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Welcome to Data Analysis in the Psychological Sciences! 
This open resources textbook contains 10 Units that describe 

and explain the main concepts in statistical analysis of 
psychological data. In addition to conceptual descriptions and 
explanations of the basic analyses for descriptive statistics, this 
textbook also explains how to conduct those analyses with 
common statistical software (Excel) and open-source free 
software (R). 

We hope that you enjoy these materials. If you have any 
questions, issues, or comments, feel free to contact us: 

Leyre Castro (leyre-castroruiz@uiowa.edu) 
J Toby Mordkoff (jonathan-mordkoff@uiowa.edu) 
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Unit 1. Introduction to 
Statistics for 
Psychological Science 
J TOBY MORDKOFF AND LEYRE CASTRO 

Summary.  This unit introduces some of the 
basic concepts of statistics as they apply to 
psychological research. These concepts 
include data and variables, populations and 
samples, and the distinction between 
descriptive and inferential statistics. 

Statistics to Better Understand the 
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World 

We live in a data-driven world.  We use data in science, sports, 
business, politics, public health; we collect data from surveys, 
polls, and ratings; and we measure how much we walk, drive, 
eat and sleep.  We want to know how things are now and 
how to guide our future actions.  Before making a decision, 
we gather information.  Frequently, this means gathering 
numbers: fuel efficiency, engine capacity, acceleration rate, and 
market price if we are planning to buy a car; admission rate and 
likelihood of having a job after graduating if we are deciding 
what college to attend; or how many miles we run and changes 
in our heart rate if we are trying to improve our physical fitness. 
In summary, we are constantly measuring our world, because 
we want to understand it and make the best decisions. 

But collecting numbers and measurements is not enough. 
We need to try to make sense of all that information, which 
can sometimes be overwhelming.  We don’t want to draw false 
conclusions or make poor decisions.  Thus, careful analysis of 
the data is necessary, to be able to comprehend their meaning, 
to be able to find patterns, to evaluate actions and behaviors, 
to uncover trends and estimate the future.  Statistics will help 
us to see through the forest of data more clearly and achieve 
these goals. 

We need to understand and make sense of the data 
regardless of our biases, wishes, and preferences.  That is, we 
need to be objective and see what the data are telling us, 
regardless of what we might want to see.  That’s why we need 
statistics.  Nonetheless, statistics may not give you a simple, 
single answer.  But they will help you condense information 
so that it’s easier to manage and understand.  Statistics may 
not capture the full richness, nuances, color, and texture of the 
world, but they are the most powerful tool that we have to 
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objectively understand what we are and what happens around 
us. 

Psychology as an Empirical Science 

Psychological science aims to understand human (and animal, 
in general) behavior from an empirical point of view.  That is, 
we use objective observations and measurements to test our 
theories and hypotheses about how humans behave.  But 
psychological science will only be as good as the quality of the 
observations that we use are. 

Anecdotes or intuition or “common sense” may seem to 
serve us sometimes in our daily lives.  But they are subject to all 
kind of biases.  That type of information is inadequate to build a 
solid and trustable discipline.  We need to acquire information 
using a scientific methodology. 

When we do science, it is not about our opinions or wishes. 
We try to understand events and behaviors by finding patterns 
in empirical observations and carefully analyzing how those 
observations are related.  Yes, we have opinions, and beliefs, 
and desires, and intuitions.  But none of these can help explain 
reality. 

Science can help us to understand and explain events and 
behaviors.  We develop hypotheses and we conduct detailed 
empirical observations to test those hypotheses.  These 
detailed observations are our data.  Careful statistical analysis 
of our data will allow us to support or reject our hypotheses. 
This knowledge will allow us in turn to build theories to 
understand events and behaviors.  These theories will also 
allow us to make new predictions –to generate new hypotheses 
that will further advance our comprehension of those events 
and behaviors. 

Statistics may sometimes give us an imperfect 
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representation of reality.  We measure different people at 
different times in different places, so it may be sometimes 
difficult to extract conclusions that can apply to absolutely 
everybody.  That’s why we need to learn not only to conduct our 
statistical analysis, but to critique and evaluate others’.  Being 
objective while keeping a critical eye will help us to make the 
best of our statistical understanding of our world. 

Data and Variables 

The word data (which is technically plural) refers to any 
organized set of observations.  An observation is a value 
–which can be a number or a label, such as “red”– that tells you 
something about something.  In some cases, an observation 
specifies the value of a person on some dimension, such as 
their age or their current level of depression.  In other cases, 
an observation can refer to the behavior of a person, such as 
what they said when asked a particular question, whether they 
answered a question correctly, or how quickly they responded 
on a trial in a laboratory experiment.  It does not matter if the 
observation was collected by watching the person, talking to 
them, or having a computer measure something like a 
response time; whenever you get a new piece of information, 
the value that you got is an observation. 

Each observation specifies a value on a dimension, such as 
age, favorite color, level of depression, correctness, or speed of 
response.  In statistical parlance, these dimensions are referred 
to as variables.  A variable is anything that has more than one 
possible value. 

The values of some variables differ mathematically because 
they tell you the amount of something.  These variables are 
called quantitative, because they specify a quantity; examples 
of quantitative variables include age and response time.  Most 
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quantitative variables also have units.  The units make it clear 
what the numbers refer to (i.e., how much of what).  Note that 
it is quite possible to have two variables that refer to the same 
general concept, such as time, but use very different units; age 
vs response time is a good example.  For age, we usually use 
years as the unit, but we could use months or even weeks if we 
are concerned with infants’ ages.  For response time, we usually 
use milliseconds (i.e., thousandths of a second), but we could 
use minutes if we are asking people to wait in a self-control 
task.  It is crucial to keep track of the units.  It would (probably) 
be very wrong to say that a person took 350 years to make a 
response or that they were only 19 milliseconds old. 

Interval vs Ratio Scales 

For most quantitative variables, the value of zero 
is special, because it means none of the thing being 
measured.  Examples of this include response time, 
number of siblings, or number of study hours per 
week.  In these cases, you are allowed to make ratio 
statements, such as “Person X took twice as long to 
respond than Person Y” or “Person X has three times 
as many siblings as Person Y”; for this reason, any 
variable with a meaningful zero is referred to as using 
a ratio scale.  But not all quantitative variables use 
ratio scales.  If you measure temperature in either 
Fahrenheit or Celsius, then zero does not mean no 
heat.  (If you want a ratio scale for temperature, you 
need to use Kelvin, instead.)  So you cannot say that 
50° F is “twice as warm” as 25° F.  But you can say 
that the difference between 50° F and 45° F is the 
same as the difference between 55° F and 50° F, 
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because the steps between values are all the same. 
For this reason, these variables are said to use an 
interval scale (which is short-hand for equal-interval 
scale).  In psychological science, interval scales are 
often used to measure how much you like 
something or how much you agree or disagree with 
some statements. 

The distinction between ratio and interval scales 
does not matter for any of the statistics that we are 
going to discuss.  It only makes a difference to how 
you talk about the data. 

Other variables take on values that differ in ways that are 
categorical, instead of numerical, in which case the variable 
is called qualitative, since it specifies a quality.  Examples of 
qualitative variables include favorite food or TV show, ethnic 
group, and handedness.  Some qualitative variables require a 
label or something like units.  It’s not enough to know that 
the value for a person is “strawberry shortcake”; you need to 
know if this refers to the food or to the cartoon character.  The 
key is to always think of an observation as specifying the value 
of something on some dimension.  If it isn’t obvious to what 
dimension the value refers, make sure to include it somewhere. 

There is one other type of variable, which can be thought 
of as being somewhere between quantitative and qualitative. 
These are called ordinal variables.  An ordinal variable specifies 
a position in a sequence or list, and uses a number to do this, 
such as 1st, 2nd, 3rd, etc., but these numbers do not refer to 
an amount of something (so they’re not quantities).  The best 
example of this in psychology is birth order, which is known to 
be very important to a variety of things, from attachment (to 
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the primary caregivers) to performance in school.  Assuming a 
family with three children, none of whom are twins, one child 
is 1st, another is 2nd, and the last is 3rd.  This might seem 
numerical, but it is not either a ratio or interval scale (see 
previous box).  The 2nd-born is not “twice” the 1st-born in any 
meaningful way (so it is not a ratio scale), and the gap in time 
between the 1st and 2nd child does not have to be the same 
as the gap between 2nd and 3rd (so it isn’t an interval scale). 
In general, it would be inaccurate to take 1st, 2nd, 3rd, etc, as 
specifying amounts or quantities in the usual sense.  But they 
are more than just categories, because they have an order, 
which allows us to conduct certain analyses that don’t work 
for qualitative categories, such a favorite color or handedness. 
Therefore, we keep ordinal variables separate from the other 
two types. 

Discrete vs Continuous Variables 

Another way in which variables differ is in terms 
of what specific values are possible.  Some variables 
are discrete, which means that only certain values 
are possible.  All ordinal variables are discrete by 
definition, because the only possible values are 1st, 
2nd, 3rd, etc.  Likewise, every qualitative variable that 
is used in psychology is also discrete, because there’s 
a limited number of possible values in every case, 
even for complicated variables, such as ethnic 
group.  Finally, some quantitative variables are also 
discrete, such as number of siblings, which must be 
a whole number. 

Other quantitative variables are continuous, which 
means that any value between two end-points is 
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possible.  The best example of this is response time. 
Although it’s true that we usually round the value of 
response time to the nearest millisecond, an infinite 
number of values are theoretically possible because 
time flows continuously, instead of moving in steps, 
so response time is a continuous variable. 

In a very small number of situations, the distinction 
between discrete and continuous quantitative 
variables can be important.  When one of these 
situations arises, it will be discussed; for everything 
else, this distinction can and will be ignored, and 
we’ll refer to both types of quantitative variable as 
simply being quantitative. 

The quantitative vs. qualitative vs. ordinal distinction is inherent 
to the variable and does not depend on how the variable is 
being used.  Another way that variables differ, however, does 
depend on the role that the variable is playing.  On one side, 
there are independent or manipulated variables.  These are 
properties, characteristics, or qualities that are entirely 
determined or set by the experimenter.  For example, in an 
experiment concerning the effects of sleep deprivation on 
something like mood, the number of hours of sleep –if it is 
controlled by the experimenter– is an independent variable 
(IV).  On the other side, there are dependent or measured 
variables.  These are properties, characteristics, or qualities that 
are observed as they occur.  In the case of the sleep-deprivation 
experiment, “grumpiness” on a ten-point scale might be the 
dependent variable (DV). 

Note that IV and DV are not automatic labels for a given 
property, characteristic, or quality.  Some variables can be used 
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as either an IV or DV, depending on the context.  For example, 
hours of sleep can be the IV in a sleep-deprivation experiment, 
where the amount of sleep is controlled and restricted by the 
experimenter, or it can be a DV in a study of depression or 
anxiety, where the participant is asked how much sleep they 
have been getting in order to take this information into 
account to better evaluate depression or anxiety.  It is crucial 
that you correctly identify how a given variable is being used in 
a given line of research.  The best way to do this is to remember 
the alternative names for IV and DV and ask: was this variable 
manipulated or was it measured by the researcher? 

Correlational Study vs. Experiment 

All research can be classified as taking one of two 
approaches.  If the researcher measures two or more 
variables, and doesn’t use any manipulations, then 
they are conducting what is called a correlational 
study.  Note that the label for the research is 
“correlational study” even if the analysis involves 
statistics other than correlations; it’s the label for the 
approach, not the analysis.  In a correlational study, 
all of the variables are DVs, even when one is being 
used as the predictor and the other is being used as 
the (predicted) outcome. 

In contrast, if the researcher manipulates one or 
more variables and then measures one or more 
other variables, then they are conducting what is 
called an experimental study.  In an experiment, 
there is at least one IV and at least one DV.  The 
defining attribute of an experiment is that at least 
one variable is being manipulated.  The values of the 
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IV in an experiment are what create the different 
conditions or groups. 

There is also what appears to be a third class of variables that 
is somewhere between an IV and DV.  These subject variables 
(SVs) are properties, characteristics, or qualities that vary across 
research subjects, but are relatively stable within subjects 
(across time) and/or are extremely difficult or impossible to 
manipulate.  Some classic examples are handedness, ethnicity, 
and sex and/or gender, but “higher-order” examples also exist, 
such as socio-economic status.  The value of an SV is measured, 
not manipulated, which makes them like a DV, but they are 
sometimes treated as if they had been manipulated, which 
makes them a bit like IVs.  In other analyses, SVs play a very 
special role –known as a covariate– that is different from both 
an IV or DV. 

The last way in which variables differ has no agreed-upon 
label; we shall refer to it as kind.  The first kind of data is raw; 
these are single observations as they were originally recorded. 
This can be the response time on one trial in an experiment 
or the answer to a single item on a questionnaire.  This might 
be surprising, but this kind of data is not used very often in 
research. 

The second kind of data are summary scores; these are 
created from multiple observations of the same thing under 
the same set of conditions.  The best example of this is how 
response time is usually measured.  It is very rare to run just one 
trial in each condition of a response-time experiment.  Usually, 
there’s 20 or more trials in each condition and the average time 
across all (correct) trials is kept for analysis.  In other words, the 
20 or more raw pieces of data are converted to one summary 
score.  (The reason that this is done, as you will see later, is that 
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summary scores are much less “noisy” than raw scores, which 
increases the power of the statistical analysis.) 

The last kind of data are condensed or composite or scale 
scores (any of these labels is fine).  These are created from 
multiple observation of different things.  Examples of this 
include the standard measures of depression and anxiety.  For 
both of these, the person is asked many different questions, 
from which a single (numerical) value can be calculated.  This 
is similar to a summary score in that many raw scores are 
somehow combined; the difference is that a summary score 
is based on many measures of the same thing, whereas a 
condensed score is based on many measures of different 
things.  The reason that condensed scores are used is that it 
is often impossible to measure all aspects of a psychological 
construct, such as depression or anxiety, in just one question; 
to get all of the aspects of the construct of interest, many 
questions are needed. 

The statistical procedures that we will be using make no 
distinction between the three kinds of data.  Put bluntly, the 
statistical procedures do not care about the kind of data.  It is 
also quite possible for different kinds of data to be mixed in a 
given analysis.  For example, personality might be defined in 
terms of five [condensed] scores (as is done for the Big Five 
model of personality) and then used in combination with [raw] 
gender and [summarized] mean number of miles driven per 
day.  Why would one do this?  Maybe in an attempt to 
understand what causes road-rage. 

Although the kinds of data being used may have no effect 
on the method of analysis, they can have profound effects on 
interpretation.  For example, because most information-
processing experiments use the mean of response time across 
many trials (as opposed to the individual, raw values from each 
of the trials), the proper conclusions from these experiments 
concern “average” performance and not specific acts.  When 
a difference is observed between two condition means in a 
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typical response-time experiment, the correct conclusion is 
that “average” performance in one of the conditions is better 
than in the other, not that performance is “always” or even 
“usually” better. 

Populations and Samples 

Warning: the technical meaning of the word population is very 
different from the everyday meaning. 

Recall from earlier that an observation tells you something 
about something.  Taking the above discussion of variables into 
account, we can now update this to say that an observation 
tells you the value of a variable.  But who or what has this 
particular value of this particular variable?  That is the domain 
of population and samples. 

In the context of research, the word population refers to the 
set of all creatures, objects, or events that have values of the 
variable(s) that you are investigating.  If you’re interested in 
depression as measured by a standard questionnaire, then the 
population will probably be all living people.  If you’re doing 
research on the neural connections between two different 
parts of the brain using drugs or lesions, then your population 
might be all white laboratory rats, instead of all people.  In both 
of these examples, the word population refers to every creature 
to which your results might apply.  This isn’t very different from 
the everyday use of the word population. 

In contrast, if you are doing research on word recognition, 
then your population might be the set of all words in the 
language you’re using.  The words that you use all have values 
of variables.  Each word is from a part-of-speech (i.e., noun, 
verb, adjective, etc., which is a qualitative variable); each word 
also has a number of letters and a number of syllables (which 
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are both discrete quantitative variables).  So, the set of all words 
in a language is also a population. 

Similarly, if you are studying road-rage by doing field 
observations, then your population might be something like 
intersections.  These also have values on variables, such as 
number of lanes or length of red-light.  Finally, in some (rare) 
cases, the population can be the set of all events of a certain 
type, such as all hurricanes in the last 100 years.  These also 
have values on variables, such as maximum wind-speed or 
amount of rainfall. 

One thing that all populations have in common is that it is 
difficult to impossible to include every member or instance in 
your research.  This is where samples come in.  A sample is 
a subset of a population – it is the subset that was actually 
included in your experiment or correlational study.  In the ideal 
case, your sample will be “representative” of the whole 
population.  (A sample is said to be representative when all 
members of the population have an equal chance of being 
included.)  In some situations, this might not be possible.  This 
brings us to another distinction.  The term target population 
refers to the set of all people, objects, or events in which you are 
interested and/or want to make statements about.  The term 
sampling population refers to the set of all people, objects, or 
events that have a chance of being included in your sample.  In 
the ideal case, the sampling population will be the same as the 
target population.  In actual research, they are often different. 

The typical relationship between the target population, 
sampling population, and sample is shown in the picture to the 
right.  Note that it is possible 
(in a few, rare situations) for 
the sampling population to 
be as large as and, therefore, 
the same as the target 
population, but the sample is always a (relatively small) subset 
of the sampling population.  This is what makes it a sample. 
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What allows us to draw conclusions about the entire target 
population from just the data in a sample?  As suggested by 
the previous picture, this is a two-step process.  The first step 
goes from the sample to the sampling population (e.g., from 
the people who actually signed up for your experiment to all 
students in the Elementary Psychology Subject Pool).  This is 
achieved by a certain type of statistics, which will be defined 
next and will be described in more detail in subsequent units. 
The second step goes from the sampling population to the 
target population (e.g., from all students in the Elementary 
Psychology Subject Pool to all people who have the variables 
that you investigate).  This requires something called external 
validity, which is not a statistical issue. 

Standard Symbols 

The distinction between samples and populations is very 
important, as is the difference between descriptive statistics 
–which are summaries of samples– and inferential statistics 
–which provide estimations of populations.  To help keep these 
separate, we use different symbols for each. 

For samples and descriptive statistics, we use Roman letters. 
For example, we use the letter n for the number of 
observations.  We use the letter M (or m or mn) for the mean of 
the sample, which is the most popular way to get an average 
value of a quantitative variable.  We use the letter r for the 
correlation between two quantitative variables in a sample. 

For populations, we use Greek letters, instead.  The mean 
of the population –which is what we are usually trying to 
estimate– uses μ (mu, pronounced “mee-you” mashed 
together in one syllable) which is the Greek version of (lower-
case) m.  Likewise, the value of a correlation in the (entire) 
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population uses ρ (rho, pronounced “row”), which is a Greek 
(lower-case) r. 

Certain upper-case Greek letters are used for mathematical 
operations.  For example, if you want to say “add up the values 
of all of these numbers,” you can do this by using ∑ (“sig-muh”), 
which is an upper-case S, short for the word sum.  Similarly, 
if you want to say “multiply all of these values together,” you 
can use Π (“pie”), which is an upper-case P, short for the word 
product. 

Descriptive vs Inferential Statistics 

Assume that you are interested in knowing the average hours 
of sleep that people are getting per night.  As discussed above, 
you are not going to learn this by measuring the hours of sleep 
for every living person; you aren’t even going to measure this 
for every student in the Elementary Psychology Subject Pool. 
Instead, you will probably take a relatively small sample of 
students (e.g., 100 people), ask each of them how many hours 
of sleep they usually get, and then use these data to calculate 
an estimate of the average for everybody. 

The process outlined above is best thought of as having three 
phases or steps: (1) collect the sample, (2) summarize the data 
in the sample, and then (3) use the summarized data to make 
an estimate of the entire population.  The issues related to 
collecting the sample, such as how one ensures that the 
sample is representative, will not be discussed in these 
modules; they are not part of statistics.  The second step is 
referred to as descriptive statistics and will be the focus of 
the units in this textbook.  The third step is called inferential 
statistics and will covered in future materials. 

The purpose and value of descriptive statistics is that they 
organize and summarize large sets of data.  They allow 

Introduction  |  17



researchers to communicate quickly.  Instead of having to list 
every value of every variable for every participant, the 
researcher can report a few numbers or draw a few pictures 
that capture most of the important information.  Because they 
are summaries, they leave out some detail; but, because they 
are summaries, they can be very brief and efficient. 

The main limitation of descriptive statistics is that they only 
describe (or make statements about) the actual sample.  In 
other words, descriptive statistics never go beyond what we 
know for sure. 

In contrast, inferential statistics allow us to go beyond the 
data in hand and calculate estimates of (or make statements 
about) the population from which the sample was taken. 
Although this is the ultimate goal of the research, it’s important 
to note in advance that inferential statistics aren’t guaranteed 
to be 100% accurate; they are educated guesses or estimations, 
not deductive conclusions.  Whenever you use an inferential 
statistic, you need to keep track of how wrong you might be. 

Unit 1. Introduction to Statistics for Psychological Science by J Toby Mordkoff 
and Leyre Castro is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License, except where 
otherwise noted. 
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Unit 2. Managing Data 
J TOBY MORDKOFF AND LEYRE CASTRO 

Summary. This unit discusses the 
distinction between raw data and the 
pre-processed values that are used for the 
subsequent analysis.  The various formats 
and rules with regard to managing and 
storing data are also reviewed. 

Prerequisite Units 
Unit 1. Introduction to Statistics for Psychological Science 

Psychological Data 

Psychology is an empirical science.  This means that 
psychological theories are tested by comparing their 
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predictions to actual observations, which are often referred to 
as data.  If the data match the predictions, the theory survives; 
if the data fail to confirm the predictions, the theory is falsified 
(which is a fancy way of saying disproved).  Because of their 
crucial role, psychological data must be handled carefully and 
treated with respect.  They must be organized and stored in 
a logical and standardized manner and format, allowing for 
their free exchange between researchers.  One useful saying 
that summarizes empirical science is that “while researchers 
are encouraged to argue about theory, everyone must agree 
on the data.” 

In some (very rare) instances, the relevant data are quite 
simple, such as a single yes-or-no answer to one question that 
was asked of a sample of people.  In such a case, a list of the yes 
or no responses would be sufficient.  Usually, however, quite 
a lot of information is gathered from each participant.  For 
example, besides an answer to a yes-or-no question, certain 
demographic information (e.g., age, sex,, etc.) might also be 
collected.  Alternatively, maybe a series of questions are asked. 
Or the questions might require more complicated responses, 
which could be numerical (e.g., “on a scale of 1 to 10, how 
attractive do you find this person to be?”) or qualitative (e.g., 
“what is your favorite color?”).  Or maybe the participant is 
asked to perform a task many times, instead of just once, with 
multiple pieces of information (e.g., response time and 
response choice) recorded on every, separate trial. 

The variety and potential complexity of psychological data 
raises at least two issues.  One issue concerns the storage of 
data: should all of the data from every participant be stored 
together in one file or should the data from each participant 
be stored separately?  Another issue concerns the distinction 
between what can be called “raw data” – which are the 
individual observations as they were originally collected – and 
“pre-processed data” (or “data after pre-processing”) – which 
are the values that will be used for the formal analysis. 
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Pre-processing Data 

Starting with the second issue, imagine an experiment in 
which participants must press the left button if the stimulus 
is blue and the right button if the stimulus is orange.  The 
location of the stimulus is irrelevant – only the color matters 
– but sometimes the stimulus appears on the left and 
sometimes it appears on the right.  (This task is based on work 
by J. Richard Simon of the University of Iowa, starting in the 
1960s.)  The participants are asked to respond as quickly as 
possible while making very few errors. 

In such an experiment, it is typical for each of the four 
possible combinations of stimulus color and stimulus location 
to be used on a very large number of trials (e.g., 50 or more 
of each).  Thus, the “raw data” from a single participant would 
be hundreds of sets of stimulus conditions (color and location) 
with multiple response values (which button was pressed and 
how long was required to make the response).  But the analysis 
would not concern these individual sets of trial observations; 
instead, the raw data would be converted to a small number 
of summary scores (see Unit 1), such as average response time 
and percent correct for each of the four combinations of 
stimulus color and stimulus location. 

Note that averaging is not the only change to the data that 
might occur during pre-processing.  In the above example, the 
raw data were recorded in terms of stimulus color (blue vs 
orange), stimulus location (left vs right), response time (in 
milliseconds), and which response was made.  During pre-
processing, the stimulus locations might be re-coded in terms 
of whether the stimulus appeared near the correct response 
for the trial (which is often referred to as “congruent” or 
“compatible”) or on the opposite side (“incongruent” or 
“incompatible”), because that is what most theories predict to 
be important.  Likewise, the value of which response was made 
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would be converted to whether the response was correct.  In 
other words, pre-processing in this case is doing two things: it 
is taking a huge number of pieces of raw data and reducing 
it down to just a few summary scores, and it is converting the 
data from the format of the events during the experiment to 
the format about which the theories make predictions. 

Another example of pre-processing occurs when a long 
questionnaire is used to measure a small number of 
psychological constructs, such as measures of depression and 
anxiety.  This often requires that participants provide ratings 
(e.g., on a 7-point scale) of how well each of many different 
statements (e.g., “I often feel sad” or “I’m often quite worried”) 
applies to them.  In this case, the raw data are the individual 
ratings for each of the questions, but what is needed for the 
analysis are the condensed scores for each of the small number 
of constructs.  During pre-processing, each participant’s 
answers to many questions are somehow combined to create 
these values, and then these are what are used for the actual 
analysis. 

Pre-processing Data vs Analyzing Data 

The key to the distinction between pre-processing 
data and subsequent analysis is best thought about 
in terms of why each is done.  The purpose of pre-
processing is to convert the raw data into the format 
for which the relevant theories make predictions. 
Pre-processing also simplifies matters by reducing 
the total number of pieces of data. Note that the 
theories are not yet being tested; the data are only 
being prepared for the subsequent test.  For 
example, very few theories make predictions about 
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response times on individual trials; they make 
predictions about average response time, instead.  If 
the theories did make predictions about individual 
trials, then the raw data would not be pre-processed; 
they’d be left as individual response times. 

Likewise, few theories make predictions about the 
answers a participant might give to a single, specific 
question, such as “how often do you skip breakfast?”; 
they make predictions about the underlying 
psychological construct, such as depression.  As 
above, pre-processing the numerous, separate 
answers into one or two measures of psychological 
constructs is not only simplifying the data by 
reducing the number of values to be analyzed, it is 
also converting the data into the form that matches 
the theory. 

File Formats 

In both examples in the previous section, pre-processing 
produces a small number of values from a very large amount of 
raw data.  This brings us to the second issue raised above: how 
many files should be used?  To answer this question, we need 
to discuss the various formats for files. 

Psychological data are usually stored in large tables, often 
referred to as “spreadsheets,” which can be viewed and edited 
using various software packages, such as Excel.  (All of the 
pictures below are screen-shots of parts of Excel 
spreadsheets.)  Although the details of these tables vary 
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considerably, they all obey one simple rule: each column in 
a spreadsheet always contains a single, specific piece of 
information, which does not change across rows, and each 
usually has a header (i.e., a special top row) that indicates what 
exactly is in every box in the column. 

In the case of a response-time experiment, the raw data are 
usually produced by the software that runs the experiment, 
with each participant’s data in a separate file.  A complicated 
example of this was provided at the beginning of this unit; 
a much simpler example that matches the experiment from 
above is provided in Figure 2.1: 

Figure 2.1. Part of a data file containing raw data. 

Note how each column has a label value in the first row, while 
each subsequent row contains the information related to a 
single trial.  You know this, because the first column tells you 
how the rows are defines.  It is standard good practice to do 
this: have the first column in the spreadsheet specify what 
is contained in each row.  In general, the raw data from a 
response-time experiment will use this format.  From these 
data, the summary values would be calculated – repeated for 
each participant, separately – and then these calculated values 
would placed in a new file that uses a different format: 
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Figure 2.2. Data file with summary values for each participant. 

As was true the raw-data files, each column in this sheet 
contains a specific piece of information, as indicated by the 
header row at the top.  In contrast to the separate files for each 
participant, in which each subsequent row was a trial, in this 
file, each row holds the data for a particular participant.  This is 
the standard format for the data that will be used for the actual 
analysis: each participant gets a row in the spreadsheet. 

Wide vs Long Format 

The technical label for a file that places all of the 
values for each participant on one (and only one) row 
is “wide format,” because these spreadsheets can 
often have a very large number of columns.  This is 
the standard in psychology.  An alternative format 
uses multiple rows for each participant, with some 
columns being used to indicate the condition(s) 
under which the subset of the data were collected. 
This is known as “long format.”  Here is an example 
using the same values as previously, but now in long 
format: 
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Figure 2.3. Data file with the same values as in Figure 2.2., 
but in a long format. 

Long format is rarely used and the software 
packages that still employ this format for certain 
analyses usually have a built-in procedure for 
converting one format to the other.  For this reason, 
and to maintain consistency, psychological data are 
almost always stored in wide format. 

In contrast to response-time experiments, in which each 
participant performs hundreds of trials and separate files are 
used for each participant’s raw data, all of the data from a 
questionnaire study is usually stored in one file.  These files 
use the wide format: each item on the questionnaire gets a 
separate column, each participant get one row, and the first 
row in the file provides the label for each of the columns.  When 
condensed scores are calculated (e.g., a measure of depression) 
based on the raw data in several columns, these can be added 
to the same file as a new, separate column, or placed in a 
new file that holds only the values that are needed for the 
subsequent analysis. 
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Data Storage 

Before anything else, here is the cardinal rule: never throw any 
information away; keep all of the raw data, even if you don’t 
currently have a need or use for them.  There are two main 
reasons for this: first, you might discover a use for these data 
later; second, someone else might already have a use for them. 
(It might also appear a bit suspicious if you collect certain data 
and then delete them, making them unavailable to others who 
might ask about them.) 

This rule applies to all of the data as originally collected.  If, for 
example, you omit a few trials of a response-time experiment 
during pre-processing, maybe because the response was 
abnormally fast or slow (i.e., an outlier), you do not delete the 
trial from the raw-data file; you merely skip over it during pre-
processing.  Likewise, if you decide to omit all of the data from 
a certain participant, maybe because they did not appear to 
follow instructions, you still keep the file that holds their raw 
data; you just don’t include their values in the file for 
subsequent analysis. 

In situations where you have large amounts of raw data, such 
as response-time experiments or long questionnaires, the files 
that contain the raw data can stored separately from the 
single, small file that holds the pre-processed values that are 
ready for analysis.  As discussed above, the raw-data files might 
use a format that is different from the final file – that is fine, 
as long as the header row in every file makes it clear what’s 
contained in each column.  If condensed scores were added 
to a raw-data file, as is often done with questionnaire data, 
you can save two versions, if you wish: one with everything 
and another with only the final values that are needed for the 
analysis – that, also, is fine, as long as keep all of the raw data 
somewhere. 
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Unit 3. Descriptive 
Statistics for 
Psychological Research 
J TOBY MORDKOFF AND LEYRE CASTRO 

Summary. This unit briefly reviews the 
distinction between descriptive and 
inferential statistics and then discusses the 
ways in which both numerical and 
categorical data are usually summarized for 
psychological research.  Different measures 
of center and spread, and when to use them, 
are explained.  The shape of the data is also 
discussed. 

Prerequisite Units 
Unit 1. Introduction to Statistics for Psychological Science 
Unit 2. Managing Data 

Introduction 

Assume that you are interested in some attribute or 
characteristic of a very large number of people, such as the 
average hours of sleep per night for all undergraduates at all 
universities.  Clearly, you are not going to do this by measuring 
the hours of sleep for every student, as that would be difficult 
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to impossible.  So, instead, you will probably take a relatively 
small sample of students (e.g., 100 people), ask each of them 
how many hours of sleep they usually get, and then use these 
data to estimate the average for all undergraduates. 

The process outlined above can be thought of as having 
three phases or steps: (1) collect a sample, (2) summarize the 
data in the sample, and (3) use the summarized data to make 
the estimate of the entire population.  The issues related to 
collecting the sample, such as how one ensures that the 
sample is representative of the entire population will not be 
discussed here.  Likewise, the way that one uses the summary 
of a sample to calculate an estimate of the population will not 
be explained here.  This unit will focus on the second step: the 
way in which psychologists summarize data. 

The general label for procedures that summarize data is 
descriptive statistics.  This can be contrasted with procedures 
that make estimates of population values, which are known as 
inferential statistics.  Thus, descriptive and inferential statistics 
each give different insights into the nature of the data 
gathered.  Descriptive statistics describe the data so that the 
big picture can be seen.  How?  By organizing and 
summarizing properties of a data set.  Calculating descriptive 
statistics takes unordered observations and logically organizes 
them in some way.  This allow us to describe the data obtained, 
but it does not make conclusions beyond the sample.  This 
is important, because part of conducting (good) research is 
being able to communicate your findings to other people, and 
descriptive statistics will allow you to do this quickly, clearly, 
and precisely. 

To prepare you for what follows, please note two things in 
advance.  First, there are several different ways that we can 
summarize a large set of data.  Most of all: we can use numbers 
or we can use graphical representations.  Furthermore, when 
the data are numerical, we will have options for several of the 
summary values that we need to calculate.  This may seem 
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confusing at first; hopefully, it soon will make sense.  Second, 
but related to the first, the available options for summarizing 
data often depend on the type of data that we have collected. 
For example, numerical data, such as hours of sleep per night, 
are summarized differently from categorical data, such as 
favorite flavors of ice-cream. 

The key to preventing this from becoming confusing is to 
keep the function of descriptive statistics in mind: we are trying 
to summarize a large amount of data in a way that can be 
communicated quickly, clearly, and precisely.  In some cases, a 
few numbers will do the trick; in other cases, you will need to 
create a plot of the data. 

This unit will only discuss the ways in which a single set 
of values are summarized.  When you collect more than one 
piece of information from every participant in the sample –e.g., 
you not only ask them how many hours of sleep they usually 
get, but also ask them for their favorite flavor of ice-cream– 
then you can do three things using descriptive statistics: 
summarized the first set of values (on their own), summarize 
the second set of values (on their own), and summarize the 
relationship between the two sets of values.  This unit only 
covers the first two of these three.  Different ways to summarize 
the relationship between two sets of values will be covered in 
Units 7 and 8. 

Summarizing Numerical Data 

The most-popular way to summarize a set of numerical data 
–e.g., hours of sleep per night– is in terms of two or three 
aspects.  One always includes values for the center of the data 
and the spread of the data; in some cases, the shape of the 
data is also described.  A measure of center is a single value 
that attempts to describe an entire set of data by identifying 
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the central position within that set of data.  The full, formal label 
for this descriptive statistic is measure of central tendency, but 
most people simply say “center.”  Another label for this is the 
“average.” 

A measure of spread is also a single number, but this one 
indicates how widely the data are distributed around their 
center.  Another way of saying this is to talk about the 
“variability” of the data.  If all of the individual pieces of data are 
located close to the center, then the value of spread will be low; 
if the data are widely distributed, then the value of spread will 
be high. 

What makes this a little bit complicated is that there are 
multiple ways to mathematically define the center and spread 
of a set of data.  For example, both the mean and the median 
(discussed in detail below) are valid measures of central 
tendency.  Similarly, both the variance (or standard deviation) 
and the inter-quartile range (also discussed below) are valid 
measures of spread.  This might suggest that there are at least 
four combinations of center and spread (i.e., two versions of 
center crossed with two version of spread), but that isn’t true. 
The standard measures of center and spread actually come in 
pairs, such that your choice with regard to one forces you to use 
a particular option for the other.  If you define the center as the 
mean, for example, then you have to use variance (or standard 
deviation) for spread; if you define the center as the median, 
then you have to use the inter-quartile range for spread. 
Because of this dependency, in what follows we shall discuss 
the standard measures of center and spread in pairs.  When 
this is finished, we shall mention some of the less popular 
alternatives and then, finally, turn to the issue of shape. 
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Measures of Centerand Spread Based on 
Moments 

The mean and variance of a set of numerical values are 
(technically) the first and second moments of the set of data. 
Although it is not used very often in psychology, the term 
“moment” is quite popular in physics, where the first moment 
is the center of mass and the second moment is rotational 
inertia  (these are very useful concepts when describing how 
hard it is to throw or spin something).  The fact that the mean 
and variance of a set of numbers are the first and second 
moments isn’t all that important; the key is that they are based 
on the same approach to the data, which is why they are one 
of the standard pairs of measures for describing a set of 
numerical data. 

Mean 

The mean is the most popular and well known measure of 
central tendency.  It is what most people intend when they use 
the word “average.”  The mean can be calculated for any set of 
numerical data, discrete or continuous, regardless of units or 
details.  The mean is equal to the sum of all values divided by 
the number of values.  So, if we have n values in a data set and 
they have values x1, x2, …, xn, the mean is calculated using the 
following formula: 

    

where  is the technical way of writing “add up all of the 
X values” (i.e., the upper-case, Greek letter  [sigma] tells you 
to calculate the sum of what follows), and n is the number of 
pieces of data (which is usually referred to as “sample size”). 
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The short-hand for writing the mean of X is  (i.e., you put a 
bar over the symbol, X in this case; it is pronounced “ex bar”). 
As a simple example, if the values of X are 2, 4, and 7, then  = 
13, n = 3, and therefore  = 4.33 (after rounding to two decimal 
places). 

Before moving forward, note two things about using the 
mean as the measure of center.  First, the mean is rarely one of 
the actual values from the original set of data.  As an extreme 
example: when the data are discrete (e.g., whole numbers, like 
the number of siblings), the mean will almost never match any 
of the specific values, because the mean will almost never be a 
whole number as well. 

Second, an important property of the mean is that it includes 
and depends on every value in your set of data.  If any value in 
the data set is changed, then the mean will change.  In other 
words, the mean is “sensitive” to all of the data. 

Variance and Standard Deviation 

When the center is defined as the mean, the measure of 
spread to use is the variance (or the square-root of this value, 
which is the standard deviation). Variance is defined as the 
average of the squared deviations from the mean.  The formula 
for variance is: 

    

where  is the mean (see above).  In words, you take each 
piece of data, subtract the mean, and square the result; do this 
for each of the n pieces of data and add up the results, then 
divide by one less than the number of pieces of data.  More 
technically, to determine the variance of a set of scores, you 
have to 1) find the mean of the scores, 2) compute the deviation 
scores (the difference between each individual score and the 
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mean), 3) square each of the deviation scores, 4) add up all of 
the squared deviation scores, and 5) divide by one less than the 
number of scores.  Thus, for example, the variance of 2, 4, and 7 
(which have a mean of 4.33, see above) is: 

(2 – 4.33)2 + (4 – 4.33)2 + (7 – 4.33)2 = 12.6667 
and then divide by (3−1) →  6.33 

Note that, because each sub-step of the summation involves 
a value that has been squared, the value of variance cannot be 
a negative number.  Note, also, that when all of the individual 
pieces of data are the same, they will all be equal to the mean, 
so you will be adding up numbers that are all zero, so variance 
will also be zero.  These both make sense, because here we are 
calculating a measure of how spread out the data are, which 
will be zero when all of the data are the same and cannot be 
less than this. 

Technically, the value being calculated here is the 
sample variance, which is different from something 
known as the population variance.  The former is 
used when we have taken a sample; the latter is 
used when we have measured every possible value 
in the entire population.  Since we never measure 
every possible value when doing psychological 
research, we do not need the formula for population 
variance and can simply refer to the sample 
variance as variance. 

As mentioned above, some people prefer to express this 
measure of spread in terms of the square-root of the variance, 
which is the standard deviation.  The main reason for doing this 
is because the units of variance are the square of the units of 
the original data, whereas the units of standard deviation are 
the same as the units of the original data.  Thus, for example, if 
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you have response times of 2, 4, and 7 seconds, which have a 
mean of 4.33 seconds, then the variance is 6.33 seconds2 (which 
is difficult to conceptualize), but also have a standard deviation 
of 2.52 seconds (which is easy to think about). 

Conceptually, you can think of the standard deviation as the 
typical distance of any score from the mean.  In other words, 
the standard deviation represents the standard amount by 
which individual scores deviate from the mean.  The standard 
deviation uses the mean of the data as a baseline or reference 
point, and measures variability by considering the distance 
between each score and the mean. 

Note that similar to the mean, both the variance and the 
standard deviation are sensitive to every value in the set of 
data; if any one piece of data is changed, then not only will the 
mean change, but the variance and standard deviation will also 
be changed. 

 

Practice 

Let’s calculate now the mean and the standard 
deviation of the two variables in the following dataset 
containing the number of study hours before an exam 
(X, Hours), and the grade obtained in that exam (Y, 
Grade), for 15 participants.  To calculate the mean of 
Hours, , we sum all of the values for Hours, and divide 
by the total number of values, 15.  To calculate the 
mean of Grade, , we sum all of the values for Grade, 
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and divide by the total number of values, 15.  Doing so, 

we obtain the mean for Hours ( ) and the 

mean for Grade ( ).  Table 3.1. shows each 
of the scores, and the deviation scores for each X and Y 
score.  The deviation scores, as explained above, are 
calculated by subtracting the mean from each of the 
individual scores. 
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Particip
ant 

Ho
urs 

Gra
de 

P1 8 78 (8 – 13.66) = 
-5.66 

(78 – 86.46) = 
-8.46 

P2 11 80 (11 – 13.66) = 
-2.66 

(80 – 86.46) = 
-6.46 

P3 16 89 (16 – 13.66) = 
2.34 

(89 – 86.46) = 
2.54 

P4 14 85 (14 – 13.66) = 
0.34 

(85 – 86.46) = 
-1.46 

P5 12 84 (12 – 13.66) = 
-1.66 

(84 – 86.46) = 
-2.46 

P6 15 86 (15 – 13.66) = 
1.34 

(86 – 86.46) = 
-0.46 

P7 18 95 (18 – 13.66) = 
4.34 

(95 – 86.46) = 
8.54 

P8 20 96 (20 – 13.66) 
= 6.34 

(96 – 86.46) = 
9.54 

P9 10 83 (10 – 13.66) = 
-3.66 

(83 – 86.46) = 
-3.46 

P10 9 81 (9 – 13.66) = 
-4.66 

(81 – 86.46) = 
-5.46 

P11 16 93 (16 – 13.66) = 
2.34 

(93 – 86.46) = 
6.54 

P12 17 92 (17 – 13.66) = 
3.34 

(92 – 86.46) = 
5.54 

P13 13 84 (13 – 13.66) = 
-0.66 

(84 – 86.46) = 
-2.46 

P14 12 83 (12 – 13.66) = 
-1.66 

(83 – 86.46) = 
-3.46 

Table 3.1. Number of study hours before an exam (X, 
Hours), and the grade obtained in that exam (Y, Grade) 

for 15 participants. The two most right columns show 
the deviation scores for each X and Y score. 
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Once we have the deviation scores for each 
participant, we square each of the deviation scores, and 
sum them. 

For Hours: 

(-5.66)2 + (-2.66)2 + (2.34)2 + (0.34)2 + (-1.66)2 + (1.34)2 + 
(4.34)2 + (6.34)2 + (-3.66)2 + (-4.66)2 + … 

…( 2.34)2 + (3.34)2 + (-0.66)2 + (-1.66)2 + (0.34)2  = 166.334 

We then divide that sum by one less than the 
number of scores, 15 – 1 in this case: 

So, 11.66 is the variance for the number of hours in our 
sample of participants. 

In order to obtain the standard deviation, we 
calculate the square root of the variance: 

We follow the same steps to calculate the standard 
deviation of our participants’ grade.  First, we square 
each of the deviation scores (most right column in 
Table 3.1), and sum them: 

(-8.46)2 + (-6.46)2 + (2.54)2 + (-1.46)2 + (-2.46)2 + (-0.46)2 

+ (8.54)2 + (9.54)2 + (-3.46)2 + … 

… (-5.46)2 + (6.54)2 + (5.54)2 + (-2.46)2 + (-3.46)2 + (1.54)2 

= 427.734 

Next, we divide that sum by one less than the 
number of scores, 14: 

So, 30.55 is the variance for the grade in our sample of 
participants. 
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In order to obtain the standard deviation, we 
calculate the square root of the variance: 

Thus, you can summarize the data in our sample 
saying that the mean hours of study time are 13.66, 
with a standard deviation of 3.42, whereas the mean 
grade is 86.46, with a standard deviation of 5.53. 

Measures of Centerand Spread Based on 
Percentiles 

The second pair of measures for center and spread are based 
on percentile ranks and percentile values, instead of moments. 
In general, the percentile rank for a given value is the percent 
of the data that is smaller (i.e., lower in value).  As a simple 
example, if the data are 2, 4, and 7, then the percentile rank 
for 5 is 67%, because two of the three values are smaller than 
5.  Percentile ranks are usually easy to calculate.  In contrast, a 
percentile value (which is kind of the “opposite” of a percentile 
rank) is much more complicated.  For example, the percentile 
value for 67% when the data are 2, 4, and 7 is something 
between 4 and 7, because any value between 4 and 7 would 
be larger than two-thirds of the data.  (FYI: the percentile value 
is this case is 5.02.)  Fortunately, we won’t need to worry about 
the details when calculating that standard measures of center 
and spread when using the percentile-based method. 
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Median 

The median –which is how the percentile-based method 
defines center– is best thought of the middle score when the 
data have been arranged in order of magnitude.  To see how 
this can be done by hand, assume that we start with the data 
below: 

65 54 79 57 35 14 56 55 77 45 92 

We first re-arrange these data from smallest to largest: 

14 35 45 54 55 56 57 65 77 79 92 

The median is the middle of this new set of scores; in this case, 
the value (in blue) is 56.  This is the middle value because there 
are 5 scores lower than it and 5 scores higher than it.  Finding 
the median is very easy when you have an odd number of 
scores. 

What happens when you have an even number of scores? 
 What if you had only 10 scores, instead of 11?  In this case, you 
take the middle two scores, and calculate the mean of them. 
 So, if we start with the following data (which are the same as 
above, with the last one omitted): 

65 54 79 57 35 14 56 55 77 45 

We again re-arrange that data from smallest to largest: 

14 35 45 54 55 56 57 65 77 79 

And then calculate the mean of the 5th and 6th values (tied for 
the middle, in blue) to get a median of 55.50. 

In general, the median is the value that splits the entire set of 
data into two equal halves.  Because of this, the other name for 
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the median is 50th percentile –50% of the data are below this 
value and 50% of the data are above this value.  This makes the 
median a reasonable alternative definition of center. 

Inter-Quartile Range 

The inter-quartile range (typically named using its initials, IQR) 
is the measure of spread that is paired with the median as 
the measure of center.  As the name suggests, the IQR divides 
the data into four sub-sets, instead of just two: the bottom 
quarter, the next higher quarter, the next higher quarter, and 
the top quarter (the same as for the median, you must start by 
re-arranging the data from smallest to largest).  As described 
above, the median is the dividing line between the middle 
two quarters.  The IQR is the distance between the dividing 
line between the bottom two quarters and the dividing line 
between the top two quarters. 

Technically, the IQR is the distance between the 25th 
percentile and the 75th percentile.  You calculate the value for 
which 25% of the data is below this point, then you calculate 
the value for which 25% of the data is above this point, and 
then you subtract the first from the second.  Because the 75th 
percentile cannot be lower than the 25th percentile (and is 
almost always much higher), the value for IQR cannot be 
negative number. 

Returning to our example set of 11 values, for which the 
median was 56, the way that you can calculate the IQR by hand 
is as follows.  First, focus only on those values that are to the left 
of (i.e., lower than) the middle value: 

14 35 45 54 55 56 57 65 77 79 92 

Then calculate the “median” of these values.  In this case, the 
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answer is 45, because the third box is the middle of these five 
boxes.  Therefore, the 25th percentile is 45. 

Next, focus on the values that are to the right of (i.e., higher 
than) the original median: 

14 35 45 54 55 56 57 65 77 79 92 

The middle of these values, which is 77, is the 75th percentile. 
Therefore, the IQR for these data is 32, because 77 – 45 = 32. 
Note how, when the original set of data has an odd number 
of values (which made it easy to find the median), the middle 
value in the data set was ignored when finding the 25th and 
75th percentiles.  In the above example, the number of values 
to be examined in each subsequent step was also odd (i.e., 5 
each), so we selected the middle value of each subset to get the 
25th and 75th percentiles. 

If the number of values to be examined in each subsequent 
step had been even (e.g., if we had started with 9 values, so that 
4 values would be used to get the 25th percentile), then the 
same averaging rule as we use for median would be used: use 
the average of the two values that tie for being in the middle. 
For example, if these are the data (which are the first nine 
values from the original example after being sorted): 

14 35 45 54 55 56 57 65 77 

The median (in blue) is 55, the 25th percentile (the average of 
the two values in green) is 40, and the 75th percentile (the 
average of the two values in red) is 61.  Therefore, the IQR for 
these data is 61 – 40 = 21. 

A similar procedure is used when you start with an even 
number of values, but with a few extra complications (these 
complications are caused by the particular method of 
calculating percentiles that is typically used in the psychology). 
The first change to the procedure for calculating IQR is that 
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now every value is included in one of the two sub-steps for 
getting the 25th and 75th percentile; none are omitted.  For 
example, if we use the same set of 10 values from above (i.e., 
the original 11 values with the highest omitted), for which the 
median was 55.50, then here is what we would use in the first 
sub-step: 

14 35 45 54 55 56 57 65 77 79 

In this case, the 25th percentile will be calculated from an odd 
number of values (5).  We start in the same way before, with the 
middle of these values (in green), which is 45.  Then we adjust 
it by moving the score 25% of the distance towards next lower 
value, which is 35.  The distance between these two values is 
2.50 –i.e., (45 – 35) x .25 = 2.50– so the final value for the 25th 
percentile is 42.50. 

The same thing is done for 75th percentile.  This time we 
would start with: 

14 35 45 54 55 56 57 65 77 79 

The starting value (in red) of 65 would then be moved 25% of 
the distance towards the next higher, which is 77, producing a 
75th percentile of 68 –i.e., 65 + ((77 – 65) x .25) = 68.  Note how 
we moved the value away from the median in both cases.  If we 
don’t do this –if we used the same simple method as we used 
when the original set of data had an odd number of values– 
then we would slightly under-estimate the value of IQR. 

Finally, if we start with an even number of pieces of data 
and also have an even number for each of the sub-steps (e.g., 
we started with 8 values), then we again have to apply the 
correction.  Whether you have to shift the 25th and 75th 
percentiles depends on original number of pieces of data, not 
the number that are used for the subsequent sub-steps.  To 
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demonstrate this, here are the first eight values from the 
original set of data: 

14 35 45 54 55 56 57 65 

The first step to calculating the 25th percentile is to average the 
two values (in green) that tied for being in the middle of the 
lower half of the data; the answer is 40.  Then, as above, move 
this value 25% of the distance away from the median –i.e., move 
it down by 2.50, because (45 – 35) x .25 = 2.50.  The final value is 
37.50. 

Then do the same for the upper half of the data: 

14 35 45 54 55 56 57 65 

Start with the average of the two values (in red) that tied for 
being in the middle and then shift this value 25% of their 
difference away from the center.  The mean of the two values 
is 56.50 and after shifting the 75th percentile is 56.75.  Thus, the 
IQR for these eight pieces of data is 56.75 – 37.50 = 19.25. 

Note the following about the median and IQR: because these 
are both based on percentiles, they are not always sensitive to 
every value in the set of data.  Look again at the original set 
of 11 values used in the examples.  Now imagine that the first 
(lowest) value was 4, instead of 14.  Would either the median 
or the IQR change?  The answer is No, neither would change. 
Now imagine that the last (highest) value was 420, instead 
of 92.  Would either the median or IQR change?  Again, the 
answer is No. 

Some of the other values can also change without altering 
the median and/or IQR, but not all of them.  If you changed 
the 56 in the original set to being 50, instead, for example, 
then the median would drop from 56 to 55, but the IQR would 
remain 32.  In contrast, if you only changed the 45 to being a 50, 
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then the IQR would drop from 32 to 27, but the median would 
remain 56. 

The one thing that is highly consistent is how you can 
decrease the lowest value and/or increase the highest value 
without changing either the median or IQR (as long as you 
start with at least 5 pieces of data).  This is an important 
property of percentiles-based methods: they are relatively 
insensitive to the most extreme values.  This is quite different 
from moments-based methods; the mean and variance of a set 
of data are both sensitive to every value. 

Other Measures of Center and Spread 

Although a vast majority of psychologists use either the mean 
and variance (as a pair) or the median and IQR (as a pair) as 
their measures of center and spread, occasionally you might 
come across a few other options. 

Mode 

The mode is a (rarely-used) way of defining the center of a set 
of data.  The mode is simply the value that appears the most 
often in a set of data.  For example, if your data are 2, 3, 3, 4, 
5, and 9, then the mode is 3 because there are two 3s in the 
data and no other value appears more than once.  When you 
think about other sets of example data, you will probably see 
why the mode is not very popular.  First, many sets of data do 
not have a meaningful mode.  For the set of 2, 4, and 7, all 
three different values appear once each, so no value is more 
frequent than any other value.  When the data are continuous 
and measured precisely (e.g., response time in milliseconds), 
then this problem will happen quite often.  Now consider the 
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set of 2, 3, 3, 4, 5, 5, 7, and 9; these data have two modes: 3 and 
5.  This also happens quite often, especially when the data are 
discrete, such as when they must all be whole numbers. 

But the greatest problem with using the mode as the 
measure of center is that it is often at one of the extremes, 
instead of being anywhere near the middle.  Here is a favorite 
example (even if it is not from psychology): the amount of 
federal income tax paid.  The most-frequent value for this –i.e., 
the mode of federal income tax paid– is zero.  This also happens 
to be the same as the lowest value.  In contrast, in 2021, for 
example, the mean amount of federal income tax paid was a 
little bit over $10,000. 

Range 

Another descriptive statistic that you might come across is 
the range of the data.  Sometimes this is given as the lowest 
and highest values –e.g., “the participant ages ranged from 18 
to 24 years”– which provides some information about center 
and spread simultaneously.  Other times the range is more 
specifically intended as only a measure of spread, so the 
difference between the highest and lowest values is given –e.g., 
“the average age was 21 years with a range of 6 years.”  There 
is nothing inherently wrong with providing the range, but it 
is probably best used as a supplement to one of the pairs of 
measures for center and spread.  This is true because range 
(in either format) often fails to provide sufficient detail.  For 
example, the set of 18, 18, 18, 18, and 24 and the set of 18, 24, 24, 
24, and 24 both range from 18 to 24 (or have a range of 6), even 
though the data sets are clearly quite different. 

Choosing the Measures of Center and 
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Spread 

When it comes to deciding which measures to use for center 
and spread when describing a set of numerical data –which 
is almost always a choice between mean and variance (or 
standard deviation) or median and IQR– the first thing to keep 
in mind is that this is not a question of “which is better?”; it 
is a question of which is more appropriate for the situation. 
That is, the mean and the median are not just alternative ways 
of calculating a value for the center of a set of data; they use 
different definitions of the meaning of center. 

So how should you make this decision?  One factor that you 
should consider focuses on a key difference between moments 
and percentiles that was mentioned above: how the mean and 
variance of a set of data both depend on every value, whereas 
the median and IQR are often unaffected by the specific values 
at the upper and lower extremes.  Therefore, if you believe that 
every value in the set of data is equally important and equally 
representative of whatever is being studied, then you should 
probably use the mean and variance for your descriptive 
statistics. In contrast, if you believe that some extreme values 
might be outliers (e.g., the participant wasn’t taking the study 
very seriously or was making random fast guesses), then you 
might want to use the median and IQR instead. 

Another related factor to consider is the shape of the 
distribution of values in the set of data.  If the values are spread 
around the center in a roughly symmetrical manner, then the 
mean and the median will be very similar, but if there are more 
extreme values in one tail of the distribution (e.g., there are 
more extreme values above the middle than below), this will 
pull the mean away from the median, and the latter might 
better match what you think of as the center. 

Finally, if you are calculating descriptive statistics as part of 
a process that will later involve making inferences about the 
population from which the sample was taken, you might want 
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to consider the type of statistics that you will be using later. 
Many inferential statistics (including t-tests, ANOVA, and the 
standard form of the correlation coefficient) are based on 
moments so, if you plan to use these later, it would be probably 
more appropriate to summarize the data in terms of mean 
and variance (or standard deviation).  Other statistics (including 
sign tests and alternative forms of the correlation coefficient) 
are based on percentiles, so if you plan to use these instead, 
then the median and IQR might be more appropriate for the 
descriptive statistics. 

Hybrid Methods 

Although relatively rare, there is one alternative to 
making a firm decision between moments (i.e., 
mean and variance) and percentiles (i.e., median and 
IQR) –namely, hybrid methods.  One example of this 
is as follows.  First, sort the data from smallest to 
largest (in the same manner as when using 
percentiles).  Then remove a certain number of 
values from the beginning and end of the list.  The 
most popular version of this is to remove the lowest 
2.5% and the highest 2.5% of the data; for example, if 
you started with 200 pieces of data, remove the first 
5 and the last 5, keeping the middle 190.  Then switch 
methods and calculate the mean and variance of the 
retained data.  This method is trying to have the best 
of both worlds: it is avoiding outliers by removing the 
extreme values, but it is remaining sensitive to all the 
data that are being retained.  When this method is 
used, the correct label for the final two values are the 
“trimmed mean” and “trimmed variance.” 
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Measures of Shape for Numerical 
Data 

As the name suggests, the shape of a set of data is best 
thought about in terms of how the data would look if you made 
some sort of figure or plot of the values.  The most popular 
way to make a plot of a single set of numerical values starts 
by putting all of the data into something that is called a 
frequency table.  In brief, a frequency table is a list of all 
possible values, along with how many times each value occurs 
in the set of data.  This is easy to create when there are not 
very many different values (e.g., number of siblings); it becomes 
more complicated when almost every value in the set of data is 
unique (e.g., response time in milliseconds). 

The key to resolving the problem of having too many unique 
values is to “bin” the data.  To bin a set of data, you choose a set 
of equally-spaced cut-offs, which will determine the borders of 
adjacent bins.  For example, if you are working with response 
times which happen to range from about 300 to 600 
milliseconds (with every specific value being unique), you 
might decide to use bins that are 50 milliseconds wide, such 
that all values from 301 to 350 go in the first bin, all values from 
351 to 400 go in the second bin, etc.  Most spreadsheet-based 
software packages (e.g., Excel) have built-in procedures to do 
this for you. 

As an illustration of this process, let’s go back to the set of 11 
values we have used in previous examples: 

65 55 79 56 35 14 56 55 77 45 92 

Based on the total number of values and their range, we decide 
to use bins that are 20 units wide.  Here are the same data in a 
frequency table: 
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Bin 1-20 21-40 41-60 61-80 

Frequency 1 1 5 3 

Once you have a list of values or bins and the number of pieces 
of data in each, you can make a frequency histogram of the 
data, as shown in Figure 3.1: 

Figure 3.1. Example of a histogram in which the data 
are grouped into five bins. The numbers inside the bars 
represent the frequency count, that is, how many data 
points we have, within each bin. 

Based on this histogram, we can start to make descriptive 
statements about the shape of the data.  In general, these will 
concern two aspects, known as skewness and kurtosis, as we 
shall see next. 

Skewness 

Skewness refers to the lack of symmetry.  It the left and right 
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sides of the plot are mirror images of each other, then the 
distribution has no skew, because it is symmetrical; this is the 
case of the normal distribution (see Figure 3.2).  This clearly is 
not true for the example in Figure 3.1.  If the distribution has a 
longer tail on the left side, as is true here, then the data are 
said to have negative skew.  If the distribution has a longer 
“tail” on the right, then the distribution is said to have positive 
skew.  Note that you need to focus on the skinny part of each 
end of the plot.  The example in Figure 3.1 might appear to 
be heavier on the right, but skew is determined by the length 
of the skinny tails, which is clearly much longer on the left. 
As a reference, Figure 3.2. shows you a normal distribution, 
perfectly symmetrical, so its skewness is zero; to the left and to 
the right, you can see two skewed distributions, positive and 
negative.  Most of the data points in the distribution with a 
positive skew have low values, and has a long tail on its right 
side.  The opposite is true for the distribution with negative 
skew: most of its data points have high values, and has a long 
tail on its left side. 

Figure 3.2. An illustration of skewness. A normal distribution (in the 
middle), is symmetrical, so it has no skew. The distributions with 
positive and negative skew show a clear lack of symmetry. 

Kurtosis 

The other aspect of shape, kurtosis, is a bit more complicated. 
In general, kurtosis refers to how sharply the data are peaked, 
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and is established in reference to a baseline or standard shape, 
the normal distribution, that has kurtosis zero.  When we have 
a nearly flat distribution, for example when every value occurs 
equally often, the kurtosis is negative.  When the distribution is 
very pointy, the kurtosis is positive. 

If the shape of your data looks like a bell curve, then it’s said 
to be mesokurtic (“meso” means middle or intermediate in 
Greek).  If the shape of your data is flatter than this, then it’s said 
to be platykurtic (“platy” means flat in Greek).  If your shape is 
more pointed from this, then your data are leptokurtic (“lepto” 
means thin, narrow, or pointed in Greek).  Examples of these 
shapes can be seen in Figure 3.3. 

Figure 3.3. An illustration of kurtosis. A normal distribution (in the 
middle) is mesokurtic, and its kurtosis value is zero. The platykurtic 
distribution, on the left, is flatter than the normal distribution 
(negative kurtosis), whereas the leptokurtic distribution, on the right, 
is more pointed than the normal distribution (positive kurtosis). 

Both skew and kurtosis can vary a lot; these two attributes of 
shape are not completely independent.  That is, it is impossible 
for a perfectly flat distribution to have any skew; it is also 
impossible for a highly-skewed distribution to have zero 
kurtosis.  A large proportion of the data that is collected by 
psychologists is approximately normal, but with a long right 
tail.  In this situation, a good verbal label for the overall shape 
could be positively-skewed normal, even if that seems a bit 
contradictory, because the true normal distribution is actually 
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symmetrical (see Figures 3.2 and 3.3).  The goal is to summarize 
the shape in a way that is easy to understand while being as 
accurate as possible.  You can always show a picture of your 
distribution to your audience.  A simple summary of the shape 
of the histogram in Figure 3.1 could be: roughly normal, but 
with a lot of negative skew; this tells your audience that the 
data have a decent-sized peak in the middle, but the lower tail 
is a lot longer than the upper tail. 

Numerical Values for Skew and Kurtosis 

In some rare situations, you might want to be even 
more precise about the shape of a set of data. 
Assuming that you used the mean and variance as 
your measures of center and spread, in these cases, 
you can use some (complicated) formulae to 
calculate specific numerical values for skew and 
kurtosis.  These are the third and fourth moments of 
the distribution (which is why they can only be used 
with the mean and variance, because those are the 
first and second moments of the data).  The details 
of these measures are beyond this course, but to give 
you an idea, as indicated above, values that depart 
from zero tells you that the shape is different from 
the normal distribution. A value of skew that is less 
than –1 or greater than +1 implies that the shape is 
notably skewed, whereas a value of kurtosis that is 
more than 1 unit away from zero imply that the data 
are not mesokurtic. 
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Summarizing Categorical Data 

By definition, you cannnot summarize a set of categorical data 
(e.g., favorite colors) in terms of a numerical mean and/or a 
numerical spread.  It also does not make much sense to talk 
about shape, because this would depend on the order in which 
you placed the options on the X-axis of the plot.  Therefore, 
in this situation, we usually make a frequency table (with the 
options in any order that we wish).  You can also make a 
frequency histogram, but be careful not to read anything 
important into the apparent shape, because changing the 
order of the options would completely alter the shape. 

An issue worth mentioning here is something that is similar 
to the process of binning.  Assume, for example, that you have 
taken a sample of 100 undergraduates, asking each for their 
favorite genre of music.  Assume that a majority of the 
respondents chose either pop (24), hip-hop (27), rock (25), or 
classical (16), but a few chose techno (3), trance (2), or country 
(3).  In this situation, you might want to combine all of the 
rare responses into one category with the label Other.  The 
reason for doing this is that it is difficult to come to any clear 
conclusions when something is rare.  As a general rule, if a 
category contains fewer than 5% of the observations, then it 
should probably be combined with one or more other options. 
An example frequency table for such data is this: 

Choice Pop Hip-Hop Rock Classical Other 

Frequency 24 27 25 16 8 

Finally, to be technically accurate, it should be mentioned that 
there are some ways to quantify whether each of the options is 
being selected the same percent of the time, including the Chi-
square (pronounced “kai-squared”) test and relative entropy 
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(which comes from physics), but these are not very usual.  In 
general, most researchers just make a table and/or maybe a 
histogram to show the distribution of the categorical values. 
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Unit 4. Descriptive 
Statistics with Excel 
J TOBY MORDKOFF 

Summary.  This unit shows you, in a series 
of short videos, how to calculate descriptive 
statistics and make simple plots of 
numerical data using Microsoft Excel. 

Prerequisite Units 
Unit 1. Introduction to Statistics for Psychological Science 
Unit 2. Managing Data 
Unit 3. Descriptive Statistics for Psychological Research 
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Mean and Sample Standard Deviation 

The most popular way to define the center and spread of a 
single set of numerical data is the mean and standard 
deviation.  You can also use the variance for spread, instead 
of the standard deviation, but then the units of measure are 
squared, which can be confusing (e.g., what is a squared 
millisecond?).  In any event, we will be calculating the variance 
on the way to the standard deviation, so both of these will be 
available. 

Here are the formulae that we will use (see Unit 3): 

(1)   

(2)  
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(3)  

Note that we will be calculating the sample values of variance 
and standard deviation, so we’re using the formula with n – 1 in 
the denominator.  We will do the calculations on the following 
data (from Unit 3): 

65 54 79 57 35 14 56 55 77 45 92 

Watch the video:  https://tinyurl.com/Mean-and-Standard-
Deviation 

Median and Inter-Quartile Range 

The other way to define the center and spread of a single 
set of numerical data is the median and inter-quartile range 
(IQR).  These are both based on percentiles.  The median is 50th 
percentile; the IQR is the difference between the 75th and 25th 
percentiles. 

Note that there are two different ways to calculate a 
percentile.  One method includes the median (when 
calculating percentiles other than the 50th); the other method 
excludes the median.  We use the exclusive version of 
percentiles, because the inclusive version has a tendency to 
under-estimate the IQR in the population from which the 
sample was taken.  Warning: for many spreadsheets and stats 
packages, the exclusive version is not the default, so you have 
to be careful. 

For the demonstration, we will use an extremely simple set of 
data: 1, 2, 3, 4, & 5. 

Watch the video:  https://tinyurl.com/Median-and-IQR 
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Numerical Values of Skew and 
Kurtosis 

When center and spread are defined as the mean and 
standard deviation (or variance), there are parallel definitions 
of skewness and kurtosis that may be used for the shape of 
the data.  These are also based on the method of moments. 
The formulae for these are quite complicated, so we will be 
jumping directly to Excel’s built-in functions.  Note that a 
perfect bell curve, known as the normal distribution, has skew 
= 0 and kurtosis = 0.  A new set of (random) data will be used for 
this demonstration. 

Watch the video:  https://tinyurl.com/Skew-and-Kurtosis 

Simple Frequency Plots (Histograms) 
of Numerical Data 

The more general approach to skew and kurtosis is to make 
a plot of the data and simply look for asymmetry (skew) and 
peakedness (kurtosis).  As will be shown, in some cases, the 
data must be “binned” before being plotted. 

Watch the video:  https://tinyurl.com/Simple-Histograms 
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Unit 5. Statistics with 
R:  Introduction and 
Descriptive Statistics 
LEYRE CASTRO 

Summary.  In this unit you will learn the 
basics of how R works and how to get 
comfortable interacting with this software. 
In addition to the information here, next 
units will include examples of how to 
conduct in R the different analyses 
explained in those units. 

Prerequisite Units 
Unit 1. Introduction to Statistics for Psychological Science 
Unit 2. Managing Data 
Unit 3. Descriptive Statistics for Psychological Research 

Statistical Software for Data Analysis 

Using any kind of statistical software will allow you to avoid 
mistakes and be faster in the computation of your statistical 
analyses.  To start taking advantage of computer software for 
your data analysis, spreadsheets (like Excel) are good because 
they allow you to organize the data the way you want, you 
can sort and filter data, you can count and summarize values, 
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calculate basic descriptive statistics, and make graphs.  But if 
you want to move beyond summaries and basic graphs, you 
will need more specialized statistical software.  Some common 
and traditional statistical applications are SPSS and SAS, but 
they require a (very expensive) commercial license.  A non-
commercial option is jamovi, an open-source application, with 
point-and-click interfaces for common tasks and data 
exploration and modeling.  But you may have data that do 
not fit into the rows and columns that standard statistical 
applications expect or you may have questions that go beyond 
what the drop-down menus allow you to do.  In that case, you 
will be better off by using a programming language like R 
because that gives you the ultimate control, flexibility, and 
much power in analyzing your data in ways that specifically 
address the questions that matter to you. 
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What is R? 

R is an open-source free programming software. So, R is free, 
and you can keep updating it without any cost and have it 
always available in your computer, regardless of the university 
or company in which you are.  In addition, there are many great 
websites, videos, and tutorials to get you started (and to 
acquire advanced knowledge) with R, and to explain you how 
to do statistics with R.  We include links to that information 
down below. 

R is very versatile.  Because R is, basically, a programming 
language, it can be used for a variety of things, not just 
statistics.  As you get better at using R for data analysis, you are 
also learning to program.  If you are interested in science, it is 
highly likely that you will need to learn the basics of computer 
modeling, or you may want to develop useful apps, or 
automatize tasks in your business, or conduct surveys online, or 
communicate information through data visualization.  All this 
can be done with R. 
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Related to the previous point, R is highly extensible.  When 
you download and install R, you get all the basic “packages,” 
and those are very powerful on their own.  Packages are 
specific units of code that add more functionality to R. 
Because R is open and so widely used, it has become a 
standard tool in statistics, so many people write their own 
packages that extend the system.  And these packages are 
freely available too.  There is a large R community for code 
development and support; indeed, for any kind of special 
analysis that you need to conduct, be reassured that there 
will be a package in R, and great explanations about how to 
perform it.  Also, many recent advanced statistical textbooks 
use R.  So, if you learn how to do your basic statistics in R, then 
you will be a lot closer to being able to use the state-of-the-
art methods in psychological statistics and data analysis.  In 
summary, learning R is a very good use of your time. 

R is a real programming language.  To some people this 
might seem like a bad or scary thing, but in truth, 
programming is a core research skill across many of the social 
and behavioral sciences. 

Think about how many surveys and experiments are done 
online or on computers in a laboratory.  Think about all those 
online social environments which you might be interested in 
studying.  Also, think about how much time you will save and 
how much accuracy you will gain if you collect data in an 
automated fashion.  If you do not know how to program, then 
learning how to do statistics using R is a good way to start. 
Indeed, if you have to or want to learn another programming 
language in the future, the experience with R will facilitate your 
learning tremendously. 
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Learning R 

Before moving forward, we highly recommend that you first 
watch the following tutorial, that you can access through the 
LinkedIn Learning button in your MyUI page: 

The tutorial is called Learning R, by Barton Poulson, and is 
2h, 51m long. It is a very clear and well-paced introduction to 
R.  You will learn to: install R and RStudio, navigate the RStudio 
environment, import data from a spreadsheet, data 
visualization, and how to perform a number of data analysis. 

In addition, these are some of the best materials available: 
Learning Statistics with R, by Danielle Navarro 
https://learningstatisticswithr.com/ 
Excellent, entertaining, and very clear book, freely available 

online.  It includes statistical explanations and how to conduct 
all the analyses in R.  You can download it as a pdf. 

 
R coder. All about R programming 
https://r-coder.com/r-tutorials/ 
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Very clear, well-organized, and helpful tutorials for all basic 
statistics. 

 
Statistics, R programming, and Data Science with Professor 

Marin 
https://www.youtube.com/c/marinstatlectures/

playlists?view=50&shelf_id=15 
YouTube videos with excellent explanations and examples 

about how to use R and how to conduct a variety of analyses. 

Descriptive Statistics with R 

To start doing descriptive statistics with R, you will find 
excellent instructions in these specific pages from the websites 
listed above: 

Bar Charts and Pie Charts in R 
https://www.youtube.com/

watch?v=Eph_Y0BmHU0&list=PLqzoL9-eJTNCzF2A6223SQm0
rLYtw6hJE&index=2 

 
Histograms in R 
https://www.youtube.com/

watch?v=Hj1pgap4UOY&list=PLqzoL9-eJTNCzF2A6223SQm0rL
Ytw6hJE&index=4 

 
Mean, Standard Deviation, and Frequencies in R 
https://www.youtube.com/

watch?v=ACWuV16tdhY&list=PLqzoL9-eJTNCzF2A6223SQm0rL
Ytw6hJE&index=11 

 
Descriptive Statistics in R 
https://r-coder.com/r-statistics/ 
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Unit 6. Brief 
Introduction to 
Statistical Significance 
Brief Introduction to Statistical 
Significance 

LEYRE CASTRO AND J TOBY MORDKOFF 

Summary. In this unit we will give you a brief 
introduction to null-hypothesis testing and 
the concept of statistical significance. 

Prerequisite Units 
Unit 1. Introduction to Statistics for Psychological Science 
Unit 2. Managing Data 
Unit 3. Descriptive Statistics for Psychological Research 

Null-Hypothesis Testing and 
Probability Value 

Null-hypothesis testing belongs to the area of inferential 
statistics (not part of this version of Data Analysis in the 
Psychological Sciences), but you need to know some basic 
notions to be able to read scientific articles and to advance in 
your study of statistical analysis of psychological research in the 
following units. 

When you do research, you study samples that are selected 
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from a population.  The data collected from samples are used 
to make inferences about that population.  Thus, you need to 
have some way of deciding how meaningful the sample data 
are. 

One common tool to help make that decision is testing for 
statistical significance, technically named null-hypothesis 
testing.  You are testing your hypothesis against the null 
hypothesis, that states that there are no differences between 
groups, or no association between your variables of interest, in 
the population.  The output of this statistical analysis includes 
what is called the p (probability) value.  So, in research papers, 
you may find statements like the these: 

• Participants who exercised remembered significantly 
more words than those who did not, t(48) = 5.63, p < .001. 

• Multi-tasking activity was significantly correlated with 
sensation seeking as measured by the Sensation Seeking 
Inventory, r(275)= .45, p =.01. 

• Levels of social support were negatively associated with 
levels of depression at 12-month follow-up, r(128)=−.32, 
p=.003. 

The p value tells you the probability of finding a result (a 
difference between groups or a correlation) in your sample, 
when that difference or that correlation DOES NOT exist in the 
population. 

To be correct (that is, to correctly infer that a result in your 
sample can be assumed in the population), that probability has 
to be low. How low?  In social sciences, the typical cut-off value 
is .05; that is, 5 out of 100.  Or, as it is typically written, p < .05. 
 So, less than .05 is the probability of finding a difference or a 
correlation in your sample when that difference or correlation 
does not exist in the population (so, you are finding it by 
chance, because peculiar circumstances related to your study 
or to your sample).  In other words, if your p value is less than 

Statistical Significance  |  67



.05, you would expect that less than 5 out of 100 times that 
you were to replicate your study (with different samples) you 
would find a difference or a correlation just by chance and not 
because it actually exists in the population.  When p < .05, you 
will say that your result is statistically significant. 

Other Tools to Evaluate your Research 
Results 

Statistics in psychological research, the same as in any other 
scientific area, are subject to criticism and reevaluation.  Some 
practices are well established, but they may have some flaws, 
and it may be desirable to move forward and find better a way. 
 Still, those better ways need to be explored, widely adopted, 
and become part of the well-established set of tools to do 
psychological research. 

In the last years, a debate has developed as to what is the 
best way to analyze and present the results of psychological 
research.  \Some people have criticized null-hypothesis testing 
because it encourages dichotomous thinking.  That is, an effect 
is statistically significant or not.  But this may not be the best 
way to approach our results.  Some results may be very close 
to the cut-off value of .05.  The p value may be = .04 and then 
we say that the result was statistically significant, but it may 
be = .06 and then we say that the result was not statistically 
significant.  In the first case, we conclude that an effect exists, 
whereas in the second case we conclude that it does not. 
But is this fair?  A minimal difference can result in concluding 
two opposite things.  This, among many other issues, is one 
of the reasons why some researchers favor to include other 
techniques (e.g., confidence intervals and effect sizes) to 
evaluate research results. 

One of those techniques, confidence intervals, will be 
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introduced in Unit 7.  The confidence interval provides the 
range of likely values for a population parameter such as the 
population mean or the correlation between two variables in 
the population, calculated from our sample data.  A confidence 
interval with a 95 percent confidence level (95% CI) has a 95 
percent chance of capturing the population mean.  We may 
find that the mean grade in our sample of students is 86.46, 
and that the 95% CI ranges from 83.40 to 89.53.  We will report 
it like this: 

• The grade in our sample of students was approximately a 
B letter grade, M = 86.46, 95% CI [83.40, 89.53]. 

In this case, we will expect that the true mean in the population 
will be no lower than 83.40, and no higher than 89.53.  So, we 
can conclude that the mean grade of our sample is a quite 
accurate estimation of the mean grade of our population. 

How narrow or wide the confidence interval is will allow us 
to assess how accurate we are in our estimation.  If the 95% CI 
for our mean of 86.46 were from 68.72 to 96.45, then the true 
mean grade in the population could be as low as a D, or as high 
as an A.  Thus, we cannot very well estimate our population’s 
mean grade.  In general, a narrower confidence interval will 
allow us for a more accurate estimation of the correlation in the 
population. 

Conclusions 

Statistical analyses include ways to evaluate how reliable or 
meaningful they are.  Statistical software (like R, SPSS, jamovi, 
etc.) will give you a p value when you compute correlations 
(Unit 7 and 8) and linear regression (Unit 9 and 10) analyses, so 
you need to be able to interpret those p values.  Typically, you 
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will also obtain confidence intervals for the diverse estimations 
that are calculated.  Keep in mind that, whereas the p value 
leads you to conclude that, for example, a correlation is 
statistically significant or not, a confidence interval for the 
same correlation value will give you a possible range of values 
that are more or less likely to be true in the population. 
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Unit 7. Correlational 
Measures 
LEYRE CASTRO AND J TOBY MORDKOFF 

Summary.  In this unit, we will start 
analyzing how two different variables may 
relate to one another.  We will concentrate 
on Pearson’s correlation coefficient: how it is 
calculated, how to interpret it, and different 
issues to consider when using it to measure 
the relationship between two variables. 

Prerequisite Units 
Unit 1. Introduction to Statistics for Psychological Science 
Unit 2. Managing Data 
Unit 3. Descriptive Statistics for Psychological Research 
Unit 6. Brief Introduction to Statistical Significance 

Measures of Association 

On prior units, we have focused on statistics related to one 
specific variable: the mean of a variable, the standard deviation 
of a variable, how the values of a variable are distributed, etc. 
 But often we want to know, not only about one variable, but 
also how one variable may be related to another variable.  So, 
in this unit we will focus on analyzing the possible association 
between two variables. 

Choice of the appropriate measure of association depends 
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on the types of variables that we are analyzing; that is, it 
depends on whether the variables of interest are quantitative, 
ordinal, or categorical, and on the possible range of values of 
these variables.  For example, we may be interested in the 
differences in healthy lifestyle scores (a continuous 
quantitative variable) between people who graduated from 
college and people who did not graduate from college (a 
categorical variable).  Note that this categorical variable has 
only two values; because of that, it is called a dichotomous 
variable.  In this situation, when one variable consists of 
numerical, continuous scores, and the other variable has only 
two values, we use the point-biserial correlation to measure 
the relationship between the variables. 

In other cases, we are interested in how two categorical 
variables are related.  For example, we may want to examine 
whether ethnic origin is associated to marital status (single, 
partnership, married, divorced).  In this situation, when the two 
variables are categorical, you use a chi-square as the measure 
of association. 

We could also be interested in the relationship between 
ordinal variables.  If, for example, we want to see if there is a 
relationship between student rankings in a language test and 
in a music test, the two variables are ordinal or ranked variables. 
 In this case, when two variables are measured on an ordinal 
scale, we should use Spearman’s correlation to measure the 
strength and direction of the association between the 
variables. 

You need to know that these possibilities exist.  However, 
in this unit we are going to focus on the analysis of the 
relationship between two variables when both variables are 
quantitative.  In this case, we typically use Pearson’s 
correlation coefficient.  For example, when we want to see if 
there is a relationship between time spent in social media and 
scores in an anxiety scale.  But before looking at this statistical 
analysis in detail, let’s clarify a few issues. 

72  |  Unit 7. Correlational Measures



Correlation as a Statistical Technique 

First of all, we need to distinguish between correlational 
research and correlational statistical analyses.  In a correlational 
research study, we measure two or more variables as they 
occur naturally to determine if there is a relationship between 
them.  We may read that “as people make more money, they 
spend less time socializing with others,” or “children with social 
and emotional difficulties in low-income homes are more likely 
to be given mobile technology to calm them down,” or “babies’ 
spatial reasoning predicts later math skills.”  The studies 
supporting these conclusions are correlational because the 
researcher is measuring the variables “making money,” “time 
socializing,” “social and emotional difficulties,” and “babies’ 
spatial reasoning skills,” rather than manipulating them; that 
is, the researcher is measuring these variables in the real word, 
rather than determining possible values of these variables and 
assigning groups to specific values.  When we say that a study 
is correlational in nature we are referring to the study’s design, 
not the statistics used for analysis.  In some situations, the 
results from a correlational study are analyzed using 
something other than a correlational statistic.  Conversely, the 
results from some experiments, in which one of the variables 
was determined by the experimenter, such as the number of 
dots on a computer screen, can be analyzed using a 
correlational statistic.  Thus, it is important to understand when 
is appropriate to use a correlational statistical technique. 

When we analyze a correlation, we normally are looking at 
the relationship between two numerical variables, so that we 
have 2 scores for each participant.  If we want to see whether 
spatial skills at the age of 4 correlate with mathematical skills at 
the age of 12, then we will have one score for spatial skills at 4, 
and one score for mathematical skills at 12, for each individual 
participating in our study. 
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These scores can be represented graphically in a scatterplot. 
 In a scatterplot, each participant in the study is represented by 
a point in two-dimensional space.  The coordinates of this point 
are the participant’s scores on variables X (in the horizontal 
axis) and Y (in the vertical axis). 

How we decide which variable goes on the abscissa (x-axis) 
or on the ordinate (y-axis) depends on how we interpret the 
underlying relationship between our variables.  We may have 
a predictor variable that is related to an outcome (also called 
response or criterion variable), as in the case of spatial skills at 
the age of 4 (predictor) and mathematical skills at the age of 12 
(outcome).  In this case, the predictor variable is represented on 
the x-axis, whereas the outcome variable is represented on the 
y-axis, as shown in Figure 7.1. 

This distinction between predictor and outcome variables 
may be obvious in some cases; for example, smoking will be 
the predictor and whether or not lung cancer develops will 
be the outcome, or healthy diet will be the predictor and 
cardiovascular disease the outcome.  But may not always be; 
for example, time to complete a task may be related to 
accuracy in that task, but it is not clear whether accuracy 
depends on time or time depends on accuracy.  In this latter 
case, it does not matter which variable is represented on the 
x-axis or the y-axis.  However, when creating a scatterplot, be 
aware that most people will have a tendency to interpret the 
variable in the x-axis as the one leading to the variable in the y-
axis. 

A scatterplot provides you with a quick visual, intuitive way 
to assess the correlation between the two variables.  It could 
be that there is no correlation, or the correlation is positive, or 
negative, as illustrated in Figure 7.1. 
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Figure 7.1. Three scatterplots depicting different types of relationships. 
On the top left, a scatterplot showing a positive relationship between 
spatial skills at the age of 4 and mathematical skills at the age of 12. 
On the top right, a scatterplot showing a negative relationship 
between social isolation and cognitive functioning in the elderly. On 
the bottom, a scatterplot showing no relationship between height 
and intelligence. The straight lines show the trend of the linear 
relationship between the variables. 

If spatial skills in 4-year olds are related to mathematical skills 
at the age of 12, so that children who at the age of 4 show 
poor spatial skills tend to show poor mathematical skills eight 
years later, and children who at the age of 4 show good spatial 
skills tend to show good mathematical skills eight years later, 
then there is a positive correlation between spatial skills at 
the age of 4 and mathematical skills at the age of 12.  This 
positive correlation, where the two variables tend to change in 
the same direction, is represented on the top left panel.  On the 
top right panel we see an example of a negative correlation. 
 In this case, it was observed that, in the elderly, the higher 
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the social isolation, the lower their cognitive functioning.  The 
correlation is negative because the two variables go in opposite 
directions: as social isolation increases, cognitive functioning 
decreases.  On the bottom panel, height and intelligence are 
depicted.  In this case, the data points are distributed without 
showing any trend, so there is no correlation between the 
variables. 

Pearson’s Correlation Coefficient 

Visual inspection of a scatterplot can give us a very good idea 
of how two variable are related.  But we need to conduct a 
statistical analysis to confirm a visual impression or, 
sometimes, to uncover a relationship that may not be very 
obvious.  There are different correlational analysis, depending 
on the type of relationship between the variables that we want 
to analyze.  When we have two quantitative variables that 
change together—so that when one of the variables increases, 
the other variable increases as well, or when one of the 
variables increases, the other variable decreases—the most 
commonly used correlational analysis is Pearson product-
moment correlation, typically named Pearson’s correlation 
coefficient or Pearson’s r or just r. 

In order to use Pearson’s correlation coefficient: 

1. Both variables must be quantitative.  If the variables are 
numerical, but measured along an ordinal scale, 
Spearman coefficient should be used, instead. 

2. The relationship between the two variables should be 
linear.  Pearson’s correlation coefficient can only detect 
and quantify linear (i.e., “straight-line”) relationships.  If the 
data in the scatterplot show some kind of curvilinear 
trend, then the relationship is not linear and a more 

76  |  Unit 7. Correlational Measures



complicated procedure should be used, instead. 

Pearson’s correlation coefficient measures the direction and 
the degree of the linear relationship between two variables. 
 The value of r can range from +1 (perfect positive correlation) to 
-1 (perfect negative correlation).  A value of 0 means that there 
is no correlation.  The sign of r tells you the direction (positive 
or negative) of the relationship between variables.  The 
magnitude of r tells you the degree of relationship between 
variables.  Let’s say that we obtain a correlation coefficient of 
0.83 between physical activity (exercise hours per week) and 
scores on an academic test.  What does it mean?  Since 0.83 
is positive and close to 1.00, you can say that the two variables 
have a strong positive relationship –so high number of exercise 
hours per week are related to high scores on the academic test. 
 In a different situation, let’s say that we obtain a correlation 
coefficient of -0.86 between number of alcoholic drinks per 
week and scores on an academic test.  What does it mean? 
 Since -0.86 is negative and close to -1.00, you can say that 
the two variables have a strong negative relationship –so high 
number of alcoholic drinks per week are related to low scores 
on the academic test. 

A slightly more complicated way to quantify the 
strength of the linear relationship is by using the 
square of correlation: R2.  The reason why this is 
sometimes preferred is because R2 is the proportion 
of the variability in the outcome variable that can 
be “explained” by the value of the predictor variable. 
If we obtain an R2 of 0.23 when analyzing the 
relationship between spatial skills at the age of 4 
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(predictor) and mathematical skills at the age of 12 
(outcome), we will say that spatial skills at the age of 
4 explain 23% of the variability in mathematical skills 
at the age of 12.  This amount of explained variance 
is one way of expressing the degree to which some 
relation or phenomenon is present. 

Importantly, when you use R2 as your measure of 
strength, you can make statements like “verbal 
working memory score is twice as good at predicting 
IQ than spatial working memory score” (assuming 
that the R2 for verbal WM and IQ is twice as large 
as the R2 for spatial WM and IQ).  You cannot make 
statements of this sort based on (unsquared) values 
of r. 

 
Conceptually, Pearson’s correlation coefficient computes the 

degree to which change in one numerical variable is associated 
with change in another numerical variable.  It can be described 
in terms of the covariance of the variables, a measure of how 
two variables vary together.  When there is a perfect linear 
relationship, every change in the X variable is accompanied 
by a corresponding change in the Y variable.  The result is a 
perfect linear relationship, with X and Y always varying 
together.  In this case, the covariability (of X and Y together) is 
identical to the variability of X and Y separately, and r will be 
positive (if the two variables increase together) or negative (if 
increases in one variable correspond to decreases in the other 
variable). 

To understand the calculations for r, we need to understand 
the concept of sum of products of deviations (SP).  It is very 
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similar to the concept of sum of squared deviations (SS) that we 
saw in Unit 3 to calculate the variance and standard deviation. 

This was the formula for the SS of one single variable, X: 

In order to see the similarities with the SP, it will be even 
clearer if we write the formula for the SS this way: 

The formula for the sum of the products of the deviation 
scores or SP computes the deviations of each score for X and for 
Y from its corresponding mean, and then multiplies and add 
those values: 

In order to show the degree to which X and Y vary together, 
that is, their covariance (similar to the variance for one variable, 
but now referring to two variables), we divide by n – 1: 

    

 

Practice (1) 

Let’s calculate the SP and the covariance 
with the dataset containing the number of 
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study hours before an exam (X), and the grade 
obtained in that exam (Y), for 15 participants, 
that we used previously in Unit 3.  The table 
shows each of the scores, the deviation scores 
for each X and Y score, and the product of each 
pair of deviation scores: 
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P
art. 

Ho
urs 

Gra
de 

P1 8 78 (8 – 13.66) (78 – 
86.46) -5.66 * -8.46 = 47.88 

P
2 11 80 (11 – 13.66) (80 – 

86.46) -2.66 * -6.46 = 17.18 

P
3 16 89 (16 – 13.66) (89 – 

86.46) 2.34 * 2.54 = 5.94 

P
4 14 85 (14 – 13.66) (85 – 

86.46) 0.34 * -1.46 = – 0.50 

P
5 12 84 (12 – 13.66) (84 – 

86.46) -1.66 * -2.46 = 4.08 

P
6 15 86 (15 – 13.66) (86 – 

86.46) 1.34 * -0.46 = – 0.62 

P
7 18 95 (18 – 13.66) (95 – 

86.46) 4.34 * 8.54 = 37.06 

P
8 20 96 (20 – 13.66) (96 – 

86.46) 6.34 * 9.54 = 60.48 

P
9 10 83 (10 – 13.66) (83 – 

86.46) -3.66 * -3.46 = 12.66 

P1
0 9 81 (9 – 13.66) (81 – 

86.46) -4.66 * -5.46 = 25.44 

P1
1 16 93 (16 – 13.66) (93 – 

86.46) 2.34 * 6.54 = 15.30 

P1
2 17 92 (17 – 13.66) (92 – 

86.46) 3.34 * 5.54 = 18.50 

P1
3 13 84 (13 – 13.66) (84 – 

86.46) -0.66 * -2.46 = 1.62 

P1
4 12 83 (12 – 13.66) (83 – 

86.46) -1.66 * -3.46 = 5.74 
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P
art. 

Ho
urs 

Gra
de 

P1
5 14 88 (14 – 13.66) (88 – 

86.46) 0.34 * 1.54 = 0.52 

Now, as the term  in the 
formula indicates, we need to add all the products of 
each pair of deviation scores, the scores in the 
rightmost column.  This total adds up to 251.33.  Then, 
we divide by n -1, that is, by 14: 

    

Thus, the covariance between Hours and Grade is 
17.95. 

It could be possible to use the covariance between X and Y 
as a measure of the relationship between the two variables; 
however, its value is not quickly understandable or possible 
to compare across studies because it depends on the 
measurement scale of the variables, that is, it depends on the 
specific units of X and the specific units of Y.  Pearson’s 
correlation coefficient solves this issue, by dividing the 
covariance by the specific value of the standard deviations of X 
and Y, so that the units (and scale effects) cancel: 

    

82  |  Unit 7. Correlational Measures



With this maneuver, the limits of r range between -1 and +1 
and, therefore, r is easy to interpret, and its value can be used 
to compare different studies. 

Practice (2) 

Let’s calculate Pearson’s correlation coefficient in 
our case. We know from Unit 3 that the standard 
deviation of X, the number of hours, is 3.42, and that 
the standard deviation of Y, the grade, is 5.53. Therefore: 

    

So, Pearson’s correlation coefficient between number 
of hours studying and grade obtained in our dataset is 
0.95. Very high. 

As indicated above, the magnitude of r tells us how weak or 
strong the relationship is so, the closer to 0, the weaker the 
relationship is, whereas the closer to 1 (or -1), the stronger the 
relationship is.  Figure 7.2 shows different scatterplots 
illustrating different values of r. 
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Figure 7.2. Three scatterplots depicting positive relationships of 
different strength between variables X and Y. On the left, a scatterplot 
in which r = 0.1. On the center, a scatterplot in which r = 0.4. On the 
right, a scatterplot in which r = 0.8. 

A perfect correlation of +1 or -1 means that all the data points lie 
exactly on a straight line.  These perfect relationships are rare, 
in general, and very unlikely in psychological research. 

Interpretation of Pearson’s Correlation 
Coefficient 

The interpretation of the value of the correlation coefficient 
r is somehow arbitrary (see Table 7.1 for typical guidelines). 
Although most data scientists will agree that an r smaller than 
0.1 reflects a negligible relationship, and an r larger than 0.9 
reflects a very strong relationship, how to interpret 
intermediate coefficients is more uncertain.  An r value of 0.42 
may be weak or strong depending on the typical or possible 
association found between some given variables.  For example 
height and weight are typically highly correlated, so an r value 
of 0.42 between those variables would be low; however, an r
value of 0.42 between eating cranberries daily and cognitive 
capacity would be high, given that so many other variables are 
related to cognitive capacity.  It also may be weak or strong 
depending on the results of other research studies in the same 
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area.  Thus, a specific r value should be interpreted within the 
context of the specific research. 

Value of r Strength 

0.0 to 0.09 negligible 

0.1 to 0.29 weak 

0.3 to 0.49 moderate 

0.5 to 0.89 strong 

0.9 to 1.00 very strong 

Table 7.1. Typical guidelines for the interpretation of r 

Issues to Consider 

Outliers 

An outlier is a data point that has a value much larger or 
smaller than the other values in a data set.  It is important 
to carefully examine the dataset for outliers because they can 
have an excessive influence on Pearson’s correlation 
coefficient.  For example, in Figure 7.3, we can see a data point 
that has X and Y values much larger than the other data points. 
Pearson’s r for this entire data set is r = 0.86, indicating a strong 
relationship between X and Y.  However, if we do not include 
the outlier in the analysis, Pearson’s r is greatly reduced, r = 0.07, 
very close to 0, indicating a negligible relationship.  You should 
be able to easily visualize the difference with and without the 
outlier data point in the scatterplot in Figure 7.3. 
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Figure 7.3. Scatterplot of the relationship between two variables, X 
and Y, with one outlier in the data set. 

You always need to examine the distribution of your scores to 
make sure that there are no relevant outliers.  Whether outliers 
should or should not be eliminated from an analysis depends 
on the nature of the outlier.  If it is a mistake in the data 
collection, it should probably be eliminated; if it is an unusual, 
but still possible value, it may need to be retained.  One way 
or the other, the presence of the outlier should be noted in 
your data report.  If the outlier must be retained, an alternative 
analysis can be Spearman correlation, that is more robust than 
Pearson’s correlation coefficient against outliers. 
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Restricted Range 

You need to be aware that the value of a correlation can be 
influenced by the range of scores in the dataset used.  If a 
correlation coefficient is calculated from a set of scores that 
do not represent the full range of possible values, you need 
to be cautious in interpreting the correlation coefficient.  For 
example, you may be interested in the relationship between 
family income level and educational achievement.  You choose 
a convenient sample in a nearby school, that happens to be 
a private school in which most students come from wealthy 
and very wealthy families.  You analyze the data in your sample 
and find that there is no correlation between family income 
level and educational achievement.  It could be that, indeed, 
this relationship is not apparent among high-income students, 
but it would have been revealed if you have included in your 
sample students from very-low, low, and middle-income 
families.  Figure 7.4 shows a scatterplot that depicts this issue. 

Figure 7.4. Considering all the possible values for X and 
Y in this scatterplot, r = 0.80. However, if the data set 
consisted of a restricted range of values, as those high 
values included in the circle, r would be close to 0. 
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In general, in order to establish whether or not a correlation 
exists between two variables, you need a wide range of values 
for each of the variables.  If it is not possible to obtain this 
wide range of values, then at least you should limit your 
interpretation to the specific range of values in your dataset. 

Correlation Coefficient in the Sample 
and in the Population 

We rarely are interested in the correlation between variables 
that only exists in a sample.  As is true for most situations, 
we use the correlation coefficient in our sample to make an 
estimate of the correlation in the population.  How does that 
work?  The sample data allow us to compute r, the correlation 
coefficient for the sample.  We normally do not have access 
to the entire population, so we cannot know or calculate the 
correlation coefficient for the population (named rho, ρ). 
 Because of this, we use the sample correlation coefficient, r, as 
our estimate of the unknown population correlation coefficient 
.  The accuracy of this estimation depends on two things.  First, 
the sample needs to be representative of the population; for 
example, the people included in the sample need to be an 
unbiased, random subset of the population—this is not a 
statistical issue, but it should always be kept in mind.  Second, 
how precisely a sample correlation coefficient will match the 
population correlation coefficient depends on the size of the 
sample: the larger the sample, the more accurate the estimate 
(provided that the sample is representative). 
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Whenever some value that is calculated from a 
sample is used to estimate the (true) value in the 
population, the question of bias arises.  Recall that 
bias is whether the estimator has a tendency to over-
shoot or under-shoot the target value.  If possible, we 
always use the estimator that has the least bias. 

In the case of correlation coefficients, the value of 
r from a sample provides a very good estimate of 
ρ in the population, as long as the sample size is 
not very small.  If you are working with samples of 
fewer than 30 participants, you may wish to adjust 
the value of r when using it as an estimate of ρ. 
The details of this adjustment are beyond the scope 
of this unit, but you should be aware that better 
estimates of ρ are available for small-sample 
situations. 

Before conducting our study, we need to decide the size of 
our sample.  This decision must be informed by the purpose 
of minimizing inaccurate estimates when we later analyze our 
sample data.  So, we need to plan for the sufficient sample size. 
 It is not easy to give a specific number, because our sample 
size should be based on prior and expected sizes of the 
relationship of interest.  And, the size of the sample should 
be large enough to be able to detect small effects, and make 
sure that our results are not due to chance.  Nowadays, there 
are a variety of software tools that can help you decide the 
size of the sample.  At the moment, just be aware that, if you 
have a sample that is too small, the correlation coefficient that 
you obtain from your sample data may be inadequate as the 
correlation coefficient for the population. 
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In addition, in order to improve the interpretation of your 
correlation coefficient r, a confidence interval will help.  That’s 
why is always advisable to include a confidence interval for 
the obtained coefficient (typically, a 95% confidence interval). 
The confidence interval provides the range of likely values of 
the coefficient in the population from which the sample was 
taken.  An r value of 0.53 suggests quite a strong relationship 
between two variables; however, if the 95% confidence interval 
ranges from 0.02 to 0.82 (as it could be the case with a very 
small sample), then the strength of the relationship in the 
population could be negligible (r = 0.02) and, therefore, of little 
importance, or it could be strong (r = 0.82) and, therefore, of 
high relevance.  So, if the confidence interval is very wide, it 
is difficult to make a valuable interpretation of the results.  In 
general, a narrower confidence interval will allow us for a more 
accurate estimation of the correlation in the population. 

Conclusions 

A correlation coefficient shows the strength and direction of 
an association between two variables.  Note that a correlation 
describes a relationship between two variables, but does not 
explain why.  Thus, it should never be interpreted as evidence 
of a causal relationship between the variables. 

If r is relatively strong, you can assume that when one 
variable increases, the other variable will increase as well (for 
a positive relation) or the other variable will decrease (for a 
negative relation).  But r does not allow you to predict, precisely, 
the value of one variable based on the value of the other 
variable.  To do that, we have another statistical tool: linear 
regression analysis (Unit 9) 
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Unit 8. Scatterplots and 
Correlational Analysis 
in R 
LEYRE CASTRO 

Summary. In this unit you will learn how to 
create scatterplots and how to calculate 
Pearson’s correlation coefficient with R. You 
will learn how to enter the code and how to 
interpret the output that R provides. 

Prerequisite Units 
Unit 5. Statistics with R:  Introduction and Descriptive Statistics 
Unit 6. Brief Introduction to Statistical Significance 
Unit 7. Correlational Measures 

Reading Data and Creating a 
Scatterplot 

We have the dataset of 50 participants with different amount 
of experience (from 1 to 16 weeks) in performing a computer 
task, and their accuracy (from 0 to 100% correct) in this task. 
Thus, Experience is the predictor variable, and Accuracy is the 
outcome variable. 

The code line below imports our dataset by using the 
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read.table function, and assigns the data file to the object 
MyData. 

#read data file 
MyData <- 
read.table(“ExperienceAccuracy.txt”, header 
= TRUE, sep = “,”) 

Once R has access to your data file, you can create a scatterplot. 
 There are multiple ways of creating a scatterplot in R (links are 
included below).  Some ways are quick and simple, so you can 
easily see the graphical representation of how your variables 
of interest are related; other ways require some additional 
packages.  Let’s see here two frequently used options. 

1. Using plot function 

For the simplest scatterplot, you just need to specify the two 
variables that you want to plot.  The first one will be on the 
x-axis and the second one on the y-axis. Remember that you 
need to specify, with the $ sign, that your variables, Experience 
and Accuracy, are within the object MyData. 

#basic scatterplot 
plot(MyData$Experience, MyData$Accuracy) 
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This is the scatterplot that you will obtain: 

The plot function has a number of possibilities to modify and 
improve the basic scatterplot.  For example: 

#basic scatterplot 
plot(MyData$Experience, MyData$Accuracy, 
main = “Relationship between Experience and 
Accuracy”, 
pch = 21, 
bg = “blue”, 
xlab = “Experience”, 
ylab = “Accuracy”) 

The main argument allows you to include a title to the 
scatterplot.  You can also choose the shape of the points, with 
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pch (you can find the assignment of shapes to numbers in the 
links included below), and the color, with bg.  In addition, you 
can change the labels to the axis, with xlab and ylab.  If you run 
the script above, you will obtain: 

Find more options and information here: 
https://r-coder.com/scatter-plot-r/ 

2. Using the ggplot package 

First of all, you will need to install the ggplot package for R. 
And, as indicated in the first line of code below, you will to load 
it when you want to use it, using the library function. 
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#load the ggplot2 package 
library(ggplot2) 

#basic scatterplot 
scatterplot <- ggplot(MyData) + 
aes(x = Experience, y = Accuracy) + 
geom_point() 
print(scatterplot) 

 
In this script, you are just indicating the variables in the x- 

and y-axis, and that the data are represented by points.  To 
visualize the scatterplot, you have to use print.  If you run the 
script above, you will obtain: 
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You can elaborate on this scatterplot, and improve as much as 
you want.  The script below shows you some options to modify 
the data points (with geom_point), titles (xlab and ylab), 
changes to the scales of the axis (xlim and ylim), including 
the regression line (geom_smooth), and modifying the text 
elements with theme: 

#load the ggplot2 package 
library(ggplot2) 

#more elaborated scatterplot  
scatterplot <- ggplot(MyData) + 
aes(x = Experience, y = Accuracy) + 
geom_point(size = 3, fill= “dark grey”, 
shape = 21) + 
ggtitle (“Relationship between Experience 
and Accuracy”) + 
xlab (“Experience”) + 
ylab (“Accuracy”) + 
xlim (0, 18) + 
ylim (50,100) + 
geom_smooth(method=lm, se = FALSE, color = 
“red”, weight = 6) + 
theme (axis.text.x = 
element_text(colour=”black”,size=15,face=”p
lain”), 
axis.text.y = 
element_text(colour=”black”,size=15,face=”p
lain”), 
axis.title.x = 
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element_text(colour=”black”,size=18,face=”b
old”), 
axis.title.y = 
element_text(colour=”black”,size=18,face=”b
old”), 
plot.title = 
element_text(colour=”black”,size=18,face=”b
old”), 
panel.background = element_rect(fill = 
‘NA’), 
axis.line = element_line(color=”black”, 
size = 0.5) 
) 
print(scatterplot) 

 
Running this script, you will obtain: 
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You have plenty of options to improve the visual aspects of your 
scatterplot.  Find more in the following websites: 

• How to make a scatterplot with ggplot2 

http://www.sthda.com/english/wiki/ggplot2-scatter-
plots-quick-start-guide-r-software-and-data-
visualization 

https://www.r-bloggers.com/2020/07/create-a-scatter-
plot-with-ggplot/ 

• How to make any plot using ggplot2 

http://r-statistics.co/ggplot2-Tutorial-With-R.html 

Correlational Analysis 

Once you have a visual representation of how your variables are 
related, it is time to conduct the correlational analysis that will 
allow you to obtain Pearson’s correlation coefficient between 
your variables of interest.  In R, you can use the cor function, as 
you can see in this code line: 

#how to obtain Pearson’s r 
cor(MyData$Experience, MyData$Accuracy) 

The output will give you Pearson’s r. Simply: 
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0.9390591 

To obtain the result of the statistical significance test and the 
confidence intervals for the correlation coefficient, you can use 
cor.test: 

#how to obtain Pearson’s r with 
significance test and confidence intervals 
cor.test (MyData$Experience, 
MyData$Accuracy) 

You will obtain the following output: 

Pearson’s product-moment correlation 

data:  MyData$Experience and 
MyData$Accuracy 
t = 18.926, df = 48, p-value < 2.2e-16 
alternative hypothesis: true correlation is 
not equal to 0 
95 percent confidence interval: 
0.8945274 0.9651350 
sample estimates: 
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cor 
0.9390591 

 
The null hypothesis in a correlation test is a correlation of 

0, that is, that there is no relationship between the variables 
of interest.  As indicated in the output above, the alternative 
hypothesis is that that the correlation coefficient is different 
from zero.  The t statistic tests whether the correlation is 
different from zero.  We have not seen the t statistic yet, so 
you only need to pay attention to the p value.  As we explained 
here, the cut-off value for a hypothesis test to be statistically 
significant is 0.05, so that if the p-value is less than 0.05, then 
the result is statistically significant.  Here, the p-value is very 
small; R uses the scientific notation for very small quantities, 
and that’s why you see the e in the number.  For values larger 
than .001, R will give you the exact p value.  You just need to 
know that this number, 2.2e-16, represents a very small value, 
much smaller than 0.05; so, we can conclude that the 
correlation between Experience and Accuracy is statistically 
significant. 

In the last line you can see Pearson’s correlational coefficient, 
0.94, indicating a very strong correlation.  And, above, the 95% 
confidence interval for the correlation coefficient.  Following 
APA style, we typically report the confidence interval this way: 

95% CI [0.89, 0.96] 
So, we obtained an r value of 0.94 in our sample, with a 95% CI 

between 0.89 and 0.96.  That is, you can be 95% confident that 
the true r value in the population is between the values of 0.89 
and 0.96.  This interval is relatively narrow, and any value within 
the interval would indicate a very strong correlation, so we have 
a very accurate estimation of the correlation in the population. 
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More information about correlation tests in R: 

https://www.rdocumentation.org/packages/stats/
versions/3.6.2/topics/cor.test 

https://www.statmethods.net/stats/correlations.html 

https://www.statology.org/correlation-test-in-r/ 
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Unit 9. Simple Linear 
Regression 
LEYRE CASTRO AND J TOBY MORDKOFF 

Summary.  This unit further explores the 
relationship between two variables with 
linear regression analysis.  In a simple linear 
regression, we examine whether a linear 
relationship can be established between 
one predictor (or explanatory) variable and 
one outcome (or response) variable, such as 
when you want to see if time socializing can 
predict life satisfaction.  Linear regression is 
a widely-used statistical analysis, and the 
foundation for more advanced statistical 
techniques. 

Prerequisite Units 
Unit 6. Brief Introduction to Statistical Significance 
Unit 7. Correlational Measures 

Linear Regression Concept 

Imagine that we examine the relationship between social 
media use and anxiety in adolescents and, when analyzing the 
data, we obtain an r of 0.40, indicating a positive correlation 
between social media use and anxiety.  The data points in the 
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scatterplot on the top of Figure 9.1 illustrate this positive 
relationship.  The relationship is even clearer and faster to grasp 
when you see the line included on the plot on the bottom.  This 
line summarizes the relationship among all the data points, 
and it is called regression line.  This line is the best-fitting line 
for predicting anxiety based on the amount of social media use. 
 It also allows us to better understand the relationship between 
social media use and anxiety.  We will see in this unit how to 
obtain this line, and what exactly means. 
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Figure 9.1. Scatterplots showing the relationship between social 
media use and anxiety scores. The scatterplots are exactly the same, 
except that the one on the bottom has the regression line added. 

A linear regression analysis, as the name indicates, tries to 

104  |  Simple Linear Regression



capture a linear relationship between the variables included 
in the analysis.  When conducting a correlational analysis, you 
do not have to think about the underlying nature of the 
relationship between the two variables; it doesn’t matter which 
of the two variables you call “X” and which you call “Y”.  You will 
get the same correlation coefficient if you swap the roles of the 
two variables.  However, the decision of which variable you call 
“X” and which variable you call “Y” does matter in regression, 
as you will get a different best-fitting line if you swap the two 
variables.  That is, the line that best predicts Y from X is not the 
same as the line that predicts X from Y. 

In the basic linear regression model, we are trying to predict, 
or trying to explain, a quantitative variable Y on the basis of a 
quantitative variable X.  Thus: 

• The X variable in the relationship is typically named 
predictor or explanatory variable. This is the variable that 
may be responsible for the values on the outcome 
variable. 

• The Y variable in the relationship is typically named 
outcome or response or criterion variable. This is the 
variable that we are trying to predict/understand. 

In this unit, we will focus on the case of one single predictor 
variable, that’s why this unit is called “simple linear regression.” 
 But we can also have multiple possible predictors of an 
outcome; if that is the case, the analysis to conduct is called 
multiple linear regression.  For now, let’s see how things work 
when we have one possible predictor of one outcome variable. 

Linear Regression Equation 

You may be interested in whether the amount of caffeine 
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intake (predictor) before a run can predict or explain faster 
running times (outcome), or whether the amount of hours 
studying (predictor) can predict or explain better school grades 
(outcome).  When you are doing a linear regression analysis, 
you model the outcome variable as a function of the predictor 
variable.  For example, you can model school grades as a 
function of study hours.  The formula to model this relationship 
looks like this: 

    
And this is the meaning of each of its elements: 

  (read as “Y-hat”) = the predicted value of the variable Y 
  = the intercept or value of the variable  when the 

predictor variable X = 0 
  = the slope of the regression line or the amount of 

increase/decrease in Y for each increase/decrease in one unit of 
X 

  = the value of the predictor variable 
When we conduct a study, the data from our two variables X 

and Y are represented by the points in the scatterplot, showing 
the different values of X and Y that we obtained.  The line 

represents the   values, that is, the predicted values of Y when 
we use the X and Y values that we measured in our sample 
to calculate the regression equation.  Figure 9.2 shows a 
regression line depicting the relationship between number of 
study hours and grades, and where you can identify the 
intercept and the slope for the regression line. 
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Figure 9.2. Regression line depicting the relationship between 
number of study hours and grades. For the sake of clarity, only 6 
observations are included. Here, the intercept is equal to 72, and the 
slope is equal to approximately 2. You can check and see that, 
regardless of where you measure the slope, its value is always the 
same. 

We have defined the intercept as the value of  when X equals 
zero.  Note that this value may be meaningful in some 
situations but not in others, depending on whether or not 
having a zero value for X has meaning and whether that zero 
value is very near or within the range of values of X that we used 
to estimate the intercept.  Analyzing the relationship between 
the number of hours studying and grades, the intercept would 
be the grade obtained when the number of study hours is 
equal to 0.  Here, the intercept tells us the expected grade in 
the absence of any time studying.  That’s helpful to know.  But 
let’s say, for example, that we are examining the relationship 
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between weight in pounds (variable X) and body image 
satisfaction (variable Y).  The intercept will be the score in our 
body image satisfaction scale when weight is equal to 0. 
 Whatever the value of the intercept may be in this case, it is 
meaningless, given that it is impossible that someone weighs 
0 pounds.  Thus, you need to pay attention to the possible 
values of X to decide whether the value of the intercept is 
telling you something meaningful.  Also, make sure that you 
look carefully at the x-axis scale.  If the x-axis does not start at 
zero, the intercept value is not depicted; that is, the value of Y at 
the point in which the regression line touches the y-axis is not 
the intercept if the x-axis does not start at zero. 

The critical term in the regression equation is b1 or the slope. 
 We have defined the slope as the amount of increase or 
decrease in the value of the variable Y for a one-unit increase 
or decrease in the variable X.  Therefore, the slope is a measure 
of the predicted rate of change in Y. Let’s say that the slope in 
the linear regression with number of study hours and grades 
is equal to 2.5.  That would mean that for each additional hour 
of study, grade is expected to increase 2.5 points.  And, because 
the equation is modeling a linear relationship, this increase 
in 2.5 points will happen with one-unit increase at any point 
within our range of X values; that is, when the number of study 
hours increase from 3 to 4, or when they increase from 7 to 8, 
in both cases, the predicted grade will increase in 2.5 points. 

The different meanings of β 

The letter b is used to represent a sample estimate 
of the β coefficient in the population.  Thus b0 is the 
sample estimate of β0, and b1 is the sample estimate 
of β1.  As we mentioned in Unit 1, for sample statistics 
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we typically use Roman letters, whereas for the 
corresponding population parameters we use Greek 
letters.  However, be aware that β is also used to refer 
to the standardized regression coefficient, a sample 
statistic.  Standardized data or coefficients are those 
that have been transformed so as to have a mean 
of zero and a standard deviation of one.  So, when 
you encounter the symbol β, make sure you know to 
what it refers. 

How to Find the Values for the Intercept 
and the Slope 

The statistical procedure to determine the best-fitting straight 
line connecting two variables is called regression.  The question 
now is to determine what we mean by the “best-fitting” line. It 
is the line that minimizes the distance to our data points or, in 
different words, the one that minimizes the error between the 
values that we obtained in our study and the values predicted 
by the regression model.  Visually, it is the line that minimizes 
the vertical distances from each of the individual points to the 
regression line.  The distance or error between each predicted 
value and the actual value observed in the data is easy to 
calculate: 

    
This “error” or residual, as is also typically called, is not an 

error in the sense of a mistake.  It tries to capture variations 
in the outcome variable that may occur due to unpredicted 
or unknown factors.  If the observed data point lies above the 
line, the error is positive, and the line underestimates the actual 
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data value for Y.  If the observed data point lies below the line, 
the error is negative, and the line overestimates that actual 
data value for Y (see error for each data point in green in Figure 
9.3).  For example, in Figure 9.3, our regression model 
overestimates the grade when the number of study hours are 
6, whereas it underestimates the grade when the number of 
study hours are 10. 

 

Figure 9.3. The same regression line as in Figure 9.2. depicting the 
relationship between number of study hours and grades. Here, the 
errors or residuals, that is, the distance between each predicted value 
(regression line) and the actual value observed in the data (data 
points in grey) are indicated with the green lines. 

Because some data points are above the line and some are 
below the line, some error values will be positive while others 
will be negative, so that the sum of all the errors will be zero. 
 Because it is not possible to conduct meaningful calculations 
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with zero values, we need to calculate the sum of all the 
squared errors.  The result will be a measure of overall or total 
squared error between the data and the line: 

So, the best-fitting line will be the one that has the smallest 
total squared error or the smallest sum of squared residuals. 
 In addition, the residuals or error terms are also very useful for 
checking the linear regression model assumptions, as we shall 
see below. 

Getting back to our calculations, we know that our regression 
equation will be the one that minimizes the total squared error. 
 So, how do we find the specific values of b0 and b1 that 
generate the best-fitting line? 

We start calculating b1, the slope: 

    

where  = the standard deviation of the Y values and  = 

the standard deviation of the X values (that you learned to 
calculate in Unit 3) and r is the correlation coefficient 
between X and Y (that you learned to calculate in Unit 7). 

Once we have found the value for the slope, it is easy to 
calculate the intercept: 

    

Practice 

Any statistical software will make these calculations 
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for you.  But, before learning how to do it with R or Excel, 
let’s find the intercept and the slope of a regression 
equation for the small dataset containing the number 
of study hours before an exam and the grade obtained 
in that exam, for 15 participants, that we used previously 
in Unit 3 and Unit 7.  These are the data: 
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Participant Hours Grade 

P1 8 78 

P2 11 80 

P3 16 89 

P4 14 85 

P5 12 84 

P6 15 86 

P7 18 95 

P8 20 96 

P9 10 83 

P10 9 81 

P11 16 93 

P12 17 92 

P13 13 84 

P14 12 83 

P15 14 88 

As you can tell from the formulas above, we need to 
know the mean and the standard deviation for each of 
the variables (see Unit 3). From our calculations in Unit 
3, we know that the mean number of hours ( ) is 13.66, 
and the mean grade obtained in the exam ( ) is 86.46. 
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 We also know that the standard deviation for hours (
) is 3.42, and the standard deviation for grade ( ) 

is 5.53.  In addition, from our calculations in Unit 7 we 
know that r for the relationship between study hours 
and grade is 0.95.  So, let’s calculate first the slope for 
our regression line: 

 = 0.95 * (5.53 / 3.42) 

that is: 

 = 1.54 

Once we have  , we calculate the intercept: 

 = 86.46 (the mean grade in the exam) – 1.54 * 13.66 
(the mean number of study hours) 

that is: 

 = 65.47 

So, our regression equation is: 

    

This means that the expected grade of someone 
who studies 0 hours will be 65.47, and that for each 
additional hour of study, a student is expected to 
increase their grade in 1.54 points. 

Linear Regression as a Tool to Predict 
Individual Outcomes 

The regression equation is useful to make predictions about 
the expected value of the outcome variable Y given some 
specific value of the predictor variable X.  Following with our 
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example, if a student has studied for 15 hours, their predicted 
grade will be: 

 =  65.47 + 1.54*15 
that is: 

 = 88.57 
Of course, this prediction will not be perfect.  As you have 

seen in Figure 9.3, our data points do not fit perfectly on the 
line.  Normally, there is some error between the actual data 
points and the data predicted by the regression model.  The 
closer the data points are to the line, the smaller the error is. 

In addition, be aware that we can only calculate the  value 
for values of X that are within the range of values that we 
included in the calculation of your regression model (that is, 
we can interpolate).  We cannot know if values that are smaller 
or larger than our range of X values will display the same 
relationship.  So, we cannot make predictions for X values 
outside the range of X values that we have (that is, we cannot 
extrapolate). 

Linear Regression as an Explanatory Tool 

Note that, despite the possibility of making predictions, most 
of the times that we use regression in psychological research 
we are not interested in making actual predictions for specific 
cases.  We typically are more concerned with finding general 
principles rather than making individual predictions.  We want 
to know if studying for a longer amount of time will lead to 
have better grades (although you probably already know this) 
or we want to know if social media use leads to increased 
anxiety in adolescents.  The linear regression analysis provides 
us with an estimate of the magnitude of the impact of a 
change in one variable on another.  This way, we can better 
understand the overall relationship. 
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Linear regression as a statistical tool in both 
correlational and experimental research 

Linear regression is a statistical technique that is 
independent of the design of your study.  That is, 
whether your study is correlational or experimental, 
if you have two numerical variables, you could use 
a linear regression analysis.  You need to be aware 
that, as mentioned at different points in this book, 
if the study is correlational, you cannot make causal 
statements. 

Assumptions 

In order to conduct a linear regression analysis, our data should 
meet certain assumptions.  If one or more of these 
assumptions are violated, then the results of our linear 
regression may be unreliable or even misleading.  These are the 
four assumptions: 

1) The relationship between the variables 
is linear 

The values of the outcome variable can be expressed as a linear 
function of the predictor variable.  The easiest way to find if this 
assumption is met is to examine the scatterplot with the data 
from the two variables, and see whether or not the data points 
fall along a straight line. 
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2) Observations are independent 

The observations should be independent of one another and, 
therefore, the errors should also be independent.  That is, the 

error (the distance from the obtained Y to the  predicted 
by the model) for one data point should not be predictable 
from knowledge of the error for another data point.  Knowing 
whether this assumption is met requires knowledge of the 
study design, method, and procedure.  If the linear regression 
model is not adequate, this does not mean that the data 
cannot be analyzed; rather, other analyses are required to take 
into account the dependence among the data observations. 

3) Constant variance at every value of X 

Another assumption of linear regression is that the residuals 
should have constant variance at every value of the variable 
X. In other words, variation of the observations around the 
regression line are constant.  This is known 
as homoscedasticity.   You can see on the scatterplot on the 
left side of Figure 9.4 that the average distance between the 
data points above and below the line is quite similar regardless 
of the value of the X variable.  That’s what homoscedasticity 
means.  However, on the scatterplot on the right, you can see 
the data points close to the line for the smaller values of X, so 
that variance is small at these values; but, as the value of X 
increases, values of Y vary a lot, so some data points are close 
to the line but others are more spread out.  In this case, the 
constant variance assumption is not met, and we say that the 
data show heteroscedasticity. 
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Figure 9.4. On the left, a scatterplot showing homoscedasticity: that 
is, the variance is similar at all levels of the variable X. On the right, a 
scatterplot showing heteroscedasticity; in this case, the variance of 
the observations for the lower values of the variable X is much smaller 
(the data points are tighter and closer to the line) than the variance 
for the higher values of the variable X. 

When heteroscedasticity (that is, the variance is not constant 
but varies depending on the value of the predictor variable) 
occurs, the results of the analysis become less reliable because 
the underlying statistical procedures assume that 
homoscedasticity is true.  Alternatives methods must be used 
when the data as heteroscedasticity is present. 

When we have a linear regression model with just one 
predictor, it may be possible to see whether or not the constant 
variance assumption is met just looking at the scatterplot of 
X and Y.  However, this is not so easy when we have multiple 
predictors, that is, when we are conducting a multiple linear 
regression.  So, in general, in order to evaluate whether this 
assumption is met, once you fit the regression line to a set 
of data, you can generate a scatterplot that shows the fitted 
values of the model against the residuals of those fitted values. 
 This plot is called a residual by fit plot or residual by predicted 
plot or, simply, residuals plot. 

In a residual plot, the x-axis depicts the predicted or fitted Y 

values ( s), whereas the y-axis depicts the residuals or errors, 
as you can see in Figure 9.5.  If the assumption of constant 
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variance is met, the residuals will be randomly scattered 
around the center line of zero, with no obvious pattern; that 
is, the residuals will look like an unstructured cloud of points, 
with a mean around zero.  If you see some different pattern, 
heteroscedasticity is present. 

Figure 9.5. On the left, a residuals plot where the errors are evenly 
distributed without showing any pattern, an indication of 
homoscedasticity. On the right, a residuals plot where the errors show 
different patterns depending on the fitted values of Y, a sign 
heteroscedasticity. 

4) Error or residuals are normally 
distributed 

The distribution of the outcome variable for each value of the 
predictor variable should be normal; in other words, the error 
or residuals are normally distributed.  The same as with the 
assumption of constant variance, it may be possible to visually 
identify whether this assumption is met by looking at the 
scatterplot of X and Y.  In Figure 9.4 above, for example, you 
can see that in both scatterplots the distance between the 
actual values of Y and the predicted value of Y is quite evenly 
distributed for each value of the variable X, suggesting 
therefore a normal distribution of the errors on each value of X. 
 So, note that, even if the constant variance assumption is not 
met, the residuals can still be normally distributed. 
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A normal quantile or quantile-quantile or Q-Q plot of all of 
the residuals is a good way to check this assumption.  In a Q-
Q plot, the y-axis depicts the ordered, observed, standardized, 
residuals.  On the x-axis, the ordered theoretical residuals; that 
is, the expected residuals if the errors are normally distributed 
(see Figure 9.6).  If the points on the plot form a fairly straight 
diagonal line, then the normality assumption is met. 

Figure 9.6. On the left, a Q-Q plot showing a normal distribution of the 
residuals, so that this assumption is met. On the right, a Q-Q plot 
showing a non-normal distribution of the residuals, so that this 
assumption is not met. 

It is important to check that your data meet these four 
assumptions.  But you should also know that regression is 
reasonably robust to the equal variance assumption.  Moderate 
degrees of violation will not be problematic.  Regression is also 
quite robust to the normality assumption.  So, in reality, you 
only need to worry about severe violations. 
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Unit 10. Simple Linear 
Regression in R 
LEYRE CASTRO 

Summary.  In this unit, we will explain how 
to conduct a simple linear regression 
analysis with R, and how to read and 
interpret the output that R provides. 

Prerequisite Units 
Unit 5. Statistics with R:  Introduction and Descriptive Statistics 
Unit 6. Brief Introduction to Statistical Significance 
Unit 9. Simple Linear Regression 

Simple linear regression analysis in R 

Whenever we ask some statistical software to perform a linear 
regression, it uses the equations that we described above to 
find the best fit line, and then shows us the parameter 
estimates obtained.  Let’s see here how to conduct a simple 
linear regression analysis with R. 

We will use the dataset of 50 participants with different 
amount of experience (from 1 to 16 weeks) in performing a 
computer task, and their accuracy (from 0 to 100% correct) 
in this task (the same dataset that we used in Unit 8).  Thus, 
Experience is the predictor variable, and Accuracy is the 
outcome variable. 

In the script below, the first line imports our dataset by using 
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the read.table function, and assigns the data file to the object 
MyData. 

#read data file 
MyData <- 
read.table(“ExperienceAccuracy.txt”, header 
= TRUE, sep = “,”) 
#fit linear model 
model <- lm(Accuracy ~ Experience, data = 
MyData) 
summary(model) 
#see the residuals plot 
plot(model) 

 
To conduct the linear regression in which we will model 

Accuracy as a function of Experience, we use the lm() function 
in R, as you can see in the second line of code in the script.  As 
usual in R, we assign our linear regression model to an object 
that we will call model.  Remember that R works with objects, 
and that this name is arbitrary (you could call the object to 
which the linear regression model is assigned seewhatIgot or 
mybestanalysis), although it is convenient to use a name 
relatively simple and relevant for your task at hand.  Within 
the parenthesis, you first include your Y variable, Accuracy in 
this case, and then your X variable, Experience in this case, 
connected by the ~ symbol. This reads as “Accuracy as a 
function of Experience.”  Then, you indicate where your data 
are; here, you include the object that you created for the 
dataset that you are working with, MyData. 

In the next line, you ask to see the output for the linear 
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regression analysis, using the summary() on the model.  And 
this is what you will obtain: 

Call: 
lm(formula = Accuracy ~ Experience, data = 
MyData)Residuals: 
Min      1Q  Median      3Q     Max 
-8.7014 -2.4943  0.6176  2.7505  6.6814 

Coefficients: 
Estimate  Std. Error t value  Pr(>|t|) 
(Intercept)  57.7872     1.1115   51.99  
<2e-16 *** 
Experience    2.1276     0.1124   18.93  
<2e-16 *** 
— 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 
0.05 ‘.’ 0.1 ‘ ’ 1 
Residual standard error: 3.705 on 48 
degrees of freedom 
Multiple R-squared:  0.8818, Adjusted R-
squared:  0.8794 
F-statistic: 358.2 on 1 and 48 DF,  p-
value: < 2.2e-16 

* Call:  The first item shown in the output is the formula R used 
to fit the data (that is, the formula that you typed to request the 
linear regression analysis). 

* Residuals:  Here, the error or residuals are summarized.  The 
smaller the residuals, the smaller the difference between the 
data that you obtained and the predictions of the model.  The 
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Min and Max tell you the largest negative (below the regression 
line) and positive (above the regression line) errors.  Given that 
our accuracy scale is from 0 to 100, the largest positive error 
being 6.68 and the largest negative error being -8.70 do not 
seem terribly large errors.  Importantly, we can see that the 
median has a value of 0.61, very close to 0, and the first and 
third quartiles (1Q and 3Q) are approximately the same 
distance from the center.  Therefore, the distribution of 
residuals seems to be fairly symmetrical. 

* Coefficients:  This is the critical section in the output.  For 
the intercept and for the predictor variable, you get an estimate 
that comes along with a standard error, a t-value, and the 
significance level. 

The Estimate for the intercept or b0 is the estimation of the 
analysis for the value of Y when X is 0; that is the predicted 
accuracy level (57.78% here) of someone who has 0 weeks of 
experience with the task.  Remember that you should only 
interpret the intercept if zero is within or very close to the range 
of values for your predictor variable, and talking about a zero 
value for your predictor variable makes sense.  This may be a 
bit tricky in our example.  The minimum amount of experience 
with the computer task among our participants is 1 week, so 
the zero value seems to be close enough.  However, realize that 
someone with zero experience with the task may not know 
what to do and may not be able to perform the task at all. 
 Thus, the value for the intercept may not make sense.  This 
is something that you have to evaluate when you know your 
methods and procedures well. 

The Estimate for our predictor variable, Experience, appears 
below: 2.12.  This is b1 or the estimated slope coefficient or, 
simply, the slope for the linear regression.  Remember that the 
slope tells us the amount of expected change in Y for each one-
unit change in X.  Here, we would say that for each additional 
week of experience with the task, accuracy is expected to 
improve 2.12 points. 
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Pay attention to the sign of the estimate for the predictor. 
 If it is positive, then it represents the expected increase in the 
outcome variable by each one-unit increase in the predictor 
variable.  If it is negative, then it represents the expected 
decrease in the outcome variable by each one-unit increase in 
the predictor variable. 

The Std. Error (standard error), tells you how precisely each of 
the estimates was measured.  We want, ideally, a lower number 
relative to its coefficients.  The standard error is important for 
calculating the t-value.  The t-value is calculated by taking the 
estimate for the coefficient and dividing it by the standard 
error (for example, the t-value of 18.93 in the Experience line is 
2.12 / 0.11.  This t-value is then used to test whether or not the 
estimate for the coefficient is significantly different from zero. 
For example, if the coefficient b1 is not significantly different 
from zero, it means that the slope of the regression line is 
close to being flat, so changes in the predictor variable are not 
related to changes in the outcome variable. 

Pr(>|t|) refers to the significance level on the t-test. 
 Remember that the cut-off value for a hypothesis test to be 
statistically significant is 0.05 (see Unit 6), so that if the p-value 
is less than 0.05, then the result is statistically significant.  Here, 
the p-value is very small, and R uses the scientific notation 
for very small quantities, and that’s why you see the e in the 
number.  You just need to know that this is a tiny value.  For 
values larger than .001, the exact number will appear.  The 
asterisks next to the p-values indicate the magnitude of the 
p-value (* for < .05, ** for < .01, and *** for < .001 as described in 
the Signif. codes line). 

* At the bottom of the output, you have some measures that 
also help to evaluate the linear regression model.  We have not 
seen yet what many of those elements mean so, for the time 
being, just note that R2 (see Unit 7) is included here, indicating 
the amount of variance in Accuracy that is explained by 
Experience. R2 always lies between 0 and 1.  An R2 of 0 means 
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that the predictor variable provides no information about the 
outcome variable, whereas an R2 of 1 means that the predictor 
variable allows perfect prediction of the outcome variable, with 
every point of the scatterplot exactly on the regression line. 
 Anything in between represents different levels of closeness 
of the scattered points around the regression line.  Here, we 
obtained an R2 of 0.88, so you could say that Experience 
explains 88% of the variance in Accuracy.  The difference 
between multiple and adjusted R2 is negligible in this case, 
given that we only have on predictor variable.  Adjusted R2 

takes into account the number of predictor variables and is 
more useful in multiple regression analyses. 

See video with a simple linear regression analysis being 
conducted in R 
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Glossary 
LEYRE CASTRO 

central tendency 

Value, normally located around the center of a data 
distribution, that is most representative of the entire set of 
scores. 

condensed scores 

Also named composite or scale scores. These scores are 
created from multiple observation of different variables. 

confidence interval (CI) 

A confidence interval (CI) is as a range of plausible values 
for the population mean (or another population parameter 
such as a correlation), calculated from our sample data. 
A CI with a 95 percent confidence level has a 95 percent 
chance of capturing the population parameter. 

continuous variable 

A variable for which there are an infinite number of 
possible values between two end-points. 

correlational analysis 

Statistical technique that allows you to determine to what 
extent two variables are associated so that, when one 
changes the other one changes as well. 

correlational study 

A research study in which the researcher measures two or 
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more variables. The researcher does not set the values of 
any of the variables. 

data 

Set of observations representing the values of the variables 
under study (singular: datum; plural: data). 

dependent variable 

A variable whose properties, characteristics, or qualities are 
observed, measured, and recorded, as they occur. 

descriptive statistics 

Type of statistics used to organize and summarize the 
properties of a dataset. 

discrete variable 

A variable that consists of separate, indivisible categories. 
No values can exist between two neighboring categories. 

experimental study 

A research study in which the researcher manipulates one 
or more variables (independent variables) and then 
measures one or more other variables (dependent 
variables). In an experiment, there is at least one 
independent variable and at least one dependent variable. 

external validity 

Evaluation of how well the results of a study generalize to 
individuals, contexts, tasks, or situations beyond those in 
the study itself. 

hypothesis 

Tentative statement about how variables are related or 
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how one may cause another [singular: hypothesis; plural: 
hypotheses]. 

independent variable 

A variable whose properties, characteristics, or qualities are 
entirely determined or set by the experimenter. 

inferential statistics 

Statistical analyses and techniques that are used to make 
inferences beyond what is observed in a given sample, and 
make decisions about what the data mean. 

linear regression 

Statistical technique that tries to capture a linear 
relationship between two (simple linear regression) or 
more (multiple linear regression) variables. 

ordinal variable 

A variable whose values specify a position in a sequence 
or list. It uses a number to do this, such as 1st, 2nd, 3rd, 
etc., but these numbers do not refer to an amount of 
something 

outcome variable 

The variable that we are trying to predict or understand 
in a regression analysis. Also called response or criterion 
variable. 

outliers 

An individual value in a dataset that is substantially 
different (larger or smaller) than the other values in the 
dataset. 
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parameter 

A value (normally, a numerical value) that describes a 
population. 

population 

The entire set of individuals of interest for a given research 
question. 

predictor variable 

The variable that may be responsible for the values of the 
outcome variable in a regression analysis. Also called 
explanatory variable. 

qualitative variable 

A variable whose values do not represent an amount of 
something; rather, they represent a quality. Also called 
categorical variable. 

quantitative variable 

A variable whose values are indicated by numbers. 

sample 

A set of individuals selected from a population, typically 
intended to represent the population in a research study. 

statistic 

A value (normally, a numerical value) that describes a 
sample. 

subject variable 

A variable whose properties, characteristics, or qualities 
vary across research subjects, but are relatively stable 
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within subjects (across time) and/or are extremely difficult 
or impossible to manipulate by the experimenter. 

summary scores 

Scores created from multiple observations of the same 
variable under the same set of conditions. 

tail 

The end sections of a data distribution where the scores 
taper off. 

theory 

A statement or set of statements that describes general 
principles about how variables relate to one another. 

variability 

A quantitative measure of the differences among scores in 
a distribution. It describes to what extent the scores are 
clustered together or spread out. 

variable 

Each of the concepts, notions, dimensions, or elements 
that can be manipulated, measured, and/or analyzed in a 
research study. 
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