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Preface 

W e  live in an astonishingly complex world. Yet what we do in 
our everyday lives seems simple enough. Most of us conform to 
society's rules, pursue familiar strategies, and achieve reasonably 
predictable outcomes. In our role as economic agents, we simply 
peddle our wares and earn our daily bread as best we can. 

So where on earth does this astonishing complexity come from? 
Much of it is ubiquitous in nature, to be sure, but part of it lies 
within and between us. Part of it Comes from those games of inter- 
action that humans play-games against nature, games against 
each other, games of competition, games of cooperation. In bygone 
eras, people simply hunted and gathered to come up with dimer. 
Today you can find theoretical economists scratching mysterious 
equations on whiteboards (not even blackboards) and getting paid 
to do this. In the modern economy, most of us make our living in a 
niche created for us by what others do. Because we've become 
more dependent on each other, our economy as a whole has be- 
come more strongly interactive. 

A strongly interactive economy can behave in weird and won- 
derful ways, even when we think we understand all its individual 
parts. The resulting path of economic development is packed with 
unexpected twists and turns, reflecting the diversity of decisions 
taken by different economic agents. But an understanding of eco- 
nomic outcomes requires an understanding of each agent's beliefs 
and expectations and the precise way in which the agents interact. 
In a strongly interactive economy, the cumulative pattern of inter- 
actions can produce unexpected phenomena, emergent behavior 
that can be lawful in its own right. Yet this is far from obvious if we 
study economics. 

Most of twentieth-century economics has been reductionist in 
character. Reductionism tries to break down complex economies 
ilito simpler parts, like industries and households, and those parts, 
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in turn, into even simpler ones, like jobs and persons. Although 
this approach has enjoyed some success, it has also left us with a 
major void. Reductionism can never tell us how our economy 
really works. To find this out, we must combine our knowledge of 
the smallest parts, the individual agents, with our knowledge of 
their interactions to build up a behavioral picture of the whole 
economy. To date, macroeconomics has not devised a convincing 
way of doing this. 

Almost thirty years of research have convinced me that the con- 
ventional wisdom in economics fails to explain kcow economies be- 
have collectively and develop over time. There are several reasons 
for this. First, the key elements of our economy, human agents, are 
not homogeneous. They're amazingly diverse. Second, human rea- 
soning is not just deductive, it's often inductive, intuitive, adap- 
tive. Third, geographical and economic patterns that we take for 
granted have not been forged by economic necessity alone. They're 
the outcome of a highly evolutionary interplay between two differ- 
ent architects: the expected and the unexpected. Yet it's the world 
of the expected, where necessity rules, that dominates our classical 
views about social and economic behavior. This classical economic 
world is a fully deterministic one, a world of stasis resting at a sta- 
ble equilibrium. 

A world at rest is a world that isn't going anywhere. Static deter- 
minism has been bought at the expense of structural change. Our 
world is not static, but incredibly dynamic. And it's this dynamic 
world, where chance reigns supreme, that has triggered most of 
our economy's significant developments. To learn how to live with 
the unexpected, we must look into this dynamic world more 
deeply. And that's precisely what this book does. What we find is a 
world that's often far from equilibrium, a world that's teeming 
with complex interactions between coevolving agents, a world that 
literally begs us to be more adaptive. These are the real games that 
agents play. In short, we live in a world of morphogenesis, work- 
ing to shape our future just as it has carved out our past. 

What follows is a search for the laws of complexity that govern 
how human agents interactively alter the state of economies. 
Economies don't merely evolve over time, they coevolve. What 
people believe affects what happens to the economy, and what 
happens to the economy affects what people believe. Such positive 
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feedback loops are the signature of coevolutionary learning. Some 
investment gurus call this process "reflexivity." In a nutshell, suc- 
cess or failure for various agents depends on which other agents 
are present, because their own state depends on the states of these 
other agents. Agents learn and adapt in response to their unique 
experiences, such that the aggregate economy evolves in a manner 
determined by the pattern of their interactions. An increasing re- 
turns economy can catalyze unforeseen chain reactions of change, 
so much so that the collective outcome can surprise everyone. 
Economies can and do self-organize. Sometimes something unex- 
pected emerges. 

Some of this emergent behavior is discussed and illustrated in 
the pages of this book, which takes a look at a handful of unex- 
pected socioeconomic changes during the past millennium. We 
find ourselves poised on the threshold of a new kind of social sci- 
ence: the science of surprise. Oddly enough, we seem to be per- 
forming in a prearranged way, as if under the spell of an invisible 
choreographer. The characteristic style of this choreographer sug- 
gests an implicit faith in two things: adaptive learning and self- 
organization. If this is true, then the social sciences are entering a 
new era, one in which more and more economists will conduct ex- 
periments inside their own computers. Instead of traditional, 
closed-form models, the new scientific tool for these lab experi- 
ments will be agent-based simulations. Welcome to the Age of Ar- 
tificial Economics! 
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Chance and Necessity 

Everything existing in the universe is thefrrlit ofchance and ofnecessity. 

-Democritus 

"Wetting" the Appetite 

According to the MIT economist Paul Krugman, we're caught up 
in the "Age of Diminished Expectations."l Despite the recent 
resurgence in U.S. growth, many other parts of the global economy 
are not doing well, compared with previous expectations. This un- 
healthy mixture of bliss and disaster has triggered a great deal of 
critical debate about economics. In many parts of the Western 
world, it's been the age of the policy entrepreneur: that economist 
who tells politicians precisely what they want to hear. Thankfully, 
the nonsense preached by some of these opportunists has been 
condemned by most serious economists.2 But the fallout still 
lingers. In the eyes of an unforgiving public, misguided policy en- 
trepreneurship has undermined the credibility of economics as a 
trustworthy discipline. 

Oddly enough, the problem with economics is much more chal- 
lenging than most policy entrepreneurs and many academic econ- 
omists would have us believe. The truth is that we know very little 
about how people, societies, and economies are likely to change as 
time goes On. But admission of ignorance is hardly a suitable trait 
for a policy entrepreneur or an academic, so it's difficult to get this 
message of uncertainty across to the public. 

Krugman tells an amusing story of an Indian-born economist, 
who tried to explain his personal theory of reincarnation to his 
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graduate economics class: "If you are a good economist, a virtuous 
economist," he said, "you are reborn as a physicist. But if you are 
an evil, wicked economist, you are reborn as a sociologist."3 If you 
happen to be a sociologist, you'd have every right to be upset by 
this. How could a subject that's fundamentally about human De- 
ings, with all their idiosyncrasies, possibly hope to solve its prob- 
lems with the mathematical certainty of the hard sciences? You're 
probably thinking that there's too much mathematics in the eco- 
nomics journals. Economics is not just mathematics. Fondly 
enough, the Indian-born economist was making a different point. 
His real message was that the more we learn about the economy, 
the more complicated it seems to get. Economics is a hlzrd subject. 
Economists like Krugman believe that it's harder than physics.4 

1s economics harder than physics? Before we try to answer this 
question, let's hear what another well-known economist has to say. 
Paul Samuelson feels that we can't be Sure whether the traditional 
methods of the physical sciences-observation, quantitative mea- 
surements, and mathematical model building-will ever succeed 
in the study of human affairs.5 Part of his reasoning is that physics 
relies on controlled experiments, whereas in the socioeconomic 
fields it's generally impossible to perform such experiments. Nev- 
ertheless, experiments in the form of computer simulation have be- 
gun in earnest in the social sciences. In the short space of twenty 
years, a small group of evolutionary economists have embarked on 
a fascinating journey toward wider use. of experimental methods. 
As we'll See shortly, agent-based simulation is at the forefront of 
this new world of economic theorizing. 

Samuelson also claims that physics is not necessarily as lawful as 
it appears, because the so-called laws of physics depend subjec- 
tively on one's point of view. How we perceive or interpret the ob- 
served facts depends on the theoretical spectacles we wear. Part of 
his argument is based on an ambiguity drawn from the visual Per- 
ception of art. Take a close look at Figure 1.1. Do you see birds gaz- 
ing to the left or antelopes staring to the right? Perhaps you see 
rabbits instead of antelopes? All answers are admissible, but some- 
one who has no knowledge of living creatures might say that each 
shape is simply a continuous line between two points plus a closed 
curve that, unlike a bird or an antelope or a rabbit, is topologically 
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FIGURE 1.1 Reality can differ depending on the kind 
of glasses a Person is wearing. 

equivalent to a straight line plus a circle. There's no universal truth 
in a picture like this. Multiple impressions prevail. 

Samuelson's point about the subjectivity of science is an impor- 
tant one. Various leading schools of scientific thought argue that 
physical reality is observer-created.6. If there are doubts about the 
existence of a unique, observer-independent reality in the physical 
world, what are our chances of coming up with universal laws that 
are mathematical in the fuzzy world of human decisionmaking? 
Rather slim, one would think. But before we launch into a deeper 
discussion of how law-abiding our socioeconomic behavior might 
be, let's take a closer look at the conventional view of what physics 
and economics are construed to be. 

Physics is the science of matter and eriergy and their interactions. 
As such, it does very well at explaining simple, contained sys- 
tems-such as planets orbiting the sun. In classical physics (and in 
chemistry, for that matter), the conceptual palette used to paint the 
big picture is thermodynamics. Of great significance in this field is 
the equilibrium state, that full stop at the end of all action. 

To gain a mental picture of a state of equilibrium, consider what 
would happen if you released a marble near the top of a mixing 
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bowl, pushing it sideways. There are no prizes for guessing where 
it will end up. After rolling around briefly, it falls to the bottom of 
the bowl under the influence of gravity. Eventually it settles in the 
center where its motion ceases. The convex shape of the bowl "at- 
tracts" the marble to its base. In mathematical jargon, this point of 
stability is even called an nttractor. Once it reaches that safe haven, 
it's pretty much like the equilibrium state of a chemical reaction. 
It's trapped in a minimum energy state. To simylify matters, we'll 
just say that it's trapped in the world of stasis.7 

A system at a stable equilibrium is trapped. It's like a crystal, not 
doing anything or going anywhere. It becomes immortal, forever 
frozen into an ordered state. With the advent of Newtonian me- 
chanics, much of physics found itself locked inside this world of 
stasis. And for very good reasons. Newton's laws of motion 
strengthened our faith in this immortal world, because his laws are 
a classical example of determinism. At the dawn of the twentieth 
century, most physicists zgreed that the fundamental laws of the 
universe were deterministic and reversible. The future could be 
uniquely determined from the past. All that occurred had a defi- 
nite cause and gave rise to a definite effect. Since predictability was 
the ruling paradigm, a mathematical approach worked perfectly. 

But this kind of physics breaks down badly if called upon to ex- 
plain nature and all its magic. Imagine trying to forecast weather 
patterns using the properties of a stable equilibrium. Faced with 
these stark realities, physics was forced to move On. And move on 
it has. The advent of quantum physics made Sure of that. As we en- 
ter the new millennium, a large number of physicists will have 
agreed that many fundamental processes shaping our natural 
world are stochastic and irreversible. Physics is becoming more 
historical and generative. Of Course, headaches like weather fore- 
casting will remain. Despite massive expenditure on supercom- 
puters and satellites, predicting the weather remains an inexact 
science. Why? Because it rarely settles down to a quasi-equilibrium 
for very long. On all time and distance scales, it goes through 
never-repeating changes. Our climatic system is a complex dy- 
namic system. 

Unlike physics, economics has hardly changed at all. Despite the 
rumblings of a handful of evolutionary economists, its central 
dogma still revolves around stable equilibrium principles. Goods 
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and services are assumed to flow back and forward between 
agents in quantifiable amounts until a state is reached where no 
further exchange can benefit any trading partner. Any student of 
economics is taught to believe that prices will converge to a level 
where supply equates to demand. 

Boiled down to its bare essentials, equilibrium economics is no 
more sophisticated than water flowing between two containers.8 
Suppose a farmer owns two water tanks, which we'll call "Au and 
"B." A contains eighty liters of rainwater, while B has twenty liters. 
One day the farmer decides to combine his water resources by 
linking the tanks. He lays a pipe from A to B, allowing water to 
flow between them until the levels in each are identical (see Figure 
l.2).9 For all intents and purposes, this balanced equilibrium out- 
come is imperturbable. Obviously, the water level in each tank will 
always match perfectly unless the pipe is blocked. 

Now substitute fruit for water. Suppose that farmer A has a case 
of eighty apples and farmer B a bag of twenty oranges. Because 
farmer A is fond of oranges and farmer B loves apples, they agree 
that an exchange would serve their joint interests. Apples being far 
more plentiful than oranges, farmer B sets the price: four apples for 
every orange. They agree to trade. Farmer A parts with forty ap- 
ples in return for ten oranges. Both end up with fifty pieces of fruit. 
Being equally satisfied with the outcome, therels no point in trad- 
ing further. Displaying perfect rationality each farmer deduces the 
optimal strategy. The equilibrium outcome turns out to be pre- 
dictable and perfectly stable. Just like the two tanks of water. 

A stable equilibrium is the best possible state in a static world. 
There's simply nowhere better to go. Everything adds up nicely and 
linearly. The effect on the water level of adding additional liters of 
water is proportional to the number of liters added. Generalizing to 
many agents simply corresponds to connecting more tanks together. 
In physics, this kind of treatment is referred to as a "mean field ap- 
proximation." A single macrovariable, such as the water level, 
is considered. Many traditional economic theories are mean field 
theories, to the extent that they focus on the macrovariables that are 
associated with an equilibrium state. Examples are GNP (gross na- 
tional product), the interest rate, and the unemployment rate. 

Mean field theories work quite well for systems that are static and 
ordered. They also work well for systems that are full of disorder. 
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However, they don't work well for systems that are subject to di- 
versity and change. For example, they don't work well when dif- 
ferences in economic agents' behavior become so significant that 
they can't be overlooked. Furthermore, they don't work well if our 
economy happens to be at or near a bifurcation point, such as a 
critical stage of decisionmaking. In short, they don't work well if 
we wish to understand all those weird and wonderful ways in 
which the economy really works. 

The point of departure for this book, in fact, is that our economic 
world is heterogeneous and dynamic, not homogeneous and static. 
It's full of pattern and process. Development unfolds along a tra- 
jectory that passes through a much richer phase space, one in 
which multiple possibilities abound. Although this creates spectac- 
ular diversity, it also poses a major problem. How do we predict 
likely outcomes, least of all the whole development process, if we 
don't know what the system's trajectory looks like along the way? 
It's mostly impossible to predict details of this trajectory unless we 
know exactly what the system's initial state was. And many other 
questions arise. Does the system reach any equilibrium state at all? 
If it does and such equilibria are temporary, when will it move on? 
What happens when it's far from equilibrium? 

In a dynamic economy, traditional equilibrium models only pro- 
vide a reasonable description of the state of an economic system 
under very limited circumstances: namely if the system just hap- 
pens to evolve towards a fixed-point attractor. We can think of a 
fixed-point attractor as a point along the way, with a signpost say- 
ing: "Endpoint: all motion stops here!" Under different conditions, 
however, an economic system may never reach such a point. 
There's growing evidence that certain economic processes may 
never come to such a dead end.10 Instead, some may converge to- 
wards a periodic attractor set, or to a chaotic attractor.11 Because 
periodic attractor sets are unstable, one imagines that their sign- 
posts might say: "Resting place: stop here briefly!" A suitable sign 
for a chaotic attractor will be left to the avid reader's imagination. 

What, then, is the best possible state in a dynamic world? This is 
a very thorny question to answer. Consider the following state- 
ment in a recent book exploring facets of the new science of com- 
plexity: "In the place of a construction in which the present implies 
the future, we have a world in which the future is Open, in which 
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time is a construction in which we may all participate."l2 These are 
the words of the Belgian chemist, Ilya Prigogine, 1977 Nobel laure- 
ate in chemistry for his novel contributions to nonequilibrium 
thermodynamics and the process of self-organization. They 
remind us that in an Open, dynamic world, we find evolution, het- 
erogeneity, and instabilities; we find stochastic as well as determin- 
istic phenomena; we find unexpected regularities as well as 
equally unexpected large-scale fluctuations. Furthermore, we find 
that a very special kind of transformation can occur. Many systems 
self-organize if they're far from equilibrium. Obviously, we must 
postpone our discussion of what constitutes the best possible state 
in such a world until we know much more about it. We'll look at 
the nitty-gritty of self-organization in the next section. 

One thing is certain: We live in a pluralistic economy. Pluralism 
stems from the fact that trajectories of economic development de- 
pend on the deterministic and the stochastic. Moreover, some 
processes are reversible, whereas others are irreversible. Since 
there's a privileged direction in time, what we're beginning to real- 
ize is that many economic phenomena appear to be stochastic and 
irreversible. For example, an economy that started as a primitive, 
agrarian one may eventually develop a more sophisticated, multi- 
sectoral structure. By evolving toward a more complex state, an 
economy gives the impression that it can never return to its origi- 
nal, primitive state. But the more sophisticated it becomes, the 
more difficult it is to predict what it will do next.13 To understand 
the multitude of ways in which economies can change, we must ac- 
knowledge the existence of stochastic processes-those whose dy- 
namics are nondeterministic, probabilistic, possibly even random 
and unpredictable. A high degree of unpredictability of the future 
may well be the hallmark of human endeavor, be it at the individ- 
ual level of learning or at the collective level of history making. 

Another Nobel laureate in the natural sciences, the biologist 
Jacques Monod, puts the argument for pluralism concisely: 
"Drawn out of the realm of pure chance, the accident enters into 
that of necessity, of the most implacable certainties."l4 Our world 
is pluralistic because two "strange bedfellows" are at work to- 
gether: chance and necessity. Chance events, or accidents of his- 
tory, play a vital role whenever an economy's trajectory of devel- 
opment is confronted with alternative choice possibilities. We can 
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FIGURE 1.3 Chance and determinism are coevolutionary 
partners in the evolution of a coinplex economy. 

think of them as key moments of decision. Technically, they're 
points of instability or bifurcation. Alternative pathways into the 
future introduce an element of uncertainty, which, in turn, invali- 
dates simple extrapolations (see Figure 1.3). Under these condi- 
tions, prediction of future economic outcomes becomes impossible. 

This book will argue that we live under just such conditions. 
More exactly, we're both spectators and participants in a dynamic, 
pluralistic economy. Patterns of economic evolution change by 
way of fluctuations in time and space. The interesting thing is that 
seemingly simple interactions between individual agents can accu- 
mulate to a critical level, precipitating unexpected change. What's 
even more surprising is that some of this change can produce pat- 
terns displaying impressive order. Order througli fluctuations, if 
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you like. We're left wondering whether the sole source of this order 
is "chance caught on the wing," as Monod suggests. On the surface 
at least, there seems to be more to it than that. The rest of this book 
attempts to find out. 

Sandpiles, Self-Organization, and Segregation 

Perhaps you're beginning to wonder whether a dynamic economy 
ever reaches any equilibrium state? Surprisingly enough, the an- 
swer to this question may have more in common with piles of sand 
than with tanks of water, according to the physicist Per Bak.15 De- 
cisions made by human agents tend to be discrete, like grains of 
sand, not continuous, like levels of tank water. Many decisions are 
sticky. So are many prices. We buy or sell many capital goods only 
when the need arises or the opportunity of a bargain presents it- 
self, remaining passive in between. We buy or sell stocks and 
shares only when some threshold price is reached, remaining Pas- 
sive in between. Very few of us continually adjust our own holdings 
in response to fluctuations in the market. In other words, there's 
plenty of friction in real economies, just like in sandpiles.16 It might 
just be the friction of distance that binds villages, towns, and cities 
together in special patterns to form a stable, yet dynamic, econ- 
omy. Oddly enough, it's also friction that prevents a sandpile from 
collapsing completely to a flat state. It may even be responsible for 
a special kind of dynamic equilibrium. 

No doubt you're thinking to yourself: "Economic agents can 
think but grains of sand can't think! Surely economics must be 
more sophisticated than sandpiles!" Perhaps you're right. But be- 
fore we start to delve more deeply into the quirks and foibles of 
economic agents, let's explore a few of the surprising features of 
"unthinking" sandpiles. Try the following experiment in your 
backyard sandpit. Starting from scratch on a flat base, build up a 
pile by randomly adding sand at the center; slowly and carefully, a 
few grains at a time. Notice how the grains tend to stick together. 
The peaked landscape formed by the sand doesn't revert automat- 
ically to the flat state when you stop adding sand. Static friction 
keeps the pile together. Gradually it becomes steeper. Then a few 
small sand slides start to occur. One grain lands on top of others 
and topples to a lower level, causing a few other grains to topple 
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after it. In other words, that single grain of sand can cause a local 
disturbance, but nothing dramatic happens to the pile as a whole. 

At this formative stage, events in one part of the pile have no ef- 
fect on other grains in more distant parts of the pile. We might say 
that the pile is only weakly interactive, featuring local disturbances 
between individual grains of sand. As you add more grains and 
the slope increases, however, a single grain is more likely to cause 
a larger number of others to topple. If you've created it properly, 
eventually the slope of your pile will reach a stationary state- 
where the amount of sand you add is balanced on average by the 
amount falling off. 

There's something very special about this stationary state. Re- 
member that you're adding sand to the pile in the center, but the 
sand that's falling off is at the edges. For this to happen, there must 
be communication between grains at the center and grains at the 
edge. How on earth could grains of sand communicate with each 
other? What transforms this collection of grains from a weakly in- 
teractive to a strongly interactive yile? Perhaps there's communica- 
tion throughout the entire pile. In the words of its discoverer, Per 
Bak, the sandpile has self-organized. It has attained a self-organized 
critical state. 

The marvelous thing about self-organization is that it can trans- 
form a seemingly incoherent system into an ordered, coherent 
whole. Weakly related grains of sand suddenly become a strongly 
interactive sandpile. Adding a few grains of sand at a crucial stage 
transforms the system from a state in which the individual grains 
follow their own local dynamics to a critical state where the emer- 
gent dynamics are global. This is a transition of an unusual kind: a 
~lor~equilibrium phace transition. Space scales are no longer micro- 

I 
scopic; suddenly they're macroscopic. A new organizing mecha- 

1 nism, not restricted to local interactions, has taken over. Occasional 
I sandslides or avalanches will Span the whole pile, because the sand- 
1 pile has become a complex systern with its own emergent dynam- 

ics. What's most important is that the emergence of the self- 
/ organized critical state in the sandpile, with its full range of 

avalanche sizes, could not have been anticipated from the proper- 
ties of the individual grains. 

Now go back to your own sandpit again. Once you've reached 
this critical state, try adding more sand. See how it slides off. Try 



12 Chance und Necessify 

adding wet sand instead. Wet sand has greater friction, so the 
avalanches will be smaller and local for a while. Your pile becomes 
steeper. But eventually it will return to the critical state with sys- 
temwide avalanches again. Admittedly it's not an easy experiment 
to conduct successfully. So you may need to try the whole thing 
again if you're not convinced. The pile always bounces back when- 
ever you try to force it away from this critical state. Formally 
speaking, it exhibits homeostasis. In other words, it's resistant to 
small perturbations. 

Another fascinating thing is that the whole sandpile evolves to 
this critical state independently of any intentions on your part. You 
can't force it to do something else. In fact, you can't control it at all. 
All you can do is add sand, a few grains at a time. Nobody knows 
the sandpile's initial conditions. Whatever they happen to be is of 
no significance anyway. Repeated experiments produce the same 
result. In the words of Stuart Kauffman, Santa Fe Institute scientist 
and devout advocate of self-organization, this kind of emergent or- 
der seems to be the work of an "invisible choreographer."l7 An 
ordered pattern has sprung up from nowhere. Order through fluc- 
tuations, if you like. Technically speaking, this critical state is an at- 
tractor for the dynamics. It's a dynamic equilibrium. 

We can now return to that challenging question posed earlier. 
What's the best possible state in a dynamic world? With all its fluc- 
tuations, perhaps the self-organized critical state doesn't strike you 
as being the very best possible state. But it might just be the best of 
all those states that are dynamically feasible and more or less effi- 
cient from a collective viewpoint. 

So what, you might say! This still has nothing to do with eco- 
nomics. Yes, I remember. People can think, but grains of sand can't 
think. So it's time to take a look at some of those quirks and foibles 
of human nature. To introduce the human element, we turn to 
work done a generation ago by Harvard's Thomas Schelling.18 His 
ideas on complexity and self-organization were summed up in a 
deceptively simple account of how people in a city could become 
segregated. In this section, we'll simply describe the model and its 
results. In later chapters, we'll elaborate on the implicit features of 
Schelling's important work. In particular, we'll look at other collec- 
tive outcomes that were neither expected nor intended by the 
agents who engineered them. Such outcomes turn out to be 
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instances of self-organization, that is, emergent order through 
fluctuations. 

In Schelling's model, there are two classes of agents. He thought 
of them as blacks and whites, but they could be any two classes 
of individuals that have some cultural difficulty in getting along 
together-for example, boys and girls, smokers and nonsmokers, 
butchers and vegetarian restaurants. Instead of a sandpit, a chess- 
board can play the role of our "simplified city." Think of the sixty- 
four squares as a symmetrical grid of house locations, although the 
principles hold just as convincingly over much larger (and irregu- 
larly shaped) domains. 

The key thing is that each agent cares about the class of his im- 
mediate neighbors, defined as the occupants of the abutting 
squares of the chessboard. Preferences are honed more by a fear of 
being isolated rather than from a liking for neighbors of the same 
class. It's pretty obvious that such preferences will lead to a segre- 
gated city if each agent demands that a majority of his neighbors 
be the same class as himself. But the novelty of Schelling's work 
was that he showed that much milder preferences, preferences that 
seem to be compatible with an integrated structure, typically lead 
to a high degree of segregation, once the interdependent ramifica- 
tions of any changes are considered. 

Consider the following simple rule: An individual who has one 
neighbor will try to move only if that neighbor is a different class; 
one with two neighbors wants at least one of them to be of the 
same class; one with three to five neighbors wants at least two to 
be his or her class; and one with six to eight neighbors wants at 
least three of them to be like him or her.19 At the level of each indi- 
vidual, this rule of neighborhood formation is only mildly class- 
conscious. For example, with these preferences it's possible to form 
an integrated residential pattern that satisfies everybody. The fa- 
miliar checkerboard layout, where most individuals have four 
neighbors of each class, does the trick as long as we leave the cor- 
ners vacant. 

Nobody can move in such a layout, except to a Corner. There are 
no other vacant cells. But nobody wants to move anyway. Because 
it's an integrated equilibrium structure, there's no incentive to 
change it. But what if a few people are forced to move? What if 
three neighbors, who happen to work together, are transferred by 
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FIGURE 1.4a The residential pattern before the chain 
reaction of moves. 

their company? They must sell their homes and move to another 
city. Will the integrated equilibrium remain? Let's try to find out. 

After they move out, the neighborhood layout looks like the 
chessboard shown in Figure 1.4a. The departing workmates vacate 
the squares located at coordinates C4, D3, and E2. Once they move 
out, other nearby neighbors of the same type suddenly feel too iso- 
lated. For example, residents at D1 and F1 discover that only one of 
their four neighbors is the same type as they are. Thus they decide 
to move to locations where the neighborhood rule is satisfied 
again, say Al and H8. 

A self-reinforcing pattern of interdependency quickly becomes 
evident. Another resident can become unhappy because the de- 
parting resident tips the balance in his neighborhood too far 
against his own class or because his arrival in a new location tips 
the balance there too far against agents of the other class. Surpris- 
ingly, our integrated equilibrium begins to unravel. An unsatisfied 
individual at C2 moves to C4, leaving another at G2 with nowhere 

FIGURE 1.4b The residential pattem after the chain 
reaction of moves. 

to go. G2 has no alternative but to move out of the city completely, 
precipitating a chain reaction of moves in response to his decision. 
Residents at F3, H3, G4, H5, E4, F5, and G6 all follow suit. Despite 
the fact that agents have only mild preferences against being too 
much in the minority, some of them are forced to move out, and 
pockets of segregation begin to appear on our chessboard city (see 
Figure 1.4b). 

There are now forty-nine agents residing in the city. Let's trigger 
some more change by removing another nine of them using a ran- 
dom number generator, then picking five empty squares at ran- 
dom and filling them with a new class of agent on a 50/50 basis. In 
a similar manner, Schelling showed that an equilibrium like that in 
Figure 1.4a was unstable with respect to some random shuffling 
and that it tends to unravel even further. Figure 1.5a shows the re- 
sult after my random number generator has done the job. 

It's clear that some other residents will now be unhappy with 
their locations and will move (or move again). Seemingly simple 
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A B C D E F G H  

FIGURE 1.5a Scrambling the pattern a little more 
leads to . . . 

moves provoke responses. Thus a new chain reaction of moves and 
countermoves is set in motion. To simulate this chain reaction on a 
computer, the order in which people move and the way they 
choose their new location would need to be specified. As we're do- 
ing this by hand on a chessboard, we can watch the structure 
evolve. When it finally settles down, my series of moves leads to 
the layout shown in Figure 1.5b.20 

What a surprise! Even though the individuals in our city are tol- 
erant enough to accept an integrated pattern, they end up highly 
segregated. Even though their concerns are local-they only care 
about the class of their immediate neighbors-the whole chess- 
board city gets reorganized into homogeneous residential zones. 
How remarkable that short-range interactions can produce large- 
scale structure. Like the sandpile we discussed earlier, our chess- 
board city has been engaged in a process of self-organization. 
Large-scale order has emerged from a disordered initial state. Seg- 
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FIGURE 1.5b A highly segregated city. 

regation may not be our favorite form of order, but it's order never- 
theless. All of our city-dwellers in Figure 1.5b are now content. 

This large-scale order emerges because the original state-the in- 
tegrated pattern shown in Figure 1.4a-is unstable. Scramble it a lit- 
tle and you trigger a chain reaction of moves that eventually pro- 
duces a strongly segregated city. We could say that you get order 
from instability This is another hallmark of self-organization. 

The interesting thing is that such a chain reaction of moves never 
would have happened if class consciousness had been slightly 
weaker. Schelling fine-tuned his rules very carefully. He specified 
that each resident would be satisfied only if at least 37.5 percent of 
his or her neighbors were of the Same class. If that figure had been 
slightly lower, say 33.3 percent, then only two residents in Figure 
1.4a-those located at positions D1 and F1-would have wanted to 
move. Once they had moved-say to Al and H1-then everyone 
else in the city would have been satisfied. In other words, the 
original integrated equilibrium would have remained stable. 
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Conversely, if the figure had been 50 percent, then a highly segre- 
gated residential pattern would have appeared immediately. 

There is an important message here about emergence. As John 
Holland has suggested, the emergent properties of agents' interac- 
tions are bound up in the selection of rules or mechanisms that 
specify the model. In Schelling's model, a small change in class 
consciousness-the migration rule-can result in a large change in 
the number of moves. There is a small range over which the degree 
of segregation is by no means obvious. Once class consciousness 
exceeds a critical threshold, however, a highly segregated pattern 
appears immediately. 

The sudden and unexpected appearance of highly segregated ar- 
eas, when the migration rule is increased from 33.3 percent to 37.5 
percent, is indicative of a qualitative change in the aggregate pat- 
tern of behavior. We might say that the location pattern has 
"flipped" into an entirely different state. In fact this nonlinear 
change is indicative of something like a phase transition. Alterna- 
tively, it's the kind of nonlinear jump portrayed in percolation 
theory. Both of these abrupt transitions are shown in Figure 1.6. At 
first the integrated equilibrium remains rather stable to slight in- 
creases in class consciousness. Then, rather suddenly, the number 
of moves skyrockets dramatically. Although we cannot be sure that 
the whole city ever reaches a state of self-organized criticality, vari- 
ous avalanches of change (in the form of clusters of migration of 
different sizes) will occur, just like those sandslides we referred to a 
little earlier. Global order emerges from the expanding reach of 10- 
cal interactions. 

The idea that local interactions can produce global structure- 
through nonequilibrium phase transitions-came from the pio- 
neering work of some physicists and chemists studying self- 
organization in physical systems.21 Yet Schelling's model permits 
us to See exactly how the process works in a socioeconomic con- 
text. To some extent, of Course, the model oversimplifies urban re- 
alities. The tendency is to divide the whole city into vast # and 0 
areas. What typically happens in a real city is that the chain reac- 
tion of moving households dies out at some point, leaving the city 
locked into various # and 0 domains of different sizes. And the re- 
sulting classes of individuals are not simply two-dimensional. 
They're n-dimensional, so much so that it's sometimes difficult to 
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FIGURE 1.6 A highly segregated city can be triggered by a very small 
change in class consciousness. 

discern the true class or "colors" of all your neighbors. Despite 
these drawbacks, Schelling's insights were well ahead of their 
time, and the rich dynamics contained therein are extraordinary. 

Power Laws and Punctuated Equilibria 

Odd as it may seem, Bak's sandpile experiment and Schelling's 
segregation model have plenty in common. First and foremost, 
both are examples of self-organizing systems. They develop macro- 
scopic order without interference from any outside agent. Nothing 
more than the local, dynamic interactions among the individual el- 
ements are needed to produce this global order. Each system gets 
transformed from a state where individual elements follow their 
own local rules to one displaying an emergent, global pattern. 
Space scales that were once microscopic suddenly become macro- 
scopic. Even more mysteriously, an unexpected and unpredictable 
chain reaction of events produces this coherent s tationary s ta te. 

What an incredible discovery! A mysterious process called self- 
organization can transform disordered, incoherent systems into 

C." 
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ordered, coherent wholes. What's even more amazing is that each 
emergent whole could not have been anticipated from the proper- 
ties of the individual elements. Order from incoherence. Who 
would have thought that a coherent sandpile could result from so 
many weakly interactive grains of sand? Who would have thought 
that a strongly segregated city could result from such weakly Sen- 
sitive rules about local neighborhood structure? 

But that's not all. Once these systems reach a state of sponta- 
neous order, their holistic behavior seems to follow a dynamic pat- 
tern that is lawful in its own right. Take sandpiles first. Minor dis- 
turbances to a self-organized sandpile can trigger avalanches of all 
different sizes. Most of these avalanches are small, toppling only a 
few grains at a time. Some are much larger. Now and then, an 
avalanche collapses the entire pile. If we were clever and patient 
enough, we could measure how many avalanches there are of each 
size, just like earthquake scientists measure how many earth- 
quakes there are of each magnitude. Let's skip this step and as- 
sume that we already have the data. An interesting thing might 
happen if we could plot the size distribution of avalanches on dou- 
ble logarithmic Paper. The likely outcome is shown in Figure 1.7. 

Surprisingly, the result is a straight line. The X-axis shows the 
size class, C, to which each avalanche belongs, whereas the y-axis 
shows how many avalanches, N(c), occurred in that size class. Lin- 
earity on a log-log plot confirms that the number of avalanches is 
given by the simple power law: 

Taking logarithms of both sides of this equation, we find that 

log N(c)  = -s log c  

Thus the exponent s is nothing more than the slope of the 
straight line formed when log N(c) is plotted against log C. 

Now reconsider Schelling's segregated city. Chain reactions of 
relocation-like the sequences of household moves that were trig- 
gered by small disturbances to the original, integrated equilib- 
rium-bear a striking resemblance to the avalanches of change 
depicted in Figure 1.7. For starters, the majority of such chain reac- 
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FIGURE 1.7 The size distribution of avalanches in Bak's 
sandpile model obeys a power law. 

tions in a city tend to be small in terms of spatial scale. Most of 
them die ou~locally. But the few larger ones affect a bigger catch- 
ment area of residents. Very occasionally, a modest disturbance in a 
city can trigger a huge chairi reaction of responses across the city. 
Such a skewed size distribution of chain reactions has much in 
common with the distribution of avalanches underpinning the 
sandpile model. If we were to collect the data or compute the pos- 
sibilities exhaustively, the size distribution of chain reactions in our 
chessboard city would surely obey a power law distribution. Once 
again, the aggregate Pattern of potential moves may be lawful in 
its own right. 

~here'sinother reason for suspecting that the size distribution of 
cl-iain reactions leading to segregation may conform to a power 
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law. Schelling's chessboard city, together with his rules determin- 
ing moves to other locations, corresponds to a two-dimensional 
cellular automaton. Cellular automata were originally put into 
practice by John von Neumann to mimic the behavior of complex, 
spatially extended structures.22 Because they're really cellular 
computers, today they're being put to use as simulators, designed 
to help with time-consuming calculations by taking advantage of 
fast parallel processing.23 Since cellular automata employ repeti- 
tive application of fixed rules, we should expect them to generate 
self-similar patterns. Indeed, many do produce such patterns. If 
Schelling had used computer simulation to explore a much larger 
chessboard city, self-similar patterns of segregation may have even 
been visible in his results. Being akin to periodicity on a logarith- 
mic scale, such self-similar patterns would conform to power laws. 

Although it's too early to say for Sure, it's likely that many dy- 
namic phenomena discussed in this book obey power laws.24 
Power laws mean scale invariance, and scale invariance means that 
no kinks appear anywhere. Economic change may be rife with 
scale invariance. Over one hundred years ago, the Italian econo- 
mist Vilfredo Pareto found that the number of people whose per- 
sonal incomes exceed a large value follows a simple power law.25 
In some socioeconomic contexts, of Course, linearity may break 
down at the smaller and larger scales. The fact that scaling usually 
has limits does no harm to the usefiilness of thinking "self-simi- 
lar." In the next section, we'll look more closely at scale invariance 
in economics. We'll take a further look at power laws when we dis- 
cuss urban evolution in Chapter 5. 

Yet another observation links sandpiles to economies. A great 
many unexpected socioeconomic changes may be nothing more 
than large avalanches that "punctuate" the quiescent state of affairs. 
Once it reaches a self-organized critical state, for example, a sand- 
pile exhibits pirnctirnted equilibriurn behavior. In 1972, paleontologists 
Nils Eldredge and Stephen Jay Gould argued that evolutionary 
change is not gradual but proceeds in "fits and starts."26 Long peri- 
ods of stasis are interrupted, or punctuated, by bursts of dramatic 
change. Perhaps the most spectacular examples of such punctua- 
tions are the Cambrian explosion (500 million years ago) and the ex- 
tinction of dinosaurs (about 60 million years ago). Out of the Cam- 
brian explosion came a sustainable network of species, believed to 
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be the collective result of a self-organized, learning process. The 
evolution of single species are thought to follow a similar pattern. 

The theory of punctuated equilibria melds together stasis and 
adaptive change associated with speciation. Stasis recognizes that 
most species hardly change at all once they show up in the fossil 
record. But these quiet periods are interrupted occasionally by 
shorter periods, or punctuations, during which their attributes 
change dramatically. Speciation recognizes that major evolutionary 
change Comes from new species, mutants that tend to show up un- 
expectedly. Again we find two worlds at work-speciation and sta- 
sis, punctuation and equilibria, chance and necessity. 

Oddly enough, punctuated equilibria have turned up in many 
other places. For example, Kauffman and his colleagues at the 
Santa Fe Institute have produced computer algorithms that exhibit 
this kind of behavior: relatively long periods of stasis interrupted 
by brief periods of rapid change. The dramatic changes are not 
coded into the programs in advance. They appear spontaneously 
and unexpectedly from within the programs themselves. Tom Ray, 
a naturalist from the University of Delaware, created an experi- 
mental worlcl inside his computer. The digital life he created is 
capable of replication and open-ended evolution.27 Part of the 
open-ended repertoire displayed by Ray's digital world includes 
"periods of stasis punctuated by periods of evolutionary change, 
which appears to parallel the pattern of punctuated equilibrium 
described by Eldredge and Gould." 

Another Scene of punctuated calm is the scientific world. Re- 
member the book The Strzlct zire of Scientific Revolll tions, a best-seller 
in the sixties written by Thomas Kuhn?28 Kuhn's central observa- 
tion was that science proceeds for long periods as status quo para- 
digms, interrupted occasionally by creative spurts that finally force 
out the old paradigm in favor of a new one. The new arrival han- 
d l e ~  the anomalies swept under the table by its predecessor. Kuhn 
also argued that the historian constantly encounters many smaller, 
but structurally similar, revolutionary episodes that are central to 
scientific advance. Because the old must be revalued and reordered 
when assimilating the new, discovery and invention in the sciences 
are intrinsically revolutionary. 

Economies also evolve in fits and starts. The Austrian economist 
Joseph Schumpeter coined the term indlistrial nlritlztion for the 
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process of creative destruction that incessantly revolutionizes the 
economic structure from within, destroying the old one and creat- 
ing a new one. He further states: "Those revolutions are not strictly 
incessant; they occur in discrete rushes which are separated from 
each other by Spans of comparative quiet. T;ie process as a whole 
works incessantly however, in the sense that there always is either 
revolution or absorption of the results of revolution, both together 
forming what are known as business cycles."29 

In one form or another, the idea of punctuated equilibria looks to 
be at the heart of the dynamics of complex systems. In fact, the 
footprints of power laws and punctuated equilibria can be found 
everywhere. They turn up in the frequency distribution of many 
catastrophic events-like floods, forest fires, and earthquakes. 
They're also thought to be responsible for the music most listeners 
like best-a succession of notes that's neither too predictable nor 
too surprising. In each case, the activity going on is relatively pre- 
dictable for quite long periods. Suddenly this quiescent state is in- 
terrupted by brief and tumultuous periods of major activity, roam- 
ing and changing everything along the way. Such punctuations are 
another hallmark of self-organized criticality. 

Large, intermittent bursts of activity lie beyond the world of sta- 
sis. They can change the very nature of the system itself. Their ef- 
fects can be self-reinforcing. Self-organization affects form and 
structure in a fundamental way. A world ripe with punctuations is 
a world of morphogenesis. The process of morphogenesis is ubiqui- 
tous in history, biology, and economics. We can think of morpho- 
genesis as a topological conflict, a struggle between two or more 
attractors. In the next section, we'll look for further footprints, 
direct evidence of self-organizing tendencies in the economic 
marketplace. 

Bulls, Bears, and Fractais 

One of the most baffling puzzles in financial markets is the fact 
that academic theorists, by and large, See markets quite differently 
from the way that actual traders See them. Academics See investors 
as being perfectly rational, thus ensuring that markets are efficient 
in the sense that all available information is discounted into cur- 
rent prices. The Sole driving force behind price changes for any 
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stock or commodity is assumed to be new information coming into 
the market from the outside world. Traders process this informa- 
tion so efficiently that prices adjust instantaneously to the news. 
Because the news itself is assumed to appear randomly, so the ar- 
gument goes, prices must move in a random fashion as well. 

Known as the efficient markets hypothesis, this notion was first 
put forward by the little-known French mathematician Louis 
Bachelier.30 Itfs a long-standing equilibrium theory that suggests 
that prices are unpredictable, and therefore technical trading using 
price charts is a waste of time and money. Why is it, then, that 
newspapers and financial tabloids still feature graphs and adver- 
tisements by self-styled "chartists" claiming to be able to predict fu- 
ture price movements? Technical traders feel the geometry of price 
histories is important. As a result, they view markets quite differ- 
ently from academics. Not only do they believe that technical trad- 
ing can be profitable, but some of them have demonstrated that it 
can be consistently profitable. They also believe that factors such as 
market "psychology" and "herd" effects influence price changes. 

Which group should we believe? It's a difficult question to settle 
empirically. Markets do seem to be reasonably efficient. Despite 
this, statistical tests and real results have shown that technical trad- 
ing can produce modest profits over time.31 Other tests have 
shown that trading volume and price volatility are more volatile in 
real markets than the standard theory predicts.32 Temporary bub- 
bles and slumps, like the major crash in 1987, seem well beyond 
the scope of rational adjustments to market riews. Although a 
spate of economists have looked for signs that prices are being 
generated by chaotic mechanisms, we shall not dwell on these tests 
here. It suffices to say that the evidence implicating chaos as a fac- 
tor influencing price fluctuations in financial markets is mixed.33 
But there's growing evidence that markets do undergo phase tran- 
sitions between two different regimes of behavior: the simple and 
the complex. Could it be that chance and necessity are at play 
again? 

What interests us most is that price histories do exhibit geometri- 
cal regularities. Charles Dow, one of America's earliest students of 
stock market movements, noted a certain repetition in various 
price gyrations. Dow observed that the market in its primary up- 
trend was characterized by three upward swings. But at some 
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point in every upswing, there was a reverse movement canceling 
three-eighths or more of that swing. Dow's principles motivated 
Ralph Elliott to develop his wave principle, which asserts that 
market behavior trends and reverses in recognizable patterns. The 
ever-changing path of prices reflects a basic harmony found in na- 
ture. Elliott isolated thirteen patterns, or "waves," that recur in 
markets and are repetitive in form, but rot necessarily in time or 
amplitude.34 He also described how these patterns link together to 
form larger versions of the Same patterns. Without realizing it, he 
had discovered patterns of self-similarity on different timescales. 

Remarkably, Elliott reached his conclusions fifty years before the 
advent of the science of fractals. Yet his findings showed that his- 
torical price patterns bear a striking resemblance to the fractal 
character of the natural world. Benoit Mandelbrot's studies of frac- 
tals and multifractals have confirmed that nature and markets 
abound with a special symmetry. He analyzed daily and monthly 
data for the variation of cotton prices over different periods, draw- 
ing on statistics spanning more than a century. Then he counted 
how often the monthly variation was between 10 and 20 percent, 
how often it lay between 5 and 10 percent, and so On. After plotting 
the results on a double logarithmic plot, he found that the resulting 
distributions of price changes in different periods were horizontal 
translates of each other (see Figure 1.8). Furthermore, their shape 
conformed to a familiar pattern: the ubiquitous power law.35 

Mandelbrot was the first to interpret such power laws in terms of 
scaling. The unifying concept underlying fractals and power laws 
is self-similarity: invariance against changes in scale or size. Find- 
ing the power law distribution in financial data was a major dis- 
covery. It showed that small-scale patterns combine to form similar 
patterns at larger scales.36 Mandelbrot looked at price variations 
for other commodities, finding similar patterns that matched 
across different timescales. His scaling principles echo Elliott's ob- 
servation that the market traces out characteristic patterns at all 
levels or trend sizes. 

However, price charts themselves are not self-similar. A more ex- 
act term for the resemblance between the parts and the whole in fi- 
nancial markets is self-afinity. Mandelbrot concluded that much in 
economics is self-affine. Two renormalized price charts will never be 
identical, of Course, but their resemblance over different timescales 
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scale of a-. b-, C- = negative changes of logarithm of price 

scale of a+. b+, C +  = positive changes of logarithm of price 

FIGURE 1.8 The original evidence for scaling in economics: 
Mandelbrot's observation that variations in the spot price of cotton 
obey a power law. 

can be striking and worthy of our attention. Such price variations 
are "scale-free" with no typical size of variations, just like the sand- 
pile avalanches that we discussed in the previous section. As re- 
markable as it may seem, markets and sandpiles have something 
in common after all. In Chapter 7, we'll return to the issue of price 
fluctuations, fractals, and self-affinity in financial data. 

Until very recently, most economists (and all policy entrepre- 
neurs) ignored Mandelbrot's important work, presumably because 
it didn't fit into the traditional picture. Classical economists have a 
tendency to discard large events, attributing them to specific abnor- 
mal circumstances-such as program trading in the case of the 
crash in October 1987. If you happen to believe in the world of sta- 
sis, it would be difficult to believe in a general theory of events that 
occur just once! Yet history is riddled with such events. The paleon- 
tologist Stephen Jay Gould, CO-inventor of the theory of punctuated 
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equilibria, argues that in many sciences, we're compelled to en- 
gage in "storytelling" because particular outcomes are contingent 
on many single and unpredictable events. 

Despite their potentially devastating consequences, the fact that 
rare, large events might follow the Same law as a host of small 
events suggests that there's nothing very special about large 
events. Furthermore, they may not even be so rare after all. Al- 
though the magnitude of price movements may remain roughly 
constant for more than a year, suddenly the variability may in- 
crease for an extended period. Big price jumps become more com- 
mon as the turbulence of the market grows. Then On,? observes 
such spikes on a regular basis-sometimes as often as once a 
month. Should such occurrences be regarded as abnormal? Not if 
one believes in fractal geometry and the scaling properties of such 
markets. 

The important thing to learn from phenomena such as self- 
organized criticality, punctuated equilibria, and fractal geometry is 
that complex patterns of behavior are created by a long period of 
evolution. A universal law of economics, for example, cannot be 
understood by studying economic change within a time frame that 
is short compared with the economy's overall evolution. Mandel- 
brot's work spanned five human generations. Suddenly that famil- 
iar phrase "you cannot understand the present without under- 
standing the past" takes on a deeper and more exact meaning. 

I hope that you're beginning to sense how and why disciplines 
like geophysics, biology, and economics differ from physics. Modern 
physicists are accustomed to dealing with probabilistic theories in 
which the specific outcome of an experiment cannot be predicted. 
Only certain statistical features can be determined with any accu- 
racy. Statistical mechanics, quantum mechanics, and chaos theory 
are important theories in physics that are of a statistical nature. What 
makes geophysics, biology, and economics different is that their out- 
comes impinge on our everyday lives as human beings. The fact that 
we may understand the statistical properties of earthquakes is of lit- 
tle consolation to those who have suffered from one large, devastat- 
ing earthquake. A similar statement can be made about biological 
and economic catastrophes. Many affect us personally. 

It's quite correct to attribute the variability of things, and thus 
their complexity, to contingency. History depends on freak acci- 
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dents, so if the tape of history is replayed many times with slightly 
different initial conditions, the outcome will be different each time. 
The creation of each new nation, for example, usually involved a 
long series of events, each of crucial importance for the eventual 
outcome. Because of this, even the pioneers involved in such ef- 
forts had little idea of what the likely outcome would be. Wherever 
contingency is pervasive, detailed long-term prediction becomes 
impossible. For example, many kinds of economic changes are un- 
predictable. But that very fact doesn't mean that they're also unex- 
plainable. The main problem with understanding our economic 
world is that we have no reliable benchmarks with which to com- 
pare it. 

Fortunately, a few economists have recognized the important 
role of history and chance events in economic development. We'll 
sample some of their ideas in the next section, before moving on to 
a more detailed discussion of some of them in the chapters that 
follow. 

Stasis and Morphogenesis 

In case you're still wondering if equilibrium economics is really 
like tank water, here's another way of testing the analogy. It comes 
from the youthful field of cybernetics, which deals mostly with 
self-regulating and equilibrating sys tems. Thermostats, physiolog- 
ical regulation of body temperature, and automatic steering de- 
vices are examples of self-regulating systems. So are equilibrium 
economies and our tank water example. They're all systems in 
which negative feedback processes tend to counteract, or cancel 
out, deviations from the equilibrium state. In other words, they all 
possess negative feedback loops. Such loops promote stability in a 
system, because they tend to negate change. 

Negative feedback is assumed to occur in economics. The belief is 
that economic actions will force the economy back to a stable equi- 
librium point because of the respective shapes of the supply and 
demand curves. You can see the logic behind this self-regulating 
process in Figure 1.9. Suppose the apple farmer (whom we met 
earlier) sets his price initially at p,. Before long, he realizes that 
he's not selling as many apples as he would like. Supply exceeds 
demand. He's building up an unwanted surplus, some of which 
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FIGURE 1.9 Negative feedback loops ensure stability and 
equilibrium in the economic marketplace. 

will soon turn bad. So he drops his price to P,. A little later, he sells 
out of apples. Demand has outstripped supply. Thinking that he 
must have set his price too low, he increases it again. As if guided 
by an "invisible hand," he finally converges on the equilibrium 
price, p,. 

Negative feedback loops like this are fine in principle. They seem " 
to provide a stabilizing influence in an otherwise iolatile market- 
place. But does our economy really work this way in practice? 
Many believe that it has done so in the past and still does to some 
extent. It's certainly true that the price of a specific brand-name 
product, like a McDonald's cheeseburger or a Diet Coke, may not 
vary greatly from place to place. Although primary products do 
vary in price from season to season, Tasmanian apples and Califor- 
nia oranges may not vary greatly when their prices are measured 
from place to place at the same point in time. Any difference might 
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simply be due to differences in transportation costs to the market- 
place. The prices of various manufactured goods, like clothing or 
sports equipment, never seem to vary greatly when we shop 
around at different stores. 

But how can we be sure that all the producers of the same prod- 
uct will behave in this way? The truthful answer is that we can't. In 
addition to all the sales, discounts, consumer loyalty privileges, 
and never-ending suite of devious tactics that firms introduce to 
attract buyers away from their competitors, there's another reason 
why it's hard to believe in the broad existence of equilibrium 
prices. Take a look at Figure 1.10. It shows a typical average cost 
curve faced by an "efficient" manufacturing firm over the long 
run. Cost per unit of output is plotted against output. The firm is 
efficient in the sense that it adopts a least-cost method of produc- 
tion for the level of output involved. Efficient production possibili- 
ties lie on the thick black line. For example, producing output OB 
at a cost of Ob can be done using the least-cost technique. Cost lev- 
els above Ob are inefficient, whereas cost levels below Ob are im- 
possible at that level of output. 

Strangely enough, two different kinds of economic worlds are 
implicit in this one curve. The one that we've been discussing, the 
negative feedback world, lies to the right of the point C. At smaller 
output levels than OC, a very different regime prevails. In this re- 
gion, positive feedback mechanisms prevail. An expansion in pro- 
duction results in a decrease in costs per unit of output. On aver- 
age, each unit of output becomes cheaper to produce. Under these 
conditions, a firm has every incentive to expand production as 
much and as quickly as possible, because the firm can then enjoy 
scale economies, that is, increasing retirrns to scale. Beyond OC, 
however, the curve begins to rise, signifying that unit costs have 
changed direction. Now they're increasing rather than decreasing. 
At these higher output levels, negative feedback loops prevail and 
the firm faces diminishing returns to scale. 

Conventional economic theory tends to frown upon the left- 
han4part of this curve. Yet this is a realistic and most profitable 
cost structure for a firm. Why would any serious analyst want to 
overlook part of it? One answer is that Zone 2 is much simpler to 
model and understand than Zone 1. Negative feedback loops serve 
to stabilize the economy; any major changes will be offset by the 
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FIGURE 1.10 The typical average cost curve faced 
by an efficient firm embodies two starkly different 
economic worlds. 

reactions they generate. A stable, closed economy is a predictable 
economy-easily identified and interpreted.37 This classical world 
of diminishing returns is epitomized by the agricultural sector. 
Suppose a wheat farmer wants to expand production. Because of 
the scarcity of arable land, eventually hell  have to pay m o o  for 
suitable land or put up with land that's less suitable for wheat. 
This pushes unit costs up, reducing unit profits. Hence the labe1 
"diminishing returns." 

Primary producers are plagued by an additional problem. If 
there are too many wheat producers competing for scarce parcels 
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of land, for example, wheat prices may come under downward 
pressure. As prices fall toward average production costs, some 
farmers will struggle to earn any profits. In this so-called world of 
perfect competition, profits are marginal at best. As we've said 
earlier, perfect competition belongs to the world of stasis, a world 
at equilibrium-stable, predictable, and resistant to change. 
What's rarely said, however, is that firms in such a world are flirt- 
ing with extinction. Once we picture it as part of a dynamic econ- 
omy, the true identity of a competitive equilibrium reveals itself. 
Basically, it's a dead end. Instead of engendering a perfect market- 
place, negative feedback breeds extinction! 

Feedback processes can also be positive. In many sectors of our 
economy, the stabilizing forces needed to maintain an equilibrium 
state are absent. Instead, radically different forces prevail. Positive 
feedback loops amplify the effects of small initial changes.38 High- 
tech monopolies and oligopolies are a good example. They belong to 
a vastly different world, a world of increasing returns. Whereas di- 
minishing returns imply a single equilibrium point for the economy, 
increasing returns imply many possible states. Such open-ended 
pluralism presents two probleins. First, there is no certainty that the 
particular outcome selected from among the many alternatives will 
be optimal. Nor can it be predicted in advance. Chance dominates 
over necessity. Second, once a particular economic outcome is Se- 
lected, that choice may become securely "locked in," thereafter tend- 
ing to prevail regardless of its advantages or disadvantages. 

Classical theories of industrial location have tended to resist the 
idea that historical chance plays a role. For example, the Santa Fe 
Institute economist Brian Arthur has noted two different views in 
the German literature on spatial economics.39 The first, associated 
with the writings of von Thünen, the early Weber, Predöhl, 
Christaller, and Lösch saw the spatial evolution of industry as pre- 
determined-by geographical endowments, transport possibilities, 
and economic needs. In this view, locational history does not mat- 
ter. The key factors are geographical differences, shipment costs, 
market interactions, and the spatial distribution of prices and 
rents. The outcome is easily predictable: a unique equilibrium pat- 
tern. Because this is a static and unique view of the locational 
world, Arthur calls it stcrsis. 

The second view regarded industry location as path-dependerzt- 
more like an organic process with new industry influenced by, and 



34 Chance and Necessity 

thus reinforcing, the locational landscape already in place. In- 
cluded among this group were the later Weber, Engländer, Ritschl, 
and Palander. Although there's still a role for geographical endow- 
ments and economic factors (such as transportation costs) in this 
view, the dominant driving forces are agglomeration economies. 
Engländer and Palander were severe critics of Weber's theory on 
this point, claiming that he grossly underemphasized the actual 
development process and the historical advantages of existing pro- 
duction points as self-reinforcing centers of agglomeration. In a 
path-dependent world, chance events in history play a crucial role. 
We'll refer to this view as nlorphogenesis. 

Here's a modern example of path dependence. Japan Railways 
East, believed to be the largest carrier in the world, ran into some 
water problems when it was building a train line through the 
mountains of Tokyo. As engineers made plans to drain the water 
out of the tunnel, the company learned that the workers were 
drinking it because it tasted good. So JR East decided to bottle and 
sell it as a premium mineral water. It became so popular that vend- 
ing machines were installed on JR East's platforms and a home- 
delivery service was launched. A new $75 million-a-year beverage 
industry had been triggered by nothing more than an accidental 
discovery. Once again, such an outcome could not be foreseen in 
advance. Chance ruled out determinism. Morphogenesis reigned 
supreme. 

Whether small events in history matter in determining the pat- 
tern of settlement, growth and change in an economy reduces, 
strangely enough, to a question of topology. In the matter of indus- 
trial location, it hinges on whether the underlying structure of loca- 
tional forces guiding the location pattern is convex or nonconvex.40 
History does matter when the these forces are nonconvex, and 
nonconvexity stems from some form of agglomeration or increas- 
ing returns in space. Path dependence can be illustrated by a firm's 
decision to locate its headquarters in one of several alternative 
cities (or regions). 1/11 discuss agglomerative forces more fully in 
Chapter 5, where Chicago's development is portrayed as a path- 
dependent, coevolutionary process. 

Agglomeration is a powerful force. Firms that are not heavily re- 
liant on raw material locations, but are more sensitive to their in- 
dustry's learning curve, are often attracted by the presence of other 
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like-minded firms in a region. Some densely settled regions can of- 
fer better infrastructure, more diverse labor markets, more special- 
ized services, and more opportunity to do business face to face. 
They may also provide an active forum for the continuous 
exchange of ideas. This is a vital part of Arrow's "learning by 
doing."41 Under these conditions, the world of morphogenesis 
dominates. 

Brian Arthur has suggested the following example.42 Stasis 
would See today's electronics industry in the United States distrib- 
uted across the country, but with a substantial part of it in Califor- 
nia (e.g., Silicon Val1ey)-because that location is close to Pacific 
sources of supplies and because it has better access to skilled labor 
and to advances in academic engineering research. By way of con- 
trast, morphogenesis would See concentrations of high-tech indus- 
try, like Silicon Valley, as largely the outcome of chance events- 
such as the vision of the vice president of Stanford University, 
Frederick Terman, who just happened to Support a few key eiitre- 
preneurs-the Hewletts, the Varians, the Shockleys-who then de- 
cided to set up shop near Stanford in the 1940s and 1950s. The at- 
tractive work environment that they helped to create made 
subsequent location there very attractive for the thousand or so 
firms that followed them. If Terman or those key entrepreneurs 
had thought or acted differently, Silicon Valley might have hap- 
pened somewhere else. 

Stasis or morphogenesis? Which explanation is correct? It's 
likely that most of the locational patterns we observe today have 
been forged by a mixture of chance and necessity, rather than by 
either element alone.43 Whenever industry and people are at- 
tracted to places where resources of interest are already gathered, 
those small concentrations established initially by chance will have 
sown the seeds of the resulting urban configurations. To the extent 
that the locational choices of the pioneering agents were preor- 
dained by geographical or economic needs, however, the resulting 
configura tions will reflec t pure necessi ty. 

The important point to note is that positive feedback loops never 
1et the economy return to its original state. Even an accidental (or 
seemingly insignificant) kick-start will cause divergence from the 
initial condition. This has troubled conventional economic theo- 
rists for decades. Most have refused to tackle the complexities of 
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increasing returns economics, preferring to deny their importance. 
Given the lack of attention devoted to them, it's surprising to find 
that positive feedback processes are so ubiquitous in societies: the 
evolution of living organisms, the accumulation of knowledge and 
physical capital, the rise of specific cultures, for example. Because 
the term morphogenesis is used in cybernetics to Cover this cate- 
gory of feedback processes, for ease of exposition welll regard all 
economic systems that are governed by positive feedback loops as 
belonging to the world of morphogenesis. 

Once we start to think of development as a life-cycle process of 
evolution, the respective roles of positive and negative feedback 
loops-or increasing and diminishing ret~rns-fall into place. 
Consider the forces behind the typical C-shaped growth curve in 
population dynamics. The binding constraint is carrying capacity. 
When the population is well below this upper limit, itls being 
driven by a positive feedback loop. Additions to population in- 
crease in proportion to population itself. Thus it expands exponen- 
tially. This self-reinforcing process produces the initial upward 
sweeping part of the curve. As population nears carrying capacity, 
however, a dormant negative feedback loop becomes active, inter- 
acting nonlinearly with the positive feedback loop, neutralizing its 
influence and converting the system to a search for an equilibrium 
at the population limit. As Jay Forrester suggests, C-shaped growth 
curves depict shifting loop dominance at different times.44 

Such C-shaped curves also form part of the trajectory traced out 
by the product life cycle. Like humans, products pass through a fa- 
miliar sequence of recognizable stages. Self-reinforcing stages of 
the human life cycle include incubation, infancy, adolescence, and 
young adulthood. Here, positive feedback loops underpin the 
growth process. By the time we reach middle age, however, nega- 
tive feedback loops have taken over. Their growing influence even- 
tually leads to senility. Death-that ultimate equilibrium state of 
human existence-follows thereafter. 

Stages of the product life cycle follow a similar pattern. Inven- 
tion, innovation or imitation, and rapid growth correspond to self- 
reinforcing stages of market growth. Theylre the hallmarks of an 
increasing returns economy. Once competitive turbulence sets in, 
however, market share stabilizes and begins to decline. A mature, 
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FIGURE 1.11 The life cycle of a product features positive and 
negative feedback loops in shifting proportions. 

stable, saturated market confirms that diminishing returns have 
taken over. Even products cannot avoid senility, with rapidly de- 
clining market share signaling the ultimate death knoll. 

Unless a firm is unusually innovative, it can expect to enjoy in- 
creasing returns only in the early stages of the cycle. Before final 
choices are locked in, the development process is characterized by 
a high degree of risk and uncertainty. Learning processes are rapid 
but haphazard. Many different solutions are possible, and frequent 
major changes are necessary. Chance invariably takes a hand. A 
host of idea; and products aie triggered by accidental discovery or 
even by mistake. Any accidental kick-start in the invention process 
triggers the divergence mentioned earlier. But the high initial costs 
of research and testing usually become a distant memory once pro- 
duction expands and the cost per unit of output begins to fall. The 
stage of increasing returns takes over, bestowing on the firm a tem- 
porary period of competitive advantage over its rivals. Chance can 
breed windfall profits. 

Economists can now explore the challenging terrain of increas- 
ing returns with much better equipment than they could a few 
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decades ago. The early chapters of Adam Smith's Wealth of Nations 
placed considerable emphasis on increasing returns to explain 
both specialization and economic growth. Since then, many others 
have taken up the challenge. What they're discovering is a world 
of growing complexity. Among the early pioneers were A. A. 
Coumot, Alfred Marshall, Allyn Young, Edward Chamberlin, Joan 
Robinson, Gunnar Myrdal, and Nicholas Kaldor. Today's champi- 
ons of increasing returns are led by Brian Arthur, Paul Krugman, 
and Paul Romer. Some of their work will be discussed in more de- 
tail as our story unfolds in the ensuing chaoters. 

In the words of Brian Arthur, an increasing returns world is a 
world of evolution rather than equilibrium, a world full of instabil- 
ity and chance events.45 It's also a world of process and pattern 
change, placing it in the world of morphogenesis. If one firm gets 
ahead by historical accident or innovation, increasing returns serve 
to magnify this advantage. Regardless of its ultimate efficiency, a 
product can "lock in" considerable advantages by being first. 
Chance events in the past may have set the wheels in motion. But 
once they're turning, increasing returns turn them even more 
quickly-breeding uncertainty and instability. In brief, the state of 
increasing returns is the tendency for that which gets ahead to get 
further ahead. 

In stark contrast, the state of diminishing returns is the ten- 
dency for that which falls behind to fall further behind. Such con- 
ditions tend to dominate during the later stages of the product 
life cycle. Once a product has become standardized, further inno- 
vation becomes marginal at best. Improvements are only incre- 
mental. Low-cost imitation takes over. The emphasis switches to 
productivity, marginal improvements, and cost control. Saturated 
markets breed numerous competitors, and unit profits are thin. 
The classical zero-profit equilibrium of economic theory is a rea- 
sonable approximation of the ultimate dead-end state of this 
frozen world. For the firms involved, death is imminent. Without 
fresh innovation, diminishing returns signal that the market and 
its customer base have matured and that the risk of extinction is 
growing. 

Our analysis reveals two economic worlds: the seemingly static 
one (stasis) is heavier on resources, lighter on know-how, and sub- 
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ject to diminishing returns; the dynamic one (morphogenesis) is 
lighter on resources, heavier on know-how, and subject to increas- 
ing returns. These two worlds are readily visible in the economies 
of the past and the present. Our traditional mainstays of economic 
life-agriculture and manufacturing-have been surrendering 
market share on a global basis to dynamic newcomers built around 
newer technology. Instead of processing resources, these pioneers 
of high-tech products process knowledge and information. Instead 
of applying raw energy, they apply new ideas. The relentless Pace 
of change in this high-tech world is nothing short of remarkable. 
Chance is setting such a cracking Pace that necessity has trouble 
simply staying in touch. 

On Learning Curves 

To reiterate, two contrasting views of our economic world prolifer- 
ate today: chance and necessity, punctuation and equilibria, mor- 
phogenesis and stasis (see Table 1.1). Our primary focus in the 
rest of book will be on morphogenesis-those chance events that 

TABLE 1.1 Two Economic Worlds 

NECESSITY CHANCE 

Stasis 
Resource-Based 
Unique Outcome 
Equilibrium 
Mechanistic 
Predictable 
Diminishing Returns 
Convex 
Easy to Model 

Morphogenesis 
Knowledge-Based 
Multiple Outcomes 
Path-Dependent 
Organic 
Unpredictable 
Increasing Returns 
Nonconvex 
Difficult to Model 

A SIMPLE WORLD A COMPLEX WORLD 
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punctuate the calm, deterministic landscape of an economic sys- 
tem, propelling it into an uncertain future. Real economies evolve 
in fits and starts. Calm is nothing more than the precursor of storm. 
Morphogenesis and disequilibrium are more influential states in 
an evolving economy than stasis and equilibrium. 

Recent simulation work in economics has also shown that ratio- 
nal expectations equilibria cannot be Seen as stationary states of 
adaptive processes.~6 Instead of equilibrating, evolving economies 
adapt and select continuously. The work of nonequilibrium sci- 
entists like Ilya Prigogine and Peter Allen has revealed that self- 
organizing human systems possess an evolutionary drive that 
selects for populations with an ability to learn, rather trian for pop- 
ulations exhibiting optimal behavior. Schumpeter was an early 
champion of the innovative entrepreneur. Creatively destructive 
entrepreneurs have been stoking the engine of economic change 
for centuries. The rest of this book attempts to unravel facets of 
their adaptive behavior. 

Learning takes place individually and collectively. The collective 
learning process can be illustrated in the following way. Funda- 
mental inventions spawn an early explosion of diverse forms as 
many tinkerers try out new variants on the basic invention. Tinker- 
ing occurs with very little real understanding of the likely conse- 
quences. After the early frenzy dies away, we settle down to finer, 
more incremental tinkering among a mere handful of designs that 
dominate. Once these better designs have been found, it becomes 
progressively more difficult to do much better. Variations become 
more modest. Such qualitative features are reminiscent of the Cam- 
brian explosion: Branching radiation to create diverse forms is 
bushy at the base; then the rate of branching dwindles, extinction 
sets in, and a few final, major alternative forms persist.47 

The more copies of an item produced by a firm, the more effi- 
cient production tends to become. Learning curves are a means of 
tracking such efficiency improvements by relating the unit costs of 
the firm to its accumulated output. According to empirical econo- 
mists, the cost per unit for high-tech products entering the market- 
place can fall by as much as half at each doubling of the number of 
units produced. Being heavy on know-how and light on resources, 
high-tech products typically have high R&D costs when compared 
with their unit production costs. As the technology matures, how- 
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ever, this rate of improvement slows considerably to a few percent- 
age points. It may even start to rise if marketing costs become ex- 
cessive. Being closely related to the product life cycle (Figure 1.11), 
the learning curve reveals a rapid improvement in performance at 
first, followed by an eventual slowdown and deterioration. 

Formally speaking, then, learning curves relate unit costs to ac- 
cumulated output. Let's plot such a curve for Microsoft's Windows 
software. Being a high-tech product in the early phase of its life cy- 
cle, it enjoys increasing returns to scale. In fact, the learning curve 
can be thought of as the result of economies of scale that just hap- 
pen to be defined temporally.48 The first disk of Windows entering 
the market cost Microsoft $50 million; the second and subsequent 
disks cost $3. For such high-tech products, the Nth unit typically 
costs about 1/Nth of the cost of the first unit produced. Once 
again, the special chnracter of this property shows up when the 
logarithm of the cost per unit is plotted against the logarithm of the 
total number of units produced. The resulting straight line con- 
firms an already familiar shape for this pattern of learning. Yes, it 
approximates another power law (see Figure 1.12). 

How fascinatiiig! Mathematically speaking, a learning curve ap- 
pears to follow a power law. Wefre back to sandpiles again! Note 
how closely the linear plot resembles the one shown in Figure 1.7. 
In the early stages of a new productfs life cycle, the power-law ex- 
ponent may be near -1. This exponent approaches zero as the cycle 
runs its Course. But the actual number, N(c), could just as well be 
the number of sandpile avalanches of size C, or the number of 
fjords of length C, or the number of earthquakes with energy C. As 
Mandelbrot has shown, it could also be the number of months dur- 
ing which stock price variations exceeded a given fraction C. The 
message we're getting is that power laws may be rather ubiquitous 
in nature and in human endeavor. 

Like sandpiles, fractals, and earthquakes, learning is a coupled 
dissipative process. Thus it canft be fully understood by limiting 
our study to a single human lifetime. Even an evolutionary ap- 
proach is insufficient. Because it takes place individually arzd col- 
lectively, learning isn't just evolutionary; itfs coevolutionary. 
Agents react to the moves of other agents. Each agent's decision af- 
fects the collective outcome, and in turn, this collective outcome in- 
fluences the agents' future beliefs and decisions. Such outcomes 
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FIGURE 1.12 The initial learning curve for Microsoft 
Windows obeys a power law. 
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may be quite different from what each agent expected or intended. 
Unexpected outcomes can trigger avalanches of anxiety and uncer- 
tainty, causing each agent to react and modify his view of the 
world. Because such avalanches of economic change vary greatly 
in magnitude, perhaps they also conform to a power law.49 If the 
system of interest self-organizes, a new regime may take over. Fu- 
ture expectations and decision strategies change dramatically. So 
do future collective outcomes. 

This seems to be the way of the world, the way we respond to 
the unexpected and accumulate experience. Experience is cumula- 
tive skill or judgment acquired through practice. They say that 
"practice makes perfect." But practice involves making mistakes, 
learning from them, and adapting future strategies accordingly. 
Experience can't be gained in isolation. It's accrued through an in- 
teractive, coevolutionary process. But now we've moved ahead of 
ourselves, skipping over some of our story. We know so little about 
the nature of knowledge and the mechanics of learning. How do 
creative entrepreneurs acquire the know-what and know-how to 
make innovative decisions? What does it mean to learn rzdaptively? 
Can adaptive learning cause an economy to self-organize? We'll 
begin to tackle these intriguing questions in the next chapter, 
where we look at the behavior of adaptive economic agents as they 
journey along the road to "know-ware." 



On the Road to 
Know-Ware 

The heart has its reasons that reason does not know. 

-Pascal 

What Is Knowledge? 

In a novel study of the American economy, Fritz Machlup claimed 
that the "knowledge industry" accounted for about 29 percent of 
the U.S. gross national product by 1958.1 He also found that the 
growth rate of "knowledge-producing" occupations had exceeded 
all other job classes since the turn of the century. Studies elsewhere 
have confirmed that knowledge-producing occupations are grow- 
ing rapidly. After subdividing the workforce into four occupa- 
tions-knowledge-handling jobs, administration and information 
jobs, personal services, and goods-handling jobs-a Swedish study 
found that the share of knowledge-handling jobs grew from about 
10 percent in 1960 to 18 percent in 1980 and was expected to reach 
about 30 percent by the turn of the millennium.2 

Who are these knowledge producers? Machlup combined peo- 
ple who create new knowledge (e.g., research scientists) with those 
who communicate existing knowledge to others (e.g., teachers, 
managers, air traffic controllers). On reflection, this seems too gen- 
erous. Why? Because the creation of new knowledge is a more com- 
plicated and demanding undertaking than routine tasks like pass- 
ing on existing knowledge or information to others. Although all 
of us possess some degree of creative talent, the most creative 
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knowledge producers are well known. They include researchers, 
inventors, entrepreneurs, authors, artists, and Composers. 

Some intriguing questions then arise. What kind of new knowl- 
edge do they create? How is this knowledge acquired and 
improved? Does it differ from information? One kind of new 
knowledge comes from scientific research. Scientific knowledge is 
produced by universities, research institutes, and otlier science- 
oriented organizations, where it often mixes with associated tasks 
(e.g., teaching, consulting). Much of this collective knowledge ap- 
pears in books, scientific journals, and other technical publications. 
Some of it gets applied by industry in the design and production of 
new technology and products. Occasionally, it finds its way into 
the popular press. 

Traditionally, most scientists used to work alone or in small 
groups led by a senior scientist. Today, however, there's a growing 
trend toward collaboration between researchers in many different 
locations.3 Globalization, aided by the advent of the Internet and 
rapid advances in communication technology, seems to have 
spawned greater collaboration over longer distances. Neverthe- 
less, there's also evidence that the frequency of research collabora- 
tion between researchers who speak the same first language de- 
creases exponentially with the distance separating them.4 Distance 
still matters, despite the information technology revolution. 

The explanation for this frictional effect is that informal, face-to- 
face contact is thought to be an essential ingredient for generating 
new ideas by collaborating partners and that factors such as geo- 
graphical proximity become significant because of the additional 
travel cost and time needed to bring the partners together. Thus re- 
searchers who are closer geographically can meet and exchange 
ideas more easily and more often than distant partners. The debat- 
able point is that face-to-face meetings cannot be replaced by the use 
of telecommunications, the Internet, or related technologies when it 
comes to the generation of new knowledge.5 One reason for this is 
that novel and surprising ideas tend to emerge more spontaneously 
from face-tu-face exchanges than from other kinds of contacts. We'll 
return to the issue of face-to-face contacts later in this chapter, when 
we come to distinguish knowledge from information. 

An increasing number of scientists work on research and devel- 
opment (R&D) in private sector corporations and public agencies. 
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This R&D leads to new products like pharmaceuticals, chemicals, 
airplanes, space products, instruments, electronics, and computer 
hardware and software. Because chance plays such a major part in 
the process of scientific discovery through R&D, once again we 
find ourselves plunged into the world of morphogenesis. Al- 
though knowledge producers can be found in all sectors of the 
economy, successful R&D is a crucial ingredient in the "get ahead, 
stay ahead" world of high technology. The potential payoffs are 
enormous for the winners. As we learned in the Chapter 1, high- 
tech scientists live in that very chancy world of increasing returns. 

How do scientists and others acquire new knowledge? There's 
no magic elixir involved here. Like all of us, scientists must acquire 
their knowledge from learning. Yet for most of the twentieth cen- 
tury, economists have treated knowledge and learning as exoge- 
nous variables when it comes to explaining economic growth and 
development. Ironically, the idea that increasing returns could 
arise from the accumulation of knowledge is almost as old as eco- 
nomics itself. In his Prit~ciples of Economics, Alfred Marshall noted 
that an increase in "trade-knowledge" that cannot be kept secret is 
a form of external economy. Yet very few models of economic 
change adopted this suggestion. 

Perhaps the foremost advocate of knowledge as the endogenous 
engine of growth and technological change is Paul Romer, an econ- 
omist at the University of Chicago. Ever since the appearance of 
Kenneth Arrow's pioneering paper on "learning by doing," there's 
been a frantic rush to absorb learning into the main Corpus of eco- 
nomic theory. Much of the discussion in this and later chapters will 
focus on learning as an adaptive process, drawing partly on the 
domain of psychology. 

When we probe learning problems, we find that psychologists 
are no more in agreement than economists. But one empirical gen- 
eralization seems to stand firm, having been accepted by all 
schools of thought: Learning is a product of experie,ice. In other 
words, learning can occur only when we're attempting to rio some- 
thing-like reading a book, talking to someone, playing a game, or 
solving a problem. We already know that learning associated with 
repetition of the same problem is subject to diminishing returns. 
We're trapped in the world of stasis again. According to Arrow, the 
stimulus situations must themselves be steadily evolving rather 
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than merely repeating, if we're to build on our experience and en- 
joy steadily increasing returns. This is a vital distinction because it 
means that learning belongs to the world of morphogenesis. And 
that makes it evolutionary. 

Before we launch into a discussion of the evolutionary aspects of 
learning, let me round off this discussion with a few words about 
knowledge and information. Superficially, we tend to think of 
knowledge as data or facts that we can organize into predefined 
categories-compartments in the brain, if you like. For example, a 
financial analyst might notice that the rate of exchange between 
the yen and the dollar is running at 125. He stores this fact in the 
"yen-dollar" compartment in his memory bank; he now knows this. 
The next day he notices that the Same exchange rate has dropped 
to 123. Therefore he revises this entry in his memory bank. Having 
updated his yen-dollar data string, he has learned something new. 

Undoubtedly this is a kind of learning, but it's a very simple 
learning model. In fact, it's too simple. Knowing means nothing 
more than being aware of data and assigning them to the correct 
memory compartments. Learning means nothing more than revis- 
ing these data in the light of fresh information from outside. Al- 
though this may be fine for some purposes, to understand what 
learning is really about we need to go deeper than this. Certainly 
the world of economic decisionmaking is not that shallow. Knowl- 
edge is not always spoon-fed to us in prepackaged forms. Rarely 
do we enjoy the luxury of infallible conceptual models that we can 
use to forecast, analyze, and act upon with absolute confidence. 
Our personal stock of knowledge is a very individual thing, being a 
unique product of our own experiences, constructs, and memories. 

Like the empiricist philosophers before him, Immanuel Kant be- 
lieved that our knowledge of the world Comes from our sensations. 
But he also believed that how we See the world depends on the par- 
ticular "glasses" we're wearing. We can never have certain knowl- 
edge of things "in themselves," just how things appear to us. Kant 
believed that there are clear limits to what we can know. Each 
mind's glasses set these limits. When we ask questions about total- 
ity, such as whether the universe is finite or infinite, we're asking 
about a totality of which we're but a small part. There's simply too 
much for a single Person to handle, so we can never know this to- 
tality completely. We'll return to the issue of what may be know- 
able and unknowable in Chapter 8. 
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Knowledge becomes a much fuzzier concept in Kant's world. If 
there are clear limits to what we can know, then our ability to reach 
identical conclusions under similar conditions should not be taken 
for granted. Erwin Schrödinger Sums it up nicely in his book Mind 
and Matter: 

The world is a cunstrirct of our sensations, perceptions, memories. It  
is convenient to regard it as existing objectively on its own. But it cer- 
tainly does not become manifest by its mere existence. Its becoming 
manifest is conditional on very special goings-on in very special 
parts of this very world, namely on certain events that happen in a 
brain.6 

Each of us is a unique product of our own brain and our 
uniquely individual experiences. Our personal knowledge is 
honed by the concepts, notions, and models that we choose to use 
to represent it. All of this has to be created, put together over time 
by us, as well as by others in society as a whole. Learning is a cu- 
mulative process that can be frustratingly slow, partly because 
some of us are stubbornly resistant to change. Thus some of our 
knowledge stocks turn out to be surprisingly durable. 

An obvious distinction can be made between the simpler, more 
objective kinds of knowledge, such as the yen-dollar exchange 
rate, and the more complex, subjective kinds that result from our 
own mental "gymnastics" and contacts with others. We can use- 
fully think of the simpler kinds as information and of our use of 
them as information processing. Basic information-like an exchange 
rate or the maximum daily temperature-is readily quantifiable. 
It's dispersed easily over geographical space and changes rather 
quickly over time. Most information has limited value, in the sense 
that its usefulness erodes rather quickly. Last Thursday's maxi- 
mum temperature is of much less interest than today's high. Fur- 
thermore, this kind of information is not a product of our own 
thinking and experience. It's external to us, bestowed upon us like 
"manna from heaven." For this reason, information can be gath- 
ered and transferred in many different ways. Moreover, the ex- 
change of information doesn't require face-to-face interaction (see 
Table 2.1). 

Thus simpler tasks like information processing should be distin- 
guished from the more complex processes that make up learning. 
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TABLE 2.1 Information and Knowledge 

Characteristic Information Knowledge 

Source Extemal 
Nature Weakly-interactive 
Primary exchange mode Interface 
Leartiing rate Fast 
Usefülness Temporary 
Exchange process Simple 
Unit of measurement Quantitative 

(e.g., bits) 

lntemal 
Strongly-interactive 
Face-to-face 
Slow 
Longlasting 
Complex 
Qualitative 
(e.g., deep) 

Whereas information processing tends to be routine and repetitive, 
learning is more intuitive and adaptive. A key point is that learn- 
ing cannot take place in a vacuum, isolated from others. It relies 
heavily on interactions between individuals, or between individu- 
als and their environment. For example, individuals learn to make 
a living by creating and selling goods and services that make eco- 
nomic sense only in the niches afforded by other goods and ser- 
vices. As Stuart Kauffman suggests, an economy resembles an 
ecosystem because it consists of a web of coevolving agents. The 
learning effects of the interactions between agents can be beneficial 
to some, detrimental to others, or mutually beneficial. As we'll See 
shortly, the true story of technological evolution is actually one of 
adaptive coevolution. 

Finding the Road to Know-Ware 

Biological evolution teaches us that information is a relatively triv- 
ial concept in comparison with knowledge. For example, the di- 
vided cell or the fertilized egg possess a basic kind of know-how. 
Two fertilized eggs can have the same amount of information in 
terms of bits, but one knows how to make a hippopotamus and the 
other knows how to make a giraffe.7 An ant or rat knows how to 
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find its way to food in a maze. A trained racing pigeon knows how 
to find its way home from any distant origin. This special "sixth 
sense" or know-how is part of any living creature's behavioral 
repertoire. Furthermore, it gives the impression of being respon- 
sive, perhaps even pzirposive. 

By giving the impression that it's purposive, know-how stretches 
the dimensions of knowledge beyond a simple information con- 
cept. The problem is that it's devilishly difficult to quantify. Be- 
cause it's a multidimensional part of a person's knowledge stock, 
for example, it's more qualitative than quantitative. We can only 
measure know-how vaguely, using coarse measures like "little," 
"basic," or "extensive." 

We run into a similar kind of problem in economics. Two differ- 
ent countries can have the Same level of GNP, for example, but one 
knows how to make the worldfs best watches whereas the other 
knows only how to grow olives. One may have a fairly equal in- 
come distribution, the other a very unequal one. Yet they're given 
equal Scores in comparative studies of economic performance! The 
problem doesn't go away by decomposing GNP into its constituent 
Parts, such as firms and their employees. Although two watch- 
making firms may have the Same output or earnings, one can make 
highly sophisticated watches using leading-edge technology, while 
the other knows only how to make old-fashioned faces with 
leather bands. Even at the microscopic level-say of individual 
watchmakers-the problem persists. No two individuals possess 
identical know-how. 

Know-how is not the only component of human knowledge. 
There is also know-wliat and knozo-thnt. Returning to the biological 
example, a fertilized egg definitely has the know-how to make a 
hippopotamus, but it's unlikely to know zuhat it's doing-thnt it's 
rnaking a hippopotamus rather than a giraffe. Knowing how to 
reach food inside a maze does not mean that a rat knows what food 
is there, or even that therefs food there. Knowing how to fly home 
does not imply that a pigeon knows thnt a particular path will get it 
home. 

When it Comes to economic agents, however, the nice thing is that 
we do have know-what and know-that. In fact, we use them to cre- 
ate know-how. By concentrating on know-what and know-that, for 
example, scientists have greatly increased our stocks of know-how. 
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Until science discovered the chemical elements and the periodic 
table, there could be never be a chemical industry. Until they dis- 
covered the silicon chip, developing the know-how to create inte- 
grated circuits was out of the question. Perhaps all we need to 
spawn some new know-how is a mixture of know-what and know- 
that, together with the added "spice" of a little contact with some 
other clever thinkers.8 

Regrettably, it's not that simple. We must continue our little jour- 
ney along this road to know-ware, going beyond know-what and 
know-how to know-zujiether. Human decisionmaking involves a se- 
ries of choices. Know-whether involves evaluating the implica- 
tions of alternative decisions in order to find out whether the cho- 
Sen course of action was the best decision. Before choosing from 
among several alternative Courses of action, we harbor expecta- 
tions about the likely consequences of each different course. Once 
we've made our choice, however, we're "locked in" to it. Only at 
some later stage do we get additional feedback telling us about the 
wisdom of our choice. In other words, to know-whether requires 
feedback from the decision environment in which the choices are 
made. 

This subjective ability is a more sophisticated part of the behav- 
ioral repertoire of humans. It's one of those instincts that seems to 
set us apart from other living species. Although rats and pigeons 
may act expectantly, they cannot explicitly state an expectancy. Nor 
do we believe that they can really think about it. Different environ- 
mental conditions lead us not only to act differently but also to 
think differently. For example, being caught up repeatedly in traf- 
fic jams not only encourages us to travel off-peak or take the train 
instead but also makes us think about the future of the whole traf- 
fic system and whether our politicians are doing enough to im- 
prove it. 

Our economy needs science to develop know-what and know- 
that, primarily as ingredients for improving our know-how. Pro- 
duction always begins with know-how. There were no plastics one 
hundred years ago because we didn't know how to make them. 
Most managers and economic agents, however, rely on know- 
whether to make sound decisions. We'll reconfirm the need for 
careful distinctions between these elements of our personal know- 
Ware when we look at an example of adaptive learning on net- 

On the Road to Know- Ware 53 

works, which we call learning by circulating. For the moment, 
though, let's return to some conventional wisdom: how knowl- 
edge and learning have been treated in traditional economic 
theory. 

The Age of Deception 

We've emphasized that the conventional world of economics is 
mostly confined to the world of stasis. What does this imply in 
terms of human reasoning and behavior? Nothing very sophisti- 
cated. Among the most popular set of simplifying assumptions, a 
particular one tends to proliferate. Most theoretical reasoning in 
economics assumes that economic agents behave in a perfectly ra- 
tional manner; that is, they possess perfect, logical, deductive 
rationality. 

Deduction is reasoning from the general to the particular.9 A per- 
fectly logical deduction yields a conclusion that must be true pro- 
vided that its premises are true. Thus deduction involves specify- 
ing a set of axioms and proving consequences that can be derived 
from those premises. Sounds straightforward enough, doesn't it? 
The catch is that the premises must be complete, consistent, and 
well defined. As such, it's pretty easy to run into problems. Al- 
though deduction is handy for solving a host of theoretical prob- 
lems, it's much less helpful for tackling practical problems. Why? 
Because for premises to be complete, consistent, and well defined, 
the problem must be relatively simple. In an economic setting, for 
example, the problem must be simple enough for agents to know 
what's in their self-interest, to act in their self-interest, and to per- 
form the calculations needed to know the implications of alterna- 
tive decisions. In other words, they need to have the brainpower to 
figure out the optimal decision. 

A case in point is education. Farsighted parents plan ahead and 
deduce the amount of education that's economically feasible, both 
for their children and for themselves. Another example is housing. 
Potential buyers plan ahead and deduce the location, type, and 
amount of housing that they can afford. This is the kind of reason- 
ing, deduction, and analysis that is assumed in most areas of eco- 
nomics. It certainly can help in family planning and house pur- 
chases. Also it's well researched. Psychologists have accumulated 
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almost a century's worth of experiments based on deductive rea- 
soning.10 But is a deductive approach always sufficient to solve the 
full range of problems confronted in economics? To answer this 
question, let's See what's required in terms of know-ware. 

To reason deductively, economic agents need to have a complete 
Set of know-ware at their disposal. First, they need to know-what 
serves their best interest. Second, they need the know-how to act in 
their best interest. Third, they need know-whether in order to eval- 
uate the implications of alternative decisions and be Sure that they 
have chosen wisely. In brief, they must have perfect know-whaf, 
perfect knoiu-hoiu, and perfect ktiom-wkether. Their know-ware 
must be honed to perfection. This, of Course, is a very demanding 
condition. 

From the above, it's hardly surprising to find that deduction 
works well only on relatively simple problems. As Brian Arthur 
puts it, "If we were to imagine the vast collection of decision prob- 
lems economic agents might conceivably deal with as a bottomless 
sea or ocean, with the easier ones on top and more complicated 
ones at increasing depth, then deductive rationality would de- 
scribe human behavior only within a foot or two of the surface."ll 
Before we tackle economic problems, let's visualize where various 
games might be found as we dive to various depths. Simple 
games-like tic-tac-toe-are readily solved by a deducible mini- 
max solution. In everyday terms, this means that the human brain 
is quite capable of figuring out the "best" moves on a game board 
consisting of only nine squares. The best moves are the ones that 
leave your opponent in the worst possible situation. Thus a way of 
testing for goodness is to pretend you've made the move, then 
evaluate the board from your opponent's viewpoint. Meanwhile, 
your opponent is doing the Same. He or she mentally runs through 
all possible moves and evaluates them from what he thinks is yoirr 
viewpoint . 

Note that we've defined our best move recursively, using the 
maxim that what's best for one side is worst for the other. It's re- 
cursive because it operates by trying a move and then calling on it- 
self in the role of opponent. Since recursion can go on several 
moves ahead, it's possible to figure out the best strategy to adopt 
and the likely result in a game of tic-tac-toe. Each move generates 
its own "look-ahead tree," with the move itself as the trunk, your 
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FIGURE 2.1 The branching tree of moves and responses in the game 
of tic-tac-toe. 

opponent's responses as main branches, your counter-responses as 
subsidiary branches, and so On. In Figure 2.1, I've shown the look- 
ahead tree corresponding to the first few moves of a game. 

Let's See how the minimax solution can be deduced. If you move 
first, your best move is to choose the central square, thus limiting 
your opponent's opportunities of scoring three noughts in a row to 
just four possibilities-two horizontally and two vertically. At the 
Same time, you've secured four ways of winning in two additional 
moves. Choosing any other opening move offers your opponent 
more opportunities to win and secures fewer ways for you to win. 
Your opponent's best response to your opening move is to choose 
any one of the four corner squares. Then the game will finish in a 
draw. However. if your opponent doesn't choose a corner square, 
then you'll win the game.12 

If each player always chooses their best move, the game's out- 
come can be deduced in advance. This is a rather pleasing result. In 
exchange for a well-defined decision problem, we get back a well- 
defined solution. The recursive solution invokes a logic that is re- 
lentless and consistent. It acts step by step on premises that are well 
defined. It's also self-consistent and self-enforcing, in the sense that 
if your opponent behaves according to the deductive solution (i.e., 
chooses his/her best move), then it would not be in your best inter- 
est to do otherwise. If the best moves are implemented properly, 
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the drawn outcome confirms the deductions that went into it. It's a 
rational expectations equilibrium. 

Because we can deduce the likely outcome to a game of tic-tac- 
toe after the first few moves, we can think of its logic as lurking 
just below the surface. We'd need to dig a little deeper, however, to 
catch a glimpse of games like checkers or Quads.13 Owing to larger 
board sizes (Quads = 36 squares; checkers = 64 squares), it takes 
longer to figure out the likely outcome. In other words, we can't 
deduce the perfectly rational solution. Not only are the choices of 
moves more numerous, but our best moves depend more and 
more on the moves of our opponent. Neither our best strategy nor 
the likely outcome are deducible in advance. There are simply too 
many possible branches in the corresponding look-ahead trees. 

Deduction has no chance whatsoever when we finally reach the 
game of chess (see Figure 2.2). Something else is needed in even 
greater doses at these deeper levels. It's really an art to figure out 
how to avoid exploring every branch of a look-ahead tree out to its 
very tip. Good chess players seem to excel at this art. Or do they? 
The funny thing is that top-level players look ahead relatively lit- 
tle, especially if compared to chess programs. Until Deep Blue's 
success against Gary Kasparov, people were superior as chess 
strategists. We'll come back to the issue of the best chess strategy 
shortly. 

Why, then, does deductive rationality fail us when we're faced 
with more complicated decision problems? Three reasons spring to 
mind. The obvious one is that beyond a certain degree of compli- 
catedness, our logical apparatus ceases to cope. In other words, our 
rationality is bolrnded. Social scientists have been aware of this 
problem ever since Herbert Simon suggested "satisficing" as a way 
of describing less-than-logical behavior in some decision situa- 
tions. But Simon's notion of satisficing is too vague to be adopted 
as a practical method for solving complicated problems. Of late, 
economists have joined the search for something to put in place of 
deductive rationality. When we look into the growing literature on 
bounded rationality, however, there seems to be little agreement on 
a suitable successor. 

The second reason for the deductive mode to break down is 
more ominous. In interactive decision situations, where the ratio- 
nality of one agent's decision is dependent on the strategy of other 
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FIGURE 2.2 Simple and complex games. 

agents, there are no guarantees that each agent will toe the line, 
that is, behave with perfect rationality. Instead agents may be 
forced to guess the behavior of other agents. Suddenly they're 
plunged into a world of subjective beliefs, and subjective beliefs 
about subjective beliefs. Complete, consistent, well-defined prem- 
ises are impossible under these conditions. Deductive reasoning 
breaks down for one very significant reason: The problem has be- 
come ill defined. 

A third reason is just as devastating. Even if one agent guesses 
the behavior of others correctly at one point in time, there are no 
guarantees that this success will ever be repeated. In complex eco- 
nomic situations, agents learn and adapt differently. Thus future 
guesswork becomes more difficult. The evolutionary paths traced 
out by each agent are not familiar to other agents. Nevertheless, 
agents still make decisions in situations that are fuzzy or ill de- 
fined. What's even more surprising is that we seem to make them 
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quite comfortably under such conditions. Perhaps we don't realize 
that the problem is ill defined. But it's clear that we no longer rea- 
son deductively. A different kind of decisionmaking process comes 
to the rescue. To find out what it is, we must return to psychology. 

Let's begin with some basics from modern psychology that 
touch upon our area of interest. Aside from suggesting that we're 
creatures of habit, psychologists claim that we make use of three 
varieties of reasoning: calculation, deduction, and induction. As 
we've just learned, deductive logic is useful only in simple circum- 
stances, like the family plarming or residential choice examples we 
mentioned. What we're very good at, however, is recognizing or 
matching patterns. 

When things get too complicated for our deductive powers, we 
seem to undergo a cognitive shift to the other side of our brain. 
Psychologists tell us that the right-hand side handles pattern 
recognition, as well as intuition, synthesis, and creative insights. 
By putting a combination of these processes to work, we use the 
perceived patterns to fashion temporary constructs in our mind. 
We can call these constructs nzental nlodels or lzypotheses. Once we 
have a set of such hypotheses firmly in our mind, they assist us to 
carry out "localized" deductions and act upon them. 

But the whole process doesn't finish there. Our observations and 
experiences provide us with feedback from the decision environ- 
ment; feedback may alter the patterns we perceive, strengthening 
or weakening our confidence in our current set of hypotheses. 
What we're doing, of Course, is trying to improve our ability to 
make prudent decisions; upgrading our know-whether, so to 
speak. We discard hypotheses that have proved to be unreliable, 
replacing them with new ones. We retain others. Wherever we lack 
full definition of the problem, we devise simple hypotheses to pa- 
per over the gaps in our understanding, and we act on the best of 
these. This kind of behavior is not deductive. It's indilctive.14 

If all of this sounds a little complicated, that's hardly surprising. 
Inductive reasoning is complicated. Even the psychologists don't 
fully understand it. Luckily, we can picture the inductive mind at 
work in a setting we've mentioned already: a chess game. In the 
1940s, the Dutch psychologist Adrian de Groot studied how chess 
novices and grand masters perceive a chess situation. He found 
that grand masters don't simply look further ahead than novices. 
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Instead, they sharpen their intuition by studying the board's con- 
figuration and trying to discern chunks or patterns. In other words, 
they develop their own mental model of the board.15 Then they 
use the perceived patterns and their mental model to form hy- 
potheses about their opponent's likely motives and strategies. 

Chess openings are definitive patterns of play formed in the first 
dozen or so moves.16 The leading players can even recall their op- 
ponents' favorite openings from previous games. "He's offering 
me the Queen's Gambit again." "Isn't this the Catalan opening?" 
"That looks like the modern Dragon Variation of the Sicilian de- 
fense." Good players carry out local deductions based on these 
mental models, analyzing the implications of alternative moves 
and their subsequent responses. As play proceeds, they hold onto 
the most plausible hypotheses and toss away the others, replacing 
them with new ones as the state of the game dictates. 

Clearly then, chess players engage in a sequence of reasoning 
that's inductive. This includes pattern formation, pattern recogni- 
tion, hypothesis formation, deduction using the currently held hy- 
potheses, and hypothesis replacement as dictated by the pattern of 
play that unfolds (see Figure 2.3). Seasoned players build on their 
experiences from earlier games. Chess is a strongly interactive 
game because players learn only ~iiiring tlle ganze which of their hy- 
potheses work best. It involves ailaptive learrzirlg rather than infor- 
mation processing. Each player's strategy evolves partly in re- 
sponse to the evolutionary path chosen by his opponent. Neither 
player can afford to adopt a fixed strategy. They must be flexible 
and "roll with the punches," so to speak. In a word. strategies need 
to be coevolutionary. 

It's interesting to note that Hermann Haken, founder of the field 
of synergetics, believes that the kinds of pattern recognition used in 
chess are closely associated with pattern formation. Synergetics is a 
general theory of self-organization. Although its generality comes 
from timescale Separation and a slaving principle, the formalism of 
synergetics allows us to calculate evolving patterns, provided the 
microscopic laws for the formation of patterns are known.17 Take 
another look at Figure 1.1 (near the start of the book). Interestingly, 
neither birds nor antelopes can be perceived all the time. After a 
while, one image fades away, allowing the brain to perceive the 
other interpretation. Some kind of oscillatory process sets in. 



FIGURE 2.3 The game of chess as an exercise in inductive reasoning. 
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Haken believes that decisionmaking can be regarded as pattern 
recognition. Like grand masters staring at a chessboard, all of us 
search for a resemblance between a situation that we now confront 
and one that we have met before. To do this, we establish a "simi- 
larity measure" in our minds, which allows us to choose a Course 
of action that is the best under the given information. Haken and 
his colleagues have mimicked this pattern formation process in- 
side their "synergetic computer." Thus they're also adopting an 
inductive approach to decisionmaking. 

Because it's closely connected with learning and adaptation, in- 
ductive behavior sits firmly in the world of morphogenesis. In eco- 
nomics, the popular interpretation of "rational" behavior connotes 
behavior that's sensible or sound-minded. Deductive reasoning is 
sensible or sound-minded only in fairly simple, well-defined prob- 
lems. Once a situation gets too complicated or ill defined, like in a 
chess game, an intelligent Person begins to reason inductively. In- 
duction enters the scene whenever someone has to derive a whole 
solution from partial information. In the social sciences, for exam- 
ple, induction is widely used in the analysis of opinion surveys 
and macroeconomic data. 

Surprisingly, there's now a third way of doing social science. It 
corresponds to the third mode of reasoning cited by psychologists: 
calculation. But the calculations are done by machines instead of 
humans. This growing focus on calculation goes by the name of 
agent-based comprlter modeling or simulation. Like deduction, agent- 
based simulation starts off with a set of assumptions. Unlike deduc- 
tion, however, it doesn't prove theorems. Instead, an agent-based 
model generates simulated data that can be analyzed inductively. 
But the simulated data come from a rigorously specified set of rules 
rather than from direct measurements of the real world. 

Whereas the purpose of deduction is to find consequences of as- 
sumptions, and that of induction is to find patterns in data or real- 
world experiences, agent-based modeling is a way of doing 
thought experiments that help to sharpen our intuition.18 The ex- 
amples to be discussed in this and later chapters have the same col- 
lective properties as those we found in Schelling's segregation 
model. Locally interacting agents can produce large-scale effects, 
most of which turn out to be far from obvious. 
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Economists have pushed the assumption of deductive reasoning 
beyond its limits. In doing so, they've locked most of us into the 
world of stasis. But this frozen world is only a tiny part of the whole 
universe of economic behavior. From an intellectual viewpoint, 
we've been trapped in an era of tomfoolery. We might even call it the 
"Age of Deception." Fortunately a new light is glowing in the dis- 
tance. The source of this light is a group of social scientists who just 
happen to believe that human agents reason inductively and adap- 
tively. Furthermore, they also believe that agent-based simulation 
represents a promising new way of doing social science, one that can 
help us to unravel some of the complexities of human behavior. The 
search for a new age of human enlightenment is now underway. 

Seeing the Light at the EI Farol 

E1 Farol is a bar on Canyon Road in Santa Fe, which offered Irish 
music every Thursday evening. Having been born in Belfast, Brian 
Arthur was fond of going to hear the music and to enjoy a few 
beers in a relaxed atmosphere once a week. But soon he encoun- 
tered a thorny problem. If the bar was too crowded, the chances of 
brushing up against a few too many pushing-and-shoving bar 
louts were high. This would spoil the night and cause him to think 
twice about going the following Thursday. Arthur realized that he 
needed a more reliable method of deciding whether the bar was 
likely tobe overcrowded each coming Thursday night. 

The reader might like to ponder this problem for a moment. As 
we'll See shortly, it turns out to be an instructive example of a com- 
plex adaptive system. To make it more concrete, let's suppose that 
there are one hundred people in Santa Fe who, like Arthur, are 
keen to go to the E1 Farol on Thursdays. Space is limited, and 
everyone enjoys themselves if the bar is not too crowded. A crowd 
beyond sixty is thought to be excessive. The tricky thing is that 
there's 110 way of telling beforehand how many will come. A per- 
son simply goes if he expects fewer than sixty to turn up or stays 
home if he expects more than sixty to show. 

Arthur has highlighted two interesting aspects of this problem. 
First, if there were an obvious model that all agents could use to 
forecast bar attendance, then a deductive solution would be possi- 
ble. But there's no such model. Irrespective of past attendance fig- 
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ures, a wide range of plausible hypotheses could be adopted to 
predict future attendance. This dastardly multiplicity of possibili- 
ties means that nobody can choose in a well-defined manner. The 
problem becomes ill defined and all the potential bar attendees are 
catapulted into a world of induction. 

Second, any shared expectations will tend to be broken up. If all 
music lovers believe most will go, then ~iobody will go. But by all 
staying home, that common belief will be destroyed immecliately. 
On the other hand, if all of them believefezil will go, then nll will go, 
thereby undermining that belief. The net result of this diabolical 
state of affairs is that expectations must differ. 

Perplexed yet fascinated by this intractable problem, Arthur de- 
cided to turn his computer loose on it.19 By creating a surrogate E1 
Farol bar inside his machine to study how electronic music lovers 
would act in this situation, he stepped into the exciting new realm 
of agent-based computer simulation. All of his music-loving 
"agents" were given Thursdays' bar attendance over the past few 
months. For example, typical attendance figures might be: 

With this information at hand, each electronic agent has to keep 
track of a different subset of predictors (or hypotheses). He opts to 
go or stay home each Thursday according to the currently most ac- 
curate predictor in his set. Typical predictors might include the 
following: 

the Same number as last week's (35) 
a mirror image around 50 of last week's (65) 
a rounded average of the last four weeks (38) 
the Same as two weeks ago (22) 

Once decisions have been taken, surrogates converge on the sili- 
con bar and a new attendance figure is recorded. Each Person reex- 
amines the accuracy of his ,set of predictors, replacing the poorer 
ones with more reliable predictors. Then the whole decision 
process is repea ted. 

The set of predictors deemed most credible and acted upon 
by potential bar attendees-which Arthur calls the set of nctizw 
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predictors-determines the attendance. But the attendance history 
also determines the set of active predictors. This process of cumu- 
lative causation creates what John Holland has called an ecology of 
predictors. One of the aims of Arthur's computer experiments was 
to find out how this ecology evolves over time. So he created an 
"alphabetic soup" of several dozen predictors and randomly 
"ladled out" various mixes of these to each of the one hundred 
persons. 

As long as the predictors are not too simplistic, the simulations 
show that the weekly attendance will fluctuate, but mean atten- 
dance always converges to sixty. The predictors self-organize 
themselves into an equilibrium "ecology" in which 40 percent of 
the active predictors forecast above sixty and 60 percent of them 
below sixty. This happens despite the fact that the population of 
active predictors keeps changing in membership forever. Such an 
emergent ecology is more like a forest whose contours do not 
change, but whose individual trees do. 

But there's also another intriguing result. The computer-gener- 
ated attendance results look more like the outcome of a random 
process rather than a deterministic one (see Figure 2.4). Yet there's 
no inherently random factor governing how many people show 
up. Weekly attendance is a purely deterministic function of the in- 
dividual predictions, which themselves are deterministic functions 
of the past attendance figures. Curiously, the existence of a statisti- 
cal regularity might be attributed to the deterministic nature of 
chaos. In other words, the time-series of attendance figures might 
well be a deterministically random (i.e., chaotic) process. The irri- 
tating thing is that we have no mathematical formalism with 
which to either prove or disprove this conjecture. 

What does this kind of emergent simplicity tell us? It confirms 
that a system of interacting people (in this case, bar attendees) can 
"spontaneously" develop collective properties that aren't obvious 
from our knowledge of each of the individuals themselves. These 
statistical regularities are large-scale features that emerge purely 
from the microdynamics. As Jack Cohen and Ian Stewart have 
stressed, "Emergent simplicities collapse chaos; they bring order to 
a system that would otherwise appear to be wallowing hopelessly 
in a sea of random fluctuations."2o 
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The E1 Farol problem contains all the essential elements of a com- 
plex adaptive systenz. First, it involves a "largish" number of agents, 
where "largish" denotes a number too large for hand calculation or 
intuition but too small to call upon statistical methods applicable 
to very large populations. Second, it involves agents who are adap- 
tive and iritelliget~t. Such agents can make decisions on the basis of 
mental models (like the E1 Farol predictors) and are willing to 
modify tl-iese mental models or come up with new ones where nec- 
essary. In other words, they can reason indz~ctively. Third, no single 
agent knows what all the others are thinking of doing, having ac- 
cess to only a limited amount of information. The E1 Farol case is 
extremely tight as each agent knows only what he or she is think- 
ing of doing. 

Conventional economic wisdvm would tell us that these agents 
have only one reasoning skill: the ability to process the information 
available to them in a purely logical, deductive manner to arrive at 
the best decision in a given situation. But this is useless when the 
best thing to do-to go or not to go-depends on what everyone 
else is doing. There's no optimal predictor. The best each agent can 
do is to apply the predictor that has worked best so far, to be will- 
ing to reevaluate the effectiveness of his set of predictors, and to 
adopt better ones as new information about bar attendance be- 
Comes available. The latter is the inductive part of the decision 
process. This is the way that Arthur's surrogate music lovers be- 
have in his silicon world, which is our world of morphogenesis. 

Three results of the E1 Farol problem are significant. First, the 
computer experiments show that inductive reasoning can be mod- 
eled. Second, they show that agents' belief systems should be 
thought of as evolving and coevolving. Third, they suggest that 
under the influence of a sufficiently strong "attractor," individual 
expectations that are boundedly rational can self-organize to pro- 
duce collectively "rational" behavior. But there's also an even 
stronger message for economists. Learning and adaptation should 
not be addenda to the central theory of economics. They should be 
at its core, especially in problems of high complexity. 

What's more daunting is the idea that those silicon agents in 
Arthur's computer experiments may have developed superior in- 
tuition (i.e., know-whether) to the real bar lovers on which they're 
based. Ever since Deep Blue defeated Kasparov in their second 
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round of chess games, the frightening idea that "calculative" 
reasoning might be able to outperform human reasoning (based 
on deduction or induction) in open-ended situations has been 
recognized. 

One perplexing issue remains. How and why do the predictors 
self-organize so that sixty emerges as the mean attendance in the 
long run? Was it simply because Arthur picked sixty as the crowd- 
ing threshold? If the threshold had been seventy instead of sixty, 
the simulations may have showed that the mean attendance would 
have converged to seventy. What would have happened if the as- 
sumption of a uniform crowding threshold had been dropped 
completely? After all, the heterogeneities of human thinking and 
decisionmaking suggest that music lovers could never agree on the 
Same figure to define a bar's crowding threshold. Would sixty still 
emerge under these more realistic conditions? 

Arthur's explanation for his result is that sixty may be a natural 
"attractor" for the microdynamics in this bar problem. If we view 
the problem as a pure prediction game, then a mixed strategy of 
forecasting above sixty with probability 0.4 and below it with 
probability 0.6 corresponds to what game theorists call a Nash t>qzli- 
litirizrm. Could this be the reason the forecasts split into a 60/40 ra- 
tio? Although this explanation illuminates the end of the journey, it 
fails to explain the means of achieving that end. Given each agent's 
subjective reasoning, it's still impossible to explain the collective 
outcome. In the next section, therefore, we'll look more closely at 
Nash equilibria in both a static and a dynamic context. 

The Emergence of Cooperation 

Life is literally teeming with perplexing problems, dilemmas, and 
paradoxes-not all of which are abstract and philosophical. Rather 
than being a source of frustration, some paradoxes are superbly 
enlightening. We savor the moment when the truth dawns upon 
us. One paradox that hinges on the quirks of human nature is the 
game theorist's favorite game, the Prisoner's Dilemma. This tan- 
talizing puzzle was discovered in the 1950s by Merrill Flood 
and Melvin Drescher of the RAND Corporation, two early game 
theorists who were testing some bargaining theories with experi- 
mental games.21 
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Social scientists have become quite fond of the game, seeing Pris- 
oner's Dilemma situations arising everywhere in socioeconomic 
interactions. It's a surprisingly ubiquitous metaphor. As Russe11 
Hardin notes, if the dilemma had been called "exchange" origi- 
nally, then everyone would've expected it to be ubiquitous.22 In 
economics, we view exchange as a two-party affaii. But exchange 
situations can involve more than two parties. Think of the bidding 
by competing parties at an auction, verbal exchanges between par- 
ticipants at a public meeting, or the debate between political Par- 
t i e ~  leading up to an election. In its multiperson or collective guise, 
exchange is a very interesting problem. Although less tractable 
than the traditional two-party problem, it captures the perversity 
of the logic of collective action.23 Under this logic, a group of peo- 
ple with a common interest that requires a common action can 
share an interest collectively but not individually. 

Before we get immersed in a debate over collective versus indi- 
vidual behavior, it's worthwhile getting more closely acquainted 
with the Prisoner's Dilemma. Let's sidestep the original formula- 
tion about prisoners and jail terms because it can baffle the uniniti- 
ated. Instead we'll look at this puzzling paradox in the form of 
an economic metaphor: the "Trader's Dilemma." The Scene for 
this metaphor is Medieval Europe. Imagine yourself as an enter- 
prising merchant from Venice in the early days of Mediterranean 
trade. Venetian salt is what you have in abundance. Instead of 
trading it for grain and linen, on your next voyage you opt for 
something different. The latest rage is precious silk from Thebes 
(near Athens), so you stop there on your way from Venice to 
Constantinople. 

You find a silk dealer whose terms are acceptable. But disap- 
pointment follows when you learn that he has a binding agree- 
ment with another Italian merchant. He's willing to trade, but only 
if the trade takes place secretly. He can't risk being Seen dealing 
with you. So you agree to leave your salt consignment in bags at a 
well-concealed spot in a nearby forest and to pick up the bags of 
silk at the silk dealer's designated place. Of course, you'll have to 
leave more bags than him because salt has a much lower value 
than silk. 

Given that the silk dealer is nervous about jeopardizing his exist- 
ing agreement, it's pretty clear to both of you that this will be a 
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one-time exchange. You're unlikely to meet again or have any fur- 
ther dealings with each other. Suddenly you realize that there's 
something for each of you to fear: namely that the bags that you get 
could be empty. Of course, there's no risk if you both leave full bags. 
But getting something for nothing would be even more rewarding. 
So you're tempted to leave empty bags. 

Here's how you might think this through: 

If the silk dealer brings full bags, then 1'11 be better off leaving empty 
bags-because 1/11 get all the silk I want a~zd keep all my salt. Even 
if the silk dealer brings empty bags, 1'11 still be better off leaving 
nothing-because that way I can never be cheated. No nzßtter what the 
silk dealer does, my smartest move is to leave empty bags. So 1/11 leave 
empty bags. 

By similar reasoning, however, the silk dealer reaches the Same 
conclusion. So you both leave empty bags and come away empty- 
handed. 

The result is obviously disappointing. In the jargon of the Pris- 
oner's Dilemma, both of you chose defectio~l over cooperntiofi. If 
you'd both cooperated, you could have sailed away with precious 
silk and the silk dealer would own a cellar full of salt. There would 
have been smiles all around. Instead of that you have no silk. What 
went wrong? Why did logical reasoning rule out cooperation? This 
is the perplexing aspect of the Prisoner's Dilemma. 

A revealing theorem by John Nash, an early pioneer in game 
theory, threw some light on this surprising outcome. He showed 
that there's always at least one "Nash" strategy for each player, 
with the property that if each player chooses that strategy, he or 
she will be better off than with any other strategy. But this situation 
holds only if all the other players opt for their Nash strategies. A 
choice of Nash strategies among all the players is called a Nash 
equilibrium. No doubt you've guessed the connection by now. The 
decision of both traders to leave empty bags corresponds to a Nash 
equilibrium. 

To pinpoint a Nash equilibrium precisely, we need to assign 
some numbers to our problem. But how do we quantify it? Accord- 
ing to game theory, we define a set of payoffs to each of the play- 
ers. You and the silk dealer have a pair of strategies to choose from: 
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FIGURE 2.5 Computing payoffs in the Trader's Dilemma game. 
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You can leave either full or empty bags. The payoff for each of you 
depends on the strategy chosen by the other. To display these vari- 
ous alternatives, we define a payoff matrix containing point values 
for the different pairs of strategies. Some typical point values are 
shown in Figure 2.5. 

How do we interpret the figures? Payoff doesn't mean money 
since the exchange involves goods only. The numbers indicate the 
degree of sntisfnction associated with each strategic outcome. For ex- 
ample, mutual cooperation scores two points to both of you. In this 
problem, two points means "quite happy." Both of you would be 
quite happy if all bags were full and you both got what you 
wanted. Mutual defection scores Zero, and Zero means you're "in- 
different" to the idea of gaining and losing nothing.24 If your worst 
fears were realized and you got empty bags after leaving full ones, 
then you'd score -1 and be "feeling upset," while the silk dealer 
would score 4 and be feeling "very happy." These scores would re- 
Verse if you found full bags after leaving empty ones. 

The Nash equilibrium solution to this game lies at P = (0,O). But 
this means Zero payoff to both of you. Why should you choose 
Zero reward? Because defection risks at worst indifference (0), 
whereas cooperation could leave you upset (-1). No matter what 
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the silk dealer does, your safest individzinl strategy is to defect. 
Note that the payoff for mutual defection is lower than for mutual 
cooperation. Thus your best joint strategy is to cooperate. Now 
you can See the dilemma. Because you're unlikely to meet again, 
the best solution is to defect-despite the seemingly paradoxical 
outcome that it would be collectively superior for you both to 
cooperate. 

Stuart Kauffman Sums up the Nash concept as a penetrating one: 
"The concept of Nash equilibria was a remarkable insight, for it of- 
fers an account of how independent selfish agents might coordi- 
nate their behavior without a master choreographer."25 Despite its 
allure, however, a Nash equilibrium "solution" to the Trader's 
Dilemma has some major weaknesses. First, it sits stubbori-ily in 
the world of stasis. In the case where the Trader's Dilemma is 
played only once, a Nash solution is stable, predictable, and resis- 
tant to change. No other strategy can invade the strategy of pure 
defection. Second, it relies on all traders thinking and acting ratio- 
nally and identically. Like the deductively rational economic agent 
we discussed earlier, traders are assumed to have the brainpower 
and enough information to figure out their optimal strategy. Third, 
it may not be the solution in which the payoff to traders is particu- 
larly good. 

Even if these weaknesses could be overlooked (which they 
can't), there's still another problem. What happens in a large game 
with many players? How would you approach a market boasting a 
dozen or more silk traders and just as many salt merchants desper- 
ate to outperform you? There could be many more possible strate- 
gies and many more Nash equilibria. How would you find all 
these Nash strategies and then pick the best Nash equilibrium? 
Would this Nash payoff be worth pursuing in any case? Like 
Thursday nights at the E1 Farol bar, your problem quickly becomes 
complicated and ill defined. 

Setting these problems aside for the moment, let's return to the 
Scene of our Trader's Dilemma. By now your ship has been re- 
loaded with the untraded salt. What have you learned from this 
abortive experience? What might you do next? You've discovered 
that for a single exchange conducted in secret, the temptation for 
both parties to cheat is irresistible. Now you recall your normal 
recipe for success: long-term, bilateral agreements. You go in 
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search of another silk dealer who shares your desire for lifelong ex- 
changes. Eventually you find a young dealer who accepts your 
long-term proposal. You agree to exchange fixed amounts every 
quarter but are unlikely to meet again face to face. 

What do you do on the occasion of your first exchange? Leaving 
empty bags would hardly be a friendly way of fostering good will 
with a new trading partner. So you leave full bags. So does your 
silk dealer. What a relief! Three months pass and then you must go 
again. Empty or full? Every quarter you must make the decision 
whether to cooperate or defect. Two years later, the silk dealer de- 
fects unexpectedly. What will you do now? Can he ever be trusted 
again or will you call a halt to all future exchanges with him? 

In the literature, the game you're now playing is known as the 
iterated Prisoner's Dilemma. Just as adding more players creates 
complications, so does allowing repeated exchanges. But it also 
adds more realism. The trading world has always featured long- 
term agreements, cartels, price-fixing, and other multilateral trad- 
ing arrangements. Furthermore, traders engaging in repeated ex- 
changes have always shown some degree of cooperation. And they 
also tend to review their strategies regularly over time. So it makes 
a lot of sense to study the iterated version of the Prisoner's 
Dilemma in order to understand the exact conditions under which 
cooperation might emerge. 

The million-dollar question is: Ca~z  cooperation ever evolve out  of 
noncooperation? Well, the answer turns out to be a resounding yes. 
Emergent cooperation has been demonstrated by a novel method: 
a computer tournament organized by Robert Axelrod, a political 
scientist at the University of Michigan. Cooperation won out 
among a diverse population of computer programs playing re- 
peated games of the Prisoner's Dilemma with one another. After 
the tournament was over, Axelrod spotted the salient principles 
and proved theorems that could explain cooperation's rise from 
nowhere. His findings have been published in many Papers and 
two thought-provoking books.26 

Axelrod sent out invitations to game theorists in economics, soci- 
ology, political science, and mathematics. The rules implied a simi- 
lar payoff matrix to the one shown earlier for the Trader's 
Dilemma. Submitted programs were designed to respond to the 
"cooperate" or "defect" decisions of other programs, taking into 
account the remembered history of previous interactions with that 
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particular program. Fourteen entries duly arrived. Axelrod added 
another called RANDOM, which simply flipped a coin each time it 
met another program. Each program was made to engage other 
programs two hundred times. 

Although some of the entries were quite sophisticated, the win- 
ning program turned out to be the simplest of all the strategies sub- 
mitted. Known as TIT FOR TAT, it simply cooperates on the first 
move and then does whatever the other player did on the preced- 
ing move. That's all there is to it. TIT FOR TAT was written by the 
psychologist and philosopher Anatol Rapoport, who turns out to 
be an old hand at the Prisoner's Dilemma game.27 Rapoport's pro- 
gram was also the shortest of all the programs submitted. Small is 
beautiful after all! 

Given this surprising outcome, the full results were circulated 
and entries for a second tournament were solicited. Axelrod pro- 
vided a few hints this time. He pointed out that many of the losing 
strategies suffered from self-punishment because such a possibility 
was not perceived by their decision rules. He also stressed that TIT 
FOR TAT was a strategy of cooperation based on reciprocity and 
that many of the other strategies were not forgiving enough. 

This time Axelrod received sixty-two entries from six countries. 
Most came from computer hobbyists (including one ten-year-old). 
Rapoport's TIT FOR TAT was there again. So was a variation on 
the Same theme called TIT FOR TWO TATS, which tolerates two 
defections before getting mad (but still only strikes back once). Ax- 
elrod already knew that TIT FOR TWO TATS would have won the 
first tournament if it had been in the lineup, so it was Sure to be 
hard to beat. It was entered by one of the world's experts on game 
theory and evolution, John Maynard Smith, professor of biology at 
the University of Sussex. 

Can you guess what happened? Amazingly, TIT FOR TAT won 
again. What a remarkable result! How on earth could such a sim- 
ple decision strategy defeat so many other strategems devised by 
all those whiz kids? Axelrod attributes TIT FOR TAT'S success to 
its being 

nice (not the first to defect); 
provokable (responding to the other player's defection); 
forgiving (punishing and then cooperating after a defection); 
clear (easy for other players to understand). 
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So, nice guys, or more precisely, nice, provokable, forgiving, and 
clear guys, can indeed finish first. But success in two computer 
tournaments is hardly enough to prove that TIT FOR TAT would 
do well as an evolutionary strategy. To test this possibility, Axelrod 
conducted a series of ecological simulations, with various tourna- 
ment entries and other strategies as his starting population. He 
found that TIT FOR TAT quickly became the most common strat- 
egy. Thus the conclusions seemed clear. A small cluster of players 
who opt for cooperation based upon reciprocity could establish 
themselves in a population of noncooperative players. Once estab- 
lished, they could become immune from re-invasion by any other 
strategies and could thus take over such a population. 

Tlie Prisoner's Dilemma game captures the tension between the 
advantages of selfishness in the short term versus the need to elicit 
cooperation to be successful in the long run. But the jury's still out 
on whether such voluntary cooperation is sustainable over the 
long run. Many analysts (like Axelrod) believe that TIT FOR TAT 
could be a robust and stable mutant; even an evoltltionarily stable 
strategy under certain conditions. But others have challenged this 
idea. An article in the journal Nature showed that no pure strategy 
can be evolutionarily stable in the iterated Prisoner's Dilemma.28 
Another Nature article reported that the most successful strategy is 
one that repeats its previous choice when it gets one of the two 
highest payoffs.29 This ongoing debate suggests that therefs much 
more to be learned about the evolution of cooperation, especially 
under different socioeconomic conditions. 

Nevertheless, it's nice to know that benign cooperation among 
selfish agents can emerge despite the constant temptation to defect. 
In Axelrod's words, "Mutual cooperation can emerge among a 
world of egoists without central control, by starting with a cluster 
of individuals who rely on reciprocity."30 And in those of Hardin, 
"But coordination can come about without intent, without over- 
coming contrary incentives. It can just happen."31 In other words, 
cooperation can self-organize within a population, despite its mem- 
bers' biologically determined egoism. This has ramifications for 
both the economic and political arenas. 

Many of the challenging problems facing humanity relate to 
globalization and international relations, where independent na- 
tions often refuse to cooperate,' instead exhibiting stark hostility.32 
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Such problems closely resemble the iterated Prisoner's Dilemma. 
In addition to trade negotiations, arms races, crisis bargaining, 
nuclear proliferation, and environmental pollution fall into this 
categor$ By understanding the process of'mutual cooperation a 
little better, perhaps we could use our foresight to speed up its 
evolution. 

There's another interesting message for economics from the 
TIT FOR TAT story. A strategyfs success depends entirely on the 
environment in which it's swimming. At the beginning of Axel- 
rod's ecological tournaments, poor programs nnd good programs 
were well represented. But as they "swam" through generation 
after generation of interactions, this environment changed. The 
poorer strategies began to drop out and the better ones flourished. 
So it is with technologies. Their rank order changes because 
their "goodness" is remeasured alongside a different field of 
compet&ors. Success breeds further success, but only when that 
success Comes from interaction with other reasonably successful 
technologies. 

Doesn't this ring a bell or two? Remember those high-tech firms 
we discussed in Chapter 1. In the economic world of morphogene- 
sis, firms that get ahead get even further ahead. Like good strate- 
gies in the Prisoner's Dilemma, theyfre self-reinforcing. TIT FOR 
TAT didn't win all those tournaments by beating the other players, 
but by eliciting behavior from the others that allowed bot11 to do 
well. This kind of mutual learning process isn't just evolutionary, 
it's coevolu t ionary. 

Coevolution has been found in evolutionary versions of the Pris- 
oner's Dilemma. Instead of starting like Axelrod did, with random 
selection from a rich set of strategi&, Kristian Lindgren began with 
the simplest possible strategies. Using an extension of the genetic 
algorithm to evolve more and more complex possibilities, and al- 
lowing for the possibility of mistakes, he found that selection fa- 
vors the evolution of cooperation and unexploitable strategies.33 
The result was long periods of stasis alternating with periods of in- 
stability, as one dominant pattern of strategies was invaded by an- 
other. Various kinds of evolutionary phenomena, like coexistence, 
punctuated equilibria, exploitationf- the coevolution of mutualism, 
and evolutionarily stable strategies, were encountered in the 
model simulations. 
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Coevolutionary Learning 

How stunning it was when biology revealed that organisms don't 
just evolve, they coeaolve. Their adaptation over time isn't shaped 
merely by their encounters with other organisms; it's also honed 
by the environment in which they live. And this environment isn't 
fixed but is also adapting to the behavior of its changing inhabi- 
tants. What might this imply for agents in an economy? In behav- 
ioral terms, it suggests that what agents believe affects what hap- 
pens to the economy, nnd in turn, what happens to the economy 
affects what agents believe. This, in fact, is the hypothesis explored 
in this book. The agents and goods and services in the economy co- 
evolve, because those that are present must always make sense in 
the context of all the others that already exist. Diversity breeds 
more diversity, thereby fueling the growth of complexity. 

There's another way of recognizing the fundamental difference 
between evolution and coevolution. Stuart Kauffman couches it in 
terms of fitness landscapes.34 Evolution occurs on a fixed land- 
scape where the attractors are local optima in the form of single 
points. This kind of landscape is a familiar one to economists, who 
are taught that optimization is a simple hill-climbing procedure. 
All that we thought we needed to know was the topography of the 
hill. 

In a coevolutionary process, however, the landscape isn't fixed. 
Instead, it's adapting incessantly. In an economic environment, for 
example, we can picture the landscape of one agent heaving and 
deforming incessantly as other agents make their own adaptive 
moves. The resulting environment has a very unstable surface. In 
fact, it's more like a seascape than a landscape. Have you ever tried 
to surf on an incessantly choppy and undulating ocean surface? 
That's the kind of decision environment that exists when agents 
must adapt incessantly. Nobody quite knows where they're going 
next. It's even difficult to define the problem. For example, techno- 
logical evolution is a process attempting to optimize a system 
riddled with conflicting constraints. In such an uncertain environ- 
ment, the various behavioral regimes that may coevolve are mind- 
boggling. The likelihood of reaching local optima in the form of 
point attractors is very remote. Coevolving sysfems rnay not be opfi- 
lnizing anything. 
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What are they doing then? One insight comes from Axelrod's re- 
sults. Sometimes coevolution allows TIT FOR TAT-style coopera- 
tion to emerge and thrive in a world full of treacherous defectors. 
The iterated Prisoner's Dilemma game simultaneously provides an 
abstract model for the evolution of cooperation and the setting for 
a very complex evolutionary landscape.35 Another insight comes 
from Arthur's inductive economic models in which agents learn 
and adapt. Inductive agents, who persistently alter their mental 
models of other agents' behavior, will decide and behave differ- 
ently. They're forever changing their mental images of others. 
These mental images are often nothing more than subjective expec- 
tations or half-hoped anticipations. They can be mutually coopera- 
tive or mutually competitive. They can arise, get a solid footing, 
gain prorninence, fall back, and disappear. Arthur regards them as 
the DNA of an economy. 

Whenever beliefs form a complex ocean of interacting, compet- 
ing and cooperating, arising and decaying entities, it's possible 
that they may simplify into an ordered equilibrium now and tlien. 
But most of the time they'll be found in complex, unsettled, ever- 
changing states. Beliefs about beliefs are mostly volatile. There's no 
evidence to suggest that such adaptive behavior ever settles down 
into a steady, predictable pattern. This is a another signature of 
coevoluf ionary lenrning. 

The light is beginning to shine at last! When economic agents in- 
teract, when they must think about what other agents might be 
thinking, their coevolving behavior can take a wide variety of 
forms. Sometimes it might look chaotic, sometimes it  might appear 
to be ordered, but more often than not it will lie somewhere in be- 
tween. At one distant end of the spectrum, chaotic behavior would 
correspond to rapidly changing models of other agents' beliefs. If 
beliefs change too quickly, however, there may be no clear pattern 
at all. Such a volatile state could simply appear to be random. At 
the other end of the spectrum, ordered behavior could emerge, but 
only if the ocean of beliefs happens to converge onto a mutually 
consistent set of models of one another. One familiar example is 
that classical pillar of the world of stasis, a state of equilibrium 
among a set of deductively rational agents. 

For most of the time, however, we'd expect that mental models 
of each other's beliefs would be poised somewhere in between 
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these two extremes, ready to unleash avalanches of small and large 
changes throughout the whole system of interacting agents. Why 
should we expect this? Given more data, we would expect each 
agent to improve his ability to generalize about the other agents' 
behavior by constructing mure complex models of their behavior. 
These more complex models would also be more sensitive to small 
alterations in the other agents' behavior. Thus as agents develop 
more complex models to predict more accurately, the coevolving 
system of agents tends to be driven away from the ordered regime 
toward the chaotic regime. Near the chaotic regime, however, such 
complexity and changeability would leave each agent with very 
little reliable data about the other agents' behavior. Thus they 
would be forced to simplify, to build less covllplex models of the 
other agents' behavior. These less complex models are less sensi- 
tive to the behavior of others and live in calmer oceans. 

Thus we can picture a constant struggle between the need to 
simplify and the need to "complexify" our thinking. This is tanta- 
mount to a struggle between the two halves of our brain. Being 
more objective, rational, and analytical, the left-hand side houses 
the simpler confines of convergent thinking. It's also responsible 
for the deductive metaphor among economic agents. By way of 
contrast, the right-hand side is more subjective, intuitive, and 
holistic. This kind of divergent thinking produces multiple out- 
Comes and creative ideas. Thus the right-hand side is responsible 
for inductive reasoning among economic agents. We can picture 
these two modes of thought in constant interplay, driving the 
whole ocean of beliefs back and forward, from chaos to order and 
back again. In general, therefore, we might expect to find most eco- 
nomic agents hovering somewhere in between, poised, if you like, 
near "the edge of chaos." 

Believe it or not, such poised states proliferate in our everyday 
world. Here's one example from my own backyard. For several 
years, my ten-year-old daughter, Sofie, and I have enjoyed the 
habit of cycling together on a bayside circuit near our Melbourne 
home. While pedaling around this predetermined circuit, we often 
play that simple guessing game that kids everywhere seem to 
adore: "I spy with my little eye, something beginning with . . . ." 
For the first few months, we played the standard game: We tried to 
guess each other's word given its first letter. Then Sofie began to 
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ask for a clue if the word turned out to be elusive. A few months 
later, we allowed two clues under certain conditions. Then came a 
major "mutation." Our population of potentially guessable 
"things" expanded dramatically when we allowed two-word de- 
scriptions to join single words. First, it was just nouns needing two 
words to define them (e.g., ice cream). But very soon the set of pos- 
sible words was expanded again. We included adjective-noun 
pairs (e.g., red car). Can you guess what was happening? Our little 
game of "I spy" was coevolving all the time. It seemed to be forever 
poised on the verge of an avalanche of smaller and larger changes. 
A bit like those sandpiles we discussed in Chapter 1. 

Progress in science is a fertile example of coevolutionary learn- 
ing. Scientists develop their own models or hypotheses about a 
particular phenomenon of interest. Then they test these ideas in a 
variety of ways: performing experiments in laboratories, dis- 
cussing their results with colleagues, lecturing about them at semi- 
nars and conferences, and publishing them in journals and books. 
From each of these critical audiences, they get feedback. Usually 
they're obliged to revise their ideas in the light of this feedback, to 
discard some of their old models and replace them with new ones. 
Like chess players, scientists discern patterns, build temporary 
mental models, test them in a competitive environment, revise 
them in the light of new information, and come up with improved 
hypotheses. They're immersed in an ocean of ideas, where each 
one is evolving and coevolving. Scientists are experts at coevolu- 
tionary learning. 

As we noted earlier, researchers understand the importance of 
oral communication when their own ideas are exposed for critical 
comment. One of the great advantages of face-to-face contact is 
that it fosters the unexpected! Unsolicited comments from 
thoughtful peers can be pearls of wisdom. Interestingly, face-to- 
face contact is dependent on the transportation system. And the 
world of transport is another arena where coevolutionary learning 
is hard at work. A traffic system supports a large number of inter- 
acting vehicles and drivers, and the behavior of both can be com- 
plex and unpredictable. As we shall learn in a later chapter, busy 
traffic may be poised near the edge of chaos. 
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Phase Transitions 

I haue supposed a Hzinian Being to be capable of variozls physical states, and 
varying degrees ofconscioi~sness, asfollows: 
( a )  the ordinary state, with no conscio~~sness of the presence of Fairies; 
(b) the eerie state, in which, while conscioi~s ofactilal si~rroundings, he is also 

consciot~s of the presence of Fairies; 
(C) a form of trance, in which, while uncoriscioi~s of actzial surroiaidirigs, and 

apparently asleep, he (i.e., his inmaterial essence) nrigrates to other scenes iti 
the actual world, or in Faiyland, and is conscious ofthe presence ofFairies. 

-Lewis Carroll 

The ~allac; of Cornposition 

In the previous chapter, we learned two important things about how 
the economy works. First, human decisionmaking reflects the dlfler- 
erzt beliefs and expectations of individuals. Second, the interactions 
between these different individuals can produce unexpected collec- 
tive outcomes. In turn, it's the evolution of these collective outcomes 
that shapes each agent's future behavior. What agents believe aflects 
what happens to the economy, und in turn, zuhat happens to the economy 
aflects what agents believe. The impacts of this positive feedback loop 
are what this book is all about. We call it coevolutionary learning. 

For the time being, we'll regard the first problem as a psychologi- 
cal one and the second as a systerns problem.1 Having looked at as- 
pects of psychology in the previous chapter, our aim in this chapter 
is to look more deeply into the systems problem. This problem lies 
at the core of the complexity issue. It's not difficult to understand 
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why. All of us have the feeling that our economy is complex . Why 
is it so complex? One reason is that it involves a very large number 
of elements. In a major city economy, for example, several million 
human agents can link together in a myriad of different ways. In a 
national economy, an even greater number of interactions can 
arise. Adopting this view of economic complexity is just one way 
of looking at the problem. It turns out to be a cornbinntorial view. 

Most of us aren't expected to know very much about the whole 
economy and the way it works. What we often know (or can find 
out) are the prices of things we can buy or sell, the interest rates at 
which we can borrow or lend, and a little about the alternative 
ways we might earn our living and spend our money. Beyond 
these personal aspects, however, we tend to think of the rest of the 
economy as some giant accounting system, capable of balancing 
out all those transactions resulting from specific patterns of inter- 
action between all the agents involved. Some of us believe we 
know more than this; others feel that they know even less. Most of 
us simply take our economy for granted, partly because we don't 
understand the way it really works. 

What we tend to forget is that any specific pattern of transac- 
tions, whether in equilibrium or disequilibrium, is just one collec- 
tive possibility. It's nothing more than one plausible set of agents' 
interactions from among many candidates. The magical thing is 
that, somehow, all of thesr chosen transactions seem to get coordi- 
nated. We have little idea of how this fantastically complex system 
selects this particular pattern of interactions, manages to balance 
them out, and then somehow decides where to go next. Because in- 
ductive agents learn and adapt, forever changing the ways they 
choose to interact, a coevolving economy is actually open-ended. 
There's simply no way we can know how each and every agent is 
going to behave, least of all what the economy as a whole will do 
under different conditions. Future outcomes depend on the histor- 
ical trajectory of choices made along the way. 

Most economists acknowledge that what seems to be true for in- 
dividual~ isn't always true for society as a whole. Conversely, what 
seems to be true for all rnay be quite false for any one individual. 
In stressing that things aren't always what they seem at first, Paul 
Samuelson provides some paradoxical examples in the form of the 
following triie statements: 
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If all farmers work hard and nature cooperates to produce a 
bumper crop, total income rnay fall, and probably will. 
One man rnay solve his own unemployment problem by 
great ingenuity in finding a job or by a willingness to work 
for less, but all cannot necessarily solve their job problems 
in this way. 
Higher prices for one industry rnay benefit its firms; but if 
the prices of everything bought and sold increased in the 
Same proportion, no one would be better off. 
It rnay pay tlie United States to reduce tariffs charged on 
goods imported, even if other countries refuse to lower 
their tariff barriers. 
Attempts of individuals to save more in depression may 
lessen the total of the community's savings. 
What's prudent behavior for an individual rnay at times be 
folly for a nation.2 

Many of the above paradoxes hinge upon a Single confusion or 
fallacy Logicians have dubbed it the "fallacy of composition." In 
books on logic, you can find the following definition: 

Fallacy of Composition: A fallacy in which what is true of a part is, 
on that account alone, alleged to be also necessarily true ot' the 
whole. 

The six statements mentioned above are typical of the many in- 
stances of the fallacy of composition that appear in economics 
texts. In the Course of books like Samuelson's, these paradoxes arc 
resolved. There are no magic formulas or hidden tricks. Each is ex- 
plained in terms of Standard economic principles. Some fallacies 
are due to comparative price or quantity changes at different levels 
of the economy, whereas others are due to structural properties of 
the whole economy The interested reader might care to attempt an 
explanation of each. 

Our view is that paradoxical statements typically chosen to illus- 
trate the fallacy of composition (like the six mentioned above) 
hardly scratch the surface compared to the full set of paradoxes 
that can arise. Furthermore, they're a select group that cnri be 
resolved using the conventional static equilibrium view of the 
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economy. In other words, most are traps that exist inside the world 
of stasis only. Altliough they're treated as if they're exceptions to 
the rule, what's overlooked is the fact that the more challenging 
economic paradoxes arise in that other world of economics: the 
world of morphogenesis. Many have nothing to do with equilib- 
rium prices but are due to the positive feedback loop associated 
with learning from others and from collective experiences. In other 
words, they're governed by the coevolutionary learning processes 
in the economy. 

A central difficulty in the economy, then, is one of dynamic inter- 
depeizdencies. How do we find a way of handling the huge variety 
of behavior-both individual and collective-that can arise when 
economic agents interact over space and time? Complexity arises, 
then, because of the numerous ways in which economic agents can 
choose to work together. Furthermore, unusual collective proper- 
ties can arise if the agents choose to interact in particular ways. We 
caught a glimpse of some of these unexpected phenomena in 
Schelling's segregation model (Chapter 1) and Arthur's bar prob- 
lem (Chapter 2). The point to remember is that we need to know 
what the economic agents are thinking and doing interactively 
over time, not simply what prices they're paying at specific points 
in time. 

Before we probe the perplexing issue of dynamics more deeply, 
consider the following example of hozu the systems problem Comes 
about. Instead of sandpiles, this simplifying illustration involves 
action on a billiard table. If you roll a billiard ball across such a 
table, any reasonable player can predict the path that it will follow. 
If you roll two balls across the table at the Same time, it's still not 
difficult to calculate each ball's path individually. Once you add a 
few more balls, however, there's a strong chance that some balls 
will bump into others. The problem of keeping track of every ball's 
path and collision possibilities becomes more difficult. Now imag- 
ine what would happen if, with the help of friends, you rolled one 
hundred balls across the table at the Same time! They'd be bump- 
ing into each other all the time. Predicting their individual paths 
would be impossible. The system as a whole would become unpre- 
dictable at the individual level. 

If you happen to be a grand master at chess, you'd probably no- 
tice the pattern of behavior over the entire table. Oddly enough, 
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the problem begins to simplify again at this macrolevel. The more 
balls you roll, the less important it is to trace every ball exactly. 
Once there are lots of balls rolling across the table, a new behav- 
ioral paradigm takes over. Individual interactions start to average 
out. Suddenly you can make reasonable predictions about the av- 
erage speed and the average time between collisions. Macroscopic 
patterns form. A new kind of order has arisen. These collective 
properties emerge unexpectedly out of the countless number of in- 
dividual interactions. 

The billiard ball model turns out to be the starting point for the 
kinetic theory of gases.3 In a container full of many particles, all 
whizzing around and bumping into each other at all sorts of 
speeds, one property is always stable with respect to all the other 
elements (such as type of gas, shape of container, and so on). In the 
case of gases, that property is temperature. A stable temperature is 
an eniergent property because we would never have predicted it 
by looking at the individual particles themselves, or the shape of 
the container, or anything else that is part of the whole system. By 
now, you've probably got the message; emergence is one of the 
hallmarks of complexity in both physical and socioeconomic 
systerns. 

Certainly economic agents are more complicated than billiard 
balls. Nevertheless, the notions of interactive complexity and 
emergence are identical in both cases. Remember those music 
lovers at the E1 Farol bar. Nobody risked much chance of bumping 
into anyone else if the bar wasn't crowded. But as soon as the 
crowd grew to more than sixty, the chances of brushing up against 
one or two pushing-and-shoving bar louts were pretty high. From 
week to week, it was impossible to guess how many would turn 
up next Thursday evening. Despite all this uncertainty at the indi- 
vidual level, the mean attendance over time converged to a pre- 
dictable value. Order emerged from seemingly random behavior. 

lrreducible lnteractions 

There seems to be a consistent message here about simple and 
complex economic systems, at least in terms of two key properties. 
By and large, simple economic systems are hornogeneoiis and zilerzkly 
interactive. Individual beliefs and expectations must be sufficiently 
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uniform, and the level of interactions sufficiently weak or trivial, 
for us to be able to predict collective patterns of behavior with any 
confidence. By way of comparison, complex economies are hetero- 
gerleozis and strongly interactive. They lie beyond the point where in- 
dividual beliavior can be discerned with any degree of confidence 
(see Figure 3.1). Somehow, the whole economic system gets trans- 
formed into a qualitatively different behavioral state. 

What we find is a high degree of irregularities together with het- 
erogeneity of individual behavior. The surprising thing is that in- 
trinsic unpredictability of individual behavior does not imply un- 
predictability of collective behavior. Furthermore, any failure to 
predict does not imply a failure to understand or explain. Not 
knowing the full details, we may nevertheless build theories that 
seek to explain the generic yroyerties. Collective order may depend 
little on the details of structure and function. This was the point of 
the billiard ball example and the bar problem. Despite our igno- 
rance of all the individual elements, we can still uncover interest- 
ing collective features like statistical averages. 

Are such distinctions between simple and complex systems fun- 
damentally important in economic life? I believe so. Plenty of ex- 
amples can be found. Even when people appear to be doing very 
simple things-like driving a car, buying food, or going to the 
movies-their pattern of interactions can quickly add up  to more 
complexity than we can handle. One example, familiar to all of us, 
is the unwelcome traffic jam. If the flow pattern of traffic on a road- 
way happens to approach a critical flow density, a qualitatively dif- 
ferent kind of collective behavior appears. The traffic changes from 
a free-flowing state to one in which stop-start waves propagate 
back and disrupt the flow discontinuously. Which flow yattern you 
meet depends on what others are doing, not just on what you 
choose to do. Technically, this kind of unexpected change is known 
as a phase tratlsition. But now we're getting ahead of ourselves 
again. 

Suppose that you're planning to go to the movies. Which one do 
you see? Even if the reviews in the papers and magazines have 
kept you up to date with what's on-expanding your kzzow-zuhat, 
so to speak-you'll still want to get other opinions. So you talk to 
your family and friends, to find out what they thought of the ones 
they saw. Which movie you decide to See will depend on what you 
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FIGURE 3.1 The difference between simple and complex 
systems. 

learn from other people, people who've already gone through sim- 
ilar choice processes to the one in which you're engaged. After- 
ward, other people will ask you what film you saw and what you 
thought of it. Then you can boast a good degree of knozu-~uhetller, 
that is, whether any of the ones you've Seen are worthy of their 
attention. 
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If you also happen to follow the fortunes of the recent releases 
from the major studios, you may learn that one of the films you've 
elected to See has taken off like a rocket. Later, however, it loses its 
momentum. It ends up making a nice profit. Another starts more 
slowly but builds up an ever-increasing audience, doing well 
enough to earn a place on the all-time earners' list. Most of the oth- 
ers fizzle out, not even covering their production and distribution 
costs. You realize that you can't always pick the big winner before- 
hand. Because the movie selection business is strongly interactive, 
individual market shares at the macrolevel are hard to predict. 
There are many subtle and surprising ways in which agent charac- 
teristics and connectivity structure affect the market shares of com- 
peting products.4 We'll return to the issue of connectivity shortly. 

As noted earlier, the defining characteristic of a coevolving econ- 
omy is that some of its collective properties can't be predicted from 
our knowledge of the agents involved or their likely interactions. 
Even if we could recognize and understand the implications of all 
the two-way interactions between pairs of agents, we would still 
be ignorant about three-way, four-way, and larger groups of inter- 
action. This suggests a second way of distinguishing between sim- 
ple and complex economic systems. A complex economy is never 
additive. It behaves quite differently from what we'd expect by sim- 
ply adding up these pairs, trios, and quartets of interaction. Self- 
organizing economies are not additive; they're emergeni. This is 
precisely why some of their collective behaviors can't be predicted 
in advance. There's simply no way of combining the parts into an 
aggregate when we're ignorant about the nature and extent of 
some of the interactions. 

Aristotle may have been the first to recognize that the whole is 
something more than the sum of its parts. But it was the Scottish 
philosopher David Hume who impressed upon us the need to dis- 
tinguish between the simple and the complex. Hume lived in the 
so-called Age of Enlightenment, along with such great French 
thinkers as Voltaire and Rousseau. His main work, A Treatise of Hu- 
man Nritzlre, was published when Hume was twenty-eight years 
old, though he claimed that the idea for the book came to him 
when he was only fifteen. 

In Hume's day, there was a widespread belief in angels. Yes, 
we're talking about those human figures with wings. Many people 
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of Hume's time also claimed that they had a very clear idea of 
heaven. According to Hume, however, "heaven" and "angels" are 
complex ideas. If we think about this for a moment, we quickly re- 
alize that our personal idea of "heaven" consists of a great many 
elements. It may include "pearly gates," "angels," "streets of gold," 
and so forth. Breaking heaven down into its various constituent 
parts doesn't solve the problem for us because each of the parts- 
pearly gates, angels, and streets of gold-are still complex ideas in 
themselves. 

The prize for the most amusing illustration of Aristotle's view 
should go to the systems scientist John Casti. In recalling Mark 
Twain's tale about Those Extraordinary Twins, Siamese twins called 
Luigi and Angelo, Casti reminds us that the story was based on the 
lives of the first recorded Siamese twins in the real world.5 These 
twins, Chang and Eng, were born in Siam in 1811 but ended up as 
American citizens. The truly fascinating thing was that both of 
them had an army of children: seven daughters and three sons for 
Chang, seven sons and five daughters for Eng. How they managed 
to be so productive is anyone's guess! 

Hume and Casti were stressing the Same point: If you want to 
study the behavior of a system composed of several parts, break- 
ing it up into its constituent parts and studying each of them sepa- 
rately won't always help you to understand the whole thing. It's 
pretty clear that Mark Twain, for one, would not have been the 
least bit interested if Chang and Eng had been separated at birth. 
Siamese twins are very special because they're linked together in 
an unusual manner. It's the connection itself that makes them in- 
teresting and unique. The result is a system far more complicated 
than that of a typical human being. In trying to understand the 
whole system "Chang-and-Eng," it's essential to take this connec- 
tivity into account. 

Connectivity is not just a fundamental feature of living systems. 
As we showed in the example of movie selection, it's also an im- 
portant feature of products that we buy and sell in our everyday 
economic activities. A car is an excellent example of connectivity. If 
you'd lived all your life in the remotest jungles of Africa, chances 
are that you might never have Seen a car. Then one day you come 
to town and happen to see this strange object, the purpose of 
which is unknown to you. The functions of each of its components 
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are carefully explained to you in your native language-what the 
carburetor does, where the fuel is injected, how the wheels turn on 
axles, and so On. But imagine if the aim of the whole exercise is 
never revealed. Chances are high that you might never guess that 
this strange object sitting before you is designed for one simple 
purpose-to transport human beings from one place to another. A 
car's detailed structure is complex, but its overall purpose is be- 
haviorally simple. 

As you may have guessed already, the ability of a car to move is 
an emergent simplicity, an ordered outcome that the car can carry 
out by virtue of its overall organization. So is the ability of a clock 
to "tell" the time or of a fan to cool the surrounding air.6 Many 
products that we buy and sell possess regularities of behavior that 
seem to transcend their own ingredients. We know what the emer- 
gent simplicities happen to be. But imagine if we didn't. Even after 
having all the intricate parts and mechanisms of a car or a clock or 
a fan explained to us in minute detail, we might never guess what 
the whole machine does. 

Emergent simplicities can't be deduced by a reductionist ap- 
proach, that is, reducing the apparent complicatedness of the prob- 
lem by analyzing its constituent parts and then linking them to- 
gether by relatively simple rules. Yet this is what much of 
economics attempts to do. Whole economies are subdivided into 
statistically convenient s~ibclasses, like industries and households. 
These subclasses are often subdivided into even smaller parts, like 
jobs and persons. Then Comes the problematical step. By making 
some simplifying assumptions about the behavior of these smaller 
parts, economists draw conclusions about collective outcomes. 

The reductionist strategy-take it apart, See what the pieces are, 
understand how they fit together-does help with simpler eco- 
nomic systems. But it runs into major headaches when the system 
of interest is truly complex. Regrettably, we cannot use the reduc- 
tionist philosophy to explain more than the very simplest inter- 
actions between or within human populations. It simply won't 
work on more complicated problems. 

Obviously, it's difficult to predict the exact branchings of a com- 
plex coevolving system that involves living elements-like a hu- 
man brain, a bustling city, or an expanding economy. The sheer 
complexity of some human systems is mind-boggling. For exam- 
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ple, a brain is a collection of immensely many parts. Estimates of 
just how many vary from 10 billion to 100 billion neurons. These 
parts are hooked up to each other in incredibly complex ways, 
most neurons being connected to several hundred others. Some are 
connected to thousands of others! Having so many connecting 
wires, it's impossible to even imagine what an accurate circuit dia- 
gram would look like. It would need a gigantic computer system 
just for its storage. Although we do understand some basic fea- 
tures of how this gigantic neural telephone system works, we 
know virtually nothing about the meaning of the messages flow- 
ing through it. 

Speaking metaphorically, we're left groping in the dark! Even an 
expert electronic engineer would have tro~ible understanding how 
a circuit worked if he didn't know what its components did or how 
they were linked together. This is precisely the sitiiation in many 
parts of human society. Our cities are another example. Each of 
us knows very little about what other people and other organiza- 
tions do and has limited knowledge of the circulatory patterns that 
the city generates. Yet, despite this uncertainty-or perhaps be- 
cause of it-the city manages to survive! Most of the time it seems 
to be operating under the principle of "more of the same." Every 
now and then, however, it suffers abrupt and permanent change. 
The city's apparent equilibrium is suddenly punctuated by an 
avalanche of changes. To all intents and purposes, it undergoes a 
phase transition. 

As mentioned earlier, phase transitions are quite commonplace 
in many physical systems. A lesser known fact is that they also oc- 
cur in schools of fish, in human brains, and on city highways. 
When the interactions between the components of the system are 
sufficiently dense, and when those interactions add up in such a 
way as to make for large-scale correlations, then a different kind of 
entity emerges. Remember that sandpile behavior we discussed in 
Chapter 1. Self-organized criticality takes hold. The fascinating 
thing is that this new entity is on a higher level of organization 
than its constituents. It obeys certain laws of its own. These higher- 
level laws are sometimes very simple. 

The collective behavior of crowds at a concert or voters at a 
meeting can undergo phase transitions. Before a public meeting 
starts, many of the individuals in the audience are unknown to 
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each other. What can they possibly have in common? Perhaps only 
one thing, but one important thing. Once they begin to listen to the 
Same performers, they begin to influence each other-by laughing, 
applauding, or interrupting. These interactive modes of behavior 
tend to get "locked in" very quickly. Their contagious nature cre- 
ates self-reinforcing loops of interaction between performers and 
audience. The performers are aware of the interaction between 
themselves and the audience. They can sense the mood of the audi- 
ence as rz whole. In fact, their very success or failure relies heavily on 
the audience's collective psyche. 

Suc1-1 self-reinforcing feedback loops are of paramount impor- 
tance in collective modes of behavior. They help to explain why a 
phase transition can arise. Once the density of interactions exceeds 
a critical threshold, then the collective character of the system can 
change unexpectedly. To further illustrate the pervasive nature of 
phase transitions, let's look at a toy experiment, one in which this 
kind of qualitative change is "catalyzed" at critical thresholds of 
interaction. 

Getting Well Connected 

Simpler toy problems are useful in science because they allow us tu 
gain insight into more complicated, real-world ones. The toy prob- 
lem of interest here involves rarzdonr grayhs. Before we launch into a 
discussion of random graphs, however, some introductory words 
about graph theory and modeling are in order. 

Conventional economic modeling involves postulating causal re- 
lationships between known variables of the problem. These vari- 
ables are often measured over aggregates of agents. Such models 
attempt to formalize relationships in the language of mathematics. 
As we learned in the previous section, and will find throughout the 
Course of this book, it may be impossible to model a truly complex 
system in this way.7 In many ecological and economic systems, 
there are simply far too many variables and far too many interac- 
tions to measure. Some of our forebears were well aware of this 
difficulty. For example, Joseph Schumpeter delivered a cautionary 
message about the use of economic models more than fifty years 
ago: "The process of social life is a function of so many variables, 
many of which are not amenable to anything like measurement, 
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that even mere diagnosis of a given state of things becomes a 
doubtful matter quite apart from the formidable sources of error 
that Open up as soon as we attempt prognosis."~ 

In many economic situations, the formulation and use of such 
conventional mathematical models is highly questionable. This is 
where graph theory can provide an alternative means of studying 
the relational processes involved. A graph is simply a set of ver- 
tices or nodes together with a set of edges or links connecting cer- 
tain pairs of nodes. If each link also has a specific direction (i.e., a 
beginning and an end), then we call it a directed graph or digrrzph. 
Furthermore, if the strength of the causal relationship can be repre- 
sented by a real number, the process results in a zurig/ited digrayh. 
This is simply a digraph in which every link has a real number as- 
sociated with it. 

We'll use a special kind of weighted digraph in this chapter. It's 
called a signed digraptl, and it is simply a weighted digraph in which 
the weightings are either +I or -1. It usually corresponds to a situa- 
tion where we can identify possible interactions or relationships be- 
tween pairs of socioeconomic variables, but only to the extent of de- 
ciding whether they're positive or negative for the pairs involved. 
We simply don't know enough about the strength of the various in- 
teractions to assign real numbers to them. Even if we can measure 
the strength of an interaction at one point in time, we can't be Sure 
that the Same relationship will prevail at another point in time. 

Take a look at Figure 3.2. It's a signed digraph representing the 
causal linkages in a key subsystem of an urban economy: a waste 
disposal system. The arrows indicate the direction of influences. A 
plus sign indicates that the changes occur in the Same direction, 
but not necessarily positively. For example, the plus sign between 
P and G indicates that an increase in the population of the city 
causes an increase in the amount of garbage per unit area. At the 
Same time, it also indicates that a decrease in the population of the 
city causes a decrease in the amount of garbage per unit area. The 
minus sign between S and D indicates that an increase in sanitation 
facilities causes a decrease in the number of diseases. At the Same 
time, it also indicates that a decrease in sanitation facilities causes an 
incrense in the number of diseases. 

Note how some of the arrows form loops. For example, there's a 
loop of arrows from P to M, M to C, and then from C back to P. A 
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FIGURE 3.2 Causa1 linkages in an urban waste disposal system. 

loop indicates a mutual causal relationship. By this we mean that 
an initial influence on an element Comes back to amplify itself by 
way of other elements. For example, in the loop P-M-C-P, an in- 
crease in the city's population causes an increase in modernization, 
which in turn increases migration into the city, which in turn in- 
creases the population in the city. In short, an increase in popula- 
tion causes a further increase in population through moderniza- 
tion and migration. On the other hand, a decrease in population 
causes a further decrease in population through decreased mod- 
ernization and decreased migration. 
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In such a loop, therefore, each element has a positive influence 
on all other elements, either directly or indirectly, and therefore 
each element influences itself positively through other elements. 
The thing that distinguishes this approach from typical closed- 
form modeling is that there's no hierarchical causal priority in any 
of the elements. That's why the loop depicts a l~ilrtzral causal rela- 
tionship. None of the elements are assbmed to be the principal 
causal element affecting the others. The resulting mutual causal re- 
lationship in this loop is devilztion-lzmpllfijing. For simplicity, we'll 
refer to it as a positive feedback loop. 

Now look at the loop P-G-B-D-P. This loop contains a negative 
influence from D to P. An increase in population causes an i~icrease 
in the amount of garbage per unit area, which in turn causes an iii- 
crease in the number of bacteria per unit area, which in turn causes 
an i~lcrease in the number of diseases, which in turn causes a de- 
crease in population. In short, an increase in population causes a 
decrease in population through garbage, bacteria, and diseases. On 
the other hand, a decrease in population causes a decrease in 
garbage, bacteria, and diseases, and thus causes an increase in 
population. In this loop, therefore, any change in population is 
counteracted by itself. The mutual causal relationship in this loop 
is deviation-cotlizteracting.9 Such a deviation-counteracting process 
may result in stabilization or oscillation, depending on the time lag 
involved. We'll refer to it as a negative feedback loop. 

The loop P-M-C-D-P has two negative inflirences. An increase in 
population causes an increase in modernization, which in turn 
causes an increase in sanitation facilities, which in turn causes a de- 
crease in the number of bacteria per unit area, which in turn causes a 
decrease in the number of diseaies, which in turn causes an increase 
in population. This is therefore a deviation-amplifying or positive 
feedback loop. The two negative influences cancel each otl-ier out 
and become positive overall. In general, any feedback loop with an 
even number of negative influences is positive, and any feedback 
loop with an odd number of negative influences is negative. An econ- 
omy contains many positive as well as negative feedback loops. 
What matters most is that all the pertinent loops affecting the system 
of interest be identified and their influences considered. 

Now that we're familiar with the idea, let's See how digraphs can 
be used to gain deeper insights into some economic complexities. 
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Our next example focuses on a controversial issue in the global 
arena: fixing the terms of trade between nations. Appropriate tariff 
and quota levels have been debated vigorously for decades, espe- 
cially for agricultural products. During the 1990s, for example, 
American newspapers were full of criticism of Japan's restrictive 
policy on beef imports from the United States. There's little doubt 
that the Japanese do play by different rules when it comes to agri- 
cultural goods. In the case of beef, they try to protect their cattle 
farmers and promote the "home-grown" product. In today's "bor- 
derless" world, however, itfs not that easy to figure out what's re- 
ally in a nation's best interest.10 Who stands to gain most from 
increased beef exports from the United States to Japan? Let's try to 
work through the arguments, visualizing the relationships be- 
tween the key factors in the form of a digraph. 

Conventional economic wisdom-like the Hecksher-Ohlin 
theory-attributes international trade to underlying differences be- 
tween countries. T11e key idea is that each country produces and 
exports goods that reflect that country's comparative advantage 
over other countries. In determining the volume of beef exports 
from the United States to Japan, for example, four variables seem 
to be important: consumption levels of comparable beef in Japan 
(B), the size of Japan's cattle herds (J), exports of American beef to 
Japan (A), and the dollar/yen exchange rate (X). These causal link- 
ages are depicted in Figure 3.3. Having witnessed rising family in- 
comes in Japan, the Americans reasoned that growing demand for 
beef in Japan could be satisfied by expanding American beef ship- 
ments to the Japanese. This is indicated by the positive sign on the 
arrow from B to A. 

Although this reasoning is sound, it merely scratches the surface. 
In their desperation to get American beef onto Japan's dinner ta- 
bles, the U.S. government failed to consider some related issues of 
fundamental importance. First, is beef that's grown in America 
"American"? For that matter, are the cattle raised in Japan really 
"Japaneseff? The answers may seem obvious. But they're not obvi- 
ous. Why? One complicating factor is that Japanese cattle are 
raised almost entirely on American grain. If more Japanese beef is 
eaten in Japan, then more American grain will be consumed there. 
Although an increase in the size of Japan's herds may have a nega- 
tive impact on imports of beef from America, almost certainly it 
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X= Yen, ~ D e  

FIGURE 3.3 The Beef Story, Part I. 

will have a positive impact on imports of American grain. Further- 
more, grain agriculture has much higher levels of productivity in 
the United States than does cattle raising. Thus the Americans are 
more likely to be able to win the grain race. Competition from the 
Australians and the Argentinians makes the beef race much 
tougher. 

Another complication is the issue of ownership. Who owns the 
ranches, feedlots, and packing plants that make up the lion's share 
of the beef industry in the United States? Japanese importers like 
Zenchiku Ltd. own many of them, mainly because it's easier for 
the Japanese to invest in U.S. industry than for Americans to invest 
in Japan. They and others will soon be shipping more beef from the 
United States than Americans do today. Japanese owners can con- 
trol all stages of cattle raising and handling to meet their own mar- 
ket's requirements. They can also use Japanese know-how and 
repatriate profits back to Japan. 

As Paul Krugman suggests, whenever a Japanese firm buys an 
American firm, we need to know whether that firm will be run dif- 
ferently, and if so, whether the U.S. economy will be hurt or helped 
by the difference.11 It's not at all clear in what sense the beef 
shipped by Zenchiku from the United States to Japan represents a 
net increase in American exports. Not only does growing Japanese 
ownership in the United States make it difficult to answer the 
two earlier questions. More importantly, it points to the growing 
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FIGURE 3.4 The Beef Story, Part XI. 

interdependencies between the Americans and the rest of the 
world. Rising levels of trade and foreign ownership mean that the 
U.S. economy is becoming increasingly multinational and inter- 
dependent. In other words, the U.S.-led global economy is rapidly 
becoming a strongly internctivc economy. 

Now let's return to our main question: Will an increase in beef 
exports from the United States to Japan be of net benefit to the U.S. 
economy? The answer is far from obvious. Less obvious linkages 
and relationships need to be factored in when an issue like this is 
debated. What we're seeing in Figure 3.4 is just a small sample of 
the full range of economic interdependencies affecting beef exports 
between the two countries. When a change occurs in one part of 
this ii-iterlinked economy, it can lead to a myriad of chain reactions 
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elsewhere. A handful of these responses are large and direct, but 
many others are small and indirect. Their "global" repercussions 
may be unpredictable. Shades of Schelling's segregation model 
and Bak's sandpile avalanches spring to mind. 

It's time to move on to the topic of random graphs. A random 
graph is similar to the graphs discussed earlier, except that the 
nodes are connected at randonl by a Set of links. Although we know 
how the network graph looks at one point in time-that is, which 
pairs of nodes are already connected-we've no way of knowing 
which pair of unconnected nodes may be connected at the next 
point in time. Thus we're less concerned with the direction and 
strength of particular links (like those shown in Figure 3.4) and 
more concerned with the overall pattern of connectivity that 
develops.12 

This is the starting point for the toy problem we wish to discuss. 
To put it in an everyday context, Stuart Kauffman visualized the 
nodes as "buttons" and the links as "threads." Imagine that an as- 
sortment of buttons lie scattered on a wooden floor. Choose any 
two buttons at random, pick them up, and connect them with a 
thread. After putting this pair down, randomly choose two more 
buttons and do the same. As you continue to do this, at first you'll 
mostly pick up buttons that you haven't threaded earlier. Sooner 
or later, however, you're likely to pick up a pair of buttons and find 
that you've already threaded one of them. When you thread that 
button again, you'll have linked together three buttons. As you go 
on choosing pairs of buttons randomly to link together with 
threads, you'll find that some of the buttons soon become intercon- 
nected into larger clusters. To put Kauffman's toy problem into an 
economic context, think of the buttons as places-towns and 
cities-and the threads as transport links, such as roads and rail- 
roads. An important part of economic development is the level of 
investment in network infrastructure linking various towns and 
cities. We could approximate early investment patterns by ran- 
domly choosing two places from twenty towns and cities within a 
nation and linking them directly by road. Gradually we could 
choose more pairs of places and do the same. Eventually we'll pick 
a pair of places and find that one of them is already connected to 
another place (see Figure 3.5a). At this early stage, however, it 
would be correct to say that the collection of towns and cities is 



100 Sheep, Explorers, and Plzase Transitions 

only toenkly interncfive, in the sense that the spatial scale of interac- 
tion possibilities is relatively small (see Figure 3.5b). 

Take a look at the pattern of interconnections shown in Figure 
3 . 5 ~ .  As our random number generator continues to do its work, 
we find that a majority of towns and cities have become inter- 
linked within one giant cluster. Only seven of the twenty places re- 
mnin outside this giant cluster by the time the ratio of roads to 
places reaches 0.75 (i.e., 15/20). Denoting the ratio of roads to 
places by R, the interesting thing is that random graphs exhibit 
very regular statistical behavior as one tunes this ratio. Once R 
passes the 0.5 mark, something seemingly magical occurs. Sud- 
denly most of the clusters become cross-connected into one giant 
cluster!l3 When this giant web forms, the majority of places are di- 
rectly or indirectly connected to each other. As R approaches one, 
virtually all the remaining isolated towns and cities become cross- 
connected into the Same giant web (see Figure 3.5d). Note how 
closely the situation resembles the sudden transformation of a 
weakly connected social group into a strongly connected one once 

FIGURE 3.5a The crystallization of 
connected webs  (R=0.25). 

FIGURE 3.5b The crystallization of 
connected webs  (R=0.5). 

FIGURE 3 . 5 ~  The crystallization of 
connected webs  (R-0.75). 



FIGURE 3.5d The crystallization of 
connected webs (R=1.0) 

FIGURE 3.5e The crystillization of 
connected webs (R=1.25). 
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there's unanimous acknowledgment of a common accord. It's the 
sandpile effect again! 

This sudden and unexpected change in the size of the largest 
cluster, as R passes 0.5, is the signature of a nonlinear process we 
met in Chapter 1. It resembles a phase transition. The size of the 
largest cluster of places increases slowly at first, then rapidly, then 
slows again as the value of R increases further (see Figure 3.6). If 
there were an infinite number of buttons or places, then the size of 
the largest web would jump discontinuously from tiny to enor- 
mous as R passed 0.5. The steep part of the curve would become 
more vertical than it is in the figure. Such abruptness is typical of a 
phase transition, just like when separate water molecules freeze to 
form a block of ice. 

The point of this toy example is to highlight the nonlinear nature 
of transitions from a weakly interactive to a strongly interactive 
state. Technically speaking, an isotropic random graph crosses a 
threshold when the system passes from "nearly unconnected" to 
"nearly connected." Such threshold transitions are rampant in 
graph theory. Suddenly, many small clusters are cross-linked to 

FIGURE 3.6 A phase transition in the size of the largest cluster as the 
ratio of links to nodes changes. 
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form one large cluster. But it's also reminiscent of Bak's sandpile 
experiment and Schelling's segregation model. A state of self- 
organized criticality is reached once local interactions between in- 
dividual elements are replaced by global communication through- 
out the whole system. Could this be some kind of universal law 
when it Comes to the dynamics of complex systems? Does it apply 
to socioeconomic systems? 

The argument for universality is strengthened by insights into 
random behavior stemming from another field, known as percola- 
tioil theory. In a random medium like a porous stone, large scale 
penetration of water depends on the proportion of passages that 
are broad enough to allow water to pass along them. We'll call this 
proportion R. By simulating the stone's porous structure as a se- 
quence of Open and closed edges (or connected and unconnected 
links) on a Square grid, large-scale water penetration is Seen to be 
related to the existence of strongly (i.e., infinitely) connected clus- 
ters of Open edges. When R = 0.25, the connected clusters of Open 
edges are isolated and rather small. As R increases, however, the 
sizes of clusters increases. There's a critical value of R at which a 
"super cluster" forms, pervading the entire grid. As we throw in 
more and more Open edges, suddenly we reach a threshold when 
large-scale connections emerge. 

Just like the onset of self-organized criticality, the occurrence of a 
critical phenomenon is central to the process of percolation. One 
may surmise that the wetting of a stone is only a "local effect" 
when R is small, but becomes a "global effect" when R reaches a 
critical value. Drinkers of Pernod acknowledge such phase transi- 
tions. Transparent Pernod is undisturbed by the addition of a small 
amount of water, but as more water is added drop by drop, an in- 
stant suddenly arrives when the mixture becomes cloudy. Recent 
simulation studies of bond percolation have shown that the ran- 
dom value of R at which such global paths appear is very close to 
0.5.14 It's the Same ratio as the one that emerged in our toy example 
of random graphs. 1s this merely a coincidence? 

The physical theory of phase transitions and critical phenomena 
is well developed, together with multidimensional scaling and 
power laws. But what about phase transitions in socioeconomic 
life? Do they apply to human behavior? Consider what happens 
when a bunch of urban residents meet frequently to discuss an is- 
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sue of common interest. As the intensity of their interaction 
increases, clusters of "like-minded" residents begin to emerge 
spontaneously. Like-minded residents don't know in advance that 
they're like-minded. They don't even know who their closest allies 
may be. These kinships emerge spontaneously during the meet- 
ings. Such like-minded clusters may do more than simply interact 
among themselves. To pursue their common interests more widely, 
eventually they may link up with other like-minded clusters, creat- 
ing even larger clusters. Sounds familiar, doesn't it? People behav- 
ing like nodes and links or grains of sand! It's precisely how the 
weak may grow strong. 

In fact, the socialization processes by which performers enchant 
an audience, politicians sway voters, or common interest groups 
gain support are analogous to the toy problem depicted in Figure 
3.5. People form clusters (e.g., political parties, unions, clubs) in or- 
der to pursue their joint interests. These weakly interactive clusters 
can gather strength unexpectedly, especially with the help of a key 
catalyst or persuasive argument. The latter can play a powerful 
role in the shaping of society as a whole. Electoral outcomes can be 
swayed spontaneously by charismatic or forceful arguments from 
one of the protagonists. The collective outcomes can be quite dif- 
ferent from those intended or expected at the outset by other indi- 
v idua l~ .  Such unpredictable outcomes are further examples of 
emergent behavior. 

As we'll learn in Chapter 6, traffic jams on city highways are an- 
other form of emergent behavior, springing from the collective 
interactions of a bunch of drivers on a road network. Once the 
critical flow density has been exceeded, smooth laminar flow 
changes abruptly to stop-start waves. Emergent phenomena can 
arise in many other socioeconomic situations. Their common 
bond is that the population of interacting individuals "sponta- 
neously" develops collective properties that were neither in- 
tended nor expected by individuals a priori. Order through fluc- 
tuations again! 

Sheep and Explorers 

Granted that strongly interactive systems display self-organized 
criticality, an obvious question arises. Who triggers these pl-iase 
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transitions? Who are the architects of strongly interactive socioeco- 
nomic systems? The answer is pretty obvious. We all are. We, the 
interactors. But "wer' aren't identical. Quite the opposite, in fact. 
As we learned in the previous chapter, our expectations, decisions, 
and experiences vary greatly, even under identical circumstances. 
Because we're forced to reason inductively in situations where in- 
formation is limited, and such reasoning is open-ended, our cho- 
Sen behavior usually differs. 

Inductive reasoning places different demands on us as thinking 
individuals than the deductive metaphor. We're all constrained by 
our personal stock of know-ware and the cognitive abilities within 
us. Inductive reasoning involves pattern formation and pattern 
recognition, aided by intuition and creativity. Clearly some people 
are more intuitive or creative than others. They're better at seeking 
and discovering novel solutions to problems. They're willing to ex- 
periment, adapt, and instigate change. Others merely follow exist- 
ing patterns, often resisting change under almost any circum- 
stances. It's pretty clear that we don't possess the Same catalytic 
potential to create novel solutions or adapt to changing circum- 
stances. Like the spectrum of light, cognitive equipment consists of 
a range of cognitive skills of varying intensities. Some of us are 
strongly creative, others only weakly creative; some of us are 
strongly adaptive, others only weakly adaptive. 

For convenience, we'll classify economic agents on a scale delim- 
ited by two extreme forms of behavior (Figure 3.7). We'll call those 
who actively search for new possibilities explorers and those who 
prefer to remain with the status quo sIieep.15 This spectrum of cog- 
nitive skills implies that we all possess sheep and explorer quali- 
ties, albeit in different doses. Pure explorers tend to be imaginative, 
creative, highly strung individuals who constantly search for bet- 
ter solutions to the problems they face. They're more inclined to 
reason inductively, to learn quickly, and to adapt willingly to 
changing circurnstances. Sheep are more placid, patient, and re- 
signed than explorers. Preferring to reason deductively, they're 
prone to choosing a well-established pattern. They mostly cling to 
particular beliefs because they've worked well in the past. Sheep 
are slow learners who must accumulate a record of failure before 
discarding their favorite beliefs. 

FIGURE 3.7 A spectrum of 
cognitive skills. 

Success in the economic world, as in life itself, requires both of 
these facets of behavior. Yet the two traits are almost contradictory. 
The first trait is an ability to organize one's behavior so as to ex- 
ploit the available information to the fullest extent possible. In 
short, sheep like to think deductively and act predictably. Tlie 
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second trait is an ability to ignore the available information to 
some extent and to "explore" beyond the boundaries of current 
knowledge. Explorers tend to think inductively and their decisions 
are unpredictable. Both kinds of behavior can be found in all walks 
of economic life. For example, sheep and explorer strategies have 
been observed among fishing fleets searching for profitable fishing 
zones. The only difference is one of nomenclature. Nonequilibrium 
systems scientists like Peter Allen, who've studied the behavior of 
fishing fleets, call the sheep "Cartesians" and the explorers "Sto- 
chasts." Ac Allen notes, the first group makes good use of informa- 
tion, but the second generates it! At the root of all creative activity 
lies an explorer, punctuating the restful equilibrium of the sheep 
with unexpected change. 

Because they're driven by a constant struggle between creative 
(explorers) and conservative (sheep) forces, economies evolve in 
an unpredictable way. Over short time horizons, the deductive 
agent may outperform the inductive one. Deductively optimal be- 
havior can rule supreme in a world of stasis. Sheep can strut about 
with confidence in a frozen world that isn't doing anything or go- 
ing anywhere. But not in that dynamic world of morphogenesis. 
Invariably, sheep will be found lacking in the long run. Unfortu- 
nately for them, the best performance doesn't follow optimization 
principles. Instead it amounts to an adaptive compromise. Re- 
member our findings from the Trader's Dilemma game in the last 
chapter. If the game's played once only, the best strategy for each 
trader is to defect (i.e., leave empty bags). But a Nash equilibrium 
is only imperturbable because it compels all traders to think and 
act rationally. In the iterated version of the game, however, the best 
strategy is to cooperate. Emergent cooperation evolves out of non- 
cooperation in the long run. Order for free again! 

And the long run is where our main interest lies. To the extent 
that the real "laws" of economics exist at all, the key point to re- 
member is that they can't be fully understood by studying eco- 
nomic change within a time frame that is short compared with the 
economy's overall evolution. It's remarkable that the fallacy of a 
simple supply-demand equilibrium has persisted for so long. In 
the medium to long run, supply and demand functions cannot be 
specified in isolation of one another. They're not independent func- 
tions of price. Each depends crucially on chance events in history- 
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like the way in which fads Start, rumors spread, and choices rein- 
force one another. Supply and demand affect each other, as well as 
being subject to common factors like the media. 

If we look at the key economic agents who control technology in 
the world of morphogenesis, such fallacies become more transpar- 
ent. Once again, sheep and explorers can be found under different 
names. This time they're called imitators and innovators. Innovation 
is the domain of creative explorers. Whenever their exploratory 
search uncovers an area where positive feedback outweighs nega- 
tive, then new growth-inducing development can occur. It's only 
when we wish to rationalize about what's happening that we insist 
there must have been some "pent-up" demand that justified the 
supply. We allotv ourselves to slide back into the world of stasis. 
There's really no static hill to climb. The economic landscape's too 
complex for that. It's heaving and deforming incessantly because 
it's formed by the interacting agents themselves. All the agents are 
coevolving continuously, learning by interacting. Some are innova- 
tive explorers, others are imitative sheep. Once we admit even to 
just the presence of innovative or imitative mechanisms, then the 
potential demand for something becomes a dynamic variable, 
which itself depends on the unfolding of events. 

A small, growing band of economists have begun to treat techno- 
logical change as an evolutionary process. Work carried out by 
Richard Nelson, Sidney Winter, and others has emphasized the 
role of innovations and analyzed conditions under which firms 
should invest in innovations or imitate others. Some firms invest 
huge sums in innovation, thereby climbing up the learning curve 
of a technological trajectory. Others simply copy the innovator. 
IBM invested in innovation; Compaq cloned, selling IBM imita- 
tions. Sheep follow explorers, just as long periods of relative stasis 
follow short periods of morphogenesis. 

Research into technological evolution sometimes ignores the fact 
that evolution is actually coevolzi tiorz.16 Jus t as agents change their 
minds when they interact with other agents and explorers are con- 
stantly learning by interacting, so are technologies. They live in the 
niches afforded by other technologies. For example, the arrival of 
the automobile teshnology put the smithy's hammer out of busi- 
ness. But it also spawned new markets for traffic lights, gas sta- 
tions, motels, and drive-in food chains. We're all hustling our 



1 1 0  Sheep, Explorers, and Phase Transitioris 

wares, creating and destroying niches for one another. Many of the 
goods and services in oiir economy are i~ztermediilte goods and ser- 
vices; they're used in the creation of other goods and services that 
are finally consumed by households. 

Searching for new possibilities among this vast web of goods 
and services is essentially a stochastic activity. Multiple possibili- 
ties abound, but few choices or solutions are uniquely superior. 
New ideas, products, or methods are mostly recombinations of old 
ones. Schumpeter recognized that recombination is a valid way of 
defining economic development. He argued that the carrying out 
of new combinations meant the different employment of the eco- 
nomic system's existing supplies of productive means, thereby 
providing a second definition of development.17 In the chapters 
that follow, we'll look at several examples of how and when the re- 
combination of old ideas takes place, what's recombined, and 
what's actually created. 

How do we, as economic agents, trade off economic necessity 
against the elements of chance? Should we behave ljke low-risk 
sheep or dare to enter the domain of the high-rolling explorers? 
Putting it in more explicit economic terms, how do we decide be- 
tween the certain prospect of earning modest profits now as 
against the uncertain prospect of earning far higher profits in an 
unknown future? Once again, this parallels the Traders' Dilemma 
game played once against the iterated version played many times. 
Perhaps the outcome of the iterated game can provide a clue to the 
answer. Over the longer term, we search not only for novel solu- 
tions but also for long-lasting cooperative strategies with those 
agents whose custom we learn to value most. To soften the impacts 
of an uncertain trading environment, for example, merchants seek 
to develop bilateral trading agreements with their principal trad- 
ing partners. These long-term agreements are designed to hedge 
against the volatility of a series of one-time transactions with dif- 
ferent partners. Wherever the continuity of shipment and quality 
are important, supplier loyalty is likely to prevail. 

There's another important reason for seeking bilateral trading 
agreements. Our choice of preferred partners is based on personal 
experience-what we've learned about our potential trading part- 
ners. Once we've spent time and money identifying suitable part- 
ners, bilateral agreernents enable us to "lock in" the benefits of 
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what we've learned. Mutual advantages accrue to the partners. 
Our cooperative network grows. Learning by interacting proves to 
be an adaptive process out of which a desire for cooperation 
emerges. We can capitalize jointly on what we've learned. And 
capitalizing on what we've learned is the key attribute of an ex- 
plorer. In the next section, we'll look at an example of how we 
capitalize on what we've learned. Whether consciously or uncon- 
sciously, each of us behaves like sheep or explorers in our every- 
day activities. 

Are You an inductive Graph Theorist? 

Most people use graph theory in their daily lives without ever real- 
izing it. I don't mean that they're unsuspecting designers of signed 
digraphs, like the waste disposal system and the beef story we dis- 
cussed earlier.18 Instead, people use a much simpler kind of graph 
theory as they move about conducting their daily business. We all 
travel on networks of various kinds. For example, the London Un- 
derground map is a network graph used by millions of commuters 
each year (see Figure 3.8).19 Although it shows only the rail con- 
nections between stations, that information helps Londoners to 
make informed decisions about the journeys they can make. For 
example, if the stations of embarkation and disembarkation are on 
the same line, then the journey can be made without changing 
trains. Alternative routes can also be compared in terms of the 
number of intermediate stops between points of embarkation and 
disembarkation. 

The London Underground system has several hundred stations. 
There are literally millions of possible ways of traveling between 
them all. It looks like a very big combinatorial headache for most 
commuters. Despite the network's apparent complexity, the map 
and a few simple rules are sufficient to allow most commuters to 
select reasonable routes at a glance. Let's see how it works. 

Suppose that you, the reader, want to use the Loop for the very 
first time. You wish to catch a train from Victoria (near the bottom 
center of the map) to Notting Hill Gate (at the left center). First you 
must searcl-i the map for routes or sequences of stations that will al- 
low you to do this. You find two that are feasible. One sequence is 
Victoria-Sloane Square-South Kensington-Gloucester Road-High 
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Street Kensington-Notting Hill Gate. The other is Victoria-Green 
Park-Oxford Circus-Bond Street-Marble Arch-Lancaster Gate- 
Queensway-Notting Hill Gate. 

Choosing between these two possibilities turns out to be a rela- 
tively simple task. You opt for the Sloane Square route for three 
reasoris. First, you can make the whole journey on one line without 
changing trains. You'll simply get on a westbound Circle Line train 
at Victoria and duly arrive at Notting Hill Gate. If you took the sec- 
ond route, you'd need to change trains twice-at Green Park and 
again at Bond Street. Second, there are only four intervening sta- 
tions on the first route compared to five on the second route. Third, 
you've been told that trains on the Circle Line are invariably more 
frequent than those on the Victoria and Jubilee Lines. 

Because the problem is well defined, you're able to deduce the 
optimal solution. Moreover, you feel confident about your choice. 
You have all the information you need to make an objectively ratio- 
nal decision. And you're absolutely correct! Most London com- 
muters do take the Circle Line train to reach Notting Hill Gate 
from Victoria. Commuters have no need to resort to intuition or 
fancy guesswork. The problem is simple enough to be solved by 
deduction. 

Now suppose that you've been making the journey from Victoria 
to Notting Hill Gate on a daily basis for several months. In fact, 
you've been using the Loop for some other journeys as well, most 
of them on a single line. From these commuting experiences, grad- 
ually you've formed a picture of the Loop system in your mind. 
Let's call it a "mental model." It's your own mental impression of 
how the Loop operates in time terms-trip times, delay times, line 
frequencies, and so forth. Of Course, this model's only a crude, par- 
tial approximation to reality. It may even be flawed. But it's helped 
you to select routes for several months now and you've been satis- 
fied with the resulting travel times. You begin to wonder if the 
commuting life of a London Loop traveler is always so simple! 

I'm willing to bet that your mental model turns out to be rule- 
based.20 By this I mean that your mental representation of the 
Loop system is formed and altered by the application of condition- 
action rules, which take the general form, IF (condition 1, condition 
2, . . . condition n), THEN (action). In choosing between alternative 
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route possibilities, for example, experience has taught you that 
there is an important rule to observe: 

IF you can make your whole journey on one line 
THEN choose that line. 

Another rule, which you may apply, is: 

IF trains run more frequently on one line 
THEN cl~oose tliat line. 

A third rule, which may form part of your mental model, is: 

IF one route has fewer intervening stations 
THEN choose that route. 

Undoubtedly, your mental model will consist of more than just a 
set of IF/THEN rules. For example, experience may have taught 
you to apply the above rules in a different order on weekdays than 
on weekends. The key point is that you're reasonably happy with 
the overall result. Travel times experienced have fallen within your 
expectations. You feel confident that you understand how the Loop 
system operates and that you can estimate travel times, albeit 
roiighly. 

Then, one day, you find the need to commute between a pair of 
stations that you haven't visited before. You must get from Baker 
Street to St. James's Park. Searching the map for feasible routes, 
you find a direct link (westbound) between these two stations on 
the Circle Line, with eleven intervening stations. There's a second 
route that goes via Bond Street, Green Park, and Victoria. Although 
there are only three intervening stations on this route, you'll have 
to change trains at two of them (Green Park and Victoria). There's a 
third route via Regent's Park, Oxford Circus, Green Park, and Vic- 
toria. This time there are four intervening stations, but again you'll 
have to change trains at two of them (Oxford Circus and Victoria). 
As well as these three possibilities, several additional routes could 
also be contemplated. 

If you apply your favored mental model, the direct route via the 
Circle Line is the obvious choice. But will it be the quickest? Sud- 
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denly you realize that you're facing a more complicated decision 
problem. Diabolically, you lack some key information. You've no 
way of knowing what the likely delays will be if you choose either 
of the indirect routes. How long will you have to wait when you 
change trains? The two indirect routes certainly look much shorter 
on the map, because there's only a few intervening stations. 
Should you relinquish familiar determinism (the direct route ap- 
proach) and test the elements of chance (unknown waiting times)? 
In other words, should you behave as a sheep or as an explorer? 

The truth of the matter is that you simply don't have sufficient 
information to make a rational choice between these alternatives. 
Having never traveled on the Loop between St. Baker Street and St. 
James's Park before, you're forced to rely on intuition and an 
ounce of luck. But once you've made this journey several times, 
you can begin to form a more accurate picture of the relative merits 
of each alternative. If you're an explorer at heart, you'll test all fea- 
sible routes. Only by trying out the indirect routes can you hope to 
estimate the relative frequency of trains on different lines and the 
average delays incurred by changing trains. Sheep tend to resist 
this kind of experimentation. They favor the certainty of familiar- 
ity, that is, the direct option. By way of contrast, explorers are keen 
to learn incessantly from their own experiments. Gradually they 
begin to form a more accurate impression of the typical behavioral 
patterns of the Loop system. Then they adapt and change routes 
accordingly. 

In Summary, explorers are adept at learning by circzilnting. They 
believe in testing and updating their own mental models of the 
Loop system on a regular basis. This means judging how well their 
favored rules work when applied to the reality of their day-to-day 
experiences. They also compare these experiences with their prior 
expectations. If this experimentation suggests that their favored 
mental model may be unreliable, then they discard some old rules 
and add some new ones in order to improve it. Then they repeat 
the experiments. Testing, adapting, testing, adapting. This is the 
way of an inductive explorer. And this is how to travel on the road 
to know-ware. 
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The Ancient Art of 
Learning by Circulating 

Ifeverything occzlrred at the Same time, there woilld be no developnient. If 
everything existed in the Same pluce, there could be no partirulnrity. 011ly 
space makes possible the particular, which then z~nfolds in time. 

-August Lösch 

Pirenne's Hypothesis 

European history has always been a touchy subject. But few histo- 
rians can match the stormy heights reached by the Belgian Henri 
Pirenne. At the heart of this enduring controversy are some of 
Pirenne's ideas concerning the transition of Europe from classical 
antiquity to medieval civilization.1 One fertile thought sparking 
widespread criticism was his explanation for the revival of me- 
dieval towns in Middle Europe during the tenth and eleventh cen- 
turies. Another dealt with a broader issue: the general relationship 
between Roman antiquity and the First Europe. 

To See why Pirenne upset the tranquillity of the historian's 
world, we need only examine his first idea. Instead of agreeing 
with the popular view that the rebirth of urban Europe was trig- 
gered by technological change, or by the transfer of political au- 
thority from the feudal lords to the communities, Pirenne steered a 
very different Course. He claimed that the impact of Islamic forces 
in the seventh and eighth centuries destroyed the commercial 
unity of the Mediterranean, thereby ending the Roman world in 
economic terms and ushering in a strikingly different civilization 
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in the Carolingian era. Also, he asserted that the unusually fast 
growth of population and human settlements that followed in the 
High Middle Ages (1000-1300) was triggered by an expansion of 
trade over longer distances. 

You may be wondering how Pirenne's idea relates to our discus- 
sion of adaptive learning and complex economies. The first point 
to note is that the linchpin of his idea about economic revival was 
the pursuit of profits by trading in scarce goods at novel locations. 
In other words, his tl-ieory of revival was based on exchanges of 
goods and ideas. Trade over very long distances was possible only 
after key transportation routes were opened up again and the 
safety of travelers could be guaranteed. Only then could merchants 
circulate freely, promote new products, and expand their trading 
area. T11e incentive for such an expansion of trade must have been 
great, since potential profits were enormous. 

A second key factor is that Pirenne saw the revival of urban Eu- 
rope as a direct response to an exterr~nl stimulus-trade with dis- 
tant places scattered around the Mediterranean. By way of con- 
trast, the bevy of scholars who opposed him chose to focus almost 
exclusively upon noninteractive factors internal to European soci- 
ety. Pirenne sensed the importance of circulation and interaction as 
catalysts of change. His main critics did not. 

The third point to note is that Pirenne's explanation was a quali- 
tatiz)~. one. It focused on the phase transition from a weakly interac- 
tive to a strongly interactive economic system. By arguing that Eu- 
ropean settlements were transformed by an escalation in trade 
over longer distances, perhaps unwittingly he stepped into the 
realm of nonlinear analysis. His thesis was one of positive feed- 
back: more merchants generated more circulation, more exchange, 
and higher profits, which, in turn, attracted even more merchants. 
There's a fascinating saga of coevolution to be unveiled in this 
cl-iapter. Like today's apostles of complexity and self-organization, 
Henri Pirenne seems to have sensed the importance of phase tran- 
sitions associated with the sudden interlii-iking of many small, iso- 
lated clusters to form a larger, well-connected cluster. 

Can we be Sure that Europe was in a weakly interactive state 
prior to this transition? There's plenty of evidence to suggest that 
the high risks and costs of transporting goods during the Carolin- 
gian period contributed to urban stagnation across western Eu- 
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rope. Norseman controlled the Baltic and the North Sea, making it 
dangerous even to live near any waterways. Moslems and Mag- 
yars invaded frequently. The dangers of travel by sea or land 
forced Europeans to refrain from exchanging goods over longer 
distances. Although it's difficult to confirm the number of Euro- 
pean inhabitants at that time, the plagues of the sixth and seventh 
centuries caused great loss of life. What we do know is that popu- 
lation levels dropped significantly between the sixth and the ninth 
centuries (see Table 4.1). Carolingian Europe was thus a sparsely 
populated continent. 

This doesn't mean that people lived alone or far away from one 
another. Rather it meant that the villages, or groups of villages, 
were mostly self-contained, small oases of cultivated land in a 
largely uncultivated continent. Carolingian Europe was a primi- 
tive agrarian society, relatively isolated and underdeveloped. 
Towns were contained within castle walls and self-sufficient 
manors, mostly willing to make do with the fruits of their sur- 
rounding land and forests. They were populated mainly by farm- 
ers and townspeople, the former tilling the land and the latter 
crafting or distributing simple products from the forests and else- 
where. Given the risks of travel over land, there wouldn't have 

TABLE 4.1 Population Growth in Europe 

European 
Date Population Margin of 

in W o n s  
Error (%) 
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been much opportunity for different villages to exchange goods 
over long distances. We can conclude that Carolingian Europe was 
indeed a weakly interactive economic system. 

Such a feudal state could hardly remain forever. Popular goods 
like salt, metals, and wine were not produced locally and had to be 
found. If such things could not be obtained by war and plunder, 
the last resort was to engage in trade over longer distances. Some 
trade was carried on continuously by the oriental merchants, who 
sailed their ships on the Mediterranean (as they had done in Ro- 
man times) or traveled by boat up and down the great western and 
central European rivers-from the Loire to the Rhine and the Elbe. 
Together with their countless tributaries, these rivers were key 
transport links rather than barriers. Many "would-be" entrepre- 
neurs of the day must have seen the potential for greater trade over 
longer distances. 

At a time when long-distance commerce was insignificant and 
money still a rarity, suddenly the circulation of goods and mer- 
chants intensified. All forms of trade rose significantly, but that 
over longer distances grew most of all. Interestingly, this sudden 
expansion of trade occurred at the same time as large increases in 
the urban population. Were these two factors intimately related, as 
Pirenne would have us believe? We know now that the potential 
gains from trade attracted more people into the riskier but poten- 
tially more rewarding mercantile activity. Was this why many 
larger towns grew suddenly and explosively? Convincing answers 
to these questions would certainly help to resolve the debate sur- 
rounding Pirenne's hypothesis once and for all. 

The Mees Analysis 

A fascinating analytical sketch that shed some light on these ques- 
tions was devised by the mathematician Alistair Mees.2 He ana- 
lyzed the effect of increasing trade opportunities on urban and 
rural populations. Mees's central idea was that each Person knows 
whether the city or the countryside is more attractive as a place to 
live and work. Then people tend to move between the two accord- 
ing to their preferences. Although his analysis was far from the 
economic mainstream at the time, his model of employment dy- 
namics illustrates some qualitative features of the world of mor- 
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phogenesis, our principal area of interest throughout this book. 
Without delving too deeply into the mathematical intricacies, it's 
worthwhile exploring some key features of his analysis. 

As we mentioned earlier, medieval Europe's regional popula- 
tions consisted mostly of farmers and city merchants. Let's call the 
farmers group f and the city merchants group C. Also there were a 
few landowners and traveling merchants (the "orientals"), but 
they were vastly outnumbered by farmers and city merchants. Fur- 
thermore, the self-sufficient nature of most towns and villages in 
the Carolingian era meant that each region's total population 
(farmers plus city merchants) remained about constant. 

Mees's fundamental idea was that the attractiveness of belong- 
ing to either group f or group C could change quite rapidly. Over a 
period of several years, people would naturally try to move from a 
less attractive situation to a more attractive one.3 In an isolated re- 
gion, the farmers and city merchants depend solely on each other 
for iheir needs. Thus the attractiveness of both groups at any time 
depends only on the size of each group in relation to the demand 
for their products. Simple economics dictates that when only a few 
people are producing a yopulnr commodity, there'll be excess de- 
mand for this commodity. Thus its producers can charge higher 
prices and earn a higher income. For example, if there are very few 
city merchants but strong demand for city goods, then it's worth- 
while becoming a city merchant. 

The dynamics of this situation have been illustrated in Figure 4.1. 
Wefll call the point E, a stable equilibrium point, corresponding to 
a mixed region employing both farmers and city merchants. It's sta- 
ble because on either side of this point, small changes in each 
group's working population will not alter markedly the relative at- 
tractiveness of either group. You can think of E, as a fulcrum, 
where the relative attractiveness of choosing farming ahead of be- 
ing a city merchant is Zero. You're equally happy with either choice. 

The points Ec and E, are unstable. For example, a pure farming 
population puts us at the point E,. Any small decrease in the farm- 
ing population sets in motion a self-perpetuating decline in the 
population of farmers. Because there's demand for both products, 
complete specialization in farming (point E,) or city merchandising 
(point Ec) will always be inferior to a balanced mix of farmers and 
city merchants (point E,). 
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FIGURE 4.1 The dynamics with no trade: stable and unstable 
equilibria. 

From this simple dynamic analysis, we can see how a stable and 
self-sufficient economy could be attained-with a balanced mix of 
farmers and city merchants. Such an isolated state of affairs would 
have been typical of the autarkic, manor-bound economies dotted 
across the Carolingian landscape. To retain this delicate state of 
balance, however, the region in question must remain isolated 
from other regions. If, for any reason, trading opportunities with 
other towns become easier, the balanced mix of farmers and city 
merchants could quickly disappear. 

How might trading opportunities become easier? Safer trans- 
portation routes would be one possibility, because they improve 
the likelihood of successful Passage and thus lower transportation 
costs. If they felt that the risks and costs of travel over longer dis- 
tances were reasonable, some enterprising city merchants might 
try to visit a few more distant places where they could sell their 
goods at higher prices. Such a quest for distant markets would be 
even more compelling once local demand had been satisfied. If the 
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more adventurous merchants reported profitable trading ventures, 
then other merchants would surely follow in their footsteps. A pos- 
itive feedback loop could be set in motion. Suddenly we're con- 
fronted with the carrot of an increasing returns economy. 

What would happen to our stable, self-sufficient, economy un- 
der siich conditions? In graphical term~,  a rise in the relative attrac- 
tiveness of being a city merchant vis-a-vis farming can be seen as a 
change in the shape of the curve between Ec and Ern. It begins to 
flatten out as the attractions of farming diminish and the appeal of 
long-distance trading grows. Eventually a stage is reached where 
the curve between Ec and E, drops below the axis. This heralds a 
major qualitative change, leading to an entirely different kind of 
economy. Our stable equilibrium point Ern disappears, and the pre- 
viously unstable Ec becomes stable. Everyone moves from the 
country to the city, farming dies out and the region then specializes 
in city activities. 

The above analysis is hardly textbook economics. Most of the 
inspiration for this kind of dynamic analysis Comes from outside 
the social sciences.4 In a dynamic world, one learns to exyect the 

Rate of change 
in farmers (f) 

All city 
merchants All fa rmers 

Rate of change in 
city merchants (C) 

FIGURE 4.2 Catastrophic change as trade costs increase. 
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unexpected. Phenomena like disequilibria, nonlinearity, and insta- 
bility are commonplace. It's something of an exaggeration of 
Course, since farming in and around the key trading centers of Eu- 
rope never died out completely. Nevertheless, Mees's illustration is 
fascinating because it shows us that abrupt changes are not just cu- 
riosities of the modern world. Sudden, unexpected structural 
changes to the economy have been going on since the Middle 
Ages, if not earlier. 

The point to grasp is that a change in the relative attractiveness of 
one economic activity in comparison with another can have unex- 
pected consequences. The economy may self-organize. If conditions 
had been different-for example, if farming had been particularly 
profitable in comparison with city activities-then the line between 
Ec and E, could have shifted above the axis and a pure farming 
economy would have emerged. On the other hand, if the city mer- 
chants' interest in long-distance trade had been minimal, then the 
original weakly interactive (mixed) economy might have remained. 
Simplicity and predictability migl-it have endured forever. 

At the height of the feudal period, the difficulties and dangers of 
travel in Europe meant that transport costs were relatively high in 
comparison with the value of most agricultural goods. Thus Mees 
reasoned that farmers were less likely to engage in trade than city 
merchants, and the catastrophic shift depicted in his analysis was 
more likely to occur. In places where the population of city mer- 
chants was small, the mixed-economy equilibrium Ern would have 
prevailed. By way of contrast, cities much larger than the norm 
could have appeared rather suddenly as trade costs reduced 
through a critical range and trade flows grew accordingly. 

Mees's explanation for the simultaneity of urban growth and the 
escalation of trade endorses Pirenne's hypothesis. Slow improve- 
ments to the transport system led to greater circulation by mer- 
chants, more specialization, and more trade. A growing band of in- 
teracting merchants created a qualitatively different economic 
landscape. Suddenly some regions specialized in city goods, others 
in agricultural commodities. Europe's economy self-organized. A 
shift away from self-sufficiency toward greater specialization and 
trade undermined the efficiency of the old feudal and manorial 
system, setting in motion an explosive positive feedback loop (see 
Figure 4.3). 

INCREA S/NG SPEC'A L /ZA 7-/0N 
C/RC¿/! A T/ON - AND /NCREAS/NG 
AND TJQADE R E T U ! !  70 SCALE 

, 

I 

IMPROVEMEN TS SEL EC T/ VE 
T0 TRANSPORT & , - GRDWTH / !  U R f i N  
COMMUN/CA T / O N  POPU A 77ONS 

NETWORKS 

FIGURE 4.3 Some positive feedback loops in Europe's medieval 
economy. 

If each region's population is also assumed to vary with its attrac- 
tiveness, Mees argued that overall growth can also be explained.5 
Additional arguments based on increasing returns to scale and ag- 
glomeration can be drawn upon to show why cities expanded 
much more rapidly than their rural surroundings. Some of these ar- 
guments were discussed in Chapter 1, so we'll bypass them here. 

Learning by Circulating 

The city merchant seemed to be the key architect of this dramatic 
change in the economic landscape, so let's take a closer look at his 
decision problem. Like any good entrepreneur, he sought to profit 
by buying goods in places where supply was abundant and prices 
relatively low, with the aim of selling them in places where de- 
mand was strong and higher prices could be charged. To decide on 
the viability of such an undertaking for each tradable product, he 
would need to know or estimate (1) the purchase price and the sell- 
ing price in various places, and (2) all the additional costs to trans- 
port and protect the product between the two places involved. 
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The periodic peddling of goods by the oriental traders was 
slanted toward the silks of Constantinople and the spices of the In- 
dies. This is hardly surprising since only goods of great rarity and 
profitability could withstand the burden of the high transportation 
costs and risks of loss that must have beset the early merchants. 
The Venetians, on the other hand, were quick to realize that trade 
could be profitable for a variety of goods in various places. Slaves, 
in particular, could be sold profitably in Constantinople. Then a 
host of luxury goods could be brought back from the East. Further 
profits might accrue if various Italian goods could be sold for profit 
in the East and elsewhere. 

Why did the Venetians excel as merchants? Unique topographi- 
cal conditions, outstanding seafaring skills, and plenty of innova- 
tive entrepreneurship may have been the answer. For the typical 
Carolingian town, their protected area of cultivated land surround- 
ing the manor meant everything. But commerce stood for nothing. 
Venice was a striking exception. Bereft of arable land, its very sur- 
vival rested purely on commerce. The early fish-eating, marsh- 
dwelling Veneti gathered and processed salt, then sought other 
markets where it might be sold for profit. One such market was 
found in Constantinople. 

The search for new markets, where a product is unfamiliar, is not 
just an act of Courage. Nor is it simply revealing a natural talent for 
sniffing out entrepreneurial profit. A rare, unfamiliar product is 
valued by purchasers much as gifts of nature or pictures by old 
masters.6 Often its price is determined without regard to the actual 
cost. Monopolistic profit potentials can be enormous. Despite the 
innumerable difficulties of the trading venture, the Venetian mer- 
chants realized that the rewards could be exceptional. 

As the final decade of the tenth century began, Venice prospered 
under the strong hand of the statesman, warrior, and diplomatic 
genius, Pietro Orseolo 11. In less than a year, he negotiated com- 
mercial terms with Basil I1 in Coi-istantinople that guaranteed ad- 
mittance of Venetian goods at tariffs far lower than those imposed 
on foreign merchandise in general. By reducing the total transac- 
tion costs for Venetian goods sold in Constantinople, the Doge es- 
tablished a major comparative advantage for Venetians trading in 
the Greek city. Among the bevy of trading centers dotted around 
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the Mediterranean, Venice stood out as a key node, second in sta- 
tus only to Constantinople. 

Imagine the thoughts of an enterprising Venetian merchant. 
Foremost in his mind might have been the idea of trading in a bun- 
dle of goods that guaranteed profitability regardless of the trading 
route traversed. Venetian salt was highly regarded by both Muslim 
and Christian alike. Constantinople supplied many luxury goods 
such as silk cloth, gold and silver plate, carved ivory, jewelry, and 
semiprecious stones. It also produced more pedestrian commodi- 
ties such as linen, cotton cloth, and armaments. Sicilian grain could 
be bought in Palermo and sold for profit in many other ports. 

From a host of possibilities, this enterprising merchant decided 
(1) to buy salt in Venice for sale in Constaiitinople, (2) to buy a few 
luxury goods in Constantinople for sale in Palermo or Venice, and 
(3) to buy grain in Palermo for sale in Venice. In view of the risks 
associated with each leg of his journey, how could the merchant 
ensure that such a voyage would be profitable? He couldn't. But he 
would have tried to estimate it. How? The longer the journey, the 
greater the prospect of profit in an era when prices were largely de- 
pendent on the rarity of the imported goods. But how could eco- 
nomic determinism prevail when rarity and insecurity increased 
with distance? Surely the outcome must have been at the mercy of 
some unwelcome chance events. 

Imagine for a moment that you, the reader, are this merchant. 
You've studied a map of the area and realize that the three cities 
form a simple network economy (see Figure 4.4). Each city is a 
"node" in this network and each leg of your journey serves as a 
"link" between a pair of nodes. You've also realized tliat you're 
searching for a profitable compromise between economic necessi- 
ties and elements of chance. Setting off on your maiden voyage to 
Constantinople, your spirits and profit expectations are high, per- 
haps even a little unrealistic. You see yourself as an enterprising 
explorer venturing into uncharted territory. Admittedly your cost 
calculations and price estimates are crude and approximate, but 
you sense that your mercantile skills will carry you through. 
Thanks to good fortune at sea and the temporary monopoly en- 
joyed by early entrants in a iiew market, you manage to earn a 
healthy profit on your first voyage. 



FIGURE 4.4 The network economy of Venice, Palermo, and 
Constantinople. 
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On this maiden voyage, intuition was your guide. But now you 
have the benefit of a little hindsight. Upon comparing your cost 
and price expectations with those realized on your first voyage, 
you realize just how wide of the mark they were. So you decide to 
record all this economic information in a diary. Your mind is set on 
developing an accounting system that will enhance your ability to 
estimate costs, prices, and profitability more accurately in the fu- 
ture.7 A detailed record could even help you to become an expert 
on each of the economic links: Venice-Constantinople, Constan- 
tinople-Palermo, and Palermo-Venice. 

Your diary records the historical prices, pi (t), prevailing in each 
city i on a particular date t, but only for the goods forming part of 
your chosen bundle of tradable goods-say salt, silks, spices, and 
grain. It also records the transaction costs, cii (t), of transporting 
and protecting them between cities i and j, as well as other data 
pertaining to the reliability of each leg of your journey. The prof- 
itability of each leg, i-j, as well as overall profitability, can now be 
calculated. All information is based on your own trading experi- 
ences in each city. It's your personal diary. 

The diary provides enough information to convince you to alter 
your bundle of goods before your next voyage. Upon checking the 
profit achieved on each leg of your latest journey, for example, you 
See that spices produced your most profitable return. So you de- 
cide next time to buy more spices in Constantinople. By way of 
contrast, you note that the profit from selling Sicilian grain in 
Venice was marginal. Yet grain could be sold at a much higher 
price in Constantinople. So you decide to call in at Palermo on 
your way to Constantinople to buy grain. Each of the entries in 
your diary provides "food for thought" in terms of setting the 
agenda for your next journey. 

But the real value of your diary lies in the fact that it helps you to 
build a crude mental model of this three-city network economy. 
Your mental model is relatively simple. It consists of a few basic 
rules. For example, experience has taught you to apply the follow- 
ing two rules for profitable trade: 

IF pi (sell) > pi (buy) + C,, (trade), for a marketable product, 
THEN that product should be traded. 
IF p, ("11) > pi (buy) + C..  (trade), summed over all products chosen, 

'1 
THEN that bundle of products should be traded. 
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In other words, since you know that you can sell Venetian salt in 
Constantinople or Palermo at a price, p, (sell), that Covers all the 
costs incurred-namely the purchase price, pi (buy), plus all trans- 
action costs, ci. (trade)-then salt should be traded. If you can sell 
your bundle o/ different goods at prices that Cover the total costs of 
purchasing and transporting them to their point of sale, then your 
chosen bundle of goods can be profitable over the whole journey 
and should be traded.8 Applying these rules to various combina- 
tions of goods enables you to form a picture in your mind of those 
goods that can be traded most profitably between various nodes of 
the network. 

These aren't the only condition-action rules that form part of 
your mental model. You've also learned to rank the goods in terms 
of their contribution to overall profitability. For example, you in- 
voke the following rules: 

IF unit profits from one prodiict exceed those of another product, 
THEN increase your share of trade in the first product. 
and 
IF unit profits on leg i-j of your journey exceed those on leg i-k, 
THEN increase your share of trade on leg i-j. 

Furthermore, you've also learnt to chart the safest Course in or- 
der to reduce the risks of inclement weather or piracy. This leads to 
a set of rules of a different kind? 

IF my ship sails too close to the Adriatic coastline, 
THEN there's a risk of attack by Dalmatian pirates. 
and 
IF my ship joins in convoy with other ships, 
THEN the risks of piracy will be reduced. 
and 
IF my ship sets sail in winter, 
THEN the winds may destroy it completely. 

Satisfaction of each of the above rules depends on the sophistica- 
tion of your know-ware. Earlier voyages have taught you to apply 
these rules in a certain order. If trading profits are large, you're happy 
with your decisionmaking skills. Gradually you build up confidence 
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in your ability to select goods, vessels, and routes wisely. You even 
acquire the know-how to estimate potential profits on each link. 

After a few more voyages, you find that your cost and price esti- 
mates are much closer to the mark on each link. Improved risk as- 
sessment has also followed from the experience accumulated dur- 
ing each voyage. With the benefit of this additional hindsight, your 
deductive abilities can now come into play more reliably. But you 
will always need to display adaptive behavior on certain occa- 
sions. For example, your know-whether skills may cause you to 
modify your chosen route in response to news of piracy or in- 
clement weather on a particular leg of a journey. 

Eventually, your cumulative know-ware allows you to expand 
your "rule-of-thumb" hypotheses for the profitability of pair-wise 
trades on each link into a crude mental model of the profitability 
and risk associated with trading across the whole three-city econ- 
omy. Then you find that certain combinations of goods, city pairs, 
voyage, and sailing dates consistently turn out to be the most prof- 
itable. Because you've gathered this knowledge during your own 
voyages, only you and the members of your Iznnse or gild have ac- 
cess to it. It's privileged know-ware, the fruits of lenrnirlg hy circli- 
lating. This inside knowledge allows you to decide more confi- 
dently on a preferred strategy for future trading ventures. 

The medieval merchant gained valuable feedback from his expe- 
riences during each voyage: the swiftness and riskiness of his cho- 
Sen route, the wisdom of his chosen bundle of goods, and the prof- 
itability of his whole trading strategy. This feedback would have 
strengthened or weakened his belief in any crude mental model of 
the three-city economy that he may have developed. Sometimes he 
would have altered his preferred route if it proved to be too risky 
or if he happened to hear of a safer or quicker route from other 
merchants. Naturally he would have altered his bundle of goods if 
some of them failed to achieve his profit expectations, replacing 
them with more popular or profitable ones. 

There's little doubt that seafaring merchants lacked information 
about the prevailing economic circumstances. Faced with these un- 
certainties, they would have been obliged to take a "seat-of-the- 
pants" approach. For example, they may have simply "papered 
over" the gaps in their own knowledge. By this we mean that they 
may have acted like crude economic statisticians, guessing and 
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testing and discarding simple expectational models to fill these 
gaps. In this way, they could have imagined a more general possi- 
bility from their own partial picture of the state of affairs. As logic, 
this kind of behavior is inductive. 

But the inductive process of learning by circulating was never a 
purely individlinl experience. The diverse perils by which mer- 
chants were threatened compelled them to travel in armed con- 
voys. Security could be had only at the price of force, and force was 
to be obtained only by union. Whatever these unions were called- 
frairirs, ctinrites, conzyag~~ies, gilds, or hanses, the reality was the 
same.10 Troops of merchants banded together, usually bound by an 
oath of fidelity. A spirit of close solidarity and unity of purpose 
prevailed. Often the merchandise was bought and sold in common 
and the profits divided pro ratir according to each man's share. The 
Same thing happened in both Italy and the Low Countries, the two 
regions where commerce was developing most rapidly. 

Thus the seeds of coevolutionary learning were sown. A number 
of specialized tznnses soon emerged.11 Merchants' beliefs and hy- 
potheses about trading conditions were constantly formulated, 
tested, and refined amidst the collective experiences of each hanse. 
As time went on, this learning process led to better-educated mer- 
chants, who eventually were able to conduct much of their affairs 
by correspondence. The need to convoy merchandise grew less ur- 
gent, and commercial life became more stationary. Merchants 
could then turn their attention to local issues. In many Italian and 
German towns, the gilds and hanses had secured a share of urban 
government by the thirteenth and fourteenth centuries. 

According to Pirenne, most merchants possessed a more or less 
advanced degree of instruction.12 It was this initiative that led to 
Latin replacing the vulgar tongues used in earlier dealings. In Italy, 
the practice of writing was so much a part of commercial life that 
the keeping of books was widespread in the thirteenth century. 
Soon after, it was adopted throughout Europe. Leading scholars 
wrote works designed to assist the merchants in their endeavors. 
For example, Leonardo Fibonacci of Pisa composed a treatise on 
arithmetic for the use of merchants. We'll return to his fascinating 
work in Chapter 7. 

Small wonder that the Status of merchants grew remarkably 
quickly. Out of the ashes of the Carolingian economy, this new 
class of economic power mongers arose. Entrepreneurial mer- 
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chants became the economic leaders of the medieval period. They 
became aristocrats and formed powerful patriciates to govern the 
great trading cities. Even the higher nobility eventually "turned 
merchant," as the great trading cities grew and prospered to an un- 
precedented extent. At the start of the eleventh century, who could 
have possibly foreseen that long-distance merchants would be- 
come the doyen of society? 

As Pirenne suggested, "a state of mind was being gradually cre- 
ated which was particularly favourable to the Progress of interna- 
tional trade and labour."l3 Founded on learning by circulating, 
long-distance trading proved to be handsomely rewarding, espe- 
cially for the pioneering gilds and hanses-the ultimate explorers, 
in our terminology. They carved out a new niche for themselves 
and their cities. They also "locked in" competitive advantages by 
dint of their personal experiences and accrued knowledge. Theirs 
was an increasing returns economy. But most important of all was 
the fact that their learning by circulating contributed to the emer- 
gence of a new urban hierarchy in Europe. Like self-starting nodes 
in a random graph, the leading mercantile towns of Venice, Genoa, 
and Bruges catapulted up the urban hierarchy (see Table 4.2). 

TABLE 4.2 The Ten Largest Cities in Europe 

Cordova 
Constantinople 
Seville 
Palermo 

Kiev 
Venice 
Thessalonika 
Ratisbon 
Amalfi 
Rome 

Constantinople 
Fez 
Seville 
Palermo 
Cordova 
Granada 
Venice 
Kiw 
Salerno 
Milan 

Constantinople 
Palermo 
Seville 
Paris 
Venice 
Cordova 
Granada 
Milan 
Cologne 
London 

Paris 
Granada 
Constantinople 
Venice 
Genoa 
Milan 
Sarai 
Seville 
Florence 
Cologne 

Paris 
Bruges 
Milan 

Venice 
Genoa 
Granada 
Prague 
Constantinople 
Rouen 
Seville 
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Big Buttons and a Critical Thread 

During the eleventh and twelfth centuries, the towns of northern 
ltaly, central Germany, and Flanders became thriving centers of 
commerce, as population and trade continued to grow. As if part of 
an autocatalytic network, two "clusters of buttons" began to 
emerge as the "threads" between them materialized. Surprisingly 
enough, trade in northern Europe received a major stimulus from 
the Vikings. Pirenne suggested that "the Vikings, in fact, were pi- 
rates, and piracy is the first stage of commerce."l4 These Norsemen 
were so well versed in the construction of seaworthy ships and 
their navigation in distant waters that when their raids ceased, 
they simply became merchants. 

By dint of its strategic role as a center for the medieval cloth trade, 
together with its convenient coastal location, Flanders became the 
key trading web in northern Europe. Some merchants threaded 
their way to Flanders from the interior parts of Europe, along the 
valleys of the Rhine, the Meuse, and the Scheldt. Others threaded a 
path across from the British Isles. Still others (mainly German mer- 
chants) used Flanders as the entrepot between east and west. 
Bruges fulfilled a similar role in northern Europe to that of Venice in 
the south. It was even nicknamed "the Venice of the North"! 

Thus emerged two great European clusters of commercial 
activity-one in the north on the shores of the Baltic and the North 
Seas, the other in the south on the shores of the Mediterranean and 
Adriatic Seas (see Figure 4.5). In between lay a central landmass 
mostly in the grip of feudalism. But commerce is nothing if not 
contagious. There's a craving for adventure and the love of profit. 
The incentive for threading a continuous link between these two 
vibrant trading areas could hardly have been stronger. Could one 
giant trading web emerge? Self-organization then lent a hand and 
wove its now familiar spell. 

The final thread in this giant web of commerce started in Flan- 
ders, ran through Champagne and the Rhineland, down the Rhone 
Valley to Liguria and Lombardy. From there the Pisans, Genoese, 
and Venetians sailed to the eastern Mediterranean. Later the Ger- 
man plains boomed while Baltic and North Sea trade peaked un- 
der the direction of the German Hanse. The key threads of Eu- 
rope's network economy were woven into a vibrant new tapestry. 
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FIGURE 4.5 The "buttons" of Europe's medieval network economy. 

Nestled centrally within this giant web of commerce, one partic- 
ular "button" stood out as the meeting place between north and 
south. What better place for the Flemish cloth to meet the buyers 
from Lombardy and Tuscany than at the famous fairs of Cham- 
pagne? Fairs emphasized the episodic character of trade over 
longer distances. Each country sought its own.15 But above all they 
prospered in France. Two great French centers were universally fa- 
mous in this respect: the Ile-de-France and Champagne-Brie. But 
the patterns of circulation threaded by long-distance merchants 
meant that only the Champagne fairs in the twelfth and thirteenth 
centuries attracted merchants from the whole of Europe. 

The Champagne fairs became the "embryonic clearinghouses" of 
the European economy. Four towns in the area developed a rotating 
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system of six fairs each year.16 These fairs were not only a major 
market for international trade but also the center of an embryonic 
international capital market. A market evolved there for exchang- 
ing currencies, with ratios quoted in terms of local and foreign cur- 
rencies.17 This was, in effect, a freely fluctuating exchange rate that 
mirrored the demand and supply of different European currencies. 
Trading volume was so considerable that the coin of the district be- 
came the model for the standard currency in much of Italy in the 
second half of the twelfth century. An early prototype of the "bill of 
exchange" also helped to lower the transaction costs of inter- 
national trade at the fairs. 

We shouldn't underestimate the economic importance of the 
fairs' institutional innovations. The manorial world of relatively 
isolated, weakly interactive economic units did not have continu- 
ous information about relative prices or the underlying supply- 
demand conditions for their own regions, let alone for foreign 
dealings. Transactions were simply too infrequent in time and 
space to support an organized market. During the thirteenth cen- 
tury, this vacuum was filled by the fairs, which embodied huge in- 
stitutional advances. Along with the improvements in communi- 
cation, these true marketplaces provided additional stimulus for 
circulation and trade to become self-reinforcing. 

As their trading volume grew, the fairs provided general knowl- 
edge of prices for an international market. The transaction cost per 
mierchnrzt declined as the information was disseminated among in- 
creasing numbers, thereby simplifying the costly search by mer- 
chants for market information. Learning by circulating was central- 
ized, thus removing much of the uncertainty of earlier days. With 
the Champagne fairs as a major hub, other fairs and markets were 
programmed to avoid clashes and encourage circulation. Thus car- 
riers, merchants, and artisans could travel from one fair or market 
to another, selling their goods and absorbing vital economic infor- 
mation from the markets' transactions. Fernand Braudel refers to 
this circle of fairs as a sort of "perpetuum mobile."18 It was also a 
coevolutionary circuit. 

By exercising an incomparable power of attraction, the fairs 
marked one of the key stages in the advance of Western commerce. 
They brought classes and nations together, fostered a spirit of en- 
terprise, s timula ted cul tural exchanges, and crea ted a more peace- 
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ful Europe. But above all, they provided a meeting place for circu- 
lating merchants to ply their trade and compare notes. More than 
any other single activity, the fairs did most to bring about an end to 
the economic isolation that the West had suffered during the Mid- 
dle Ages. Yet none of the fair sites developed into manufacturing 
centers, nor did any evolve into cities. Today they're all deader 
than Troy. Even their names have been forgotten. 

Ephemeral Entrepots 

Why did the fairs prove to be ephemeral? For much the Same rea- 
son as other entrepots before them. Something new replaced some- 
thing old. While the fairs were prospering, goods, coins, and credit 
were all part of the circulation process. Because it was simplest to 
arrange credit from a central point, single centers came to domi- 
nate the European system of payments. In the thirteenth century, it 
was the larger fairs like those in Champagne. The irony was that 
by encouraging trade over longer distances, the fairs themselves 
helped to catalyze a sequence of network changes that ushered 
in entirely new ways of circulation and means of transaction in 
Europe. 

Four factors conspired to turn positive feedback loops into nega- 
tive ones. The first was a new thread between north and south, a 
direct sea connection between Bruges and the towns of the 
Mediterranean using large Genoese vessels of the late thirteenth 
century. The second was the introduction of a regular mail system 
for Dutch and Italian merchants. Third came the absorption of the 
Champagne district into the kingdom of France, thus subjecting 
the fairs to heavy royal taxation. The final nail in the fairs' coffin 
was the introduction of more novel payment systems, bringing 
greater flexibility and frequency than they could offer. 

Although each change affected the tapestry of trade and move- 
ment, the last was perhaps the most influential in the long run.19 
The Swedish economist Ake Andersson points to progressive im- 
provements in the transaction system as the catalyst of a second 
"logistical revolution."2o The merchants' desire for risk reduction, 
commercial credit, and reliable currencies spawned a growing in- 
terest in banking and insurance activities among the merchants, 
monarchs, and speculators alike. As the volume of trade grew, 
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banking, insurance, and conlmercial law became in urgent need of 
more explicit instruments. Italian cities led in the formalization of 
legal forms. Urban markets like Bruges welcomed the opportunity 
to provide these commercial needs on a grander scale. 

First to respond to the need for reliable banking was Amsterdam. 
By establishing an officially guaranteed central bank, the gover- 
nors of that city Set in motion a spate of central bank openings that 
were the forerunners of our modern banking system today. But the 
history of banking is not our principal concern. It suffices to note 
that this steady improvement in the system of transactions was a 
key factor in the growth and expansion of long-distance trade. It 
also contributed to the demise of the fairs. 

The emerging industrial center of Flanders, the ports of Genoa, 
Venice, and Bruges, the fairs in Champagne and Flanders, the Ital- 
ian colonies in the Levant, and the German Hanseatic towns can be 
viewed collectively as the principal "buttons" or entrepots of me- 
dieval Europe's reviving network economy. In each market center, 
and along the routes threaded between them, the use of credit be- 
came more extensive; towns grew and became more active; and in- 
dustry for distant markets took on a new lease of life. Progress was 
not slow and steady. It was abrupt and unexpected. Long spurts of 
growth alternated with times of stagnation and decline. Yet again, 
the picture is one of punctuated equilibria. 

Surprisingly, none of the places mentioned above rank with the 
urban powerhouses of today. Yet the coevolutionary web of links 
threaded catalytically between them still remains. Such ephemeral- 
ity is difficult to understand. Part of the explanation can be found 
in earlier chapters, where we saw that entrepreneurial learning is 
an adaptive process. Self-organizing networks make prediction 
nearly impossible. New nodes rise while old ones fall. But another 
explanation Comes from the ingredients that are needed to make a 
city great in the first place. This intriguing question is addressed in 
the next chapter. 

f ive 
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The diortest path betweeti tztlo triitfis iti the real doitinin passes throiigh the 
coltlplex iforrlain. 

-Jacques Hadamard 

The Shortest Network Problem 

In January 1989, Scientific Anierican published an article with the 
brief title "The Shortest Network Problem." The question seemed 
straightforward enough: " W h a t  is the slzortest netzvork of l i w  srg- 
nlents interconnecting arz arbitrary set of, say, 100 points? First popu- 
larized in the 1940s, the solution to the shortest network problem 
has eluded not only the sharpest mathematical minds but also the 
fastest computers. Why? Because it happens to belong to a class of 
problem that is tantalizingly difficult to solve. For starters, you 
cannot simply draw a series of lines between the given points. Ad- 
ditional points are needed. Known as Steiner points, these extra 
nodes serve as junctions in the shortest network. Scientists have 
developed a number of sophisticated algorithms to determine the 
location and number of Steiner points.1 But even the best of these, 
running on the fastest computers, can't find the optimal solution 
because the time it would take is unacceptably long. 

What makes the Shortest Network Problem so tricky? The diffi- 
culty is that the number of ways of connecting a given set of points 
to form a network grows very quickly with the size of the problem. 
In mathematical terms, it grows geornetrically. Although there are 
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only 4 ways of linking 3 points, this number jumps to 360 for 5- 
point networks, and to almost 3 million for 8-point networks! 
Mathematicians tell us that the introduction of additional interme- 
diate (i.e., Steiner) points makes the problem "NP-hard." 

In this ball game, a relatively easy problem is one whose solution 
time grows as a polynonzial function of the size of the problem. For 
example, the problem of multiplying two N-digit numbers to- 
gether usually takes an amount of time that's proportional to Nk, 
that is, N raised to the power of k where k is fixed. We call this 
polynomial time, or simply a P problem. 

Problems like jigsaw puzzles-where the challenge is to fit 
pieces of different shapes into a given space-belong to a class of 
"nondeterministic polynomial," or NP problems. Jigsaw puzzles 
would be much easier if we knew the order in which the pieces 
should be inserted into the puzzle. Fitting the pieces and checking 
the solution could then be done in polynomial time. Because we 
don't know the order, we normally have to resort to some kind of 
"trial-and-error" method to solve the puzzle. That's why the prob- 
lern is nondeterministic. There are many different ways of fitting 
the pieces together at each step. It's something of an intuitive 
nightmare for even the most ardent explorers. 

A similar kind of problem plagues us when we come to deal 
with self-organizing human systems. As we mentioned in Chapter 
1, changing patterns of residential location in a city would be much 
easier to understand if we knew the order in which the moves 
might occur. As well as many different size classes, there are differ- 
ent ways in which an avalanche of moves can be started. The Same 
is true of commuting patterns and migration flows over longer dis- 
tances. Because we don't know the order of moves, we're forced to 
resort to some simple heuristic model, or deal with average statis- 
tics instead. That's why these strongly interactive processes of so- 
cioeconomic change are so poorly understood. 

If you think NP problems are difficult, you're in for a shock 
when you meet an NP-hard problem. Finding a polynomial-time 
solution for this class of problem would require one to find a poly- 
nomial-time solution for all problems in the corresponding class 
NP! This simply takes too long. Thus it's very easy to understand 
why the 100-point network problem described in the Sc ien t i f i c  
Arnericnn article lies beyond the current limit of our computational 



142 Networks, Boosters, alzd Self-Orgalzized Cities 

capabilities. When that article first appeared, a 29-point problem 
(like in Figure 5.1) was close to the limit.2 

You might be saying, so what? Surely the Shortest Network 
Problem is purely of scientific interest? Definitely not. What makes 
this kind of problem so intriguing is that it has dozens of real- 
world applications. Furthermore, many are of economic signifi- 
cance. Think of those situations where we want to minimize the 
cost of materials used to build networks of various kinds: tele- 
phone networks, pipelines, railway grids and roadways, to name a 
few. Shortest networks are also of growing importance in aircraft 
routing and scheduling. In fact, the solution to Steiner's problem is 
of interest whenever we wish to link up nodes in a network in a 
cost-efficient manner.3 But the clear message to be learned is that 
building networks in an efficient manner is no simple task. Larger 
networks are very complex systems. Paradoxical behavior 
abounds. In the next chapter, for example, we'll learn that the addi- 
tion of a new link between two existing nodes in a network can 
make everyone worse off! 

Like the cognitive skills of humans, ground transportation net- 
works must strike a balance between two extremes. At one end of 
the scale is the cost-minimizing Steiner solution, often preferred 
when the availability of capital is limited. Such a solution can be 
expensive to find. At the opposite end of the spectrum lies the util- 
ity-maximizing solution, which corresponds to the most conve- 
nient network for Users. The utility-maximizing solution requires 
each city to be connected directly to the other. Such a solution can 
be expensive to construct. Chance and necessity both have an in- 
put to the final compromise solution. 

The American geographer William Bunge pointed out that the 
evolution of North America's railroad network could be partly un- 
derstood in these terms.4 The utility-maximizing network was 
characteristic of the Northeast and Midwest, where the larger met- 
ropolitan centers are clustered more closely together and where the 
demands for transportation are greater. Elsewhere, urban centers 
generate smaller intercity traffic volumes because they're scattered 
farther apart. The cost-minimizing Steiner solution tends to prevail 
under these conditions. This kind of pattern shows up if we look at 
a detailed configuration depicting the density of rail traffic across 
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FIGURE 5.2 Traffic densities on the American rail network of the 
1950s. 

the United States. The density pattern of this historical network is 
shown in Figure 5.2. 

In reality, of Course, transportation networks aren't as simple as 
Bunge suggests. Historically, variations in physical geography 
have tempted many geographers to explain the location of particu- 
lar transportation routes almost entirely in terms of the prevailing 
topographical conditions. Mountain ranges like the Sierra Nevadas 
clearly illustrate that natural barriers do influence the chosen net- 
work. But variations in the natural landscape may not be as influ- 
ential as invisible factors, particularly chance events. Growth of 
cities, for example, may not be guaranteed by a gateway location. 
Unpredictable events, like capital investments engineered by en- 
terprising entrepreneurs or astute politicians, can be crucial. 

Like the economy it supports, a transportation network is a com- 
plex adaptive system. Its spatial form, connectivity, and flow Ca- 
pacity depend on a variety of factors-some topographical, some 
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technological, some economic, and some political. To illustrate the 
growing importance of networks in economic development, and 
gain a deeper understanding of their inherent complexity, let's 
look at some geographical developments prior to and during the 
era of the American railroad. 

Pirenne Again? 

You've probably Seen that majestic mountain range in the United 
States within a few hundred miles of the Atlantic Coast. How im- 
posing the Appalachians must have looked to the would-be trav- 
eler of the late eighteenth century. In the absence of any cheap 
overland transportation, however, they must have loomed like an 
impenetrable barrier dividing the new territory west of the moun- 
tains from the old territory east of them. 

Some well-respected scholars of American history have claimed 
that construction of the trans-Appalachian railway was the critical 
link that ignited the growth of American cities, thereby catapulting 
the United States into the cherished status of an industrial nation.5 
Underpinning this hypothesis was the argument that the railroad 
meshed the Atlantic Coast economy with the Ohio Valley-Great 
Lakes complex to form an integrated network economy in the 
Northeast. Strangely enough, this hypothesis has all the trappings 
of the one in the previous chapter, namely Pirenne's explanation 
for Europe's urban revival in the Middle Ages. In both instances, 
improvements to the transportation network seem to have served 
as the catalyst of selective, unexpectedly rapid urban growth. 

Was it accidental that this period of frenetic railroad construction 
coincided with the era of greatest urban growth in the history of 
the United States?6 Most observers would rule out chance alone. 
Plenty of historical evidence points to the potency of the railroad. 
Between 1830 and 1890, the total length of the U.S. railroad track 
increased by about 16 percent per year. There was a very sharp in- 
crease (from 6,000 miles in 1848 to 30,600 miles in 1860) that 
marked the completion of the basic railroad network east of the 
Mississippi River. The timing of this spurt in railroad growth coin- 
cided perfectly with accelerated urbanization. It also coincided 
with Walt Rostow's designated "takeoff" period for the U.S. econ- 
omy-between 1843 and 1860.7 
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Despite the apparent nexus between rail infrastructure and ur- 
ban growth, quite a few historians remained unconvinced. They 
claimed that the catalyst for American industrialization was the 
completion of the Erie Canal in 1825. Certainly freight costs using 
the Erie Canal were at least ten times cheaper than the National 
Road (the next best alternative before the railroads), revealing the 
extent of the canal's superiority at that time.8 But neither the rail- 
road nor the Erie  anal were-good enough for some observers. 
They showed their historical bent, claiming that the true catalysts 
were unleashed well before the advent of the Erie Canal. For histo- 
rians like Robert Fogel, the accelerating economic development re- 
sulted from the knowledge acquired in the Course of the scientific 
revolution of the seventeenth, eighteenth, and early part of the 
nineteenth centuries.9 

We're now confronted with a thorny problem every bit as chal- 
lenging as the controversial issue of medieval Europe's revival. 
What really did catalyze such a selective growth spurt among the 
U.S. city economies? Was it the construction of the Erie Canal or 
the trans-Appalachian railway? Or were some earlier events just as 
important? Because aggregate American data yield conflicting in- 
sights, the views of analysts differ. 

Who should we believe? Obviously it's difficult, nearly impossi- 
ble, to pin down the key causal factors involved. But one thing's 
abundantly clear. It's impossible to reach any sound conclusions if 
we base our analysis on the aggregate behavior of the American 
settlement system as a whole. We must descend to the microlevel 
in order to build up a synthetic picture of how an urban economy 
works. Urban growth is selective and uneven. Thus it's a serious 
mistake to generalize. Some cities and their surroundings under- 
went much more dramatic structural change, compressed within 
shorter time Spans, than others. 

In the light of the lessons learned from Champagne's ephemeral 
role, it's important to ascertain the specific fate of each of Amer- 
ica's entrepot cities if we want to gain a deeper understanding of 
how the American economy works. To achieve this, we must probe 
changes over space at particular points in time and changes over 
time at particular points in space. For example, Figure 5.3 makes it 
clear that seaport cities like New York and Philadelphia were pro- 
pelled upward much earlier than inland cities like Cincinnati and 
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FIGURE 5.3 Stages of takeoff for selected American cities. 

Chicago. What we find in this picture also reinforces our view that 
sharp discontinuities in the process of urbanization are not that un- 
usual. Look at Philadelphia, for example. Sudden, dramatic take- 
offs seem to be commonplace. Perhaps the world of morphogene- 
sis guarantees that. 

Selective Urban Growth 
One way of recognizing the selective complexity of urban growth, 
and the path-dependent character of each city's evolution, is to 
look at how an urban hierarchy changes over time. Table 5.1 charts 
changes in rank-measured in population terms-between 1810 
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TABLE 5.1 Changes in Rank of Selected American Cities 

---------------- Rank in ----------------- 
City 1810 1860 1910 

New York 
Philadelphia 
Baltimore 
Boston 
New Orleans 
Cincinnati 
St. Louis 
Chicago 
Buffa10 
Louisville 
Aibany 
Washington 
San Francisco 
Providence 
Pittsburgh 
Rochester 
Detroit 
Milwaukee 
Cleveland 
Charleston 

and 1910. It hints at which inland cities might have stood to gain 
most from the coming of the railroad era. I wonder which city 
would have got your vote as the likely leading gateway city back 
in 1810? With the aid of a map of Americafs West, it's not hard to 
come up with a plausible group of candidates. Potential gateway 
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cities at that time included Buffalo, Chicago, Cincinnati, Pittsburgh, 
St. Louis, and a few others. Without the benefit of hindsight, how- 
ever, how could we possibly decide between this handful of candi- 
dates? The truth is that the correct answer is unknowable. Even as 
late as 1860, nobody could be sure. 

A keen observer of American history, William Cronon, tells a fas- 
cinating story of the race to become the principal gateway city link- 
ing the American east to its west.10 It's a tale of economic dy- 
namism fueled by speculation, the mid-1830s witnessing the most 
intense land speculation in American history. But it's also a story 
about the "boosters," as they came to be known, people who ex- 
pounded serious theories of economic growth that dominated 
nineteenth-century thinking about frontier development.11 The 
fascinating thing about booster theories was that no one Person 
could claim sole authorship. Instead, according to Cronon, the the- 
ories quickly became the intellectual property of a much larger 
group-speculators, newspaper editors, merchants, and chambers 
of commerce throughout the West. Here, once again, was the blue- 
print of a familiar process: coevolutionary learning. 

The hidden strength of booster theories was that they provided a 
surprisingly coherent "mental model" of urban and regional 
growth. They saw the engine of western development as the "sym- 
biotic relationship between cities and their surrounding country- 
sides.''12 In those pioneering days, boosters believed that the 
growth of cities had its roots in natural phenomena, but that cities 
ultimately grew because people chose to migrate to them for vari- 
ous reasons. The natural advantages fell into three broad cate- 
gories: (1) the natural resources of the region, which would help to 
generate trade for the city, (2) the transportation routes, which 
would guide these resources to their natural marketplaces, and (3) 
global climatic forces, which had historically created great urban 
civilizations elsewhere in the world. 

But natural advantages represented only the potential for eco- 
nomic development and urban growth. Something or someone 
else had to make it happen. This the boosters saw in  migration. 
Some of them argued that the demographic attraction of cities pro- 
vided a sound basis for predicting urban growth. This group 
thought of cities as stars or planets, with gravitational fields that 
attracted people and trade like miniature solar systems. They even 
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thought of using Newtonian mechanics to further understand the 
reach and influence of a city.13 

Note how closely these self-reinforcing booster theories of city 
growth corresponded to the Pirenne-Mees hypothesis of urban re- 
vival in medieval Europe. In the case of the boosters, improve- 
ments to the transportation networks also provided greater access 
to nearby natural resources. These resources, together with a posi- 
tive climate, were the forces generating migration and trade for a 
city. More migration and trade led to more specialization, increas- 
ing returns to scale, and thus further in-migration and growth in 
the urban population. Thus the positive feedback loops envisaged 
by the boosters bore a strikingly close resemblance to those under- 
pinning Pirenne's analysis. Pirenne's feedback loop is enclosed by 
the dotted line in Figure 5.4. 

According to Cronon, the strongest advocate of the "gravita- 
tional" theory of cities was an obscure figure in Cincinnati named 
S. H. Goodin. As we shall see shortly, Goodin's remarkable essay 
on Cincinnati's destiny anticipated the central place model of 
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FIGURE 5.4 Booster theories of city growth-positive feedback loops 
again. 
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urban development. "The law of gravitation or centralization is 
known to be one of the laws of nature," wrote Goodin.14 This "ser- 
ial law" predicted that frontier migrants would displace Indian 
communities in the West, generating new villages to serve the sur- 
rounding territory and thereby attracting a larger share of popula- 
tion and trade. Goodin called these villages "the first circle in the 
serial law." They were to be followed by subsequent circles, each 
marking a higher stage of urban Progress. 

Goodin's argument saw rural populations clustered around small 
villages, which clustered in turn around larger towns, which clus- 
tered in turn around still larger cities. Road connections reinforced 
this hierarchical constellation of human settlements. Goodin's serial 
law bears a striking resemblance to central place theory, a body of 
literature that has exerted a powerful influence on 'twentieth- 
century research into economic development patterns over geo- 
graphical space. The roots of central place theory can be traced to a 
conten-iporary of the boosters, who wrote in Germany at much the 
Same time. Johann Heinrich von Thünen, a well-educated gentle- 
man farmer in Mecklenburg, published the first edition of his book 
on the "Isolated State" in 1826. He attempted a rigorous mathemat- 
ical description of the spatial relationships and economic linkages 
between city and country, but the boosters seem to have been bliss- 
fully unaware of it. 

Von Thünen's theory grappled with the question of how the 
economy organizes its use of space. Surprisingly, this isn't a ques- 
tion that seems to engross the economics profession. T find it weird 
that most of the profession have turned a blind eye to all those in- 
teresting things that have something to do with iuhere economic 
activities occur. As Paul Krugman has noted, hardly any of the 
popular economics textbooks contain any references to "cities," 
"location," or "space" in their indexes.15 Considering how much 
tiine commuters waste in traffic jams, how much of their income 
families spend on housing and residential location, and how much 
capital firms spend on location decisions, this neglect of spatial 
economics is nothing short of mind-boggling. Perhaps the lack of 
attention is attributable in part to the issues raised in this book, 
namely the inherent complexity of economic changes and disequi- 
librium phenomena. 
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In any event, a brief explanation of von Thünen's idea can help 
to put the boosters' spatial problem into perspective. Imagine an 
isolated world, where a single town sits in the midst of an endless, 
fertile plain. As crops differ in their yield per acre and their trans- 
portation costs to town, a fundamental question arises: How 
should we allocate the land among the various competing 
landowners and farmers, each of whom acts in his or her self- 
interest? Von Thünen reasoned that each farmer faces a trade-off 
between land rents and transportation costs. What farmers could 
grow or raise profitably at any given location depends on how 
much people in the city are willing to pay for it and how much 
it would cost to transport it to the marketplace. "With increasing 
distance from the Town," he wrote, "the land will be given up 
progressively to products cheap to transport in relation to their 
value."l~ 

The geographical consequences of von Thünen's idea are quite 
striking. A series of concentric agricultural circles form around the 
town, each of which defines the land areas that can afford to sup- 
port certain kinds of economic activity. Heavier crops, like fruit, 
vegetables, and dairy products, are produced nearest the town. 
Since the price of land in this inner Zone is too high for crops like 
wheat or corn, they are produced further out. Cattle and other live- 
stock graze even further out from the town. Eventually a Zone is 
reached where nobody would buy land at any price, because noth- 
ing it produced would be valuable enough to Cover the prohibitive 
cost of transporting it to market. 

Figure 5.5 illustrates von Thünen's schema. The top part of the 
figure shows four "bid-rent" curves (shown here as straight liiies). 
Each line shows the rent that farmers would be willing to pay, at 
any given distance from the town, for a particular crop. Once 
growers have sorted out the rent gradient, one gets concentric cir- 
cles of cultivation. This land-use pattern is shown in the bottom 
part of the figure. The funny thing is that this unplanned outcome 
is also efficient. Unplanned competition will allocate agricultural 
activities to land in a way that minimizes the total cost of produc- 
ing and transporting the fruits of those activities. 

This is quite a startling result. We might even dare to suggest 
that this pattern of concentric rings is an ernergent property of the 
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FIGURE 5.5 Von Thünen's isolated state. 

economic system described. It's hardly something that's evident 
from looking into the individual minds of all the farmers. Such cir- 
cles will form even if no farmer knows what the other farmers are 
growing. Yet von Thünen himself acknowledged that his abstract 
thought experiment departed starkly from reality. No city would 
ever be as isolated as his was. All are surrounded by a variety of 
smaller towns and villages. No region would be as uniformly fer- 
tile as his hypothetical plain. All feature towns along rivers 
or canals and natural resources clustered in seemingly random 
patterns. 

Although such realities complicate the hinterland picture, none 
of them destroy the descriptive validity of von Thünen's basic 
idea. The vision that von Thünen and the boosters shared was that 
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urban markets made rural development possible.17 Wherever 
agents organize their economy around market exchange, trade be- 
tween city and country will be among the most powerful forces 
shaping economic geography and environmental change. Markets 
will organize themselves according to rent gradients and other 
competitive factors. Such rent gradients remain key features of a 
modern urban economy, shaping residential and commercial land 
markets as well as agricultural ones. But the problem for us is that 
von Thünen's model doesn't help to explain the existence of the 
town in the first place. 

Central place theory put back some of the realism missing from 
von Thünen's landscape by linking cities, towns, and villages to- 
gether in an orderly system of networks and subnetworks. The 
idea was that human settlements arrange themselves in hierarchi- 
cal relationships with one another. Hinterland towns served as lo- 
cal marketplaces, selling their food and clothing to the nearby rural 
villages. Medium-sized cities sold more specialized retail products 
to the towns and villages that surrounded them. But all bought 
their main supplies, such as key equipment and inputs to their 
own production, from the wholesale markets in the central city. 
Any map of human settlements reflects this hidden network of 
markets within markets, lowly ranked places within the catchment 
area of highly ranked ones. 

Classical central place theorists, like Walter Christaller and 
August Lösch, provided elaborate formal geometries to describe 
these nested urban hinterlands, with intricate layers of large and 
small hexagons delineating the honeycomb-like market areas for 
highly and lowly ranked goods in highly and lowly ranked 
places.18 Reading the works of these German theorists, one is 
deeply impressed by the abstract neatness of their economic geog- 
raphy. Nested hexagons belie the uneven patterns observed in real 
places and landscapes. By allowing the fantasy of a flat, featureless 
plain, which the central place theorists shared with von Thünen, 
population grows until small village Centers begin to appear with 
the expansion of market demand. They, in turn, eventually create a 
market for medium-sized towns; medium-sized towns, in turn, 
create larger cities; larger cities, in turn, create a giant metropolis. 
Just like the Cincinnati booster S. H. Goodin had proclaimed. 
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O n e  Great Metropolis 
But which great metropolis would be the central star around which 
all other town and country satellites would come to orbit? For 
Goodin, cities such as Buffalo, Chicago, Cincinnati, Pittsburgh, and 
St. Louis were all "competing cities of the Same grade of circles." 
One more stage was still beckoning. "The next circle beyond," he 
prophesied, "is a central city-a city which shall have all these 
cities as satellites or outposts. Where shall that city stand?"l9 Ac- 
cording to Cronon, no single question more excited booster imagi- 
nations. It was discussed incessantly and everyone had their own 
prophecies. 

Surely the elegant mathematical simplicity of central place the- 
ory could supply an answer. Alas, like von Thünen's agricultural 
zones, central place theory suffers from one insurmountable flaw. 
It's profoundly static and ahistorical. What seems to be organic 
and evolutionary, like Darwin's model, with clusters of smaller 
hexagonal cells nested within and nurtured by larger cells, turns 
out to be a system locked in the world of stasis. Hierarchies of cen- 
tral places look almost lifelike, but they're not actually growing at 
all. At best, central place theory is a description rather than an ex- 
planation. Its static character couldn't answer the burning question 
on every booster's lips: Where will that great central metropolis of 
the West be? 

With the benefit of hindsight, the answer Comes easily, of Course. 
A glance at the network of American railroads operating by 1860 
reveals that only two cities were perfectly located to serve as gate- 
ways to both east and west: Chicago and St. Louis. If waterway ge- 
ography had been the key determinant of urban growth, the major 
inland city would surely have been St. Louis. Located at the conflu- 
ence of two of the continent's greatest rivers, the Mississippi and 
the Missouri, St. Louis could reasonably expect to draw resources 
from the entire coiintry to its north and west. Chicago's modest 
claim to waterway advantages lay principally in its harbor and 
canal corridor, neither of which extended very far to the west.20 

Then came the railroads and Chicago's meteoric rise. The story is 
a familiar one, but perhaps one that's not always told correctly. 
Cronon speaks of two different landscapes. One, the original land- 
scape, is natural: moiintain ranges, rivers, lakes, and all the other 
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"givens" of the environment. The second is the created landscape 
of railroad lines, canals, farming patterns, and cities. This second 
landscape results from human decisionmaking. A key difference 
between the two landscapes is that the first one is relatively static, 
whereas the second landscape is inherently dynamic. 

Being more dynamic, the created landscape became far more im- 
portant as a determinant of location than the natural landscape in 
which it was embedded. For example, Chicago's role as a Great 
Lakes port was quickly overshadowed by its role as a rail hub. Fur- 
thermore, the second landscape is often self-reinforcing: Railroads 
aimed at Chicago because it was the economic center of its region, 
and this, in turn, reinforced its centrality even more. Once again, 
we must look to positive feedback loops and an increasing returns 
economy for hints of likely things to come. 

The first railroad to reach the Mississippi in 1852 put Chicago 
and St. Louis in competition by rail without actually connecting 
them. This intensified the rivalry triggered earlier by the opening 
of the Illinois and Michigan Canal in 1848. Other railroads soon 
followed. Rather than face the risks and uncertainties of buying 
and selling via St. Louis and the river, upriver residents began to 
reorient trade east toward Chicago. Like modern commuters on 
the London Loop, these traders were learning by circulating. Their 
"mental models" of efficient trade were warming to the idea that 
the railroad was safer and cheaper. Finally, the emerging advan- 
tages of rail over water-greater speed, predictable schedules, and 
year-round movement-pulled other goods in Chicago's direction 
as well. 

But transport alone doesn't fully explain the shifting importance 
of the two towns. Regional hierarchies were also changii~g. St. 
Louis had traditionally looked to New Orleans as its chief trading 
partner in the southward movement of farm products, and to 
Philadelphia wholesalers for the merchandise it purchased from 
the east. Both of these older cities were in relative decline by mid- 
century, thus retarding St. Louis in its rivalry with Chicago. With 
the railroads came bridges across the Mississippi, rendering navi- 
gation by water even more hazardous and drawing more com- 
merce away from the river. But the final blow to St. Louis's dreams 
of greatness was yet another chance event: the Civil War and the 
blockade of New Orleans by Union forces in 1862. The river's 
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blockade reduced the whole business turnover of St. Louis to 
about one-third of its former amount. 

In the 1830s, Chicago was nothing more than an old trading post 
and garrison fort. It had fewer than one hundred residents as late 
as 1832. Yet, in just three or four years, this tiny village suddenly 
increased its population twentyfold, the value of its land grew by a 
factor of three tl-iousand, and boosters began to speak of it as a fu- 
ture metropolis.21 By 1840, land speculation and the prospect of a 
key canal had propelled the population of this small, bustling town 
to almost 5,000.22 Capitalists from leading cities in Europe and 
America raced to invest in the "would-be-great" city. Neither von 
Thünen's rings nor central place theory could shed any light on the 
city's explosive growth during the 1830s. To understand these dra- 
matic events, we must turn again to the boosters and their meth- 
ods of mental persuasion. 

Where the boosters had it over central place theorists was in the 
dyiztlmic nature of the booster models of urban growth. Some were 
even Darwinian in character. "I shall assume that a city is an organ- 
ism," wrote Jesup W. Scott, "springing from natural laws as in- 
evitably as any other organism, and governed, invariably, in its ori- 
gin and growth by these laws."23 But others were dynamic in a 
visionary sense. They championed their beliefs with skill and per- 
spicacity and sought the Support of wealthy investors to turn pre- 
dictions of urban greatness into self-fulfilling prophecies. Their 
mental models of urban prosperity made sound theories, so sound 
that they convinced New Yorkers to invest huge Sums to help 
make Chicago's urban dream come true. As depicted earlier, such 
grand schemes were the catalysts of potential positive feedback 
loops. They were also coevolutionary. 

Chicago's population exploded after 1833, seemingly oblivious 
to the need for a pastoral stage, or a settlement of pioneering sub- 
sistence farmers, or even an agricultural community of any kind.24 
Instead, the town's speculators gambled on an urban future. They 
staked fortunes on land they hoped would soon lie at the heart of a 
great city. Meanwhile, each booster had refined his own mental 
model of how this immense city would spring into being. Once the 
boosters had convinced the out-of-town investors, who then 
invested in land, prices rose quickly, thereby attracting more in- 
vestors and inflating booster confidence further. And so the pro- 
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cess of growth became self-reinforcing and the prophecy self- 
fulfilling. The positive feedback loop of a new, increasing returns, 
city economy was set in vigorous motion. 

In the terminology of previous chapters, the boosters were ex- 
plorers. They were risk takers who "all believed that cities were the 
key to the Great West," said Cronon. "And since their reasons for 
this belief were anything but academic, they sought to discover 
why some cities grew and not others, so that intelligent investors 
could profit accordingly."25 Chicago was a place "pregnant with 
certainty." The boosters sought to make their visionary mental 
models come true by conveying just this certainty to investors 
and merchants who might set up  shop there. They knew that 
capital was the most important key needed to unlock the gates to 
their metropolitan empire. Movements of people and capital 
helped link Chicago to the international system of cities, thereby 
creating an urban market that drove the surrounding region's 
grow th. 

Networking Futures 

Chicago became the critical link that meshed the different Ameri- 
can worlds of east and west into a single system. As the region to 
the west was settled, surplus produce was routed via Chicago for 
shipment eastward through the Great Lakes to the Northeast and 
Europe; and the city became the key entrepot for eastern products 
going further west. In a truly literal sense, from 1848 to the end of 
the nineteenth century, it was where the West began.26 The isola- 
tion that had hitherto constrained the trade and production of 
frontier areas would disappear in the face of what Kar1 Marx called 
"the annihilation of space by tirne."27 

But this newfound gateway status did not create the city by it- 
self. Goods and people rode the trains to get to the market, where 
together buyers and sellers from city and country priced the prod- 
ucts. Like Champagne half a millennium earlier, Chicago became 
the site of a grand country fair. Its radius of attraction was to 
stretch so far that only New York could match its markets in terms 
of reach and power. A new geography of capitalism was in the 
making. By 1848, it was the leading primary market in the country. 
And in that Same year, the city took a seemingly modest step in 
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organization that was to guarantee its fiiture as a commercial hub 
and gateway market to the world. 

Wlien eighty-two grain merchants met on South Water Street in 
1848 to Open the Chicago Board of Trade, few, if any, had heard of 
the Tokugawa era in Japanese history. Fewer still would have 
known that in forming America's first commodity exchange, they 
were repeating what their Japanese predecessors had done ir-i 
Osaka two centuries earlier. Like the Japanese rice merchants of the 
mid-1600s, the Chicago grain merchants were hoping to alleviate 
the economic havoc that resulted from the wild price swiiigs of the 
agricultural production cycle. By buying and selling forward con- 
tracts, which eventually were standardized as "futures," the mer- 
chants could lock in prices and reduce the dramatic swings be- 
tween winter shortages, when cold weather blocked access to and 
from Cliicago's grain elevators, and summer harvests, when so 
much corn, oats, and wheat flooded the market that boxcar 
loads of worthless grain were dumped ii-ito the waters of Lake 
Michigan.28 

To put the Board of Trade's influential role into historical per- 
spective, a few words about grain elevator technology are in order. 
Before the advent of the railroad, shippers loaded their grain into 
sacks before sending it on its journey by water to the mill for grind- 
ing into flour. Each sack remained unique and intact, being un- 
mixed with grain from other farms. Ownership stayed with the 
original shipper until it reached tl-ie point of sale. In a manner akin 
to the uncertainties borne by Venetian merchants in the medieval 
era, the grain shipper bore all the risks of damage in transit. If the 
grain became waterlogged, if it spoiled in warm weather, if prices 
collapsed before it reached market, or if the ship sank, the resulting 
losses accrued to the original shipper. 

The railroads brought a dramatic explosion in Chicago's receipts 
of grain. With whole freight cars carrying nothing but corn or 
wheat, freight traffic congestion became a problern. Rapid unload- 
ing of grain cars was imperative. The invention that made this pos- 
sible was the steam-powered grain elevator. This unheralded in- 
novation ii-i grain handling bestowed on Chicago the potential to 
handle more grain more quickly than any other City in the world.29 
But this increasing scale and efficiency of Chicago's grain-handling 
technology depended on two conditions: moving grain without re- 
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Course to old-fashioned sacks, and severing the bond of ownership 
between each shipper and his individual consignment. Only then 
could corn or wheat cease to act like solid objects and begin to be- 
have more like liquids: golden streams that could flow like water. 

Change proved to be inevitable. As the scale of Chicago's grain 
trade grew, elevator operators began objecting to keeping small 
amounts of different owners' grain in separate bins that were only 
partially filled. They sought to mix grain in common bins. Crops 
from dozens of different farms could then mingle, and the reduced 
cost of handling the grain would earn the elevator operator higher 
profits. The only obstacle preventing this greater efficiency was the 
small matter of the shipper's legal ownership of the grain. 

The organization that eventually solved this problem was the 
Chicago Board of Trade. At its outset, it had no special focus on 
grain, It simply sought to represent the collective voice of business 
interests in the city, enjoying very limited success. Not until Euro- 
pean demand for grain expanded during the Crimean War did the 
Board of Trade's fortunes begin to change. In the space of tl-iree 
short years (between 1853 and 1856), the total amount of grain 
shipped from Chicago more than trebled.30 Traders began to find it 
more convenient to do their business centrally, bringing samples, 
bickering over prices, and arranging contracts between buyers and 
sellers at the board's meeting rooms. As more traders gathered, 
that single marketplace quickly became more efficient and attrac- 
tive. Yet another positive feedback loop was set in niotion. Soon 
the advantages of this centralized market were so great that no se- 
rious grain merchant could afford not to belong. 

The Board of Trade began to regulate the city's grain trade for 
the first time in 1856, restructuring Chicago's market in a way that 
would forever transform the grain trade of the world. First, it intro- 
duced a grading system to set standards of quality for each type of 
grain. This solved the elevator operators' problern. Grain from one 
producer could now be mixed with grain from another producer if 
it was of the Same grade. For their shipment of grain, traders were 
given a receipt that they, or anyone else, could redeem at will. A 
person who owned graii-i could conveniently sell it to a buyer sim- 
ply by selling the elevator receipt. Anyone who gave the receipt 
back to the elevator then received an equal quantity of equally 
graded grain. This was a fundamental change. 
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It wasn't long before Chicagoans discovered that a grain elevator 
had much in common with a bank. After depositing his grain in an 
elevator operator's bin, the original owner received a receipt that 
could be redeemed for grain, just as a check or banknote could be 
redeemed for gold. Such transactions could be completed and re- 
peated many times, without a Single grain of wheat moving from 
the bin. The elevators had effectively created a new form of money, 
secured not by gold but by grain. 

Then chance intervened again. In 1848, the Same year that 
Chicago merchants founded the Board of Trade, the first telegraph 
lines reached the city. Since commodity prices were among the 
most important bits of information that traveled the wires, those 
with the best access to telegraph news were usually in the best po- 
sition to gauge future movements of prices. Although the tele- 
graph dispersed prices far more widely, it also concentrated the 
sources of such information in a few key markets. The dense flow 
of news in cities such as Chicago and New York allowed their 
prices to reflect trade conditions for the local, the national, and 
even the global economy. 

As Cronon argues, by acquiring the three key institutions that 
defined the future of its grain trade-the elevator warehouse, the 
grading System, and linking them through telegraph at a central 
market governed by the Board of Trade-Chicago underwent an- 
other revolution.31 The new communications technology ushered 
in what traders called "to arrive" contracts for grain, whereby a 
seller promised to deliver grain by some specified date in the fu- 
ture. Such contracts, together with standardized elevator receipts, 
made possible Chicagofs greatest innovation in grain trade: the fu- 
tures market. "To arrive" contracts solved grain shippers' anxieties 
by ending their uncertainty about future price changes, while also 
opening up new opportunities for speculators who were willing to 
absorb risk themselves. If one was willing to gamble on the direc- 
tion of future price movements, one could even contract to sell 
grain one didn't own, "selling short" so to speak. 

By the second half of the 1860s, there was a growing market in 
contracts for the future delivery of grain that perhaps did not even 
exist yet. This second market coexisted with the older, more famil- 
iar one that traded elevator receipts for grain actually present in 
tl-ie city. Futures contracts were interchangeable and could be 
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bought and sold independently of the movement in physical grain. 
Ac the historian Morton Rothstein has aptly stated, when viewed 
in the most cynical terms, the futures market was a place where 
"men who don't own something are selling that something to men 
who don't really want it.''32 The Chicago futures market was a 
market not in grain but in the price of grain. 

The speed with which futures trading surpassed cash trading at 
the Board of Trade was quite astonishing. In 1875, the Chicrzgo fiib- 
zrne estimated that the city's cash grain business amounted to 
about $200 million; the trade in futures, on the other hand, was ten 
times greater, with a volume of $2 billion.33 A decade later, the fu- 
tures market had grown to a point where its volume was probably 
fifteen to twenty times greater than the city's trade in physical 
grain. One trembles to even imagine what the scale difference 
might be today. The unpredictable behavior of stock arid futures 
markets are examined again in Chapter 7. 

In Summary, a location favorable for the expansion of trade was 
an essential factor in the rise of America's largest cities. Just as 
Pirenne observed about trade in medieval Europe, people engaged 
in other pursuits are drawn to locate in great trading centers to sup- 
ply the needs of the trading population or to take advantage of the 
facilities for trade that these centers offered. In the case of Chicago, 
positive feedback loops abounded. Access to an expanding hinter- 
land was merely one of a number of factors stimulating the city's 
explosive growth and change. Land speculation was the initial cata- 
lyst. Then came the railroads and improved communications. Fac- 
tories also multiplied rapidly. Ry reinforcing one another, these and 
other factors helped to bring about the boosters' self-fulfilling 
prophecies. This is the way an increasing returns economy works. 

In 1860, America's center of manufacturing-as defined by the 
U.S. census-was just east of Pittsburgh. Thereafter it began to 
move westward. By 1920, it was a little northwest of Columbus, 
Ohio; and by 1940, it was very close to Chicago. Yet the most unex- 
pected, trailblazing factor was the Chicago Board of Trade, con- 
ducting a market within a market: boxes within boxes within 
boxes, all mediating between the commodified world inside and 
the physical world outside. 

The message to be learned from Chicago's unbridled growth in 
the second half of the nineteenth century is that each city is a 
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comylex adaptive systenz. Its collective behavior cannot be predicted 
merely from our kriowledge of its population alone. The myriad of 
interactions are mind-boggling. New collective possibilities 
emerge unexpectedly. Who could have foreseen that the boosters' 
visions of a great city would have been so influential and 
prophetic? Who could have foreseen the emergence of the Chicago 
Board of Trade as such a powerful instrument of economic ex- 
change? Who could have foreseen the scale of the development of 
futures trading itself? As a complex adaptive system, the macrobe- 
havior of an urban system transcends all of its parts! Some collec- 
tive outcomes emerge only as aftermaths of the collective experi- 
ence. And so it was with Chicago. 

City-Size Distributions Obey Power Laws 

Great cities like Chicago never thrive in isolation. They feed con- 
tinuously on many other places. Cities interact with other towns 
and cities to form systems of settlement. They're but a small part of 
a complex network economy that synthesizes from the coevolu- 
tionary interactions between them. Such interactive urban systems 
are never static. They're constantly reorganizing themselves into a 
different order if we compare them purely on the basis of size. 

By 1890, Chicago had leapfrogged ahead of Philadelphia to be- 
come the second-largest metropolis in the United States. No other 
city in America had ever grown so large so quickly. At that time, 
there were only 3 cities with populations of more than 1 million. 
Below the top three were 25 cities with populations less than 1 mil- 
lion but more than 100,000. Another 326 cities had populations be- 
low 100,000 but above 10,000. Beneath them were the more than 
994 towns with fewer than 10,000 inhabitants, and the 6,490 vil- 
lages and rural areas with fewer than 2,500 people. 

Most economic geographers know what happens if kve plot this 
size distribution of settlements on double logaritlimic paper. Fig- 
ure 5.6 shows the resulting distribution. I've ranked the cities in 
descending order, beginning with the most populated and ending 
with the least populated. The downward-sloping curve is pretty 
close to a straight line. What this tells us is that the population dis- 
tribution of U.S. cities in 1890 conformed roughly to a rarik-size rille. 
This rule says that the population of a city is inversely proportional 
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FIGURE 5.6 Rank-size distribution of cities in the United States, 1890. 

to its rank. As we'll see shortly, a familiar principle is at work. 
You've probably guessed its identity already. It's yet another 
power law! 

In the 1940s, George Kingsley Zipf produced dozens of plots of 
this kind, finding the Same kind of regularity.34 Subsequent re- 
search by Brian Berry, a geographer at the University of Chicago, 
showed that such macroscopic order also holds for many systems 
of cities outside the United States.35 But not every nation conforms 
to the rule. Some countries display a primate pattern, meaning that 
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the first-ranking city may be much bigger than twice the size of the 
second-ranking city. For example, the French, English, and Argen- 
tinian distributions do not conform to the rank-size rule. Paris, 
London, and Buenos Aires dwarf their nearest neighbors in their 
respective distributions. Other nations, such as Australia, display 
"kinks" or horizontal segments, indicating that some top-ranking 
cities are closer in size to one another than the rank-size rule 
suggests. 

Obviously the rank-size rule doesn't hold perfectly. In fact it 
seems to work best in large countries with mostly self-sufficient 
economies, as measured by the ratio of their external trade to total 
trade. If this ratio is less than 10 percent, as it is for the United 
States and Russia, the rule fits well. It also works well in large 
countries with long urban traditions-like China and India. 

Comparative work suggests that deviations from the rule can of- 
ten be explained by two factors: (1) improper specification of the 
complete settlement system, or (2) different qualitative stages of de- 
velopment. For example, Portugal's distribution may conform to 
the rank-size rule once it's recognized that Lisbon heads a larger- 
than-national urban system.36 If Singapore and Malaysia are 
lumped together-as history demands-then their combined distri- 
bution conforms approximately to the rank-size rule.37 The primacy 
displayed by Japan's city-size distribution also disappears once 
Tokyo's chief rival is Seen to be the multicentered Kansai or Keihan- 
shin conurbation.38 These examples show that quite different re- 
sults can be achieved by taking cultural or political issues into ac- 
count. Once again, history matters in the world of morphogenesis. 

Austria is another interesting case. During the years of the 
Austro-Hungarian empire, Vienna and Budapest dominated the 
urban hierarchy. No rank-size rule prevailed then. Nor did it in the 
ensuing days of "Brave Little Austria." But after Austria was an- 
nexed to Germany and the Sudetenland in 1939, Zipf showed that 
their combined distribution roughly conformed to the rank-size 
rule.39 Perhaps the linguistic element should also be respected. In 
any event, a historical analysis of flows and interaction patterns 
between all candidate towns and cities is a more reliable way of 
defining a truly interactive system of cities. 

Since our primary interest is in dynamics, let's take a look at how 
well the rank-size rule has withstood the test of time. The United 

Networks, Boosters, arid Se'f-Organized Cities 

RANK 

FIGURE 5.7 Rank-size distribution of cities in the United States, 
1790-1990. 

States can serve as our first laboratory. Remarkably, the American 
rank-size relationship has been stable for a very long time. Despite 
tumultuous changes to its urban system during the past two cen- 
turies, Figure 5.7 confirms that the rule has applied continuously. 
Neighboring lines are almost straight and roughly parallel. What 
incredible stability! Overall growth is depicted by the gradual shift 
upward and to the right. A similar story can be found in Europe. 
There's a high degree of macrostability in the French urban system, 
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FIGURE 5.8 Rank-size distribution of French cities, 1831 and 1982. 

for example, despite the fact that the relative position of individual 
cities has varied considerably. This state of collective order is 
shown in Figure 5.8. 

What's the explanation for this remarkable stability over time? 
Could there be something like a universal law of city sizes? Very 
few economists or geographers have tried to answer this fascinat- 
ing question. Those that have usually argue that it reflects some 
kind of hierarchy of central places.40 After all, a power law distri- 
bution like the rank-size rule seems to be consistent with a simple 
hierarchy. Yet the hierarchical story relies on the constancy of some 
parameters that we can't really assume to be constant over time. 
Furthermore, central place theory is a static theory. How can a sta- 
tic theory possibly hope to explain something that results from a 
decidedly dynamic chain of events? 
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Brian Berry was perhaps the first to offer an explanation in terms 
that complexologists would applaud. He argued that as the eco- 
nomic, political, and social life of a country grows more complex, 
its city-size distribution evolves toward a rank-size pattern, be- 
cause this represents the steady state of the whole urban system.41 
In other words, economic development will move an immature 
system of cities closer and closer to a rank-size distribution over 
time. This suggests that there's a scale from primate distribution to 
rank-size distribution, which is somehow tied to the maturity and 
complexity of the interactive forces affecting a nation's urban 
structure. When few strong forces prevail, primacy results. When 
many strong forces prevail, the rank-size rule results. 

In view of what we learned earlier about complex adaptive sys- 
tems, perhaps we can be more explicit about the coevolutionary 
process involved. The rank-size distribution seems to be an attrac- 
tor in the phase space of all possible dynamics governing urban 
change. This suggests, but falls short of proving, that individual 
towns and cities may self-orgrrnize in such a way that they preserve 
this rank-size pattern over time. Indeed there's evidence to sup- 
port the idea that the rank-size pattern is an attractor.42 The 
macrostability of the American and French urban systems has Per- 
sisted despite the changing position of individual cities in each na- 
tion's urban hierarchy. There's no sign of proportionate growth in 
these systems. 

Can we visualize what such a rank-size attractor might look like? 
A possible metaphor is the upper canopy of a forest, containing 
trees of various heights and ages. As the different trees mature, the 
profile (or contour) of the canopy shifts upward over time, just like 
the rank-size distributions. But its shape never seems to alter, de- 
spite the fact that individual trees change markedly. Some grow 
quickly, others grow slowly; some die, others are born. Could it be 
that towns and cities in the U.S. system self-organize into a kind of 
equilibrium pattern like trees in a forest? If so, then it's a special 
kind of dynamic equilibrium. We might even think of it as a rank- 
size ecology. Although some cities grow and others decline, the 
overall ecology, or the profile of the aggregate city-size distribu- 
tion, doesn't change. 

Speaking of ecologies, the rank-size distribution looks like one of 
those emergent properties of a complex, socioeconomic system. It's 
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a higher-level "simplicity" that emerges from the interactive mix of 
individual cities and their coevolution. Such an unexpected result 
collapses the apparent chaos of a highly interactive system into a 
very simple rule. As we've stressed already, the urban hierarchy of 
the United States is not the only nation to exhibit this kind of 
macrostability. A similar order can be found in Asia. Indonesia, 
Japan, Malaysia-Singapore, South Korea, and Taiwan have more or 
less preserved their rank-size distributions over the past fifty 
years, despite many individual towns and cities "jumping rank" 
dramatically.43 

Perhaps the most important feature of the mysterious regularity 
inherent in the rank-size rule is that it's not unique to urban 
economies. I referred to the ubiquitous character of power laws in 
Chapter 1. The analogy with sandpile avalanches is a powerful 
one. Instead of plotting how many avalanches there are of each 
size, we might plot how many cities there are of each size. It would 
appear that power laws can arise in an urban context when three 
criteria are satisfied. First, the system of cities under scrutiny must 
be subject to substantial growth over time. Second, the growth rate 
of any individual city must be (viewed as) random, so that you get 
a diversity of sizes over time. Third, and most important, the ex- 
pected rate of city growth must be independent of scale. In other 
words, larger cities will grow (on average) neither faster nor 
slower than smaller ci ties. 

The rectilinearity of rank-size plots has been shown to rephrase 
an underlying scaling distribution.44 Zipf put forward the bold 
claim that scaling is the "norm" for all social phenomena. Mandel- 
brot's work has added weight to Zipf's claim. A special feature of 
all these coupled dissipative systems is that they evolve naturally 
toward a self-organized critical state. The rank-size condition may 
correspond to a state of self-organized criticality, where cities are 
formed by avalanches of human migration. In this critical state, 
there's plenty of communication between each and every part of 
the urban system. Even the most peripheral settlements communi- 
cate with the central cities. Just like a self-organizing sandpile. 

Remember how a sandpile reaches a critical state in which 
there's communication between the grains at the center and at the 
edge of the pile. Space scales suddenly jump from microscopic to 
macroscopic. A new organizing mechanism takes over, one that's 

Netzuorks, Boosters, and Self-Orgrznized Cities 169 

not confined to local interactions. In the case of an urban system, 
the emergence of this new order manifests itself in the form of a 
rank-size distribution, a stable macrostate in a heterogeneous and 
dynamic system of people and cities. The emergence of this stable 
state, with its unique rank-size property, could not be anticipated 
from the various properties of the individual cities involved. It's an 
emergerlt property. 

Zipf reasoned that the rank-size condition was a special kind of 
equilibrium state, balancing two opposing forces. Man's dual role 
as a producer and a consumer posed a profound conflict in the 
economy of his location.45 Two extreme outcomes could result. 
One course of action involved moving the people close to the 
sources of raw materials to save on transporting materials to the 
people. The effect of this economy, which he called the Forcr of 
Diversification, was to split the whole population into a large num- 
ber of small, widely scattered, autarkical communities, having vir- 
tually no communications or trade with one another. Sounds very 
much like medieval Europe's self-sufficient, agrariai-i economy, 
doesn't it? 

The other course of action, which he called the Forcr of Uizificri- 
tion, moves the materials to the population. All production and 
consumption would take place in one big city, where the entire 
population would live.46 In practice, of course, neither extreme oc- 
curs. Zipf argued that the actual location of the population de- 
pends on the comparative magnitudes of both forces in question, 
that is, on the extent to which persons are moved to materials and 
materials to persons in a given system of cities. One force makes 
for a larger number of communities of smaller size, and the other 
makes for a smaller number of communities of larger size, so the 
realized outcome must balance these forces, leading to a rank-size 
distribution of cities. 

What's fascinating about these opposing forces is that one pro- 
duces a simple, weakly interactive economy, but the other produces 
a colizplex economy that's strongly interactive. Putting all the popu- 
lation in just one city is certainly an extremely interactive soliition, 
bordering on the chaotic. We might even think of it as an economy 
that's too strongly interactive! Most nations' settlement systems lie 
between these two extremes. Developed economies are more 
strongly interactive, whereas many developing economies are only 
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weakly interactive. Some are dynamically stable, others are poten- 
tially unstable. 

The thing to note is that these two extreme conditions corre- 
spond to states that we've met before in earlier chapters. In our 
discussion of coevolutionary learning in Chapter 2, for example, 
we discussed how mental models get caught between two ex- 
tremes-the simple and the chaotic. Like our old friend, the sand- 
pile, they're poised to unleash an avalanche of small, medium, and 
large changes throughout an economic system of interacting 
agents. The result is that a coevolving economy gets driven away 
from the ordered regime toward the chaotic regime, but soon gets 
driven right back again. Order to chaos, then chaos to order, for- 
ever adaptive. Thus its most probable state is somewhere in be- 
tween. Near the edge of chaos, if you like. 

Since a relevant notion for the analysis of coevolving urban sys- 
tems is that of dynamic stability, the rank-size distribution corre- 
sponds to that special kind of dynamic equilibrium we met in 
Chapter 1: self-organized criticality. Rather than being a surprising 
result, this seems to be a favored outcome under conditions found 
in a mature, strongly interacting system of cities. A necessary, 
though hardly sufficient, condition for the survival of a system of 
cities is that the life cycle of the system be dynamically stable in a 
particular environment. To achieve this dynamic stability might re- 
quire a constant struggle between the forces of diversification and 
unification, much as Zipf suggested. Our tendencies to simplify 
and "complexify" are powerful forces that shape mucli of our be- 
havior, so it's very likely that they've shaped our residential land- 
scapes as well. 

Artificial Cities 
In this chapter, we've learned that some cities grow abruptly, 
whereas others can wither just as quickly. Yet groups of cities also 
form surprisingly regular structures collectively. Order springs 
from random growth, if you like. Urban theory and economics 
have largely failed in their quest to model and explain such out- 
comes. Recently, the multifractal dimension of rank-size distribu- 
tions has been established.47 For many urban analysts, however, 
the rank-size rule remains a quaint curiosity, and their understand- 

Networks, Boosters, and Self-Orgnnized Citics 171 

ing of how a city self-organizes over time is modest at best. This fi- 
nal section of our chapter on the urban economy surveys an excit- 
ing new means of exploring socioeconomic dynamics: agerzt-baseli 
simulatio~zs of evolvirzg urban processes. 

Simulation games that deal with urban problems have gained in 
popularity. The success of software packages such as Siirr City are 
proof of that. We'll restrict ourselves here to simulations using cel- 
lular automata (CA), because this breed of simulation boasts two 
advantages over other methods of urban analysis. First, a CA- 
based approach is explicitly dynamic. Second, it links macrobehav- 
ior to microdecisions. In Chapter 1, we stated that Schelling's 
chessboard model (the one that led to segregated neighborhoods) 
has some features of a two-dimensional CA. In the Same issue of 
the Journal of Matheniatical Sociology that published Schelling's fa- 
mous model, there's a lesser-known article by James Sakoda titled 
"The Checkerboard Model of Social Interaction." After describing 
a similar model to Schelling's, Sakoda stresses that the main pur- 
Pose of cell-based modeling is not a predictive one, but clarifica- 
tion of concepts and "insight into basic principles of behavior."48 
These are the insights that make CA and checkerboard modeling 
promising when it comes to deepening our primitive understand- 
ing of socioeconomic dynamics. 

A two-dimensional CA consists of the following: (1) a two- 
dimensional grid; (2) at each grid site, there's a cell, which is in one 
of a finite number of possible states; (3) time advances in iiiscrt~tr 
steps; (4) cells change their states according to local rules, so that 
the state of a cell in the next period depends upon the states of 
neighboring cells in past periods; (5) the transition rules are mostly 
deterministic, although nondeterministic rules are also possible; (6) 
the system is homogeneous in the sense that the set of possible states 
is the Same for each cell and the Same transition rule applies to 
each cell; and (7) the updating procedure usually consists of apply- 
ing the transition rule synctirorzozisly or selecting cells raridonlly.-i~ 

Although not as hard to solve as the Shortest Network Problem, 
the number of different transition states in a CA can quickly go 
through the roof. Consider a two-dimensional CA with just two 
possible cell states, a neighborhood of one cell and its four orthog- 
onally adjacent neighbors, and with only the last period having an 
influence on the next period. In such a seemingly simple case, the 



172 Networks, Boosters, and Self-Organized Cities 

TABLE 5.2 Similarities Between CAs and Socioeconomic Dynarnics 

Cellular Automata Socio-Economic Dynamics 

Basic elements Cells are the basic units 
or "atoms" of a CA 

Possible states Cells assume one of a 
Set of alternative states 

lnterdependence The state of a cell affects 
the state of  its closest 
neighbors 

Applications 
and tasks 

Modeling the emergence 
of  order, macro outcomes 
explained by micro rules, 
and the path dependence 
of dynamic processes 

Individual agents are the 
basic units of an economy 

Agents form mental models 
which enable thern to make 
choices from alternatives 
The choices made by an agent 
&ect the choices made by 
other agents 

Important tasks include: 
understanding the emergence 
of  order, macro to micro 
relationships, and economic 
dynamics 

number of different transition states is 232 = 4,294,967,296! No won- 
der we need a computer to implement a CA-based approach to 
simulation. The fortunate thing is that the kinds of problems tack- 
led successfully in some of the physical sciences using CA just hap- 
pen to be among the most urgent, unsolved problems in the social 
sciences. Economics is a case in point. Table 5.2 provides a compar- 
ative overview. 

Using the simplest CA, it's easy to show that complex global pat- 
terns can emerge from the application of local rules. Schelling's 
zones of Segregation are a perfect example of global emergence, 
and emergence is one of the things that makes CAs so intriguing. 
In a world where global outcomes fuse in subtle and diverse ways 
with local action, CAs look like a methodological paradigm for the 
twenty-first century.50 They're the source of, and inspiration for, 
major developments in complex adaptive systems. The promising 
new field of artificial life is one obvious example. What's becoming 
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apparent is that many classes of dynamics can be simulated 
through CA. 

Perhaps the greatest attraction of a CA-based approach to socio- 
economic dynamics is the equal weight given to the importance of 
space, time, and System attributes. When Sakoda and Schelling 
published their checkerboard articles, however, they didn't men- 
tion the CA concept. They seem to have been blissfully unaware of 
it. Yet it's clear that CA and socioeconomic dynamics have a great 
deal in common (as Table 5.2 shows). Checkerboard models also 
share some obvious features with CA, like grid structure and local 
neighborhoods. At the Same time, Sakoda's and Schelling's 
checkerboard models focus primarily on "sorting and mixing," 
that is, agents searching for and moving to attractive locations in 
space. Checkerboard models don't just concentrate on cells chang- 
ing their state at a given site (like CAs), but on changing their site 
as well. For urban simulations, this point is important. We must 
distinguish between models that allow individuals to move- 
lnigration models-and those that do not-strady site models.51 

Another important feature of urban work is the definition of 
neighborhoods. Two kinds are often adopted in two-dimensional 
CA: the von Nez~rrlallri neighborhood-with four neighboring cells 
north, south, east, and west of the cell in question-and the Moore 
neighborhood-with the Same four cells plus those that are NW, 
NE, SE, and SW. Neighbors that are more distant from the central 
cell may have an influence on state changes, but it's assumed in 
strict CA that the temporal dynamics will take care of these distant 
effects. In other words, growth and decline imply spatial diffusion. 
Fortunately, a halfway house exists, embracing some CA principles 
but also relaxing the neighborhood definition. These are the so- 
called cell-space (CS) models introduced by Albin.52 

Although many CA applications reported in the urban modeling 
literature relax the neighborhood effect to allow for action-at-a-dis- 
tance, this is beyond the spirit of strict CA. Perhaps the most im- 
portant challenge for urban simulation models is how to specify 
the nexus between urban changes at the physical and the human 
levels. The dynamic systems of interest are (1) the relatively slow 
developmental changes that take place across the complete net- 
works of infrastructure constructed in cities, and (2) the relatively 
rapid behavioral changes that agents can implement by altering 
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their own mental models and choices. One can argue that CA tran- 
sition rules should be based on agents' local behavior. However, 
real urban "cells" of infrastructure-like houses, roads, and green 
space-are more spatial in character and are governed by a 
broader set of coevolutionary forces. The real challenge is to ad- 
dress the tangible and intangible changes interdependently. 

Some recent studies have highlighted the self-organizing proper- 
ties of such urban models. For example, a simple heuristic CA 
model, called City, was developed to study sociospatial segrega- 
tion in a similar spirit to Schelling's work.53 City's territory is a 
two-dimensional Square lattice of cells, each of which may be re- 
garded as a house or a ylace. Individuals (persons, families, or 
households) occupy or leave various places, thereby generating 
the migration dynamics and sociospatial structure of the city. Resi- 
dents and place-hunters base their decisions on preferences about 
the types of individuals in neighboring places. Model results dis- 
play self-organization, local instabilities, captivity, and other inter- 
esting phenomena. Later versions-called City-1 and City-2- 
feature two levels: a population level composed of individuals 
with cultural and economic properties, and a housing-stock level 
consisting of a two-dimensional lattice of cells.54 

Another interesting multiagent-based model goes by the name 
of SIMPOP. Developed by a French group of social scientists, it 
aims to unearth a set of rules that transform systems of cities over 
time.55 SIMPOP experiments with the effects of various hypothe- 
Ses using a grid of hexagonal cells. Settlements are characterized 
by types of economic functions. The general evolutionary patterns 
that emerge from their work are consistent with the arguments put 
forward elsewhere in this book. For example, the universality of 
power laws and the rank-size rule is demonstrated under a variety 
of initial conditions. Their Simulation model also suggests that 
transitions between different urban regimes are a necessary char- 
acteristic of urban evolution. 

One of the advantages of agent-based simulation is an ability to 
generate simple and complex regimes of behavior. CA-based sys- 
tems simplify and complexify life in its various forms. Cities are a 
perfect illustration of this. Their cells switch suddenly from being 
weakly interactive to being strongly interactive. If the pendulum 
Swings too far too quickly, the collective outcomes can be counter- 
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productive. For example, transport networks provide the urban 
arena on which an ever-increasing volume of human interactions 
accumulate. As the density of traffic grows, various forms of con- 
gestion arise. A traffic system suffers from unexpected phase tran- 
sitions of the intimidating kind. In response to growing conges- 
tion, some innovative drivers search for novel ways to exploit 
these networks more efficiently. As their numbers grow, the result- 
ing temporal and spatial innovations may increase or decrease the 
network's throughput. This type of coevolutionary learning is an 
increasingly important architect of urban and economic evolution 
and is discussed more fully in the next chapter. 
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Traffic Near the 
Edge of Chaos 

A s f a r  as the lazus ofnrathenratics refrr to reality, they are not certaitz; aizd 11s 
far as they are certain, they do izot refer to reality. 

-Albert Einstein 

The Driver's Dilemma 

What is it about driving a car that brings out the animal instinct in 
many of us? Road rage is on the rise in many Western countries. 
There seems to be no end in sight to the frantic attempts of smart- 
aleck drivers to "beat the system" as a whole. It's amazing just 
how often we're confronted with Prisoner's Dilemma-like situa- 
tions, perhaps more so in traffic than in any other area of human 
activity. Most drivers are patient when caught in unexpected traffic 
jams. They choose to cooperate with other drivers. Nevertheless, 
there's always one or two impatient deviants who invariably 
choose to defect. When you're stuck in the correct lane of cars, 
waiting patiently to Cross a busy intersection or detour past some 
construction work, how do you feel about those smart alecks who 
Zoom by you on the inside lane and then butt in again at the very 
last moment? 

1s this "me-first" attitude a feature only of congested traffic? Per- 
haps it happens because traffic jams are one-time Prisoner's 
Dilemma-like situations? You won't meet the Same drivers again, 
so you may as well try to beat them if you can. Perhaps. But driv- 
ing on a congested highway also turns out to be no simple matter. 
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Out on the roads we're obliged to interact with many other drivers. 
In plenty of learning situations, we can choose our partners, those 
with whom wefd like to interact.1 But out on the roads, we have no 
such choice. What each driver does affects what other drivers do. 
How we drive depends on how others drive. We're at the mercy of 
those who just happen to be using that Same piece of roadway at 
the Same time. There's no way of knowing in advance who we'll 
meet, least of all what they're thinking. To many drivers, this can 
be disconcerting, even annoying. When the going gets tough, sud- 
denly our primitive instincts can get the better of us. Some of us 
think to ourselves, "I can outsmart these dummies." 

Traffic jams are endemic. Some even say that the best efficiency 
measure of a modern metropolis and its economy is the size of its 
traffic jams. Here are a few examyles. Bangkok, once famous for its 
canals, is now renowned for its all-day jams on Sukhumvit Road. 
Sao Paolo's merciless delays are almost as horrifying as those in 
Mexico City. In the latter, the Periferico functions more like a park- 
ing lot for much of the day. On an average working day in 1996, the 
Netherlands had fifty motorway holdups at least two kilometers 
long.2 The permanent congestion on Silicon Valley's two main free- 
ways must be the greatest threat to its continued prosperity. Many 
of America's fastest growing urban areas are losing their attraction 
because efficient commuting has become virtually impossible. The 
common "attractor" is that ultimate equilibrium point-the perfect 
standstill! 

We can't even guess our likely travel time on many urban free- 
ways. Why? Because we're at the mercy of an unknown variable- 
the traffic's behavior as a whole. We simply don't know how it will 
behave collectively. Uncertainty breeds anxiety and too much anxi- 
ety can cause accidents. For starters, few motorists realize that 
driving a car is the most dangerous activity that humanity has de- 
vised. The Global Burden of Disease Study, a four-year collabora- 
tion of the World Bank and the World Health Organization, has 
predicted that heart disease and road accidents will soon become 
the world's leading causes of death and disability. All of us should 
feel extremely nervous about driving. But many drivers don't feel 
concerned at all. For them driving is simply a game, and a compet- 
itive one at that in which macho thinking prevails. 
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The truth is that large urban transportation networks are no dif- 
ferent from many other yhenomena discussed in this book. They're 
complex adaptive systems. Drivers can get trapped in a kind of E1 
Farol world, a world that's hard to comprehend. More problemati- 
cal is the fact that these systems can be devilishly difficult to man- 
age efficiently. Due to their complexity, traffic innovations can pro- 
duce counterintuitive results. Highly favored methods to alleviate 
congestion can have unexpected consequences, producing out- 
Comes quite the opposite to their intention. Imagine the potential 
headaches for traffic planners. A perplexing culprit is the addition 
of a new link between two existing nodes on a congested network. 
Diabolically, such a simple change can lead to a reduced overall ef- 
ficiency and make everyone worse off. This doesn't always hap- 
pen, thank goodness. But it clzn happen. 

Herefs an example of how it can happen. It's also a quick intro- 
duction to some of the basic tools of the traffic planner's world. 
Take a look at Figure 6.1. Imagine that a bunch of drivers are trying 
to get from point A to point D within the city. There are two ways 
of doing this, which traffic planners call routes. Traffic can choose 
the northern route (the path ABD), using the road links labeled AB 
and BD, or take the southern route (the path ACD), involving the 
links labeled AC and CD. From our traffic studies, we know that 
about 360 vehicles want to traverse this network every minute dur- 
ing the morning peak hour. 

Before anyone can estimate how many vehicles might opt for 
each route, they need to know how efficiently each link performs 
as the traffic flow changes. To solve this, traffic planners have de- 
vised what they call "link performance functions." Wefll just call 
them LPFs. Each LPF reflects the fact that the performance level of 
a link is a function of its usage. Due to congestion, the travel time 
along roads and across intersections is an increasing function of 
flow. An LPF is simply an attempt to relate the travel time on each 
link to the flow of traffic traversing that link. Let's take a quick look 
at a few typical LPFs to get a feel for their characteristics. 

For each of the functions shown in Figure 6.2, the travel time at 
Zero flow is the time shown on the vertical axis labeled t. Traffic 
planners call it the free-flow travel time. If therefs no traffic on a 
link, obviously there's no delay to you. So you can travel along that 
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FIGURE 6.1 The initial network: Drivers 
choose the northern route (ABD) or the 
southern route (ACD). 

link unaffected by other vehicles. Like a leaf floating freely down a 
stream, the link is said to be free-flowing. There are no obstacles 
impeding the flow. As the flow of vehicles increases, however, ve- 
hicles start to be affected by their closeness to other vehicles. Vari- 
ous degrees of congestion develop depending on the number and 
size of the collective population of vehicles. Intersections develop 
queues and travel times increase. Therels an upper limit to the link 
flow, of Course, just like therels an upper limit to the flow of water 
through a pipe. This is called its flow capacity. The basic idea in 
traffic planning is that each link's performance function is asynip- 
totic to its flow capacity. 

Traffic planners, engineers, and economists spend countless 
hours trying to devise the right combination of one-way streets, 
left-turn lanes, traffic light configurations, freeway interchanges, 
parking fees and conditions, road pricing, and the like to reduce 
the frequency and severity of congestion. Economists have played 
a major role in studies of congestion. For example, more than 
twenty-five years ago, a Nobel laureate in economics, William 
Vickrey, distinguished six types of congestion in traffic situations.3 
For traffic volumes ranging from half to almost full capacity, Vick- 
rey suggested that link performance functions can be treated as 
polynomial functions in X, where X is the link flow. As we stated in 
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the previous chapter, a polynomial function takes the following 
form: 

where, in this case, t is the travel time (expressed in seconds) iinder 
actual driving conditions, t, is the free-flow travel time, and a and k 
are constants. The straight line shown in Figure 6.2 is a linear func- 
tion, that is, k = 1. The two curved lines are quadratic functions, 
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FIGURE 6.2 A sample of typical link performance functions. 
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that is, k = 2. In our four-link network shown in Figure 6.1, the 
links yerform according to the linear functions written on the re- 
spective arrows forming the network. 

Now we have enough data to tackle what traffic planners call the 
assignment problem. This means estimating the flows and travel 
times on the four links. The only thing we don't know is the deci- 
sion rule-or mental model-that motorists use to choose between 
the two routes. I-Iow would you decide? Surveys have shown that 
most of us choose the route that we believe will minimize our own 
travel time between A and D. If everyone opted for this approach 
cunsistently, the traffic would redistribute itself until it converged 
on a stable pattern. Drivers would switch from one route to an- 
other until they found what they believed to be the best routes for 
their purposes. Sooner or later, a stable equilibrium assignment is 
reached, where no driver could improve his travel time any further 
by unilaterally changing routes. In traffic parlance, the name for 
this stable attractor is the user-equilibrium (UE) condition. 

Note that our initial network (Figure 6.1) features travel symme- 
try ii-i terms of LPFs. The links AB and CD have identical LPFs, as 
do links AC and BD. This means that we can find the User equilib- 
rium flow pattern by simple inspection. Obviously, half the vehi- 
cles would be assigned to each route. Every second, three vehicles 
would take the route ABD and another three would take the route 
ACD. All link flows would be three vehicles per second and link 
travel times would be t„ = tm = 30 seconds and t„ = tBD = 53 sec- 
onds. Irrespective of whether a driver chooses the northern or 
southern route, the time taken to get from A to D would be 83 
seconds. 

Now let's See what happens if the local transport authority de- 
cides to expand the network in an effort to improve flows, reduce 
peak-hour delays, and save on fuel costs and pollution. Suppose 
that an extra link is built from B to C. Drivers at B See the empty 
road to C. Many of them ought to relish the prospect of reaching 
their destination more quickly by taking this new route. Figure 6.3 
shows the new link BC, the flow on which is governed by a linear 
LPF of 6x. 

Drivers now have three alternative ways of getting from A to D. 
Clearly, the old UE flow pattern no longer applies to this new net- 
work. Once again, however, we can calculate the new equilibrium 
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B 

FIGURE 6.3 The expanded network: Drivers 
now choose among the northern, southern, and 
central routes. 

pattern rather easily. New UE link flows turn out to be four vehi- 
cles per second on links AB and CD and two vehicles per second 
on links AC, BD, and BC. Associated travel times are t„ = t„ = 40 
seconds, t„ = tDD = 52 seconds, and tBc = 12 seconds. Regardless of 
whether route ABD, ACD, or ABCD is chosen, route travel time is 
now 92 seconds. 

Paradoxically, the time taken by each driver has increased from 
83 to 92 seconds! A link designed to ease congestion seems to have 
worsened the situation. What a planning disaster! Politicians have 
been thrown out of office for oversights far less serious than this! 
Traffic analysts have a name for this perplexing class of problem. 
It's known as Braess's Paradox.4 How could it happen? For an ex- 
planation, we'll turn again to our old friend, the Prisoner's 
Dilemma. 

In Whose Best Interests? 

In our discussion of the Prisoner's Dilemma, remember how the 
safest individual strategy was to defect-provided that you 
weren't planning to trade repeatedly into the future. If you 
planned to trade on one occasion only, cooperation could you 
leave you upset, whereas defection risked only indifference. So 
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you chose the Nash solution, despite the fact that your best joint 
strategy in payoff terms would have been to cooperate. The disap- 
pointing thing was that opting for the Nash equilibrium solution 
resulted in Zero payoff to both of you. 

As you've probably guessed already, a user equilibrium assign- 
ment of traffic turns out to be a Nash equilibrium. It's a strategy 
that most yeople pursue, because it serves individual interests 
best. But it's definitely not to the collective advantage of the net- 
work as a whole. Just like the conflict in the Prisoner's Dilemma, 
there's a conflict in congested traffic between the individual driv- 
er's optimal plans and the travel plans that yield the maximum 
throughput overall. This latter flow pattern is called the system op- 
timum (S0).5 The SO is the (imaginary) flow pattern that would re- 
sult if one powerful, coordinating agent could arrange the flows in 
such a way that the total system cost was minimized. 

A counterintuitive result like Braess's Paradox arises because 
these two flow patterns-the UE and the SO-rarely coincide. 
Oddly enough, it's not just a Prisoner's Dilemma situation. It also 
resembles the conflict arising between network configurations that 
we discussed in the yrevious chapter. Being the most convenient 
network from the perspective of individual Users, the utility- 
maximizing network corresponds to a UE solution. It's a rational 
expectations equilibrium. On the other hand, the cost-minimizing 
Steiner solution falls at the other end of the full spectrum of ways 
of linking up nodes in a network. Being best for the system as a 
whole, the Steiner solution is a system optimum pattern. 

Whenever a change is made to a road network, there's no guar- 
antee that the traffic will reorganize itself in such a way that it ren- 
ders an overall savings in travel time and travel cost. The greater 
the divergence between the UE and the SO, the greater the risk of a 
paradoxical outcome. Obviously there's no problem on an uncon- 
gested network, because drivers can happily choose their best 
route without any concern for other drivers. Such a traffic pattern 
is weakly interactive. But as the flow density of traffic increases, 
the two flow patterns begin to diverge more widely. Denser flows 
mean that cohorts of vehicles become more strongly interactive. 
The i~ievitable result is that some links reach a traffic volume that is 
nearer to their capacity, while others remain less congested. 

To See this more clearly, consider the simple network shown in 
Figure 6.4. It features one origin-destination pair AD, connected by 
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FIGURE 6.4 A two-link network equilibrium problem in which the 
User equilibrium is not a system optimum. 

two links. The southern link (number 1) is a single-lane roadway 
and the northern link (number 2) is a two-lane freeway. Hypotheti- 
cal LPFs for these two links are shown in the figure. If the total AD 
flow is F, the UE solution will be as shown in the figure ( f ,  = F 
and f2 = 0). At this flow level, no driver will use the freeway. The 
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derivative of t, with respect to f, at f, = F is positive, and this dis- 
courages freeway use. Note, however, that if one vehicle were to 
shift from link 1 to link 2 every minute, the increased travel time 
that these freeway users would incur could be less than the total 
travel time saved by the remaining drivers on link 1. Thus the solu- 
tion that is optimal from an individual driver's viewpoint is not 
likely to be a system optimum. 

The SO solution may include some drivers using the freeway as 
well. lf one driver shifts from link 1 to link 2 (at the UE flow pat- 
tern shown in the figure), his travel time would increase from t,(F) 
to t,(O). The travel time experienced by each of the remaining driv- 
ers on link 1 would fall, however, by the following derivative: 
dt,(F) /df,. From the overall perspective, one shifting driver's in- 
crease in travel time may be more than offset by the decreased 
travel time enjoyed by all the others using link 1. 

Failure to recognize this fundamental difference between what's 
best for the system as a whole and whatfs best for each individual 
leads to counterintuitive Scenarios like Braess's Paradox. The very 
existence of this paradox depends on the assumption of indepen- 
dent optimality underpinning a UE. Because each driver's choice 
is carried out without consideration of the effect of this action on 
other drivers, there's no reason to expect that the addition of a new 
link will always decrease total travel time. 

Transportation scientists have derived formulae to tell us whether 
Braess's Paradox can occur in a given network.6 Furthermore, econ- 
omists have shown that such paradoxical outcomes can be avoided, 
and overall optimality retrieved, by modifying the costs incurred by 
some of the drivers. By levying a flow-dependent congestion fee on 
each driver using a particular route on the network, for example, 
the traffic flow pattern that results from choosing cost-minimizing 
routes could be made to return to a system optimum.7 

But a fundamental question remains to be answered. Can we re- 
alistically expect a user equilibrium to be stable, even reachable, in 
practice? Or is Braess's Paradox symptomatic of the uncertainties 
associated with network connectivity, link congestability, and 
drivers' travel choice behavior? The current desire to implement 
automated route guidance systems, or management controls like 
congestion pricing, highlights a need to resolve some of the uncer- 
tainties about drivers' behavior. How do drivers respond in situa- 
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tions where their own behavior is also dependent on the behavior 
of otl-iers? Do variations in travel time cause them to alter their de- 
cision rules? What are the behavioral impacts of implementing 
route guidance systems or congestion pricing? 

Sheep, Explorers, and Bounded Rationality 

Granting each economic agent the ability to recognize his optimal 
mode of travel is a reasonable assumption in a modern city. We 
might call this the knozu-hozu of travel. But if we add to this the fore- 
sight needed to recognize his fastest route and optimal times of de- 
parture, all in such a way that his travel time cannot be improved 
by altering his original decisions, it's difficult to believe that each 
and every agent has the ability to klzow-zuhether his choices are opti- 
mal. Furthermore, the UE solution demands that drivers make 
choices in an identical and correct manner every time, having ac- 
cess to full information. This means that they must knolu-zohnt the 
travel time is on every alternative route. To manage all this, com- 
muters must be as clever as deductively rational economists. They 
must possess perfect knozu-wnre. 

Once again, these are unrealistic assumptions. Recognizing that 
perfect foresight may not hold in reality, some transport analysts 
have relaxed these restrictions by distinguishing between the 
travel time that commuters perceive and the ilctlinl travel time.8 The 
perceived travel time may be looked upon as a random variable 
distributed across the population of drivers. The idea is that equi- 
librium will be reached when no traveler believes that his travel 
time can be improved by unilaterally changing routes. Known as a 
stochastic user equilibriurn (or SUE), this approach takes one step 
in a fruitful direction: It recognizes that drivers possess incomplete 
information about the state of the traffic system as a whole.9 

But the uncertainty lingers. What are the chances of actual traffic 
distributions ever achieving these kinds of equilibria? Rather slim 
if we take a look at the evidence. Recent research has shown that 
the collective behavior of drivers on a congested network rarely, if 
ever, reaches such equilibrium states.10 This is hardly surprising 
once we're reminded that such equilibria are merely fixed-point at- 
tractors in a much ricl-ier space of conditional distributions that 
commuters and vehicles can form collectively.1~ 
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Not only is each individual commuter's rationality bounded by 
the fact that he has limited information at his disposal, but the 
problem itself is inherently complicated. Even if a driver turns out 
to be an excellent optimizer of his own actions, he has no idea how 
the other drivers will behave. Even if they could optimize their be- 
havior as well, the chances of this happening simultaneously are 
remote. On a dense, sophisticated network, where the choice 
process is complicated, one is likely to find only a handful of driv- 
ers who k~zozu that they've done the best they can, some who believe 
that they've done the best thing, and others who have 1.10 idea if 
they've chosen well. 

Because each driver's beliefs are personal and the learning 
process is evolving at different rates, it's also unclear how the traf- 
fic system will behave collectively. This forces all drivers into a 
world of subjective beliefs, and subjective beliefs about subjective 
beliefs. Objective, well-defined, shared expectations-the ones that 
are needed to reach a predictable user equilibria-simply cease to 
apply. On a congested city network, traffic dynamics is the collec- 
tive result of thousands, even millions, of individual trip-making 
decisions by a heterogeneous population of drivers. Think of how 
expectations differ between producers, shippers, consumers, vaca- 
tioners, and others. At peak-hour conditions on these networks, all 
drivers face route and departure time choices that are complicated 
and ill defined. Outcomes are unpredictable since guesswork is the 
order of the day! 

How might drivers come to terms with such a disconcerting situ- 
ation? As we learned in Chapter 2, modern psychology suggests 
that wefre pretty good at recognizing or matching patterns.12 For 
example, in traffic situations that are unpredictable, some of us 
look ahead for early signs of congestion or keep our other route 
options Open for as long as possible. We develop explanatory pat- 
terns of behavior that, once recognized, help us to simplify the 
problem. These patterns help us to build temporary mental models 
of a similar kind to those we outlined when discussing the E1 Farol 
bar problem and London's Underground. Once we have such 
models in our minds, we carry out localized deductions based on 
our favored hypotl-ieses and then act on them.13 

As we stressed earlier, this process is coevolutionary. Feedback 
from our traffic experiences may strengthen or weaken our confi- 
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dence in our current beliefs. Thus some of our models get discarded 
if they fail to live up to our expectations, being replaced with new 
ones as needed. In other words, whenever we can't fully under- 
stand how the traffic is likely to behave and can't be Sure about the 
best strategy to employ, we tend to "paper over" the gaps in our un- 
derstanding. In the words of Tom Sargent, we act like "economic 
statisticians," testing and discarding simple expectational models to 
fill these gaps in our knowledge.14 As logic, such behavior is induc- 
tive. lnductive reasoning goes from a part to a whole, from the par- 
ticular to the general, or from the local to the universal. 

Can we find any evidence of this kind of adaptive learning 
among drivers on busy highways? We certainly can. In a classic pa- 
per discussing the causes of congestion, which we referred to in 
Chapter 3, Anthony Downs recognized two behavioral classes of 
driver: those with a very low propensity to charige routes, called 
sheep, and those with a much higher propensity to change, called 
explorers.15 Explorers tend to be imaginative, highly strung, aggres- 
sive drivers who constantly search for alternative options that may 
save them some time. They're quick to learn and may hold several 
beliefs in mind simultaneously. Sheep are more placid, patient, and 
prone to choosing the same option.16 They tend to follow the 
leader and mostly cling to a particular belief because it has worked 
well in the past. Sheep are slow learners who must accumulate a 
record of failure before discarding their favored option(s). 

Some recent empirical work in North America has confirmed the 
presence of sheep and explorer behavior in actual traffic. Using 
cluster analysis, scientists at the University of Washington in Seat- 
tle identified four groups among a sample of 4,000 drivers 
surveyed.17 They labeled them non-changers, route changers, 
route-and-time changers, and pre-trip changers, based on their be- 
havioral responses to traffic. Non-changers (or Downs's sheep) 
made up about one-quarter of the sample and were unwilling to 
modify any part of their commuting behavior (i.e., departure time, 
route, or mode of transportation), no matter how much traffic in- 
formation they received. By way of contrast, route-and-time 
changers were eager to try different strategies in order to reduce 
their travel time. 

An important element of inductive behavior is a willingness to 
adjust beliefs and expectations if theyfre found wanting. Here the 
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role of prior experience is important. Drivers tend to form their 
own subjective expectations about traffic conditions based on pat- 
tern recognition arid repeated learning. Expectations are condi- 
tioned by available information and updated by observed travel 
times, as long as there's sufficient need to revise them. Like 
Downs, the Japanese systems scientist Kiyosl-ii Kobayashi has clas- 
sified drivers into two groups based on their propensity for risk: 
the risk-averters and the risk-neutral.18 

Given the heterogeneity of mental models and learning rates 
among drivers (e.g., sheep and explorers), we might expect the col- 
lective behavior of traffic on a freeway network to fluctuate be- 
tween various states. However, some fluctuations are psychologi- 
cal, whereas others are purely physical. Before we look into more 
cerebral examples of how drivers form and adjust their beliefs 
about traffic behavior, the next section looks into some CA-based 
methods that can help us to better understand those physical 
phase transitions that trigger such psychological reactions at the 
individual level. 

Cellular Congestion 

Like the number of music lovers heading for the E1 Farol bar on 
Thursday evenings, the flow volume on an urban freeway is totally 
unpredictable from day to day. In the long run, however, we do  
know that traffic volumes are expanding. Whenever this growing 
driver population pushes the flow of traffic on specific links be- 
yond critical levels, it triggers unexpected phase transitions, 
heralding a qualitatively different flow pattern. Recent simulation 
work, using three-state CA models on a Square lattice, has shown 
that the average speed of the traffic drops rapidly once a critical 
density has been reached.19 Figure 6.5 depicts the simulated drop 
in mean speed. There's a dynamic jamming transition from free 
flow travel to start-stop waves at a critical flow density. Anyone 
who has been caught up in a traffic jam can vouch for the abrupt- 
ness of some of these transitions. 

Because this kind of phase change transforms a traffic pattern 
with no global communication (all cars can move independently at 
maximum speed) to one with a global cluster (all cars are more or 
less stuck in a global traffic jam), it also resembles a percolation 
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FIGURE 6.5 Average velocity (V) a s  a function of traffic 
density (p) on five cellular grids of different sizes. 

transi tion.20 However, work in percolation theory suggests tha t i t's 
a second-order transition and has no dynamics. The jamming tran- 
sition can more fruitfully be interpreted as the attainment of self- 
organized criticality. Note how the transition becomes much 
sharper as the size of the cellular grid increases. The remarkable 
thing is that, in some cases, this jamming transition occurs at a crit- 
ical density as low as 10 percent of the systemfs maximum density! 
Itfs now widely agreed that this kind of transition is a general fea- 
ture of traffic flow in two dimensions. 

Spontaneous formation of the initial jam may be caused by noth- 
ing more than one car accidently coming too close to the one ahead 
of it. Although this depends only on the density of cars, it also has 
wider spatial implications. It means that many other cars must 
slow down because of the first jam. The results are back-traveling 
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disturbances among the cars. Travel times increase significantly, pacity where traffic systems are sensitive to small perturbations. 

even though the congestion seems relatively light at first. This is Travel time predictability can decrease rapidly if the system is 

the deceptive part of jamming transitions. They tend to "creep up" pushed too close to this regime of maximum flow. 

on the unsuspecting driver. Local interactions can quickly add up CA-based simulations such as these highlight a problem with 

to such an extent that they have global repercussions! traditional link performance functions like Vickrey's polynomial 

Before the onset of this jamming transition, the free-flowing function. Such a function implies that the behavior of traffic under 

travel time is approximately constant and variations from vehicle increasingly congested conditions will be smooth and reasonably 

to vehicle are small. Figure 6.6 shows how the fluctuations in travel predictable just short of fiill capacity. A growing band of CA-based 

time from vehicle to vehicle go up very quickly at the onset of the simiilations suggest that this picture of traffic congestion is incor- 

jamming transition, reaching a peak near the point of critical den- rect. Even Nobel laureates get it wrong sometimes! In a manner 

sity. This emergent phenomenon is quite striking. When passing akin to fluid dynamics, changes in traffic flow behavior can be 

from a weakly interactive, free-flowing state-slightly below the much more abrupt and unpredictable. 
critical density-to a strongly interactive one featuring stop-start In reality, revealing nonlinear phase transitions in traffic has not 
waves, the traffic can typically change from a regime where the been the exclusive province of CA-based simulation. Fluid-dynam- 
travel time is highly predictable-with an error rate of no more ical approaches to traffic flow were introduced in the 1950s. In the 
than +3 percent-to a regime where the error rate climbs to 65 per- past two decades, methods of nonlinear dynamics were success- 
cent or more.21 This unpredictable state is the hallmark of traffic fully applied to these models, stressing the notion of a phase tran- 

near "the edge of chaos." ThereJs a critical regime near maximal ca- sition from laminar flow to stop-start waves with increasing car 
density. The kinetic theory of vehicular traffic, developed in the 
late 1960s by Ilya Progogine and Robert Herman, recognized that 
congested traffic can exhibit self-organizing properties.22 They 

0.7 found a traffic regime in which drivers could, to some extent, act 
independently to achieve their microgoals and another collective 

0.6 regime in which the behavior of the traffic no longer depended on 

2 the desired speeds of the individual drivers. In short, their work 
.i: 0.5 
0, 

suggested a phase transition between a simple and a complex traf- 

3, fic regime-predating the simulated traffic jams that CA models 
b 0.4 
* 
In As I mentioned in the previous chapter, there are two important 
0 0.3 
.H 
V 

advantages of the CA way of doing science. CA models are intrin- 
m .- sically dynamic and readily applicable to spatial problems. For 2 0.2 problems involving complex geometries, such as simulations of 

0.1 
fluid dynamics in porous media, CA approaches have proved to be 
superior to other methods.23 Given the similarity of traffic flow be- 
havior to patterns observed in fluid dynamics, one can See potei-i- 

'0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 tial advantages for CA models in traffic studies. On the one hand, 
density he traffic can be reduced to elemental (and cellular) forms. On the 

FIGURE 6.6 Travel time variations as a function of simulated traffic ther hand, all the essential relational features of the individual el- 

density. emei-its can be incorporated in detail. 
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A bottom-up approach to the microsimulation of drivers and ve- 
hicles needs to start at the level where transport decisions are 
made. Starting with the generation of travel demands and trip de- 
cisions, followed by mode and route choices, such a silicon world 
would geiierate congestion frequencies, travel times, and levels of 
air quality. You might be wondering whether this kind of experi- 
mental laboratory for studying traffic behavior could be imple- 
mented for a complete city? Sounds like a mammoth task that's 
probably beyond our reach. Certainly it's beyond the reach of most 
scientific organizations. But it's not out of the question for the Los 
Alamos National Laboratory. In 1991, Los Alamos researcher Chris 
Barrett had the bright idea that the state of computer technology 
would make it feasible to build an electronic replica of a city like 
Albuquerque, complete with each and every little detail: each indi- 
vidual street, house, car, and driver. Fortunately for Barrett, some 
potential sponsors at the U.S. Department of Transportation and 
the Environmental Protection Agency chose to agree with him. 
Tliey provided the funding to develop such a silicon city and to ad- 
dress issues resulting from the Intermodal Surface Transportation 
and Efficiency Act of 1991. 

The microsimulation project underpinning the silicon city de- 
veloped by Barrett and his group at Los Alamos is called 
TRANSIMS.24 An early version consists of four basic modules: 
(1) Travel Demand and Transport System Data; (2) Trip Route 
Plan Generation; (3) Traffic Microsimulation; and (4) Environ- 
mental Simulation. Once all the travelers and their plans have 
been sprinkled onto the network, the two simulation modules gen- 
erate collective outcomes for travelers and vehicle emissions, fac- 
toring in things like local congestion and accidents. It's important 
to note that these four modules represent processes occurring on 
different time scales, altliough they always reference individual 
travelers. 

TRANSIMS also includes the investigation of simpler and com- 
putationally less demanding traffic simulations on individual road 
segments, such as the CA model that produced the travel time 
variations shown in Figure 6.6. Such emergent outputs are not ex- 
plicitly represented at the level of the individual vehicles but are 
generated through the collective dynamics. They teach us that traf- 
fic systems that operate close to the point of maximum efficiency, 
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where variations in travel time are highest, are another example of 
self-organized criticality. 

Coevolutionary Learning in Congested Traffic 

Now let's see how drivers react to the experience of driving near the 
edge of chaos. To explore this, welll return to the simple network in- 
troduced in Figure 6.4. Every weekday evening, suppose that a 
bunch of drivers commute home from a common point downtown 
to a common suburb using the same single-lane roadway.25 All driv- 
ers have a common knockoff time, and all possess identically ratio- 
nal expectations. They share a common view that their travel time 
should be not exceed a certain value-which we'll call tniaA. Barring 
any unforeseen circumstances, all are able to achieve it. Although 
they're forced to slow down at a few points along the way, the route 
is mostly free-flowing. There's general agreement that the system as 
a whole must be close to a User equilibrium. In other words, it has 
stabilized near the point UE in the figure. 

As long as drivers' expectations continue to be reinforced by the 
travel times they experience, there's no reason for any deviating 
expectations to arise. The rational expectations equilibrium of the 
literature is evolutionarily stable. Nobody has an incentive to de- 
stroy it. Thus variations in travel time between vehicles remain 
low. 

Under these conditions, drivers are happy and the Road Traffic 
Authority enjoys a period of unprecedented popularity. Gradually, 
however, a few drivers begin to suspect that their average travel time 
is increasing. The slowdown is barely noticeable at first, because a 
number of familiar seasonal and monthly fluctuations in flow pat- 
terns have clouded the overall trend. But eventually the mist clears. 
It's soon evident that some of the unexpectecl delays are longer than 
before. With no viable alternative route in sight, one or two more 
imaginative drivers consider delaying their time of departure for 
home by twenty or thirty minutes. Owing to family reticence, how- 
ever, they opt to postpone their decision for a week or two. 

Then, on the following Monday, there's another frustrating traf- 
fic jam for no apparent reason. A few jams have occurred previ- 
ously, but the frequency and duration of stop-start waves on this 
occasion is disturbing. Gradually, seeds of uncertainty are ylantecl 
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in the minds of a few more drivers. This small group begins to 
ponder alternative strategies for the future. 

What really caused this unwelcome jam? The answer is three rel- 
atively slow processes. Population levels, mobility, and car owner- 
ship are increasing gradually in most societies. Mobility in many 
advanced nations has grown by an average of 3-5 percent per year 
throughout this century. When combined with population in- 
creases and growing levels of car ownership, a typical urban popu- 
lation of drivers tends to expand at 5-8 percent per year. This 
causes higher flow levels on most major highways, pushing travel 
times up. In peak periods, travel times begin to exceed the desir- 
able level, tmax, more frequently. 

Now let's look at how drivers' mental models of traffic behavior 
might be affected by repeated exposure to this kind of jamming ex- 
perience. Prior to any experience of jams, each driver expects his 
travel time to be more or less constant; certainly not more than tmax. 
The driver population can be thought of as homogeneous, because 
expectations are shared and fulfilled. Order prevails on the net- 
work. This means that all the drivers can base their daily decisions 
on the Same hypothesis: 

Hypothesis Cl: "I expect tomorrow's travel time tobe much the Same 
as yesterday's and certainly less than tmax.lr 

This is each driverfs active hypothesis. As long as this hypothesis 
proves to be correct, there's no reason for any driver to reason dif- 
ferently. They can all marvel at their foresightedness. Each time the 
predictability of travel time is shattered by a jamming transition, 
however, a small group of drivers loses a little confidence in the ac- 
curacy of Hypothesis SI. As more drivers realize that their "com- 
fort zone" of travel time has been breached and that they might 
need to consider other options in the near future, there's an incen- 
tive to expand their own set of working hypotheses. It turns out 
that the most popular new hypothesis is 

Hypothesis E l :  "I believe that my average travel time could be re- 
duced if I leave work twenty to thirty minutes later."26 

This hypothesis not only focuses attention on possible im- 
provements at the margin but also acknowledges that day-to-day 
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variations in travel time are to be expected. It's a temporal innova- 
tion, because travel time can be improved without altering the 
choice of mode or route. In terms of Downs's behavioral classifica- 
tion, it's the strategy of an explorer. We'll refer to it as Hypothesis 
El. As the frequency of traffic jams rises and the suspicion of 
longer average travel times increases, a growing subgroup of 
explorers begins to keep Hypothesis E1 in mind, in addition to 
Hypothesis SI. 

Eventually, travel time uncertainty and the frequency of jam- 
ming transitions become sufficiently disturbing to a growing niim- 
ber of drivers. This group of explorers chooses to delay their de- 
parture time in an attempt to avoid the peak-period congestion. 
After the incidence of a few more frustrating jams, there are suf- 
ficient explorers departing later to allow a description of their 
evolution by a rate equation of their own. We can now describe 
the behavior of the peak-hour traffic System using two rate 
equations-one for the sheep, who do not defect, and one for those 
explorers who do. 

To simplify matters, we'll omit the equations thernselves.27 As- 
suming that expectations are mutually reinforcing, the population 
of explorers will grow to a finite share of the driver population (re- 
stricted only by psychological or external constraints). What will 
happen to the population of sheep? The emergence of a stable pop- 
ulation of (late-returning) explorers leads to an improvement in 
the effective use of the network. Extending the window of com- 
muter time allows for more drivers. Nevertheless, the population 
of sheep will remain close to the edge of chaos. 

The relief provided by the defecting explorers is temporary at 
best. As the driver population continues to grow, the frequency of 
jamming transitions Starts to increase again. A different group of 
peak-period drivers begins to have some doubts about their 
choices. Gradually they start to lose faith in Hypothesis SI. Al- 
though this group is aware of Hypothesis El, they're unable to de- 
lay their departure time after work. Instead they can make use of 
flexible working hours to start and finish work thirty minutes ear- 
lier. So they begin to favor another hypothesis, which is 

Hypothesis E2: "I believe that my average travel time could be re- 
duced significantly if I leave for work thirty minutes earlier and start 
for home thirty minutes earlier than usual." 
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After a few more frustrating traffic jams, there are sufficient new 
explorers leaving thirty minutes earlier in both the morning and 
the evening to create a stable population of (early-to-work, early- 
back-home) explorers, generating a further improvement in the ef- 
fective use of the network. From this simple example, we can con- 
clude that evolution leads to a steadily growing exploitation of 
time. This exploitation serves to lengthen the window of com- 
muter time, thereby postponing the repercussions of the original 
peak-period congestion. 

A series of temporal innovations by explorers (who favor differ- 
ent hypotheses) follows. Each serves to expand the flow capacity 
of the network by steering some more innovative drivers away 
from the edge of chaos, and thereby lowering their actual and ex- 
pected travel times. But other drivers remain sheep forever. They 
may alter their active hypothesis in response to repeated jamming 
transitions, but their travel behavior does not vary. Some of the hy- 
potheses that evolve in competition with Hyyothesis SI might in- 
clude the following: 

Hypothesis S2: "I believe that tomorrow's travel time will be much 
the Same as last Monday's, but it may be more than trnax.l1 
Hypothesis S3: "I believe that tomorrow's travel time will be the 
Same as my travel time two weeks ago (two-period cycle detector)." 
Hypothesis S4: "Even allowing for the occasional traffic jam, I believe 
that my average travel time should still be less than tmak." 

Although each driver keeps track of an individualized set of 
such hypotheses, explorers tend to monitor more at any one time. 
They do this because they're constantly searching for ways to im- 
prove their travel times. Among the hypotheses under considera- 
tion, each driver favors one particular hypothesis. We call this the 
~c t i ve  hypothesis. It's usually the one that has yroven to be the 
most reliable within each driver's set. 

Tust like attendance figiires at the EI Farol, the complete set of ac- 
tive hypotheses determines how the traffic behaves and thus the 
travel times experienced. But the travel time history also determines 
the set of active hypotheses. Drivers "learn" over time which of 
their hypotheses work best. Occasionally, explorers discard poorly 
performing hypotheses and generate new ones in their place. Sheep 
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are more conservative, only modifying their active hypotheses after 
a very long seqiience of jamming transitions. The complete set of 
hunches or hypotheses forms a kind of driver ecology (or collective 
knowledge base). A key question of interest is how this ecology co- 
evolves over time. Does it ever converge to some standard equilib- 
rium of beliefs, or does it always remain open-ended, perpetually 
incorporating new hunches and hypotheses? 

Because the set of active hypotheses is open-ended, this is a diffi- 
cult question to answer analytically. One might generate a kind of 
"alyhabet soup" of hypotheses and then proceed by computer ex- 
periments. However, even the contours of the emergent ecology 
will change in our traffic problem, because the driver population is 
growing in number and the predicted travel times will differ for 
each driver. Furthermore, each driver's sensitivity to congestion 
will differ. Sheep and explorers also exhibit different elasticities to 
change. If several explorers expect peak-period congestion tomor- 
row, because congestion occurred two weeks ago, they're likely to 
alter their departure time. If several sheep face the Same prospect, 
most will not alter their departure time. 

Under certain conditions, however, the driver population can 
self-organize into an equilibrium of beliefs. Explorers may be inno- 
vative, but there are temporal limits to their ingenuity. Eventually 
traffic chaos will prevail over such a lengthy time period that the 
pressure for a superior alternative route becomes compelling. Be- 
cause most drivers are reluctant to spend more than one hour of 
their daily time budget on commuting, the Road Traffic Authority 
can only appease such growing discontent with a major alteration 
to the network itself-such as the construction of a new road or the 
widening of an existing expressway. Suddenly, the set of hypothe- 
sec changes radically. Explorers will be quick to try out the new al- 
ternative if their average travel time has risen above tmax  Sheep 
will be slower to change, but gradually they might entertain the 
following hypothesis: 

Hypothesis S5: "I believe that my average daily travel time could be 
lowered by using the new alternative." 

At some stage after the new route Opens, the active hypotheses 
of sheep and explorers may even converge to a common belief 
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(such as Hypothesis S5). If this happens, the traditional user equi- 
librium might even be attained. But, as before, this equilibrium 
will be temporary at best. Jamming transitions among peak-period 
traffic on the new route will eventually occur, just as they did on 
the original route. Frequent congestion experience spawns a whole 
new family of explorers who actively pursue alternative possibili- 
ties (including the old route). There's no evidence to suggest that 
traffic behavior ever settles down into any stable, predictable pat- 
tern. Instead the emerging behavioral ecology becomes more com- 
plex and grows to contain an even richer population of active hy- 
potheses. This uneven pattern of coevolutionary learning marches 
forever onward. Only very occasionally does it have a chance to 
catch its breath in the relative calm of an equilibrium state. 

Edge-of-Chaos Management 

An important finding from traffic simulation studies is this critical 
regime near maximal capacity, which for all intents and purposes 
looks very much like a self-organized critical state. Other analysts 
have dubbed it "the edge of chaos." In this region, transportation 
systems are very sensitive to small perturbations. The problem for 
those of us caught up in this kind of traffic is that small perturba- 
tions can generate large fluctuations in congestion formation and 
thus in travel times. It's very unnerving because we never know- 
whether we'll be delayed or not. 

Thus traffic managers face a new and perplexing problem. Their 
first priority is to improve the efficiency of traffic flows by every 
means at their disposal. Clearly, modern information technology is 
expected to play a key role. Sophisticated traffic controls and route 
guidance information are designed to improve the efficiency of the 
traffic as a whole. These on-line traffic management systems tend 
to drive the traffic closer to the above-mentioned critical regime, 
the "edge of chaos." By pushing for greater efficiency, they actually 
generate greater volatility. Travel times become more variable and 
further control measures can have unpredictable consequences. 

This seemingly counterintuitive result is a bit like Braess's Para- 
dox. In trying to improve the system, to your dismay you find that 
drivers begin to lose confidence in it. The most efficient state for a 
congested road network seems to be a self-organized critical state 

Trufic Neur tlle Edge uf Chuos 201 

in which traffic jams of all lengths can arise to maintain the traffic 
flow. Small jams occur inside large jams, and a small movement of 
a particular car can have a large effect.28 Such fluctuations 
are surely irritating to the unsuspecting driver, but they're the 
way to reach the most efficient flow pattern overall. Traffic man- 
agement systems may try to divert traffic from overcrowded roads 
to undercrowded ones, thus driving both closer to the edge of 
chaos. Once the traffic is near this self-organized critical state, fur- 
ther attempts to control or reroute the traffic could have undesir- 
able consequences. 

Consider a situation where drivers have access on-line to infor- 
mation on traffic conditions, but the driver population is rather sim- 
ilar in terms of their willingness to act upon this information, that 
is, mostly sheep-like. Then its receipt has very little impact. It may 
simply reduce the number of active hypotheses currently held by 
the driver population. A majority of drivers continue to select the 
"safest bet" from their own selfish viewpoint. They might prefer 
shorter routes over longer ones, even if both yield about the Same 
travel time. Since beliefs are mostly uniform, they tend to concen- 
trate on the same routes during the Same periods. The effect of 
helpful information in this case is to generate higher levels of con- 
gestion on the preferred routes. We'll call this result concentratioiz. 

What might happen when sheep and explorers coexist in a 
driver population? In this case, the likely impacts depend crucially 
on the nature of the information, when it's provided, and who re- 
ceives it. Sheep seldom change their driving decisions in the short 
term-with or without traffic information. Explorers welcome 
such information, using it to modify their set of working hypothe- 
Ses and, in some circumstances, to alter their active hypothesis. 
Particular types of information work best in various phases of the 
learning process. For example, the rate of defection of explorers 
from a congested peak period to a less-congested one can be en- 
hanced by the provision of comparative travel times for different 
departure times. In the hands (i.e., minds) of a lirnitcd number of 
explorers, this comparative information could reduce levels of con- 
centration. If given to a large number of explorers, however, 
this same information may lead to excessive levels of overreaction. 
Too many explorers may decide to switch to a recommended 
alternative.29 
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Generally, providing travel time information about different de- 
parture times and route choices will alter the ecology of active l-iy- 
potheses among the driver population. This ecology, which is co- 
evolving incessantly, has a collective "psyche" of its own. It can 
breed s~~ccessive phases of near-chaotic behavior followed by pe- 
riods of calm and order. Near-chaotic behavior corresponds to 
rapidly cl-ianging beliefs about other drivers' intentions and the best 
strategy to adopt. If beliefs change too quickly, however, there may 
be no clear behavioral pattern at all. To all intents and purposes, 
such a volatile state would appear to be random. Some drivers feel 
totally confused. It's hardly surprising to learn that their responses 
become unpredictable. 

At the other extreme, tranquil, orderly behavior could emerge. 
But this can happen only if the ocean of beliefs in a driver yopula- 
tion happens to converge on a mutually consistent set of models of 
one another and the traffic system as a whole. This is most unlikely 
in traffic suffering from even light congestion. Because sheep and 
explorers coexist in driver populations, there are simply too many 
incentives for beliefs to diverge. Thus the chances of reaching a 
user equilibrium are remote, and traffic assignment methods based 
on relaxation to an equilibrium are no longer meaningful. 

For most of the time, we'd expect that drivers' mental models of 
each other's beliefs would be caught somewhere in between these 
two extremes, tending to change, poised ready to unleash ava- 
lanches of small and large changes throughout the whole belief 
system of the driver population. Why should we expect this? 
Given more information, we'd expect explorers to try to improve 
their set of hypotheses by constructing niore complex mental models 
of traffic behavior. But these more complex models would also be 
more sensitive to small changes in the behavior of other drivers. 

While explorers develop more complex models to improve their 
own decisionmaking, the coevolving system of all drivers' beliefs 
tends tobe pushed further away from the orderly regime toward the 
chaotic one. Once an explorer's complexifying beliefs come close to 
the chaotic regime, however, such complexity and changeability is 
apt to leave him confused. He realizes that the data are inadequate. 
Thus he decides to simplify matters, adopting a less coniylex model 
of traffic behavior. Less complex models have the virtue of being less 
sensitive to the behavior of others and live in calmer oceans. 
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As we described in earlier chapters, adaptive learning produces 
a never-ending struggle between the need to simplify and the need 
to complexify. This incessant struggle underpins the coevolution of 
drivers' beliefs about how traffic bel-iaves. The proverbial ocean of 
beliefs gets driven back and forward between the two extremes, 
from chaos to order and then back again. Thus, for much of the 
time, we might expect to find most drivers' mental states hovering 
nervously in between, poised somewhere near the edge of cl-iaos. 

Some key questions then arise. 1s there a way out of this 
dilemma? Should drivers be assisted or rerouted at all? If so, which 
drivers should be targeted? What kind of information should 
be provided if the aim is to reduce the frequency or severity of 
congestion? 

One possibility is to keep the density on each road segment just 
below the density of maximum throughput. This means that some 
drivers may have to wait to enter parts of the road network until 
sufficient capacity is available for them. On the other hand, if 
sheep and explorers coexist in a driver population, sheep could be 
made to pay for their intransigence. A peak-period congestion toll 
could be levied on those drivers who refuse repeatedly to switch to 
recommended alternatives. On the other hand, innovative explor- 
ers might be offered credits or bonuses for earlier or later depar- 
tures, which help to keep densities below criticality. This might 
also help to convert some sheep into explorers. Further studies 
might show whether explorers should always be the beneficiaries, 
or if sheep might warrant inducements or compulsory education 
to become more adaptive. Frequent-traveler programs, designed to 
generate greater use of public transit, could also be introduced. 

Congestion pricing seems to be the most viable approach. Two 
colleagues of Chris Barrett at the Los Alamos National Laboratory, 
Kai Nagel and Steen Rasmussen, have conducted simulation ex- 
periments, which suggest that locally operating agents could ad- 
minister congestion tolls.30 Each agent aims to keep the operation 
of his segment of the road network as efficient as possible, with the 
only means available being to adjust the toll up or down. The 
agent knows the performance characteristics of his segment, arid 
from this he obtains the density that corresponds to maximum 
flow and thus maximum performance. Then the task is to try to 
keep the density on his segment at or near this particular density. 
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When the density gets too high, the toll is increased; otherwise itfs 
decreased on a scale to Zero. In a real network, the toll for most 
segments would most likely be Zero for most of the time. 

Driving near the edge of chaos can be a mystifying experience. 
Each time the predictability of travel time is shattered by a jam- 
ming transition, a few drivers lose a little faith in the validity of 
their beliefs. Breaching their "comfort zone" of travel time on sev- 
eral more occasions can transform some drivers from placid sheep, 
meekly following the crowd under any circumstances, into aggres- 
sive explorers, searching desperately for ways to reduce their 
travel time. Once a few "seeds of discontent" have been sown, ex- 
plorers tend to feed on themselves. Like mutants in an ecosystem, 
their own growth can become self-reinforcing. 

By relentlessly pursuing superior alternatives, explorers trigger 
fluctuations that tend to undermine the possibility of a static equi- 
librium in the traffic system. Self-organizing behavior is a dynamic 
activity. There are no simple, deterministic laws of traffic evolu- 
tion. A wide diversity of decision rules can emerge and proliferate 
among the driver population. Each individual driver's rationality 
is bounded by the fact that his problem is not simple. He has little 
reliable information at his disposal. Because therefs no single 
hypothesis that can be relied upon, a rich ecology of behavioral hy- 
potheses emerges and coevolves over time. 

The uneven nature of coevolutionary learning suggests that the 
collective behavior of drivers on a congested network will have lit- 
tle chance of converging to a rational expectations equilibrium. 
Spontaneous emergence of explorers from a seemingly homoge- 
neous population of sheep is a nonlinear perturbation that tends to 
be repeated over and over again. The incentive for repetition is 
strong. In the true Schumpeterian spirit, each time some new ex- 
plorers emerge and evolve, their innovativeness leads to an im- 
provement in the network's throughput. Thus network exploita- 
tion becomes more efficient, despite the fact that most of the sheep 
are either unwilling or unable to modify their behavior, even if 
their chosen routes and times accumulate a convincing record of 
failure. 

But this is not the end of the story. It's more like the beginning. 
One should distinguish clearly between fluctuations due to the dy- 
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: namics of vehicles and fluctuations due to the learning of drivers. 
The real dynamics of a congested traffic system need to be 
explained at various levels in space and time. Three levels of 
evolutionary change seem to be influential: the adaptive behavior 
of interacting drivers (such as sheep and explorers), the dynamics 
of vehicular flow patterns, and the evolution of the physical 
network of infrastructure (see Figure 6.7). Interdependencies exist 
between the behavioral possibilities at each of these levels. For ex- 
ample, seemingly small changes in the behavioral ecology of driv- 
ers, including their attitude toward politicians, can become con- 
tagious. Ultimately, they can have profound effects on the final 
state of the network as a whole. Under these conditions, some 
emergent behavior becomes apparent only with the help of de- 
tailed microsimulations. 
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FIGURE 6.7 The multilevel nature of traffic dynamics. 
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There's a need to search beneath the classical aggregate view 
of driver behavior in order to unravel the intricate complexities. 
Different speeds of adjustment Pose daunting problems, and 
paradoxes seem to abound.31 We've Seen that a predictable traffic 
pattern seems less and less likely the more one approaches a highly 
efficient traffic system. The fact that high efficiency often has 
the downside of high variability may not just be true of transpor- 
tation systems. Chances are that it's also true of other socio- 
economic systems. A higher-level simplicity is much easier to think 
aboiit than some chain of complexities that caused it.32 The true 
representation of a higher-level simplicity emerges only as an ex- 
plicit consequence of an accurate representation of its lower-level 
complexi ties. 

Traffic jams appear to have significant negative economic im- 
pacts. In 1990, for example, almost 15 percent of the U.S. GNP was 
spent on passenger and freight transportation costs. However, our 
main finding in this chapter was a little unexpected. Who would 
have thought that the self-organized critical state, with traffic jams 
of many different sizes, is the most efficient traffic state that can be 
achieved collectively? The message for economists is that there 
may be an even deeper nexus between traffic and economics. A car 
driver caught in the mysteries of traffic has plenty in common with 
an economic agent trying to improve his position in an economy. 
Each driver's speed is limited by the other cars on the road as well 
as by the speed limit. He's also exposed to random shocks from the 
road and from elsewhere. The interesting question is whether we 
may have stumbled across a new socioeconomic principle: The 
most efficient state achievable is a critical state with fluctuations of 
all sizes. Perhaps the power law prevails once again! 

As a step toward a behavioral formalism for the study of human 
decisionmaking under uncertainty, in the next chapter we'll look 
more closely at the subjective expectations, multiple hypotheses, 
and half-hoped anticipations held by investors in financial mar- 
kets. Like traffic, this is a rich and complex world, in which coevo- 
lutionary learning is incessant and surprising. Wherever traders 
meet to transact exchanges, beliefs can be mutually reinforcing or 
mutually competing. Like the life cycle of technology and products 
in the marketplace, beliefs are invented, establish a small niche, 
grow in importance, begin to dominate, mature, fall back, and fi- 
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nally decay. They form a turbulent ocean of interacting, competing, 
arising, and decaying entities. Occasionally this stormy ocean may 
flatten out into a simple, homogeneous equilibrium pattern. But 
more often than not it's heaving and deforming continuously, pro- 
ducing complex, ever-changing patterns in which nonequilibrium 
beliefs are iinavoidable. 
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Coevolving Markets 

Are Stock Markets Efficient? 

One with arzother, soul with snul 
They kindle fire zuith jre.  

-Arthur Pigou 

We're ready to return to that baffling puzzle, mentioned briefly in 
the opening chapter. Why is it that academics, by and large, See 
markets quite differently from the way that actual traders See 
them? By now you'll have a pretty good idea of how classical eco- 
nomic theorists See the financial world. If you thought of equilibria 
and deductive rationality, you'd be right. There's simply no place 
for those inductive explorers we met earlier. Itfs sheepish risk aver- 
sion all the way. And for good reasons. If all investors possess 
identical, perfect foresight, then markets should behave efficiently. 
All the available information gets discounted into current prices. If 
the sole driving force behind price changes for any stock or com- 
modity is assumed to be new information, then we can assume 
that traders are able to process this information so efficiently that 
prices will adjust instantaneously to the news. Because the news it- 
self is assumed to appear randomly, so the argument goes, prices 
must move in a random fashion as well. 

As mentioned earlier, the credit for this idea goes to the French 
mathematician Louis Bachelier. In his doctoral dissertation ad- 
dressing price fluctuations on the Paris bond market, the seeds of 
the efficient markets hypothesis were sown.1 He concluded that 
the current price of a commodity was also an unbiased estimate of 
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its future price. Bachelier's viewpoint is a long-standing equilib- 
rium tlieory. Price changes are considered to be unpredictable, and 
technical trading using price charts is regarded as a waste of time. 
Today economists make use of mnrtitzgciles, a sort of random 
process that Bachelier introduced in passing. In fact, his notion of 
efficiency has proved to be extremely influential. The vast majority 
of academic economists accept that this is the way real markets 
work. 

That's the explanation in theory. But what about in practice? 
What's meant by an efficierzt market in practical terms? The stock 
exchange provides one answer. Comnion stocks are traded on 
well-organized exchanges like the New York Stock Exchange or in 
dealer markets called over-the-counter markets. This allows a 
rapid execution of buy and sell orders. The price response to any 
change in demand caused by new information can be almost in- 
stantaneous. Such stock markets are also competitive due to the 
large number of participating individuals, institutions, corpora- 
tions, and others. Competitive forces also tend to cailse prices to 
reflect available information quickly. A market that quickly and ac- 
curately reflects available information is thought of as an efficient 
market. Those that adjust more rapidly and accurately are consid- 
ered more efficient. 

Are markets efficient? Yes, according to many economists. Like 
rationality, however, this efficiency is simply asstlrned. There's no 
actual proof. It's virtually impossible to test for market efficiency 
since the "correct" prices can't be observed. To get over this hurdle, 
most tests examine the ability of information-based trading strate- 
gies to make above-normal returns.2 But the results of such tests 
don't really prove whether markets are efficient. Therein lies the 
basic dilemma. Given that stock markets have certain characteris- 
tics that are thought to make them more efficient than other mar- 
kets, they seem like a reasonable place to start our investigation in 
earnest. Let's take a brief look at what the efficient market hypoth- 
esis posits in this setting. 

Eugene Fama coined the term "efficient market" and suggested 
three levels of efficiency.3 Studies of zuenk-form market efficiency be- 
gan with Bachelier and concluded that stock prices follow a ran- 
dom walk. The rn~zdom zunlk hypothesis means that at a given point 
in time, the size and direction of the next price change is random 
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with respect to the knowledge available at that point in time. This 
implies that charting and all other forms of technical analysis prac- 
ticed by various investors, amateur and professional alike, are 
doomed to fail. Market efficiency can also take a serr~istrorzgfr~rnl or 
a strongform, but these two classes needn't concern us here.4 lt'll be 
enough to take a critical look at weak-form efficiency. If this form's 
credibility tends to unravel, then so will the others. 

Market efficiency also seems to have its roots in the idea of intrin- 
sic aalue. Although the value of most goods is acknowledged to be 
a function of consumer beliefs, preferences, and endowments, se- 
curities have often been treated as having a value independent of 
these consumer characteristics. Their value is based on the charac- 
teristics of the firm behind the security. This is a supply-side ap- 
proach. The price of any security, however, depends not only on 
the characteristics of the firm or commodity involved but also on 
the demand for the security. In other words, it depends on the 
characteristics of the investor. 

To date, the most commonly used model to relate investors' cur- 
rent price expectations with future price distributions is one that 
we've met earlier: the ratiotznl expectatioris equilibrium model. A 
fully revealing, rational expectations equilibrium occurs when 
prices reveal all the information held by individual investors. In 
other words, when price expectations are realized in a future pe- 
riod. But zi~hose expectations? If investors possess hon~ogetzeo~rs be- 
lief~, the choice of whose expectations to use is greatly simplified. 
As Rubinstein states, "In a perfect and competitive economy com- 
posed of rational individuals with homogeneous beliefs about fu- 
ture prices, by any meaningful definition present security prices 
must fully reflect all available information about future prices."5 

Now the real problem of defining market efficiency becomes 
clear. Overlooking the fact that investors might not have access to 
the Same information, what happens if these investors happen to 
be different psychologically? From earlier chapters, we know that 
individuals possess different expectations in everyday situations. 
We know, for instance, that sheep and explorers coexist in traffic. 
When it Comes to choosing alternative strategies, some drivers 
are risk-averse, whereas others are willing to experiment. Similar 
variability exists among the strategies of fishermen or technologi- 
cal imitators and innovators. Some search in familiar zones, and 
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longer horizons, or primary trends, are commonly called brlll or 
bear markets. To search for patterns in these trends over time, tech- 
nical analysts use various charts-such as line, bar, and point-and- 
figure charts. Some of the price patterns formed by market action, 
and recogi-iized by technical traders, are shown in Figure 7.1. 

Two of Dow's less discussed principles are of special interest. He 
argued that in its primary uptrend, the market was characterized 
by three upward swings. The first swing he attributed to a rebound 
from the f'over-pessimism" of the preceding primary downswing; 

FIGURE 7.1 Pattern formation in financial markets: typical bar charts 
of price histories. 
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the second upward swing geared into the improving business and 
earnings picture; the third and last swing was an overdiscoiinting 
of value. Dow's second principle was geometrical. This asserted 
that at some point in every market swing, whether up or down, 
there would be a reverse movement (or reaction) canceling 40 
percent to 60 percent of that swing. It's hard to know if he thought 
of such geometrical regularities as being shaped by the human 
factor, but such repetition could hardly be judged as piirely 
accidental. 

More than eighty years after Dow's death, the Options Division 
of an annual tournament conducted by the Financial Traders Asso- 
ciation in the United States was won by a former drummer in a 
rock band, one Robert Prechter. Prechter, who also holds a psychol- 
ogy degree from Yale University, managed to increase the value of 
his portfolio by a whopping 444.4 percent in the allotted four 
months!ll By 1989, the Financial News Network had named him 
"Guru of the Decade." One could be forgiven for thinking that 
Prechter's approach was novel. But the truth is that it was based on 
a more sophisticated form of Dow's geometrical principles. Let's 
take a quick look at this intriguing pattern recognizer, known as 
the Elliott wave principle.12 

Prechter's mentor, Ralph N. Elliott, was a Los Angeles accoun- 
tant and an expert on cafeteria management. He was also a keen 
student of all the gyrations in the Dow Jones averages. Having lost 
his job and part of his savings on Wall Street in 1929, he had plenty 
of time on his hands to search for a better way to play the markets. 
Like Dow, Elliott discerned repetitive patterns, but his discoveries 
went beyond Dow theory in comprehensiveness and exactitude. 
What Dow outlined with broad strokes of his brush, Elliott painted 
in careful detail. The wave principle is Elliott's discovery that in- 
vestor behavior trends and reverses collectively in recognizable 
patterns. The basic pattern is shown in Figure 7.2. 

Market action unfolds according to a basic rhythm of five waves 
up  and three waves down to form a complete cycle of eight waves. 
Note that in its primary uptrend, there are three rising waves or 
upswings-just as Dow observed. What Dow called primary trend 
upswings or downswings, Elliott called irnpulse waves. In Elliott's 
jargon, waves numbered 2 and 4 are corrective waves. A complete 
Elliott cycle consists of eight waves: a primary uptrend of five 
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FIGURE 7.2 The basic Elliott wave pattern. 

waves (1-2-34-5) being corrected by a secondary downtrend of 
three waves (6-7-8). 

Following completion of this cycle, a second cycle of similar 
form begins. Once again, there are five upward waves and three 
downward waves. A third then follows, but this time there are only 
five waves up. This completes a major five-wave-up movement 
over a longer time horizon. Then follows a major three-wave- 
down movement, correcting the preceding major five-wave-up 
movement. Each of these "phases" is actually a wave in its own 
right but is one degree larger (or longer) than the waves of which it 
is composed.13 The complete thirty-four-wave pattern is shown in 
the lower part of Figure 7.3. 

Note how closely the geometrical form of this major wave pat- 
tern resembles that of its component mirzor wave pattern. Accord- 
ing to Elliott, two waves of a particular degree can be broken into 
eight waves of the next lower degree; then those eight waves can 
be subdivided in exactly the same manner to reveal thirty-four 
waves of the next lower degree. The wave principle recognizes that 
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FIGURE 7.3 A nested Elliott wave pattern. 

waves of any degree fulfill a dual role. They can be subdivided into 
waves of lesser degree, but they're also components of waves of 
higher degree. For example, the corrective pattern shown in the 
major wave illustrated in Figure 7.3 subdivides into a 5-3-5 pat- 
tern. If we could place this corrective pattern under a "micro- 
scope," it would also reveal a 5-3-5 pattern. Waves (1) and (2) in 
the thirty-four-wave movement shown in Figure 7.3 take on the 
same form as waves [I] and [2], confirming the phenomenon of 
constant form within ever-changing scale. This suggests that Elliott 
waves at different levels may be self-similar. 

Self-similarity, or invariance against changes in scale or size, is a 
familiar attribute of many natural phenomena in the world around 
us. But who would have thought it might apply to financial 
markets? Because more than one scale factor is involved, strictly 
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speaking these markets don't exhibit self-similarity. lnstead they're 
said to be self-affiize, which turns out to be a close relative of self- 
similarity. Both these concepts are explained in the next section. 

Scaling the Market's Peaks 
What does self-similarity of form really mean? Underlying the 
wave principle is the idea that financial markets exhibit a very spe- 
cial kind of symmetry: nature's symmetry. In effect, price gyrations 
display fractal geometry. The science of fractals is a relatively new 
one, which is gradually commanding the recognition that it de- 
serves. Much of nature conforms to specific patterns and relation- 
ships, some of which are identical to those that Elliott recognized 
and described in the stock market. Rut there's a practical difficulty 
with Elliott's wave principle. It's virtually impossible to apply the 
technique successfully in an objective and repetitive manner.14 In 
other words, it fails to provide a "descriptive phenomenology" 
that is organized tightly enough to ensure a degree of understand- 
ing and consistent application. Fortunately, the science of fractals 
features the statistical notion of "scaling," which helps to restore 
this objectivity. 

Scaling is a morphological term. Starting from the rules that gov- 
ern the variability of price on one particular timescale, higher- 
frequency and lower-frequency variation is found to be governed 
by the Same rules, but acting faster or more slowly.15 The founder 
of the fractal concept, Renoit Mandelbrot, suggests tl-iat a wealth of 
features beloved by chartists (and Elliott wave theorists) need not 
be judged subjectively, but may follow inevitably from suitable 
forms of random variability. In other words, we shouldn't be sur- 
prised by the fact that the market seems to trace out characteristic 
patterns at all levels-such as charts of similar general shape on 
different timescales. Even major market corrections, like the "Octo- 
ber crashes" of 1929 and 1987, may simply be larger versions of 
what's hapyening all the time on smaller timescales. 

Mandelbrot's scaling principle is more objective than Elliott's 
wave principle. His key idea is that much in economics is serf-affine. 
This almost visual notion allows us to test the idea that "all charts 
look similar." Consider what happens if you inspect a financial 
chart from up close, then far away. Often you can "see" a pattern, 

like the basic Elliott wave pattern of five waves up then three 
waves down. Many smaller and larger patterns often look similar. 
Look what happens if we take a complete pattern, then diverse 
pieces of it, and resize each to the Same horizontal format. Two 
such renormalized charts are never perfectly identical, of coiirse, 
but they're often remarkably similar. Resizing in this way is known 
technically as "renormalizing by performing an affinity." This mo- 
tivated Mandelbrot to coin the term "self-affinity."l6 

Self-affinity designates a property that's closely related to self- 
similarity, since it also involves a transformation from a whole to 
its parts. But it's not a similarity that reduces both coordinates in 
the Same ratio. Instead it's an affinity that reduces time in one ratio 
and the other coordinate in a different but related ratio. Thus if two 
price charts, or two parts of one chart, happen to look very much 
alike, technically speaking they could be self-affine-statistically in- 
variant by dilation or reduction. Two sequences of price gyrations 
that appear to be self-affine are shown in Figure 7.4. Far from being 
a rarity, such resemblances are rife throughout all financial mar- 
kets. These fascinating discoveries have important implications for 
much of economics and finance. To date, they remain unexplained. 

Mandelbrot posed a key question: 1s the mathematical notion of 
chance powerful enough to bring about the strong degree of irreg- 
ularity and variability in financial charts as well as in coastlines? 
The answer to that question came as a surprise. Not only is it pow- 
erful enough, but there's a tendency to underestimate the ability of 
chance to generate ordered structures that have not been antici- 
pated in advance.17 Chance remains important over a wide range 
of levels, including the macroscopic one. Several decades after 
Elliott, Mandelbrot's pioneering studies of fractals have con- 
firmed that nature and markets abound with this Special kind of 
symmetry. 

In Chapter 1, we mentioned that Mandelbrot collected daily and 
monthly price data for various commodities. Logarithmic plots of 
the resulting size classes of price variations revealed that the distri- 
bution of price variations did not change over fifty-year periods or 
longer, except for scale. All of his curves could be superposed on 
each other by horizontal translation, confirming a strong quantita- 
tive symptom of scaling. Once again, a set of economic outcomes 
seems to be under the spell of a power law distribution. 
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FIGURE 7.4 Self-affinity in the price gyrations of coffee futures. 

But Mandelbrot went much further than this. To achieve a work- 
able description of price changes, of firm sizes, or of income distri- 
bution, he argued that we must use random variables that have an 
infinite population variance. Thus he expected a revival of interest 
in the family of statistical distributions that adhere to a power law. 
These are exemplified by Pareto's law for the distribution of Per- 
sonal income, Zipf's law, and the work of the probability theorist 
Paul Levy. Mandelbrot's work recognized a kinship between these 
closely related empirical laws and the theoretical power laws that 
occur in probability theory. More importantly, he managed to in- 
terpret various power laws in terms of scaling. Sadly, the revival of 
interest he had hoped for has not yet materialized. 

More recently, studies of multifractals have revealed that the 
price variations recorded by Mandelbrot and others exhibit self- 
affinity.18 Such price changes have no typical or preferred size of 
variation. They're "scale-free," just like the sandpile avalanches 
that we discussed earlier. It would seem that prices and sandpiles 
do have something in common alter all. They're both capable of 
evolving to a self-organized critical state. 

To create a multifractal from a unifractal, you must lengthen or 
shorten the horizontal time axis so that the pieces of the generator 
are stretched or squeezed. Meanwhile, the vertical price axis can 
remain untouched. Market activity may speed up in the interval of 
time represented by the first piece of the generator and slow down 
in the interval that corresponds to the second piece. Such simple al- 
terations can produce a full replication of price fluctuations over a 
given period, including the periods of very high or very low 
volatility. On a more practical level, these findings suggest that 
fractal generators could be developed based on historical market 
data. Such generators would help to introduce some much-needed 
order to the seemingly chaotic gyrations of financial markets. 

What's most disturbing is that much of Mandelbrot's important 
work has largely been ignored. It's hard to understand why. 1s it be- 
cause his ideas don't fit into the traditional picture or because he's a 
physicist rather than an economist? Perhaps his notions are too eso- 
teric for economists to fully comprehend. Most classical economists 
attribute large events-like the stock market crashes of 1929 and 
1987-to one-time, abnormal circumstances, such as depressions or 
the automated responses of computer trading programs. They look 
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to econometric models for the exylanation, paying scant attention 
to the statistical distributions underlying the actual geometry of 
price histories. Mandelbrot's results suggest otherwise. Eventually 
they will change the statistical underpinnings of economics in a 
fundamental way. 

Fibonacci Magic 

The emerging pattern of price gyrations and market evolution in- 
volves many interrelated dynamic principles-Elliott waves, frac- 
tals, self-affinity, and power laws, to name just a few. We're 
tempted to ask if these dynamic perspectives have anything more 
in common. By the time you reach the end of this chapter, you may 
want to decide for yourself. For some readers, the material in this 
section will appear to be nothing more than an amusing mathe- 
matical diversion from our mainstream discussion of financial 
markets. Others, however, may feel it deserves to be taken more 
seriously ! 

The ancient world was full of outstanding mathematicians. 
When Elliott wrote Nnllire's Lnw, he referred specifically to a se- 
quence of numbers discovered in the thirteenth century by the 
mathematician Leonardo da Pisa. Better known by his nickname, 
Fibonacci, this remarkable mathematician was taught the Arabic 
system of numbers by the Mohammedans of Barbary.19 In 1202, he 
published a voluminous book titled Liber Abaci, in which he intro- 
duced Europeans to the Arabic system and to nearly all the arith- 
metic and algebraic knowledge of those times. Among the many 
mathematical examples to be found in this "Book of the Abacus," 
Fibonacci discussed a breeding problem of the following kind: 
How many pairs of rabbits can be produced in a single year from 
one pair of baby rabbits, if a pair of baby rabbits requires one 
month to grow to adulthood and each pair of adult rabbits gives 
birth to a new pair of baby rabbits after one month? 

For the first two months, obviously there will only be one pair of 
rabbits. The sequence of numbers defining the population of rabbit 
pairs thus begins with the digits 1, 1. This population doubles by 
the end of the second month, so that there are two pairs at the start 
of the third month. Of these two, only the older pair begets a third 
pair the following month, so that at the beginning of the fourth 

month, the sequence is 1, 1,2,3. Of these three, the two older pairs 
reproduce, so the number of rabbit pairs expands to five. Of these 
five, the three older pairs reproduce, so that the next entry in the 
sequence is eight. 

In the comparatively short period of twelve months, Mr. and 
Mrs. Rabbit would have a family of 144 rabbit yairs. Their monthly 
breeding program gives rise to the following sequence of rabbit 
pairs: 

This justly famous sequence of numbers is known today as the Fi- 
bonacci sequence. Should they opt to continue their breeding habits 
for several years, the number of rabbit pairs would grow to astro- 
nomical proportions. After one hundred months, for example, we 
would be facing a rabbit population of 354,224,848,179,261,915,075 
pairs! 

No doubt you're wondering what this rabbit breeding problem 
can possibly have to do with price histories in financial markets. 
One thing to note is that the Fibonacci sequence has many interest- 
ing properties in itself. For example, the sum of any two numbers 
in the sequence equals the next number in the sequence. 1 plus 1 
equals 2, 1 plus 2 equals 3,2 plus 3 equals 5 ,3  plus 5 equals 8, and 
so on to infinity. Secondly, and more importantly, the ratio of any 
two numbers in the sequence approaches 1.618, or its inverse, 
0.618, after the first few pairs of numbers. The ratio of any number 
to the next higher number, called phi, is about 0.618 to 1 and to the 
next lower number is about 1.618. The higher the numbers in 
the sequence, the closer to 0.618 and 1.618 are the ratios between 
the numbers. 

For some unknown reason, the ratio 1.618 (or 0.618) to 1 seems to 
be pleasing to the senses. The Greeks based much of their art and 
architecture upon this proportion, calling it the Goldelz Meatz. 
Among mathematicians, it's commonly known as the Goldeii Ratio, 
an irrational number defined to be (1 + ./5)/2.20 It's the mathemati- 
cal basis for the shape of Greek vases and the Parthenon, sunflow- 
ers and snail shells, the logarithmic spiral and the spiral galaxies of 
outer space. It seems to imply a natural harmony that feels good, 
looks good, and even sounds good. Music, for instance, is based on 
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the eight-note octave. On a piano, this is represented by five black 
keys and eight white ones-thirteen in all. Perhaps it's no accident 
that the musical harmony that seems to give us the greatest satis- 
faction is the major sixth. The note E vibrates at a ratio of 0.625 to 
the note C, just slightly above the Golden Ratio. Note that the ear is 
also an organ that happens to,be shaped in the form of a logarith- 
mic spiral. 

Nature seems to have adopted the Golden Ratio as a geometrical 
rule in its magical handiwork, from miniscule forms, like atomic 
structure and DNA molecules, to systems as large as planetary or- 
bits and galaxies.21 It's also involved in many diverse phenomena 
such as quasi crystal arrangements, reflections of light beams on 
glass surfaces, the brain and nervous system, and the structure of 
many plants and animals. Some have even suggested that the 
Golden Ratio is a basic proportional principle of nature. Could it 
be an enlerge~zt property of certain classes of natural systems? 

Some of the greatest surprises of nonlinear dynamics and chaos 
theory have been the discovery of emergent simplicities, deep uni- 
versal patterns concealed within the erratic behavior of dynamical 
systems. One of the first of these unexpected simplicities was found 
by Mitchell Feigenbaum and is known as the Feigenbaum number. 
Virtually any mathematical equation with a period-doubling bifur- 
cation produces the Same universal ratio: 4.669 and a bit! This was a 
totally unexpected new number in mathematics, emerging from 
some of the most complex behaviors known to mathematicians.22 
The period-doubling cascade (depicted in Figure 7.5) is important 
because it's one of the most common routes from order to chaos. De- 
spite the fact that the Feigenbaum number is an emergent feature of 
period-doubling dynamical systems, we've only known about it for 
the past twenty years. Sucl-i emergent simplicities may be viewed as 
peaks in the landscapes of the possible. 

Different kinds of simplicities can emerge from underlying 
chaos-numbers, shapes, patterns of repetitive behavior. Some of 
these features have their own internal structure. Another fascinat- 
ing example is Mandelbrot's fractal set. It's one of the most intricate 
geometric objects ever to have decorated a child's bedroom wall 
(see Figure 7.6). On viewing it, we might believe that it's extremely 
complex. Yet the computer program that generates it is just a few 
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FIGURE 7.5 The Feigenbaum nurnber lurks within every period- 
doubling cascade. 

instructions long. As Murray Gell-Mann suggests, it has logical 
depth rather than effective complexity.23 Putting it more bluntly, 
Mandelbrot's set is as simple as the rule that generates it. It only 
looks complicated because you don't know what the rule is. It's an- 
other case of simple rules producing seemingly complex results. 

Perhaps the Golden Ratio is like the Feigenbaum number or 
Mandelbrot's set. After all, iteration is one of the richest sources of 
self-similarity. Given a proper start, any repeated application of 
some self-same operation, be it geometric, arithmetic, or symbolic, 
leads almost invariably to self-similarity. Take the Fibonacci 



FIGURE 7.6 The Mandelbrot set. 

sequence of numbers. If we multiply each number by the Golden 
Ratio and round to the nearest integer, we get 

which is the Fibonacci sequence again, except for a few initial 
terms (and perhaps some later ones). The Golden Ratio reveals its 
own self-similarity if it's written down as a contirztied fuaction. Like 
so many self-similar objects, the Fibonacci sequence of numbers 
contains within it the seeds of chaos. 

If natural law permeates the universe, might it not permeate the 
world of people as well? How different from nature's laws are the 
laws of human nature? Nothing in nature suggests that life is dis- 
orderly or formless. We mustn't reject the possibility that human 
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Progress, which is a by-product of human nature, also possesses 
order and form. If we examine the plentiful data on price gyrations 
in the stock market, the unmistakable self-affinity of these gyra- 
tions over different timescales suggests that they're sustained by 
the Golden Ratio. This was the basis for Elliott's wave principle. 
Two waves of a particular size can be broken into eight waves of a 
smaller size; then those eight waves can be subdivided in exactly 
the Same manner to reveal thirty-foiir waves of an even smaller 
size (as depicted in Figure 7.3).24 Both fractals and market action 
discern constant form within ever-changing scale. 

We can generate the complete Fibonacci sequence by using El- 
liott's concept of the progression of the market.25 The Same basic 
pattern of movement that shows up in minor waves, usiiig hourly 
plots, also shows up in what Elliott calls suyercycles and grand su- 
percycles, using yearly plots. Take a look at the two graphs in Fig- 
ure 7.7. They trace out extraordinarily similar patterns of move- 
ment despite a difference in the time horizon of more than 1000 to 
1. No preference is shown for any particular timescale. lnstead the 
evolving pattern reflects the properties of the Fibonacci sequence. 
Waves may sometimes appear to be stretched or compressed, but 
iinderlying patterns never change. This is consistent with Mandel- 
brot's notion of self-affinity. The spiral-like form of market action 
conforms repeatedly to the Golden Ratio. 

From the working of the Golden Ratio as a "five up, three down" 
movement of the stock market cycle, the astute reader might antic- 
ipate that the ensuing correction after the completion of any bull 
phase would be three-fifths of the previous rise in time or ampli- 
tude. Unfortunately, such simplicity is rarely Seen within individ- 
ual waves. However, time and amplitude ratios do play their part 
over longer timescales. For example, one of the great Dow theo- 
rists, Robert Rhea, found that over a thirty-six-year time period 
(1896 to 1932), bear markets ran 61.1 percent of the time assigned 
to bull markets. He later corrected this figure to 62.1 percent. Thus 
Rhea discovered, without knowing it, that the Golden Ratio relates 
bull phases to bear phases in both time and amplitude. 

Robert Prechter, that "Guru of the Decade" we met earlier in this 
chapter, Sees the wave principle as a major breakthrough in sociol- 
ogy. He believes that the personality of each wave in the Elliott 
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FIGURE 7.7 Hourly and yearly fluctuations in the U.S. stock market. 

sequence is an integral part of the mass psychology it embodies. 
Some waves are powerful and may subdivide or feature exten- 
sions. Others are short and abrupt. Nevertheless, the progression 
of mass emotions from optimism to pessimism and back again 
tends to trace out a roughly similar wave sequence each time 
around. These emotions lead to cycles of overvaluation and under- 
valuation, producing similar circumstances at each corresponding 
stage in its wave-like structure. The Golden Ratio helps to shape 
Progress overall. But each wave reflects a collective mood or per- 
sonality of its own. 

Because the stock market is one of the finest reflectors of mass 
psychology available to us, perhaps it's not surprising that it illus- 
trates the scaling principle so vividly. 1s such a principle every- 
where present? Perhaps it shapes the minds of investors and hence 
movements of the market in a coevolutionary dance to the tune of 
the Golden Ratio! The answer to this intriguing question is left to 
the readerls imagination. 
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Market Moods 

Elliott and Prechter were not the first to focus on the moods and at- 
titudes of investors en masse. In a remarkable book attempting to 
explain the peaks and troughs in the business cycle in the 1920s, 
the English economist Arthur Pigou placed special emphasis on 
the human element.26 He surmised that chnnges irz expectatiotzs were 
the proximate causes of variations in the economic marketplace. 
Although his interest was in the changing demand for labor, his 
theory helps to explain excessive volatility and other vagaries ob- 
served in financial markets. 

What was Pigou's theory? He began by classifying the causes of 
expectations into three groups: (a) real causes, namely changes in 
actual conditions, (b) psychologicnl causes, namely changes in men's 
attitude of mind, and (C) autoriornous morietary causes, namely 
events like gold discoveries that affect the money supply. Also he 
claimed that in our day-to-day world, real causes and psychologi- 
cal causes exist simultaneously, and they react to one another. Once 
started, these reactions may become reciprocating and continuous. 
A real cause prompts a psychological reaction, this in turn adds 
further to the real cause, this in turn adds something further to the 
psychological cause, and so On. 

If you're thinking that therels something familiar about this, 
yould be right. Pigou was describing a positive feedback loop. We 
can illustrate his ideas in the familiar financial arena of commodity 
markets. Imagine that news of major strike action by members of 
the transport workers' union reaches the marketplace, triggering 
concern among farmers about livestock and fruit deliveries. Soon 
they express this concern publicly in tlie media, prompting further 
concern by the transport workers that a prolonged dispute may 
put their jobs at risk. Gradually the mood of the market as a whole 
begins to sour, exacerbating the importance of the news even 
further. As the strike lingers on, progressively angrier responses 
by the farmers serve only to trigger an even more defiant stance 
by the union. The real cause-industrial action-has triggered 
a psychological response, which adds further fuel to the gravity 
of the real cause, which adds further to the worries of all the 
individuals and collectives involved.27 Thus undue pessimism 
develops. 
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FIGURE 7.8 Positive feedback in Pigou's industrial economy. 

This is a highly self-reinforcing feedback loop (see Figure 7.8). 
Swings in optimism or pessimism arise as a psychological reflex 
from the original real cause(s). Pigou emphasized that these 
swings occur simultaneously over a large number of people be- 
cause of "psychological interdependence, sympathetic or epidemic 
excitement, or mutual suggestion."28 He did not believe in the the- 
ory of rational expectations, pointing to an "instability in the facts 
being assumed." Psychological causes arise because expected facts 
are substituted for accomplished facts as the impulse to action. 
This leads to errors of undue optimism or undue pessimism. 

In Summary, Pigou felt that the upward and downward swings 
Seen in markets are partly caused by excesses of human optimism 
followed by excesses of pessimism. It's as if the pendulum swings 
too far one way and there is glut, then it swings too far the other 
way and there's scarcity. An excess in one direction breeds an ex- 
cess in the other, diastole and systole in never-ending succession.29 
There's plenty of evidence of such cycles of overreaction. Psycholo- 
gists acknowledge the moody, contagious nature of crowds. 
Tl-iere's a degree of psychological interdependence that can mag- 

Coevolving Markets 23 1 

nify the initial response. An error of optimism by one Person can 
pump up  the optimism of others. It's almost like an epidemic. 
When prices rise in the stock market, for example, because a few 
more businessmen become more prosperous, they're apt to look on 
the brighter side. This serves as a Spur to optimistic error among 
others. Thus the error is magnified. 

There's another interesting twist to Pigou's theory. Once they're 
discovered, errors of optimism can quickly change to errors of pes- 
simism, and vice versa. This keeps the pendulum swinging too far 
in both directions. The result is a relentless ebb and flow in the tide 
of emotions affecting investors' stock market decisions. If Pigou 
happens to be right, then the implication is that human nature 
doesn't change. Despite the errors in optimism and pessimism, cer- 
tain patterns will tend to repeat themselves as human nature 
weaves its spell. Suddenly, those patterns of self-affinity that we've 
observed in market gyrations take on a new meaning. Could self- 
affine price histories-those Same patterns displaying fractal 
geometry and conforming to power laws-simply be reflecting the 
collective moods and vagaries of human nature? Perhaps the mar- 
ketplace experiences mental phase transitions, transforming it 
from a simpler to a more complex regime, and later back again. 

Pigou was one of the earliest scholars to question the validity of 
the efficient markets hypothesis from a psychological viewpoint. 
Others have followed recently in his footsteps. Robert Shiller, pro- 
fessor of economics at Yale University's Cowles Foundation, typi- 
fies a group of modern scholars exploring the idea that price move- 
ments in speculative markets may be due to changes in opinion or 
psychology. He poses the following basic question: 

Can we trace the source of movements back in a logical manner to 
fundamental shocks affecting the economy, the shocks to technology, 
to consumer preferences, to demographics, to natural resources, to 
monetary policy or to other instruments of government control? Or 
are price movements due to changes in opinion or psychology, that 
is, changes in confidence, speculative enthusiasm, or other aspects of 
the worldview of investors, shocks that are best thought of as coming 
ultimately from people's minds?30 

Shiller finds that investor attitudes are of great importarice in cie- 
termining the Course of prices of speculative assets. Prices change 
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in substantial measure because the investing public en masse 
capriciously changes its mind. He found clear evidence of price 
volatility, relative to the predictions of efficient markets theories, 
particularly in the stock market.31 This means that the variability 
of price movements is too large to be justified in terms of efficient 
markets models, given the relatively low variability of fundamen- 
t a l ~  and given the correlation of price with fundamentals. 

Shiller studies various kinds of popular models-simple, quali- 
tative hypotheses of what may happen to prices. Many popular 
models focus on behavioral patterns observed in the marketplace. 
They bear a striking resemblance to Brian Arthur's temporary 
mental models associated with the processes of pattern recognition 
and inductive reasoning (see Chapter 2). Theylre also reminiscent 
of the temporary hypotheses that drivers adopt in their attempts to 
combat traffic jams (see Chapter 6). 

A well-known example of a popular model in the stock market is 
the sequence of price movements surrounding the crash of October 
1929. People who adopt this model think that this particular pat- 
tern of price movements may happen again at a later date. Because 
they're easy for the general public to understand, models like these 
usually get plenty of attention in the press. For example, there was 
an article advancing the "1929 hypothesis" in the Woll Sfreef Jozlrnal 
on October 19,1987-the very morning of the day the stock market 
crashed again! 

Singling out patterns like the one in 1929 for so much attention is 
rather arbitrary. History provides many more episodes that might 
be used for comparison than ever enter the public's mind. Other 
dramatic stock market rises, as well as many less dramatic stock 
market episodes, are largely forgotten-because investors mostly 
fear the major crash. Yet the self-similarity of these gyrations over 
different timescales may be the potent, pattern-making feature of 
markets in general. Why concentrate on a very infrequent part of 
this overall picture? Shiller argues that such popular models may 
create a vicious circle, or feedback loop in our terminology, 
whereby people's reaction to price changes causes further price 
changes, yet more reaction, and so On. We've argued in earlier 
chapters that economists should examine these mental models 
directly. The approximation of allowing economic theorists to 
model human behavior, without collecting information on the 
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popular models of the world, has serious drawbacks. Nowhere are 
these limitations more apparent than in the study of speculative 
markets. 

Reading the Market's Mind 
Now let's turn to the ideas of two of the most successful investors 
to have put their pens to paper for our benefit. One has become a 
household name by virtue of his aggressive currency plays, which 
have challenged the stability of nations. The other is largely un- 
known outside his close-knit circle of enthusiastic disciples. Both 
can justifiably claim to understand the "mind" of the market. More 
importantly, their highly profitable records are living proof of the 
potential fallibility of the efficient markets hypothesis. 

Until recently, George Soros managed his own international fund 
management group. Its flagship vehicle, the Quantum Fund, is a 
Curacao-based investment firm headquartered in Manhattan. De- 
spite the recent corrections among various hedge funds (including 
Quantum), typical annual gains in earlier periods exceeded 50 per- 
cent.32 But much of Soros's fame (and notoriety) stems from the 
fact that he made a billion dollars going up  against the British 
pound. Some say he rescued England from recession. Others are 
less complimentary. Dubbed by Biisiness Week as "The Man Who 
Moves Markets," Soros is arguably one of the most powerful and 
profitable investors in the world today.33 He has all the trappings 
of an intelligent thinker and Sponsors major philanthropic efforts. 
For our purpose, it's enough to concentrate on his philosophical 
train of thought. 

Soros is highly critical of the way in which economists use the 
concept of equilibrium. As he views it, the deception lies with their 
emphasis on the final outcome instead of the process that leads up 
to it. This endows the equilibrium concept with an aura of empiri- 
cal certainty. Yet that's not the case in reality. Equilibria have rarely 
been observed in real life. Market prices have a habit of fluctuating 
incessantly. We've Seen historical examples of price fluctuations in 
earlier sections. More will appear later in this chapter. If market 
participants are actually adapting to a constantly moving target, 
calling their behavior an adjustment process may be a misnomer, 
and equilibrium theory becomes irrelevant to the real world. 
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The assumption that Soros found so unaccep table as a student of 
economics was that of pevfect k)zozolcdge. How could one's own un- 
derstanding of a situation, in which one participates and interacts 
with others, possibly qualify as full knowledge of that situation? 
Because we're more aware today of the limits to knowledge, mod- 
ern theories of perfect competition and efficient markets merely 
postulate perfect iizforfiiatio~l. But this merely shirks the real issue. 
By assigning themselves the task of studying the relationship be- 
tween supply and deniand, and not either by itself, economists dis- 
guise a sweeping assumption behind the facade of a methodologi- 
cal device. The sweeping assumption is that each participant 
knows all that needs to be known to make a correct decision. 

As I've argued in earlier chapters, this kind of assumption is un- 
tenable. Even the shapes of supply and demand curves cannot be 
taken as independently given, because both are built on the partic- 
ipants' expectations (or hypotheses) about events that are, in turn, 
shaped collectively by their own expectations. Anyone who trades 
in markets where prices are changing incessantly knows that par- 
ticipants are strongly influenced by market developments. As 
Soros suggests, "Buy and sell decisions are based on expectations 
about future prices, and future prices, in turn, are contingent on 
present buy and sell decisions."34 Rising prices, fueled by buyer in- 
terest exceeding that of sellers, tend to attract even more buyers. 
Likewise falling prices tend to attract more sellers. 

There's ylenty of evidence of positive feedback loops in financial 
markets of all varieties. How could such self-reinforcing trends 
persist if supply and demand curves were independent of market 
prices? In the normal course of events, a speculative price rise pro- 
vokes counteracting forces: Supply is increased and demand re- 
duced. Thus temporary excesses are corrected with the Passage of 
time. But Soros disputes that this always happens. In the stock 
market, for example, the performance of a stock may affect the 
performance of the company in question in a variety of ways. He 
contends that such paradoxical behavior is typical of all financial 
markets that serve as a discounting mechanism for future develop- 
ments, notably stock markets, foreign exchange markets, banking, 
and all forms of credit. 

Soros yoints to the need to understand the process of change that 
we can observe all around us. We're both instigators of, and reac- 
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tors to, change. In his own words, "The presence of thinking par- 
ticipants complicates the structure of events enormously: the par- 
ticipants' thinking affects the course of events and the course of 
events affects the participants' thinking." From this we can identify 
the core of Soros's thesis about the dynamics of financial markets. 
It's a process of coevolutionary learning. Just as we've discussed at 
length, economic agents must base their decisions on an inherently 
imperfect understanding of the situation in which they participate. 
We saw that it baffles music lovers at the E1 Farol, that it provokes 
defection in the Trader's Dilemma, and that it frustrates drivers on 
a congested highway. Thinking always plays a dual role. First, yar- 
ticipants seek to understand the situation in which they partici- 
pate. Second, their imperfect understanding serves as the basis of 
decisions that influence the actual course of events. 

What makes the participants' understanding imperfect is that 
their thinking affects the very situation to which it applies. They're 
caught up as participants in the process that they're trying to un- 
derstand. Because therefs a discrepancy between the expectations 
(or favored hypothesis) held by each participant and the outcome 
itself, invariably some participants "change their mind" next time 
around. This also changes future outcomes. Soros gives this dis- 
crepancy a special name. He calls it the participants' bias. The ac- 
tual course of events is very likely to differ from the participants' 
expectations, and this divergence gives an indication of the partici- 
pants' bias. 

It's this bias that forms the centerpiece of what he calls his tlleory 
of reflexivity. Soros splits the divergence into two components: (1) 
the coglzitive fzllzction is the participants' effort to understand the 
situation, and (2) the participnting fiitzctiorl is the impact of their 
thinking on the real world.35 We've used slightly different terms, 
namely i ~ z d z ~ c t i v e  reasoning and the collective ontcomes. When both 
functions operate simultaneously, they interfere with each other. 
Instead of a determinate result, we have an interplay in which both 
the situation and the participants' views are dependent variables, 
so that an initial change precipitates further changes both in the sit- 
uation and the participants' views. He calls this particular kind of 
positive feedback process "reflexivity."36 Reflexivity doesn't pro- 
duce an equilibrium. Because the two recursive functions belong to 
the world of morphogenesis, they produce a never-ending process 
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of change. People are groping to anticipate the future with what- 
ever guideposts they can establish. Outcomes tend to diverge from 
expectations, leading to constantly changing expectations and con- 
stantly changing outcomes. 

The idea of a distinction between near-equilibrium and far-from- 
equilibrium conditions has been emphasized before. Clearly Soros 
believes that such distinctions are also important in financial mar- 
kets. But he's quick to add the following rider: "Since far-from- 
equilibrium conditions arise only intermittently, economic theory 
is only intermittently false."37 In other words, his notion of reflex- 
ivity operates intermittently. Thus it has strikingly similar proper- 
ties to the theory of punctuated equilibria and self-organized criti- 
cality (introduced in Chapter 1). 

Soros claims that it's possible to treat the evolution of prices in 
all financial markets as a reflexive, historical process. There are 
long fallow periods when the movements in these markets do not 
seem to follow a reflexive tune but resemble the random walks 
mandated by the efficient markets hypothesis. Because the whole 
process is open-ended, however, discontinuities arise unexpect- 
edly. These sudden changes are shaped by the misconceptions of 
the participants. In this respect, Soros's thesis closely resembles 
that of Pigou. Real causes and psychological causes are reacting 
upon each other. In both cases, price histories are built on fertile 
fallacies. In both cases, the efficient markets hypothesis is found 
wanting. 

Despite his earlier success as a global investor, in this perplexing 
era where old and new economies vie for future superiority Soros 
is vague about how to play today's markets and win. Also, he 
shrouds his past methods in a cloak of mystery. In contrast, 
Charles Lindsay's recipe for trading success is remarkably simple 
and clear. Having probed extensively into the self-affinity issue in 
real markets, Lindsay's strategy embodies many unconventional 
concepts discussed in this chapter. He maintains that all events, 
real or imagined, cause prices to fluctuate as traders and specula- 
tors react to these events and rumors. Because rumors abound, he 
believes that a successful trading system must ignore the rumors 
themselves, taking only the market's net reaction to them into ac- 
count. This is the basis of his trading approach.38 
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Lindsay believes that prices are as unstable as waves pounding 
onto a beach. They reflect the incessant struggle between buyers 
and sellers. Whenever buying pressure exceeds selling pressure, 
prices move upward. Whenever selling pressure exceeds buying 
pressure, prices move downward. If buying and selling pressure 
are equal, the price moves sideways. Lindsay likens such price 
swings to those associated with the pressure in a hose as water is 
forced through its nozzle. He defines a Trident price as the price at 
which buying (or selling) pressure is overcome by its opposite. In 
other words, it's the price at a turning point. Price fluctuation in 
the Same trend direction is called a price swing, joining the lowest 
price in the trend to the highest price in the trend, or vice versa de- 
pending on trend direction. Figure 7.9 illustrates various price 
swings from one Trident price to the next. Trident prices are noth- 
ing more than local maxima or minima in the recent price history. 
For example, all the depicted swings from P, to P,, and from P, to 
P,, are swings from a local maximum (or minimum) to a local min- 
imum (or maximum). Such turning points define those occasions 
when buying or selling pressure is overcome by its opposite. 

The chart depicting price variations in the market for live hogs 
highlights a typical trading opportunity using Trident analysis. 
Note that the drop in price from P, to P, is about 20 cents per 
pound. Then the price rises again-from P, to P,-by about 12 
cents per pound. According to Trident theor< the next downward 
swing-namely P, to P,-should reach a target price of about 39.5 
cents per pound. As the historical chart shows, the realized price, 
P„ dipped slightly below 39 cents per pound. In Trident terms, this 
trade was fully successful since it exceeded its target price.39 

Like Elliott wave theory, Trident analysis is a trading strategy 
that's based on an investor's ability to recognize various patterns 
formed by sequential price gyrations in the marketplace. The 
model itself consists of a collection of formulae deduced from 
analyses of price swings and price action. It is path dependent in 
the sense that a future price depends sensitively on the cumulative 
sequence of historical price movements. In practical terms, the 
strategy allows the investor to calculate an "ideal" target price and 
potential profit for each "tradable" price swing. The price swing P, 
to P,-shown in Figure 7.9-depicts only one best trade: Buy at P, 



L l V E  CATTLE - CHE I 

L l V E  HOCS - CM€ I 

I 

L- 
99 o--- 

i i  i .  i i  i i  T 

A S ~ D I D I J F ~ ~ A ~ J I J A S I O  
r 

Price Fluctuations 
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and sell at P,. Thus, the Trident model assumes that the next price 
swing will resemble the previous swing in the Same direction. In 
other words, it assumes the Same kind of symmetry that underlies 
the principles of fractal geometry: self-similarity. 

The target price is ideal in the sense that it serves as an optimistic 
forecast rather than a hard-and-fast prediction. Targets aren't al- 
ways reached, but the one algorithm holds true for calculating 
swing targets at all levels. Lindsay's simple algorithm is built on 
the notion that price action is not random but sequential, path de- 
pendent, and often close to symmetrical. A host of different mar- 
kets contain numerous examples of Trident price formation and 
target completion. In practice, ideal targets are reached about 40 
percent of the time. Potentially profitable trades occur far more fre- 
quently, because trades can be terminated early if their ideal tar- 
gets turn out tobe unattainable. The proof of Trident is in the bank. 
Many of Lindsay's devout students have accumulated impressive 
fortuiies. 

Like Elliott, the key to Lindsay's success lies in the recognition 
that prices fluctuating over several levels of time increment contin- 
uously and simultaneously. He distinguishes between five levels, 
claiming that his Trident analysis is effective at each level: (1) mi- 
croswings, which occur during a daily trading session (e.g., at 
fifteen-minute intervals); (2) minor swings, which are measured 
from the highest daily high to the lowest daily low in sequence, 
then from the lowest daily low to the highest daily high in se- 
quence; (3) intermediate swings, which are measured from the 
highest minor high to the lowest minor low in sequence and from 
the lowest minor low to the highest minor high in seqiience; (4) 
major swings, which are measured from the highest intermediate 
high to the lowest intermediate low in sequence and from the low- 
est intermediate low to the highest intermediate high in sequence; 
and (5) master swings, which take several years to form and are 
defined by sequential life of contract highs and lows. 

Full details of Lindsay's trading method will not be discussed 
here.40 That would breach an oath of commercial confidentiality. 
My modest aim is to show that relatively simple but effective trad- 
ing strategies can be founded on multifractal scaling principles. 
Siich methods are easier to apply than Elliott's wave principle, yet 
the underlying forces shaping price fluctuations are similar. Impor- 
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tantly, each method recognizes that the market is always right. The 
market coevolves, and you, as a trader, must coevolve with it. One 
fascinating feature of the Trident algorithm is that success hinges 
upon the investor's ability to recognize a tradable situation. Two 
key criteria defining "tradability" are what Lindsay calls "determi- 
nate" and "trend reversal" prices. Both of these are defined in 
terms of a single fraction of earlier price swings. That fraction just 
happens to be 0.625, remarkably close to the Golden Ratio! 

How Markets Learn 

We've Seen how price histories trace out remarkably symmetrical 
geometrical patterns over different timescales. It's as if markets 
possess a collective mind of their own, a fractnl mind. We've also 
learned that some of the most successful players in the investment 
game-people like Robert Prechter, George Soros, and Charles 
Lindsay-believe that individual decisions can "move" markets 
and, in turn, that the market's collective mind affects individual in- 
vestors. Once again, the self-reinforcing engine behind all of these 
observations is the unfolding process of coevolutionary learning. 

1s there a way of relating these two sets of observations? Can we 
test whether fractal geometry is consistent with Soros's theory of 
reflexivity or Pigou's thesis on the excesses of human optimism 
and pessimism? This would appear to be impossible if we choose 
to resort to traditional modeling techniques. Closed-form models 
cannot handle a diverse population of investors harboring literally 
hundreds of different hypotheses about market behavior. But a 
possible way out of this dilemma has been mentioned in earlier 
chapters. Agent-based simulations may be able to accommodate 
the vastly heterogeneous beliefs held by market participants, 
thereby uncovering some of their emergent features. 

Instead of confining ourselves to the vehicles themselves, in 
Chapter 6 we looked at traffic behavior in terms of drivers' psychol- 
ogy. We saw that the beliefs and expectations of drivers are con- 
stantly being tested in a world that forms from their and others' ac- 
tions and subjective beliefs. Perhaps the Same may be true of the 
stock market. After all, the typical investor is not so different from 
the typical driver! For both, prediction usually means a short-term, 
beat-the-crowd anticipation of tomorrow's situation (i.e., prices or 



1 242 Cocuolz~ing Markets 

travel times). Why not view the stock market as a diverse collec- 
tion of beliefs, expectations, and mental models? 

Brian Arthur is one Santa Fe Institute economist who opted to 
test this approach to financial markets. Together with John Hol- 
land, Blake Le Baron, Richard Palmer, and Paul Tayler, Arthur cre- 
ated an artificial stock market on the computer, inhabited by "in- 
vestors" who are individual, artificially intelligent programs that 
can reason inductively.41 In this market-within-a-machine, artifi- 
cial investors act like those economic statisticians we described in 
Chapter 6. They're constantly testing and discarding expectational 
hypotheses of how the market works and which way prices will 
move. These subjective, expectational models are a bit like the ones 
used by Arthur's "silicon patrons" at the E1 Farol bar. Just as 
there's no way of telling how many devotees of Irish music plan to 
come to the E1 Farol next Thursday evening, or how many drivers 
plan to take the Same expressway home after work tonight, there's 
no way that investors can tell what tomorrow's prices will be in the 
stock market. 

There are plenty of clues around, of Course. For example, a popu- 
lar guide to the state of prices the next day is the value of tomor- 
row's stock index in the futures market. If that value is above to- 
day's closing value, it means that the bulk of investors expect 
tomorrow's prices to rise. But there are literally hundreds of differ- 
ent hypotheses about tomorrow's state of play. Here are a couple of 
other possibilities: 

IF today's price is higher than its average in the last one hundred 
days, 
THEN predict that tomorrow's price will be 3 percent higher than to- 
day's. 

IF today's price breaks below the latest trendline upward, 
THEN predict that next week's price will be 5 percent lower than this 
week's. 

Some investors may keep many such models in mind, others may 
retain only one at a time. In the Prediction Company's artificial 
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stock market, each agent adopts his "most reliable" model-the 
one that performs best in the market's current state. Naturally 
enough, different expectational models may perform better than 
others at different times. Thus investors must retain and adopt a 
suite of models for their buy and sell decisions. Eventually, the 
poorer performing models are discarded. Agents use a generic al- 
gorithm to produce new forecasting models from time to time. 

The learning process in this silicon world Comes from two 
sources: discovering "new" expectational models and identifying 
the ones that perform best from among the current set.42 Prices 
form endogenously from the bids and offers of the silicon agents, 
and thus ultimately from their beliefs. Such expectational models 
are akin to Pigou's "changes in menfs attitudes of mind," and they 
display some feedback effects inherent in his theory. For example, 
if enough traders in the market happen to adopt similar expecta- 
tional models, positive feedback can turn such models into self-ful- 
filling prophecies.43 The agent-based experiments conducted by 
the Prediction Company have typically involved about one hun- 
dred artificial investors each armed with sixty expectational mod- 
els. As this pool of six thousand expectational models coevolves 
over time, expectations turn out to be mutually reinforcing or mu- 
tually negating. Temyorary price bubbles and crashes arise, of the 
very kind that Pigou attributed to excesses of human optimism or 
pessimism. These more volatile states may be attributed to the 
spontaneous emergence of self-fulfilling prophecies. 

A key aspect of agent-based simulations are their internal dy- 
namics. Expectations come and go in an ocean of beliefs that form 
a coevolving ecology. How do the beliefs of fundamentalists fare in 
this silicon world? Do technical trading beliefs ever gain a firm 
footing? The results so far suggest that both views are upheld, but 
under different conditions.41 If a majority of investors believe the 
fundamentalist model, the resulting prices will validate it, and de- 
viant predictions that arise by mutation in the population of expec- 
tational models will be rendered inaccurate. Thus they can never 
get a solid foothold in the market. Necessity prevails. But if the ini- 
tial expectations happen to be randomly distributed uniformly 
about the fundamentalist ones, trend-following beliefs tliat appear 
by chance have enough density to become self-reinforcing in the 
ecology of beliefs. Chance shatters the conventional wisdom. Then 
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the use of past prices to forecast future ones becomes an emergent 
property. 

In this mutated regime, no stationary equilibrium seems to be 
reached. The market keeps evolving continuously. If initially suc- 
cessful agents are "frozen" for a while, then injected back into the 
market much later, they do no better than average. The market 
seems to be impatient, moving on and discovering new strategies 
that replace earlier ones. There's no evidence yet of market 
"moods," but there is evidence of GARCH.45 The presence of 
GARCH means that there are periods of persistent high volatility 
in the price series, followed randomly by periods of persistent low 
volatility. Such phenomena make no sense under an efficient mar- 
ket hypothesis. But in an evolutionary marketplace, prices might 
continue in a stable pattern for quite some time, until new expecta- 
tions are discovered that exploit that pattern. Then there'll be very 
rapid expectational changes. These transform the market itself, 
causing avalanches of further change. Once again, there's evidence 
of punctuated equilibria and self-organized criticality. Perhaps that 
see-sawing action we observe in markets is symptomatic of a sys- 
tem driving itself toward then away from the edge of chaos!46 

Tf it does, this would be further evidence that markets undergo 
phase transitions. Observable states look like they're poised be- 
tween necessity and chance, between the deterministic and the 
seemingly chaotic, between the simple and the complex. In sum- 
ming up, Arthur states: 

We can conclude that given sufficient homogeneity of beliefs, the 
standard equilibrium of the literature is upheld. The market in a 
sense in this regime is essentially "dead." As the dial of heterogene- 
ity of initial beliefs is turned up, the market undergoes a phase tran- 
sition and "comes to life." It develops a rich psychology and displays 
phenomena regarded as anomalies in the standard theory but ob- 
served in real markets. The inductive, ecology-of-expectations model 
we have outlined is by definition an adaptive linear network.47 In its 
heterogeneous mode it  displays complex, pattern-forming, non- 
stationary behavior. We could therefore rename the two regimes or 
phases siirtple and complex. There's growing evidence suggesting that 
actual financial markets live within the complex regime.48 
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It seems that market participants are involved in an incessant 
game of coevolutionary learning. Agent-based simulation experi- 
ments like the Santa Fe Artificial Stock Market offer a keyhole 
through which we can gain useful insights into adaptive behavior. 
Similar studies by others have also shown that heterogeneous be- 
havior on the part of participants can provide opportunities for 
making consistent profits, that participants with stable bankrolls 
appear to have an advantage over those who don't, and that small 
perturbations can sometimes drastically alter the behavior of the 
participants.49 As empirical evidence mounts against the view that 
markets are efficient, new explanatory approaches like that of the 
adaptive, boundedly rational investor will gain more credibility. 
Scaling principles and simulation experiments will play an increas- 
ingly important part in this new behavioral revolution. Behavioral 
experiments in such silicon worlds may even herald a new kind of 
economics, an experimental economics that relies heavily on 
agent-based simulation. This new approach to social science is the 
subject of the final chapter. 
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Artificial Economics 

Truth is nzi~cli too cornplicated to allow anything but approximations. 

-John von Neumann 

Limits to Knowledge 

It's hard to let old beliefs go. They're so familiar and comforting 
that we depend heavily on them for peace of mind. Most of us for- 
get Kant's message that the way the world looks is nothing more 
than the way we happen to See it through our own particular set of 
lenses. So it has been in economics. That old set of lenses, still the 
most popular pair on the block, remains stubbornly homogeneous, 
static, and linear. But a new set have arrived on the Scene. These 
new lenses are dauntingly heterogeneous, dynamic, and nonlinear. 

A pressing need for new lenses has prompted a focus in this 
book on the less predictable elements underpinning economic 
change, those chance events that punctuate the calm, deterministic 
landscape of the classical economic system, propelling it into an 
uncertain future. I hope I've convinced you that real economies 
evolve in fits and starts. Calm is merely the precursor of the next 
storm. These fits and starts contain structure and recurrent pattern. 
In an evolving economy, morphogenesis and disequilibrium are 
more often the norm than stasis and equilibrium. 

But this is only symptomatic of a more complicated problem. As 
we've stressed throughout, the real difficulty is that each of us is 
Part of the very economy that we're desperately trying to under- 
stand. This has the hallmark of a systems problem. But it's not a 
classical systems problem, like how a clock "tells the time" or how 



a car ''moves."~ Clocks and cars are structurally complex, but 
they're behaviorally simple. Their behavioral simplicity transcends 
the structural complexity of their intricate parts. An economy, 
however, is behaviorally complex. Because the "parts" are human 
agents, they're observers as well as participants, learning from 
their experiences while contributing to the collective outcome. 
Playing these dual roles really puts the cat among the pigeons! 
What people believe affects what happens to the economy, and 
what happens to the economy affects what people believe. Because 
each agent's beliefs are affected differently, nobody knows exactly 
what will happen! 

Whenever agents learn from, and react to, the moves of other 
agents, building a simple predictive model to forecast the collec- 
tive future is fraught with danger unless the economy is linear. A 
linear economy obeys the principle of superposition. Itfs easy to 
analyze because we can extrapolate our understanding of the 
agents in isolation. Learning is only weakly interactive, so the 
economyfs behavior is just the sum of the behavior of its con- 
stituent parts. 

But weakly interactive learning, like that which is associated 
with repetition of much the same problem, is subject to diminish- 
ing returns. Wefre trapped in the frozen world of stasis. For learn- 
ing to be truly adaptive, the stimulus situations must themselves 
be steadily evolving rather than merely repeating conditions. The 
existence of a recursive, nonlinear feedback loop is the familiar sig- 
nature of coevolutionary learning. People learn and adapt in re- 
sponse to their interactive experiences. In turn, the whole economy 
reacts and adapts collectively based on the choices that people 
make. In other words, the behavior of the whole is more than the 
sum of its parts. 

Under strongly interactive conditions, wefve Seen that collective 
outcomes can differ from what each agent expected or intended. 
Unexpected outcomes trigger avalanches of uncertainty, causing 
each agent to modify his view of the world. As Kant has suggested, 
nobody can have certain knowledge of things "in themselves." 
Each of us knows only how things seem to us. If we're privy to 
only part of the information about the economy, then there are 
clear limits to what we can know. Each agent's mind sets these lim- 
its. When we ask questions about the economy, we're asking about 
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a totality of which we're but a small part. We can never know an 
economy completely, nor can we See into the minds of all its agents 
and their idiosyncracies. 

From the above, it's pretty clear that knowledge becomes a much 
fuzzier concept in a coevolutionary economy. If there are definite 
limits to what we can know, then our ability to reach identical con- 
clusions under similar conditions should not be taken for granted. 
We're unique products of our uniquely individual experiences. 
Our personal knowledge is honed by the constructs, models, and 
predictors that we choose to use to represent it. All of this has to be 
created, put together over time by us as well as by others in society 
as a whole. Despite the fact that learning can be strongly interac- 
tive, it can also be frustratingly slow, partly because some knowl- 
edge stocks are surprisingly resilient to change. Theyfre also sur- 
prisingly complex. 

In Chapter 2, we mentioned that deductive rationality fails us 
when we're forced to deal with complicated decision problems. Be- 
yond a certain degree of complicatedness, our rationality is 
bounded. Even more ominous was the fact that in strongly interac- 
tive decision situations, each agent may be forced to guess the be- 
havior of other agents. Suddenly wefre all plunged into a world of 
subjective beliefs, and subjective beliefs about subjective beliefs. 
Complete, consistent, well-defined premises are impossible under 
these trying conditions. Deductive reasoning breaks down because 
the problem has become ill defined. 

Whenever deductive reasoning breaks down, human agents 
tend to resort to inductive reasoning. In other words, we search for 
patterns.2 The right-hand side of the brain handles pattern recogni- 
tion, intuition, sensitivity, and creative insights. By putting a com- 
bination of these processes to work, we use perceived patterns to 
fashion temporary constructs in our mind. These simple constructs 
fill the gaps in our understanding. They "localize" our decision- 
making, in the sense that we can do no better than act on the best 
construct at our disposal. When feedback changes our perceptions, 
thereby strengthening or weakening our confidence in our current 
set of constructs, we may decide to discard some and retain others. 

We looked at the importance of inductive reasoning in three eco- 
nomic contexts: (1) estimating the periodic demand for a public fa- 
cility; (2) estimating travel times and costs on a congested highway; 
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and (3) estimating price movements in financial markets. Each of 
these examples typifies a broader class of problems that arise in 
economics.3 Yet all three possess common features. If there was an 
obvious model that all agents could use to forecast the outcome, 
then a deductive solution would be possible. But no such model 
has been found to date. Irrespective of recent history, a wide range 
of plausible hypotheses could be adopted to predict future behav- 
ior. This multiplicity of possibilities means that nobody can choose 
their own strategy in a well-defined manner. Each problem is ill 
defined, and the agents involved are catapulted into an uncertain 
world. Thus they're forced to resort to intuition and other induc- 
tive modes of reasoning. 

There's an even more diabolical dimension to each of these prob- 
lems: Any shared expectations will tend to be broken up. For ex- 
ample, if all of our bar lovers believe that most will go to the E1 
Farol next Thursday night, then nobody will go. But by all staying 
home, that common belief will be destroyed immediately. If all of 
our peak-hour commuters believe that most drivers will choose to 
commute at peak hour, then most explorers will search for ways to 
avoid peak-hour congestion. On the other hand, if all believe few 
will do this, then all will commute at peak hour, thereby under- 
mining that belief. Not only do expectations differ, but they're also 
changing incessantly. Adaptive agents, who persistently alter their 
mental models of other agents' behavior, will decide and behave 
differently.4 They're forever changing their mental images of each 
other's likely behavior. Beliefs about beliefs are mostly volatile. 
There's no evidence to suggest that adaptive behavior ever settles 
down into a steady, predictable pattern. 

Adaptive Agents and the Science of Surprise 

The key to understanding adaptive behavior lies with explanation 
rather than prediction. When economic agents interact, when they 
must think about what other agents may or may not be thinking, 
their coevolving behavior can take a variety of forms. Sometimes it 
may look chaotic, sometimes it may appear to be ordered, but 
more often than not it will lie somewhere in between. At one end 
of the spectrum, chaotic behavior would correspond to rapidly 
changing models of other agents' beliefs. If beliefs change too 
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quickly, however, there may be no clear pattern at all. Such a 
volatile state could simply appear to be random. At the other end 
of the spectrum, ordered behavior could emerge, but only if the 
ocean of beliefs happens to converge onto a mutually consistent set 
of models of one another. One familiar example is that stalwart of 
the economic theoristfs world-a state of equilibrium among a set 
of deductively rational agents. 

For most of the time, however, we'd expect that mental models 
of each other's beliefs would lie somewhere in between these two 
extremes, poised and ready to unleash avalanches of many small 
and a few large changes throughout the whole populatioii of inter- 
acting agents. Why should we expect this? The plentiful evidence 
supporting the ubiquitous applicability of power laws is one rea- 
son. Given more data, we would expect each agent to improve his 
ability to generalize about the other agents' behavior by construct- 
ing rnore conzplex models of their behavior. These more complex 
models would also be more sensitive to small alterations in the 
other agents' behavior. Tlius as agents develop more complex 
models to better predict outcomes, the coevolving system of agents 
tends to be driven away from the ordered regime toward the 
chaotic regime. Near the chaotic regime, however, such complexity 
and changeability would leave each agent with very little reliable 
data about the other agents' behavior. Thus they would be forced 
to simplify, to build less complex models of the other agents' be- 
havior. Such simplified models can succeed in calmer times. 

Economic enigmas-like the periodic demand for public facili- 
ties, for road space, or for financial instruments-have several key 
features in common. Each contains the essential elements of a com- 
plex adaptive system (CAS). A CAS possesses three important at- 
tributes. First, it involves a large (but not infinite) number of 
agents. Second, these agents are adaptive and intelligent, making 
decisions on the basis of mental models (like travel time predictors 
or financial models), which they modify in the light of their experi- 
ences and replace with new ones if necessary. Finally, no single 
agent knows what all the other agents are (thinking of) doing, be- 
cause each has access to only a limited amount of information. 

The upshot of all this is that there's no optimal predictor in a 
CAS. The best each agent can do is apply the predictor that has 
worked best so far, be willing to reevaluate the effectiveness of his 
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favorite predictor, and adopt more convincing ones as new infor- 
mation becomes available. An agent's active predictor may be the 
most plausible or most profitable one at the time. But the total pop- 
ulation of active predictors coevolves incessantly. As we've 
stressed repeatedly, coevolutionary learning means that the total 
population of active predictors determines the outcome, but 
the outcome history also shapes the total population of active 
predictors. 

One of the difficulties with a CAS is that nobody really knows the 
total population of active predictors at any point in time. Because 
it's impossible to formulate a closed-form model to deduce future 
outcomes, traditional economic models fail in this environment. In 
John Holland's terminology, the population of predictors forms an 
ecology. If we want to understand how this ecology might evolve 
over time, we're forced to resort to simulation experiments. Simu- 
lation doesn't simplify the economy, but incorporates as much de- 
tail as necessary to produce emergent behavior. There's simply no 
other way of accommodating such a large, ever-changing popula- 
tion of active predictors. 

The defining characteristic of a CAS is that some of its global be- 
haviors cannot be predicted simply from knowledge of the under- 
lying interactions.5 In previous chapters we explored emergence. 
An emergent phenomenon was defined as collective behavior that 
doesn't seem to have any clear explanation in terms of its micro- 
scopic parts. What does this kind of emergent simplicity tell us? It 
tells us that an economic system of interacting agents (like urban 
residents, bar attendees, traffic commuters, or traders in a financial 
market) can spontaneously develop collective properties that are 
not at all obvious from our knowledge of the agents themselves. 
These statistical regularities are large-scale features that emerge 
purely from the microdynamics. They signify order despite 
change. Sometimes, they display self-similarity at different scales. 

Furthermore, the laws governing economic change can't be un- 
derstood by limiting our study to a single human lifetime or a few 
generations. A deeper understanding of how the economy coe- 
volves can be gained only by adopting a long-term perspective. 
Only then can we see that the best thing to do-to move or not to 
move, to go or not to go, to commute or not to commute, to buy or 
to sell-really depends on what everyone else is doing. But since 
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no individual agent knows what everyone else will do, all he can 
do is apply the set of predictors that has worked best for him so far. 

Since the study of CAS, with changing patterns of interactions 
between adaptive agents, often gets too difficult for a mathemati- 
cal solution, finding a new way of doing social science has become 
imperative. We might call the new kid on the block the science of 
"surprise." This kind of science is gradually gaining ground, as 
various social scientists enlist their computers as laboratories for 
social science experiments. The primary research tool in this new 
field is simulation. 

The simulation of agents and their interactions goes by different 
names: agent-based modeling, bottom-up modeling, and artificial 
social Systems, to name a few. What's crystal clear, however, is its 
purpose. Agent-based simulation attempts to gain a deeper under- 
standing of CAS through the analysis of simulations. As Robert 
Axelrod suggests, this new method of doing social science can be 
contrasted with the two standard methods discussed throughout 
this book: deduction and induction. Like deduction, it starts with a 
set of explicit assumptions. But unlike deduction, it does not prove 
theorems. Instead, an agent-based model generates simulated data 
that can be analyzed inductively. The simulated data come from a 
rigorously specified set of rules rather than from direct measure- 
ment of the real world.6 Whereas the aim of induction is to discern 
patterns in data, and that of deduction is to discover consequences 
of assumptions, the aim of agent-based modeling is to enhance our 
intuition. 

Numerous examples and experiments presented throughout this 
book have shown how locally interacting agents can produce sur- 
prising, large-scale effects. Agent-based simulation is a rigorous 
way of conducting such "thought experiments." The assumptions 
are often simple, but the full consequences are rarely obvious. We 
have referred to the large-scale effects of locally interacting agents 
as emergent properties. Emergent properties seem surprising be- 
cause it can be difficult to anticipate the consequences of even very 
simple forms of interaction. In an economy, for example, emergent 
properties arise from seemingly simple interactions between 
agents engaged in the business of exchange. Congestion and mar- 
ket volatility are two unwelcome emergent properties of such so- 
cioeconomic interactions. 
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A Harvard systems scientist, Vince Darley, has argued that emer- 
gence is purely the result of a phase change in the amount of com- 
putation necessary for the optimal prediction of certain phe- 
nomena.7 Imagine that s(n) denotes the amount of computation 
required to simulate a system of size n and arrive at a prediction of 
the given phenomenon. Further imagine that u(n) is the amount of 
computation needed to arrive at the Same result by way of a cre- 
ative analysis-founded, for example, on a deeper understanding 
of the system. Darley suggests that if u(n) < s(n), the system is non- 
emergent, but if u(n) > s(n), the system is emergent. 

We can visualize Darley's phase change in the context of traffic 
congestion. In Chapter 6, we discussed dynamic jamming tran- 
sitions. Remember how they transform the traffic from a free- 
flowing state to stop-start waves at a critical traffic density. As long 
as the density of vehicles remains below this critical threshold, it's 
rather easy to estimate individual travel times. They're roughly the 
Same for each driver, and variations between vehicles are small. 
Experience engenders reliable predictions. We can deduce the out- 
come readily from our understanding of the system's performance 
as a whole. We can do this because the behavior of this simple sys- 
tem is easily understandable. There's no need to carry out a de- 
tailed simulation of it to arrive at a travel time prediction. In light 
traffic, obviously u(n) < s(n), and the traffic system is nonemergent. 

Once the critical density is exceeded, however, travel time pre- 
dictability quickly starts to fade. As discussed earlier, the traffic can 
change from a regime where the travel time is predictable with an 
error rate of 3 percent to a regime where the error rate climbs to 65 
percent or higher. There's a critical region around maximal capac- 
ity where the traffic as a whole is very sensitive to small perturba- 
tions. This ernergent phase transition in the traffic's collective be- 
havior results in a much greater spread of individual travel times. 
The business of predicting your own travel time suddenly be- 
Comes much more challenging. Under heavily congested con- 
ditions, perfect understanding of the system is replaced by a be- 
muddled picture of what's happening. In this emergent situation, 
u(n) > s(n). Under these conditions, we must resort to simulation if 
we wish to improve our understanding of the way the traffic be- 
haves collectively. 

The surprising thing about self-organization is that it can trans- 
form a seemingly simple, incoherent system (e.g., light traffic) into 
an ordered, coherent whole (a strongly interactive traffic jam). 
Adding a few more vehicles at a crucial stage transforms the sys- 
tem from a state in which the individual vehicles follow their own 
local dynamics to a critical state where the emergent dynamics are 
global. This involves a phase transition of an unusual kind: a non- 
equilibrium phase transition. Space scales change suddenly from 
microscopic to macroscopic. A new organizing mechanism, not re- 
stricted to local interactions, has taken over. Occasional jamming 
transitions will even Span the whole vehicle population, because 
the traffic has become a complex system with its own emergent dy- 
namics. What's most important is that the emergence of stop-start 
waves and jams, with widely varying populations of affected vehi- 
cles, could not have been anticipated from the properties of the in- 
dividual drivers or their vehicles. 

Ac the size and rule complexity of many classes of socioeco- 
nomic system changes, various phase changes can occur when the 
curves u(n) and s(n) Cross (sec Figure 8.1). Darley argues that 
there's no discontinuity separating nonemergent and emergent 
systems, just a phase change in the optimal means of prediction. 
Beyond this, perfect understanding of the system does no better 
than a simulation. Our astonishment at the fact that we seem un- 
able to predict emergent properties does not stem from any inabil- 
ity to understand but from the inherent properties of the system at- 
tributable to the accumulation of interactions. As systems become 
more emergent, the propagation of information through accumu- 
lated interaction will blur the boundaries of any analysis that we 
try to perform. All useful predictive knowledge is contairied in the 
accumulation of interactions. 

The advantage of an agent-based approach to any CAS is that 
the system's dynamics are generated by way of the simulation. In- 
teractions can accumulate, multiple pathways can be recognized, 
and emergent properties can be revealed, all without making any 
ad hoc assumptions or aggregated models for these properties. The 
major disadvantages of simulation are the extremely high com- 
putational demands and the fact that it may not always lead to a 
better understanding of the basic mechanisms that caused the 
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FIGURE 8.1 A phase change between 
nonemergent and emergent systems. 

dynamics. Although the inherent dynamics are revealed, they're 
not always explained. 

The fact that a given system lies far beyond the realms of deduc- 
tive reasoning does not necessarily mean that we should lose all 
faith in our traditional means of comprehension, explanation, and 
prediction. Consider the game of chess, first discussed in Chapter 
2. Modern computer chess programs use extremely sophisticated, 
brute force approaches to simulate the game and decide on moves. 
By way of contrast, human grand masters use a sub tle combination 
of pattern recognition, generalization, and analogy making to "un- 
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derstand" the game and make their decisions. In this instance, the 
phase change where the curves u(n) and s(n) Cross is at such a 
value that humans can still boast superiority at determining such 
elusive concepts as positional advantage.8 But the computer is 
rapidly bridging such gaps. 

Many scientists now believe that chess lies on the emergent side 
of the phase boundary, so much so that solution by simulation is 
ultimately the best approach. However, human experience and un- 
derstanding can often do surprisingly well, despite all the limits of 
knowledge and reasoning. Perhaps a sophisticated combination of 
both approaches may be the best bet for predicting the behavior of 
a CAS. The brain itself is an extremely complex system, one whose 
functioning would appear to lie far beyond the phase change. Our 
state of mind seems to be an emergent property of our brains, more 
mysterious than the motion of a car because we can't See the men- 
tal wheels going around. A human mind is a process, not a thing, 
emerging from the collective interactions of appropriately orga- 
nized bits of ordinary matter. This has very important ramifica- 
tions for the youthful field of artificial life.9 We look at some of the 
economic ramifications of these exciting new developments in the 
next section. 

The New Age of Artificial Economics 

There's no universally agreed upon definition of economic activity. 
Classical economics texts place most of their emphasis on ex- 
change processes, such as trade between producers and con- 
sumers. In other words, they emphasize transactions between 
agents. In this book, our emphasis has not been on the transac- 
tional character of economic interactions but on the dvnamic, 
learning aspects. Why? Because the adaptive behavior of human 
agents makes a dynamic approach obligatory. Human learning 
means that economies are not just transactional systems to be ana- 
lyzed as if they're simply part of a giant accounting system. In- 
stead, economies should be treated as something very much 
"alive." 

Traditionally, the scientific study of life has been restricted to bi- 
ology. But some economists have recognized the nexus between bi- 
ology and economics. It was Alfred Marshall who contended that 



258 Art$ciul Economics 

biology, not mechanics, is the true Mecca of economics.1o Econom- 
ics should be a branch of biology concerned with the study of so- 
cioeconomic life. That makes it cultural and dynamic, not purely fi- 
nancial and transactional. Economics must embrace a cluster of 
properties associated with life in general: self-organization, emer- 
gence, growth, development, reproduction, evolution, coevolution, 
adap tation, and inorphogenesis.1l 

Above all, economic development depends crucially on path- 
dependent principles of self-organization and coevolution, unfa- 
miliar processes that have remained largely untouched by tradi- 
tional analytical tools. The challenge is to create a bottom-up 
approach, a syrithetic methodology in which the behavior of agents 
is examined in each other's presence. Its pursuit lies at the heart of 
agent-based simulation. The collective behavior that results from 
such an approach can be radically different to that posited from 
studies of agents in isolation. 

The time seems ripe for a radically new approach to economics. 
We might call it art$cial ecotzoniics! Like its mentor and predeces- 
sor, artificial life, this new field of artificial economics (AE) would 
adopt a synthetic approach. Instead of taking economies apart, 
piece by piece, AE would attempt to put economies together in a 
coevolutionary environment. Its primary aim would be to link eco- 
nomic macrostructure to agents' microeconomic behavior in a con- 
sistent, path-dependent manner. We might even find that such a 
synthetic approach could lead us beyond known economic phe- 
nomena: beyond econonlic-lfe-0s-zue-knozu-it and into the less famil- 
iar world of cconovlic-lfe-ac-it-col~ld-be.12 

Instead of those stubbornly homogeneous agents who dominate 
the classical economist's world, AE would concern itself with a 
rich diversity of agents generating lifelike economic behavior. To 
produce lifelike economic outcomes, AE would create diverse be- 
lmvior generators. This problem is partly psychological and partly 
computational. We've discussed behavior generators in earlier 
chapters, under the guise of constructs, predictors, and mental 
models. Many of the mechanisms by which economic reasoning 
and behavior arises are known. There are still some gaps in our 
knowledge, but the general picture is falling into place. Like na- 
ture, an economy is fundamentally parallel. Thus AE can start by 
recapturing economic life as if it'sfi~ndamentally and massively pnral- 
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lel.13 lf our models are to be true to economic life, they must also be 
highly distributed and massively parallel. 

AE would be concerned with the synthetic application of com- 
Puters to the study of complex, economic phenomena. This doesn't 
mean that the computational paradigm would be the underlying 
methodology of behavior generation.14 Nos would AE seek to ex- 
plain economic life as a kind of computer program. Instead, for ex- 
ample, it might use insights from evolutionary biology and human 
psychology to explore the dynamics of interacting agents and the 
resulting collective economic outcomes. This was the synthetic ap- 
proach in the E1 Farol problem. Artificial music lovers were as- 
signed different sets of predictors to aid in their decisionmaking. If 
the ecology of active predictors is suitably diverse, it's likely that it 
would mimic the diverse approaches of an assortment of real mu- 
sic lovers. The Same may be said of artificial commuters and artifi- 
cial investors. 

In the days before computers, economists worked primarily with 
systems whose defining equations could be solved analytically. For 
obvious reasons, they politely ignored those whose defining equa- 
tions could not be solved. This has led to gross approximations, 
sometimes even to gross misrepresentations! With the advent of 
computers, however, mundane calculations can be handled rou- 
tinely. Agent-based simulation allows one to explore an economic 
system's behavior under a wide range of parameter settings and 
conditions. The heuristic value of this kind of experimentation can- 
not be overestimated. One gains much richer insights into the po- 
tential dynamics of an economy by observing the behavior of its 
agents under many different conditions. Let's look briefly at a 
product of this new age of artificial economics: the evolution of an 
artificial society of agents, initially engaged in some relatively 
primitive economic ac tivity. 

Growing a Silicon Society 
It has been said that the ultimate goal of the social sciences is to 
discover laws of cultural dynamics. Economic development in the 

, very long run must play a part in this scientific exercise. The prob- 
lem is that most economic analyses focus on the short to medium 

I run. Furthermore, what economists typically regard as the long 
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run is only a relatively short-run movement from the perspective 
of archaeologists. For the latter, a generation or even a century is a 
relatively short period. Archaeologists tend to think in terms of 
millemia when considering changes in human culture. 

Archaeology can help economics because the field has gleaned a 
reasonably clear picture of socioeconomic development in the very 
long run. In terms of broad epochs, that development has taken us 
from the epoch of hunting and gathering to horticultural settle- 
ments and complex, nonliterate societies, then to the historical 
epoch of urban civilization, household agriculture, and trading 
empires, and more recently to the industrialized economy.15 
There's plenty of evidence suggesting that we're currently in the 
midst of another major transition to a new epoch of postindustrial- 
ization, largely associated with the advent of a knowledge-based 
economy and increasingly sophisticated information-processing 
devices. 

Sometimes the transition between epochs seems to have been 
smooth, but on other occasions there's evidence of crises and 
abrupt upheavals prior to the successful adoption of a new regime. 
Much of the archaeological evidence supports the notion of a series 
of punctuated equilibria, as discussed in earlier chapters. Exam- 
ples even exist where a rapid collapse and reversion to a previous 
regime has occurred. In some well-known cases of relatively iso- 
lated cultures, the socioeconomic process seems to have stuck in a 
more or less stationary or fluctuating state for a very long time. All 
these documented examples provide convincing evidence in sup- 
port of the multiplicity of outcomes that are possible as the eco- 
nomic agents in a society coevolve. 

One of the more baffling cultures to have challenged the minds 
of archaeologists is that of the Anasazi Indians. The earliest settle- 
ment built by this Native American culture dates from A.D. 100, but 
nobody seems to know where they lived before they set up house 
in northeastern Arizona. What is known is that over a period of 
1,200 years, the Anasazi established a flourishing culture of vil- 
lages, shrines, and farms. They enjoyed a golden age of more than 
a hundred years toward the end of the thirteenth century. Then, 
quite suddenly, they abandoned their elaborate dwellings and fer- 
tile farmland and traveled southeast to the Rio Grande and to Ari- 
zona's White Mountains. No one seems to know why the Indians 
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abaridoned the place that had been their fertile home for more than 
a thousand years. But after the exodus, the number of Anasazi 
dwindled to a third of what it was in its heyday. Today only a few 
remnants of their culture have survived, such as their pottery and 
agriculture. Most of their ancient history has been lost. 

But now the Indians have been brought back to "life." This an- 
cient tribe has been resurrected, and their native landscape is once 
again dotted with Anasazi settlements. The big difference on this 
occasion is that each Anasazi community is actually a colored Zone 
on a grid that sits inside the memory of a Macintosh computer. In a 
broader sense, this artificial society consists of two main elements: 
a population of "agents" (like the Anasazi), and an environment in 
which these agents "live." This two-level, silicon world is the joint 
brainchild of Joshua Epstein and Robert Axtell, two researchers at 
the Brookings Institution in Washington, D.C. 

Epstein and Axtell set out to "grow" a social order from scratch, 
by creating an ever-changing environment and a set of agents who 
interact with each other and their environment according to a set 
of behavioral rules. History is said to be an experience that's run 
only once. Clearly Epstein and Axtell don't hold with that view. 
Their idea is that an entire society like the Anasazi-complete with 
its own production, trade, and culture-could be "recreated" or 
evolved from the interactions among the agents. As Epstein sug- 
gests, "You don't solve it, you evolve it." They call the laboratory 
in which they conduct their simulation experiments a Compu- 
Terrarium, and the landscape that the interacting agents inhabit a 
Sugarscape.16 Let's take a closer look at how socioeconomic life de- 
velops in this artificial world. 

The action takes place on a small grid of fifty-by-fifty cells. But 
Sugarscape is not a pure CA. The landscape denoted by this grid is 
not blank, as it is on a typical CA. On it is scattered this silicon 
world's only resource: sugar. In order to survive, the entities that 
inhabit this sweetened landscape must find and eat the sugar. The 
entities themselves are not just cells that can be turned on or off, 
mimicking life or death. Each is an agent that is imbued with a va- 
riety of attributes and abilities. Epstein and Axtell call these inter- 
nal states and behavioral rules. Some states are fixed for the agent's 
life, whereas others change through interaction with other agents 
or with the environment. For example, an agent's Sex, metabolic 
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rate, and vision are hard-wired for life. But individual preferences, 
wealth, cultural identity, and health can all change as agents move 
around and interact. 

Although every interacting agent appears on the grid as a col- 
ored not, each may be quite different. Some are farsighted, spotting 
sugar from afar. Others are thrifty, burning the sugar they eat so 
slowly that each meal lasts an eternity. Still others are shortsighted 
or wasteful. Rapacious consumers eat their sugar too quickly. The 
obvious advantage of this heterogeneity is that it's capable of mim- 
icking (albeit simplistically) the rich diversity of human popula- 
tions in terms of their preferences and physiological needs. Any 
agent that can't find enough sugar to sustain its search must face 
that ultimate equilibrium state. It simply dies! 

Sugarscape resembles a traditional CA in its retention of rules. 
There are rules of behavior for the agents and for the environmen- 
tal sites (i.e., the cells) that they occupy. Rules are kept simple and 
are no more than the commonsense ones for survival and repro- 
duction. For example, a simple movement rule might be: Look 
arozriid as far 11s yoti can, firld the ne~~res f  location containing stcgclr, go 
there, ent ns tnticl.~ as you need to maintain your riietlibolism, saue the rest. 
Epstein and Axtell speak of this as an agent-environment rule. A 
rule for reproduction might be: Breed olzly ifyou've accumrilnted szifi- 
cient ertergy nnd srrgor. Also, there are rules governing socioeco- 
nomic behavior, such as: Retnin yozir cllrrent cultural idel-ifity (e.g., 
coilslrwrer preferences) irnless yotl See that yoii're szrrrozinded by many 
agents of a different kind; if yotr are, change yozrr identity to fit in zuith 
yotu neigilbors or try tofind 17 czlltzlre like your own. This rule smacks 
of Schelling's segregation model, because it highlights coevolu- 
tionary possibilities among nearby neighbors. 

The CompuTerrarium leaps into action when hundreds of agents 
are unleashed randomly onto the grid. Colored dots distinguish 
agents who can spy sugar easily from more myopic agents. Natu- 
rally, all the agents rush toward the sugar. The latter may be piled 
into two or more huge heaps or scattered more evenly throughout 
the landscape. Strikingly, many agents tend to "stick" to their own 
terrace, adjacent to their "birthplace." Because natural selection 
tends to favor those agents with good eyesight and a low meta- 
bolic rate, they survive and prosper at the expense of the short- 
sighted, rapacious consumers. In short, the ecological principle of 
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carrying capacity quickly becomes evident. Soon the landscape is 
covered entirely with red dots (high-vision agents). 

Even with relatively simple rules, fascinating things start to hap- 
pen as soon as the agents begin to interact on the Sugarscape. For 
example, when seasons are introduced and sugar concentrations 
change periodically over time, high-vision agents migrate. But low 
vision, low metabolism agents prefer to hibernate. Agents with 
low vision and high metabolism usually die, because they're se- 
lected against. 

All of the time, the surviving artificial agents are accumulating 
wealth (i.e., sugar). Thus there's an emergent wealth distribution 
on the Sugarscape. Herein lies the first topic of particular interest 
to economists. Will the overall wealth be distributed equally, or 
will agents self-organize into a Pareto distribution? In other words, 
will equity prevail or will the ubiquity of power laws prevail 
again? No doubt you've guessed already. Although quite symmet- 
rical at the start, the wealth histogram on the Sugarscape ends up 
highly skewed. Because such skewed distributions turn up under a 
wide range of agent and environment conditions, they resemble an 
emergent structure-a stable macroscopic pattern induced by the 
local interaction of agents. Self-organization is on the job as usual, 
and the power law wins out again! 

Although these few examples are a useful way of illustrating the 
variety of artificial life evolvable inside the CompuTerrarium, they 
hardly herald an impending revolution in our understanding of 
how an economy evolves. For that we must expand the behavioral 
repertoire of our agents, allowing us to study more complex so- 
cioeconomic phenomena. Epstein and Axtell have made a start on 
this expansion. When a second commodity, spice, is added to the 
landscape, a primitive trading economy emerges. By portraying 
trade as welfare-improving barter between agents, reminiscent of 
those Merchants of Venice that we met in Chapter 4, they imple- 
ment a trading rule of the form: Look arot~ndfor a iteighbor zuith a 
commodity yoil desire, bnrgnin with that ~ieighbor urltil yoil ngree oti ri 

mr~tllally acceptable price, then make an exchange if both of you 7iliil be 
better ofi. 

Surprisingly, this primitive exchange economy allows us to test 
the credentials of that classical theory of market behavior: the effi- 
cient market hypothesis. The first stage of the test involves imbuing 
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agents with attributes consistent with neoclassical economic wis- 
dom-homogeneous preferences and infinite lifespans for process- 
ing information. Under these conditions, an equilibrium price is 
approached. But this equilibrium is not the general equilibrium 
price of neoclassical theory. It's statistical in nature. Furthermore, 
the resulting resource allocations, though locally optimal, don't de- 
liver the expected global optimum. There remain additional gains 
from trade that the agents can't extract. What we find is that two 
competing processes-exchange and production-yield an econ- 
omy that's perpetually out of equilibrium. 

Once we imbue agents with human qualities-like finite lives, 
the ability to reproduce sexually, and the ability to change prefer- 
ences-the trading price never settles down to a single level. It 
keeps swinging between highs and lows, very much like price os- 
cillations in real markets (as discussed in the previous chapter). Ba- 
sically, it appears to be a random distribution. But it turns out that 
there's structure after all! Although the seemingly random price 
fluctuations continue indefinitely, the fluctuations appear to be 
variations from an identifiable price level. This particular price just 
happens tobe the Same equilibrium level as the one attained under 
those all-too-unrealistic assumptions underpinning the efficient 
market hypothesis. Thus we gain the distinct impression that any 
equilibrium state associated with the efficient market hypothesis is 
nothing more than a limiting case among a rich Panorama of possi- 
ble states that may arise in the marketplace. As Epstein suggests, 
"If the agents aren't textbook agents-if they look a little bit hu- 
man-there is no reason to assume markets will perform the way 
economic textbooks tell us they should." 

How is the distribution of wealth affected by trade? It turns out 
that the overall effect of trade is to further skew the Sugarscape's 
distribution of wealth. By increasing the carrying capacity and al- 
lowing more agents to survive, trade magnifies differences in 
wealth. Trade increases the interactions between agents, thereby 
strengthening the power law fit even further. Experiments with a 
wider set of choice possibilities endorsed the view that it's devil- 
ishly difficult to find conditions under which a society's wealth 
ends up being evenly distributed. We may conclude that there's a 
definite trade-off between economic equality and economic perfor- 
mance. This bears a striking qualitative similarity to findings in 
various economies around the world. 
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Therefs so much more to say about the socioeconomic laboratory 
constructed by Epstein and Axtell. When agents can enter into 
credit relationships, for example, some turn out to be borrowers 
and lenders simultaneously. This is of fundamental importance for 
economic evolution. Many other issues-such as the emergence of 
cultural groups, webs of economic intercourse, social clusters, in- 
stitutional structures, and disease-can all be scrutinized under 
the Sugarscape microscope. The pair of researchers are now work- 
ing to extend the Sugarscape in order to capture the way of human 
life in the late twentieth century. Thus far, the agents have Sex but 
there are no families, no cities, no firms, and no government. Over 
the next few years, they hope to produce conditions under which 
all of these things emerge spontaneously. As life on the Sugarscape 
is in its infancy at present, who's to say what might happen in 
time? 

Sugarscape is an important example of agent-based simulation 
for several reasons. First, although economists and other social 
scientists study society, they do so in isolation. Economists, geogra- 
phers, psychologists, and archaeologists rarely interact meaning- 
fully or pool the knowledge they've accumulated. The organiza- 
tion of university departments further endorses this regrettable 
divide. Yet life on the Sugarscape brings all these narrow views to- 
gether, broadening our understanding in a meaningful way. Sec- 
ond, Sugarscape activities are interactive and dynamic. Thus it's 
far more process-dependent than classical models. Third, Sug- 
arscape recognizes and preserves differences in culture and skills 
that human populations exhibit. Finally, for the first time in history, 
the social sciences have the opportunity to conduct and repeat ex- 
periments and test hypotheses concerning socioeconomic behav- 
ior. Sugarscape typifies this new way of doing social science as we 
enter the unprecedented era of artificial economics. So if your busi- 
ness is modeling economic behavior, it's an excellent starting point 
for rule-based simulation experiments. 

Some Final Words 
Like it or not, computers have handed scientists a new paradigm 
for understanding the ways of the world. With the incredible drop 
in the cost of computing power, computers are now capable of sim- 
ulating many physical systems from first principles. For example, 
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it's now possible to model turbulent fiow in a fiuid by simulating 
the motions of its constituent particles-not just approximating 
changes in concentrations of particles at particular points, but actu- 
ally computing their motions exactly. But such advances may not 
be unique to the physical world. It may not be so long before we 
can model the turbulence observed in financial markets in much 
the Same way. 

Agent-based simulation models like Sugarscape, TRANSIMS, 
and the Santa Fe Artificial Stock Market have shown us that com- 
plex behavior need not have complex origins. Some of the complex 
behavior exhibited collectively by economic agents, for example, 
may come from relatively simple predictors. Other emergent be- 
havior may be attributable to predictors that differ in terms of the 
time horizons over which they're applied. Since it's hard to work 
backward from a complex outcome to its generator(s), but far sim- 
pler to create and test many different generators and thus synthe- 
size complex behavior, a promising approach to the study of com- 
plex economic systems is to undertake a general study of the kinds 
of collective outcomes that can emerge from different sets of pre- 
dictors as behavior generators.17 As we've stressed already, most 
work of this kind must be done by simulation experiments. 

There are many exciting new efforts underway that attempt to 
replicate inside the computer the rich diversity of socioeconomic 
life. We've discussed a few of these in this book. Sadly, space has 
precluded discussion of them all. The common feature of these ex- 
periments is that the main behaviors of interest are properties of 
the i~zteractions betzvee~z ageiits, rather than the agents themselves. 
Accumulations of interactions constitute the fundamental parts of 
nonlinear economic systems. They're the virtzial parts of an econ- 
omy, which depend on nonlinear interactions between human 
agents for their very existence. If we choose to isolate the agents, 
then the virtual parts disappear. If we choose to aggregate the 
agents, then the virtual parts disappear. Artificial economics is 
seeking the virtual parts of an economy. The goal is synthesis rather 
than rznrzlysis. In this quest, synthesis by simulation is the primary 
methodological tool, and the computer is the scientific laboratory. 

Like nature, economies coevolve incessantly. They add and sub- 
tract mechanisms, components, and interactions over time. They're 
just as alive as any biological organism. Their unique quality is an 
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evolu tionary drive tha t selects for human agents with an ability to 

learn and adapt rather than for those choosing optimal behavior. 
Because economic diversity springs from the heterogeneity of hu- 
man learning and creativity, economic evolution may be subject to 
the "Baldwin effect."18 The importance of adaptive learning shows 
up more clearly when the economy is viewed in a long-run per- 
spective. Learning and adaptation should not be addenda to the 
central theory of economics. They should be right at its core in 
strongly interactive environments of high complexity. 

As interactions grow, the natural trend of human progress is to- 
ward the more complex. In fact, it is the very complexity of eco- 
nomic reality that makes the analysis of interactions so helpful as 
an aid to better understanding. But the path of progress is not a 
smooth curve, and never will be, unless human nature is somehow 
repealed. It's a very haphazard path, straight enough for much of 
the time, but boasting tortuous twists and turns at unexpected 
times. Economic progress looks like a series of punctuated equilib- 
ria. So does the path of environmental quality. Because the inter- 
actions between agents in an economy can produce robust, self- 
organized dynamic equilibria, the frequency of disturbances from 
this critical state may obey a power law distribution with respect to 
size. Power law distributions seem to be ubiquitous in nature and 
human societies. Thus we shouldn't be surprised by occasional 
large fluctuations. Archaeologists never are. Very big changes are 
part of a frequency distribution that reflects many more small 
changes alongside fewer large changes. 

In the preceding chapters, we've looked at how positive feedback 
economies (and their parts) can self-organize. Self-organization in a 
complex economy results from a set of agents, driven by their own 
behavioral biases, interacting to produce and reinforce unexpected 
collective outcomes. The goals, strategies, ethics, and understand- 
ing of these agents fashion the collective behavior that emerges, 
which in turn forces each agent to react and adapt differently. 
Sometimes something new emerges and a different regime takes 
over. Future expectations and decision strategies change accord- 
ingly. So do future collective outcomes. 

If nothing else, an appreciation of power laws, adaptive learning, 
and self-organization teaches us humility. Perhaps science is re- 
vealing our own limitations. Understanding that we can't know 



268 Artificial Economics 

everything is a crucial step in the quest for wisdom. Our inability 
to predict can be soothed by a growing ability to adapt and co- 
evolve harmoniously-just like we find in nature. We live in a 
world full of remarkable emergence and diversity. History matters. 
We can't be Sure where we're going next, but fortunately we're get- 
ting to know some of the rules by which the game is being played. 
What's most reassuring is that sometimes we seem to get some- 
thing for nothing-emergent order on this never-ending road to 
know-ware. 

Chapter One 
1. Krugman presents some enjoyable anecdotes about economic sense and non- 

sense in the political economy of the last few decades in the United States. For a 
closer look at why our expectations have diminished, see Krugman (1994b, 
1994~). 

2. A typical example of policy entrepreneurship was the spurious "supply-side 
economics," which proliferated during Ronald Reagan's term of presiciency. 

3. See Krugman (1994~)' page xi. 
4. Krugman is certainly not alone in this belief. Another of like mind is Herbert 

Simon, who has argued that the seemingly "soft" social sciences are really "hard" 
(i.e., difficult); see Simon (1987). 

5. See Samuelson (1976), page 10. 
6. For an entertaining Summary of the arguments both for and against the con- 

tention that no objective reality exists independent of an observer, see Casti (1989, 
Chapter 7). 

7. The term "stasis" is an abbreviated form of the word "morphostasis," a 
group of negative feedback processes studied in cybemetics. Since its inception, 
cybemetics has been more or less regarded as the science of self-regulating and 
equilibrating Systems. But its scope turns out to be broader, as we'll learn in Chap- 
ters 2 and 3. 

8. This simple analogy was suggested by the physicist Per Bak. For an uncon- 
ventional look at the boundary between the natural world and the social sciences, 
see Bak (1996, especially Chapter 11). 

9. Tank A can be thought of as "selling" thirty liters of water to Tank B. In this 
abstract case, the "selling" price would need to Cover the price of the pipe. 

10. In 1972, Hugo Sonnenschein surprised many mathematical economists by 
showing that the rule of price adjustment arising from a given set of agent prefer- 
ences and endowments can literally be any  rule you like. More importantly, it 
need not be the kind of rule that leads to one of Adam Smith's invisible-hand 
equilibria. In view of this result, a static equilibrium becomes a very unlikely state 
of economic affairs. For a discussion of Sonnenschein's result, as well as some 
other paradoxical aspects of economic processes, see Saari (1995). 

11. For the technically-minded, a jxrd-poitzt attractor contains only one state; a 
prriodic attractor Set is a sequence of states periodically occupied by the system at 
each iteration; a chaotic attractor doesn't show any simple geometrical structure, 
but is often fractal, and is such that the sequence of states depends sensitively on 
the initial state. 
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12. See Nicolis and Prigogine (1989), Page 3. 
13. Archaeologists think in terms of millennia instead of merely generations or 

centuries. Thus they know that economies can collapse rapidly and revert to a 
more primitive regime. In relatively isolated cultures, the socioeconomic process 
can also become trapped in a more or less stationary or fluctuating state for a very 
long time. A simulated example of this kind of socioeconomic dynamics is dis- 
cussed in Chapter 8. Another unusual model describing socioeconomic evolution 
in the very long run can be found in Day and Walter (1995). 

14. See Monod (1971), Page 118. 
15. See Bak (1996). 
16. The effects of friction in economics have been at the core of distribution and 

welfare issues for more than a century. For a review of such frictional effects, see 
Griffin (1998). Other chapters in the same book also highlight the importance of 
friction; See Akerman (1998). 

17. See Kauffman (1995), Page 209. 
18. Schelling's ideas on complexity and self-organization can be found in a 

book titled Microniotives nnd Macrobchnvior. Krugman suggests that the first chap- 
ter of this book is "surely the best essay on what economic analysis is about, on 
the nature of economic reasoning, that has ever been written" (Krugman 1996, 
Page 16). The two chapters on "sorting and mixing" provide an excellent, non- 
mathematical introduction to the idea of self-organization in economics. See 
Schelling (1978) for the original material and Krugman's book for a modern 
interpretation. 

19. An equivalent way of stating this rule is that each individual is satisfied as 
long as at least 37 percent of his or her neighbors are of his or her type. 

20. This layout is one of a number of possibilities, since the order in which indi- 
vidual~ move remains unspecified. The final outcome will also be sensitive to the 
initial conditions (as depicted in Figure 1.4b). As Schelling noted, repeating the 
experiment several times will produce slightly different configurations, but an 
emergent pattern of segregation will be obvious each time. 

21. The notion of phase transitions has its roots in the physical sciences, but its 
relevance to economic evolution has been recognized recently. In the social sci- 
ences, phase transitions are difficult to grasp because the qualitative changes are 
hard to see. Far more transparent is the effect of temperature changes on water. As 
a liquid, water is a state of matter in which the molecules move in all possible di- 
rections, mostly without recognizing each other. When we lower its temperature 
below freezing point, however, it changes to a crystal lattice-a new solid phase 
of matter. Suddenly, its properties are no longer identical in all directions. The 
translational symmetry characterizing the liquid has been broken. This type of 
change is known as an equilibrium phase transition. Recent advances in Systems 
theory, especially studies led by Ilya Prigogine and the Brussels school of thermo- 
dynamicists, have discovered a new class of phase transitions-one in which the 
lowering of temperature is replaced by the progressively intensifying application 
of nonequilibrium constraints. These nonequilibrium phase transitions are the 
ones associated with the process of self-organization. See, for example, Nicolis 
and Prigogine (1977, 1989). 

22. See von Neumam (1966). 
23. In later chapters, I discuss various examples of cellular automata that have 

been used to sharpen our intuition about socioeconomic behavior through com- 
puter simulation. Schelling's model is not strictly a celiular automaton, since it ai- 
lows agents to migrate from one cell to another. The interested reader can find a 
cellular automaton defined and applied to urban dynamics in Chapter 5. 

24. In a delightful book about fractals, chaos, and power laws, Manfred 
Schroeder reviews the abundance and significance of power laws in nature and 
human life; See Schroeder (1991). 

25. See Pareto (1896). 
26. See Eldredge and Gould (1972). 
27. In Ray's experimental world, which he calls Tierra (the Spanish word for 

Earth), self-reproducing programs compete for CPU time and memory. These pro- 
grams show all of the evolutionary splendor that we have come to admire in the 
natural world. For further details of this digital life, which takes place inside a 
Computer, see Ray (1992). 

28. See Kuhn (1962). 
29. See Schumpeter (1942), page 83, footnote 2. 
30. This hypothesis was not widely appreciated at the time, since it appeared 

in his doctoral dissertation on price fluctuations in the Paris bond market; See 
Bachelier (1900). 

31. See, for example, Brock, Hsieh, and LeBaron (1991). 
32. See, for example, Shiller (1981,1989). 
33. Two admirable summaries of recent findings in the ongoing search for 

chaos in financial markets can be found in Brock, Hsieh, and LeBaron (1991) and 
Benhabib (1992). 

34. For an overview of Elliott's wave principle, see Frost and Prechter (1985). 
35. Mandelbrot suggests that most scientists did not expect to encounter 

power-law distributions and thus were unwilling to acknowledge their existence. 
An account of his work on cotton prices appears in Mandelbrot (1963). For a fuller 
account of his work on fractals and scaling in finance, see Mandelbrot (1997). 

36. Mandelbrot refers to the power-law distribution as the scaling distribution. 
37. Critics of economic theory see this "stable, closed-world" model as a vast ab- 

straction from reality. For example, Daniel Bell regards it as a convenient utopia 
dreamt up by John Locke and Adam Smith. He points to the need for studies of hu- 
man behavior, the codification of theoretical knowledge, and the influence of time 
and history. Clearly, many economists have begun to realize that they camot afford 
to ignore the nature and relentless Pace of social and technological change. For a 
blunt view of what's been wrong with economics for some time, see Bell (1981). 

38. See Maruyama (1963). 
39. See Arthur (1994b). 
40. See Allen and Sanglier (1981) and Arthur (1994b). 
41. See Arrow (1962). 
42. See Arthur (1994b), page 50. 
43. This conjecture seems to be turning into a serious hypothesis. To gain an 

accurate picture of urban development, for example, Peter Allen and Michele 



Sanglier have demonstrated that a dynamic model of a central place system must 
consider the self-organizing aspects of urban evolution, See Allen and Sanglier 
(1979, 1981). Although the monopolistically competitive general equilibrium 
model formulated by Paul Krugman dernonstrated that the process of city forma- 
tion is one of cumulative causation (i.e., positive feedback), he found that the 
eventual locations of cities tend to have a roughly central-place pattern; See Krug- 
man (1993). The Kyoto scholar Kiyoshi Kobayashi has shown that Japanese indus- 
trial R&D laboratories tend to cluster ii-\ one dominant location, which depends 
on geographical attractiveness as well as the historical choices of others; See 
Kobayashi, Kunihasa, and Fukuyama (2000). These modeling and simulation ex- 
periments confirm the importance of chance and determinism in the evolution of 
urban Systems. In other words, pluralism prevails. 

44. See Forrester (1987). 
45. See Arthur (1994b). 
46. Some of this simulation work is discussed in later chapters. 
47. See Kauffman (1995), page 202. 
48. If we think of the rnarket as being segmented over time, then the learning 

curve can also be regarded as embodying econornies of scope. For a discussion of 
this idea, See Spence (1981). 

49. In a simplified network of producers and consumers, like those represented 
in the classical input-output model, intermediate producers play the dual role of 
purchasers and vendors. It's possible to demonstrate that small initial shocks to 
parts of such an econorny can sometimes trigger large avalanches of orders and 
back orders. The collaborative work between Per Bak and two economists at the 
University of Chicago-Jose Scheinkman and Michael Woodford-goes even fur- 
ther. It suggests that some large fluctuations observed in economics are indicative 
of an economy operating at the self-organized critical state, in which minor 
shocks can lead to avalanches of all sizes. For further details on economic 
avalanches of this kind, sec Bak et al. (1993) and Scheinkman and Woodford 
(1994). 

Chapter Two 

1. For a fuller account of the distribution of knowledge handlers in the Ameri- 
can economy, See Machlup (1962). 

2. The Swedish study and its results are discussed in Andersson (1986). 
3. One way of rnonitoring research collaboration is to measure the number of 

internationally coauthored scientific articles. M70rk of this kind has been reported 
recently by Swedish researchers. For example, Andersson and Persson claim that 
in recent decades, such collaboration has been growing at an average of 14 per- 
cent per year; See Andersson and Persson (1993). 

4. For an interesting analysis of the effect of distance on collaboration between 
the United Kingdom, Canada, and Australia, See Katz (1993). He normalized the 
distance variable as a fraction of the largest distance between pairs of universities 
in each country and found that the frictional impedance effect was exponential. A 
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similar result can be found in Beckmann (1994), whose theoretical analysis 
weighed the advantages of collaboration against its cost. His results suggest that 
we should expect an exponential distance effect. 

5. This highly contentious issue can be relied upon to raise a storm of debate 
among researchers clairning expertise in the field. But independent research has 
shown that tl-ie strongest proponents supporting each argument tend to have 
vested interests in their particular point of view. For a hierarchical treatment of 
the knowledge exchange issue, See Batten, Kobayashi, and Andersson (1989). 

6. See Schrödinger (1956), page 93. 
7. This suggestion came from Kemeth Boulding. 
8. Both animal and human behavior can be thoughtful, and learning depends 

on some kind of thinking. It's easy to regard thinking as something we rio and 
knowledge as something we haue. But this may be an oversimplification. We don't 
just store our knowledge; we also use and improve it. Ryle (1949) points out that 
we can also use it without necessarily being able to explain what it is that we 
know. He introduced a distinction between "knowing that" and "knowing how," 
partly to reinforce his idea that intelligence is a characteristic of performance. For 
a summary of Ryle's thesis, and an interesting analysis of thinking as an activity 
that "unfolds" in time, See Eiser (1994). 

9. Reasoning frorn the general to the particular is a top-down approach. It leads 
to the concept of a representative agent like the "average citizen." General rules of 
behavior are determined at the macrolevel and then assigned unilaterally to all in- 
dividual agents. Thus the population of agents is regarded as being homogeneous. 

10. For a summary of some of these experiments in deductive reasoning, see 
Johnson-Laird and Byrne (1991). 

11. See Arthur (1994a), page 406. 
12. These two outcomes assume that all remaining moves are the best possible 

ones. 
13. Quads is a game between two players, each of whom attempt to place 18 

different pieces on a game board of 36 squares. Players take turns, choosing and 
placing one of their pieces on the board in such a way that it borders at least one 
other piece. The sides facing each other must be identical. The game ends as soon 
as one of the players cannot place another piece on the board. The other player is 
the wimer. 

14. For an extensive discussion of inductive reasoning and its prominent role in 
the learning process, See Holland, Holyoak, Nisbett, and Thagard (1986). 

15. A revealing finding was that grand masters' rnistakes involved placing 
whole groups of pieces in the wrong place, which left the game almost the same to 
the master but bewildering to the novice. Even more revealing was the fact that 
when pieces were assigned randomly to the squares on the board instead of being 
copied from actual games, grand masters were found to be no better than novices 
in reconstructing such random boards. 

16. For a wide range of chess openings, See Horowitz (1964). 
17. For an introduction to synergetics, See Haken (1977). 
18. The growing importance of Computer simulation can be gauged from the 

improved performance of silicon "agents" in high-level chess games. Since 1997, 



when IBM's Deep Blue defeated Garry Kasparov in their second round of games, 
this thirci way of reasoning in open-ended situations has been recognized as full 
of promise. 

19. For a full description of his Computer experiments, sec Arthur (1994a). 
20. See Cohen and Stewart (1994), page 232. 
21. The Prisoner's Dilemma first appeared in 1952, in an unpublished memo- 

randum from the Rand Corporation discussing some experimental games. It re- 
mained unnanied in those early days, iintil A. W. Tucker called it the Prisoner's 
Dilemma. Tucker saw in it a perverse analog of the American criminal justice sys- 
tem, where prosecutors extract confessions on the promise of reduced sentences 
(plea bargaining). 

22. For a comprehensive discussicin of the Prisoner's Dilemma and the insights 
it can provide for various problems of collective action in social and economic 
contexts, See Axelrod (1984) and Hardin (1982). These two authors have recently 
updated their original work; See Axelrod (1997) and Hardin (1995). 

23. See Olson (1965). 
24. If your perilous journey to reach Thebes was taken into account, however, 

you may feel that Zero is far too generous. 
25. See Kauffman (1995), Page 218. 
26. See Axelrod (1984, 1997). 
27. For an overview of the Prisoner's Dilemma game, along with some of the 

background to TIT FOR TAT, see Rapoport and Chammah (1965). 
28. Boyd and Lorberbaum's (1987) claim that no pure strategy is evolutionarily 

stable was disputed recently by Rendor and Swistak (1998), who found that 
strategies that are nice and retaliatory (like TIT FOR TAT) are the most stable 
against possible invasions. 

29. TIT FOR TAT is sensitive to the occurrence of mistakes or misunderstand- 
ings, commonly called noise. Noise played a Part in the simulation study reported 
in Nntlrre by Nowak and Sigmund (1993). Unlike TIT FOR TAT, their WIN-STAY, 
LOSE-SHIFT strategy defects after the other player is exploited and cooperates af- 
ter a mutual defection. Axelrod's reaction to their study was to feel a little protec- 
tive of TIT FOR TAT. With the help of a postdoctoral fellow, he found that adding 
either generosity or contrition to TIT FOR TAT was an effective way of coping 
with noise. Furthermore, the WIN-STAY, LOSE-SHIFT strategy did not perform as 
well in this variegated environment. For further details, See Axelrod (1997). 

30. See Axelrod (1981), Page 69. 
31. See Hardin (1995), Page 45. 
32. A good example is the case where two industrial nations have erected trade 

barriers to each other's exports. Because of the mutual advantages of free trade, 
both countries would be better off if these barriers were eliminated. But if only 
one eliminated its barriers, it would face terms of trade that hurt its bwn economy. 
In fact, whatever one country does, the other country is better off retaining its 
own barriers. 

33. For further details, See Lindgren (1992). 
34. For a comprehensive discussion of fitness landscapes, see Kauffman (1993; 

1995, especially Chapter 8). 
35. See Lindgren (1992). 

Chapter Three 

1. By the end of this chapter, however, 1/11 argue that both are systems problems, 
because a single human brain is just as much a complex adaptive System as a 
group of human brains. 

2. See samuelson (1976), Page 14. 
3. See Bossomaier and Green (1998). 
4. For an interesting information contagion model, designed to isolate the ef- 

fects of informational feedback on the market-share allocation process, See Lane 
(1997). 

5. The tale of these twins can be found in a book addressing the possible cre- 
ation of a "science of surprise." For the part on Twain's tale, See Casti (1994), 
pages 171-172. 

6. Time is rather special in other ways as well. Whether we think of it as flow- 
ing like sand, or turning on wheels within wheels, time escapes irretrievably. It 
simply keeps on keeping on. All that a clock really does is mark that Progress for 
us. Timepieccs don't really keep time, they just keep up with it! 

7. Here we should distinguish conventional modeling from simulation. Many 
complex economic systems can be "modeled" with the aid of ngerit-Dasrd si~rllila- 
tion, a new way of doing science and a topic that is cliscussed in later chapters. 

8. See Schumpeter (1942), page 61. 
9. According to Magoroh Maruyama, the field of cybernetics has been more or 

less identified as a science of self-regulating and equilibrating systems. Ry foeus- 
ing mostly on the deviation-counteracting aspects of mutual causal relatioriships, 
cyberneticians have paid less attention to systems in which the mutual causal re- 
lationships are deviation-amplifying. Yet such systems are ubiquitous in nature 
and in human society. For a more complete discussion of these distinctions, See 
Maruyama (1963). 

10. For a penetrating insight into misleading trade statistics in the global econ- 
omy, including an assertion that the United States has no "foreign" trade as long 
as it's buying in dollars, See Ohmae (1991, especially Chapter 9). 

11. See Krugman (1994b), Chapter 11. 
12. For a fuller discussion of the connectivity properties of random graphs, See 

Erdos and Renyi (1960) and Kauffman (1993,1995). 
13. Erdos and Renyi (1960) were the first to demonstrate this rapid transition, in 

which a single gigantic connected component emerges-linking most of the 
nodes! 

14. For a comprehensive disciission of the mathematical aspects of percolation 
theory, See Stauffer (1985) and Grimmett (1998). 

15. The terms "sheep" and "explorers" were suggested by the traffic planner 
Anthony Downs (1962) tu explain how peak-hour traffic congestion causes some 
drivers to search actively for faster alternatives, whereas others stubbornly toler- 
ate the long delays caused by congestion. We'll explore this issue more deeply in 
Chapter 7. 

16. Richard Nelson, Sidney Winter, Stuart Metcalfe, Giovanni Dosi, Gerry Sil- 
verberg, and others have developed an important class of evolutionary models 
in which technology and the structure of industry are said to coez~olut'; See, for 
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example, Nelson and Winter (1982). This process leads to productivity growth 
that is a statistical property of the System as a whole. The technologic~~l notion of 
coevolution described in their work complements the behrivioral one discussed in 
this book. 

17. See Schumpeter (1934), page 68. 
18. Perhaps one should not rule out this idea too quickly. Signed digraphs may 

be a natural way of attempting to simplify a complex set of relationships into 
manageable components. Such links and arrows may play a basic part in the 
"mental modeling" of human beings. For a discussion of the role of links, arrows, 
and networks in liuman thoiight, See Johnson (1995). 

19. I am grateful to Jeff Johnson, a systems scientist at the Open University in 
Milton Keynes, far pointing this fact out to me; See Jolmson (1995), pages 26-28. 

20. Rule-based mental models are central to the dynamic analysis of problem 
solving and induction described by Holland, Holyoak, Nisbett, and Thagard 
(1986). The reader is directed to this source for a comprehensive discussion of the 
kind of inductive behavior described in this book. This is not to imply that a rule- 
based approach to artificial intelligence is likely to succeed. To build a device that 
even approaches real intelligence would require a rule-based program far larger 
than anything that could be managed in a human's lifetime. 

Chapter Four 

1. Pirenne's hypothesis is laid out in Pirenne (1925, 1936). Its controversial na- 
ture has prompted discussion in many forums. Refreshingly unbiased critiques 
can be found in Bloch (1962), and North and Thomas (1973). 

2. A full description of this analysis can be found in Mees (1975). 
3. The notion of attractiveness invoked here is purely one of potential income, 

thus avoiding more abstract notions like Standard of living or perceived opportu- 
nities. 

4. Three pioneers of nonequilibrium systems-all of whom have emphasized 
the importance of self-organizing processes-are Hermann Haken, Gregoire 
Nicolis, and Ilya Prigogine. For glimpses into their early work, see Haken (1977) 
and Nicolis and Prigogine (1977). 

5. Some economic historians have argued that the development and expansion 
of Europe's market economy in this period was fueled by population growth and 
its redistribution over space; See, for example, North and Thomas (1973). Putting 
the emphasis on migration instead of trade merely reinforces Mees's argument, 
since both are external sources of increased interaction. 

6. See Schumpeter (1934). 
7. Pirenne (1936) suggests that a "clerk" formed part of the equipment of every 

merchant ship sailing abroad, and from this we can infer that ship owners and 
seafaring merchants of that era had learned to keep accounts and to dispatch let- 
ters to their correspondents. 

8. The above rules could also be used to specify a general trading network equi- 
librium for any pair of regions and any commodity. A discussion of this kind of 
equilibrium model can be found in Andersson (1995). 

9. In the literature on induction, the above rules have been called diachronic be- 
cause they specify the manner in which the environment may be expected to 
change over time. Diachronic rules may be divided into two classes: preriictor 
rules, which tell the agent what to expect in the future, and effector rules, which 
cause the agent to act on the environrnent. In our chosen economic environment, 
the set of conditions relating to route security are predictor rules, whereas those 
pertaining to profitability are effector rules. For a comprehensive discussion of 
mental models as rule systems, See Holland, Holyoak, Nisbett, and Thagard 
(1986). 

10. See Pirenne (1936), page 94. 
11. In the valley of the Seine, it was the Paris Hanse of water merchants. In 

Flanders, an association of city gilds engaged in trade with England came to be 
known as the London Hanse. In Italy, thr attraction of the Champagne fairs led to 
the formation of the Uniz~ersitas mercatorlrwl ltaliae n ~ i n d i ~ ~ n s  Companiae (zc regtzi 
Fra~rcir~efrequet~trintium. For further details, See Pirenne (1936), pages 95-96. 

12. See Pirenne (1936), page 124. 
13. See Pirenne (1936), page 94. 
14. See Pirenne (1936), Page 22. 
15. In England it was at Stourbridge; Germany at Aix-la-Cliapelle, Frankfurt, 

and Constance; the Low Countries at Bruges, Lille, Messines, Thourout, and 
Ypres; Castile at Seville and Medina del Campo; Italy at Bari, Lucca, and Venice. 

16. At the peak of their life cycle in the middle of the thirteenth century, each 
fair lasted from sixteen to fifty days and was succeeded soon thereafter by a new 
fair in another town within the district of Champagne. The four towns that shared 
between them the Champagne and Brie fairs in the Middle Ages, namely Troyes, 
Bar-sur-Aube, Provins, and Lagny, were constantly "passing the parcel." The net 
result was an annual agenda of six fairs that rotated between the four towns trom 
January to October each year. 

17. North and Thomas (1973, page 55) state that "ratios were quoted on the ba- 
sis of one SOU or twelve derniers, equal to some amount of a foreign currency." 

18. See Braudel(1982), Page 92. 
19. North and Thomas argue that Champagne's destiny as a permanent inter- 

national marketplace might have been realized had not royal taxation penalized 
the fairs at the same crucial period when a new direct sea route between Italy and 
the Low Countries had just been opened; See North and Thomas (1973), page 56. 

20. Logistical networks are those networks in space and time that are responsi- 
ble for the movement of goods, people, money, and information. Fora fascinatiiig 
analysis of the development of the world economy in terms of four "logistical rev- 
olutions," See Andersson (1986). 

Chapter Five 

1. The Shortest Network Problem was originally known in the literature as 
Steiner's Problem, because it was tackled first by Jacob Steiner, a geometrician at 
the University of Bonn. For an update on Progress with this class of problem, see 
the January 1989 issue of Scientific Americnti. 



2. A group of Australian mathematicians showed recently that in the special 
case when the original points lie on a smooth curve, the problem of finding the 
Steiner network can be solved in polynomial time. 

3. The Steiner solution has a tendency to form a series of Steiner trees (three 
links connected to each Steiner point at an angle of 120 degrees), resulting in 
roughly hexagonal patterns. This may be compared with the classical location 
problem in economics. In order to achieve the optimal location pattern for both 
producers and consumers, Walter Christaller and August Lösch showed that pro- 
ducers should locate at the Centers of space-filling, hexagonal market areas-if 
their market areas interact. 

4. See Bunge (1966). 
5. Dudley Dillard was among the main protagonists; See Dillard (1967). 
6. Although it's also true that urban growth in the five preceding decades 

(1790-1840) was rapid, the railroad age ushered in two decades of unprecedented 
city expansion. By 1860, close to 20 percent of the population were living in cities 
of 2,500 or more, compared with only 7 percent in 1820. For further details, see 
Chandler (1965). 

7. See Rostow (1960). 
8. Freight costs for users of the National Road were typically from 25 to 50 cents 

per ton-mile, whereas the comparable costs on the Erie Canal were 0.5 cents per 
ton-mile for raw goods and 3 cents per ton-mile for dry goods. These cost figures 
came from Dillard (1967) and Pred (1966). 

9. See Fogel(1964). 
10. In his groundbreaking book, William Cronon (1991) explores the ecological 

and economic changes that reshaped the American landscape and transformed 
American culture during the second half of the nineteenth century. Although princi- 
pally a story about Chicago, it gives an excellent overview of the way in which com- 
petition between various westem cities shaped the evolving landscape at that time. 

11. Cronon suggests that the most important work on the boosters is that of 
Charles N. Glaab, to which his discussion is indebted. My discussion of boosters 
is indebted to Cronon. 

12. See Cronon (1991), page 34. 
13. The boosters' interest in Newton's law of gravity can be Seen as a forerun- 

ner of the more formal theories of the gravitational kind, which emerged in eco- 
nomic geography and regional science during the Course of the twentieth century. 

14. See Goodin (1851), page 306. 
15. Krugman (1996, page 9) points out that the popular, 900-page economics 

principles textbook by William Baumol and Alan Blinder contains not a single ref- 
erence to the spatial dimension. Its major rival, an 1,100-page text by Joseph 
Stiglitz, contains just one reference to cities-in the context of rural-urban migra- 
tion in less-developed countries! To assist in rectifying this imbalance, Krugman 
has recently attempted a synthesis of the field of spatial economics, together with 
two "distant" colleagues (see Fujita, Krugman, and Venables, 1999). 

16. Complete details of the land rent/transport cost trade-off can be found in 
von Thünen (1826). For an interestirig extension of von Thünen's theory, see Puu 
(1997). 

17. The conventional theory in many fields-economics, history, anthropol- 
ogy-assumes that cities are built on a rural economic base. Jane Jacobs, for one, 
believes that the reverse is true: that is, rural economies and their work are di- 
rectly built upon city economies and their work; see Jacobs (1969). 

18. See Christaller (1933) and Lösch (1944). 
19. See Goodin (1851), page 312. 
20. Perhaps because of this, Chicago's early boosters rarely stressed natural 

transportation advantages as mucli as boosters in other cities. 
21. See Cronon (1991), page 52. 
22. The Chicago River lay close to the divide between the Great Lakes and the 

Mississippi watersheds. By digging a canal across the glacial moraine at this 
point, the dream of an inland ship Passage between New York and New Orleans 
became a reality. 

23. See Scott (1876). 
2-1. This abrupt explosion of unbalanced growth not only confounded propo- 

nents of the central place model but also destroyed the credibility of the famous 
frontier thesis put forward by the historian Frederick Jackson Turner. Turner 
(1920) viewed the different Wests as sequential growth phases of the American 
frontier, repeating the social evolution of human civilization in Europe "like a 
huge page in the history of society." Only at the end of this sequence, according to 
Turner, would come an industrial city like Chicago. Whatever the merits of this 
thesis may be, it fits poorly with the explosive world of Chicago in the 1830s. Fora 
fuller account of the weaknesses in Turner's thesis, See Cronon (1991), pages 
31-32 and 46-54. For a similar criticism of the theory of rural or frontier primacy, 
see Jacobs (1969). 

25. See Cronon (1991), page 34. 
26. Chicago seems to have grown to metropolitan status less from being what 

the boosters called central than from being peripherol. For a fuller discussion of this 
point, see Cronon (1991), pages 90-91. 

27. See Marx (1973), page 524. 
28. For a vivid description of the federal government's four-year investigation 

of the Chicago futures markets, See Greising and Morse (1991). 
29. See Cronon (1991), page 112. 
30. According to figures quoted in the Chicago Board of Trade's annual reports. 
31. See Cronon (1991), pages 120-132. 
32. See Rothstein (1982), page 58. 
33. Chicago Tribune, April 17, 1875. 
34. The rank-size rule is sometimes called Zipf's law, in recognition of his ob- 

servation of regularities in Systems of human origin; see Zipf (1941, 1949). But 
Zipf's discovery was predated by Felix Auerbach (1913), whose German publica- 
tion hasn't beeil recognized by the English-speaking world. Others to have beaten 
Zipf to the rule include Lotka in 1925, Gibrat in 1931, and Singer in 1936. Singer 
(1936) stressed that Gibrat's "law of proportional effect" is more general and that 
the rank-size rule is perfectly analogous to Pareto's law of income distribution. 

35. In a comparative study of thirty-eight countries at varying levels of 
economic development, Berry (1961) found that thirteen of them had city-size 



distributions that conformcd to the rank-size rule. Later studies have confirmed 
that many more rank-size distributions can be found in Asian and European na- 
tions; for example, see Sendut (1966) and de Vries (1984). 

36. Portugal has several overseas colonies. 
37. See Sendut (1966), page 166. 
38. The Kansai or Keihanshin region of Japan includes the cities of Osaka, Ky- 

oto, and Kobe, as well as a number of smaller cities. Because of the desire of these 
cities to foster cxchange and cooyerate more closely, they appear to be coevolving 
into a "network city." For a portrayal of the Kansai conurbation's development as 
a network city, see Batten (1995). 

39. See Zipf (1949), pages 427431. 
40. Perhaps the earliest model linking centers to complementary areas, and 

thus generating systems of cities consistent with the rank-size rule, was devised 
by Martin Beckmam; see Beckmann (1958). 

41. See Berry (1961), page 587. 
42. For a technical account of the evidence supporting the rank-size distribu- 

tion as a stable attractor, See Haag and Max (1993). 
43. See Sendut (1966). 
34. Zipf's law proved interesting to Benoit Mandelbrot when he was a postdoc- 

toral student at MIT. It propelled Mandelbrot on a path that led to finance and 
economics, and later to fractals; see Mandelbrot (1997), especially Chapter E7. 

45. See Zipf (1949), especially Chapter 9. 
46. Krugman asserts that when Marshallian dynamics are added to tl-ie tradi- 

tional constant-returns, competitive model of international trade, they result in a 
rather simple landscape-one where the whole space of possible resource alloca- 
tions drains to a single point; see Krugman (1994a), page 412. 

47. See Haag (1994) and Mandelbrot (1997). 
48. See Sakoda (1971), Page 121. 
49. John von Neumann and Stanislaw Ulam were the first to introduce the CA 

concept about fifty years ago; See von Neumann (1966). But it's pretty safe to say 
that John Conway popularized the concept through his invention of the game of 
Life. In Life, cells come alive (i.e., "turn on"), stay alive (i.e., "stay on"), or die (i.e., 
"turn off"), depending on the states of neighboring cells. Although Life is the best 
knownCA, it's perhaps the least applicable to real configurations. 

50. In their introduction to a special issue of the journal Environment und Plan- 
nirig B,  devoted to urban systems as CA, Batty, Couclelis, and Eichen (1997) make 
this suggestion. The reader is directcd to this issue for an overview of ways in 
which urban dynamics can be simulated through CA. 

51. A distinction between migration models and steady site models was made 
by Hegselmam (1996). He also points out that allowing for migration doesn't im- 
yly an extension to the CA concept. The moving of an agent to an empty cell in his 
neighborhood can be treated as an application of a rule by which an occupied cell 
and a neighboring empty one exchange their states. 

52. See Albin (1975). 
53. See Portugali, Benenson, and Omer (1994). 
54. In the later versions, immigrants and inhabitants interact with each other 

and with the system of cells (houses), and this interaction results in (1) intracity 

and intercity migration dynamics, (2) changes in the properties of individuals, 
and (3) changes in the properties of the cells. For further details, See Portugali, Be- 
nenson, and Omer (1997). 

55. See Sanders et al. (1997). 

Chapter Six 

1. Science is a good example of this freedom-of-choice situation. 
2. For a lively Summary of the state of the world's major urban expressways, 

the interested reader's attention is directed to a survey on cominuting that ap- 
peared in the Econoniict on 5 September 1998. 

3. Vickrey proposed the following six traffic states: (1) single interaction, (2) 
multiple interaction, (3) bottleneck, (4) triggemeck, (5) network and control, and 
(6j general density. For further details, see Vickrey (1969). 

4. Braess constructed an intriguing network example that showed that intro- 
ducing a new link in a congested network can actually increase network-wide 
congestion or the travel costs of each driver. For full details, see Braess (1968). 

5. For a discussion of the economic ramifications of this conflict, See Arnott, de 
Palma, and Lindsay (1993). 

6. Revealing discussions of Braess and other traffic network paradoxes can be 
found in Dafermos and Nagurney (1984) and in Yang and Be11 (1998). 

7. One pair of transport economists harboring this view are Johansson and 
Mattsson (1995). 

8. See, for example, Daganzo and Sheffi (1977). 
9. For an introduction to some of the analytical aspects of deterministic and sto- 

chastic User equilibria, see Sheffi (1985). 
10. For a representative study which points in this direction, see Harker (1988). 
11. As shown by Kobayashi (1993). 
12. An introduction to the role of pattern recognition in leaming theories can be 

found in Bower and Hilgard (198l), Chapter 12. 
13. For a discussion of the role of pattern recognition and inductive modes of 

decisionmaking in economics, see Arthur (1994a). 
14. See Sargent (1993). 
15. See Downs (1962). 
16. These attributes have also been noted by Ben-Akiva, de Palma, and Kaysi 

(1991). 
17. See Conquest et al. (1993). 
18. Kobayashi's two classes of behavior correspond closely to Downs's sheep 

and explorers; see Kobayashi (1993). 
19. CA-based traffic simulation studies that have demonstrated these jamming 

transitions include Biham, Middleton, and Levine (1992); Nagel and Schrecken- 
berg (1992); and Nagel and Rasmussen (1995). Other approaches to the analysis of 
traffic flows as nonlinear dynamic phenomena include spin glass systems; See, 
e.g., Kulkarni, Stough, and Haynes (1996). 

20. For a comprehensive discussion of percolation theory, see Stauffer (1985) or 
Grimmett (1998). 





Notes 

21. The Golden Ratio has also been called the Golden Section, the Golden Cut, 
the Divine Proportion, the Fibonacci number, and the Mean of Phidias. For a fo- 
cused discussion of this ratio and the Fibonacci sequence of nurnbers, see Frost 
and Prechter (1990, Chapter 3), Schroeder (1991)' and Dunlap (1997). 

22. For a deeper discussion of period-doubling cascades and the Feigenbaum 
number, see Cohen and Stewart (1994), pages 228-230. 

23. Murray Gell-Mann contends that something entirely randorn, with practi- 
cally no regularities, has effective complexity near zero. So does sornething com- 
pletely regular, such as a bit string consisting only of Zeros. Effective complexity 
can be high only in a region intermediate between total order and complete disor- 
der. Logical depth is a crude measure of the difficulty of making predictions from 
theories. lt's often hard to tell whether sometliing possesses a great deal of effec- 
tive complexity or reflects instead underlying simplicity and some logical depth. 
For further elaboration, See Gell-Mann (1995). 

24. The cycles shown in Figures 7.2 and 7.3 are idealized in the sense that 
perfect wave symrnetry is rarely observed in real markets. Although rnost 
five-wave formations have definite wave-like characteristics, many contain 
what Elliott called "extensions." Extensions are exaggerated or elongated 
movements that generally appear in one of the three irnpulse waves. Because 
these extensions can be of a sirnilar amplitude and duration to the other four 
main waves, they give the impression that the total Count is nine waves instead of 
the normal five. This makes the application of Elliott's wave principle more diffi- 
cult in practice. For a comprehensive discussion of extensions, and other irregu- 
larities like "truncated fifths" and "diagonal triangles," See Frost and Prechter 
(1990). 

25. A discussion of the market's progression, and the many links between the 
Fibonacci sequence and Elliott's wave principle, can be found in Frost and 
Prechter (1990). 

26. See Pigou (1927). 
27. Pigou's definition of real causes included crop variations, inventions and 

technological improvements, industrial disputes, changes of taste or fashion, and 
changes in foreign demand. 

28. See Pigou (1927), page 86. 
29. See Frost and Prechter (1990), page 11. 
30. See Shiller (1989), Page 1. 
31. Shiller's research concentrates on the ultimate causes of price volatility in 

speculative markets, including the influence of fashions, fads, and other social 
rnovernents. Impressive evidence is amassed in stock, bond, and real estate mar- 
kets; See Shiller (1989). 

32. For example, the Quantum Fund gained 68.6 percent in 1992 and 61.5 Per- 
Cent in 1993. 

33. The introductory material in this paragraph has been drawn from a Cover of 
his book Thr Alcherny of Finaticc: Reading the Mirid of the Mnrket. For further details 
and an exciting read, See Soros (1994). 

34. See Soros (1994), page 29. 
35. Soros cites "leaming from experience" as an obvious example of the cogni- 

tive function 

36. The word "reflexivity" is used in the sense that the French do when they de- 
scribe a verb whose object and subject are the sarne. 

37. See Soros (1994), page 9. 
38. A full account of his trading strategy can be found in Lindsay (1991) 
39. Trident analysis functions just as well in falling (i.e., bear) markets as it does 

in rising (i.e., bull) markets. 
40. To get hold of Lindsay's Trident strategy and start playing the markets, I 

suggest that the interested reader write directly to Lindsay's publisher: Windsor 
Books, Brightwaters, N.Y. 

41. The Santa Fe Artificial Stock Market has existed in various forms since 1989. 
Like most artificial markets. it can be rnodified, tested, and studied in a variety of 
ways. For glimpses into this new silicon world and its rnethods of rnimicking the 
marketplace and its gyrations, see Arthur (1995), and Arthur, Holland, Le Baron, 
Palmer and Tayler (1997). 

42. "Newf' expectational models are rnostly recornbinations of existing hy- 
potheses that work better. 

43. In a series of interesting studies-typified by Delong, Shleifer, Summers, 
and Waldmann (1990) and Farmer (1993)-it has been shown analytically that ex- 
pectations can be self-fulfilling. Thus we may conclude that positive feedback 
loops, or I'igovian herd effects, do have a significant role in shaping the rnarket's 
coevolutionary patterns. 

44. This is iekiniscent of our earlier discussion on punctuated equilibria. In 
proposing his general theory of reflexivity, George Soros suggested that "since 
far-frorn-equilibrium conditions arise only intermittently, economic theory is only 
intermittently false. . . . There are long fallow periods when the movements in fi- 
nancial markets do not seem to follow a reflexive tune but rather resemble the 
random walks mandated by the efficient market theory"; see Soros (1994), page 9. 

45. GARCH = Generalized AutoRegressive Conditional Hederoscedastic 
behavior. 

46. Peter Allen has pointed out that an udaytiue trading strategy is one that can 
give good results despite the fact that we camot know the future, because there 
are different possible futures. When discernable trends becorne apparent, the 
strategy must be able to react to this. By taking such actions, however, the strategy 
will change what subsequently occurs in reality. This coevolutionary behavior im- 
plies that markets will always drive themselves to the "edge of predictability," in 
other words, to the edge of chnos. 

47. For a precise definition of an adaptive linear network, see Holland (1988). 
48. See Arthur (1995), page 25. 
49. Such a set of simulation experiments can be found in de la Maza and Yuret 

(1995). 

Chapter Eight 
1. As Cohen and Stewart have noted, "You can dissect axles and gears out of a 

car but you will never dissect out a tiny piece of motion"; See Cohen and Stewart 
(1994), page 169. 
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2. Induction as a search for patterns should be distinguished from mathemati- 
cal induction, the latter being a technique for proving theorems. 

3. For example, the need to estimate the periodic demand for a facility applies 
to crowding problems at amual meetings, at monthly luncheons, at weekly sport- 
ing events, at weekend markets, or at daily shopping Centers. 
1. There is a lengthy literature on mental models, although the term has been 

used in many different ways. For a good review, see Rouse and Morris (1986). For 
an interesting discussion about their use in the scientific field, see Gorman (1992). 

5. See Darley (1995), page 411. 
6. However, the rules themselves are usually based on direct observations of 

the real world. For a more comprehensive discussion of agent-based simulation, 
See Axelrod (1997). 

7. See Darley (1995), page 413. 
8. Especially if the usual time constraints on moves are removed. 
9. Traditional knowledge-based approaches to artificial intelligence, based on 

conceptual ideas and understanding, are less likely to succeed tlian approaches 
relying on agent-based, interactive phenomena. The latter belong to the growing 
field of artificial life. 

10. "But economics has no clear kinsliip with any physical science. It is a branch 
of biology broadly interpreted" (Marshall 1920, page 772). 

11. Some early attempts to make Progress in these directions can be found in 
Allen and Sanglier (1979,1981) and Batten (1982). Interest in coevolution and self- 
organization has grown in the 1990s, especially within the field of economic geog- 
raphy; see Fujita (1996) and Krugman (1996). 

12. Some recent work by David Lane, in which he describes a class of models 
called artificial worlds, designed to provide insights into a process called emer- 
gent hierarchical organization, could be said to typify the kinds of experiments 
that fall under the heading of artificial economics. For details of these artificial 
worlds, see Lane (1993). 

13. Massively parallel "architecture" means that living Systems consist of many 
millions of parts, each one of which has its own behavioral repertoire. 

14. This has been the approach taken in artificial intelligence. Methodologies to 
be explored in artificial economics have much more in common with the embry- 
onic field of artificial life. For an introduction to artificial life, See Langton (1996). 

15. For an interesting discussion of economic change in the very long run, see 
Day and Walter (1995). 

16. For a full account of life on the Sugarscape, See Epstein and Axtell (1996). 
Readable summaries of this metaphoric world of artificial life can be found in 
Casti (1997, Chapter 4) and Ward (1999, Chapter 2). 

17. Por a deeper discussion of behavior generators and the theory of simula- 
tion, See Rasmussen and Barrett (1995) and Barrett, Thord, and Reidys (1998). 

18. First proposed in the late nineteenth century, the Baldwin effect suggests 
that the course of evolutionary change can be influenced by individually leamed 
behavior. The existence of tliis effect is still a hotly debated topic in biology and 
related fields. For evidence of how the Baldwin effect may alter the course of evo- 
lution, see Hinton and Nowlan (1987) and French and Messinger (1995). 
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