visit every web page available
on the World Wide Web (WWW) and fetch data from those web pages. The data fetched is stored
to be processed later to create an index. Whenever you search anything on Google, you can click
the arrow besides the link in the search result pages to see the data that Google has stored for the
particular web page. A crawler is sometimes also called a spider, robot or a bot.

As there are billions of web pages online, a crawler generally runs parallel on a computer cluster.
If a website does not want a search engine to crawl through its data or any particular web page
then they can setup rules regarding it in the robots.txt file in the root directory of the web server.
Developing a scalable crawler is a complex job as a crawler has to consider many variables such as
how often a web page is updated. A simple web crawler follows the following algorithm.

Algorithm 11.1 General web crawling

1. Initialize list L1 of web pages to visit
2. Initialize empty list L2 to store web pages which have already been visited
3. For every web page P in L1
 a. If link is not in L2
 i. Visit P
 ii. Save data fetched from P
 iii. Extract all the links present in P and add them to L1
 iv. Add P to L2
4. Exit

In order for the above algorithm to work we have to provide an initial list of web pages. These

initial web pages are generally known as seed pages. From the above algorithm it is clear that a
crawler follows a graph traversal algorithm. This pattern is obvious because the World Wide Web
itself is a graph of interconnected documents. It should also be noted that per the above algorithm,
if a webpage is not hyperlinked to any other web page then a crawler will never be able to reach
it. Thus, search engines depend on hyperlinks or manual submission of links in order to find new
web pages. The hyperlinks from other web pages to a given web page are known as backlinks. In
Section 11.7, we will see that these backlinks play an important role in the PageRank algorithm
which is used to rank web pages in search results.

11.6.2 Indexer

The responsibility of an indexer is to identify the keywords of a web page and index the web pages
with their respective keywords. Keywords are the words which give us an idea about the content of
a web page. Generally keywords are extracted from the web page title, meta tags or from heading
tags present in the HTML of the web page.

Traditionally, an indexer works as follows. First, a list of words from the page title, heading
tags and the meta tags is extracted. Next common words such as the, it, and, that and suchlike are
removed from this list and stemming is conducted on the remaining words. Stemming converts a
word into its root form. For instance, words such as computers, computing and computation are all

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.012
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.012
https://www.cambridge.org/core

378 Data Mining and Data Warehousing

converted into the word computer after stemming. These root words are used as keywords. Now-
a-days, advanced techniques of natural language processing are used in order to understand the
content and the context of a web page and the keywords are generated based upon this analysis.

After generating these keywords an index is created which is queried when a user performs a
search. For instance let us consider the index shown in Table 11.3. The first column shows the
keywords and second column contains web page IDs related to the corresponding keywords.

Table 11.3 Index showing keywords and related web pages

Keywords Web Page IDs

Program 1, 5, 10

Data Structure 9, 8, 6, 4

Algorithm 5, 8, 2, 3

Suppose for instance, when a user queries Algorithms then the query is first filtered to remove
any common words. Next, the remaining words are converted into their root form. In our case,
this would result in word Algorithm which will be queried and the web pages 5, 8, 2, and 3 will be
shown in the search results. In next section, we will discuss the exact working of a query processor.

11.6.3 Query processor

The query processor is the most important module in a search engine. Traditionally query processors
used to return web pages based on the matching keywords found in the index as explained in the
last section.

Nowadays, query processors have become very sophisticated and often provide personalized search
results based on user’s profile. Where, user’s profile is set of variables that describe a user such as
the user’s current location, gender, age, type of device (mobile or desktop). User profiles can help in
providing much relevant search results. For instance, if a user in city Delhi will query for hospitals,
then hospitals that are in the neighborhood of the user will form the search result. It would be
illogical to show hospitals in some other city to the user currently present in Delhi. User profiles
can be used in many more sophisticated ways. For instance, if a child searches for movies online
then his or her search results should contain the list of movies appropriate for his or her age group.

A query processor works in multiple stages. When a user enters a query it is first passed to a
checking module in order to correct any mistakes. This behaviour can be noticed if you misspell a
word while performing a query on any modern search engine such as Google or Bing. Once the query
is checked, it is categorized based on its type. For instance, a user might be searching for a specific
product or service or the user maybe searching for an important news event. This categorization
allows a search engine to provide far more relevant results to the user. Based on user profiles and the
categorization a strategy is selected in order to query from the index. After the web pages have been
retrieved from the index they are arranged in order of their relevance decided by using algorithms
such as PageRank.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.012
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.012
https://www.cambridge.org/core

Web Mining and Search Engines 379

11.7 PageRank Algorithm

After enrolling in PhD program in computer science at Stanford University, Larry Page was in
search of a dissertation theme and considered exploring the mathematical properties of the World
Wide Web (WWW). His supervisor, Terry Winograd, encouraged him to pursue the idea. Larry
Page was inspired by the fact that the number of citations of a research paper was proof of how good
the paper actually was. So, he focused on the problem of finding out which web pages were linked
to a given web page, considering the number and nature of such backlinks as valuable information
for that web page just like paper citations. Sergey Brin, a fellow Stanford PhD student, soon joined
Page’s research project. Together, the pair authored a research paper titled ‘The Anatomy of a Large-
Scale Hypertextual Web Search Engine,’ which became one of the most downloaded scientific
documents in the history of the Internet at the time. Page and Brin developed the PageRank
algorithm as part of their research. This algorithm formed the base for the Google search engine.
The PageRank algorithm works on the basis of backlinks. It can be understood well by considering
the social behaviour of human beings. For instance, if person A is very important, then many people
will know him. This notion of knowing someone is similar to a web page linking to some other web
page (a backlink). If a web page A is very important then many other web pages will link back to it.
This is accompanied by the fact that if very important web pages link back to a certain page then
that web page itself must be very important. Just like if many famous people know about a certain
person then that person itself must be very important or famous.

Let us look into the mathematics of the PageRank algorithm. The PageRank algorithm uses
probability theory at its core. The probability of a user clicking on a link may be estimated based
on the number of links present in that web page. The more links a web page has the less chance
that a user will click on a particular link. In other words, the probability of a user clicking any
link is inversely proportional to the number of links on a web page. This means that if a user is on
webpage A which has two links, with the first leading to web page B and the second leading to web
page C, then there is 50% chance of user visiting web page B from web page A. This 50% chance
is multiplied by a damping factor in order to accommodate for circumstances such as user leaving
the web page A or jumping to another tab in the browser.

Let us call this probability AC that is the probability of visiting the web page C from web page A.
So, if three other web pages P, Q and R link-back to web page C and PC, QC, and RC are probabilities
of visiting web page C from respective web pages then total probability of visiting web page C can
be defined as sum total of all these probabilities. This allows us to calculate how likely a user is to
visit a certain web page. This idea is the very core of the PageRank algorithm. Mathematically, the
PageRank of any webpage A is as follows:

PR A d d
PR T
L T

PR T
L T

PR T
L T

() = −() +
()

() +
()

() +
()

() + …

1 1

1

2

2

3

3

Here, PR(A) represents PageRank of web page A, L(T) represents number of outgoing links
from web page T and d is the damping factor. Here, the term (1 - d) represents the scenario when
the user leaves the web page A. In simple words, PageRank of a web page is the probability of a
user staying on that web page combined with probabilities of reaching that particular web page by
following any backlink.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.012
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.012
https://www.cambridge.org/core

380 Data Mining and Data Warehousing

Let us consider an example in order to understand the concept of the PageRank algorithm more
thoroughly.

Figure 11.12 Four web pages with hyperlinks

Figure 11.12 shows a collection of four web pages where the arrow indicates the hyperlinks. For
instance, an arrow goes from page B to page C indicates that page B has a link that will take the
user to page C.

We know,
L(A) = 1 because web page A links to only one page, i.e., web page B,
L(B) = 2 because web page B links to two web pages A and C,
L(C) = 1 because web page C links to only one page, i.e., web page D and
L(D) = 1 because web page D links to only one page, i.e., web page A.
Let us assume that initial damping factor (d) is 0.7 then by applying the PageRank formula given

above, we get following four linear equations:

PR A d d
PR T
L T

PR T
L T

PR T
L T

() = −() +
()

() +
()

() +
()

() + …

1 1

1

2

2

3

3

PR(A) = (1 - 0.7) + 0.7 (PR(B) / 2 + PR(D) / 1) = 0.3 + (0.7 / 2) (PR(B) + 2 PR(D)) …1
As webpage A can be reached from webpage B and D only.
PR(B) = (1 - 0.7) + 0.7 (PR(A) / 1) = 0.3 + 0.7 (PR(A)) …2
As webpage B can be reached from webpage A only.
PR(C) = (1 - 0.7) + 0.7 (PR(B) / 2) = 0.3 + (0.7 / 2) (PR(B)) …3
As webpage C can be reached from webpage B only.
PR(D) = (1 - 0.7) + 0.7 (PR(C) / 1) = 0.3 + 0.7 (PR(C)) …4
As webpage D can be reached from webpage C only.
Let’s solve these Linear Equations:
Let’s simplify the equations first, and for simplicity, let us assume
PR(A) = A , PR(B) = B, PR(C) = C and PR(D) = D.
From (…1): A = 0.3 + (0.7/2)(B + 2D)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.012
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.012
https://www.cambridge.org/core

Web Mining and Search Engines 381

Thus, 2A = 0.6 + 0.7(B + 2D) …5
From (…2): B = 0.3 + 0.7A
From (…3): 2C = 0.6 + 0.7B
From (…4): D = 0.3 + 0.7C
Let us eliminate B from equation 1, 3 and 4.
From (…2) we have B = 0.3 + 0.7A, multiply the equation by 0.7
We get 0.7 B = 0.21 + 0.49A …6
Now substitute value of 0.7B in equation 5 as shown below.
2A = 0.6 + 0.7(B + 2D)
2A = 0.6 + (0.21 + 0.49A) + 1.4D
1.51A = 0.81 + 1.4D …7
Similarly substitute value of 0.7B (given in equation 6) to equation 3 as shown below.
C = 0.3 + (0.7 / 2) B
2C = 0.6 + 0.7B
2C = 0.6 + 0.21 + 0.49A
C = (0.81 + 0.49A) / 2 …8
Now, let us eliminate C from equation 4 by substituting the value of C obtained in equation 8

as shown below.
D = 0.3 + 0.7 C
D = 0.3 + 0.7 ((0.81 + 0.49A) / 2)
D = 0.5835 + 0.1715A …9
Let us substitute the value of D given in equation 9 in equation 7.
1.51A = 0.81 + 1.4D
1.51A = 0.81 + 1.4 (0.5835 + 0.1715A)
1.2699A = 1.6269
A = 1.281 …10
Now substitute the value of A in equation 9 as shown below.
D = 0.5835 + 0.1715 (1.281)
D = 0.803 …11
Now, substitute the value of A in equation 8 as shown below.
C = (0.81 + 0.49A) / 2
C = (0.81 + 0.49 *1.281) / 2
C = 0.719 …12
Finally, substitute the value of C in equation 6.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.012
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.012
https://www.cambridge.org/core

382 Data Mining and Data Warehousing

0.7 B = 0.21 + 0.49A
B = 0.3 + 0.7A
B = 0.3 + 0.7(1.281)
B = 1.197 …13
Therefore, the respective PageRanks are as follows:
PR(A) = 1.281 PR(B) = 1.197 PR(C) = 0.719 PR(D) = 0.803
We can conclude that web page A has the highest PageRank followed by web pages B, D and

C. It should be noted that the damping factor is itself a probability of the user leaving a web page,
hence the value of d itself will always lie between 0 and 1.

Let us consider another example, this time with five web pages. Figure 11.13 shows a collection
of five web pages where the arrow indicates the hyperlinks.

Figure 11.13 Five web pages with hyperlinks

We know,
L(A) = 1 because web page A links to only one page, i.e., web page B,
L(B) = 2 because web page B links to two web pages A and C,
L(C) = 2 because web page C links to two web pages D and E,
L(D) = 2 because web page D links to two web pages A and E and
L(E) = 1 because web page E links to only one page, i.e., web page B.
Let us assume that initial damping factor (d) is 0.6; then, by applying the PageRank formula,

we get following five linear equations:

PR(A) = (1 - 0.6) + 0.6 (PR(B) / 2 + PR(D) / 2) = 0.4 + (0.6 / 2) (PR(B) + PR(D)) …14
PR(B) = (1 - 0.6) + 0.6 (PR(A) / 1 + PR(E) / 1) = 0.4 + 0.6 (PR(A) + PR(E)) …15
PR(C) = (1 - 0.6) + 0.6 (PR(B) / 2) = 0.4 + (0.6 / 2) (PR(B)) …16
PR(D) = (1 - 0.6) + 0.6 (PR(C) / 1) = 0.4 + 0.6 (PR(C)) …17
PR(E) = (1 - 0.6) + 0.6 (PR(C) / 2 + PR(D) / 2) = 0.4 + (0.6 / 2) (PR(C) + PR(D)) …18

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.012
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.012
https://www.cambridge.org/core

Web Mining and Search Engines 383

Let’s solve these linear equations.
Let’s simplify the equations first, and for simplicity, let us assume
PR(A) = A , PR(B) = B, PR(C) = C, PR(D) = D and PR(E) = E
From (…14): A = 0.4 + 0.3B + 0.3D …19
From (…15): B = 0.4 + 0.6A + 0.6E …20
From (…16): C = 0.4 + 0.3B …21
From (…17): D = 0.4 + 0.6C …22
From (...18): E = 0.4 + 0.3C + 0.3D …23
Let us eliminate C from equation 22 by substituting the value of C from equation 21.
C = 0.4 + 0.3 B
D = 0.4 + 0.6 C
D = 0.4 + 0.6(0.4 + 0.3B)
D = 0.64 + 0.18B …24
Let us eliminate C from equation 23 by substituting the value of C from equation 21.
C = 0.4 + 0.3 B
E = 0.4 + 0.3C + 0.3D
E = 0.4 + 0.3 (0.4 + 0.3B) + 0.3D
E = 0.52 +0.09B + 0.3D …25
Let us eliminate D from equation 23 by substituting the value of D from equation 24.
D = 0.64 + 0.18B
E = 0.52 +0.09B + 0.3D
E = 0.52 +0.09B + 0.3(0.64 + 0.18B)
E = 0.144B + 0.712 …26
Substitute the value of B from equation 20 in equation 26 as shown below.
B = 0.4 + 0.6A + 0.6E
E = 0.144B + 0.712
E = 0.144(0.4 + 0.6A + 0.6E) + 0.712
0.9136E = 0.7696 + 0.0864A …27
Let us eliminate D from equation 19 by substituting the value of D from equation 24.
D = 0.64 + 0.18B
A = 0.4 + 0.3B + 0.3D
A = 0.4 + 0.3B + 0.3(0.64 + 0.18B)
A = 0.592 + 0.354B …28
Substitute the value of B from equation 20 in equation 28 as shown below.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.012
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.012
https://www.cambridge.org/core

384 Data Mining and Data Warehousing

B = 0.4 + 0.6A + 0.6E
A = 0.592 + 0.354(0.4 + 0.6A + 0.6E)
0.0864A = 0.9136E - 0.7696
A = (0.9136E - 0.7696) / 0.0864 …29
Substitute the value of A from equation 29 in equation 27 as shown below.
0.9136E = 0.7696 + 0.0864A
0.9136E = 0.7696 + 0.0864((0.9136E - 0.7696) / 0.0864)
E = 0.95
Put the value of E in equation 29, we get A = 1.19 as shown below.
A = (0.9136E - 0.7696) / 0.0864
A = 1.19
Put the value of E and A in equation 20,
B = 0.4 + 0.6A + 0.6E
B = 0.4 + 0.6*1.19 + 0.6*0.95
B = 1.69
Put the value of B in equation 21,
C = 0.4 + 0.3 B
C = 0.4 + 0.3 * 1.69
C= 0.91
Put the value of Bin equation 24,
D = 0.64 + 0.18B
D = 0.64 + 0.18*1.69
D = 0.94
Therefore the respective Page Ranks are as followed:
PR(A) = 1.19, PR(B) = 1.69, PR(C) = 0.91, PR(D) = 0.94 and PR(E) = 0.95.
We can conclude that web page B has the highest PageRank followed by web pages A, E, D

and C; in that order.
The PageRank algorithm has certain drawbacks. From Figure 11.12, we can see that a backlink

from web page B can be seen as a kind of vote that web page A receives from web page B and this
vote enhances the PageRank of web page A.

The PageRank algorithm totally ignores the content of the webpage and considers backlink as the
sole attribute for deciding a web page’s rank. This has given rise to many problems namely - ‘Google
bomb’ which is the practice of causing a website to rank highly in search engine results for irrelevant,
unrelated or off-topic search terms by linking it heavily from other web pages. To overcome this
drawback, Google has improved the PageRank algorithm by introducing many updates namely -
Panda, Penguin and HummingBird.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.012
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.012
https://www.cambridge.org/core

Web Mining and Search Engines 385

11.8 Precision and Recall

Till now we have seen how a search engine works to generate a search engine result page (SERP) in
response to a user query. We have also seen the PageRank algorithm which makes sure that good
web pages must be ranked higher in the search results. Apart from being able to rank most relevant
information much higher, there are two other parameters which are used to evaluate the quality of
the search results of a search engine. These parameters are Precision and Recall. Let us understand
these two concepts with the help of a Venn diagram.

Figure 11.14 Venn diagram showing relevant and retrieved results

In the above Venn diagram, set A represents the results that were returned to a user in response
to a query. Set B represents the results that are relevant to the query that the user performed. So,
(A ∩ B) represents the results that are both relevant and are shown to the user. Precision is defined as

 Precision = Number of relevant items retrieved / Total retrieved items
 = (Total retrieved ∩ Total relevant) / Total retrieved items
And Recall is defined as
 Recall = Number of relevant retrieved / Total relevant items
 = (Total retrieved ∩ Total relevant) / Total relevant items
We can clearly see that precision is defined as the proportion of search results that are relevant

to the user’s query whereas recall is the proportion of the relevant search results that are retrieved.
Although these two parameters are quite useful to evaluate the quality of search results but there

is a major drawback. Set B shown in the above Venn diagram is impossible to measure. There is no
way to formally define what is relevant to a user’s query and what is not.

Example: Let us suppose that there are 200 pages available on Internet for machine learning.
The search on this term returns total 210 pages, out of which 190 belongs to machine learning,
calculate precision and recall for our algorithm.

Solution: Precision = Number of relevant items retrieved / Total retrieved items
 = (Total retrieved ∩ Total relevant) / Total retrieved items
 Precision = 190 / 210
Because, the Number of relevant items retrieved is 190 (belongs to machine learning) and the

Total Number of retrieved items is 210 (these many pages were returned to user on his query).
 Recall = Number of relevant retrieved / Total relevant items
 = (Total retrieved ∩ Total relevant) / Total relevant items
 Recall = 190 / 200

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.012
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.012
https://www.cambridge.org/core

386 Data Mining and Data Warehousing

Because, the Number of relevant items retrieved (which are both relevant and retrieved) is 190
and the Total Number of relevant items is 200 (as only 200 pages of machine learning were there).

Nowadays modern search engines track users and collect vast amount of data such as what links
did the user click, how much time was spent on which web page, how the user modified the query
to improve his or her search results, and so on. This data is later analysed by machine learning
algorithms in order to guess which web pages might have been relevant to the query made by the user.

 Remind Me
 Web mining is the application of data mining techniques and machine learning to find useful information

from data present in web pages.
 Web mining is divided into three parts, i.e, web content mining, structure mining and usage mining.
 Web content mining deals with extracting knowledge from the content of a web page.
 Web document clustering is an approach to manage the large number of documents based on keywords.
 Web document clustering is based on Suffix Tree Clustering.
 Resemblance indicates how similar two documents are to each other.
 It has a value between 0 and 1 (both inclusive). A value of 1 represents same document. Containment

defines the existence of one document inside another. It also has value between 0 and 1 with value of
1 representing that first document is present inside the second and value of 0 stating otherwise.

 Web usage mining deals with extracting useful information from the log data about a user’s interaction
with the web pages.

 The web structure mining aims at obtaining information from the hyperlinked structure of the web.
 HITS algorithm (also known as hubs and authorities) is an algorithm that analyzes hyperlinked structure

of the web in order to rank web pages. HITS works on the basis of the concept of hubs and authority.
 Generally every search engine consists of modules like a web crawler, an indexer and a query processor.
 The PageRank algorithm uses probability theory, at its core. The probability of a user clicking on a link

may be estimated based on the number of links present in that web page. The more links a web page
has the less chance that a user will click on a particular link.

 Precision is defined as Number of relevant items retrieved / Total retrieved items
 Recall is defined as Number of relevant retrieved / Total relevant items. Schema is logical description

of database.

 Point Me (Books)
 Conolly, Thomas, and Carolyn Begg. 2015. Database Systems: A Practical Approach to Design,

Implementation, and Management, 6th ed. New York: Pearson Education.
 Thareja, Reema. 2009. Data Warehousing. Delhi: Oxford University Press.

 Point Me (Video)
 Understanding Schemas in Datawarehousing | Edureka, https://www.youtube.com/watch?v=uigKK02XGxE

 Connect Me (Internet Resources)
 https://searchengineland.com/new-google-ranking-study-shows-links-incredibly-important-ranking-

algorithm-254188
 https://neilpatel.com/what-is-seo/
 http://www.cs.princeton.edu/~chazelle/courses/BIB/pagerank.htm

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.012
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.012
https://www.cambridge.org/core

Web Mining and Search Engines 387

 Test Me
 Answer these questions based on your learning in this chapter.
 1. What will be the page rank for each page in the following scenario? Here each page is not connected

with any other page.

A B

C

 2. Write the formula to calculate page rank of page. Explain the meaning of each term used in this
formula.

 3. What is precision and recall? Why it is difficult to achieve precision and recall at the same time?
 4. What is web mining? What are different categories of web content mining?
 5. What is difference between resemblance and containment? Explain with examples.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.012
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.012
https://www.cambridge.org/core

Chapter Objectives

 To understand the need of an operational data store in OLTP and OLAP systems

 To understand data warehousing, its benefits and architecture

 To do a comparative study on OLAP, OLTP and ODS.

 To comprehend the concept of data mart.

In order to understand what an Operational Data Store is, it is very important to know what
led to such Operational Data Stores and what the limitations were of OLTP systems to answer
management queries.

12.1 The Need for an Operational Data Store (ODS)

Online Transaction Processing (OLTP) systems have become popular due to their versatility. Right
from financial transactions to daily log operations, these are being used by myriad multinational
companies and world level organizations to record transaction details.

In the present scenario, organizations and their branches operate in many locations across the
world. Each, such, branch generates massive amounts of data. The management of a large retail
chain operating from multiple locations, for example, will at the end of day, want to know about
transactions done that day. One could take the case of a Dominos Pizza store, where the management
needs to know the total sales for that day or other details such as the number and types of pizzas
sold. Such companies rely on OLTP systems to get data from multiple stores spanning the world. On
these OLTP systems, queries usually run on an indexed database, as this makes the searching fast
and efficient. But unfortunately, data spread over multiple systems leads to a plethora of technical
errors when carrying out the simple task of running queries on data stored on OLTP systems.

Data Warehouse

12

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.013
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.013
https://www.cambridge.org/core

Data Warehouse 389

When dealing with corporate data it is also necessary to maintain correct and accurate information,
in order to provide swift customer support services. This is possible if the data is acquired from all
information sources.

It is very important for any organization’s management to know the real state of affairs of their
organization. However, OLTP systems fail badly, as they were not designed to support management
queries. Management queries are very complex and require multiple joins and aggregations while
being written. To overcome this limitation of OLTP systems some solutions were proposed, which
are as follows.

I. On demand query

The On Demand query approach is also known as the lazy approach where management queries
are run on OLTP systems in real-time. This means that as soon as data is received, the queries are
run giving the management the advantage of up to date information. But due to the complex nature
of queries, on demand query approach loads OLTP systems heavily and hence, is unacceptable in
real life scenarios.

II. Eager approach

Another way to deal with OLTP systems is the Eager approach in which, all management queries
are collected on a regular basis, and during non peak hours these queries are run on the OLTP
systems. The results of these queries are stored separately, and whenever a request from management
is found, the saved query results are provided.

The Eager approach is quite quick, giving it an advantage over the On Demand query
approach. The limitation with the Eager approach is its inability to deliver up to date information.
As queries are not run on real time data it carries data of some previous state.

III. Operational Data Store

Because both of these systems discussed above suffered from limitations, it led to the development
of the Operational Data Store (ODS). This Operation Data Store is a special unified (separate)
database that has been developed specifically to handle management queries. It is just like a short
term (volatile) enterprise memory which contains recently stored organizational information. In the
next few pages, we will discuss Operational Data Source in more detail.

12.2 Operational Data Store

Inmon and Imhoff (1996) defined ODS or Operational Data Store as ‘A subject-oriented, integrated,
volatile, current valued data store, containing only corporate detailed data.’

In order to understand ODS one needs to have a clear view of technical terms which Inmon and
Imhoff used while defining an ODS. And so, we examine the ODS definition in detail.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.013
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.013
https://www.cambridge.org/core

390 Data Mining and Data Warehousing

Subject-Oriented

ODS is subject oriented, as it is built around the major data entity or subjects of an organization.
For example, in a University, the data subject (entities under study) could be students, teachers, and
various courses, whereas in a company the subjects might be workers, interns, services and items.

Integrated

ODS integrates (combines) data from multiple systems to provide a wide view of any enterprise’s
data, hence they are said to be ‘integrated’.

Current valued

An ODS is always up to date as it doesn’t contain obsolete data. Therefore, an ODS is always current
valued due to its information nature (information is always up to date and shows the current state).

Volatile

ODS is described as a short term enterprise memory due to its volatile nature. ODS always updates
its information, hence its data is volatile in nature (the older information is always replaced by the
updated information).

Detailed

ODS is always detailed enough to cater to the needs of the operational management staff in an
enterprise. Although it not as descriptive as its source OLTP is, it is still capable enough to highlight
important organizational information.

ODS, may also be used as an interim database which could be used to build a data warehouse.
Hence, ODS may also be considered as another type of data warehouse.

12.2.1 Types of ODS

An ODS could be classified into different types depending upon the needs of an organization as
discussed below.

Type I: ODS as a reporting tool

This type of ODS is always up to date and is updated on a daily basis, making it the best tool for
reporting any administrative process. For example, it could be used for providing total sales made
per day, number of transactions done in a day and other logs.

Type II: ODS as a complex information tracker

Complex information such as locations, products, production duration can be easily derived using
ODS. This kind of database is updated more frequently (perhaps hourly) to ref lect changes.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.013
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.013
https://www.cambridge.org/core

Data Warehouse 391

Type III: ODS as customer relation management supporter

In order to support customer relationships, organizations use ODS as a tool for Customer Relationship
Management. Such types of ODS are fed with synchronous or near-synchronous updates so as to
provide customers with the most accurate and up to date information.

12.2.2 Architecture of ODS

A typical ODS architecture is illustrated in Figure 12.1. The very first step in loading ODS with
information is the extraction of information from source databases, which needs to be done in an
efficient way to ensure required quality of data. In the original source itself, the data is refreshed
regularly and frequently and suitable checks are required to ensure the quality of data after each update.

Further, every ODS is required to satisfy normal integrity constraints such as existential integrity,
referential integrity and appropriate ways to deal with null values. Preferably, the ODS should be
a read-only database; a user must not be able to alter any ODS values.

Figure 12.1 Architecture of an Operation Data Store

In order to build an ODS, the followings steps need to be performed.
Step 1 - The very first step is to populate ODS with apt information from some source OLTP.

This step involves acquisition; the processes of extracting, transforming and loading (ETL) data
from OLTP source systems.

Extraction, Transformation and Loading

The data in a ODS is typically loaded through an extraction, transformation, and loading
(ETL) process from multiple data sources.

Consider a case of collecting information of Customers to prepare an ODS. Now, it
is very important to always have up to date and accurate information of the customers,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.013
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.013
https://www.cambridge.org/core

392 Data Mining and Data Warehousing

with whom the organization wants correspond. So, organizations are very careful about
maintaining the correct data of their customer. But capturing correct details of millions of
customers or suppliers is a very challenging task for any organization, as this data is entered
by data entry operators, who usually make lots of mistakes while entering this data due to
many factors. Hence, an ETL process involves identifying and correcting these hours of
data entry in the best possible way. The different phases of an ETL process are as follows.

Extracting

The very first step is extraction of data, in which the source system’s data is accessed first
and is prepared further for processing and extracting required values. The whole process
should be done with minimal resources. Apart from this, the best extraction strategy is one
in which the source system’s performance and response time remains un-altered.

There are multiple ways to perform extraction. One approach is Update Notification. In
this approach, whenever the data is changed or altered in the source system it will notify
users about the change. This is the easiest way to extract data.

The other approach is Incremental Extract. In this approach, many systems are incapable
of providing notifications but are efficient enough to track down the changes that have
been made to the source data.

The third approach is Full Extract. It is used when the systems discussed above fail.
When the system is neither able to notify nor able to track down the changes, the whole data
is extracted and an old copy of data is maintained so as to identify what has been changed.

After extracting the data it is cleaned, to ensure its quality. Cleaning performed by
following the rules of data unification, such as placing unique identifiers, e.g. phone
numbers, Email conversion to standard form and validation of address fields.

Transforming

In the transform step, a set of rules are applied over the data, in order to transform it from
source format to target format. These sometimes include dimension conversion as well.
Aggregation, joining, derivation and calculation of new values are likely to happen in the
Transform step.

Loading

The final step is loading in which it is ensured that processed data is loaded correctly into
another database. All the indexes and constraints previously applied to the data needs to
be disabled before the loading commences, and after successful loading one should ensure
that these are put back in place.

This completes the first step in the process of constructing an ODS.
Step 2: After the database gets populated, next step is to build the ODS and check for anomalies.

This also involves testing the ODS for performance before it can go online.
Step 3: To support end users requirements different web applications are developed on ODS.

Sometimes reporting tools are also used to support management queries. The ODS can also be
used to support other applications of the organization. Finally, the ODS can further be extended
with ETL to build a larger data warehouse and data marts.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.013
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.013
https://www.cambridge.org/core

Data Warehouse 393

12.2.3 Advantages of the ODS

The advantages of building the ODS are:
	 •	 The	ODS	 can	 be	 extended	 further	 to	 built	 a	 data	warehouse	which	 can	 store	 historical	

information as well (as shown in Figure 12.2). The data warehouse is considered as the long
term memory of the organization as it stores the historical information of the organization.

Figure 12.2 Relationship between OLTP, ODS and data warehouse systems

	 •	 Implementation	of	data	warehouses	by	extending	ODS	consumes	less	time.
	 •	 ODS	systems	are	more	effective	because	they	provide	a	holistic	view	of	the	enterprise’s	data.

12.3 Data Warehouse

A data warehouse is a historical database and should be considered as the long term memory of an
organization. To understand this term better, let us consider the database of a University Management
System. For the duration of study by a student at the university, his or her data will be retained in
the main data store and all database operations such as insert, update, delete and retrieve will be
performed on it. This database is usually called OLTP. But once a student has left, then his or her
database is usually removed from OLTP because OLTP is meant to perform day-to-day operations.
However, the management may be interested in retaining the data of old students. It can be used for
later queries as well as for analysis purposes. Thus, all historical data can be vital for an organization
for subsequent data analysis. All such historical records can be moved to a separate data store known
as the data warehouse and may be called upon when required in the future.

Historical data is not to be tampered with; no insertion, up-dation and deletion are to be made.
Usually, it is used only for retrieval such as verification and data analysis. Thus, when data is shifted
from OLTP to the data warehouse it is de-normalized, because normalization was earlier conducted
to remove insert, update and delete anomalies but now only retrieval is important. So, to improve
the performance of retrieval, smaller tables are combined together to form larger tables under the
de-normalization process to make retrieval or data analysis more efficient.

Data warehouses are typically used for Online Analytical Processing (OLAP) to support
management queries.

They provide answers to common management queries like Who are our lowest/highest margin
customers; What is the most effective distribution channel and a host of other questions. On a lighter
note, without the support of data warehouse, the management has to rely on some sort of magician
or astrologer to get answers to questions of the sort that have been illustrated in Figure 12.3.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.013
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.013
https://www.cambridge.org/core

394 Data Mining and Data Warehousing

Figure 12.3 Answering management queries

Tech giant IBM, devised the concept of the data warehouse. They called them ‘information
warehouses’. Since then, Data warehousing systems have evolved as one of the principle technologies
employed by modern enterprises for better profitability.

12.3.1 Historical developments in data warehousing

Figure 12.4 highlights the historical developments of data warehouse.

Figure 12.4 Historical developments of data warehouse

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.013
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.013
https://www.cambridge.org/core

Data Warehouse 395

12.3.2 Defining data warehousing

The present concept of data warehousing owes much to American computer scientist, Bill Inmon,
known as the ‘father of data warehousing’.

According to Bill Inmon, a data warehouse could be def ined as, ‘A subject-oriented,
integrated, time-variant, and non-volatile collection of data in support of management’s
decision-making process.’

Some terms used here are the same as those that appeared in the definition of
ODS. Still, on examination: Subject-Oriented:

Data warehouses are subject oriented - they are built around the major data entity or subjects of an
organization. For example, in a University, the data subject (entities under study) could be students,
teachers, and various courses, whereas in a company the subjects might be workers, interns, services
and items.

Integrated

A data warehouse integrates (combines) data from multiple systems to provide a wide view of any
enterprise’s data, hence they are said to be ‘integrated’.

Time variant

Unlike ODS, in data warehouses data is not always up to date as it contains historical data which
is valid or accurate till some point of time (or time interval).

Non-volatile

Data warehouse is described as a long term enterprise memory due to its non-volatile nature
because the data is not updated in real time but is rather refreshed on a regular basis. Hence, the
new data which is added goes in like a supplement to the database, rather than a replacement.
The database continually absorbs this new data, incrementally integrating it with the previous
data.

12.3.3 Data warehouse architecture

Every data warehouse has three fundamental components as shown in Figure 12.5. These are as
follows.
	 •	 Load	Manager
	 •	 Warehouse	Manager
	 •	 Data	Access	Manager

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.013
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.013
https://www.cambridge.org/core

396 Data Mining and Data Warehousing

Figure 12.5 Architecture of a data warehouse

Load manager

The Load manager is responsible for Data collection from operational systems. It also performs
data conversion into some usable form to be further utilized by the user. It includes all the programs
and application interfaces which are required for extracting data from the operational systems, it’s
preparation and finally loading of data into the data warehouse itself.

It should perform the following tasks:
	 •	 Data	Identification
	 •	 Data	Validation	for	its	accuracy
	 •	 Data	Extraction	from	the	original	source
	 •	 Data	Cleansing
	 •	 Data	formatting
	 •	 Data	standardization	(i.e.	bringing	data	into	conformity	with	some	standard	format)
	 •	 Consolidates	data	from	multiple	sources	to	one	place
	 •	 Establishment	of	Data	Integrity	using	Integrity	Constraints

Warehouse manager

The Warehouse manager is the main part of Data Warehousing system as it holds the massive
amount of information from myriad sources. It organizes data in a way so it becomes easy for
anyone to analyze or find the required information. It is the core of the data warehouse itself. It
maintains three levels of information, i.e, detailed, lightly summarized and highly summarized. It
also maintains mete data, i.e., data about data.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.013
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.013
https://www.cambridge.org/core

Data Warehouse 397

Query manager

Finally the Query manager is that interface which connects the end users with the information
stored in data warehouse through the usage of specialized end-user tools. These tools are known
as Data mining access tools. The market today is f looded with such tools which have common
functionalities and a provision for customizing more features specific to an enterprise. These have
various categories such as query and reporting, statistics, data discovery, etc.

12.3.4 Benefits of data warehousing

A data warehouse can do wonders if implemented successfully; some of its advantages and benefits
are given below.
	 •	 Potential high ROI (Return on Investment)
 Investing in Data Warehousing is itself a very big investment, but past reports suggest ROI

growth up to 400% with Data Warehousing, making it valuable for business.
	 •	 Unbeatable competitive advantage
 Implementation of Data Warehousing could give companies a competitive edge over their

rivals. With Data Warehousing companies could discover previously unavailable facts and
figures, trends and untapped information. Such new revelations would enhance the quality of
decisions.

	 •	 High Productivity in corporate decision making and business intelligence
 Data Warehousing combines data from multiple sources into meaningful information which

could be analyzed and referred by managers to improve their decisions for organization.
	 •	 Cost effective
 With Data Warehousing, it is possible to streamline the organization thereby reducing overheads

and so reducing product costs.
	 •	 Enhanced customer service
 Data Warehousing provides essential support when communicating with customers and so

helps improve customer satisfaction and retain them.

Problems or limitations of data warehousing

The problems associated with developing and managing data warehousing are as follows.
	 •	 Underestimation of resources for data ETL
 Quite often the user underestimates the total processing time required to perform extract, clean

and load operations on data prior to warehousing. Thus, in real time implementation many
other processes suffer and operations can suffer in the meanwhile.

	 •	 Erroneous source systems
 There are many hidden problems associated with the source systems that are being used

to feed data. These problems may remain unidentif ied for years, and after many years of
lying undetected, they can suddenly emerge in embarrassing ways. For example, while
entering details of brand new property, one f inds that certain f ields have allowed nulls.
Often in such cases, the staff is found guilty of entering incomplete data.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.013
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.013
https://www.cambridge.org/core

398 Data Mining and Data Warehousing

	 •	 Required data not captured
 Data warehouse stores detailed information, yet many times it intentionally misses few minor

details which could later on be used for analysis or any other task. For example, the date of
registration while adding details of a new property may not be used in source system but it
might be very useful during analysis.

	 •	 Increased end user queries or demands
 From the end user side queries never end. Even after initial queries have been satisfactorily

addressed, a chain of further queries may follow.
	 •	 Loss of information during data homogenization
 When data from multiple sources are combined, loss of information can occur while changing

formats.
	 •	 High demand of resources
 Resources such as large disk space are required for storing the huge quantity of data accumulated

daily.
	 •	 Data ownership
 Quite often when one department is asked for some data, it is reluctant or slow in processing

the request. They may afraid of losing data ownership or control over data. This leads to lags
and interruptions in the Data Warehousing process.

	 •	 Necessary maintenance
 A data warehouse requires high maintenance. Any change in business process or reorganization

of source systems may affect the data warehouse and all these things contribute to extremely
high cost of maintenance.

	 •	 Long-duration projects
 Right from planning to actual implementation data warehouses use up a lot of time and money;

hence many organizations are reluctant initially.
	 •	 Complexity of integration
 Data warehouse’s performance could be determined based on its integration capabilities. Thus,

an organization spends significantly large amount of time, in determining how well the multiple
data warehousing tools can go together (or integrated) to chalk out a solution, which is a very
difficult task as many tools are available.

The issues of data warehouse are summarized in Figure 12.6.

12.4 Data Marts

A department specific data warehouse is termed as ‘data mart’, which is a small localized data
warehouse built for a single purpose. It is usually built to cater to the needs of a group of users or a
department in an organization.

For example, an organization can have many departments, including finance, IT departments
and others. Each of these departments can have their own data warehouses, which is nothing but
the data mart of that particular department.

Thus, a data mart can be defined as ‘a specialized, subject-oriented, integrated, time-variant,
volatile data store in support of specific subset of management’s decisions’.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.013
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.013
https://www.cambridge.org/core

Data Warehouse 399

In a simplified way we can define data marts as ‘A subset of data warehouses that support the
requirements of a particular department or business function’.

An organization could maintain both a data warehouse (representing data of all departments
in a unified way) and individual departmental data marts. Hence, the data mart can be standalone
(individual) or linked centrally to the corporate data warehouse as shown in Figure 12.7.

Figure 12.6 Limitations of data warehousing

Figure 12.7 Data mart and data warehouse

It is often seen that as a data warehouse grows larger with more data, its ability to serve
the different needs of any enterprise gets compromised. In such cases, data marts come to
the rescue, as in a large enterprise, data marts tend to be a way to build a data warehouse in a
sequential or a phased approach. A collection of data marts can constitute an enterprise-wide data
warehouse. Conversely, a data warehouse may be visualized as a collection of subset of data marts
as illustrated in Figure 12.8.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.013
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.013
https://www.cambridge.org/core

400 Data Mining and Data Warehousing

Figure 12.8 Relationship between data mart and data warehouse

Differences between data mart and data warehouse

Following are the characteristics that differentiate data marts and data warehouse.
	 •	 Data	marts	usually	focus	on	the	data	requirements	of	some	specific	department	rather	than	

the whole organization.
	 •	 Detailed	information	is	not	contained	by	data	marts	(unlike	data	warehouses)
	 •	 They	are	easy	to	navigate,	transfer	and	explore	compared	to	data	warehouses	which	workon	

large volumes of data.

Advantages of data marts

Following are the advantages of data marts.
	 •	 With	data	marts	the	user	gets	pertinent,	to-the-point	data.	.
	 •	 Data	marts	respond	quickly.
	 •	 Data	operations	such	as	data	cleaning,	loading,	transformation,	and	integration	are	far	easier	

and cheaper as data marts work with low volumes of data. Implementing and setting up
a data mart is simpler than implementing a data warehouse for the whole enterprise.

	 •	 Compared	to	a	data	warehouse,	implementing	a	data	mart	is	a	lot	more	economical.
	 •	 The	potential	users	of	a	data	mart	can	be	grouped	in	a	better	way	rather	than	involving	

large numbers of unnecessary members.
	 •	 Data	marts	 are	designed	on	 the	basis	 that	 there	 is	 no	need	 to	 serve	 the	 entire	 enterprise.	

Therefore, the department can summarize, select and structure their own departments’ data
independently.

	 •	 Data	marts	can	allow	each	department	to	work	on	a	specific	piece	of	historical	data	rather	than	
the whole data.

	 •	 Departments	can	customize	software	for	their	data	mart	as	per	their	needs.
	 •	 Data	marts	are	cost	efficient.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.013
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.013
https://www.cambridge.org/core

Data Warehouse 401

Limitations of data marts

The limitations of data marts are as follows:
	 •	 Once	in	operation,	due	to	inherent	limitations	in	design	it	becomes	cumbersome	to	extend	

their scope to other departments.
	 •	 Data	Integration	problems	are	encountered	often.
	 •	 When	 the	 data	mart	 develops	multiple	 dimensions	 then	 the	 scalability	 problem	becomes	

common.

12.5 Comparative Study of Data Warehouse with OLTP and ODS

Finally to summarize the distinctions between OLTP, ODS and data warehouse as illustrated
below in Table 12.1.

Table 12.1 Generalized distinction between ODS and data warehouse

ODS Data Warehouse

High quality of data and easy availability of
data is assured.

Imperfect Data which is sufficient for doing
strategic analysis. Availability of data is not a
primary concern.

Contains both Real Time and Current data. Contains Historical data

Updated at the Data field level. Normally, batch data loads. Data is appended,
and not updated .

Typically detailed data only. Contains summarized and detailed data.

Modeled to support rapid data updates
(3NF).

Variety of modeling techniques used, typically
multi-dimensional for data marts to optimize
query performance.

Transactions resemble OLTP system
transactions.

Queries are quite complex and even the data
volumes are larger.

Aids in detailed decision making and
operational reporting and hence it is used
mostly at an operational level.

Aids in long term planning and decision making
along with management reporting.

12.5.1 Data warehouses versus OLTP: similarities and distinction

OLTP or Online Transaction Processing systems are the traditional database systems which were
designed to maximize the transaction processing capacity of organizational information. In contrast,
data warehouses could hold data detailed and historical data which could be summarized to different
levels and rarely subject to change. The comparison of OLTP and data warehousing usually used
to perform OLAP (Online Analytical Processing) is shown in Table 12.2.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.013
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.013
https://www.cambridge.org/core

402 Data Mining and Data Warehousing

Table 12.2 Comparison of OLTP systems and data warehousing systems

OLTP System Data Warehousing System

They hold Current data. Designed to hold only Historical data.

Detailed data is stored. It is flexible enough to store detailed, light or
profoundly summarized data.

Nature of data is Dynamic. Nature of data is Static.

Processing is recursive in nature. Processing is rather unstructured and ad-hoc.

Transaction output is of high level. Here, it is low or medium mostly.

Pattern of usage is predictable. Pattern of usage is unpredictable.

Transaction-driven Analysis driven

OLTP systems are application oriented. They focus more on subject.

Day-to-day decisions are supported. Long term or strategic decisions are taken
through them.

Massive numbers of operational users are
served.

Mostly for managerial users.

The comparison of OLTP and data warehouse with respect to their properties or characteristics
is given in Table 12.3.

Table 12.3 Comparing OLTP and data warehouse system

Property OLTP System Data Warehousing System

Nature of the database 3NF Multi-dimensional

Indexes Few Many

Joins Many Some

Duplicated data Normalized data De-normalized data

Derived data and aggregates Rare Common

Queries Mostly predefined Mostly ad-hoc

Nature of queries Mostly simple Mostly complex

Updates All the time Not allowed, only refreshed

Historical data Often not available Essential

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.013
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.013
https://www.cambridge.org/core

Data Warehouse 403

 Remind Me
 The operational data store is a special unified (separate) database that has been developed specifically

to handle management queries.
 Inmon and Imhoff (1996) defined the operational data store as ‘A subject-oriented, integrated, volatile,

current valued data store, containing only corporate detailed data.’
 The data in an ODS is typically loaded through an extraction, transformation, and loading (ETL) process

from multiple data sources.
 Data warehouse is defined as, ‘A subject-oriented, integrated, time-variant, and non-volatile collection

of data in support of management’s decision-making process.’
 A data warehouse has three basic components - load manager, warehouse manager and data access

manager.

 Point Me (Books)
 Conolly, Thomas, and Carolyn Begg. 2015. Database Systems: A Practical Approach to Design,

Implementation, and Management, 6th ed. New York: Pearson Education.
 Gupta, G. K. 2014. Introduction to Data Mining with Case Studies. Delhi: PHI Learning Pvt. Ltd.
 Kimball, Ralph, and Margy Ross. 2013. The Data Warehouse Toolkit: the complete guide to dimensional

modeling, 3rd ed. Indianapolis: John Wiley & Sons.

 Point Me (Video)
 Data Warehouse Tutorial For Beginners | Data Warehouse Concepts | Data Warehousing | Edureka,

https://www.youtube.com/watch?v=J326LIUrZM8
 https://www.udemy.com/data-warehousing/

 Connect Me (Internet Resources)
 https://www.tutorialspoint.com//cognos/data_warehouse_overview.htm
 https://www.guru99.com/data-warehousing-tutorial.html
 http://www.wideskills.com/data-warehousing-tutorial

 Test Me
 Answer these questions based on your learning in this chapter
 1. Data warehouse contains that isn’t seen in the operational environment.
 (a) Normalized data (b) Summary data
 (c) Both of these (d) None of these
 2. The full form of ETL is
 (a) Execute transmit and load (b) Examine transform and load
 (c) Extract transform and load (d) None of these
 3. Which of the following is also known as ‘short term’ memory of an enterprise’?
 (a) Data mart (b) Operational data store
 (c) Data warehouse (d) None of these
 4. Which of the following is transaction driven?
 (a) Data mart (b) Operational data store
 (c) Data warehouse (d) OLTP

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.013
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.013
https://www.cambridge.org/core

404 Data Mining and Data Warehousing

 5. What is the need for ODS? What techniques are used to perform the tasks of ETL?
 6. What is the advantage and disadvantage of eager approach to solve managerial queries?

 Answer Keys:
 1. (b) 2. (c) 3. (b) 4. (d)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.013
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:44:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.013
https://www.cambridge.org/core

Chapter Objectives

 To understand the concept of dimension, measure and the fact table

 To able to apply different schema of data warehouse designs such as Star Schema, Snowflake
Schema and Fact Constellation Schema on real world applications.

 To understand the differences between these schemas, their strengths and weakness.

13.1 Introduction to Data Warehouse Schema

Logical descriptions of database are known as Schema. It is the blueprint of the entire database. It
defines how the data are organized and how the relations among them are associated. Data warehouse
schema consists of the name and description of records including associated data items and aggregates.
A database uses relational models whereas a data warehouse uses different types of schema, namely,
Star, Snowflake, and Fact Constellation.

To start discussion on these schemas, it is important to understand the basic terminology used
in this process, which is discussed below.

13.1.1 Dimension

The term ‘dimension’ in data warehousing is a collection of reference information about a measurable
event. These events are stored in a fact table and are known as facts. The dimensions are generally
the entities for which an organization wants to preserve records. The descriptive attributes are
organized as columns in dimension tables by a data warehouse. For example, a student’s dimension
attributes could consist of first and last name, roll number, age, gender, or an address dimension
that would include street name, state, and country attributes.

Data Warehouse Schema

13

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.014
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:45:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.014
https://www.cambridge.org/core

406 Data Mining and Data Warehousing

A dimension table consists of a primary key column that uniquely identifies each record (row) of
dimension. A dimension is a framework that consists of one or more hierarchies that classify data.
Usually dimensions are de-normalized tables and may have redundant data.

Let us take a quick recap of the concepts of normalization and de-normalization, as they will be
used in this chapter. Normalization is a process of breaking up a larger table into smaller tables free of
any possible insertion, updation or deletion anomalies. Normalized tables have reduced redundancy
of data. In order to get full information, these tables are usually joined.

In de-normalization, smaller tables are merged to form larger tables to reduce joining operations.
De-normalization is particularly performed in those cases where retrieval is a major requirement and
insert, update, and delete operations are minimal, as in case of historical data or data warehouse. These
de-normalized tables will have redundancy of data. For example, in case of EMP-DEPT database,
there will be two normalized tables as EMP(eno, ename, job, sal, deptno) and DEPT(deptno,
dname), while in case of de-normalization we will have single table EMP_DEPT with attributes
eno, ename, job, sal, deptno, dname.

Let us consider Location and Item dimensions as shown in Figure 13.1. Here, in Location
dimension location_id is the primary key with street_name, city, state_id and country_code as its
attributes. Figure 13.1 (b) shows another dimension namely Item having item_code as primary key
and item_name, item_type, brand_name, and supplier_id as other attributes.

Location Dimension Item Dimension

Locaton_id Item_code

Street_name Item_name

City Item_type

State_id Brand_name

Country_code Supplier_id

 (a) (b)

 Figure 13.1 (a) location dimension, (b) item dimension

It is important to note that these dimensions may be de-normalized tables as the location dimension
may be derived from location_detail (location_id, street_name, state_id) and state_detail (state_id,
state_name, country_code) tables as shown in Figure 13.2.

Location dimension State dimension

location_id state_id

street_name state_name

state_id country_code

Figure 13.2 Normalized view

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.014
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:45:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.014
https://www.cambridge.org/core

Data Warehouse Schema 407

13.1.2 Measure

Measure is the term used for the values that rely on the dimensions. For example, amount sold,
quantity sold, etc.

13.1.3 Fact Table

A ‘fact table’ is a group of associated data items. It consists of values of dimensions and measure.
This means that a fact table can be defined from the given dimension and measure. A fact table
typically consists of two types of columns such as foreign keys and measure. Foreign keys are linked
to dimension tables and measures consist of numeric facts as shown in Figure 13.3. Fact tables are
generally larger in size than dimension tables.

Figure 13.3 Representation of fact and dimension tables

A fact table can hold a dataset of facts at detailed or aggregated level. Let us consider a sales fact
table as shown in Figure 13.4. It has time_key, item_code, branch_code and location_id as foreign
keys of dimension tables and rupees_sold and units_sold as measure or aggregations. Here, FK
indicates a foreign key.

 Figure 13.4 The sales fact table

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.014
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:45:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.014
https://www.cambridge.org/core

408 Data Mining and Data Warehousing

13.1.4 Multi-dimensional view of data

Data consists of multiple dimensions. Dimensions often have hierarchies to show parent-child
relationships.

13.2 Star Schema

The star schema is one of the simplest of data warehouse schemas. It is known as star because it
appears like a star with points expanding from a center. Figure 13.3 represents the star schema in
which the fact table is at the center and the dimension tables at the nodes of the star.

Each dimension in a star schema represents a one-dimensional table only and the dimension table
consists of a set of attributes. Dimension tables comprise of relatively small numbers of records in
comparison to fact tables, but each record may consist of a large number of attributes to describe the
fact data. Fact tables usually consist of numeric facts and foreign keys to dimensional data.

Generally, fact tables are in third normal form (3NF) in the case of star schema while dimensional
tables are in de-normalized form. Although the star schema is one of the simplest structures, it is still
extensively used nowadays and recommended by Oracle. Figure 13.5 graphically presents a star schema.

Figure 13.5 Graphical representation of Star schema

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.014
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:45:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.014
https://www.cambridge.org/core

Data Warehouse Schema 409

The star schema for analysis of sales of a company is shown in Figure 13.6. In this schema, sales
fact are presented at the center of the star consisting of the foreign keys that are linked to each of
the four corresponding dimension tables. The sales fact table also includes the measures such as
rupees_sold and units_sold. It is important to note that here dimensions are de-normalized. For
example, the location dimension table consists of attribute-sets such as {location_id, street_name,
city, state_id, country_code} and it may have data redundancy due to its de-normalization. For
example, both cities ‘Patiala’ and ‘Amritsar’ are located in the Punjab state of India. The records
for these cities may result in data redundancy corresponding to the attributes country and state.

Figure 13.6 Star schema for analysis of sales

Main characteristics of star schema

The main characteristics of star schema are as follows:
	 •	 It	has	high	query	performance	as	it	requires	less	join	operations	due	to	de-normalization	of	

data.
	 •	 It	has	a	simple	structure	which	is	easy	to	understand.	
	 •	 It	takes	a	relatively	longer	time	to	load	the	data	into	dimension	tables	due	to	de-normalization,	

that also causes data redundancy that may increase the size of table data.
	 •	 It	is	the	most	generally	used	and	simplest	structure	in	the	data	warehouse	and	supported	by	

an enormous number of tools.

Advantages of star schema

The advantages of star schema are:
	 •	 It	has	simple	queries	as	it	will	not	require	join	operations	due	to	de-normalization	of	data.
	 •	 In	comparison	to	highly	normalized	schemas,	star	schema	has	basic	business	reporting	logic.
	 •	 It	has	high	query	performance	due	to	fewer	join	operations.	
	 •	 It	has	fast	aggregations	due	to	its	simpler	queries.	

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.014
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:45:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.014
https://www.cambridge.org/core

410 Data Mining and Data Warehousing

Disadvantages of star schema

The disadvantages of star schema are:
	 •	 Data	 integrity	cannot	be	applied	 in	star	schema	because	 its	database	 is	de-normalized	and	

contains redundant data.
	 •	 Inserts	and	updates	in	star	schema	can	result	in	data	anomalies	due	to	data	redundancy	which	

normalized schemas are designed to avoid.
	 •	 It	is	not	f lexible	in	terms	of	analytical	needs	when	compared	to	a	normalized	data	model.
	 •	 It	is	too	specific	as	it	is	designed	for	a	fixed	analysis	of	data	and	does	not	allow	complex	analytics.

13.3 Snowflake Schema

The major difference between star and snowflake schema is that the snowflake schema may consist
of normalized dimensions while star schema always consists of de-normalized dimensions. Thus,
snowflake schema is a modification of the star schema supporting normalization of dimension tables.
Some dimension tables are normalized in snowflake schema which splits up the data into additional
tables. Thus, ‘Snowflaking’ is a process of normalizing the dimension tables in a star schema. The
resultant structure appears like a snowflake having a fact table at the center when all the dimension
tables are completely normalized. For example, the item dimension table shown in Figure 13.7 is
normalized by splitting it into two dimension tables such as item and supplier.

Figure 13.7 Snowflake schema for analysis of sales

Here, the item dimension table consists of the attributes set {item_code, item_name, item_type,
brand_name, supplier_id}. Further, the supplier_id is associated to the supplier dimension table
which consists of the attributes, namely, supplier_id and supplier_type.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.014
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:45:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.014
https://www.cambridge.org/core

Data Warehouse Schema 411

Similarly, the location dimension table consists of the attributes set {location_id, street_name,
city_id}. Further, the city_id is associated to the city dimension table which consists of the attributes,
namely, city_id, city_name, state_id and country_code.

Another view of snowflake schema is illustrated in Figure 13.8. Here, shop dimension has been
normalized into shop, city and region dimension. Similarly, time dimension has been normalized
into time, month and quarter dimension. The client dimension has been normalized into client and
client group dimension. And the product dimension has been normalized into product type, brand
and supplier dimension as shown in Figure 13.8.

Figure 13.8 Snowflake schema

It is important to note that redundancy is reduced in snowflake schema due to normalization.

Advantages of snowflake schema

The advantages of snowflake schema are:
	 •	 The	snowflake	schema	results	in	saving	of	storage	space	due	to	normalized	attributes	despite	

additional complexity in source query joins.
	 •	 Some	OLAP	multi-dimensional	database	modeling	tools	are	optimized	for	snowflake	schemas.

Disadvantages of snowflake schema

The disadvantages of snowflake schema are:
	 •	 It	has	complex	queries	due	to	join	operations	because	dimensions	are	normalized.	

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.014
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:45:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.014
https://www.cambridge.org/core

412 Data Mining and Data Warehousing

	 •	 It	has	poor	query	performance	due	to	joins	required	for	normalized	data.	
In conclusion, the main goal of snowflake schema is to store the normalized data efficiently but

it does so at the significant cost of query performance.

13.4 Fact Constellation Schema (Galaxy Schema)

The main difference between star/snowflake and fact constellation schema is that star/snowflake
schema consist of only one fact table while fact constellation schema always consists of multiple
fact tables. Therefore, fact constellation is also known as galaxy schema (multiple fact tables being
viewed as a group of stars).

Fact constellation is a measure of online analytical processing, which is a collection of multiple
fact tables sharing dimension tables. This is an improvement over Star schema.

Figure 13.9 shows an example of fact constellation schema as it has two fact tables, namely sales
and shipping.

Figure 13.9 Fact constellation schema for analysis of sales

The sales fact table in the fact constellation schema is similar to the one in star schema. The
sales fact table here, also consists of four attributes, namely, time_key, item_code, branch_code,
location_id and two measures such as rupees_sold and units_sold as shown in Figure 13.9. And the
shipping fact table consists of five attributes such as item_code, time_key, shipper_id, from_location,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.014
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:45:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.014
https://www.cambridge.org/core

Data Warehouse Schema 413

to_location and two measures such as rupees_cost and units_sold. In fact constellation schema,
dimension tables can also be shared between fact tables. For example, the dimension tables, namely,
location, item and time are shared between the fact tables shipping and sales as shown in Figure 13.9.

Advantages of fact constellation schema

The major advantage of this schema is that it provides better support to end user because it has
multiple fact tables.

Disadvantages of fact constellation schema

The major disadvantage of this schema is its complicated design because of consideration of different
variants of aggregation.

13.5 Comparison among Star, Snowflake and Fact Constellation
Schema

The comparison among the data warehouse schemas on the basis of different parameters is given
in Table 13.1.

Table 13.1 Comparison among Star, Snowflake and Fact Constellation Schema

Parameter Star Snowflake Fact constellation

Query Joins Require simple joins Requires complicated joins Requires complicated
joins

Data structure De-normalized data
structure

Normalized data structure. Normalized data
structure.

Number of Fact
Tables

Single fact table Single fact table Multiple fact tables

Query
Performance

It gives faster query
results due to fewer join
operations.

It is slow in query
processing due to larger
join operations.

It is slow in query
processing due to
larger join operations.

Dimension Dimension table does not
split into pieces.

Dimension tables are split
into many pieces.

Dimension tables are
split into many pieces.

Data
Redundancy

Data is redundant due to
de-normalization.

Data is not redundant
as dimensions are
normalized.

Data is not redundant
as dimensions are
normalized.

Data Integrity Tough to enforce
data integrity due to
redundancy of data.

Easy to enforce data
integrity due to no
redundancy of data.

Easy to enforce data
integrity due to no
redundancy of data.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.014
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:45:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.014
https://www.cambridge.org/core

414 Data Mining and Data Warehousing

 Remind Me
 Schema is a logical description of database.
 Schema is a blueprint of the whole database that defines data organization and relations among data.
 Dimensions are generally the entities towards which an organization preserves records.
 Measure is the term used for the values that rely on the dimensions. For example, amount sold, quantity

sold, etc.
 Fact table is a group of associated data items. It consists of values of dimensions and measures.
 Schemas in data warehouse are classified into three classes: Star, Snowflake, and Fact Constellation

schema.
 Star schema looks like a star with points expanding from a center.
 The major difference between Star and Snowflake schema is that Snowflake schema may consist of

normalized dimensions while Star schema consists of de-normalized dimensions.
 The main difference between Star/Snowflake and Fact Constellation schema is that Star/Snowflake

schema consist of only one fact table while Fact Constellation schema consist of multiple fact tables.

 Point Me (Books)
 Conolly, Thomas, and Carolyn Begg. 2015. Database Systems: A Practical Approach to Design,

Implementation, and Management, 6th ed. New York: Pearson Education.
 Thareja, Reema. 2009. Data Warehousing. Delhi: Oxford University Press.

 Point Me (Video)
 Understanding Schemas in Datawarehousing | Edureka, https://www.youtube.com/watch?v=uigKK02XGxE

 Connect Me (Internet Resources)
 https://www.tutorialspoint.com/dwh/dwh_schemas.htm
 http://www.teradatapoint.com/data-warehousing-schemas
 https://en.wikipedia.org/wiki/Star_schema
 https://en.wikipedia.org/wiki/Snowflake_schema

 Test Me
 Answer these questions based on your learning in this chapter.
 1. Out of Star schema and Snowflake schema, whose dimension table is normalized?
 2. Due to normalization in the Snowflake schema, the redundancy is reduced and therefore, it becomes

easy to maintain and save the storage space.
 (a) True (b) False
 3. Which is also known as galaxy schema?
 (a) Star Schema (b) Snow Flake Schema
 (c) Fact Constellation Schema (d) None of the above
 4. List the schema that a data warehouse system can implement.
 (a) Star Schema (b) Snowflake Schema
 (c) Fact Constellation Schema (d) All mentioned above
 5. How many fact tables are there in a Star schema?
 (a) One (b) Two (c) Three (d) Four

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.014
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:45:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.014
https://www.cambridge.org/core

Data Warehouse Schema 415

 6. Snowflake schema uses the concept of normalization.
 (a) True (b) False
 7. Normalization splits up the data into additional tables.
 (a) Yes (b) No
 8. Some dimension tables in the Snowflake schema are not normalized.
 (a) True (b) False
 9. Is it possible to share dimension tables between fact tables.
 (a) Yes (b) No
 10. A database uses relational model, while a data warehouse uses
 (a) Star (b) Snowflake
 (c) Fact Constellation schema (d) All mentioned above

Answer Keys:
 1. Snowflake schema 2. (a) 3. (c) 4. (d)
 5. (a) 6. (a) 7. (a) 8. (b)
 9. (a) 10. (b)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.014
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:45:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.014
https://www.cambridge.org/core

Chapter Objectives

 To understand the need for online analytical processing

 To distinguish OLAP from OLTP and data mining

 To comprehend the representation of multi-dimensional view of data

 To understand and apply the concept of data cube in real world applications

 To implement multi-dimensional view of data in Oracle

 To understand different types of OLAP Servers such as ROLAP and MOLAP

 To able to perform different OLAP Operations on the database

14.1 Introduction to Online Analytical Processing

As there is a huge growth in data warehousing in recent past, the demand for more powerful access
tools that help in advanced analytical processing from historical data has increased. Online Analytical
Processing (OLAP) and data mining are two types of access tools that have been developed to meet
the demands of management users. OLAP and data mining are distinct in what they offer the user
and due to this they are complementary technologies.

OLAP is a design paradigm that provides a method to extract useful information from a physical
data store. It aggregates information from multiple systems and provides summarized information/
view to the management, while data mining is used to find hidden patterns within the data.

OLAP summarizes data and makes forecasts. For example, it answers operational questions like
‘What are the average sales of cycles, by region and by year?’ Data mining discovers hidden patterns
in data and operates at a detailed level instead of a summary level. For instance, in a telecom industry
where customer churn is a key factor, data mining would answer questions like, ‘Who is likely to
shift service providers and what are the reasons for that?’ In conclusion, OLAP answers questions
such as ‘Is this true?’ while data mining answers questions as ‘Why is this happening? And what
might happen if ...?’

Online Analytical Processing

14

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.015
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.015
https://www.cambridge.org/core

Online Analytical Processing 417

Thus, OLAP and data mining complement each other and help the management in better decision
taking. An environment that consists of a data warehouse/data marts together including tools such
as OLAP and/or data mining are collectively known as Business Intelligence (BI) technologies.

14.1.1 Defining OLAP

Dr E.F. Codd (1993) has defined OLAP as ‘the dynamic synthesis, analysis, and consolidation of
large volumes of multi-dimensional data’.

From this definition, it is clear that OLAP deals with multi-dimensional view of data as compared
to a simple relational database view. It helps users to get a wider knowledge and understanding
about different features of their corporate data through consistent, fast and interactive access to a
comprehensive variety of possible views of the data. In next sections, we will discuss in detail about
this multi-dimensional view of data.

OLAP is used to response the complex questions shared on data warehouses. The queries like
‘who?’ and ‘what?’ can be answered with simple tools but there is need of special tools that can support
OLAP to answer advanced queries of the nature of ‘what if?’ and ‘why?’. The decisions about future
actions are also supported by OLAP. A typical OLAP computation can be more difficult than
simple aggregation of data, e.g., ‘What would be the effect on property sales in different regions of
Punjab if Government taxes went down by 2% and legal costs went up by 4.5% for properties over
Rs 1,00,000?’.

To compare the performances of various OLAP tools, Analytical Queries per Minute (AQM) is
used as a standard benchmark. The syntax of complex queries of OLAP systems should be hidden
from users and systems should offer consistent response times for all types of queries including the
complex ones.

14.1.2 OLAP applications

The various applications of OLAP in different functional areas are described in Table 14.1 as follows.

Table 14.1 Applications of OLAP

Functional area Examples of OLAP applications

Marketing Market research analysis, sales forecasting, customer and promotion analysis

Finance Budgeting, financial modeling and performance analysis

Sales Sales forecasting and analysis

Manufacturing Production planning and defect analysis

14.1.3 Features of OLAP

The important features of OLAP are given as follows.
	 •	 Multi-dimensional	view	of	data
	 •	 Time	intelligence
	 •	 Complex	calculations	support

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.015
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.015
https://www.cambridge.org/core

418 Data Mining and Data Warehousing

Multi-dimensional view of data

A multi-dimensional view of data offers the support to process the analytical data through f lexible
access to corporate data. It helps to look at data in several dimensions; for example, sales by region,
sales by sales representative, sales by product category, sales by month, etc. It provides the ability to
quickly switch between one view of data and another. It allows users to analyze their information
in small chunks instead of giant reports, which are confusing.

Time intelligence

Time intelligence is helpful in judging the performance of any kind of analytical application over
time, e.g., current month versus last month or current month of year versus the same month of last
year, and so on. The concepts such as period-over-period and year-to-date comparisons should be
straightforwardly defined in an OLAP system.

Complex calculations support

OLAP systems provide different types of powerful computational methods required to forecast
sales such as percentage growth and moving averages.

14.1.4 OLAP Benefits

The key benefits offered by OLAP are:
	 •	 Increased	productivity	of	end-users.	
	 •	 Retention	of	organizational	control	over	the	integrity	of	corporate	data.
	 •	 Reduced	backlog	of	applications	development	for	IT	staff.
	 •	 Improved	profitability	and	potential	revenue.
	 •	 Reduced	query	drag	and	network	traffic	on	the	data	warehouse	or	OLTP	systems.

14.1.5 Strengths of OLAP

The major strengths of any OLAP are listed below.
	 •	 It	is	a	powerful	visualization	tool.
	 •	 OLAP	tools	are	good	for	analyzing	time	series.
	 •	 It	provides	fast,	interactive	response	time.
	 •	 OLAP	tools	are	offered	by	many	vendors.
	 •	 It	can	be	of	help	in	identifying	outliers	and	clusters.

14.1.6 Comparison between OLTP and OLAP

The differences between OLTP and OLAP are summarized in Table 14.2.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.015
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.015
https://www.cambridge.org/core

Online Analytical Processing 419

Table 14.2 Difference between OLTP and OLAP

Characteristics OLTP OLAP

Type of Users These systems are developed for
office workers.

On the other hand, these systems are
developed for decision makers.

Number of Users Number of users can vary from
hundreds or even thousands of users
in case of a large organization.

OLAP systems may be accessible to
dozens of users or selected group of
managers in an organization.

Functions OLTP systems support day-to-day
activities of an organization and are
mission-critical.

OLAP systems on the other hand
support decision-making functions
of an organization using analytical
investigations and are management-
critical. They are more functionality
driven.

Processing It involves repetitive processing. OLAP is Ad hoc, Unstructured and
uses heuristic processing.

Nature of Query One record at a time is processed
by OLTP systems, e.g., a record of a
customer who might be on the phone
or in the store.

These systems deal with individual
customer records. Many records are
processed at a time by OLAP systems
and these systems give aggregated
data or summary to a manger.

Design OLTP database systems are
application-oriented.

On the other hand OLAP systems are
subject-oriented.

Database View OLTP is based on relational model. OLAP supports multi-dimensional
view of data.

Type of Queries It allows simple queries. It allows complex queries.

Transaction
throughput
(Number of
transactions per
second)

It involves high level of transaction
throughput.

It provides a medium which leads to
low level of transaction throughput.

14.1.7 Differences between OLAP and data mining

Both OLAP and data mining fall under Business Intelligence (BI) technologies. BI represents the
computer-based methods to extract and identify the important information from business data. Data
mining is the field of computer science that deals with mining important patterns from huge sets
of data and it is basically a combination of many techniques from statistics, artificial intelligence
and database management. On the other hand, OLAP is a collection of methods to query multi-
dimensional databases.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.015
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.015
https://www.cambridge.org/core

420 Data Mining and Data Warehousing

Different kinds of analytical problems can be solved using OLAP and data mining. OLAP
forecasts values by summarizing data. For example, it responses operational queries such as ‘What
are the average sales of cars, by region and by year?’

On the other hand, data mining works at a detailed level rather than a summary level and
identifies hidden patterns from the data. For example, data mining would provide answers in case
of a telecom industry for queries such as, ‘Who is likely to shift service providers and what are the
reasons for that?’.

OLAP and data mining complement each other, e.g., when OLAP identifies difficulties regarding
the sales of a product in a particular section then data mining can be helpful in identifying the behavior
of different customers and hence, it indicates the possible solutions. Similarly, when data mining
forecasts something like a decrease or increase in sales, OLAP can be useful to find the net income.

14.2 Representation of Multi-dimensional Data

In order to understand the concept of multi-dimensional view of data, let us consider the database
of Figure 14.1 (a). If the user generally asks queries such as ‘What was the revenue for Patiala in
the first quarter?’ the query will retrieve only a single value and it works efficiently. However, if
the user asks questions of kind ‘What is the total annual revenue for each city?’ or ‘What is the
average revenue for each city?’, then these queries result in multiple values and their aggregation.
If we consider large databases consisting of thousands of cities, the time that it takes a relational
DBMS to perform such calculation becomes significant. A typical RDBMS can scan a few hundred
records per second.

City Time Total Revenue

Patiala Q1 27564

Patiala Q2 32523

Patiala Q3 32341

Patiala Q4 29806

Ambala Q1 40123

Ambala Q2 48658

Ambala Q3 56243

Ambala Q4 46879

Ropar Q1 52451

Ropar Q2 32568

Ropar Q3 41786

Ropar Q4 52349

… … …

… … …

City
Quarter

Patiala Ambala Ropar …

Q1 27564 40123 52451 …

Q2 32523 48658 32568 …

Q3 32341 56243 41786 …

Q4 29806 46879 52349 …

City

 (a) (b)

Figure 14.1 (a) Relational model, (b) Two dimensional view

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.015
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.015
https://www.cambridge.org/core

Online Analytical Processing 421

Then, in this case it is better to process this database as a two-dimensional matrix, with the
dimensions such as Time (Quarters) and City, as shown in Figure 14.1 (b). By visualizing one
observes that data fits naturally into this two-dimensional matrix. Then, the system need not scan
the whole database, it just needs to apply aggregation on a particular row or column and efficiency
of the system increases as compared to a traditional RDBMS model.

Suppose, one additional dimension such as property type is considered with the revenue data In
such case, the total revenue produced will be illustrated by the sale of property type (for simplicity,
Flat and House are used), by city, and by time (quarters). This data can be fitted into a four-field
table as shown in Figure 14.2 (a), yet the data fits more logically into a three-dimensional cube as
shown in Figure 14.2 (b).

Property
Type

City Time Total
Revenue

Flat Patiala Q1 15064

House Patiala Q1 14523

Flat Patiala Q2 14641

House Patiala Q2 15606

Flat Patiala Q3 14623

House Patiala Q3 16258

Flat Patiala Q4 15643

House Patiala Q4 15779

Flat Ambala Q1 19751

House Ambala Q1 23468

Flat Ambala Q2 19786

House Ambala Q2 26949

… … … …

… … … …

 (a) (b)

Figure 14.2 (a) Relational model representation, (b) Three dimensional view

Here, the cube illustrates data as cells in an array by relating the total revenue with the dimensions
such as City, Time and Property Type. The concept of the data cube is further discussed in the
next sub-section.

14.2.1 Data Cube

A Data Cube is described in terms of dimensions and facts. It represents data in different dimensions.
Here, the dimensions are generally the entities which an organization preserves as records. Can you
identify the dimensions and facts in Figure 14.1 and Figure 14.2.

Hopefully you have been able to identify that in Figure 14.1, City and Time are dimensions and
Total Revenue is the fact. Thus, Figure 14.1 (b) represents two dimensional views of data. While

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.015
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.015
https://www.cambridge.org/core

422 Data Mining and Data Warehousing

in Figure 14.2 Property Type, City, and Time are dimensions and Total Revenue is the fact. Since
the depiction covers three dimensions so it’s three dimensional view of data.

In Figure 14.1 (b), the cube shows data as cells in an array by relating the Total Revenue with
the dimensions such as Time and Location. And in Figure 14.2 (b), the cube shows data as cells in
an array by relating the Total Revenue with the dimensions such as City, Time and Property Type.

Let us further understand the concept of the cube with another example of a company database.
Suppose an organization wishes to check sales records corresponding to dimensions such as branch,
time, location, and item using a sales data warehouse. These dimensions help in tracking records
of monthly sales and branches where the items were sold. For example, the ‘item’ dimension table
may consist of attributes such as item_code, item_type, item_name and item_brand.

In a two dimensional view of data, there are records corresponding to item and time only. The
Figure 14.3 illustrates the sales for ‘New Delhi’ corresponding to item and time dimensions on the
basis of type of items sold.

Location = ‘New Delhi’

Time (quarter)
Item (type)

Entertainment Keyboard Mobile Locks

Q1 500 700 10 300

Q2 769 765 30 476

Q3 987 489 18 659

Q4 666 976 40 539

Figure 14.3 Two dimensional view of sale data, i.e., Item and Time

If the user wishes to see the data of sales along with one more dimension, let us suppose, the
location dimension, then three dimensional view may be helpful in this case. The Figure 14.4
represents the three dimensional view of sales data corresponding to item, time and location.

Location = ‘Gurgaon’ Location = ‘New Delhi’ Location = ‘Mumbai’

Time
Item Item Item

Mouse Mobile Modem Mouse Mobile Modem Mouse Mobile Modem

Q1 788 987 765 786 85 987 986 567 875

Q2 678 654 987 659 786 436 980 876 908

Q3 899 875 190 983 909 237 987 100 1089

Q4 787 969 908 537 567 836 837 926 987

Figure 14.4 Three dimensional view of sale data, i.e., Item, Time and Location

This data can be viewed, alternately as shown in Figure 14.5.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.015
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.015
https://www.cambridge.org/core

Online Analytical Processing 423

Figure 14.5 Cubical three dimensional view of sale data

Here, Item, Time and Locations are dimensions and the cube shows data as cells in an array
by relating these dimensions. A cube may have more than one measure. For example, we may be
interested in not only showing total sale value but also the total quantity.

14.3 Implementing Multi-dimensional View of Data in Oracle

The SQL SELECT statement with GROUP BY clause is used for aggregation of data. It divides
the table into sub-tables based on the attributes’ values in the GROUP BY clause so that each
sub-table has the same values for the(se) attribute(s) and then aggregations over each sub-table are
carried out. SQL has a variety of aggregation functions including max, min, average, count which
are used widely by employing the GROUP BY facility. For data cube implementation extension of
GROUP BY clause with ROLLUP and CUBE can be used as discussed below with an example:
the emp database as shown in Figure 14.6.

Figure 14.6 Emp database

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.015
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.015
https://www.cambridge.org/core

424 Data Mining and Data Warehousing

Here, the management may be interested in finding the total number of employees in each job
within each department, for which we can use the GROUP BY clause over dno, job fields/dimensions
to display the total number of employees as shown in Figure 14.7.

Figure 14.7 Total number of employees in each job within each department

This information can be viewed as two dimensional data with dno and job as dimensions and
count of employees as fact. In Figure 14.8, the cube illustrates data as cells in an array by relating
these dimensions.

DNO
JOB

AP ASSOC
PROF

PROF Total

10 3 1 4 8

20 2 2 - 4

30 1 1 2 4

Total 6 4 6 16

Figure 14.8 Two dimensional view of employee data

The GROUP BY clause is able to produce counts for each dno and job, but it is unable to produce
aggregations. To produce aggregations, we can use the ROLLUP extension of GROUP BY clause
as discussed below.

ROLLUP extension of GROUP BY clause

The ROLLUP extension generates group subtotals from right to left as well as a grand total. If
there are ‘n’ numbers of columns listed in the ROLLUP, then there will be ‘n+1’ level of subtotals.
The extension of GROUP BY clause with ROLLUP to generate one level of aggregation is shown
in Figure 14.9.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.015
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.015
https://www.cambridge.org/core

Online Analytical Processing 425

Figure 14.9 Use of ROLLUP for aggregation of data

The ROLLUP extension is able to produce aggregation for n-1 dimensions, i.e., one dimension,
dno in this case. In order to produce aggregation for all the dimensions, the CUBE extension of
GROUP BY can be used as discussed below.

CUBE extension of GROUP BY clause

Along with the subtotals produced by the ROLLUP extension, the CUBE extension will produce
subtotals for all combinations of the dimensions identified. If there are ‘n’ numbers of columns listed
in the CUBE, then there will be 2n subtotal combinations. The extension of GROUP BY clause
with CUBE to produce full aggregation is shown in Figure 14.10.

Figure 14.10 Use of CUBE for aggregation of data

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.015
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.015
https://www.cambridge.org/core

426 Data Mining and Data Warehousing

Let us consider, an extended employee database which has one more dimension as state shown
in Figure 14.11.

Figure 14.11 Employee database with third dimension state

Here, the management may be interested in finding the total number of employees from each
state within each job within each department number, and for this we can use CUBE over dno,
job, state dimensions to display a three dimensional view of the data as shown in Figure 14.12. This
means the first grouping is done on department number, then with each department number group,
further grouping is done on each job and then within each sub group of job, another grouping is
done on the basis of sate.

Figure 14.12 Three dimensional view of the employee database

Here, dno, job and state are three dimensions and count is the fact. The cubical representation
of same data is shown in Figure 14.13.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.015
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.015
https://www.cambridge.org/core

Online Analytical Processing 427

Figure 14.13 Cubical three dimensional representation of the employee database

14.4 Improving efficiency of OLAP by pre-computing the queries

To understand this concept, let us consider the database of a University that has 7 departments,
3 types of jobs titles in each department and it has employees from 10 states. In this scenario,
management may be interested in finding the count of employees, and the list of all possible queries
on this database is given in Table 14.3.

Table 14.3 Possible number of queries on given scenario

Query Possible number of queries

Total Number of employees in University 1

Query for particular department 7 (one for each department)

Query for particular Job 3 (one for each job)

Query for particular State 10 (one for each state)

Query for particular Department, Job combination 21 (7 X 3 combinations are possible)

Query for particular Department, State combination 70 (7 X 10 combinations are possible)

Query for particular Job, State combination 30 (3 X 10 combinations are possible)

Query for particular Department, Job, State
combination

210 (7 X 3 X 10 combinations are
possible)

Total Possible Queries 352

In this case, 352 queries are possible but in a real situation one could have a larger number of
possible queries, by considering a University of having 100 departments having 10 job titles in each
department and having employees from 29 states. Then possible queries will be more than 100 X
10 X 29 =29,000.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.015
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.015
https://www.cambridge.org/core

428 Data Mining and Data Warehousing

To improve the efficency of OLAP systems it is important to work on the option to precompute
these queries to be able to run these queries on the f ly.

There are three possible ways to address this issue.

Pre-compute and store all

In this strategy all the aggregations will be precomputed and stored. It wil have best query response
because all the results are pre-computed and stored, but this startegy is impractical because it requires
large resources to compute and store aggregates in large database.

Pre-compute and store none

In this strategy, all the aggregations will be computed on-the-fly on the actual database. This
strategy does not require extra space for the cube and always provides updated information but it
will have a slow query response time.

Pre-compute and store some

In this strategy, most frequently queries aggregates will be pre-computed and stored in the database
and other aggregations will be computed as and when need arises. The selection of pre-compuation
aggregations is perfromed in such a manner that the remaining aggregates can be computed from
pre-computed aggregations. However, it is not always possible to carry this out and in such cases
the source database will be accessed to compute remaining aggregates. This strategy is considered
as the most optimal.

In order to implement this solution, it is important to decide about what is the total number of
queries that needs to be pre-computed. This is discussed in Table 14.3.

Let us reproduce the list of queries discussed earlier in Table 14.3, and define them as (d, j, s)
where d represents a value of department dimension, j specifies job dimension and s stands for state
dimension. Here, ALL at a particular dimension means number of employees in all instances of that
dimension. For example, (ALL, j, s), refers number of employees in all departments working for job
j and from state s. Thus, (ALL, Assistant Professor, Punjab) means the number of employees in all
departments working as Assistant Professor and from Punjab.

Table 14.4 Pre-computation of query analysis

Number
of

Queries

Dimension Representation Remarks

1 Null (ALL, ALL, ALL) Number of employees from all departments,
all jobs and all states, i.e., the total number of
employees in the University.

7 Department (d, ALL, ALL) Number of employees from all jobs and
states working in a particular department.

Contd.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.015
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.015
https://www.cambridge.org/core

Online Analytical Processing 429

Number
of

Queries

Dimension Representation Remarks

3 Job (ALL, j, ALL) Number of employees from all departments
and states working on a particular job.

10 State (ALL, ALL, s) Number of employees from all departments
and jobs belonging to a particular state.

21 Department, Job (d, j, ALL) Number of employees from all states
working in a particular department and on a
particular job.

70 Department, State (d, ALL, s) Number of employees for all jobs working in
a particular department and belonging to a
particular state.

30 Job, State (ALL, j, s) Number of employees from all departments
working for particular job and belonging to a
particular state.

210 Department, Job,
state

(d, j, s) Number of employees working in a particular
department, on a particular job and
belonging to a particular state.

As shown in Figure 14.14, aggregation can be applied on a particular dimension on the f ly if we
have pre-computed and stored all the queries of (d, j, s) types. Thus, there is a need to pre-compute
and store only 210 queries of type (d, j, s) and remaining 142 (i.e., 352-210) queries will run on the
f ly. With this we are able to develop all 352 queries by using the results of pre-computed 210 queries.

Figure 14.14 Pre-computation of only queries of type (d, j, s)

14.5 Types of OLAP Servers

There are two types of OLAP servers which are given as follows:

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.015
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.015
https://www.cambridge.org/core

430 Data Mining and Data Warehousing

	 •	 Relational	OLAP	(ROLAP)	
	 •	 Multi-dimensional	OLAP	(MOLAP)	

14.5.1 Relational OLAP

ROLAP is based on the relational model of DBMS. The result of GROUP BY queries as discussed
in Section 14.4 can be pre-computed and stored in another relational table or view for implementation
by the ROLAP server. It is also known as a bottom up approach which uses the star schema of data
warehousing.

The major advantages of ROLAP, is the support of existing RDBMS and efficient storage because
no zero facts are returned by the SQL query. It means that if there is no record for Professor in
department number 20, the SQL query will not return any record for it. Records will be returned
for it, if at least one record is found for the given job in a particular dept number as shown in Figure
14.15. It shows that GROUP BY clause doe not return or store zero value fact. While these queries
run on the f ly and are not pre computed, low efficiency is the issue with ROLAP servers.

Figure 14.15 No zero value facts returned by Group By query

The ROLAP architecture consists of a Database server, ROLAP server and front-end tool as
shown in Figure 14.16.

Figure 14.16 ROLAP architecture

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.015
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.015
https://www.cambridge.org/core

Online Analytical Processing 431

The data in ROLAP server is normally in de-normalized form.

Advantages and Disadvantages of ROLAP

The main advantages and disadvantages of using ROLAP server are given as follows.

Advantages

	 •	 These	can	be	used	with	existing	RDBMS	without	any	problem.	
	 •	 As	no	zero	facts	can	be	stored,	therefore	data	is	stored	efficiently.
	 •	 ROLAP	servers	do	not	use	pre-computed	data	cubes.	

Disadvantages

	 •	 Poor	query	performance.	

14.5.2 MOLAP

Multi-dimensional OLAP is based on multi-dimensional DBMS for storage and access of data.
It is known as a top-down approach to OLAP. It uses a special purpose file system to store pre-
computed values in the cube. Commonly, arrays are used to store the information of cubes as shown
in Figure 14.17.

Figure 14.17 MOLAP Implementation

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.015
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.015
https://www.cambridge.org/core

432 Data Mining and Data Warehousing

In this case, cell locations can be inferred from the known dimensions while dimensions can be
inferred from cell locations. There are some issues in implementations of MOLAP as arrays are likely
to be very large for large multi-dimensional databases. Since, zero facts are stored in MOLAP it
produces the case of sparseness of data. To overcome the problem of large sizes, arrays are normally
split into chunks so that these can be accommodated in the main memory.To overcome the issue of
sparseness, the chunks may be compressed.

The MOLAP architecture consists of a Database server, a MOLAP server and front-end tools
as shown in Figure 14.18.

Figure 14.18 MOLAP architecture

Advantages and Disadvantages of MOLAP

The key advantages and disadvantages of using MOLAP servers are:

Advantages

	 •	 MOLAP	servers	allow	quickest	indexing	of	pre-computed	data.	
	 •	 It	allows	users	to	analyze	both	large	and	less-detailed	data.
	 •	 It	is	suitable	for	inexperienced	users	as	MOLAP	is	easier	to	use.	

Disadvantages

	 •	 MOLAP	is	not	able	to	contain	detailed	data.	
	 •	 If	the	dataset	is	sparse	then	the	storage	utilization	may	be	low.	

14.5.3 Comparison of ROLAP and MOLAP

The comparison of ROLAP and MOLAP on basis of identified properties is given in Table 14.5.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.015
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.015
https://www.cambridge.org/core

Online Analytical Processing 433

Table 14.5 Comparison of ROLAP and MOLAP

Property ROLAP MOLAP

Information
retrieval

Information retrieval is comparatively
slow.

Information retrieval is fast.

Data Model Uses relational table. Uses sparse array to store datasets.

Type of Users ROLAP is best suited for experienced
users.

MOLAP is applicable for inexperienced
users as it is easy to use.

Disk Space It may not require space other than
available in data warehouse.

MOLAP maintains an isolated
database for data cubes.

Scalability It is scalable as it easy to add
dimension and fact in SQL query.

It has limited scalability as any
addition of new dimension requires a
complete remapping of values with
dimensions in an array.

DBMS Facility It has strong DBMS facility as it is
based on relational model.

It has poor DBMS facility due to its
different data structure.

14.6 OLAP Operations

OLAP is implemented with data cubes, on which the following operations may be applied:
	 •	 Roll-up	
	 •	 Drill-down	
	 •	 Slice	and	dice	
	 •	 Pivot	(rotate)	

14.6.1 Roll-up

Roll-up is similar to zooming out on the data cube. Roll-up is used to provide abstract level details to
user. It performs further aggregation of data by reduction in dimension or by stepping up a concept
hierarchy for a dimension. Figure 14.19 illustrates the working of roll-up.

Here, aggregation is performed on cities to climb up to state for dimension reduction. The
aggregation can also be performed on Time (Quarter) to year, etc. or individual items to group like
mobile, modem, etc.

14.6.2 Drill-down

Drill-down is opposite of roll-up. Drill-down is like zooming in on the data and is used to provide
detailed data to the user. It provides detailed information by introducing a new dimension or by
moving down a concept hierarchy for a dimension. It navigates from less detailed to more detailed
data. Figure 14.20 illustrates the working of drill-down.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.015
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.015
https://www.cambridge.org/core

434 Data Mining and Data Warehousing

Figure 14.19 Working of the Roll-up operation

Figure 14.20 Working of the Drill-down operation

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.015
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.015
https://www.cambridge.org/core

Online Analytical Processing 435

In this example, the time dimension runs down from the level of quarter to the level of month
on moving down.

14.6.3 Slice and dice

Slice and dice represent the way to view the information from different perspectives. The slice
operation gives a new sub-cube by selecting one particular dimension from a specified cube. Thus,
a slice is a subset of the cube corresponding to a single value for one or more members of the
dimensions. It results in reduction in dimension. So, a slice operation is performed when the user
wants to select one dimension of a three-dimensional cube that results in a two-dimensional slice.

The Figure 14.21 shows the working of the slice operation. In this figure, a slice operation is
performed using the criterion time ‘Q1’ for the dimension ‘time’. It selects one or more dimensions
and gives a new sub-cube.

Figure 14.21 Working of the Slice operation

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.015
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.015
https://www.cambridge.org/core

436 Data Mining and Data Warehousing

Let us consider another case of a University database system, where we have a count of the number
of students from each state in previous semesters in a particular course as shown in Figure 14.22.

Let us suppose management is interested in finding the details of their BE course. So, the
degree dimension will be fixed as degree = BE and the slice will be taken out. It will not have any
information about other degrees as shown in Figure 14.22.

Figure 14.22 The Slice operation

The information retrieved therefore is more like a two-dimensional rectangle than a cube for
degree = BE as shown in Table 14.6.

Table 14.6 Result of the slice operation for degree = BE

Year
State

2014–2015 2015–2016 2016–2017 2017–2018

Punjab 11 5 10 2

Haryana 17 0 13 5

J and K 23 2 20 1

Gujarat 31 4 23 4

Rajasthan 7 0 7 4

Himachal
Pradesh

13 8 11 6

Maharashtra 19 4 12 5

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.015
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.015
https://www.cambridge.org/core

Online Analytical Processing 437

14.6.4 Dice

The dice operation is analogous to slice operation without reduction in the number of dimensions.
The Dice operation gives a new sub-cube by selecting two or more dimensions from a specified
cube. Figure 14.23 shows the workings of the dice operation.

Figure 14.23 Working of the Dice operation

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.015
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.015
https://www.cambridge.org/core

438 Data Mining and Data Warehousing

Here, the dice operation is performed on the cube on the basis of the selection criteria of the
following three dimensions.

	 •	 (location	=	‘Amritsar’	or	‘Patiala’)	
	 •	 (time	=	‘Q1’	or	‘Q2’)	
	 •	 (item	=	‘Mobile’	or	‘Modem’)	

As discussed, a dice is attained by performing selection on two or more dimensions.
Similarly, in the case of the university database system, a dice operation can be performed to

know the number of students enrolled in both BE and BCom degrees from states Punjab, Haryana
and Maharashtra as shown in Figure 14.24.

Figure 14.24 Dice operation

14.6.5 Pivot

The pivot operation is also called rotation. This operation rotates the data axes in view to get another
presentation of data. It may include swapping of the columns and rows. Figure 14.25 illustrates how
of the pivot operation works.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.015
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.015
https://www.cambridge.org/core

Online Analytical Processing 439

Figure 14.25 Workings of the Pivot operation

 Remind Me
 OLAP is a technology that enables analysts to extract and view business data from different points of

view.
 The OLAP cube is a data structure optimized for very quick data analysis.
 The OLAP cube consists of numeric facts called measures which are categorized by dimensions.
 The OLAP cube is also called the hypercube.
 The important features of OLAP are multi-dimensional view of data, time intelligence and complex

calculations support.
 There are two types of OLAP servers: Relational OLAP (ROLAP) and Multi-dimensional OLAP (MOLAP).
 ROLAP is based on the relational model of DBMS.
 MOLAP is based on the multi-dimensional DBMS for storage and access of data.
 OLAP has four analytical operations called roll-up, drill-down, slice & dice, and pivot.
 Roll-up is similar to zooming out on the data cube.
 Drill-down is opposite of roll-up. Drill-down is like zooming in on the data and is used to provide

detailed data to the user.
 Slice and dice represent the way to view the information from different perspectives.
 The dice operation is analogous to slice operation, however it does not include reduction in the number

of dimensions.
 The pivot operation is also called rotation.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.015
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.015
https://www.cambridge.org/core

440 Data Mining and Data Warehousing

 Point Me (Books)
 Conolly, Thomas, and Carolyn Begg. 2015. Database Systems: A Practical Approach to Design,

Implementation, and Management, 6th ed. New York: Pearson Education.
 Kimball, Ralph, and Margy Ross. 2013. The Data Warehouse Toolkit: the complete guide to dimensional

modeling, 3rd ed. Indianapolis: John Wiley & Sons.
 Sharma, Gajendra. 2010. Data Mining Data Warehousing and OLAP. Delhi: S. K. Kataria & Sons.

 Point Me (Video)
 Data Warehouse Concepts | Data Warehouse Tutorial | Data Warehouse Architecture | Edureka, https://

www.youtube.com/watch?v=CHYPF7jxlik
 OLAP Operations Tutorial, https://www.youtube.com/watch?v=0ZMndP_Y32U

 Connect Me (Internet Resources)
 https://www.guru99.com/online-analytical-processing.html
 https://www.tutorialspoint.com/dwh/dwh_olap.htm
 https://en.wikipedia.org/wiki/Online_analytical_processing
 http://olap.com/olap-definition/

 Test Me
 Answer these multiple choice questions based on your learning in this chapter.
 1. Construct a data cube from the table given below. Is this a dense or a sparse data cube? If it is sparse,

identify the cells that are empty.

Product ID Location ID Number Sold

1 1 10

1 3 6

2 1 5

2 2 22

 2. Let us suppose that X university has seven departments, three types of jobs titles in each department
and it has employees from 10 states. In this scenario, management is interested in finding the count of
employees, what will be the count of all possible queries on this database? What is number of queries
which we can pre-compute and store? Justify your answer.

 3. Compare ROLAP and MOLP on following parameters:
 Information retrieval, type of users, disk space, scalability and data model
 4. Write the SQL query to display top 5 highest paid employees from employee table.
 5. An educational psychologist wants to use association analysis to analyze test results. The test consists

of 100 questions with four possible answers each. How would you convert this data into a form suitable
for association analysis?

 6. How many dimensions are selected in a slice operation? How many dimensions are selected in a dice
operation? How many fact tables are there in a star schema?

 7. Cubes are logical representation of multi-dimensional data.
 (a) True (b) False

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.015
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.015
https://www.cambridge.org/core

Online Analytical Processing 441

 8. OLAP is the process of analyzing the data, managing aggregations, partitioning information into cubes
for in depth visualization.

 (a) Yes (b) No

 Answer Keys:
 7. (a) 8. (a)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.015
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.015
https://www.cambridge.org/core

Chapter Objectives

 To discuss the major issues of relational databases

 To understand the need for NoSQL

 To comprehend the characteristics of NoSQL

 To understand different data models of NoSQL

 To understand the concept of the CAP theorem

 To discuss the future of NoSQL

After about half a century of dominance of relational database, the current excitement about NoSQL
databases comes as a big surprise. In this chapter, we’ll explore the challenges faced by relational
databases due to changing technological paradigms and why the current rise of NoSQL databases
is not a f lash in the pan.

Let us start our discussion by looking at relational databases.

15.1 The Rise of Relational Databases

Dr E. F Codd proposed the relational model in 1969. It was soon adopted by the mainstream
software industries due to its simplicity and efficiency replacing hierarchical and network models
that were prevalent at that time. The timeline showing the rise of the relational model is depicted
in Figure 15.1.

The reasons for the success of relational databases were their simplicity, the power of SQL,
support for transaction management, concurrency control, and recovery management.

Big Data and NoSQL

15

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.016
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.016
https://www.cambridge.org/core

Big Data and NoSQL 443

Figure 15.1 Rise of the relational model

15.2 Major Issues with Relational Databases

The relational data model organizes data in rows and columns that are arranged in a tabular form.
In the relational model, a row is known as a tuple which is a set of key-value pairs and a relation is
a set of these tuples. All operations in SQL consume and return relations. This foundation based
on relations provides a certain elegance and simplicity, but it also suffers some limitations. The
values in a relational tuple have to be simple (atomic)—they cannot contain any structure, such as
a nested record or a list.

This limitation is not true for in-memory data structures, which can take on much richer structures
than relations. As a result, if you want to use a richer in-memory data structure, you would have to
translate it to a relational representation to store it on disk. This problem is known as impedance
mismatch i.e. two different representations that require inter-translation as shown in Figure 15.2.

Figure 15.2 An order, which looks like a single aggregate structure in the UI, is split into many
rows from many tables in a relational database

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.016
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.016
https://www.cambridge.org/core

444 Data Mining and Data Warehousing

The impedance mismatch is a major source of frustration for application developers. In the
1990s many experts believed that impedance mismatch would lead to relational databases being
replaced with databases that replicate the in-memory data structures to disk. Later, with the advent
of object-oriented programming languages, object-oriented databases were also developed but they
could never make their way into the mainstream software development. Figure 15.3 depicts this era.

Figure 15.3 Rise of Object databases

While object-oriented languages succeeded in becoming the major programming paradigm,
object-oriented databases faded away into darkness. Instead, object-relational mapping (ORM)
frameworks were developed which removed a lot of grunt work. However, ORM frameworks were
a problem on their own. When developers tried too hard to ignore (abstract away) the database
using ORMs, the query performance would suffer.

Figure 15.4 Relational dominance in the late 1990s and early 2000s

Nevertheless, relational databases continued to dominate the enterprise computing world in the
last decade of 20th century as shown in Figure 15.4, but during the early 2000s, cracks began to
open up in their dominance.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.016
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.016
https://www.cambridge.org/core

Big Data and NoSQL 445

15.3 Challenges from the Internet Boom

In late the 1990s the Internet grew at an unimaginable pace. Soon large datasets appeared in the
form of social networks, activity logs, scientific data, etc. As the Internet became more accessible,
the number of users grew which led to exponential growth of data. This growth of data is depicted
in Figure 15.5.

Figure 15.5 Generation of lots of traffic during the internet boom

15.3.1 The rapid growth of unstructured data

With the Internet, there was a rapid growth of unstructured data. The volume of unstructured data
can be clearly observed from the following facts and figures.
	 •	 Youtube	users	upload	48	hours	of	new	video	every	minute	of	the	day.
	 •	 571	new	websites	are	created	every	minute	of	the	day.
	 •	 90%	of	world’s	data	has	been	created	in	last	two	years.
	 •	 Data	production	will	be	44	times	greater	in	2020	than	it	was	in	2009.	
	 •	 Brands	and	organizations	on	Facebook	receive	34,722	‘Likes’	every	minute	of	the	day.	
	 •	 100	terabytes	of	data	is	uploaded	daily	to	Facebook.	
	 •	 According	to	Twitter’s	own	research	in	early	2012,	it	saw	roughly	185	million	tweets	everyday	

and had more than 465 million accounts.
	 •	 30	Billion	independent	pieces	of	content	are	shared	on	Facebook	every	month.
	 •	 In	late	2011,	IDC	Digital	Universe	published	a	report	indicating	that	about	1.8	zettabytes	of	

data was created that year.

15.3.2 Types of data in the era of the Internet boom

There are three types of data as depicted in Figure 15.6. To elaborate:
 i. Structured Data
 ii. Semi-Structured Data
 iii. Unstructured Data

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.016
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.016
https://www.cambridge.org/core

446 Data Mining and Data Warehousing

Figure 15.6 Types of data

Let us discuss each type of data one by one.

Structured data

Data that has a fixed structure and can be arranged in rows and columns is known as Structured
Data. For example, a database stored in SQL, excel sheets, OLTP (Online Transaction Processing),
and such as depicted in Figure 15.7 are all structured.

They have a relational key and can be easily mapped into pre-designed fields. It is the simplest
way to manage information. But structured data represents only 5 to 10% of all the data present in
the world.

Figure 15.7 Structured data

Semi-Structured data

Semi-structured data doesn’t reside in a relational database but has some organizational properties
that make it easier to analyze. CSV file, XML and JSON documents are all examples of semi
structured documents.

Just like structured data, the semi-structured data also represents only about 5-10% of all data
world-wide.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.016
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.016
https://www.cambridge.org/core

Big Data and NoSQL 447

Unstructured data

Unstructured data represents around 80% of data. It often includes text and multimedia content.
Examples include e-mail messages, word processing documents, videos, photos, audio files,
presentations, web pages and many other kinds of business documents. Unstructured data is
everywhere. In fact, most individuals and organizations conduct their lives around unstructured data.

More examples of unstructured data include:

	 •	 Satellite	images:	This	includes	the	weather	data	or	the	data	that	the	government	captures	via	
satellite surveillance. Search Google Earth to see satellite image data.

	 •	 Scientific	data:	This	includes	seismic	imagery,	atmospheric	data,	and	high	energy	physics	(data	
from particle accelerators).

	 •	 Photographs	and	video:	This	includes	security,	surveillance,	and	traffic	video.
	 •	 Radar	or	sonar	data:	This	includes	vehicular,	meteorological,	and	oceanographic	seismic	profiles.
	 •	 Text	internal	to	any	company:	The	text	within	official	documents,	logs,	survey	results,	and	

email communications. Enterprise information actually represents a large percentage of the
text information in the world today.

	 •	 Social	media	data:	This	data	is	generated	from	the	social	media	platforms	such	as	YouTube,	
Facebook, Twitter, LinkedIn, and Flickr.

	 •	 Mobile	data:	This	includes	data	such	as	text	messages	and	location	information.
	 •	 Website	content:	This	comes	from	any	website	delivering	unstructured	content,	like	YouTube,	

Vimeo or Wikipedia.
The distribution of these three types of data is shown in Figure 15.8.

Figure 15.8 Percentage distribution of different types of data

Test Your Skills

Classify the following types of data into structured, unstructured or semi-structured.

•	 Email
•	 MS	Access
•	 IMages
•	 MS	Excel
•	 Chat	conversations

•	 Relations	/	Table
•	 Facebook
•	 Database
•	 XML

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.016
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.016
https://www.cambridge.org/core

448 Data Mining and Data Warehousing

The solution is given below:

Structured Unstructured Semi-structured

•	 MS	Access
•	 Database
•	 Relations	/	Table
•	 MS	Excel

•	 Email
•	 Images
•	 Chat	conversations
•	 Facebook

•	 XML

Since 80% of data is unstructured, there is a huge demand for database experts who can process
and analyze this data. It is important to note that traditional databases can only process structured
data which is merely 10% of the total data being generated. Thus, the Internet boom has produced
new challenges and opportunities in terms of technologies and skills.

15.4 Emergence of Big Data due to the Internet Boom

This huge surge in the volume of data gave rise to a new concept known as Big Data. According
to Gartner - ‘Big data is high-volume, high-velocity and/or high-variety information assets that
demand cost-effective, innovative forms of information processing that enable enhanced insight,
decision making, and process automation.’

Big Data involves 4 V’s as given below.
	 •	 Volume:	Data	size
	 •	 Variety:	Data	formats
	 •	 Velocity:	Data	streaming	speeds
	 •	 Veracity:	Data	trustworthiness

Let us discuss each of these terms one by one.

Volume of data

Big data implies an enormous amount of data. This data is generated by machines, networks and
human interaction on systems like social media. Big data deals with zettabytes of data.

For reference, data sizes in terms of bytes has been given below.
	 •	 103 Bytes- 1 KB (Kilobytes)
	 •	 106 Bytes- 1 MB (Megabytes)
	 •	 109 Bytes- 1 GB (Gigabytes)
	 •	 1012 Bytes- 1 TB (Terabytes)
	 •	 1015 Bytes- 1 PB (Petabytes)
	 •	 1018 Bytes- 1 EB (Exabytes)
	 •	 1021 Bytes- 1 ZB (Zettabytes)

Variety of data

Variety refers to either the sources or types of data. Traditionally, data came from sources like
spreadsheets and databases. Now data is being generated in form of emails, photos, videos, monitoring

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.016
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.016
https://www.cambridge.org/core

Big Data and NoSQL 449

devices, PDFs, audio, and more. This variety of unstructured data creates problems for storage,
mining and analyzing data.

Velocity of data

Velocity refers to the speed at which data is being generated. Data f lows in from sources like business
processes, machines, networks and human interaction with social media sites, mobile devices, sensors
and such. This f low of data is massive and continuous. To understand the velocity of data we can
consider the case of a driverless car. To make a driverless car we have to deploy thousands of sensors
and the frequency at which these sensors are generating data is in milliseconds. We have to process
this high-speed data in real time and generate the response in order to make the whole thing work.
This example clearly indicates the importance to process high-velocity data.

Veracity of data

Veracity refers to the biases, noise, and abnormality in data. It tells us about the trustworthiness of
data. To judge data veracity, we ask a simple question - ‘Is the data that is being stored, and mined
meaningful to the problem being analyzed?’ It is estimated that $3.1 Trillion (2012) a year is wasted
in the US economy due to poor data quality. The veracity of data analysis is the biggest challenge
when compared to volume and velocity.

These 4 V’s of big data are illustrated by the info-graphics as shown in Figure 15.9.

Figure 15.9 Info graphic of 4 V’s of big data

15.5 Possible Solutions to Handle Huge Amount of Data

Whenever a new challenge arises, we first try to solve it using existing technologies and skills. During
the Internet boom relational database was dominant, and so, solutions to the problem of big data
were attempted by using relational databases. The first solution was to scale up resources. Scaling
up implies bigger machines, more processors, disk storage and memory as shown Figure 15.10.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.016
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.016
https://www.cambridge.org/core

450 Data Mining and Data Warehousing

Figure 15.10 Scaling up using a large centralized server

But bigger machines get more and more expensive, and finally there are limits to size. This
situation is depicted in the diagrams in Figure 15.11.

Figure 15.11 Handling of huge data volume through the relational model

Soon we reached our limits. The alternative solution was to scale out i.e. to use lots of small
machines in a cluster as shown in Figure 15.12. A cluster of small machines can use commodity
hardware and ends up being cheaper than large servers. It is also more resilient — while individual
machine failures are common, the overall cluster can be built to keep going despite such failures,
providing very high reliability.

Figure 15.12 Cluster computing emerged as a winner

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.016
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.016
https://www.cambridge.org/core

Big Data and NoSQL 451

As large organizations moved towards using clusters, this revealed a new problem — relational
databases were not designed to run efficiently on clusters such as depicted in Figure 15.13. Clustered
relational databases, such as the Oracle RAC or Microsoft SQL Server, work on the concept of a
shared disk subsystem. But, tuning relational databases for cluster environments is considered an
‘unnatural act’ by computers. This was accompanied by some licensing issues too. Commercial
relational databases are usually priced on a single-server assumption, so running them on a cluster
raised prices and led to frustrating negotiations with purchase departments.

Figure 15.13 SQL in cluster environment

This mismatch between relational databases and clusters led some organizations to consider an
alternative route to data storage.

15.6 The Emergence of Technologies for Cluster Environment

Google and Amazon started their work based on cluster environments and had already tried out
various cluster technologies. They were at the forefront of the effort of running large clusters.
Furthermore, they were handling huge amounts of data. All this forced them to develop an alternative
solution to relational databases. As the 2000s went on, both companies produced brief but highly
influential papers about their efforts: BigTable from Google and Dynamo from Amazon as shown
in Figure 15.14.

Figure 15.14 BigTable and Dynamo for cluster environments

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.016
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.016
https://www.cambridge.org/core

452 Data Mining and Data Warehousing

15.7 Birth of NoSQL

The usage of the term ‘NoSQL’ that is so common today can be traced back to a developers’ meet
organized on June 11, 2009, in San Francisco by Johan Oskarsson, a software developer based in
London. The example of BigTable and Dynamo had inspired a bunch of projects experimenting
with alternative data storage strategies, and discussions about these had become a feature of better
software conferences around that time. Johan was interested in finding out more about some of
these new databases while he was in San Francisco for a Hadoop summit. Since he had little time
there, he felt that it wouldn’t be feasible to visit them all, so he decided to host a ‘meet-up’ where all
could come together and present their work.

Johan wanted a nice name for the meet-up—something that would make a good Twitter hashtag:
short, memorable, and without too many Google hits so that a search on the name would quickly
find the meet. He asked for suggestions on the #cassandra IRC channel. At last, he selected ‘NoSQL’
based on a suggestion from Eric Evans as illustrated in Figure 15.15. While the selected name
had the disadvantage of being negative and not really descriptive these systems, but it did fit the
hashtag criteria well. At that time, they were thinking of only a single meeting to name and were
not expecting the name to become generic.

Figure 15.15 NoSQL Meet

The term ‘NoSQL’ caught on like wildfire, but it never had a strong technical definition. As the
original call for the meet-up asked for ‘open-source, distributed, non-relational databases’ hence
NoSQL is attached to all these features. In the meet-up, experts from Voldemort, Cassandra,
Dynomite, HBase, Hypertable, CouchDB, and MongoDB participated as shown in Figure 15.16.

Figure 15.16 Participants of NoSQL meet

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.016
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.016
https://www.cambridge.org/core

Big Data and NoSQL 453

15.8 Defining NoSQL from the Characteristics it Shares

There is no generally accepted definition of the term NoSQL. It is defined on the basis of some
common characteristics of the databases that tend to be called ‘NoSQL.’

The important characteristics of NoSQL are given below, are also illustrated in Figure 15.17.
	 •	 It	is	not	based	on	the	relational	model;	thus,	it	is	non-relational.
	 •	 These	databases	are	generally	open-source.	
	 •	 Most	NoSQL	databases	are	driven	by	the	need	to	run	on	clusters.	Thus,	they	are	cluster-friendly.
	 •	 NoSQL	databases	are	used	to	address	the	needs	of	the	early	21st-century	web.
	 •	 NoSQL	databases	operate	without	a	schema,	allowing	you	to	 freely	add	fields	 to	database	

records. This is particularly useful when dealing with non-uniform data.

Figure 15.17 Features of NoSQL

15.9 Some Misconceptions about NoSQL

A general misconception about NoSQL is that it does not use SQL. This is not true. Most of
NoSQL databases have their own query language. For example, Cassandra uses CQL which is
exactly like SQL.

Another important point to note is that ‘NoSQL,’ does not mean ‘no’ to SQL? Rather NoSQL is
a smart acronym for ‘Not Only SQL’ but this interpretation has a couple of problems. Most people
write ‘NoSQL’ whereas ‘Not Only SQL’ should be written as ‘NOSQL.’

15.10 Data Models of NoSQL

A data model allows us to perceive and manipulate our data. The data model describes how we
interact with the data in the database. As we know, the dominant data model for the last couple
of decades was the relational data model, which is best visualized as a set of tables or rather like a
page of a spreadsheet.

One of the most obvious shifts with NoSQL is to move away from the relational model. With
NoSQL other data models appeared; mainly categorized as follows:
 i. Key-value data model
 ii. Document data model

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.016
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.016
https://www.cambridge.org/core

454 Data Mining and Data Warehousing

 iii. Column-family model
 iv. Graph data model

These models and systems based on these models are depicted in Figure 15.18.

Figure 15.18 NoSQL data models

15.10.1 Key-value data model

A key-value is a simple hash table, primarily used when all access to the data is via the primary key.
Think of a table in a traditional RDBMS form with two columns, such as ID and NAME, the ID
column being the key and NAME column storing the value. In an RDBMS, the NAME column
is restricted to storing a data value of single data type, for instance, string. But, in a key-value data
model, the VALUE is an aggregate containing the whole information corresponding to the key,
i.e., ID as shown in Figure 15.19.

Figure 15.19 Key-value data model

Let us consider a very abstract example of a banking system to understand the concept of a key-
value data model. Suppose we are using a relational model to store details about every transaction
with respect to the account numbers and we are storing account number, amount, type and date for
every transaction in a relational table as shown in Table 15.1.

Now, in order to print an account statement for a particular account number we have to search the
whole table to find out the latest transactions for that particular account number. If the database is
very huge, containing millions of records then it may be distributed over more than one computer.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.016
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.016
https://www.cambridge.org/core

Big Data and NoSQL 455

In such a case, a query has to run on multiple computers to get the account statement. This may
not be the best way to query data in case of a cluster environment.

Table 15.1 The relational model to store account information

Account Number Balance Type Date

10001 20000 Withdraw 12-12-2017

10004 30000 Deposit 12-12-2017

10003 80000 Withdraw 12-12-2017

10008 60000 Deposit 12-12-2017

10009 20000 Withdraw 12-12-2017

10002 90000 Withdraw 12-12-2017

…

10001 10000 Withdraw 22-12-2017

10009 7000 Withdraw 22-12-2017

10002 80000 Withdraw 22-12-2017

10003 60000 Withdraw 22-12-2017

10004 40000 Deposit 22-12-2017

Now consider an alternative scenario, where we are storing this data using a key-value data
model. In this case, every account number will act as a key and the details about its transactions
are stored as its value. For example, account number 10001’s transactions are stored as its values as
shown in Figure 15.20.

Now to print the account statement for any account number we just need to search for the key
field of the given account number and after finding that particular key we just need to print its
corresponding value. In this case, the data about a single account will be available only on a single
computer making it ideal for a cluster environment.

Some of the popular key-value databases are Riak, Redis, Memcached DB, Berkeley DB,
HamsterDB and Amazon DynamoDB. Riak is the commonly used key-value based software, Table
15.2 compares, terminologies used in Riak and RDBMS.

Table 15.2 Comparison of terminologies used in Oracle and Riak

Riak RDBMS

Key Row id

Bucket Table

Key-value Row

Riak Cluster Database instance

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.016
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.016
https://www.cambridge.org/core

456 Data Mining and Data Warehousing

Figure 15.20 Key-value model to store account information

15.10.2 Column-family data model

Column-family based databases, such as Cassandra, HBase, Hypertable, and Amazon SimpleDB,
allow you to store data with keys mapped to values and the values are further grouped into multiple
column families where each column family is a map of data as shown in Figure 15.21.

Figure 15.21 Column-family data model

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.016
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.016
https://www.cambridge.org/core

Big Data and NoSQL 457

The Column-family model is a two-level aggregate structure. On the first level is the key and the
second-level values are referred to as columns. It allows picking out a particular column, so to get a
particular customer’s name we could do something like: get(‘1234’, ‘name’) as shown in Figure 15.22.

Figure 15.22 Representing customer information in a Column-family structure

Cassandra is the commonly used column-family based database, Table 15.3 compares,
terminologies used in RDBMS and Cassandra.

Table 15.3 Comparison of terminologies used in RDBMS and Cassandra

RDBMS Cassandra

Database Keyspace

Row Row

Table Column Family

Database instance Cluster

Column (same throughout the rows) Columns (can be unique for each row)

15.10.3 Document data model

Documents are at the core of document databases. To understand the working of document model
let us consider, a bill generated by an e-commerce store as shown in Figure 15.23.

The bill contains the following details: order number, customer number, the detail of items
purchased and the payments summary. In case of the relational model, to generate this bill we
have to join multiple tables. For example, the order number will be extracted from the order table,
customer details from the customer table, the detail of items purchased from the order detail table
and payment details from the credit card table as shown in Figure 15.23.

In the case of a cluster environment, these tables may exist on different computers and running
a join query across multiple computers is not very efficient. Alternatively, we can store this bill
document itself in the database on a single computer. Of course, it would not be normalized but
it still would be a more efficient approach in case of the cluster environment. This type of storage
comes under the Document Data model. It is non-relational and is usually supports the JSON,
XML, CSV, OR TSV formats.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.016
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.016
https://www.cambridge.org/core

458 Data Mining and Data Warehousing

Figure 15.23 Document model

In the Document data model, the database stores and retrieves documents. These documents are
self-describing, hierarchical tree data structures which can consist of maps, collections, and scalar
values as shown in Figure 15.24.

Figure 15.24 Document data model

MongoDB is the commonly used document data model based software, Table 15.4 compares,
terminologies used in MongoDB and RDBMS.

Table 15.4 Comparison of terminologies used in MongoDB and RDBMS

MongoDB RDBMS

Database schema

Collection Table

_id Row id

DBRef Joins

MongoDB instance Database instance

document Row

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.016
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.016
https://www.cambridge.org/core

Big Data and NoSQL 459

15.10.4 Graph databases

Graph databases have existed long before the term ‘NoSQL’ was coined. They have a special place
as shown in Figure 15.25. Most NoSQL databases were inspired by the need to do computation
on clusters, which led to aggregate-oriented data models of large records with simple connections.

Figure 15.25 NoSQL data models

To understand the working of the Graph model, let us consider the case of a social networking
platform such as Facebook that maintains a social graph for each user. In case of the relational
model, we can store a friend’s information in a FRIEND table that will contain the user id of the
friend as shown in Table 15.5.

Table 15.5 Friends database

UserID Friend_UserID

100 102

102 101

101 102

100 103

103 104

104 102

102 105

Now, in order to perform any activity such as fetching updates from the friend’s wall, we will
need to write a complex query involving multiple joins.

In such a scenario, it is better to store the graph itself in the database. In the graph data database
we have nodes that are connected by edges. Once you have built up a graph containing nodes and
edges, a graph database allows you to query this network and apply operations that work with a
graph data structure. This is the important difference between a graph and relational databases.
Although relational databases can implement relationships using foreign keys, the joins required

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.016
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.016
https://www.cambridge.org/core

460 Data Mining and Data Warehousing

to navigate around can get quite expensive—which means performance is often poor for highly
connected data models. Graph databases make traversal along the relationships very light-weight.

Neo4J is a popular database based on the graph data model. Creating a graph is as simple as
creating nodes followed by declaring a relationship among nodes.

For instance, let us create two nodes, Rahat and Rishan:

Node rahat = graphDb.createNode();

rahat.setProperty(“name”, “Rahat”);

Node rishan = graphDb.createNode();

rishan.setProperty(“name”, “Rishan”);

Creating Relationship

rahat.createRelationshipTo(rishan, FRIEND);

rishan.createRelationshipTo(rahat, FRIEND);

In Figure 15.26, we have a web of information whose number of nodes is very small but there is
a rich structure of interconnections between them. This is ideal for capturing any data consisting
of complex relationships such as social networks, product preferences, or eligibility rules. Thus,
Graph databases store entities and relationships between these entities. Entities are also known as
nodes which can have various properties. Relations are known as edges that can also have properties.
Edges may have directional significance attached to them.

Figure 15.26 An example of the Graph structure

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.016
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.016
https://www.cambridge.org/core

Big Data and NoSQL 461

15.11 Consistency in a Distributed Environment

Consistency in the relational model is achieved with the ACID (Atomicity, Consistency, Isolation,
Durability) property, while NoSQL follows BASE (Basically Available Soft-state Eventual
consistent) as illustrated in Figure 15.27.

Figure 15.27 RDBMS versus NoSQL

15.12 CAP Theorem

The CAP (Consistency, Availability, Partition tolerance) theorem, also known as Brewer’s theorem,
states that it is impossible for a distributed computer system to simultaneously guarantee all three
of the following three characteristics.

Consistency (all nodes see the same data at the same time)
Availability (a guarantee that every request receives a response irrespective of whether it was

successful or failed)
Partition tolerance (the system continues to operate despite arbitrary message loss or failure of

part of the system)
According to the theorem, a distributed system cannot guarantee all three of these characteristics

at the same time but may satisfy any two of them; sometimes also known as ‘two out of three’ concept.
It means that if a system is partitioned in a network environment, then we can achieve either

consistency of the system or availability of the system as illustrated in Figure 15.28.

Figure 15.28 CAP theorem

It means if a network link is broken between two sites in a distributed environment as shown in
Figure 15.29, then any update operation on site X will not be ref lected at site Y. Thus, the system
will become inconsistent. In order to avoid that, we have to shut down the service, rendering the
system unavailable. Thus, in case of a partitioned network, if we want to achieve consistency then
availability cannot be achieved and if want to make our system available in spite of the partition then

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.016
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.016
https://www.cambridge.org/core

462 Data Mining and Data Warehousing

consistency will be lost. Thus, CAP theorem states that it is impossible for a distributed computer
system to simultaneously have consistency, availability, and partition tolerance. Generally, depending
upon the need of an application, it is a choice between ‘two out of three’.

Figure 15.29 Consistency in a distributed environment

15.13 Future of NoSQL

After discussing features and models of NoSQL, we can conclude that NoSQL makes the process
of software development easier and can handle large-scale data. But a billion-dollar question is -
‘What will be the future of NoSQL (illustrated in Figure 15.30)?’

Figure 15.30 Future of NoSQL?

The major strength of the relational model is its ACID properties. It means that data is always
consistent, but NoSQL works in the shadow of the CAP theorem. In a financial application, we
cannot compromise on the consistency of data, so in future, we will continue to use relational model
for all financial applications. But, in applications such as e-commerce, where availability is the major
concern, NoSQL data models perform better than relational models because of ease of development
and ability to handle large-scale data as illustrated in Figure 15.31.

Figure 15.31 Strengths of NoSQL

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.016
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.016
https://www.cambridge.org/core

Big Data and NoSQL 463

Similarly, in applications like social networking websites where queries are based on users and
their activities, graph-based models perform better. So, in future, we will mix different technologies
— that programmers would use the appropriate technology for the specific job at hand. In the field
of Big Data field, a new term has emerged called ‘polyglot persistence’ as illustrated in Figure 32.
Polyglot persistence is commonly used to define this hybrid approach.

Figure 15.32 The future is Polyglot persistence

For instance, an e-commerce platform may require a hybrid approach to information as shown
in Figure 15.33.

Figure 15.33 Polyglot persistence in a real environment

For shopping cart and session data, the key-value store is the best-suited model; to store
completed order information the document model is best; while for inventory and item price the
relational model is optimal. For a customer’s social graph, a graph-based data model is best suited.
In the future, we can expect to see lots of hybrid data models being used. In a nutshell, in future
the relational model and NoSQL will both co-exist and will be used in a hybrid manner to provide
full e-commerce solutions.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.016
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.016
https://www.cambridge.org/core

464 Data Mining and Data Warehousing

15.14 Difference between NoSQL and Relational Data Models
(RDBMS)

There are two major differences between NoSQL and RDBMS. First, RDBMS uses a relational
data model whereas NoSQL provides us with many options, each suited for a different scenario. So
in RDBMS, we put the data in a bunch of tables and query it using complex join operations in order
to present useful information to the user. On the other hand, in NoSQL, the data may be stored in
aggregate form keeping software development as simple as possible.

Secondly, RDBMS requires a rigid schema where NoSQL is schema-less. Relational technology
requires strict definition of a schema prior to storing any data into a database. Changing the schema
once data is inserted is extremely disruptive and to be completely avoided – the exact opposite of the
behavior desired in the Big Data era, where application developers need to constantly – and rapidly –
incorporate new types of data to enrich their applications. In comparison, NoSQL allows changing
the schema or the format of the data being inserted any time, without application disruption.

NoSQL also may not guarantee full ACID (atomicity, consistency, isolation, durability) property
but still has a distributed and fault tolerant architecture.

 Remind Me
 The reasons for the success of relational databases were their simplicity, power of SQL, support for

transaction management, concurrency control, and recovery management.
 The biggest frustration with the relational database is of impedance mismatch. The difference between

the relational model and the in-memory data structures is known as impedance mismatch.
 During the Internet boom, to store huge data clusters appeared as a possible solution. But, the mismatch

between relational databases and clusters led some organization to consider an alternative route to
data storage.

 A NoSQL database provides a mechanism for storage and retrieval of data based on a bunch of data
models other than the relational model. Motivations for this approach include simplicity of design,
horizontal scaling and finer control over availability.

 The data model (e.g., Key-value data model, Document data model, Column-family model and Graph
data model) differs from the RDBMS, and therefore some operations are faster in NoSQL and some
are faster in RDBMS.

 The CAP theorem says that if a system is partitioned in a network environment, then we can achieve
either consistency of the system or availability of the system.

 In future, ‘polyglot persistence’ which is a hybrid approach will become popular.

 Point Me (Books)
 Sadalage, Pramod J., and Martin Fowler. 2013. NoSQL Distilled: A Brief Guide to the Emerging World

of Polyglot Persistence. New York: Pearson Education.

 Point Me (Video)
 Introduction to NoSQL By Martin Fowler https://www.youtube.com/watch?v=qI_g07C_Q5I
 NoSQL Introduction By Parteek Bhatia https://www.youtube.com/watch?v=6Pp88Qc1CvE&t=336s

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.016
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.016
https://www.cambridge.org/core

Big Data and NoSQL 465

 Connect Me (Internet Resources)
 https://martinfowler.com/books/nosql.html
 https://www.w3resource.com/mongodb/nosql.php
 https://www.simplilearn.com/introduction-to-nosql-databases-tutorial-video
 https://www.tutorialspoint.com/articles/what-is-nosql-and-is-it-the-next-big-trend-in-databases
 https://intellipaat.com/blog/nosql-database-tutorial/

 Test Me
 Answer these questions based on your learning in this chapter.
 1. Cluster technology followed by Amazon is
 2. MongoDB is based on model
 3. Cassandra is based on
 4. The Graph model in this chapter is
 5. NoSQL model used ACID
 6. models used aggregate model
 7. Different columns in a row are allowed in model
 8. BASE stands for
 9. CAP stands for
 10. For completed orders which model needs to be used

 Answer Keys:
 1. Dynamo 2. Document 3. Column family model 4. neo4j
 5. Graph model
 6. Key-value data model, Document data model and Column-family model
 7. Column-family model
 8. Basically Available Soft state Eventual Consistency
 9. Consistency, Availability, Partition tolerance 10. Document data model

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.016
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.016
https://www.cambridge.org/core

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592.016
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.016
https://www.cambridge.org/core

Index 467

approaches for transaction database storage, 243–245
simple transaction storage, 244
horizontal storage, 245
vertical representation, 245

Apriori–TID algorithm for generating association
mining rules, 282–285

apriori algorithm, 246–280
ARFF (attribute relation file format), 32,33
association mining, 229–233,282, 319, 327, 360–362

support, 234
confidence, 235, 236
lift, 237
naïve algorithm for finding association rules, 240–242

CAP theorem, 461, 462
classification, 65–69,128–139, 216, 219

types, 66
working, 67

classification of unlabeled data, 216
closed and maximal itemsets, 280–281

partitioning clustering, 162–180
k-means clustering, 162–195
hierarchical clustering algorithms (HCA), 181
agglomerative clustering, 182
divisive clustering, 195–198
density-based clustering, 199

database segmentation, 24
data cube, 421–422
data marts, 398–400
data mining, 17–22

techniques, 23–24
data mining vs. machine learning, 25–27

Index

data preprocessing, 55–62
its need, 55–57
its methods, 58–62

data warehouse, 394–397
defining data warehousing, 395
data warehouse architecture, 395
benefits of data warehousing, 397
comparative study of data warehouse with OLTP

and ODS, 401
data warehouse schema, 405–408

star schema, 408, 409, 412
snowflake schema, 410, 411
fact constellation schema (galaxy schema), 412
comparison among star, snowflake and fact

constellation schema, 413
decision tree classifier, 69–110, 128–139, 148–150
deviation detection, 24
direct hashing and pruning, (DHP) 285–296
distance metrics, 157–160

euclidean distance, 157–158
Manhattan distance, 159
Chebyshev distance, 160

dynamic itemset counting, (DIC)

fact table, 407
fingerprinting, 371
fp growth algorithm, 301–313

advantages, 314

hyperlink induced topic search (HITS) algorithm,
372–376

information gain, 72, 90
information theory, 70, 71

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:49:34, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592
https://www.cambridge.org/core

468 Index

link analysis, 24

machine learning, 1–14
applications, 1
definition, 5
classification of its algorithms, 5–12

metrics to assess the quality of classifiers, 119
confusion matrix, 120
precision, 121, 385
recall, 121, 385
F-measure, 122

naïve Bayes method, 110–117

NoSQL data models, 459, 462
key-value data model, 454–455
column-family data model, 456
document data model, 457–458
graph databases, 459–460

NoSQL
Defining NoSQL, 453
NoSQL vs. RDBMS, 464

OLAP, 416–438
defining OLAP, 416
OLAP applications, 417
OLAP features, 417
OLAP benefits, 418
OLAP strengths, 418
comparison between OLTP and OLAP, 418
differences between OLAP and data mining, 419

OLAP operations, 432–438
roll-up, 433
drill down, 435
slice and dice, 437
pivot, 438

OLAP servers, 429–432
relational OLAP, 430
MOLAP, 431
ROLAP vs. MOLAP, 432

operational data store, 388–393
types of ODS, 390
architecture of ODS, 391–392
advantages of the ODS, 393

PageRank algorithm, 376, 377, 379
predictive modeling, 24

reinforcement learning, 14–16
resemblance and containment, 370
R language, 42–54

its introduction, 42
features, 43
basic operators, 45–47

search engine, 246, 368, 375–378
precision and recall of search engine, 385

split algorithm based on gini index, 90
supervised learning, 5, 7, 10, 13, 24

unsupervised learning, 10–14, 24, 155

web content mining, 369–370

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635592
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 23:49:34, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592
https://www.cambridge.org/core

Colour Plates

Figure 3.3 Sample of the Iris flower

Figure 3.13 Histogram for Petal width

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.017
https://www.cambridge.org/core

470 Colour Plates

Figure 3.14 Histograms for all attributes of Iris dataset

Figure 3.15 Attribute statistics

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.017
https://www.cambridge.org/core

Colour Plates 471

Figure 3.20 Plotting of dataset

Figure 6.11 Decision tree accuracy statistics

Figure 6.14 Confusion matrix

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.017
https://www.cambridge.org/core

472 Colour Plates

Figure 6.20 Size and leaves of the tree

Figure 6.37 Implementation of the decision tree in R

Figure 6.40 Prediction by the decision tree on testing dataset

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.017
https://www.cambridge.org/core

Colour Plates 473

Figure 7.2 Representation of Euclidean distance

Figure 7.3 Representation of Manhattan distance

Figure 7.4 Representation of Chebyshev distance

 Figure 7.8 Plot of data for k=2 Figure 7.9 Plot of data for k=3

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.017
https://www.cambridge.org/core

474 Colour Plates

Figure 7.23 Another case of density reachability

Figure 7.24 Some more examples of DBSCAN

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.017
https://www.cambridge.org/core

Colour Plates 475

Figure 8.8 Cluster visualization

Figure 8.9 Cluster visualization for Petal length vs. Petal width

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.017
https://www.cambridge.org/core

476 Colour Plates

Figure 8.10 Cluster visualization with respect to Petal length vs. Petal width

Figure 8.11 Cluster visualization with respect to Sepal length vs. Sepal width

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.017
https://www.cambridge.org/core

Colour Plates 477

Figure 8.13 Cluster visualization with respect to Sepal length vs. Sepal width

Figure 8.32 Plot of Petal length vs. Petal width after clustering

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635592.017
https://www.cambridge.org/core

	Cover
	Front Matter
	Data Mining and DataWarehousing: Principles and Practical Techniques
	Copyright
	Dedication
	Contents
	Figures
	Tables
	Preface
	Acknowledgments
	1 Beginning withMachine Learning
	2 Introduction to Data Mining
	3 Beginning withWeka and R Language
	4 Data Preprocessing
	5 Classification
	6 ImplementingClassification in Weka and R
	7 Cluster Analysis
	8 ImplementingClustering with Weka and R
	9 Association Mining
	10 Implementing AssociationMining with Weka and R
	11 Web Miningand Search Engines
	12 Data Warehouse
	13 Data Warehouse Schema
	14 Online Analytical Processing
	15 Big Data and NoSQL
	Index
	Colour Plates

 HistoryItem_V1
 InsertBlanks

 Where: before current page
 Number of pages: 1
 same as current

 1
 1
 1
 482
 277

 CurrentAVDoc

 SameAsCur
 BeforeCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

