# A Comprehensive Survey on Covid-19 Prediction Models

Neha Gandhi\* Manan Bedi, Pushpit Bhardwaj, Hrithik Kaura, King Baliyan Shikha Gupta\*\* Vivekananda Journal of Research July - December 2022, Vol. 12, Issue 2, 142-167 ISSN 2319-8702(Print) ISSN 2456-7574(Online) Peer Reviewed Refereed Journal © Vivekananda Institute of Professional Studies https://vips.edu/journal/



#### ABSTRACT

The world witnessed the outbreak of the novel coronavirus (COVID-19) in late December 2019 and since then the cases have been reported in various countries across continents. The rising number of cases posed an alarming health crisis situation in the whole world. It was important for countries to understand in advance when peaks can be reported and thus accordingly prepare their systems to save lives. Forecasting the number of cases and understanding the underlying trends associated with rise and fall of infection spread became paramount for researchers. Numerous studies have been conducted and a plethora of models have been proposed to aid in forecasting the number of COVID-19 cases using deep learning and other techniques. In this paper, we have presented a review of the studies conducted in past to predict the number of COVID-19 cases. Under this study, a total of 64 papers obtained through the interfaces of Google Scholar and Carnegie Mellon University (CMU) were included and analysed. The contributions in this review: 1. Provides useful insights into the work that has been done so far in the field of COVID-19 prediction modeling. 2. Highlights the various techniques used and their respective performance. 3. Reveals the future directions.

**Keywords:** *Deep learning, forecasting, modeling, pandemic, coronavirus* 

Email : nehagandhi1990@gmail.com

Department of Computer Science, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, India

<sup>\*\*</sup> Department of Computer Science, Shaheed Sukhdev College of Business Studies, University of Delhi, India Email : manan.19535@sscbs.du.ac.in, pushpit07@gmail.com, kaurahrithik3003@gmail.com, king.19514@sscbs.du.ac.in, shikhagupta@sscbsdu.ac.in

#### **INTRODUCTION**

Threats in the form of pandemics have been affecting the world over the centuries. These pandemics have a huge impact in terms of public health and resources. COVID-19, a devastating pandemic that is running its course currently, is an infectious disease that posed a life-threatening situation for the whole world within a few months of its emergence in Wuhan, Hubei Province, China in December 2019 (Lu et al., 2020). COVID-19 is caused by a virus belonging to the family of coronaviruses accountable for the first known epidemic, Severe Acute Respiratory Syndrome (SARS) 2002 in Guangdong, China (Zhong et al., 2003). This new virus initially named 2019-nCoV founds to be more contagious and severe disease-causing (Lu et al., 2020). The novel virus was later renamed by The International Committee on Taxonomy of Viruses as SARS-CoV-2 (Lai et al., 2020). The outbreak of this disease was quickly observed in many other regions of the world too. The disease was named COVID-19 (Coronavirus disease 2019) by the World Health Organisation (WHO) on 11<sup>th</sup> February 2020 ("Naming the Coronavirus Disease (COVID-19) and the Virus That Causes It," 2020). A seafood market in Wuhan was recognized as the centre of the outbreak as initial cases of infection were reported to have visited this market, indicating a possible animal to human transmission. Earlier research studies also indicated a possible human-to-human transmission as some individuals got affected without visiting that market (Li et al., 2020). Considering the spreading potential of the virus, WHO declared COVID-19 a pandemic on 11<sup>th</sup> March 2020 (Culcinotta & Vanelli, 2020).

#### 1. Covid-19 Spread: World and India

WHO announced a case in Thailand on January 13, 2020, making it the first case to be discovered outside of China ("Novel Coronavirus – Thailand," n.d.). Japan's first case was confirmed on January 16 (Press, 2020), and the Republic of Korea's National IHR Focal Point (NFP) announced the country's first case of new coronavirus on January 20 ("Novel Coronavirus (2019-NCoV)", 2020). Most countries in the world got affected by this virus in the course of a few months. The year 2020 will be remembered as a catastrophic year for humanity.

India's first coronavirus case was reported in Kerala on 31<sup>st</sup> January 2020 ("Health Ministry Reports One Positive Case of Wuhan Coronavirus in Kerala," n.d.). Soon after that, 50 COVID-19 cases were reported in total by 10<sup>th</sup> March 2020. On 11<sup>th</sup> March, WHO declared COVID-19 a pandemic (Culcinotta & Vanelli, 2020). A day later, India reported the first death of a 76-year-old man from Kalburgi, Karnataka (Staff, 2020). The government imposed some rules and regulations for the mitigation of the situation. Indian Council of

Medical Research (ICMR) expanded the case definition for COVID-19 tests to include people with symptoms even if they don't have recent travel history. On 22<sup>nd</sup> March 2020, a 14-hour lockdown called the "Janta Curfew" was observed throughout the country where people kept themselves indoors in order to contain the spread of COVID-19 ("For 14 Hours Today, India Will Be Locked Down," n.d.). A few days later, a nationwide lockdown was imposed till April 14 ("COVID Timeline," n.d.). Nationwide lockdowns kept on extending until phased reopening began after 75 days of complete lockdown on 8<sup>th</sup> June 2020 (Hebbar, 2020). The initial COVID-19 timeline for India is depicted in Figure 1. This timeline captures major events that happened during the course of the COVID-19 pandemic from the Indian perspective.

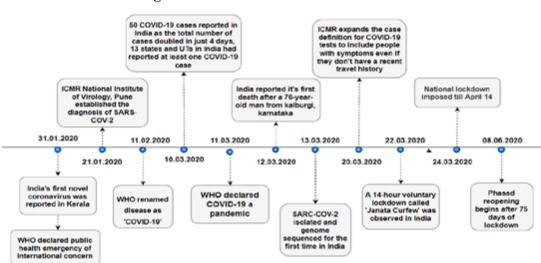



Fig.1. Initial COVID-19 timeline for India

#### 2. Measures Adopted to Contain Spread

Countries imposed measures like quarantines, travel restrictions, social distancing, and lockdowns to safeguard lives from this deadly disease. Though lockdowns resulted in containing the spread of the disease, it has been a tough decision for the governments as it significantly impacted the economies. Not only economies but the overall strength and morale of heavily affected nations have been compromised. For developing and underdeveloped countries, this impact has proven to be far more disastrous than the lives the virus has taken. Every attempt has been taken to impede the coronavirus's spread. Medical response systems have been designed to deal with the rise of active patients and protect the front-line medical workers with sufficient supplies of personal protective equipment (PPE) kits, masks, and other

necessities. Any forecast in advance will help governments to plan the usage of resources and to mitigate the risk of losing lives. Several prediction models to predict the number of COVID-19 cases have been developed which can forecast the number of cases for the next few days. In order to make accurate predictions, understanding the natural progression of the disease is very important. The literature is replete with studies on the prediction of novel coronavirus cases, and this article reviews a few of them.

## **RESEARCH METHOD**

#### 1. Background and Objectives

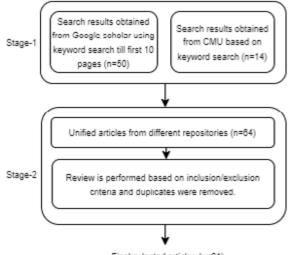
The significant spread of the novel corona virus over the world posed some serious challenges for the researchers' community. The exponential increase in the need for healthcare facilities leads to serious issues in managing affected patients. It became the need of the hour to accurately forecast the new and recovered cases for the optimal utilization of healthcare resources in order to contain the spread of this infection. Various studies were performed that suggested forecasting of COVID-19 cases using deep learning techniques. In this paper, we have identified and performed a comprehensive analysis of the articles proposed to predict COVID-19 cases using various techniques.

The literature review performed has the following objectives:

**Objective 1**: To recognize and describe the studies performed in forecasting COVID-19 cases.

**Objective 2**: To characterize and classify various proposed models in terms of techniques adopted.

**Objective 3:** To suggest future research direction.


#### 2. Bibliographic Search Process

In order to perform a comprehensive literature survey, a two-step literature search process is adopted. Figure 2 outlines the process undertaken for the search and selection of articles considered in this study for review.

**Stage-1:** In the first stage, a systematic search was performed on two popular databases i.e. Google Scholar and CMU in order to extract research articles using search keywords in combination like "COVID-19", "deep learning", "prediction", and "number of cases". Studies with the objective to predict COVID-19 cases using deep learning techniques

were extracted from search results. The count of articles found in the two databases with the above-mentioned search criteria is listed in Table 1. In Google Scholar, the search was conducted using the filter option "since 2020" using the search string "COVID-19 deep learning prediction number of cases" for any language and with the selection of option called "not including patents". The search results were extracted from first 5 pages and 50 articles were obtained through this database. Similarly, through CMU, the articles were searched using advance search option with similar combination of keywords. The search was performed choosing search "everything" for a period from January, 01, 2020 to August 01, 2021, for any

#### Fig.2. Bibliographic Search Process



Final selected articles (n=21)

language and 14 search results were obtained. A total of 64 research articles were extracted after stage-1 from from both repositories.

Stage-2: A review process was conducted on the articles extracted from stage-1. Abstracts of the articles obtained were thoroughly analysed. Relevant articles on prediction of COVID-19 cases using deep learning techniques were selected and duplicates were discarded. After the screening process, we are left with 21 articles for review in this study. The significant aspects in each and every article in this review were identified. Articles were characterised and compared on the basis of the methodology adopted, dataset used, geographical location of study, and performance.

Inclusion Criteria: The Inclusion criterion to include an article in this review is as

follows:

IC1: All searched articles on forecasting COVID-19 cases using deep learning methods are considered.

IC2: Articles published from January 01, 2020 till August 01, 2021 are included.

IC3: Articles of all languages are considered.

Exclusion Criteria: Following criteria is used to exclude any article from the analysis

EC1: Articles that do not include the keywords such as "COVID-19", "prediction", "deep learning", and "number of cases".

The paper is further structured as follows. Section 3 visits each of the paper considered under this review and presents insights of the work done in these. Section 4 discusses the categorisation of modelling techniques. Section 5 presents the conclusion and future scope. Section 6 lists all the references used in this study.

#### **CATEGORISATION OF MODELLING TECHNIQUES**

To model the spread and to forecast the number of infected cases, its peaks, and slowdowns for effective understanding and efficient management of resources, numerous models have been proposed in the literature. In order to effectively understand the model architecture and performance, a deep understanding of the forecasting techniques used is paramount. In this paper, we have classified the forecasting models proposed in the literature into the following four broad categories based on the underlying techniques used in prediction.

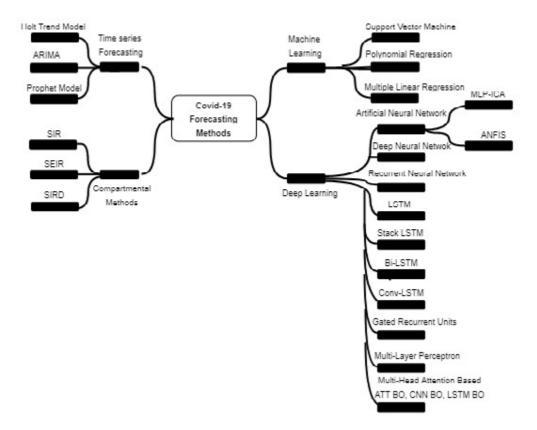
• **Compartmental Models:** Epidemiological mathematical modelling techniques classify the population into compartments with labels where people may progress between compartments. The progression among compartments is studied and the order of labels denotes the flow. These kinds of models are useful in analysing disease progression by computing reproduction number R<sub>0</sub>. The most common examples are SIR (susceptible-infected-recovered), .The success of compartmental models extensively depends on selecting the right model based on relevant assumptions in the context of actions taken by nations to contain outbreaks and thus involve lots of uncertainties. Due to a high degree of complexity involved in the advancement of epidemiological models, other COVID-19 forecasting techniques were also explored

by researchers.

- Statistical Time Series Models: Statistics based approaches are well adopted in timeseries forecasting. Auto-regressive moving average (ARIMA) has been employed in epidemiological modelling by researchers in prediction of future values by capturing auto-correlation between previous values. Exponential smoothing methods like Holt trend model also performs well in time series forecasting. Prophet algorithm is another technique for time series forecasting that works well in case of missing values in the data.
- Machine Learning Models: To obtain better performance than statistical models, several models based on machine learning algorithms have been also used for making predictions on COVID-19. Support vector machine (SVM) employ kernel functions for non-separable classes and is extensively used to minimize error margin. Polynomial regression and multi-linear regression are also some of the machine learning approaches employed in COVID-19 forecasting.
- **Deep Learning Models:** Artificial neural networks were exploited for their capabilities to represent complex relationships. Recurrent neural networks with capability to capture historical dependencies using network loops are employed for short-term forecasting. Long short-term memory (LSTM) overcomes the drawback of RNN and is used widely for long-term forecasting. Stacked LSTM with multiple LSTM layers is explored for deeper representations by introducing various gating structures. Bidirectional LSTM (Bi-LSTM), Convolutional LSTM (Conv-LSTM) are some other variants of LSTM employed in prediction modelling.

Figure 3. depicts the classification of COVID-19 forecasting techniques used in the contributions reviewed in this study. Table 1 briefly describes the strengths and weaknesses of each of the techniques used for COVID-19 forecasting in the articles considered in the present study.

| S.No | Algorithm                 | Strength                                                                                      | Weakness                           |
|------|---------------------------|-----------------------------------------------------------------------------------------------|------------------------------------|
| 1.   | Support Vector<br>Machine | Works well for high-dimensional<br>data. Error tolerance can be<br>defined using error margin | Not suitable for large<br>datasets |


Table.1. Forecasting Techniques: Strengths & Weaknesses

| 2.  | Polynomial<br>Regression                     | Fits a wide range of curvatures to<br>find the best relationship between<br>dependent and independent<br>variables | Sensitive to outliers                                           |
|-----|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| 3.  | Multiple Linear<br>Regression                | Good for detecting outliers                                                                                        | Affected by outliers<br>since it assumes linear<br>relationship |
| 4.  | Artificial Neural<br>Network                 | Robust to noise in the training data                                                                               | Might be overtrained, poor interpretability                     |
| 5.  | Recurrent Neural<br>Network                  | Remembers the previous<br>information, helps in time series<br>forecasting                                         | Prone to gradient<br>vanishing                                  |
| 6.  | Long Short Term<br>Memory                    | Capable of learning long-term dependencies                                                                         | Sensitive to random weight initializations                      |
| 7.  | Stack LSTM                                   | Makes the LSTM model deeper to achieve better accuracy                                                             | Prone to overfitting                                            |
| 8.  | Bi-LSTM                                      | Solves the problem of fixed sequence to sequence prediction                                                        | Computationally expensive                                       |
| 9.  | Auto encoders                                | Capable of learning smooth latent<br>state representations of the input<br>data                                    | Generate blurry outputs sometimes                               |
| 10. | Multilayer<br>Perceptron                     | Can be applied to complex non-<br>linear problems                                                                  | Computationally<br>expensive and time<br>consuming              |
| 11. | Attention Models                             | Ability to selectively focus on segments of the sequence                                                           | Long training time                                              |
| 12. | ARIMA                                        | Can work for seasonal as well as non-seasonal data                                                                 | Any change in<br>observation makes<br>model unsuitable          |
| 13. | Holt Trend Model                             | Level and trend can be smoothed<br>with different weights                                                          | Requires two parameters to optimize                             |
| 14. | Prophet algorithm                            | Robust to missing values                                                                                           | Unsuitable for multiplicative models                            |
| 15. | Compartmental<br>Models (SIR,<br>SEIR, SERD) | Depicts effects of public health interventions                                                                     | Requires huge amount of data                                    |

# FORECASTING MODELS REVIEW

This section discusses and summarizes the proposed work in each of the selected contributions. Table 2 contrasts each study on parameters like purpose of study, forecasting techniques used, data source, forecasting horizon, and result obtained. The proposed work in each of the contributions is summarized as follows:

- Santosh (2020) classified forecasting models available in literature into three broad categories namely SEIR/SIR, agent based, and curve-fitting models. It was suggested that predictions from such models deviate from intended values due to certain crucial and unprecedented factors like population density, test capacity, hospital capacity, demographics, and vulnerable people. This study emphasised on the incorporation of these continuous and important factors in data-driven models which can automatically tune parameters over time.
- To understand COVID-19 disease progression under the effect of lockdown, Das (2020) developed the epidemiological SIR model for the estimation of basic reproduction number  $R_0$  and prediction of peak. Further for short and medium-term predictions statistical machine learning (SML) model is also developed. Analysis suggested the early disease progression of India is similar to that of China.
- Rahmadani and Lee (2020) proposed a hybrid framework with an epidemic model and deep learning model. An expanded SEIR compartmental model incorporating human mobility as parameter was presented. Since the performance of epidemic models depend on the accuracy of estimated parameters, deep learning was applied for parameter estimation.
- Rahimi, Chen, & Gandomi (2021) reviewed and analysed important COVID-19 forecasting models. The important criteria and research gaps in COVID-19 forecasting were identified and highlighted to aid future research.



#### Fig.3. Forecasting models categorisation

151

- Devaraj (2021) focuses on comparative analysis of medium term predictions (infected individuals, number of deaths and number of recovered cases) using prediction models such as ARIMA, LSTM, Stacked LSTM. These models were also applied for global, country, and city specific forecast and analysed in detail. To determine the best model, statistical significance analysis was also conducted. Experimental results indicated that stacked LSTM performed best out of all models for predicting future confirmed, recovered, and death cases.
- Deng (2020) proposed an enhanced compartmental model that uses deep learning techniques in estimation of transition parameters as an alternative to stochastic parameterization to reduce data dependency. Results proved the usefulness of deep learning techniques in epidemic modelling.

•

Ayyoubzadeh et al. (2020) tried to predict the incidence of COVID-19 in Iran using

data mining models built with Google search data. Linear regression and 3-layer LSTM based models were employed to estimate daily COVID-19 cases. Through results, it was indicated that data mining algorithms can be used to forecast the trends of the outbreaks which may serve as important information for policy makers and health care managers to appropriately plan usage of available resources.

- Punn et al. (2020) presented machine learning and deep learning based models to predict number of cases for the next 10 days. The models have been trained using data from John Hopkins dashboard. The experimental results depicted that polynomial regression showed least root mean square error over support vector regression, deep learning regression, and recurrent neural network using long short-term memory cells.
- Aldhyani et al. (2020), in their study presented LSTM and Holt-trend model for forecasting confirmed cases and deaths cases of three countries, namely South Africa, Spain, and Italy. Prediction results demonstrated that LSTM and Holt-trend based models performed satisfactorily and can be employed for COVID-19.
- Wang et al. (2020), performed long term epidemic trend modelling adopting LSTM with rolling update mechanism. On contrary to existing epidemic models which only capture the rising trends in epidemic, this study models daily confirmed number of cases. Diffusion Index is used to analyse the effects of preventive measures like social exclusion and lockdown on the COVID-19 epidemic.
- Shahid et al. (2020), modelled COVID-19 dataset using statistical, machine learning and deep learning techniques like ARIMA, SVR, LSTM, and Bi-LSTM for forecasting confirmed cases, deaths and recoveries of ten countries hit by COVID-19. Experimental demonstration suggested LSTM, GRU, and Bi-LSTM have shown robust predictions. However, Bi-LSTM performed best among all on error measures.
- Elsheikh et al. (2021) proposed a multi-day-ahead LSTM deep learning model for the prediction of confirmed cases, recovered cases, and deaths training models on data for two different periods of 91 days and 199 days each. LSTM performed better as compared to NARANN and ARIMA.
- Arora et al. (2020) proposed RNN and LSTM based deep learning models for COVID-19 forecast, thereby facilitating the categorization of states into mild, moderate and severe zones. On 32 states/UTs, different LSTM variants—including stacked, convolutional, and bi-directional LSTM—are used, and daily and weekly

predictions are computed. Results suggested that bi-directional LSTM was accurate for short term predictions.

- Abbasimehr and Paki (2020) proposed three hybrid approaches (multi-head attention based ATT\_BO, CNN-based CNN\_BO, and LSTM-based LSTM\_BO method ) for forecasting number of infected daily cases for multiple days based on deep learning techniques combined with Bayesian optimization for optimal parameter selection. These multi-output models can be used for short as well as long term forecasting. Experimental results proved that for short term forecasting three models outperformed benchmark fuzzy fractal model (Castillo & Melin, 2020) in 6 out of 10 countries and for long term forecasting LSTM\_BO performed better than ANN\_BO and CNN\_BO.
- Zeroual et al. (2020) presented comparative forecasting of five deep learning based confirmed and recovered cases forecasting models on data collected from six countries namely Italy, Spain, France, China, USA, and Australia. Results indicated Variational Auto Encoder based model exhibited better performance than other NNbased models including RNN, GRU, LSTM, and Bi-LSTM.
  - Huang et al. (2020), suggested a multi-input CNN based model to forecast cumulative number of cases for the next day on the basis of previous five days' data of total confirmed cases, total confirmed new cases, total cured cases, total cured new cases, total deaths and total new deaths. The results demonstrated that CNN model has shown the best performance over other deep learning based models like GRU, MLP, and LSTM. The results also suggested that initial characteristic extraction through CNN and subsequent input of those characteristic values to CNN significantly aid in forecasting COVID-19 confirmed number of cases.
- Ayoobi et al. (2021) examined six deep learning methods namely LSTM, Convolutional LSTM, GRU and each of these in Bi-directional mode to forecast the new cases and new death rate time series for Australia and Iran. Results proved that bi-directional methods are superior.
- Direkoglu and Sah (2020) presented a deep learning model based on a deep neural network architecture consisting of an LSTM layer, a drop out layer and fully connected layers to forecast regional and worldwide possible spread of COVID-19. Their work was an attempt to model COVID-19 spread prediction on the basis of number of reported cases with a deep learning approach. Results found to be

promising in COVID-19 prediction.

- Chen et al. (2021) performed multivariate LSTM modelling with different architectures for forecasting COVID-19 time series 1/2/3 days ahead. Multivariate LSTM outperformed univariate counterparts for 1-day ahead predictions of incident cases, total cases, and new death whereas univariate LSTM has shown better results for 2-day and 3-day ahead predictions. In addition to this, more complex LSTM architecture does not depicted any prediction superiority over less complex one.
- Pinter et al. (2020) suggested a hybrid machine learning model of MLP-ICA and ANFIS for forecasting COVID-19 outbreak in Hungary. Based on the results, machine learning could be considered a potential technology to model the outbreak and total mortality.
- Yu et al. (2021) developed an online COVID-19 pandemic AI System (CPAIS) to evaluate COVID-19 disease trend and thus facilitate its forecasting integrating data of 171 countries. This system was based on time series deep learning and statistical models. LSTM demonstrated better forecast for most countries as compared to other models.

#### **CONCLUSION AND FUTURE SCOPE**

COVID-19 suddenly posed a life-threatening situation in the world within a few months of its outbreak in China. Several studies were conducted to understand the spread progression, prediction of peaks, daily new cases, deaths, recovered cases, etc. to understand the future situation. The practical significance of these forecasts lies in planning optimal usage of healthcare resources with the objective to save lives. Numerous models have been proposed in the literature for COVID-19 forecasting. The present study reviews and analyses important COVID-19 forecasting models proposed in the literature. A table summarizing each article considered under this review is presented. The study proposed a categorization of forecasting models based on the underlying forecasting techniques adopted. Due to the high amount of uncertainties in model parameters and the availability of limited data, sometimes models deviate significantly from the expected values. The performance of one model may vary drastically from one region to another. Therefore it is important that forecasting models consider these factors. Since, the COVID-19 pandemic is still ongoing, and therefore the datasets are either limited or incomplete. The preventive measures like social distancing, quarantine rules, etc. adopted by the administration also play a critical role in the containment of spread and thus need to be considered while designing forecasting models. In future, the availability of datasets with more data will lead to improvement in the prediction capabilities of models. Machine learning and deep learning based models, when developed with robust data were found to be performing well in many studies reviewed in this paper. This paper provides useful insights of models proposed in literature for COVID-19 forecasting. In future, more accurate forecasting models can be proposed combining different techniques and incorporating significant parameters. Also, the performance of models can be enhanced with the incorporation of advanced optimization approaches.

| Paper title                                                                                                                            | Forecasting<br>method<br>proposed/<br>discussed              | Forecasting<br>horizon             | Type of<br>data and<br>sample size                                                                                                       | Data source                                                                 | Results                                                                                                                                                                                                         | Purpose of<br>study                                                                                                                                                                                                                                           | Model<br>category                          |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| COVID-19<br>prediction<br>models and<br>unexploited<br>data. (San-<br>tosh,<br>2020)                                                   | SEIR/<br>SIR, agent<br>based, and<br>curve fitting<br>models | -                                  | -                                                                                                                                        | -                                                                           | Categori-<br>zation of<br>COVID-19<br>forecasting<br>models<br>present-<br>ed. Also,<br>importance<br>of incor-<br>poration of<br>continuous<br>and unprec-<br>edented<br>factors in<br>models is<br>discussed. | To empha-<br>sise the<br>incorpora-<br>tion of im-<br>portant and<br>continuous<br>factors like<br>a hospital<br>setting, test<br>capacity, de-<br>mography,<br>population<br>density, and<br>vulnerable<br>people in<br>COVID-19<br>prediction<br>modelling. | -                                          |
| Predic-<br>tion of<br>COVID-19<br>disease pro-<br>gression in<br>India: Under<br>the effect<br>of national<br>lockdown.<br>(Das, 2020) | SIR,<br>Statistical<br>machine<br>learning<br>model          | Next few<br>days ahead<br>forecast | Daily level<br>cases and<br>Testing rates<br>of each of<br>the Indian<br>states before<br>April 7,<br>2020 along<br>with Hubei/<br>China | John<br>Hopkins<br>University,<br>COVID-<br>19India,<br>Kaggle-<br>COVID-19 | With $R_0$ value similar<br>to china,<br>disease pro-<br>gression of<br>initial stage<br>in is com-<br>parable to<br>China. State<br>wise $R_0$<br>values are<br>discussed.                                     | To under-<br>stand the<br>severity<br>of disease<br>spread on<br>ground<br>and predict<br>disease pro-<br>gression in<br>India using<br>the SIR and<br>SML model                                                                                              | Compart-<br>mental,<br>Machine<br>learning |

Table. 2. Summary of existing work on COVID-19 prediction

A Comprehensive Survey on Covid-19 Prediction Models

| Hybrid deep<br>learn-<br>ing-based<br>epidemic<br>prediction<br>framework<br>of COVID-<br>19:south<br>Korea case.<br>(Rahmadani<br>& Li, 2020) | SEIR, Me-<br>ta-Popula-<br>tion Model,<br>DNN,<br>LSTM                                                | Next few<br>days ahead<br>forecast | Seoul: From<br>March 12,<br>2020 to<br>August 14,<br>2020. Dae-<br>gu: April<br>8, 2020 to<br>September<br>4, 2020. | Korea Cen-<br>ters for<br>Disease<br>Control and<br>Prevention<br>(KCDC) | Proposed<br>hybrid deep<br>learning<br>model<br>considering<br>human<br>mobility<br>found to be<br>effective in<br>forecasting.                                                                                                  | To propose<br>a hybrid<br>deep<br>learning<br>framework<br>with the<br>suscep-<br>tible-ex-<br>posed-in-<br>fected-re-<br>covered<br>(SEIR)<br>meta-pop-<br>ulation<br>model and | Deep Learn-<br>ing and<br>Compart-<br>mental                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| A review on<br>COVID-19<br>forecasting<br>models.<br>(Rahimi et<br>al., 2021)                                                                  | SER, SEIR,<br>SIRD, Phe-<br>nomenolog-<br>ical models,<br>ANN, SVM,<br>ARIMA,<br>Prophet<br>algorithm | -                                  | 920 techni-<br>cal research<br>articles<br>published as<br>of October<br>10, 2020.                                  | Web of Sci-<br>ence (WOS)<br>and Scopus                                  | Deep learn-<br>ing, SIR,<br>and SEIR<br>were the<br>approach-<br>es that<br>researchers<br>most fre-<br>quently uti-<br>lised while<br>studying<br>epidemic<br>models.<br>Addition-<br>ally, hybrid<br>algorithms<br>are used to | LSTM for<br>estimating<br>transmission<br>patterns<br>in South<br>Korea.<br>To review<br>the most<br>important<br>forecasting<br>models for<br>COVID-19                          | Machine<br>Learning,<br>Deep Learn-<br>ing, Time<br>Series and<br>Compart-<br>mental |
|                                                                                                                                                |                                                                                                       |                                    |                                                                                                                     |                                                                          | improve the<br>predictive<br>capability of<br>models.                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                      |

| Nena Ganuni Manan Beul, Pushpit Bharuwaj, Hritnik Kaura, King Baliyan and Shikha Gupta 13 | ha Gandhi Manan Bedi, Pushpit Bhardwaj, Hrithik Kaura, King Baliyan and Shikha Gupt | a 157 |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------|
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------|

|                                                                                                                                                                                                         | I                                             |                                             |                                                                                                                                                                                                                                                                               |                                                                                                                                                             |                                                                                                                                                                                         |                                                                                                                                                                                                                                                      |                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Forecast-<br>ing of<br>COVID-19<br>cases<br>using deep<br>learning<br>models: Is it<br>reliable and<br>practically<br>significant?<br>(Devaraj et<br>al., 2021)                                         | ARIMA,<br>LSTM,<br>SLSTM,<br>Prophet<br>model | 30, 60,<br>and 90<br>days ahead<br>forecast | Time series<br>data of<br>global cas-<br>es: January<br>22, 2020<br>to May 8,<br>2020,<br>Simulated<br>dataset for<br>correlation<br>analysis,<br>and<br>Combined<br>time series<br>dataset for<br>multivariate<br>analysis-<br>January 22,<br>2020-No-<br>vember<br>17,2020. | Center for<br>Systems<br>Science and<br>Engineering<br>(CSSE)<br>at Johns<br>Hopkins<br>Universi-<br>ty, World<br>weather<br>page and<br>Wikipedia<br>page. | The stacked<br>LSTM<br>model gave<br>the best<br>accuracy                                                                                                                               | To analyse<br>the role<br>of deep<br>learning in<br>COVID-19<br>forecasting<br>using ARI-<br>MA, LSTM,<br>and Prophet<br>models<br>globally,<br>country-<br>wide and in<br>city-specific<br>manner.                                                  | Deep<br>Learning<br>and Time<br>Series       |
| Dynam-<br>ics and<br>develop-<br>ment of the<br>COVID-19<br>epidemic in<br>the united<br>states: a<br>compart-<br>mental mod-<br>el enhanced<br>with deep<br>learning<br>techniques.<br>(Deng,<br>2020) | SIRD,<br>DNN,<br>RNN-<br>LSTM                 | Next 35<br>and 42 days<br>forecast          | Daily<br>records<br>(confirmed,<br>active, dead,<br>recovered,<br>hospitalized<br>etc.) from<br>April 2020.<br>Two time<br>series<br>tracking<br>confirmed<br>and dead<br>cases both<br>starting<br>from<br>January 22,<br>2020.                                              | Center for<br>Systems<br>Science and<br>Engineering<br>(CSSE)<br>at Johns<br>Hopkins<br>University.                                                         | An effective<br>and easy to<br>implement<br>alternative<br>to stochastic<br>parameter-<br>ization is<br>proposed<br>with deep<br>learning-en-<br>hanced<br>compart-<br>mental<br>model. | To develop<br>an enhanced<br>compart-<br>mental<br>using<br>multistep,<br>multivariate<br>deep learn-<br>ing meth-<br>odology to<br>estimate<br>transmission<br>parameters<br>and thereby<br>reducing<br>dependency<br>on data to a<br>great extent. | Deep Learn-<br>ing and<br>Compart-<br>mental |

#### A Comprehensive Survey on Covid-19 Prediction Models

| Predicting<br>COVID-19<br>incidence<br>through<br>analysis<br>of google<br>trends data<br>in iran:<br>data mining<br>and deep<br>learning<br>pilot study.<br>(Ayyoubza-<br>deh et al.,<br>2020) | Linear Re-<br>gression and<br>LSTM | Next few<br>days fore-<br>cast | Number of<br>COVID-19<br>cases in<br>Iran from<br>February<br>15, 2020, to<br>March 18,<br>2020, Goo-<br>gle Trends<br>data for<br>various con-<br>cepts from<br>February<br>15, 2020, to<br>March 18,<br>2020 | Worldome-<br>ter Website,<br>Google<br>Trends<br>Data.     | Data mining<br>based<br>forecasting<br>models<br>can be<br>considered<br>to predict<br>trends of<br>disease.         | To predict<br>incidence of<br>COVID-19<br>in Iran using<br>data mining<br>methods<br>and deep<br>learning<br>techniques.                                                                                              | Machine<br>Learning<br>and Deep<br>Learning |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| COVID-19<br>Epidemic<br>Analysis us-<br>ing machine<br>Learning<br>and Deep<br>Learning<br>Algorithms.<br>(Punn et al.,<br>2020)                                                                | SVR, PR,<br>DNN, RNN,<br>LSTM      | 10 days<br>ahead<br>forecast   | Time-se-<br>ries of<br>confirmed,<br>death, and<br>recovered<br>cases from<br>January<br>22, 2020,<br>to April 1,<br>2020                                                                                      | Official<br>Repository<br>of John<br>Hopkins<br>University | Polynomial<br>Regression<br>outper-<br>formed<br>other<br>approaches<br>on least root<br>mean square<br>error value. | To propose<br>models<br>based on<br>machine<br>learning<br>and deep<br>learning<br>approaches<br>with the<br>objective<br>to study the<br>transmis-<br>sibility of<br>COVID-19<br>and predict<br>its future<br>trends | Machine<br>Learning<br>and Deep<br>Learning |

| Neha Gandhi Manan Bedi, Pushpit Bhardwaj, Hrithik Kaura, King Baliyan and Shikha Gupta | 159 | 9 |
|----------------------------------------------------------------------------------------|-----|---|
|----------------------------------------------------------------------------------------|-----|---|

|                                                                                                                                                                                                                  |                                 |                                |                                                                                                                       | -                                                                                                |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Deep Learn-<br>ing and<br>Holt-Trend<br>Algo-<br>rithms for<br>Predicting<br>COVID-19<br>pandemic.<br>(Aldhyani et<br>al., 2020)                                                                                 | LSTM and<br>Holt Trend<br>Model | 30 days<br>ahead<br>forecast   | The<br>confirmed<br>and death<br>cases data<br>of 85 days<br>between<br>January 21,<br>2020 and<br>April 15,<br>2020. | Datasets<br>from WHO<br>for three<br>countries<br>namely<br>South<br>Africa, Italy,<br>and Spain | LSTM gave<br>the best<br>results for<br>confirmed<br>cases. On<br>the other<br>hand, Holt<br>Trend<br>model<br>performed<br>better for<br>death cases<br>prediction.<br>Also, results<br>indicated<br>that pro-<br>posed mod-<br>els showed<br>efficient<br>performance<br>to predict<br>COVID-19<br>cases. | To predict<br>number of<br>COVID<br>confirmed<br>and death<br>cases using<br>deep learn-<br>ing algo-<br>rithms and<br>Holt-Trend<br>models.                                                                                                                          | Deep<br>Learning<br>and Time<br>Series |
| Time series<br>prediction<br>for the<br>epidemic<br>trends of<br>COVID-19<br>using the<br>improved<br>LSTM deep<br>learning<br>method:<br>Case studies<br>of Russia,<br>Peru and<br>Iran. (Wang<br>et al., 2020) | LSTM                            | Next 150<br>days fore-<br>cast | Data on<br>COVID-19<br>from Janu-<br>ary 22, 2020<br>to July 7,<br>2020.                                              | John<br>Hopkins<br>University                                                                    | Proposed<br>model based<br>on LSTM<br>with rolling<br>update<br>mecha-<br>nism for<br>long-term<br>predictions<br>found to be<br>consis-<br>tent with<br>daily cases.<br>Preventive<br>measures<br>adopted by<br>government<br>are found to<br>be effective.                                                | To model<br>the epidem-<br>ic trend of<br>COVID-19<br>by using<br>LSTM<br>networks<br>and rolling<br>update<br>mecha-<br>nism by<br>feeding new<br>forecasting<br>results<br>into model<br>training for<br>the next<br>iteration<br>for Russia,<br>Peru, and<br>Iran. | Deep Learn-<br>ing                     |

#### A Comprehensive Survey on Covid-19 Prediction Models

| Predic-<br>tions for<br>COVID-19<br>with deep<br>learning<br>models of<br>LSTM,<br>GRU and<br>Bi-LSTM.<br>(Shahid et<br>al., 2020)                                             | ARIMA,<br>SVR,<br>LSTM,<br>GRU, and<br>Bi-LSTM                                | Next 48<br>days fore-<br>cast      | The<br>number of<br>confirmed<br>cases,<br>deaths, and<br>recovered<br>cases of 158<br>samples of<br>10 countries<br>from Janu-<br>ary 22, 2020<br>to October<br>5, 2020                           | Harvard<br>Dataverse                                                            | Bi-LSTM<br>gave the<br>best accu-<br>racy.                                                          | To com-<br>pare the<br>prediction<br>models from<br>statistics,<br>machine<br>learning,<br>and deep<br>learning on<br>COVID-19<br>dataset for<br>ten coun-<br>tries | Deep<br>Learning<br>and Time<br>Series |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Deep learn-<br>ing-based<br>forecasting<br>model for<br>COVID-19<br>outbreak<br>in Saudi<br>Arabia.<br>(Elsheikh et<br>al., 2021)                                              | LSTM                                                                          | Next 10<br>days fore-<br>cast      | The total<br>number of<br>cases from<br>March 2,<br>2020 to<br>May 31,<br>2020, and<br>from March<br>2, 2020 to<br>September<br>15,2020,<br>and from 1<br>January to<br>10 October<br>2020.        | Saudi<br>ministry of<br>health                                                  | The LSTM<br>model gave<br>the best<br>accuracy as<br>compared to<br>NARANN<br>and ARI-<br>MA.       | To use<br>LSTM to<br>forecast<br>the number<br>of total<br>confirmed<br>cases, total<br>recovered<br>cases, and<br>total deaths<br>in Saudi<br>Arabia.              | Deep Learn-<br>ing                     |
| Predic-<br>tion and<br>analysis of<br>COVID-19<br>positive<br>cases using<br>deep learn-<br>ing models:<br>a descriptive<br>case study<br>in India.<br>(Arora et<br>al., 2020) | RNN,<br>LSTM,<br>Deep LSTM<br>/ Stacked<br>LSTM,<br>Conv-<br>LSTM,<br>Bi-LSTM | Next few<br>days ahead<br>forecast | 32 individ-<br>ual time-se-<br>ries data of<br>confirmed<br>COVID-19<br>cases in<br>each of the<br>states (28)<br>and union<br>territories<br>(4) from<br>March 14,<br>2020, to<br>May 14,<br>2020 | Ministry<br>of Health<br>and Family<br>Welfare<br>(Govern-<br>ment of<br>India) | Bi-di-<br>rectional<br>LSTM<br>exhibited<br>best perfor-<br>mance for<br>short-term<br>predictions. | To employ<br>deep learn-<br>ing-based<br>models for<br>predict-<br>ing the<br>number of<br>COVID-19<br>cases for 32<br>states/ union<br>territories of<br>India.    | Deep Learn-<br>ing                     |

| Neha Gandhi Manan Bedi, Pushpit Bhardwaj, Hrithik Kaura, King Baliyan and Shikha Gupta $16$ | 61 |
|---------------------------------------------------------------------------------------------|----|
|---------------------------------------------------------------------------------------------|----|

| Prediction of<br>COVID-19<br>Confirmed<br>Cases Com-<br>bining Deep<br>Learning<br>Methods and<br>Bayesian<br>Optimiza-<br>tion. (Ab-<br>basimehr &<br>Paki, 2020) | Three hy-<br>brid models<br>of deep<br>learning<br>combining<br>Bayesian<br>Optimiza-<br>tion namely<br>Multi-head<br>attention<br>based ATT_<br>BO, Con-<br>volutional<br>Neural Net-<br>work based<br>CNN_BO,<br>and Long<br>short-term<br>memory<br>based<br>LSTM_BO. | 10 days<br>ahead<br>forecast<br>for short<br>horizon<br>whereas,<br>more days<br>for long<br>horizon | COVID-19<br>Data of US,<br>UK, Turkey,<br>Spain,<br>Mexico,<br>Italy, Iran,<br>Germany,<br>France, Bel-<br>gium from<br>January<br>20, 2020,<br>to August<br>1, 2020.<br>COVID<br>Data of<br>US, Brazil,<br>India, Rus-<br>sia, Africa,<br>Mexico,<br>Peru, Chile,<br>Columbia,<br>Iran from<br>January 20,<br>2020, to<br>August 3,<br>2020 | Two data-<br>sets from<br>Humani-<br>tarian Data<br>Exchange<br>(HDX). | Deep learn-<br>ing models<br>proved to<br>be superior<br>than bench-<br>mark mod-<br>els for both<br>long-term<br>as well as<br>short-term<br>forecasting.<br>LSTM_BO<br>achieves<br>the lowest<br>RMSE<br>among all<br>models<br>in longer<br>forecasting<br>horizon. | To predict<br>the number<br>of daily<br>COVID-19<br>infected<br>cases using<br>deep learn-<br>ing methods<br>along with<br>Bayesian<br>optimization<br>for optimal<br>parameter<br>selection | Deep Learn-<br>ing |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Deep<br>learning<br>methods for<br>forecasting<br>COVID-19<br>time-series<br>data: A<br>compara-<br>tive study.<br>(Zeroual et<br>al., 2020)                       | RNN,<br>LSTM,<br>Bi-LSTM,<br>GRU, and<br>VAE                                                                                                                                                                                                                             | Seventeen<br>days ahead<br>forecast                                                                  | Data of<br>Spain, Italy,<br>China, the<br>USA, and<br>Australia<br>from the<br>starting of<br>COVID-19<br>till June<br>17th, 2020.                                                                                                                                                                                                           | John<br>Hopkins<br>University                                          | Results<br>demon-<br>strated that<br>VAE outper-<br>formed<br>all other<br>methods.                                                                                                                                                                                    | To present<br>a compari-<br>son among<br>five deep<br>learning<br>forecasting.                                                                                                               | Deep Learn-<br>ing |

#### A Comprehensive Survey on Covid-19 Prediction Models

| Multiple-in-<br>put deep<br>convolu-<br>tional neural<br>network<br>model for<br>COVID-19<br>forecasting<br>in china.<br>(Huang et<br>al., 2020)              | Multi-input<br>CNN                                                         | Next day<br>forecast          | Datasets of<br>COVID-19<br>cases from<br>January 23,<br>2020, till<br>March 2,<br>2020, from<br>Hubei China<br>province                                                                                  | Surging<br>News Net-<br>work (SNN)<br>and WHO                                                       | CNN gave<br>the best ac-<br>curacy over<br>other deep<br>learning<br>based coun-<br>terparts.      | To make a<br>deep learn-<br>ing model<br>with a small<br>dataset in<br>order to<br>make it an<br>important<br>reference<br>for other<br>countries<br>in their<br>contain-<br>ment of the<br>COVID-19<br>epidemic. | Deep Learn-<br>ing |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Time Series<br>Forecasting<br>of New<br>Cases and<br>New Deaths<br>Rate for<br>COVID-19<br>using Deep<br>Learning<br>Methods.<br>(Ayoobi et<br>al., 2021)     | LSTM,<br>Bi-LSTM,<br>Conv-<br>LSTM,<br>Bi-Conv-<br>LSTM,<br>GRU,<br>Bi-GRU | Next 7 days<br>forecast       | COVID data<br>of Australia<br>and Iran.<br>For Aus-<br>tralia, from<br>January 25,<br>2020, to<br>August 19,<br>2020, and<br>from Janu-<br>ary 3, 2020,<br>to October<br>6, 2020 for<br>Iran             | WHO                                                                                                 | Bi-di-<br>rectional<br>models<br>performed<br>better.                                              | To predict<br>COVID<br>cases and<br>death rate<br>using deep<br>learning<br>and their<br>bi-direction-<br>al models.                                                                                              | Deep Learn-<br>ing |
| Worldwide<br>and Regional<br>Forecast-<br>ing of<br>Coronavirus<br>(COVID-19)<br>Spread<br>using a Deep<br>Learning<br>Model. (Di-<br>rekoglu &<br>Sah, 2020) | Long Short<br>Term Mem-<br>ory (LSTM)                                      | Next 10<br>days fore-<br>cast | Time series<br>COVID<br>-19 data of<br>China from<br>January<br>10, 2020<br>to April<br>3,2020 and<br>COVID<br>Data of<br>Europe and<br>the Middle<br>East from<br>17 January<br>2020 to 3<br>April 2020 | Chinese<br>Centre for<br>Disease<br>Control and<br>Prevention,<br>World<br>Health Or-<br>ganization | Proposed<br>approach is<br>found to be<br>promis-<br>ing for<br>forecasting<br>COVID-19<br>spread. | To design<br>a deep<br>learning net-<br>work based<br>model for<br>COVID-19<br>forecasts<br>of China,<br>Europe and<br>Middle and<br>worldwide.                                                                   | Deep Learn-<br>ing |

| Neha Gandhi Manan Bedi, Pushpit Bhardwaj, Hrithik Kaura, King Baliyan and Shikha Gupta | 163 |
|----------------------------------------------------------------------------------------|-----|
|----------------------------------------------------------------------------------------|-----|

|                                                                                                                                              | 1                                                                                                                                                                                                                                              | Y                                    |                                                                                                                                       |                                                           |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                |                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Exploring<br>Feasibility of<br>Multivariate<br>Deep Learn-<br>ing Models<br>in Predicting<br>COVID-19<br>Epidemic.<br>(Chen et al.,<br>2021) | One-encod-<br>er, one-de-<br>coder LST-<br>M(E1D1)<br>and<br>two-encoder<br>two-decod-<br>er LSTM<br>(E2D2)                                                                                                                                    | Next 1/2/3<br>days ahead<br>forecast | Data of<br>Hubei<br>Province,<br>China from<br>January<br>25, 2020<br>to May 15,<br>2020.                                             | Official Hu-<br>bei Province<br>COVID-19<br>press release | Univariate<br>LSTM out-<br>performed<br>multivariate<br>LSTM in<br>forecasting<br>new case,<br>total case,<br>and new<br>death for 2<br>day and 3<br>day ahead<br>whereas<br>multivari-<br>ate LSTM<br>performed<br>better for 1<br>day ahead<br>forecasts.<br>More<br>complex ar-<br>chitecture in<br>multivariate<br>LSTM did<br>not exhib-<br>ited any<br>prediction<br>superiority. | To explore<br>the feasi-<br>bility of<br>data-driv-<br>en DL<br>Models, like<br>multivariate<br>LSTM on<br>character-<br>izing the<br>COVID-19 | Deep Learn-<br>ing                              |
| COVID-19<br>pandemic<br>prediction<br>for Hungary;<br>a hybrid<br>machine<br>learning<br>approach.<br>(Pinter et al.,<br>2020)               | Two robust<br>hybrid<br>methods of<br>ANN algo-<br>rithm, i.e.,<br>Multi-layer<br>percep-<br>tron-im-<br>perialist<br>competitive<br>algorithm<br>(MLP-ICA)<br>and Adap-<br>tive net-<br>work-based<br>fuzzy infer-<br>ence system<br>(ANFIS). | Next 9<br>days ahead<br>forecast     | Statistical<br>reports of<br>COVID-19<br>cases and<br>mortality<br>rate of Hun-<br>gary from<br>4 March,<br>2020 to 28<br>April, 2020 | Worl-<br>dome-ter<br>website                              | Both models<br>demon-<br>strated<br>potential in<br>COVID-19<br>forecasting.<br>MLP-ICA<br>outper-<br>formed<br>ANFIS<br>with more<br>accurate<br>results.                                                                                                                                                                                                                              | To improve<br>the quality<br>of predic-<br>tion by<br>proposing<br>hybrid<br>machine<br>learning<br>approach for<br>COVID-19<br>prediction     | Deep Learn-<br>ing (Hybrid<br>Models of<br>ANN) |

A Comprehensive Survey on Covid-19 Prediction Models

| A<br>COVID-19<br>Pandemic<br>Artificial<br>Intelli-<br>gence-Based<br>System<br>With Deep<br>Learning<br>Forecasting<br>and Auto-<br>matic Sta-<br>tistical Data<br>Acquisition:<br>Develop-<br>ment and<br>Implemen-<br>tation Study.<br>(Yu et al.,<br>2021) | ARIMA,<br>Feedfor-<br>ward neural<br>network(F-<br>NN),<br>Multilayer<br>Perceptron<br>Neural<br>Network,<br>LSTM | Next 14-<br>day forecast | The<br>COVID-19<br>Data<br>Repository<br>established<br>by John<br>Hopkins<br>University<br>Center for<br>Systems<br>Science and<br>Engineer-<br>ing(CSSE)<br>contains<br>data of 192<br>countries<br>since Janu-<br>ary 21,2020.<br>Oxford<br>COVID-19<br>Government<br>Response<br>Tracker<br>(OxCGRT)<br>contains<br>data of 183 | Oxford<br>COVID-19<br>government<br>response<br>tracker<br>(OxCGRT<br>) main-<br>tained by<br>University,<br>COVID-19<br>repository<br>established<br>by John<br>Hopkins<br>University<br>Center for<br>Systems<br>Science and<br>Engineer-<br>ing. | LSTM<br>demonstrat-<br>ed better<br>forecast<br>for most<br>countries as<br>compared<br>to other<br>models. | To de-<br>velop a<br>COVID-19<br>Pandemic<br>Artificial<br>Intelli-<br>gence-based<br>System<br>(CPAIS)<br>to track<br>variations,<br>trends and<br>forecasts<br>related to<br>COVID -19<br>across 171<br>countries. | Deep Learn-<br>ing and<br>Statistical |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|

# REFERENCES

Abbasimehr, H., & Paki, R. (2020). Prediction of COVID-19 Confirmed Cases Combining Deep Learning Methods and Bayesian Optimization. *Chaos, Solitons & Fractals*, 110511. https://doi.org/10.1016/j.chaos.2020.110511

Aldhyani, T. H. H., Alrasheed, M., Alqarni, A. A., Alzahrani, M. Y., & Alahmadi, A. H. (2020). Deep Learning and Holt-Trend Algorithms for predicting COVID-19 pandemic. *MedRxiv*. https://doi.org/10.1101/2020.06.03.20121590

Arora, P., Kumar, H., & Panigrahi, B. K. (2020). Prediction and analysis of COVID-19 positive cases using deep learning models: A descriptive case study of India. *Chaos, Solitons & Fractals, 139*, 110017. https://doi.org/10.1016/j.chaos.2020.110017

Ayoobi, N., Sharifrazi, D., Alizadehsani, R., Shoeibi, A., Gorriz, J. M., Moosaei, H., ... Mosavi, A. (2021). Time series forecasting of new cases and new deaths rate for COVID-19 using deep learning methods. *Results in Physics*, 27, 104495. https://doi.org/10.1016/j. rinp.2021.104495

Ayyoubzadeh, S. M., Ayyoubzadeh, S. M., Zahedi, H., Ahmadi, M., & R. Niakan Kalhori, S. (2020). Predicting COVID-19 incidence using Google Trends and data mining techniques: A pilot study in Iran (Preprint). *JMIR Public Health and Surveillance*, *6*(2). https://doi.org/10.2196/18828

Castillo, O., & Melin, P. (2020). Forecasting of COVID-19 time series for countries in the world based on a hybrid approach combining the fractal dimension and fuzzy logic. *Chaos, Solitons & Fractals*, *140*, 110242. https://doi.org/10.1016/j.chaos.2020.110242

Chen, S., Paul, R., Janies, D., Murphy, K., Feng, T., & Thill, J.C. (2021). Exploring Feasibility of Multivariate Deep Learning Models in Predicting COVID-19 Epidemic. *Frontiers in Public Health*, *9*. https://doi.org/10.3389/fpubh.2021.661615

COVID Timeline. (n.d.). Retrieved September 24, 2022, from Icmr.gov.in website: https://www.icmr.gov.in/COVIDTimeline/cindex.html

Cucinotta, D., & Vanelli, M. (2020). WHO Declares COVID-19 a Pandemic. Acta Bio-Medica: Atenei Parmensis, 91(1), 157–160. https://doi.org/10.23750/abm.v91i1.9397

Das, S. (2020). Prediction of COVID-19 disease progression in india: Under the effect of national lockdown. *arXiv preprint arXiv:2004.03147*.

Deng, Q. (2020). Dynamics and Development of the COVID-19 Epidemic in the United States: A Compartmental Model Enhanced With Deep Learning Techniques. *Journal of Medical Internet Research*, 22(8), e21173. https://doi.org/10.2196/21173

Devaraj, J., Madurai Elavarasan, R., Pugazhendhi, R., Shafiullah, G. M., Ganesan, S., Jeysree, A. K., ... Hossain, E. (2021). Forecasting of COVID-19 cases using deep learning models: Is it reliable and practically significant? *Results in Physics*, *21*, 103817. https://doi. org/10.1016/j.rinp.2021.103817

Direkoglu, C., & Sah, M. (2020). Worldwide and Regional Forecasting of Coronavirus (COVID-19) Spread using a Deep Learning Model. *MedRxiv*. https://doi. org/10.1101/2020.05.23.20111039

Elsheikh, A. H., Saba, A. I., Elaziz, M. A., Lu, S., Shanmugan, S., Muthuramalingam, T., ... Shehabeldeen, T. A. (2021). Deep learning-based forecasting model for COVID-19 outbreak in Saudi Arabia. *Process Safety and Environmental Protection*, *149*, 223–233. https://doi.

### org/10.1016/j.psep.2020.10.048

For 14 Hours Today, India Will Be Locked Down. (n.d.). Retrieved September 24, 2022, from The Wire website: https://thewire.in/government/janata-curfew-india-coronavirus

Health Ministry Reports One Positive Case of Wuhan Coronavirus in Kerala. (n.d.). Retrieved September 24, 2022, from The Wire website: https://thewire.in/health/health-ministry-reports-one-positive-case-of-wuhan-coronavirus-in-kerala

Hebbar, N. (2020, March 25). PM Modi announces 21-day lockdown as COVID-19 toll touches 12. *The Hindu*. Retrieved from https://www.thehindu.com/news/national/pm-announces-21-day-lockdown-as-COVID-19-toll-touches-10/article61958513.ece

Huang, C. J., Chen, Y. H., Ma, Y., & Kuo, P. H. (2020). Multiple-input deep convolutional neural network model for COVID-19 forecasting in china. *MedRxiv*.

Lai, C. C., Shih, T. P., Ko, W. C., Tang, H. J., & Hsueh, P. R. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. *International journal of antimicrobial agents*, *55*(3), 105924.

Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., ... & Feng, Z. (2020). Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. *New England journal of medicine*.

Lu, H., Stratton, C. W., & Tang, Y. (2020). Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. *Journal of Medical Virology*, *92*(4), 401–402. https://doi.org/10.1002/jmv.25678

Naming the coronavirus disease (COVID-19) and the virus that causes it. (2020). Retrieved September 24, 2022, from World Health Organization website: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(COVID-2019)-and-the-virus-that-causes-it

Novel Coronavirus (2019-nCoV). (2020). Retrieved from https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf?sfvrsn

Novel Coronavirus – Thailand. (n.d.). Retrieved September 24, 2022, from www.who.int website: https://www.who.int/emergencies/disease-outbreak-news/item/2020-DON234

Punn, N. S., Sonbhadra, S. K., & Agarwal, S. (2020). COVID-19 epidemic analysis using machine learning and deep learning algorithms. *MedRxiv*.

Pinter, G., Felde, I., Mosavi, A., Ghamisi, P., & Gloaguen, R. (2020). COVID-19 pandemic prediction for Hungary; a hybrid machine learning approach. *Mathematics*, *8*(6), 890.

Press, R. and A. (2020, January 16). Japan confirms first case of new China coronavirus strain. Retrieved from the Guardian website: https://www.theguardian.com/world/2020/jan/16/japan-confirms-first-case-of-new-china-coronavirus-strain

Rahimi, I., Chen, F., & Gandomi, A. H. (2021). A review on COVID-19 forecasting models. *Neural Computing and Applications*, 1-11.

Rahmadani, F., & Lee, H. (2020). Hybrid deep learning-based epidemic prediction framework of COVID-19: South Korea case. *Applied Sciences*, *10*(23), 8539.

Santosh, K. C. (2020). COVID-19 prediction models and unexploited data. *Journal of medical systems*, 44(9), 1-4.

Shahid, F., Zameer, A., & Muneeb, M. (2020). Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM. *Chaos, Solitons & Fractals, 140, 110212.* 

Staff, T. W. (2020, March 12). Coronavirus Updates, March 12: India's First Death Confirmed in Karnataka. Retrieved September 24, 2022, from The Wire Science website: https://science. thewire.in/health-/coronavirus-global-pandemic-who-india-COVID-19-cases-quarantine-visa-cancelled/

Wang, P., Zheng, X., Ai, G., Liu, D., & Zhu, B. (2020). Time series prediction for the epidemic trends of COVID-19 using the improved LSTM deep learning method: Case studies in Russia, Peru and Iran. *Chaos, Solitons & Fractals, 140*, 110214.

Yu, C. S., Chang, S. S., Chang, T. H., Wu, J. L., Lin, Y. J., Chien, H. F., & Chen, R. J. (2021). A COVID-19 pandemic artificial intelligence–based system with deep learning forecasting and automatic statistical data acquisition: development and implementation study. *Journal of medical Internet research*, 23(5), e27806.

Zeroual, A., Harrou, F., Dairi, A., & Sun, Y. (2020). Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study. *Chaos, Solitons & Fractals, 140*, 110121.

Zhong, N. S., Zheng, B. J., Li, Y. M., Poon, L. L. M., Xie, Z. H., Chan, K. H., ... & Guan, Y. (2003). Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003. *The Lancet*, *362*(9393), 1353-1358.