

Evidence-based
Software Engineering

based on the publicly available data

Derek M. Jones

ISBN: 978-1-8382913-0-3
Publisher: Knowledge Software, Ltd
Released: November 8, 2020

The content of this book is licensed under the Creative Commons Attribution-ShareAlike

4.0 International License (CC BY-SA 4.0)

Contents

1 Introduction 1
1.1 What has been learned? . 3

1.1.1 Replication . 4
1.2 Software markets . 5

1.2.1 The primary activities of software engineering 7
1.3 History of software engineering research 8

1.3.1 Folklore . 10
1.3.2 Research ecosystems . 10

1.4 Overview of contents . 12
1.4.1 Why use R? . 15

1.5 Terminology, concepts and notation . 15
1.6 Further reading . 16

2 Human cognition 19
2.1 Introduction . 19

2.1.1 Modeling human cognition . 21
2.1.2 Embodied cognition . 22
2.1.3 Perfection is not cost-effective 23

2.2 Motivation . 23
2.2.1 Built-in behaviors . 24
2.2.2 Cognitive effort . 25
2.2.3 Attention . 26

2.3 Visual processing . 26
2.3.1 Reading . 28

2.4 Memory systems . 29
2.4.1 Short term memory . 30
2.4.2 Episodic memory . 33
2.4.3 Recognition and recall . 33

2.4.3.1 Serial order information 34
2.4.4 Forgetting . 35

2.5 Learning and experience . 35
2.5.1 Belief . 38
2.5.2 Expertise . 39
2.5.3 Category knowledge . 41
2.5.4 Categorization consistency . 43

2.6 Reasoning . 43
2.6.1 Deductive reasoning . 45
2.6.2 Linear reasoning . 46
2.6.3 Causal reasoning . 47

2.7 Number processing . 48
2.7.1 Numeric preferences . 49
2.7.2 Symbolic distance and problem size effect 50
2.7.3 Estimating event likelihood . 51

2.8 High-level functionality . 52
2.8.1 Personality & intelligence . 52
2.8.2 Risk taking . 52
2.8.3 Decision-making . 53
2.8.4 Expected utility and Prospect theory 55
2.8.5 Overconfidence . 55
2.8.6 Time discounting . 56

ii

CONTENTS iii

2.8.7 Developer performance . 56
2.8.8 Miscellaneous . 58

3 Cognitive capitalism 61
3.1 Introduction . 61
3.2 Investment decisions . 62

3.2.1 Discounting for time . 63
3.2.2 Taking risk into account . 63
3.2.3 Incremental investments and returns 64
3.2.4 Investment under uncertainty . 65
3.2.5 Real options . 66

3.3 Capturing cognitive output . 67
3.3.1 Intellectual property . 68
3.3.2 Bumbling through life . 70
3.3.3 Expertise . 71

3.4 Group dynamics . 72
3.4.1 Maximizing generated surplus 73
3.4.2 Motivating members . 74
3.4.3 Social status . 74
3.4.4 Social learning . 75
3.4.5 Group learning and forgetting 76
3.4.6 Information asymmetry . 77
3.4.7 Moral hazard . 78
3.4.8 Group survival . 78
3.4.9 Group problem solving . 80
3.4.10 Cooperative competition . 81
3.4.11 Software reuse . 81

3.5 Company economics . 82
3.5.1 Cost accounting . 83
3.5.2 The shape of money . 83
3.5.3 Valuing software . 83

3.6 Maximizing ROI . 84
3.6.1 Value creation . 85
3.6.2 Product/service pricing . 85
3.6.3 Predicting sales volume . 86
3.6.4 Managing customers as investments 88
3.6.5 Commons-based peer-production 89

4 Ecosystems 91
4.1 Introduction . 91

4.1.1 Funding . 93
4.1.2 Hardware . 93

4.2 Evolution . 95
4.2.1 Diversity . 96
4.2.2 Lifespan . 98
4.2.3 Entering a market . 99

4.3 Population dynamics . 100
4.3.1 Growth processes . 102
4.3.2 Estimating population size . 103

4.3.2.1 Closed populations 103
4.3.2.2 Open populations . 104

4.4 Organizations . 104
4.4.1 Customers . 104
4.4.2 Culture . 105
4.4.3 Software vendors . 107
4.4.4 Career paths . 108

4.5 Applications and Platforms . 109
4.5.1 Platforms . 109
4.5.2 Pounding the treadmill . 110
4.5.3 Users’ computers . 112

4.6 Software development . 112
4.6.1 Programming languages . 112

iv CONTENTS

4.6.2 Libraries and packages . 115
4.6.3 Tools . 117
4.6.4 Information sources . 118

5 Projects 119
5.1 Introduction . 119

5.1.1 Project culture . 121
5.1.2 Project lifespan . 122

5.2 Pitching for projects . 122
5.2.1 Contracts . 124

5.3 Resource estimation . 125
5.3.1 Estimation models . 127
5.3.2 Time . 129
5.3.3 Size . 130

5.4 Paths to delivery . 130
5.4.1 Development methodologies . 131
5.4.2 The Waterfall/iterative approach 132
5.4.3 The Agile approach . 133
5.4.4 Managing progress . 133
5.4.5 Discovering functionality needed for acceptance 135
5.4.6 Implementation . 137
5.4.7 Supporting multiple markets . 138
5.4.8 Refactoring . 138
5.4.9 Documentation . 139
5.4.10 Acceptance . 139
5.4.11 Deployment . 139

5.5 Development teams . 140
5.5.1 New staff . 142
5.5.2 Ongoing staffing . 143

5.6 Post-delivery updates . 143
5.6.1 Database evolution . 145

6 Reliability 147
6.1 Introduction . 147

6.1.1 It’s not a fault, it’s a feature . 149
6.1.2 Why do fault experiences occur? 150
6.1.3 Fault report data . 151
6.1.4 Cultural outlook . 152

6.2 Maximizing ROI . 153
6.3 Experiencing a fault . 155

6.3.1 Input profile . 156
6.3.2 Propagation of mistakes . 158
6.3.3 Remaining faults: closed populations 158
6.3.4 Remaining faults: open populations 159

6.4 Where is the mistake? . 161
6.4.1 Requirements . 161
6.4.2 Source code . 162
6.4.3 Libraries and tools . 165
6.4.4 Documentation . 165

6.5 Non-software causes of unreliability . 166
6.5.1 System availability . 167

6.6 Checking for intended behavior . 168
6.6.1 Code review . 169
6.6.2 Testing . 170

6.6.2.1 Creating tests . 173
6.6.2.2 Beta testing . 174
6.6.2.3 Estimating test effectiveness 174

6.6.3 Cost of testing . 175

7 Source code 177
7.1 Introduction . 177

7.1.1 Quantity of source . 179

CONTENTS v

7.1.2 Experiments . 181
7.1.3 Exponential or Power law . 182
7.1.4 Folklore metrics . 182

7.2 Desirable characteristics . 183
7.2.1 The need to know . 184
7.2.2 Narrative structures . 185
7.2.3 Explaining code . 186
7.2.4 Memory for material read . 188
7.2.5 Integrating information . 190
7.2.6 Visual organization . 192
7.2.7 Consistency . 192
7.2.8 Identifier names . 194
7.2.9 Programming languages . 197
7.2.10 Build bureaucracy . 198

7.3 Patterns of use . 199
7.3.1 Language characteristics . 201
7.3.2 Runtime characteristics . 202
7.3.3 Statements . 203
7.3.4 Control flow . 203
7.3.5 Loops . 205
7.3.6 Expressions . 205

7.3.6.1 Literal values . 206
7.3.6.2 Use of variables . 207
7.3.6.3 Calls . 207

7.3.7 Declarations . 208
7.3.8 Unused identifiers . 209
7.3.9 Ordering of definitions within aggregate types 209

7.4 Evolution of source code . 210
7.4.1 Function/method modification 211

8 Stories told by data 213
8.1 Introduction . 213
8.2 Finding patterns in data . 214

8.2.1 Initial data exploration . 215
8.2.2 Guiding the eye through data . 217
8.2.3 Smoothing data . 218
8.2.4 Densely populated measurement points 219
8.2.5 Visualizing a single column of values 221
8.2.6 Relationships between items . 222
8.2.7 3-dimensions . 222

8.3 Communicating a story . 224
8.3.1 What kind of story? . 226
8.3.2 Technicalities should go unnoticed 228

8.3.2.1 People have color vision 228
8.3.2.2 Color palette selection 228
8.3.2.3 Plot axis: what and how 229

8.3.3 Communicating numeric values 230
8.3.4 Communicating fitted models 231

9 Probability 233
9.1 Introduction . 233

9.1.1 Useful rules of thumb . 235
9.1.2 Measurement scales . 235

9.2 Probability distributions . 236
9.2.1 Are two sample drawn from the same distribution? 240

9.3 Fitting a probability distribution to a sample 242
9.3.1 Zero-truncated and zero-inflated distributions 244
9.3.2 Mixtures of distributions . 245
9.3.3 Heavy/Fat tails . 246

9.4 Markov chains . 247
9.4.1 A Markov chain example . 248

9.5 Social network analysis . 249

vi CONTENTS

9.6 Combinatorics . 250
9.6.1 A combinatorial example . 250
9.6.2 Generating functions . 252

10 Statistics 253
10.1 Introduction . 253

10.1.1 Statistical inference . 254
10.2 Samples and populations . 254

10.2.1 Effect-size . 255
10.2.2 Sampling error . 257
10.2.3 Statistical power . 257

10.3 Describing a sample . 260
10.3.1 A central location . 260
10.3.2 Sensitivity of central location algorithms 261
10.3.3 Geometric mean . 262
10.3.4 Harmonic mean . 263
10.3.5 Contaminated distributions . 263
10.3.6 Compositional data . 264
10.3.7 Meta-Analysis . 264

10.4 Statistical error . 265
10.4.1 Hypothesis testing . 266
10.4.2 p-value . 267
10.4.3 Confidence intervals . 268
10.4.4 The bootstrap . 268
10.4.5 Permutation tests . 270

10.5 Comparing samples . 270
10.5.1 Building regression models . 271
10.5.2 Comparing sample means . 272
10.5.3 Comparing standard deviation 276
10.5.4 Correlation . 277
10.5.5 Contingency tables . 278
10.5.6 ANOVA . 279

11 Regression modeling 281
11.1 Introduction . 281
11.2 Linear regression . 282

11.2.1 Scattered measurement values 285
11.2.2 Discrete measurement values . 286
11.2.3 Uncertainty only exists in the response variable 287
11.2.4 Modeling data that curves . 289
11.2.5 Visualizing the general trend . 292
11.2.6 Influential observations and Outliers 293
11.2.7 Diagnosing problems in a regression model 294
11.2.8 A model’s goodness of fit . 296
11.2.9 Abrupt changes in a sequence of values 297
11.2.10 Low signal-to-noise ratio . 298

11.3 Moving beyond the default Normal error 300
11.3.1 Count data . 301
11.3.2 Continuous response variable having a lower bound 302
11.3.3 Transforming the response variable 303
11.3.4 Binary response variable . 304
11.3.5 Multinomial data . 305
11.3.6 Rates and proportions response variables 306

11.4 Multiple explanatory variables . 307
11.4.1 Interaction between variables . 310
11.4.2 Correlated explanatory variables 312
11.4.3 Penalized regression . 315

11.5 Non-linear regression . 315
11.5.1 Power laws . 319

11.6 Mixed-effects models . 320
11.7 Generalised Additive Models . 323
11.8 Miscellaneous . 324

CONTENTS vii

11.8.1 Advantages of using lm . 324
11.8.2 Very large datasets . 325
11.8.3 Alternative residual metrics . 325
11.8.4 Quantile regression . 325

11.9 Extreme value statistics . 325
11.10Time series . 326

11.10.1 Cleaning time series data . 327
11.10.2 Modeling time series . 327

11.10.2.1 Building an ARMA model 329
11.10.3 Non-constant variance . 332
11.10.4 Smoothing and filtering . 332
11.10.5 Spectral analysis . 333
11.10.6 Relationships between time series 333
11.10.7 Miscellaneous . 334

11.11Survival analysis . 335
11.11.1 Kinds of censoring . 335

11.11.1.1 Input data format . 336
11.11.2 Survival curve . 336
11.11.3 Regression modeling . 338

11.11.3.1 Cox proportional-hazards model 338
11.11.3.2 Time varying explanatory variables 340

11.11.4 Competing risks . 343
11.11.5 Multi-state models . 343

11.12Circular statistics . 344
11.12.1 Circular distributions . 345
11.12.2 Fitting a regression model . 346

11.12.2.1 Linear response with a circular explanatory variable . . 346
11.13Compositional data . 347

12 Miscellaneous techniques 349
12.1 Introduction . 349
12.2 Machine learning . 349

12.2.1 Decision trees . 350
12.3 Clustering . 352

12.3.1 Sequence mining . 352
12.4 Ordering of items . 353

12.4.1 Seriation . 353
12.4.2 Preferred item ordering . 354
12.4.3 Agreement between raters . 355

12.5 Simulation . 355

13 Experiments 357
13.1 Introduction . 357

13.1.1 Measurement uncertainty . 358
13.2 Design of experiments . 359

13.2.1 Subjects . 360
13.2.2 The task . 361
13.2.3 What is actually being measured? 362
13.2.4 Adapting an ongoing experiment 363
13.2.5 Selecting experimental options 363
13.2.6 Factorial designs . 364

13.3 Benchmarking . 365
13.3.1 Following the herd . 367
13.3.2 Variability in today’s computing systems 367

13.3.2.1 Hardware variation 368
13.3.2.2 Software variation . 371

13.3.3 The cloud . 374
13.3.4 End user systems . 374

13.4 Surveys . 375

14 Data preparation 377

viii CONTENTS

14.1 Introduction . 377
14.1.1 Documenting cleaning operations 378

14.2 Outliers . 379
14.3 Malformed file contents . 380
14.4 Missing data . 381

14.4.1 Handling missing values . 382
14.4.2 NA handling by library functions 383

14.5 Restructuring data . 383
14.5.1 Reorganizing rows/columns . 383

14.6 Miscellaneous issues . 384
14.6.1 Application specific cleaning . 384
14.6.2 Different name, same meaning 384
14.6.3 Multiple sources of signals . 385
14.6.4 Duplicate data . 385
14.6.5 Default values . 385
14.6.6 Resolution limit of measurements 385

14.7 Detecting fabricated data . 386

15 Overview of R 387
15.1 Your first R program . 387
15.2 Language overview . 388

15.2.1 Differences between R and widely used languages 388
15.2.2 Objects . 389

15.3 Operations on vectors . 390
15.3.1 Creating a vector/array/matrix 390
15.3.2 Indexing . 390
15.3.3 Lists . 391
15.3.4 Data frames . 392
15.3.5 Symbolic forms . 393
15.3.6 Factors and levels . 393

15.4 Operators . 393
15.4.1 Testing for equality . 395
15.4.2 Assignment . 395

15.5 The R type (mode) system . 396
15.5.1 Converting the type (mode) of a value 396

15.6 Statements . 396
15.7 Defining a function . 397
15.8 Commonly used functions . 397
15.9 Input/Output . 398

15.9.1 Graphical output . 398
15.10Non-statistical uses of R . 399
15.11Very large datasets . 399

CONTENTS ix

Read me 1st
This book discusses what is currently known about software engineering based on an
analysis of all publicly available software engineering data. This aim is not as ambitious
as it sounds because there is not a lot of data publicly available.

The analysis is like a join-the-dots puzzle, except that the 600+ dots are not numbered,
some of them are actually specs of dust, and many dots are likely to be missing. The way
forward is to join the dots to build an understanding of the processes involved in building
and maintaining software systems; work is also needed to replicate some of the dots to
confirm that they are not specs of dust, and to discover missing dots.

The dots are sprinkled across chapters covering the major issues involved in building and
maintaining a software system; when dots could be applicable to multiple issues your
author selected the issue he felt maximised the return on use. If data relating to a topic
is not publicly available, that topic is not discussed. Adhering to this rule has led to a
very patchy discussion, although it vividly highlights the almost non-existent evidence
for current theories of software development.

The intended audience is software developers and their managers. Some experience of
building software systems is assumed.

The material is in two parts, one covering software engineering and the second introduces
analysis techniques applicable to the analysis of software engineering data.

1. Economic factors motivate the creation of software systems, which are a product of
human cognitive effort; these two factors underpin any analysis of software engi-
neering processes.

Software development has progressed in to the age of the ecosystemi successfully
building a software system is dependent on a team capable of effectively selecting
the libraries and packages providing the algorithms that are good enough to get the
job done, write code when necessary, and to interface to a myriad of services and
other software systems,

2. Developers are casual users of statistics and don’t want to spend time learning lots
of mathematics; they want to use the techniques, not implement them. The material
assumes the reader has some basic mathematical skills, e.g., knows a little about
probability, permutations, and the idea of measurements containing some amount
of error.

It is assumed that developer time is expensive and computer time is cheap. Where
possible a single, general, analysis technique is described, and a single way of
coding something in R is consistently used.

R was chosen as the language/ecosystem for statistical analysis because of its ex-
tensive ecosystem; there are many books, covering a wide range of subject areas,
and active online forums discussing R usage.

All the code and data can be downloaded at: github.com/Derek-Jones/ESEUR-code-data

The caption of every figure includes a Github and Local link. Clicking the Github link
will cause your browser to load the Github page containing the figure’s R code (assuming
an Internet connection is available). Clicking the Local link will point the browser at a
local copy, which is assumed to be in file:///home/ESEUR-code-data, and it is also
assumed that a Samba server is running on the local machine (to service the request).

The names of data files usually share the same sequence of initial characters as the pdf
file names of the corresponding research paper downloaded from the Internet.

If you know of some interesting software engineering data, please tell me where I can
download a copy.

iAlgorithms have become commodities, with good-enough implementations of commonly required algo-
rithms available in many packages. The age of the algorithm, when developers were required to implement most
of the low level algorithms they needed, is long gone.

x CONTENTS

Acknowledgements
Thanks to all the researchers who made their data available on the web, or responded to
my email request by sending a copy of their data. Without this data there would be no
book.

Various websites played an essential role in locating papers, reports, blog posts and data.
These include: Google search, Google Scholar, CiteSeer, Archive.org, the Defense Tech-
nical Information Center, ResearchGate, and Semantic Scholar.

In several dozen cases WebPlotDigitizer was used to extract data from plots, when the
original data was not available.

Both Blaine Osepchuk and Emil O. W. Kirkegaard sent comments on multiple chapters.

Thanks to the maintainers of R, CRAN, and the authors of the several hundred packages
used to analyse the data.

The production process text was written in an extended version of Asciidoc, with the final
pdf generated using LuaLaTex. Grammar checking courtesy of Language Tool.

Thanks to Github for hosting the book’s code+data.

Thanks to Malgosia Kozicka for the cover image. The cover image is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)

1860 1900 1940 1980

1e−07

1e−04

1e−01

1e+02

1e+05

Date

C
os

t p
er

 m
ill

io
n

op
s

Manual
Mechanical
Vacuum tube
Transistor
Microprocessor

Figure 1.1: Total cost of one million computing operations
over time. Data from Nordhaus.1388 Github–Local

1960 1980 2000

1e−04

1e−02

1e+00

1e+02

1e+04

Date

D
ol

la
rs

 p
er

 M
B

Hard disc
Floppy drive (various capacities)
CD drive
Flash memory
DVD drive

Figure 1.2: Storage cost, in US dollars per Mbyte, of mass
market technologies over time. Data from McCallum,1230

floppy and CD-ROM data kindly provided by Davis.446

Github–Local

1962 1963 1964 1965 1966 1967

1

2

5

10

20

50

Date

T
im

e−
sh

ar
in

g
sy

st
em

s

Figure 1.3: Growth of time-sharing systems available in
the US, with fitted regression line. Data extracted from
Glauthier.685 Github–Local

Chapter 1

Introduction

Software is a product of human cognitive labor, applying the skills and know-how ac-
quired through personal practical experience; it is a craft activity. The expensive and
error prone process of learning through personal experience needs to be replaced by an
engineering approached derived from the successes and mistakes of others; evidence is the
basis for creating an engineering approach to building and maintaining software systems.

The craft approach has survived because building software systems has been a sellers
market, customers have paid what it takes because the potential benefits have been so
much greater than the costs. In a competitive market for development work and staff,
paying people to learn from mistakes that have already been made by many others is an
unaffordable luxury.

This book discusses all the publicly available software engineering data,939 with software
engineering treated as an economically motivated cognitive activity occurring within one
or more ecosystems. Cognition, economics and ecosystems underpin the analysis of soft-
ware engineering activities:

• the labour of the cognitariate is the means of production of intangible goods. Max-
imising the return on investment from this labor requires an understanding of human
cognition,

• cognitive capitalism, the economics of intangible goods, is fundamentally different
from the economics of tangible goods, e.g., the zero cost of replicating software means
that the entire cost of production is borne by the cost of creating the first item,i

• software systems are created and operated within ecosystems of intangibles. The needs
and desires of members of these ecosystems supply the energy that drives evolutionary
change, and these changes can reduce the functionality provided by existing software
systems, i.e., they wear out and break.

The intended audience of this book are those involved in building software systems.

Software ecosystems have been continually disrupted by improvements to their host, the
electronic computer, which began316, 610, 649, 1788 infiltrating the human ecosystem 70+
years ago.ii During this period the price of computer equipment continually declined,
averaging 17.5% per year,1844 an economic firestorm that devoured existing practices;
software systems are apex predators. Figure 1.1 shows the continual fall in the cost of
compute operations. However, without cheap mass storage, computing would be a niche
market; the continual reduction in the cost of storage generated increasing economic in-
centives for employing the processing power; see figure 1.2. The pattern of hardware
performance improvements, and shortage of trained personnel, were appreciated almost
from the beginning.747

A shift in perception, from computers as calculating machines,741 to computing platforms
responding in real-time, to multiple independent users, created new problem-solving op-
portunities, e.g., responding in real-time to multiple users. Figure 1.3 shows the growth
of US based systems capable of sharing cpu time between multiple users.164

iIt is a mistake to compare factory production, which is designed to make multiple copies, with software
production, which creates a single copy.

iiThe verb "to program" was first used in its modern sense in 1946.740 This book focuses on computers that
operate by controlling the flow of electrons, e.g., liquid based flow control computers are not discussed.6

1

2 1. Introduction

5360 5370 5380 5390 5400 5410
−30

−20

−10

0

10

20

Nights

D
ec

lin
at

io
n

Figure 1.4: Tycho Brahe’s observations of Mars and a
fitted regression model. Data from Brahe240 via Wayne
Pafko. Github–Local

1800 1850 1900 1950 2000
0

20

40

60

80

100

Year

P
er

ce
nt

ag
e

of
 k

no
w

n
m

ax
im

um

canals
railways
telegraph wire
oil pipelines
surfaced roads
gas pipelines

Figure 1.5: Growth of transport and product distribution
infrastructure in the USA (underlying data is measured in
miles). Data from Grübler et al.749 Github–Local

The continued displacement of existing systems and practices has kept the focus of prac-
tice on development (of new systems and major enhancements to existing systems). A
change in the focus of practice to infrastructure1858 has to await longer term stability.

The demand for people with the cognitive firepower needed to implement complex soft-
ware systems has drawn talent away from research. Consequently, little progress has been
made towards creating practical theories capable of supporting an engineering/scientific
approach to software development. However, many vanity theories have been proposed
(i.e., based on the personal beliefs of researchers, rather than evidence obtained from
experiments and measurements). Academic software engineering research has been a
backwater primarily staffed by those interested in theory, with a tenuous connection to
practical software development.

Research into software engineering is poorly funded compared to projects where, for
instance, hundreds of millions are spent on sending spacecraft to take snaps of other
planets,1865 and telescopes1355 to photograph faint far-away objects.

In a sellers market, vendors don’t need to lobby government to fund research into reduc-
ing their costs. The benefits of an engineering/scientific approach to development, are
primarily reaped by customers, e.g., lower costs, more timely delivery, and fewer fault
experiences. Those who develop software systems are not motivated to invest in change
when customers are willing to continue paying for systems developed using craft practices
(unless they are also the customer).

The focus of this book’s analysis is on understanding, not prediction. Those involved in
building software systems want to control the process. Control requires understanding;
an understanding of the many processes involved in building software systems is the goal
of software engineering research. Theories are a source of free information, i.e., they
provide a basis for understanding the workings of a system, and for making good enough
predictions.

Fitting a model to data without some understanding of the processes involved is clueless
button pushing. For instance, ancient astronomers noticed that some stars (i.e., planets)
moved in regular patterns across the night sky. Figure 1.4 shows one component of Tycho
Brahe’s 1641 published observations of Mars in the night sky,240 i.e., the declination of
Mars at the meridian on given a night; the line is a simple fitted regression model, based
on a sine wave and a few harmonics (and explains 79% of the variance in the data).

The hypothesis that planets orbit the Sun not only enables a much more accurate model
to built, but provides an understanding that explains occasional changes of behavior, e.g.,
Mars sometimes reversing its direction of travel across the night sky.

Evidence (i.e., experimental and measurement data) is analysed using statistics, with sta-
tistical techniques being wielded as weaponised pattern recognition. Those seeking dis-
cussions written in the style of a stimulant for mathematical orgasms, will not find satis-
faction here.

Statistics does not assign a meaning to the patterns it uncovers; interpreting the patterns
thrown up by statistical analysis, to give them meaning, is your job dear reader (based on
your knowledge and experience of the problem domain).

Software is written by people having their own unique and changeable behavior patterns.
Measurements of the products and processes involved in this work are intrinsically noisy,
and variables of influence may not be included in the measurements. This situation does
not mean that analysis of the available measurements is a futile activity, what it means
is that the uncertainty and variability is likely to be much larger than typically found in
other engineering disciplines.

The tool used for statistical analysis is the R system. R was chosen because of its extensive
ecosystem; there are many books, covering a wide range of subject areas, using R and
active online forums discussing R usage (answers to problems can often be found by
searching the Internet, and if none are found a question can be posted with a reasonable
likelihood of receiving an answer).

The data and R code used in this book are freely available for download from the book’s
website.939

Like software development, data analysis contains a craft component, and the way to
improve craft skills is to practice.

In January 2018 the U.S. Congress passed the Foundations for Evidence-Based Policy-
making Act of 2018,393 whose requirements include: “(1) A list of policy-relevant ques-
tions for which the agency intends to develop evidence to support policymaking. (2) A

1.1. WHAT HAS BEEN LEARNED? 3

list of data the agency intends to collect, use, or acquire to facilitate the use of evidence
in policymaking.”

1.1 What has been learned?

What useful information can be learned from the 600+iii datasets analyzed in this book?

There are a few high-level take-aways from the recurring patterns seen in the analysis;
these include:

• there is little or no evidence for many existing theories of software engineering,

• most software has a relatively short lifetime, e.g., source code is deleted, packages are
withdrawn or replaced, and software systems cease to be supported. A cost/benefit
analysis of an investment intended to reduce future development costs needs to include
the possibility that there is no future development; see fig 4.24, fig 5.7, fig 5.52, fig 5.69,
fig 6.9, fig 3.31.

Changes within the ecosystems in which software is built also has an impact on the
viability of existing code; see fig 4.13, fig 4.22, fig 4.59, fig 4.61, fig 11.76,

• software developers should not be expected to behave according to this or that math-
ematical ideal. People come bundled with the collection of cognitive abilities and
predilections that enabled their ancestors, nearly all of whom lived in stone-age com-
munities, to reproduce; see chapter 2.

The patterns found in the analysed data have various uses, including:

• helping to rule out behaviors that are thought likely to occur. In situations where the
outcome is uncertain, being able to exclude a range of possibilities reduces costs by
removing the need to investment in events that are unlikely to be encountered,

• provide ideas about ranges of behaviors that have been encountered. Nothing more
specific can be inferred because most of the data applies to one experiment, collection
of measurements of projects at one point in time, or a few projects over an extended
period.

Many plots include one or more lines showing fitted regression models. The purpose of
fitting these models is to highlight patterns that are present. Most of these models were
created by your author after seeing the data, what is sometimes known as HARKing
(Hypothesizing After the Results are Known),990 or less technically they are just-so
stories created from a fishing expedition. This is not how rigorous science is done.

Software development involves a complicated mix of interactions across many activities,
and creating general theories requires data on a wide variety of specific topics. Building
reasonably accurate models of these processes will require weaving together results from
many replicated studies. The available data does cover many topics, but the coverage is
sparse and does not include enough data on topics of specific interest to enable reliable
models to be built (at least an order of magnitude more data is required).

Much of the existing data is based on Open Source projects, which are readily avail-
able in quantity. To what extent are findings from the analysis of Open Source projects
applicable to non-Open Source software development (researchers sometimes use a pop-
ularity metric, such as Github stars, to filter out projects that have not attracted enough
attention from others)? The definitive answer can only come from comparing findings
from software systems developed in both environments (enterprise-driven open source is
available1750).

There are threats to the validity of applying findings from Open Source projects to other
Open Source projects, these include:

• the choice of Open Source packages to analyse is a convenience sample:

– a variety of tools have been created for extracting data, with many tools targeting
a particular language; mostly Java, with C the second most popular, at the time of
writing,

iiiThe data directory contains 1,142 csv files and 985 R files, this book cites 894 papers that have data
available of which 556 are cited in figure captions; there are 628 figures

4 1. Introduction

– native speakers of English are served by many repositories, and have to put effort
into finding and using repositories targeting non-English speakers, e.g., the Android
App stores supporting Chinese users,37

– using an easily accessible corpus of packages. Creating a corpus is a popular activity
because it currently provides a low-cost route to a published paper for anyone with
programming skills, and can potentially acquire many citations, via the researchers
who use it,

• characteristics of Open Source development that generate large measurement biases are
still being discovered. Some of the major sources of measurement bias, that have been
found, include:

– the timing of commits and identity of the committer may not be those of the developer
who wrote the code. For instance, updates to the Linux kernel are submitted by
developers to the person responsible for the appropriate subsystem, who forwards
those that are accepted to Linus Torvalds, who integrates those that he accepts into
mainline Linux; a lot of work is needed to extract an accurate timeline670 from the
hundreds of separate developer repositories,

– a large percentage of fault reports have been found to be requests for enhance-
ment.493, 820

In many cases the analysis performed on a particular set of measurements, and the tech-
niques used are different from those of the researchers who made the original measure-
ments. Reasons for this include: wanting to highlight a different issue, making use of
more powerful techniques to extract more information, and in the data analysis section
wanting to illustrate a particular technique.

1.1.1 Replication

The results from one experiment provide a positive indication that something might be
true, but it is possible that random events aligned to produce the results seem. Replication
is necessary,178 i.e., the results claimed by one researcher need to be reproducible by other
people, if they are to be become generally accepted. Without replication researchers are
amassing a graveyard of undead theories.595 One study1521 of medical practices, based on
papers published between 2001 and 2010 addressing a medical practice, found that 40%
of follow-up studies reversed the existing practice and 48% confirmed it.

Discovering an interesting pattern in experimental data is the start, not the end of exper-
imentation involving that pattern (the likelihood of obtaining a positive result is as much
to do with the subject studied as the question being asked572). The more often behavior is
experimentally observed the greater the belief that the effect seen actually exists. Repli-
cation is the process of duplicating the experiment(s) described in a report or paper to
confirm the findings previously obtained. For replication to be practical, researchers need
to be willing to share their code and data, something that a growing numbers of software
engineering researchers are starting to do; those attempting replication are meeting with
mixed success.386

The gold standard of the scientific method is the controlled randomised experiment, fol-
lowed by replication of the results by others (findings from earlier studies failing to repli-
cate is common893). In this kind of experiment, all the factors that could influence the
outcome of an experiment are either controlled or randomly divided up such that any
unknown effects add noise to the signal rather than spurious ghost patterns.

Replication is not a high status activity, with high impact journals interested in publish-
ing research that reports new experimental findings, and not wanting to dilute their high
impact status by publishing replications (which, when they are performed and fail to repli-
cate previous results considered to be important discoveries, can often only find a home
for publication in a low impact journal). A study1418 replicating 100 psychology experi-
ments found that while 97% of the original papers reported p-values less than 0.05, only
36% of the replicated experiments obtained p-values this low; a replication study323 of 67
economics papers was able to replicate 22 (33%) without assistance from the authors, 29
with assistance.

1.2. SOFTWARE MARKETS 5

1980 1990 2000 2010
0

20

40

60

80

Date

Te
ch

 m
ar

ke
t c

ap
ita

l s
ha

re
 (

%
)

IBM
Microsoft
Apple

Figure 1.6: Market capitalization of IBM, Microsoft and
Apple (upper), and expressed as a percentage of the top
100 listed US tech companies (lower). Data extracted
from the Economist website.528 Github–Local

1960 1970 1980 1990 2000 2010

1e−01

1e+01

1e+03

1e+05

Year

U
ni

ts
 s

hi
pp

ed
 (

th
ou

sa
nd

s)

Mainframes
Minicomputers
PCs
Macintosh
Smartphones

Figure 1.7: Total annual sales of some of the major species
of computers over the last 60 years. Data from Gordon715

(mainframes and minicomputers), Reimer1573 (PCs) and
Gartner656 (smartphones). Github–Local

1960 1970 1980 1990 2000 2010
0.0

0.1

0.2

0.3

0.4

Year

P
er

ce
nt

ag
e

G
D

P

Software products
ICT manufacturing
ICT services

Figure 1.8: Percentage of US GDP for Software prod-
ucts, ICT Manufacturing (which includes semiconduc-
tors+computers+communications equipment), and ICT
services (which includes software publishing+computer
systems design+telecom+data processing). Data kindly
provided by Corrado.288 Github–Local

1.2 Software markets

The last 60 years, or so, has been a sellers market; the benefits provided by software
systems has been so large that companies that failed to use them risked being eclipsed
by competitors; the status quo was not a viable option.462 Whole industries have been
engulfed, and companies saddled with a Red Queen,133 loosing their current position if
they failed to keep running.

Provided software development projects looked like they would deliver something that
was good enough, those involved knew that the customer would wait and pay; complaints
received a token response. Software vendors learned that one way to survive in a rapidly
evolving market was to get products to market quickly, before things moved on.

Experience gained from the introduction of earlier high-tech industries suggests that it
takes many decades for major new technologies to settle down and reach market satu-
ration.1469 For instance, the transition from wood to steel for building battleships,1435

started in 1858 and reached it zenith during the second world war. There is a long history
of growth and decline of various forms of infrastructure; see figure 1.5. Various models
of the evolution of technological innovations have been proposed.1627

Over the last 70 years a succession of companies have dominated the computing industry.
The continual reduction in the cost of computing platforms created new markets, and
occasionally one of these grew to become the largest market, financially, for computing
products. A company dominates the computer industry when it dominates the market that
dominates the industry. Once dominant companies often continue to grow within their
market after their market ceases to be the largest market for computers.

Figure 1.6 shows market capitalization as a percentage of the top 100 listed US tech com-
panies, as of the first quarter of 2015,528 and illustrates the impact of the growth of new
markets on the relative market capitalization of three companies; IBM dominated when
mainframes dominated the computer industry, the desktop market grew to dominate the
computer industry and Microsoft dominated, smartphones removed the need for comput-
ers sitting on desks, and these have grown to dominate the computer market with Apple
being the largest company in this market (Google’s Android investment was a defensive
move to ensure they are not locked out of advertising on mobile, i.e., it is not as intended
to be a direct source of revenue, making it extremely difficult to estimate its contribution
to Google’s market capitalization).

The three major eras, each with its own particular product and customer characteristics,
have been (figure 1.7 shows sales of major computing platforms):

• the IBM era (sometimes known as the mainframe era, after the dominant computer
hardware, rather than the dominant vendor): The focus was on business customers,
with high-priced computers sold, or rented, to large organizations who either rented
software from the hardware vendor or paid for software to be developed specifically
for their own needs. Large companies were already spending huge sums employing the
(tens of) thousands of clerks needed to process the paperwork used in the running of
their businesses;173 these companies could make large savings, in time and money, by
investing in bespoke software systems, paying for any subsequent maintenance, and the
cost of any faults experienced.

When the actual cost of software faults experienced by one organization is very high
(with potential for even greater costs if things go wrong), and the same organization is
paying all, or most of the cost of create the software, that organization can see a problem
that it thinks it should have control over. Very large organizations are in a position to
influence research agendas to target the problems they want solved.

Large organizations tend to move slowly. The rate of change was slow enough for
experience and knowledge of software engineering to be considered essential to do
the job (this is not to say that anybody had to show that their skill was above some a
minimum level before they would be employed as a software developer).

• the Wintel era: The Personal Computer running Microsoft Windows, using Intel’s x86
processor family, was the dominant computing platform. The dramatic reduction in the
cost of owning a computer significantly increased the size of the market, and it became
commercially profitable for companies to create and sell software packages. The direct
cost of software maintenance is not visible to these customers, but they pay the costs of
the consequences of faults they experience when using the software.

6 1. Introduction

1950 1970 1990 2010
1e−09

1e−06

1e−03

1e+00

1e+03

Year

W
at

ts
 p

er
 c

om
pu

ta
tio

n

Vacuum tubes
Transistors
Microprocessor

Figure 1.9: Power consumed, in Watts, executing an in-
struction on a computer available in a given year. Data
from Koomey et al.1035 Github–Local

1990 1995 2000 2005 2010
0

20

40

60

80

100

120

140

Year

£
B

ill
io

n

Economic competencies
Innovative property
Software Intangibles

Tangibles

Figure 1.10: Total investment in tangible and intangible
assets by UK companies, based on their audited accounts.
Data from Goodridge et al.707 Github–Local

2000 2005 2010 2015
1.5

2.0

2.5

3.0

3.5

4.0

4.5

Year (quarterly)

B
us

in
es

s
in

ve
st

m
en

t (
£b

ill
io

n)

Purchased software
Own software
Hardware

Figure 1.11: Quarterly value of newly purchased and own
software, and purchased hardware, reported by UK com-
panies as fixed-assets. Data from UK Office for National
Statistics.1356 Github–Local

Microsoft’s mantra of a PC on every desk required that people write software to cover
niche markets. The idea that anyone could create an application was promoted as a
means of spreading Windows, by encouraging people with application domain knowl-
edge to create software running under MS-DOS and later Windows.

Figure 1.8 shows the impact of a computer on every desk; software product sales, as a
percentage of US GDP, took off.

Programming languages, libraries and user interface experienced high rates of change,
which meant that developers found themselves on a relearning treadmill. An investment
in learning had short payback periods; becoming an expert was often not cost effective.

• the Internet era: No single vendor dominates the Internet, but some large niches have
dominant vendors, e.g., mobile phones,

It is not known whether the rate of change has been faster than in previous eras, or the
volume of discussion about the changes has been higher because the changes have been
visible to more people, or whether niche dominant vendors continue to drive change to
suit their needs, or some other reason,

Mobile communications is not the first technology to set in motion widespread struc-
tural changes to industrial ecosystems. For instance, prior to electrical power becoming
available, mechanical power was supplied by water and then steam. Mechanical power
is transmitted in straight lines using potentially dangerous moving parts; factories had
to be organized around the requirements of mechanical power transmission. Electri-
cal power transmission does not suffer from the straight line restrictions of mechanical
power transmission. It took some time for the benefits of electrical power (e.g., ma-
chinery did not have to be close to the generator) to diffuse through industry.439

The ongoing history of new software systems, and computing platforms, has created an
environment where people are willing to invest their time and energy creating what they
believe will be the next big thing. Those with the time and energy to do this are often the
young and inexperienced outsiders, in the sense that they don’t have any implementation
experience with existing systems. If one of these new systems take off, the developers
involved are likely to have made, or will make, many of the same mistakes made by the
developers involved in earlier systems. The rate of decline of existing major software
platforms is slow enough that employees with significant accumulated experience and
expertise can continue to enjoy their seniority in well-paid jobs, they have no incentive to
jump ship to apply their expertise to a still emerging system.

Mobile computing is only commercially feasible when the cost of computation, measured
in Watts of electrical power, can be supplied by user-friendly portable batteries. Figure 1.9
shows the decline in electrical power consumed by a computation between 1946 and 2009;
historically, it has been halving every 1.6 years.

Software systems have yet to reach a stable market equilibrium in many of the ecosystems
they have colonised. Many software systems are still new enough that they are expected
to adapt when the ecosystem in which they operate evolves. The operational procedures
of these systems have not yet been sufficiently absorbed into the fabric of life that they
enjoy the influence derived from users understanding that the easiest and cheapest option
is to change the world to operates around them.

Economic activity is shifting towards being based around intangible goods;782 cognitive
capitalism is becoming mainstream.

A study by Goodridge, Haskel and Wallis707 estimated the UK investment in intangible
assets, as listed in the audited accounts that UK companies are required to file every year.
Figure 1.10 shows the total tangible (e.g., buildings, machinery and computer hardware)
and intangible assets between 1990 and 2012. Economic competencies are items such
as training and branding, Innovative property includes scientific R&D, design and artis-
tic originals (e.g., films, music and books); accounting issues associated with software
development are discussed in chapter 3.

Some companies treat some software as fixed-assets. Figure 1.11 shows quarterly totals
for newly purchased and own software, and computer hardware, reported by UK compa-
nies as new fixed-assets.

A study by Wang1920 found that while firms associated with the current IT fashion have
a higher reputation and pay their executives more, they do not have higher performance.
As companies selling hardware have discovered, designing products to become techno-
logically obsolete (perceived or otherwise),1721 or wear out and cease to work after a few

1.2. SOFTWARE MARKETS 7

1980 1990 2000 2010

0.5

1.0

2.0

5.0

10.0

20.0

Year

M
on

th
ly

 s
al

es
 (

bi
lli

on
 d

ol
la

rs
)

World
Asia Pacific
Americas
Japan
Europe

Figure 1.12: Billions of dollars of worldwide semicon-
ductor sales per month. Data from World Semiconductor
Trade Statistics.1979 Github–Local

● ●

Figure 1.13: Smaller component size allows more devices
to be fabricated on the same slice of silicon, plus material
defects impact a smaller percentage of devices (increasing
product yield). Github–Local

2 5 10 20 50 100

10

20

30

40

50

Years

S
pe

ct
ra

l d
en

si
ty

Figure 1.14: Spectral analysis of World GDP between
1870-2008; peaks around 17 and 70 years. Data from
Maddison.1189 Github–Local

years,1947 creates a steady stream of sales. Given that software does not wear out, the
desire to not be seen as out of fashion provides a means for incentivizing users to update
to the latest version.

Based on volume of semiconductor sales (see figure 1.12), large new computer-based
ecosystems are being created in Asia; the rest of the world appears to have reached the
end of their growth phase.

The economics of chip fabrication,1055 from which Moore’s law derived,iv was what made
the computing firestorm possible. The ability to create more products (by shrinking the
size of components; see figure 1.13) for roughly the same production cost (i.e., going
through the chip fabrication process);846 faster processors and increased storage capacity
were fortuitous, customer visible, side effects. The upward ramp of the logistic equation
has now levelled off,611 and today Moore’s law is part of a history that will soon be a
distant memory. Fret not, new methods of measuring progress in fabrication technology
are available.1310

Software systems are part of a world-wide economic system that has been rapidly evolving
for several hundred years; the factors driving economic growth are slowly starting to
be understood.924 Analysis of changes in World GDP have found cycles, or waves, of
economic activity; Kondratieff waves are the longest, with a period of around 50 years
(data from more centuries may uncover a longer cycle), a variety of shorter cycles are
also seen, such as the Kuznets swing of around 20 years. Five Kondratieff waves have
been identified with major world economic cycles, e.g., from the industrial revolution to
information technology.1469 Figure 1.14 shows a spectral analysis of estimated World
GDP between 1870 and 2008; adjusting for the two World-wars produces a smoother
result.

While the rate at which new technologies have spread to different countries has been in-
creasing over time,387 there has still been some lag in the diffusion of software systems404

around the world.

Computers were the enablers of the latest wave, from the electronic century.

1.2.1 The primary activities of software engineering

Software engineering is the collection of activities performed by those directly involved
in the production and maintenance of software.

Traditionally, software development activities have included: obtaining requirements, cre-
ating specifications, design at all levels, writing and maintaining code, writing manuals
fixing problems and providing user support. Large organizations compartmentalise activ-
ities and the tasks assigned to software developers tend to be primarily software related.

In small companies there is greater opportunity, and sometimes a need, for employees
to become involved in tasks that would not be considered part of the job of a software
developer in a larger company. For instance, being involved in any or all of a company’s
activities from the initial sales inquiry through to customer support of the delivered sys-
tem; the financial aspect of running a business is likely to be much more visible in a small
company.

Some software development activities share many of the basic principles of activities that
predate computers. For instance, user interface design shares many of the characteristics
of stage magic.1837

Software is created and used within a variety of ecosystems, and software engineering
activities can only be understood in the context of the ecosystem in which it operates.

While the definition of software engineering given here is an overly broad one, let’s be
ambitious and run with it, allowing the constraints of data availability and completing a
book to provide the filtering.

These activities are subject to path dependency: once the know-how and infrastructure for
performing some activity becomes widely used, this existing practice is likely to continue
to be used.

Perhaps the most entrenched path dependency in software development is the use of two-
valued logic, i.e., binary. The most efficient radix, in terms of representation space (i.e.,

ivMoore’s original paper,1309 published in 1965, extrapolated four data-points to 1975 and questioned
whether it would be technically possible to continue the trend

8 1. Introduction

number of digits times number of possible values of each digit), is: 2.718 . . .,793 whose
closest integral value is 3. The use of binary, rather than ternary, has been driven by
the characteristics of available electronic switching devices.v Given the vast quantity of
software making an implicit, and in some cases explicit, assumption that binary represen-
tation is used, a future switching technology supporting the use of a ternary representation
might not be adopted, or be limited to resource constrained environments.1929

The debate over the identity of computing as an academic discipline is ongoing.1818

1.3 History of software engineering research

The fact that software often contained many faults, and took much longer than expected
to produce, was a surprise to those working at the start of electronic computing, after
World War II. Established practices for measuring and documenting the performance of
electronics were in place and ready to be used for computer hardware,1027, 1483 but it was
not until the end of the 1960s that a summary of major software related issues appeared
in print.1357

Until the early 1980s most software systems were developed for large organizations, with
over 50% of US government research funding for mathematics and computer science
coming from the Department of Defense,609 an organization that built large systems, with
time-frames of many years. As customers of software systems, these organizations pro-
moted a customer orientated research agenda, e.g., focusing on minimizing customer costs
and risks, with no interest in vendor profitability and risk factors. Also, the customer was
implicitly assumed to be a large organization.

Very large organizations, such as the DOD, spend so much on software it is cost effective
for them to invest in research aimed at reducing costs, and learning how to better control
the development process. During the 1970s project data, funding and management by the
Rome Air Development Center,vi RADC, came together to produce the first collection of
wide-ranging, evidence-based, reports analysing the factors involved in the development
of large software systems.472, 1826

For whatever reason the data available at RADC was not widely distributed or generally
known about; the only people making use of this data in the 1980s and 1990s appear to
be Air Force officers writing Master’s theses.1429, 1699

The legacy of this first 30 years was a research agenda oriented towards building large
software systems.

Since around 1980, very little published software engineering research has been evidence-
based (during this period, not including a theoretical contribution in empirical research
was considered grounds for rejecting a paper submitted for publication13). In the early
1990s, a review1170 of published papers, relating to software engineering, found an al-
most total lack of evidence-based analysis of its engineering characteristics; a systematic
review of 5,453 papers published between 1993 and 2002775 found 2% reporting exper-
iments. When experiments were performed, they suffered from small sample sizes968 (a
review1915 using papers from 2005 found that little had changed), had statistical power
falling well below norms used in other disciplines523 or simply failed to report an ef-
fect size (of the 92 controlled experiments published between 1993 and 2002 only 29%
reported an effect size968).

Why have academics working in an engineering discipline not followed an evidence-
based approach in their research? The difficulty of obtaining realistic data is sometimes
cited1526 as the reason; however, researchers in business schools have been able to ob-
tain production data from commercial companies,vii perhaps the real reason is those in
computing departments are more interested in algorithms and mathematics, rather than
the human factors and economic issues that dominate commercial software development.

vIn a transistor switch, Off is represented by very low-voltage/high-current and On represented by saturated
high-voltage/very low-current. Transistors in these two states consume very little power (power equals voltage
times current). A third state would have to be represented at a voltage/current point that would consume sig-
nificantly more power. Power consumption, or rather the heat generated by it, is a significant limiting factor in
processors built using transistors.

viThe main US Air Force research lab. There is probably more software engineering data to be found in US
Air Force officers’ Master’s theses, than all academic software engineering papers published before the early
2000s.

viiMany commercial companies do not systematically measure themselves and maintain records, so finding
companies that have data requires contacts and persistence.

1.3. HISTORY OF SOFTWARE ENGINEERING RESEARCH 9

1e+03

1e+05

1e+07

Date

O
cc

ur
en

ce
s

1970 1980 1990 2000 2010 2020 2030

Raw files
Commits

Figure 1.15: Number of unique files and commits first ap-
pearing in a given month; lines are fitted regression models
of the form: Files ∝ e0.03months and Commits ∝ e0.022months.
Data kindly provided by Rousseau.1611 Github–Local

The publication and research culture within computing departments may have discour-
aged those wanting to do evidence-based work (a few intrepid souls did run experiments
using professional developers140). Researchers with a talent for software engineering ei-
ther moving on to other research areas or to working in industry, leaving the field to those
with talents in the less employable areas of mathematical theory, literary criticism (of
source code) or folklore.266

Prior to around 1980 the analysis of software engineering data tended to make use of the
best statistical techniques available. After around 1980, the quality of statistical analysis
dropped significantly (when any was used), with the techniques applied455 often being
a hold-over from pre-computer times, when calculations had to be done by hand, i.e.,
techniques that could be performed manually, sometimes of low power and requiring the
data to have specific characteristics. Also, the methods used to sample populations have
been not been rigorous.128

Human psychology and sociology continue to be completely ignored as major topics of
software research, a fact pointed out over 40 years ago.1685 The irrelevance of most exist-
ing software engineering research to industry is itself the subject of academic papers.655

A lack of evidence has not prevented researchers expounding plausible sounding theories
that, in some cases, have become widely regarded as true. For instance, it was once
claimed, without any evidence, that the use of source code clones (i.e., copying code
from another part of the project) is bad practice (e.g., clones are likely to be a source
of faults, perhaps because only one of the copies was updated).628 In practice, research
has shown that the opposite is true,1555, 1834 clones are less likely to contain faults than
’uncloned\’ source.

Many beliefs relating to software engineering processes, commonly encountered in aca-
demic publications, are based on ideas formulated many years ago by researchers who
were able to gain access to a relevant (often tiny) dataset. For instance, one study1471

divided software interface faults into 15 categories using a data set of 85 modification
requests to draw conclusions; this work is still being cited in papers 25 years later. These
fossil theories have continued to exist because of the sparsity of experiments needed to
refute or improve on them.

It is inevitable that some published papers contain claims about software engineering that
turn out to be roughly correct; coincidences happen. Software engineering papers can be
searched for wording which can be interpreted as foreseeing a recent discovery, in the
same way it is possible to search the prophecies of Nostradamus to find one that can be
interpreted as predicting the same discovery.

The quantity of published papers on a topic should not be confused with progress towards
effective models of behavior. For instance, one study1054 of research into software pro-
cess improvement, over the last 25 years, found 635 papers, with experience reports and
proposed solutions making up two-thirds of publications. However, proposed solutions
were barely evaluated, there were no studies evaluating advantages and disadvantages of
proposals, and the few testable theories are waiting to be tested.

Over the last 15 years or so, there has been an explosion of evidence-based research,
driven by the availability of large amounts of data extracted from Open source software.
However, existing theories and ideas will not die out overnight. Simply ignoring all re-
search published before 2005 (roughly when the public data deluge began) does not help,
earlier research has seeded old wives tales that have become embedded in the folklore of
software engineering, creating a legacy that is likely to be with us for sometime to come.

A study by Rousseau, Di Cosmo and Zacchiroli1611 tracked the provenance of source code
in the Software Heritage archive. Figure 1.15 shows the number of unique blobs (i.e., raw
files) and commits that first appeared in a given month, based on date reported by file sys-
tem or version control (the doubling time for files is around 32 months, and for commits
around 46 months). Occurrences at future dates put a lower bound on measurement noise.

This book takes the approach that, at the time of writing, evidence-based software engi-
neering is essentially a blank slate. Knowing that certain patterns of behavior regularly
occur is an empirical observation; a theory would make verifiable predictions that include
the observed patterns. Existing old wives tales are discussed when it is felt that their use
in an engineering environment would be seriously counter-productive; spending too much
effort debunking theories can be counter-productive.1117

10 1. Introduction

1860 1900 1940
0

20

40

60

80

Year

P
er

ce
nt

ag
e

Clean shaven
Beard
Mustache

Figure 1.16: Changing habits in men’s facial hair. Data
from Robinson.1593 Github–Local

1990 1995 2000
0

50

100

150

Date

O
cc

ur
re

nc
es

Application Service Provider
Business Process Reengineering
Customer Relationship Management
Data Warehouse
E Commerce
Enterprise Resource Planning
Groupware
Knowledge Management

Figure 1.17: Number of papers, in each year between 1987
and 2003, associated with a particular IT topic. The E-
commerce paper count peaks at 1,775 in 2000 and in 2003
is still off the scale compared to other topics. Data kindly
provided by Wang.1920 Github–Local

1.3.1 Folklore

The dearth of experimental evidence has left a vacuum that has been filled by folklore and
old-wives’ tales. Examples of software folklore include claims of a 28-to-1 productiv-
ity difference between best/worst developers, and the Halstead and McCabe complexity
metrics; folklore metrics are discussed in section 7.1.4.

The productivity claim, sometimes known as the Grant-Sackman study, is based on a
casual reading of an easily misinterpreted table appearing in a 1968 paper1624 by these
two authors. The paper summarised a study that set out to measure the extent to which
the then new time-sharing approach to computer use was more productive for software
development than existing batch processing systems (where jobs were typically submitted
via punched cards, with programs executing (sometimes) hours later, followed by their
output printed on paper). A table listed the ratio between the best subject performance
using the fastest system, and the worst subject performance on the slowest system (the
28:1 ratio included programmer and systems performance differences, and if batch/time-
sharing differences are separated out the maximum difference ratio is 14:1, the minimum
6:1). The actual measurement data was published727 in a low circulation journal, and was
immediately followed by a strongly worded critique;1074 see fig 8.22.

A 1981 study by Dickey494 separated out subject performance from other factors, adjusted
for individual subject differences, and found a performance difference ratio of 1:5. How-
ever, by this time the 28:1 ratio had appeared in widely read magazine articles and books,
and had become established as fact. In 1999, a study by Prechelt1522 explained what had
happened, for a new audience.

1.3.2 Research ecosystems

Interactions between people who build software systems and those involved in research-
ing software has often suffered from a misunderstanding of each other’s motivations and
career pressures.

Until the 1980s a significant amount of the R&D behind high-tech products was done in
commercial research labs (at least in the US76). For instance, the development of Unix
and many of its support tools (later academic derived versions were reimplementations
of the commercial research ideas). Since then many commercial research labs have been
shut or spun-off, making universities the major employer of researchers in some areas.

Few people in today’s commercial world have much interaction with those working within
the ecosystems that are claimed to be researching their field. The quaint image of re-
searchers toiling away for years before publishing a carefully crafted manuscript is long
gone.532 Although academics continue to work in a feudal based system of patronage
and reputation, they are incentivised by the motto “publish or perish”,1453 with science
perhaps advancing one funeral at a time.97 Hopefully the migration to evidence-based
software engineering research will progress faster than fashions in men’s facial hair (most
academics researching software engineering are men); see figure 1.16.

Academic research projects share many of the characteristics of commercial start-ups.
They involve a few people attempting to solve a sometimes fuzzily defined problem, try-
ing to make an improvement in one area of an existing product, and they often fail, with
the few that succeed producing spectacular returns. Researchers are serial entrepreneurs
in that they tend to only work on funded projects, moving onto other projects when fund-
ing runs out (and often having little interest in previous projects). Like commercial prod-
uct development, the choice of research topics may be fashion driven; see figure 1.17.

The visible output from academic research are papers published in journals and confer-
ence proceedings. It is important to remember that: " . . . an article about computational
science in a scientific publication is not the scholarship itself, it is merely advertising of
the scholarship. The actual scholarship is the complete software development environ-
ment, and the complete set of instructions, which generated the figures."272

Many journals and conferences use a process known as peer review to decide which sub-
mitted papers to accept. The peer review process557 involves sending submitted papers to
a few referees (whose identity is unknown to the authors, and the identity of the authors
may be unknown to the reviewers), ideally chosen for their expertise of the topic covered,
who make suggestions on how to improve the paper and provide a yes/no/maybe accep-
tance decision. The peer review process first appeared in 1665, however, it only became

1.3. HISTORY OF SOFTWARE ENGINEERING RESEARCH 11

1920 1940 1960 1980 2000 2020

1

2

5

10

20

50

100

Year

W
or

k
ci

te
d

Research
Data

Figure 1.18: Number of articles appearing in a given
year, cited in this book, plus number of corresponding
datasets per year; both fitted regression lines have the
form: Citations ∝ e0.06Year . Github–Local

widely used in the 1970s in response to concerns over public accountability of govern-
ment funded research.125 It now looks to be in need of a major overhaul1524 to improve
turn-around time, and handle the work load generated by a proliferation of journals and
conferences, as well as addressing corruption;1981 some journals and conferences have
become known for the low quality of their peer reviews, even accepting fake papers.1063

The status attached to the peer review process has resulted in it being adopted by journals
covering a variety of subjects, e.g., psychic research.

In the past most researchers have made little, if any, effort to archive the data they gather
for future use. One study1903 requested the datasets relating to 516 biology related studies,
with ages from 2 to 22 years; they found that the probability of the dataset being available
fell by 17% per year. Your author’s experience of requesting data from researchers is that
it often fails to survive beyond the lifetime of the computer on which it was originally
held.

Researchers may have reasons, other than carelessness, for not making their data generally
available. For instance, a study1952 of 49 papers in major psychology journals found that
the weaker the evidence for the researcher’s hypothesis the less likely they were to be
willing to share their data.

The importance of making code and data available is becoming widely acknowledged,
with a growing number of individual researchers making code/data available for down-
load, and journals having explicit policies about authors making code/data available.1783

In the UK researchers who receive any funding from a government research body are now
required to archive their data, and make it generally available.1577

For some time now, academic performance has often been measured by number of papers
published, and the impact factor of the journal in which they were published1058 (scien-
tific journals publish a percentage of the papers submitted to them, with prestigious high
impact journals publishing a lower percentage than those have lower impact factors; jour-
nals and clubs share a common economic model1516). Organizations that award grants to
researchers often consider the number of published papers and impact factor of the publi-
cation journal, when deciding whether to fund a grant application; the effect is to generate
an evolutionary pressure that selects for bad science1729 (as well as predatory journals882

that accept any submitted paper, provided the appropriate fee is paid).

One consequence of the important role of published paper count in an academic’s career,
is an increase in scientific fraud,571 most of which goes undetected;382 one study573 found
that most retracted papers (67.4%) were attributable to misconduct, around a 10-fold in-
crease since 1975. More highly ranked journals have been found to publish a higher
percentage of retracted papers,251 it is not known whether this represents an increased in
flawed articles, or an increase in detection.1770 Only a handful of software engineering
papers have been retracted, perhaps a lack of data makes it very difficult to verify the
claims made by the authors. The website retractionwatch.com reports on possible and
actual paper retractions.

Figure 1.18 shows the number of citations, in this book, to research published in a given
year, plus the number of associated datasets; lines are fitted regression models.

Pointing out that academics are often more interested in career development than sci-
entific development, and engage in questionable research practices is not new; Babbage
complained about this behavior in 1830.99

Commercial research labs Many large companies have research groups. While the re-
searchers working in these groups often attend the same conferences as academics and
publish papers in the same journals; their performance is often measured by the number
of patents granted.

Citation practices This book attempts to provide citations to any factual statements, so
readers can perform background checks. To be cited papers have to be freely available for
public download, unless published before 2000 (or so), and when data is analysed it has
to be free for public distribution.viii Programs, packages and libraries are not cited; others
do sometimes cite software.1124

When academics claim their papers can be freely downloaded, what they may mean is that
the university that employs them has paid for a site-wide subscription that enables univer-
sity employees to download copies of papers published by various commercial publishers.
Taxpayers pay for the research and university subscriptions, and most of these taxpayers

viiiThe usual academic procedure is to cite the first paper that proposes a new theory, describes a pattern of
behavior, etc.

12 1. Introduction

do not have free access to it. Things are slowly changing. In the UK researchers in receipt
of government funding are now incentivized to publish in journals that will make papers
produced by this research freely available after 6-12 months from publication date. Your
author’s attitude is that academics are funded by taxpayers, and if they are unwilling to
provide a freely downloadable copy on their web page, they should not receive any credit
for the work.ix

Software developers are accustomed to treating documents that are more than a few years
old, as being out-of-date; a consequence of the fast changing environment in which they
often operate. Some fields, such as cognitive psychology, are more established, and peo-
ple do not feel the need to keep repeating work that was first performed decades ago
(although it may be replicated as part of the process of testing new hypothesis). In more
established fields, it is counter-productive to treat date of publication as a worthiness in-
dicator.

Researchers being disconnected from the practical realities of their field is not unique to
software engineering; other examples include medicine1415 and high-energy physics.859

Your author sent email requests for the data associated with over 574 papers or reports.
For papers more than 5-10 years old, an email was only sent if the data looked particularly
interesting. If no reply was received within 6-months, a follow-up email was sent (some-
times multiple times). An initial positive reply classifies the email as pending, although
many of these now ought to be moved to the no-reply outcome (i.e., no longer replying to
email). Data was not requested when it appeared obvious that the data was confidential.
Table 1.1 shows the main outcomes of these requests.

Outcome Total Percent
No reply 201 35%
Received data 151 26%
Pending 95 16%
Confidential 65 11%
No longer have data 39 7%
Best known address bounces 23 4%

Table 1.1: Outcome of author’s email requests for data associated with 574 published papers.

1.4 Overview of contents

The contents are driven by the publicly available data, and contains two distinct halves:

• the first half organizes the data within seven chapters: an introduction, three chapters
covering the forces driving software development (i.e., human cognition, economics
and the ecosystem within which they operate), and three chapters covering desired out-
comes (i.e., projects, reliability and source code).

Each chapter contains a patchwork issues, with each section containing related issues.
The small amount of available data does not permit joined up discussions, rather a
few paragraphs cluster around each dataset. Many topics usually covered in software
engineering textbooks not discussed, because public data relating to them could not be
located.

• the second half discusses data analysis techniques applicable to the kinds of measure-
ment data, and problems, expected to be encountered by software developers. The in-
tended readership is software developers wanting to apply techniques, who don’t want
to learn about the mathematics that underlies their implementation.

The results of the analysis are intended to help managers and developers understand the
processes that generated the data.

Human cognition: Human brains supply the cognitive effort that directs and performs
the activities involved in software production. An understanding of the operating char-
acteristics of the human brain is needed to make the best use of the cognitive resources
available. Characteristics such as cognitive capacity, memory storage/recall performance,
learning, processing of visual information, reasoning, and decision-making are discussed.

ixIn fact they should not have been funded in the first place; if an academic refuses to make a copy of their
papers freely available to you, please report their behavior to your elected representative.

1.4. OVERVIEW OF CONTENTS 13

Software developers come preloaded with overlearned behaviors, derived from the native
culture of their formative years, and at least one human language which they have used
for many hours when speaking and reading.

Cognitive capitalism: A knowledge of basic economic issues is needed to understand the
software business, and the chapter starts with a basic tutorial on analyzing the economic
issues involved in possible investments; there is also an outline of company economics
(current economic theories and practices are predominantly based around the use of la-
bor as the means of production; the economics of the products of intellectual effort has
become a major issue).

Software is often written by teams and group dynamics is an important factor in any
project.

The approach to software economics is from the perspective of the software engineer or
software company, rather than the perspective of the customer or user of software (which
differs from much existing work, which adopts the customer or user perspective).

Ecosystems: Software is created in a development ecosystem, and is used in a customer
ecosystem. Customer demand motivates the supply of energy that drives software ecosys-
tems. Software does not wear out, and the motivation for change comes from the evolution
of these ecosystems.

Ecosystem evolution puts an upper limit on the productive lifetime of software (internal
development factors have their own impact on lifetime). Lifetime is a key component of
return on investment calculations.

Various developer ecosystems (e.g., careers), and development (e.g., APIs) ecosystems
are discussed, along with non-software issues having an impact on developers.

Estimating population size is a common problem in ecology (e.g., potential employees,
customers, and fault experiences); population dynamics are discussed.

Projects: Incentive structures are a key component to understanding the creation of soft-
ware systems, from bidding to delivery, and ongoing maintenance: risks and returns,
client/vendor interaction, and what’s in it for developers and managers.

Resource estimation is a common problem, various models are discussed, along with
patterns found in the few available details datasets.

Reliability: Software systems have a minimum viable reliability, i.e., what the market
will tolerate. The little that is known about mistakes and fault experiences is discussed
(i.e, the interaction between input values and a coding mistakes); where mistakes are
made, their lifetime, and the cost-effectiveness of reducing or removing mistakes.

The cost-effectiveness of some techniques for checking software for intended behavior is
discussed.

Source code: What are desirable source code characteristics, and what can be learned
from existing patterns of use, i.e., where are the opportunities for investment in the pro-
duction of source code?

What patterns appear in existing code and what can be learned from them?

Some folklore metrics that continue to haunt are debunked.

Stories told by data: There is no point analysing data unless the results can be effec-
tively communicated to the intended audience. This chapter contains a compendium of
examples of techniques that might be used to communicate a story found in data, along
with issues to look out for in the stories told by others.

Data analysis: Developers are casual users of data analysis who don’t want to spend time
learning lots of mathematics; they want to make use of techniques, not implement them.
The approach taken in the second half of the book is similar to that of a Doctor examining
a patient for symptoms that might suggest underlying processes.

It is assumed that developer time is expensive and computer time is cheap. Every at-
tempt is made to consistently use a single, general, statistical technique; this minimal,
but general approach focuses on what developers need to know, and the price paid is that
sometimes cpu resources are wasted.

It is assumed that readers have basic algebra skills, and can interpret graphs; no other
statistical knowledge is assumed.

14 1. Introduction

In many practical situations, the most useful expertise to have is knowledge of the appli-
cation domain that generated the data, along with how any findings might be applied. It
is better to calculate an approximate answer to the correct problem, than an exact answer
to the wrong problem.

Because evidence-based software engineering has only recently started to be applied,
there is uncertainty about which statistical techniques are most likely to be generally ap-
plicable. Therefore, an all encompassing approach is taken, and a broad spectrum of
topics is covered, including:

• probability: making inferences about individual events based on the characteristics of
the population (statistics makes inferences about the population based on the character-
istics of a sample of the population). Concepts discussed include: probability distribu-
tions, mean and variance, Markov chains, and rules of thumb,

• statistics: statistics could be defined as the study of algorithms for data analysis; algo-
rithms covered include: sampling, describing data, p-value, confidence intervals, effect
size, statistical power, bootstrapping, model building, comparing two or more groups,

• regression modeling: the hammer used to analyse much of the data in this book. The
kind of equation fitted to data can provide information about the underlying processes
that generated the data, and which variables have the most power to explain the behavior
measured.

Software engineering measurements come in a wide variety of forms, and while ordi-
nary least-squares might be widely used in the social sciences, it is not always suitable
for modeling software datasets; more powerful techniques such as generalized least-
squares, nonlinear models, mixed models, additive models, structural equation models
and others are discussed,

• time series: analysis of data where measurements at time t are correlated with measure-
ments made earlier is the domain of time series analysis (regression modeling assumes
that successive measurements are independent of each other),

• survival analysis: measurements of time to an event occurring (e.g., death) are the do-
main of survival analysis,

• circular and compositional statistics: software is developed over days and weeks; time
recording is circular in that the distance between 12, 24 and 1 may be small. Circular
statistics deals with such data. Software may be composed of multiple subcomponents.
When dealing with percentage measurements of components, an increase in one sub-
component can cause the percentage of another to decrease; compositional statistic
deals with such data.

• miscellaneous: various techniques for finding patterns in data, such as clustering and
ordering of items. Machine learning can be useful when the person doing the analy-
sis has little or no knowledge of the data, or the application domain that produced it.
Sometimes we are clueless button pushers, and machine learning can be a useful guide.

Experiments: Probably the most common experiment performed by developers is bench-
marking of hardware and software. The difficulties and complications involved in per-
forming reliable benchmarks are discussed.

General issues involving the design of experiments are discussed.

Data cleaning: Garbage in garbage out. Data cleaning is the penultimate chapter (it goes
unmentioned in some books), and is often the most time-consuming data analysis activity,
it is a very necessary activity for obtaining reliable results.

Common data cleaning tasks, along with possible techniques for detecting potential prob-
lems, and solving them using R, are discussed.

Overview of R: An overview aimed at developers who are fluent in at least one other
computer language, i.e., it assumes that readers know how to program. The discussion
concentrates on those language features likely to be commonly used.

Obtaining and installing R: If you cannot figure out how to obtain and install R, this book
is not for you.

Your author’s goto book for R use is "The R Book" by Crawley. RStudio is a widely used
R IDE that is also sometimes used by your author.

1.5. TERMINOLOGY, CONCEPTS AND NOTATION 15

1.4.1 Why use R?

The main reasons for selecting R as the language+support library in which to perform the
statistical analysis used in this book are:

• it is possible to quickly write a short program that solves the kind of problems that
often occur when analysing software engineering data. The process often follows the
sequence: read data from one of a wide variety of sources, operate on it using functions
selected from an extensive library of existing packages, and finally, graphically display
the results or print values,

• lots of data analysis people are using it. There is an active ecosystem with many R
books, active discussion forums where examples can be found, answers to common
questions found and new questions posted,

• accuracy and reliability: a comparison of the reliability of 10 statistical software pack-
ages1403 found that GAUSS, LIMDEP, Mathematica, MATLAB, R, SAS, and Stata pro-
vided consistent reliable estimation results, and a comparison of the statistical functions
in Octave, Python, and R41 found that R yielded the best results. A study42 of the preci-
sion of five spreadsheets (Calc, Excel, Gnumeric, NeoOffice and Oleo), running under
Windows Vista, Ubuntu, and macOS, found that no one spreadsheet provided consis-
tently good results (it was recommended that none of these spreadsheets be used for
nonlinear regression and/or Monte Carlo simulation); another study1237 found signifi-
cant errors in the accuracy of the statistical procedures in various versions of Microsoft
Excel.

• an extensive library of add-on packages (over 15,000 at the time of writing): CRAN,
the Comprehensive R Archive Network is the official package library, although some
packages are only available on R-Forge and Github.

A freely available open source implementation is always nice to have.

1.5 Terminology, concepts and notation

Much of the basic terminology used in probability and statistics in common use today
derives from gambling and experimental research in medicine and agriculture, because
these were the domains in which researchers were employed during the early days of
statistical analysis.

• group: each sample is sometimes referred to as a group,

• treatment: the operation or process performed on subjects is sometimes referred to as a
treatment,

• explanatory variables (also known as independent, stimulus, predictor variables is used
when the variables are used to make predictions, control variables is sometimes used in
an experimental setting), are used to explain, predict or stimulate the value of response
variables; they are independent of the response variable,

• response variable also known as a dependent variable, responds/depends to/on changes
of values of explanatory variables; their behavior depends on the explanatory variables
(or rather, it is believed by the researchers to depend on them),

• data is truncated when values below, or above some threshold are unobserved (or re-
moved from the dataset).

• data is censored when values below, or above some threshold are set equal to the thresh-
old,

• between subjects: comparing two or more samples, when samples are obtained from
different groups of subjects, often with the different groups performing a task under
different experimental conditions,

• within subjects: comparing two or more samples, when samples are obtained from the
same group of subjects, often with the subjects performing a task under two or more
different experimental conditions,

• a parametric test is a statistical technique that assumes the sample has some known
probability distribution,

• a nonparametric test is a statistical technique that does not make any assumptions about
the sample distribution (the term distribution free test is sometimes used).

16 1. Introduction

− 4σ − 2σ − σ µ σ 2σ 4σ

68.3% p=0.15871 σ

90% p=0.051.64 σ

95% p=0.0251.96 σ

99% p=0.0052.58 σ
99.9% p=0.00053.29 σ

Figure 1.19: Normal distribution with total percentage of
values enclosed within a given number of standard devia-
tions. Github–Local

2 4 6 8

0

5

10

15

x

y

2 4 6 8

10

15

20

25

x

y

Figure 1.20: Example convex, upper, and concave,
lower, functions; lines are three chords of the function.
Github–Local

The following are some commonly encountered symbols and notation:

• n! (n factorial), denotes the expression n(n− 1)(n− 2) · · ·1; calculated by R’s factor
ial function,

•
(

n
r

)
=

n!
r!(n− r)!

, is a commonly occurring quantity in the analysis of probability prob-

lems; calculated by R’s choose function,

• a hat above a variable, ŷ, denotes an estimate; in this case an estimate of y’s value,

• µ (mu), commonly denotes the mean value; calculated by R’s mean function,

• σ (sigma), commonly denotes the standard deviation; calculated by R’s sd function.
The terms 1-sigma, 2-sigma, etc. are sometimes used to refer to the probability of an
event occurring. Figure 1.19 shows the sigma multiplier for various probabilities,

• n→ ∞, as n goes to infinity, i.e., becomes very very large,

• n→ 0, as n goes to zero, i.e., becomes very very small,

• P(x), the probability of x occurring, and sometimes used to denote the Poisson distri-
bution with parameter x (however, this case is usually written using λ (lambda), e.g.,
P(λ)),

• P(a < X), the probability that a < X . The functions pnorm, pbinom and ppois can
be used to obtain the probability of encountering a value less than or equal to x for the
respective distribution (e.g., Normal, Binomial and Poisson, as suggested by the naming
convention),

• P(|a−X |), the probability of the absolute value of the difference between a and X ,

•
6

∏
i=1

ai, the product: a1×a2×·· ·×a6,

•
6

∑
i=1

P(ai), the sum: P(a1)+P(a2)+ · · ·+P(a6),

The sum of the probabilities of all the mutually exclusive things that could happen,
when an action occurs, is always one. For instance, when a die is rolled, the six prob-
abilities of a particular number occurring sum to one, irrespective of whether the die is
fair, or has been tampered with in some way.

• P(D|S), the probability of D occurring, given that S is true; known as the conditional
probability. For instance, S might be the event that two dice have been rolled, and their
face-up numbers sum to five, and D the event that the value of the first die is four.

The value can be calculated as follows:

P(D|S) = P(DS)
P(S)

where P(DS) is the probability of both D and S occurring together.

If D and S are independent of each other, then we have: P(DS) = P(D)P(S), and the
above equation simplifies to: P(D|S) = P(DS)

A lot of existing theory in statistics assumes that variables are independent. For in-
stance, characteristics unique to each dice means that using a different dice for each roll
will produce values having more independence than using the same dice for both rolls.

• Convex/concave functions: a function f (x) is convex, between a and b, if every chord
of the function is above the function. If the chord is always below the function, it is
concave; see figure 1.20. The word convex tends to be spoken with a smiley face, while
concave induces more of a frown (and in the example plot looks like the entrance to a
cave).

1.6 Further reading

Readers wanting a more expansive discussion of the major topics covered in this book
might like to look at the following:

Human cognition: “Cognitive Psychology: A Student’s Handbook” by Eysenck and
Keane, and “Cognitive Psychology and its Implications” by Anderson.

A readable collection of papers on how people make use categories to solve problems
quickly without a lot of effort: “Simple Heuristics That Make Us Smart” by Gerd Gigeren-
zer, Peter M. Todd and The ABC Research Group. An upper graduate level book dealing

1.6. FURTHER READING 17

with some of the more higher-level aspects of how people create and use categories “The
Big Book of Concepts” by Gregory L. Murphy.

“Metaphors We Live By” by Lakoff and Johnson is a very readable introduction to metaphors.

“Human Error” by James Reason is still the best discussion on this topic.

Economics: “Return on Software” by Steve Tockey, and “Principles of Corporate Fi-
nance” by Brealey and Myers.

Culture: “The Origin and Evolution of Cultures” by Robert Boyd and Peter J. Richerson,
for those interested in modeling of the evolution of culture.

Probability: “Grinstead and Snell’s Introduction to Probability” by Grinstead and Snell
is available as a free download.

More advanced books include: “Introduction to Probability Models” by Ross, and “An
Introduction to Probability Theory and its Applications” by Feller is a classic that is full
of interesting examples.

Statistics: “Applied Robust Statistics” by Olive and “Introduction to Probability and
Statistics Using R” by G. Jay Kerns, are available as a free download.

Regression modeling: “Applied Predictive Modeling” by Kuhn and Johnson covers a
wide variety of regression modeling techniques where a predictive model is required.

“Introductory Time Series with R” by Paul S.P. Cowpertwait and Andrew V. Metcalfe,
and “Displaying Time Series, Spatial, and Space-Time Data with R” by Oscar Perpiñán
Lamigueiro.

“Analyzing Compositional Data with R” by van den Boogaart and Tolosana-Deldago.

Experiments: “Statistics for experimenters” by Box, Hunter and Hunter, and “Design
and Analysis of Experiments” by Douglas C. Montgomery.

R: “The R Book” by Michael Crawley, and “R In a Nutshell” by Joseph Adler.

“An Introduction to R” by Venables and Smith, “R for programmers” by Norman Matloff,
and “icebreakR” by Andrew Robinson, are both available as a free download.

18 1. Introduction

Figure 2.1: Unless cognition and the environment in
which it operates closely mesh together, problems may
be difficult or impossible to solve; the blades of a pair
of scissors need to closely mesh for cutting to occur.
Github–Local

Figure 2.2: The assumption of light shining from above
creates the appearance of bumps and pits. Github–Local

Figure 2.3: Overlearning enables readers to effort-
lessly switch between interpretations of curved lines.
Github–Local

Chapter 2

Human cognition

2.1 Introduction

Software systems are built and maintained by the creative output of human brains, which
supply the cognitive effort that directs and performs the activities required. The creation
and maintenance of software systems are limited by the cognitive effort available; max-
imizing the effort delivered requires an understanding of the operating characteristics of
the computing platform that produces it.

Modern humans evolved from earlier humanoids, who in turned evolved from earlier
members of the ape family,814 who in turn evolved from etc., etc. The collection of cog-
nitive characteristics present in the Homo sapien brain is the end-result of a particular
sequence of survival pressures that occurred over millions of years of evolutionary his-
tory; with the last common ancestor of the great apes, and the line leading to modern
humans, living 5 to 7 million years ago,621 the last few hundred thousand years spent as
hunter-gatherers roaming the African savannah, followed by 10,000 years or so having a
lifestyle that involved farming crops and raising domesticated animals.

Our skull houses a computing system that evolved to provide responses to problems that
occurred in stone-age ecosystems. However, this system is adaptable; neural circuits
established for one purpose may be redeployed,498 during normal development, for dif-
ferent uses, often without losing their original functions, e.g., in many people, learning
to read and write involves repurposing the neurons in the ventral visual occipito-temporal
cortex (an area of the brain involved in face processing and mirror-invariant visual recog-
nition).476 Reuse of neural circuitry is a central organizational principle of the brain.60

The collection of cognitive characteristics supported by an animal’s brain only makes
sense in the context of the problems the species had to solve within the environment in
which it evolved. Cognition and the environment are like the two blades of a pair of
scissors both blades have to mesh together to achieve the desired result; see figure 2.1:

• the structure of the natural environment places constraints on optimal performance (an
approach to analyzing human behavior known as rational analysis),

• cognitive, perception, and motor operations have their own sets of constraints (an ap-
proach known as bounded cognition, which targets good-enough performance).

Degraded, or incorrect, performance occurs when cognitive systems have to operate in a
situation that violates the design assumptions of the environment they evolved to operate
within; the assumptions are beneficial because they simplify the processing of ecologi-
cally common inputs. For instance, the human visual system assumes light shines from
above, because it has evolved in an environment where this is generally true.839 A conse-
quence of this assumption of light shining from above is the optical illusion in figure 2.2,
i.e., the top row appears as mounds while the lower row appears as depressions.

Optical illusions are accepted as curious anomalies of the visual system; there is no rush
to conclude that human eyesight is faulty. Failures of the cognitive system to produce
answers in agreement with mathematical principles, chosen because they appeal to those
making the selection, indicates that the cognitive system has not been tuned by the envi-
ronment in which it has been successful to produce answers compatible with the selected
mathematical principles.

19

20 2. Human cognition

0 5 10 15 20 25

0.05

0.10

0.15

0.20

0.25

Number of presses

P
ro

ba
bi

lit
y

Target presses = 4
Target presses = 8
Target presses = 12
Target presses = 16

Figure 2.4: Probability that rat N1 will press a lever a
given number of times before pressing a second lever to
obtain food, when the target count is 4, 8, 12 and 16. Data
extracted from Mechner.1253 Github–Local

This book is written from the viewpoint that the techniques used by people to produce
software systems should be fitted around the characteristics of the computing platform
in our head (the view that developers should aspire to be omnipotent logicians is driven
by human self-image, a counter-productive mindset).i Builders of bridges do not bemoan
the lack of unbreakable materials available to them, they learned how to work within the
limitations of the materials available.

Evolutionary psychology132, 137 is an approach to psychology that uses knowledge and
principles from evolutionary biology to help understand the operation of the human mind.
Physical implementation details, the biology of the brain,962 also have an impact on psy-
chological performance.

The fact that particular cognitive abilities have benefits in some environments, that out-
weigh their costs, means they are to be found in a variety of creatures,162 e.g., numerical
competence across the animal kingdom,1379 and in particular the use of numbers by mon-
keys787 and syntax by birds.1801 A study by Mechner1253 rewarded rats with food, if they
pressed a lever N times (with N taking one of the values 4, 8, 12 or 16), followed by
pressing a second lever. Figure 2.4 suggests that rat N1 is making use of an approximate
number system. Other examples of non-human cognition are briefly discussed elsewhere,
the intent is to show how deep-seated some of our cognitive abilities are, i.e., they may
not depend on high-level functionality that is human specific.

Table 2.1 shows a division of human time scales by the kind of action that fits within each
interval.

Does the brain contain a collection of modules (each handling particular functionality)
or a general purpose processor? This question is the nature vs. nurture debate, rephrased
using implementation details, i.e., a collection of modules pre-specified by nature or a
general purpose processor that is configured by nurture. The term modularity of mind
refers to a model of the brain620 containing a general purpose processor attached to spe-
cial purpose modules that handle perceptual processes (e.g., hearing and sight); the term
massive modularity hypothesis refers to a model406 that only contains modules.

Scale (sec) Time Units System World (theory)
10000000 months
1000000 weeks Social Band
100000 days

10000 hours Task
1000 10 min Task Rational Band
100 minutes Task

10 10 sec Unit task
1 1 sec Operations Cognitive Band

0.1 100 msec Deliberate act

0.01 10 msec Neural circuit
0.001 1 msec Neuron Biological Band
0.0001 100µsec Organelle

Table 2.1: Time scales of human action. Based on Newell.1369

Consciousness is the tip of the iceberg, most of what goes on in the mind is handled by
the unconscious.339, 431, 1940 Problems that are experienced as easy to solve may actually
involve very complex neural circuitry, and be very difficult to program computers to solve.

The only software engineering activities that could be said to be natural, in that they use
prewired biological structures in the brain, involve social activities. The exactitude needed
for coding is at odds with the fast and frugal approach of our unconscious mind,680 whose
decisions our conscious mind later does its best to justify.1940 Reading and writing are not
natural in the sense that specialist brain structures have evolved to perform these activities;
it is the brain’s generic ability to learn that enables this skill to be acquired through many
years of deliberate practice.

What are the likely differences in cognitive performance between human males and fe-
males? A study by Strand, Deary and Smith1790 analyzed Cognitive Abilities Test (CAT)

iAn analysis of the operation of human engineering suggests that attempting to modify our existing cogni-
tive systems is a bad idea,227 e.g., it is better to rewrite spaghetti code than try to patch it.

2.1. INTRODUCTION 21

2 4 6 8

40

45

50

55

60

CAT3

G
en

de
r

pe
rc

en
ta

ge
 w

ith
in

 s
ta

ni
ne

Boy
Girl

2 4 6 8

40

45

50

55

60

non−verbal

G
en

de
r

pe
rc

en
ta

ge
 w

ith
in

 s
ta

ni
ne

Boy
Girl

Figure 2.5: Boy/girl (aged 11-12 years) verbal reasoning,
quantitative reasoning, non-verbal reasoning and mean
CAT score over the three tests; each stanine band is 0.5
standard deviations wide. Data from Strand et al.1790

Github–Local

scores from over 320,000 school pupils in the UK. Figure 2.5 provides a possible expla-
nation for the prevalence of males at the very competent/incompetent ends of the scale,
and shows that women outnumber men in the middle competency band (over time differ-
ences have remained, but male/female performance ratios have changed1914). A model
where one sex engages in relatively selective mate choice produces greater variability in
the opposite sex.829

A study by Jørgensen and Grimstad952 asked subjects from three Asian and three east
European countries to estimate the number of lines of code they wrote per hour, and the
effort needed to implement a specified project (both as part of a project investigating
cognitive biases). Both country and gender were significant predictors of the estimates
made; see Github–developers/estimation-biases.R.

While much has been written on how society exploits women, relatively little has been
written on how society exploits men.150 There are far fewer women than men directly
involved in software engineering.ii

2.1.1 Modeling human cognition

Models of human cognitive performance are based on the results of experiments per-
formed using subjects drawn almost entirely from Western, Educated, Industrialized, Rich
and Democratic (WEIRD) societies.808, 811, 1656 While this is a problem for those seeking
to uncover the cognitive characteristics of humans in general, it is not a problem for soft-
ware engineering; because those involved have usually had a WEIRD society education.

Characteristics of WEIRD people that appear to differ from the populations of other cul-
tures include:

• WEIRD people are willing to think about, and make inferences about, abstract situa-
tions, without the need for having had direct experience; studies1174 of non-WEIRD
people have found they are unwilling to discuss situations where they don’t have direct
experience,

• when mapping numbers onto space, WEIRD people have been found to use a linear
scale for mapping values between one and ten; studies of non-WEIRD people have
found they often use a logarithmic scale,480

• WEIRD people have been found to have complex, but naive, models of the mechanisms
that generate the everyday random events they observe.1424

Much of the research carried out in cognitive psychology draws its samples from people
between the ages of 18 and 21, studying some kind of psychology degree. There has been
discussion130 on the extent to which these results can be extended to the general WEIRD
populace, however, results obtained by sampling from this subpopulation may well be
good enough for dealing with software engineering issues.

The reasons why students are not appropriate subjects to use in software engineering
experiments, whose results are intended to be applied to professional software developers,
are discussed in chapter 13.

Several executable models of the operation of human cognitive processes have been cre-
ated. The ACT-R model58 has been applied to a wide range of problems, including learn-
ing, the visual interface, perception and action, cognitive arithmetic, and various deduc-
tion tasks.

Studies632 have found a poor correlation between an individual’s estimate of their own
cognitive ability and measurements of their ability.

Studies of personnel selection1645 have found that general mental ability is the best pre-
dictor of job performance.

Bayesian models of human cognition have been criticised for assuming that performance
on a range of tasks is at, or near, optimal.234 Everyday human performance needs to
be good enough, and an investment in finding a (near) optimal solution may not be cost
effective.

iiWhen your author started working in software development, if there was a woman working on a team,
his experience was that she would be at the very competent end of the scale (male/female developer ratio back
then was what, 10/1?). These days, based on my limited experience, women are less likely to be as competent
as they once were, but still a lot less likely, than men, to be completely incompetent; is the small number of
incompetence women caused by a failure of equal opportunity regulations or a consequence of small sample
size?

22 2. Human cognition
E

vi
de

nc
e

ac
cu

m
ul

at
ed

0 Time

A

B

X

Figure 2.6: Example of the evolution of the accumula-
tion of evidence for option "A", in a diffusion model.
Github–Local

Ea
si

er
 to

 u
se

 a
 h

ar
dw

ar
e

ro
ta

tio
n,

 th
an

 a
 s

of
tw

ar
e

ro
ta

tio
n

Figure 2.7: Rotating text in the real world; is it most easily
read by tilting the head, or rotating the image in the mind?
Github–Local

Figure 2.8: Two objects paired with another object that
may be a rotated version. Based on Shepard et al.1691

Github–Local

The evidence-accumulation model is used in the cognitive analysis of decision-making.
As its name suggests, the model operates by accumulating evidence until the quantity
of evidence for one of the options exceeds the threshold needed to trigger its selection.
The diffusion model,1560 and the Linear Ballistic Accumulator (LBA) are currently two
leading forms of this model.522

Figure 2.6 shows the basic components of evidence-accumulation models; this particular
example is of a diffusion model, for a 2-choice decision, i.e., "A" or "B".

The drift rate is the average rate at which evidence accumulates in the direction of the
correct response; noise in the process creates variability in the response time and the
possibility of making an incorrect response. Evidence accumulation may start from a
non-zero value.

The distance between the options’ decision thresholds, on the evidence axis, impacts re-
sponse time (increasing distance, increases response time), and error rate (decreasing dis-
tance, increases the likelihood that noise can cause sufficient evidence to accumulate to
cross the threshold of the incorrect option).

The Linear Ballistic Accumulator model differs from the diffusion model, in that each
option has its own register holding the evidence accumulated for that option. The first
option whose accumulated evidence reaches threshold, is selected (the diffusion model
accumulates evidence in a single register, until reaching the threshold of one option).

The measured response time includes what is known as nondecision time, e.g., tasks such
as information encoding and time taken to execute a response.

Fitting data from experiments1559 on a lexical decision task,iii to a diffusion model, shows
that drift rate increases with word frequency, and that some characteristics of non-words
(e.g., whether they were similar to words or were random characters) had an impact on
the model parameters.

2.1.2 Embodied cognition

Embodied cognition is the theory that many, if not all, aspects of a person’s cognitive
processing are dependent on, or shaped by, sensory, motor, and emotional processes that
are grounded in the features of their physical body.686

A study by Presson and Montello1529 asked two groups of subjects to memorize the loca-
tions of objects in a room. Both groups were then blindfolded, and then asked to point to
various objects; their performance was found to be reasonably fast and accurate. Subjects
in one group were then asked to imagine rotating themselves 90°, they were then asked to
point to various objects. Their performance was found to be much slower and less accu-
rate. Subjects in the other group were asked to actually rotate 90°; while still blindfolded,
they were then asked to point to various objects. The performance of these subjects was
found to be as good as before they rotated. These results suggest that mentally keeping
track of the locations of objects, a task that might be thought to be cognitive and divorced
from the body, is in fact strongly affected by body position.

Tetris players have been found to prefer rotating an item on screen, as it descends, rather
than mentally perform the rotation.1010

A study by Shepard and Metzler1691 showed subjects pairs of figures and asked if they
were the same. Some pairs were different, while others were the same, but had been
rotated relative to each other. The results showed a linear relationship between the angle
of rotation (needed to verify that two objects were the same), and the time taken to make a
matching comparison. Readers might like to try rotating, in their mind, the pair of images
in each row of figure 2.8, to find out if they are the same.

A related experiment by Kosslyn1040 showed subjects various pictures and asked ques-
tions about them. One picture was of a boat, and subjects were asked a question about the
front of the boat and then asked a question about the rear of the boat. The response time,
when the question shifted from the front to the rear of the boat, was longer than when the
question shifted from one about portholes to one about the rear. It was as-if subjects had
to scan their image of the boat from one place to another to answer the questions.

Many WEIRD people use a mental left-to-right spatial orientation for the number line.
This mental orientation has an embodiment in the SNARC effect (spatial numerical asso-
ciation of response codes). Studies478, 1393 have shown subjects single digit values, and

iiiDeciding whether a character string is a word.

2.2. MOTIVATION 23

1 2 3 4 5 6 7 8

2

4

6

8

10

12

Arabic digit

E
rr

or
 r

at
e

(%
)

Left hand
Right hand

Figure 2.9: Error rate, with standard error, for the
left/right-hand from a study of the SNARC effect. Data
from Nuerk et al.1393 Github–Local

asked them to make an odd/even decision by pressing the left/right response button with
the left-/right-hand. When using the right-hand response time decreases as the value in-
creases (i.e., the value moves from left-to-right along the number line), and when using
the left-hand response time decreases as the value decreases. The effect persists when
arms are crossed, such that opposite hands are used for button pressing. Figure 2.9 shows
the left/right-hand error rate found in a study by Nuerk, Wood and Willmes1393 of the
SNARC effect.

2.1.3 Perfection is not cost-effective

Evolution is driven by survival of the fittest, i.e., it is based on relative performance. A
consistent flawless performance is not only unnecessary, but a waste of precious resources.

Socially, making mistakes is an accepted fact of life and people are given opportunities to
correct mistakes, if that is considered necessary.

For a given task, obtaining information on the kinds of mistakes that are likely to be made
(e.g., entering numeric codes on a keyboard1431), and modeling behavior (e.g., subtrac-
tion mistakes1881 made by children learning arithmetic) is very time-consuming, even for
simple tasks. Researchers are still working to build good models1740 for the apparently
simple task of text entry.

One technique for increasing the number of errors made by subjects, in an experiment, is
to introduce factors that will increase the likelihood of mistakes being made. For instance,
under normal circumstances the letters/digits viewed by developers are clearly visible, and
the viewing time is not constrained. In experiments run under these conditions subjects
make very few errors. To obtain enough data to calculate letter similarity/confusability,
studies1322 have to show subjects images of single letters/digits that have been visually
degraded, or to limit the amount of time available to make a decision, or both, until a
specified error rate is achieved.1839 While such experiments may provide the only avail-
able information, on the topic of interest, their ecological validity has to be addressed
(compared to say asking subjects to rate pairs of letters for similarity1713).

How often do people make mistakes?

A lower bound on human error rate, when performing over an extended period, is prob-
ably that of astronauts in space; making an error during a space mission can have very
serious consequences, and there is a huge investment in astronaut training. NASA main-
tains several databases of errors made by operators during simulation training and actual
missions; human error rates, for different missions, of between 1.9 ·10−3 and 1.05 ·10−4

have been recorded.318

Studies1222 of the error rate for touch typists, performing purely data entry have found:
with no error correction 4% (per keystroke), typing nonsense words (per word) 7.5%.

A number of human reliability analysis methods319 for tasks in safety critical environ-
ments are available. The Cognitive Reliability Error Analysis Model (CREAM) is widely
used; Calhoun et al291 work through a calculation of the probability of an error during the
International Space Station ingress procedure, using CREAM. The HEART method1964

is another method.

How do people respond when their mistakes are discovered?

A study by Jørgensen and Moløkken955 interviewed employees, from one company, with
estimation responsibilities. Analysis of the answers showed a strong tendency for people
to perceive factors outside their control as important contributing factors for inaccurate
estimates, while factors within their control were typically cited as reasons for accurate
estimates.

2.2 Motivation

Motivation is a powerful influence on an individuals’ priorities. The desire to complete
an immediate task can cause a person to alter their priorities in a way they might not
choose in more relaxed circumstances. A study by Darley and Batson437 asked subjects
(theological seminary students) to walk across campus to deliver a sermon. Some subjects
were told that they were late, and the audience was waiting, the remainder were not told
this. Their journey took them past a victim moaning for help in a doorway. Only 10% of

24 2. Human cognition

subjects who thought they were late stopped to help the victim, while 63% of the other
subjects stopped to help. These results do not match the generally perceived behavior
pattern of theological seminary students.

What motivations do developers have while working on software systems? Possible mo-
tivations include those that generally apply to people (e.g., minimizing cognitive effort;
discussed in section 2.2.2), apply to company employees (e.g., seeking promotion, or do-
ing a job because it pays well), and apply to those involved in creative activities (e.g.,
organizing activities to maximize the pleasure obtained from work). Motivating members
team is discussed in section 3.4.2.

Hedonism is an approach to life that aims to maximise personal pleasure and happiness
(section 11.3.5 discusses a study investigating the importance of fun as a motivation for
software development). Many theories of motivation take as their basis that people intrin-
sically seek pleasure and avoid pain, i.e., they are driven by hedonic motivation.

People involved in work that requires creativity can choose to include personal prefer-
ences and desires in their decision-making process, i.e., they are subject to hedonic mo-
tivation. Todate, most research on hedonic motivation has involved studies of consumer
behavior.

The theory of regulatory focus theory is based around the idea that people’s different
approaches to pleasure and pain influences the approach they take towards achieving an
end-state (or, end-goal). The theory contains two end states, one concerned with aspira-
tions and accomplishments (a promotion focus), and the other concerned with attainment
of responsibilities and safety (a prevention focus).

A promotion focus is sensitive to presence and positive outcomes, seeks to insure hits
and insure against errors of omission. A prevention focus is sensitive to absence and
negative outcomes, and seeks to insure against correct rejections and insure against errors
of commission.

People are able to exercise some degree of executive control over the priorities given to
cognitive processes, e.g., deciding on speed/accuracy trade-offs. Studies626 have found
that subjects with a promotion focus will prefer to trade-off accuracy for speed of perfor-
mance, and those with a prevention focus will trade-off speed for improved accuracy.

The concept of Regulatory fit825 has been used to explain why people engage more
strongly with some activities and "feel right" about it (because the activity sustains, rather
than disrupts, their current motivational orientation or interests).

2.2.1 Built-in behaviors

Early researchers, investigating human behavior, found that people often fail to respond
in ways that are consistent with the mathematically optimal models of behavior that they
had created. The term cognitive bias has become the umbrella term used to describe such
behavior.

Evolution selects for traits that provide an organism with advantages within its ecosystem.
The failure of the mathematical models created by researchers to predict human responses,
is a failure of researchers to understand the problems that human behavior is intended
to solve within their environment. Researchers are starting to create models1140 where,
what were once thought to be cognitive biases, are actually ecologically rational uses of
cognitive resources.

Evidence-based software engineering has to take into account whatever predispositions
come included, as standard, with every human brain. The fact that many existing mod-
els of human behavior poorly describe real-life behaviors means that extreme caution is
needed when attempting to model developer behaviors.

Anchoring bias and confirmation bias are two commonly discussed cognitive biases.

Anchoring: Behavior where people assign too much weight to the first piece of informa-
tion they obtain, relating to the topic at hand.

A study by Jørgensen and Sjøberg957 asked professionals and students to estimate the
development effort for a project, with one group of subjects being given a low estimate
from the `customer’, a second group a low estimate (and no rationale), and the third
group no ’customer\’ estimate. The results found that estimates from subjects given a

2.2. MOTIVATION 25

1

A

E S

2

A

E S

3

A

E S

4

A

E S

5

A

E S

All possible rules
Experimenter rule
Subject hypothesis

Figure 2.10: The five possible ways in which experi-
menter’s rule and subject’s rule hypothesis can overlap, in
the space of all possible rules; based on Klayman et al.1019

Github–Local

high/low customer estimate were much higher/lower than subjects who did not receive
any customer estimate; see Github–developer/anchor-estimate.R.

A study by Jørgensen and Grimstad952 asked subjects to estimate the number of lines of
code they wrote per hour, with subjects randomly split into two groups; one anchored with
the question: “Did you on average write more or less than 1 Line of Code per work-hours
in your last project?”, and the other with: “Did you on average write more or less than
200 Lines of Code per work-hours in your last project?” Fitting a regression model to the
results showed that the form of the question changed the value estimated by around 72
lines (sd 10). Github–developers/estimation-biases.R

Confirmation bias: Occurs when ambiguous evidence is interpreted as (incorrectly) con-
firming a person’s current beliefs about the world. For instance, developers interpreting
program behavior as supporting their theory of how it operates, or using the faults exhib-
ited by a program to conform their view that it was poorly written.

When shown data from a set of observations, a person may propose a set of rules about
the processes that generated the data. Given the opportunity to test proposed rules, what
strategy are people likely to use?

A study by Wason,1930 which became known as the 2–4–6 Task, asked subjects to discover
a rule known to the experimenter; subjects’ guessed a rule, told it to the experimenter, who
then told them whether the answer was correct. For instance, on being informed that the
sequence 2–4–6 was an instance of the experimenter’s rule, possible subject rules might
be “two added each time” or “even numbers in order of magnitude”, when perhaps the
actual rule was “three numbers in increasing order of magnitude”.

An analysis of the rules created by subjects found that most were test cases designed to
confirm a hypothesis about the rule (known as a positive test strategy), with few test cases
attempting to disconfirm a hypothesis. Some subjects declared rules that were mathemat-
ically equivalent variations of rules they had already declared.

The use of a positive test strategy has been claimed to be a deficiency, because of the work
of Popper1506 who proposed that scientists should perform experiments designed to dis-
prove their hypothesis. Studies1634 of the hypothesis testing strategies used by scientists
found that positive testing is the dominant approach.

A study by Klayman and Ha1019 investigated the structure of the problems subjects were
asked to solve in rule discovery studies. The problem is a search problem, find the ex-
periment’s rule, and in some environments a positive test strategy is more effective for
solving search problems, compared to a negative test strategy. Figure 2.10 shows the five
possible ways in which the experimenter’s rule and subject’s hypothesis can overlap.

A positive test strategy is more effective when the sought after rule describes a minority
case, i.e., there are more cases not covered by the rule, or when the hypothesized rule
includes roughly as many cases as the actual rule, that is, the hypothesized rule is about
the right size. Klayman and Ha claimed these conditions hold for many real-world rule
search problems, and a positive test strategy is therefore an adaptive strategy; the real-
worldness claim continues to be debated.1359

The implementation of positive and negative test cases is discussed in section 6.6.2.3.

2.2.2 Cognitive effort

When attempting to solve a problem, a person’s cognitive system (consciously and un-
consciously) makes cost/accuracy trade-offs. The details of how it forms an estimate of
the value, cost and risk associated with an action, and carries out the trade-off analy-
sis is not known (various models have been proposed733). An example of the effects of
these trade-offs is provided by a study by Fu and Gray,634 where subjects had to copy a
pattern of colored blocks (on a computer-generated display). Remembering the color of
the block to be copied, and its position in the target pattern, created a memory effort. A
perceptual-motor effort was introduced by graying out the various areas of the display,
where the colored blocks were visible; these grayed out areas could be made temporarily
visible using various combinations of keystrokes and mouse movements. Subjects had
the choice of investing memory effort (learning the locations of different colored blocks)
or perceptual-motor effort (using keystrokes and mouse movements to uncover different
areas of the display). A subject’s total effort is the sum of perceptual motor effort and
memory storage and recall effort.

26 2. Human cognition

orientation

curved/straight

shape

●

●

●

●●

●
●

●

●

●

●

●

●

shape

size

●

●

●

●
●

●●

●

●

●

●

●

●

●

color

●

●

●

●●

●●
●

●

●

●

●

●

●

enclosure

●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

number

●●
●

●●
●

●●
●

●●
●

●●
●

●●
●

●●
●

●

●●
●

●●
●

●●
●

●●
●

●●
●

●●
●

addition

mixed

●

● ●●

Figure 2.11: Examples of features that may be preat-
tentively processed; when items having distinct features
are mixed together, individual items no longer jump out.
Based on example in Ware.1928 Github–Local

The subjects were split into three groups; one group had to expend a low effort to uncover
the grayed out areas, the second acted as a control, and the third had to expend a high
effort to uncover the grayed out areas. The results showed that the subjects who had
to expend a high perceptual-motor effort uncovered grayed out area fewer times than
the other two groups. These subjects also spent longer looking at the areas uncovered,
and moved more colored blocks between uncoverings. The subjects faced with a high
investment in perceptual-motor effort reduced their total effort by investing in memory
effort. Another consequence of this switch of effort investment, to use of memory, was an
increase in errors made.

What are the physical processes that generate the feeling of mental effort? The processes
involved remain poorly understood,1689 and proposals include: metabolic constraints (the
brain accounts for around 20% of heart output, and between 20% to 25% of oxygen and
glucose requirements), a feeling of mental effort is the body’s reaction to concentrated
thinking and is intended to create a sense of effort that induces a reduction in mental
workload, to conserve energy1060 (the energy consumption of the visual areas of the brain
while watching television are higher than the consumption levels of those parts of the
brain associated with difficult thinking)

2.2.3 Attention

Most sensory information received by the brain does not require conscious attention, it is
handled by the unconscious. Conscious attention is like a spotlight shining cognitive re-
sources on a selected area. In today’s world, there is often significantly more information
available to a person than they have available attention resources, WEIRD people live in
an attention economy.

People can direct attention to their internal thought processes and memories. For instance,
read the bold text in the following paragraph:

Somewhere Among hidden the in most the spectacular Rocky Mountains cognitive near
abilities Central City is Colorado the an ability old to miner select hid one a message
box from of another. gold. We Although do several this hundred by people focusing
have our looked attention for on it, certain they cues have such not as found type it
style.

What do you remember from the non-bold text? Being able to make a decision to direct
conscious attention to inputs matching a given pattern is a technique for making efficient
use of limited cognitive resources.

Much of the psychology research on attention has investigated how inputs from our vari-
ous senses are handled. It is known that they operate in parallel, and at some point there
is a serial bottleneck, beyond which point it is not possible to continue processing input
stimuli in parallel. The point at which this bottleneck occurs is a continuing subject of
debate; there are early selection theories, late selection theories, and theories that combine
the two.1449

A study by Rogers and Monsell1599 investigated the impact of task switching on subject
performance. Subjects were split into three groups; one group was given a letter clas-
sification task (is a letter a consonant or vowel), the second group a digit classification
task (is the digit odd or even), and the third group had to alternate tasks (various combi-
nations were used) between letter, and digit classification. The results found that having
to alternate tasks slowed response times by 200 to 250 ms, and the error rates went up
from between 2-3%, to between 6.0-7.6%. A study by Altmann47 found that when the
new task had many features in common with the previous task (e.g., switching from clas-
sifying numbers as odd or even, to classifying them as less than or greater than five) the
memories for the related tasks interfered, causing a reduction in subject reaction time, and
an increase in error rate.

2.3 Visual processing

Visual processing is of interest to software development because it consumes cognitive
resources, and is a source of human error. The 2-D image falling on the retina does not
contain enough information to build the 3-D model we see; the mind creates this model
by making assumptions about how objects in our environment move and interact.839

2.3. VISUAL PROCESSING 27

● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

Figure 2.12: Continuity—upper left plot is perceived
as two curved lines; Closure—when the two perceived
lines are joined at their end (upper right), the perception
changes to one of two cone-shaped objects; Symmetry and
parallelism—where the direction taken by one line fol-
lows the same pattern of behavior as another line; Proxim-
ity—the horizontal distance between the dots in the lower
left plot is less than the vertical distance, causing them to
be perceptually grouped into lines (the relative distances
are reversed in the right plot); Similarity—a variety of di-
mensions along which visual items can differ sufficiently
to cause them to be perceived as being distinct; rotating
two line segments by 180°does not create as big a per-
ceived difference as rotating them by 45°. Github–Local

The perceptual systems of organisms have evolved to detect information in the environ-
ment that is relevant to survival, and ignore the rest. The relevant information is about
opportunities afforded by the world.

The human visual system contains various hardware systems dedicated to processing vi-
sual information; low level details are preprocessed to build structures having a higher
level of abstraction, e.g., lines. Preattentive processing, so-called because it occurs before
conscious attention,1543 is automatic and apparently effortless. This preprocessing causes
items to appear to pop-out from their surroundings. Figure 2.11 shows examples of items
that pop-out at the reader.

Preattentive processing is independent of the number of distractors; a search for the fea-
ture takes the same amount of time whether it occurs with one, five, ten, or more other dis-
tractors. However, it is only effective when the features being searched for are relatively
rare. When a display contains many, distinct features (the mixed category in figure 2.11),
the pop-out effect does not occur.

The Gestalt laws of perception (“gestalt” means “pattern” in German, also known as the
laws of perceptual organization)1913 are based on the underlying idea that the whole is
different from the sum of its parts. These so-called laws do not have the rigour expected
of a scientific law, and some other term ought to be used, e.g., principle. The Gestalt
principles are preprogrammed (i.e., there is no conscious cognitive cost). The following
are some commonly occurring principles:

• continuity, also known as good continuation: Lines and edges that can be seen as
smooth and continuous are perceptually grouped together; figure 2.12 upper left,

• closure: elements that form a closed figure are perceptually grouped together; fig-
ure 2.12 upper right,

• symmetry: treating two, mirror image lines as though they form the outline of an object;
figure 2.12 second row down. This effect can also occur for parallel lines,

• proximity: elements that are close together are perceptually grouped together; fig-
ure 2.12 second row up,

• similarity: elements that share a common attribute can be perceptually grouped to-
gether; figure 2.12 lower row,

• other: principles include grouping by connectedness, grouping by common region, and
synchrony.1441

Visually grouping the elements in a display, using these principles, is a common human
trait. However, different people can make different choices, when perceptually grouping
of the same collection of items. Figure 2.13 shows items on a horizontal line, which
readers may group by shape, color, or relative proximity. A study by Kubovy and van
den Berg1050 created a model that calculated the probability of a particular perceptual
grouping (i.e., shape, color, or proximity in two dimensions) being selected for a given
set of items.

Studies1078 have found that when mapping the prose specification of a mathematical rela-
tionship to a formula, the visual proximity of applicable names has an impact on the error
rate.

A study by Palmer, Horowitz, Torralba and Wolfe1440 investigated the distribution of sub-
ject response times when searching for targets having varying degrees of distinctiveness
from the surrounding items, and with varying numbers of surrounding items. Subjects
each completed 400 trials locating a target among items sharing some visual character-
istics with the target; in 50% of trials the target was not present. Figure 2.14 shows
examples of the three tasks used, each containing a target that had various levels of dis-
tinctiveness from the other surrounding items.

Figure 2.15 shows the mean response time for each subject, when target was present (+
character) or absent (o character) from the display, along with fitted regression lines (solid
when target present, dashed when absent).

Depending on the visual characteristic, the search for an item may be sequential (e.g.,
shape, when many items share the same shapes), or have some degree of parallelism (e.g.,
color, when items have one of a few distinct colors); for an example, see figure 8.35.

28 2. Human cognition

Grouping by proximity

Grouping by color similarity vs grouping by proximity

Grouping by shape similarity vs grouping by proximity

Grouping by color similarity

Grouping by shape similarity

Grouping by color similarity vs grouping by shape similarity

Grouping by proximity & color similarity vs
grouping by shape similarity

Figure 2.13: Perceived grouping of items on a line may be
by shape, color or proximity. Based on Kubovy et al.1050

Github–Local

Figure 2.14: Examples of the three tasks subjects were
asked to solve. Left (RV GV): solid red rectangle having
same alignment with outline green rectangle, middle (RV
RHGV): solid vertical rectangle among solid horizontal
rectangles and outlined vertical green rectangles, and right
(2 5): digital 2 among digital 5s. Adapted from Palmer et
al.1440 Github–Local

5 10 15

0.5

1.0

1.5

2.0

Number of items

R
es

po
ns

e
tim

e
(s

ec
s)

2_v_5
RVvRHGV
RVvGV

++

+ +

+

+

+

+
+

+
+

+
+

+

+

+

++

+

+

+

++

+

+

+
+

+
+

+

+
+

+

+

+
+

oo

o
o

o

o

o

o
o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

++

+

+++
+

++

+
+

+

+

++ +
+++

+
++

+

++
+
++
+

+
++

+

+++
++
+

+
o
o

o

ooo
o
o o

o o
o

o

ooo
o

oo

o
o
o

o

o oo o
oo

o o
o

o

oo
o

o
oo

o

++
+

+
++
+
+
++ + +

+

+
+
+++

+ + ++
+

+
+
++

+
+
+

+ +

+

+

+

++
+
+

+

oo
o

o

oo
o

o

o
o o o

o

o

ooo
o

o
o oo

o

o

o

o

o
o

o

o

oo

o

o

o

o

o

o

o

o

Figure 2.15: Average subject response time to find a target
in an image containing a given number of items (x-axis),
when target present (+ and solid line) and absent (o and
dashed line); lines are fitted regression models. Data from
Palmer et al.1440 Github–Local

2.3.1 Reading

Building software systems involves a significant amount of reading. Research on the
cognitive processes involved in reading prose, written in human languages, has uncovered
the processes involved and various models have been built.1564

When reading prose, a person’s eyes make short rapid movements, known as saccades,
taking 20 ms to 50 ms to complete; a saccade typically moves the eyes forward 6 to 9
characters. No visual information is extracted during a saccade, and readers are not con-
sciously aware of them. Between saccades the eyes are stationary, typically for 200 ms
to 250 ms, these stationary periods are known as fixations. A study1486 of consumer eye
movements, while comparing multiple brands, found a fixation duration of 354 ms when
subjects were under high time pressure and 431 ms when under low time pressure.

Individual readers can exhibit considerable variations in performance, a saccade might
move the eyes by one character, or 15 to 20 characters; fixations can be shorter than
100 ms or longer than 400 ms (there is also variation between languages1423). The content
of fixated text has a strong effect on performance.

The eyes do not always move forward during reading—10% to 15% of saccades move the
eyes back to previous parts of the text. These backward movements, called regressions,
are caused by problems with linguistic processing (e.g., incorrect syntactic analysis of a
sentence), and oculomotor error (e.g., the eyes overshooting their intended target).

Saccades are necessary because the eyes’ field of view is limited. Light entering an eye
hits light-sensitive cells in the retina, where cells are not uniformly distributed. The visual
field (on the retina) can be divided into three regions: foveal (the central 2°, measured
from the front of the eye looking toward the retina), parafoveal (extending out to 5°),
and peripheral (everything else); see figure 2.16. Letters become increasingly difficult to
identify as their angular distance from the center of the fovea increases.

During the fixation period, two processes are active: identifying the word (or sequence
of letters forming a partial word), and planning the next saccade (when to make it and
where to move the eyes). Reading performance is speed limited by the need to plan and
perform saccades (removing the need to saccade, by presenting words at the same place
on a display, results in a threefold speed increase in reading aloud, and a two-fold speed
increase in silent reading). The time needed to plan and perform a saccade is approxi-
mately 180 ms —200 ms (known as the saccade latency), which means the decision to
make a saccade occurs within the first 100 ms of a fixation.

The contents of the parafoveal region are partially processed during reading, and this
increases a reader’s perceptual span. When reading words written using alphabetic char-
acters, the perceptual span extends from 3 to 4 characters on the left of fixation, to 14
to 15 letters to the right of fixation. This asymmetry in the perceptual span is a result
of the direction of reading, attending to letters likely to occur next is a cost effective use
of resources. Readers of Hebrew (which is read right-to-left) have a perceptual span that
has opposite asymmetry (in bilingual Hebrew/English readers the direction of the asym-
metry depends on the language being read, showing the importance of attention during
reading).1563

Characteristics used by the writing system affect the asymmetry of the perceptual span
and its width, e.g., the span can be smaller for Hebrew than English (Hebrew words
can be written without the vowels, requiring greater effort to decode and plan the next
saccade). It is also much smaller for writing systems that use ideographs, such as Japanese
(approximately 6 characters to the right) and Chinese.

The perceptual span is not hardwired, but is attention-based. The span can become smaller
when the fixated words become difficult to process. Also, readers extract more informa-
tion in the direction of reading when the upcoming word is highly predictable (based on
the preceding text).

Models of reading that have achieved some level of success include: Mr. Chips1109 is
an ideal-observer model of reading (it is not intended to model how humans read, but
to establish the pattern of performance, when optimal use is made of available infor-
mation), which attempts to calculate the distance, in characters, of the next saccade. It
combines information from visual data obtained by sampling the text through a retina,
lexical knowledge of words and their relative frequencies, and motor knowledge of the
statistical accuracy of saccades, and uses the optimization principle of entropy minimiza-
tion. The SWIFT model544 attempts to provide a realistic model of saccade generation,

2.4. MEMORY SYSTEMS 29

The quick brown fox jumped over the lazy dog.

Peripheral

Parafoveal

Foveal

Figure 2.16: The foveal, parafoveal and peripheral vision
regions when three characters visually subtend 3°. Based
on Schotter et al.1653 Github–Local

0 500 1000 1500 2000
0

200

400

600

800

1000

x

y

●

●

●
●
●

●●

●

●

●●●●
●●●

●●

●●●●●●●●
●●●●
●●●●●●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●●

●●

●●
●●●●●●●●●

●●●
●

●●

●

●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●
●●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●
●● ●●●●●●●●

●
●●

●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●● ●●●●●●

●
●

●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●
●●●●●●
●●●

●

●●●●●

●

●●●●●●●●●●
●●●●●●●●●● ● ●●● ●● ●●●●●●●●●●●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●

●●●●●●●●●●

●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●
●

●●
●● ●●●

●
●●●●●●

●

●

●

●

●●

●

●

●●●●●
●●●●●●

●●●●●
●●●●

●●●●
●●●●●●●

●●●●

●
●●

●●●●
●●●●
●●●
●
●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●
●●●

●●●●
●●●●●●●

●

●

●

●●●●●●●
●●●●

●

●

●

●●

●●●●●●
●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●

●●
●●●●●

●
●●
●
●
●
●●

●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●
●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●
●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●

●●
●●●●

●●
●
●
●●●
●●●
●●●●
●●●●

●

●●
●●●●●

●

●
●●●●●
●●●

●●●●●●●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●
●●
●●

●●
●●

●●
●●●

●●
●●
●●●●●●●●●●●●●

●●●●
●●●●

●●●●●●●●●
●●●●

●
●

●●●●●●●●●●●
●●

●●●●●●●●●●●
●●●●

●●●●●●●●●●●

●

●

●

●

●

●

●●●●●●
●●●●
●

●●●●●

●●
●●●●
●●
●

●●●●

●● ●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●

●●●
●●●●

●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●

●

●

●●●●

●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●
●●
●●●

●●
●●
●●●●●●●●●

●●●

●●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●

●●

●

●
●●●

●

●

●●●●●●●●●●●●●●
●
●●
●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●
●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●

●

●●

●●

●
●●●●●

●●●●●●●●●●●●●●●
●●

● ●●

●

●

●●

●●●●

●
●●●●●●●

●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●

●●●●●●●●●●●●●●
●●●●●●

●

●●●●●●●●
●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●
●

●

●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●

●

●

●●●●●●●
●●●

●●●●●●

●

●●●●●●
●●
●●
●●●
●●
●●

●●●●

●●
●●
●●●

●●
●●

●●●

●
●

●

●●
●●●●●●●●●●●

●●●●●●●

●

●

●

●

●
●

●

●●
●
●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●● ● ●●●●●●●●●●●

●

●●●●●● ● ●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●

●

●

●●●●●●
●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●

●

●●●●●● ●
●

●●●
●

●●●●●●

●
●●●●●●●●

●●●●●●●
●

●●●●● ●

●●●●●●●
●●●●

●●●
●●
●●●●●
●●

●●●●●●●●●●●●●●●

●

●●
●●●● ● ● ●●● ●

●●●●●●●

●●●●
●●●

●

●● ● ● ●●●●●●●
●●

● ●●

●

●●●●●
●
●●

●

●

●
●
●
●
●
●●●●●●●●●●●●●●

●●
●

●
●

●
●

●●
●

●

●●
●●

●
●

●
●

●●
●●● ● ●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●

●

●●●●●●
●●
●●●●●●●●●●

●

●
●

●
●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●

●●

●●

●

●●
●●●●●●●

●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●

●●●●●
●

●●●●●●
●●●●

● ●●● ● ● ●

●
●

●

●
●●●● ● ●●●● ●●

●●

●

●
●
●●●

●
●

●●
●

●●

●●●●●●●●●
●● ●●●●●

●

●
●
●

●
●
●

●
●
●●●●

●●
●●

●●●●
●

●●●●
●

●●●●
●●

●●●●●

●●
●●

●
●
●

●

●

●●●
●●● ●●●●●

●●
●●

●

●●●●
●
●

●

●●●

●

●●
●
●
●

●

●●
●●●●●●●●●● ● ●●

●

●

●●●●●●●●

●●●
●●●
●●●●

●

●

●●●●●
●
●
●●●●●

●●●●●

●●●
●●
●
●●

●● ●●●●●●●●

●

●

●

●●●
●

●

●

●
●●

●●●●
●●

●●●●●●●●●●
●●●●●●●

●●●

●●●

●
●●●

●●●
●●●

●
●●●●●●●●●

●●● ●

●

●
●

●●
● ●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●●
●
●
●
●
●

●

●
●

●

●
●

●●●

●

●

●

●
●
●

●●

●

●

●●●●
●●●

●●

●●●●●●●●
●●●●
●●●●●●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●●

●●

●●
●●●●●●●●●

●●●
●

●●

●

●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●
●●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●
●● ●●●●●●●●

●
●●

●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●● ●●●●●●

●
●

●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●
●●●●●●
●●●

●

●●●●●

●

●●●●●●●●●●
●●●●●●●●●● ● ●●● ●● ●●●●●●●●●●●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●

●●●●●●●●●●

●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●
●

●●
●● ●●●

●
●●●●●●

●

●

●

●

●●

●

●

●●●●●
●●●●●●

●●●●●
●●●●

●●●●
●●●●●●●

●●●●

●
●●

●●●●
●●●●
●●●
●
●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●
●●●

●●●●
●●●●●●●

●

●

●

●●●●●●●
●●●●

●

●

●

●●

●●●●●●
●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●

●●
●●●●●

●
●●
●
●
●
●●

●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●
●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●
●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●

●●
●●●●

●●
●
●
●●●
●●●
●●●●
●●●●

●

●●
●●●●●

●

●
●●●●●
●●●

●●●●●●●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●
●●
●●

●●
●●

●●
●●●

●●
●●
●●●●●●●●●●●●●

●●●●
●●●●

●●●●●●●●●
●●●●

●
●

●●●●●●●●●●●
●●

●●●●●●●●●●●
●●●●

●●●●●●●●●●●

●

●

●

●

●

●

●●●●●●
●●●●
●

●●●●●

●●
●●●●
●●
●

●●●●

●● ●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●

●●●
●●●●

●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●

●

●

●●●●

●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●
●●
●●●

●●
●●
●●●●●●●●●

●●●

●●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●

●●

●

●
●●●

●

●

●●●●●●●●●●●●●●
●
●●
●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●
●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●

●

●●

●●

●
●●●●●

●●●●●●●●●●●●●●●
●●

● ●●

●

●

●●

●●●●

●
●●●●●●●

●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●

●●●●●●●●●●●●●●
●●●●●●

●

●●●●●●●●
●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●
●

●

●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●

●

●

●●●●●●●
●●●

●●●●●●

●

●●●●●●
●●
●●
●●●
●●
●●

●●●●

●●
●●
●●●

●●
●●

●●●

●
●

●

●●
●●●●●●●●●●●

●●●●●●●

●

●

●

●

●
●

●

●●
●
●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●● ● ●●●●●●●●●●●

●

●●●●●● ● ●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●

●

●

●●●●●●
●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●

●

●●●●●● ●
●

●●●
●

●●●●●●

●
●●●●●●●●

●●●●●●●
●

●●●●● ●

●●●●●●●
●●●●

●●●
●●
●●●●●
●●

●●●●●●●●●●●●●●●

●

●●
●●●● ● ● ●●● ●

●●●●●●●

●●●●
●●●

●

●● ● ● ●●●●●●●
●●

● ●●

●

●●●●●
●
●●

●

●

●
●
●
●
●
●●●●●●●●●●●●●●

●●
●

●
●

●
●

●●
●

●

●●
●●

●
●

●
●

●●
●●● ● ●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●

●

●●●●●●
●●
●●●●●●●●●●

●

●
●

●
●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●

●●

●●

●

●●
●●●●●●●

●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●

●●●●●
●

●●●●●●
●●●●

● ●●● ● ● ●

●
●

●

●
●●●● ● ●●●● ●●

●●

●

●
●
●●●

●
●

●●
●

●●

●●●●●●●●●
●● ●●●●●

●

●
●
●

●
●
●

●
●
●●●●

●●
●●

●●●●
●

●●●●
●

●●●●
●●

●●●●●

●●
●●

●
●
●

●

●

●●●
●●● ●●●●●

●●
●●

●

●●●●
●
●

●

●●●

●

●●
●
●
●

●

●●
●●●●●●●●●● ● ●●

●

●

●●●●●●●●

●●●
●●●
●●●●

●

●

●●●●●
●
●
●●●●●

●●●●●

●●●
●●
●
●●

●● ●●●●●●●●

●

●

●

●●●
●

●

●

●
●●

●●●●
●●

●●●●●●●●●●
●●●●●●●

●●●

●●●

●
●●●

●●●
●●●

●
●●●●●●●●●

●●● ●

●

●
●

●●
● ●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●●
●
●
●
●
●

●

●
●

●

●
●

●●●

●

Figure 2.17: Heat map of one subject’s cumulative fixa-
tions (black dots) on a screen image. Data kindly provided
by Ali.31 Github–Local

while E-Z Reader1503 attempts to account for how cognitive and lexical processes influ-
ence the eye movements of skilled readers (it can handle the complexities of garden path
sentences1571iv).

English text is read left to right, on lines that go down the page. The order in which the
components of a formula are read depends on its contents, with the visual processing of
subexpressions by experienced users driven by the mathematical syntax,912, 913 with the
extraction of syntax happening in parallel.1646 Studies1214 have started to investigate the
functional areas of the brain involved in processing expressions.

A study by Pelli, Burns, Farell, and Moore1463 found that 2,000 to 4,000 trials were all
that was needed for novice readers to reach the same level of efficiency as fluent readers
in the letter-detection task (efficiency was measured by comparing human performance
compared to an ideal observer). They tested subjects aged 3 to 68 with a range of different
(and invented) alphabets (including Hebrew, Devanagari, Arabic and English). Even fifty
years of reading experience, over a billion letters, did not improve the efficiency of letter
detection. They also found this measure of efficiency was inversely proportional to letter
perimetric complexity (defined as: inside and outside perimeter squared, divided by ink
area).

The choice of display font is a complex issue. The use of Roman, rather than Helvetica (or
serif vs. sans serif), is often claimed to increase reading speed and comprehension. The
issues involved in selecting fonts are covered in a report detailing “Font Requirements for
Next Generation Air Traffic Management Systems”.258

Vision provides information about what people are thinking about; gaze follows shifts of
visual attention. Tracking a subject’s eye movements and fixations, when viewing images
or real-life scenes, is an established technique in fields such as marketing and reading
research. This technique is now starting to be used in research of developer code reading;
see figure 2.17.

2.4 Memory systems

Memory evolved to supply useful, timely information to an organism’s decision-making
systems,1021 subject to evolutionary constraints.1350 Memory subsystems are scattered
about the brain, with each subsystem/location believed to process and store distinct kinds
of information. Figure 2.18 shows a current model of known long-term memory subsys-
tems, along with the region of the brain where they are believed to operate.

Declarative memory has two components, each processing specific instances of informa-
tion, one handles facts about the world, while the other, episodic memory, deals with
events (i.e., the capacity to experience an event in the context in which it occurred; it is
not known if non-human brains support episodic memory). We are consciously aware of
declarative memory, facts and events can be consciously recalled; it is the kind of memory
that is referred to in everyday usage as memory. Declarative memory is representational,
it contains information that can be true or false.

Memory

Declarative Nondeclarative

Facts Events Procedural
(skills &
habits)

Priming &
perceptual

learning

Simple
classical
learning

Nonassociative
learning

Medial temporal lobe
diencephalon Striatum Neocortex

Emotional Skeletal

Reflex
pathwaysAmygdala Cerebellum

Figure 2.18: Structure of mammalian long-term memory
subsystems; brain areas in red. Based on Squire et al.1754

ivIn “Since Jay always jogs a mile seems like a short distance.” readers experience a disruption that is
unrelated to the form or meaning of the individual words; the reader has been led down the syntactic garden
path of initially parsing the sentence such that a mile is the object of jogs, before realizing that a mile is the
subject of seems.

30 2. Human cognition

gun ball
shoe

knife scissors

button ring

egg pen

ruler
coin

cup rubberband screw

eraser

cork envelope truck

flashlight
book

can
cufflink lock

thimble lighbulb
glue

cigarettes radio

screw
truck
glue
lock
radio

egg
cup
eraser
cork
shoe
ball
gun
ring
scissors

pen

knife
button
ruler
coin
rubberband

cigarettes
cufflink
lightbulb
thimble
can
flashlight
envelope
book

Figure 2.19: Example object layout, and the correspond-
ing ordered tree produced from the answers given by
one subject. Data extracted from McNamara et al.1247

Github–Local

Nondeclarative memory (also known as implicit memory) extracts information from re-
curring instances of an experience, to form skills (e.g., speaking a language) and habits,

3 3 3 3
a a a a a a

8 8 8
z z
1 1

t t t t
6 6 6 6 6

simple forms of conditioning, priming (i.e., response to a stimulus is modified by a pre-
ceding stimulus;1575 an advantage in a slowly changing environment, where similar events
are likely to occur on a regular basis), and perceptual learning (i.e., gradual improvement
in the detection or discrimination of visual stimuli with practice).

Information in nondeclarative memory is extracted through unconscious performance,
e.g., riding a bike. It is an unconscious memory and is not available for conscious re-
call; information use requires reactivation of the subsystem where the learning originally
occurred.

These subsystems operate independently and in parallel, the parallelism creates the pos-
sibility of conflicting signals being fed as inputs to higher level systems. For instance, a
sentence containing the word blue may be misinterpreted because information about the
word, and the color in which it appears, green, is returned by different memory subsys-
tems (known as the Stroop effect).

A Stroop-like effect has also been found to occur with lists of numbers. Readers might
like to try counting the number of characters occurring in each row in the outside margin.
The effort of counting the digit sequences is likely to be greater, and more error prone,
than for the letter sequences.

Studies1454 have found that when subjects are asked to enumerate visually presented dig-
its, the amount of Stroop-like interference depends on the arithmetic difference between
the magnitude of the digits used, and the quantity of those digits displayed. Thus, a short,
for instance, list of large numbers is read more quickly, and with fewer errors, than a short
list of small numbers. Alternatively a long list of small numbers (much smaller than the
list length) is read more quickly, and with fewer errors, than a long list of numbers where
the number has a similar magnitude than the length of the list.

Making use of patterns that can be seen in the environment is one technique for reducing
memory load.

Studies have found that people organize their memory for objects within their visual field
according to the relative positions of the objects. A study by McNamara, Hardy, and
Hirtle1247 gave subjects two minutes to memorize the location of objects on the floor of
a room; see figure 2.19, upper plot. The objects were then placed in a box, and subjects
were asked to replace the objects in their original position; the memorize/recall cycle was
repeated, using the same layout, until the subject could place all objects in their correct
position.

The order in which each subject recalled the location of objects was mapped to a hierar-
chical tree (one for each subject). The resulting trees (see figure 2.19, lower plot) showed
how subjects’ spatial memory of the objects had an organization based on spatial distance
between items.

Other research on the interaction between human memory and software development in-
cludes: a study46 which built a computational process model, based on SOAR, and fitted
it to 10.5 minutes of programmer activity (debugging within an emacs window); the sim-
ulation was used to study the memories built up while trying to solve a problem.

8704
2193
3172

57301
02943
73619

659420
402586
542173

6849173
7931684
3617458

27631508
81042963
07239861

578149306
293486701
721540683

5762083941
4093067215
9261835740

2.4.1 Short term memory

As its name implies, short term memory (STM) is a memory system that can hold in-
formation for short periods of time. Short term memory is the popular term for what
cognitive psychologists call working memory, named after its function, rather than the
relative duration holds information. Early researchers explored its capacity, and a paper
by Miller1284 became the citation source for the now-famous 7±2 rule (Miller did not
propose 7±2 as the capacity of STM, but simply drew attention to the fact that this range
of values fitted the results of several experiments). Things have moved on in the 65+
years since the publication of his paper,928 with benchmarks now available for evaluating
models of STM.1400

Readers might like to try measuring their STM capacity, using the list of numbers in the
outside margin. Any Chinese-speaking readers can try this exercise twice, using the En-
glish and Chinese words for the digits (use of Chinese should enable readers to apparently

2.4. MEMORY SYSTEMS 31

2 4 6 8
Digit load

R
ea

so
ni

ng
 ti

m
e

(s
ec

)

2.2

2.4

2.6

2.8

3.5
4.0
4.5
5.0
5.5
6.0
6.5

E
rr

or
 %

Figure 2.20: Response time (left axis) and error percent-
age (right axis) on reasoning task with a given number of
digits held in memory. Data extracted from Baddeley.111

Github–Local

Central
Executive

Visuo−spatial
sketch−pad

Phonological
loop

Visual
semantics

Episodic
LTM

Language

Figure 2.21: Major components of working memory:
working memory in yellow, long-term memory in orange.
Based on Baddeley.112 Github–Local

1 2 3 4 5 6

400

450

500

550

600

Number of items

M
ea

n
re

ac
tio

n
tim

e
(m

se
c)

Negative
Positive

Figure 2.22: Yes/no response time (in milliseconds) as a
function of number of digits held in memory. Data ex-
tracted from Sternberg.1778 Github–Local

increase the capacity of their STM). Slowly and steadily read the digits in a row, out loud.
At the end of each row, close your eyes and try to repeat the sequence of digits in the
same order. If you make a mistake, go on to the next row. The point at which you cannot
correctly remember the digits in any two rows, of a given length, indicates your capacity
limit, i.e., the number of digits in the previous two rows.

The performance impact of reduced working memory capacity can be shown by having
people perform two tasks simultaneously. A study by Baddeley111 measured the time
taken to solve a simple reasoning task (e.g., B→ A, question: “A follows B” True or
False?), while remembering a sequence of digits (the number of digits is known as the
digit load). Figure 2.20 shows response time (left axis) and percentage of incorrect an-
swers (right axis) for various digit loads.

Measuring memory capacity using lists of digits relies on a variety of assumptions, such as
assuming all items consume the same amount of memory resources (e.g., digits and letters
are interchangeable), that relative item ordering is implicitly included in the measurement
and that individual concepts are the unit of storage. Subsequent studies have completely
reworked models of STM. What the preceding exercise measured was the amount of
sound that could be held in STM. The spoken sound used to represent digits in Chinese is
shorter than in English, and using Chinese should enable readers to maintain information
on more digits (average 9.9852) using the same amount of sound storage. A reader using
a language in which the spoken sound of digits is longer, can maintain information on
fewer digits, e.g., average 5.8 in Welsh,542 and the average for English is 6.6.

Observations of a 7±2 capacity limit derive from the number of English digits spoken
in two seconds of sound113 (people speak at different speeds, which is one source of
variation included in the ±2; an advantage for fast talkers). The two seconds estimate
is based on the requirement to remember items, and their relative order; the contents of
STM do not get erased after two seconds, this limit is the point at which degradation of
its contents start to become noticeable.1321 If recall of item order is not relevant, then the
limit increases because loss of this information is not relevant.

26
12Studies1401 involving multiple tasks have been used to distinguish the roles played by

various components of working memory (e.g., storage, processing, supervision and coor-
dination). Figure 2.21 shows the components believed to make up working memory, each
with its own independent temporary storage areas, each holding and using information in
different ways.

The central executive is assumed to be the system that handles attention, controlling the
phonological loop, the visuo-spatial sketch pad, and the interface to long-term memory.
The central executive needs to remember information while performing tasks, such as text
comprehension and problem-solving. It has been suggested that the focus of attention
is capacity-limited, but that the other temporary storage areas are time-limited (without
attention to rehearse them, they fade away).413

Visual information held in the visuo-spatial sketch pad decays very rapidly. Experiments
have shown that people can recall four or five items immediately after they are presented
with visual information, but that this recall rate drops very quickly after a few seconds.

Mental arithmetic provides an example of how different components of working memory
can be combined to solve a problem that is difficult to achieve using just one compo-
nent; for example, multiply 23 by 15 without looking at this page. Information about the
two numbers, and the intermediate results, has to be held in short term memory and the
central executive. Now perform another multiplication, but this time look at the two num-
bers being multiplied (see outer margin for values), while performing the multiplication.
Looking at the numbers reduces the load on working memory by removing the need to
remember them.

Table 2.2 contains lists of words; those at the top of the table contain a single syllable,
those at the bottom multiple syllables. Readers should have no problems remembering a
sequence of five single-syllable words, a sequence of five multi-syllable words is likely to
be more difficult. As before, read each word, going down a list, slowly out loud.

Making an analogy between phonological loop and a loop of tape in a tape recorder,
suggests that it might only be possible to extract information as it goes past a read-out
point. A study by Sternberg1778 asked subjects to hold a sequence of digits in memory,
e.g., 4185, and measured the time taken to respond yes/no, about whether a particular
digit was in the sequence. Figure 2.22 shows that as the number of digits increases, the
time taken for subjects to respond increases; another result was that response time was

32 2. Human cognition

List 1 List 2 List 3 List 4 List 5
one cat card harm add
bank lift list bank mark
sit able inch view bar
kind held act fact few
look mean what time sum

ability basically encountered laboratory commitment
particular yesterday government acceptable minority
mathematical department financial university battery
categorize satisfied absolutely meaningful opportunity
inadequate beautiful together carefully accidental

Table 2.2: Words with either one or more than one syllable (and thus varying in the length of time taken to speak).

S 1
●

she ●

 vp

liked ●

 np

the man ●

 cl

that ●

 vp

visited ●

 np

the jeweller ●

 cl

that ●

 vp

made ●

 np

the ring ●

 cl

that ●

 vp

won ●

 np

the prize ●

 cl

that ●

 vp

was given
 at the fair

S 4
●

●

 np

the prize ●

 cl

that

●

 vp

won

●

s

●

 np

the ring ●

 cl

that

●

 vp

made

●

s

●

 np

the jeweller ●

 cl

that

●

 vp

visited

●

s

●

 np

the man ●

 cl

that she liked

●

 vp

 was given at the fair

Figure 2.23: Parse tree of a sentence with no embedding,
upper "S 1", and a sentence with four degrees of embed-
ding, lower "S 4". Based on Miller et al.1285 Github–Local

not affected by whether the answer was yes or no. It might be expected that a yes answer
would enable searching to terminate, but the behavior found suggests that all digits were
always being compared. Different kinds of information has different search response
times.309

Extrapolating the results from studies based on the use of natural language,441 to the use of
computer languages, needs to take into account that reader performance has been found to
differ between words (character sequences having a recognized use in the reader’s native
human language) and non-words, e.g., naming latency is lower for words,1939 and more
words can be held in short term memory,872 i.e., word_span = 2.4+2.05× speech_rate,
and nonword_span = 0.7+2.27× speech_rate.

The ability to comprehend syntactically complex sentences is correlated with working
memory capacity.1004 A study by Miller and Isard1285 investigated subjects’ ability to
memorize sentences that varied in their degree of embedding. The following sentences
have increasing amounts of embedding (figure 2.23 shows the parse-tree of two of them):

She liked the man that visited the jeweller that made the ring that won the prize
that was given at the fair.

The man that she liked visited the jeweller that made the ring that won the prize
that was given at the fair.

The jeweller that the man that she liked visited made the ring that won the prize
that was given at the fair.

The ring that the jeweller that the man that she liked visited made won the prize
that was given at the fair.

The prize that the ring that the jeweller that the man that she liked visited made
won was given at the fair.

Subjects’ ability to correctly recall wording decreased as the amount of embedding in-
creased, although performance did improve with practice. People have significant com-
prehension difficulties when the degree of embedding in a sentence exceeds two.210

Human language has a grammatical structure that enables it to be parsed serially, e.g., as
it is spoken.1482 One consequence of this expected characteristic of sentences is that so
called garden path sentences (where one or more words at the end of a sentence changes
the parsing of words read earlier) generate confusion that requires conscious effort to
reason about what has been said. Examples of garden path sentences include:

The old train their dogs.
The patient persuaded the doctor that he was having trouble with to leave.
While Ron was sewing the sock fell on the floor.
Joe put the candy in the jar into my mouth.
The horse raced past the barn fell.

A study by Mathy, Chekaf and Cowan1221 investigated the impact, on subject perfor-
mance, of various patterns in a list of items to be remembered. Figure 2.24, upper plot,
shows an example of how items on a list might share one or more of the attributes: color,
shape or size. A list was said to be “chunkable”, if its items shared attributes in a way that

2.4. MEMORY SYSTEMS 33

1

2

3

4

+ ● + +

● ●

1

2

3

4

5

R
ec

al
l s

pa
n

Non−chunkable Chunkable

Simple
Complex

Figure 2.24: Examples of the kind of pattern of symbol
sequence stimuli seen by subjects (upper); mean span over
all subjects, with standard deviation (lower). Data from
Mathy et al.1221 Github–Local

−3 −1 1 3
Offset

E
rr

or
s

(p
er

ce
nt

)

Very short

−3 −1 1 3
Offset

Short

−3 −1 1 3

1

2

3

4

5

6

Offset

Medium

−3 −1 1 3
Offset

Long

Figure 2.25: Sequencing errors (as percentage), after in-
terruptions of various length (red), including 95% confi-
dence intervals, sequence error rate without interruptions
in green; lines are fitted model predictions. Data from Alt-
mann et al.48 Github–Local

enabled subjects to reduce the amount of item specific information they needed to remem-
ber (e.g., all purple, small/large, triangle then circle). The items on a “non-chunkable” list
did not share attributes in a way that reduced the amount of information that needed to be
remembered. A chunkability value was calculated for each list.

In the simple span task subjects saw a list of items, and after a brief delay had to recall the
items on the list. In the complex span task, subjects saw a list of items, and had to judge
the correctness of a simple arithmetic expression, before recalling the list.

An item span score was calculated for each subject, based on the number of items cor-
rectly recalled from each list they saw (the chunkability of the list was included in the
calculation). Figure 2.24, lower plot, shows the mean span over all subjects, with corre-
sponding standard deviation.

The two competing models for loss of information in working memory are:580 passive
decay (information fades away unless a person consciously spends time rehearsing or re-
freshing it), and interference with new incoming information (a person has to consciously
focus attention on particular information to prevent interference with new information).

2.4.2 Episodic memory

Episodic memory is memory for personally experienced events that are remembered as
such, i.e., the ability to recollect specific events or episodes in our lives. When the remem-
bered events occurred sometime ago, the term autobiographical memory is sometimes
used.

What impact does the passage of time have on episodic memories?

A study by Altmann, Trafton and Hambrick48 investigated the effects of interruption on
a task involving seven steps. Subjects performed the same task 37 times, and were in-
terrupted at random intervals during the 30-50 minutes it took to complete the session.
Interruptions required subjects to perform a simple typing task that took, on average, 2.8,
13, 22 or 32 seconds (i.e., a very short to long interruption). Figure 2.25 shows the per-
centage of sequencing errors made immediately after an interruption, and under normal
working conditions (in red; sequence error rate without interruptions in green). A se-
quence error occurs when an incorrect step is performed, e.g., step 5 is performed again,
having already performed step 5, when step 6 should have been performed; the offset on
the x-axis is the difference between the step performed, and the one that should have been
performed. The sequence error rate, as a percentage of total number of tasks performed
at each interruption interval, was 2.4, 3.6, 4.6 and 5.1%. The lines are predictions made
by a model fitted to the data.

2.4.3 Recognition and recall

Recognition memory is the ability to recognise previously encountered items, events or
information. Studies1036 have found that people can often make a reasonably accurate
judgement about whether they know a piece of information or not, even if they are unable
to recall that information at a particular instant; the so-called feeling of knowing is a good
predictor of subsequent recall of information,

Recall memory is the ability to retrieve previously encountered items, events or infor-
mation. Studies have investigated factors that influence recall performance267 (e.g., the
structure of the information to be remembered, associations between new and previously
learned information, and the interval between learning and recall), techniques for improv-
ing recall performance, and how information might be organized in memory.

The environment in which information was learned can have an impact on recall perfor-
mance. A study by Godden and Baddeley688 investigated subjects’ recall of words mem-
orized in two different environments. Subjects were divers, who learned a list of spoken
words, either while submerged underwater wearing scuba apparatus, or while sitting at
a table on dry land. The results found that subject recall performance was significantly
better, when performed in the environment in which the word list was learned.

When asked to retrieve members of a category, people tend to produce a list of semanti-
cally related items, before switching to list another cluster of semantically related items
and so on. This pattern of retrieval is similar to that seen in strategies of optimal food for-
aging,830 however the same behavior can also emerge from a random walk on a semantic
network built from human word-association data.2

34 2. Human cognition

1 2 3 4 5 6

A H L Q U W

B I M R V X

C J N S Y

D K O T Z

E P

F

G

Figure 2.26: Semantic memory representation of alpha-
betic letters (the numbers listed along the top are place
markers and are not stored in subject memory). Readers
may recognize the structure of a nursery rhyme in the let-
ter sequences. Derived from Klahr.1017 Github–Local

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

Serial position

R
ec

al
l p

ro
ba

bi
lit

y

Figure 2.27: Probability of correct recall of words, by se-
rial presentation order; for lists of length 10, 15 and 20
each word visible for 1, for lists of length 20, 30 and 40
each word visible for 2 seconds. Data from Murdoch,1331

via Brown.267 Github–Local

2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Sequence length

P
ro

po
rt

io
n

co
rr

ec
t

Two colors
Three colors
Four colors

Figure 2.28: Proportion of correctly recalled colored dot
sequences of a given length, containing a given number
of colors; lines are fitted regression models. Data kindly
provided by Chekaf.341 Github–Local

Chunking is a technique commonly used by people to help them remember informa-
tion. A chunk is a small set of items (4±1 is seen in many studies) having a common,
strong, association with each other (and a much weaker one to items in other chunks).
For instance, Wickelgren1953 found that people’s recall of telephone numbers is optimal,
if numbers are grouped into chunks of three digits. An example, using random-letter se-
quences is: fbicbsibmirs. The trigrams (fbi, cbs, ibm, irs), within this sequence of 12
letters, are well-known acronyms in the U.S.A. A person who notices this association can
use it to aid recall. Several theoretical analyses of memory organizations have shown that
chunking of items improves search efficiency (optimal chunk size 3–4,502 number items
at which chunking becomes more efficient than a single list, 5–71183).

A study by Klahr, Chase, and Lovelace1017 investigated how subjects stored letters of the
alphabet in memory. Through a series of time-to-respond measurements, where subjects
were asked to name the letter that appeared immediately before or after the presented
probe letter, they proposed the alphabet-storage structure shown in figure 2.26.

2.4.3.1 Serial order information

Information about the world is processed serially. Studies879 have consistently found a
variety of patterns in recall of serial information (studies often involve recalling items
from a recently remembered list), patterns regularly found include:

• higher probability of recall for items at the start (the primacy effect) and end (the re-
cency effect) of a list (known as the serial position effect;1331 see figure 2.27). The
probability that an item will be remembered as occupying position i, at time t+1, is ap-
proximately given by,1349 for interior positions: Pi,t+1 = (1−θ)Pi,t +

θ

2 Pi−1,t +
θ

2 Pi+1,t ,
and for the first item: P1,t+1 = (1− θ

2)P1,t +
θ

2 P2,t , and similarly for the last time. One
study,1349 involving lists of five words, found that using θ = 0.12, for each 2-hour re-
tention interval, produced predictions in reasonable agreement with the experimental
data (more accurate models have been created267),

• recall of a short list tends to start with the first item, and progress in order through
the list, while for a long list people are more likely to start with one of the last four
items.1926 When prompted by an entry on the list people are most likely to recall the
item following it;862 see Github–developers/misc/HKJEP99.R,

• when recalling items from an ordered list, people tend to make anticipation errors (i.e.,
recall a later item early), shifting displaced items further along the list.579

A method’s parameters have a serial order, and the same type may appear multiple times
within the parameter list.

A study by Chekaf, Gauvrit, Guida, and Mathy341 investigated subjects’ recall perfor-
mance of a sequence of similar items. Subjects saw a sequence of colored dots, each dot
visible for less than a second, and had to recall the presented sequence of colors. The
number of colors present in a sequence varied from two to four, and the sequence length
varied from two to ten.

Figure 2.28 shows the proportion of correctly recalled dot sequences of a given length,
containing a given number of colors; lines are fitted Beta regression models.

A study by Adelson9 investigated the organization present in subject’s recall order of
previously remembered lines of code. Subjects saw a total of 16 lines of code, one line at
a time, and were asked to memorise each line for later recall. The lines were taken from
three simple programs (two containing five lines each and one containing six lines), the
program order being randomised for each subject. Five subjects were students who had
recently taken a course involving the language used, and five subjects had recently taught
a course using the language.

Subjects were free to recall the previously seen lines in any order. An analysis of re-
call order showed that students grouped lines by syntactic construct (e.g., loop, function
header), while the course teachers recalled the lines in the order in which they appeared in
the three programs (i.e., they reconstructed three programs from the 16 randomly ordered
lines); see figure 2.29.

A study by Pennington1467 found that developers responded slightly faster to questions
about a source code statement when its immediately preceding statement made use of
closely related variables.

2.5. LEARNING AND EXPERIENCE 35

0

5

10

15

20

25

30

Teachers

Items

2_
0

2_
1

2_
2

2_
3

2_
4

1_
0

1_
1

1_
4

1_
2

1_
3

3_
4

3_
5

3_
0

3_
1

3_
2

3_
3

0

5

10

15

20 Students

3_
1−

F
3_

2−
F

1_
1−

F
1_

2−
F

3_
0−

H
1_

0−
H

2_
0−

H
3_

4−
I

1_
4−

R
3_

5−
R

1_
3−

I
2_

2−
I

2_
1−

A
2_

4−
I

2_
3−

A
3_

3−
A

Figure 2.29: Hierarchical clustering of statement recall or-
der, averaged over teachers and students; label names are:
program_list-statementkind, where statementkind might
be a function header, loop, etc. Data extracted from Adel-
son.9 Github–Local

1 5 50 500
0.0

0.2

0.4

0.6

0.8

1.0

Seconds (thousand)

N
or

m
al

is
ed

 s
av

in
g

Ebbinghaus
Mack
Seitz
Drost

Figure 2.30: Fraction of relearning time saved (nor-
malised) after given interval since original learning; origi-
nal Ebbinghaus study and three replications (with standard
errors). Data from Murre et al.1335 Github–Local

2.4.4 Forgetting

People are unhappy when they forget things; however, not forgetting may be a source of
unhappiness.1386 The Russian mnemonist Shereshevskii found that his ability to remem-
ber everything cluttered up his mind.1175 Having many similar, not recently used, pieces
of information matching during a memory search can be counterproductive; forgetting is
a useful adaptation.1652 For instance, a driver returning to a car wants to know where it
was last parked, not the location of all previous parking locations. It has been proposed
that human memory is optimized for information retrieval based on the statistical prop-
erties of the likely need for the information,59 in peoples’ everyday lives (which, these
days, includes the pattern of book borrowings from libraries283). The rate at which the
mind forgets seems to mirror the way that information tends to lose its utility, over time,
in the world in which we live. Organizational forgetting is discussed in section 3.4.5.

Some studies of forgetting have found that a power law is a good fit to the reduction,
over time, in subjects’ ability to correctly recall information,1617 while results from other
studies are better fitted by an exponential equation (over the measurement range of many
experiments, the difference between the two fitted models is usually small).v As more ex-
perimental data has become available, more complicated models have been proposed.1257

A study by Ebbinghaus,526 using himself as a subject, performed what has become a
classic experiment in forgetting. The measure of learning and forgetting used was based
on the relative time saved, when relearning previously learned information, compared to
the time taken to first learn the information. Ebbinghaus learned lists of 104 nonsense
syllables, with intervals between relearning of 20 minutes, 1 hour, 9 hours, 1 day, 2 days,
6 days and 31 days. Figure 2.30 shows the fraction of time saved, after a given duration,
when relearning list contents to the original learned standard (with standard errors)

Another measure of information retention was used in a study by Rubin, Hinton and
Wenzel.1616 Subjects saw a pair of words on a screen, which they had to remember; later,
when the first word appeared on the screen, they had to type the second word of the pair.
Subjects saw a sequence of different word pairs; lag is defined as the number of words
seen between first seeing a word pair and being asked to give the second word in response
to the appearance of the first word of the pair.

Figure 2.31 shows the fraction of correct second words at various lag intervals. The red
line is a fitted bi-exponential regression model, with blue and green lines showing its two
exponential components.

A study by Meeter, Murre and Janssen1257 investigated the likelihood of prominent of
news stories being correctly recalled over a period of 16 months. The questions subjects
were asked had two possible forms: forced choice, where four possible answers were
listed and one had to be selected, and: open, where an answer had to be provided with
no suggestions listed. Data was collected from 14,000 people, via an internet news test.
Figure 2.32 shows the fraction of correct answers each day, against time elapsed since the
event in the question was reported.

2.5 Learning and experience

Humans are characterized by an extreme dependence on culturally transmitted informa-
tion.

People have the ability to learn, and on many tasks human performance improves with
practice, e.g., time taken to deciding whether a character sequence is an English word.991

Many studies have fitted a power law to measurements of practice performance (the term
power law of learning is often used). If chunking is assumed to play a role in learning, a
power law is a natural consequence;1370 the equation has the form:vi

RT = a+bN−c, where: RT is the response time, N the number of times the task has been
performed, and a, b, and c are constants obtained by model fitting.

vIt has been suggested that the power laws are a consequence of fitting data averaged over multiple subjects;
see section 9.3.3.

viPower laws can be a consequence of fitting data averaged over multiple subjects, rather than representing
individual subject performance; see section 9.3.3.

36 2. Human cognition

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

Lag (words)

F
ra

ct
io

n
co

rr
ec

t

Figure 2.31: Fraction of correct subject responses, with
fitted bi-exponential model in red (blue and green lines
are its two exponential components). Data from Rubin et
al.1616 Github–Local

1 2 5 10 20 50 100

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Question age (days)

C
or

re
ct

Forced choice: 4 alternatives
Open

Figure 2.32: Fraction of news items correctly recalled
each day, after a given number of days since the event;
Forced choice of one alternative from four, and Open re-
quiring an answer with no suggestions provided. Data
from Meeter et al.1257 Github–Local

1 2 5 10 20

10

20

30

40

Trial

T
im

e
ta

ke
n

(m
in

ut
es

)

First 35
Second 35

Figure 2.33: Time taken to solve the same jig-saw puzzle
35 times, followed by a two-week interval and then an-
other 35 times, with power law and exponential fits. Data
extracted from Alteneder.45 Github–Local

There are also theoretical reasons for expecting the measurements to be fitted by an expo-
nential equation, and this form of model has been fitted to many learning data sets;797 the
equation has the form:vii

RT = a+be−cN

Both equations often provide good enough fits to the available data, and without more
measurements than is usually available, it is not possible to show one is obviously better
than the other.

Implicit learning occurs when people perform a task containing information that is not
explicitly obvious to those performing it. A study by Reber and Kassin1567 compared
implicit and explicit pattern detection. Subjects were asked to memorize sets of words,
with the words in some sets containing letter sequences generated using a finite state
grammar. One group of subjects thought they were just taking part in a purely memory-
based experiment, while the second group were told of the existence of a letter sequence
pattern in some words, and that it would help their performance if they could deduce this
pattern. The performance of the two groups, on the different sets of words (i.e., pattern
words only, pattern plus non-pattern words, non-pattern words only), matched each other.
Without being told to do so, subjects had used patterns in the words to help perform the
memorization task.

Explicit learning occurs when the task contains patterns that are apparent, and can be
remembered and used on subsequent performances. A study by Alteneder45 recorded the
time taken, by the author, to solve the same jig-saw puzzle 35 times (over a four-day
period). After two weeks, the same puzzle was again solved 35 times. Figure 2.33 shows
both a fitted power law and exponential; the exponent of the fitted power law, for the first
series, is -0.5

Social learning, learning from others, is discussed in section 3.4.4, and organizational
learning is discussed in section 3.4.5.

For simple problems, learning can result in the solution being committed to memory;
performance is then driven by reaction-time, i.e., the time needed to recall and give the
response. Logan1156 provides an analysis of subject performance on these kinds of prob-
lems.

The amount of practice needed to learn any patterns present in a task (to be able to perform
it), depends on the complexity of the patterns. A study by Kruschke1047 asked subjects to
learn the association between a stimulus and a category; they were told that the category
was based on height and/or position, During the experiment subjects were told whether
they had selected the correct category for the stimulus. When the category involved a
single attribute (i.e., one of height or location), learning was predicted to be faster, com-
pared to when it involved two attributes, i.e., learning difficulty depends on the number of
variables and states.

Figure 2.34 shows the probability of a correct answer, for a particular kind of stimulus
(only height or position, and some combination of height and position), for eight succes-
sive blocks of eight stimulus/answer responses.

The patterns present in a task may change. What impact do changes in task characteristics
have on performance? A study by Kruschke1048 asked subjects to learn the association
between a stimulus and a category described by three characteristics (which might be
visualized in a 3-D space; see fig 2.46). Once their performance was established at close
to zero errors, the characteristics of the category were changed. The change pattern was
drawn from four possibilities: reversing the value of each characteristic (considered to
be a zero-dimension change), changes to one characteristic, two characteristics and three
characteristics (not reversal).

Figure 2.35 shows average subject performance improving to near perfect (over 22 suc-
cessive blocks of eight stimulus/answer responses), a large performance drop when the
category changes, followed by improving performance, over successive blocks, as sub-
jects learn the new category. The change made to the pattern for the learned category has
a noticeable impact on the rate at which the new category is learned.

The source code for an application does not have to be rewritten every time somebody
wants a new copy of the program; it is rare for a developer to be asked to reimplement
exactly the same application again. However, having the same developer reimplement the

viiSimilar equations can also be obtained by averaging over a group of individuals whose learning takes the
form of a step function.646

2.5. LEARNING AND EXPERIENCE 37

1 2 3 4 5 6 7 8
0.5

0.6

0.7

0.8

0.9

1.0

Block

C
or

re
ct

 (
pr

ob
ab

ili
ty

)

Position
Height
Position/height
Position/height

Figure 2.34: Probability of assigning a stimulus to the cor-
rect category, where the category involved: height, posi-
tion, and a combination of both height and position. Data
from Kruschke.1047 Github–Local

0 5 10 15 20 25 30

0.5

0.6

0.7

0.8

0.9

1.0

Block

P
ro

ba
bi

lit
y

co
rr

ec
t

Reversal
1−characteristic
2−characteristics
3−characteristics

Figure 2.35: Probability of assigning a stimulus to the cor-
rect category; learning the category, followed in block 23
by a change in the characteristics of the learned category.
Data from Kruschke.1048 Github–Local

1 2 3 4

200

400

600

800

1000

1200

Round

T
im

e
(m

in
ut

es
)

Figure 2.36: Completion times of eight solo developers
for each implementation round. Data kindly provided by
Lui.1168 Github–Local

same application, multiple times, provides information about the reduced implementation
time that occurs with practice.

A study by Lui and Chan1168 asked 24 developers to implement the same application
four times; 16 developers worked in pairs (i.e., eight pair programming teams) and eight
worked solo. Before starting to code, the subjects took a test involving 50 questions from
a computer aptitude test; subjects were ranked by number of correct answers, and pairs
selected such that both members were adjacent in the ranking.

Learning occurs every-time the application is implemented, and forgetting occurs dur-
ing the period between implementations (each implementation occurred on a separate
weekend, with subjects doing other work during the week) . Each subject had existing
knowledge and skill, which means everybody started the experiment at a different point
on the learning curve. In the following analysis the test score is used as a proxy for each
subject’s initial point on the learning curve.

Figure 2.36 shows the completion times, for each round of implementation, for solo and
pairs. The equation: Completion_time = a× (b×Test_score+Round)c, provides a good
fit, where: Completion_time is time to complete an implementation of the application,
Test_score the test score and Round the number of times the application has been im-
plemented, with a, b and c constants chosen by the model fitting process. However, its
predictions are in poor agreement with actual values, suggesting that other factors are
making a significant contribution to performance.

After starting work in a new environment, performance can noticeable improve as a person
gains experience working in that environment. A study by Brooks265 measured the per-
formance of an experienced developer, writing and debugging 23 short programs (mean
length 24 lines). The time taken to debug each program improved as more programs were
implemented; see Github–developers/a013582.R.

Developers sometimes work in several programming languages on a regular basis. The
extent to which learning applies across languages is likely to be dependent on the ease
with which patterns of usage are applicable across the languages used.

A study by Zislis2031 measured the time taken (in minutes) by himself, to implement 12 al-
gorithms, with the implementation performed three times using three different languages
(APL, PL/1, Fortran), and on the fourth repetition using the same language as on the first
implementation. Figure 2.37 shows total implementation time for each algorithm, over
the four implementations; fitting a mixed-effects model finds some performance differ-
ence between the languages used (see figure code for details).

A study by Jones931 investigated developer beliefs about binary operator precedence. Sub-
jects saw an expression containing two binary operators, and had to specify the relative
precedence of these operators by adding parenthesis to the expression, e.g., a + b | c.
In a coding environment, the more frequently a pair of binary operators appear together,
the more often developers have to make a decision about their relative precedence; the
hypothesis was that the more often developers have to make a particular precedence de-
cision, when reading code, the more likely they are to know the correct answer. Binary
operator usage in code was used as a proxy for developer experience of making binary
operator decisions (C source code was measured). Figure 2.38 shows the fraction of
correct answers to the relative operator precedence question, against the corresponding
percentage occurrence of that pair of binary operators.

A study by Mockus and Weiss1303 found that the probability of a developer introducing
a fault into an application, when modifying software, decreased as the log of the total
number of changes made by the developer, i.e., their experience or expertise.

Job advertisements often specify that a minimum number of years of experience is re-
quired. Number of years may not be a reliable measure of expertise, but it does provide
a degree of comfort that a person has had to deal with the major issues that might occur
within a given domain.

A study by Latorre1092 investigated the effect of developer experience on applying unit-
test-driven development. The 24 subjects, classified as junior (one-to-two-years profes-
sional experience), intermediate (three-to-five-years experience) or senior (more than six-
years experience), were taught unit-test-driven development, and the time taken for them
to implement eight groups of requirements was measured. The implementations of the
first two groups was included as part of the training and familiarization process; the time
taken, by each subject, on these two groups was used to normalise the reported results.

38 2. Human cognition

1 2 3 4

5

10

20

50

100

Iteration

Im
pl

em
en

ta
tio

n
tim

e

Figure 2.37: Time taken, by the same person, to imple-
ment 12 algorithms from the Communications of the ACM
(each colored line), with four iteration of the implementa-
tion process. Data from Zislis.2031 Github–Local

0.001 0.010 0.100 1.000 10.000
0.0

0.2

0.4

0.6

0.8

1.0

Source code occurrence (percentage)

C
or

re
ct

 a
ns

w
er

 (
fr

ac
tio

n)

Figure 2.38: Percentage occurrence of binary operator
pairs (as a percentage of all such pairs) against the fraction
of correct answers to questions about their precedence,
red line is beta regression model. Data from Jones.931

Github–Local

3 4 5 6 7 8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Task

Im
pl

em
en

ta
tio

n
tim

e
(n

or
m

al
is

ed
)

Junior
Intermediate
Senior

Figure 2.39: Time taken by 24 subjects, classified by years
of professional experience, to complete successive tasks.
Data from Latorre.1092 Github–Local

Figure 2.39 shows the normalised time taken, by each subject, on successive groups of
requirements; color is used to denote subject experience. While there is a lot of variation
between subjects, average performance improves with years of experience, i.e., imple-
mentation time decreases (a fitted mixed-effects model is included in the plot’s code).

What is the long term impact of learning on closely related cognitive activities? Isaac
Asimov was a prolific author who maintained a consistent writing schedule. Figure 2.40
shows the number of published books against elapsed months. The lines are the fitted
models books≈ 27months0.48, and books≈−0.6months+40

√
months (a better fit).

To quote Herbert Simon:1711 “Intuition and judgement–at least good judgement–are sim-
ply analyses frozen into habit and into the capacity for rapid response through recogni-
tion. . . . Every manager needs also to be able to respond to situations rapidly, a skill that
requires the cultivation of intuition and judgement over many years of experience and
training.”

2.5.1 Belief

People hold beliefs derived from the information they have received, and the analysis of
information accumulated over time.

How are existing beliefs modified by the introduction of new evidence?

In the belief-adjustment model843 the current degree of belief has the form of a moving
average of updates produced by the history of prior encounters with items of evidence:

Sk = Sk−1 +wk[s(xk)−R], where: 0 < Sk < 1 is the degree of belief in some hypothesis
after evaluating k items of evidence, Sk−1 is the prior belief (S0 denotes the initial belief),
s(xk) is the subjective evaluation of the kth item of evidence (different people may assign
different values for the same evidence, xk), R is the reference point or background, against
which the impact of the kth item of evidence is evaluated, and 0<wk < 1 is the adjustment
weight for the kth item of evidence.

When presented with an item of evidence, a person can use an evaluation process or an
estimation process.

• an evaluation process encodes new evidence relative to a fixed point, i.e., the hypothe-
sis addressed by a belief. If the new evidence supports the hypothesis, a person’s belief
increases, and decreases if it does not support the hypothesis. This change occurs irre-
spective of the current state of a person’s belief; for this case R= 0, and−1≤ s(xk)≤ 1.

An example of an evaluation process might be the belief that the object X always holds
a value that is numerically greater than Y,

• an estimation process encodes new evidence relative to the current state of a person’s
beliefs; for this case R = Sk−1, and 0≤ s(xk)≤ 1.

If multiple items of evidence are presented, a response may be required after each item
(known as Step-by-Step), or a response may only need to be given after all the evidence is
presented (known as End-of-Sequence). The response mode is handled by the model.

A study by Hogarth and Einhorn843 investigated order, and response mode effects in belief
updating. Subjects were presented with a variety of scenarios (e.g., a defective stereo
speaker thought to have a bad connection, or a baseball player whose hitting improved
dramatically after a new coaching program), followed by two or more additional items
of evidence. The additional evidence was either positive (e.g., “The other players on
Sandy’s team did not show an unusual increase in their batting average over the last five
weeks”), or negative (e.g., “The games in which Sandy showed his improvement were
played against the last-place team in the league”). The positive and negative evidence
was worded to create either strong or weak forms.

The evidence was presented in three combinations: strong positive and then weak pos-
itive, upper plot in figure 2.41; strong negative and then weak negative, middle plot of
figure 2.41; positive negative and then negative positive, lower plot of figure 2.41. Sub-
jects were then asked, “Now, how likely do you think X caused Y on a scale of 0 to 100?”
For some presentations, subjects had to respond after seeing each item of evidence (the
step-by-step procedure), in the other presentations subjects did not respond until seeing
all the evidence (the end-of-sequence procedure).

2.5. LEARNING AND EXPERIENCE 39

100 200 300 400 500

250

300

350

400

450

500

Elapsed time (months)

B
oo

ks
 p

ub
lis

he
d

Figure 2.40: Elapsed months during which Asimov pub-
lished a given number of books, with lines for two fitted
regression models. Data from Ohlsson.1408 Github–Local

60

65

70

75

80

85

90

B
el

ie
f

Start End

Step−by−Step

Strong−Weak
Weak−Strong

30

40

50

60

70

B
el

ie
f

Start End

Step−by−Step

Weak−Strong
Strong−Week

40

50

60

70

80

B
el

ie
f

Start End

Step−by−Step

Positive−Negative
Negative−Positive

Start End

End−of−Sequence

Strong−Weak
Weak−Strong

Start End

End−of−Sequence

Weak−Strong
Strong−Week

Start End

End−of−Sequence

Positive−Negative
Negative−Positive

Figure 2.41: Subjects’ belief response curves when pre-
sented with evidence in the sequences: (upper) positive
weak, then positive strong, (middle) negative weak then
negative strong, (lower) positive then negative. Based on
Hogarth et al.843 Github–Local

Figure 2.41 shows the impact of presentation orders and response modes on subjects’
degree of belief.

Other studies have replicated these results, for instance, professional auditors have been
shown to display recency effects in their evaluation of the veracity of company accounts.1451

One study546 found that when combining information from multiple sources, to form
beliefs, subjects failed to adjust for correlation between the information provided by dif-
ferent sources (e.g., news websites telling slightly different versions of the same events).
Failing to adjust for correlation results in the creation of biased beliefs.

Studies1606 have found that people exhibit a belief preservation effect; they continue to
hold beliefs after the original basis for those beliefs no longer holds.

The mathematical approach used to model quantum mechanics is started being used to
model some cognitive processes, such as order effects and holding conflicting beliefs at
the same time.1847

2.5.2 Expertise

The term expert might be applied to a person because of what other people think (i.e.,
be socially based), such as professional standing within an organizationviii, and self-
proclaimed experts willing to accept money from clients who are not willing to take
responsibility for proposing what needs to be done72 (e.g., the role of court jester who
has permission to say what others cannot); or, be applied to a person because of what
they can do (i.e., performance based), such as knowing a great deal about a particular
subject, or being able to perform at a qualitatively higher level than the average person,
or some chosen top percentage, or be applied to a person having a combination of social
and performance skills.687

This section discusses expertise as a high-performance skill; something that requires
many years of training, and where many individuals fail to develop proficiency.

How might people become performance experts?

Chess players were the subject of the first major study of expertise, by de Groot,450 and
techniques used to study Chess, along with the results obtained, continue to dominate the
study of expertise. In a classic study, de Groot briefly showed subjects the position of an
unknown game and asked them to reconstruct it. The accuracy and speed of experts (e.g.,
Grand Masters) was significantly greater than non-experts when the pieces appeared on
the board in positions corresponding to a game, but was not much greater when the pieces
were placed at random. The explanation given for the significant performance difference,
is that experts are faster to recognise relationships between the positions of pieces, and
make use of their large knowledge of positional patterns to reduce the amount of working
memory needed to remember what they were briefly shown.

A study by McKeithen, Reitman, Rueter and Hirtle1244 gave subjects two minutes to study
the source code of a program, and then gave them three minutes to recall the program’s
31 lines. Subjects were then given another two minutes to study the same source code,
and asked to recall the code; this process was repeated for a total of five trials.

Figure 2.42 shows the number of lines recalled by experts (over 2,000 hours of general
programming experience), intermediates (just completed a programming course), and be-
ginners (about to start a programming course) over the five trials. The upper plot are the
results for the 31 line program, and the lower plot a scrambled version of the program.

Some believe that experts have an innate ability, or capacity, that enables them to do what
they do so well. Research has shown that while innate ability can be a factor in perfor-
mance (there do appear to be genetic factors associated with some athletic performances),
the main factor in developing expert performance is time spent in deliberate practice551

(deliberate practice does not explain everything772).

Deliberate practice differs from simply performing the task,552 in that it requires people to
monitor their practice with full concentration, and to receive feedback844 on what they are
doing (often from a professional teacher). The goal of deliberate practice being to improve
performance, not to produce a finished product, and may involve studying components of
the skill in isolation attempting to improve on particular aspects. The goal of this practice
being to improve performance, not to produce a finished product.

viiiIndustrial countries use professionalism as a way of institutionalising expertise.

40 2. Human cognition

1 2 3 4 5

5

10

15

20

Trial

Li
ne

s
re

ca
lle

d

expert
intermediate
beginner

1 2 3 4 5

5

10

15

20

Trial

Li
ne

s
re

ca
lle

d

expert
intermediate
beginner

Figure 2.42: Lines of code correctly recalled after a given
number of 2-minute memorization sessions; actual pro-
gram in upper plot, scrambled line order in lower plot.
Data extracted from McKeithen et al.1244 Github–Local

A study by Lorko, Servátka and Zhang1160 investigated the effect of lack of feedback,
and anchoring, on the accuracy of duration estimates of a repeatedly performed task. One
round of the task involved making an estimate of time to complete the task, followed by
giving 400 correct true/false answers to questions involving an inequality between two
numbers (whose value was between 10 and 99); there were three rounds of estimating
and correctly answering 400 questions. The amount of money paid to subjects, for taking
part, was calculated using: earnings = 4.5− 0.05(abs(actual− estimate)), and a perfor-
mance formula involving number of correct and incorrect answers given; the intent was
to motivate subjects to provide an accurate estimate, and to work as quickly as possible
without making mistakes. Subjects did not receive any feedback on the accuracy of their
estimates, i.e., they were not told how much time they took to complete the task.

The task was expected to take around 10 to 12.5 minutes. Approximately one third of
subjects were given a low anchor (i.e., 3-minutes), one third high a high anchor (i.e.,
20-minutes), and the other third no anchor.

The results show that the estimates of low-anchor subjects increased with each round,
while high-anchor subject estimates decreased, and no anchor subject estimates showed
no pattern; see Github–developers/Lorko-Servatka-Zhang.R.

In many fields expertise is acquired by memorizing a huge amount of domain-specific
information, organizing it for rapid retrieval based on patterns that occur when problem-
solving within the domain, and refining the problem-solving process.554

Studies of the backgrounds of recognized experts, in many fields, found that the elapsed
time between them starting out and carrying out their best work was at least 10 years,
often with several hours of deliberate practice every day of the year. For instance, a study
of violinists553 (a perceptual-motor task) found that by age 20 those at the top-level had
practiced for 10,000 hours, those at the next level down 7,500 hours, and those at the
lowest level of expertise had practiced for 5,000 hours; similar quantities of practice were
found in those attaining expert performance levels in purely mental activities (e.g., chess).

Expertise within one domain does not confer any additional skills within another do-
main,57 e.g., statistics (unless the problem explicitly involves statistical thinking within
the applicable domain), and logic.346 A study338 in which subjects learned to remember
long sequences of digits (after 50–100 hours of practice they could commit to memory,
and later recall, sequences containing more than 20 digits) found that this expertise did
not transfer to learning sequences of other items.

There are domains in which those acknowledged as experts do not perform significantly
better than those considered to be non-experts,293 in some cases non-experts have been
found to outperform experts within their domain.1959 An expert’s domain knowledge
can act as a mental set that limits the search for a solution, with the expert becoming
fixated within the domain. In cases where a new task does not fit the pattern of highly
proceduralized behaviors of an expert, a novice has an opportunity to do better.

What of individual aptitudes? In the cases studied, the effects of aptitude, if there was any,
were found to be completely overshadowed by differences in experience, and deliberate
practice times. Willingness to spend many hours, every day, studying to achieve expert
performance is certainly a necessary requirement. Does an initial aptitude, or interest, in
a subject lead to praise from others (the path to musical and chess expert performance
often starts in childhood), which creates the atmosphere for learning, or are other issues
involved? IQ scores do correlate to performance during, and immediately after training,
but the correlation reduces over the years. The IQ scores of experts has been found to be
higher than the average population, at about the level of college students.

Education can be thought of as trying to do two things (of interest to us here)—teach
students skills (procedural knowledge), and providing them with information, considered
important in the relevant field, to memorize (declarative knowledge).

Does attending a course on a particular subject have any measurable effect on students’
capabilities, other than being able to answer questions in an exam? That is, having devel-
oped some skill in using a particular system of reasoning, do students apply it outside the
domain in which they learnt it?

A study by Lehman, Lempert, and Nisbett1111 measured changes in students’ statistical,
methodological and conditional reasoning abilities (about everyday-life events) between
their first and third years. They found that both psychology and medical training produced
large effects on statistical and methodological reasoning, while psychology, medical and
law training produced effects on the ability to perform conditional reasoning; training in

2.5. LEARNING AND EXPERIENCE 41

0 5 10 15 20 25 30

1

2

3

4

5

6

7

Trial

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Figure 2.43: One subject’s response time over successive
blocks of command line trials and fitted loess (in green).
Data kindly provided by Remington.1576 Github–Local

Congruent

Alpha
Country

Beta
Country

.
X

.
Y

.
Z

Incongruent

Alpha
Country

Beta
Country

.
X

.
Y

.
Z

Homogeneous

Alpha
Country

Beta
Country

.
X

.
Y

.
Z

Congruent

Alpha
Country

Beta
Country

.X
.Y

.Z

Incongruent

Alpha
Country

Beta
Country

.X
.Y

.Z

Homogeneous

Alpha
Country

Beta
Country

.X
.Y

.Z

Figure 2.44: Country boundaries (green line) and town
locations (red dots). Congruent: straight boundary aligned
with question asked, incongruent: meandering boundary
and locations sometimes inconsistent with question asked.
Based on Stevens et al.1779 Github–Local

chemistry had no effect on the types of reasoning studied. An examination of the skills
taught to students studying in these fields showed that they correlated with improvements
in the specific types of reasoning abilities measured.

A study by Remington, Yuen and Pashler1576 compared subject performance between
using a GUI and a command line (with practice, there was little improvement in GUI per-
formance, but command line performance continued to improve and eventually overtook
GUI performance). Figure 2.43 shows the command line response time for one subject
over successive blocks of trials, and a fitted loess line.

2.5.3 Category knowledge

Children as young as four have been found to use categorization to direct the inferences
they make,666 and many studies have shown that people have an innate desire to create and
use categories (they have also been found to be sensitive to the costs and benefits of using
categories;1190 Capuchin monkeys have learned to classify nine items concurrently1242).
By dividing items into categories, people reduce the amount of information they need to
learn,1514 and can generalize based on prior experience.1385 Information about the likely
characteristics of a newly encountered item can be obtained by matching it to one or more
known categories, and then extracting characteristics common to previously encountered
items in these categories. For instance, a flying object with feathers, and a beak might
be assigned to the category bird, which suggests the characteristics of laying eggs and
potentially being migratory.

Categorization is used to perform inductive reasoning (i.e., the derivation of generalized
knowledge from specific instances), and also acts as a memory aid (about the members of
a category). Categories provide a framework from which small amounts of information
can be used to infer, seemingly unconnected (to an outsider), useful conclusions.

Studies have found that people use roughly three levels of abstraction in creating hierar-
chical relationships. The highest level of abstraction has been called1601 the superordinate-
level (e.g., the general category furniture), the next level down the basic-level (this is the
level at which most categorization is carried out, e.g., car, truck, chair or table), the low-
est level is the subordinate-level (which denotes specific types of objects, e.g., a family
car, a removal truck, my favourite armchair, a kitchen table). Studies1601 have found that
basic-level categories have properties not shared by the other two categories, e.g., adults
spontaneously name objects at this level, it is the abstract level that children acquire first,
and category members tend to have similar overall shapes.

When categories have a hierarchical structure, it is possible for an attribute of a higher-
level category to affect the perceived attributes of subordinate categories. A study by
Stevens and Coupe1779 asked subjects to remember the information contained in a series
of maps (see figure 2.44). They were asked questions such as: “Is X east or west of Y?”,
and “Is X north or south of Y?” Subjects gave incorrect answers 18% of the time for the
congruent maps (i.e., country boundary aligned along axis of question asked), but 45% of
the time for the incongruent maps (i.e, country boundary meanders, and locations some-
times inconsistent with question asked); 15% for homogeneous (i.e., no country bound-
aries). These results were interpreted as subjects using information about the relative
locations of countries to answer questions about the city locations.

Studies1724 have found that people do not consistently treat subordinate categories as
inheriting the properties of their superordinates, i.e., category inheritance is not always a
tree.

How categories should be defined and structured is a long-standing debate within the
sciences. Some commonly used category formation techniques, their membership rules
and attributes include:

• defining-attribute theory: members of a category are characterized by a set of defining
attributes. Attributes divide objects up into different concepts whose boundaries are
well-defined, with all members of the concept being equally representative. Concepts
that are a basic-level of a superordinate-level concept will have all the attributes of that
superordinate level; for instance, a sparrow (small, brown) and its superordinate: bird
(two legs, feathered, lays eggs),

• prototype theory: categories have a central description, the prototype, that represents the
set of attributes of the category. This set of attributes need not be necessary, or sufficient,
to determine category membership. The members of a category can be arranged in a

42 2. Human cognition

Shape

Color

Size

Figure 2.45: Orthogonal representation of shape, color
and size stimuli. Based on Shepard.1690

I

II

III

IV

V

VI

Figure 2.46: The six unique configurations of selecting
four times from eight possibilities, i.e., it is not possible
to rotate one configuration into another within these six
configurations. Based on Shepard.1690

typicality gradient, representing the degree to which they represent a typical member of
that category. It is possible for objects to be members of more than one category, e.g.,
tomatoes as a fruit, or a vegetable,

• exemplar-based theory: specific instances, or exemplars, act as the prototypes against
which other members are compared. Objects are grouped, relative to one another, based
on some similarity metric. The exemplar-based theory differs from the prototype theory
in that specific instances are the norm against which membership is decided. When
asked to name particular members of a category, the attributes of the exemplars are
used as cues to retrieve other objects having similar attributes,

• explanation-based theory: there is an explanation for why categories have the mem-
bers they do. For instance, the biblical classification of food into clean and unclean is
roughly explained by the correlation between type of habitat, biological structure, and
form of locomotion; creatures of the sea should have fins, scales and swim (sharks and
eels don’t), and creatures of the land should have four legs (ostriches don’t).

From a predictive point of view, explanation-based categories suffer from the problem
that they may heavily depend on the knowledge and beliefs of the person who formed
the category; for instance, the set of objects a person would remove from their home, if
it suddenly caught fire.

Figure 2.45 shows the eight possible combinations of three, two-valued attributes, col-
or/size/shape. It is possible to create six unique categories by selecting four items from
these eight possibilities (see figure 2.46; there are 70 different ways of taking four things
from a choice of eight, 8!/(4!4!), and taking symmetry into account reduces the number
to unique categories to six).

A study by Shepard, Hovland, and Jenkins1690 measured subject performance in assigning
objects to these six categories. Subject error rate decreased with practice.

Estes561 proposed the following method for calculating the similarity of two objects.
Matching attributes have the same similarity coefficient, 0 ≤ t ≤ ∞, and nonmatching
attributes have similarity coefficient, 0 ≤ si ≤ 1 (which is potentially different for each
nonmatch). When comparing objects within the same category, the convention is to use
t = 1, and to give the attributes that differ the same similarity coefficient, s.

Stimulus Similarity to A Similarity to B
Red triangle 1+ s s+ s2

Red square 1+ s s+ s2

Green triangle s+ s2 1+ s
Green square s+ s2 1+ s

Table 2.3: Similarity of a stimulus object to: category A: red triangle and red square; category B: green triangle and green square.

As an example, consider just two attributes shape/color in figure 2.45, giving the four
combinations red/green—triangles/squares; assign red-triangle and red-square to cate-
gory A, assign green-triangle and green-square to category B, i.e., category membership
is decided by color. Table 2.3 lists the similarity of each of the four possible object combi-
nations to category A and B. Looking at the top row: red-triangle is compared for similarity
to all members of category A (1+ s, because it does not differ from itself and differs in
one attribute from the other member of category A), and all members of category B (s+s2,
because it differs in one attribute from one member of category B and in two attributes
from the other member).

If a subject is shown a stimulus that belongs in category A, the expected probability of
them assigning it to this category is: 1+s

(1+s)+(s+s2)
→ 1

1+s . When s is 1, the expected
probability is no better than a random choice; when s is 0, the probability is a certainty.

A study by Feldman588 investigated categories containing objects having either three or
four attributes. During an initial training period subjects learned to distinguish between
a creature having a given set of attributes, and other creatures that did not. Subjects then
saw a sequence of example creatures, and had to decide whether they were a member of
the learned category.

A later study589 specified category membership algebraically, e.g., membership of cat-
egory IV in the top right of figure 2.46 is specified by the expression: SHC + SHC +
SHC + SHC, where: S is size, H is shape, C is color, and an overline indicates nega-
tion. The number of terms in the minimal boolean formula specifying the category (a

2.6. REASONING 43

2 4 6 8 10 12

60

70

80

90

Boolean complexity

P
er

ce
nt

 c
or

re
ct

P = 2
P = 3
P = 4

Figure 2.47: Percentage of correct category answers pro-
duced by one subject against boolean-complexity, broken
down by number of positive cases needed to define the
category used in the question (three colors). Data kindly
provided by Feldman.588 Github–Local

●

●
●

●●

●

●

●

●

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
0

20

40

60

80

100

Relative width of container

C
ho

se
n

(p
er

ce
nt

ag
e)

Cup
Bowl

Figure 2.48: Cup- and bowl-like objects of various widths
(ratios 1.2, 1.5, 1.9, and 2.5), and heights (ratios 1.2, 1.5,
1.9, and 2.4), with dashed lines showing neutral context
and solid lines food context. The percentage of subjects
who selected the term cup or bowl to describe the object
they were shown (the paper did not explain why the fig-
ures do not sum to 100%, and color was not used in the
original). Based on Labov.1065 Github–Local

measure of category complexity, which Feldman terms boolean complexity) was found to
predict the trend in subject error rate. Figure 2.47 shows, for one subject, the percentage
of correct answers against boolean complexity; the number of positive cases needed to
completely define the category of the animals in the question is broken down by color.

A few human generated semantic classification datasets are publicly available.449

2.5.4 Categorization consistency

Obtaining benefits from using categories requires some degree of consistency in assigning
items to categories. In the case of an individual’s internal categories, the ability to con-
sistently assign items to the appropriate category is required; within cultural groups there
has to be some level of agreement between members over the characteristics of items in
each category.

Cross-language research has found that there are very few concepts that might be claimed
to be universal (they mostly relate to the human condition).1909, 1955

Culture, and the use of items, can play an important role in the creation and use of cate-
gories.

A study by Bailenson, Shum, Atran, Medin and Coley115 compared the categories cre-
ated for two sets (US and Maya) of 104 bird species, by three groups; subjects were
US bird experts (average of 22.4 years bird watching), US undergraduates, and ordinary
Itzaj (Maya Amerindians people from Guatemala). The categorization choices made by
the three groups of subjects were found to be internally consistent within each group.
The US experts’ categories correlated highly with the scientific taxonomy for both sets
of birds, the Itzaj categories only correlated highly for Maya birds (they used ecological
justifications; the bird’s relationship with its environment), and the nonexperts had a low
correlation for both set of birds. Cultural differences were found in that, for instance, US
subjects were more likely to generalise from songbirds, while the Itzaj were more likely
to generalize from perceptually striking birds.

A study by Labov1065 showed subjects pictures of items that could be classified as either
cups or bowls (see upper plot in figure 2.48; colors not in the original). These items were
presented in one of two contexts—a neutral context in which the pictures were simply
presented, and a food context (they were asked to think of the items as being filled with
mashed potatoes).

The lower plot of figure 2.48 shows that as the width of the item seen was increased,
an increasing number of subjects classified it as a bowl (dash lines). Introducing a food
context, shifted subjects’ responses towards classifying the item as a bowl at narrower
widths (solid lines).

The same set of items may be viewed from a variety of different points of view (the
term frame is sometimes used); for instance, commercial events include: buying, selling,
paying, charging, pricing, costing, spending, and so on. Figure 2.49 shows four ways (i.e.,
buying, selling, paying, and charging) of classifying the same commercial event.

A study by Jones934 investigated the extent to which different developers make similar
decisions when creating data structures to represent the same information; see fig 12.5.

2.6 Reasoning

Reasoning enhances cognition. The knowledge-based use-case for the benefits of being
able to reason, is the ability it provides to extract information from available data; adding
constraints on the data (e.g., known behaviors) can increase the quantity of information
that may be extracted. Dual process theories1723, 1760, 1761 treat people as having two sys-
tems: unconscious reasoning and conscious reasoning. What survival advantages does an
ability to consciously reason provide, or is it primarily an activity WEIRD people need to
learn to pass school tests?

Outside of classroom problems, a real world context in which people explicitly reason
is decision-making, and here “fast and frugal algorithms”677, 680 provide answers quickly,
within the limited constraints of time and energy. Context and semantics are crucial inputs
to the reasoning process.1773

44 2. Human cognition

A
to

B
Obj

C
for

D
Subj

A
Subj

B
Obj

C
for

D
from

A
Obj

B
for

C
sum

D
Subj

A
Subj

B
for

C
Obj

D
to

A
buyer

B
goods

C
money

D
seller

Sell

Buy

Charge

Pay

Commercial
Event

Figure 2.49: A commercial event involving a buyer, seller,
money and goods; as seen from the buy, sell, pay, or
charge perspective. Based on Fillmore.601 Github–Local

A K 4 7

Figure 2.50: The four cards used in the Wason selection
task. Based on Wason.1931 Github–Local

Understanding spoken language requires reasoning about what is being discussed,1264 and
in a friendly shared environment it is possible to fill in the gaps by assuming that what is
said is relevant,1747 with no intent to trick. In an adversarial context sceptical reasoning,
of the mathematical logic kind, is useful for enumerating possible interpretations of what
has been said.1265

The kinds of questions asked in studies of reasoning appear to be uncontentious. However,
studies1174, 1664 of reasoning using illiterate subjects, from remote parts of the world, re-
ceived answers to verbal reasoning problems that were based on personal experience and
social norms, rather than the western ideal of logic. The answers given by subjects, in
the same location, who had received several years of schooling were much more likely
to match those demanded by mathematical logic; the subjects had learned how to act
WEIRD and play the game. The difficulties experienced by those learning formal logic
suggests that there is no innate capacity for this task (innate capacity enables the corre-
sponding skill to be learned quickly and easily). The human mind is a story processor,
not a logic processor.763

Reasoning and decision-making appear to be closely related. However, reasoning re-
searchers tied themselves to using the norm of mathematical logic for many decades, and
created something of research ghetto,1775 while decision-making researchers have been
involved in explaining real-world problems.

The Wason selection task1931 is to studies of reasoning like the fruit fly is to studies of
genetics. Wason’s study was first published in 1968, and considered mathematical logic
to be the norm against which human reasoning performance should be judged. The reader
might like to try this selection task:

• Figure 2.50 depicts a set of four cards, of which you can see only the exposed face but
not the hidden back. On each card, there is a number on one side and a letter on the
other.

• Below there is a rule, which applies only to these four cards. Your task is to decide,
which, if any, of these four cards you must turn in order to decide whether the rule is
true.

• Don’t turn unnecessary cards. Specify the cards you would turn over.

Rule: If there is a vowel on one side, then there is an even number on the other side.

Answer: ?

The failure of many subjects to give the expected answer ix (i.e., the one derived using
mathematical logic) surprised many researchers, and over the years a wide variety of
explanations, experiments, thesis, and books have attempted to explain the answers given.
Explanations for subject behavior include: human reasoning is tuned for detecting people
who cheat406 within a group where mutual altruism is the norm, interpreting the wording
of questions pragmatically based on how natural language is used rather than as logical
formula831 (i.e., assuming a social context; people are pragmatic virtuosos rather than
logical defectives), and adjusting norms to take into account cognitive resource limitations
(i.e., computational and working memory), or a rational analysis approach.1399

Some Wason task related studies used a dialogue protocol (i.e., subjects’ discuss their
thoughts about the problem with the experimenter), and transcriptions1774 of these studies
read like people new to programming having trouble understanding what it is that they
have to do to solve a problem by writing code.

Alfred North Whitehead: “It is a profoundly
erroneous truism . . . that we should cultivate the

habit of thinking of what we are doing. The precise
opposite is the case. Civilization advances by
extending the number of important operations
which we can perform without thinking about

them.”

People have different aptitudes, and this can result in them using different strategies to
solve the same problem,1760 e.g., an interaction between a subject’s verbal and spatial
ability, and the strategy used to solve linear reasoning problems.1777 However, a person
having high spatial ability, for instance, does not necessarily use a spatial strategy. A study
by Roberts, Gilmore and Wood1591 asked subjects to solve what appeared to be a spatial
problem (requiring the use of a very inefficient spatial strategy to solve). Subjects with
high spatial ability used non-spatial strategies, while those with low spatial ability used a
spatial strategy. The conclusion drawn was that those with high spatial ability were able
to see the inefficiency of the spatial strategy, and selected an alternative strategy, while
those with less spatial ability were unable to make this evaluation.

A study by Bell and Johnson-Laird168 investigated the effect of kind of questions asked on
reasoning performance. Subjects had to give a yes/no response to two kinds of questions,

ixThe letter A is a confirmation test, while the number 7 is a disconfirmation test.

2.6. REASONING 45

asking about what is possible or what is necessary. The hypothesis was that subjects
would find it easier to infer a yes answer to a question about what is possible, compared
to one about what is necessary; because only one instance needs to be found for the
possible question, whereas all instances need to be checked, to answer yes to a question
about necessity. For instance, in a game in which only two can play, and the following
information:

If Allan is in then Betsy is in.
If Carla is in then David is out.

answering yes to the question: “Can Betsy be in the game?” (a possibility), is easier than
giving the same answer: to “Must Betsy be in the game?” (a necessity); see table 2.4.

Question Correct yes Correct no
is possible 91% 65%
is necessary 71% 81%

Table 2.4: Percentage of correct answers to possible/necessary questions, and the two kinds of response. Data from Bell et al.168

However, subjects would be expected to find it easier to infer a no answer to a question
about what is necessary, compared to one about what is possible; because only one in-
stance needs to be found to answer a necessary question, whereas all instances need to be
checked to answer no to a question about possibility. For instance, in another two-person
game, and the following information:

If Allan is out then Betsy is out.
If Carla is out then David is in.

answering no to the question: “Must Betsy be in the game?” (a necessity), is easier than
giving the same answer to: “Can Betsy be in the game?” (a possibility); see table 2.4.

Conditionals in English: In human languages the conditional clause generally precedes
the conclusion, in a conditional statement.735 An example where the conditional follows
the conclusion is: “I will leave, if you pay me”, given as the answer to the question:
“Under what circumstances will you leave?”. In one study of English,624 the conditional
preceded the conclusion in 77% of written material, and 82% of spoken material. There
is a lot of variation in the form of the conditional.192, 304

2.6.1 Deductive reasoning

Deductive reasoning is the process of reasoning about one or more statements (technically
known as premises) to reach one or more logical conclusions.

Studies110 have found that the reasoning strategies used by people involve building either
a verbal or spatial model, from the premises. Factors found to affect peoples performance
in solving deductive reasoning problems include the following:

• Belief bias: people are more willing to accept a conclusion, derived from given premises,
that they believe to be true than one they believe to be false. A study by Evans, Barston,
and Pollard564 gave subjects two premises and a conclusion, and asked them to state
whether the conclusion was true or false (based on the premises given; the conclusions
were rated as either believable or unbelievable by a separate group of subjects); see the
results in table 2.5,

Studies have modeled the response behavior using multinomial processing trees1018 and
system detection theory;1845 see Github–developers/Trippas-2018.R.

• Form of premise: a study by Dickstein495 measured subject performance on the 64 pos-
sible two premise syllogisms (a premise being one of the propositions: All S are P, No S
are P, Some S are P, and Some S are not P). For instance, the following syllogisms show
the four possible permutations of three terms (the use of S and P is interchangeable):

All M are S All S are M All M are S All S are M
No P are M No P are M No M are P No M are P

The results found that performance was affected by the order in which the terms oc-
curred in the two premises of the syllogism. The order in which the premises are pro-
cessed may affect the amount of working memory needed to reason about the syllogism,
which in turn can affect human performance.683

46 2. Human cognition

Status-context Example Accepted
Valid-believable

No Police dogs are vicious
Some highly trained dogs are vicious
Therefore, some highly trained dogs are not police dogs 88%

Valid-unbelievable
No nutritional things are inexpensive
Some vitamin tablets are inexpensive
Therefore, some vitamin tablets are not nutritional
things

56%

Invalid-believable
No addictive things are inexpensive
Some cigarettes are inexpensive
Therefore, some addictive things are not cigarettes 72%

Invalid-unbelievable
No millionaires are hard workers
Some rich people are hard workers
Therefore, some millionaires are not rich people 13%

Table 2.5: Percentage of subjects accepting that the stated conclusion could be logically deduced from the given premises. Based on Evans et al.564

2.6.2 Linear reasoning

Being able to make relational decisions is a useful skill for animals living in hierarchical
social groups, where aggression is sometimes used to decide status.1457 Aggression is best
avoided, as it can lead to death or injury; the ability to make use of relative dominance
information (obtained by watching interactions between other members of the group)
may remove the need for aggressive behavior during an encounter between two group
members who have not recently contested dominance (i.e., there is nothing to be gained
in aggression towards a group member who has recently been seen to dominate a member
who is dominant to yourself).

Another benefit of being ability to make relational comparisons is being able to select
which of two areas contains the largest amount of food. Some animals, including hu-
mans, have a biologically determined representation of numbers, including elementary
arithmetic operations, what one researcher has called the number sense.477

The use of relational operators have an interpretation in terms of linear syllogisms. A
study by De Soto, London, and Handel457 investigated a task they called social reason-
ing, using the relations better and worse. Subjects were shown two relationship state-
ments involving three people, and a possible conclusion (e.g., “Is Mantle worse than
Moskowitz?”), and were given 10 seconds to answer “yes”, “no”, or “don’t know”. The
British National Corpus1106 lists better as appearing 143 times per million words, while
worse appears under 10 times per million words, and is not listed in the top 124,000 most
used words.

Relationships Correct % Relationships Correct %
1. A is better than B 5. A is better than B

B is better than C 60.5 C is worse than B 61.8

2. B is better than C 6. C is worse than B
A is better than B 52.8 A is better than B 57.0

3. B is worse than A 7. B is worse than A
C is worse than B 50.0 B is better than C 41.5

4. C is worse than B 8. B is better than C
B is worse than A 42.5 B is worse than A 38.3

Table 2.6: Eight sets of premises describing the same relative ordering between A, B, and C (peoples names were used in the study) in different ways, followed by the
percentage of subjects giving the correct answer. Based on De Soto et al.457

Table 2.6 shows the percentage of correct answers: a higher percentage of correct answers
were given when the direction was better-to-worse (case 1), than mixed direction (cases
2 and 3); the consistent direction worse-to-better performed poorly (case 4); a higher

2.6. REASONING 47

percentage of correct answers were given when the premises stated an end term (better
or worse; cases 1 and 5) followed by the middle term, than a middle term followed by an
end term.

A second experiment, in the same study, gave subjects printed statements about people.
For instance, “Tom is better than Bill”. The relations used were better, worse, has lighter
hair, and has darker hair. The subjects had to write the peoples names in two of four
possible boxes; two arranged horizontally and two arranged vertically.

The results found 84% of subjects selecting a vertical direction for better/worse, with bet-
ter at the top (which is consistent with the up is good usage found in English metaphors1070).
In the case of lighter/darker, 66% of subjects used a horizontal direction, with no signifi-
cant preference for left-to-right or right-to left.

A third experiment in the same study used the relations to-the-left and to-the-right, and
above and below. The above/below results were very similar to those for better/worse.
The left-right results found that subjects learned a left-to-right ordering better than a right-
to-left ordering.

Subject performance on linear reasoning improves, the greater the distance between the
items being compared; the distance effect is discussed in section 2.7.

Source code constructs relating to linear reasoning are discussed in section 7.1.2.

2.6.3 Causal reasoning

A question asked by developers, while reading source, is “what causes this /situation/event
to occur?” Causal questions, such as this, also occur in everyday life. However, there
has been relatively little mathematical research on causality (statistics deals with corre-
lation; Pearl1459 covers some mathematical aspects of causality), and little psychological
research on causal reasoning.1726

It is sometimes possible to express a problem in either a causal or conditional form. A
study by Sloman, and Lagnado1727 gave subjects one of the following two reasoning
problems, and associated questions:

• Causal argument form:

A causes B
A causes C
B causes D
C causes D
D definitely occurred

with the questions: “If B had not occurred, would D still have occurred?”, or “If B had
not occurred, would A have occurred?”

• Conditional argument form:

If A then B
If A then C
If B then D
If C then D
D is true

with the questions: “If B were false, would D still be true?”, or “If B were false, would
A be true?”.

Table 2.7 shows that subject performance depended on the form in which the problem
was expressed.

Question Causal Conditional
D holds? 80% 57%
A holds? 79% 36%

Table 2.7: Percentage “yes” responses to various forms of questions (based on 238 responses). Based on Sloman et al.1727

A study by Bramley242 investigated causal learning. Subjects saw three nodes (e.g., grey
filled circles, such as those at the center of figure 2.51), and were told that one or more

48 2. Human cognition

Figure 2.51: Example causal chains used Bramley.242

Github–Local

X

X

X

X
O

O

O

1 2 3 4 5 6 7 8
500

1000

1500

2000

2500

3000

3500

Items

4 distractors
2 distractors
0 distractors

Q

Q
Q

Q

O

O O

1 2 3 4 5 6 7 8
500

1000

1500

2000

2500

3000

3500

Items

R
es

po
ns

e
tim

e

4 distractors
2 distractors
0 distractors

Figure 2.52: Average time (in milliseconds) taken for sub-
jects to enumerate O’s in a background of X or Q distrac-
tors. Based on Trick and Pylyshyn.1843 Github–Local

−6 −4 −2 0 2 4 6

0.5

0.6

0.7

0.8

0.9

1.0

Difference (actual−target)

P
ro

ba
bi

lit
y

co
rr

ec
t

8 target
12 target
16 target
20 target
25 target
30 target

Figure 2.53: Probability a subject will successfully distin-
guish a difference between the number of dots displayed,
and a specified target number (x-axis is the difference be-
tween these two values). Data extracted from van Oeffelen
et al.1878 Github–Local

causal links existed between the nodes. Clicking on a node activated it, and clicking the
test icon resulted in zero or more of the other two nodes being activated (depending on the
causal relationship that existing between nodes; nodes had to be activated to propagate an
activation); subjects were told that the (unknown to them) causal links worked 80% of the
time, and in 1% of cases a node would independently activate. Subjects, on Mechanical
Turk, were asked to deduce the causal links that existed between the three nodes, by
performing 12 tests for each of the 15 problems presented.

Figure 2.51 shows some possible causal links, e.g., for the three nodes in the top left,
clicking the test icon when the top node was activated would result in the left/below node
becoming activated (80% of the time).

On average, subjects correctly identified 9 (sd=4.1) out of 15 causal links, with 34%
getting 15 out of 15. A second experiment included on-screen reminder information and
a summary of previous test results; the average score increased to 11.1 (sd=3.5), and 12.1
(sd=2.9) when previous test results were on-screen.

Common mistakes included: a chain [X1 → X2 → X3] being mistakenly judged to be
fully connected [X1 → X2 → X3,X1 → X3], or a fork [X2 ← X1 → X3]; the opposite also
occurred, with fully connected judged to be a chain.

2.7 Number processing

Having a sense of quantity, and being able to judge the relative size of two quantities,
provides a number of survival benefits, including deciding which of two clusters of food
is the largest, and being able to repeat a task an approximate number times (e.g., pressing
a bar is a common laboratory task, see fig 2.4).

Being able to quickly enumerate small quantities is sufficiently useful for the brain to
support preattentive processing of up to four, or so, items.1843 When asked to enumerate
how many dots are visible in a well-defined area, subjects’ response time depends on the
number of dots; with between one and four dots, performance varies between 40 ms to
100 ms per dot, but with five or more dots, performance varies between 250 ms to 350 ms
per dot. The faster process is known as subitizing (people effortlessly see the number of
dots), while the slower process is called counting.

Studies have found that a variety of animals make use of an approximate mental number
system (sometimes known as the number line); see fig 2.4. The extent to which brains
have a built-in number line, or existing neurons are repurposed through learning, is an
active area of research.475, 1395 Humans are the only creatures known to have a second
system, one that can be used to represent numbers exactly: language.

A study by van Oeffelen and Vos1878 investigated subjects’ ability to estimate the number
of dots in a briefly displayed image (100 ms, i.e., not enough time to be able to count the
dots). Subjects were given a target number, and had to answer yes/no on whether they
thought the image they saw contained the target number of dots. Figure 2.53 shows the
probability of a correct answer for various target numbers, and a given difference between
target number and number of dots displayed.

What are the operating characteristics of the approximate number system? The character-
istics that have most occupied researchers are the scale used (e.g., linear or logarithmic),
the impact of number magnitude on cognitive performance, and when dealing with two
numbers the effect of their relative difference in value on cognitive performance.477

Studies of the mental representation of single digit numbers480 have found a linear scale
used by subjects from western societies, and a logarithmic scale used by subjects from
indigenous cultures that have not had formal schooling.

Engineering and science sometimes deal with values spanning many orders of magnitude,
a range that people are unlikely to encounter in everyday life. How do people mentally
represent large value ranges?

A theoretical analysis1485 found that a logarithmic scale minimized representation error,
assuming the probability of a value occurring follows a power law distribution, assuming
relative change is the psychologically-relevant measure, and that noise is present in the
signal.

A study by Landy, Charlesworth and Ottmar1079 asked subjects to click the position on
a line (labeled at the left end with one thousand and at the right end with one billion),

2.7. NUMBER PROCESSING 49

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rt

io
n

of
 L

in
e

0
500

Thousand
500

Million

Subject 5

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rt

io
n

of
 L

in
e

0
500

Thousand
500

Million

Subject 45

0.0

0.2

0.4

0.6

0.8

1.0

0
500

Thousand
500

Million

Subject 147

0.0

0.2

0.4

0.6

0.8

1.0

0
500

Thousand
500

Million

Subject 155

Figure 2.54: Line locations chosen for the numeric values
seen by each of four subjects; color of fitted loess line
changes at one million boundary. Data kindly provided by
Landy.1079 Github–Local

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1.0

Estimate that speaker rounded

P
ro

ba
bi

lit
y

sp
ea

ke
r

ac
tu

al
ly

 r
ou

nd
ed

k=8
k=6
k=4
k=2

Figure 2.55: Probability the rounded value given has actu-
ally been rounded, given an estimate of the likelihood of
rounding, and the number of values likely to have been
rounded; grey line shows 50% probability of rounding.
Github–Local

1

2

5

10

20

50

100

Time needed (hours)

C
ha

ng
es

0.1 0.2 0.5 1 2 4

Determine change needed
Design+implement

Figure 2.56: Number of change requests having a given
recorded time to decide whether change was needed,
and time to implement. Data from Basili et al.141

Github–Local

corresponding to what they thought was the appropriate location for each of the 182 values
they saw (selected from 20 evenly spaced values between one thousand and one million,
and 23 evenly spaced values between one million and one billion).

Figure 2.54 shows some of the patterns that occurred in subject responses; the one in the
top left was one of the most common. Most subjects placed one million at the halfway
point (as-if using a logarithmic scale), placing values below/above a million on separate
linear scales. Landy et al developed a model based on the Category Adjustment model,512

where subjects selected a category boundary (e.g., one million, creating the categories:
the thousands and the millions), a location for the category boundary along the line, and
a linear(ish)x mapping of values to relative position within their respective category.

Studying the learning and performance of simple arithmetic operations has proven com-
plicated;616, 1881 models of simple arithmetic performance1100 have been built. Working
memory capacity has an impact on the time taken to perform mental arithmetic opera-
tions, and the likely error rate, e.g., remembering carry or borrow quantities during sub-
traction;889 the human language used to think about the problem also has an impact.888

How do people compare multi-digit integer constants? For instance, do they compare
them digit by digit (i.e., a serial comparison), or do they form two complete values be-
fore comparing their magnitudes (the so-called holistic model)? Studies show that the
answer depends on how the comparisons are made, with results consistent with the digit
by digit2007 and holistic479 approaches being found.

Other performance related behaviors include:

• split effect: taking longer to reject false answers that are close to the correct answer
(e.g., 4×7 = 29), than those that are further away (e.g., 4×7 = 33),

• associative confusion effect: answering a different question from the one asked (e.g.,
giving 12 as the answer to 4×8 =?, which would be true had the operation been addi-
tion),

• plausibility judgments:1113 using a rule, rather than retrieving a fact from memory, to
verify the answer to a question; for instance, adding an odd number to an even number
always produces an odd result,

Trial judges have been found1550 to be influenced by the unit of measurement in sentenc-
ing (i.e., months or years), and to exhibit anchoring effects when deciding award damages.

2.7.1 Numeric preferences

Measurements of number usage, in general spoken and written form, show that people
prefer to use certain values, either singly (sometimes known as round numbers) or as
number pairs.

Number pairs (e.g., “10 to 15 hours ago”) have been found to follow a small set of rules,555

including: the second number is larger than the first, the difference between the values is
a divisor of the second value, and the difference is at least 5% of the second value.

A round number is any number commonly used to communicate an approximation of
nearby values; round numbers are often powers of ten, divisible by two or five, and other
pragmatic factors.914 Round numbers can act as goals1505 and as clustering points.1738

A usage analysis145 shows that selecting a rounded interpretation yields the greater benefit
when there is a small chance that a rounded, rather than or non-rounded, use occurred. If
a speaker uses a round number, round_value, the probability that the speaker rounded a
nearby value to obtain it is given by:

P(Speaker_rounded|round_value) =
k

k+ 1
x −1

, where: k is the number of values likely

to be rounded to round_value, and x the probability that the speaker chooses to round.
Figure 2.55 shows how the likelihood of rounding being used increases rapidly as the
number of possible rounded values increases.

A study by Basili, Panlilio-Yap, Ramsey, Shih and Katz141 investigated the redesign and
implementation of a software system. Figure 2.56 shows the number of change requests
taking a given amount of time to decide whether the change was needed, and the time to
design+implement the change. There are peaks at the round-numbers 1, 2 and 5, with 4
hours perhaps being the Parkinson’s law target of a half day.

xCategory Adjustment theory supports curvaceous lines.

50 2. Human cognition

0 50 100 150 200
0

5

10

15

20

25

30

35

Between values

o
o

o
o
o
o

o
o

o
o

o
o

o
o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o
o

o
o

o
o

o
o

o
o

o
o
o

o
o

o
o

o
o

o
o

o
o

o
o
o

o
o

o
o
o

o
o

o
o

o
o

o

Figure 2.57: Min/max range of values (red/blue lines), and
best value estimate (green circles), given by subjects inter-
preting the value likely expressed by statements contain-
ing “less than 100” and “more than 100”. Data kindly
provided by Cummins.421 Github–Local

−1.0 −0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Relative uncertainty

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

almost
below
at most
no more than

above
over
at least
no less than

Figure 2.58: The cumulative probability of subjects ex-
pressing a given relative uncertainty, for numeric phrases
using given hedge words. Data kindly provided by Fer-
son.598 Github–Local

A study by King and Janiszewski1003 showed integer values between 1 and 100, in random
order, to 360 subjects, asking them to specify whether they liked the number, disliked it, or
were neutral. Numbers ending in zero had a much higher chance of being liked, compared
to numbers ending in other digits; see Github–developers/like-n-dis.R for a regression model
fitted to the like and dislike probability, based on the first/last digits of the number.

A study by van der Henst, Carles and Sperber1873 approached people on the street, and
asked them for the time; there was a 20% probability that the minutes were a multiple
of five. When subjects were wearing an analogue watch, 98% of replies were multiples
of five-minutes, when subjects were wearing digital watches the figure was 66%. Many
subjects invested effort in order to communicate using a round number.

People sometimes denote approximate values using numerical expressions containing
comparative and superlative qualifiers, such as “more than n” and “at least n”.

A study by Cummins421 investigated the impact of number granularity on the range of
values assigned by subjects to various kinds of numerical expressions. Subjects saw
statements of the form “So far, we’ve sold fewer than 60 tickets.” (in other statements
fewer was replaced by more), and subjects were asked: “How many tickets have been
sold? From ?? to ??, most likely ??.”. Three numeric granularities were used: coarse,
e.g., a multiple of 100, medium e.g., multiple of 10 and non-multiple of 100, and fine e.g.,
non-round such as 77.

The results found that the most likely value, given by subjects, was closest to the value
appearing in the statement when it had a fine granularity and furthest away when it was
coarse; see Github–reliability/CumminsModifiedNumeral.R. Figure 2.57 shows the “From to”
range given by each subject, along with their best estimate (in green) for statements spec-
ifying “less than 100” and “more than 100”.

When specifying a numeric value, people may also include information that expresses
their uncertainty, using a so-called hedge word, e.g., “about”, “around”, “almost”, “almost
exactly”, “at least”, “below” and “nearly”.

A study by Ferson, O’Rawe, Antonenko, Siegrist, Mickley, Luhmann, Sentz and Finkel598

investigated interpretations of numerical uncertainty. Subjects were asked to specify min-
imal and maximal possible values, for their interpretation of the quantity expressed in
various statements, such as: “No more than 100 people.”

Figure 2.58 shows the cumulative probability of relative uncertainty of numeric phrases

(calculated as: minimal−actual
minimal

and maximal−actual
maximal

), for the hedge words listed in

the legends.

The relative size of objects being quantified has been found to have an effect on the
interpretation given to quantifiers.1371

2.7.2 Symbolic distance and problem size effect

When people compare two items sharing a distance-like characteristic, the larger the dis-
tance between two items, the faster people are likely to respond to a comparison question
involving this characteristic (e.g., comparisons of social status351 and geographical dis-
tance;834 also see fig 2.19); this is known as the symbolic distance effect. Inconsistencies
between a symbolic distance characteristic and actual distance for the question asked, can
increase the error rate,805 e.g., is the following relation true? 3 >5.

A study by Tzelgov, Yehene, Kotler and Alon1860 investigated the impact of implicit
learning on the symbolic distance effect. Subjects trained one-hour per day on six dif-
ferent days (over ten days) learning the relative order of pairs of nine graphical symbols.
During the first three training sessions all subjects only saw pairs of symbols that were
adjacent in the overall relative ordering, i.e., pairs: (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7),
(7, 8) and (8, 9). During the next three sessions one group of subjects continued to train
on the same pairs, while another group trained on 14 non-adjacent pairs (i.e., a subset of
possible non-adjacent pairs).

On completion of the training sessions, subjects answered questions about pairs of sym-
bols having various relative ordering distances. A symbolic distance effect was seen in
answer response times; subjects who had trained on non-adjacent pairs consistently re-
sponded faster than subjects who had only trained on adjacent pairs.

Studies have found that the time taken to solve a simple arithmetic problem, and the error
rate, increase as the value of both operands increases (e.g., subjects are slower to solve

2.7. NUMBER PROCESSING 51

0 2 4 6 8
0

1

2

3

4

5

6

7

Operand family

In
co

rr
ec

t (
%

)

Canadian
Chinese

Figure 2.59: Percentage of incorrect answers to arith-
metic problems, given by Canadian and Chinese students,
for each operand family value. Data kindly provided by
LeFevre.1108 Github–Local

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Actual proportion

E
st

im
at

ed
 p

ro
po

rt
io

n

muslim
christian
immigrant
voting rate
teen pregnancy

Figure 2.60: Estimated proportion (from survey results),
and actual proportion of people in a population matching
various demographics; line is a fitted regression having the
form: loEstimated ∝ γ × loActual +(1− γ)× δ , where γ and
δ are fitted constants; grey line shows estimated equals
actual. Data from Landy et al.1081 Github–Local

9+ 7, than 2+ 3,294 see Github–developers/campbell1997.R); this is known as the problem
size effect. As in many experiments, the characteristics of student performance can vary
widely.

A study by LeFevre and Liu1108 investigated the performance of Canadian and Chinese
university students on simple multiplication problems (e.g., 7× 4). Figure 2.59 shows
the percentage error rate for problems containing values from a given operand family
(e.g., 2× 6 contains values from the 2 and 6 operand family, and an incorrect answer to
this problem counts towards both operand families). The hypothesis for the difference in
error rate was student experience; during their education Canadian students were asked to
solve more multiplication problems containing small values, compared to large values; an
analysis of the work-books of Chinese students found the opposite distribution of operand
values, i.e., Chinese students were asked to solve more problems involving large operands,
compared to small operands.

The magnitude of a measurement value depends on the unit of measurement used, e.g.,
inches, feet, yards, and meters are units of length, or distance.

A study Jørgensen949 asked commercial developers to estimate the time needed to im-
plement a project. Some were asked to estimate in work-hours and others in work days.
The results found that those answering in work-hours gave lower estimates, for the same
project, than those working in workdays; see Github–developers/time-unit-effect.R.

2.7.3 Estimating event likelihood

The ability to detect regularities in the environment, and to take advantage of them is a
defining characteristic of intelligent behavior.

In some environments, the cost of failing to correctly detect an object or event may be
significantly higher than the cost of acting as-if an event occurred, when none occurred.
People appear to be hardwired to detect some patterns, e.g., seeing faces in a random
jumble of items.

People sometimes have expectations of behavior for event sequences. For instance, an ex-
pectation that sequences of random numbers have certain attributes,570, 1424 e.g., frequent
alternation between different values (which from a mathematical perspective, are a form
of regularity).

People tend to overestimate the likelihood of uncommon events and underestimate the
likelihood of very common events. A variety of probability weighting functions have
been proposed to explain the experimental evidence.703 The log-odds of the proportion

estimated, log
pe

1− pe
⇒ lope (where pe is the proportion estimated), is given by:

lope = γlopa +(1− γ)δ , where: γ is a constant (interpreted as a relative weight on the
perception of lopa, the log-odds of the actual proportion), and δ is a constant (interpreted
as a prior expectation).xi

Figure 2.60 shows data from various surveys of public perception of demographic ques-
tions involving the percentage of a population containing various kinds of people, along
with a fitted log-odds proportional model (grey line shows estimated equal actual).

The probability of a particular event occurring may not be fixed, the world is constantly
changing, and the likelihood of an event may change. Studies have found that people are
responsive to changes in the frequency with which an event occurs,647 and to changes in
the available information.1105

A study by Khaw, Stevens and Woodford994 investigated changes in decision-maker an-
swers when operating in a changing environment. Subjects were asked to estimate the
likelihood of drawing a green ring from a box containing an unknown (to them) percent-
age of red and green rings; the percentage of color rings remained fixed for some number
of draws, and then changed. During a session each subject made 999 draws and estimates
of probability of drawing a green ring. Subjects were paid an amount based on how accu-
rately they estimated, over time, the percentage of green rings, with eleven subjects each
performing ten sessions.

The results found discrete jumps in subject estimates (rather than a continual updating of
probability as each draw revealed more information, as a Bayesian decision-maker would
behave), and a preference for round numbers.

xiThis equation is sometimes written using pa directly, rather than using log-odds, i.e., pe =
δ 1−γ pγ

a
δ 1−γ pγ

a+(1−pa)γ
.

52 2. Human cognition

200 400 600 800
0.0

0.2

0.4

0.6

0.8

1.0

Rings drawn

P
ro

ba
bi

lit
y

Actual
Estimate

200 400 600 800
0.0

0.2

0.4

0.6

0.8

1.0

Rings drawn

P
ro

ba
bi

lit
y

Actual
Estimate

Figure 2.61: Estimated probability (blue/green lines) of
drawing a green ring by two subjects (upper: subject 10,
session 8, lower: subject 7, session 8), with actual proba-
bility in red. Data from Khaw et al.994 Github–Local

0.0

0.2

0.4

0.6

0.8

1.0

Objective color

M
ea

n
re

sp
on

se

Purple Blue

First 200 dots (constant blue)
Last 200 dots (constant blue)
First 200 dots (decreased blue)
Last 200 dots (decreased blue)

First 200 dots (constant blue)
Last 200 dots (constant blue)
First 200 dots (decreased blue)
Last 200 dots (decreased blue)

Figure 2.62: Mean likelihood that a subject considered
a dot of a given color to be blue, for the first/last 200
dots seen by two groups of subjects; lines are fitted lo-
gistic regression models. Data from Levari et al.1118

Github–Local

Figure 2.61 shows two subjects’ estimates (blue/green lines) of the probability of drawing
a green ring, for a given actual probability (red line), as they drew successive rings.

A change in the occurrence of an event can result in a change to what is considered to
be an occurrence of the event. A study by Levari, Gilbert, Wilson, Sievers, Amodio and
Wheatley1118 showed subjects a series of randomly colored dots, one at a time (the colors
varied on a continuous scale, between purple and blue); subjects were asked to judge
whether each dot they saw was blue (each subject saw 1,000 dots). Subjects were divided
into two groups: for one group the percentage of blue dots did not change over time, while
for the second group the percentage of blue dots was decreased after a subject had seen
200 dots.

Figure 2.62 is based on data from the first and last series of 200 dots seen by each subject;
the x-axis is an objective measure of the color of each dot, the y-axis is the percentage
of dots identified as blue (averaged over all subjects). Lines are fitted logistic regression
models. The responses for subjects in the constant blue group did not change between
the first/last 200 dots (red and green lines). For the decreased blue group, after subjects
experienced a decline in the likelihood of encountering a blue dot, the color of what they
considered to be a blue dot shifted towards purple (blue and purple lines).

In later experiments subjects were told that the prevalence of blue dots "might change",
and would "definitely decrease"; the results were unchanged.

2.8 High-level functionality

This section discusses high-level cognitive functionality that has an impact on software
development, but for which there is insufficient material for a distinct section.

2.8.1 Personality & intelligence

Perhaps the most well-known personality test is the Meyer-Briggs type indicator, or MBTI
(both registered trademarks of Consulting Psychologists Press). The reliability and va-
lidity of this test has been questioned,1235, 1492 with commercial considerations, and a
changing set of questions making research difficult. The International Personality Item
Pool (IPIP)697 is a public domain measure, which now has available samples containing
hundreds of thousands of responses.920

The Five-Factor model696 structures personality around five basic traits: neuroticism, ex-
troversion, openness, agreeableness, and conscientiousness; it has its critics,1675 and ap-
pears to be WEIRD person specific.1169 Studies that have attempted to identify personality
types, based on these five traits have suffered from small sample size (e.g., 1,000 people);
studies based on IPIP data, using samples containing 100,000 to 500,000 responses, claim
to have isolated four personality types.669

Tests measuring something called IQ have existed for over 100 years. The results are
traditionally encapsulated in a single number, but tests claiming to measure the various
components of intelligence are available.463 The model is that people possess a general
intelligence g, plus various domain specific intelligences, e.g., in tests involving maths
the results would depend on g and maths specific intelligence, and in tests involving use
of language the results would depend on g and language specific intelligence.

The cultural intelligence hypothesis is that humans have a specific set of social skills for
exchanging knowledge in social groups; children and chimpanzees have been found to
have similar cognitive skills for dealing with the physical world, but children have more
sophisticated skills for dealing with the social world.818

Without reliable techniques for measuring personality traits, it is not possible to isolate
characteristics likely to be beneficial or detrimental to software development. For in-
stance, how important is the ability to concentrate for large amounts of time on particular
activities?

2.8.2 Risk taking

Making a decision based on incomplete or uncertain information involves an element of
risk. How do people integrate risk into their decision-making process?

2.8. HIGH-LEVEL FUNCTIONALITY 53

The term risk asymmetry refers to the fact that people have been found to be risk averse
when deciding between alternatives that have a positive outcome, but are risk seeking
when deciding between alternatives that have a negative outcome.xii

While there is a widespread perception that women are more risk averse than men, ex-
isting studies are either not conclusive or show a small effect600 (many suffer from small
sample sizes, and dependencies on the features of the task subjects are given). For the
case of financial risks. the evidence337 that men are more willing to take financial risks
than women is more clear-cut. The evidence from attempts to improve road safety is that
“protecting motorists from the consequences of bad driving encourages bad driving”.8

A study by Jones936 investigated the possibility that some subjects, in an experiment
involving recalling information about previously seen assignment statements, were less
willing to risk giving an answer when they had opportunity to specify that in real-life
they would refer back to previously read code. Previous studies931, 932 had found that a
small percentage of subjects consistently gave much higher rates of "would refer back"
answers. One explanation is that these subjects had a smaller short term memory capacity
than other subjects (STM capacity varies between people), another is that these subjects
are much more risk averse than the other subjects.

The Domain-Specific Risk-Taking (DOSPERT) questionnaire208, 1937 was used to mea-
sure subject’s risk attitude. The results found no correlation between risk attitude (as
measured by DOSPERT), and number of "would refer back" responses.

2.8.3 Decision-making

A distinction is commonly made between decisions made under risk, and decisions made
under uncertainty.1908 Decisions are made under risk when all the information about the
probability of outcomes is available, and one of the available options has to be selected.
Many studies investigating human decision-making provide subjects with all the infor-
mation about the probability of the outcomes, and ask them to select an option, i.e., they
involve decision under risk.

Decisions are made under uncertainty when the available information is incomplete and
possibly inaccurate. Human decision-making often takes place in an environment of in-
complete information and limited decision-making resources (e.g., working memory ca-
pacity and thinking time); people have been found to adopt various strategies to han-
dle this situation,1205 balancing the predicted cognitive effort required to use a particular
decision-making strategy against the likely accuracy achieved by that strategy.

The term bounded rationality1710 is used to describe an approach to problem-solving that
makes limited use of cognitive resources. A growing number of studies680 have found
that the methods used by people to make decisions, and solve problems, are often close
enough to optimal xiii, given the resources available to them; even when dealing with
financial matters.1240 If people handle money matters in this fashion, their approach to
software development decisions is unlikely to fare any better.

A so-called irregular choice occurs when, a person who chooses B from the set of items
{A, B, C} does not choose B from the set {A, B}; irregular decision makers have been
found1822 to be more common among younger (18–25) subjects, and are less common
with older (60–75) subjects.

Consumer research into understanding how shoppers decide among competing products
uncovered a set of mechanisms that are applicable to decision-making in general, e.g.,
decision-making around the question of which soap will wash the whitest is no different
from the question of whether an if statement, or a switch statement should be used. Before
a decision can be made, a decision-making strategy has to be selected, and people have
been found to use a number of different decision-making strategies.1456

Decision strategies differ in several ways, for instance, some make trade-offs among the
attributes of the alternatives (making it possible for an alternative with several good at-
tributes to be selected, instead of the alternative whose only worthwhile attribute is ex-
cellent); they also differ in the amount of information that needs to be obtained, and

xiiWhile studies812 based on subjects drawn from non-WEIRD societies sometimes produce different results,
this book assumes developers are WEIRD.

xiiiSome researchers interpret bounded rationality as human decision-making producing results as-if people
optimize under cognitive constraints, while others676 don’t require people to optimize, but to use algorithms that
produce results that are good enough.

54 2. Human cognition

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

Demonstrators disagreeing

S
w

itc
h

an
sw

er
 (

pr
ob

ab
ili

ty
)

Confidence = 0
Confidence = 2
Confidence = 4
Confidence = 6

Figure 2.63: Fitted regression model for probability that a
subject, who switched answer three times, switches their
initial answer when told a given fraction of opposite re-
sponses were made by others (x-axis), broken down by
confidence expressed in their answer (colored lines). Data
kindly provided by Morgan.1312 Github–Local

6.25 8.00 6.75

5.00 4.00 6.50

3.75 4.25 3.00

Figure 2.64: Each row shows a scaled version of the
three stripes, along with actual lengths in inches, from
which subjects were asked to select the longest. Based
on Asch.81 Github–Local

the amount of cognitive processing needed to make a decision. Named decision-making
strategies include: the weighted additive rule, the equal weight heuristic, the frequency
of good and bad features heuristic, the majority of confirming dimensions heuristic, the
satisficing heuristic the lexicographic heuristic, the habitual heuristic and in recent years
decision by sampling.1780

There is a hierarchy of responses for how people deal with time pressure:1456 they work
faster; if that fails, they may focus on a subset of the issues; if that fails, they may change
strategies (e.g., from alternative based to attribute based).

Studies have found that having to justify a decision can affect the choice of decision-
making strategy used.1824 One strategy for handling accountability is to select the alter-
native that the perspective audience is thought most likely to select.1823 People who have
difficulty determining which alternative has the greatest utility tend to select the alterna-
tive that supports the best overall reasons (for choosing it).1712

Requiring developers to justify why they have not followed existing practice can be a
double-edged sword. Developers can respond by deciding to blindly follow everybody
else (a path of least resistance), or they can invest effort in evaluating alternatives (not
necessarily cost effective behavior, since the invested effort may not be warranted by the
expected benefits). The extent to which some people will blindly obey authority was
chillingly demonstrated in a number of studies by Milgram.1278

Making decisions can be difficult, and copying what others do can be a cost effective
strategy. Who should be copied? Strategies include: copy the majority, copy successful
individuals, copy kin, copy "friends", copy older individuals. Social learning is discussed
in section 3.4.4.

A study by Morgan, Rendell, Ehn, Hoppitt and Laland1312 investigated the impact of the
opinions expressed by others on the answers given by subjects. One experiment asked
subjects to decide whether one object was a rotated version of a second object (i.e., the
task shown in figure 2.8), and to rate their confidence in their answer (on a scale of 0 to
6, with 6 being the most confident). After giving an answer, subjects saw the number
of yes/no answers given by up to twelve other people (these answers may or may not
have been correct); subjects were then asked to give a final answer. The 51 subjects each
completed 24 trials, and after seeing other responses changed their answer, on average, in
2.8 trials.

Figure 2.63 shows the behavior of a fitted regression model for the probability that a
subject (y-axis), who makes three switches in 24 trials, does switch their answer, when
told that a given fraction of other responses were the opposite of the subject’s initial guess
(x-axis); lines show the percentage for subject’s expressing a given confidence in their
answer (colored lines).

Social pressure can cause people to go along with decisions voiced by others involved in
the decision process (i.e., social conformity as a signal of belonging,197 such as corporate
IT fashion: see fig 1.17). A study by Asch81 asked groups of seven to nine subjects
to individually state, which of three black strips they considered to be the longest (see
figure 2.64). The group sat together in front of the stripes, and subjects could interact
with each other; all the subjects, except one, were part of the experiment, and in 12 of
18 questions selected a stripe that was clearly not the longest (i.e., the majority gave an
answer clearly at odds with visible reality). It was arranged that the actual subject did not
have to give an answer until hearing the answers of most other subjects.

The actual subject, in 24% of groups, always gave the correct answer; in 27% of groups
the subject agreed with the incorrect majority answer between eight and twelve times, and
just under half varied in the extent to which they followed the majority decision. When
the majority selected the most extreme incorrect answer (i.e., the shortest stripe), subjects
giving an incorrect answer selected the less extreme incorrect answer in 20% of cases.

Later studies219 have found that the extent to which subjects conform to group responses
varies across cultures, with the least conformity in individualist societies and the greatest
in collectivist societies.1432

How a problem is posed can have a large impact on the decision made.

A study by Regnell, Höst, och Dag, Beremark and Hjelm1569 asked 10 subjects to assign a
relative priority to two lists of requirements (subjects’ had a total budget of 100,000 units
and had to assign units to requirements). One list specified that subjects should prioritize
the 17 high level requirements, and the other list specified that a more detailed response,

2.8. HIGH-LEVEL FUNCTIONALITY 55

Wealth

U
til

ity

1 2

1.0

1.4

2.0

4.0

Figure 2.65: Risk neutral (green, u(w) = w), and exam-
ple of risk loving (red, quadratic) and risk averse (blue,
square-root) utility functions. Github–Local

0.5 0.6 0.7 0.8 0.9 1.0

0.5

0.6

0.7

0.8

0.9

1.0

Subject estimate

P
ro

po
rt

io
n

co
rr

ec
t

Hard
Perfect self−knowledge
Easy

Figure 2.66: Subjects’ estimate of their ability (x-axis) to
correctly answer a question and actual performance in an-
swering on the left scale. The responses of a person with
perfect self-knowledge is given by the green line. Data
extracted from Lichtenstein et al.1133 Github–Local

in the form of prioritizing every feature contained within each high level requirement, be
given.

Comparing the totals for the 17 high level requirements list (summing the responses for
the detailed list) with the more detailed response, showed that the subject correlation
between the two lists was not very strong (the mean across 10 subjects was 0.46); see
Github–projects/prioritization.R.

2.8.4 Expected utility and Prospect theory

The outcome of events is often uncertain. If events are known to occur with probability
pi, with each producing a value of Xi, then the expected outcome value is given by:

E[x] = p1X1 + p2X2 + p3X3 + · · ·+ pnXn

For instance, given a 60% chance of winning £10 and a 40% chance of winning £20, the
expected winnings are: 0.6×10+0.4×20 = 14

When comparing the costs and benefits of an action, decision makers often take into
account information on their current wealth, e.g., a bet offering a 50% chance of winning
£1 million, and a 50% chance of losing £0.9 million has an expected utility of £0.05
million; would you take this bet, unless you were very wealthy? Do you consider £20 to
be worth twice as much as £10?

The mapping of a decision’s costs and benefits, to a decision maker’s particular circum-
stances, is made by what is known as a utility function, u; the above equation becomes
(where W is the decision maker’s current wealth):

E[x] = p1u(W +X1)+ p2u(W +X2)+ p3u(W +X3)+ · · ·+ pnu(W +Xn)

In some situations a decision maker’s current wealth might be effectively zero, e.g., they
have forgotten their wallet, or because they have no authority to spend company money
on work related decisions (personal wealth of employees is unlikely to factor into many
of their work decisions).

Figure 2.65 shows possible perceived utilities of an increase in wealth. A risk neutral de-
cision maker perceives the utility of an increase in wealth as being proportional to the in-
crease (green, u(w) = w), a risk loving decision maker perceives the utility of an increase
in wealth as being proportionally greater than the actual increase (e.g., red, u(w) = w2),
while a risk averse decision maker perceives the utility of an increase having proportion-
ally less utility (e.g., blue, u(w) =

√
w).

A study by Kina, Tsunoda, Hata, Tamada and Igaki1002 investigated the decisions made
by subjects (20 Open source developers) when given a choice between two tools, each
having various probabilities of providing various benefits, e.g., Tool1 which always saves
2 hours of work, or Tool2 which saves 5 hours of work with 50% probability, and has no
effect on work time with 50% probability.

Given a linear utility function, Tool1 has an expected utility of 2 hours, while Tool2 has an
expected utility of 2.5 hours. The results showed 65% of developers choosing Tool1, and
35% choosing Tool2: those 65% were not using a linear utility function; use of a square-
root utility function would produce the result seen, i.e., 1×

√
2 > 0.5×

√
5+0.5×

√
0.

2.8.5 Overconfidence

While overconfidence can create unrealistic expectations, and lead to hazardous deci-
sions being made (e.g., allocating insufficient resources to complete a job), simulation
studies919 have found that overconfidence has benefits in come situations, averaged over
a population; see Github–developers/overconfidence/0909.R. A study83 of commercialization
of new inventions, found that while inventors are significantly more confident and opti-
mistic than the general population, the likely return on their investment of time and money
in their invention is negative; a few receive a huge pay-off.

A study by Lichtenstein and Fishhoff1133 asked subjects general knowledge questions,
with the questions divided into two groups, hard and easy. Figure 2.66 shows that sub-
jects’ overestimated their ability (x-axis) to correctly answer hard questions, but underes-
timated their ability to answer easy questions; green line denotes perfect self-knowledge.

56 2. Human cognition

Time

P
er

ce
iv

ed
 p

re
se

nt
 v

al
ue

Start reward1 reward2

amount2

amount1

Figure 2.67: Perceived present value (moving through
time to the right) of two future rewards. Github–Local

0

2

4

6

8

10

Years

D
ay

s
(n

or
m

al
is

ed
)

1 2 3 4 5 10

Figure 2.68: Saving required (normalised), over a project
having a given duration, before subjects would make
a long term investment. Data from Becker et al.158

Github–Local

These, and subsequent results, show that the skills and knowledge that constitute com-
petence in a particular domain are the same skills needed to evaluate one’s (and other
people’s) competence in that domain. Metacognition is the term used to denote the ability
of a person to accurately judge how well they are performing.

Peoples’ belief in their own approach to getting things done can result in them ignor-
ing higher performing alternatives;70 this behavior has become known as the illusion of
control.1082

Studies1337 have found cultural and context dependent factors influencing overconfidence;
see Github–developers/journal-pone-0202288.R.

It might be thought that people, who have previously performed some operation, would be
in a position to make accurate predictions about future performance on these operations.
However, studies have found1613 that, while people do use their memories of the duration
of past events to make predictions of future event duration, their memories are systematic
underestimates of past duration. People appear to underestimate future event duration
because they underestimate past event duration.

2.8.6 Time discounting

People seek to consume pleasurable experiences sooner, and to delay their appointment
with painful experiences, i.e., people tend to accept less satisfaction in the short-term,
than could be obtained by pursuing a longer-term course of action; a variety of models
have been proposed.509 Studies have found that animals, including humans, appear to
use a hyperbolic discount function for time variable preferences.483 The hyperbolic delay
discount function is:

vd =
V

1+ kd
, where: vd is the delayed discount, V the undiscounted value, d the delay

and k some constant.

A property of this hyperbolic function is that curves with different values of V and d can
cross. Figure 2.67 shows an example where the perceived present value of two future
rewards (red and blue lines) starts with red have a perceived value greater than blue, as
time passes (i.e., the present time moves right, and the delay before receiving the rewards
decreases) the perceived reward denoted by the blue line out-grows the red line, until there
is a reversal in perceived present value. When both rewards are far in the future, the larger
amount has the greater perceived value; studies have found1009 that subjects switch to
giving a higher value to the lesser amount as the time of receiving the reward gets closer.

A study by Becker, Fagerholm, Mohanani and Chatzigeorgiou158 asked professional de-
velopers how many days of effort would need to be saved, over the lifetime of a project,
to make it worthwhile investing time integrating a new library, compared to spending that
time implementing a feature in the project backlog. The developers worked at companies
who developed and supported products over many years, and were asked to specify saving
for various project lifetimes.

Figure 2.68 shows the normalised savings specified by developers from one company, for
given project lifetimes. Many of the lines are concave, showing that these developers are
applying an interest rate that decreases, for the time invested, as project lifetime increases
(if a fixed interest rate, or hyperbolic rate, was applied, the lines would be convex, i.e.,
curve up).

2.8.7 Developer performance

Companies seek to hire those people who will give the best software development per-
formance. Currently, the only reliable method of evaluating developer performance is
by measuring developer outputs (this is a good enough model of the workings of human
mental operations remains in the future). Conscientiousness has consistently been found
to be an effective predictor of occupational performance.1969

One operational characteristic of the brain that can be estimated is the number of op-
erations that could potentially be performed per second (a commonly used method of
estimating the performance of silicon-based processors).

The brain might simply be a very large neural net, so there may be no instructions to count
as such; Merkle1266 used the following approaches to estimate the number of synaptic

2.8. HIGH-LEVEL FUNCTIONALITY 57

20

50

100

200

500

1000

2000

Subject

A
ct

ua
l t

im
e

(m
in

ut
es

)

Figure 2.69: Violin plots for actual time to complete prob-
lems for each of the 593 participants, sorted by mean
solution time; colors to help break up the plots, and
white line shows subject mean. Data from Nichols.1377

Github–Local

operations per second (the supply of energy needed to fire neurons limits the number that
can be simultaneously active, in a local region, to between 1% and 4% of the neurons in
that region1114):

• multiplying the number of synapses (1015), by their speed of operation (about 10 im-
pulses/second), gives 1016 synapse operations per second (if the necessary energy could
be delivered to all of them at the same time),

• the retina of the eye performs an estimated 1010 analog add operations per second. The
brain contains 102 to 104 times as many nerve cells as the retina, suggesting that it can
perform 1012 to 1014 operations per second,

• the brain’s total power dissipation of 25 watts (an estimated 10 watts of useful work),
and an estimated energy consumption of 5 · 10−15 joules for the switching of a nerve
cell membrane, provides an upper limit of 2 ·1015 operations per second.

A synapse switching on and off is the same as a transistor switching on and off, in that
they both need to be connected to other switches to create a larger functional unit. It is not
known how many synapses are used to create functional units, or even what those func-
tional units might be. The distance between synapses is approximately 1 mm, and sending
a signal from one part of the brain to another part requires many synaptic operations, for
instance, to travel from the front to the rear of the brain requires at least 100 synaptic
operations to propagate the signal. So the number of synaptic operations per high-level,
functional operation, is likely to be high. Silicon-based processors can contain millions
of transistors; the potential number of transistor-switching operations per second might
be greater than 1014, but the number of instructions executed is significantly smaller.

Although there have been studies of the information-processing capacity of the brain (e.g.,
visual attention,1890 and storage rate into long-term memory238, 1075), we are a long way
from being able to deduce the likely work rates of the components of the brain while
performing higher level cognitive functions.

Processing units need a continuous supply of energy to function. The brain does not con-
tain any tissue that stores energy, and obtains all its energy needs through the breakdown
of blood-borne glucose. Consuming a glucose drink has been found to increase blood
glucose levels, and enhance performance on various cognitive tasks.987 Fluctuations in
glucose levels have an impact on an individual’s ability to exert self-control,642 with some
glucose intolerant individuals not always acting in socially acceptable ways.xiv

How do developers differ in their measurable output performance?

Although much talked about, there has been little research on individual developer pro-
ductivity (a few studies1638 have used project level data to estimate productivity). One
review878 of studies of employee output variability, found that standard deviation, about
the mean, increased from 19% to 48%, as job complexity increased (not software re-
lated). Claims of a 28-to-1 productivity difference between developers, is sometimes still
bandied about. The, so-called Grant-Sackman study727 is based on an incorrect inter-
pretation of a summary of their experimental data.1522 The data shows a performance
difference of around 6-to-1 between developers using batch vs. online, for creating soft-
ware; see Github–group-compare/GS-perm-diff.R and fig 8.22.

Lines of working code produced per unit-time is sometimes used; figures in the hundreds
of instructions per man-month can sometimes be traced back to measurements made in
the 1960s.800

A study by Nichols1377 investigated the performance of those attending the Personal Soft-
ware Process (PSP) training given at CMU (average professional experience 3.7 years, sd
6.5). The training involves writing programs to solve 10 problems, with each expected to
take a few hours; participants also have to estimate how long various components of the
task will take and record actual times.

Figure 2.69 shows violin plots for the actual time taken by the 593 participants, program-
ming in C, to solve the problems (sorted by the mean solution time; white line shows
mean time, colors intended to help visualise individual plots). There is almost an or-
der of magnitude difference between developers, and between individual performance on
different problems.

xivThere is a belief in software development circles that consumption of chocolate enhances cognitive func-
tion. A review of published studies1649 found around a dozen papers addressing this topic, with three finding
some cognitive benefits and five finding some improvement in mood state.

58 2. Human cognition

Most organizations do not attempt to measure the mental performance of job applicants
for developer roles; unlike many other jobs where individual performance is an impor-
tant consideration. Whether this is because of existing non-measurement culture, lack
of reliable measuring procedures, or fear of frightening off prospective employees is not
known.

One study2001 of development and maintenance costs of programs written in C and Ada
found no correlation between salary grade (or employee rating), and rate of bug fix or
feature implementation rate.

One study2023 investigating tasks completed per month by developers, over a three year
period, found that completion rate increased with developer tenure.

One metric used in software testing is number of fault experiences encountered. In prac-
tice non-failing tests, written by software testers, are useful because they provide evidence
that particular functionality behaves as expected.

A study by Iivonen885 analysed the defect detection performance of those involved in
testing software at several companies. Table 2.8 shows the number of defects detected by
six testers (all but the first column, show percentages), along with self-classification of
seriousness, followed by the default status assigned by others.

Tester Defects Extra Hot Hot Normal Open Fixed No fix Duplicate Cannot reproduce
A 74 4 1 95 12 62 26 12 0
B 73 0 56 44 15 87 6 2 5
C 70 0 29 71 36 71 24 0 4
D 51 0 27 73 33 85 6 0 9
E 50 2 16 82 30 89 9 0 3
F 18 0 22 78 22 64 14 0 21

Table 2.8: Defects detected by six testers (left two columns; some part-time and one who left the company during the study period), the percentage assigned a given status
(next three columns), and percentage outcomes assigned by others. Data from Iivonen.885

A tester performance comparison, based on defects reported, requires combining these
figures (and perhaps others, e.g., likelihood of fault being experienced by a customer) into
a value that can be reliably compared across testers. Defects differ in their commercial
importance, and a relative weight for each classification has to be decided, e.g., should
the weight of “No fix” be larger than that given to “Cannot reproduce” or “Duplicate”?

To what extent would a tester’s performance, based on measurements involving one soft-
ware system in one company, be transferable to another system in the same company or
another company? Iivonen interviewed those involved in testing, to find out what char-
acteristics were thought important in a tester. Knowledge of customer processes and use
cases, was a common answer; this customer usage knowledge enables testers to concen-
trate on those parts of the software that customers are most likely to use and be impacted
by incorrect operation, it also provides the information needed to narrow down the space
of possible input values.

Knowledge of the customer ecosystem and software development skills are the two blades,
in figure 2.1, that have to mesh together to create useful software systems.

2.8.8 Miscellaneous

Research in human-computer interaction has uncovered a variety of human performance
characteristics, including: physical movement (e.g., hand or eye movement) and mental
operations. The equations fitted to experimental performance data for some of these char-
acteristics often contain logarithms, and attention has been drawn to the similarity of form
to the equations used in information theory.1187 The use of a logarithmic scale, to quan-
tify the perception of stimuli, minimizes relative error.1510 Some commonly encountered
performance characteristics include:

• Fitts’ law: time taken, RT , to move a distance D, to an object having width W , is:
RT = a+ b log

[2D
W

]
, where a and b are constants. In deriving this relationship, Fitts

drew on ideas from information theory, and used a simplified version of Shannon’s law;
the unsimplified version implies: RT = c+d log

[D+W
W

]
,1187

• Hick’s law: time taken, RT , to choose an item from a list of K items, is: RT =
a+ b log(K), where a and b are constants; a is smaller for humans than pigeons.1898

2.8. HIGH-LEVEL FUNCTIONALITY 59

2 5 10 20

10

20

30

40

Number of alternatives

R
es

po
ns

e
tim

e
(s

ec
s)

2 5 10 20

0.2

0.4

0.6

0.8

1.0

Number of alternatives

A
cc

ur
ac

y

Figure 2.70: Mean time for each of 36 subjects to choose
between a given number of alternatives (upper), and accu-
racy rate for a given number of alternatives (lower), data
has been jittered; lines are regression fits (yellow shows
95% confidence intervals), and color used for each subject
sorted by performance on the two-choice case. Data from
Hawkins et al.790 Github–Local

A study by Hawkins, Brown, Steyvers and Wagenmakers790 displayed a number of
squares on a screen, and asked subjects to select the square whose contents had a par-
ticular characteristic. Figure 2.70 shows how subject response time increased (and ac-
curacy decreased), as the log of number of choices. A different color is used for each
of the 36 subjects, with colors sorted by performance on the two-choice case; data has
been jittered to help show the density of points. This study found that problem context
could cause subjects to make different time/accuracy performance trade-offs,

• Ageing effects: the Seattle Longitudinal Study1642 has been following the intellectual
development of over six thousand people since 1956 (surveys of individuals in the study
are carried out every seven years). Findings include: “ . . . there is no uniform pattern
of age-related changes across all intellectual abilities, . . . ", and " . . . reliable replicable
average age decrements in psychometric abilities do not occur prior to age 60, but that
such reliable decrements can be found for all abilities by age 74 . . . ” An analysis225

of the workers on the production line at a Mercedes-Benz assembly plant found that
productivity did not decline until at least up to age 60.

Studies of professional developers that have included age related information,931, 934

have not found an interaction with subject experimental performance. See figure 8.13
for an example of developer age distribution,

• the sunk cost effect is the tendency to persist in an endeavour, once an investment of
time, or money, has been made.205 This effect is observed in other animals,1358 and so
presumably this behavior provides survival benefits.

60 2. Human cognition

1850 1900 1950 2000
0

10

20

30

40

50

60

70

Year

W
or

kf
or

ce
 (

pe
rc

en
t)

Primary
Secondary
Tertiary
Government

Figure 3.1: Percentage of employment by US industry
sector 1850-2009. Data kindly provided by Kossik.1038

Github–Local

1960 1970 1980 1990 2000

0.1

0.2

0.5

1.0

2.0

5.0

10.0

20.0

50.0

Year

D
ol

la
rs

 (
bi

lli
on

)

Own account
Custom
Prepackaged

Figure 3.2: Annual expenditure on custom, own account
and prepackaged software by US business (plus lines) and
the US federal and state governments (smooth lines). Data
from Parker et al.1445 Github–Local

Chapter 3

Cognitive capitalism

3.1 Introduction

Software systems are intangible goods that are products of cognitive capitalism; human
cognition is the means of production.

Major motivations for individuals to be involved in the production of software include
money and hedonism. People might be motivated to write software by the salary they are
paid, by the owners of an organization that employs them, or they might be motivated
by non-salary income (of an individual’s choosing), e.g., enjoyment from working on
software systems, scratching an itch, being involved in a social activity, etc.

Motivation can be affected by the work environment in which software is produced. To
make the cognitariate feel happy and fulfilled, spending their cognitive capital striving to
achieve management goals, organizations have industrialised Bohemia.

Intangible goods incur intangible production costs, including the emotional distress ex-
perienced by cognitariate when their ideas or work goes unused or unnoticed. The im-
portance and value of an individuals’ contribution is propagandized, while organizations
strive to minimise their reliance on individuals.249

While salary based production is likely to be distributed under a commercial license, and
hedonism based production under some form of Open sourcei license, this is not always
the case.

This chapter discusses cognitive capitalism using the tools of economic production, which
deals with tradeable quantities, such as money, time and pleasure. Many of the existing
capitalist structures are oriented towards the production of tangible goods,ii and are slowly
being adapted to deal with the growing market share of intangible goods.174, 782

This book is oriented towards the producers of software, rather than its consumers, e.g.,
it focuses on maximizing the return on investment for producers of software.

Human characteristics that affect cognitive performance are the subject of chapter 2. Al-
most 200 years ago Babbage analysed100 the economics of calculating mathematical ta-
bles (along with the economics of the manufacture of tangible goods), and later proposed
a machine capable of performing these calculations.

The sector economic model groups human commercial activities into at least three sec-
tors:986 the primary sector produces or extracts raw materials, e.g., agriculture, fishing
and mining, the secondary sector processes raw materials, e.g., manufacturing and con-
struction, and the tertiary sector provides services. The production of intellectual capital
is sometimes referred to as the quarternary sector. Figure 3.1 shows the percentage of
the US workforce employed in the three sectors over the last 160 years (plus government
employment).

How much money is spent on software production?

A study by Parker and Grimm1445 investigated business and government expenditure on
software in the U.S.A. They divided software expenditure into two categories: custom

iThe term is used generically to refer to any software where the source code is freely available under a
non-commercial license.

iiHigh-tech trade conflicts traditionally involved disparities in the quantity of hardware items being import-
ed/exported annually.1859

61

62 3. Cognitive capitalism

1975 1980 1985 1990 1995 2000

5
10

50
100

500
1000

5000
10000

50000

Year

E
m

pl
oy

ee
s

Lotus
Intuit
Autodesk
Microsoft
Oracle
Computer Associates
SAP

Figure 3.3: Number of people employed by major
software companies. Data from Campbell-Kelly.296

Github–Local

100 500 5000 50000

5

10

50

100

500

1000

5000

10000

Revenue ($million)

S
of

tw
ar

e
de

ve
lo

pm
en

t c
os

ts
 (

$m
ill

io
n)

Figure 3.4: Company revenue ($millions) against total
software development costs; line is a fitted regression
model of the form: developmentCosts ∝ 0.19Revenue.
Data from Mulford et al.1324 Github–Local

software, as software tailored to the specifications of an organization, and own-account
software which consists of in-house expenditures for new or significantly-enhanced soft-
ware created by organizations for their own use. Figure 3.2 shows annual expenditure
from 1959 to 1998, by US businesses (plus lines), and the US federal and state govern-
ments (smooth lines).

Figure 3.3 shows the growth in the number of people employed by some major software
companies.

Some governments have recognized the importance of national software ecosystems,1404

both in economic terms (e.g., industry investment in software systems347 that keep them
competitive), and as a means of self-determination (i.e., not having important infrastruc-
ture dependent on companies based in other countries); there is no shortage of recom-
mendations1792 for how to nurture IT-based businesses, and government funded reviews
of their national software business.1194, 1600 Several emerging economies have created
sizeable software industries.77

The software export figures given for a country can be skewed by a range of factors, and
the headline figures may not include associated costs.798

What percentage of their income do software companies spend on developing software?
A study by Mulford and Misra1324 of 100 companies in Standard Industry Classifications
(SIC) 7371 and 7372iii, with revenues exceeding $100 million during 2014–2015, found
that total software development costs were around 19% of revenue; see figure 3.4; sales
and marketing varies from 22% to 40%,335 general and administrative (e.g., salaries, rent,
etc) varies from 11% to 22%,335 with the any remainder assigned to profit and associated
taxes.

3.2 Investment decisions

Creating software is an irreversible investment, i.e., incomplete software has little or no
resale value, and even completed software may not have any resale value.

The investment decisions involved in building software systems share some of the charac-
teristics of other kinds of investments; for instance, making sequential investments, with
a maximum construction rate, are characteristics that occur in factory construction.1193

Is it worthwhile investing resources, to implement software that provides some desired
functionality? In the case of a personal project, an individual may decide on the spur
of the moment to spend time implementing or modifying a program; for commercial
projects a significant early stage investment may be made analyzing the potential market,
performing a detailed cost/benefit analysis, and weighing the various risk factors.

This sections outlines the major factors involved in making investment decisions, and
some of the analysis techniques that may be used. While a variety of sophisticated tech-
niques are available, managers may choose to use the simpler ones.1809

The term cost/benefit applies when making a decision about whether to invest or not; the
term cost-effectiveness applies when a resource is available, and has to be used wisely, or
when an objective has to be achieved as cheaply as possible.

Basic considerations for all investment decisions include:

• the value of money over time. A pound/dollar in the hand today is worth more than a
pound/dollar in the hand tomorrow,

• risks. Investors require a greater return from a high risk investment, than from a low
risk investment,

• uncertainty. The future is uncertain, and information about the present contains uncer-
tainty,

• opportunity cost. Investing resources in project A today, removes the opportunity to in-
vest them project B tomorrow. When investment opportunities are abundant, it is worth
searching for one of the better ones, while when opportunities are scarce searching for
alternatives may be counter-productive.

For instance, when deciding between paying for Amazon spot instances15 at a rate
similar to everybody else, or investing time trying to figure out an algorithm that makes

iiiComputer programming services and Prepackaged software.

3.2. INVESTMENT DECISIONS 63

Airlines
Catalog, Mail−Order Houses

Hotels
Knitting Mills

Soft Drink Bottling
Oil and Gas Machinery
Laboratory Equipment

Book Publishing
Engines and Turbines

Bakery Products
Wine and Brandy

Mobile Homes
Cookies and Crackers

Iron and Steel Foundries
Grocery Stores

Drug Stores
Household Furniture

Child Day Care Services
Malt Beverages

Household Appliances
Tires

Men...s and Boys... Clothing
Medical Instruments

Semiconductors
Distilled Spirits

Advertising Agencies
Perfume, Cosmetics, Toiletries

Pharmaceuticals
Prepackaged Software

Soft Drinks
Security Brokers and Dealers

ROIC
0 10 20 30 40

Figure 3.5: Average Return On Invested Capital of various
U.S. industries between 1992-2006. Data from Porter.1509

Github–Local

1985 1995 2005 2015
50

100

150

200

250

300

Year

To
ta

l c
os

t (
ad

ju
st

ed
 to

 2
01

8
$m

ill
io

n)

Figure 3.6: Development cost (adjusted to 2018 dollars) of
computer video games, whose cost was more than $50mil-
lion. Data from Wikipedia.1957 Github–Local

it possible to successfully bid at much lower prices, the time spent figuring out the
algorithm is an opportunity cost (i.e., the time spent is a lost opportunity for doing
something else, which may have been more profitable).iv

Return on investment (ROI) is defined as:

Rest =
Best−Cest

Cest
, where: Best is the estimated benefit, and Cest the estimated cost.

Both the cost, and the benefit estimates are likely to contain some amount of uncertainty,
and the minimum and maximum ROI are given by:

Rest−δR =
Best−δB
Cest +δC

−1 and Rest +δR =
Best +δB
Cest−δC

−1

where: δ is the uncertainty in the corresponding variable.

In practice, ROI uncertainty is unlikely to take an extreme value, and its expected value is
given by:228

E[δR]≈ Best

Cest

√(
δB
Best

)2

+

(
δC
Cest

)2

Figure 3.6 shows the development cost of video games (where the cost was more than
$50million). The high risk of a market that requires a large upfront investment, to create
a new product for an uncertain return, is offset by the possibility of a high return.

3.2.1 Discounting for time

A dollar today is worth more than a dollar tomorrow, because today’s dollar can be in-
vested and earn interest; by tomorrow, the amount could have increased in value (or at
least not lost value, through inflation). The present value (PV) of a future payoff, C,
might be calculated as:

PV = discount_factor×C, where: discount_factor < 1.

discount_factor is usually calculated as: (1+ r)−1, where: r is the known as the rate of
return (also known as the discount rate, or the opportunity cost of capital), and represents
the size of the reward demanded by investors for accepting a delayed payment (it is often
quoted for a period of one year).

The PV over n years (or whatever period r is expressed in) is given by:

PV =
C

(1+ r)n

When comparing multiple options, expressing each of their costs in terms of present value
enables them to be compared on an equal footing.

For example, consider the choice between spending $250,000 purchasing a test tool, or
the same amount on hiring testers; assuming the tool will make an immediate cost saving
of $500,000 (by automating various test procedures), while hiring testers will result in
a saving of $750,000 in two years time. Which is the more cost-effective investment
(assuming a 10% discount rate)?

PV tool =
$500,000
(1+0.10)0 = $500,000 and PV testers =

$750,000
(1+0.10)2 = $619,835

Based on these calculations, hiring the testers is more cost-effective, i.e., it has the greater
present value.

3.2.2 Taking risk into account

The calculation in the previous section assumed there was no risk of unplanned events.
What if the tool did not perform as expected, what if some testers were not as produc-
tive as hoped? A more realistic calculation of present value would take into account the
possibility that future payoffs are smaller than expected.

A risky future payoff is worth less than a certain future payoff, for the same amount
invested and payoff. Risk can be factored into the discount rate, to create an effective

ivThere is also the risk that the result of successfully reverse engineering the pricing algorithm results in
Amazon changing the algorithm.15

64 3. Cognitive capitalism

discount rate: k = r+θ , where: r is the risk-free rate, and θ a premium that depends on
the amount of risk. The formulae for present value becomes:

PV =
C

(1+ k)n

When r and θ can vary over time, we get:

PV =
t

∑
i=1

returni

(1+ ki)i , where: returni is the return during period i.

Repeating the preceding example, assuming a 15% risk premium for the testers option,
we get:

PV tool =
$500,000
(1+0.10)0 = $500,000 and PV testers =

$750,000
(1+0.10+0.15)2 = $480,000

Taking an estimated risk into account, suggests that buying the tool is the most cost-
effective of the two options.

The previous analysis compares the two benefits, but not the cost of the investment that
needs to be made to achieve the respective benefit. Comparing investment costs requires
taking into account when the money is spent, to calculate the total cost terms of a present
cost.

Purchasing the tool is a one time, up front, payment:

investment_costtool = $250,000

The cost of the testers approach is more complicated; let’s assume it is dominated by
monthly salary costs. If the testing cost is $10,416.67 per month for 24 months, the total
cost after two years, in today’s terms, is (a 10% annual interest rate is approximately 0.8%
per month):

investment_costtesters =
23

∑
m=0

$10,416.67
(1+0.008)m = $10,416.67

[
1− (1+0.008)−22

1− (1+0.008)−1

]
= $211,042.90

Spending $250,000 over two years is equivalent to spending $211,042.90 today. Investing
$211,042.90 today, at 10%, would provide a fund that supports spending $10,416.67 per
month for 24 months.

Net Present Value (NPV) is defined as: NPV = PV− investment_cost

Plugging in the calculated values gives:

NPV tool = $500,000−$250,000 = $250,000

NPV testers = $480,000−$211,042.90 = $268,957.10

Based on NPV, hiring testers is the more cost-effective option.

Alternatives to NPV, their advantages and disadvantages, are discussed by Brealey250 and
Raffo.1553 One commonly encountered rule, in rapidly changing environments, is the
payback rule, which requires that the investment costs of a project be recovered within a
specified period; the payback period is the amount of time needed to recover investment
costs (a shorter payback period being preferred to a longer one).

Accurate estimates for the NPV of different options requires accurate estimates for the dis-
count rate, and the impact of risk. The discount rate represents the risk-free element, and
the closest thing to a risk-free investment is government bonds and securities (information
on these rates is freely available). Governments face something of a circularity problem
in how they calculate the discount rate for their own investments. The US government
discusses these issues in its “Guidelines and Discount Rates for Benefit-Cost Analysis
of Federal Programs”,1948 and at the time of writing the revised Appendix C specified
rates, varied between 0.9% over a three-year period and 2.7% over 30 years. Commercial
companies invariably have to pay higher rates of interest than the US Government.

3.2.3 Incremental investments and returns

Investments and returns are sometimes incremental, occurring at multiple points in time,
over an extended period.

The following example is based on the idea that it is possible to make an investment, when
writing or maintaining code, that reduces subsequent maintenance costs, i.e., produces a

3.2. INVESTMENT DECISIONS 65

2 4 6 8 10

5

10

15

20

Payback length (years)

B
en

ef
it/

in
ve

st
m

en
t r

at
io

d/m=5

d/m=10

d/m=20

Google
Mainframe

Figure 3.7: Return/investment ratio needed to break-even,
for Google and Mainframe application survival rate, hav-
ing development/annual maintenance ratios of 5, 10 and
20; against payback period in years. Data from: main-
frame Tamai,1811 Google SaaS Ogden.1405 Github–Local

return on the investment. At a minimum, any investment made to reduce later maintenance
costs must be recouped; this minimum case has an ROI of 0%.

Let d be the original development cost, m the base maintenance cost during time period
t, and r the interest rate; to keep things simple assume that m is the same for every period
of maintenance; the NPV for the payments over t periods is:

Total_cost = d +
t

∑
k=1

m
(1+ r)k = d +m

[
1− (1+ r)−(t+1)

1− (1+ r)−1 −1

]
≈ d +m× t [1−0.5× (t +1)r]

with the approximation applying when r× t is small.

If an investment is made for all implementation work (i.e., development cost is: (1+ i)d),
in expectation of achieving a reduction in maintenance costs during each period of (1−b),
then:

Total_costinvest = (1+ i)d +m× (1+ i)(1−b)× t [1−0.5× (t +1)r]

For this investment to be worthwhile: Total_costinvest ≤ Total_cost, giving:

(1+ i)d +m× (1+ i)(1−b)×T < d +m×T , where: T = t [1−0.5× (t +1)r], which

simplifies to give the following lower bound for the benefit/investment ratio, b
i

:

1+
d

mT
<

b
i
+b

In practice many systems have a short lifetime. What value must the ratio b
i

have, for an

investment to break even, after taking into account system survival rate (i.e., the possibil-
ity that there is no future system to maintain)?

If s is the probability the system survives a maintenance period, the total system cost is:

Total_cost = d +
t

∑
k=1

m× sk

(1+ r)k = d +m
S(1−St)

1−S
, where: S =

s
1+ r

.

The minimal requirement is now:

1+
d
m

1−S
S(1−St)

<
b
i
+b

The development/maintenance break-even ratio depends on the regular maintenance cost,
multiplied by a factor that depends on the system survival rate (not the approximate total
maintenance cost).

Fitting regression models to system lifespan data, in section 4.5.2, finds (for an annual
maintenance period): smainframe = 0.87 and sGoogle = 0.79. Information on possible de-
velopment/maintenance ratios is only available for mainframe software (see fig 4.47), and

the annual mean value is: d
m

= 4.9.

Figure 3.7 shows the multiple of any additional investment (y-axis), made during devel-
opment, that needs to be recouped during subsequent maintenance work, to break even
for a range of payback periods (when application survival rate is that experienced by
Google applications, or 1990s Japanese mainframe software; the initial development/an-
nual maintenance ratios are 5, 10 and 20); the interest rate used is 5%.

This analysis only considers systems that have been delivered and deployed. Projects are
sometimes cancelled before reaching this stage, and including these in the analysis would
increase the benefit/investment break-even ratio.

While some percentage of a program’s features may not be used,530 those features that
will go unused is unknown at the time of implementation. Incremental implementation,
driven by customer feedback, helps reduce the likelihood of investing in program features
that are not used by customers.

Figure 7.18 shows that most files are only ever edited by one person. The probability that
source will be maintained by developers other than the original author may need to be
factored into the model.

3.2.4 Investment under uncertainty

The future is uncertain, and the analysis in the previous sections assumed fixed values for
future rates of interest and risk. A more realistic analysis would take into account future
uncertainty.503, 871

66 3. Cognitive capitalism

Time

X

Figure 3.8: Illustration of a drift diffusion process. Green
lines show possible paths, red lines show bounds of dif-
fusion and grey line shows drift with no diffusion compo-
nent. Github–Local

Time

M
ai

nt
en

an
ce

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 3.9: Illustration of an Ornstein-Uhlenbeck process
starting from zero and growing to its mean; green lines
show various possible paths, red line is expected value,
and blue lines one standard deviation. Github–Local

An investment might be split into random and non-random components, e.g., Brownian
motion with drift. The following equation is used extensively to model the uncertainty
involved in investment decisions503 (it is a stochastic differential equation for the change
in the quantity of interest, x):

dx = a(x, t)dt +b(x, t)dz

This equation contains a drift term (given by the function a, which involves x and time)
over an increment of time, dt, plus an increment of a Wiener process,v dz (the random
component; also known as a Brownian process), and the function, b, involves x and time.

The simplest form of this equation is: dx = αdt +σdz, i.e., a constant drift rate, α , plus a
random component having variance σ . Figure 3.8 illustrates this drift-diffusion process;
with the grey line showing the slope of the drift component, and green lines showing
possible paths followed when random increments are added to the drift (red lines bound
possible paths, for the value of σ used).

This equation can be solved to find the standard deviation in the value of x: it is σ
√

T ,
where T is elapsed time.

The analysis of the cost/benefit of the maintenance investment, in the previous section,
assumed a fixed amount of maintenance in each interval. In practice, the amount of main-
tenance is likely to grow to a maximum commercially supportable value, and then fluc-
tuate about this value over time, i.e., it becomes a mean-reverting process. The Ornstein-
Uhlenbeck process (also known as the Vasicek process) is the simplest mean-reverting
process, and its corresponding equation is:
dx = η(x̂− x)dt +σdz (3.1)

where: η is the speed of reversion, and x̂ is the mean value.

This equation can be solved to give the expected value of x at future time t, given its
current value x0, which is: E[xt] = x̂+(x0− x̂)e−ηt ; its variance is: σ2

2η
(1− e−2ηt); sec-

tion 11.10.7 discusses techniques for obtaining values for σ and η .

Figure 3.9 shows ten example paths (in green) of an Ornstein-Uhlenbeck process, each
starting at zero, and growing to fluctuate around the process mean; red line is the expected
value, blue lines are at one standard deviation.

Uncertainty in the investment cost and/or the likely benefit returned from a project, means
that even under relatively mild conditions, a return of twice as much as the investment is
considered to be the break-even condition.503, 1488

Obtaining insight about a possible investment, by setting up and solving a stochastic dif-
ferential equation1659 can be very difficult, or impractical. A variety of numerical methods
are available for analyzing investment problems based on a stochastic approach, see sec-
tion 11.10.7.

Current market conditions also need to be taken into account. For instance: how likely
is it that other companies will bring out competing products, and will demand for the
application still be there once development is complete?

3.2.5 Real options

It may be possible to delay making an investment until circumstances are more favor-
able.399, 503 For instance, when new functionality has to be implemented as soon as pos-
sible, it may be decided to delay investing the resources needed to ensure the new code
conforms to project guidelines; there is always the option to invest the necessary resources
later. By using Net Present Value, management is taking a passive approach to their in-
vestment strategy; a fixed calculation is made, and subsequent decisions are based on this
result; real options offer a more flexible approach.

In financial markets, a call option is a contract between two parties (a buyer and a seller),
where the buyer pays the seller for the right (but not the obligation) to buy (from the
seller) an asset, at an agreed price on an agreed date (the initial amount paid is known as
the premium, the agreed price the strike price, and the date the expiry or maturity date).
When the option can only be exercised on the agreed date, the contract is known as a
European option, when the option can be exercised at any time up to the agreed date, it is
known as a American option.

vA Wiener process involves random incremental changes, with changes being independent of each other,
and the size of the change having a Normal distribution.

3.3. CAPTURING COGNITIVE OUTPUT 67

S

p

1−p

U

D

p2

(1 − p)2

U2

D2

p3

(1 − p)3

U3

D3

3U2D

3D2U

p(1 − p)

p2(1 − p)

p(1 − p)2

t=0 t=1 t=2 t=3

Figure 3.10: Example of a binomial model with three
time-steps, given the probability p, of costs going up by
U%, and the probability 1− p, of costs going down by
D%, at each time step, starting at S. Github–Local

A put option is a contract involving the right (but not the obligation) to sell.

The term real options (or real options valuation ROV, or real options analysis) is applied
to the analysis of decisions made by managers in industry that have option-like character-
istics. In this environment many items are not traded like conventional financial options;
another notable difference, is that those involved in the management of the asset, may
have an influence on the value of the option (e.g., they have a say in the execution of a
project).

In financial markets, volatility information can be obtained from an assets past history.
In industry, managers may have information on previous projects carried out within the
company, but otherwise have to rely on their own judgment to estimate uncertainty. Call
and put options are established practice in financial markets. In industry, managers have
to create or discover possible options; they need an entrepreneurial frame of mind.

ROV requires active management, continuously ready to respond to changing circum-
stances. It is an approach that is most applicable when uncertainty is high, and managers
have the flexibility needed to make the required changes.

The Binomial model399 can be used to estimate the percentage change in starting costs S,
at time ti, given the probability p, of costs going up by U%, and the probability 1− p, of
costs going down by D%, at each time step.

Figure 3.10 illustrates how after three time-steps, there is one path where costs can in-
crease by U3%, and one where they can decrease by increase by D3%; there are three
paths where the cost can increase by 3U2D%, and three where they can decrease by
3D2U%. All paths leading to a given U /D point occur with the same probability, which
can be calculated from p.

Implementing functionality using the minimum of investment, with the intent of investing
more later, has the form of an American call option.vi The call option might not be
exercised, e.g., if the implemented functionality becomes unnecessary.

The Black-Scholes equation provides a solution to the optimal pricing of European op-
tions (e.g., the value of the premium, strike price, and maturity date). Some researchers
have applied this equation to the options associated with developing software; this is a
mistake.596 The derivation of the Black-Scholes equation involves several preconditions,
which often apply to financial risks, but don’t apply to software development, including:

• liquidity is required, to enable the composition of a portfolio of assets to be changed,
at will, by investing or divesting, i.e., buying or selling. Software production does not
create liquid assets, the production is a sunk cost. Once an investment has been made in
writing code, it is rarely possible to immediately divest a percentage of the investment
in this code (a further investment in writing new code may make little business sense),

• detailed historical information on the performance of the item being traded is an essen-
tial input to portfolio risk calculations. Historical data is rarely available on one, let
alone all, of the major performance factors involved in software development; chapter 5
discusses the distribution of development activities over the lifetime of a project.

Some of the issues involved in a cost/benefit analysis of finding and fixing coding mistakes
is discussed in section 3.6.

3.3 Capturing cognitive output

Organizations whose income is predominantly derived from the output of cognitariate are
social factories.312 To increase the fraction of cognitive output they capture, organiza-
tions involve themselves in employees’ lives to reduce external friction points; free meals
and laundry service are not perks, they are a means of bringing employees together to
learn and share ideas, by reducing opportunities to mix in non-employee social circles
(and create employee life-norms that limit possible alternative employers, i.e., a means of
reducing knowledge loss and spillover).

Organizations that continue to be based around work-life separation also use software
systems, and offer software related jobs. In these organizations the primary focus may be
on the cognitive efforts of people working on non-software activities, with those working

viA term in common use is technical debt; this is incorrect, there is no debt, and there may not be any need
for more work in the future.

68 3. Cognitive capitalism

USA $
15

97
06

30Can
ad

a
$1

20
14

85

Ger
m

an
y $

45
88

82

Rus
sia

 $
30

83
46

Sing
ap

or
e

$2
56

28
0

UK $
25

29
60

UAE $
14

33
75

Finl
an

d
$1

42
14

9

M
ala

ys
ia

$1
38

21
5

Switz
er

lan
d

$1
18

39
3

Oth
er

s $
46

41
69

3

USA $ 4150672

India $ 3098250

Australia $ 1296411

Russia $ 1296018

UK $ 916035

Hong_Kong $ 749770

Sweden $ 746326

Germ
any $ 682528

Argentina $ 673403

Pakistan $ 647339

Others $ 9375656

Figure 3.11: Bug bounty payer (left) and payee
(right) countries (total value $23,632,408). Data from
hackerone.762 Github–Local

1980 1990 2000 2010

1

100

10000

Year

P
at

en
ts

 g
ra

nt
ed

software
smartphones
semiconductors
self driving cars
pharmaceuticals
neural networks
machine learning
internal combustion engines
drones
cloud

Figure 3.12: Number of US patents granted in various ar-
eas. Data from Webb et al.1936 Github–Local

on software related activities having to fit in with the existing workplace norms of the host
industry.

Some developers are more strongly motivated by the enjoyment from doing what they do,
than the money they receive for doing it.1328 This lifestyle choice relies on the willingness
of organizations to tolerate workers who are less willing to do work they don’t enjoy,
or alternating between high paying work that is not enjoyed, and working for pleasure.
Freelancing in tasks such as trying to earn bug bounties is only profitable for a few people
(see fig 4.43).

3.3.1 Intellectual property

Governments have created two legal structures that might be used by individuals, or or-
ganizations, to claim property rights over particular source code, or ways of doing things
(e.g., business processes): patents and copyright.

A patent gives its owner rights to exclude others from making or selling an item that
makes use of the claims made in the patent (for a term of 20 years from the date of filing;
variations apply). In the U.S. software was not patentable until 1995, and since then
the number of software patents has continued to grow, with 109,281 granted in 20141504

(36% of all utility patents). Figure 3.12 shows the number of US patents granted in various
software related domains (the dip in the last few years is due to patents applications not
yet granted).

Patents grant their holder exclusive use of the claimed invention in the jurisdiction that
granted the patent. In a fast moving market the value of a patent may be in the strategic
power777 it gives to deny market access to competitive products. An analysis768 of the
stock-price of ICT companies in the US found that those with software patents had a
slightly higher value than those without software patents.

A license is a legal document, chosen or created by the copyright owner of software,
whose intended purpose is to control the use, distribution, and creation of derivative works
of the software. Licensing is an integral component of the customer relationship.

Licensing is a source of ecological pressure (e.g., applications available under one kind
of license may find it difficult to remain viable in ecosystems containing similar applica-
tions available under less restrictive licenses). The ideology associated with some kinds
of licenses may be strong enough for people to create license-based ecosystems, e.g., De-
bian distributions only contain software whose source is licensed under a Free Software
license. The restrictions imposed by a license, on the use of a software system, may be
sufficiently at odds with the ideology of some developers that they decide to invest their
time in creating a new implementation of the functionality under a different license.

Code distributed under an Open source license is often created using a non-contract form
of production.174

People have been making source code available at no cost, for others to use, since software
was first created;71 however, the formal licensing of such software is relatively new.1602

Open source licenses have evolved in response to user needs, court decisions, and the
growth of new product ecosystems; there has been a proliferation of different, and some-
times incompatible, open source licenses.1293 Factors driving the evolution of licensing
conditions, and combinations of conditions, include: evolution of the legal landscape
(e.g., issues around what constitutes distribution and derivative works752), commercial
needs for a less restrictive license (e.g., the 3-clauses and 2-clauses variants of the orig-
inal, more restrictive BSD license, now known as 4-clauses BSD), ideological demands
for a more restrictive license (e.g., GPL1052 version 3 added wording to address issues
such as hardware locks and digital rights management, that were not addressed in GPL
version 2), the desire to interoperate with software made available under an incompatible,
but widely used, license (often the GPL),671 or the desire to operate a business supporting
a particular open source software system (e.g., dual licensing1869).

License selection, by commercial vendors, is driven by the desire to maximise the return
on investment. Vendor licensing choice can vary from a license that ties software to a
designated computer (with the expectation that the customer will later buy licenses for
other computers), to a very permissive open source licensevii (whose intent is to nullify a
market entry-point for potential competitors).298

viiThe term permissive is used to denote the extent to which an open source license, consistent with a par-
ticular ideological viewpoint, allows such licensed software to be used, modified and operated in conjunction
with, other software licensed under a license consistent with different ideological viewpoint.

3.3. CAPTURING COGNITIVE OUTPUT 69

10 20 50 100 200
0.0

0.2

0.4

0.6

0.8

1.0

Lines

C
od

e
fr

ag
m

en
ts

 (
no

rm
al

is
ed

 o
cc

ur
re

nc
es

) Clones
Attributed

Figure 3.13: Normalised frequency of occurrences of code
fragments containing a given number of lines; attributed to
Stack Overflow answers, and unattributed close clones (a
lognormal distribution is not sufficiently spikey to fit the
data well). Data from Zhang et al.2010 Github–Local

2000 2004 2008 2012

1

2

5

10

20

50

Year

F
ile

s
(c

um
ul

at
iv

e
pe

rc
en

ta
ge

)

Apache:1.1
Apache:2
CDDL:1;GPL:2
CPL:1
EPL:1
GPL:1+
GPL:2
GPL:2+
GPL:3+
LGPL:2.1
LGPL:2.1+
LGPL:2+
LGPL:3+
MIT:X
MPL:1.1
null:null

Figure 3.14: Cumulative percentage of files, from the top
10% largest Java projects, containing a given license (up-
per line is no license). Data from Vendome et al.1889

Github–Local

0 1 2 3 4 5 6
1

100

10000

1000000

Licenses

P
ac

ka
ge

s

NPM
RubyGems
CRAN

Figure 3.15: Number of releases of packages containing
a given number of licenses (a package has to contain a
license to appear on CRAN). Data from Meloca et al.1260

Github–Local

A study by Zhang, Yang, Lopes and Kim2010 investigated Java code fragments, contain-
ing at least 50 tokens, appearing in answers to questions on Stack Overflow, that later
appeared within the source code of projects on Github. They found 629 instances of
code on Github that acknowledged being derived from an answer on Stack Overflow, and
14,124 instances on Github of code that was similar to code in appearing Stack Overflow
answers (a clone detection tool was used). The most common differences between the
Stack Overflow answer and Github source were: use of a different method, and renaming
of identifiers and types.

Figure 3.13 shows the normalised frequency of occurrences of matched code fragments
containing a given number of lines, for the attributed use and unattributed close clone
instances.

The majority of source code files do not contain an explicit license.1889 Developers who
do specify a license, may be driven by ideology, or the desire to fit in with the license
choices made by others in their social network.1715 One study40 found that developers
were able to correctly answer questions involving individual licenses (as-in, the answer
agreed with a legal expert), but struggled with questions that required integrating condi-
tions contained in multiple licenses.

Commercial vendors may invest in creating a new implementation of the functionality
provided by software licensed under an Open source license, because, for instance, they
want the licensing fee income, or the existing software has a license that does not suit
their needs. For instance, Apple have been a longtime major funder of the LLVM com-
piler project, an alternative to GCC (one is licensed under the GPL, the other under the
University of Illinois/NCSA open source license; the latter is a more permissive license).

Details of any applicable license(s) may appear within individual files, and/or in a license
file within the top-level directory of the source code. In the same way that software can
be changed, the license under which software is made available can change.1905 Any
changes to the licensing of a software system become visible to users when a new release
is made.

When the files used to build a software system contain a license, different files may con-
tain different licenses, and the different licenses may specify conditions that are incompat-
ible, with each other. For instance, Open source licenses might be classified as restrictive
(i.e., if a modified version of the software is distributed, the derived version must be li-
censed under the same terms), or permissive (i.e., derived works may incorporate software
licensed under different terms).

A study by Vendome, Linares-Vásquez, Bavota, Di Penta, German and Poshyvanyk1889

investigated license use in the files of 16,221 Java projects (a later study also included
projects written in other languages). Nearly all files did not include a license, and when
a license was present it was rarely changed (the most common change, by an order of
magnitude, was to/from a license being present).

Figure 3.14 shows the cumulative percentage of licenses present in files, over time, in
the 10% of projects having the most commits. The lines show 16 of the 80 different
licenses appearing in files, with the other 64 licenses appearing in less than 1,000 files.
The downward trend, for some licenses, is caused by the increasing project growth rate,
with most files not including any license (upper line in plot).

A study by German, Manabe and Inoue672 investigated the use of licenses in the source
code of programs in the Debian distribution (version 5.0.2). They found that 68.5% of
files contained some form of license statement (the median size of the license was 1,005
bytes). The median size of all files was 4,633 bytes; the median size of files without a
license was 2,137 bytes, and the files with a license 5,488.

Programs and libraries may have dependencies on packages made available under licenses
that specify conditions which are incompatible with each other, e.g., mobile apps having
licenses that are incompatible with one or more of the licenses in the source files from
which they were created.1301

A study by Meloca, Pinto, Baiser, Mattos, Polato, Wiese, and German1260 investigated
licensing files appearing in all packages from the npm (510,964 packages), RubyGems
(135,481 packages), and CRAN (11,366 packages) networks (from the launch of the pack-
age site to October 2017).

Figure 3.15 shows the number of package releases containing a given number of licenses
(some packages were updated, and an updated version released: there were 4,367,440
releases; a package must contain a license to appear on CRAN).

70 3. Cognitive capitalism

0 1000 3000 5000
0.5

0.6

0.7

0.8

0.9

1.0

Days

Li
ce

ns
e

su
rv

iv
al

Figure 3.16: Survival curve of OSI licenses that have
been listed on the approved license webpage, in days
since 15 August 2000, with 95% confidence intervals.
Data from opensource.org, via The Wayback Machine,
web.archive.org. Github–Local

Table 3.1 shows the percentage of all npm package releases using a given license, or lack
thereof (column names), that migrated (or not) to another license (row names), from the
launch of the npm network in 2009, until October 2017. During this period 85% of all
package releases contained an OSI license; see Github–economics/msr2018b_evol.R.

To/From OSI Incomplete non-OSI Missing Other Copyright
OSI 99.7 6.8 7.7 2.6 4.8 2.8
Incomplete 0.12 92.0 0.1 0.09 3.3 3.0
non-OSI 0.08 0.07 91.1 0.07 0.95 0.81
Missing 0.08 0.22 0.65 97.2 0.49 0.26
Other 0.02 0.54 0.28 0.02 88.1 3.7
Copyright 0.00 0.31 0.2 0.01 2.3 90.0

Table 3.1: Percentage migration of licenses used by all npm package releases (between 2009 and 2017), from license listed in column names, to license in row names. Data
from Meloca et al.1260

When licensing conditions are not followed, what action, if any, might the copyright
holders of the software take?

The licensee has the option of instigating legal proceedings to protect their property.
Those seeking to build market share may not take any action against some license vi-
olations (many people do not read end-user license agreements (EULAs)1209).

Some companies and individuals have sought to obtain licensing fees from users of some
software systems made available under an Open source license. If the licensing fee sought
is small enough, it may be cheaper for larger companies to pay, rather than legally contest
the claims.1944

A license is interpreted within the framework of the laws of the country in which it is being
used. For instance, the Uniform Commercial Code (UCC) is a series of laws, intended to
harmonise commercial transactions across the US; conflicts between requirements speci-
fied in the UCC and a software license may have be resolved by existing case law, or by
a new court case.1243 Competing against free is very difficult. The Free Software Foun-
dation were the (successful) defendants in a case where the plaintiff argued that the GPL
violated the Sherman Act, e.g., “the restraint of trade by way of a licensing scheme to fix
the prices of computer software products”.1835

A country’s courts have the final say in how the wording contained in software licenses
is interpreted. The uncertainty over the enforceability701, 1056 of conditions contained in
Open source licenses is slowly being clarified, as more cases are being litigated, in various
jurisdictions.1148, 1850

In litigation involving commercial licenses, the discovery that one party is making use
of Open source software without complying with the terms of its Open source license,
provides a bargaining chip for the other party,1719 i.e., if the non-compliance became
public, the cost of compliance, with the open source license, may be greater than the cost
of the commercial licensing disagreement.

The Open Source Initiative (OSI) is a non-profit organization, that has defined what con-
stitutes Open source, and maintains a list of licenses that meet this definition. OSI has
become the major brand, and the largest organization operating in this area; licenses sub-
mitted, to become OSI-approved, have to pass a legal and community wide review.

Figure 3.16 shows the survival curve for the 107 OSI licenses that have been listed on the
OSI website since August 2000; at the start of 2019, 81 licenses were listed on the OSI
website.

A software system may be dependent on particular data, for correct or optimal operation.
The licensing of data associated with software, or otherwise, can be an important issue
itself.796

Open source licensing ideology is being applied to other goods, in particular the hardware
on which software runs.221

3.3.2 Bumbling through life

The expectation of career progression comes from an era when many industries were sta-
ble for long enough for career paths to become established. In rapidly changing work

3.3. CAPTURING COGNITIVE OUTPUT 71

ecosystems, the concept of career progression is less likely to apply. Some software
companies have established career progression ladders for their employees,1751 and one
study1180 found that staff turnover was reduced when promotions were likely to be fre-
quent and small, rather than infrequent and large; Gruber751 discusses the issues of IT
careers, in detail.

Companies have an interest in offering employees a variety of career options: it is a
means of retaining the knowledge acquired by employees based on their experience of the
business. Employees may decide that they prefer to continue focusing on technical issues,
rather than people-issues, or may embrace a move to management. Simulations1495 have
found some truth to the Peter principle: “Every new member in a hierarchical organization
climbs the hierarchy until they reach their level of maximum incompetence.”

In fast changing knowledge-based industries, an individuals’ existing skills can quickly
become obsolete (this issue predates the computer industry1906). Options available to
those with skills thought likely to become obsolete include, include having a job that
looks like it will continue to require the learned skills for a many years, and investing in
learning appropriate new skills.

Filtering out potential cognitariate who are not passionate about their work is a component
of the hiring process at some companies. Passion is a double-edged sword; passionate
employees are more easily exploited,1000 but they may exploit the company in pursuit of
their personal ideals (e.g., spending time reworking code that they consider to be ugly,
despite knowing the code has no future use).

Job satisfaction is an important consideration for all workers.1328 In areas where demand
for staff outstrips supply, the risk of loosing staff is a motivation for employers to provide
job satisfaction.

Human capital theory suggests there is a strong connection between a person’s salary and
time spent on the job at a company, i.e., the training and experience gained over time in-
creases the likelihood that a person could get a higher paying job elsewhere; it is in a com-
pany’s interest to increase employee pay over time159 (one study1722 of 2,251 IT profes-
sionals, in Singapore, found a linear increase in salary over time). Regional employment
(see Github–ecosystems/MSA_M2016_CM.R) and pay differences391 reflect differences in
regional cost of living, historical practices (which include gender pay differences1372)
and peoples’ willingness to move.

A study by Couger and Colter412 investigated approaches to motivating developers work-
ing on maintenance activities, the factors included: the motivating potential of the job
(based on skill variety required, the degree to which the job requires completion as
a whole, the impact of the job on others, i.e., task significance, degree of freedom in
scheduling and performing the job, and feedback from the job), and a person’s need for
personal accomplishment, to be stimulated and challenged.

In some US states, government employee salaries are considered to be public information,
e.g., California (see Github–ecosystems/transparentcalifornia.R). A few companies publish
employee salaries, so-called Open salaries; the information may be available to company
employees only, or it may be public, e.g., Buffer.657

If the male/female cognitive ability distribution seen in figure 2.5 carries over to software
competencies, then those seeking to attract more women into software engineering, and
engineering in general, should be targeting the more populous middle competence band,
and not the high-fliers. The mass market for those seeking to promote female equality
is incompetence; a company cannot be considered to be gender-neutral until incompetent
women are equally likely to be offered a job as incompetent men.

3.3.3 Expertise

To become a performance expert, a person needs motivation, time, economic resources,
an established body of knowledge to learn from, and teachers to guide; while learning,
performance feedback is required.

An established body of knowledge to learn from requires that the problem domain has
existed in a stable state for long enough for a proven body of knowledge to become es-
tablished. The availability of teachers requires that the domain be sufficiently stable that
most of what potential teachers have learned is still applicable to students; if the people
with the knowledge and skills are to be motivated to teach, they need to be paid enough
to make a living.

72 3. Cognitive capitalism

The practice of software development is a few generations old, and the ecosystems within
which developers work have experienced a steady stream of substantial changes; sub-
stantial change is written about as-if it is the norm. Anybody who invests in many years
of deliberate practice on a specific technology may find there are few customers for the
knowledge and skill acquired, i.e., are willing to pay a higher rate to do the job, than that
paid to somebody with a lot less expertise. Paying people based on their performance
requires a method of reliably measuring performance, or at least differences in perfor-
mance.

Software developers are not professional programmers any more than they are profes-
sional typists; reading and writing source code is one of the skills required to build a
software system. Effort also has to be invested in acquiring application domain knowl-
edge and skills, for the markets targeted by the software system.

What level of software development related expertise is worth acquiring in a changing
ecosystem? The level of skill required to obtain a job involving software development is
judged relative to those who apply for the job, employers may have to make do with who-
ever demonstrates the basic competence needed. In an expanding market those deemed
to have high skill levels may have the luxury of being able chose the work that interests
them.

Once a good enough level of programming proficiency is reached, if the application do-
main changes more slowly than the software environment, learning more about the appli-
cation domain may provide a greater ROI (for an individual), compared to improving pro-
gramming proficiency (because the acquired application knowledge/skills have a longer
usable lifetime).

People often learn a skill for some purpose (e.g., chess as a social activity, programming
because it provides pleasure or is required to get a job done), without aiming to achieve
expert performance. Once a certain level of proficiency is achieved, such people stop
trying to learn, and concentrate on using what they have learned; in work, and sport, a
distinction is made between training for, and performing the activity. During everyday
work, the goal is to produce a product, or provide a service. In these situations people
need to use well-established methods, to be certain of success, not try new ideas (which
potentially lead to failure, or a dead-end). Time spent on non-deliberate practice does not
lead to any significant improvement in expertise, although it may increase the fluency of
performing a particular subset of skills; computer users have been found to have distinct
command usage habits.1651

Higher education once served as a signalling system,1746 used by employers looking to
recruit people at the start of their professional careers (i.e., high cognitive firepower was
once required to gain a university degree). However, some governments’ policy of encour-
aging a significant percentage of their citizens to study for a higher education degree led
to the dilution of university qualifications to being an indication of not below average IQ.
By taking an active interest in the employability of graduates with a degree in a STEM
related subject,1673 governments are suffering from cargo-cult syndrome. Knowledge-
based businesses want employees who can walk-the-talk, not drones who can hum a few
tunes.

3.4 Group dynamics

People may cooperate with others to complete a task that is beyond the capacity of an
individual, for the benefit of all those involved. The effectiveness of a group is dependent
on cooperation between its members, which makes trust448 and the enforcement of group
norms193 an essential component of group activity.

In a commercial environment people are paid to work. The economics of personnel selec-
tion1099 are a component of an employer’s member selection process; the extent to which
employees can select who to work with, will vary.

Groups may offer non-task specific benefits for individuals working within the group,
e.g., social status and the opportunity for social learning; discussed in section 3.4.3 and
section 3.4.4.

Conflicts of interest can arise between the aims of the group and those of individual mem-
bers, and those outside the group who pay for its services. Individuals may behave differ-
ent when working on their own, compared to when working as a member of a group (e.g.,
social loafing975); cultural issues (e.g., individualism vs. collectivism) are also a factor.525

3.4. GROUP DYNAMICS 73

0 50 100 150 200
0

500

1000

1500

2000

2500

3000

Weeks

In
di

vi
du

al
 ti

m
e

on
 p

ro
je

ct
 (

ho
ur

s)
Figure 3.17: The cumulative number of hours worked per
week by the 47 individuals involved with one avionics
development project; dashed grey lines are straight lines
fitted to three individuals. Data from Nichols et al.1378

Github–Local

When a group of people work together, a shared collection of views, beliefs and rituals
(ways of doing things) is evolved,842 i.e., a culture. Culture improves adaptability. Culture
is common in animals, but cultural evolution1269 is rare; perhaps limited to humans, song
birds and chimpanzees.236

While overconfidence at the individual level decreases the fitness of the entrepreneur (who
does not follow the herd, but tries something new), the presence of entrepreneurs in a
group increases group level fitness (by providing information about the performance of
new ideas).186

People may be active members of multiple groups, with each group involved with differ-
ent software development projects. Figure 3.17 shows the cumulative number of hours, in
weeks since the start of the project, worked by the 47 people involved in the development
of an avionics software system. Dashed grey lines are straight lines fitted to three people,
and show these people working an average of 3.5, 9 and 13.8 hours per week on this one
project.

3.4.1 Maximizing generated surplus

Given the opportunity, workers will organise their tasks to suit themselves.1816 The so
called scientific management approach seeks to find a way of organizing tasks that max-
imises the surplus value produced by a group (i.e., value produced minus the cost of pro-
duction),viii subject to the constraint that management maintains control of the process.
The surplus going to the owners of the means of production.249

A study by Taylor1816 investigated the performance of workers in various industries. He
found that workers were capable of producing significantly more than they routinely pro-
duced, and documented the problems he encountered in getting them to change their
existing practices. Workers have been repeatedly found to set informal quotas amongst
themselves,1951 e.g., setting a maximum on the amount they will produce during a shift.

The scientific management approach was first widely applied to hardware production
where most of the tasks could be reduced to purely manual activities (i.e., requiring little
thinking by those who performed them), such as: iron smelting and automobile produc-
tion. Over the years its use has been extended to all major forms of commercial work,
e.g., clerical activities.1314

The essence of the scientific management approach is to break down tasks into a small
number of component parts, to simplify the component parts so they can be performed by
less skilled workers, and then rearrange tasks in a way that gives management control over
the production process (because workers don’t have knowledge of all the steps involved).
Deskilling jobs increases the size of the pool of potential workers, decreasing labor costs
and increasing the interchangeability of workers.

Given the almost universal use of this management technique, it is to be expected that
managers will attempt to apply it to the production of software,425, 1042 e.g., chief pro-
grammer teams.122

The production of software is different from hardware manufacture, in that once the first
copy has been created, the cost of reproduction is virtually zero. The human effort in-
vested in creating software systems is primarily cognitive. The division between manage-
ment and workers is along the lines of what they think about, not between thinking and
physical effort.

When the same task is repeatedly performed by different people, it is possible to obtain
some measure of average/minimum/maximum individual performance. Task performance
improves with practice, and an individual’s initial task performance will depend on their
prior experience (see section 2.5). Measuring performance based on a single performance
of a task provides some indication of minimum performance (see fig 5.27). To obtain
information on an individual’s maximum performance they have to be measured over
multiple performances of the same task (see fig 2.36).

It may be possible to quantify developer productivity in terms of their contribution to the
creation and maintenance of a software system. However, until the effort consumed by
the many kinds of activities involved in the creation of a software system is quantified, it
is not possible to estimate developer productivity.

Performance need not be correlated with productivity, e.g., a developer may deliver a high
performance when writing unproductive code.

viiiScientific management is not a science of work, it is a science of the management of other people’s work.

74 3. Cognitive capitalism

3.4.2 Motivating members

To maintain or improve their position in a changing world, organizations have to motivate
employees and third parties who have become comfortable in their established practices
to risk trying something new.462

As inhabitants of the intangible the cognitariate are consumers of intangible motivations.
Organizations can enlist the human need to believe and be part of something larger to
motivate and retain members; Apple is perhaps the most well known example.1499 Quasi-
religious narratives are used to enlist developers as participants in a shared mission, e.g.,
foundation myths and utopian visions. Developer evangelists979 are employed to seek
out third party developers, to convert them to believers in a company and its products;
providing technical aid opens the door to engagement. Employer branding1398 is a way
of attracting and retaining staff.

Technological progress continues to be written about as a form of religious transcendence.

Employee motivation will depend on the relationship they have with their work, which has
been categorized as one of: job, career or calling.1983 Those who treat work as a job see it
as providing material benefits (e.g., money), and don’t seek other kinds of reward; money
as an incentive to motivate employees is a complex issue incentives.1951 Having a career
involves personal investment in the work, with achievements marked with advancement
within an organizational structure (advancement may be considered to bring higher social
standing, increased authority, and greater self-esteem). People with callings see their
work as inseparable from their life, working for the fulfilment that doing the work brings
(the work may be seen as socially valuable).

A study by Chandlera and Kapelner320 investigated the impact of what subjects believed
to be meaningfulness of a task on their performance. Workers on Mechanical Turk were
paid to complete a task that was framed using one of three descriptions: 1) labelling
tumour cells to assist medical researchers (meaningful), 2) the purpose of the task was
not given (a control group), and 3) the purpose of the task was not given and subjects
were told that their work would be discarded. Subjects in the meaningful group labeled
more images and were more accurate; see Github–economics/1210-0962.R.

Some brands acquire a cult following, e.g., Macintosh163 (and even failed products such
as Apple’s Newton1329). A base of loyal third-party developers who have invested in
learning a technology can make it difficult for companies to introduce new, incompatible
technologies. The Carbon API was thoroughly entrenched with established with devel-
opers creating apps for the Macintosh. Apple’s transition from Carbon to a new API
(i.e., Cocoa) was significantly helped by the success of the iPhone, whose SDK supported
Cocoa (effectively killed continuing interest in Carbon).865

Meetings can play a role as rituals of confirmation, reenchantment and celebration.

3.4.3 Social status

The evidence55 points to a desire for social status as being a fundamental human motive.
Higher status (or reputation) provides greater access to desirable things, e.g., interesting
projects and jobs.1311 To be an effective signalling system, social status has to be costly
to obtain.807

Social animals pay more attention to group members having a higher social status (how-
ever that might be measured). People may seek out and pay deference to a highly skilled
individual in exchange for learning access. When attention resources are constrained,
people may choose to preferentially invest attention on high-status individuals.

Social status and/or recognition is a currency that a group can bestow on members whose
activities are thought to benefit the group. The failure of an academic community to treat
the production of research related software as worthy of the appropriate academic recogni-
tion1330 may slow the rate of progress in that community; although academic recognition
is not always the primary motive for the creation of research software.863

A study by Simcoe and Waguespack1708 investigated the impact of status on the volume
of email discussion on proposals submitted to the Internet Engineering Task Force (IETF).
A proposal submitted by an IETF working group had a much higher chance of becoming
a published RFC, compared to one submitted by a group of individuals (i.e., 43% vs. 7%).
The IETF list server distributed proposals with the authors names, except during periods

3.4. GROUP DYNAMICS 75

1 2 5 10 20 50 100

1

2

5

10

20

50

Proposals
M

en
tio

ns

With WG chair
No WG chair
et al, with WG chair

Figure 3.18: Number of proposals receiving a given num-
ber of mentions in emails; lines are a fitted regression
models of the form: Mentions ∝ Proposals−a, where a
is 0.51, 0.71, and 0.81. Data from Simcoe et al.1708

Github–Local

0

20

40

60

80

100

Crowd size

P
as

se
rs

−
by

 (
pe

rc
en

t)

1 2 3 4 5 10 15

Looking up
Stopping

Figure 3.19: Percentage of passers-by looking up or stop-
ping, as a function of group size; lines are fitted linear beta
regression models. Data extracted from Milgram et al.1279

Github–Local

of peak load, when the author list was shortened (by substituting one generic author, "et
al"). The, essentially random, shortening of the proposal author list created a natural
experiment, i.e., the identity of the authors was available for some proposals, but not oth-
ers. Proposals unlikely to become a published RFC (i.e., those submitted by individuals),
would be expected to receive less attention, unless the list of authors included a high status
individual (a working group chairman was assumed to be a high status individual).

An analysis of the number of email posts involving the 3,129 proposals submitted by
individuals (mean 3.4 proposals, sd 7.1), found: 1) when a working group chair appeared
on the author list, the weighted number of responses increased by 0.8, and 2) when a
working group chair name was one of the authors but had been replaced by "et al", the
weighted number of responses fell by 1.7; see Github–economics/EtAlData.R.

Figure 3.18 shows the number of proposals receiving a given number of mentions in IETF
email discussions, with lines showing fitted regression models; colors denote whether the
author list included a working group chairman and whether this information was visible
to those receiving the email.

3.4.4 Social learning

Learning by observing others, social learning, enables animals to avoid the potentially
high cost of individual learning.67, 854 A population’s average fitness increases when
its members are capable of deciding which of two learning strategies, social learning or
individual learning, is likely to be the most cost effective235 (i.e., the cost of individual
learning can be invested where its benefit is likely to be maximized). Incremental learning
can occur without those involved understanding the processes that underlie the activities
they have learned.485

Prestige-biased transmission occurs when people select the person with the highest pres-
tige as being the most likely to possess adaptive information810 for a learner to imitate.

Duplicating the behavior of others is not learning, it is a form of social transmission.
Following leaders generates a pressure to conform, as does the desire to fit in with a
group, known as conformist transmission.

In England, milk was once left in open bottles on customer doorsteps; various species of
birds were known to drink some of this milk. When bottles were sealed (these days with
aluminium foil), some birds learned to peck open milk bottle tops, with the blue tit being
the primary scavenger.606ix The evidence suggests those bird species that forage in flocks,
have the ability to learn both socially and individually, while species that are territorial
(i.e., chase away other members of their species), primarily use individual learning.1107

Social learning is a major human skill, where 2.5-year-old children significantly outper-
form adult chimpanzees and orangutans, our closest primate relatives818 (performance on
other cognitive tasks is broadly comparable).

Just using social learning is only a viable strategy in an environment that is stable between
generations of learners. If the environment is likely to change between generations, copy-
ing runs the risk of learning skills that are no longer effective. Analysis using a basic
model1239 shows that for a purely social learning strategy to spread in a population of
individual learners, the following relation must hold: u <

c
b

, where: u is the probability
of environmental change in any generation, b is the benefit of social learning of behavior
in the current environment, and c is the cost of learning.

A study by Milgram, Bickman and Berkowitz1279 investigated the behavior of 1,424
pedestrians walking past a group of people looking up at the 6th-floor window of the
building on the opposite side of the street. Figure 3.19 shows the percentage of passers-
by lookup up or stopping in response to a crowd of a given size.

A study by Centola, Becker, Brackbill and Baronchelli315 investigated the relative size
of subgroups acting within a group, needed to change a social convention previously
established by group members. Groups containing between 18 and 30 people worked
in pairs, with pairs changing after every interaction, performing a naming task; once
consistent naming conventions had become established within the group, a subgroup was
instructed to use an alternative naming convention. The results found that a committed
subgroup containing at least 25% of the group were able to cause the group to switch,

ixYour author leaves a plastic beaker for the milkman to place over the bottle, otherwise, within a week the
milk bottle top will be regularly opened; something that milkman new to the job have to learn.

76 3. Cognitive capitalism

0 1000 2000 3000 4000 5000
0.03

0.04

0.05

0.06

0.07

0.08

Units produced

P
ro

du
ct

io
n

tim
e

3.7 11.6 4.7 11.2
6.53.8 3.7

Figure 3.20: Hours required to build a car radio after the
production of a given number of radios, with break pe-
riods (shown in days above x-axis); lines are regression
models fitted to each production period. Data extracted
from Nembhard et al.1365 Github–Local

1943 1944 1945

0.6

0.8

1.0

1.2

1.4

Delivery date

E
ffo

rt
 (

m
ill

io
n

m
an

−
ho

ur
s)

Liberty ships
Colliers
Tankers

Figure 3.21: Man-hours required to build a particular
kind of ship, at the Delta Shipbuilding yard, delivered
on a given date (x-axis). Data from Thompson.1833

Github–Local

to using the subgroup’s naming conventions. The rate of change depended on group size
and relative size of the subgroup; see Github–economics/Centola-Becker.R.

Discoveries and inventions are often made by individuals, and it might be expected that
larger populations will contain more tools and artefacts, and have a more complex cul-
tural repertoire than smaller populations.1112 The evidence is mixed, with population size
having a positive correlation with tool complexity in some cases.385

Useful new knowledge is not always uniformly diffused out into the world, to be used by
others; a constantly changing environment introduces uncertainty1527 (i.e., noise is added
to the knowledge signal), and influential figures may suppress use of the ideas (e.g., some
physicists suppressed the use of Feynman diagrams190).

Conformist transmission is the hypothesis that individuals possess a propensity to pref-
erentially adopt the cultural traits that are most frequent in the population. Under con-
formist transmission, the frequency of a trait among the individuals within the population
provides information about the trait’s adaptiveness. This psychological bias makes in-
dividuals more likely to adopt the more common traits than they would under unbiased
cultural transmission. Unbiased transmission may be conceptualized in several ways: for
example, if an individual copies a randomly selected individual from the population, then
the transmission is unbiased; if individuals copy their parents or just their mother, then
transmission is unbiased.

The rate of change in the popularity list of baby names, dog breeds and pop music can be
fitted176 by a model where most of the population, N, randomly copy an item on the list,
containing L items, and a fraction, µ , select an item not currently on the list. Empirically,
the turnover of items on the list has been found to be proportional to: L

√
µ; a theoretical

analysis556 finds that population size does have some impact, i.e., L
√

µ log N
L .

Studies have found that subjects are able to socially learn agreed conventions when com-
municating within networks having various topologies (containing up to 48 members;
the maximum experimental condition).314 One advantage of agreed conventions is a re-
duction in communications effort when performing a joint task, e.g., a reduction in the
number of words used.370

The impact of the transmission of information about new products is discussed in sec-
tion 3.6.3.

3.4.5 Group learning and forgetting

The performance of groups, like that of individuals (see fig 2.33), improves with practice;
groups also forget (in the sense that performance on a previously learned task degrades
with time).905 Industrial studies have focused on learning by doing,1833 that is the passive
learning that occurs when the same, or very similar, product is produced over time.

The impact of organizational learning during the production of multiple, identical units
(e.g., a missile or airplane) can be modeled to provide a means of estimating the likely cost
and timescale of producing more of the same units.698 Various models of organizational
production868, 1248 based on connected components, where people are able to find connec-
tions between nodes that they can change to improve production, produce the power laws
of organizational learning encountered in practice.

There are trade-offs to be made in investment in team learning; there can be improvements
in performance and team performance can be compromised.279

A study by Nembhard and Osothsilp1365 investigated the impact of learning and forget-
ting on the production time of car radios; various combined learning-forgetting models
have been proposed, and the quality of fit of these models to the data was compared. Fig-
ure 3.20 shows the time taken to build a car radio against cumulative production, with
an exponential curve fitted to each period of production (break duration in days appears
above the x-axis). Note, build time increases after a break, and both a power law and
exponential have been proposed as models of the forgetting process.

Writing source code differs from building hardware in that software is easily duplicated,
continual reimplementation only occurs in experiments (see fig 2.36). Repetitive activities
do occur when writing code, but the repetition is drawn from a wide range of activities
sequenced together to create distinct functionality (patterns of code use are discussed in
section 7.3).

3.4. GROUP DYNAMICS 77

2 4 6 8 10

0

10

20

30

40

50

Generation

R
at

in
g

Figure 3.22: Task rating given to members of successive
generations of teams; lines are a regression model fitted to
the one (red) and five (blue-green) write-up generation se-
quences. Data from Muthukrishna et al.1338 Github–Local

5 10 15 20 25

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Release

A
ct

ua
l/P

la
nn

ed
 e

ffo
rt

Major releases
Point releases

Figure 3.23: Ratio of actual to estimated hours of effort to
enhance an existing product, for 25 versions of one appli-
cation. Data from Huijgens et al.870 Github–Local

Figure 3.21 shows the man-hours needed to build three kinds of ships, 188 in total, at the
Delta Shipbuilding yard, between January 1942 and September 1945. As experience is
gained building Liberty ships the man-hours required, per ship, decreases.1833 Between
May 1943 and February the yard had a contract to build Tankers, followed by a new
contract to build Liberty ships, and then Colliers. When work resumes on Liberty ships,
the man-hours per ship is higher than at the end of the first contract, presumably some
organizational knowledge about how to build this kind of ship had been lost.

When an organization loses staff having applicable experience, there is some loss of per-
formance.69 It has been proposed806 that the indigenous peoples’ of Tasmania lost valu-
able skills and technologies because their effective population size shrunk below the level
needed to maintain a reliable store of group knowledge (when the sea level rose the is-
lander’s were cut off from contact with mainland Australia).

An organization’s knowledge and specialist skills are passed on to new employees by
existing employees and established practices.

A study by Muthukrishna, Shulman, Vasilescu and Henrich1338 investigated the trans-
mission of knowledge and skills, between successive generations of teams performing a
novel (to team members) task. In one experiment, each of ten generations was a new
team of five people (i.e., 50 different people), with every team having to recreate a target
image using GIMP. After completing the task, a generation’s team members were given
15-minutes to write-up two pages of information, whose purpose was to assist the team
members of the next generation. Successive teams in one sequence of ten generations,
were given the write-up from one team member of the previous generation, while succes-
sive teams in another sequence of ten generations, were given the write-ups from the five
members of the previous generation team (i.e., the experiment involved 100 people).

Figure 3.22 shows the rating given to the image produced by each team member, from
each of successive generation; lines show fitted regression models. The results suggest
that more information was present in five write-ups (blue-green) than one write-up (red),
enabling successive generations to improve (or not).

Outsourcing of development work, offshore or otherwise, removes the learning-by-doing
opportunities afforded by in-house development; in some cases management may learn
from the outsource vendor.317

3.4.6 Information asymmetry

The term information asymmetry describes the situation where one party in a negotiation
has access to important, applicable, information that is not available to the other parties.
The information is important in the sense that it can be used to make more accurate de-
cisions. In markets where no information about product quality is available, low quality
drives out higher quality.26

Building a substantial software system involves a huge amount of project specific infor-
mation; a large investment of cognitive resources is needed to acquire and understand
this information. The kinds of specific information involve factors such as: application
domain, software development skills and know-how, and existing user work practices.

Vendors bidding to win the contract to implement a new system can claim knowledge
on similar systems, but cannot claim any knowledge of a system that does not yet exist.
In any subsequent requests to bid to enhance the now-existing system, one vendor can
claim intimate familiarity with the workings of the software they implemented. This
information asymmetry may deter other vendors from bidding, and places the customer
at a disadvantage in any negotiation with the established vendor.

Figure 3.23 shows the ratio of actual to estimated effort for 25 releases of one application,
over six years (release 1.1 to 9.1, figures for release 1 are not available).870 Possible rea-
sons for the estimated effort being so much higher than the actual effort include: cautious-
ness on the part of the supplier, and willingness to postpone implementation of features
planned for the current release to a future release (one of the benefits of trust built up
between supplier and customer, in an ongoing relationship, is flexibility of scheduling).

The term vaporware is used to describe the practice of announcing software products with
a shipment date well in the future.1528 These announcements are a signalling mechanism
underpinned by asymmetrical information, because there may or may not be a real prod-
uct under development; uses include: keeping existing customer happy that an existing
product has a future and deterring potential competitors.482

78 3. Cognitive capitalism

1 2 5 10 20
0

5

10

15

20

Promised−Preannouncement (months)

A
ct

ua
l−

P
ro

m
is

ed
 (

m
on

th
s)

Figure 3.24: Interval between product announcement date
and its promised availability date, against interval be-
tween promised date and actual date the product became
available; lines are a fitted regression model of the form:
A_P ∝ e0.3−0.1P_P+0.8

√
P_P, and a loess fit. Data from

Bayus et al.155 Github–Local

A study by Bayus, Jain and Rao155 investigated the delay between promised availability,
and actual availability, of 123 software products. Figure 3.24 shows that the interval,
in months, between the announcement date and promised product availability date has
little correlation with the interval between promised and actual delivery date. The fitted
regression line shows that announcements promising product delivery in a month or two
are slightly more accurate than those promising delivery further in the future.

3.4.7 Moral hazard

A moral hazard occurs when information asymmetry exists, and the more informed party
has some control over the unobserved attributes. The traditional example is a manager
running a business for those who own the company (the manager has opportunities to
enrich himself, at the expense of the owners, who lack the information needed to detect
what has happened), but it can also apply to software developers making implementation
decisions, e.g., basing their choice on the enjoyment they expect to experience, rather than
the likely best technical solution.

Agency theory deals with the conflict of interests of those paying for work to be done,
and those being paid to do it.

With so many benefits on offer to the cognitariate, employers need a mechanism for de-
tecting free-riders: employees have to signal hedonic involvement, e.g., by working long
hours.1076

The reliability of a product may only become visible after extensive use, e.g., the number
of faults experienced. Clients may not be able to distinguish the rhetoric and reality of
vendor quality management.2000

3.4.8 Group survival

Groups face a variety of threats to their survival, including: more productive members
wanting to move on (i.e., brain drain), the desire of less productive people to join (i.e.,
adverse selection), and the tendency of members to shirk (e.g., social loafing).

Groups function through the mutual cooperation between members. Reciprocity: actions
towards another involving an expectation of a corresponding cooperative response from
the other party is a fundamental component of group cohesion.

Simulations732 have found that the presence of reciprocity (e.g., x helps/harms y, who in
term helps/harms x), and transitivity (e.g., if x and y help each other, and y helps z, then
x is likely to help z) in a uniform population, are sufficient for distinct subgroups to form;
see Github–economics/2014+Gray+Rand.R.

Cooperation via direct reciprocity is only stable when the probability of interacting with
a previously encountered member Pi, meets the condition:1410 c

b
< Pi, where: c is the

cost of cooperation, and b is the benefit received (by one party if they defect, and by
both parties if they both cooperate; if an altruist member does not start by cooperating,
both parties receive zero benefit); cooperation via indirect reciprocity, where decisions
are based on reputation (rather than direct experience), is only stable when the probability
of knowing a members’ reputation, Pk, meets the condition:1391 c

b
< Pk.

Members may be tempted to take advantage of the benefits of group membership,1882

without making appropriate contributions to the group, or failing to follow group norms.193

If a group is to survive, its members need to be able to handle so-called free-riders. Repu-
tation is a means of signalling the likelihood of a person reciprocating a good deed; some
combinations of conditions1411 linking reputation dynamics and reciprocity have been
found to lead to stable patterns of group cooperation.

In an encounter between two people, either may choose to cooperate, or not, with the
other. A problem known as the prisoner’s dilemma has dominated the theoretical analysis
of interactions between two people. Encounters involving the same person may be a
recurring event (known as the iterated prisoner’s dilemma); in a noise free environment
(i.e., those involved correctly recall the previous action of their partner), Tit-for-Tat (TfT,
start by cooperating, and then reciprocate the partner’s behavior) is currently the best
known solution. In practice TfT is easily disrupted by noise, e.g., response based on
imperfect recall of the previous interaction;1907 one alternative strategy is generous TfT
(follow TfT, except cooperate with some probability when a partner defects).

3.4. GROUP DYNAMICS 79

0 20 40 60 80 100
0

1

2

3

4

5

6

Cooperator norms (percentage)

P
un

is
hm

en
t p

oi
nt

s

Fixed punishment
Increasing
Decreasing
Other patterns

Figure 3.25: Mean number of deduction points specified
by subjects told that a given percentage of subjects in a
reference group cooperated; broken down by four subject
response patterns. Data from Li et al.1129 Github–Local

While the analysis of prisoner’s dilemma style problems can produce insights, it may not
be possible to obtain sufficiently accurate values for the variables used in the model. The
following analysis91 illustrates some of the issues.

In a commercial environment, developers may be vying with each other for promotion, or
a pay rise. Developers who deliver projects on schedule are likely to be seen by manage-
ment as worthy of promotion or a pay rise.

Consider the case of two software developers who are regularly assigned projects to com-
plete, by a management specified date: with probability p, the project schedules are un-
achievable. If the specified schedule is unachievable, performing Low quality work will
enable the project to be delivered on schedule, alternatively the developer can tell man-
agement that slipping the schedule will enable High quality work to be performed.

Performing Low quality work is perceived as likely to incur a penalty of Q1 (because of its
possible downstream impact on project completion) if one developer chooses Low, and Q2
if both developers choose Low. It is assumed that: Q1 < Q2 <C. A High quality decision
incurs a penalty that developers perceive to be C (telling management that they cannot
meet the specified schedule makes a developer feel less likely to obtain a promotion/pay-
rise).

Let’s assume that both developers are given a project, and the corresponding schedule. If
either developer faces an unachievable deadline, they have to immediately decide whether
to produce High or Low quality work. When making the decision, information about the
other developer’s decision is not available.

An analysis91 shows that, both developers choosing High quality is a pure strategy (i.e.,
always the best) when: 1− Q1

C ≤ p, and High-High is Pareto superior to both developers
choosing Low quality when: 1− Q2

C−Q1+Q2
< p < 1− Q1

C .

Obtaining a reasonable estimate for p, C, and Q1 is likely to be problematic. Inferences
drawn from the forms of the equations intended to encourage a High-High decision (e.g.,
be generous when schedule implementation time, and don’t penalise developers when
they ask for more time), could have been inferred without using a Prisoner’s dilemma
model.

Social pressure may not be sufficient to prevent free-riding. Group members have been
found to be willing to punish, at a cost to themselves, members who fail to follow group
norms (in real-life1406 and experimental situations1426).

A study by Li, Molleman and van Dolder1129 investigated the impact of prevailing group
social norms on the severity with which members punish free-riders. Pairs of subjects
played a two-stage game. In the first stage either individual could choose to cooperate
(if both cooperate, they each earn 18 points), or defect (i.e., a single defector earns 25
points and the attempted cooperator earns 9; mutual defection earns 16 points). In the
second stage, subjects had the opportunity to punish their defecting partner (if the partner
had defected) by specifying the number of points to deduct from their partner’s earnings;
the cost of deduction was a 1-point deduction from the cooperator for every 3-points they
wanted to deduct from their defecting partner. Every subject played eleven times, each
time with a randomly selected partner.

Prevailing group norms were set by giving subjects information on the behaviour of sub-
jects in an earlier experiment (labeled as the reference group). One group (318 subjects;
the CC treatment) read information about the percentage of cooperators in a reference
group, the other group (275 subjects; the CP treatment) read information about the num-
ber of points deducted by the cooperators in a reference group.

Figure 3.25 shows the mean number of deduction points specified by CC treatment sub-
jects, when told that a given percentage of subjects in a reference group cooperated. Lines
show subjects broken out by four response patterns.

For the roughly 60% of subjects who punished their partner in at least one game: in both
CC and CP treatments, approximately 30% of subjects always specified the same number
of points to deduct. For the CC treatment, just over 33% of subjects deducted more points
as the percent of cooperators in the reference group increased, and around 20% deducted
fewer points, with 17% following other patterns. For the CP treatment, approximately
45% of subjects deducted fewer points as the mean number of deducted points in the
reference group increased, and around 2% deducted fewer points, with 20% following
other patterns.

80 3. Cognitive capitalism

0 20 40 60 80 100

5

10

15

Problems solved (percent)

M
ea

n
re

sp
on

se
 ti

m
e

(s
ec

s)

30 seconds
15 seconds
 7 seconds

Figure 3.26: Percentage of individuals (x-axis) who cor-
rectly generated a solution, against mean response time,
for 144 problems; colors denote time limits, and a sample
of lines connecting performance pairs for the same pro-
gram. Data from Bowden et al.232 Github–Local

3.4.9 Group problem solving

Group problem solving performance1093 can be strongly affected by the characteristics of
the problem; problem characteristics include:

• unitary/divisible: is there one activity that all members have to perform at the same
time (e.g., rope pulling), or can the problem be divided into distinct subcomponents
and assigned to individual members to perform?

• maximizing/optimizing: is quantity of output the goal, or quality of output (e.g., a
correct solution)?

• interdependency: the method of combining member outputs to produce a group output;
for instance: every member completes a task, individual member outputs are added
together or averaged, or one member’s output is chosen as the group output.

When solving Eureka-type problems (i.e., a particular insight is required), the probability
that a group containing k individuals will solve the problem is: Pg = 1− (1−Pi)

k, where:
Pi is the probability of one individual solving the problem. When the solution involves
s subproblems, the probability of group success is (i.e., a combination-of-individuals

model): Pg =

[
1−
(

1−P1/s
i

)k
]s

. Some studies1159 have found group performance to

have this characteristic.

Studies1791 have consistently found that for brainstorming problems (i.e., producing as
many creative ideas as possible), individuals consistently outperform groups (measured
by quantity and quality of ideas generated, per person). Despite overwhelming experi-
mental evidence, the belief that groups outperform individuals has existed for decades.x

A study by Bowden and Jung-Beeman232 investigated the time taken, by individuals, to
solve word association problems. Subjects saw three words, and were asked to generate
a fourth word that could be combined with each of word to produce a compound word
or phrase; for instance, the words SAME/TENNIS/HEAD can all be combined with MATCH.xi

The 289 subjects were divided into four groups, each with a specified time limit on gen-
erating a problem solution (2, 7, 15 and 30 seconds).

Figure 3.26 shows the percentage of subjects who correctly answered a problem against
the mean time taken. Each plus corresponds to one of the 144 problems, with colors
denoting the time limit (solution time was not collected for the group having a 2-second
time limit). Lines link a sample of time/percent performance for answers to the same
problem, in each time-limit group.

The results show that the problems have Eureka-type characteristics, with some problems
solved quickly by nearly all subjects, and other problems solved more slowly by a smaller
percentage of subjects.

The presence of others (e.g., spectators or bystanders) has been found to have a small
effect on an individual’s performance (i.e., plus/minus 0.5% to 3%).220

The information-sampling model1767 suggests that the likelihood of a group focusing on
particular information increases with the number of members who are already aware of it,
i.e., information known by one, or a few members, is less likely to be discussed because
there are fewer people able to initiate the discussion. The term hidden profile has been
used to denote the situation where necessary task information is not widely known, and
distributed over many group members.

Studies have found that as group size increases, the effort exerted by individuals de-
creases;975 the terms social loafing and Ringelmann effect (after the researcher who first
studied1588 group effort, with subjects pulling on a rope), are used to describe this be-
havior. Social loafing has been found to occur in tasks that do not involve any interaction
between group members, e.g., when asked to generate sound by clapping and cheering in a
group, the sound pressure generated by individuals decreases as group size increases.1091

An extreme form of social loafing is bystander apathy, such as when a person is attacked
and onlookers do nothing because they assume somebody else will do something.1090

A study by Akdemir and Ahmad Kirmani25 analyzed student performance when working
in teams and individually, based on marks given for undergraduate projects. Students
completed two projects working in a team and one project working alone, with all team

xThis belief in the benefits of brainstorming groups has been traced back to a book published by an adver-
tising executive in the 1950s.

xiSynonymy (same = match), compound word (matchhead), and semantic association (tennis match).

3.4. GROUP DYNAMICS 81

−80 −60 −40 −20 0 20
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Individual minus Team performance

In
di

vi
du

al
s

(d
en

si
ty

)

2 people
3 people
4 people
5 people
6 people

Figure 3.27: Density plot of the difference between mean
team mark and individual mark, broken down by team
size. Data from Akdemir et al.25 Github–Local

10 20 30 40 50

10

20

30

40

Minutes

U
ni

qu
e

id
ea

s

Group=6
Group=4
Group=2

Figure 3.28: Average number of ideas produced by groups
of a given size, at 5-minute interval elapsed time; dashed
lines are nominal groups created by aggregating individual
ideas. Data from Lewis.1121 Github–Local

50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

Suit−share

P
ro

du
ct

io
n

tim
e

(d
ay

s)

Standard
non−Standard

Figure 3.29: Time taken to publish an RFC having Stan-
dard or non-Standard status, for IETF committees hav-
ing a given percentage of commercial membership (i.e.,
people wearing suits); lines are a fitted regression model
with 95% confidence intervals (red), and a loess fit (blue/-
green). Data from Simcoe.1706 Github–Local

members given the same mark for a project. Figure 3.27 shows a density plot of the
difference between mean team mark and individual mark, for the 386 subjects, broken
down by team size.

A study by Lewis1121 investigated the number of ideas generated by people working in
groups or individually. Subjects were given a task description and asked to propose as
many methods as possible for handling the various components of the task. Experiment
1 involved groups of 1, 2, 4 and 6 people, who were given 50 minutes to produce ideas
(every 5-minutes groups recorded the total number of ideas created).

Figure 3.28 shows the average number of ideas produced by each group size. The solid
lines show actual groups, the dashed lines show nominal groups, e.g., treating two subjects
working individually as a group of two and averaging all their unique ideas.

3.4.10 Cooperative competition

Within ecosystems driven by strong network effects, there can be substantial benefits in
cooperating with competitors, e.g., the cost of not being on the winning side of the war, to
set a new product standard, can be very high,1678 and sharing in a winner take-all market
is an acceptable outcome.

Software systems need to be able to communicate with each other, agreed communication
protocols are required. The communication protocols may be decided by the dominant
vendor (e.g., Microsoft with its Server protocol specifications1277), by the evolution of
basic communication between a few systems to something more complicated involving
many systems, or by interested parties meeting together to produce an agreed specifica-
tion. The components of hardware devices also need to interoperate, and several hundred
interoperability standards are estimated to be involved in a laptop.194

Various standards’ bodies, organizations, consortia, and groups have been formed to doc-
ument agreed-upon specifications. Committee members are often required to notify other
members of any patents they have, that impinge on the specification being agreed to. Or-
ganizations that failed to reveal patents they hold, if they subsequently attempt to extract
royalties from companies implementing the agreed specification, may receive large fines
and licensing their patents under reasonable terms may be government enforced.584

A study by Simcoe1706 investigated the production of communication specifications (i.e.,
RFCs) by the Internet Engineering Task Force (IETF) between 1993 and 2003 (the for-
mative years of the Internet). Figure 3.29 shows that the time taken to produce an RFC
having the status of a Standard, increased as the percentage of commercial membership of
the respective committee increased, but there was no such increase for RFCs not having
the status of a standard.

If several companies have to build a large software system that they don’t intend to sell
as a product (i.e., it’s for in-house use), a group of companies may agree to cooperate in
building the required system. The projects to build these systems involve teams containing
developers from multiple companies.

A study by Teixeira, Robles and González-Barahona1820 investigated the evolution of
company employees working on the releases of the OpenStack project, between 2010
and 2014. Figure 3.30 shows the involvement of top ten companies, out of over 200
organizations involved, as a percentage of employed developers working on OpenStack.

3.4.11 Software reuse

Reuse of existing code has the potential to save time and money, and reused code may
contain fewer mistakes than newly written code (i.e., if the reused code has been executed,
there has been an opportunity for faults to be experienced and mistakes fixed). Many
equations detailing the costs and benefits of software reuse have been published,1280 and
what they all have in common is not being validated against any evidence.

Reuse of preexisting material is not limited to software, e.g., preferential trade agree-
ments.32

Multiple copies of lexically, semantically, or functionally similar source code may be
referred to as reused code, duplicate code or as a clone.xii Investigating whether cloned

xiiClone is a term commonly used in academic papers.

82 3. Cognitive capitalism

0

20

40

60

80

D
ev

el
op

er
s

(%
)

Bexar
Cactus

Diablo
Essex

Folsom
Grizzly

Havana

Icehouse

Releases

cannonical
citrix
cloudscale
hp
ibm
mirantis
nebula
rackspace
redhat
vmware

Figure 3.30: Percentage of developers, employed by given
companies, working on OpenStack at the time of a release
(x-axis). Data from Teixeira et al.1820 Github–Local

1000 2000 3000 4000 5000
0.0

0.2

0.4

0.6

0.8

1.0

Days

C
lo

ne
 s

ur
vi

va
l

Type 1
Type 2
Type 3

Figure 3.31: Survival curves of type I, II and III clones
in the Linux high/medium/low level SCSI subsystems;
dashed lines are 95% confidence intervals. Data from
Wang.1922 Github–Local

code is more fault prone than non-cloned code855 is something of a cottage industry, but
these studies often fail to fully control for mistakes in non-cloned versions of the code.
There are specific mistake patterns that are the result of copy-and-paste errors.169

Creating reusable software can require more investment than that needed to create a non-
reusable version of the software. Without an expectation of benefiting from the extra
investment, there is no incentive to make it. In a large organization, reuse may be worth-
while at the corporate level, however the costs and benefits may be dispersed over many
groups who have no incentive for investing their resources for the greater good.599

Reasons for not reusing code include: the cost of performing due diligence to ensure
that intellectual property rights are respected (clones of code appearing on Stack Over-
flowxiii have been found in Android Apps53 having incompatible licenses, and Github
projects127), ego (e.g., being recognized as the author of the functionality), and hedo-
nism (enjoyment from inventing a personal wheel, creates an incentive to argue against
using somebody else’s code). Reusing significant amounts of code complicates cost and
schedule estimation;392 see fig 5.31.

Reuse first requires locating code capable of being cost effectively reused to implement a
given requirement. Developers are likely to be familiar with their own code, and the code
they regularly encounter. The economics of reusable software are more likely to be cost
effective at a personal consumption level, and members of a group may feel obligated to
make an investment in the group well-being.

A study by Li, Lu, Myagmar and Zhou1131 investigated copy-and-pasted source within
and between the subsystems of Linux and FreeBSD. Table 3.2 shows that Linux subsys-
tems contain a significant percentage of replicated sequences of their own source; replica-
tion between subsystems is less common (the same pattern was seen in FreeBSD 5.2.1).

subsystem arch fs kernel mm net sound drivers crypto others LOC
arch 25.1 1.4 0.5 0.3 1.1 1.3 3.2 0.1 0.8 724,858
fs 1.4 16.5 0.6 0.5 1.7 1.2 2.2 0.0 0.7 475,946
kernel 3.0 1.8 7.9 0.6 2.3 1.6 2.8 0.1 0.8 30,629
mm 2.6 2.2 0.8 6.2 1.7 1.1 2.0 0.0 0.7 23,490
net 1.8 2.5 1.1 0.7 20.7 2.1 3.7 0.1 1.0 334,325
sound 2.3 2.0 1.0 0.6 2.2 27.4 4.6 0.2 1.1 373,109
drivers 2.3 1.7 0.6 0.4 1.8 2.0 21.4 0.1 0.6 2,344,594
crypto 2.3 2.2 0.3 0.1 1.1 1.5 2.5 26.1 2.2 9,157
others 3.8 1.9 0.8 0.4 1.7 1.5 2.6 0.3 15.2 49,016

Table 3.2: Percentage of a subsystem’s source code cloned within and across subsystems of Linux 2.6.6. Data from Li et al.1131

A study by Wang1922 investigated the survival of clones (a duplicate sequence of 50 or
more tokens; Type 1 clones are identical, ignoring whitespace and comments, while Type
2 clones allow identifiers and literal values to be different, and Type 3 clones allow non-
matching gaps) in the Linux high/medium/low level SCSI subsystems (the architecture of
this system has three levels). Figure 3.31 shows the clone survival curves, which all have
an initial half-life of around 18 months, followed by much longer survival lifetimes.

3.5 Company economics

The value of a company250 is derived from two sources: tangible goods such as buildings
it owns, equipment and working capital, and intangible assets which are a product of
knowledge (e.g., employee know-how, intellectual property21 and customer switching
costs); see fig 1.10.

Governments have been relatively slow to include intangible investments in the calcu-
lation of GDP1115 (starting in 1999 in the US and 2001 in the UK), and different ap-
proaches to valuing software20 has led to increased uncertainty when comparing country
GDP (McGee1241 discusses accounting practices, for software, in the UK and US during
the 1970s early 1980s). The accounting treatment of intangibles depends on whether it is
purchased from outside the company, requiring it to be treated as an asset, or generated

xiiiExample code on Stack Overflow is governed by a Creative Commons Attribute-ShareAlike 3.0 Unported
license.

3.5. COMPANY ECONOMICS 83

Sales = units sold X unit price

SW company revenue

Gross Income

Operating Income

Net Income

Earnings

Profit

D
is

tr
ib

ut
or

 m
ar

ku
p

P
ro

du
ct

io
n

co
st

A
dm

in
 o

ve
rh

ea
d

R
es

ea
rc

h

C
ap

ita
l c

os
t

Ta
xe

s

Figure 3.32: Accounting practice for breaking down in-
come from sales, and costs associated with major business
activities. Github–Local

0

1

2

3

4

E
ffo

rt
 p

er
 fa

ul
t (

da
ys

)

Rqmts Analysis

Prelim
 Design

Detailed Design
Code

Unit T
est

Int Test

Function Test

System Test

SW Maint

SRS/IRS
Preliminary design
Detailed Design
Code
Unit test procedures
Integration test procedures
Other

Figure 3.33: Average effort (in days) used to fix a fault
experienced in a given phase (x-axis) caused by a mis-
take that had been introduced in an earlier phrase (colored
lines), introduced in an earlier phase (total of 38,120 de-
fects in projects at Hughes Aircraft). Data extracted from
Willis et al.1966 Github–Local

internally where is often treated as an expense.1324 A company’s accounts may only make
sense when its intangible assets are included in the analysis.873

The financial structure of even relatively small multinational companies, is likely to be
complicated.1041

3.5.1 Cost accounting

The purpose of cost accounting is to help management make effective cost control deci-
sions. In traditional industries the primary inputs are the cost of raw materials (e.g., the
money needed to buy the materials needed to build a widget), and labor costs (e.g., the
money paid to the people involved in converting the raw materials into a widget); other
costs might include renting space where people can work, and the cost of consumables
such as electricity.

The production of software systems is people driven, and people are the primary cost
source.

The total cost of a software developer can be calculated from the money they are paid,
plus any taxes levied by the government, on an employer, for employing somebody (e.g.,
national insurance contributions in the UKxiv); the term fully loaded cost is sometimes
used.

3.5.2 The shape of money

Money is divided up, and categorized, in various ways for a variety of different reasons.
Figure 3.32 illustrates the way in which UK and US tax authorities require registered
companies to apportion their income to various cost centers.

Within a company, the most senior executives allocate a budget for each of the organiza-
tional groups within the company. These groups, in turn, divide up their available budget
between their own organizational groups, and so on. This discrete allocation of funds can
have an impact on how software development costs are calculated.

Take the example of a development project, where testing is broken down into two phases,
i.e., integrating testing and acceptance testing, each having its own budget, say Bi and Ba.

One technique sometimes used for measuring the cost of faults is to divide the cost of
finding them (i.e., the allocated budget), by the number of faults found. For instance, if
100 unique fault experiences occur during integration testing, the cost per fault in this
phase is Bi

100 , and if five unique fault experiences occur during acceptance testing, the cost
per fault in this phase is Ba

5 .

One way of reducing the cost per fault experienced during acceptance testing would be
to reduce the effectiveness of integration testing. Because, for a fixed budget, the cost per
fault decreases as the number of faults experienced increases.

This accountancy-based approach to measuring the cost of faults, creates the impression
that it is more costly to find faults later in the process, compared to finding them earlier.226

This conclusion is created through the artefact of a fixed budget, along with the typical
case that fewer unique fault experiences occur later in the development process.

Time taken to fix faults may less susceptible to accounting artefacts, provided the actual
time is used (i.e., not the total allocated time). Figure 3.33 shows the average number of
days used to fix a reported fault in a given phase (x-axis), caused by a mistake that had
been introduced in an earlier phase (colored lines), based on 38,120 faults in projects at
Hughs Aircraft;1966 also see fig 6.42.

3.5.3 Valuing software

Like any other item, if no one is willing to pay money for the software, it has zero sales
value. The opportunity cost of writing software from scratch, along with the uncertainty
of being able to complete the task, and the undocumented business rules it implements,
is what makes it possible for existing software to be worth significantly more than the

xivThis was zero-rated up to a threshold, then 12% of employee earnings, increasing on reaching an upper
threshold; at the time of writing.

84 3. Cognitive capitalism

10 20 50 200 500 2000
1

2

5

10

20

50

100

Effort (months)

E
S

LO
C

 (
th

ou
sa

nd
)

Military Ground
Military Mobile
Mil−Spec Avionics
Unmanned Space

Figure 3.34: Months of developer effort needed to produce
systems containing a given number of lines of code, for
various application domains; lines are quantile regression
fits at 10 and 90%, for one application domain. Data from
Gayek et al.661 Github–Local

1 2 5 10 20 50 100 200

1

100

10000

1000000

Releases

A
pp

s

Figure 3.35: Number of Apps in the Google playstore hav-
ing a given number of releases; line is a fitted regression
model of the form: Apps ∝ Releases−2.8. Data kindly pro-
vided by Li.1125 Github–Local

original cost of creating it (along with any installed based). However, for accounting
purposes, software may be valued in terms of the cost of producing it.

Various approaches to valuing software, and any associated intellectual property are avail-
able.1954

An organization seeking to acquire a software system has the option of paying for its
implementation, and the cost of creating a software system is one approach to valuing
it. However, this approach to valuing an existing system assumes that others seeking
to reimplement it have access to the application domain expertise needed to do the job
(along with successfully hiring developers with the necessary skills). A reimplementation
has a risk premium attached, along with a lead time (which may be the crucial factor in a
rapidly changing market).

A study by Gayek, Long, Bell, Hsu and Larson661 obtained general effort/size information
on 452 military/space projects. Figure 3.34 shows executable statements and the devel-
oper effort (in months) used to create them (the range of developer salaries is known).
Lines are quantile regression fits at 10 and 90% for the one of the application domains,
and show a factor of five variation in developer effort (i.e., costs) for the same ESLOC.

Commercial companies are required to keep accurate financial accounts, whose purpose is
to provide essential information for those with a financial interest in the company, includ-
ing governments seeking to tax profits. Official accounting organizations have created
extensive, and ever-changing, rules for producing company accounts, including methods
for valuing software and other products of intellectual effort.801 In the US, the Financial
Accounting Standards Board has issued an accounting standard “FASB Codification 985-
20” (FAS 80602 was used until 2009) covering the “Accounting for the Costs of Computer
Software to Be Sold, Leased, or Otherwise Marketed”. This allows software development
costs to be treated either as an expense or capitalized (i.e., treated like the purchase of
an item of hardware). An expense is tax-deductible in the financial year in which it oc-
curs, but the software does not appear in the company accounts as having any value; the
value of a capitalized item is written down over time (i.e., a percentage of the value is
tax-deductible over a period of years), but has a value in the company accounts.1001

The decision on how software development costs appear in the company accounts can be
driven by the desire to project a certain image to interested outsiders (e.g., the company
is worth a lot because it owns valuable assets4), or to minimise tax liabilities. A study by
Mulford and Roberts1325 of 207 companies (primarily industry classification SIC 7372)
in 2006, found that 30% capitalized some portion of their software development, while a
study by Mulford and Misra1324 of 100 companies in 2015, found 18% capitalizing their
development.

Software made available under an Open Source license may be available at no cost, but
value can be expressed in terms of replacement cost, or the cost of alternatives.

For accounting purposes, the cost of hardware is depreciated over a number of years.
While software does not wear out, it could be treated as having a useful lifespan (see
section 4.2.2).

3.6 Maximizing ROI

Paying people to write software is an investment, and investors want to maximise the
return on their investments.

To be viable, a commercial product requires a large enough market capable of paying
what it takes. One study992 of Android Apps found that 80% of reviews were made by
people owning a subset of the available devices (approximately 33%). Given the cost of
testing an App in the diverse Android ecosystem, the ROI can be increased by ignoring
those devices that are owned by a small percentage of the customer base.

Some people write software to acquire non-monetary income, but unless this is the only
income sought (e.g., income derived purely from the creation process, or the pride in
releasing an App), maximising returns will be of interest.

A study by Li, Bissyandé and Klein1125 investigated the release history of 3,271,646 Apps
in Google Play (the App market does not make available a release history, and the data
collection process may have missed some releases). Figure 3.35 shows the number of
Apps in Google Play having a given number of releases, along with a regression line
fitted to the first 20 releases.

3.6. MAXIMIZING ROI 85

100 200 500 1000

10

20

50

100

Price

w
P

rim
e3

2
(t

im
e)

2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013

Figure 3.36: Introductory price and performance (mea-
sured using wPrime32 benchmark; lower is better) of
various Intel processors between 2003-2013. Data from
Sun.1794 Github–Local

1988 1990 1992 1994 1996 1998

200

400

600

800

Date

F
ul

l o
r

U
pd

at
e

pr
ic

e
($

)

Figure 3.37: Vendor C and C++ compiler retail price (dif-
ferent line for each product), and upgrade prices (pluses)
for products available under MS-DOS and Microsoft Win-
dows between 1987 and 1998. Data kindly provided by
Viard.1897 Github–Local

Accounting issues around choices such as purchase vs. leasing, contractors vs. employees,
and making efficient use of income held offshore,195 are outside the scope of this book.

3.6.1 Value creation

A business model specifies an organization’s value creation strategy.1644

Many businesses structure their value creation processes around the concept of a value
chain; in some software businesses value creation is structured around the concept of a
value network.1757

A value chain is the collection of activities that transform inputs into products. “A firm’s
value chain and the way it performs individual activities are a reflection of its history, its
strategy, its approach to implementing its strategy, and the underlying economics of the
activities themselves.”.1508 Governments tend to view460 creative value chains as applying
to artistic output, and in the digital age artistic output shares many of the characteristics
of software development.

A value chain for bespoke software development might be derived from the develop-
ment methodology used to produce a software system, e.g., the phases of the waterfall
model.216

The business model for companies selling software products would include a value chain
that included marketing,334 customer support and product maintenance.

A company whose business is solving customer problems (e.g., professional services)
might be called a value shop.1757

In a two-sided market, value flows from one side to the other. Companies create value
by facilitating a network relationship between their customers, e.g., Microsoft encourage
companies to create applications running under Microsoft Windows, and make money
because customers who want to run the application need a copy of Windows; applications
and platforms are discussed in section 4.5.

3.6.2 Product/service pricing

Vendors can set whatever price they like for their product or service. The ideal is to set
a price that maximises profit, but there is no guarantee that income from sales will cover
the investment made in development and marketing. Even given extensive knowledge of
potential customers and competitors, setting prices is very difficult.1348, 1701

Like everything else, software products are worth what customers are willing to pay.
When prices quoted by vendors are calculated on an individual customer basis, inputs
considered include how much the customer might be able to pay.1647 Shareware, software
that is made freely available in the hope that users will decide it is worth paying for,1807

is one of the purest forms of customer payment decision-making.

Customer expectation, based on related products, acts as a ballpark from which to start
the estimation process; figure 3.36 shows the relative price/performance used by Intel for
one range of processors. It may be possible to charge more for a product that provides
more benefits, or perhaps the price has to match that of the established market leader, and
the additional benefits are used to convince existing customers to switch.

Figure 3.37 shows the prices charged by several established C/C++ compiler vendors. In
1986xv Zorland entered the market with a £29.95 C compiler, an order of magnitude less
than what most other vendors were charging at the time. This price was low enough for
many developers to purchase a copy out of company petty cash, and Zorland C quickly
gained a large customer base. Once the product established a quality reputation, Zorland
were able to increase prices to the same level as those charged by other major vendors
(Zorland sounds very similar to the name of another major software vendor of the period,
Borland. Letters from company lawyers are hard evidence that a major competitor thinks
your impact on their market is worthy of their attention; Zorland became Zortech).xvi

xvRichard Stallamn’s email announcing the availability of the first public release of gcc was sent on 22
March 1987.

xviBeing in the compiler business your author had copies of all the major compilers, and Zorland C was the
compiler of choice for a year or two. Other low price C compiler vendors were unable to increase their prices
because of quality issues relative to other products on the market, e.g., Mix C.

86 3. Cognitive capitalism

0 20 40 60 80 100

21

22

23

24

25

Quantity

P
ric

e

Reduced willingness to
pay for same quantity

Smaller
quantity
demanded at
same price

Demand curve
at higher price

Demand curve
at lower price

0 20 40 60 80 100

21

22

23

24

25

Quantity

P
ric

e

Supply curve
at lower price

Supply curve
at higher price

Greater
quantity
at same

price

Same
quantity
at lower

price

Figure 3.38: Examples of supply (lower) and demand (up-
per) curves. Github–Local

1 2 3 4 5 6

2

3

4

5

Price ($)

C
on

ve
rs

io
n

ra
te

 (
%

)

0.99

1

1.99

2

2.99

3

3.99

4

4.99

5

5.99
6

Figure 3.39: Rates at which product sales are made on
Gumroad at various prices; lines join prices that dif-
fer in 1¢, e.g., $1.99 and $2. Data from Nichols.1376

Github–Local

A study by Viard1897 investigated software retail and upgrade pricing, in particular C and
C++ compilers available under Microsoft DOS and Windows, between 1987 and 1998.
Figure 3.37 shows that the retail price of C/C++ compilers, running under Microsoft DOS
and Windows, had two bands that remained relatively constant. Microsoft had a policy
of encouraging developers to create software for Windows,1494 on the basis that sales of
applications would encourage sales of Windows, and significantly greater profits would
be made from the increased volume of Windows’ sales, compared to sales of compilers.
Microsoft’s developer friendly policy kept the price of C/C++ compilers under Windows
down, compared to other platforms.xvii

Many companies give managers the authority to purchase low cost items, with the numeric
value of low price increasing with seniority. The upper bound on the maximum price that
can be charged for a product or service, that can be sold relatively quickly to businesses,
is the purchasing authority of the target decision maker. Once the cost of an item reaches
some internally specified value (perhaps a few thousand pounds or dollars), companies
require that a more bureaucratic purchase process be followed, perhaps involving a pur-
chasing committee, or even the company board. Navigating a company’s bureaucratic
processes requires a sales rep, and a relatively large investment of time, increasing the
cost of sales, and requiring a significant increase in selling price; a price dead-zone exists
between the maximum amount managers can independently sign-off, and the minimum
amount it is worth selling via sales reps.

Supply and demand is a commonly cited economic pricing model. The supply curve is the
quantity of an item that a supplier is willing, and able, to supply (i.e., sell) to customers
at a given price, and the demand curve is the quantity of a product that will be in demand
(i.e., bought by customers) at a given price. If these two curves intersect, the intersection
point gives the price/quantity at which suppliers and customers are willing to do business;
see figure 3.38.

Events can occur that cause either curve to shift. For instance, the cost of manufactur-
ing an item may increase/decrease, shifting the supply curve up/down on the price axis
(for software, the cost of manufacturing is the cost of creating the software system); or
customers may find a cheaper alternative, shifting the demand curve down on the price
axis.

In some established markets, sufficient historic information has accumulated for reason-
ably accurate supply/demand curves to be drawn. Predicting the impact of changing cir-
cumstances on supply-demand curves remains a black art for many products and services.
Software is a relatively new market, and one that continues to change relatively quickly.
This changeability makes estimating supply/demand curves for software products little
more than wishful thinking.

Listed prices are often slightly below a round value, e.g., £3.99 or £3.95 rather than £4.00.
People have been found to perceive this kind of price difference to be greater than the
actual numerical difference1830 (the value of the left digit, and the numeric distance effect
have been used to explain this behavior). Figure 3.39 shows the impact that visually
distinct, small price differences, have on the rate of sale of items listed on Gumroad (a
direct to consumer sales website). Other consumer price perception effects include precise
prices vs. round prices.1831

Other pricing issues include site licensing, discounting and selling through third-parties.1684

The lack of data prevents these issues being discussed here.

The price of a basket of common products, over time, is used to calculate the consumer
price index, and changes in product prices over time can be used to check the accuracy of
official figures.1446 Products may evolve over time, with new features being added, and
existing features updated; techniques for calculating quality adjusted prices have been
developed;1794 see figure 3.36.

3.6.3 Predicting sales volume

The likely volume of sales is a critical question for any software system intended to be
sold to multiple customers.

When one product substitutes another, new for old, market share of the new product is
well fitted by a logistic equation,607 whose maximum is the size of the existing market.

xviiThe 1990s was the decade in which gcc, the only major open source C/C++ compiler at the time, started to
be widely used.

3.6. MAXIMIZING ROI 87

2006 2008 2010 2012 2014 2016
0

5

10

15

20

25

30

35

Year

H
ar

dw
ar

e
sa

le
s

(m
ill

io
ns

)

0

50

100

150

S
of

tw
ar

e
sa

le
s

(m
ill

io
ns

)

Wii
PS3
X360

Figure 3.40: Sales of game software (solid lines) for
the corresponding three major seventh generation hard-
ware consoles (dotted lines). Data from VGChartz.1896

Github–Local

0 10 20 30 40 50 60

0.01

0.02

0.05

0.10

0.20

0.50

1.00

2.00

5.00

Months

To
ta

l c
us

to
m

er
s

(m
ill

io
n)

58 months
48 months
436months
24 months

Figure 3.41: Growth of Github users during its first 58
months, with Bass models fitted to data up to a given num-
ber of months. Data from Irving.897 Github–Local

Software may be dependent on the functionality provided by the underlying hardware,
which may be rapidly evolving.1016 Figure 3.40 shows how software sales volume lags
behind sales of the hardware needed to run it. An installed hardware base can be an
attractive market for software.1203

Estimating the likely sales volume for a product intended to fill a previously unmet cus-
tomer need, or one that is not a pure substitution, is extremely difficult (if not impossi-
ble).1788

The Bass model143, 1461 has been found to fit data on customer adoption of a new product
and successive releases, and has been used to make short term sales predictions1984 (the
following analysis deals with the case where customers are likely to make a single pur-
chase; the model can be extended to handle repeat sales144). The model divides customers
into innovators, people who are willing to try something new, and imitators, people who
buy products they have seen others using (this is a diffusion model). The interaction
between innovators, imitators and product adoption, at time t, is given by the following
relationship:

f (t)
1−F(t)

= p+qF(t), where: F(t) is the fraction of those who will eventually adopt (i.e.,

have purchased) by time t, f (t) is the probability of purchase at time t (i.e., the derivative
of F(t), f (t) = dF(t)/dt), p the probability of a purchase by an innovator, and q the
probability of a purchase by an imitator.

This non-linear differential equationxviii has the following exact solution, for the cumula-
tive number of adopters (up to time t), and the instantaneous number of adopters (at time
t):

F(t) =
1− e−(p+q)t

1+ q
p e−(p+q)t

and f (t) =
(p+q)2

p
e−(p+q)t[

1+ q
p e−(p+q)t

]2

Actual sales, up to, or at, time t, are calculated by multiplying by m, the total number of
product adopters.

When innovators dominate (i.e., q ≤ p), sales decline from an initial high-point; when
imitators dominate (i.e., q > p), peak sales of m

(
1
2 −

p
2q

)
occurs at time m

p+q log q
p , before

declining; the expected time to adoption is: E(T) = m
q log p+q

p .

The exact solution applies to a continuous equation, but in practice sales data is discrete
(e.g., monthly, quarterly, yearly). In the original formulation the model was reworked in
terms of a discrete equation, and solved using linear regression (to obtain estimates for p,
q); however, this approach produces biased results. Benchmarking various techniques1461

finds that fitting the above non-linear equation to the discrete data produces the least
biased results.

Vendors want reliable estimates of likely sales volume as early in the sales process as
possible, but building accurate models requires data covering a non-trivial range of the
explanatory variable (time in this case). Figure 3.41 shows the number of Github users
during its first 58 months, and Bass models fitted to the first 24, 36, 48 and 58 months of
data.xix.

The Bass model includes just two out of the many possible variables that could affect sales
volume, and models that include more variables have been developed.1290 Intel have used
an extended Bass Model to improve forecasting of design wins.1984

The Bass model can be extended to handle successive, overlapping generations of a prod-
uct; the following example is for two generations:1389

S1(t) = F1(t)m1−F2(t− τ2)F1(t)m1 = F1(t)m1(1−F2(t− τ2))

S2(t) = F2(t− τ2)(m2 +F1(t)m1)

where: Si(t) are all sales up to time t for product generation i, mi the total number who
adopt generation i, and τ2 the time when the second generation can be bought; pi and qi
are the corresponding purchase probabilities for each generation.

The Bass model uses two of the factors driving product sales, other factors that can play
a significant role include advertising spend, and variability in market size caused by price

xviiiIt has the form of a Riccati equation.
xixChapter 11 provides further evidence that predictions outside the range of data used to fit a model can be

very unreliable.

88 3. Cognitive capitalism

2 4 6 8 10 12 14
0

20

40

60

80

Week

S
al

es
 (

pe
rc

en
ta

ge
)

Sales
Discount

Figure 3.42: Percentage of sales closed in a given week
of a quarter, with average discount given. Data from
Larkin.1086 Github–Local

2012 2013 2014 2015 2016
0.5

1.0

1.5

2.0

2.5

3.0

3.5

Quarters

D
ol

la
rs

ARPU
Cost of revenue per user

Figure 3.43: Facebook’s ARPU and cost of revenue
per user. Data from Facebook’s 10-K filings.568, 569

Github–Local

1 2 5 10 20 50 100

500

1000

2000

5000

10000

20000

50000

Rank

R
ev

en
ue

 (
m

ill
io

n
$)

2014
2012
2011

TotalSaaS

Figure 3.44: Top 100 software companies ranked by
total revenue (in millions of dollars) and ranked by
Software-as-a-Service revenue. Data from PwC.1539–1541

Github–Local

changes. Monte Carlo simulation can be used to model the interaction of these various
factors.1875

How much value, as perceived by the customer, does each major component add to a
system? A technique for obtaining one answer to this question, is Hedonic regression (this
approach is used to calculate the consumer price index): this fits a regression model to data
on product price and product configuration data. A study by Stengos and Zacharias1772

performed a hedonic analysis of the Personal Computer market, based on data such as
price, date, CPU frequency, hard disc size, amount of RAM, screen width and presence
of a CD; see Github–economics/0211_Computers.R.

The ease with which software can be copied makes piracy an important commercial is-
sue. Studies684, 1932 have extended the Bass model to include the influence of users of pi-
rated software, on other people’s purchasing decisions (e.g., Word processors and Spread-
sheet programs between 1987 and 1992). The results, based on the assumptions made
by the models, and the data used, suggest that around 85% of users run pirated copies;
see Github–economics/MPRA/. The Business Software Alliance calculates piracy rates by
comparing the volume of software sales against an estimate of the number of computers
in use, a method that has a high degree of uncertainty because of the many assumptions
involved;1498 see Github–economics/piracyH ICSS−2010.R.

In some ecosystems (e.g., mobile) many applications are only used for a short period,
after they have been installed; see fig 4.44.

In some markets most sales are closed just before the end of each yearly sales quarter,
e.g., enterprise software. A study by Larkin1086 investigated the impact of non-linear
incentive schemesxx on the timing of deals closed by salespeople, whose primary income
came from commission on the sales they closed. Accelerated commission schemes create
an incentive for salespeople to book all sales in a single quarter.

Figure 3.42 shows the number of deals closed by week of the quarter, and the average
agreed discount. Reasons for the significant peak in the number of deals closed at the
end of the quarter include salespeople gaming the system to maximise commission and
customers holding out for a better deal.

3.6.4 Managing customers as investments

Acquiring new customers can be very expensive, and it is important to maximise the
revenue from those that are acquired.

What is the total value of a customer to a company?

If a customer makes regular payments of m, the customer lifetime value (CLV) is given by
(assuming the payment is made at the end of the period; simply add m if payment occurs
at the start of the period):

CLV =
mr

(1+ i)
+

mr2

(1+ i)2 +
mr3

(1+ i)3 + · · · = m
r

1− r+ i

[
1−
(

r
1+ i

)n]
where: r is the customer retention rate for the period, i the interest rate for the period, and

n is the number of payment periods. As n→ ∞, this simplifies to: CLV = m
r

1− r+ i
.

A person who uses a software system without paying for it may be valued as a product.
Facebook values its users (whose eyeballs are the product that Facebook sells to its cus-
tomers: advertisers) using ARPU,xxi defined as “ . . . total revenue in a given geography
during a given quarter, divided by the average of the number of MAUs in the geography
at the beginning and end of the quarter.” Figure 3.43 shows ARPU, and cost of revenue
per user (the difference is one definition of profit, or loss).

In the business world, annual maintenance agreements are a common form of regular
payment, another is the sale of new versions of the product to existing customers (often
at a discount).

Before renewing their maintenance agreement, customers expect to see a worthwhile
return on this investment. Possible benefits include new product features (or at least

xxThe percentage commission earned in a non-linear scheme depends on the total value of sales booked in
the current quarter, increasing at specified points, e.g., a salesperson booking $250,000 in a quarter earns 2%
commission, while a salesperson booking over $6 million earns a commission of 25%; that first $250,000 earns
the first salesperson a commission of $5,000, while it earns the second salesperson $62,500.

xxiARPU—Average Revenue Per User, MAU—Monthly Average Users.

3.6. MAXIMIZING ROI 89

0 2 4 6 8
1

5

10

50

100

500

1000

5000

Ad libraries

A
pp

s

Figure 3.45: Number of applications in the Android mar-
ket and Amazon App Store, during 2012, containing a
given number of advertising libraries (line is a fitted Neg-
ative Binomial distribution). Data from Shekhar et al.1686

Github–Local

promises of these), and support with helping to fix issues encountered by the customer.
Vendor’s need to be able to regularly offer product improvements means it is not in their
interest to include too many new features, or fix too many open issues, in each release;
something always needs to be left for the next release.

3.6.5 Commons-based peer-production

The visibility of widely used open source applications, created by small groups of in-
dividuals, continues to inspire others to freely invest their energies creating or evolving
software systems.

The quantity of open source software that is good enough for many commercial uses has
made the support and maintenance of some applications a viable business model.1644

Some commercial companies relicense software they have developed internally under an
Open source license, and may spend significant amounts of money paying employees to
work on open source software. The possible returns from making investments include:

• driving down the cost of complementary products (i.e., products used in association
with the vendor’s product, that are not substitutes that compete), this reduces the to-
tal cost to the customer, increasing demand, and making it more difficult for poten-
tial competitors to thrive.247 Methods for driving down costs include supporting the
development of free software that helps ensure there is a competitive market for the
complementary product,

• giving software away to make money from the sale of the hardware that uses it,

• control of important functionality. For instance, Apple is the primary financial supporter
of the LLVM compiler chain, which is licensed under the University of Illinois/NCSA
Open source license; this license does not require contributors to supply the source
code of any changes they make (unlike the GNU licensed GCC compilers). Over time
LLVM has become an industrial strength compiler, making it the compiler of choice for
vendors who don’t want to release any code they develop.

The income stream for some applications comes from advertising, that runs during pro-
gram execution. A study by Shekhar, Dietz and Wallach1686 investigated advertising li-
braries used by 10,000 applications in the Android market, and the Amazon App Store,
during 2012. Figure 3.45 shows the number of apps containing a given number of adver-
tising libraries; line is fitted a Negative Binomial distribution.

90 3. Cognitive capitalism

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 4.1: Connections between the 164 companies that
have Apps included in the Microsoft Office365 Market-
place (Microsoft not included); vertex size is an indicator
of the number of Apps a company has in the Marketplace.
Data kindly provided by van Angeren.1870 Github–Local

1990 1995 2000 2005 2010 2015 2020
Test date

M
em

or
y

(G
by

te
)

0.01

0.1

1

10

100

1000

10000

o

o o
oo

o
o

o
oo
o

o

o

o

o o
o
o o

o

o
o

o

o
o o

o
o

o
o

o
o o

o

oo

o

Figure 4.2: Amount of memory installed on systems run-
ning a SPEC benchmark on a given date; lines are fit-
ted quantile regression models dividing systems into 50%
above/below, and 95% above with 5% below.. Data from
SPEC1742 Github–Local

Chapter 4

Ecosystems

4.1 Introduction

Customer demand motivates the supply of energy that drives software ecosystems.

Computer hardware is the terrain on which software systems have to survive, and the
history of the capacity limits of this terrain has shaped the culture of those that live off it.

People and existing code are the carriers of software culture within an ecosystem; contin-
ual evolution of the terrain has imbued many software cultures with a frontier mentality
spirit.

The amount of memory available on customer computers limits the size and complexity
of commercially viable applications. A team of one or two developers can build a com-
mercially viable application for computers limited to 64K of memory. When customers
acquire computers supporting larger capacity memory, the commercial development en-
vironment changes. Being able to create ever larger software systems makes it possible to
sell applications containing an ever-increasing number of features; a many person team
is now needed to implement and support the increasing size and complexity of software
systems (which increases the cost of market entry).

Figure 4.2 shows the amount of memory installed on systems running a SPEC benchmark
on a given date, along with two fitted quantile regression models. The lower line divides
systems such that 95% are above it (i.e., contain more memory than systems below the
line), the upper lines divides systems such that 50% are above it. For the 95% line, the
amount of installed memory doubles every 845 days (it doubles every 825 days for the
50% line).

Software vendors have an interest in understanding the ecosystems in which they oper-
ate, want to estimate the expected lifetime of their products, estimate of the size of the
potential market for their products and services, and to understand the community dy-
namics driving the exchange of resources. Governments have an interest in consumer
well-being, which gives them an interest in the functioning of ecosystems with regard to
the cooperation and competition between vendors operating within an ecosystem.

While software ecosystems share some of the characteristics of biological ecosystems,
there are some significant differences, including:

• software ecosystem evolution is often Lamarkian i, rather than Darwinian,ii

• software can be perfectly replicated with effectively zero cost, any evolutionary pressure
comes from changes in the world in which the software is operated,

• like human genes, software needs people in order to replicate, but unlike genes soft-
ware is not self-replicating; people replicate software when it provides something they
want, and they are willing to invest in its replication, and perhaps even its ongoing
maintenance,

• software has an unlimited lifetime, in theory, in practice many systems have depen-
dencies on the ecosystem in which they run, e.g., third-party libraries and hardware
functionality,

iA parent can pass on characteristics they acquired during their lifetime, to their offspring; modulo some
amount of mixing from two parents, plus random noise.

iiParents pass on the characteristics they were born with, to their offspring; modulo some amount of mixing
from two parents, plus random noise.

91

92 4. Ecosystems

1930 1935 1940 1945

10

20

50

100

200

500

1000

Year

E
xp

en
di

tu
re

 (
£t

ho
us

an
d)

Typewriters/duplicators
Other
Tabulator rental
Cards

Figure 4.3: Yearly expenditure on punched cards, and
tabulating equipment by the UK government. Data from
Agar.11 Github–Local

1975 1980 1985 1990 1995

10

1000

100000

10000000

Year

W
or

ld
−

w
id

e
D

R
A

M
 s

hi
pp

ed
 (

G
B

)

4K
16K
64K
256K
1M
4M
16M
64M

Figure 4.4: Total gigabytes of DRAM shipped world-wide
in a given year, stratified by device capacity (in bits). Data
from Victor et al.1899 Github–Local

1955 1960 1965 1970
0

20

40

60

80

Year

M
ar

ke
t s

ha
re

 (
pe

rc
en

ta
ge

)

IBM
Sperry_Rand
Honeywell
Control_Data
General_Electric
RCA
Burroughs
NCR

Figure 4.5: Computer installation market share of IBM,
and its top seven competitors (known at the time as the
seven dwarfs; no data is available for 1969). Data from
Brock.259 Github–Local

• resource interactions are based on agreement, while in biological ecosystems creatures
go to great lengths to avoid common resource interactions, e.g., being eaten.

Customer demand for software systems takes many forms, including: a means of reducing
costs, creating new products to be sold for profit, tools that people can use to enhance
their daily life, coercive pressure from regulators mandating certain practices,1067 and
experiencing the pleasure of creating something, e.g., writing open source, where the
developer is the customer. Customer demand cannot always be supplied at a profit, and the
demand for new products is often insufficient for them to be profitable.iii New products
will diffuse into existing commercial ecosystems1788 when they can be seen to provide
worthwhile benefits.

The initial customer demand for computer systems followed patterns seen during the in-
dustrial revolution,35 with established industries seeking to reduce their labor costs by
investing in new technologies;307, 1199 the creation of new industries based around the use
of computers came later. The first computers were built from components manufactured
for other purposes (e.g., radio equipment), as the market for computers grew, it became
profitable to manufacture bespoke devices.

The data processing and numerical calculation ecosystems741, 845 existed prior to the in-
troduction of electronic computers; mechanical computers were used. Figure 4.3 shows
UK government annual expenditure on punched cards, and mechanical data processing
devices.

Customer demand for solutions to the problems now solved using software may have al-
ways existed; the availability of software solutions had to wait for the necessary hardware
to become available at a price that could be supplied profitably;282 see fig 1.1. Significant
improvements in hardware performance meant that many customers found it cost effec-
tive to regularly replace existing computer systems. With many applications constrained
by memory capacity, there was customer demand for greater memory capacity, incremen-
tal improvements in technology made it possible to manufacture greater capacity devices,
and the expected sales volume made it attractive to invest in making the next incremental
improvements happen; figure 4.4 shows the growth in world-wide DRAM shipments, by
memory capacity shipped.

Who is the customer, and, which of their demands can be most profitably supplied? These
tough questions are entrepreneurial and marketing problems,334 and not the concern of
this book.

The analysis in this book is oriented towards those involved in software development,
rather than their customers, however it is difficult to completely ignore the dominant sup-
plier of the energy (i.e., money) driving software ecosystems. The three ecosystems dis-
cussed in this chapter are oriented towards customers, vendors (i.e., companies engaged
in economic activities, such as selling applications), and developers, i.e., people having
careers in software development.

The firestorm of continual displacement of existing systems has kept the focus of prac-
tice on development of new systems, and major enhancements to existing systems. Post-
firestorm, the focus of practice in software engineering is as an infrastructure discipline.1858

Software ecosystems have been rapidly evolving for many decades, and change is talked
about as-if it were a defining characteristic, rather than a phase that ecosystems go through
on the path to relative stasis. Change is so common that it has become blasé, the mantra
has now become that existing ways of doing things must be disrupted. The real purpose of
disruption is redirection of profits, from incumbents to those financing the development of
systems intended to cause disruption. The fear of being disrupted by others is an incentive
for incumbents to disrupt their own activities; only the paranoid survive748 is a mantra for
those striving to get ahead in a rapidly changing ecosystem.

The first release of a commercial software project implements the clients’ view of the
world, from an earlier time. In a changing world, unimportant software systems have to
adapted, if they are to continue to be used; important software systems force the world to
adapt to be in a position to make use of them.

A study by van Angeren, Alves and Jansen1870 investigated company and developer con-
nections in several commercial application ecosystems. Figure 4.1 shows the connections

iiiThe first hand-held computer was introduced around 1989, and vendors regularly reintroduced such prod-
ucts, claiming that customer demand now existed. Mobile phones provided a benefit large enough that customers
were willing to carry around an electronic device that required regular recharging; phones provided a platform
for mobile computing that had a profitable technical solution.

4.1. INTRODUCTION 93

2000 2005 2010 2015
0

20

40

60

80

Year

To
ta

l u
ni

ts
 s

hi
pp

ed
 (

pe
rc

en
ta

ge
)

Android
Blackberry
iOS
Others
Symbian
Windows

Figure 4.6: Mobile phone operating system shipments, as
percentage of total per year. Data from Reimer1573 (before
2007), and Gartner656 (after 2006). Github–Local

2008 2010 2012 2014
0

1000

2000

3000

4000

Year

S
of

tw
ar

e
M

&
A

 d
ea

ls

Figure 4.7: Reported number of worldwide software in-
dustry mergers and acquisitions (M&A), per year. Data
from Solganick.1735 Github–Local

100 200 300 400

5
10

50
100

500
1000

5000
10000

50000

Project

M
on

th
ly

 d
on

at
io

n
(d

ol
la

rs
)

Figure 4.8: Average monthly donations received by 470
Github repositories using Patreon and OpenCollective.
Data from Overney et al.1430 Github–Local

between the 164 companies in the Microsoft Office365 Apps Marketplace (to be included,
Apps have to meet platform added-value requirements).

Figure 4.5 illustrates how one company, IBM, dominated the first 30+ years of the com-
puter industry. Figure 4.6 illustrates how, in new markets (mobile phones in this case) the
introduction of a new platform can result in new market entrants replacing the existing
dominant product ecosystems.

Major geopolitical regions have distinct customer ecosystems, providing opportunities
for region specific software systems to become established, e.g., Brazillian developer re-
sponse to the imposition of strong trade barriers.884

The analysis of ecosystems can be approached from various perspectives: the population-
community view of ecosystems is based on networks of interacting populations, while a
process-functional view is based on the processing of resources across functional com-
ponents. The choice of perspective used for ecosystem analysis may be driven by what
data is available, e.g., it may be easier to measure populations than the resources used by
a population.

4.1.1 Funding

The continued viability of a software ecosystem is dependent on funding (which may take
the form of money or volunteer effort).

In a commercial environment the funding for development work usually comes from the
products and services the organization provides. In a few cases investors fund startups
with the intent of making a profit from the sale of the company (Martínez1212 discusses
working in a VC funded company).

Venture capital is a hits business, with a high failure rate, and most of the profit coming
from a few huge successes. Exit strategies (extracting the profit from investments made
in a company) used by VCs include: selling startups to a listed company (large compa-
nies may buy startups to acquire people with specific skills,415 to remove potential future
competitors, or because the acquired company has the potential to become a profit center;
see figure 4.7), and an IPO (i.e., having the company’s shares publicly traded on a stock
exchange; between 2011 and 2015 the number of software company IPOs was in the
teens, and for IT services and consulting companies the number was in single digits1542).
Venture capitalists are typically paid a 2% management fee on committed capital, and a
20% profit-sharing structure;1375 the VCs are making money, while those who invested in
VCs over the last 20-years would have received greater returns by investing in a basket of
stocks in the public exchanges.1323

Individuals who invest their own money in the early stage startups are sometimes called
Angel investors. One study1970 found that 30% of Angel investors lost their money,
another 20% had a ROI of less than one, while 14% had a ROI greater than five; see
Github–economics/SSRN-id1028592.R

Many Open source projects are funded by the private income of the individuals involved.

A study by Overney, Meinicke, Kästner and Vasilescu1430 investigated donations to Open
Source projects. They found 25,885 projects on Github asking for donations, out of 78
million projects (as of 23 May 2019). Paypal was the most popular choice of dona-
tion platform, but does not reveal any information about donations received. Both Pa-
treon and OpenCollective do reveal donation amounts, and 58% of the projects using
these platforms received donations. Figure 4.8 shows the average monthly dollar amount
received by Github projects having a Patreon or OpenCollective donate button in their
README.md.

Advertising revenue as the primary income stream for software products is a relatively
new phenomena, and vendor Ad libraries have been rapidly evolving.19

In the last 15 years over 100 non-profit software foundations have been created904 to
provide financial, legal and governance support for major open systems projects.

4.1.2 Hardware

The market for software systems is constrained by the number of customers with access
to the necessary computer hardware, with the number of potential customers increasing as

94 4. Ecosystems

1990 1992 1994 1996 1998 2000
0

50

100

150

200

250

Date

S
al

es
 (

m
ill

io
ns

)

8−bit
4−bit
16−bit
32−bit

Figure 4.9: Monthly unit sales (in millions) of micropro-
cessors having a given bus width. Data kindly provided by
Turley.1854 Github–Local

0.2 0.5 1.0 2.0 5.0 20.0

5

10

50

100

500

1000

5000

10000

Performance (MIPS)

P
ric

e
($

th
ou

sa
nd

)

Supercomputers
Large mainframes
Small mainframes
Minicomputers
Microcomputers

Figure 4.10: Performance, in MIPS, against price of 106
computer systems available in 1981. Data from Ein-
Dor.535 Github–Local

1985 1990 1995 2000 2005

10

1000

100000

10000000

Year

U
ni

t s
al

es
 (

m
ill

io
n)

GPU
PC
MCU
DSP
Videogame
Modile phone/PDA
Server/mainframe
Pocket calculator

Figure 4.11: Total sales of various kinds of processors.
Data from Hilbert et al.827 Github–Local

the cost of the necessary computing hardware decreases. The functionality supported by
software systems is constrained by the performance and capacity constraints of customer
computing platforms; see fig 1.1 and fig 13.14 for illustrations of the cost of operations,
and fig 1.2 for the cost of storage.

The general classification of computer systems166 into mainframes, minicomputers165 and
microcomputers was primarily marketing driven,iv with each platform class occupying
successively lower price points, targeting different kinds of customers (e.g., mainframes
for large businesses,v minicomputers for technical and engineering companies, and mi-
cros for small companies and individuals). Supercomputing167 (i.e., the fastest computers
of the day, often used for scientific and engineering applications) is an example of a sig-
nificant niche hardware ecosystem that has always existed. Embedded systems (where the
computing aspect may be invisible to users) support several major ecosystems, with their
own associations, conferences and trade press, but have not attracted as much attention
from the software engineering research community as desktop systems. Figure 4.9 and
Figure 4.11 show that in terms of microprocessor sales volume, the embedded systems
market is significantly larger than what might be called the desktop computer market.

Figure 4.10 shows performance (in MIPS) against price for 106 computers, from differ-
ent markets, in 1981. Microprocessors eventually achieved processor performance, and
memory capacity, comparable to the more expensive classes of computers, at a lower cost;
the lower cost hardware increased sales, which motivated companies to write applications
for a wider customer base, which motivated the sale of more computers.1083

Manufacturers of computing systems once regularly introduce new product ranges con-
taining cpus151 that were incompatible with their existing product ranges. Even IBM,
known for the compatibility of its 360/370 family of computers (first delivered in 1965,
the IBM 3601736 was the first backward compatible computer family: that is successive
generations could run software that ran on earlier machines), continued to regularly intro-
duced new systems based on cpus that were incompatible with existing systems.

What was the impact on software engineering ecosystems, of businesses having to regu-
larly provide functionality on new computing platforms? At the individual level, a benefit
for developers was an expanding job market, where they were always in demand. At the
professional level the ever present threat of change makes codifying a substantial body of
working practices a risky investment.

For its x86 family of processors, Intel made backwards compatibility a requirementvi.1315

An apparently insatiable market demand for faster processors, and large sales volume,
created the incentive to continually make significant investments in building faster pro-
cessors; see figure 4.11. The x86 family steadily increased market share,1771 to eventually
become dominant in the non-embedded computing market; one-by-one manufacturers of
other processors ceased trading, and their computers have become museum pieces.

The market dominance of IBM hardware and associated software (50 to 70% of this mar-
ket during 1969-1985;510 see fig 1.6) is something that developers now learn through
reading about the history of computing. However, the antitrust cases against IBM con-
tinue to influence how regulators think about how to deal with monopolies in the computer
industry, and on how very large companies structure their businesses.1452

While the practices and techniques used during one hardware era (e.g., mainframes, mini-
computers, microcomputers, the internet) might not carry over into later eras, they leave
their mark on software culture, e.g., language standards written to handle more diverse
hardware than exists today.930 Also, each major new platform tends to be initially been
populated with developers who are relatively inexperienced, and unfamiliar with what
already exists, leading to many reinventions (under different names).

Changes in the relative performance of hardware components impact the characteristics
of systems designed for maximum performance, which in turn impacts software design
choices, which may take many years to catch up. For instance, the analysis of sorting
algorithms once focused on the cost of comparing two items,1028 but as this cost shrank
in comparison to the time taken to load the values being compared, from memory, the
analysis switched to focusing on cpu cache size.1071

ivThe general characteristics of central processors and subsystems was very similar, and followed similar
evolutionary paths because they were solving the same technical problems.

vMainframes came with site planning manuals,416 specifying minimum site requirements for items such as
floor support loading, electrical power (in kilowatts) and room cooling.

viTo the extent of continuing to replicate faults present in earlier processors; see fig 6.3.

4.2. EVOLUTION 95

2005 2010 2015
0

10

20

30

40

50

60

Date

R
ev

en
ue

 %

0.25um+
0.18um
0.15um
0.11/0.13um
90nm
65nm
40/45nm
28nm
16/20nm

2000 2005 2010 2015
0

10

20

30

40

50

60

70

Date

R
ev

en
ue

 %

Computer
Communication
Consumer
Industrial/Standard

Figure 4.12: TSMC revenue from wafer production, as a
percentage of total revenue, at various line widths. Data
from TSMC.1851 Github–Local

0 1000 3000 5000 7000
0.5

0.6

0.7

0.8

0.9

1.0

Days

S
ur

vi
va

l

Options
CPU

Figure 4.13: Survival curve for GCC’s support for dis-
tinct cpus and non-processor specific compile-time op-
tions; with 95% confidence intervals. Data extracted from
gcc website.662 Github–Local

The greater the functional capacity of a computing system, the more power it consumes;
see Github–benchmark/brl/brl.R. The energy consumed by computing devices is an impor-
tant factor in some markets, from laptop and mobile phone battery usage,129 compute
infrastructure within a building981 to the design of Warehouse-scale systems138 (there are
large energy efficiency gains to be had running software in the Cloud1215). The variation
in power consumption between supposedly identical components can have a performance
impact, i.e., devices reducing their clock rate to keep temperature within limits; see sec-
tion 13.3.2.1.

The division between hardware and software can be very fuzzy; for instance, the hard-
ware for Intel’s Software Guard Extensions (SGX) instructions consists of software micro
operations performed by lower level hardware.409

4.2 Evolution

Left untouched, software remains unchanged from the day it starts life; use does not cause
it to wear out or break. However, the world in which software operates changes, and it is
this changing world that reduces the utility of unchanged software. Software systems that
have had minimal adaptation, to a substantially changed world,198 are sometimes known
as legacy systems.

The driving forces shaping software ecosystems have been rapidly evolving since digital
computing began, e.g., hardware capability, customer demand, vendor dominance and
software development fashion.

Competition between semiconductor vendors has resulted in a regular cycle of product
updates; this update cycle has been choreographed by a roadmap published by the Semi-
conductor Industry Association.1643 Cheaper/faster semiconductors drives cheaper/faster
computers, generating the potential for businesses to update and compete more aggres-
sively (than those selling or using slower computers, supporting less capacity). The hard-
ware update cycle drives a Red Queen133 treadmill, where businesses have to work to
maintain their position, from fear that competitors will entice away their customers.

Figure 4.12 shows how wafer production revenue at the world’s largest independent semi-
conductor foundry (TSMC) has migrated to smaller process technologies over time (up-
per), and how demand has shifted across major market segments (lower).

Companies introduce new products, such as new processors, and over time stop supplying
them as they become unprofitable. Compiler vendors respond by adding support for new
processors, and later reducing support costs by terminating support for those processors
that have ceased to be actively targeted by developers. Figure 4.13 shows the survival
curve for processor support in GCC, since 1999, and non-processor specific options.

Software evolves when existing source code is modified, or has new code added to it.
Evolution requires people with the capacity to drive the changes, e.g., ability to make the
changes, and/or fund others to do the work. Incentives for investing to adapt software, to
a changed world, include:

• continuing to make money, from existing customers, through updates of an existing
product. Updates may not fill any significant new customer need, but some markets
have been trained, over decades of marketing, to believe that the latest version is always
better than previous versions,

• needing to be competitive with other products,

• a potential new market opens up, and modifying an existing product is a cost effective
way of entering this market, e.g., the creation of a new processor creates an opportunity
for a compiler vendor to add support for a new cpu instruction set,

• the cost of adapting existing bespoke software is less than the cost of not changing it,
i.e., the job the software did, before the world changed, still has to be done,

• software developers having a desire, and the time, to change existing code (the pleasure
obtained from doing something interesting is a significant motivation for some of those
involved in the production of software systems).

A product ecosystem sometimes experiences a period of rapid change; exponential im-
provement in product performance is not computer specific. Figure 4.14 shows the in-
crease in the maximum speed of human vehicles on the surface of the Earth, and in the
air, over time.

96 4. Ecosystems

1800 1850 1900 1950

10

20

50

100

200

500

1000

2000

Year

S
pe

ed
 (

M
P

H
)

Air transport
Surface transport

Figure 4.14: Maximum speed achieved by vehicles over
the surface of the Earth, and in the air, over time. Data
from Lienhard.1141 Github–Local

1980 1990 2000 2010

1

100

10000

1000000

Date of introduction

R
el

at
iv

e
fr

eq
ue

nc
y

in
cr

ea
se

●

●

●

●●

●

●● ●● ●●●

●●
●●

●●

●

●
●

●
●

●
●

●

●
●

●

●
●

●●●●●●●●
●●●●

●

●●
●

●●
●
●
●●●●●●●●●●●●●

●●●●●●●

●
●

●●●●●●●●
●●● ●

●

●●●●●●●●●● ●
●

●●●●●●
●●● ●

●●●●

●
●

●●

●

●

●

● ●

●

●

●●

●
●
●●●●●●●
●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●

●●●

●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●● ●●●

●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●

●

●
●

●●●●●●●●
●●
●● ●●●●●●●●●●●●●●●●●

●●●●●●●●●
● ●●●●

●●●●●●
●●●●

●●
●●●

●

●

●●
●
●●

●●

●

●●

●
●●

●

●
●●

●●●●●●
●●●●●
●

●●●●
●●●●●●

●●● ●
●
●● ●●●●●●●●●

●●●●●

●

●

●●
●

●

●●●

●●●●●●●●

●
●
●●
●●●●●●

●●

●

●

●
●

●

●

●●●●●
●●●●

●

●●

●

●

●

●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●
●●●●●●
●●

●●
●●●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●●

● ● ●

●
●

●

●●●

●

●
●●●●

●
●

●●●●●
●●●●
●●●
●●●●●●●●●●●● ●

●●●●●
●●●●●

●●
●●
●●●●●●●●●●

●●●●

●●

●

●●●
●●

●
●
●●●● ●●●●●● ●●●●●

●●●●●●●●●●●●●●●●●●● ●●●●●●
●●
●●●

●●●●●●●●●●●
●●●

●●
●●●●●

●●
●●●●●●●

●

●●
●●●●●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●
●●●●●

●
●

●
●

●●●

●●
●●●●

●

●●●● ● ●● ●

●●●●

●
●●

●●●●●●●

●●●●●● ●
●●●

●
●●● ●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●
●●

●

● ●●●●●●●●

●

●
●
●●

●●●

●

●●●●
●●●●●●●●●●●

●●●●●●

●●●●●●●●●●
●●●●●●●

●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●
●

●●●●●●●●●●●●

●●●●●●●●●●
●●

●●●●●●●●●●
●●●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●●●●●
●●●●●●

●●●●●●●●●●●●

●
●●●●●●●●●●●●
●●●
●●●

●
●●
●●
●●

●●●●●●
● ●●●
● ●●

●
●●●
●●●

●●●●●●●●

●
●
●● ●

●

●
●

●●
●
●●●●●●●●● ●●●

●●●●●●
●●●●●●●●

● ●●●●●●●●●●●●●●●●●●●●●●●●
●●●●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●●●
● ●●●

●
●●

●●
●

●●
●●
●●

●●●●●●●
●●●●●●

●●●●●●●

●

●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●

●●●●●●●●
●
●●●●●●

●●

●●●●●●
●

●
●●
●●●●●●●●
●●

●

●●

● ●

●

●

●

●

●

●

●●●

●●
●

●

●
●
●●

●●

●

●

●●●●
●●

●●●●
●

●●●
●●●●
●●

●
●●

●●

●●●●●●●●●
●●●●●●●●

● ●

●

●

Transistors
Clock
Power

Figure 4.15: Number of transistors, frequency and SPEC
performance of cpus when first launched. Data from
Danowitz et al.436 Github–Local

1995 2000 2005 2010
0

5

10

15

20

Year

F
or

ks

Figure 4.16: Number of major forks of projects per year,
identified using Wikipedia during August 2011. Data from
Robles et al.1594 Github–Local

The evolution of a product may even stop, and restart sometime later. For instance, Mi-
crosoft stopped working on their web browser, Internet Explorer, reassigned and laid off
the development staff; once this product started to lose significant market share, product
development was restarted.

Ecosystem evolution is path dependent.1765 Things are the way they are today because
past decisions caused particular paths to be followed, driven by particular requirements,
e.g., the QWERTY keyboard layout was designed to reduce jamming in the early mechan-
ical typewriters,438 not optimise typist performance (which requires a different layout361).
The evolutionary paths followed in different locations can be different, e.g., evolution of
religiousvii beliefs.1982

Some evolutionary paths eventually reach a dead-end. For instance, NEC’s PC-98 series
of computers, first launched in 1979, achieved sufficient market share in Japan to compete
with IBM compatible PCs, until the late 1990s (despite not being compatible with the
effective standard computing platform outside of Japan).1945

Rapid semiconductor evolution appears to be coming to an end: an 18-month cycle for
processor performance increases is now part of history. Figure 4.15 shows that while the
number of transistors in a device has continued to increase, clock frequency has plateaued
(the thermal energy generated by running at a higher frequency cannot be extracted fast
enough to prevent devices destroying themselves).

When an ecosystem is evolving, rather than being in a steady state, analysis of measure-
ments made at a particular point in time can produce a misleading picture. For instance, a
snapshot of software systems currently being maintained may find that the majority have a
maintenance/development cost ratio greater than five; however, the data suffers from sur-
vivorship bias, the actual ratio is closer to 0.8; see Github–ecosystems/maint-dev-ratio.R and
fig 4.47. With many software ecosystems still in their growth phase, the rate of evolution
may cause the patterns found in measurement data to change equally quickly.

4.2.1 Diversity

Diversityviii is important in biological ecology327 because members of a habitat feed off
each other (directly by eating, or indirectly by extracting nutrients from waste products).
Software is not its own self-sustaining food web, its energy comes from the people willing
to invest in it, and it nourishes those who choose to use it. The extent to which diversity
metrics used in ecology are applicable to software, if at all, is unknown.

Studies1786 have found that it was possible for organizations to make large savings by
reducing software system diversity.

If software diversity is defined as variations on a theme, then what drives these variations
and what are the themes?

Themes include: the software included as part of operating system distributions (e.g., a
Linux distribution), the functionality supported by applications providing the same basic
need (e.g., text editing), the functionality supported by successive releases of an applica-
tion, by customised versions of the same release of an application, and the source code
used to implement an algorithm; see fig 9.14.

A software system is forked when the applicable files are duplicated, and work progresses
on this duplicate as a separate project from the original. The intent may be to later merge
any changes into the original, to continue development independently of the original,
some combination of these, or other possibilities, e.g., a company buying a license to
adapt software for its internal use.

The Fork button on the main page of every project on GitHub is intended as a mechanism
for developers, who need not be known to those involved in a project, to easily copy a
project from which to learn, and perhaps make changes; possibly submitting any changes
back to the original project, a process known as fork and pull. As of October 2013, there
were 2,090,423 forks of the 2,253,893 non-forked repositories on GitHub.917

A study by Robles and González-Barahona,1594 in 2011, attempted to identify all known
significant forks; they identified 220 forked projects, based on a search of Wikipedia
articles, followed by manual checking. Figure 4.16 suggests that after an initial spurt,
the number of forks has not been growing at the same rate as the growth of open source
projects.

viiThere are over 33,830 denominations, with 150 having more than 1 million followers.135

viiiNumber of species and their abundance.

4.2. EVOLUTION 97

antiX

AV
B2D

BackBox

Bardinux

BlankOn

Bodhi

BOSS

CAINE

Canaima

ClonezillaLive

DEFT

DoudouLinux

Edubuntu

ElementaryOS

Elive

gNewSense
gnuLiNex

Greenie

grml

Guadalinex

Kanotix

Knoppix

Kubuntu

Leeenux

LliureX

Lubuntu

Madbox

MAX

Metamorphose

Mint

Musix

Mythbuntu

Netrunner

Omoikane.Arma.

OpenMediaVault

Parsix
PelicanHPC

PeppermintOS

PinguyOS

Proxmox

Semplice

siduction

Skolelinux

SymphonyOS

Tails

Trisquel

Ubuntu

UbuntuStudio

Ulteo

UltimateEdition

Voyage

wattOS

Webconverger

Xubuntu

ZorinOS

Figure 4.17: Phylogenetic tree of Debian derived distribu-
tions, based on which of 50,708 packages are included in
each distribution. Data from Keil et al.984 Github–Local

Software is created by people, and variations between people will produce variations in
the software they write; other sources of variation include funding, customer require-
ments, and path dependencies present in the local ecosystem.

Reduced diversity is beneficial for some software vendors. The desktop market growth to
dominance of Wintelix reduced desktop computing platform diversity (i.e., the alternatives
went out of business), which reduced support costs for software vendors, i.e., those still
in business did not have to invest in supporting a wide diversity of platforms.

A study by Keil, Bennett, Bourgeois, Garcá-Peña, MacDonald, Meyer, Ramirez and
Yguel984 investigated the packages included in Debian distributions. Figure 4.17 shows
a phylogenetic tree of 56 Debian derived distributions, based on the presence/absence of
50,708 packages in each distribution.

The BSD family of operating systems arose from forking during the early years of their
development, and each fork has evolved as separate but closely related projects since the
early-mid 1990s. Figure 9.22 illustrates how a few developers working on multiple BSD
forks communicate bug fixes among themselves.

A study by Ray1561 investigated the extent to which code created in one of NetBSD,
OpenBSD or FreeBSD was ported to either of the other two versions, over a period of 18
years. Ported code not only originated in the most recently written code, but was taken
from versions released many years earlier. Figure 4.18 shows the contribution made by 14
versions of NetBSD (versions are denoted by stepping through the colors of the rainbow)
to 31 versions of OpenBSD; the contribution is measured as percentage of lines contained
in all the lines changed in a given version.

Products are sometimes customised for specific market segments. Customization might
be used to simplify product support, adapt to hardware resource constraints, and segmen-
tation of markets as a sales tool.

Customization might occur during program start-up, with configuration information being
read and used to control access to optional functionality, or at system build time, e.g.,
optional functionality is selected at compile time, creating a customised program.

Each customized version of a product can experience its own evolutionary pressures,1450

and customization is a potential source of mistakes.

A study by Rothberg, Dintzner, Ziegler and Lohmann1609 investigated the number of op-
tional Linux features shared (i.e., supported) by a given number of processor architectures
(for versions released between May 2011 and September 2013, during which the number
of supported architectures grew from 24 to 30). Table 4.1 shows that the number of fea-
tures only supported in one, two, three architectures, plus all supported architectures (and
all but one, two and three).

Version 1 2 3 All-3 All-2 All-1 All
2.6.39 3,989 182 50 2,293 944 1,189 2,617
3.0 3,990 183 53 2,345 968 1,211 2,637
3.1 4,026 184 52 2,440 968 1,155 2,667
3.2 4,028 181 57 1 2,788 512 4,054
3.3 4,077 180 51 1 2,837 512 4,133
3.4 4,087 183 51 1 2,907 520 4,184
3.5 4,129 179 50 2 3,001 520 4,265
3.6 4,158 184 51 2 3,098 527 4,298
3.7 4,139 183 50 1 3,173 539 4,384
3.8 4,148 178 35 3 3,269 548 4,399
3.9 4,269 177 36 3 3,403 581 4,413
3.10 4,280 173 35 3 3,447 577 4,460
3.11 4,270 178 33 2 0 0 8,654

Table 4.1: Number of distinct features, in Linux, shared across (i.e., supported) a given number of architectures (header row), for versions 2.6.39 to 3.11; All denotes all
supported architectures (All-1 is one less than All, etc), which is 24 in release 2.6.39, growing to 30 by release 3.9. Data from Rothberg et al.1609

The official Linux kernel distribution does not include all variants that exist in shipped
products;803 while manufacturers may make the source code of their changes publicly
available, either they do not submit these changes to become part of the mainline distri-
bution, or their submissions are not accepted into the official distribution (it would be a

ixMicrosoft Windows coupled with Intel’s x86 family of processors.

98 4. Ecosystems

2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8
OpenBSD releases

C
ha

ng
es

 p
or

te
d

fr
om

 N
et

B
S

D
 (

%
)

0

5

10

15

20

Figure 4.18: Percentage of code ported from NetBSD to
various versions of OpenBSD, broken down by version of
NetBSD in which it first occurred (denoted by incremen-
tally changing color). Data kindly provided by Ray.1561

Github–Local

1

5

10

50

100

500

1000

5000

PHP version

W
eb

si
te

s

4.0.0 5.3.0 5.5.0 5.6.0

Feb 2017
Feb 2016

Figure 4.19: Number of websites running a given version
of PHP on the first day of February, 2016 and 2017, or-
dered by PHP version number. Data kindly provided by
Ruohonen.1620 Github–Local

B−52, C−130, U−2, KC−135, T−38

F−4, F−5, F−100, F−101, F−102, F−104, F−105, F−106
B−57, B−58, B−66, H−43, T−37, T−39, C−133, C−140

1950

C−5, C−9*, H−1

A−7, A−37, SR−71, C−141, F−111, OV−10, H−3, H−53

1960

E−3, E−4, A−10, F−15, F−16, B−1, C−12*, KC−10*
1970

B−2, CV−22, E−8, E−9, C−20, C−21

F−117, C−27A, C−22, C−23

1980

T−1*, T−6, F−22, C−17, RQ−4, MQ−1, C−26, C−32
C−37, C−38, C−40, VC−25*

1990

MQ−9, C−27J, RQ−170

F−35

2000

KC−46A, F/0 UAS, T−X

2010

LRS−B, F−X

2020
Planned
Flying
Withdrawn

Figure 4.20: Decade in which newly designed US Air
Force aircraft first flew, with colors indicating current op-
erational status. Data from Echbeth el at.527 Github–Local

heavy burden for the official Linux kernel distribution to include every modification made
by a vendor shipping a modified kernel).

In general the number of optional features increases as the size of a program increases;
see fig 7.36.

When a new version of a software system becomes available, there may be little, or no
incentive for users to upgrade. As part of customer support, vendors may continue to
provide support for previous versions, for some period after the release of a new version.

Widely used software systems may support their own ecosystem of third-party add-ons.
For instance, Wordpress is written in PHP, and third-party add-ons are executed by the
version of PHP installed on the server running Wordpress. The authors of these add-ons
have to take into account the likely diversity in both the version of Wordpress and version
of PHP used on any website.

A study by Ruohonen and Leppänen1620 investigated the version of PHP available on
more than 200K websites (using data from the httparchive866). Figure 4.19 shows the
number of websites running a given version of PHP on the first day of February 2016
and February 2017; the x-axis is ordered by version number of the release (there is some
intermingling of dates).

Hardware diversity (i.e., computer manufacturers offering a variety incompatible cpus and
proprietary operating systems; with vendors seeking to create product moats) was once a
major driver of software diversity; hardware issues are discussed in section 4.1.2.

4.2.2 Lifespan

The expected lifespan of a software system is of interest to those looking to invest in its
creation or ongoing development. The investment may be vendor related (e.g., design-
ing with an eye to future product sales) or customer related, e.g., integrating use of the
software into business workflow. The analysis of data where the variable of interest is
measured in terms of time-to-event is known as survival analysis; section 11.11 discusses
the analysis of time-to-event data.

Governments may publicly express a preference for longer product lifetimes,1308 because
they are answerable to voters (the customers of products), not companies answerable to
shareholders. In theory, a software system can only said to be dead when one or more
of the files needed to run it ceases to exist. In practice, the lifespan of interest to those
involved is the expected period of their involvement with the software system.

Factors affecting product lifetime include:

• in a volatile ecosystem there may be little or no incentive to maintain and support ex-
isting products. It may be more profitable to create new products without concern for
compatibility with existing products,

• a product may not have sold well enough to make further investment worthwhile, or the
market itself may shrink to the point where it is not economically viable to continue
operating in it,

• while software does not wear out, it is intertwined with components of an ecosystem,
and changes to third-party components that are depended upon can cause programs to
malfunction, or even fail to execute. Changes in the outside world can cause unchanged
software to stop working as intended,

• software depends on hardware for its interface to the world. Hardware wears out and
breaks, which creates a post-sales revenue stream for vendors, from replacement sales.
Manufacturing hardware requires an infrastructure, and specific components will have
their own manufacturing requirements. The expected profit from future sales of a device
may not make it worthwhile continuing to manufacture it, e.g., the sales volume of
hard disks is decreasing, as NAND memory capacity performance, and cost per-bit
improves,623

• users may decide not to upgrade because the software they are currently using is good
enough. In some cases software lifespan may exceed the interval implied by the vendors
official end-of-life support date.

The rate of product improvements can slow down for reasons that include: technology
maturity, or a single vendor dominating the market (i.e., enjoys monopoly-like power).
Figure 4.20 illustrates how the working life of jet-engined aircraft (invented in the same

4.2. EVOLUTION 99

1970 1975 1980

4.5

5.0

5.5

6.0

6.5

7.0

Year

A
ge

 (
ye

ar
s)

Figure 4.21: Mean age of installed mainframe computers,
1968-1983. Data from Greenstein.737 Github–Local

0 1000 3000 5000
0.0

0.2

0.4

0.6

0.8

1.0

Days

D
is

tr
ib

ut
io

n
su

rv
iv

al
Debian
Ubuntu
Red Hat
Slackware
Knoppix

Figure 4.22: Survival curve of Linux distributions derived
from five widely-used parent distributions (identified in
legend). Data from Lundqvist et al.1171 Github–Local

0 200 400 600 800 1000
0

10

20

30

40

50

60

Days since launch

M
ar

ke
t s

ha
re

 (
pe

rc
en

ta
ge

)

2.2.2.2.3
2.3.2.3.2
2.3.3.2.3.7
3.0
3.1
3.2
4.0.4.0.2
4.0.3.4.0.4
4.1
4.2
4.3
4.4

Figure 4.23: Percentage share of Android market, of a
given release, by days since its launch. Data from Vil-
lard.1902 Github–Local

decade as computers) has increased over time. Figure 4.21 shows the mean age of in-
stalled mainframes at a time when the market was dominated by a single vendor (IBM),
who decided product pricing and lifespan; the vendor could influence product lifespan to
maximise their revenue.

Organizations and individuals create and support their own Linux distribution, often de-
rived from one of the major distributions, e.g., Ubuntu was originally derived from De-
bian. Lundqvist and Rodic1171 recorded the life and death of these distributions. Fig-
ure 4.22 shows the survival curve, stratified by the parent distribution.

The market share of the latest version of a software system typically grows to a peak,
before declining as newer versions are released. Villard1902 tracked the Android version
usage over time. Figure 4.23 shows the percentage share of the Android market held by
various releases, based on days since launch of each release.

A study by Tamai and Torimitsu1811 investigated the lifespan of 95 software systems
(which appear to be mostly in-house systems). Figure 4.24 shows (in red) the number of
systems terminated after a given number of days, along with a fitted regression model of
the form: systems = aeb×years (with b =−0.14 for the mainframe software and b =−0.24
for Google’s SaaS).

A website setup and maintained by Ogden1405 records Google applications, services and
hardware that have been terminated. Figure 4.24 shows (in blue/green) the number that
have been terminated after a given number of days, along with a fitted regression model.

System half-life for the 1991 Japanese corporate mainframe data is almost 5-years; for the
Google SaaS it is almost 2.9-years. Does the Japanese data represent a conservative upper
bound, and the Google data a lower bound for a relatively new, large company finding out
which of its acquired and in-house developed products are worth continuing to support?

Products with a short lifespan are not unique to software system. Between 1927 and 1960
at least 62 aircraft types were built and certified for commercial passenger transport1481

(i.e., with seating capacity of at least four), and failed to be adopted by commercial air-
lines.

Communities of people have a lifespan. When the energy for the community comes
directly from commercially activity, the community will continue to exist for as long as
there are people willing to work for the money available, or they are not out competed
by another community.1406 When the energy comes directly from those active in the
community, community existence is dependent on the continuing motivation and beliefs
of its members.838

A study by Dunbar and Sosis514 investigated human community sizes and lifetime. Fig-
ure 4.25 shows the number of founding members of 53, 19th century secular and religious
utopian communities, along with the number of years they continued to exist, with loess
regression lines.

4.2.3 Entering a market

Markets for particular classes of products (e.g., electric shavers, jet engines and video cas-
sette recorders) and services evolve, with firms entering and existing.774 Manufacturing
markets have been found to broadly go through five stages, from birth to maturity.12

The invention of the Personal Computer triggered the creation of new markets, including
people starting manufacturing companies to seek their fortune selling lower cost comput-
ers. Figure 4.26 shows how the growth and consolidation of PC manufacturers followed
a similar trend to the companies started to manufacture automobiles, i.e., hundreds of
companies started, but only a few survived.

Vendors want to control customer evolution, to the extent it involves product purchasing
decisions. Evolution might be controlled by erecting barriers (the term moat is sometimes
used) to either make it unprofitably for other companies to enter the market, or to increase
the cost for customers seeking to switch suppliers.

• economies of scale (a supply side effect, a traditional barrier employed by hardware
manufacturers): producing in large volumes allows firms to spread their fixed costs
over more units, improving efficiency (requires that production be scalable in a way
that allows existing facilities to produce more). Competing against a firm producing
in volume requires a large capital investment to enter the market, otherwise the new
entrant is at a cost disadvantage.

100 4. Ecosystems

2000 4000 6000 8000 10000

1

2

5

10

20

50

100

200

Days

S
of

tw
ar

e
sy

st
em

s
in

 u
se

Mainframe
Google

Figure 4.24: Number of software systems surviving for
a given number of days and fitted regression models:
Japanese mainframe software (red), Google software-as-
a-service (blue; 202 systems as of October 2020). Data
from: mainframe Tamai,1811 Google’s SaaS Ogden.1405

Github–Local

5 10 50 200 1000 5000

1

2

5

10

20

50

100

Foundation size

D
ur

at
io

n
(y

ea
rs

)

Religious
Secular

Figure 4.25: Size at foundation and lifetime of 32 secular
and 19 religious 19th century American utopian commu-
nities; lines are fitted loess regression. Data from Dunbar
et al.514 Github–Local

0 5 10 15 20 25 30
0

50

100

150

200

250

300

Years since introduction

C
om

pa
ni

es

Automobile companies
PC companies

Figure 4.26: Number of US companies manufacturing au-
tomobiles and PCs, over the first 30-years of each industry.
Data extracted from Mazzucato.1227 Github–Local

With effectively zero replication costs, once created software systems do not require a
large capital investment. A large percentage of the cost of software production is spent
on people, who provide few opportunities for economies of scale (there may even be
diseconomies of scale, e.g., communication overhead increases with head count),

• network effects80 (a demand-side effect): are created when customers’ willingness to
buy from a supplier increases with the number of existing customers. A company en-
tering a market that experiences large network effects, where they are competing against
an established firm, has to make a large capital investment to offer incentives, so that a
significant percentage of customers switch suppliers.

Companies selling products that rely on network effects employ developer evange-
lists,979 whose job includes creating a positive buzz around use of the product and
providing feedback from third-party developers to in-house developers,

• switching costs:577 a switching cost is an investment specific to the current supplier
that must be duplicated to change to a new supplier, e.g., retraining staff and changes
to procedures. The UK government paid £37.6 million transition costs to the winning
bidder of the ASPIRE contract, with £5.7 million paid to the previous contract holder
to facilitate changeover.1534

Information asymmetry can create switching costs by deterring competition. To en-
courage competition in bidding on the replacement ASPIRE contract (the incumbent
had inside knowledge and was perceived to be strong) the UK government contributed
£8.6 million towards bidders’ costs.1534

Figure 4.27 shows the retail price of Model T Fords and the number sold, during the first
nine years of the product.

A vendor with a profitable customer base, protected by products with high switching
costs, is incentivised to prioritise the requirements of customers inside their walled gar-
den. Income from existing customers sometimes causes vendors to ignore new develop-
ments that eventually lead to major market shifts,578 that leave the vendor supporting a
marooned customer based.

The competitive forces faced by companies include:1509 rivalry between existing com-
petitors, bargaining power of suppliers, bargaining power of buyers, possibility of new
entrants, and possibility product being substituted by alternative products or services.

4.3 Population dynamics

Population dynamics1239, 1390 is a fundamental component of ecosystems.

When the connections between members of an ecosystem are driven by some non-random
processes, surprising properties can emerge, e.g., the friends paradox, where your friends
have more friends, on average, than you do,587 and the majority illusion, where views
about a complete network are inferred from the views of local connections.1116 In general,
if there is a positive correlation, for some characteristic, between connected nodes in a
network, a node’s characteristic will be less than the average of the characteristic for the
nodes connected to it.549

The choices made by individual members of an ecosystem can have a significant impact
on population dynamics, which in turn can influence subsequent individual choices. Two
techniques used to model population dynamics are: mathematics and simulation (covered
in section 12.5).

The mathematical approach is often based on the use of differential equations: the behav-
ior of the important variables are specified in one or more equations, which may be solved
analytically or numerically.

One example is the evolution of the population of two distinct entities within a self-
contained ecosystem. If, say, entities A and B have fitness a and b respectively, both
have growth rate c, and an average fitness of φ , then the differential equations describing
the evolution of their population size, x and y, over time are given by:1390

ẋ = axc−φx

ẏ = byc−φy

Solving these equations shows that, when c < 1, both A and B can coexist, when c = 1,
the entity with the higher fitness can invade and dominate an ecosystem (i.e., lower fitness

4.3. POPULATION DYNAMICS 101

1908 1910 1912 1914 1916

400

500

600

700

800

900

Year

R
et

ai
l p

ric
e

($
)

5

10

50

100

500

M
od

el
−

T
 s

al
es

 (
th

ou
sa

nd
s)

Figure 4.27: Retail prices of Model T Fords and sales vol-
ume. Data from Hounshell.860 Github–Local

D
iff

er
en

ce
 in

 a
do

pt
io

ns

B leads

A leads

bS − aS

s

aR − bR

r

S
R

R
S

R
S

n
total adoptions

Figure 4.28: Example showing difference in number of
customers using two products. Github–Local

eventually dies out), but when c> 1, an entity with high fitness cannot successfully invade
an occupied ecosystem, i.e., greater fitness is not enough to displace an incumbent.

The mathematics approach has the advantage that, if the equations can be solved, the
behavior of a system can be read from the equations that describe it (while simulations
provide a collection of answers to specific initial conditions). The big disadvantage of the
mathematical approach is that it may not be possible to solve the equations describing a
real world problem.

The advantage of simulations is that they can handle most real world problems. The
disadvantages of simulations include: difficulty of exploring the sensitivity of the results
to changes in model parameters, difficulty of communicating the results to others, and
computational cost; for instance, if 104 combinations of different model parameter values
are needed to cover the possible behaviors in sufficient detail, with 103 simulations for
each combination (needed to reliably estimate the mean outcome), then 107 simulation
runs are needed, which at 1 second each is 116 cpu days.

When a product ecosystem experiences network effects, it is in vendors’ interest to create
what is known as a virtuous circle; encouraging third-party developers to sell their prod-
ucts within the ecosystem attracts more customers, which in turn attracts more developers,
and so on.

Given two new technologies, say A and B, competing for customers in an existing market,
what are the conditions under which one technology comes to dominate the market79?

Assume that at some random time, a customer has to make a decision to replace their
existing technology, and there are two kinds of customer: R-agents perceive a greater
benefit in using technology A (i.e., aR > bR), and S-agents perceive a greater benefit in
using technology B (i.e., aS < bS); both technologies are subject to network effects, i.e.,
having other people using the same technology provides a benefit to everybody else using
it.

Figure 4.28 illustrates the impact of the difference in customer adoption of two products
(y-axis), with time along the x-axis; red-line is an example difference in the number of
customers using products A and B. Between the blue/green lines, R and S-agents perceive
a difference in product benefits; once the difference in the number of customers of each
product crosses some threshold, both agents perceive the same product to have the greater
benefit.

Table 4.2 shows the total benefit available to each kind of customer, from adopting one
of the technologies; nA and nB are the number of users of A and B at the time a customer
makes a decision, r and s are the benefits acrued to the respective agents from existing
users (there are increasing returns when: r > 0 and s > 0, decreasing returns when: r < 0
and s < 0, and no existing user effect when: r = 0 and s = 0).

Technology
A

Technology
B

R-agent aR + rnA bR + rnB
S-agent aS + snA bS + snB

Table 4.2: Returns from choosing A or B, given previous technology adoptions by others. From Arthur.80

For increasing returns, lock-in of technology A occurs80 (i.e., it provides the greater benefit

for all future customers) when: nA(t)−nB(t)>
bS−aS

s
, where: nA(t) and nB(t) are the

time dependent values of n.

The condition for lock-in of technology B is: nB(t)−nA(t)>
aR−bR

r
Starting from a market with both technologies having the same number of customers,

the probability that technology A eventually dominates is:
s(aR−bR)

s(aR−bR)+ r(bS−aS)
and

technology B dominates with probability:
r(bS−aS)

s(aR−bR)+ r(bS−aS)

With decreasing returns, both technologies can coexist.

Governments have passed laws intended to ensure that the competitive process works as
intended within commercially important ecosystems (in the US this is known as antitrust
law, while elsewhere the term competition law is often used). In the US antitrust legal

102 4. Ecosystems

2005 2010 2015 2020

1

10

100

1000

10000

Date

P
ro

gr
am

s

Immediate binding
Total ELF
Fortify source
PIE
Read−Only relocations
Stack Protector

Figure 4.29: Number of programs in the Ubuntu AMD64
distribution shipped using a given security hardening tech-
nique (Total ELF is the number of ELF executables). Data
from Cook.397 Github–Local

2008 2009 2010
0

2

4

6

8

10

12

14

Date

C
ha

ng
es

Neither
IT only
Business/IT
Business only

Figure 4.30: Number of process model change re-
quests made in three years of a banking Customer reg-
istration project. Data kindly provided by Branco.243

Github–Local

2000 2004 2008 2012
1

100

10000

1000000

Date

P
ro

je
ct

s LOC
Methods
Classes
Projects
Dependencies

Figure 4.31: Growth in the number of projects within the
Apache ecosystem, along with the amount of contained
code. Data from Bavota et al.152 Github–Local

thinking993 in the 1960s had a market structure-based understanding of competition, i.e.,
courts blocked company mergers that they thought would lead to anticompetitive market
structures. This shifted in the 1980s, with competition assessment based on the short-term
interests of consumers (i.e., low consumer prices), not based on producers, or the health
of the market as a whole.

The legal decisions and rules around ensuring that the competitive process operates in the
commercial market for information are new and evolving.1452

In the UK and US it is not illegal for a company to have monopoly power within a market.
It is abuse of a dominant market position that gets the attention of authorities; governments
sometimes ask the courts to block a merger because they believe it would significantly
reduce competition.1661

4.3.1 Growth processes

Population dynamics are sometimes modeled using a one-step at a time growth algorithm;
one common example is preferential attachment, which is discussed in section 8.3.1.

The percentage of subpopulations present in a population can be path dependent. Con-
sider the population of an urn containing one red and one black ball. The growth process
iterates the following sequence (known as the Polya urn process): a ball is randomly
drawn from the urn, this ball, along with another ball of the same color is placed back in
the urn. After a many iterations, what is the percentage of red and black balls in the urn?

Polya proved that the percentage of red and black balls always converges to some, uni-
formly distributed, random value. Each converged value is the outcome of the particular
sequence of (random) draws that occurred early in the iteration process; any converged
percentage between zero and 100 can occur. Convergence also occurs when the process
starts with an urn containing more than two balls, with each ball having a different color;
see Github–ecosystems/Polya-urn.R.

The Polya urn process has been extended to include a variety of starting conditions (e.g.,
an urn containing multiple balls of the same color), and replacement rules, e.g., adding
multiple balls of the same color, or balls having the other color. General techniques for
calculating exact solutions to problems involving balls of two colors are available.608

The spread of software use may involve competition between vendors offering compati-
ble systems (e.g., documents and spreadsheets created using Microsoft Office or OpenOf-
fice1607), a system competing with an earlier version of itself (the Bass model is discussed
in section 3.6.3), or the diffusion of software systems into new markets.404

Over time various techniques have been developed to make it more difficult for viruses to
hijack programs; it takes time for effective techniques to be discovered, implemented and
then used by developers. Figure 4.29 shows the growth in the number of programs in the
Ubuntu AMD64 distribution that are hardened with a given security technique (Total ELF
is the total number of programs).

Software change is driven by a mixture of business and technical factors. A study by
Branco, Xiong, Czarnecki, Küster and Völzer243 analysed over 1,000 change requests
in 70 business process models of the Bank of Northeast of Brazil. Figure 4.30 shows
the distribution of the 388 maintenance requests made during the first three years of the
Customer Registration project. Over longer time-scales the rate of evolution of some
systems exhibits a cyclic pattern.2011

Some very large systems grow through the integration of independently developed projects.

A study by Bavota, Canfora, Di Penta, Oliveto and Panichella152 investigated the growth
of projects in the Apache ecosystem. Figure 4.31 shows the growth in the number of
projects, and coding constructs they contain. The number of dependencies between
projects increases as the number of projects increases, along with the number of meth-
ods and/or classes; see Github–ecosystems/icsm2013_apache.R.

A later study by the same group153 analyzed the 147 Java projects in the Apache ecosys-
tem. Figure 4.32 shows, for each pair of projects, the percentage overlap of developers
contributing to both projects (during 2013; white 0%, red 100%); the rows/columns have
been reordered to show project pair clusters sharing a higher percentage of developers;
see section 12.4.1.

4.3. POPULATION DYNAMICS 103

Projects

P
ro

je
ct

s

Figure 4.32: Percentage overlap of developers con-
tributing, during 2013, to both of each pair of 147
Apache projects. Data kindly provided by Panichella.153

Github–Local

4.3.2 Estimating population size

It may be impossible, or too costly, to observe all members of a population. Depending
on the characteristics of the members of the population, it may be possible to estimate the
number of members based on a sample; population estimates might also be derived from
a theoretical analysis of the interaction between members.1112

In some cases it is possible to repurpose existing data. For instance, the U.S. Bureau of
Labor Statistics (BLS) publishes national census information,280 which includes infor-
mation on citizens’ primary occupation. The census occupation codes starting with 100,
101, 102, 104, and 106 have job titles that suggest a direct involvement in software devel-
opment, with other codes suggesting some involvement. This information provides one
means of estimating the number of software developers in the U.S. (one analysis1493 of
the 2016 data estimated between 3.4 million and 4.2 million).

When sampling from a population whose members have been categorized in some way
(e.g., by species), two common kinds of sampling data are: abundance data which con-
tains the number of individuals within each species in the sample, and incidence data
giving a yes/no for the presence/absence of each species in the sample.

It is not possible to use incidence data to distinguish between different exponential order
growth models,1283 e.g., models based on a nonhomogeneous Poisson process. Model-
ing using incidence data requires samples from multiple sites, e.g., faults experienced
within different companies, who use the software, tagged with location-id for each fault
experience.

4.3.2.1 Closed populations

In a closed population no members are added or removed, and the characteristics of the
input distribution remain unchanged.

One technique for estimating (say) the number of fish in a lake, is to capture fish for a
fixed amount of time, count and tag them, before returning the fish to the lake. After
allowing the captured fish to disperse (but not so long that many fish are likely to have
died or new fish born), the process is repeated, this time counting the number of tagged
fish, and those captured for the first time, i.e., untagged.

The Chapman estimator is an unbiased, and more accurate estimate,1626 than the simpler
formula usually derived, i.e., N = C1C2

C12
. Assuming that all fish have the same probability

of being caught, and the probability of catching a fish is independent of catching any other
fish:

N =
(C1 +1)(C2 +1)

C12 +1
−1, where: N is the number of fish in the lake, C1 the number of

fish caught on the first attempt, C2 the number caught on the second attempt, and C12 the
number caught on both attempts.

Using the Chapman estimator to estimate (say) the number of issues not found during a
code review assumes that those involved are equally skilled, invest the same amount of
effort in the review process, and all issues are equally likely to be found. When reviewers
have varying skills, invest varying amounts of effort, or the likelihood of detecting issues
varies, the analysis is much more complicated. The Rcapture package supports the anal-
ysis of capture-recapture measurements where capture probability varies across items of
interest, and those doing the capturing; also see the VGAM package.

The Chao1 estimator326 gives a lower bound on the number of members in a population,
based on a count of each member captured; it assumes that each member of the population
has its own probability of capture, that this probability is constant over all captures, and
the population is sampled with replacement:

Sest ≥ Sobs +
n−1

n
f 2
1

2 f2

where: Sest is the estimated number of unique members, Sobs the observed number of
unique members, n the number of members in the sample, f1 the number of items captured
once, and f2 the number of members captured twice.

If a population, containing N members, is sampled without replacement, the unseen mem-

ber estimate added to Sobs becomes:
f 2
1

n
n−1 2 f2 +

q
1−q f1

,330 where: q = n
N .

104 4. Ecosystems

Taking into account members occurring three and four times gives an improved lower
bound.355

The ChaoSpecies function in the SpadeR package calculates species richness using a
variety of models. The SpadeR and iNEXT packages contain functions for estimating and
plotting species abundance data.

The number of additional members, mg, that need to be sampled to be likely to encounter
a given fraction, g, of all expected unique members in the population is:328

mg ≈
n f1

2 f2
log
[

f0

(1−g)Sest

]
where: n is the number of members in the current sample and f0 =

f 2
1

2 f2
. For g = 1, the

following relationship needs to be solved for m: 2 f1
(
1+ m

n

)
< e

m
n

2 f2
f1

If m additional members are sampled, the expected number of unique members encoun-
tered is,1687 assuming m < n (when n≤m≤ n logn, more complicated analytic estimates
are available1422):

S(n+m) = Sobs + f0

[
1−
(

1− f1

n f0 + f1

)m]
If m is much less than n, this equation approximates to: S(n+m)≈ Sobs +m f1

n .

The formula to calculate the number of unique members shared by two populations is
based on the same ideas, and is somewhat involved.1442

When capture probabilities vary by time and individual item, the analysis is more diffi-
cult.329

Section 6.3.3 discusses the estimation of previously unseen fault experiences in a closed
population.

4.3.2.2 Open populations

Evolving ecosystems contain open populations; in an open population existing members
leave and new ones join, e.g., companies are started or enter a new market, and companies
are acquired or go bankrupt. Estimates of the size of an open population that fail to take
into account the impact of the time varying membership will not produce reliable results.

Most open population capture-recapture models are derived from the Cormack-Jolly-
Seber (CJS) and Jolly-Seber (JS) models. CJS models estimate survival rate based on
using an initial population of captured individuals and modeling subsequent recapture
probabilities; CJS models do not estimate abundance. JS models estimate abundance and
recruitment (new individuals entering the population). The openCR and Rcapture pack-
ages support the analysis of measurements of open populations.

Section 6.3.4 discusses the estimation of previously unseen fault experiences in an open
population.

4.4 Organizations

Organizations contain ecosystems of people who pay for, use and create software systems.

4.4.1 Customers

Given that customers supply the energy that drives software ecosystems, the customers
supplying the greatest amount of energy are likely to have the greatest influence on soft-
ware engineering culture and practices (if somewhat indirectly). Culture is built up over
time, and is path dependent, i.e., practices established in response to events early in the
history of a software ecosystem may continue to be followed long after they have ceased
to provide any benefits.

The military were the first customers for computers, and financed the production of one-
off systems.609 The first commercial computer, the Univac I, was introduced in 1951,

4.4. ORGANIZATIONS 105

1960 1962 1964 1966 1968 1970
0

500

1000

1500

2000

2500

3000

Year

S
ys

te
m

s

Purchased
Rented

Figure 4.33: Total computer systems purchased and rented
by the US Federal Government in the respective fiscal
years ending June 30. Data from US Government Gen-
eral Accounting Office.389 Github–Local

1955 1960 1965 1970 1975

0.02

0.05

0.10

0.20

0.50

1.00

2.00

5.00

10.00

Year

To
ta

l r
ev

en
ue

 (
$b

ill
io

n)

Systems sales
Service revenue

Figure 4.34: Total U.S. revenue from sale of computer sys-
tems and data processing service industry revenue. Data
from Phister1483 table II.1.20 and II.1.26. Github–Local

2000 2005 2010 2015

5

10

20

50

100

200

500

1000

2000

Year

S
of

tw
ar

e
sp

en
d

(£
m

ill
io

n)

Figure 4.35: Total yearly spend on their own software by
the 21 industry sectors in the UK, reported by companies
as fixed-assets. Data from UK Office for National Statis-
tics.1356 Github–Local

and 46 were sold; the IBM 1401,654 introduced in 1960, was the first computer to ex-
ceed one thousand installations, with an estimate 8,300 systems in use by July 1965.1182

During the 1950s and 1960s the rapid rate of introduction of new computers created un-
certainty, with many customers initially preferring to rent/lease equipment (management
feared equipment obsolescence in a rapidly changing market,1098 and had little desire to
be responsible for maintenance1064), and vendors nearly always preferring to rent/lease
rather than sell (a license agreement can restrict customers’ ability to connect cheaper
peripherals to equipment they do not own482). Figure 4.33 shows the shift from rental to
purchase of computers by the US Federal Government.

The U.S. Government was the largest customer for computing equipment during the 1950s
and 1960s, and enacted laws to require vendors to supply equipment that conformed to
various specified standards, e.g., the Brooks Act1840 in 1965. The intent of these stan-
dards was to reduce costs, to the government, by limiting vendors ability to make use of
proprietary interfaces that restricted competition.

The customers for these very expensive early computers operated within industries where
large scale numeric calculations were the norm (e.g., banks, life insurance companies,1992

and government departments368), and specific applications such as payroll in organiza-
tions employing thousands of people, each requiring a unique weekly or monthly payroll
calculation.736 Scientific and engineering calculations were a less profitable business.

Large organizations had problems that were large enough to warrant the high cost of
buying and operating a computer.1680 A computer services industry1994 quickly sprang
up (in the US during 1957, 32 of the 71 systems offered were from IBM1181), providing
access to computers in central locations (often accessed via dial-in phone lines), with
processing time rented by the hour.87 Computing as a utility service for general use, like
electricity, looked likely to become a viable business model.1671 Figure 4.34 shows, for
the US, service business revenue in comparison to revenue from system sales.

The introduction of microcomputers decimated the computer services business;297 the
cost of buying a microcomputer could be less than the monthly rental paid to a service
bureau.

How much do customer ecosystems spend on software?

Figure 4.35 shows the total yearly amount spent by the UK’s 21 industry sectors on their
own software (which was reported by companies as fixed-assets; note: money may have
been spent on software development, which for accounting purposed was not treated as a
fixed-asset).

Customer influence over the trade-offs associated with software development ranges from
total (at least in theory, when the software is being funded by a single customerx), to
almost none (when the finished product is to be sold in volume to many customers). One
trade-off is the reliability of software vs. its development cost; this issue is discussed in
chapter 6. If the customer is operating in a rapidly changing environment, being first to
market may have top priority. In a global market, variation in customer demand between
countries1144 has to be addressed.

Companies sometimes work together to create a product or service related ecosystem that
services their needs. Competing to best address customer need results in product evolu-
tion; new requirements are created, existing requirements are modified or may become
unnecessary.

A group of automotive businesses created AUTOSAR (Automotive Open System Ar-
chitecture) with the aim of standardizing communication between the ECUs (Electronic
Control Unit) supplied by different companies. A study by Motta1318 investigated the evo-
lution of the roughly 21,000 AUTOSAR requirements, over seven releases of the specifi-
cation between 2009 and 2015. Figure 4.36 shows the cumulative addition, modification
and deletion of software requirements during this period.

4.4.2 Culture

Cultures occur at multiple organizational levels. Countries and regions have cultures,
communities and families have cultures, companies and departments have cultures, ap-
plication domains and products have cultures, software development and programming

xSingle customers may be large organizations paying millions to solve a major problem, or a single devel-
oper who enjoys creating software.

106 4. Ecosystems

2000

4000

6000

8000

Release

R
eq

ui
re

m
en

ts

4.0.1 4.0.2 4.0.3 4.1.1 4.1.2 4.1.3 4.2.1

Added
Modified
Deleted

Figure 4.36: Cumulative number of software requirements
added, modified and deleted, over successive releases, to
the 11,000+ requirements present in release 4.0.0. Data
kindly provided by Motta.1318 Github–Local

5 10 50 200 1000 5000

5

10

20

50

100

200

500

1000

2000

5000

Price ($thousand)

M
em

or
y

(K
B

)

1978
1977
1976
1975
1974
1973
1972
1971
1970

Figure 4.37: Typical memory capacity against cost of 167
different computer systems from 1970 to 1978; fitted re-
gression lines are for 1971, 1974 and 1977. Data from
Cale.290 Github–Local

languages have cultures. Cultural differences are a source of confusion and misunder-
standing, in dealings with other people.1972

Organizational routines are sometimes encapsulated as grammars of action, e.g., the pro-
cedures followed by a support group to solve customer issues.1468

The culture (e.g., learned behaviours, knowledge, beliefs and skills) embodied in each
developer will influence their cognitive output. Shared culture provides benefits, such as,
existing practices are understood and followed (e.g., the set of assumptions and expecta-
tions about how things are done), and using categorization to make generalizations from
relatively small data sets; see section 2.5.4. Social learning is discussed in section 3.4.4.

Figure 4.37 shows what were considered to be typical memory capacities and costs, for
167 computer systems available from the major vendors, between 1970 and 1978; lines
are fitted regression models for 1971, 1974 and 1977; see Github–ecosystems/CompWorld85.R.
The performance and storage capacity limitations of early computers encouraged a soft-
ware culture that eulogized the use of clever tricks, whose purpose was to minimise the
amount of code and/or storage required to solve a problem.

A shared culture provides an aid for understanding others, but does not eliminate variabil-
ity. When asked to name an object or action, people have been found to give a wide range
of different names. A study by Furnas, Landauer, Gomez, and Dumais638, 639 described
operations to subjects who were not domain experts (e.g., hypothetical text editing com-
mands, categories in Swap `n Sale classified ads, keywords for recipes), and asked them
to suggest a name for each operation. The results showed that the name selected by one
subject was, on average, different from the name selected by 80% to 90% of the other
subjects (one experiment included subjects who were domain experts, and the results for
those subjects were consistent with this performance). The frequency of occurrence of
the names chosen tended to follow a power law.

Metaphors1070 are a figure of speech, which apply the features associated with one con-
cept to another concept. For instance, concepts involving time are often expressed by
native English speakers using a spatial metaphor. These metaphors take one of two
forms—one in which time is stationary, and we move through it (e.g., “we’re approaching
the end of the year”); in the other, we are stationary and time moves toward us, e.g., “the
time for action has arrived”.

A study by Boroditsky224 investigated subjects’ selection of either the ego-moving, or
the time-moving, frame of reference. Subjects first answered a questionnaire dealing with
symmetrical objects moving to the left or to the right; the questions were intended to prime
either an ego-moving or object-moving perspective. Subjects then read an ambiguous
temporal sentence (e.g., “Next Wednesday’s meeting has been moved forward two days”)
and were asked to give the new meeting day. The results found that 71% of subjects
responded in a prime-consistent manner: of the subjects primed with the ego-moving
frame, 73% thought the meeting was on Friday and 27% thought it was on Monday, and
subjects primed with the object-moving frame showed the reverse bias, i.e., 31% and
69%.

Native Chinese speakers also use spatial metaphors to express time related concepts, but
use the vertical axis rather than the horizontal axis used by native English speakers.

Cultural conventions can be domain specific. For instance, in the US politicians run
for office, while in Spain and France they walk, and in Britain they stand for office.
These metaphors may crop up as supposedly meaningful identifier names, e.g., run_for,
is_standing.

Have the ecosystems inhabited by software changed so rapidly that cultural behaviors
have not had time to spread and become widely adopted, before others take their place?
Distinct development practices did evolve at the three early computer development sites
in the UK.295 Character encodings have been evolving since the 1870s,604 with the intro-
duction of the telegraph. Early computer capacity restrictions drove further evolution,1185

and the erosion of technical restrictions has allowed a single encoding for all the World’s
characters1864 to slowly spread; cultural factors and competing interests work to slow the
pace of change.881

Is English the lingua-franca of software development?

There has been a world-wide diffusion of software systems such as Unix, MS-DOS, and
Microsoft Windows, along with the pre-internet era publicly available source code, such
as X11, gcc, and Unix variants such as BSD; books and manuals have been written to

4.4. ORGANIZATIONS 107

2011 2013 2015 2017

5000

10000

20000

50000

Release date
G

er
m

an
 c

om
m

en
ts

3.3 3.5 4 4.2 4.4 5.1 5.3
Version

Figure 4.38: Estimated number of comments written in
German, in the LibreOffice source code. Data from
Meeks.1256 Github–Local

1960 1980 2000

1

2

5

10

20

50

100

200

500

Date

N
ew

 c
om

pa
ny

 r
eg

is
tr

at
io

ns

Software
Computer

Figure 4.39: Number of new UK companies registered
each month, whose SIC description includes the word
software (45,422 entries) or computer (18,001 entries).
Data extracted from OpenCorporates.1419 Github–Local

teach software developers about this software. English is the language associated with
these software systems and associated books, which has created incentives for developers
in non-English speaking countries to attain good enough English proficiency.

When the interval between product updates is short, an investment in adapting products
to non-English speaking markets is less likely to be economically worthwhile.

The world-wide spread of popular American culture is another vector for the use of En-
glish. In countries with relatively small populations it may not be economically viable to
dub American/British films and TV programs, subtitles are a cheaper option (and these
provide the opportunity for a population to learn English; see Github–ecosystems/Test_Vocab.txt).

The office suite LibreOffice was originally written by a German company, and many
comments were written in German. A decision was made that all comments should be
written in English. Figure 4.38 shows the decline in the number of comments written in
German, contained in the LibreOffice source code.

Some companies, in non-English speaking countries, may require their staff to speak
English at work.1923

In ALGEC,847 a language invented in the Soviet Union, keywords can be written in a form
that denotes their gender and number. For instance, Boolean can be written: logiqeskoe
(neuter), logiqeski$i (masculine), logiqeska� (feminine) or logiqeskie (plural).
The keyword for the “go to” token is to; something about Russian makes use of the word
“go” unnecessary.

A fixation on a particular way of doing things is not limited to language conventions,
examples can be found in mathematics. For instance, WEIRD people have been drilled in
the use of a particular algorithm for dividing two numbers, which leads many to believe
that the number representation used by the Romans caused them serious difficulties with
division. Division of Roman numerals is straight-forward, if the appropriate algorithm is
used.360

Ethnographic studies of engineering culture have investigated a large high-tech company
in the mid-1980s,1057 and an internet startup that had just IPO’ed.1604

Hacker culture are communities of practice, and encompass a variety of belief systems.384

4.4.3 Software vendors

A company is a legal entity that limits the liability of its owners. The duty of the directors
of a company is to maximise the return on investment to shareholders. Commercial pres-
sure is often to deliver results in the short term rather than taking a longer term view.765

The first software company, selling software consulting services, was founded in March
1955.1049 Commercial software products, from third-parties, had to wait until computer
usage became sufficiently widespread that a profitable market for them was considered
likely to exist. One of the first third-party software products ran on the RCA 501, in 1964,
and created program flowcharts.921

The birth, growth, and death of companies1024 is of economic interest to governments
seeking to promote the economic well-being of their country. Company size, across coun-
tries and industries, roughly follows a Pareto distribution,461 while company age has an
exponential distribution;375 most companies are small, and die young.

Figure 4.39 shows the number of UK companies registered each month having the word
software (45,422 entries) or computer (18,001 entries) in their SIC description.

The development of a software system can involve a whole ecosystem of supply com-
panies. For instance, the winner of a contract to develop a large military system often
subcontracts-out work for many of the subsystems to different suppliers; each supplier
using different computing platforms, languages and development tools (Baily et al117 de-
scribes one such collection of subsystems). Subcontractors in turn might hire consultants,
and specialist companies for training and recruitment.376

Companies may operate in specific customer industries (which themselves may be busi-
ness ecosystems, e.g., the travel business), or a software ecosystem might be defined by
the platform on which the software runs, e.g., software running on Microsoft Windows.

108 4. Ecosystems

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●●
●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●●

●

● ●

●

●

● ●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●●
●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
● ●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

● ●
●●

●

●

●

●●

●
●
●●

●
●

●
●

●

●
●

●

● ●
●

●
●

●

● ●
●

●
●

●●

●

●

●●

●

●

●

●

●
●

●

●

●●

●●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●
● ●

● ● ●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47
48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70
71

72

73

74
75

76

77

78

79

80

81

82

83

84

85

86

87

8889

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105
106

107

108
109

110

111

112

113

114

115

116

117

118

119

120121

122

123

124

125

126

127

128

129
130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191 192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216
217

218

219

220

221

222

223

224

225
226

227

228

229

230

231
232

233

234

235

236

237

238

239

240

241

242

243

244
245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274
275

276

277

278279

280

281

282

283

284

285

286

287

288
289

290

291

292
293

294

295

296

297

298

299

300

301

302

303

304

305

306

307 308

309

310 311

312

313

314
315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378 379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

Figure 4.40: Connections between companies in a Dutch
software business network. Data kindly provided by
Crooymans.417 Github–Local

0

50

100

150

200

250

300

350

Age range

E
m

pl
oy

ed
 (

th
ou

sa
nd

s)

16−24 25−34 35−44 45−54 55−over

Figure 4.41: Number of people employed in the 12 com-
puter occupation codes assigned by the U.S. Census Bu-
reau during 2014, stratified by ages bands (main peak is
the total, “Software developers, applications and system
software” is the largest single percentage; see code for
the identity of other occupation codes). Data from Beck-
husen.161 Github–Local

A study by Crooymans, Pradhan and Jansen417 investigated the relationship connections
between companies in a local software business network. Figure 4.40 shows the relation-
ship links between these companies, with a few large companies and many smaller ones.xi

4.4.4 Career paths

The availability of computing power has resulted in many new industries being cre-
ated,1261 but the stability needed to establish widely recognised software industry specific
career paths has not yet occurred. A common engineering career path involves various
levels of engineering seniority, taking on increasing management responsibilities, poten-
tially followed by various levels of purely management activities;36 the Peter principle
may play a role in career progression.175

Coding was originally classified as a clerical activity (a significant under-appreciation of
the cognitive abilities required), and the gender-based division of working roles prevalent
during the invention of electronic computing assigned women to coding jobs; mens’ role
in the creation of software, during this period, included non-coding activities such as
specifying the formulas to be used.1142

What are the skills and knowledge that employers seek in employees involved in soft-
ware development, and what are the personal characteristics of people involved in such
occupations?xii

The U.S., the Occupational Information Network (O*NET)1416 maintains a database of
information on almost 1,000 occupations, based on data collected from people currently
doing the job.xiii The freely available data is aimed at people such as job seekers and HR
staff, and includes information on the skills and knowledge needed to do the job, along
with personal characteristics and experience of people doing the job.

Software companies employ people to perform a variety of jobs, including manage-
ment,1099 sales, marketing, engineering, Q/A, customer support, and internal support
staff, e.g., secretarial. A study911 of academic research units found that the ratio of sup-
port staff to academic staff was fitted by a power law having an exponent of around 1.30
(a hierarchical management model of one administrator per three sub-units produces an
exponent of 1.26). Figure 3.4 shows that even in a software intensive organization around
87% of revenue is spent on non-software development activities.

Employment opportunities are the stepping stones of a career path, and personal prefer-
ences will result in some opportunities being considered more attractive than others. The
popularity of particular software development activities301 will have an impact on the
caliber of potential employees available for selection by employers, e.g., maintenance ac-
tivities are perceived as low status, an entry-level job for inexperienced staff to learn.1803

What roles might people having a career in software development fill, what are the com-
mon role transitions, how many people are involved, and how long do people inhabit any
role?

Census information, and government employment statistics, are sources of data covering
people who might be considered to be software developers; however, this data may in-
clude jobs that are not associated with software development. A study by Gilchrist and
Weber681 investigated the number of employed computer personnel in the US in 1970.
The data for what was then known as automatic data processing included keypunching
and computer operations personnel; approximately 30% of the 810,330 xiv people appear
to have a claim to be software developers; see Github–ecosystems/50790641-II.R. This data
does not include software development classified under R&D.

Figure 4.41 shows the number of people, stratified by age, employed in the 12 computer
related U.S. Census Bureau occupation codes during 2014 (largest peak is the total).

People change, the companies they work for change, and software ecosystems evolve,
which creates many of opportunities for people to change jobs.445

xiTeams of students decided the companies to interview, and so some clustering is the result of students
using convenience sampling —email conversation with authors.

xiiGovernment and industry interest in the availability engineering employees predates the availability of
computers.209

xiiiThe O*NET website returns 20 matches for software developer occupations, at the time of writing; the
U.S. Census Bureau maintains its own occupational classification.

xiv127,491 working for the Federal government, 27,839 in state government extrapolated from data on 36
states and estimated 655,000 in private establishments.

4.5. APPLICATIONS AND PLATFORMS 109

1980 1985 1990 1995 2000
Year

C
ar

ee
r

pa
th

s

IT
School
Non−IT professional
Craft
Sales
Technician
Clerical
IT management
Non−IT manager
Unemployed

Figure 4.42: The job categories contained within the seven
career paths in which people spent at least five years
working in technical IT role. Data from Joseph et al.959

Github–Local

1 2 5 10 20 50 200 500
10

100

1000

10000

100000

Researcher

D
ol

la
rs

 a
w

ar
de

d

Mar 2014−Feb 2016
Nov 2013−Aug 2015

Figure 4.43: Sorted list of total amount awarded by bug
bounties to individual researchers, based on two datasets
downloaded from HackerOne. Data from Zhao et al2014

and Maillart et al.1192 Github–Local

0 10 20 30 40 50 60

4

5

6

7

8

9

Days since first use

T
im

e
sp

en
t (

m
in

ut
es

)

Paid
Free

Figure 4.44: Daily minutes spent using an App, from Ap-
ple’s AppStore (data from 2009); lines are a loess fit. Data
extracted from Ansar.63 Github–Local

When companies experience difficulties recruiting people with the required skills, salaries
for the corresponding jobs are likely to increase. A growing number of companies ask
employees to sign non-compete and no-poach agreements.1764 An antitrust action was
successfully prosecuted583 against Adobe, Apple, Google, Intel, Intuit, and Pixar for mu-
tually agreeing not to cold-call each other’s employees (with a view to hiring them).

Startups have become a form of staff recruitment, with large companies buying startup
companies to obtain a team with specific skills1669 (known as acqhiring or acqui-hiring).
One study999 found that acqui-hired staff had higher turn-over compared to regular hires.

A study212 of manufacturing industry found that family-friendly workplaces were asso-
ciated with a higher-skilled workforce and female managers; based on the available data,
there was no correlation with firm productivity.

One technique for motivating employees, when an organization is unable to increase their
pay, is to give them an impressive job title. UK universities have created the job title
research software engineer.978

A study by Joseph, Boh, Ang and Slaughter959 investigated the job categories within the
career paths of 500 people who had spent at least a year working in a technical IT role,
based on data drawn from the National Longitudinal Survey of Youth. Figure 4.42 shows
the seven career paths that (out of 13) included at least five years working in a technical
IT role.

There are opportunities for developers to make money outside formal employment.

Figure 4.43 shows a sorted list of the total amount earned by individuals through bug
bounty programs. Both studies downloaded data available on the HackerOne website; the
study by Zhao, Grossklags and Liu2014 used data from November 2013 to August 2015,
and the study by Maillart, Zhao, Grossklags and Chuang1192 used data from March 2014
to February 2016.

4.5 Applications and Platforms

A successful software system attracts its own ecosystem of users and third-party devel-
opers. The accumulation of an ecosystem may be welcomed and encouraged by the suc-
cessful owner, or it may be tolerated as a consequence of being successful.

Operating in a market where third-parties are tolerated by the apex vendor is a precarious
business. Small companies may be able to eek out a living filling small niches that are not
worth the time and effort for the apex vendor, or by having the agility to take advantage
of short-term opportunities.

In a few product ecosystems the first release is everything, there is little ongoing market.
Figure 4.44 shows the daily minutes spent using an App, installed from Apple’s App-
Store, against days since first used. This behavior was the case when people paid for
games software to play on their phones; a shift to in-game purchases created an ongoing
relationship.

In a rapidly evolving market, an ecosystem may effectively provide small companies
within it, resources that exceed those available to much larger companies seeking to do
everything themselves.

The rise of Open source has made it viable for substantial language ecosystems to flower,
or rather substantial package ecosystems, with each based around a particular language.
For practical purposes, a significant factor in language choice has become the quality and
quantity of their ecosystem.

4.5.1 Platforms

Platform businesses427 bring together producers and consumers, e.g., shopping malls link
consumers and merchants, and newspapers connect readers (assumed to be potential cus-
tomers) and advertisers; it is a two-sided market. Microsoft Windows is the poster child
of a software platform.

Platforms create value by facilitating interactions between third-party producers and con-
sumers; which differs from the value-chain model, which creates value by controlling a

110 4. Ecosystems

6 8 10 12 14

0.05

0.10

0.50

1.00

5.00

10.00

50.00

100.00

Unique devices

M
em

or
y

(k
by

te
)

Figure 4.45: Size of 40 operating systems (Kbytes, mea-
sured in 1975) capable of controlling a given number of
unique devices; line is a quadratic regression fit. Data
from Elci.539 Github–Local

sequence of activities. An organization may act as an aggregator, collecting and making
available items such as packages, source code, or job vacancies.

What has been called the Bill Gates line,1832 provides one method of distinguishing be-
tween an aggregator and a platform: “A platform is when the economic value of every-
body that uses it, exceeds the value of the company that creates it.”

Platform owners aim to maximize the total value extracted from their ecosystem. In some
cases this means subsidizing one kind of member to attract another kind (from which a
greater value can be extracted). For instance, Microsoft once made development tools
(e.g., compilers) freely available to attract developers, who wrote the applications that
attracted end-users (there are significantly fewer developers than end-users, and any profit
from selling compilers is correspondingly smaller).

Value-chains focus on customer value, and seek to maximize the lifetime value of indi-
vidual customers, for products and services.

Organizations gain an advantage by controlling valuable assets that are difficult imitate. In
the platform business the community, and the resources its members own and contribute is
a valuable, hard to copy, asset. In a value-chain model these assets might be raw materials
or intellectual property.

Building a platform requires convincing third-parties that it is worth joining, ecosystem
governance is an important skill.

An organization that can create and own a de facto industry standard does not need to
coordinate investments in creating the many enhancements and add-ons; an ecosystem of
fragmented third-parties can work independently, they simply need to adhere to an estab-
lished interface (what provides the coordination). The owner of a platform benefits from
the competition between third-parties, who are striving to attract customers by creating
desirable add-ons (which enhance the ecosystem, and fills the niches that are not worth
the time and effort of the apex vendor).

Platform owners want customers to have a favorable perception of the third-party appli-
cations available on their platform. One way that platform owners can influence customer
experience is to operate and police an App store that only allows approved Apps to be
listed. A study1919 of Google Play found that of the 1.5 million Apps listed in 2015, 0.79
million had been removed by 2017 (by which time 2.1 million Apps were listed).

Operating systems were the first software ecosystem, and OS vendors offered unique
functionality to third-party developers in the hope they would use it extensively in the
code they wrote (effectively increasing their own switching costs).

Vendors wanting to sell products on multiple operating systems have to decide whether to
offer the same functionality across all versions of their product (i.e., not using functional-
ity unique to one operating system to support functionality available to users of that OS),
or to provide some functionality that varies between operating systems.

The term middleware is applied to software designed to make it easier to port applications
across different operating systems; the Java language, and its associated virtual-machine,
is perhaps the most well-known example of middleware.

Operating system vendors dislike middleware because it reduces switching costs. Mi-
crosoft, with successive versions of Microsoft Windows, was a dominant OS vendor dur-
ing the 1990s and 2000s, and had an ecosystem control mechanism that others dubbed
embrace and extend. Microsoft licensed Java, and added Windows specific functionality
to its implementation, which then failed to pass the Java conformance test suite. Sun Mi-
crosystems (who owned Java at the time) took Microsoft to court and won;1950 Microsoft
then refused to ship a non-extended version of Java as part of Windows, Sun filed an
antitrust case and won.1319

Small organizations seeking to create a platform might start out by building a base within
an existing ecosystem. For instance, Zynga started as a games producer on the Facebook
ecosystem, but then sought to migrate players onto its own platform (where it controlled
the monetisation process).

4.5.2 Pounding the treadmill

Once a product ecosystem is established, investment by the apex vendor is focused on
maintaining their position, and growing the ecosystem. A recurring trend is for software

4.5. APPLICATIONS AND PLATFORMS 111

1996 2000 2004 2008

10

1000

100000

Year

P
df

 fi
le

s

1
1.1
1.2
1.3
1.4
1.5
1.6

Figure 4.46: Number of pdf files created using a given
version of the portable document format appearing on sites
having a .uk web address between 1996 and 2010. Data
from Jackson.906 Github–Local

0 50 100 150
0.05

0.10

0.20

0.50

1.00

2.00

5.00

10.00

20.00

50.00

System index

D
ev

el
op

m
en

t/M
ai

nt
en

an
ce

Figure 4.47: Ratio of development costs to average annual
maintenance costs (over 5-years) for 158 IBM software
systems sorted by size; curve is a beta distribution fitted to
the data (in red). Data from Dunn.517 Github–Local

ecosystems to lose their business relevance, with the apex vendor remaining unchanged;
see section 1.2.

Once up and running, some bespoke software systems become crucial assets for operating
a business, and so companies have no choice but to pay whatever it takes to keep them
running. From the vendors’ perspective, maintenance is the least glamorous, but often
the most profitable aspect of software systems; companies sometimes underbid to win a
contract, and make their profit on maintenance activities; see chapter 5.

Over time, customers’ work-flow molds itself around the workings of software products;
an organization’s established way of doing things evolves to take account of the behavior
of the software it uses; staff training is a sunk cost. The cost of changing established
practices, real or imaginary, is a moat that reduces the likelihood of customers switching
to competing products; it is also a ball-and-chain for the vendor, in that it can limit product
updates to those that do not generate costly changes for existing customers. At some point
the profit potential of new customers may outweigh that of existing customers, resulting
in a product update that requires existing customers to make a costly investment before
they can adopt the new release.

Pressure to innovate comes from the economic benefits of having the installed base up-
grade. Continual innovation avoids the saturation of demand, and makes it difficult for
potential competitors to create viable alternatives.

Commercial products evolve when vendors believe that investing in updates is economi-
cally worthwhile. Updated versions of a product provide justification for asking customers
to pay maintenance or upgrade fees, and in a competitive market work to maintain, or
improve, market position, and address changing customer demand; product updates also
signal to potential customers that the vendor has not abandoned the product (unfavourable
publicity about failings in an existing product can deter potential new customers).

Product version numbers can be used to signal different kinds of information, such as
which upgrades are available under a licensing agreement (e.g., updates with changes to
the minor version number are included), and as a form of marketing to potential customers
(who might view higher numbers as a sign of maturity). The release schedule and version
of some systems is sufficiently stable that a reasonably accurate regression model can be
fitted;1883 see Github–regression/release_info/cocoon_mod.R.

The regular significant improvement in Intel cpu performance (see fig 4.15), starting in the
last 1980s, became something that was factored into software system development, e.g.,
future performance improvements could be used as a reason for not investing much effort
in tuning the performance of the next product release.

Files created by users of a product are a source of customer switching costs (e.g., cost
of conversion), and vendor ball-and-chain, e.g., the cost of continuing to support files
created by earlier versions. File written using a given format can have very long lifetime;
a common vendor strategy is to continue supporting the ability to read older formats, but
only support the writing of more recent formats. A study by Jackson906 investigated pdf
files created using a given version of the pdf specification. Figure 4.46 shows the total
number of pdf files created using a given version of the pdf specification, available on
websites having a .uk web domain between 1996 and 2010 (different pdf viewers do not
always consistently generate the same visual display from the same pdf file1051).

A few software systems have existed for many decades, and are expected to last many
more decades, e.g., simulation of nuclear weapon performance1512 (the nuclear test-ban
treaty prohibits complete device testing).

What are the costs associated with maintaining a software system?

A study by Dunn517 investigated the development and maintenance costs of 158 software
systems developed by IBM (total costs over the first five years); some of these contained
a significant percentage of COTS components. The systems varied in size from 34 to
44,070 man-hours of development effort, and involved from 21 to 78,121 man-hours of
maintenance. Figure 4.47 shows the ratio of development to average annual maintenance
cost. The data is for systems at a single point in time, i.e., 5-years. Modeling, using
expected system lifetime, finds that the mean total maintenance to development cost ratio
is less than one; see Github–ecosystems/maint-dev-ratio.R. The correlation between develop-
ment and maintenance man-hours is 0.5 (0.38-0.63 is the 95% confidence interval); see
Github–economics/maint-dev-cost-cor.R.

Hedonism funded software systems continue to change for as long as those involved con-
tinue to enjoy the experience.

112 4. Ecosystems

0.01 1.00 100.00

1

10

100

1000

10000

Execution time (sec)

P
ro

ce
ss

es

Figure 4.48: Number of Unix processes executing for a
given number of seconds, on a 1995 era computer. Data
from Harchol-Balter et al.776 Github–Local

54 56 58 60 62 64 66 68

5

10

20

50

100

200

500

1000

2000

5000

Year

In
st

ru
ct

io
ns

 (
K

)

650

Datatron

704

709
7070

1604
1604

1401

1401
7090

360

650

7040

360

360

Figure 4.49: Total instructions contained in the software
shipped with various models of IBM computer, plus Data-
tron from Burroughs; line is a fitted regression of the form:
Instructions ∝ e0.4Year . Data extracted from Naur et al.1357

Github–Local

The issues around fixing reported faults during maintenance are discussed in chapter 6.
In safety critical applications the impact of changes during maintenance has to be thought
through;451 this issue is discussed in chapter 6.

4.5.3 Users’ computers

A software system has to be usable within the constraints of the users’ hardware, and the
particular libraries installed on their computer.

The days when customers bought their first computer to run an application are long gone.
Except for specialist applications1089 and general hardware updates, it is not usually cost
effective for customers to invest in new computing hardware specifically to run an applica-
tion. Information on the characteristics of existing customer hardware is crucial because
software that cannot be executed with a reasonable performance in the customer envi-
ronment will not succeed (figure 8.27 shows the variation in basic hardware capacity of
desktop systems).

The distribution of process execution times often has the form of either power law or an
exponential.585 In large computer installations, workload analysis,585 analyzing computer
usage and balancing competing requirements to maximise throughput, may employ teams
in each time zone. Figure 4.48 shows the distribution of the execution time of 184,612
processes running on a 1995 era Unix computer.

Obtaining solutions to a few problems is sufficiently important that specialist computers
are built to run the applications, e.g., super computers (see Github–Rlang/Top500.R), and
bespoke hardware to solve one problem.1682

4.6 Software development

Most computer hardware is brought because it is needed to run application software,xv

i.e., software development is a niche activity.

Computers were originally delivered to customers as bare-metal (many early comput-
ers were designed and built by established electronics companies649); every customer
wrote their own software, sometimes obtaining code from other users.xvi As experience
and customers accumulated,108 vendors learned about the kinds of functionality that was
useful across their customer base.277 Supplying basic software functionality needed by
customers decreased computer ownership costs, and increased the number of potential
customers.

Figure 4.49 shows how the amount of code shipped with IBM computers increased over
time. Applications need to receive input from the outside world, and produce output in a
form acceptable to their users; interfacing to many different peripherals is a major driver
of OS growth, see figure 4.45.

All software for the early computers was written using machine code, which made it
specific to one particular kind of computer. New computers were constantly being intro-
duced, each having different characteristics (in particular machine instructions).206, 1252, 1941, 1942

Machine independent programming languages (e.g., Fortran in 1954107 and Cobol in
1961171) were created with the aim of reducing costs. The cost reduction came through
reducing the dependency of program source code on the particular characteristics of the
hardware on which it executed, and reuse of programming skills learned on one kind of
computer to different computers, e.g., removing the need to learn the assembly language
for each new machine.

4.6.1 Programming languages

Organizations with an inventory of source code have an interest in the current and future
use of programming languages: more widely used languages are likely to have more
developers capable of using it (reducing hiring costs), likely to have more extensive tool

xvYour author has experience of companies buying hardware without realising that applications were not
included in the price.

xviSoftware user-groups are almost as old as computers.71

4.6. SOFTWARE DEVELOPMENT 113

1950 1960 1970 1980 1990 2000
0

50

100

150

200

250

300

Year

N
ew

 la
ng

ua
ge

s

Figure 4.50: Number of new programming languages, per
year, described in a published paper. Data from Pigott et
al.1487 Github–Local

2 4 6 8 10 12

0.1

0.5

1.0

5.0

10.0

50.0

100.0

500.0

Debian release

S
LO

C
 (

m
ill

io
n)

C
C++
Java
Python
sh

Figure 4.51: Lines of code written in the 32 programming
languages appearing in the source code of the 13 major
Debian releases between 1998 and 2019. Data from the
Debsources developers.465 Github–Local

support (than less widely used languages), and are likely to be available on a wider range
of platforms.

Some people enjoy creating new language, writers of science fiction sometimes go to great
length to create elaborate, and linguistically viable, languages for aliens to speak.1603 Fac-
tors found to influence the number of human languages actively used, within a geographic
region, include population size, country size, and the length of the growing season;1367

see Github–ecosystems/009_.R.

The specification of Plankalkül, the first high-level programming language, was published
in 1949;147, 2034 the specification of a still widely used language (Fortran) was published
in 1954.883 A list of compilersxvii for around 25 languages appears in a book722 published
in 1959 (see Github–ecosystems/Grabbe_59.txt), and in 1963 it was noted788 that creating
a programming language had become a fashionable activity. A 1976 report605 estimated
that at least 450 general-purpose languages and dialects were currently in use within the
US DoD.

Many thousands of programming languages have been created, but only a handful have
become widely used. Figure 4.50 shows the number of new programming languages, per
year, that have been described in a published paper.

Despite their advantages,1583 high-level languages did not immediately displace machine
code for the implementation of many software systems. A 1977 survey1756 of program-
mers in the US Federal Government, found 45% with extensive work experience, and
35% with moderate work experience, of machine code. Developing software using early
compilers could be time-consuming and labor-intensive; memory limits required compil-
ing to be split into a sequence of passes over various representations of the source (often
half-a-dozen or more256), with the intermediate representations being output on paper-
tape, which was read back in as the input to the next pass (after reading the next compiler
pass from the next paper-tape in the sequence), eventually generating assembler. Some
compilers required that the computer have an attached drum-unit109 (an early form of
hard-disk), which was used to store the intermediate forms (and increase sale of peripher-
als). Developer belief in their own ability to produce more efficient code than a compiler
was also a factor.108

The creation of a major new customer facing ecosystem provides an opportunity for new
languages and tools to become widely used within the development community working
in that ecosystem. For instance, a new language might provide functionality often re-
quired by applications targeting users of particular ecosystem, that is more convenient to
use (compared to preexisting languages), alternatively there may only be one language
initially available for use, e.g., Solidity for writing Ethereum contracts.

Within geographical, or linguistic, separated regions the popularity of existing languages
has sometimes evolved along different paths, e.g., Pascal remained popular in Russia1194

longer than elsewhere, and in Japan Cobol remains widely used.27

Existing languages and their implementations evolve. Those responsible for maintaining
the language specification add new constructs (which are claimed to be needed by devel-
opers), and compiler vendors need to add new features to have something new to sell to
existing customers. One consequence of language evolution is that some implementations
may not support all the constructs contained in the source code used to build a program.177

A history of the evolution1769 of Lisp lists the forces driving its evolution: “Overall, the
evolution of Lisp has been guided more by institutional rivalry, one-upsmanship, and the
glee born of technical cleverness that is characteristic of the "hacker culture" than by sober
assessments of technical requirements.”

There are incentives for vendors to invest in a language they control, when they also con-
trol a platform supporting an ecosystem of applications written by third-parties, e.g., C]

on Microsoft Windows, Objective-C on iOS, and Kotlin on Android. Writing an applica-
tion in the vendor’s ecosystem language is a signal of commitment (because it entails a
high switching cost).

The legal case between Oracle and Google, over Java copyright issues,44 motivated the
need for a Java compatible language that was not Java; Kotlin became available in 2017.
Developers have started to use Kotlin specific features in their existing Java source.1220

The term language popularity suggests that the users of the language have some influence
on the selection process, and like the language in some way. In practice developers may

xviiThe term compiler was not always applied in the sense that is used today.

114 4. Ecosystems

2012 2013 2014 2015 2016 2017
0.0

0.5

1.0

1.5

2.0

Date

S
la

ck
ne

ss

SQL
Windows
C
Linux
Python

Figure 4.52: Monthly labor market slack (i.e., applications
per days vacancy listed) for jobs whose description in-
cluded a particular keyword (see legend). Data from Davis
et al.445 Github–Local

2011 2012 2013

100

200

500

1000

2000

5000

10000

Date

Tw
ee

ts

Java
PHP
C/C++/C...
Javascript
Python
Flash

Figure 4.53: Number of monthly developer job related
tweets specifying a given language. Data kindly provided
by Destefanis.486 Github–Local

2010 2012 2014 2016 2018
5

10

15

20

25

30

Year

Ta
gs

 (
no

rm
al

is
ed

 p
er

ce
nt

ag
e)

c#
javascript
java
python
php
sql
c++
objective−c
r

Figure 4.54: Normalised percentage of 34 language tags
associated with questions appearing on Stack Overflow in
each month. Data extracted from Stack Overflow web-
site.938 Github–Local

not have any say in the choice of language, and may have no positive (or negative) feelings
towards the language. However, this term is in common use, and there is nothing to be
gained by using something technically correct.

Figure 4.51 shows the number of lines contained in the source code of the 32 major
releases of Debian, broken down by programming language (the legend lists the top five
languages).

Sources of information on language use include:

• Job adverts: The number of organizations that appear to be willing to pay money to
someone to use a language, is both a measure of actual usage and perceived popularity.
Languages listed in job adverts are chosen for a variety of reasons including: appearing
trendy in order to attract young developers to an interview, generating a smokescreen to
confuse competitors, and knowledge of the language is required for the job advertised.

A study by Davis and de la Parra445 investigated the monthly flow of jobs on an online
job market-place owned by DHI (approximately 221 thousand vancies posted, and 1.1
million applications). Figure 4.52 shows the labour market slack (calculated, for each
month and keyword, as applications for all applicable vacancies divided by the sum
of the number of days each vacancy was listed) for jobs postings whose description
included a particular keyword.

Social media includes postings to employment websites and adverts for jobs. Fig-
ure 4.53 shows the number of monthly developer job related tweets that included a
language name,

• quantity of existing code: the total quantity of existing code might be used as a proxy for
the number of developers who have worked with a language in the past (see fig 11.10);
recent changes in the quantity of existing code is likely to provide a more up to date
picture,

• number of books sold:804 spending money on a book is an expression of intent to learn
the language. The intent may be a proxy for existing code (i.e., learning the language
to get a job, or work on a particular project), existing course curriculum decisions, or
because the language has become fashionable.

Sales data from individual publishers is likely to be affected by the popularity of their
published books, and those of competing publishers; see Github–ecosystems/LangBooksSold.R,

• miscellaneous: prior to the growth of open source, the number of commercially avail-
able compilers was an indicator of size of the professional developer market for the
language.

Question & answer websites are unreliable indicators because languages vary in com-
plexity, and questions tail off as answers on common issues become available. Fig-
ure 4.54 shows the normalised percentage of language related tags associated with
questions appearing on Stack Overflow each month.

Application domain specific usage, such as mobile phone development,1562 embedded
systems in general,1838, 1861 and Docker containers.364

US Federal government surveys of its own usage: a 1981 survey390 found most pro-
grams were written in Cobol, Fortran, Assembler, Algol and PL/1, a 1995 survey850 of
148 million LOC in DOD weapon systems Ada represented 33%, the largest percentage
of any language (C usage was 22%).

Books are a source of programming language related discussion going back many
decades Language names such as Fortran and Cobol are unlikely to be used in non-
programming contexts, while names such as Java and Python are more likely to be used
in a non-programming context. Single letter names, such as C, or names followed by
non-alphabetic characters have a variety of possible interpretations, e.g., the phrase in
C appears in music books as a key signature, also the OCR process sometimes inserts
spaces that were probably not in the original. The lack of context means that any anal-
ysis based on the English unigrams and bigrams from the Google books project1276 is
likely to be very noisey.

Applications can only be ported to a platform when compilers for the languages used are
available. The availability of operating systems and device drivers written in C, means
that a C compiler is one of the first developer tools created for a new processor.

Will today’s widely used languages continue to be reasonably as popular over the next
decade (say)? Some of the factors involved include:

4.6. SOFTWARE DEVELOPMENT 115

1992 1994 1996 1998 2000 2002

10

20

30

40

50

Date

U
ni

ve
rs

iti
es

 (
pe

rc
en

ta
ge

)

Pascal
C++
Scheme
Ada
C
Modula
Java

Figure 4.55: Percentage of universities reporting the first
language used to teach computer science majors. Data
from Reid, via the Wayback Machine,.1572 Github–Local

1 5 50 500 5000

200

500

1000

2000

Builtins implemented

P
ro

je
ct

s
fu

lly
 s

up
po

rt
ed

Figure 4.56: Cumulative number of Github projects that
can be built as more gcc built-ins are implemented. Data
from Rigger et al.1585 Github–Local

200 400 600 800 1000
1

100

10000

POSIX function (in ranked order)

P
ac

ka
ge

s

Android apps
Ubuntu packages

Figure 4.57: Number of Android/Ubuntu (1.1 million
apps)/(71,199 packages) linking to a given POSIX func-
tion (sorted into rank order). Data from Atlidakis et al.85

Github–Local

• implementing a software system is expensive; it is often cheaper to continue working
with what exists. The quantity of existing source contained in commercially supported
applications is likely to be a good indicator of continuing demand for developers capa-
ble of using the implementation language(s),

• in a rapidly changing environment developers want to remain attractive to employers,
there is a desire to have a CV that lists experience in employable languages. Perception
(i.e., not reality) within developer ecosystems about which languages are considered
worthwhile knowing, becoming popular or declining in usage/popularity,1272

• Open source developers may choose to use a language because it is the one they were
first taught. Reid1572 investigated the first language used in teaching computer science
majors; between 1992 and 1999 over 20 lists of languages taught were published, with
an average of 400+ universities per list. More recent surveys1702 have been sporadic.
Figure 4.55 shows the percentage of languages taught by at least 3% of the responding
universities. The main language taught in universities during the 1990s (i.e., Pascal)
ceased being widely used in industry during the late 1980s.

Compiler vendors enhance their products by supporting features not specified in the lan-
guage standard (if one exists). The purpose of adding these features is to attract customers
(by responding to demand), and over time to make it more difficult for customers to switch
to a different vendor. Some language implementations become influential because of the
widespread use of the source code they compile (or interpret). The language extensions
supported by an influential implementation have to be implemented by any implementa-
tion looking to be competitive for non-trivial use.

A study by Rigger, Marr, Adams and Mössenböck1585 investigated the use of compiler
specific built-in functions supported by gcc, in 1,842 Github projects. In C and C++ source
code, use of built-ins appear as function calls, but are subject to special processing by the
compiler. Analysis of the C compiler source found 12,339 distinct built-ins (some were
internal implementations of other built-ins), and 4,142 unique built-ins were encountered
in the C projects analysed. Figure 4.56 shows the cumulative growth in the number of
Github projects supported, as support is added for more built-ins (the growth algorithm
assumes an implementation order based on the frequency of unique built-in usage across
projects).

4.6.2 Libraries and packages

Program implementation often involves functionality that is found in many other pro-
grams, e.g., opening a file and reading from it, and writing to a display device. Developers
working on the first computers had access to a library of commonly used functions,1961

and over time a variety of motivations have driven the creation and supply of libraries.

Some programming languages were designed with specific uses in mind, and include sup-
port for application domain library functions, e.g., Fortran targeted engineering/scientific
users and required implementations to provide support for trigonometric functions, Cobol
targeted business users, and required support for sorting.xviii

Manufacturers discovered that the libraries they had bundled with the operating system204

to attract new customers, could also be used to increase customer lock-in (by tempting
developers with extensive library functionality having characteristics specific to the man-
ufacturer, that could not be easily mapped to the libraries supplied by other vendors).

The decreasing cost of hardware, and the availability of an operating system, in the form
of Unix source code, enabled many manufacturers to enter the minicomputer/worksta-
tion market.303 Vendors’ attempts to differentiate their product lines led to the Unix
wars1631, 1632 of the 1980s (in the mid-1990s, platforms running a Unix-derived OS typi-
cally shipped with over a thousand C/C++ header files930).

The POSIX standard899 was intended provide the core functionality needed to write
portable programs; this functionality was derived from existing implementation practice
of widely used Unix systems.2032 POSIX became widely supported (in part because large
organizations, such as the US Government, required vendors to supply products that in-
cluded POSIX support, although some implementations felt as-if they were only intended
to tick a box during a tender process, rather than be used).

xviiiThe C Standard specifies support for some surprising functions, surprising until it is realised that they are
needed to implement a C compiler, e.g., strtoul.

116 4. Ecosystems

1 5 10 50 500
0.01

0.10

1.00

10.00

100.00

Rank

P
ac

ka
ge

s
(p

er
ce

nt
)

libc
system calls
pseudo
ioctl

Figure 4.58: Percentage of packages referencing a partic-
ular API provided by a given service (sorted in rank or-
der); grey lines are a fitted power law and exponential, to
ioctl and libc respectively. Data from Tsai et al.1848

Github–Local

0 1000 2000 3000 4000 5000
0.0

0.2

0.4

0.6

0.8

1.0

Days

S
ur

vi
va

l r
at

e

Package (latest version)
Package (any version)

Figure 4.59: Survival curve of packages included in 10
official Debian releases, and inclusion of the same release
of a package; dashed lines are 95% confidence intervals.
Data from Caneill et al.299 Github–Local

790
3

5250

203

1

1157

3789

BioconductorCRAN

Github

790
3

5250

203

1

1157

3789

BioconductorCRAN

Github

Figure 4.60: Number of packages in three widely used
R repositories (during 2015), overlapping regions show
packages appearing in multiple repositories (areas not to
scale). Data from Decan et al.468 Github–Local

A study by Atlidakis, Andrus, Geambasu, Mitropoulos and Nieh85 investigated POSIX
usage (which defines 1,177 functions) across Android 4.3 (1.1 million apps measured,
790 functions tracked, out of 821 implemented) and Ubuntu 12.04 (71,199 packages mea-
sured, 1,085 functions tracked, out of 1,115 implemented). Figure 4.57 shows the use of
POSIX functions by Apps/packages available for the respective OS (these numbers do not
include calls to ioctl, whose action is to effectively perform an implementation defined
call).

Linux came late to the Unix wars, and emerged as the primary base Unix kernel. The
Linux Standard Basexix is intended to support a binary compatibility interface for appli-
cation executables; this interface includes pseudo-file systems (e.g., /proc) that provide
various kinds of system information.

A study by Tsai, Jain, Abdul and Porter1848 investigated use of the Linux API by the
30,976 packages in the Ubuntu 15.04 repository, including system calls, calls to function
in libc, ioctl argument value, and pseudo-file system usage (the measurements were
obtained via static analysis of program binaries). Figure 4.58 shows each API use (e.g.,
call to a particular function or reference to a particular system file) provided by the respec-
tive service, as a percentage of the possible 30,976 packages that could reference them, in
API rank order.

The internet created a new method of software distribution: a website. People and orga-
nizations have built websites to support the distribution of packages available for a partic-
ular language (rather than a particular OS), and some have become the primary source of
third-party packages for their target language, e.g., npm for Javascript, and CRAN for R.

Publicly available package repositories are a relatively new phenomena; a few were started
in the mid-1990s (e.g., CRAN and CPAN), and major new repositories are still appearing 15-
years later, e.g., Github in 2008 and npm in 2010. The age of a repository can have a large
impact on the results of an analysis of the characteristics measured, e.g., rate of change is
likely to be high in the years immediately after a repository is created.

Package repositories are subject to strong network effects. Developers want to minimise
the effort invested in searching for packages, and the repository containing the most pack-
ages is likely to attract the most searches; also, the number of active users of a repository
is a signal for authors of new packages, seeking to attract developers, who need to choose
a distribution channel.

A study by Caneill and Zacchiroli299 investigated package usage in the official Debian re-
leases and updates. Figure 4.59 shows the survival curve of the latest version of a package
included in 10 official Debian releases, along with the survival of the same version of a
package over successive releases.

A niche market may be large enough, and have sufficiently specialist needs, for a repos-
itory catering to its requirements to become popular within the niche, e.g., the Biocon-
ductor website aims to support the statistical analysis of biological assays and contains a
unique collection of R packages targeting this market.

Figure 4.60 shows the number of R packages in three large repositories (a fourth, R-forge
is not displayed), along with the number of packages present in multiple repositories
(colored areas not scaled by number of packages). Each website benefits from its own
distinct network effects, e.g., Github provides repositories, and gives users direct control
of their files.

The requirements, imposed by the owners of a repository, for a package to be included,
may add friction to the workflow of a package under active development, e.g., package
authors may want the latest release to be rapidly available to potential users. For instance,
some R packages under active development are available on GitHub, with updates being
submitted to CRAN once they are stable (some package have dependencies on packages in
the other repositories, and dependency conflicts exist469).

In some cases a strong symbiotic relationship between a language and package ecosystem
has formed, which has influenced the uptake of new language revisions, e.g., one reason
for the slowed uptake of Python 3 has been existing codes’ use of packages that require
the use of Python 2.

Many packages evolve, and versioning schemes have been created to provide informa-
tion about the relative order of releases and the compatibility of a release with previous

xixLSB 3.1 was first published as an ISO Standard in 2006, it was updated to reflect later versions of the LSB
in. The Linux API has evolved.114

4.6. SOFTWARE DEVELOPMENT 117

0 500 1500 2500 3500
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Days

S
ur

vi
va

l

Debian packages
No conflict

Figure 4.61: Survival curves for Debian package lifetime
and interval before a package contains its first dependency
conflict; dashed lines are 95% confidence intervals. Data
from Drobisz et al.511 Github–Local

5 10 15
100

200

500

1000

2000

5000

10000

Age (releases)

A
P

Is

Figure 4.62: Number of Android APIs surviving a given
number of releases (measured over 17 releases), with fitted
regression lines. Data from Li et al.1126 Github–Local

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1819

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

4647

48

49

50

51

5253

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136137

138

139

140

141

142

143

144

145

146147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169170171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196197198199200

201

202

203

204

205206

207

208

209

210

211

212213214

215

216

217

218

219

220

221222223

224

225

226

227

228

229

230231232

233

234

235

236

237238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256257

258

259

260

261

262

263

264

265

266

267

268

269270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297298

299

300301

302

303

304305306

307

308

309

310

311

312

313

314

315

316317

318

319

320

321322

323

324

325

326

327

328

329

330

331

332333

334

335

336337338339340341

342

343

344

345346347348349

350351

352353

354

355

356357

358

359360

361

362363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387388

389

390

391392393

394

395

396

397398399400

401

402

403

404405

406

407

408

409

410

411412

413

414

415

416417418

419

420421

422

423

424

425

426

427428

429

430

431

432

433

434435

436

437

438

439

440

441442443444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460
461

462463464465466467468

469

470

471472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533534535536

537

538

539540

541

542

543

544

545

546

547

548549

550

551

552553

554

555

556

557

558

559560

561

562

563

564

565

566

567

568

569

570571572

573

574

575

576

577

578

579

580581582

583

584

585

586

587588

589

590

591

592

593

594

595

596

597598

599

600601602

603

604

605

606

607

608609

610

611612

613

614

615

616

617

618619

620

621

622

623

624

625

626

627628629

630

631

632

633

634635

636

637

638

639640

641

642

643

644

645646647

648

649

650

651

652

653

654

655

656

657658659

660

661

662

663

664

665666

667

668

669670671672

673

674

675676677

678

679

680

681

682

683

684

685

686

687

688

689690691692

693

694

695

696

697

698

699700

701
702

703
704

705

706

707

708

709

710

711

712

713

714

715

716

717718

719

720

721

722

723

724

725

726

727728

729

730

731

732

733734

735

736

737738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867868869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893894895

896

897898

899

900

901

902903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942943

944

945

946

947

948

949

950

951

952

953

954

955

956

957958

959

960

961

962963

964

965

966

967

968

969970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992993994995

996

997998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

101410151016

1017

1018

1019

1020

1021

1022

1023

1024

10251026

1027

1028

1029

1030

1031

1032

1033

103410351036

1037

103810391040

1041

10421043

1044

1045

1046

1047

1048

1049

1050

105110521053

1054

1055

1056105710581059

1060

1061

1062

1063

1064

10651066

1067

10681069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

10981099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

11121113

111411151116111711181119

1120

11211122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

11621163

1164

1165

1166

1167

116811691170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197
1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

12141215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231
1232

1233

12341235

1236

1237

1238

1239

1240

1241

1242

12431244

1245

1246

1247

1248

1249

1250

1251
1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

128912901291129212931294

1295

1296

1297

1298

1299

1300

1301

1302

1303

13041305

1306

1307

13081309

1310

131113121313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

133113321333

1334

1335

1336

1337

1338

1339

1340

13411342134313441345

1346

13471348

1349

13501351

1352

1353

1354

13551356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

13761377

1378

1379

138013811382

1383

1384

1385
1386

1387138813891390

1391

1392

13931394

1395

1396

1397

1398

13991400

1401

14021403

1404

1405

140614071408

1409

1410

1411

141214131414

1415

1416

14171418

1419

1420

14211422

1423

1424

1425

1426142714281429

1430

1431

14321433

1434

1435143614371438

1439

1440

1441

1442

144314441445

1446

14471448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

14591460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

147514761477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

14921493

1494

1495149614971498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514151515161517

1518

15191520

1521

1522

1523

1524

1525

15261527

1528

1529

1530

1531

153215331534153515361537

1538

1539154015411542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

156315641565

1566

1567

1568

1569

15701571

1572

1573

1574

1575

15761577

1578

1579

15801581

1582

15831584158515861587

1588

1589

1590

1591

1592

1593

1594

1595

1596

15971598

1599

160016011602

1603

1604

1605

1606

1607
1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

163716381639

1640

1641

164216431644

1645

1646

1647

16481649

1650

1651

1652

1653

1654

1655

16561657

1658

1659

16601661

1662

1663

Figure 4.63: Phylogenetic tree of 1,663 cryptocur-
rency implementations, based on the fraction of shared
source code files. Data kindly provided by Yousaf.1570

Github–Local

releases. The semver1530 semantic versioning specification has become widely used; the
version string contains three components denoting a major release number (not guaran-
teed to be compatible with previous releases), minor release number (when new function-
ality is added), and patch number (correction of mistake(s)).

Package managers often provide a means of specifying version dependency constraints,
e.g., ˆ1.2.3 specifies a constraint that can be satisfied by any version between 1.2.3 and
2.0.0. Studies466 have found that package developers’ use of constraints does not always
fully comply with the semver specification.

The installation of a package may fail because of dependency conflicts between the pack-
ages already installed and this new package, e.g., installed package P1 may depend on
package P2 having a version less than 2.0, while package P3 depends on package P2 hav-
ing a version of at least 2.0. A study by Drobisz, Mens and Di Cosmo511 investigated
Debian package dependency conflicts. Figure 4.61 shows the survival curve of package
lifetime, and the interval to a package’s first conflict.

A study by Decan, Mens and Claes467 investigated how the package dependencies of
three ecosystems changed over time (npm over 6-years, CRAN 18-years, and RubyGems
over 7-years). The dependencies in roughly two-thirds of CRAN and RubyGems packages
specified greater-than or equal to some version, with the other third not specifying any
specific version; npm package dependencies specified greater-than in just under two-thirds
of cases, with a variety of version strings making up the other uses (particular version
numbers were common); see Github–ecosystems/SANER-2017.R

Third-party libraries may contain undocumented functionality that is accessible to devel-
opers. This functionality may be intended for internal library use, and is only accessible
because it is not possible to prevent developers accessing it; or, the vendor intent is to
provide privileged access to internal functionality for their own applications, e.g., Mi-
crosoft Word using undocumented functionality in the libraries available in Microsoft
Windows.658

There may be a short term benefit for developers making use of internal functionality,
that makes it worth the risk of paying an unknown cost later if the internal functionality
is removed or modified; see fig 11.76. Information on undocumented functionality in
Microsoft Windows was widely available,1655 with major Windows updates occurring
every three years, or so.

Major updates to Android have occurred once or twice a year (see fig 8.37), and figure 4.62
shows how the lifetime of internal functionality has been declining exponentially.

When creating an application that is very similar to another application, if the source code
is available it can be treated as a library from which to pick and choose functionality to
reuse in the new application (assuming license compatibility).

A study by Reibel, Yousaf and Meiklejohn1570 investigated the sharing of source code
files across 1,663 cryptocurrency platforms. Figure 4.63 shows a phylogenetic tree based
on the similarity of implementations across 1,663 cryptocurrency platforms (based on the
fraction of identical source code files shared between implementations).

4.6.3 Tools

Computer manufacturers were the primary suppliers of software development tools until
suppliers of third-party tools gained cost-effective access to the necessary hardware, and
the potential customer base became large enough to make it commercially attractive for
third-parties to create and sell tools.

When developer tools are sold for profit, the vendor has an incentive to keep both cus-
tomer and the tool users happy.xx Open source has significantly reduced the number of
customers for some tools (e.g., compilers), without decreasing the number of users. A
company creating their own cpu needs to support at least a C compiler. Funding the im-
plementation of a code generator, based on an Open source compiler allows them to make
available a free compiler tool chain for their cpu; the users of this tool chain are the actual
product.

The development environment in which tools are used can have a big impact on the func-
tionality provided, with sophisticated functionality being dropped in new products only

xxCustomers pay money, users use; a developer can be both a customer and a user.

118 4. Ecosystems

2000 2005 2010 2015

10

20

50

100

200

Date

O
pt

io
ns

Optimization
Warning
C++ Language
C Language
Linker

Figure 4.64: Number of gcc compiler options, for all sup-
ported versions, relating to languages and the process of
building an executable program. Data extracted from gcc
website.662 Github–Local

1995 2000 2005 2010 2015

10

20

50

100

200

500

1000

2000

Date

Ite
m

s
(t

ho
us

an
d)

Words in Intel x86 manual
Code−points in Unicode

Figure 4.65: Words in Intel x86 architecture manuals,
and code-points in Unicode Standard over time. Data
for Intel x86 manual kindly provided by Baumann.149

Github–Local

to reappear again many years later. For instance, during the early years of computing, in-
teraction with computers was usually via batch processing, rather than one-line access;694

users submitted a job for the computer to perform (i.e., a sequence of commands to exe-
cute), and it joined the queue of jobs waiting to be run. Developers might only complete
one or two edit/compile/execute cycles per day. In this environment, high quality compiler
error recovery can significantly boost developer productivity; having an executable for an
error corrected version of the submitted source (along with a list of errors found), gives de-
velopers a binary that may be patched to do something useful.xxi Borland’s Turbo-Pascal
stopped compiling at the first error it encountered, dropping the user into an editor with
the cursor located at the point the error was detected. Compilation was so fast, within its
interactive environment on a personal computer, developers loved using it. Error recovery
in modern compilers, at the time of writing, has yet to return to the level of sophistication
available in some early mainframe compilers.

Adding support for new language features, new processors and environments is a source
of income for compiler vendors; the performance of code generated by compilers are
often benchmarked, to find which generates the faster and/or more compact code.

Compile time options provide a means for users to tailor compiler behavior to their needs.
Figure 4.64 shows the number of options supported by gcc for specific C and C++ options,
and various compiler phases, for 96 releases between 1999 and 2019; during this time the
total number of supported options grew from 632 to 2,477.

Support for an option is sometimes removed; of the 1,091 non-processor specific options
supported, 214 were removed before release 9.1. Since 1999, the official release of GCC
has included support for 80 cpus, with support for 20 of these removed before release 9.1;
see fig 4.13.

4.6.4 Information sources

Readily available sources of reliable information can help reduce the friction of working
within an ecosystem, and can significantly reduce the investment that has to be made by
outsiders to join an ecosystem.

Vendors that support an API have to document the available interfaces and provide exam-
ples, if they want developers, third-party or otherwise, to make use of the services they
provide. APIs evolve, and the documentation has to be kept up todate.1694 The growth
of popular APIs, over time, can result in an enormous collection of documentation, e.g.,
the 130+ documents for the Microsoft Server protocol specifications1277 contain over 16
thousand pages; see fig 8.24. Figure 4.65 shows how the number of words in Intel’s x86
architecture manual has grown over time.

Books are a source of organized and collated material. Technical books are rarely prof-
itable for their authors, but can act as an advert for the author’s expertise, who may offer
consultancy or training services. A high quality book, or manual, may reduce the size of
the pool of potential clients, but is a signal to those remaining of a potential knowledge-
able supplier of consultancy/training.

While executable source code is definitive, comments contained in code may be incorrect
or out of date; in particular links in source code may cease to work.783

xxiYour author once worked on a compiler project, funded with the aim of generating code 60% smaller than
the current compiler. Developers hated this new compiler because it generated very little redundant code; the
redundant code generated by the previous compiler was useful because it could be used to hold patches.

0 5 10 15 20 25 30 35
0

100

200

300

400

500

Duration (months)

P
ro

je
ct

s

0 50 100 150 200
0

50

100

150

200

250

300

SLOC (thousand)

P
ro

je
ct

s

0 20 40 60 80 100
0

50

100

150

200

Outsourced effort (percentage)

P
ro

je
ct

s

Figure 5.1: Number of projects having a given duration
(upper; 2,992 projects), delivered containing a given num-
ber of SLOC (middle; 1,859 projects), and using a given
percentage of out-sourced effort (lower; 1,267 projects).
Data extracted from Akita et al.27 Github–Local

Chapter 5

Projects

5.1 Introduction

The hardest part of any project is, generally, obtaining the funding to implement it.1658

Clientsi are paying for a solution to a problem, and have decided that a software system
is likely to provide a cost effective solution. The client might be a large organization
contracting a third party to develop a new system, or update an existing system, a company
writing software for internal use, or an individual spending their own time scratching an
itch (who might then attract other developers809).

Successfully implementing a software system involves creating a financially viable im-
plementation that solves the client’s problem. Financial viability means not so expensive
the client is unable to pay for it, and not so cheap that the software vendor fails to make a
reasonable profit.

Commercial software projects aim to implement the clients’ understanding of the world
(in which they operate, or want to operate), in a computer executable model that can be
integrated into the business, and be economically operated.

It can be unwise to ask clients why they want the software. Be thankful that somebody
is willing to pay to have bespoke software written,754 creating employment for software
developers. For instance:

“The first go-around at it was about $750 million, so you figure that’s not a bad cost
overrun for an IT project. Then I said, "Well, now, tell me. Did you do an NPV? Did you
do a ROI? What did you do on a $750 million IT investment?" And she sort of looked a
little chagrined and she said, "Well, actually, there was no analysis done on that." I said,
"Excuse me . . . can you explain that to me please. That’s not what the textbook says." She
said, "Well, it was a sales organization, the brokers worked for the sales organization." The
sales organization — this was a few years ago when the brokerage business was extremely
good — said, "you know, the last two years we’ve made more than enough money to pay
for this. We want it, and we’re going to pay for it." And the board of directors looked at
how much money they were making and they said, "You go pay for it". So that was the
investment analysis for a $750 million IT investment that turned into a billion dollars.”1808

The difference between projects in evidence-based engineering disciplines (e.g., bridge
building in civil engineering), and projects in disciplines where evidence-based practices
have not been established (e.g., software development), is that in the former implemen-
tation involves making the optimum use of known alternatives, while the latter involves
discovering what the workable alternatives might be, e.g., learning, by trying ideas until
something that works well enough is discovered.

Building a software system is a creative endeavour; however, it differs from artistic cre-
ative endeavours in that the externally visible narrative has to interface with customer
reality. Factory production builds duplicates based on an exemplar product, and can be a
costly process; software duplication is a trivial process that has virtually zero cost.

Useful programs vary in size from a few lines of code, to millions of lines, and might be
written by an individual in under an hour, or by thousands of developers over many years.

iThe term customer has mass market associations, bankrolling bespoke software development deserves
something having upmarket connotations.

119

120 5. Projects

0 10000 30000 50000 70000

20

40

60

80

Amount quoted

E
st

im
at

ed
 ti

m
e

Figure 5.2: Firm bid price (in euros) against sched-
ule estimate (in days), received from 14 companies, for
the same tender specification. Data from Anda et al.54

Github–Local

55 60 65 70 75 80 85

0.1

0.5

1.0

5.0

10.0

50.0

100.0

500.0

Year

LO
C

 (
m

ill
io

n)

Cobol
Fortran
Other
Assembler

55 60 65 70 75 80 85

0.1

0.5

1.0

5.0

10.0

50.0

100.0

Year

D
ev

el
op

m
en

t c
os

t (
$m

ill
io

n)

Cobol
Fortran
Other

Figure 5.3: Annual development cost and lines of code
delivered to the US Air Force between 1960 and 1986.
Data extracted from NeSmith.1366 Github–Local

Much of the existing software engineering research has focused on large projects, reasons
for this include: the bureaucracy needed to support large projects creates paperwork from
which data can be extracted for analysis, and the large organizations providing the large
sums needed to finance large projects are able to sway research agendas. This book is
driven by the availability of data, and much of this data comes from large projects and
open source; small commercial projects are important; they are much more common than
large projects, and it is possible they are economically more important.

What are the characteristics of the majority of software projects? Figure 5.1, using
data from a multi-year data collection process27 by the Software Engineering Center,
of Japan’s Information-Technology Promotion Agency, shows that most are completed in
under a year, contain less than 40 KSLOC and that much of the effort is performed by
external contractors

When approached by a potential client, about creating a bespoke software system, the
first question a vendor tries to answer is: does the client have the resources needed to pay
for implementing such a software system? If the client appears to be willing to commit
the money (and internal resources), the vendor may consider it worth investing to obtain
a good-enough view on the extent to which the client desires can be implemented well
enough for them to pay for a bespoke software system to be built.

The head of NASA told President Kennedy that $20 billion was the price tag for landing
on the Moon (NASA engineers had previously estimated a cost of $10-12 billion1666); the
final cost was $24 billion.

A study by Anda, Sjøberg and Mockus54 sent a request to tender to 81 software consul-
tancy companies in Norway, 46 did not respond with bids. Figure 5.2 shows the estimated
schedule days, and bid price received, from 14 companies (21 companies provided a bid
price without a schedule estimate). Fitting a regression model that includes information
on an assessment of the analysis, and design performed by each company, along with
estimated planned effort, explains almost 90% of the variation in the schedule estimates;
see Github–projects/effort-bidprice.R.

Both the client and the vendor want their project to be a success. What makes a project a
success?

From the vendor perspective (this book’s point of view), a successful project is one that
produces an acceptable profitii. A project may be a success from the vendor’s perspective,
and be regarded as a failure by the client (because the client paid, but did not use the com-
pleted system,22 or because users under-utilised the delivered system, or avoided using
it1096), or by the developers who worked on the project (because they created a workable
system despite scheduling and costing underestimates by management1150). These differ-
ent points of view mean that the answers given to project success surveys51 are open to
multiple interpretations.

A study by Milis1281 investigated views of project success by professionals in the roles of
management, team member (either no subsequent project involvement after handover, or
likely to receive project benefits after returning to their department), and end-user. Fitting
regression models to the data from 25 projects, for each role, finds one explanatory vari-
able of project success common to all roles: user happiness with the system. Management
considered being within budget as an indicator of success, while other roles were more
interested in meeting the specification; see Github–projects/Milis-PhD.R.

A project may fail because the users of a system resist its introduction into their work-
flow,1085 e.g., they perceive its use as a threat to their authority. Failure to deliver a system
can result in the vendor having to refund any money paid by the client, and make a pay-
ment for work performed by the client.86

The Queensland Health Payroll System Commission of inquiry report348 provides a de-
tailed analysis of a large failed project.

A study by Zwikael and Globerson2035 investigated project cost and schedule overruns,
and success in various industries, including software. The results suggest that except for
the construction industry, overrun rates are broadly similar.

Almost as soon as computers became available million line programs were being written
to order. Figure 5.3 shows lines of code and development costs for US Air Force software
projects, by year, excluding classified projects and embedded systems; the spiky nature
of the data suggests that LOC and development costs are counted in the year a project is
delivered.

iiResearch papers often use keeping within budget and schedule as measures of success; this begs the
question of which budget and which schedule, e.g., the initial, final, intermediate, or final versions?

5.1. INTRODUCTION 121

0 20 40 60 80
0

500

1000

1500

Week

E
ffo

rt
 (

pe
rs

on
 h

ou
rs

)

Figure 5.4: Distribution of effort (person hours) during
the development of four engine control system projects
(various colors), plus non-project work (blue) and holi-
days (purple’ish, at top), at Rolls-Royce. Data extracted
from Powell.1517 Github–Local

5 50 500 5000

−100

−50

0

50

100

150

Project size ($thousand)

P
ro

fit
/L

os
s

(%
)

Figure 5.5: Percentage profit/loss on 145 fixed-price
software development contracts. Data extracted from
Coombs.398 Github–Local

0

1000

2000

3000

4000

C
om

m
its

 p
er

 h
ou

r

Tue Wed Thu Fri Sat Sun Mon

Linux
FreeBSD

Figure 5.6: Commits within a particular hour and day of
week for Linux and FreeBSD. Data from Eyolfson et
al.566 Github–Local

5.1.1 Project culture

Software projects are often implemented within existing business cultural frameworks,
which provides the structure for the power and authority to those involved. A project’s
assigned or perceived power and authority controls the extent to which either: outsiders
have to adapt to the needs of the project, or the project has to be adapted to the ecosystems
in which it is being created and is intended to be used. The following are some common
development culture frameworks:

• one-off projects within an organization, which treats software as a necessary invest-
ment that has to be made to keep some aspect of the business functioning. Employees
involved in the development might treat working on the project as a temporary second-
ment that is part of what they perceive to be their main job, or perhaps a stepping stone
to a promotion, or a chance to get hands-on experience developing software (maybe
with a view to doing this kind of job full time). External contractors may be hired to
work on the project,

• projects within an organization, which derives most of its income from software prod-
ucts, e.g., software developed to be sold as a product; see fig 5.56. In the case of startups,
the projects implemented early in the company’s life may be produced in an organiza-
tional vacuum, and thus have the opportunity to mold the company culture experienced
by future projects,

• projects within an organization, where software is the enabler of the products and ser-
vices that form the basis of its business model, e.g., embedded systems.

A study by Powell1517 investigated software projects for engine control systems at
Rolls-Royce. Figure 5.4 shows effort distribution (in person hours) over four projects
(various colors), plus non-project work (blue) and holidays (purple’ish, at the top), over
20 months. Staff turnover and use of overtime during critical periods means that total
effort changes over time; also see fig 11.73.

In its 2015 financial year Mozilla, a non-profit company that develops and supports
the Firefox browser, had income of $421,275 million and spent $214,187 million on
software development.849 Almost all of this income came from Google, who paid to be
Firefox’s default search engine,

• contract software development, where one-off projects are paid for by other organiza-
tion for their own use. Companies in the contract software development business need
to keep their employees busy with fee earning work, and assigning them to work on
multiple projects is one way of reducing the likelihood of an employee not producing
income, i.e., while a single project may be put on hold until some event occurs, multiple
projects are less likely to be on hold at the same time.

Companies in the business of bespoke software development have to make a profit on
average, over all projects undertaken within some period, i.e., they have some flexibil-
ity in over- and underestimating the cost of individual projects. Figure 5.5 shows the
percentage loss/profit made by a software house on 146 fixed-price projects.

• projects where the participants receive income in the form of enjoyment derived from
the work involved; the implementation is part of the developers’ lifestyle.

The characteristics of single person projects are likely to experience greater variation
than larger projects, not because the creator is driven by hedonism, but because a fixed
release criteria may not exist, and other activities may cause work to be interrupted for
indefinite periods of time, i.e., measurements of an individual is likely to have greater
variance than a collection of people.

A few single developer projects grow to include hundreds of paid and volunteer devel-
opers. The development work for projects such as Linux401 and GCC is spread over
multiple organizations, making it difficult to estimate the level of commercial funding.

Code commits made by volunteer developers are less likely to occur during the work-
ing week than commits made by paid developers. Figure 5.6 shows the hourly commits
during a week (summed over all commits) for Linux and FreeBSD. The significant dif-
ference in number of commits during the week, compared to the weekend, suggests that
Linux has a higher percentage of work performed by paid developers than FreeBSD.

Academic software projects can appear within any of these categories (with personal rep-
utation being the income sought1330).

122 5. Projects

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

P
ro

je
ct

 s
ur

vi
va

l

Feasibility

Requirements analysis
Design

Code
Testing

Implementation
Handover

Figure 5.7: Survival rate of 214 projects, by development
stage, with 95% confidence intervals. Data from Mc-
Manus et al.1245 Github–Local

Those involved in software projects, like all other human activities, sometimes engage
in subversion and lying,1608 activities range from departmental infighting to individual
rivalry, and motivations include: egotism, defending one’s position, revenge, or a dis-
gruntled employee.

5.1.2 Project lifespan

Projects continue to live for as long as they are funded, and can only exceed their original
budget when the client is willing to pay (because they have an expectation of delivery).
Having a solution to some problems is sufficiently important that clients have no choice
but to pay what it takes, and wait for delivery.1250 For instance, when not having a working
software system is likely to result in the client ceasing to be competitive, resulting in ruin
or a loss significantly greater than the cost of paying for the software.

The funding of some projects is driven by company politics,181 and/or senior management
ego, and a project might be cancelled for reasons associated with how it came to be
funded, independently of any issues associated with project performance.

A non-trivial percentage of projects, software and non-software,1249 are cancelled without
ever being used, e.g., VMware cancelled the project276 to enhance their x86 emulator to
support the x86 architecture functionality needed to support OS/2. Open source and per-
sonal projects are not cancelled as-such, those involved simply stop working on them.377

The cost-effectiveness of any investment decision (e.g., investing to create software that
is cheaper to maintain) has to include the risk that the project is cancelled.

• a study by El Emam and Koru538 surveyed 84 midlevel and senior project managers,
between 2005 and 2007; they found the majority reporting IT project cancellation rates
in the range 11-40%. A study by Whitfield1949 investigated 105 outsourced UK gov-
ernment related ICT (Information and Communication Technology) projects between
1997 and 2007 having a total value of £29.6 billion; 57% of contracts experienced cost
overruns (totalling £9.0 billion, with an average cost overrun of 30.5%), of which 30%
were terminated,

• the 1994 CHAOS report1758 is a commonly cited survey of project cost overruns and
cancellations. This survey is not representative because it explicitly focuses on failures,
subjects were asked: “ . . . to share failure stories.”, i.e., the report lists many failures
and high failure rates because subjects were asked to provide this very information. The
accuracy of the analysis used to calculate the summary statistics listed in the report has
been questioned.565, 956

A study by McManus and Wood-Harper1245 investigated the sources of failure of infor-
mation systems projects. Figure 5.7 shows the survival curve for 214 projects, by devel-
opment stage.

Software systems are sometimes used for many years after development on them has
stopped.

5.2 Pitching for projects

Bidding on a request for tender, convincing senior management to fund a project, selling
the benefits of a bespoke solution to potential a client: all involve making commitments
that can directly impact project implementation. An appreciation of some of the choices
made when pitching for a project is useful for understanding why things are the way they
are.

What motivates anyone to invest the resources needed to form a good enough estimate to
implement some software?

The motivation for bidding on a tender comes from the profit derived from winning the
implementation contract, while for internal projects, developers are performing one of the
jobs they are employed to perform.

A study by Moløkken-Østvold, Jørgensen, Tanilkan, Gallis, Lien and Hove1307 investi-
gated 44 software project estimates made by 18 companies; the estimates were either for
external client projects, or internal projects. A fitted regression model finds that estimated
project duration was longer for internal projects, compared to external client projects; see
Github–projects/RK31-surveycostestim.R.

5.2. PITCHING FOR PROJECTS 123

100 500 2000 10000

200

500

1000

2000

5000

10000

20000

Estimate (hours)

A
ct

ua
l (

ho
ur

s)

Internal
Estimate==Actual
External

Figure 5.8: Estimated and Actual effort for internal and
external projects, lines are fitted regression models; both
lines are fitted regression models of the form: Actual ∝

Estimatea, where a takes the value 0.9 or 1.1. Data from
Moløkken-Østvold et al.1307 Github–Local

50

100

200

500

1000

2000

5000

Estimator

E
st

im
at

e
(h

ou
rs

)

A group B group

A early estimate
A final estimate
B final estimate

Figure 5.9: Bids made by 19 estimators from the same
company (divided by grey line into the two experimental
groups). Data from Jørgensen et al.950 Github–Local

Figure 5.8 shows the estimated and actual effort for internal (red) and external (blue)
projects, along with fitted regression models. Most estimates are underestimates (i.e.,
above the green line); for smaller projects external projects are more accurately estimated
than internal estimates, but for larger projects internal projects are more accurately esti-
mated.

A client interested in funding the development of bespoke software may change their
mind, if they hear a price that is much higher than expected, or a delivery date much
later than desired. Optimal frog boiling entails starting low, and increasing at a rate that
does not disturb. However, estimates have to be believable (e.g., what do clients consider
to be the minimum credible cost, and what is their maximum willing to spend limit),
and excessive accuracy can cause people to question the expertise of those providing the
estimate.1161

Companies in the business of developing bespoke software need to maintain a pipeline
of projects, opening with client qualification and closing with contract signature.1733 Ac-
quiring paying project work is the responsibility of the sales department, and is outside
the scope of this book.

Many of the factors involved in project bidding are likely to be common to engineering
projects in general, e.g., highway procurement.119 Bidding decisions can be driven by
factors that have little or no connection with the technical aspects of software implemen-
tation, or its costs; some of these factors include:

• likelihood of being successful on bids for other projects. If work is currently scarce,
it may be worthwhile accepting a small profit margin, or even none at all, simply to
have work that keeps the business ticking over. A software development organization,
whether it employs one person or thousands, needs to schedule its activities to keep
everyone busy, and the money flowing in.

Some of the schedule estimates in figure 5.2 might be explained by companies assigning
developers to more than one project at the same time; maintaining staff workload by
having something else for them to do, if they are blocked from working on their primary
project,

• bid the maximum price the client is currently willing to pay; a profitable strategy when
the client estimate is significantly greater than the actual. If the client perceives a project
to be important enough, they are likely to be willing to pay more once existing monies
have been spent. From the client perspective, it is better to pay £2 million for a system
that provides a good return on investment, than the £1 million actually budgeted, if the
lower price system is not worth having,

• the likely value of estimates submitted by other bidders; competition is a hard task-
master,

• bidding low to win, and ensuring that wording in the contract allows for increases due
to unanticipated work. Prior experience shows that clients often want to change the
requirements, and estimates for these new requirements are made after the competitive
bidding process; see fig 3.23. The report by the Queensland health payroll system com-
mission of inquiry348 offers some insight into this approach. Clients often prefer to
continue to work with a supplier who has run into difficulties,231 even substantial ones,

• bidding low to win, with the expectation of recouping any losses and making profit
during the maintenance phase. This strategy is based on having a reasonable expec-
tation that the client will use the software for many years, that the software will need
substantial maintenance, and that the complexity of the system and quality of internal
documentation will deter competitive maintenance bids,

• bidding on projects that are small, relative to the size of the development company, as
a means of getting a foot in the door to gain access to work involving larger projects,
e.g., becoming an approved supplier.

The bidding process for projects usually evolves over time.

A study by Jørgensen and Carelius investigated the impact of changes to the project spec-
ification on the amount bid. Estimators in group A made an estimate based on a one-page
specification, and sometime later a second estimate based on an eleven-page specifica-
tion; estimators in group B made an estimate based on the eleven-page specification only.
Figure 5.9 shows bids made by two groups of estimators from the same company; for
additional analysis, see Github–projects/proj-bidding.R.

The signing of a contract signals the start of development work, not the end of client cost
negotiation.

124 5. Projects

The bidding on a project for a new IT system for Magistrates’ Courts (the Libra project),231

started with ICL submitting a bid of £146 million, when it became public there was only
one bidder this was increased to £184 million over 10.5 years, a contract was signed, then
a revised contract was renegotiated for £319 million, then ICL threatened to repudiate the
renegotiated contract and proposed a new price of £400 million, then reduced its proposed
price to £384 million, and after agreement could not be reached signed a revised contract
for £232 million over 8.5 years.

5.2.1 Contracts

Contract signing is the starting point for investing resources in project implementation
(although some projects never involve a contract, and some work may start before a con-
tract is signed). Having to read a contract after it has been signed is an indication that
one of the parties involved is not happy; nobody wants to involve lawyers in sorting out a
signed contract.1233

A practical contract includes provisions for foreseeable items such as client changes to
the requirements and schedule slippage. Developers and clients can have very different
views about the risks involved in a project.1061

What is the payment schedule for the project? The two primary contract payment sched-
ules are fixed price and time and materials (also known as cost plus; where the client pays
the vendors costs plus an agreed percentage profit, e.g., a margin of 10-15%1534).

On projects of any size, agreed payments are made at specified milestones. Milestones
are a way for the client to monitor progress, and the vendor to receive income for the work
they have done. The use of milestones favours a sequential development viewpoint, and
one study84 found that the waterfall model is effectively written into contracts.

From the client’s perspective a fixed price contract appears attractive, but from the ven-
dor’s perspective this type of contract may be unacceptably risky. One study709 found
that vendors preferred a fixed price contract when they could increase their profit margin
by leveraging particular staff expertise; another study1135 found that fixed-price was only
used by clients for trusted vendors. Writing a sufficiently exact specification of what a
software system is expected to do, along with tightly defined acceptance criteria is time-
consuming and costly, which means the contract has to contain mechanisms to handle
changes to the requirements; such mechanisms are open to exploitation by both clients
and vendors.

A time and materials contract has the advantage that vendors are willing to accept open-
ended requirements, but has the disadvantage (to the client) that the vendor has no incen-
tive to keep costs down.

Contracts sometimes include penalty clauses and incentive fees (which are meaningless
unless linked to performance targets547).

A study by Webster1938 analysed legal disputes involving system failures in the period
1976-2000 (120 were found). The cases could be broadly divided into seven categories:
client claims the installed system is defective in some way and vendor fails to repair it,
installed system does not live up to the claims made by the vendor, a project starts and the
date of final delivery continues to slip and remain in the future, unplanned obsolescence
(client discovers that the system either no longer meets its needs or that the vendor will
no longer support it), the vendor changes the functionality or configuration of the system
resulting in unpleasant or unintended consequences for one or more clients, a three-way
tangle between vendor, leasing company and client, and miscellaneous.

Many commercial transactions are governed by standard form contracts. A study by
Marotta-Wurgler1208 analysed 647 software license agreements from various markets; al-
most all had a net bias, relative to relevant default rules, in favor of the software company
(who wrote the agreement).

A contract involving the licensing of source code, or other material, may require the
licensor to assert that they have the rights needed to enter into the licensing agreement;
intellectual property licensing is discussed in section 3.3.1. Project management has to
be vigilant that developers working on a project do not include material licensed under an
agreement that is not compatible with the license used by the project, e.g., material that
has been downloaded from the Internet.1734

It is possible for both the client and vendor to be in an asymmetric information situation,
in terms of knowledge of the problem being solved, the general application domain, and

5.3. RESOURCE ESTIMATION 125

1 2 5 10 20 50 200 500

2

5

10

20

Effort (thousand hours)

M
an

ag
em

en
t (

pe
rc

en
ta

ge
)

Fixed−price
Time−and−materials

Figure 5.10: Project effort, in thousands of hours, against
percentage of management time, broken down by contract
type; both lines are fitted logistic equations with maxi-
mums of 12% and 16%. Data extracted from Ahonen.23

Github–Local

2 4 6 8 10

2.5

3.0

3.5

4.0

Team experience (mean years)

E
st

im
at

e
(m

ill
io

n
$)

Similar project experience
No similar projects

Figure 5.11: Mean number of years experience of each
team against estimated project code, with fitted regression
models; broken down by teams containing one or more
members who have had similar project experience, or not.
Data from Mcdonald.1238 Github–Local

what software systems are capable of doing; the issue of moral hazard is discussed in
section 3.4.7.

A study by Ahonen, Savolainen, Merikoski and Nevalainen23 investigated the impact of
contract type on reported project management effort for 117 projects; 61 projects had
fixed-price contracts, and 56 time-and-materials contracts.

Figure 5.10 shows project effort (in thousands of hours) against percentage of reported
management time, broken down by fixed-priced and time-and-material contracts; lines
are fitted regression models. Fitting a regression model that includes team size (see
Github–projects/ahonen2015.R), finds that time-and-materials contracts involve 25% less
management time (it is not possible to estimate the impact of contract choice on project
effort).

Tools intended to aid developers in checking compliance with the contractual rights and
obligations specified in a wide range of licenses are starting to become available.1197

5.3 Resource estimation

Resource estimation is the process of calculating a good enough estimateiii of the re-
sources needed to create software whose behavior is partially specified, when the work
is to be done by people who have not previously written software having the same be-
havior. Retrospective analysis of previous projects1501 can provide insight into common
mistakes.

This section discusses the initial resource estimation process; ongoing resource estima-
tion, performed once a project is underway, is discussed in section 5.4.4. The techniques
used to produce estimate values are based on previous work that is believed to have simi-
larities with the current project; the more well known of these techniques are discussed in
section 5.3.1.

Client uncertainty about exactly what they want can have a major impact on the reliabil-
ity of any estimate of the resources required. Discovering the functionality needed for
acceptance is discussed in section 5.4.5.

When making an everyday purchase decision, potential customers have an expectation
that the seller can, and will, provide information on cost and delivery date; an expectation
of being freely given an accurate answer is not considered unreasonable. People cling to
the illusion that it’s reasonable to ask for accurate estimates to be made about the future
(even when they have not measured the effort involved in previous projects).

Unless the client is willing to pay for a detailed analysis of the proposed project, there is
no incentive for vendors to invest in a detailed analysis until a contract is signed.

While the reasons of wanting a cost estimate cannot be disputed, an analysis of the number
of unknowns involved in a project, and the experience of those involved can lead to the
conclusion that it is unreasonable to expect accurate resource estimates.

The largest item cost for many projects is the cost of the time of people involved. These
people need to have a minimum set of required skills, and a degree of dedication; this
issue is discussed in section 5.5.

Cost overruns are often blamed on poor project management,1102 however, the estimates
may be the product of rational thinking during the bidding process, e.g., a low bid swayed
the choice of vendor.

People tend to be overconfident, and a cost/benefit analysis shows that within a popula-
tion, individual overconfidence is an evolutionary stable cognitive bias; see section 2.8.5.

It should not be surprising that inaccurate resource estimates are endemic in many indus-
tries1267 (and perhaps all human activities), software projects are just one instance. A
study by Flyvbjerg, Holm and Buhl619 of 258 transportation projects (worth $90 billion)
found costs are underestimating in around 90% of projects, with an average cost over-
run of 28% (sd 39); a study of 35 major US DOD acquisitions218 found a 60% average
growth in total costs; an analysis of 12 studies,848 covering over 1,000 projects, found a

iiiThe desired accuracy will depend on the reason for investing in an estimate, e.g., during a feasibility study
an order of magnitude value may be good enough.

126 5. Projects

10 100 1000 10000 100000

10

100

1000

10000

100000

Estimate (hours)

A
ct

ua
l (

ho
ur

s)

Kitchenham
Jørgensen

Figure 5.12: Estimated and actual project implementation
effort; 49 web implementation tasks (blue), and 145 tasks
performed by an outsourcing company (red). Data from
Jørgensen946 and Kitchenham et al.1014 Github–Local

1 2 5 10 20 50

1

2

5

10

20

50

First estimate

S
ec

on
d

es
tim

at
e

Task 1
Task 2
Task 3
Task 4
Task 5
Task 6

Figure 5.13: Two estimates (in work hours), made by
seven subjects, for each of six tasks. Data from Grimstad
et al.742 Github–Local

1960 1970 1980 1990 2000 2010

50

100

150

200

Year started

R
at

e
of

 c
on

st
ru

ct
io

n
(m

et
er

/y
ea

r)

Figure 5.14: Mean rate of construction, in meters per
year, of skyscrapers taller than 150 m (error bars show
standard deviation). Data kindly provided by Recon.1568

Github–Local

mean estimation error of 21%; Butts and Linton287 give a detailed discussion of overruns
on the development of over 150 NASA spacecraft.

Those working on a project may have experience from personal involvement in the imple-
mentation of other projects (organizational forgetting is discussed in section 3.4.5). The
extent to which experience gained on the implementation of other projects can be used to
help formulate a reliable estimate for a new project depends on shared similarities, such
as: performance of the individuals involved (e.g., knowledge, skill and cognitive capac-
ity; figure 2.36 shows that a developer can sometimes spend more time reimplementing
the same specification), interactions between team members, interactions with real-world
events that occur during the projects, e.g., interruptions, uncontrolled delays, client in-
volvement.

A study by Mcdonald1238 investigated the impact of team experience on the estimated cost
of one project (which teams of professional managers had each planned for approximately
20 hours). Figure 5.11 shows the mean number of years experience of each of the 135
teams, and their estimate; teams are broken down into those having at least one member
who had previous experience on a similar project, and those that did not (straight lines are
fitted regression models).

Unknown and changeable factors introduce random noise into the estimation process;
on average, accuracy may be good. Figure 5.12 shows regression models fitted to two
estimation datasets, the green line shows where actual equals estimate. The trend for the
49 blue projects946 is to (slightly) overestimate, while the 145 red project1014 trend is to
(slightly) underestimate.

Resource estimation is a knowledge based skill, acquired through practical experience
and learning from others (expertise is discussed in section 2.5.2); an individual’s attitude
to risk has also been found to have an impact.941

A study by Grimstad and Jørgensen742 investigated the consistency of estimates made by
the same person. Seven developers were asked to estimate sixty tasks (in work hours),
over a period of three months; unknown to them, everybody estimated six tasks twice.
Figure 5.13 shows the first/second estimates for the same task made by the same subject;
identical first/second estimates appear on the grey line, with estimates for identical tasks
having the same color (the extent of color clustering shows agreement between develop-
ers).

A study by Jørgensen947 selected six vendors, from 16 proposals received from a tender
request, to each implement the same database-based system. The estimated price per
work-hour ranged from $9.1 to $28.8 (mean $13.85).

Skyscraper construction is like software projects, in that each is a one-off, sharing many
implementation details with other skyscrapers, but also having significant unique imple-
mentation features. Figure 5.14 shows that the rate of construction of skyscrapers (in
meters per year), has remaining roughly unchanged.

Some of the factors influencing the client and/or vendor resource estimation process in-
clude:

• the incentives of those making the estimate.

When estimating in a competitive situation (e.g., bidding on a request to tender), the
incentive is to bid as low as possible; once a project is underway, the client has little
alternative but to pay more (project overruns receive the media attention, and so this is
the more well-known case).

When estimating is not part of a bidding process (e.g., internal projects, where those
making the estimate may know the work needs to be done, and are not concerned with
being undercut by competitors), one strategy is to play safe and overestimate, delivering
under budget is often seen by management in a positive light,iv

• the cost of making the estimate.

Is it cost effective to invest as much time estimating as it is likely to take doing the
job? It depends on who is paying for the estimate, and the probability of recouping the
investment in making the estimate. Unless the client is paying, time spent estimating is
likely to be a small fraction of an initial crude estimate of the time needed to do the job.

ivThe equation: actual = estimate0.67, explains almost half the variance in the data for figure 8.17.

5.3. RESOURCE ESTIMATION 127

0

5

10

15

20

25

E
st

im
at

e

20 months
Control
2 months

Figure 5.15: Estimates given by three groups of subjects
after seeing a statement by a middle manager containing
an estimate (2 months or 20 months) or no estimate (con-
trol); sorted to highlight distribution. Data from Aranda.68

Github–Local

0.0 0.2 0.4 0.6 0.8 1.0

2

4

6

8

Effort (fraction of total)

P
ro

je
ct

 d
en

si
ty

Implement
Optimize
Define/Analyze
Design
Produce

Figure 5.16: Density plot of the investment, by 2,570
projects, of a given fraction of total effort in a given project
phase. Data kindly provided by Wang.1924 Github–Local

0.5 1.0 2.0 5.0 10.0 50.0

200

400

600

800

1000

1200

1400

Hours

Ta
sk

s

Estimate
Actual

Figure 5.17: Number of tasks having a given estimate, and
a given actual implementation time. Data from Jones et
al.941 Github–Local

• estimating is a social process (see fig 2.64), people often want to get along with others,
which means prior estimation information can have an impact. Client expectations can
have an anchoring effect on cost estimates957 (one study1693 found that it was possible
to reduce this effect; see Github–projects/DeBiasExptData.R).

A study by Aranda68 investigated the impact of anchoring on estimated task effort.
Subjects (13 professionals, 10 academics) were asked to estimate how long it would
take to deliver a software system specified in a document they were given. The doc-
ument contained a statement from a middle manager, either expressing no opinion, or
guessing that the project would take 2-months, or 20-months. Figure 5.15 shows the
estimates made by subjects who saw a particular middle manager opinion (sorted to
show estimate variability),

• pressure is applied to planners1912 to ensure their analysis presents a positive case for
project funding. A former president of the American Planning Association said:618

“I believe planners and consultants in general deliberately underestimate project costs
because their political bosses or clients want the projects. Sometimes, to tell the truth
is to risk your job or your contracts or the next contract . . . ”

• cognitive processing of numeric values can lead to different answers being given, e.g.,
the measurement units used (such monthly or yearly);1863 see section 2.7.2.

Projects are often divided into separate phases of development, e.g., requirements analy-
sis, design, implementation, and testing. What is the breakdown of effort between these
phases?

A study by Wang and Zhang1924 investigated the distribution of effort, in man-hours,
used during the five major phases of 2,570 projects (the types of project were: 20% new
development, 68% enhancement, 7% maintenance, 5% other projects). Figure 5.16 shows
a density plot of the effort invested in each phase, as a fraction of each project’s total
effort; the terminology in the legend follows that used by the authors (a mapping of those
terms that differ from Western usage might be: Produce is implementation, Optimize is
testing, and Implement is deployment). The distribution of means and medians does not
vary much with project duration.

A study by Jones and Cullum941 investigated 8,252 agile tasks estimated and actual im-
plementation time. Figure 5.17 shows the number of tasks having a given estimated effort
and the number requiring a given actual effort. Some time estimates stand out as occurring
a lot more or less frequently than nearby values, e.g., peaks at multiples of seven (there
were seven hours in a work day), and very few estimates of six, eight and nine hours; the
preference for certain numeric values is discussed in section 2.7.1.

A preference for round numbers has also been seen in estimates made on other projects;
see Github–projects/hemmati2018.R.

In an attempt to reduce costs some companies have offshored the development of some
projects, i.e., awarded the development contract to companies in other countries. A study
by S̆mite, Britto and van Solingen1730 of outsourced project costs, found additional costs
outside the quoted hourly rates; these were attributable to working at distance, cost of
transferring the work and characteristics of the offshore site. For the projects studied,
the time to likely break-even, compared to on-shore development, was thought to be sev-
eral years later than planned. One study487 attempted to calculate the offshoring costs
generated by what they labeled psychic distance (a combination of differences including
cultural, language, political, geographic, and economic development).

5.3.1 Estimation models

Estimation of software development costs has proved to be a complex process, with early
studies575, 576 identifying over fifty factors; a 1966 management cost estimation hand-
book1364 contained a checklist of 94 questions (based on an analysis of 169 projects).
Many of the existing approaches used to build estimation models were developed in the
1960s and 1970s, with refinements added over time; these approaches include: finding
equations that best fit data from earlier projects, deriving and solving theoretical models,
and building project development simulators.

Fitting data: Early cost estimation models fitted equations to data on past projects.1943

The problem with fitting equations to data, is that the resulting models are only likely
to perform well when estimating projects having the same characteristics as the projects

128 5. Projects

0.5

1.0

1.5

2.0

E
st

im
at

e
($

 m
ill

io
n)

Farr−
Zagorski

Aron

Walston−FelixDoty

Schneider

Wolve
rto

n
SDC

GRC
Price−S

Aerospace

NAVAIR

Kustanowitz

Figure 5.18: Estimated project cost from 12 estimating
models. Data from Mohanty.1304 Github–Local

0 10 20 30 40 50 60
0

100

200

300

400

Weeks

E
ffo

rt
 (

m
an

−
ho

ur
s)

Norden−Putnam
Parr
Quadratic

Figure 5.19: Elapsed weeks (x-axis) against effort in man-
hours per week (y-axis) for a project, plus three fitted
curves. Data extracted from Basili et al.139 Github–Local

from which the data was obtained. A study by Mohanty1304 compared the estimates
produced by 12 models. Figure 5.18 shows how widely the estimates varied.

A 1991 study by Ourada1429 evaluated four effort estimation models used for military
software (two COCOMO derivatives REVIC and COSTMODL, plus SASET and SEER;
all fitted to data); he reached the conclusion: “I found the models to be highly inaccurate
and very much dependent upon the interpretation of the input parameters.” Similar con-
clusions were reached by Kemerer985 who evaluated four popular cost estimation models
(SLIM, COCOMO, Function Points and ESTIMACS) on data from 15 large business data
processing projects; Ferens594 compared 10 models against DOD data and came to the
same conclusion, as did another study in 2003 using data from ground based systems.778

Current machine learning models perform estimate adjustment; they require an estimate
to be given as one of the input variables, and return an adjusted value (existing public
estimation data sets don’t contain enough information to allow viable models to be built
unless the known estimated values are used during training).

Deriving equations: In the early 1960s, Norden1387 studied projects, which he defined
as “ . . . a finite sequence of purposeful, temporarily ordered activities, operating on
a homogeneous set of problem elements, to meet a specified set of objectives . . . ”.
Completing a project involves solving a set of problems (let W (t) be the proportion of
problems solved at time t), and these problems are solved by the people resources (p(t)
encodes information on the number of people, and their skill); the rate of problems solving
depends on the number of people available, and the number of problems remaining to be
solved; this is modeled by the differential equation:

dW
dt

= p(t)[1−W (t)], whose solution is: W (t) = 1− e−
∫ t p(τ)dτ

If the skill of the people resource grows linearly, as the project progresses, i.e., team
members learn at the rate p(t) = at, the work rate is:

dW
dt

= ate−at2/2

This equation is known, from physics, as the Rayleigh curve. Putnam1537 evangelised
the use of Norden’s model for large software development projects. Criticism of the
Norden/Putnam model has centered around the linear growth assumption (i.e., p(t) = at)
being unrealistic.

An analysis by Parr1448 modeled the emergence of problems during a project as a bi-
nary tree, and assumed that enough resources are available to complete the project in the
shortest possible time. Under these assumptions the derived work rate is:

dW
dt

=
1
4

sech2 αt + c
2

, where sech is the hyperbolic secant: sech(x) =
2

ex + e−x .

While these two equations look very different, their fitted curves are similar; one differ-
ence is that the Rayleigh curve starts at zero, while the Parr curve starts at some positive
value.

A study by Basili and Beane139 investigated the quality of fit of various models to six
projects requiring around 100 man-months of effort. Figure 5.19 shows Norden-Putnam,
Parr and quadratic curves fitted to effort data for project 4.

The derivation of these, or any other equation, is based on a set of assumptions, e.g., a
model of problem discovery (the Norden/Putnam and Parr models assume there are no
significant changes to the requirements), and the necessary manpower can be added or
removed at will. The extent to which the derived equation apply to a project depends
on how closely the characteristics of the project meet the assumptions used to build the
model. Both the Norden-Putnam and Parr equations can be derived using hazard analy-
sis,1891 with the lifetime of problems to be discovered having a linear and logistic hazard
rate respectively.

Simulation models: A simulation model that handles all the major processes involved in
a project could be used to estimate the resources likely to be needed. There have been
several attempts to build such models using Systems Dynamics.3, 275, 1188 Building a sim-
ulation model requires understanding the behavior of all the important factors involved,
and as the analysis in this book shows, we are a long way from having this understanding.

Subcomponent based: Breaking a problem down into its constituent parts may enable
a good enough estimate to be made (based on the idea that smaller tasks are easier to
understand, compared to larger, more complicated tasks), assuming there are no major

5.3. RESOURCE ESTIMATION 129

20 50 100 200 500 1000

0.01

0.02

0.05

0.10

0.20

0.50

Function points

C
os

t

Figure 5.20: Function points and corresponding nor-
malised costs for 149 projects from one large institution;
line is a fitted regression model of the form: Cost ∝

Function_Points0.75. Data extracted from Kampstra el
al.970 Github–Local

Sep Nov Jan Mar May Jul
0

1000

2000

3000

4000

5000

6000

7000

Date

C
os

t p
er

Requirements
Function points
Story points

Sep Nov Jan Mar May Jul
0

2000

4000

6000

8000

Date

C
os

t p
er

Requirements
Function points
Story points

Figure 5.21: Cost per requirement, function point and
story point for two projects, over 13 monthly releases.
Data from Huijgens.869 Github–Local

interactions between components that might affect an estimate. Examples of subcompo-
nent based estimation methods include: function-points (various function-point counting
algorithms are in use), use case points and story points.

Uses case points is an estimation method that makes use of weighting factors derived
from the end-user, environmental and technical complexity of a project; the appropri-
ate weighting for over 20 factors has to be selected. A study by Ochodek, Nawrocki
and Kwarciak1402 investigated the performance of use case points for 27 projects; see
Github–projects/simplifying-ucp.R.

The function point analysis methods are based on a unit of measurement, known as a
function point, and take as input a requirements’ specification or functional requirements.
A formula or algorithm (they vary between the methods) is used to derive the size of each
requirement in function points. The implementation cost of a function point is obtained
from the analysis of previous projects, where the number of function points and costs is
known.

The accuracy of function point analysis methods depends on the accuracy with which
requirements are measured (in function points), and the accuracy of function point to
cost mapping. Figure 11.18 suggests that the requirements measuring processing process
produces consistent values.

A study by Kampstra and Verhoef970 investigated the reliability of function point counts.
Figure 5.20 shows the normalised cost for 149 projects, from one large institution, having
an estimated number of function points; also see Github–projects/82507128-kitchenham and
Github–projects/HuijgensPhD.R.

A study by Huijgens and van Solingen869 investigated two projects considered to be best-
in-class, out of 345 projects, from three large organizations. Figure 5.21 shows the cost
per requirement, function point, and story point for these two projects over 13 releases.

A study by Commeyne, Abran and Djouab388 investigated effort estimates made using
COSMIC function-points and story-points. Figure 5.22 shows the estimated number of
hours needed to implement 24 story-points, against the corresponding estimated function-
points.

Some estimation models include, as input, an estimate of the number of lines of code
likely to be contained in the completed program; see fig 3.34. How much variation is to be
expected in the lines of code contained in programs implementing the same functionality,
using the same language?

Figure 5.23 shows data from seven studies, where multiple implementations of the same
specification were written in the same language. The fitted regression model finds that
the standard deviation is approximately one quarter of the mean. With so much variation,
in LOC, between different implementations of the same specification, a wide margin of
error must be assumed for any estimation technique where lines of code is a significant
component of the calculation; also see fig 7.34.

Figure 9.14 shows the number of lines contained in over 6,300 C programs implementing
the 3n+1 problem. A more substantial example is provided by the five Pascal compilers
targeting the same mainframe.1697

5.3.2 Time

When will the system be ready for use? This is the questions clients often ask immediately
after the cost question (coming before the cost question can be a good sign, i.e., time is
more important than cost). Many factors have been found to have a noticeable impact on
the accuracy of predictions for the time needed to perform some activity.767

In some cases time and money are interchangeable project resources,1122 but there may
be dependencies that prevent time (or money being spent) until some item becomes avail-
able. A cost plus contract provides an incentive to spend money, with time only being a
consideration if the contract specifies penalty clauses.

Figure 5.24 shows the mean and median effort spent on 2,103 projects taking a given
number of elapsed months to complete; regression lines are fitted quadratic equations.
Assuming 150 man-hours per month, project team size appears increase from one to per-
haps six or seven, as project duration increases.

Studies394, 955 have investigated the explanations given by estimators, for their inaccurate
estimates; see Github–projects/Regression-models.R.

130 5. Projects

10 20 50 100 200

2

5

10

20

50

Story point estimate (hours)

C
O

S
M

IC
 F

P

Figure 5.22: Estimated effort to implement 24 story-points
and corresponding COSMIC function point; line is a fitted
regression model of the form: CosmicFP ∝ storyPoint0.6,
with 95% confidence intervals. Data from Commeyne et
al.388 Github–Local

50 100 500 2000 10000

10

50

100

500

1000

5000

10000

Mean LOC

S
ta

nd
ar

d
de

vi
at

io
n

Figure 5.23: Mean LOC against standard deviation of
LOC, for multiple implementations of seven distinct prob-
lems; line is a fitted regression model of the form:
Standard_deviation ∝ SLOC. Data from: Anda et
al,54 Jørgensen,947 Lauterbach,1097 McAllister et al,1228

Selby et al,1670 Shimasaki et al,1697 van der Meulen.1876

Github–Local

5 10 15 20

5

10

15

20

Duration (months)

To
ta

l e
ffo

rt
 (

th
ou

sa
nd

 h
ou

rs
)

Mean
Median

Figure 5.24: Mean and median effort (thousand hours) for
projects having a given elapsed time; both lines are a fitted
regression model of the form: Effort ∝ Duration2. Data
from Wang et al.1924 Github–Local

5.3.3 Size

Program size is an important consideration when computer memory capacity is measured
in kilobytes. During the 1960s, mainframe computer memory was often measured in
kilobytes, as was minicomputer memory during the 1970s, and microcomputer memory
during the 1980s. Today, low cost embedded controllers might contain a kilobyte of
memory, or less, e.g., electronic control units (ECU) used in car engines contain a few
kilobytes of flash memory.

Pricing computers based on their memory capacity is a common sales technique. Fig-
ure 5.25 shows IBM’s profit margin on sales of all System 360s sold in 1966 (average
monthly rental cost, for 1967, in parentheses). Low-end systems, with minimal memory,
were sold below cost to attract customers (and make it difficult for competitors to gain a
foothold in the market482).

The practices adopted to handle these memory size constraints continue to echo in soft-
ware engineering folklore.

A study by Lind and Heldal1151 investigated the possibility of using COSMIC function
points to estimate the compiled size of software components used in ECUs. Function
points were counted for existing software components in the ECUs used by Saab and
General Motors. Figure 5.26 shows COSMIC function points against compiled size of
components from four ECU modules; lines are fitted regression models for each module.
While a consistent mapping exists for components within each module, the function point
counting technique used did not capture enough information to produce consistent results
across modules.

A study by Prechelt1523 investigated a competition in which nine teams, each consisting
of three professional developers, were given 30 hours to implement 132 functional and 19
non-functional requirements, for a web-based system; three teams used Java, three used
Perl, and three used PHP (two teams used Zend, and every other team chose a different
framework).

Figure 5.27 shows how the number of lines of manually written code, and the number
of requirements implemented, varied between teams; many more significant differences
between team implementations are discussed in the report.1523

5.4 Paths to delivery

There are many ways of implementing a software system, and those involved have to find
one that can be implemented using the available resources.

The path to delivery may include one or more pivots, where a significant change occurs.120

Pivots can vary from fundamental changes (e.g., involving the target market, or the client’s
requirements), to technical issues over which database to use.

Creating a usable software system involves discovering a huge number of interconnected
details;1327 these details are discovered during: requirements gathering to find out what
the client wants (and ongoing client usability issues during subsequent phases1200), for-
mulating a design423 for a system having the desired behavior, implementing the details
and their interconnected relationships in code, and testing the emergent behavior to ensure
an acceptable level of confidence in its behavior; testing is covered in chapter 6.

Managing the implementation of a software system is an exercise in juggling the available
resources, managing the risks (e.g., understanding what is most likely to go wrong,103 and
having some idea about what to do about it), along with keeping the client convincedv

that a working system will be delivered within budget and schedule; these are all standard
project management issues.1020 Managements interest in technical issues focuses on the
amount of resource they are likely to consume, and the developer skill-sets needed to
implement them.

Figure 5.28 shows an implementation schedule for one of the projects studied by Ge and
Xu.663 This plot gives the impression of a project under control, in practice schedules
evolve, sometimes beyond all recognition. As work progresses, discovered information
can result in schedule changes, e.g., slippage on another project can prevent scheduled

vSuccessful politicians focus on being elected, and then staying in office:452 successful managers focus on
getting projects, and then keeping the client on-board; unconvinced clients cancel projects, or look for others to
take it over.

5.4. PATHS TO DELIVERY 131

−100

−80

−60

−40

−20

0

20

40

Memory (kilobytes)

%
 P

ro
fit

4 8 16 32 64 128 512

360/20−1 ($2,500)
360/20−2 ($2,500)
360/30 ($ 9,800)
360/40 ($18,700)
360/50 ($31,100)
360/65 ($53,300)

Figure 5.25: IBM’s profit margin on all System 360s sold
in 1966, by system memory capacity in kilobytes; monthly
rental cost during 1967 in parentheses. Data from DeLa-
marter.482 Github–Local

10 20 30 40 50 60
0

1

2

3

4

5

CFP

S
iz

e
(K

by
te

s)

Figure 5.26: COSMIC function-points and compiled size
(in kilobytes) of components in four different ECU mod-
ules; lines show fitted regression model. Data from Lind
et al.1151 Github–Local

10 20 30 40 50 60 70

1000

2000

3000

4000

Requirements fully implemented

P
ro

gr
am

 L
O

C

perl
java
php

Figure 5.27: Number of requirements and correspond-
ing lines of manually created source code, for each team
(colors denote language used). Data from Prechelt1523

Github–Local

staff being available, and a requirement change creates a new dependency that prevents
some subcomponents being implemented concurrently;

Large projects sometimes involve multiple companies, and the initial division of work
between them may evolve over time.

A study by Yu1995 investigated the development of three multi-million pound projects.
The chronology of events documented provides some insight into how responsibility for
the implementation of functionality, and associated costs, can shift between project con-
tractors as new issues are uncovered, and contracted budgets are spent. Figure 5.29 shows
the changes in contractors’ project cost estimates, for their own work, over the duration
of the project.

Vendors want to keep their clients happy, but not if it means loosing lots of money. A good
client relationship manager knows when to tell the client that extra funding is needed to
support the requested change, and when to accept it without charging (any connection
with implementation effort is only guaranteed to occur for change requests having signif-
icant cost impact).

Daily client contact has been found to have an impact on final project effort; see fig 11.44.
The study did not collect data on the extent to which the planned project goals were
achieved, and it is possible that daily contact enabled the contractor to convince the client
to be willing to accept a deliverable that did not support all the functionality originally
agreed.

5.4.1 Development methodologies

Software development is a punctuated information arrival process. vi It took several
decades before a development methodology designed to handle this kind of process started
to be widely used.

The first development methodology,699 written in 1947, specified a six-step development
process, starting with the people who performed the high-level conceptual activities (i.e.,
the scientists and engineers), and ending with the people who performed what was consid-
ered to be the straightforward coding activity (performed by the coders). Over time, the
complexity of development has resulted in a significant shift of implementation authority,
and power, to those connected with writing the code.548

A study by Rico,1582 going back over 50-years from 2004, identified 32 major techniques
(broken down by hardware era and market conditions) that it was claimed would pro-
duce savings in development or maintenance. There have been a few field studies of the
methodologies actually used by developers (rather than what managers claim to be using);
system development methodologies have been found to provide management support for
necessary fictions,1351 e.g., a means to creating an image of control to the client, or others
outside the development group.

The Waterfall model1270 continues to haunt software project management, despite re-
peated exorcisms over several decades.1087 The paper1614 that gave birth to this demon
meme contained a diagram, with accompanying text claiming this approach was risky
and invited failure, with diagrams and text on subsequent pages showing the recom-
mended approach to producing the desired outcome. The how not to do it approach,
illustrated in the first diagram, was taken up, becoming known as the waterfall model,
and included in the first version of an influential standard, DoD-Std-2167,473 as the rec-
ommended project management technique.vii Projects have been implemented using a
Waterfall approach.1975

Iterative development has been independently discovered many times.1087

The U.S. National Defense Authorization Act, for fiscal year 2010, specified that an it-
erative acquisition process be used for information technology systems; Section 804:1177

contains the headline requirements “(B) multiple, rapidly executed increments or releases
of capability; (C) early, successive prototyping to support an evolutionary approach; . . .
”. However, the wording used for the implementation of the new process specifies: “ . . .
well-scoped and well-defined requirements.”, i.e., bureaucratic inertia holds sway.

viParticular development activities may have dominant modes of information discovery.
viiSubsequent versions removed this recommendation, and more recent versions recommend incremental and

iterative development. The primary author of DoD-Std-2167 expressed regret for creating the strict waterfall-
based standard, that others advised him it was an excellent model; in hindsight, had he known about incremental
and iterative development, this would have been strongly recommended, rather than the waterfall model.1087

132 5. Projects

Jan 2012 Apr 2012 Jul 2012

Emp 9
Emp 3−50%

Emp 7, Emp 3
Emp 9−50%

Emp 3−25%, Emp 7−75%
Emp 6

Emp 1−50%
Emp 7−75%

Emp 4
Emp 1
Emp 2
Emp 1

Emp 5, Emp 1−25%
Emp 4
Emp 1
Emp 5

Emp 1−75%
Emp 7
Emp 1

Figure 5.28: Initial implementation schedule, with em-
ployee number(s) given for each task (percentage given
when not 100%) for a project. Data from Ge et al.663

Github–Local

Jul Sep Nov Jan Mar
0.2

0.5

1.0

2.0

Date (2000−2001)

E
st

im
at

ed
 c

os
t (

£
m

ill
io

n)

Estimated total
Prime contractor
Subcontractor 1
Subcontractor 2

Figure 5.29: Evolution of the estimated cost of develop-
ing a bespoke software system, as implementation pro-
gressed; over time the estimated costs shift between the
Prime contractor and its two subcontractors. Data from
Yu.1995 Github–Local

The battle fought over the communication protocols used to implement the Internet is
perhaps the largest example of a waterfall (the OSI seven-layer model, ISO 7498 or ITU-T
X.200, documented the requirements first, which vendors could then implement, but few
ever did) vs. an iterative approach (the IETF process was/is based on rough consensus and
running code,1621 and won the battle).

The economic incentives and organizational structure in which a project is developed can
be a decisive factor in the choice of development methodology. For instance, the docu-
mentation and cost/schedule oversight involved in large government contracts requires a
methodology capable of generating the necessary cost and schedule documents; in winner
take-all markets, there is a strong incentive to be actively engaging with customers as soon
as possible, and a methodology capable of regularly releasing updated systems provides a
means of rapidly responding to customer demand, as well as reducing the delay between
writing code and generating revenue from it.

The choice of project implementation strategy is strongly influenced by the risk profile of
changes to requirements and company cash flow.

The benefits of using iterative development include: not requiring a large upfront invest-
ment in requirements gathering, cost reduction from not implementing unwanted require-
ments (based on feedback from users of the current system), working software makes it
possible to start building a customer base (a crucial requirement in winner take-all mar-
kets), and reducing the lag between writing code and earning income from it.

The additional cost incurred from using iterative development, compared to an upfront
design approach, come from having to continually rearchitect programs to enable them to
support functionality that they were not originally designed to support.

If the cost of modifying the design is very high, it can be cost effective to do most of the
design before implementing it. The cost of design changes may be high when: hardware
that cannot be changed is involved, or when many organizations are involved and all need
to work to the same design.

When customer requirements are rapidly changing, or contain many unknowns, the pro-
posed design may quickly become out-of-date, and it may be more cost effective to ac-
tively drive the design by shipping something working, e.g., evolving a series of lan-
guages, and their corresponding compilers;142 see Github–projects/J04.R. User feedback is
the input to each iteration, and without appropriate feedback iterative projects can fail.723

The growth of the Internet provided an ideal ecosystem for the use of iterative techniques.
With everything being new, and nobody knowing what was going to happen next: require-
ments were uncertain and subject to rapid change, many market niches had winner-take-
all characteristics. Also, the Internet provided a distribution channel for frequent software
updates.

Project lifespan by be sufficiently uncertain that it dictates the approach to system devel-
opment. For instance, building the minimum viable product, and making it available to
potential customers to find out if enough of them are willing to pay enough for it to be
worthwhile investing in further development.

In an environment where projects are regularly cancelled before delivery, or delivered
systems have a short lifespan, it may be a cost effective to make short term cost savings
that have a larger long term cost.

A study by Özbek1433 investigated attempts to introduce software engineering innovations
into 13 open source projects within one-year. Of the 83 innovations identified in the
respective project email discussions 30 (36.1%) were successful, 37 (44.6%) failed, and
16 (19.3%) classified as unknown.

5.4.2 The Waterfall/iterative approach

The major activities involved in the waterfall/iterative approach to building a software sys-
tem include: requirements, design, implementation (or coding), testing and deployment.
These activities have a natural ordering in the sense that it is unwise to deploy without
some degree of testing, which requires code to test, which ideally has been designed and
implements a known requirement. The extent to which documentation is a major activity,
or an after-thought, depends on the client.

The term phase is sometimes used to denote project activities, implying both an ordering,
and a distinct period during which one activity is performed.

5.4. PATHS TO DELIVERY 133

Phase work overlapped with

Acceptance
testing

Integration

Coding

Design

Desig
n

Coding

Te
stin

g
Integratio

n

testin
g

Other

12.3 37.4 16 3.1

0.3 39.5 20.3 7.7

1.5 69.6 14 2.9

46.4 31.3 5.8 1.9

Figure 5.30: Phase during which work on a given ac-
tivity of development was actually performed, average
percentages over 13 projects. Data from Zelkowitz.2003

Github–Local

Design Code

Test

Figure 5.31: Percentage distribution of effort time (red)
and schedule time (blue) across design/coding/testing
for 38 NASA projects. Data from Condon et al.392

Github–Local

Design Code

Test

Figure 5.32: Percentage distribution of effort across de-
sign/coding/testing for 10 ICL projects (red), 11 BT
projects (green), 11 space projects (blue) and 12 defense
projects (purple). Data from Kitchenham et al1015 and
Graver et al.729 Github–Local

A study by Zelkowitz2003 investigated when work from a particular activity was per-
formed, relative to other activities (for thirteen projects, average total effort 13,522 hours).
Figure 5.30 shows considerable overlap between all activity, e.g., 31.3% of the time spent
on design occurred during the coding and testing activity; also see Github–projects/zelkowitz-
effect.R.

How are the available resources distributed across the major project activities?

A study by Condon, Regardie, Stark and Waligora392 investigated 39 applications devel-
oped by the NASA Flight Dynamics Division between 1976 and 1992. Figure 5.31 shows
ternary plots of the percentage effort, in time (red), and percentage schedule, in elapsed
time (blue), for design, coding and testing (mean percentages for the three activities were:
effort time: 24%, 43 and 33 respectively and schedule elapsed time: 33%, 34 and 33).

To what extent does resources distribution across major project activities vary between
organizations?

Figure 5.32 shows a ternary plot for the design/coding/test effort for projects developed
by various organizations: a study by Kitchenham and Taylor1015 investigated a com-
puter manufacturer (red) and a telecoms company (green), a study by Graver, Carriere,
Balkovich and Thibodeau729 investigated space projects (blue) and major defense systems
(purple).

There is a clustering of effort breakdowns for different application areas; the mean per-
centage design, coding and testing effort were: computer/telecoms (17%, 57, 26) and
Space/Defence (36%, 20, 43). There is less scope to recover from the failures of software
systems operating in some space/defense environments; this operational reality makes it
worthwhile investing more in design and testing.

5.4.3 The Agile approach

The Agile manifesto specified “Individuals and interactions over processes and tools”, but
this has not stopped the creation and marketing of a wide variety of processes claiming
to be the agile way of doing things. The rarity of measurement data for any of the agile
processes means this evidence-based book has little to say about them.

5.4.4 Managing progress

How is the project progressing, in implemented functionality, cost and elapsed time, to-
wards the target of a project deliverable that is accepted by the client?

A project involves work being done and people doing it. Work and staff have to be meshed
together within a schedule; project managers will have a view on what has to be optimized.
A company employing a relatively fixed number of developers may seek to schedule
work so that employees always have something productive to do, while a company with
a contract to deliver a system by a given date may seek to schedule staff to optimise for
delivery dates (subject to the constraints of any other projects).

Scheduling a software project involves solving many of the kinds of problems encoun-
tered in non-software projects, e.g., staff availability (in time and skills), dependencies
between work items237 and other projects, and lead time on the client making require-
ments’ decisions.1973 Common to engineering projects in general,209 issues include the
difficulty of finding people with the necessary skills, and high turnover rate of current
staff; staffing is discussed in section 5.5.

Analyzing project progress data in isolation can be misleading. A study by Curtis, Shep-
pard and Kruesi424 investigated the characteristics (e.g., effort and mistakes found) of the
implementation of five relatively independent subcomponents of one system. Figure 5.33
shows how effort, in person hours, changes as the subcomponent projects progressed.
While the five subcomponents were implemented by different teams, it is not known
whether teams members worked on other projects within the company. Across multi-
ple ongoing projects, total available effort may not change significantly, but large changes
can occur on single projects (because senior management are optimizing staffing across
all projects); see fig 5.4.

While it may be obvious to those working on a project that the schedule will not be met,
nobody wants to be the bearer of bad news, and management rarely have anything to gain

134 5. Projects

5 10 15 20 25 30

2000

4000

6000

8000

10000

Elapsed time (months)

E
ffo

rt
 (

pe
rs

on
 h

ou
rs

)

Figure 5.33: Effort, in person hours per month, used in
the implementation of the five components making up the
PAVE PAWS project (grey line shows total effort). Data
extracted from Curtis et al.424 Github–Local

0 20 40 60 80 100

1

2

5

Percentage completed

A
ct

ua
l/E

st
im

at
ed

Figure 5.34: Percentage of actual project duration elapsed
at the time 882 schedule estimates were made, during 121
projects, against estimated/actual time ratio (y-axis has a
log scale; boundary maximum in red). Data kindly pro-
vided by Little.1153 Github–Local

0 100 200 300 400 500

5

10

15

20

25

Initial estimated duration (days)

N
um

be
r

of
 e

st
im

at
es

Figure 5.35: Initial estimated project duration against
number of schedule estimates made before completion, for
121 projects; line is a loess fit. Data kindly provided by
Little.1153 Github–Local

by reporting bad news earlier than they have to. Progress reports detailing poor progress,
and increased costs, may be ignored,983 or trigger an escalation of commitment.205

Once the client believes the estimated completion date and/or cost is not going to be met,
either: the project objectives are scaled back, the project cancelled, or a new completion
estimate is accepted. Scheduling when to tell clients about project delivery slippage,
and/or a potential cost overrun, is an essential project management skill.

The scheduling uncertainty around a successful project is likely to decrease as it pro-
gresses towards completion. The metaphor of a cone of uncertainty is sometimes used
when discussing project uncertainty; this metaphor is at best useless. The cone-shaped
curve(s) that are sometimes visible in plots where the y-axis is the ratio of actual and es-
timated, and the x-axis is percentage completed (a quantity that is unknown until project
completion, i.e., the duration of the project), are a mathematical artefact. Figure 5.34

shows a plot of percentage actually completed against the ratio Actual
Estimated

, for each cor-

responding project (4.6% of estimate completion dates are less than the actual date), for
882 estimates made during the implementation of 121 projects; the curved boundary is a
mathematical artefact created by the choice of axis, i.e., the following holds:

Actual
Estimated

≤ xpercentageActual, cancelling Actual gives:
1

Estimated
≤ xpercentage, i.e., what-

ever the value of Estimated, the plotted point always appears below, or on, the 1
x curve.

A study by Little1153 investigated schedule estimation for 121 projects at Landmark Graph-
ics between 1999 and 2002. An estimated release date was made at the start, and when-
ever the core team reached consensus on a new date (averaging 7.2 estimates per project;
Figure 5.35 shows the number of release date estimates made for 121 projects, for a cor-
responding initial estimated project duration, on the x-axis). The extent to which the
schedule estimation characteristics found in Landmark projects are applicable to other
companies will depend on issues such as corporate culture and requirements volatility.
The Landmark Graphics corporate culture viewed estimates as targets, i.e., “what’s the
earliest date by which you can’t prove you won’t be finished?”;1153 different schedule
characteristics are likely to be found in a corporate culture that punishes the bearer of bad
news.

Reasons for failing to meet a project deadline include (starting points for lawyers looking
for strategies to use, to argue their client’s case after a project fails1598): an unrealistic
schedule, a failure of project management, changes in the requirements, encountering un-
expected problems, staffing problems (i.e., recruiting or retaining people with the required
skills), and being blocked because a dependency is not available.237 Missed deadlines are
common, and a common response is to produce an updated schedule.

If a project is unlikely to meet its scheduled release date, those paying for the work have
to be given sufficient notice about the expected need for more resources, so the resources
can be made available (or not).

Figure 5.36 shows 882 changed delivery date announcements, with percentage elapsed
time when the estimate was announced along the x-axis (based on the current estimated
duration of the project), and percentage change in project duration (for the corresponding
project) along the y-axis; red line is a loess fit. On average larger changes in duration
occur near the start of projects, with smaller changes made towards the estimated end
date. The blue line is a density plot of the percentage elapsed time of when schedule
change announcements are made (density values not shown). There is a flurry of new
estimates after a project starts, but over 50% of all estimates are made in the last 71% of
estimated remaining time, and 25% in the last 6.4% of remaining time.

Parkinson’s law says that work expands to fill the time available. When management
announces an estimated duration for a project, it is possible that those involved choose to
work in a way that meets the estimate (assuming it would have been possible to complete
the project in less time).

A study by van Oorschot, Bertrand and Rutte1879 investigated the completion time of 424
work packages involving advanced micro-lithography systems, each having an estimated
lead time. Figure 5.37 shows the percentage of work packages having a given manage-
ment estimated lead time that are actually completed within a given amount of time, with
colored lines showing stratification by management estimate.

People sometimes strive to meet a prominent deadline.

A study by Allen, Dechow, Pope and Wu33 investigated Marathon finishing times for nine
million competitors. Figure 5.38 shows the number of runners completing a Marathon

5.4. PATHS TO DELIVERY 135

0 20 40 60 80 100

−50

0

50

Estimated percentage complete

C
ha

ng
e

pe
rc

en
ta

ge

Figure 5.36: Percentage change in 882 estimated delivery
dates, announced at a given percentage of the estimated
elapsed time of the corresponding project, for 121 projects
(red is a loess fit); blue line is a density plot of percent-
age estimated duration when the estimate was made. Data
kindly provided by Little.1153 Github–Local

5 10 15
0

10

20

30

40

50

Duration (weeks)

P
ro

je
ct

s
(p

er
ce

nt
ag

e)

1 weeks
2 weeks
3 weeks
4 weeks
5 weeks
6 weeks
7 weeks
8 weeks

Figure 5.37: Percentage of work packages having a given
lead time that are completed within a given duration; col-
ored lines are work packages having the same estimated
lead time. Data extracted from van Oorschot et al.1879

Github–Local

180 200 220 240 260 280 300 320

500

1000

1500

2000

2500

Finish time (minutes)

C
om

pe
tit

or
s

Figure 5.38: Number of Marathon competitors finishing in
a given number of minutes (250,000 runner sample size).
Data from Allen et al.33 Github–Local

in a given number of minutes, for a sample of 250,000 competitors. Step changes in
completion times are visible at 3, 3.5, 4, 4.5, and 5 hour finish times.

5.4.5 Discovering functionality needed for acceptance

What functionality does a software system need to support for a project delivery to be
acceptedviii by the client?

Requirements gathering is the starting point of the supply chain of developing bespoke
software, and is an iterative process.340

Bespoke software development is not a service that many clients regularly fund, and they
are likely to have an expectation of agreeing costs and delivery dates for agreed function-
ality, before signing a contract.

The higher the cost of failing to obtain good enough information on the important re-
quirements, the greater the benefit from investing to obtain more confidence that all the
important requirements are known in good enough detail. Building a prototype1731 can be
a cost-effective approach to helping decide and refine requirements, as well as evaluating
technologies. Another approach to handling requirement uncertainty is to build a mini-
mum viable prototype, and then add features in response to feedback from the customer,
e.g., using an agile process.

The requirements gathering process (other terms used include: requirements elicitation,
requirements capture and systems analysis) is influenced by the environment in which the
project is being developed:

• when an existing manual way of working, or computer system, is being replaced (over
half the projects in one recent survey948), the stakeholders of the existing system are an
important source of requirements information,

• when the software is to be sold to multiple customers, as a product, those in charge
of the project select the requirements. In this entrepreneurial role, the trade-off in-
volves minimising investment in implementing functionality against maximising ex-
pected sales income,

• when starting an open source project the clients are those willing to do the work, or
contribute funding.

The client who signs the cheques is the final authority on which requirements have to be
implemented, and their relative priority. Clients who fail to manage the requirements
process end up spending their money on a bespoke system meeting somebody else’s
needs.1518

It is not always obvious whether a requirement has been met;1523 ambiguity in require-
ment specifications is discussed in chapter 6. Sometimes existing requirements are mod-
ified on the basis of what the code does, rather than what the specification said it should
do.275 Gause and Weinberg659 provide a readable tour through requirements handling in
industry.

What is a cost effective way of discovering requirements, and their relative priority?

A stakeholder is someone who gains or loses something (e.g., status, money, change of
job description) as a result of a project going live. Stakeholders are a source of political
support, resistance to change,1911 and active subversion1608 (i.e., doing what they can to
obstruct progress on the project), they may provide essential requirements’ information,
or may be an explicit target for exclusion, e.g., criminals with an interest in security card
access systems.

Failure to identify the important stakeholders can result in missing or poorly prioritized
requirements, which can have a significant impact on project success. What impact might
different stakeholder selection strategies have?

A study by Lim1143 investigated the University College London project to combine differ-
ent access control mechanisms into one, e.g., access to the library and fitness centre. The
Replacement Access, Library and ID Card (RALIC) project had been deployed two years
before the study started, and had more than 60 stakeholder groups. The project documen-
tation, along with interviews of those involved (gathering data after project completion

viiiAcceptance here means paying all the money specified in the contract, plus any other subsequently agreed
payments.

136 5. Projects

0 20 40 60 80 100 120

0.005

0.010

0.020

0.050

Stakeholder

S
al

ie
nc

e

Figure 5.39: Aggregated salience of each stakeholder, cal-
culated using the pagerank of the stakeholders in the net-
work created from the Open (red) and Closed (blue) stake-
holder responses (values for each have been sorted). Data
from Lim.1143 Github–Local

5 10 15
0

1000

2000

3000

4000

5000

6000

7000

Requirement

A
llo

ca
te

d
fu

nd
s

Figure 5.40: Average value assigned to requirements (red)
and one standard deviation bounds (blue) based on omit-
ting one stakeholder’s priority value list. Data from Reg-
nell et al.1569 Github–Local

means some degree of hindsight bias will be present), was used to create the Ground truth
of project stakeholder identification (85 people), their rank within a role, requirements
and relative priorities.

The following two algorithms were used to create a final list of stakeholders:

• starting from an initial list of 22 names and 28 stakeholder roles, four iterations of
Snowball sampling resulted in a total of 61 responses containing 127 stakeholder names
and priorities, and 70 stakeholder roles (known as the Open list),

• a list of 50 possible stakeholders was created from the project documentation. The peo-
ple on this list were asked to indicate which of those names on the list they considered to
be stakeholders, and to assign them a salienceix between 1 and 10, they were also given
the option to suggest other names as possible stakeholders. This process generated a
list containing 76 stakeholders names and priorities, and 39 stakeholder roles (known
as the Closed list).

How might a list of people, and the salience each of them assigns to others, be combined
to give a single salience value for each person?

Existing stakeholders are in a relationship network. Lim assumed that the rank of stake-
holder roles, calculated using social network metrics, would be strongly correlated with
the rank ordering of stakeholder roles in the Grounded truth list. Figure 5.39 shows
the Open and Closed stakeholder aggregated salience values, calculated using Pagerank
(treating each stakeholder as a node in the network created using the respective lists;
Pagerank was chosen for this example because it had one of the strongest correlations
with the Ground truth ranking); also, see Github–projects/requirements/stake-ground-cor.R.

Identifying stakeholders and future users is just the beginning. Once found, they have
to be convinced to commit some of their time to a project they may have no immedi-
ate interest in; stakeholders will have their own motivations for specifying requirements.
When the desired information is contained in the heads of a few key players, these need
to be kept interested, and involved throughout the project. Few people are practiced in re-
quirements’ specification, and obtaining the desired information is likely to be an iterative
process, e.g., they describe solutions rather than requirements.

Prioritization: Clients will consider some requirement to be more important than others;
concentrating resources on the high priority requirements is a cost-effective way of keep-
ing the client happy, and potentially creating a more effective system (for the resources
invested). Techniques for prioritising requirements include:

• aggregating the priority list: this involves averaging stakeholders’ list of priority values,
possibly weighting by stakeholder.

To what extent are the final requirements’ priorities dependent on one stakeholder? Cal-
culating an average, with each stakeholder excluded in turn, is one method of estimating
the variance of priority assignments.

A study by Regnell, Höst, Dag, Beremark and Hjel1569 asked each stakeholder/subject
to assign a value to every item on a list of requirements, without exceeding a specified
maximum amount, i.e., to act as-if they had a fixed amount of money to spend on the
listed requirements. Figure 5.40 shows the average value assigned to each requirement,
and the standard deviation in this value when stakeholders were excluded, one at a time.

• performing a cost/benefit analysis on each requirement, and prioritizing based on the
benefits provided for a given cost;977 see Github–projects/requirements/cost-value.R.

How much effort might need to be invested to produce a detailed requirements’ specifi-
cation? One effort estimate930 for the writing of the 1990 edition of the C Standard is
50 person years, a 219-page A4 document; the effort for the next version of the standard,
C99 (a 538-page document), was estimated to be 12 person years.

The development of a new product will involve the writing of a User manual. There are
benefits to writing this manual first, and treating it as a requirements’ specification.188

When a project makes use of a lot of existing source code, it may be necessary to retrofit
requirements, i.e., establish traceability between existing code that is believed to imple-
ment another set of requirements. It is sometimes possible to reverse engineer links from
existing code to a list of requirements.1025

ixSalience is defined as the degree to which managers give priority to competing stakeholder claims.1294

5.4. PATHS TO DELIVERY 137

1 2 5 10 20 50 100
1

5

10

50

100

500

1000

Elapsed working days

F
ea

tu
re

 c
ou

nt

First 650 days
After 650 days

Figure 5.41: Number of features whose implementation
took a given number of elapsed workdays; red first 650-
days, blue post 650-days, green lines are fitted zero-
truncated negative binomial distributions. Data kindly
supplied by 7Digital.1 Github–Local

200 400 600 800 1000

5

10

15

Days since April 2009

F
ea

tu
re

 im
pl

em
en

ta
tio

n
tim

e

Figure 5.42: Average number of days taken to implement a
feature, over time; smoothed using a 25-day rolling mean.
Data kindly supplied by 7Digital.1 Github–Local

0 200 400 600 800
0

1

2

3

4

5

6

7

Work days since Apr 2009

New features
Bug fixes
Bug−fix/New−feature

Figure 5.43: Number of feature developments started on a
given work day (red new features, green bugs fixes, blue
ratio of two values; 25-day rolling mean). Data kindly
supplied by 7Digital.1 Github–Local

5.4.6 Implementation

The traditional measures of implementation activity are staffing (see section 5.5), and
lines of code produced; management activities don’t seem to have attracted any evidence-
based research. Implementation activities include:1271, 1523, 1799, 1810 meetings, design,
coding, waiting for other work to be ready to use, and administration related activities;
see Github–projects/E100.D_2016-TaskLog.R.

Figure 5.10 shows that as the size of a project increases, the percentage of project effort
consumed by management time rapidly increases to a plateau, with fixed-price contracts
involving a greater percentage of management time.

Issues around the source code created during implementation are discussed in chapter 7,
and issues involving the reliability of the implementation are discussed in chapter 6.

The assorted agile methodologies include various implementation activities that can be
measured, e.g., number and duration of sprints, user stories and features.

How might patterns in agile implementation activities be used to gain some understanding
of the behavior of processes that are active during implementation?

7digital1 is a digital media delivery company using an agile process to develop an open
API platform providing business to business digital media services; between April 2009
and July 2012, 3,238 features were implemented by the development team (this data was
kindly made available).

Figure 5.41 shows the number of features requiring a given number of elapsed working
days for their implementation (red first 650-days, blue post 650-days); a zero-truncated
negative binomial distribution is a good fit to both sets of data (green lines). One inter-
pretation for the fitted probability distribution is that there are many distinct processes
involved in the implementation of a feature, with the duration of each process being a
distinct Poisson process; a sum of independent Poisson processes can produce a Negative
Binomial distribution. In other words, there is no single process dominating implemen-
tation time; improving feature delivery time requires improving many different processes
(the average elapsed duration to implement a feature has decreased over time).

The same distribution being a good fit for both the pre and post 650-day implementation
time suggests that changes in behavior were not a fundamental, but akin to turning a dial
on the distribution parameters, one-way or the other (the first 650-days has a greater mean
and variance than post 650-days). If the two sets of data were better fitted by different
distributions, the processes generating the two patterns of behavior are likely to have been
different.

Why was a 650-days boundary chosen? Figure 5.42 shows a time series of the feature
implementation time (smoothed using a 25-day rolling average). The variance in average
implementation time has a change-point around 650 days (a change-point in the mean
occurs around 780 days).

Figure 5.43 shows the number of new features and number of bug fixes started per day
(smoothed using a 25-day rolling mean).

During the measurement period the number of developers grew from 14 to 35 (the size of
its code base and number of customers is not available). The number of developers who
worked on each feature was not recorded, and while developers write the software, it is
clients who often report most of the bugs (client information is not present in the dataset).

Possible causes for the increase in new feature starts include: an increase in the number
of developers, and/or existing developers becoming more skilled at breaking work down
into smaller features (i.e., feature implementation time stays about the same because fewer
developers are working on each feature, leaving more developers available to start on new
features), or having implemented the basic core of the products less effort is now needed
to create new features.

A study by Jones and Cullum941 analysed 8,252 agile tasks whose duration was estimated
in hours, with many taking a few hours to complete. Figure 5.44 shows the number of
tasks having a given interval between being estimated and starting, and work starting and
completing; the lines are fitted regression models (both power laws).

For the 7digital and SiP agile data, knowing that a particular distribution is a good fit is a
step towards understanding the processes that generated the measurements (not an end in
itself); see section 9.2. More projects need to be analysed to evaluate whether the fitted

138 5. Projects

1 5 10 50 500

1

2

5

10

20

50

100

200

500

Working days

Ta
sk

s

Start−complete
Estimate−start

Figure 5.44: Number of tasks having a given duration, in
elapsed working days, between estimating/starting (blue),
and starting/completing (red). Data from Jones et al.941

Github–Local

0 10 20 30 40
0

100

200

300

400

Sprint

To
ta

ls

Hours
Story points

Figure 5.45: Total number of story points and hours
worked during each sprint of project P1. Data kindly pro-
vided by Vetrò.1894 Github–Local

10

20

30

40

50

●

●

●

●
●

● ● ● ●
● ●

●

● ● ● ●
● ●

●

●

● ●
●

●

●

●

●
● ● ● ●

●
●

Commit

T
im

e
(s

ec
on

ds
)

Figure 5.46: Violin plots of benchmark times for a sample
of 33 commits to SAX builder (average of 7,357 measure-
ments per commit). Data from Horký.856 Github–Local

distribution (e.g., Negative Binomial or Power law) is an inconsequential fact, particular
to the kind of client interaction, an indicator of inefficient organizational processes, or
some other factor.

The Scrum Agile process organizes implementation around a basic unit of time, known as
a sprint. During a sprint, which has a fixed elapsed time (two weeks is a common choice),
the functionality agreed at the start is created; the functionality may be specified using
story points and estimated using values from a Fibonacci sequence.

A study by Vetrò, Dürre, Conoscenti, Fernández and Jørgensen1894 investigated tech-
niques for improving the estimation process for the story points planned for a sprint.
Figure 5.45 shows the total number of story points and hours worked during each sprint
for project P1 (sprint duration was 2-weeks, up to sprint 26, and then changed to 1-week;
3 to 7 developers worked on the project).

Changes to software sometimes noticeably change its performance characteristics; per-
formance regression testing can be used to check that runtime performance remains ac-
ceptable, after source updates. A study by Horký856 investigated the performance of SAX
builder (an XML parser) after various commits to the source tree. Figure 5.46 shows the
range of times taken to execute a particular benchmark after a sample of 33 commits (av-
erage number of performance measurements per commit was 7,357; red dot is the mean
value).

A study by Zou, Zhang, Xia, Holmes and Chen2033 investigated the use of version con-
trol branches during the development of 2,923 projects (which had existed for at least
5-years, had at least 100 commits and three contributors). Figure 5.47 shows the number
of projects that have had a given number of branches, with fitted regression line (which
excluded the case of a single branch).

5.4.7 Supporting multiple markets

As the amount of functionality supported by a program grows, it may become more prof-
itable to sell targeted configurations (i.e., programs supporting a subset of the available
features), rather than one program supporting all features. Reasons for supporting mul-
tiple configurations include targeting particular market segments and reducing program
resource usage, e.g., the likely cpu time and memory consumed when running the pro-
gram with the options enabled/disabled.1703

Rather than maintaining multiple copies of the source, conditional compilation may be
used to select the code included in a particular program build (e.g., using macro names);
this topic is discussed in section 7.2.10.

A study by Berger, She, Lotufo, Wąsowski and Czarnecki investigated the interaction
between build flags and optional program features in 13 open source projects. Figure 5.48
shows the number of optional features that are enabled when a given number of build flags
are set.

5.4.8 Refactoring

Refactoring is an investment that assumes there will be a need to modify the code again
in the future, and it is more cost effective to restructure the code now, rather than at
some future date. Possible reasons for time shifting an investment in reworking code
include: developers not having alternative work to do, or an expectation that the unknown
future modifications will need to be made quickly, and it is worth investing time now to
reduce future development schedules; also, developers sometimes feel peer pressure to
produce source that follows accepted ecosystem norms, e.g., open source that is about to
be released.

A justification sometimes given for refactoring is to reduce technical debt. Section 3.2.5
explains why the concept of debt is incorrect in this context, and discusses how to analyse
potential investments (such as refactoring).

While models of the evolution of software systems developed with a given cash flow have
been proposed,1589 finding values for the model parameters requires reliable data, which
is rarely available.

5.4. PATHS TO DELIVERY 139

1 2 5 10 20 50

1

2

5

10

20

50

100

200

500

Branches

P
ro

je
ct

s

Figure 5.47: Number of projects on Github (out of 2,923)
having a given number of branches; the line is a fitted re-
gression model of the form: projects ∝ branches−2. Data
from Zou et al.2033 Github–Local

2 4 6 8 10

1

5

10

50

100

500

1000

Dependent features

N
um

be
r

of
 fe

at
ur

es

Linux
axTLS
BuildRoot
BusyBox
CoreBoot
EmbToolkit
Fiasco
Freetz
ToyBox
uClibc
uClinux−base
uClinux−dist

Figure 5.48: Number of optional features selected by a
given number of flags. Data kindly provided by Berger.180

Github–Local

2002 2003 2004 2005 2006
0

50

100

150

200

250

300

Date

Id
en

tif
ie

rs
 c

ha
ng

ed

4.
0

3.
6.

2

3.
6.

1
3.

6
3.

5.
2

3.
5.

1
3.

5
3.

4.
2

3.
4.

1
3.

4
3.

3.
2

3.
3.

1.
1

3.
3.

1
3.

3

3.
2.

2

3.
2.

1
3.

2

3.
1.

2
3.

1.
1

3.
1

3.
0.

2

3.
0.

1
3.

0
2.

1.
3

2.
1.

2
2.

1.
1

2.
1

2.
0.

2
2.

0.
1

2.
0

1.
0

Figure 5.49: Number of identifiers renamed, each month,
in the source of Eclipse-JDT; version released on given
date shown. Data from Eshkevari et al.559 Github–Local

A study by Kawrykow and Robillard980 investigated 24,000 change sets from seven long-
lived Java programs. They found that between 3% and 16% of all method updates con-
sisted entirely of non-essential modifications, e.g., renaming of local variables, and trivial
keyword modifications.

A study by Eshkevari, Arnaoudova, Di Penta, Oliveto, Guénéuc and Antoniol559 of identi-
fier renamings in Eclipse-JDT and Tomcat, found that almost half were applied to method
names, a quarter to field names, and most of the rest to local variables and parameter
names. No common patterns of grammatical form, of the renaming, were found, e.g.,
changing from a noun to a verb occurred in under 1% of cases. Figure 5.49 shows the
number of identifiers renamed in each month, along with release dates; no correlation
appears to exist between the number of identifiers renamed and releases.

Other studies1333, 1885 have found that moving fields and methods, and renaming methods
are very common changes.

5.4.9 Documentation

The term documentation might be applied to any text: requirements, specifications, code
documentation, comments in code, testing procedures, bug reports and user manuals;
source code is sometimes referred to as its own documentation or as self-documenting.
Section 4.6.4 discusses information sources.

Motivations for creating documentation include:

• a signal of commitment, e.g., management wants people to believe that the project will
be around for the long term, or is important,

• fulfil a contract requirement. This requirement may have appeared in other contracts
used by the customer, and nobody is willing to remove it; perhaps customer manage-
ment believes that while they do not understand code, they will understand prose,

• an investment intended to provide a worthwhile return by reducing the time/cost of
learning for future project members.

Development projects that derive income from consultancy and training have an incentive
to minimise the publicly available documentation. Detailed knowledge of the workings
of a software system may be the basis for a saleable service, and availability of documen-
tation reduces this commercial potential.

Issues around interpreting the contents of documentation are covered in chapter 6. The
existence of documentation can be a liability, in that courts have considered vendors liable
for breach of warranty when differences exist between product behavior and the behavior
specified in the associated documentation.972

5.4.10 Acceptance

Is the behavior of the software, as currently implemented, good enough for the client to
agree to pay for it?

A study by Garman653 surveyed 70 program and project managers of US Air Force
projects about their priorities. Meeting expectations (according to technical specifica-
tions) was consistently prioritized higher than being on budget or on time; your author
could not model priority decisions by fitting the available explanatory variables using
regression; see Github–projects/ADA415138.R.

Benchmarking of system performance is discussed in section 13.3.

A study by Hofman840 investigated user and management perceptions of software product
quality, based on 15 commercial development projects. Quality assessment did not appear
to be objective, suffering from issues such as: incomplete information, the effort needed
to perform a complete evaluation, and anchoring of opinions based on quality evaluations
of earlier releases; see Github–developers/Hofman-exp1.R.

5.4.11 Deployment

New software systems often go through a series of staged releases (e.g., alpha, followed
by beta releases and then release candidates); the intent is to uncover any unexpected
customer problems.

140 5. Projects

0 20 40 60 80 100
0

20

40

60

80

100

Time remaining (percentage)

C
om

m
its

 o
ut

st
an

di
ng

 (
pe

rc
en

ta
ge

)

Constant work rate
Pre−freeze
Post−freeze

Figure 5.50: Percentage of commits outstanding against
percentage the time remaining before deployment, for 18
releases; blue/green transition is the feature freeze date,
red line shows a constant commit rate. Data kindly pro-
vided by Laukkanen.1095 Github–Local

5 10 20 50

5

10

20

50

Jobs in build

Fa
ile

d
jo

bs

Figure 5.51: Number of failed jobs in Travis CI builds
involving a given number of jobs (points have been jit-
tered); line is a loess fit. Data from Gallaba et al.644

Github–Local

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

Years

S
up

pl
ie

r
su

rv
iv

al

Figure 5.52: Survival curve of IT outsourcing suppliers
continuing to work for 2,382 Credit Unions. Data kindly
provided by Peukert.1476 Github–Local

Traditionally releases have been either time-based (i.e., specified as occurring on a given
date), or feature based, i.e., when a specific set of features has been implemented. Iterative
development can enable faster, even continuous, releases (in a rapidly changing market
the ability to respond quickly to customer feedback is a competitive advantage issues).
Decreasing the friction experienced by a customer, in updating to a new release, increases
the likelihood that the release is adopted.

One approach to working towards a release at a future date, is to pause work on new
features sometime prior to the release, switching development effort to creating a system
that is usable by customers; the term code freeze is sometimes used to describe this second
phase of development.

A study by Laukkanen, Paasivaara, Itkonen, Lassenius and Arvonen1095 investigated the
number of commits prior to 19 releases of four components of a software system at Er-
icsson; the length of the code freeze phase varied between releases. Figure 5.50 shows
the percentage of commits not yet completed against percentage of time remaining before
deployment, for 18 releases; red line shows a constant commit rate, green lines are pre-
freeze date, blue lines post-freeze. See Github–projects/laukkanen2017/laukkanen2017.R for
component break-down, and regression models.

A basic prerequisite for making a new release is being able to build the software, e.g., be-
ing able to compile and link the source to create an executable. Modifications to the source
may have introduced mistakes that prevent an executable being built. One study1852 of
219,395 snapshots (after each commit) of 100 Java systems on Github found that 38% of
snapshots could be compiled. Being able to build a snapshot is of interest to researchers
investigating the evolution of a system, but may not be of interest to others.

Continuous integration is the name given to the development process where checks are
made after every commit to ensure that the system is buildable (regression tests may also
be run).

A study by Zhao, Serebrenik, Zhou, Filkov and Vasilescu2016 investigated the impact of
switching project development to use continuous integration, e.g., Travis CI. The regres-
sion models built showed that, after the switch, the measured quantity that changed was
the rate of increase of monthly merged commits (these slowed considerably, but there was
little change in the rate of non-merged commits); see Github–projects/ASE2017.R.

A study by Gallaba, Macho, Pinzger and McIntosh644 investigated Travis CI logs from
123,149 builds, from 1,276 open source projects; 12% of passing builds contained an ac-
tively ignored failure. Figure 5.51 shows the number of failed jobs in each build involving
a given number of jobs; line is a loess regression fit.

Building software on platforms other than the one on which it is currently being developed
can require a lot of work. One approach, intended to do away with platform specific
issues, is virtualization, e.g., Docker containers. One study,364 from late 2016, was not
able to build 34% of a sample of 560 Docker containers available on Github.

While some bespoke software is targeted at particular computing hardware, long-lasting
software may be deployed to a variety of different platforms. The cost/benefit analy-
sis of investing in reducing the cost of porting to a different platform (i.e., reducing the
switching cost) requires an estimate of the likelihood that this event will occur.

For systems supporting many build-time configurations options, it may be more cost ef-
fective766 to concentrate on the popular option combinations, and wait until problems with
other configurations are reported (rather than invest resources checking many options that
will never be used; various configuration sampling algorithms are available1254).

A study by Peukert1476 investigated the switching costs of outsourced IT systems, as ex-
perienced by U.S. Credit Unions. Figure 5.52 shows the survival curve of IT outsourcing
suppliers employed by 2,382 Credit Unions, over the period 2000 to 2010.

5.5 Development teams

A project needs people in possession of a minimum set of skills (i.e., they need to be
capable of doing the technical work), and for individuals to be able to effectively work
together as a team. Team members may have to manage a portfolio of project activities.

People working together need to maintain a shared mental model. Manned space explo-
ration is one source for evidence-based studies of team cognition.471

5.5. DEVELOPMENT TEAMS 141

1 2 3 4 5 6

50

100

150

200

Month

P
ro

je
ct

 w
or

k
(h

ou
rs

)

Figure 5.53: Average number of hours worked per month
(by an individual), with standard deviation, for two
projects staffed by 1,657 and 834 people; two red lines
and corresponding error bars offset either side of month
value. Data kindly provided by Bao.131 Github–Local

5 10 15 20 25

1

10

100

1000

10000

Languages used

P
ro

je
ct

s

Figure 5.54: Number of projects making use of a given
number of different languages in a sample of 100,000
GitHub project. Data kindly provided by Bissyande.203

Github–Local

5 10 15 20
1

10

100

1000

10000

Developers

Ta
sk

s

Code Inspect
Design Inspect
Code
Test
SiP task

Figure 5.55: Number of tasks worked on by a given num-
ber of developers. Data from Nichols et al1378 and Jones
et al.941 Github–Local

Team members might be drawn from existing in-house staff, developers hired for the du-
ration of the project (e.g., contractors), and casual contributors (common for open source
projects95). Some geographical locations are home to a concentration of expertise in
particular application domains, e.g., Cambridge, MA for drug discovery. The O-ring
theory1043 offers an analysis of the benefits, to employers and employees in the same
business, of clustering together in a specific location.625

If a group of potential team members is available for selection, along with their respective
scores in a performance test, it may be possible to select an optimal team based on select-
ing individuals, but selection of an optimal team is not always guaranteed.1022 Personnel
economics1099 (i.e., how much people are paid) can also be an important factor in who
might be available as a team member.

Developers can choose what company to work for, have some say in what part of a com-
pany they work in, and may have control over whether to work with people on the imple-
mentation of particular product features.

A study by Bao, Xing, Xia, Lo and Li131 investigated software development staff turnover
within two large companies. Figure 5.53 shows the mean number of hours worked per
month, plus standard deviation, by staff on two projects (of 1,657 and 834 people). A
regression model containing the monthly hours worked by individuals fits around 10% of
the variance present in the data.

When a project uses multiple programming languages, a team either needs to include
developers familiar with multiple languages, or include additional developers to handle
specific languages. Figure 5.54 shows the number of different languages used in a sample
of 100,000 GitHub projects (make was not counted as a language).

What is the distribution of team size for common tasks undertaken on a development
project?

Figure 5.55 shows the number of tasks that involved a given number of developers, for
tasks usually requiring roughly an hour or two of an individual’s time. The SiP tasks are
from one company’s long-running commercial projects, while the other tasks are aggre-
gated from three companies following the Team Software Process.

Microsoft’s postmortem analysis907 of the development of what was intended to be Win-
dows office, but became a Windows word processor, illustrates the fits and starts of project
development. Figure 5.56 shows the number of days remaining before the planned ship
date, for each of the 63 months since the start of the project, against number of full time
engineers. The first 12 months were consumed by discussion, with no engineers develop-
ing software. See figure 3.17 for a more consistent approach to project staffing.

What is a cost effective way of organizing and staffing a software project team?

There have been few experimental comparisons1965 of the many project development
techniques proposed over the years.

The early software developers were irregulars, in that through trial and error each found
a development technique that worked for them. Once software development became a
recurring activity within the corporate environment, corporate management techniques
were created to try to control the process.1042

Drawing a parallel with the methods of production used in manufacturing, the factory con-
cept has been adapted for software projects425 by several large companies.x The claimed
advantages of this approach are the same as those it provides to traditional manufactur-
ers, e.g., control of the production process and reduction in the need for highly skilled
employees.

The chief programmer team122 approach to system development was originally intended
for environments where many of the available programmers are inexperienced (a common
situation in a rapidly growing field); an experienced developer is appointed as the chief
programmer, who is responsible for doing detailed development, and allocating the tasks
requiring less skill to others. This form of team organization dates from the late 1960s,
when programming involved a lot of clerical activity, and in its original formulation em-
phasis is placed on delegating this clerical activity. Had it been successful, this approach
could also be applied to reduce costs in environments where experienced programmers
are available (by hiring cheaper, inexperienced programmers).

xIt was particular popular in Japan.426 Your author has not been able to locate any data on companies
recently using the factory concept to produce software.

142 5. Projects

0 100 200 300 400

0

2

4

6

8

10

12

Planned days to ship

F
ul

l t
im

e
en

gi
ne

er
s

1 2 3 4
567

89
1011

12

13

14

1516171819
20 2122

2324
25

26272829
3031323334

3536 37

38
39

404142 43
44

45

46
474849

50

5152 53
54

55

56

57

585960616263

Figure 5.56: Number of days before planned product ship
date, against number of full time engineers, for each of
the 63 months since the project started (numbers show
months since project started). Data from Jackson.907

Github–Local

5 10 15 20
0

1

2

3

4

5

Team size (people)

R
at

e
of

 p
ro

du
ct

io
n

α=0.8
Exponential
α=1.0

Figure 5.57: Effective rate of production of a team con-
taining a given number of people, with communication
overhead t0 = t1 = 0.1, and various distributions of per-
centage communication time; black line is zero communi-
cations overhead. Github–Local

1 2 3 4

0.2

0.4

0.6

0.8

Repetitions

T
im

e
(h

ou
rs

)

Group size = 1
Group size = 2
Group size = 3
Group size = 4

Figure 5.58: Time taken by groups of different sizes
to manually assembly a product, over multiple tri-
als; lines are fitted regression models of the form:
Time ∝

0.5−0.2log(Repetitions)
Group_size − 0.1log(Repetitions). Data

kindly provided by Peltokorpi et al.1464 Github–Local

Once a system has been delivered and continues to be maintained, developers are needed
to fix reported problems, and to provide support.1803 Once initial development is com-
plete, management need to motivate some of those involved to continue to be available
to work on the software they are familiar with; adding new features provides a hedonic
incentive for existing developers to maintain a connection with the project, and potential
new development work is an enticement for potential new team members.

A study by Buettner275 investigated large software intensive systems, and included an
analysis of various staffing related issues, such as: staffing level over time (fig 14.4) and
staff work patterns (fig 11.61).

If team member activities are divided into communicating and non-communication (e.g.,
producing code), how large can a team become before communication activities cause
total team output to decline when another person is added?

Assuming that communications overhead,xi for each team member, is: t0(Dα −1), where
t0 is the percentage of one person’s time spent communicating in a two-person team, D
the number of people in the team and α a constant greater than zero. The peak team size,
before adding people starts reducing total output, is given by:1815

Dpeak =

[
1+ t0

(1+α)t0

] 1
α

If α = 1 (i.e., everybody on the project incurs the same communications overhead), then
Dpeak =

1+t0
2t0

, which for small t0 is: Dpeak ≈ 1
2t0

. For example, if team members spend
10% of their time communicating with every other team member: Dpeak =

1+0.1
2×0.1 ≈ 5.

In this team of five, 50% of each person’s time is spent communicating.

If α = 0.8, then: Dpeak =
[

1+0.1
(1+0.8)×0.1

] 1
0.8 ≈ 10.

Figure 5.57 shows the effective rate of production (i.e., sum of the non-communications
work of all team members) of a team of a given size, whose culture has a particular form
of communication overhead.

If people spend most of their time communicating with a few people and very little with
the other team members, the distribution of communication time may have an exponential
distribution; the (normalised) communications overhead is: 1− e−(D−1)t1 , where t1 is a
constant found by fitting data from the two-person team (before any more people are
added to the team).

Peak team size is now:

Dpeak =
1
t1

, and, if t1 = 0.1, then: Dpeak =
1

0.1 = 10.

In this team of ten, 63% of each person’s time is spent communicating (team size can
be bigger, but each member will spend more time communicating compared to the linear
overhead case).

A study by Peltokorpi and Niemi1464 investigated the impact of learning and team size on
the manual construction of a customised product. Figure 5.58 shows how the time taken
to manually assemble the product, for groups containing various numbers of members,
decreases with practice. Group learning is discussed in section 3.4.5.

5.5.1 New staff

New people may join a project as part of planned growth, the need to handle new work,
existing people leaving, management wanting to reduce the dependency on a few critical
people, and many other reasons.

Training people (e.g., developers, documentation writers) who are new to a project re-
duces the amount of effort available for building the system in the short term. Training is
an investment in people, whose benefit is the post-training productivity these people bring
to a project.

Brooks’ Law266 says: “Adding manpower to a late software project makes it later”, but
does not say anything about the impact of not adding manpower to a late project. Under
what conditions does adding a person to a project cause it to be delayed?

xiThis analysis is not backed-up by any data.

5.6. POST-DELIVERY UPDATES 143

2010 2012 2014 2016 2018

50

100

150

200

250

Date

@
w

or
d

uswitch
clj−fe
wgsn
bbc
teamly
riskapp
craft
book
ask
planning

Figure 5.59: Time-line of first @word usage, ordered on
y-axis by date of first appearance; legend shows @words
with more than 500 occurrences. Data from Jones et al.940

Github–Local

3 4 5 6 7 8 9 10

50

100

150

200

Lifetime (years)

S
ta

ff

Figure 5.60: Average number of staff required to support
renewal of code having a given average lifetime (green);
blue/red lines show fitted biexponential regression model.
Data extracted from Elliott.540 Github–Local

0 2 4 6 8
0.1

0.5

1.0

5.0

10.0

50.0

100.0

Age (years)

M
ai

nt
en

an
ce

 (
ho

ur
s)

Modern (1992)
Traditional

Figure 5.61: Age of systems, developed using one of two
methodologies, and corresponding monthly maintenance
effort, lines are loess regression fits. Data extracted from
Dekleva.481 Github–Local

If we assume a new person diverts, from the project they join, a total effort, Te, in training
and that after Dt units of time the trained person contributes En effort per unit time until
the project deadline; unless the following inequality holds, training a new person results
in the project being delayed (in practice a new person’s effort contribution ramps up from
zero, starting during the training period):

Ea1Dr < (Ea1Dt −Te)+(Ea2 +En)(Dr−Dt), where Ea1 is the total daily effort produced
by the team before the addition of a new person, Ea2 the total daily effort produced by the
original team after the addition, and Dr is the number of units of time between the start of
training, and the delivery date/time.

Adding a person to a team can both reduce the productivity of the original team (e.g.,
by increasing the inter-person communication overhead) and increase their productivity
(e.g., by providing a skill that enables the whole to be greater than the sum of its parts).
Assuming that Ea2 = cEa1, the equation simplifies to: Te < (Dr−Dt)(En− (1− c)Ea1).
If a potential new project member requires an initial investment greater than this value,
having them join the team will cause the project deadline to slip.

The effort, Te, that has to be invested in training a new project member will depend on
their existing level of expertise with the application domain, tools being used, coding
skills, etc (pretty much everything was new, back in the day, for the project analysed by
Brooks, so Te was probably very high). There is also the important ability, or lack of, to
pick things up quickly, i.e., their learning rate.

How often do new staff encounter tasks they have not previously performed?

A study by Jones and Borgatti940 analysed the tags (having the form @word) used to
classify each task in the Renzo Pomodoro dataset; all @words were selected by one per-
son, for the tasks they planned to do each day. Figure 5.59 shows the time-line of the
use of @words, with the y-axis ordered by date of first usage. The white lines are three
fitted regression models, each over a range of days; the first and last lines have the form:
at_num = a+b(1− ec×days), and the middle line has the form: at_num = a×days; with
a, b, and c constants fitted by the regression modeling process.

The decreasing rate of new @words, over two periods (of several years), shows how a
worker within a company experienced a declining rate of new tasks, the longer the time
spent within a particular role.

5.5.2 Ongoing staffing

Software systems that continue to be used may continue to be supported by software
developers, e.g., reported faults addressed and/or new features added.

A study by Elliott540 investigated the staffing levels for large commercial systems (2
MLOC) over the lifetime of the code (defined as the time between a system containing the
code first going live and the same system being replaced; renewal was the terminology
used by the author); the study did not look at staffing for the writing of new systems or
maintenance of existing systems. Figure 5.60 shows the average number of staff needed
for renewal of code having a given average lifetime, along with a biexponential regression
fit.

A study by Dekleva481 investigated the average monthly maintenance effort (in hours)
spent on products developed using traditional and modern methods (from a 1992 perspec-
tive). Figure 5.61 shows the age of systems, and the corresponding time spent on monthly
maintenance.

5.6 Post-delivery updates

Once operational, software systems are subject to the economics of do nothing, update
or replace. The, so-called, maintenance of a software system is a (potentially long term)
project in its own right.

Software is maintained in response to customer demand, and changes are motivated by
this demand, e.g., very large systems in a relatively stable market1302 are likely to have a
different change profile than smaller systems sold into a rapidly changing market. Rea-
sons motivating vendors to continue to invest in developing commercial products are dis-
cussed in chapter 4; also see Github–ecosystems/maint-dev-ratio.R.

144 5. Projects

0.2

0.5

1.0

2.0

Release

M
LO

C

2.4 2.6 2.8 3 3.2 3.4 3.6

2.4
2.5
2.6
2.7
2.8
2.9
3
3.1
3.2
3.3
3.4
3.5
3.6
3.7

Figure 5.62: Number of lines of code in a release (x-axis)
originally added in a given release (colored lines). Data
kindly provided by Ozment.1434 Github–Local

1985 1990 1995 2000 2005 2010
0

200

400

600

800

1000

1200

Date

Messages
Manual K words
Options
Source KLOC

Figure 5.63: Growth of PC-Lint, over 11 major releases in
28 years, of messages supported, command line options,
kilo-words in product manual, and thousands of lines of
code in the product. Data kindly provided by Gimpel.682

Github–Local

5 10 15 20
0

20

40

60

80

100

Release

R
eq

ui
re

m
en

ts
 c

ha
ng

ed
 (

pe
rc

en
t)

Figure 5.64: Percentage of requirements added/deleted/-
modified for eight features (colored lines) of a prod-
uct over 22 releases. Data extracted from Felici.591

Github–Local

Work on software written for academic research projects often stops once project funding
drys up. A study867 of 214 packages associated with papers published between 2001-
2015, in the journal Molecular Ecology Resources, found that 73% had not been updated
since publication.

Updating software used in safety-critical systems is a non-trivial process;451 a change
impact analysis needs to be made during maintenance, and formal update processes fol-
lowed.

Buildings are sometimes held up as exemplars of creative items that experience long peri-
ods of productive use with little change. In practice buildings that are used, like software,
often undergo many changes,244 and the rearchitecting can be as ugly as that of some
software systems. Brand244 introduced the concept of shearing layers to refer to the way
buildings contain multiple layers of change (Lim1143 categorised the RALIC requirements
into five layers).

A new release contains code not included in previous releases, and some of the code
contained in earlier releases may not be included.

A study by Ozment and Schechter1434 investigated security vulnerabilities in 15 succes-
sive versions of OpenBSD, starting in May 1998. The source added and removed in each
release was traced. Figure 5.62 shows the number of lines in each release (x-axis) that
were originally added in a given release (colored lines).

Existing customers are the target market for product updates, and vendors try to keep them
happy (to increase the likelihood they will pay for upgrades). Removing, or significantly
altering, the behavior of a widely used product feature has the potential to upset many
customers (who might choose to stay with the current version that has the behavior they
desire). The difficulty of obtaining accurate information on customer interaction with a
product incentivizes vendors to play safe, e.g., existing features are rarely removed or
significantly changed. If features are added, but rarely removed, a product will grow over
time.

Figure 5.63 shows the growth of lines of code, command line options, words in the manual
and messages supported by PC-Lint (a C/C++ static analysis tool), in the 11 major releases
over 28 years.

Companies in the business of providing software systems may be able to charge a monthly
fee for support (e.g., fixing problems), or be willing to be paid on an ad-hoc basis.1784

An organization using in-house bespoke software may want the software to be adapted, as
the world in which it is used changes. The company that has been maintaining software
for a customer is in the best position to estimate actual costs, and the price the client is
likely to be willing to continue paying for maintenance; see fig 3.23. Without detailed
maintenance cost information, another company bidding to take over maintenance of an
existing system198 has to factor in an unknown risk; in some cases the client may be
willing to underwrite their risk.

A study by Felici591 analysed the evolution of requirements, over 22 releases, for eight
features contained in the software of a safety-critical avionics system. Figure 5.64 shows
the requirements for some features completely changing between releases, while the re-
quirements for other features were unchanged over many releases.

A study by Hatton786 investigated 1,294 distinct maintenance tasks. For each task, de-
velopers estimated the percentage time expected to be spent on adaptive, corrective and
perfective activities, this was recorded, along with the actual percentage. Figure 5.65
shows a ternary plot of accumulated (indicated by circle size) estimated and actual per-
centage time breakdown for all tasks.

With open source projects, changes may be submitted by non-core developers, who do
not have access rights to change the source tree.

A study by Baysal, Kononenko, Holmes and Godfrey154 tracked the progress of 34,535
patches submitted through the WebKit and Mozilla Firefox code review process, between
April 2011 and December 2012. Figure 5.66 shows the percentage of patches (as a per-
centage of submitted patches) being moved between various code review states in WebKit.

Source code is changed via patches to existing code. In the case of the Linux kernel
submitted patches first have to pass a review process; patches that pass review then have

5.6. POST-DELIVERY UPDATES 145

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
Adaptive Corrective

Perfective
Actual
Estimate

Figure 5.65: Ternary plot showing developers’ estimated
and actual percentage time breakdown performing adap-
tive, corrective and perfective work accumulated over
1,294 maintenance tasks; size of accumulation denoted by
circle size. Data from Hatton.786 Github–Local

54

12

31

2.8

0.098

0.81

47
8

0.1

0.48

11
1.2

Submitted

Accepted Rejected

Landed Resubmitted Abandoned Timeout

Figure 5.66: Percentage of patches submitted to WebKit
(34,535 in total) transitioning between various stages of
code review. Data from Baysal et al.154 Github–Local

0.01 0.10 1.00 10.00 1000.00
0.0

0.2

0.4

0.6

0.8

1.0

Submitted/Accepted interval (hours)

P
at

ch
es

 a
cc

ep
te

d
(d

en
si

ty
)

Maintainers
Linus Torvalds

Figure 5.67: Density plot of interval between a patch pass-
ing review and being accepted by a maintainer, and inter-
val between a maintainer pushing the patch to Linus Tor-
valds, and it being accepted into the blessed mainline (only
patches accepted by Torvalds included). Data from Jiang
et al.918 Github–Local

to be accepted by the maintainer of the appropriate subsystem, these maintainers sub-
mit patches they consider worth including in the official kernel to Linus Torvalds (who
maintains the official version).

A study by Jiang, Adams and German918 investigated attributes of the patch submission
process, such as the time between submission and acceptance (around 30% of the patches
that make it through review are accepted into the kernel); the data includes the 81,000+
patches to the kernel source, between 2005 and 2012. Figure 5.67 shows a kernel density
plot of the interval between a patch passing review and being accepted by the appropriate
subsystem maintainer, and the interval between a maintainer pushing a patch and it being
accepted by Torvalds. Maintainers immediately accept half of patches that pass review
(Torvalds 6%). The kernel is on roughly an 80 day (sd 12 days) release cycle; the rate at
which Torvalds accepts patches steadily increases, before plummeting at the end of the
cycle.

Open source projects may be forked, that is a group of developers may decide to take
a copy of the code, to work on it as an independent project; see section 4.2.1. Features
added to a fork or fixed coding mistakes may be of use to the original project. A study
by Zhou, Vasilescu and Kästner2024 investigated factors that influence whether a pull re-
quest submitted to the parent project, by a forked project, are accepted. The 10 variables
in the fitted model explained around 25% of the variancexii; see Github–economics/fse19-
ForkEfficency.R.

A variety of packages implementing commonly occurring application functionality are
freely available e.g., database and testing2006 frameworks.

The need to interoperate with other applications can cause a project to switch the database
framework used by an application, or to support multiple database frameworks. The like-
lihood of an increase/decrease in the number of database frameworks used, and the time
spent using different frameworks, is analysed in table 11.6.

5.6.1 Database evolution

Many applications make use of database functionality, with access requests often having
the form of SQL queries embedded in strings within the source code. The structure of
a database, its schema, may evolve, e.g., columns are added/removed from tables, and
tables are added/removed; changes may be needed to support new functionality, or involve
a reorganization, e.g., to save space or improve performance.

The kinds of changes made to a schema will be influenced by the need to support existing
users (who may not want to upgrade immediately), and the cost of modifying existing
code.

A study by Skoulis1720 investigated changes to the database schema of several projects
over time, including: Mediawiki (the software behind Wikipedia and other wikis), and
Ensembl (a scientific project). Figure 5.68 shows one database schema in a linear growth
phase (like the source code growth seen in some systems, e.g., fig 11.2), while the other
has currently stopped growing, e.g., source code example fig 11.52. Systems change in re-
sponse to customer requirements, and there is no reason to believe that the growth patterns
of these two databases won’t change.

Figure 5.69 shows the table survival curve for the Mediawiki and Ensembl database
schema. Why is the table survival rate for Wikimedia much higher than Ensembl? Per-
haps there are more applications making use of the contents of the Wikimedia schema,
and the maintainers of the schema don’t want to generate discontent in their user-base, or
the maintainers are just being overly conservative. Alternatively, uncertainty over what
data might be of interest in the Ensembl scientific project may result in the creation of
tables that eventually turn out to be unnecessary, and with only two institutions involved,
table removal may be an easier decision. The only way of finding out what customer
demands are driving the changes is to talk to those involved.

The presence of tables and columns in a schema does not mean the data they denote is used
by applications; application developers and the database administrator may be unaware
they are unused, or they may have been inserted for use by yet to be written code.

A database may contain multiple tables, with columns in different tables linked using
foreign keys. One study1886 of database evolution found wide variation in the use of

xiiThat is, lots of variables performing poorly.

146 5. Projects

2000 2002 2004 2006 2008 2010 2012

20

30

40

50

60

70

80

Date

Ta
bl

es

Ensembl
Mediawiki

Figure 5.68: Evolution of the number of tables in the Me-
diawiki and Ensembl project database schema. Data from
Skoulis.1720 Github–Local

0 1000 2000 3000 4000 5000
0.0

0.2

0.4

0.6

0.8

1.0

Days

Ta
bl

e
su

rv
iv

al

Mediawiki
Ensembl

Figure 5.69: Survival curve for tables in Wikimedia and
Ensembl database schema, with 95% confidence intervals.
Data from Skoulis.1720 Github–Local

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

Years

S
til

l e
vo

lv
in

g

Figure 5.70: Survival curve for year of last modification
of database programs, i.e., years before they stopped be-
ing changed, with 95% confidence intervals. Data from
Blum.213 Github–Local

foreign keys, e.g., foreign keys being an integral part of the database, or eventually being
completely removed (sometimes driven to a change of database framework).

A study by Blum213 investigated the evolution of databases and associated programs in the
Johns Hopkins Oncology Clinical Information System (OCIS), a system that had been in
operational use since the mid-1970s. Many small programs (a total of 6,605 between 1980
and 1988, average length 15 lines) were used to obtain information from the database.
Figure 5.70 shows the survival curve for the year of last modification of a program, i.e.,
the probability that they stopped evolving after a given number of years.

0 500 1000 1500 2000
0.0

0.2

0.4

0.6

0.8

1.0

Number of days

Fa
ul

t e
xp

er
ie

nc
es

 s
ur

vi
va

l

others
drivers

Figure 6.1: Survival rate of reported fault experiences
in Linux device drivers and the other Linux subsystems.
Data from Palix et al.1438 Github–Local

Chapter 6

Reliability

6.1 Introduction

People are willing to continue using software containing faults, which they sometimes
experience,i provided it delivers a worthwhile benefit. The random walk of life can of-
ten be nudged to avoid unpleasantness, or the operational usage time can be limited to
keep within acceptable safety limits.260 Regions of acceptability may exist in programs
containing many apparently major mistakes, but supporting useful functionality.1587

Software systems containing likely fault experiences are shipped because it is not eco-
nomically worthwhile fixing all the mistakes made during their implementation; also,
finding and fixing mistakes, prior to release, is often constrained by available resources
and marketing deadlines.334

Software release decisions involve weighing whether the supported functionality provides
enough benefit to be attractive to customers (i.e., they will spend money to use it), after
factoring in likely costs arising from faults experienced by customers (e.g., from lost sales,
dealing with customer complaints and possible fixing reported problems, and making
available an updated version).

How many fault experiences will customers tolerate, before they are unwilling to use soft-
ware, and are some kinds of fault experiences more likely to be tolerated than others (i.e.,
what is the customer utility function)? Willingness-to-pay is a commonly used measure of
risk acceptability, and for safety-critical applications terms such as As Low As Reasonably
Practicable (ALARP)764 and So Far As Is Reasonably Practicable (SFAIRP) are used.

Some hardware devices have a relatively short lifetime, e.g., mobile phones and graphics
cards. Comparing the survival rate of reported faults in Linux device drivers, and other
faults in Linux,1438 finds that for the first 18 months, or so (i.e., 500 days), the expected
lifetime of reported fault experiences in device drivers is much shorter than fault expe-
riences in other systems (see figure 6.1); thereafter, the two reported fault lifetimes are
roughly the same.

People make mistakes;1533, 1566 economic considerations dictate how much is invested in
reducing the probability that mistakes leading to costly fault experiences remain (either
contained in delivered software systems, or as a component of a larger system). The
fact that programs often contained many mistakes was a surprise to the early computer
developers,1960 as it is for people new to programming.ii

Developers make the coding mistakes that create potential fault experiences, and the en-
vironment in which the code executes provides the input that results in faults occurring
(which may be experienced by the user). This chapter discusses the kinds of mistakes
made, where they occur in the development process, methods used to locate them and
techniques for estimating how many fault experiences can potentially occur. Issues around
the selection of algorithms is outside the scope of this chapter; algorithmic reliability is-
sues include accuracy484 and stability of numerical algorithms,826 and solutions include
minimising the error in a dot product by normalizing the values being multiplied.541

iExperience is the operative word, a fault may occur and not be recognized as such.
iiThe use of assertions for checking program behavior was proposed by Turing in 1949,1313 and was later

reinvented by others.

147

148 6. Reliability

Operating as an engineering discipline does not in itself ensure that a constructed system
has the desired level of reliability. There has been, roughly, a 30-year cycle for bridge
failures;1475 new design techniques and materials are introduced, and growing confidence
in their use leads to overstepping the limits of what can safely be constructed.

What constitutes reliability, in a given context, is driven by customer requirements, e.g., in
some situations it may be more desirable to produce an inaccurate answer than no answer
at all, while in other situations no answer is more desirable than an inaccurate one.

Program inputs that cause excessive resource usage can also be a reliability issue. Exam-
ples of so-called denial of service attacks include regular expressions that are susceptible
to nonlinear, or exponential, matching times for certain inputs.442

The early computers were very expensive to buy and operate, and much of the software
written in the 1960s and 1970s was funded by large corporations or government bodies;
the US Department of Defence took an active role in researching software reliability,
and much of the early published research is based on the kinds of software development
projects undertaken on behalf of the DOD and NASA projects during this period.

The approach to software system reliability promoted by these early research sponsors set
the agenda for much of what has followed, i.e., a focus on large projects that are expected
to be maintained over many years, or systems operating in situations where the cost of
failure is extremely high and there is very limited time, if any, to fix issues, e.g., Space
shuttle missions.706

This chapter discusses reliability from a cost/benefit perspective; the reason that much
of the discussion involves large software systems is that a data driven discussion has to
follow the data, and the prexisting research focus has resulted in more data being available
for large systems. Mistakes have a cost, but these may be outweighed by the benefits of
releasing the software containing them. As with the other chapters, the target audience
is software developers and vendors, not users; it is possible for vendors to consider a
software system to be reliable because it has the intended behavior, but for many users to
consider it unreliable because it does not meet their needs.

The relative low cost of modifying existing software, compared to hardware, provides
greater flexibility for trading-off upfront costs against the cost of making changes later
(e.g., by reducing the amount of testing before release), knowing that it is often practical
to provide updates later. For some vendors, the Internet provides an almost zero cost
update distribution channel.

In some ecosystems it is impractical or impossible to update software once it has been
released, e.g., executable code associated with the Ethereum cryptocurrency is stored on
a blockchain (coding mistakes can have permanent crippling consequences1827).

Mistakes in software can have a practical benefit for some people, for instance, authors of
computer malware have used mistakes in cpu emulators to detect that their activity may
be monitored1436 (and therefore the malware should remain inactive).

Mistakes are not unique to software systems; a study1268 of citations in research papers
found an average error rate of 20%.

Proposals835 that programming should strive to be more like mathematics are based on
the misconception that the process of creating proofs in mathematics is less error prone
than creating software.453

The creation of mathematics shares many similarities with the creation of software, and
many mistakes are made in mathematics;1511 mathematical notation is a language with
rules specifying syntax and permissible transformations. The size, complexity and tech-
nicality of modern mathematical proofs has raised questions about the ability of anybody
to check whether they are correct, e.g., Mochizuki’s proof of the abc conjecture,306 and
the Hales-Ferguson proof of the Kepler Conjecture.1068 Many important theorems don’t
have proofs, only sketches of proofs and outline arguments that are believed to be cor-
rect;1354 the sketches provide evidence used by other mathematicians to decide whether
they believe a theorem is true (a theorem may be true, even though mistakes are made in
the claimed proofs).

Mathematical proof differs from software in that the proof of a theorem may contain mis-
takes, and the theorem may still be true. For instance, in 1899 Hilbert found mistakes1927

in Euclid’s Elements (published around 300 BC); the theorems were true, and Hilbert was
able to add the material needed to correct the proofs. Once a theorem is believed to be
true, mathematicians have no reason to check its proof.

6.1. INTRODUCTION 149

52 6
602

30

1650

 OpenSSL
 BouncyCastle

(176)

Other
projects

Linux

 Google
Hardware
developer

Device manufacturer
(402)

Network operator

(1,650)

Device
(24,600)

Figure 6.2: Flow of updates between participants in one
Android ecosystem; number of each kind of member given
in brackets, number of updates shipped on edges (in blue).
Data from Thomas.1829 Github–Local

The social processes involved in the mathematics community coming to believe that a
theorem is true, is evolving, to come to terms with believing machine-checked proofs.1502

The nature and role of proof in mathematics continues to be debated.819

Mistakes are much less likely to be found in mathematical proofs than software, because
a lot of specialist knowledge is needed to check new theorems in specialised areas, but a
clueless button pusher can experience a fault in software simply by running it; also, there
are few people checking proofs, while software is being checked every time it is executed.
One study313 found that 7% of small random modifications to existing proofs, written in
Coq, did not cause the proof to be flagged as invalid.

Fixing a reported fault experience is one step in a chain of events that may result in users
of the software receiving an update.

For instance, operating system vendors have different approaches to the control they ex-
ercise over the updates made available to customers. Apple maintains a tight grip over
use of iOS, and directly supplies updates to customers cryptographically signed for a par-
ticular device, i.e., the software can only be installed on the device that downloaded it.
Google supplies the latest version of Android to OEMs and has no control over what, if
any, updates these OEMs supply to customers (who may chose to install versions from
third-party suppliers). Microsoft sells Windows 10 through OEMs, but makes available
security fixes and updates for direct download by customers.

Figure 6.2 shows some of the connections between participants in the Android ecosystem
(number of each kind in brackets), and some edges are labeled with the number of known
updates flowing between particular participants (from July 2011 to March 2016).

Experiments designed to uncover unreliability issues may fail to find any. This does not
mean that they are rare, the reason for failing to find a mistake may be lack of statistical
power (i.e., the likelihood of finding an effect if one exists); this topic is discussed in
section 10.2.3.

The software used for some applications is required to meet minimum levels of reliability,
and government regulators (e.g., Federal Aviation Administration) may be involved in
some form of certification (these regulators may not always have the necessary expertise,
and delegate the work to the vendor building the system508).

In the U.S., federal agencies are required to adhere to an Executive Orderiii that specifies:
“Regulatory action shall not be undertaken unless the potential benefits to society for the
regulation outweigh the potential costs to society.” In some cases the courts have required
that environmental, social and moral factors be included in the cost equation.311

Quality control: Manufacturing hardware involves making a good enough copy of a ref-
erence product. Over time383 manufacturers have developed quality control techniques
that support the consistent repetition of a production process, to deliver a low defect fin-
ished product. Software manufacturing involves copying patterns of bits, and perfect
copies are easily made. The quality assurance techniques designed for the manufacture
hardware are solving a problem relevant to software production.

The adoption of a quality certification process by an organization, such as ISO 9000, may
be primarily symbolic.813

6.1.1 It’s not a fault, it’s a feature

The classification of program behavior as a fault, or a feature, can depend on the person
doing the classification, e.g., user or developer. For instance, software written to manage
a parts inventory may not be able to add a new item once the number of items it contains
equals 65,536; a feature/fault that users will not encounter until an attempt is made to add
an item that would take the number of parts in the inventory past this value.

Studies493, 820 of fault reports have found that many of the issues are actually requests for
enhancement.

The choice of representation for numeric values places maximum/minimum bounds on the
values that can be represented, and in the case of floating-point a percentage granularity
on representable values. Business users need calculations on decimal values to be exact,
something that is not possible using binary floating-point representations (unless emu-
lated in software), and business oriented computers sometimes include hardware support

iiiPresident Reagan signed Executive Order 12291 in 1981, and subsequent presidents have issued Executive
Orders essentially affirming this requirement.1797

150 6. Reliability

1.52 1.54 1.56 1.58 1.60 1.62
x

co
s(

x)
 a

cc
ur

ac
y

(U
LP

)

0.1

10

1,000

100,000

π

2

Figure 6.3: Accuracy of the value returned by the cos in-
struction on an Intel Core i7, for 52,521 argument val-
ues close to π

2 . Data kindly provided by Duplichan.519

Github–Local

1 100 10000

1

10

100

1000

10000

Installs

Fa
ul

t r
ep

or
ts

0 1000 2000 3000 4000 5000

1

10

100

1000

10000

Age (days)

Fa
ul

t r
ep

or
ts

Figure 6.4: Reported faults against number of installations
(upper) and age (lower). Data from the "wheezy" Debian
release.1862 Github–Local

for decimal floating-point operations; in other markets, implementation costs414 resulted
in binary becoming the dominant hardware representation for floating-point. While im-
plementation costs eventually decreased to a point where it became commercially viable
for processors to support both binary and decimal, much existing software has been writ-
ten for processors that use a binary floating-point representation.

Intel’s Pentium processor was introduced in 1993, as the latest member of the x86 family
of processors. Internally the processor contains a 66-bit hardwired value for π .iv A double
precision floating-point value is represented using a 53-bit mantissa, which means internal
operations involving values close to π (e.g., using one of the instructions that calculate
a trigonometric function) may have only 13-bits of accuracy, i.e., 66− 53. To ensure
that the behavior of new x86 family processors are consistent with existing processors,
subsequent processors have continued to represented π internally using 66-bits (rather
than the 128-bits needed to achieve an accuracy of better than 1.5 ULP).

Figure 6.3 shows the error in the values returned by the cos instruction in Intel’s Core
i7-2600 processor, for 52,521 argument values close to π

2 , expressed in units in the last
place (ULP); from a study by Duplichan.519

The variation in the behavior of software between different releases, or running the same
code on different hardware can be as large as the behavior affect the user is looking for,
potentially a serious issue when medical diagnosis is involved.746

The accuracy of calculated results may be specified in the requirements, or the devel-
oper writing the code may be the only person to give any thought to the issue. Calcu-
lations involving floating-point values may not be exact, and the algorithms used may
be sensitive to rounding errors.1962 Developers may believe they are playing safe by
using variables declared to have types capable of representing greater accuracy than is
required1619 (leading to higher than necessary resource usage,726 e.g., memory, time and
battery power). Small changes to numerical code can produce a large difference in the
output produced,1813 and simple calculations may require complex code to correctly im-
plement, e.g., calculating

√
a2 +b2.222

6.1.2 Why do fault experiences occur?

Two events are required for a running program to experience a software related fault:

• a mistake exists in the software,

• the program processes input values that cause it to execute the code containing the
mistake in a way that results in a fault being experienced411 (software that is never used
has no reported faults).

Some coding mistakes are more likely to be encountered than others, because the input
values needed for them to trigger a fault experience are more likely to occur during the use
of the software. Any analysis of software reliability has to consider the interplay between
the probabilistic nature of the input distribution, and coding mistakes present in the source
code (or configuration information).

An increase in the number of people using a program is likely to lead to an increase in fault
reports, because of both an increase in possible reporters and an increase in the diversity
of input values.

The Ultimate Debian Database project1862 collects information about packages included
in the Debian Linux distribution, from users who have opted-in to the Debian Popularity
Contest. Figure 6.4 shows the numbers of installs (for the "wheezy" release) of each
packaged application against faults reported in that package, and also age of the package
against faults reported (data from the Debian Bug Tracking System, which is not the
primary fault reporting system for some packages); also, see fig 11.23. A fitted regression
model is:

reported_bugs = e−0.15+0.17log(insts)+(30+2.3log(insts))×age×10−5

For an age between 1,000–6,000 and installs between 10–20,000 (log(insts) is between
2–10), the number of installations (a proxy for number of users) appears to play a larger
role in the number of reported faults, compared to age (i.e., the amount of time the pack-
age has been included in the Debian distribution). The huge amount of variance in the
data points to other factors having a major impact on number of reported faults.

ivThe 66-bit value is: C90FDAA2 2168C234 C, while the value to 192-bits is: C90FDAA2 2168C234 C4C66
28B 80DC1CD1 29024E08 8A67CC74.

6.1. INTRODUCTION 151

5544 6136 13724

6325

4760 25256 31201

16783 18247 19760 4671

19128 19274

23194 23196

Figure 6.5: Duplicates of Eclipse fault report 4671 (report
6325 was finally chosen as the master report); arrows point
to report marked as duplicate of an earlier report. Data
from Sadat et al.1625 Github–Local

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●
7c6db

1b7fc

31532

29402

28142

27532

25732

25712

85179

a2f93

06cf7

1cfe6

9d699
21bd3

3c4fb

Figure 6.6: Six fault reports (red), their associated bug
fixing commits (blue), and subsequent commits to fix mis-
takes introduced by the earlier commit (blue). Data from
Xiao et al.1985 Github–Local

A study1787 of TCP checksum performance found that far fewer corrupt network pack-
ets were detected in practice, than expected (by a factor of between 10 and 100). The
difference between practice and expectation was found to be caused by the non-uniform
distribution of input values (the proof that checksum values are uniformly distributed as-
sumes a uniform distribution of input values).

A hardware fault may cause the behavior of otherwise correctly behaving software to
appear to be wrong; hardware is more likely to fail as the workload increases.903

6.1.3 Fault report data

While fault reports have been studied almost since the start of software development,
until open source bug repositories became available there was little publicly available
fault report data. The possibility of adverse publicity, and the fear of legal consequences,
from publishing information on mistakes found in software products was not lost on com-
mercial organizations, with nearly all of them treating such information as commercially
confidential. While some companies maintained software fault report databases,724 these
were rarely publicly available.

During the 1970s, the Rome Air Defence Center published many detailed studies of soft-
ware development,424 and some included data on faults experienced by military software
projects.1967 However, these reports were not widely known about, or easy to obtain, until
they became available via the Internet; a few studies were published as books.1826

The few pre-Open source datasets analysed in research papers contained relatively small
numbers of fault reports, and if submitted for publication today would probably be re-
jected as not worthy of consideration. These studies1471, 1473 usually investigated partic-
ular systems, listing percentages of faults found by development phase, and the kinds of
faults found; one study1918 listed fault information relating to one application domain:
medical device software. An early comprehensive list of all known mistakes in a widely
used program was for LATEX.1030

The economic impact of loss of data, due to poor computer security, has resulted in some
coding mistakes in some programs (e.g., those occurring in widely used applications that
have the potential to allow third parties to gain control of a computer) being recorded in
security threat databases. Several databases of security related issues are actively main-
tained, including: the NVD (National Vulnerability Database890), the VERIS Commu-
nity Database (VCDB);1887 an Open source vulnerability database, the Exploit database
(EDB)529 lists proof of concept vulnerabilities; mistakes in code that may be exploited to
gain unauthorised access to a computer (vulnerabilities discovered by security researchers
who have a motivation to show off their skills), and the Wooyun program.2014

While many coding mistakes exist in widely used applications, only a tiny fraction are
ever exploited to effectively mount a malicious attack on a system.1470

In some application domains the data needed to check the accuracy of a program’s output
may not be available, or collected for many years, e.g., long range weather forecasts. The
developers of the Community Earth System Model compare the results from previous
climate calculations to determine whether modified code produces statistically different
results.121

A study by Sadat, Bener and Miranskyy1625 investigated issues involving connecting du-
plicate fault reports, i.e., reports involving the same mistake. Figure 6.5 shows the con-
nection graph for Eclipse report 6325 (report 4671 was the earliest report covering this
issue).

Fixing a mistake may introduce a new mistake, or may only be a partial fix, i.e., fixing
commits may be a continuation of a fix for an earlier fault report.

A study by Xiao, Zheng, Jiang and Sui1985 investigated regression faults in Linux (the
name given to fault experiences involving features that worked correctly, up until a code
change). Figure 6.6 shows a graph of six fault reports for Linux (in red), the commits
believed to fix the coding mistake (in blue), and subsequent commits needed to fix mis-
take(s) introduced by an earlier commit (in blue, follow arrows).

How similar are the characteristics of Open source project fault report data, compared to
commercial fault report data?

Various problems have been found with Open source fault report data, which is not to
say that fault report data on closed source projects is not without its own issues; known
problems include:

152 6. Reliability

• reported faults do not always appear in the fault report databases; e.g., serious bugs tend
to be under-reported in commit logs.200, 1373 One study105 of fault reports for Apache,
over a 6-week period, found that only 48% of bug fixes were recorded as faults in the
Bugzilla database; the working practice of the core developers was to discuss serious
problems on the mailing list, and many fault experiences were never formally logged
with Bugzilla,

• fault reports are misclassified. One study of fault reports820 (also see section 14.1.1)
found that 42.6% of fault reports had been misclassified, with 39% of files marked as
defective not actually containing any reported fault (e.g., were requests for enhance-
ment),

• reporting bias: fault experiences discovered through actively searching for them,574

rather than normal program usage (e.g., Linux is a popular target for researchers using
fuzzing tools, and csmith generated source code designed to test compilers). The re-
porting of vulnerabilities contained, or not, in the NVD has been found to be driven by a
wide variety social, technical and economic pressures.359, 1374 Data on fault reports dis-
covered through an active search process may have different characteristics compared
to faults experienced through normal program usage,

• the coding mistake is not contained within the source of the program cited, but is con-
tained within a third-party library. One study1178 surveyed developers about this issue,

• fault experience could not be reproduced or was intermittent: a study1628 of six servers
found that on average 81% of the 266 fault reports analysed could be reproduced deter-
ministically, 8% non-deterministically, 9% were timing dependent, plus various other
cases,

Fault report data does not always contain enough information to answer the questions
being asked of it, e.g., using incidence data to distinguish between different exponential
order fault growth models1283 (information is required on the number of times the same
fault experience has occurred; see section 4.3.2).

6.1.4 Cultural outlook

Cultures vary in their members’ attitude to the risk of personal injury and death; different
languages associate different concepts with the word reliability (e.g., Japanese1289), and
the English use of the term at risk has changed over time.2030 A study by Viscusi and
Aldy1904 investigated the value of a statistical life in 11 countries, and found a range of
estimates from $0.7 million to $20 million (adjusted to the dollar rate in 2000). Individu-
als in turn have their own perception of risk, and sensitivity to the value of life.1728 Some
risks may be sufficiently outside a persons’ experience that they are unable to accurately
estimate their relative likelihood,1134 or be willing to discount an occurrence affecting
them, e.g., destruction of a city, country, or all human life, by a meteor impact.1737

Public perception of events influences, and is influenced by, media coverage (e.g., in a
volcano vs. drought disaster, the drought needs to kill 40,000 times as many people as the
volcano to achieve the same probability of media coverage536). A study536 of disasters
and media coverage found that when a disaster occurs at a time when other stories are
deemed more newsworthy, aid from U.S. disaster relief is less likely to occur.

Table 6.1, from a 2011 analysis by the UK Department for Transport,1842 lists the average
value that would have been saved, per casualty, had an accident not occurred. A report354

from the UK’s Department for Environment, Food and Rural Affairs provides an example
of the kind of detailed analysis involved in calculating a monetary valuation for reducing
risk.

Injury
severity

Lost
output

Human
costs

Medical and
ambulance

Total

Fatal £545,040 £1,039,530 £940 £1,585,510
Serious £21,000 £144,450 £12,720 £178,160
Slight £2,220 £10,570 £940 £13,740
Average £9,740 £35,740 £2,250 £47,470

Table 6.1: Average value of prevention per casualty, by severity and element of cost (human cost based on willingness-to-pay values); last line is average over all casualties.
Data from UK Department for Transport.1842

6.2. MAXIMIZING ROI 153

40

50

60

70

Li
ke

lih
oo

d
(p

er
ce

nt
ag

e)

Very_Unlike
ly

Unlike
ly

Like
ly

Very_Like
ly

Figure 6.7: Mean percentage likelihood of (translated)
statements containing a probabilistic term; one col-
ored line per country. Data from Budescu et al.274

Github–Local

0 2 4 6 8

weak

small

slight

conservative

fair

moderate

adequate

substantial

major

huge

●

●

●

●

●

●

●

●

●

●

Response (standard deviations)

Figure 6.8: Subjects’ perceived change in the magnitude
of a quantity, when the given gradable size adjective is
present. Data from Sharp et al.1679 Github–Local

A study by Costa and Kahn408 investigated changes in the value of life in the USA, be-
tween 1940 and 1980. The range of estimates, adjusted to 1990 dollars, was $713,000 to
$996,000 in 1940, and $4.144 million to $5.347 million in 1980.

Some government related organizations, and industrial consortia, have published guide-
lines covering the use of software in various applications, e.g., in medical devices,581

cybersecurity,1558 and automotive.92, 1291, 1292 Estimates of the number of deaths associ-
ated with computer related accidents contain a wide margin of error.1186

Governments are aware of the dangers of society becoming overly risk-averse, and some
have published risk management policies.1916

People often express uncertainty using particular phrases, rather than numeric values.
Studies1317 have found that when asked to quantify a probabilistic expression, the range
of values given can be quite wide.

A study by Budescu, Por, Broomell and Smithson274 investigated how people in 24 coun-
tries, speaking 17 languages, interpreted uncertainty statements containing four probabil-
ity terms, i.e., very unlikely, unlikely, likely and very likely, translated to the subjects’
language. Figure 6.7 shows the mean percentage likelihood estimated by people in each
country to statements containing each term.

The U.S. Department of Defense Standard MIL-STD-882E474 defines numeric ranges for
some words that can be used to express uncertainty, when applied to an individual item;
these words include:

• Probable: "Will occur several times in the life of an item"; probability of occurrence
less than 10−1 but greater than 10−2.

• Remote: "Unlikely, but possible to occur in the life of an item"; probability of occur-
rence less than 10−3 but greater than 10−6.

• Improbable: "So unlikely, it can be assumed occurrence may not be experienced in the
life of an item"; probability of occurrence less than 10−6.

Some phrases are used to express relative position on a scale, e.g., hot/warm/cold wa-
ter describe position on a temperature scale. A study by Sharp, Paul, Nagesh, Bell and
Surdeanu1679 investigated, so-called gradable adjectives, e.g., huge, small. Subjects saw
statements such as: “Most groups contain 1470 to 2770 mards. A particular group has
2120 mards. There is a moderate increase in this group.”; subjects were then asked: “How
many mards are there?”.

Figure 6.8 shows violin plots for the responses given to statements/questions involving
various gradable quantity adjectives (see y-axis); the x-axis is in units of standard devia-
tion from the mean response, i.e., a normalised scale.

The interpretation of a quantifier (i.e., a word indicating quantity) may be context depen-
dent. For instance, “few of the juniors were accepted” may be interpreted as: a small
number were accepted; or, as: less than the expected number were accepted.1866

6.2 Maximizing ROI

A vendor’s approach to product reliability is driven by the desire to maximize return on
investment. The reliability tradeoff involves deciding how much to invest in finding and
fixing implementation mistakes prior to release, against fixing fault experiences reported
after release. Factors that may be part of the tradeoff calculation include:

• some mistakes will not generate fault experiences, and it is a waste of resources finding
and fixing them. The lack of fault experiences, for a particular coding mistake, may
be a consequence of software having a finite lifetime (see fig 3.7), or the source code
containing the mistake being rewritten before it causes a fault to be experienced.

A study by Di Penta, Cerulo and Aversano492 investigated the issues reported by three
static analysis tools (Rats, Splint and Pixy), when run on each release of several large
software systems, e.g., Samba, Squid and Horde. The reported issues were processed,
to find the first/last release where each issue was reported for a particular line of code
(in some cases the issue was reported in the latest release).

Figure 6.9 shows the survival curve for the two most common warnings reported by
Splint (memory problem and type mismatch, make up over 85% of all generated warn-
ings), where the warnings ceased because of code modifications that were not the result
of a reported fault being fixed; also see fig 11.80.

154 6. Reliability

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

Days since created

C
od

in
g

m
is

ta
ke

 s
ur

vi
va

l

Samba Memory problem
Type mismatch

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

Days since created

C
od

in
g

m
is

ta
ke

 s
ur

vi
va

l

Squid Memory problem
Type mismatch

Figure 6.9: Survival curves of the two most common
warnings reported by Splint in Samba and Squid, where
survival was driven by code changes and not fixing a re-
ported fault; with 95% confidence intervals. Data from De
Penta et al.492 Github–Local

1995 2000 2005 2010 2015 2020

50

100

150

200

250

300

350

Date

M
ed

ic
al

 d
ev

ic
es

 in
vo

lv
in

g
so

ftw
ar

e

Figure 6.10: Cumulative number of class III (high-risk)
medical devices, containing software in their product sum-
mary, achieving premarket approval from the FDA. Data
from FDA.582 Github–Local

The average lifetime of coding mistakes varies between programs and kind of mis-
take.1437

• there may be a competitive advantage to being first to market with a new or updated
product; the largest potential costs may be lost sales, rather than the cost of later cor-
rection of reported faults, i.e., it may be worth taking the risk that customers are not
deterred by the greater number of fault experiences; so-called frontier risk thinking,

• too much investment in finding and fixing mistakes can be counterproductive, e.g., cus-
tomers who do not encounter many fault experiences may be less motivated to renew a
maintenance agreement,

• whether the vendor cost of a fault experience includes the user costs associated with
the user fault experience, e.g., when software is developed for in-house use. In extreme
cases the cost of a fault experience can be hundreds of millions of dollars.1332

With COTS the cost of fault experiences is asymmetric, i.e., the customer bears the cost
of the fault experience itself, while the vendor can choose whether to fix the mistake
and ship an update. Existing consumer laws provide some legal redress973 (at least until
the existing legal landscape changes1662).

While coding mistakes are exploited by computer viruses, causing business disruption,
the greatest percentage of computer related loses come from financial fraud by insiders,
and traditional sources of loss such as theft of laptops and mobiles.1581

All mistakes have the potential to have costly consequences, but in practice most appear
to be an annoyance. One study39 found that only 2.6% of the vulnerabilities listed in the
NVD have been used, or rather their use has been detected, in viruses and network threat
attacks on computers.

Figure 6.10 shows the growth in the number of high-risk medical devices, containing the
word software in their product summary, achieving premarket approval from the Federal
Food and Drug Administration.

The willingness-to-pay (WTP) approach to reliability aims to determine the maximum
amount that those at risk would individually be willing to pay for improvements to their,
or other people’s safety. Each individual may only be willing to pay a small amount, but
as a group the amounts accumulate to produce an estimated value for the group "worth" of
a safety improvement. For instance, assuming that in a group of 1.5 million people, each
person is willing to pay £1 for safety improvements that achieve a 1 in 1 million reduction
in the probability of death; the summed WTP Value of Preventing a Statistical Fatality
(VPF) is £1.5 million (the same approach can be used to calculate Value of Preventing
non-fatal Injuries).

A market has developed for coding mistakes that can be exploited to enable third par-
ties to gain control of other peoples’ computers38 (e.g., spying agencies and spammers),
and some vendors have responded by creating vulnerability reward programs. The list
of published rewards are both a measure of the value vendors place on the seriousness
of particular kinds exploitable mistakes, and the minimum amount the vendor considers
sufficient to dissuade discoverers spending time finding someone willing to pay more.

Bountysource is a website where people can pledge a monetary bounty, payable when a
specified task is performed. A study by Zhou, Wang, Bezemer, Zou and Hassan2021 in-
vestigated bounties offered to fix specified open issues, of some Github project (the 2,816
tasks had a total pledge value of $365,059). Figure 6.11 shows the total dollar amount
pledged for each task; data broken down by issue reporting status of person specifying
the task.

The viability of making a living from bug bounty programs is discussed in connection
with figure 4.43.

If a customer reports a fault experience, in software they have purchased, what incen-
tive does the vendor have to correct the problem and provide an update (they have the
customers’ money; assuming the software is not so fault ridden that it is returned for a
refund)? Possible reasons include:

• a customer support agreement requires certain kinds of reported faults to be fixed,

• public perception and wanting to maintain customer good will, in the hope of mak-
ing further sales. One study78 found that the time taken to fix publicly disclosed vul-
nerabilities was shorter than for vulnerabilities privately disclosed to the vendor; see
section 11.11.3.1,

6.3. EXPERIENCING A FAULT 155

500 1000 1500 2000

5

10

50

100

500

1000

5000

10000

Bounty ID

A
m

ou
nt

 o
ffe

re
d

($
)

Issue reporter offered bounty
Independent reporter/bounty offerer

Figure 6.11: Value of bounties offered for 2,816 tasks ad-
dressing specified open issues of a Github project; pledges
stratified by status of person reporting the pledge issue.
Data from Zhou et al.2021 Github–Local

100 500 5000 50000

50

100

200

500

1000

2000

Installs

In
ci

de
nt

s

Figure 6.12: Number of incidents reported for each of 800
applications installed on over 120,000 desktop machines;
line is fitted regression model. Data from Lucente.1165

Github–Local

• a fill-in activity for developers, when no other work is available,

• it would be more expensive not to fix the coding mistake, e.g., the change in behavior
produced by the fault experience could cause an accident, or negative publicity, that
has an economic impact greater than the cost of fixing the mistake. Not wanting to lose
money because a mistake has consequences that could result in a costly legal action (the
publicity around a decision driven by a vendors’ cost/benefit analysis may be seen as
callous, e.g., the Ford Motor Company had to defend itself in court1110 over its decision
not to fix a known passenger safety issue, because they calculated the cost of loss of
human life and injury did not exceed the benefit of fixing the issue).

Which implementation mistakes are corrected? While there is no benefit in correcting
mistakes that customers are unlikely to experience, it may not be possible to reliably pre-
dict whether a mistake will produce a customer fault experience (leading to every mistake
having to treated as causing a fault experience). Once a product has been released and
known to be acceptable to many customers, there may not be any incentive to actively
search for potential fault experiences, i.e., the only mistakes corrected may be those asso-
ciated with a customer fault reports.

In some cases applications are dependent on the libraries supplied by the vendor of the
host platform. One study1149 of Apps running under Android found that those Apps using
libraries that contained more reported faults had a slightly smaller average user rating in
the Google Play Store.

What motivates developers to fix faults reported in Open source projects? Possible reasons
include:

• they work for a company that provides software support services for a fee. Having a
reputation as the go-to company for a certain bundle of packages is a marketing tech-
nique for attracting the attention of organizations looking to outsource support services,
or pay for custom modifications to a package, or training.

Correcting reported faults is a costly signal that provides evidence a company employs
people who know what they are doing, i.e., status advertising,

• developers dislike the thought of being wrong or making a mistake; a reported fault
may be fixed to make them feel better (or to stop it preying on their mind), also not
responding to known problems in code is not considered socially acceptable behavior
in some software development circles. Feelings about what constitutes appropriate be-
havior may cause developers to want to redirect their time to fixing mistakes in code
they have written or feel responsible for, provided they have the time; problems may be
fixed by developers when management thinks they are working on something else.

6.3 Experiencing a fault

Unintended software behavior is the result of an interaction between a mistake in the code
(or more rarely an incorrect translation by a compiler1136), and particular input values.

A program’s source code may be riddled with mistakes, but if typical user input does
not cause the statements containing these mistakes to be executed, the program may gain
a reputation for reliability. Similarly, there may only be a few mistakes in the source
code, but if they are frequently experienced the program may gain a reputation for being
fault-ridden.

Almost all existing research on software reliability has focused on the existence of the
mistakes in source code. This is convenience sampling, large amounts of Open source
is readily available, while information on the characteristics of program input is very
difficult to obtain.

The greater the number of people using a software system, the greater the volume and
variety of inputs it is likely to process: consequently there are likely to be more reported
fault experiences.

A study by Shatnawi1681 investigated the impact of the number of sites using a release
of telecommunication switch software, on the number of software failures reported. A
regression model fitted to the data shows that reported fault experiences decreased over
time, and increases with the number of installed sites; see Github–reliability/2014-04-13.R.

A study by Lucente1165 investigated help desk incident reports, from 800 applications
used by a 100,000 employee company with over 120,000 desktop machines. Figure 6.12

156 6. Reliability

1 2 5 10 20 50

1

2

5

10

20

50

New visitors (per day)

E
xc

ep
tio

ns
 (

pe
r

da
y)

Figure 6.13: Number of exceptions experienced per day
against number of new users of the application, for one ap-
plication prior to its general release; line is a fitted regres-
sion model of the form: Exceptions ∝ newUserUses0.8.
Data from Dey et al.489 Github–Local

Time

A
dd

re
ss

0 20 40 60 80 100
0

50

100

150

200

Time

A
dd

re
ss

0 20 40 60 80 100
0

50

100

150

200

Figure 6.14: Number of accesses to memory address
blocks, per 100,000 instructions, when executing gzip on
two different input files. Data from Brigham Young255 via
Feitelson. Github–Local

shows the number of incidents reported increasing with the number of installs (as is appar-
ent from the plot, the number of installs only explains a small percentage of the variance).

A comparison of the number of fault experiences reported in different software sys-
tems1489 might be used to estimate the number of people using the different systems;
any estimate of system reliability has to take into account the volume of usage, and the
likely distribution of input values.

The same user input can produce different fault experiences in different implementations
of the same functionality, e.g., the POSIX library on 15 different operating systems.488

A study by Dey and Mockus489 investigated the impact of number of users, and time
spent using a commercial mobile application, on the number of exceptions the App expe-
rienced. The App used Google analytics to log events, which provides daily totals. On
many days no exceptions were logged, and when exceptions did occur it is likely that
the same set of faults were repeatedly experienced. The fitted regression models (with
exceptions as the response variable) contain both user-uses and new-user-uses as power
laws, with the exponent for new-user-uses being the largest, and the impact of the version
of Android installed on the users’ device varied over several orders of magnitude; see
Github–reliability/2002-09989.R.

Figure 6.13 shows, for one application on prerelease, the number of exceptions per day
for a given number of new users.

6.3.1 Input profile

The environments in which we live, and software systems operate, often experience regu-
lar cycles of activity; events are repeated with small variations at a variety of scales (e.g.,
months of the year, days of the week, and frequent use of the same words;1106 also see
section 2.4.4).

The input profile that results in faults being experienced is an essential aspect of any
analysis of program reliability. For instance, when repeatedly adding pairs of floating-
point values, with each value drawn from a logarithmic distribution, the likelihood of
experiencing an overflow590 may not be low enough to be ignored (the probability for a
single addition overflowing is 5.3× 10−5 for single precision IEEE and 8.2× 10−7 for
doublev).

Undetected coding mistakesvi exist in shipped systems because the input values needed
to cause them to generate a fault experience were not used during the testing process.

Address traces illustrate how the execution characteristics of a program can be dramat-
ically changed by its input. Figure 6.14 shows the number of memory accesses made
while executing gzip on two different input files. The small colored boxes representing
100,000 executed instruction on the x-axis, and successive 4,096 bytes of stack on the
y-axis, the colors denote number of accesses within the given block (using a logarithmic
scale).

Mistakes in code that interact with input values that are likely to be selected by developers,
during testing, are likely to be fixed during development; beta testing is one method for
discovering customer oriented input values that developers have not been testing against.
Ideally the input profiles of the test and actual usage are the same, otherwise resources are
wasted fixing mistakes that the customer is less likely to experience.

The test process may include automated generation of input values; see section 6.6.2.1.

Does the interaction between mistakes in the source code, and an input profile, generate
any recurring patterns in the frequency of fault experiences?

One way of answering this question is to count the number of inputs successfully pro-
cessed by a program between successive fault experiences.

A study by Nagel and Skrivan1347 investigated the timing characteristics of fault experi-
ences in three programs, each written independently by two developers. During execu-
tion, each program processed inputs selected from the set of permissible values, when a

vThe general formula is: π2

6
(

ln Ω
ω

)2 where: Ω and ω are the largest and smallest representable values respec-

tively); the probability of a subtraction underflowing has a more complicated form, but the result differs by at
most 1 part in 10−9 from the addition formula.

viManagement may consider it cost effective to ship a system containing known mistakes.

6.3. EXPERIENCING A FAULT 157

37
2

10 1

1 34 1
1

2

1
17 28 1 1

1
1

1
17 30

1

22

A2−0

1 2

13 12 14

123 124 125 134

1235 1234

12345

Figure 6.15: Transition counts of five distinct fault experi-
ences in 50 runs of program A2; nodes labeled with each
fault experienced up to that point. Data from Nagel et
al.1347 Github–Local

1 10 100 1000 10000
1

2

3

4

5

Inputs processed

Fa
ul

ts
 e

xp
er

ie
nc

ed

0 10 20 30 40 50

1

10

100

1000

10000

Sorted order

In
pu

ts
 p

ro
ce

ss
ed

Fault a
Fault b
Fault c
Fault d
Fault e

Figure 6.16: Number of input cases processed before a
particular fault was experienced by program A2; the list is
sorted for each distinct fault. Data from Nagel et al.1347

Github–Local

fault was experienced its identity, execution time up to that point and number of input
cases processed were recorded; the coding mistake was corrected and program execution
continued until the next fault experience, until five or six faults had been experienced,
or the mistake was extremely time-consuming to correct (the maximum number of input
cases on any run was 32,808). This cycle was repeated 50 times, always starting with the
original, uncorrected, program; the term repetitive run modeling was used to denote this
form of testing. A later study by Nagel, Scholz and Skrivan1346 partially replicated and
extended this study.

Figure 6.15 shows the order in which distinct faults were experienced by implementation
A2, over 50 replications; edge values show the number of times the nth fault experience
was followed by a particular fault experience. For example, starting in state A2-0 fault
experience 1 was the first encountered during 37 runs, and this was followed by fault
experience 3 during one run.

Figure 6.16, upper plot, shows the number of input cases processed before a given number
of fault experiences, during the 50 runs of implementation A2; the lower plot shows the
number of inputs processed before each of five distinct fault experiences.

What is the likely number of inputs that have to be processed by implementation A2 for
the sixth distinct fault to be experienced? A regression model could be fitted to the data
seen in the upper plot of figure 6.16, but a model fitted to this sample of five distinct fault
experiences will have a wide confidence interval. There is no reason to expect that the
sixth fault will be experienced after processing any number of inputs, there appears to be
a change point after the fourth fault, but this may be random noise that has been magnified
by the small sample size.

The time and cost of establishing, to a reasonable degree of accuracy, that users of a
program have a very low probability of experiencing a fault286 may not be economically
viable.

A study by Dunham and Pierce516 replicated and extended the work of Nagel and Skriva;
problem 1 was independently reimplemented by three developers. The three implementa-
tions were each tested with 500,000 input cases, when a fault was experienced the number
of inputs processed was recorded, the coding mistake corrected, and program execution
restarted. This cycle was repeated four times, always starting with the original implemen-
tation, fixing and recording as faults were experienced.

Figure 6.17 shows the number of input cases processed, by two of the implementations
(only one fault was ever experienced during the execution of the third implementation),
before a given number of fault experiences, during each of the four runs. The grey lines are
an exponential regression model fitted to each implementation; these two lines show that
as the number of faults experienced grows, more input cases are required to experience
another fault, and that code written by different developers has different fault experience
rates per input.

A second study by Dunham and Lauterbach515 used 100 replications for each of the three
programs, and found the same pattern of results seen in the first study.

Some published fault experience experiments have used time (computer or user), as a
proxy for the quantity of input data. It is not always possible to measure the quantity of
input processed, and time may be more readily available.

A study by Wood1977 analysed fault experiences encountered by a product Q/A group in
four releases of a subset of products. Figure 6.18 shows that the fault experience rate is
similar for the first three releases (the collection of test effort data for release 4 is known
to have been different from the previous releases).

A study by Pradel1519 searched for thread safety violations in 15 classes in the Java stan-
dard library and JFreeChart, that were declared to be thread safe, and 8 classes in Joda-
Time not declared to be thread safe; automatically generated test cases were used. Thread
safety violations were found in 22 out of the 23 classes; for each case the testing process
was run 10 times, and the elapsed time to discover the violation recorded. Figure 6.19
illustrates the variability in the timing of the violations experienced.

A study by Adams7 investigated reported faults in applications running on IBM main-
frames between 1975 and 1980. Figure 6.20 shows that approximately one third of fault
experiences first occurred on average every 5,000 months of execution time (over all uses
of the product). Only around 2% of fault experiences first occurred after five months of
execution time.

158 6. Reliability

1 100 10000 1000000

2

4

6

8

Input cases

Fa
ul

t e
xp

er
ie

nc
e

replication 1
replication 2
replication 3
replication 4

Figure 6.17: Number of input cases processed by two im-
plementations before a fault was experienced, with four
replications (each a different color); grey lines are a re-
gression fit for one implementation. Data from Dunham
et al.516 Github–Local

0 2000 4000 6000 8000 12000
0

20

40

60

80

100

120

Hours of testing

Fa
ul

ts
 e

xp
er

ie
nc

ed

Release 1
Release 2
Release 3
Release 4

Figure 6.18: Faults experienced against hours of test-
ing, for four releases of a product. Data from Wood.1977

Github–Local

Fault ID

S
ec

on
ds

1

10

100

1000

10000

100000

15 5 18161411131020 6 171221 2 3 22 1 4 9 7 19 8

Figure 6.19: Time taken to encounter a thread safety vio-
lation in 22 Java classes, violin plots for 10 runs of each
class. Data kindly supplied by Pradel.1519 Github–Local

Multiple fault experiences produced by the same coding mistake provide information
about the likelihood of encountering input that can trigger that fault experience. Re-
gression models fitted using a biexponential equation (i.e., a× eb×x + c× ed×x, where x
is the rank order of occurrences of each fault experience) have been fitted to a variety of
program crash data; see fig 11.53.

A study by Zhao and Liu2015 investigated the crash faults found by fuzzing the files pro-
cessed by six Open source programs. Figure 6.21 shows the number of unique crash
faults experienced by convert and autotrace (estimated by tracing back to a program
location), along with lines fitted using biexponential regression models.

Why is a biexponential model such a good fit? A speculative idea is that the two expo-
nentials are driven by the two independent processes that need to interact to produce a
fault experience: the distribution of input values, and the mistakes contained in the source
code.vii

6.3.2 Propagation of mistakes

The location in the code that triggers a fault experience may appear many executable
instructions after the code containing the mistake (that is eventually modified to prevent
further the fault experiences).

In some input values a coding mistake may not propagate from the mistake location,
to a code location where it can trigger a fault experience. For instance, if variable x
is mistakenly assigned the value 3, rather than 2, the mistake will not propagate past the
condition: if (x < 8) (because the behavior is the same for both the correct and mistake
value); for this case, an opportunity to propagate only occurs when the mistaken value of
x changes the value of the conditional test.

How robust is code to small changes to the correct value of a variable?

A study by Danglot, Preux, Baudry and Monperrus435 investigated the propagation of
one-off perturbations in 10 short Java programs (42 to 568 LOC). The perturbations were
created by modifying the value of an expression once during the execution of a program,
e.g., by adding, or subtracting, one. The effect of a perturbation on program behavior
could be to cause it to raise an exception, output an incorrect result, or have no observed
effect, i.e., the output is unchanged. Each of a program’s selected perturbation points
were executed multiple times (e.g., the 41 perturbation points selected for the program
quicksort were executed between 840 and 9,495 times, per input), with one modification
per program execution (requiring quicksort to be executed 151,444 times, so that each
possible perturbation could occur, for the set of 20 inputs used).

Figure 6.22 shows violin plots for the likelihood that an add-one perturbation has no
impact on the output of a program; not all expressions contained in the programs were
perturbed, so a violin plot is a visual artefact.

Studies356 of the impact of soft errors (i.e., radiation induced bit-flips) have found that
over 80% of bit-flips have no detectable impact on program behavior.

6.3.3 Remaining faults: closed populations

In a closed population no coding mistakes are added (e.g., no new code is added) or
removed (i.e., reported faults are not fixed), and the characteristics of the input distribution
remain unchanged.

After N distinct faults have been experienced, what is the probability that there exists new,
previously unexperienced, faults?

Data on reported faults commonly takes two forms: incidence data (i.e., a record of the
date of first report, with no information on subsequent reports involving the same fault
experience), and abundance data, i.e., a record of every fault experience.

Software reliability growth has often been modeled as a nonhomogeneous Poisson pro-
cess, with researchers fitting various formulae to small amounts of incidence data.1127

Unfortunately, it is not possible to use one sample of incidence data to distinguish between

viiWorking out which process corresponds to which exponential appearing in the plots is left as an exercise
to the reader (because your author has no idea).

6.3. EXPERIENCING A FAULT 159

20 50 200 1000 5000 50000

0.1

0.2

0.5

1.0

2.0

5.0

10.0

20.0

Product usage time (months)

R
ep

or
te

d
fa

ul
ts

 (
pe

rc
en

ta
ge

)

Figure 6.20: Percentage of fault experiences having a
given mean time to first experience (in months, over all
installations of a product), for nine products. Data from
Adams.7 Github–Local

0 20 40 60 80 100 120

1

5

10

50

100

500

1000

Fault

E
xp

er
ie

nc
es

convert

Figure 6.21: Number of times the same fault was expe-
rienced in one program, crashes traced to the same pro-
gram location; with fitted biexponential equation (green
line; red/blue lines the two components). Data kindly pro-
vided by Zhao.2015 Github–Local

0 20 40 60 80 100

canny

laguerre

lcs

linreg

md5

quicksort

rc4

rsa

sudoku

zip

●

●

●

●

●

●

●

●

●

●

Perturbation location (normalised)

Figure 6.22: Violin plots of likelihood (local y-axis) that
an add-one perturbation at a (normalised) program loca-
tion will not change the output behavior. Data from Dan-
glot et al.435 Github–Local

different exponential order growth models,1283 i.e., this data does not contain enough in-
formation to do the job asked of it. It is often possible to fit a variety of equations to fault
report data, using regression modeling: however, predictions about future fault experi-
ences made using these models is likely to be very unreliable; see fig 11.50.

When abundance data is available, the modeling approach discussed in section 4.3.2 can
be used to estimate the number of unique items within a population, and the number of
new unique items likely to be encountered with additional sampling.

A study by Kaminsky, Eddington and Cecchetti966 investigated crash faults in three re-
leases of Microsoft Office and OpenOffice (plus other common document processors),
produced using fuzzing. Figure 6.23 shows actual and predicted growth in crash fault
experiences in the 2003, 2007 and 2010 releases of Microsoft Office, along with 95%
confidence intervals. Later versions are estimated to contain fewer crash faults, although
the confidence interval for the 2010 release is wide enough to encompass the 2007 rate.

Figure 6.24 shows the number of duplicate crashes experienced when the same fuzzed
files were processed by the 2003, 2007 and 2010 releases of Microsoft Office. The
blue/purple lines are the two components of fitted biexponential models for the three
curves.

The previous analysis is based on information about faults that have been experienced.
What is the likelihood of a fault experience, given that no faults have been experienced in
the immediately previous time, T ?

An analysis by Bishop and Bloomfield202 derived a lower bound for the reliability func-
tion, R, for a program executing without experiencing a fault for time t, after it has ex-
ecuted for time T without failure; it is assumed that the input profile does not change
during time T + t. The reliability function is:

R(t|T)≥ 1− t
T + t

e−
T
t log(1+ t

T)

If t is much smaller than T , this equation can be simplified to: R(t|T)≥ 1− t
(T + t)× e

For instance, if a program is required to execute for 10 hours with reliability 0.9999, the
initial failure free period, in hours, is:

0.9999≥ 1− 10
(T +10)× e

T ≥ 10
(1−0.9999)× e

−10≈ 36,778

If T is much smaller than t, the general solution can be simplified to: R(t|T)≥ T
t

How can this worst case analysis be improved on?

Assuming a system executes N times without a failure, and has a fixed probability of
failing, p, the probability of one or more failures occurring in N executions is given by:

C =
N

∑
n=1

p(1− p)n−1 = p
1− (1− p)N

1− (1− p)
= 1− (1− p)N

How many executions, without failure, need to occur to have a given confidence that the

actual failure rate is below a specified level? Rearranging, gives: N =

⌈
log(1−C)

log(1− p)

⌉
Plugging in values for confidence, C = 0.99, and failure probability, p < 10−4, then the
system has to execute without failure for 46,050 consecutive runs.

This analysis is not realistic because it assumes that the probability of failure, p, remains
constant for all input cases; studies show that p can vary by several orders of magnitude.

6.3.4 Remaining faults: open populations

In an evolving system, existing coding mistakes are corrected and new ones are made;
new features may be added that interact with existing functionality (i.e., there may be a
change of behavior in the code executed for the same input), and the user base is changing
(e.g., new users arrive, existing users leave, and the number of users running a particular
version changes as people migrate to a newer release); the population of mistakes is open.

160 6. Reliability

●

25

50

75

100

125

10000 20000 30000 40000 50000
Number of individuals

S
pe

ci
es

 d
iv

er
si

ty

● 2007
y2003
y2010

interpolation
extrapolation
NA

Figure 6.23: Predicted growth, with 95% confidence inter-
vals, in the number of new crash fault experiences in the
2003, 2007 and 2010 releases of Microsoft Office. Data
from Kaminsky et al.966 Github–Local

10 20 30 40

1

5

10

50

100

500

1000

5000

Crash location ID

C
ra

sh
es

2003
2007
2010

Figure 6.24: Number of crashes traced to the same ex-
ecutable location (sorted by number of crashes), in the
2003, 2007 and 2010 releases of Microsoft Office; lines
are fitted biexponential regression models. Data from
Kaminsky et al.966 Github–Local

0 1 2 3 4 5

50

100

200

500

1000

2000

5000

10000

20000

Duplicate reports

O
cc

ur
re

nc
es

Figure 6.25: Number of occurrences of the same mistake
responsible for a reported fault in GCC, with fitted biex-
ponential regression model, and component exponentials.
Data from Sun et al.1793 Github–Local

Studies of fault reports in an open population that fail to take into account the impact of
the time varying population816 will not produce reliable results.

Section 4.3.2.2 discusses estimation in open populations.

What form of regression models can be fitted to data on fault reports from an open popu-
lation?

A study by Sun, Le, Zhang and Su1793 investigated the fault reports for GCC and LLVM.
Figure 6.25 shows the number of times a distinct mistake has been responsible for a
fault report in GCC (from 1999 to 2015), with a fitted biexponential, and its component
exponentials.

A study by Sadat, Bener and Miranskyy1625 investigated duplicate fault reports in Apache,
Eclipse and KDE over 18-years. Figure 6.26 shows the number of times distinct faults re-
ported in KDE, with a fitted triexponential (green) and the three component exponentials.

Being able to fit this form of model suggests a pattern that may occur in other collections
of reported faults, but there is no underlying theory offering an explanation for the pattern
seen.

Successive releases of a software system often include a large percentage of code from
earlier releases. The collection of source code that is new in each release can be treated
as a distinct population containing a fixed number of mistakes; these populations do not
grow but can shrink (when code is deleted). The code contained in the first release is the
foundation population.

If the only changes made to code are fixes of mistakes, the number of faults experiences
caused by that code should decrease (assuming the input profile and number of users does
not change).

A study by Massacci, Neuhaus and Nguyen1217 investigated 899 security advisories in
Firefox, reported against six major releases. Their raw data is only available under an
agreement that does not permit your author to directly distribute it to readers; the data
used in the following analysis was reverse engineered from the paper, or extracted by
your author from other sources.

Table 6.2 shows the earliest version (columns) of Firefox containing a known mistake in
the source code, and the latest version (rows) to which a corresponding fault report exists.
For instance, 42 faults were discovered in version 2.0 corresponding to mistakes made
in the source code written for version 1.0. Only corrected coding mistakes have been
counted, unfixed mistakes are not included in the analysis. Each version of Firefox has a
release, and retirement date, after which the version is no longer supported, i.e., coding
mistakes are not corrected in retired versions.

1.0 1.5 2.0 3.0 3.5 3.6
1.0 79
1.5 71 108
2.0 42 104 126
3.0 97 15 22 67
3.5 32 30 32
3.6 13 1 5 41 14

Table 6.2: Number of reported security advisories in versions of Firefox; coding mistake made in version
columns, advisory reported in version row. Data from Massacci et al.1217

The 1.0 column in table 6.2 shows that 97 security advisories reported in Firefox release
3.0 were fixed by changing code written for release 1.0, while 42 were reported in release
2.0. Is this increase in version 3.0 due to an increase in end-user usage, a change of input
profile, or some other reason?

The Massacci study includes a break-down of the amount of source code contained in
each released version of Firefox by the version in which it was first released.

The number of Firefox users can be estimated from the claimed internet usage over time
(see Github–faults/internet-population.R), and Firefox market share. Figure 6.28 shows the
market share of the six versions of Firefox between their official release and end-of-
support dates. Estimated values appear to the left of the vertical grey line, values from
measurements to the right; note: at their end-of-support dates, post 1.5 versions had a
significant market share.

6.4. WHERE IS THE MISTAKE? 161

50 100 150

1

10

100

1000

10000

Fault report ID

O
cc

ur
re

nc
es

Figure 6.26: Number of instances of the same reported
fault in KDE, with fitted triexponential regression model.
Data from Sadat et al.1625 Github–Local

0.01

0.02

0.05

0.10

0.20

0.50

1.00

2.00

5.00

Firefox version

M
LO

C

v1.0 v1.5 v2.0 v3.0 v3.5 v3.6

v1.0
v1.5
v2.0
v3.0
v3.5
v3.6

Figure 6.27: Lines of source in early versions of Firefox,
broken down by the version in which it first appears. Data
extracted from Massacci et al.1217 Github–Local

0 500 1000 1500 2000
0

5

10

15

20

25

Days since version 1.0 released

B
ro

w
se

r
m

ar
ke

t s
ha

re
 (

%
)

1.0

1.5

2.0 3.03.5

3.6

Figure 6.28: Market share of Firefox versions between
official release and end-of-support (left of grey line are
estimates, right are measurements). Data from Jones.937

Github–Local

The end-user usage of source code originally written for a particular version of Firefox,
over time, is calculated as follows (data is been binned by week): number of lines of code
originally written for a particular version contained within the code used to build a later
version, or that particular version (call this the build version) multiplied by the market
share of the build version multiplied by the number of Internet users (based on the de-
veloped world user count); the units are LOC×Users

Figure 6.29 shows the amount of end-user usage of the source code originally written for
Firefox version 1.0. The yellow line is the code usage for version 1.0 code executing in
Firefox build version 1.0, the green line the code usage for version 1.0 code executing in
build version 1.5 and so on. The red points show version 1.0 code usage summed over all
build versions.

Comparing end-user usage of version 1.0 source code in Firefox versions 2.0 and 3.0
(see figure 6.29) shows significantly greater usage in version 2.0, i.e., quantity of end-
user usage is not the factor responsible for the increase in version 1.0 sourced security
vulnerabilities seen in the 1.0 column of table 6.2.

Other possible reasons for the increase include a significant change in the input profile
caused by changes in webpage content, starting around mid-2008, or an increase in re-
searchers actively searching for vulnerabilities in browsers.

6.4 Where is the mistake?

Information about where mistakes are likely to be made can be used to focus problem-
solving resources in those areas likely to produce the greatest returns. A few studies424

have measured across top-level entities such as project phase (e.g., requirements, coding,
testing, documentation), while others have investigated specific components (e.g., source
code, configuration file), or low level constructs, e.g., floating-point.490

The root cause of a mistake, made by a person, may be knowledge based (e.g., lack
of knowledge about the semantics of the programming language used), rule based (e.g.,
failure to correctly apply known coding rules), or skill based (e.g., fail to copy the correct
value of a numeric constant in an assignment).1566

Mistakes in hardware342, 505, 892 tend to occur much less frequently than mistakes in soft-
ware, and mistakes in hardware are not considered hereviii

The user interface, the interaction between people and an application, can be a source
of fault experiences in the sense that a user misinterprets correct output, or selects a pa-
rameter option that produces unintended program behavior. User interface issues are not
considered here.

Accidents where a large loss occurs (e.g., fatalities) are often followed by an accident
investigation. The final report produced by the investigation may involve language biases
that affect what has been written, and how it may be interpreted.1892

A study by Brown and Altadmri268 investigated coding mistakes made by students, and
the beliefs their professors had about common student mistakes; the data came from 100
million compilations across 10 million programming sessions using Blackbox (a Java
programming environment). There was very poor agreement between professor beliefs
and the actual ranked frequency of student mistakes; see Github–reliability/educators.R.

One study1378 found that 36% of mistakes logged during development were made in
phases that came before coding (Team Software Process was used, and many of the mis-
takes may have been minor); see Github–reliability/2018_005_defects.R.

Software supply chains are a target for criminals seeking to infect computers with ma-
licious software;1409 an infected software update may be downloaded and executed by
millions of users

6.4.1 Requirements

The same situation can be approached from multiple viewpoints, depending on the role
of the viewer; see fig 2.49. Those implementing a system may fail to fully appreciate all
the requirements implied by the specification; context is important, see fig 2.48.

viiiYour author once worked on a compiler for a cpu that was still on alpha release; the generated code was
processed by a sed script to handle known problems in the implementation of the instruction set, problems that
changed over time as updated versions of the cpu chip became available.

162 6. Reliability

2005 2006 2007 2008 2009 2010
0

1000

2000

3000

4000

5000

Date

E
nd

−
us

er
 c

od
e

us
ag

e

All versions
v1.0
v1.5
v2.0
v3.0
v3.5
v3.6

Figure 6.29: End-user usage of code originally written for
Firefox version 1.0, by major released versions (in units
of LOC*Users); red points show sum over all versions.
Based on data from Jones937 and extracted from Massacci
et al.1217 Github–Local

0 5 10 15 20 25 30 35

1

5

10

50

100

500

1000

Error number

O
cc

ur
re

nc
es

Total
First
Last

Figure 6.30: Total number of implementations in each of
36 equivalence classes, plus both first and last competi-
tor submissions. Data from van der Meulen et al.1877

Github–Local

10 20 30 40 50 60 70

aff.All
neg.All

aff.All but
neg.All but
aff.At least

neg.At least
aff.At most

neg.At most
aff.Exactly n

neg.Exactly n
aff.Less than

neg.Less than
aff.More than

neg.More than
aff.None

neg.None
aff.One

neg.One

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Response time (seconds)

Figure 6.31: Violin plot of the time taken to response
to a question about a requirement, for nine quantifiers
paired by affirmative/negative. Data from Winter et al.1971

Github–Local

A requirements mistake is made when one or more requirements are incorrect, incon-
sistent or incomplete; an ambiguous specification189 contains potential mistakes. The
number of mistakes contained in requirements may be of the same order of magnitude,424

or exceed, the number of mistakes found in the code;1551 different people bring differ-
ent perspectives to requirements analysis, which can result in them discovering different
problems.1097

Software systems are implemented by generating and interpreting language (human and
programming). Reliability is affected by human variability in the use of language,192 what
individuals consider to be correct English syntax,1752 and the interpretation of numeric
phrases. Language issues are discussed in section 6.1.4 and section 6.4.2.

During the lifetime of a project, existing requirements are misinterpreted or changed, and
new requirements are added.

Non-requirement mistakes may be corrected by modifying the requirements; see fig 8.28.
In cases where a variety of behaviors are considered acceptable, modifying the require-
ments documents may be the most cost effective path to resolving a mistake.

A study by van der Meulen, Bishop and Revilla1877 investigated the coding mistakes
made in 29,000 implementations of the 3n+1 problem (the programs had been submitted
to a programming contest). All submitted implementations were tested, and programs
producing identical outputs were assigned to the same equivalence class (competitors
could make multiple submissions, if the first failed to pass all the tests). In many cases the
incorrect output, for an equivalence class, could be explained by a failure of the competitor
to implement a requirement implied by the problem being solved, e.g., failing to swap
input number pairs, when the first was larger than the second.

Figure 6.30 shows the 36 equivalence classes containing the most members; the most
common is the correct output, followed by always returning 0 (zero).

Studies358 have found that people take longer to answer question involving a negation,
and are less likely to give a correct answer.

A study by Winter, Femmer and Vogelsang1971 investigated subject performance on re-
quirements expressed using affirmative and negative quantifiers. Subjects saw affirmative
(e.g., “All registered machines must be provided in the database.”) and negative (e.g., “No
deficit of a machine is not provided in the database.”) requirements, and had to decide
which of three situations matched the sentence. Affirmative wording had a greater per-
centage of correct answers in four of the nine quantifier combinations (negative wording
had a higher percentage of correct answers for the quantifiers: All but and More than).

Figure 6.31 shows the response time for each quantifier, broken down by affirmative/neg-
ative. Average response time for negative requirements was faster for two, of the nine,
quantifiers: All but and None (there was no statistical difference for At most).

The minimum requirements for some software (e.g., C and C++ compilers) is specified
in an ISO Standard. The ISO process requires that the committee responsible for a stan-
dard maintain a log of potential defect submissions received, along with the committee’s
response. Figure 6.32 shows the growth of various kinds of defects reported against the
POSIX standard.899

There have been very few studies1692 of the impact of the form of specification on its
implementation.

Two studies363, 926 have investigated the requirements’ coverage achieved by two compiler
validation suites.

Source code is written to implement a requirement, or to provide support for code that
implements requirements. An if-statement represents a decision and each of these
decisions should be traceable to a requirement or an internal housekeeping requirement. A
project by Jones and Corfield927 cross-referenced the if-statements in the source of a C
compiler to every line in the 1990 version of the C Standard.1637 Of the 53 files containing
references to either the C Standard or internal documentation, 13 did not contain any
references to the C Standard (for the 53 files the average number of references to the C
Standard was 46.6). The average number of references per page of the language chapter
of the Standard was approximately 14. For more details see Github–projects/Model-C/.

6.4.2 Source code

Source code is the focus of much software engineering research: it is the original form of
an executable program that contains the mistakes that can lead to fault experiences, and

6.4. WHERE IS THE MISTAKE? 163

2010 2012 2014 2016

100

200

300

400

Date

R
ep

or
te

d
pr

ob
le

m
s

Error
Clarification Requested
Enhancement Request
Omission

Figure 6.32: Cumulative number of potential defects
logged against the POSIX standard, by defect classifica-
tion. Data kindly provided by Josey.1417 Github–Local

1 2 5 10 20 50 200 500

1

100

10000

1000000

Error message rank

O
cc

ur
re

nc
es

Java
Python

Figure 6.33: Ranked occurrences of compiler messages
generated by student submitted Java and Python programs.
Data from Pritchard.1531 Github–Local

Compiled Executed Output correct
0.0

0.1

0.2

0.3

0.4

rb
php
js
py
pl
c
cpp
hs
cs
java

Figure 6.34: Fraction of mutated programs, in various lan-
guages, that successfully compiled/executed/produced the
same output. Data from Spinellis et al.1749 Github–Local

is usually what is modified by developers to correct a reported fault. From the research
perspective it is now available in bulk, and techniques for analysing it are known, and
practical to implement.

There are recurring patterns in the changes made to source code to correct mistakes,1443

one reason for this is that some language constructs are used much more often than oth-
ers.930 The idea that there is an association between fault reports and particular usage
patterns in source code, or program behavior, is popular; over 40 association measures
have been proposed.1167

Errors of omission can cause faults to be experienced. One study756 of error handling
by Linux file systems found that possible returned error codes were not checked for 13%
of function calls, i.e., the occurrence of an error was not handled. Cut-and-paste is a
code editing technique that is susceptible to errors of omission, that is, failing to make all
the necessary modifications to the pasted version;169 significant numbers of cut-and-paste
errors have been found in JavaDoc documentation.1428

Common patterns of mistakes are also seen in the use of programming language syntax
and semantics. Figure 6.33 shows ranked occurrences of each kind of compiler message
generated by Java and Python programs, submitted by students.

Proponents of particular languages sometimes claim that programs written in the language
are more reliable (other desirable characteristics may also be claimed), than if written in
other languages. Most experimental studies comparing the reliability of programs written
in different languages have either used students,691 or had low statistical power. A lan-
guage may lack a feature that, if available and used, would help to reduce the number of
mistakes made by developers, e.g., support for function prototypes in C,1672 which were
added to the language in the first ANSI Standard.

To what extent might programs written in some languages be more likely to appear to
behave as expected, despite containing mistakes?

A study by Spinellis, Karakoidas and Lourida1749 made various kinds of small random
changes to 14 different small programs, each implemented in 10 different languages (400
random changes per program/language pair). The ability of these modified programs to
compile, execute and produce the same output as the unmodified program was recorded.

Figure 6.34 shows the fraction of programs that compiled, executed and produced correct
output, for the various languages. There appear to be two distinct language groupings,
each having similar successful compilation rates; one commonality of languages in each
group is requiring, or not, variables to be declared before use. One fitted regression model
(see Github–reliability/fuzzer/fuzzer-mod.R) contains an interaction between language and
program (the problems implemented did not require many lines of code, and in some
cases could be solved in a single line in some languages), and a logarithmic dependency
on program length, i.e., number of lines.

Other studies146 have investigated transformations that modify a program without modi-
fying its behavior.

A study by Aman, Amasaki, Yokogawa and Kawahara49 investigated time-to-bug-fix
events, in the source files of 50 projects implemented in Java and 50 in C++ . The survival
time of files (i.e., time to fault report causing the source to be modified) was the same for
both languages, and number of developers, and number of project files; they had almost
zero impact on a Cox model fitted to the data; see Github–survival/Profes2017-aman.R.

Various metrics have been proposed as measures of some desirable, or undesirable, char-
acteristic of a unit of code, e.g., a function. Halstead’s and McCabe’s cyclomatic com-
plexity are perhaps the most well-known such metrics (see section 7.1.4), both count the
source contained within a single function. Irrespective of whether these metrics strongly
correlate with anything other than lines of code,1077 they can be easily manipulated by
splitting functions with high values into two or more functions, each having lower metric
values (just as it is possible to reduce the number of lines of code in a function, by putting
all the code on one line).

The value of McCabe’s complexity (number of decisions, plus one) for the following
function is 5, and there are 16 possible paths through the function:

int main(void)
{
if (W) a(); else b();
if (X) c(); else d();

164 6. Reliability

1 2 5 10

1

2

5

10

20

50

Lines/Modules/Files

Fa
ul

ts
 (

pe
rc

en
t)

Files
Modules
Lines

Figure 6.35: Number of fault reports whose fixes involved
a given number of files, modules or lines in a sample of
290 faults in AspectJ; lines are fitted power laws. Data
from Lucia.1166 Github–Local

1 2 5
1

2

5

10

20

50

100

Files

C
om

m
its

 (
no

rm
al

is
ed

)

Aries
Cassandra
Derby
Lucene
Mahout

Figure 6.36: Normalized number of commits (i.e., each
maximum is 100), made to address fault reports, involv-
ing a given number of files in five software systems; grey
line is representative of regression models fitted to each
project, and has the form: Commits ∝ Files−2.1. Data from
Zhong et al2019 via M. Monperrus. Github–Local

if (Y) e(); else f();
if (Z) g(); else h();
}

each if. . .else contains two paths and there are four in series, giving 2×2×2×2 paths.
Restructuring the code, as below, removes the multiplication of paths caused by the se-
quences of if. . .else:

void a_b(void)
{if (W) a(); else b();}

void c_d(void)
{if (X) c(); else d();}

void e_f(void)
{if (Y) e(); else f();}

void g_h(void)
{if (Z) g(); else h();}

int main(void)
{
a_b();
c_d();
e_f();
g_h();
}

reducing the McCabe complexity of main to 1, with the four new functions each having a
McCabe complexity of two. Where has the complexity that main once had, gone? It now
exists in the relationship between the functions, a relationship that is not included in the
McCabe complexity calculation; the number of paths that can be traversed, by a call to
main at runtime, has not changed, but a function based count now reports one path.

A metric that assigns a value to individual functions (i.e., its value is calculated from the
contents of single functions) cannot be used as a control mechanism (i.e., require that
values not exceed some limit), because its value can be easily manipulated by moving
contents into newly created functions. The software equivalent of what is known as ac-
counting fraud in accounting.

Predictions are sometimes attempted1696, 2029 at the file level of granularity, e.g., predict-
ing which files are more likely to be the root cause of fault experiences; the idea being
that the contents of highly ranked files be rewritten. Any reimplementation will include
mistakes, and the cost of rewriting the code may be larger than handling the fault reports
in the original code, as they are discovered.

The idea that there is an optimal value for the number of lines of code in a function
body has been an enduring meme (when object-oriented programming became popular,
the meme mutated to cover optimal class size). See fig 8.39 for a discussion of the U-
shaped defect density paper chase; other studies1037 investigating the relationship between
reported fault experiences and number of lines of code, have failed to include program
usage information (i.e., number of people using the software) in the model.

The fixes for most user fault reports involve changing a few lines in a single function, and
these changes occur within a single file. A study713 of over 1,000 projects for each of C,
Java, Python and Haskell found that correcting most coding mistakes involved adding and
deleting a few tokens.

A study by Lucia1166 investigated fault localization techniques. Figure 6.35 shows the
percentage of fault reports whose correction involved a given number of files, modules or
lines; lines are power laws fitted using regression.

A study by Zhong and Su2019 investigated commits associated with fault reports in five
large Open source projects. Figure 6.36 shows the number of files modified while fixing
reported faults, against normalized (i.e., each maximum is 100) number of commits made
while making these changes.

When existing code is changed, there is a non-zero probability of a mistake being made.

A study by Purushothaman and Perry1536 investigated small source code changes made
to one subsystem of the 5ESS telephone switch software (4,550 files containing almost
2MLOC, with 31,884 modification requests after the first release changing 4,293 of these
files). Figure 6.37 is based on an analysis of fault reports traced to updates, that involved

6.4. WHERE IS THE MISTAKE? 165

1 2 5 10 50 200
2

5

10

20

50

Lines

Fa
ul

t r
ep

or
ts

(p
er

ce
nt

ag
e)

Inserted lines
Modified lines

Figure 6.37: Percentage of insertions/modifications of
a given number of lines resulting in a reported fault;
lines are fitted beta regression models of the form:
percent_faultReports ∝ log(Lines). Data from Pu-
rushothaman et al.1536 Github–Local

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

Days

S
ur

vi
va

l

high−Depend
high−Base
medium−Depend
medium−Base

Figure 6.38: Survival curve (with 95% confidence bounds)
of time to fix vulnerabilities reported in npm packages
(Base) and time to update a package dependency (Depend)
to a corrected version (i.e., not containing the reported
vulnerability); for vulnerabilities with severity high and
medium. Data from Decan et al.470 Github–Local

modifying/inserting a given number of lines, and shows the percentage of each kind of
modification that eventually led to a fault report.

Using configuration files to hold literal values that would otherwise need to be present in
the source code can greatly increase runtime flexibility. Mistakes in the use of configura-
tion options can lead to fault experiences; see Github–reliability/fse15.R.

6.4.3 Libraries and tools

Libraries provide functionality believed to be of use to many programs, or that is difficult
to correctly implement without specialist knowledge, e.g., mathematical functions. Many
language specifications include a list of functions that conforming implementations are
required to support.

The implementation of some libraries requires domain specific expertise, e.g., the han-
dling of branch cuts in some maths functions.1700 Some library implementations may
contain subtle, hard to detect mistakes: for instance, random number generators may gen-
erate sequences containing patterns1101 that create spurious correlations in the results;
even widely used applications can suffer from this problem, e.g., Microsoft Excel.1236

The availability of many open source libraries can make it more cost effective to use
third-party code, rather than implementing a bespoke solution.

A study by Decan, Mens and Constantinou470 investigated the time taken for security
vulnerabilities in packages hosted in the npm repository to be fixed, along with the time
taken to update packages that depended on a version of a package having a reported
vulnerability. Figure 6.38 shows survival curves (with 95% confidence bounds), for high
and medium severity vulnerabilities, of time to fix a reported vulnerability (Base), and
time to update a dependency (Depend) to a corrected version of a package.

The mistake that leads to a fault experience may be in the environment in which a program
is built and executed. Many library package managers support the installation of new
packages via a command line tool. One study1849 made use of typos in the information
given to command line package managers to cause a package other than the one intended
to be installed.

Compilers, interpreters and linkers are programs, and contain mistakes (e.g., see fig 6.25),
and the language specification may also be inconsistent or under specified, e.g., ML.961

Different support tools may produce different results, e.g., statement coverage,1990 and
call graph construction; see fig 13.1.

6.4.4 Documentation

Documentation is a cost paid today, that is intended to provide a benefit later for somebody
else, or the author.

If user documentation specifies functionality that is not supported by the software, the
vendor may be liable to pay damages to customers expecting to be able to perform the
documented functionality.972 Non-existent documentation is not unreliable, but docu-
mentation that has not been updated to match changes to the software is.

There have been relatively few studies of the reliability of documentation (teachers of
English as a foreign language study the language usage mistakes of learners257). A
study by Rubio-Gonzalez and Libit1618 investigated the source code of 52 Linux file
systems, which invoked 42 different system calls and returned 30 different system error
codes. The 871 KLOC contained 1,784 instances of undocumented error return codes;
see Github–projects/err-code_mismatch.R. A study by Ma, Liu and Forin1179 tested an Intel
x86 cpu emulator and found a wide variety of errors in the documentation specifying the
behavior of the processor.

The Microsoft Server protocol documents1277 sometimes specify that the possible error
values returned by an API function are listed in the Windows error codes document, which
lists over 2,500 error codes.

166 6. Reliability

5 10 15

200

400

600

800

Mbit hours x107

C
um

ul
at

iv
e

bi
t−

fli
ps

40nm SRAM, top mountain
65nm SRAM, under mountain
130nm SRAM, under mountain

Figure 6.39: Number of bit-flips in SRAM fabricated us-
ing various processes, with devices on top of, or under a
mountain in the French Alps. Data kindly provided by
Autran.94 Github–Local

6.5 Non-software causes of unreliability

Hardware contains moving parts that wear out. Electronic components operate by influ-
encing the direction of movement of electrons; when the movement is primarily in one
direction atoms migrate in that direction, and over time this migration degrades device
operating characteristics.1755 Fabricating devices with smaller transistors decreases mean
time to failure; expected chip lifetimes have dropped from 10 years to 7, and continue to
decrease.1947

As the size of components shrinks, and the number of components on a device increases,
the probability that thermal noise will cause a bit to change state increases.1011

Faulty hardware does not always noticeably change the behavior of an executing program;
apparently correct program execution can occur in the presence of incorrect hardware
operation, e.g., image processing.1392 Section 6.3.2 discusses studies showing that many
mistakes have no observable impact on program behavior.

For a discussion of system failure traced to either cpu or DRAM failures see table 10.7,
and for a study investigating the correlation between hardware performance and likelihood
of experiencing intermittent faults see section 10.2.3.

A software reliability problem rarely encountered outside of science fiction, a few decades
ago, now regularly occurs in modern computers: cosmic rays (plus more local sources of
radiation, such as the materials used to fabricate devices) flipping the value of one or more
bits in memory, or a running processor. Techniques for mitigating the effects of radiation
induced events have been proposed.1339

The two main sources of radiation are alpha-particles generated within the material used
to fabricate and package devices, and Neutrons generated by Cosmic-rays interacting
with the upper atmosphere. The data in figure 6.39, from a study by Autran, Semikh,
Munteanu, Serre, Gasiot and Roche,94 comes from monitoring equipment located in the
French Alps; either, 1,700 m under the Fréjus mountain (i.e., all radiation is generated
by the device), or on top of the Plateau de Bure at an altitude of 2,552 m (i.e., radiation
sources are local and Cosmic).93 For confidentiality reasons, the data has been scaled by
a small constant.

Figure 6.39 shows how the number of bit-flips increased over time (measured in Mega-
bits per hour), for SRAM fabricated using 130 nm, 65 nm and 40 nm processes. The 130
nm and 65 nm measurements were made underground, and the lower rate of bit-flips for
the 65 nm process is the result of improved materials selection, that reduced alpha-particle
emissions; the 40 nm measurements were made on top of the Plateau de Bure, and show
the impact of external radiation sources.

The soft error rate is usually quoted in FITs (Failure in Time), with 1 FIT corresponding to
1 error per 109 hours per megabit, or 10−15 errors per bit-hour. Consider a system with 4
GB of DRAM (1000 FIT/Mb is a reasonable approximation for commodity memory,1825

which increases with altitude, being 10 times greater in Denver, Colorado), the system
has an MTBF of 1000×10−15×4.096×109×8 = 3.2×10−2 hours (around once every
33 hours). Soft errors are a regular occurrence for installations containing hundreds of
terabytes of memory.880

The Cassini spacecraft experienced an average of 280 single bit memory errors per day1804

(in two identical flight recorders containing 2.5G of DRAM); also see fig 8.31. The rate of
double-bit errors was higher than expected (between 1.5 and 4.5%) because the incoming
radiation had enough energy to flip more than one bit.

Uncorrected soft errors place a limit on the maximum number of computing nodes that
can be usefully used by one application; at around 50,000 nodes, a system would spend
half its time saving checkpoints, and restarting from previous checkpoints after an error
occurred.1584

Error correcting memory reduces the probability of an uncorrected error by several or-
ders of magnitude, but with modern systems containing terabytes the probability of an
error adversely affecting the result remains high.880 The Cray Blue Waters system at the
National Center for Supercomputing Applications experienced 28 uncorrected memory
errors (ECC and Chipkill parity hardware checks corrected 722,526 single bit errors, and
309,359 two-bit errors, a 99.995% success rate).491 Studies1258 have investigated assign-
ing variables deemed to be critical to a subset of memory that is protected with error
correcting hardware, along with various other techniques.1173

6.5. NON-SOFTWARE CAUSES OF UNRELIABILITY 167

Calculating the FIT for processors is complicated.1128

Redundancy can be used to continue operating after experiencing a hardware fault, e.g.,
three processors performing the same calculation, and a majority vote used to decide
which outputs to accept.1993 Software only redundancy techniques include having the
compiler generate, for each source code sequence, two or more independent machine
code sequences1574 whose computed values are compared at various check points, and
replicating computations across multiple cores2013 (and comparing outputs). The over-
head of duplicated execution can be reduced by not replicating those code sequences that
are less affected by register bit flips592 (e.g., the value returned from a bitwise AND that
extracts 8 bits from a 32-bit register is 75% less likely to deliver an incorrect result than an
operation that depends on all 32 bits). Optimizing for reliability can be traded off against
performance,1295 e.g., ordering register usage such that the average interval between load
and last usage is reduced.1986

Developers don’t have to rely purely on compiler or hardware support, reliability can
be improved by using algorithms that are robust in the presence of faulty hardware. For
instance, the traditional algorithms for two-process mutual exclusion are not fault tolerant;
a fault tolerant mutual exclusion algorithm using 2 f + 1 variables, where a single fault
may occur in up to f variables is available.1316 Researchers are starting to investigate
how best to prevent soft errors corrupting the correct behavior of various algorithms.262

Bombarding a system with radiation increases the likelihood of radiation induced bit-
flips,1275 and can be used for testing system robustness.

The impact of level of compiler optimization on a program’s susceptibility to bitflips is
discussed in section 11.2.2.

Vendor profitability is driving commodity cpu and memory chips towards cheaper and less
reliable products, just like household appliances are priced low and have a short expected
lifetime.1721

A study by Dinaburg501 found occurrences of bit-flips in domain names appearing within
HTTP requests, e.g., a page from the domain ikamai.net being requested rather than
from akamai.net (the 2.10−9 bit error rate was thought to occur inside routers and
switches). Undetected random hardware errors can be used to redirect a download to
another site,501 e.g., to cause a maliciously modified third-party library to be loaded.

If all the checksums involved in TCP/IP transmission are enabled, the theoretical error
rate is 1 in 1017 bits; which for 1 billion users visiting Facebook on average once per day
and downloading 2M bytes of Javascript per visit, gives an expected bit flip rate of once
every 5 days for a single Facebook user.

6.5.1 System availability

A system is only as reliable as its least reliable critical subsystem, and the hardware on
which software runs is a critical subsystem that needs to be included in any application
reliability analysis; some applications also require a working internet connection, e.g., for
database access.

Before cloud computing became a widely available commercial service, companies built
their own clustered computer facilities (low usage rates of such systems895 is what can
make cloud providers more cost effective).

The reliability of Internet access to the services provided by other computers is currently
not high enough for people to overlook the possibility that failures can occur;185 see the
example in section 10.5.4.

Long-running applications need to be able to recover from hardware failures, if they are to
stand a reasonable chance of completing. A process known as checkpointing periodically
stores the current state of every compute unit, so that when any unit fails, it is possible to
restart from the last saved state, rather than restarting from the beginning. A tradeoff has
to be made1989 between frequency of checkpointing, which takes resources away from
completing execution of the application but reduces the total amount of lost calculation,
and infrequent checkpointing, which diverts less resources but incurs greater losses when
a fault is experienced. Calculating the optimum checkpoint interval430 requires knowing
the distribution of node uptimes; see figure 6.40.

The Los Alamos National Laboratory (LANL) has made public, data from 23 different
systems installed between 1996 and 2005.1084 These systems run applications that “ . . .

168 6. Reliability

1 2 5 10 20 50 200

1

2

5

10

20

50

100

200

500

10 hour bins

O
cc

ur
re

nc
es

system 2

1 5 10 50 500

1

2

5

10

20

50

100

10 hour bins

O
cc

ur
re

nc
es

system 18

Figure 6.40: For systems 2 and 18, number of uptime in-
tervals, binned into 10 hour intervals, red lines are both
fitted negative binomial distributions. Data from Los
Alamos National Lab (LANL). Github–Local

System test

Integration test

Function test

Emulator test

Deskcheck

Deskcheck

Emulator.te
st

Function.test

Integration.test

System.test

 41

 23 9

 34 12 20

 3 2 1 5

2 4 22 25 25

Figure 6.41: Fault slip throughs for a development project
at Ericsson; y-axis lists phase when fault could have been
detected, x-axis phase when fault was found. Data from
Hribar et al.864 Github–Local

perform long periods (often months) of CPU computation, interrupted every few hours
by a few minutes of I/O for check-pointing.” Figure 6.40 shows the 10-hour binned data
fitted to a zero-truncated negative binomial distribution for systems 2 and 18.

Operating systems and many long-running programs sometimes write information about a
variety of events to one or more log files. One study1997 found that around 1 in 30 lines of
code in Apache, Postgresql and Squid was logging code; this information was estimated
to reduce median diagnosis time by a factor of 1.4 to 3. The information diversity of
system event logs tends to increase, with new kinds of information being added, with the
writing of older information not being switched off (because it might be useful); log files
have been found to contain1413 large amounts of low value information, more than one
entry for the same event, changes caused by software updates, poor or no documentation,
and inconsistent information structure within entries.

6.6 Checking for intended behavior

The two main methods for checking that code behaves as intended, are: analyzing the
source code to work out what it does, and reviewing the behavior of the code during
execution, e.g., testing. Almost no data is available on the kinds of mistakes found, and
the relative cost-effectiveness of the various techniques used to find them.

So-called formal proofs of correctness are essentially a form on N-version programming,
with N = 2. Two programs are written, with one nominated to be called the specification;
one or more tools are used to analyse both programs, checking that their behavior is con-
sistent, and sometimes other properties. Mistakes may exist in the specification program
or the non-specification program.622, 668 One study1320 of a software system that had been
formally proved to be correct, found at least two mistakes per thousand lines, remained.

The further along in the development process a mistake is found, the more costly it is
likely to be to correct it; possible additional costs include having to modify something
created between the introduction of the mistake and its detection, and having to recheck
work. This additional cost does not necessarily make it more cost effective to detect
problems as early as possible. The relative cost of correcting problems vs. detecting
problems, plus practical implementation issues, decide where it is most cost effective to
check for mistakes during the development process.

A study by Hribar, Bogovac and Marinčić864 investigated Fault Slip Through by analyzing
the development phase where a fault was found compared to where it could have been
found. Figure 6.41 shows the number of faults found in various test phases (deskcheck is
a form of code review performed by the authors of the code), and where the fault could
have been found (as specified on the fault report); also see Antolić.66

The cost of correcting problems will depend on the cost characteristics of the system
containing the software; developing software for a coffee vending machine is likely to be
a lot cheaper than for a jet fighter, because of, for instance, the cost of the hardware needed
for testing. Data from NASA and the US Department of Defense, on the relative costs
of fixing problems discovered during various phases of development are large, because
of the very high cost of the hardware running the software systems developed for these
organizations.

To reduce time and costs, the checking process may be organized by level of abstraction,
starting with basic units of code (or functionality), and progressively encompassing more
of the same, e.g., unit testing is performed by individual developers, integration testing
checks that multiple components or subsystems work together, and systems testing is
performed on the system as a whole.

A study by Nichols, McHale, Sweeney, Snavely and Volkman1378 investigated the eco-
nomics of detecting mistakes in system development (the organizations studies all used
Team Software Process). One of the organizations studied developed avionics software,
which required performing manual reviews and inspections of the high-level design, de-
sign and coding phases, followed by testing.

Figure 6.42 shows the reported time taken to correct 7,095 mistakes (for one avionics
project), broken down by phase introduced/corrected, against the number of major phases
between its introduction and correction (x-axis). Lines are fitted exponentials, with fix
times less than 1, 5 and 10-minutes excluded (72% of fixes are recorded as taking less
than 10-minutes); also see fig 3.33.

6.6. CHECKING FOR INTENDED BEHAVIOR 169

0 1 2 3 4 5

1

5

10

50

100

500

1000

Phase separation

F
ix

 ti
m

e
(m

in
ut

es
)

1

5
10

Figure 6.42: Reported time taken to correct 7,095 mis-
takes (in one project), broken down by phase the mis-
take was introduced/corrected (y-axis), against number
of phases between introduction/correction (x-axis); lines
are fitted regression models of the form: Fix_time ∝

e
√

phase_sep, with fix times less than 1, 5 and 10-minutes
excluded. Data from Nichols et al.1378 Github–Local

Many software systems support a range of optional constructs, and support for these may
be selected by build time configuration options. When checking for intended behavior,
a decision has to be made on the versions of the system being checked; some systems
support so many options, that checking whether all possible configurations can be built
requires an unrealistic investment of resources766 (algorithms for sampling configurations
are used1254).

6.6.1 Code review

Traditionally a code review (other terms include code inspection and walkthroughs631)
has involved one or more people reading another developer’s code, and then meeting
with the developer to discuss what they have found. These days the term is also applied
to reviewing code that has been pushed to a project’s version control system, to check
whether it is ok to merge the changes into the main branch; with geographically disperse
teams, online reviews and commenting have become a necessity.

Review meetings support a variety of functions, including: highlighting of important in-
formation between project members (i.e., ensuring that people are kept up to date with
what others are doing), and uncovering potential problems before changes becomes more
expensive. Detecting issues may not even be the main reason for performing code re-
views,104 keeping teams members abreast of developments and creating an environment
of shared ownership of code may be considered more important.

A variety of different code review techniques have been proposed, including: Ad-hoc (no
explicit support for reviewers), Checklist (reviewers work from a list of specific ques-
tions that are intended to focus attention towards common problems), Scenarios-based
(each reviewer takes on a role intended to target a particular class of problems), and
Perspective-based reading (reviewers are given more detailed instructions, than they are
given in Scenario-based reviews, about how to read the document; see section 13.2 for
an analysis). The few experimental comparisons of review techniques have found that
the relative performance of the techniques is small compared to individual differences in
performance.

The range of knowledge and skills needed to review requirements and design documents
may mean that those involved focus on topics that are within their domain of exper-
tise.534 Many of the techniques used for estimating population size assume that cap-
ture sites (i.e., reviews) have equal probabilities of flagging an item; estimates based on
data from meetings where reviewers have selectively read documents will be biased; see
Github–reliability/eickt1992.R.

Most published results from code review studies have been based on small sample sizes.
For instance, Myers,1340 investigated the coding mistakes detected by 59 professionals,
using program testing and code walkthroughs/inspections, for one PL/1 program con-
taining 63 statements and 15 known mistakes; see Github–reliability/myers1978.R. Also,
researcher often use issues-found as the metric for evaluating review meetings, in par-
ticular potential fault experiences found during code reviews. Issues found is something
that is easy to measure, code is readily available, and developers to review it are likely to
be more numerous than people with the skills needed to review requirements and design
documents (which do not always exist, as such).

Studies where the data is available include:

• Hirao, Ihara, Ueda, Phannachitta and Matsumoto833 investigated the impact of positive
and negative code reviews on patches being merged or abandoned (for Qt and Open-
Stack). A logistic regression model found that for Qt positive votes were more than
twice as influential, on the outcome, as negative votes, while for, OpenStack negative
votes were slightly more influential; see Github–reliability/OSS2016.R.

• Porter, Siy, Mockus and Votta1507 recorded code inspection related data from a com-
mercial project over 18 months (staffed by six dedicated developers, and five developers
who also worked on other projects). The best fitting regression model had the number
of mistakes found proportional to the log of the number of lines reviewed, and the log
of meeting duration; this study is discussed in section 13.2, also see fig 11.33.

• Finifter603 investigated mistakes found and fault experiences, using manual code review
and black box testing, in nine implementations of the same specification. Figure 6.43
shows the number of vulnerabilities found by the two techniques in the nine imple-
mentations; some of the difference is due to the variation in the abilities and kinds of

170 6. Reliability

1 2 3 4 5 6 7 8 9
Implementation

V
ul

ne
ra

bi
lit

ie
s

0

5

10

15

20

25

30

35
manual
blackbox
both

Figure 6.43: Number of vulnerabilities found using black-
box testing, and manual code review of nine implemen-
tations of the same specification. Data from Finifter.603

Github–Local

2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

1.0

Number of subjects/evaluations

P
ro

bl
em

s
fo

un
d

(f
ra

ct
io

n)

Figure 6.44: Fraction of usability problems found by a
given number of subjects/evaluations in 12 system evalu-
ations; lines are fitted regression model for each system.
Data extracted from Nielsen et al.1380 Github–Local

20 40 60 80 100

0.0005

0.0010

0.0020

0.0050

0.0100

0.0200

0.0500

0.1000

Issues found

P
ro

ba
bi

lit
y

Reviewers=2
Reviewers=3
Reviewers=4
Reviewers=5

Figure 6.45: Probability (y-axis) of a given number of
issues being found (x-axis), by a review group contain-
ing a given number of people (colored lines). Data from
Lewis.1123 Github–Local

mistakes made by different implementers, plus skill differences in using the program-
ming languages.

While there has been a lot of activity applying machine learning to fault prediction, the
models have not proved effective outside the data used to build them, or even between
different versions of the same project;2028 see Github–faults/eclipse/eclipse-pred.R. Noisy
data is one problem, along with a lack of data on program usage; see section 6.1.3.

During a review, there is an element of chance associated with the issues noticed by
individual reviewers, and some issues may only be noticed by reviewers with a particular
skill or knowledge. If all reviewers have the same probability, p, of finding a problem,
and there are N issues available to be found, by S reviewers, then the expected number of
issues found is: N

[
1− (1− p)S

]
.

A study by Nielsen and Landauer1380 investigated the number of different usability prob-
lems discovered, as the number of subjects increased, based on data from 12 studies.
Figure 6.44 shows how the number of perceived usability problems increased as the num-
ber of subjects increased; lines show the regression model fitted by the above equation
(both N and p are constants returned by the fitting process).

When the probability of finding a problem varies between reviewers, there can be a wide
variation in the number of problems reported by different groupings of individuals.

A study by Lewis1123 investigated usability problem-discovery rates; the results included
a list of the 145 usability problems found by 15 reviewers. How many problems are two
of these reviewers likely to find, how many are three likely to find? Figure 6.45 is based
on the issues found by every pair, triple (etc, up to five) of reviewers. The mean of the
number of issues found increases with review group size, as does the variability of the
number found. Half of all issues were only found by one reviewer, and 15% found by two
reviewers.

Some coding mistakes occur sufficiently often that it can be worthwhile searching for
known patterns. Ideally coding mistakes flagged by a tool are a potential cause of a fault
experience (e.g., reading from an uninitialized variable), however the automated analysis
performed may not be sophisticated enough to handle all possibilities1639 (e.g., there may
be some uncertainty about whether the variable being read from has been written to), or
the usage may simply be suspicious (e.g., use of assignment in the conditional expression
of an if-statement, when an equality comparison was intended, i.e., the single character
= had been typed, instead of the two characters ==). The issue of how developers might
respond to false positive warnings is discussed in section 9.1.

A study of one tool2017 found a strong correlation between mistakes flagged, and faults
experienced during testing, and faults reported by customers (after the output of the tool
had been cleaned by a company specializing in removing false positive warnings from
static analysis tool output).

6.6.2 Testing

The purpose of testing is to gain some level of confidence that software behaves in a
way that is likely to be acceptable to customers. For the first release, the behavior may
be specified by the implementation team (e.g., when developing a product to be sold to
multiple customers), or the customer, e.g., the vendor is interested in meeting the criteria
for acceptance, so they get paid. Subsequent releases usually include checks that the
behavior is consistent with previous releases.

During testing, a decrease in the number of previously unseen fault experiences, per unit
of test effort, is sometimes taken as an indication that the software is becoming more
reliable; other reasons for a decrease in new fault experiences is replacement of existing
testers by less skilled staff, or repetition of previously used input values. The extent
to which reliability improves, as experienced by the customer, depends on the overlap
between the input distribution used during testing, and the input distribution provided in
real world use.

A study by Stikkel1782 investigated three industrial development projects. Figure 6.46
shows the number of faults discovered per man-hour of testing, averaged over a week, for
these projects (each normalised to sum to 100). The sharp decline in new fault experiences
may be due to there being few mistakes remaining, a winding down of investment in the
closing weeks of testing (i.e., rerunning the same tests with the same input), or some other
behavior.

6.6. CHECKING FOR INTENDED BEHAVIOR 171

5 10 15 20 25 30 35

0.005

0.010

0.020

0.050

0.100

0.200

Week

N
or

m
al

is
ed

 fa
ul

ts
 p

er
 m

an
−

ho
ur

Project P1
Project P2
Project P3

Figure 6.46: Number of faults experienced per unit of test-
ing effort, over a given number of weeks (each normalised
to sum to 100). Data from Stikkel.1782 Github–Local

An example of how the input used for random testing can be unrepresentative of cus-
tomer input is provided by a study367 that performed random testing of the Eiffel base
library. The functions in this library contain extensive pre/post condition checks, and ran-
dom testing found twice as many mistakes in these checks as the implementation of the
functionality; the opposite of the pattern seen in user fault reports.

To what extent are fault experiences generated by fuzzers representative of faults experi-
enced by users of the software?

A study by Marcozzi, Tang, Donaldson and Cadar1204 investigated the extent to which
fault experiences obtained using automated techniques are representative of the fault ex-
periences encountered by code written by developers. The source code involved in the
fixes of 45 reported faults in the LLVM compiler were instrumented to log when the code
was executed, and when the condition needed to trigger the fault experience occurred; the
following is an example of instrumented code:

warn ("Fixing patch reached");
if (Not.isPowerOf2()) {

if (!(C-> getValue().isPowerOf2() // Check needed to fix fault
&& Not != C->getValue()))

{
warn("Fault possibly triggered");
}

else { /* CODE TRANSFORMATION */ } } // Original, unfixed code

The instrumented compiler was used to build 309 Debian packages (around 10 million
lines of C/C++), producing possibly miscompiled versions of the packages; the build pro-
cess included running each package’s test suite. A package built from miscompiled code
may successfully pass its test suite.

A bitwise compare of the program executables generated by the unfixed and fixed com-
pilers was used to detect when different code was generated.

Table 6.3 shows a count, for each fault detector (Human, fuzzing tools, and one formal
verifier), of fix locations reached, fix condition triggered, bitwise difference of generated
code and failed tests (build tests are not expected to fail). One way of measuring whether
there is a difference between faults detected (column 1) in human and automatically gen-
erated code is to compare number of fault triggers encountered (column 4).

Detector Faults Reached Triggered Bitwise-diff Tests failed
Human 10 1,990 593 56 1
Csmith 10 2,482 1,043 318 0
EMI 10 2,424 948 151 1
Orange 5 293 35 8 0
yarpgen 2 608 257 0 0
Alive 8 1,059 327 172 0

Table 6.3: Fault detector, number of source locations fixed, number of fix locations reached, number of fix condition triggered, number of programs having a bitwise
difference of generated code and number of failed tests. Data from Marcozzi et al.1204

Comparing the counts for the number of trigger occurrences experienced for each of the
10 fixes in each of the Human, Csmith and EMI detected source mistakes, finds that the
differences between the counts is not statistically different across method of detection;
see Github–reliability/OOPSLA-compiler.R.

The behavior of some software systems is sufficiently important to some organizations
that they are willing to fund the development of a test suite intended to check behavior:
cases include:

• the economic benefits of being able to select from multiple hardware vendors is depen-
dent on being able to port existing software to the selected hardware; at a minimum,
different compilers must be capable of processing the same source code to produce the
same behavior. The US Government funded the development of validation suites for
Cobol and Fortran,1414 and later SQL, POSIX and Ada;5 a compiler testing service was
also established,10

• there were a sufficient number of C compiler vendors that several companies were able
to build a business supplying test suites for this language, expanding to support C++

172 6. Reliability

2009 2010 2011 2012 2013 2014
0

20

40

60

80

Year

S
ta

te
m

en
t c

ov
er

ag
e

Git
Lighttpd
Memcached
Redis
Zeromq

Figure 6.47: Statement coverage achieved by the respec-
tive program’s test suite (data on the sixth program was
not usable). Data from Marinescu et al.1207 Github–Local

0 20 40 60 80 100

Node−Match

Node−Fail

Edge−Match

Edge−Fail

●

●

●

●

Coverage

Figure 6.48: Violin plots of percentage of regular expres-
sion components having a given coverage, (measured us-
ing the nodes and edges of the DFA representation of the
regular expression, broken down by the match failing/suc-
ceeding) for 15,096 regular expressions, when passed the
corresponding project test input strings. Data kindly pro-
vided by Wang.1921 Github–Local

when this language started to become popular,ix

• the “Write once, run anywhere” design goal for Java required Sun Microsystems to fund
the development of a conformance test suite, and to litigate when licensees shipped
products that did not conform.1319, 1950

While manual tests can be very effective, creating them is very time-consuming1414 and
expensive. Various kinds of automatic test generation are available, including exhaustive
testing of short sequences of input2009 and fuzzing.2004

Testing that a program behaves as intended requires knowledge of the intended behavior,
for a given input. While some form of automatic input generation is possible, in only
a few cases61 is it possible to automatically predict the expected output from the input,
independently of the software being tested. One form of program behavior is easily de-
tected: abnormal termination, and some forms of fuzz testing use this case as their test
criteria; see fig 6.23.

When multiple programs supporting the same functionality are available, it may be pos-
sible to use differential testing to compare the outputs produced from a given input (a
difference being a strong indicator that one of the systems is behaving incorrectly).345

There are ISO Standards that specify methods for measuring conformance to particular
standards900, 901 and requirements for test laboratories.898 However, very few standards
become sufficiently widely used for it to be commercially viable to offer conformance
testing services.

Like source code, tests can contain mistakes.1868

To what extent do test suites change over time? A study by Marinescu, Hosek and
Cadar1207 measured the statement and branch coverage of six open source programs over
time, using the test suite distributed with the program’s source. Figure 6.47 shows that
for some widely used programs the statement coverage of the test suite did not vary much
over five years.

One study1999 found no correlation between the growth of a project and its test code; see
Github–time-series/argouml_complete.R.

The application build process may require the selection of a consistent set of configura-
tion options. The Linux 2.6.33.3 kernel supports 6,918 configuration options, giving over
1023,563 option combinations. One study1139 using a random sample of 1,000,000 dif-
ferent option combinations failed to find any that were valid according to the variability
model; a random sampling of the more than 101,377 possible option combinations sup-
ported by OpenSSL found that 3% were considered valid. Various techniques have been
proposed for obtaining a sample of valid configuration options,965 which might then be
used for testing different builds of an application, or analyzing the source code.1910

Regular expressions are included within the syntax of some languages (e.g., awk and
SNOBOL 4743), while in others they are supported by the standard library.333 A given
regular expression may match (or fail to match) different character sequences in differ-
ent languages443 (e.g., support different escape sequences, and different disambiguation
policies; PCRE based libraries use a leftmost-greedy disambiguation, while POSIX based
libraries use the leftmost-longest match182).

A study by Wang and Stolee1921 investigated how well 1,225 Java projects tested the
regular expressions appearing in calls to system libraries (such as java.lang.String.
matches); there were 18,426 call sites. The regular expression methods were instru-
mented to obtain the regular expression and the input strings passed as arguments. When
running the associated project test suite 3,096 (16.8%) of call sites were evaluated; method
argument logging during test execution obtained 15,096 regular expressions and 899,804
test input strings (at some call sites, regular expressions were created at runtime).

A regular expression can be represented as a deterministic finite state automata (DFA),
with nodes denoting states and each edge denoting a basic subcomponent of the regular
expression. Coverage testing of a regular expression involves counting the number of
nodes and edges visited by the test input.

Figure 6.48 shows a violin plot of the percentage of regular expression components hav-
ing a given coverage. The nodes and edges of the DFA representation of each of the
15,096 regular expressions are the components measured, using the corresponding test
input strings for each regex; coverage if measured for both matching and failing inputs.

ixA vendor of C/C++ validation suites (selling at around $10,000), once told your author they had over 150
licensees; a non-trivial investment for a compiler vendor.

6.6. CHECKING FOR INTENDED BEHAVIOR 173

1 2 3 4 5 6

20

40

60

80

100

Factor combinations

Fa
ul

ts
 e

xp
er

ie
nc

ed
 (

pe
rc

en
ta

ge
)

Medical.devices
Firefox
Apache.2001.02
NADA.database
TCP.IP
MySQL.2001
MySQL.2002.06
Apache
DSCS
NeoKylin

Figure 6.49: Percentage of known faults experienced for
tests involving a given number of combinations of fac-
tors (x-axis), for ten programs. Data from Kuhn et al.1053

Github–Local

6.6.2.1 Creating tests

Traditionally tests were written by people employed to test software; some companies
have Q/A (quality assurance) departments. The tests developers write to check their code
may become part of the systems formal test suite; there are development methodologies
in which include testing is a major component of implementation, e.g., test driven devel-
opment.

Automated test generation can reduce the time and costs associated with testing software.
A metric often used by researchers for evaluating test generation tools is the number
of fault experiences produced by the generated tests, i.e., one of the factors involved in
gaining confidence that program behavior is likely to be acceptable.

Automated test generation techniques include (there is insufficient evidence to evaluate
the extent to which an automatic technique is the most cost effective to use in a particular
development):

• random modification of existing tests: so-called fuzzing makes random changes to ex-
isting test inputs, and little user input is required to test for one particular kind of fault
experience, abnormal termination; see fig 6.23. Some tools use a fuzzing selection strat-
egy intended to maximise the likelihood of generating a file that causes a crash fault,
e.g., CERT’s BFF uses a search strategy that gives greater weight to files that have
previously produced faults861 (i.e., it is a biased random process),

• source code directed random generation: this involves a fitness function, such as num-
ber of statements covered or branches executed.

A study by Salahirad, Almulla and Gay1630 investigated the ability of eight fitness func-
tions, implemented in the EvoSuite tool, to generate tests that produced fault experi-
ences for 516 known coding mistakes; a test generation budget of two and ten-minutes
per mistake was allocated on the system used. The branch coverage fitness function
was found to generate tests that produced the most fault experiences,

• input distribution directed random generation: the generation process uses information
about the characteristics of the expected input (e.g., the probability of an item appearing,
or appearing in sequence with other items) to generate tests having the same input
characteristics.

A study by Pavese, Soremekun, Havrikov, Grunske and Zeller1455 used the measured
characteristics of input tests to create a probabilistic grammar that generated tests hav-
ing either the same distribution or were uncommon inputs (created by inverting the
measured input item probabilities).

Automated test generation techniques are used to find vulnerabilities by those seeking
to hijack computer systems for their own purposes. To counter this threat, tools and
techniques have been created to make automatic test generation less cost effective.960

A program’s input may be include measurements of a set of different items (e.g., the time
of day, the temperature and humidity), and within the code there may be an interaction be-
tween these different items (these items are sometimes called factors). A coding mistake
may only be a source of a fault experience when two different items each take a particular
range of values, and not when just one of the items is in this range.

Combinatorial testing involves selecting patterns of input that are intended to detect sit-
uations where a fault experience is dependent on a combination of different item input
values. The generation of the change patterns used in combinatorial testing can be very
similar to those used in the design of experiments, and the same techniques can be used
to help minimise the number of test cases; see section 13.2.5.

A study by Kuhn, Kacker and Lei1053 investigated the percentage of fault experiences
likely to require a given number of factors, in some combination. Figure 6.49 shows
the cumulative growth in the percentage of known faults experienced, for tests involving
combinations of a given number of factors (x-axis).

A study by Czerwonka429 investigated the statement and branch coverage achieved, in
four Microsoft Windows utilities, by combinatorial tests. The tests involved values for a
single factor, and interaction between factors (from two to five factors). The results found
that most of the variance in the measurements of branch and statement coverage could be
explained by models fitted using the log of the number of combination of factors and the
log of the number of tests; see Github–reliability/Coverage-Combin.R.

174 6. Reliability

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Statement coverage

B
ra

nc
h

co
ve

ra
ge

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●●●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●
●●

●●●

●

●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

LOC ≈ 102

LOC ≈ 103

LOC ≈ 104

Figure 6.50: Statement coverage against branch cover-
age for 300 or so Java projects; colored lines are fitted
regression models for three program sizes (see legend),
equal value line in grey. Data from Gopinath et al.712

Github–Local

2 5 10 20 50 100 500

2

5

10

20

50

100

200

500

Non−error path statement length

E
rr

or
−

pa
th

 s
ta

te
m

en
t l

en
gt

h

0 50 100 150 200
0.000

0.005

0.010

0.015

0.020

0.025

0.030

Statements

D
en

si
ty

Error
Non−error

Figure 6.51: Number of statements executed along er-
ror and non-error paths within a function (top), and
density plots of the number of statements along error
and non-error paths. Data kindly provided by Kang.974

Github–Local

6.6.2.2 Beta testing

The input profiles generated by the users of a software system may be very different
from those envisaged by the developers who tested the software. Beta testing is a way of
discovering problems with software (e.g., coding mistakes and incomplete requirements),
when processing the input profiles of the intended users. The number of problems found
during beta testing, compared to internal testing provides feedback on the relevance of the
usage profile that drives the test process.1201

Beta testing is also a form of customer engagement.

6.6.2.3 Estimating test effectiveness

Does the project test process provide a reliable estimate, to the desired level of confidence,
that the software is likely to be acceptable to the customer?

A necessary requirement for checking the behavior of code is executing it, every state-
ment not executed is untested. Various so called coverage criteria are used, for instance
percentage of program methods or statements executed by the test process (the coverage
achieved by a test suite is likely to vary between platforms, different application configu-
rations,1544 and even the compiler used651).

The conditional expression in if-statements controls whether a block of statements is
executed, or not. Branch coverage simply counts the number of branches executed, e.g.,
one branch for each of the true and false arms of an if-statement. More thorough cover-
age criteria measure the coverage of the decisions involved in the conditional expression,
which can be an involved process; an expression may involve decisions conditions (e.g.,
x && (y || z)), with each subcondition derived from a different requirement. Mod-
ified Condition and Decision Coverage (MC/DC)352 is one measure of coverage of the
combination of possible decisions that may be involved in the evaluation of a conditional
expression. For this example, the MC/DC requirements are met by x, y and z (assumed
to take the values T or F) taking the values: TFF, TTF, TFT, and FTF, respective.

The probability of tests written to the MC/DC requirements detecting an incorrect condi-
tion is always at least 93.75%;353 see Github–reliability/MCDC_FP.R.

One weakness of MC/DC is its dependence on the way conditions are expressed in the
code. In the previous example, assigning a subexpression to a variable: a=(y || z);,
simplifies the original expression to: x && a, and reduces the number of combinations of
distinct values that need to be tested to achieve 100% MC/DC coverage.x One study660

was able to restructure code to achieve 100% MC/DC coverage using 50% fewer tests
than the non-restructured code (in some cases even fewer tests were needed). Achieving
MC/DC coverage is often a requirement for software used within safety critical applica-
tions.

A study by Inozemtseva and Holmes891 investigated test coverage of five very large Java
programs. The results showed a consistent relationship between percentage statement
coverage, sc, and percentage branch coverage, bc (i.e., bc ∝ sc1.2), and percentage mod-
ified condition coverage, mc (i.e., mc ∝ sc1.7); see Github–reliability/coverage_icse-2014.R.

The most common use of branches is as a component of the conditional expression in an
if-statement, which decides whether to execute the statements in the enclosed com-
pound statement. Most compound statements contain a few statements,930 so a close
connection between branch and statement coverage is to be expected.

A study by Gopinath, Jensen and Groce712 investigated the characteristics of coverage
metrics for the test suites of 1,023 Java projects. Figure 6.50 shows the fraction of state-
ment coverage against branch coverage; each circle is data from one project. The various
lines are fitted regression models, which contain a non-simple interaction between cover-
age and log(KLOC).

In figure 6.50, why does branch coverage tend to grow more slowly than statement cov-
erage? Combining the findings from the following two studies suggest a reason:

• A study by Kang, Ray and Jana974 investigated the number of statements encountered
along the execution paths, within a function, executed after a call to a function that

xSome tools track variables appearing in conditionals that have previously been assigned expressions whose
evaluation involved equality or relational operators.

6.6. CHECKING FOR INTENDED BEHAVIOR 175

0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.75

0.80

0.85

0.90

0.95

1.00

Block

D
ec

is
io

n

Figure 6.52: Basic-block coverage against branch cover-
age for a 35 KLOC program; lines are a regression fit (red)
and Decision = Block (grey). Data from Gokhale et al.693

Github–Local

5 10 20 50 100 500
0.2

0.4

0.6

0.8

1.0

Tests

E
xe

cu
te

d
bl

oc
ks

Figure 6.53: Fraction of basic-blocks executed by a given
number of tests, for 20 implementations using three test
suites. . Data from McAllister et al.1228 Github–Local

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Statement coverage

P
er

ce
nt

ag
e

m
ut

an
ts

 k
ill

ed

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●●●●●

●

●

●

●●

●

●

●

●
●●

●
●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

● ●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●●

●

●

●

●

●

●

●

●

●●

●
● ●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

LOC ≈ 102

LOC ≈ 103

LOC ≈ 104

Figure 6.54: Statement coverage against mutants killed for
300 or so Java projects; colored lines are fitted regression
models for three program sizes, equal value line in grey.
Data from Gopinath et al.712 Github–Local

could return an error, i.e., the error and non-error paths. Figure 6.51, lower plot, shows
that non-error paths often contain more statements than the error paths; in the upper
plot most of the points are below the line of equal statement-path length, i.e., there are
a greater number of longer non-error paths.

• A study by C̆aus̆ević, Shukla, Punnekkat and Sundmark308 found that developers wrote
almost twice as many positive tests as negative tests,xi for the problem studied; see
Github–reliability/3276-TDD.R. This behavior may be confirmation bias; see section 2.2.1.

If a test suite contains more positive than negative tests, and positive tests involve more
statements than negative tests, then statement coverage would be expected to grow faster
than branch coverage.

A basic-block is a sequence of code that has one entry point and one exit point (a function
call would be an exit point, as would any form of goto statement). In figure 6.52, the fitted
regression line shows a linear relationship between basic-block coverage and decision
coverage, i.e., the expected relationship (grey line shows Decision = Block).

A study by McAllister and Vouk1228 investigated the coverage of 20 implementations
of the same specification. Two sets of random tests were generated using different se-
lection criteria, along with 796 tests designed to provide full functional coverage of
the specification. Figure 6.53 shows the fraction of basic-blocks covered as the num-
ber of tests increases, for the 20 implementations (sharing the same color), and three
sets of tests (the different colors); the lines are fitted regression models of the form:
coverageBB = a× (1− b× log(tests)c), where: a, b and c are constants (c is between
-0.35 and -1.7, for this specification).

Another technique for estimating the effectiveness of a test suite, in detecting coding mis-
takes, is to introduce known mistakes into the source and measure the percentage detected
by the test suite, i.e., the mistake produces a change of behavior that is detected by the
test process; the modified source is known as a mutant. For this technique to be effec-
tive, the characteristics of the mutations have to match the characteristics of the mistakes
made by developers; existing mutant generating techniques don’t appear to produce cod-
ing mistakes that mimic the characteristics of developer coding mistakes.710, 713 A test
suite that kills a high percentage of mutants (what self-respecting developer would ever
be happy just detecting mutants?) is considered to be more effective than one killing a
lesser percentage.

Figure 6.54 shows statement coverage against percentage of mutants killed. The vari-
ous lines are fitted regression models, which contain a non-simple interaction between
coverage and log(KLOC).

A test suite’s mutation score converges to a maximum value, as the number of mutants
used increases. For programs containing fewer than 16K executable statements, E, the
number of mutants needed has been found to grow no faster than O(E0.25),2008 a worst
case confidence interval for the error in the mutation score can be calculated.711

6.6.3 Cost of testing

Testing costs include the cost of creating the tests, subsequent maintenance costs (e.g.,
updating them to reflect changes in program behavior), and the cost of running the tests.

For some kinds of test creation, automatic test generation tools may be more cost effective
than human written tests;336 see Github–reliability/1706-01636a.R.

The higher the cost of performing system testing, the fewer opportunities there are likely
to be to check software at the system level. Figure 6.55 shows the relationship between
the unit cost of a missile (being developed for the US military), and the number of devel-
opment test flights made.

When does it become cost effective to stop testing software? Some of the factors involved
in stopping conditions are discussed in section 13.2.4. Studies331, 1988 have analysed stop-
ping rules for testing after a given amount of time, based on number of faults experienced.

A study by Do, Mirarab, Tahvildari and Rothermel504 investigated test case prioritization,
and attempted to model the costs involved; multiple versions of five programs (from 3
to 15 versions) and their respective regression suites were used as the benchmark. The
performance of six test prioritization algorithms were compared, based on the number of

xiSometimes known as error and non-error tests.

176 6. Reliability

100 10000 1000000

50

100

200

500

1000

2000

Unit cost ($)

D
ev

el
op

m
en

t f
lig

ht
s

Figure 6.55: Unit cost of a missile, developed for the US
military, against the number of development test flights
carried out, with fitted power law. Data extracted from
Augustine.88 Github–Local

seeded coding mistakes detected when test resource usage was limited (reductions of 25,
50 and 75% were used). The one consistent finding was that the number of faults expe-
rienced decreased as the amount of test resource used decreased, there were interactions
between program version and test prioritization algorithm; see Github–reliability/fse-08.R.

Figure 7.1: Composite image of brain areas active when
30 subjects categorized Java code snippets; colored scale
based on t-value of the decoding accuracy of source code
categories from the MRI signals. Image from Ikutani et
al.887

1960 1970 1980 1990 2000

0.1

0.5

1.0

5.0

10.0

50.0

100.0

Date

K
LO

C

Figure 7.2: Lines of code in published implementa-
tions of the collected algorithms of the Transactions on
Mathematical Software; line is a fitted regression of the
form: LOC ∝ e0.0003Day. Data extracted by your author.
Github–Local

Chapter 7

Source code

7.1 Introduction

Source code is the primary deliverable product for software development. The purpose
of studying source code is to find ways of reducing the resources needed to create and
maintain it, and resources such as the developer cognitive effort needed to process code.

The limiting resource during software development is the experience and cognitive effort
deliverable by the people involved; the number of people involved may be limited by the
funding available, and their individual experience and cognitive firepower is limited to
those people that could be recruited.

A study by Ikutani, Kubo, Nishida, Hata, Matsumoto, Ikeda and Nishimoto887 investi-
gated the neural basis for programming expertise. Subjects (10 top ranking, 10 middle
ranking, 10 novices, on the AtCoder competitive programming contest website) catego-
rized 72 Java code snippets into one of four categories (maths, search, sort, string); each
snippet was presented three times, for a total of 216 categorization tasks per subject. The
tasks were performed while each subject was in an fMRI scanner. A searchlight analy-
sis562 of the fMRI data was used to locate brain areas having higher levels of activity;
figure 7.1 is a composite image of all active locations found over all 30 subjects.i

Building a software system involves arranging source code in a way that causes the desired
narrative to emerge, as the program is executed, when processing user inputs. As more
complicated problems are solved and more functionality is added to existing systems, the
quantity of source code contained in software systems has grown. Figure 7.2 shows the
lines contained in the source of the implementations of the collected algorithms published
by the “Transactions on Mathematical Software”;1841 the fitted regression line has an
annual rate of growth of 11%.

Source code is a form of communication, written in a programming language, whose
purpose is often to communicate a sequence of actions, or required resultsii to a computer,
and sometimes a person.

There are many technical similarities between programming languages and human lan-
guages, however, the ways in which they are used to communicate are very different
(differences are visible in medical imaging of brain activity617). While there has been a
lot of research investigating the activities involved in processing written representations
of human language441 (i.e., proseiii; see section 2.3), there have been few studies of the
activities involved in the processing source code by people. For instance, eye-tracking
is commonly used to study reading prose, but is only just starting to be used to study
reading code; see fig 2.17. This chapter draws on findings from the study of prose (see
section 2.3.1), highlighting possible patterns of behavior that might apply to source code.

The influential work of Noam Chomsky357 led to widespread studying of language based
on the products of language (e.g., words and sentences) abstracted away from the context

iThe color scale is a measure (using t-contrasts) of the explanatory power of source code categorization of
the recorded MRI signals.

iiIn a declarative language, such as SQL, the intended result is specified (e.g., return information matching
the specified conditions), while code written in an imperative language specifies actions to be performed (with
the author being responsible for sequencing the actions to produce an intended result).

iiiEnglish prose has been the focus of most studies, with prose written in other languages not yet so exten-
sively studied.

177

178 7. Source code

10 100 1000 10000
0.001

0.005

0.010

0.050

0.100

0.500

1.000

Project files (total)

F
ra

ct
io

n
of

 fi
le

s

Code
Data
Documentation
Other

Figure 7.3: Fraction of files in high-level categories for
23,715 repositories containing a given number of files (av-
eraged over all repositories containing a given number of
files). Data from Pfeiffer.1479 Github–Local

in which they are used. The cognitive linguistics1552 approach is based around how people
use language, with context taken into account, e.g., intentions and social normals, as in
the work of Grice.739 This chapter takes a cognitive linguistics approach to source code,
including:

• human language use is a joint activity, based on common ground between speaker and
listeneriv. What a speaker says is the evidence used by a listener to create an inter-
pretation of the speaker’s intended meaning; a conversation involves cooperation and
coordinating activities.

Grice’s maxims739 provide a model of human communication, these are underpinned
by speaker aims and listener assumptions. Perhaps the most important aspect of human
language communication is the assumption of relevance369, 1747 (and even optimal rele-
vance). A speaker says something because they believe it is worth the effort, with both
speaker and listener assuming that what is said is relevant to the listener, and worth the
listener investing effort to understand,

• communicating with a computer, using source code, is a take-it or leave-it transaction,
what the speaker said is treated as definitive by the listener, intent is not part of the
process. There is no cooperative activity, and the only coordination involves the speaker
modifying what has been said until the desired listener response is achieved.

Human readers of source code may attempt to extract an intent behind what has been
written.

Creating a program requires explaining, as code, everything that is needed. The imple-
mentation language may support implicit behavior (e.g., casting operands to a common
type), or be based on a specific model of the world, e.g., domain specific languages.
Commonly occurring narrative subplots may be available as library functions.

Experienced developers are aware of the one-sided nature of communicating with a com-
puter, and have learned a repertoire of techniques for adjusting their approach to commu-
nication; novices have to learn how to communicate with a listener who is not aware of
their intent. One aspect of learning to program is learning to communicate with an object
that will not make any attempt to adapt to the speaker; patterns have been found in the
ways novices misunderstanding the behavior of code.1458

Source code is used to build programs and libraries (or packages). There are a variety of
different kinds of text that might be referred to as source code, e.g., text that is compiled to
produce an executable program, text that is used to direct the process of building programs
and system distributions (such as Makefiles and shell scripts), text that resembles prose in
configuration files, and README files886 containing installation and usage examples.

A study by Pfeiffer1479 investigated the kinds of files contained in 23,715 Github reposito-
ries. Files were classified into four high-level categories (i.e., code, data, documentation,
and other), and 19 lower level categories, e.g., script, binary code, build code, video, font,
legalese. Figure 7.3 shows the fraction of files in each high-level category within reposi-
tories containing a given total number of files, averaged over repositories having the given
total numbers of files (the data was smoothed using a rolling mean, with a window width
of three).

Source code is the outcome of choices made in response to implementation requirements,
the culturally derived beliefs and experiences of the developers writing the code (coupled
with their desire for short-term gratification630), available resources, and the functionality
provided by the development environment.

In some application domains, effective ways of organizing implementation components
have become widely known. For instance, in the compiler writing domain, the production-
quality compiler-compiler project1119 created a way of organizing an optimizing compiler,
as a sequence of passes over a tree, that has been widely used ever since.v

High-level implementation plans have to be broken down into smaller components, and
so on down, until the developer recognises how a solution that can be directly composed
using code.

Developers have a collection of beliefs, and mental models, about the semantics of the
programming languages they use, as well as a collection of techniques they have become
practiced at, and accustomed to using.

iv“vaj laH: pejatlh lion ghaH yajbe’ maH.” Wittgenstein.
vRecent research has been investigating subcomponent sequencing selected machine learning, on a per-

compilation basis.82

7.1. INTRODUCTION 179

1 100 10000 1000000
0.00

0.05

0.10

0.15

0.20

0.25

Total per project

D
en

si
ty

SLOC
Methods
Files

Figure 7.4: Number of source files, methods, and lines
of code within methods, contained in each of 13,103 Java
projects; lines are kernel density plots. Data kindly pro-
vided by Landman.1077 Github–Local

The low-level patterns of usage found in source code arise from the many coding choices
made in response to immediate algorithmic and implementation requirements. For in-
stance, implementing the 3n+1 problem requires testing whether n is odd or even. In one
study,1876 the expressions used for this test included: n % 2 and n & 1 (89% and 8% of
uses respectively), along with less common sequences such as: (n >> 1) << 1 ==n and
(n/2)*2 ==n; around 50% of the conditions returned a non-zero value (i.e., true), when
n is even. Over 95% of the expressions appeared as the condition of an if-statement,
with most of the others appearing as the first operand of a ternary operator, e.g., n=(n%2)?
3*n+1 :n/2.

There are a huge variety of different ways of implementing the same functionality (see
fig 5.23), and neutral variants of existing programs can be created779 (i.e., small changes
that do not affect the external behavior); the style of some developers source code is
sufficiently different from other developers that it can be used to distinguish them from
other developers.292

If, after executing the two statements: x=1;y=x+2;, the statement: x=3;, is executed,
is the value of y now 5? In many programming languages the value of y remains un-
changed by the second assignment to x, but in reactive programming languages118 (found
in spreadsheets) statements can express a relationship, not a one time assignment of a
value (novice developers have been found to give a wide variety of interpretations to the
assignment operator223).

While spreadsheets support the specification of formula and relationships between named
memory locations, they have not traditionally been treated as part of software engineering.
One reason has been the lack of large samples of usage to study; legal proceedings against
large companies are helping to change this situation.815

Acquiring an understanding of the behavior of a program, by reading its source code, is
not an end in itself; one reason for making an investment to acquire this understanding,
is to be able to predict a program’s behavior sufficiently well to be able to change it. By
reading source code, developers acquire beliefs about it, which are a means to an end;
understanding a program is a continuum, not a yes/no state.

The complexity and inter-connectedness found in software systems can also be found
in non-software systems. A study by Braha and Bar-Yam239 investigated the network
connections in a 16-story hospital, pharmaceutical facilities design, a General Motors
vehicle design facility and Linux. Table 7.1 lists the values of various properties of the
networks and from a component network perspective software looks middle of the road.

Nodes Edges Average
path length

Clustering
coeff

Degree Density

Hospital 889.00 8178.00 3.12 0.11 18.40 0.02
Pharmaceutical 582.00 3689.00 2.63 0.12 12.68 0.02
Software 466.00 1245.00 3.70 0.14 5.34 0.01
Vehicles 120.00 417.00 2.88 0.13 6.95 0.06

Table 7.1: Values of various attributes of the communication network graphs for various organizations. Data from Braha et al.239 Github–Local

So-called end-user programming involves non-developers writing code to perform simple
tasks. Trigger-Action-Programs, written in languages such as IFTTT (If This Then That),
can be created by users to control IoT devices (e.g., smart speakers);1273 spreadsheets815

are used by a wide range of non-developers; and, Scratch828 is used for teaching children.

Are the factors driving non-developer written applications sufficiently different from the
factors driving developer written applications, that the characteristics of the code written
is noticeably different?

This question is outside the scope of this book, which focuses on professional developers.

7.1.1 Quantity of source

The size of software systems is sometimes used to obtain an estimate of the cost of its
production, the time taken to implement it, and number of mistakes it contains; see fig 5.1
and fig 5.3. Given the large number of variables in the production process (e.g., the large
variation in the quantity of code written by different developers to implement the same

180 7. Source code

Files

S
LO

C

1 10 100 1000 10000

10

1000

100000

10000000

Figure 7.5: Number of files and lines of code in 3,782
projects hosted on Sourceforge. Data from Herraiz.817

Github–Local

6 7 8 9 10

1.5

2.0

2.5

3.0

Static calls (percent)

D
yn

am
ic

 c
al

ls
 (

pe
rc

en
t)

VAX−11

68020

32016

80386

HCX−9

3230

RT

3B15

Clipper

Figure 7.6: Percentage of call instructions contained in
code generated from the same C source, against call ex-
ecution percentage for various processors; grey line is
fitted regression model. Data from Davidson et al.440

Github–Local

functionality, see fig 5.23), size only has any likelihood of good enough accuracy for
comparisons within the same project team working on the system.

What is the size distribution of software systems, and to what extent do the characteristics
of subcomponents vary with size?

The size of a software system is often measured by lines of source code. While building a
program from source invariably involves a variety of configuration files (e.g., makefiles),
such files are not always categorized as source files; counts may specify the kinds of file
counted, e.g., those having a given file suffix. Figure 7.4 shows the number of source files,
methods and SLOC (within each method) for 13,103 Java projects (y-axis shows density,
rather than a count).

to SLOC Methods Classes Files
SLOC 13+20

−8 ×Methods0.97±0.05 50+100
−30 ×

Classes1.02±0.08
64+300
−50 ×Files1.04±0.13

Methods 0.11 +0.2
−0.07×SLOC0.98±0.04 4.5+10

−3 ×
Classes1.03±0.08

7+20
−5 ×Files1.05±0.11

Classes 0.054+0.07
−0.04×SLOC0.86±0.03 0.42+0.6

−0.3×Methods0.86±0.04

Files 0.051 +0.1
−0.04×SLOC0.84±0.08 0.23+0.4

−0.2×Methods0.89±0.07

Table 7.2: Equations that map between total number of Java source constructs in a software system (fitted using quantile regression, the bounds are derived from 95% and
5% quantile regression models). Data from Lopes et al,1158 and the Files data is from Landman et al.1077 Github–Local

There is sufficient consistency in source code layout for lines to be treated as a good
enough unit of measure. In many languages a method (also known as a function, proce-
dure or subroutine) is the smallest self-contained unit of source code, with larger units of
measurement including classes and files. These characteristics are interchangeable in the
sense that, when the value of one of them is known, an order of magnitude approximation
of the other values can be calculated.

Table 7.2 shows the equations obtained by fitting quantile regression models to measure-
ments of Java systems containing 10 or more methods (the study by Lopes and Ossher1158

counted SLOC in the classes of 27,063 Java systems, and Landman, Serebrenik, Bouwers
and Vinju1077 counted SLOC in the methods of 12,628 Java systems). The listed equation
uses the median, with uncertainty bounds derived from fitting the 95% and 5% quantiles.

More accurate models can be used when information on more characteristics is available,
e.g., SLOC = e1.98Methods1.12Files−0.13, and SLOC = e1.78MethodsInClasses0.8Classes−0.2.

To what extent do the size characteristics of source code written in other languages follow
the patterns seen in Java (i.e., power law with an exponent close to one)? The pattern seen
in figure 7.16 shows that different size characteristics occur in at least one other language.

A study by Herraiz817 measured the number of files and SLOC in a snapshot of 3,781
projects hosted on SourceForge (as of June 2006, having at least three developers and one
year of history). Figure 7.5 shows number of files against SLOC, as a density plot; the
fitted quantile regression model, with 95% bounds is: SLOC = 167+563

−134×Files0.98±0.09.

Sometimes the only information available about a program is contained in its executable
form. Studies1796 have built models that estimate the length of the original source from
the compiled machine code (the language in which the source is written can have a large
impact on machine code characteristics289).

The relationship between static and dynamic counts of machine code, compiled from the
same source, can be noticeably affected by processor characteristics and the compiler
used. Figure 7.6 shows static and dynamic percentage of call instruction opcodes, in the
compiled form of various C programs targeting various processors.

The quantity of source has been found to be an approximate predictor of compile time.
One study1282 of Ada compilers found that compile-time was proportional to the square
root of the number of tokens; see Github–sourcecode/ADA177652.R. A study by Auler and
Borin89 investigated the time taken by a JIT compiler to generate code for functions in the
SPEC CPU2006 benchmark. Figure 7.7 shows the time taken to generate machine code
for 71,200 functions, containing a given number of LLVM instructions (an intermediate
code). The two trends in the data are: compile-time not depending on function size and
compile-time increasing linearly (once functions contain more than 100 instructions).

7.1. INTRODUCTION 181

1 10 100 1000 10000

0.01

0.02

0.05

0.10

0.20

0.50

1.00

LLVM instructions

C
om

pi
le

 ti
m

e
(s

ec
s)

Figure 7.7: Time to compile, using -O3 optimization, each
of 71,200 function (in the SPEC benchmark) containing
a given number of LLVM instructions; line shows fitted
regression model for one trend in the data. Data kindly
provided by Auler.89 Github–Local

−3 −2 −1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

Subject ability

P
ro

ba
bi

lit
y

co
rr

ec
t

12 34

5

6
78

9

10

11

12

13
14
1516

17

18

1920

21

22

23

24

25

26

27

28

29

30

31

32

33

3435

36

37
38

39

40

41

424344

45

46

47

48
4950

51

52535455
565758

59

60

Figure 7.8: Probability that a worker having a given ability
(x-axis) will correctly answer a given question (numbered
colored lines); fitted using item response theory. Data
from Chapman et al.332 Github–Local

7.1.2 Experiments

Human experiments are the primary technique for unravelling developer performance in-
teractions with source code. Usage patterns in source code are the emergent outcome of
developer behavior, application requirements and the characteristics of the development
environment. Focusing on common usage patterns can be an efficient use of research
resources.

Obtaining reliable experimental results requires controlling all the variables likely to af-
fect the outcome. Asking subjects to solve variations of a specific simple question is one
method of excluding extraneous factors. This is a bottom up approach to understanding
behavior.

Subjects will vary in ability and questions will vary in difficulty; item response theory can
be used to model this kind of performance data.

A study by Chapman, Wang and Stolee332 investigated the accuracy with which 180 work-
ers on Mechanical Turk (who had to correctly answer 4-5 questions about regular ex-
pressions before being accepted) matched regular expressions against particular character
sequences (and also constructing a character sequence to match a given regular expres-
sion). A set of 41 equivalent regex pairs (equivalent in that the same character sequences
were matched by different regexs) was used to construct 60 problems, with 10 randomly
selected for each worker to answer.

Figure 7.8 shows the probability that a worker with a given ability (x-axis) will correctly
answer a particular problem (numbered colored lines).vi Unpicking the various ability/d-
ifficulty response patterns requires further work.

Some coding constructs can be incrementally made more difficult to answer, or support
alternative representations.

A study by Ajami, Woodbridge and Feitelson24 investigated the performance of 222
professional developers when answering questions about the behavior of code snippets.
The questions contained 28 if-statement snippets (out of 41), whose conditions tested
against a disjoint range of values, expressed either as a single expression, or as a sequence
of nested if-statements. For instance:

// linear form:
if (x>0 && x<10 || x>20 && x<30 || x>40 && x<50) {

print("1");
} else {

print("2");
}

// equivalent nested form:
if (x<10) {

if (x>0) {
print ("1");

}
}
else if (x<30)

...

The test performed by each snippet involved between two and four discrete ranges (in one
condition, or via nested if-statements), and some tests involved negated subexpres-
sions. Modeling subject response time finds that this increases as the number of ranges
checked increases (by around 15%, or 3 seconds in an additive model), and decreases for
nested if-statements (by around 10%, or 2 seconds in an additive model). Modeling
answer correctness finds that this decreases as the number of ranges checked increases;
see Github–sourcecode/Complexity18EmpSE.R.

The result from this experiment (if replicated) provides one set of inputs into the analysis
of the factors involved in the use of if-statements.

Linear reasoning is discussed in section 2.6.2.

A condition testing for inclusion within a continuous single range can be written in many
ways, including the following:

if (x > u && x < e) ...
if (u < x && x < e) ...
if (x < e && u > x) ...

viFor unknown reasons, the response to problem 51 is the opposite of that expected.

182 7. Source code

0 5 10 15 20 25

1

5

10

50

100

500

1000

Basic block depth

Lo
op

s

1 2 5 10 20

1

5

10

50

100

500

1000

Basic block depth

Lo
op

s

Figure 7.9: Number of for-loops, in C source, whose en-
closed compound-statement contained basic blocks nested
to a given depth; with fitted exponential (upper) and
power law (lower). Data kindly provided by Pani.1444

Github–Local

A study by Jones929 investigated developer performance when answering questions about
the relative value of two variables, given information about their values relative to a third
variable. A total of 844 answers were given by 40 professional developers, with 40 incor-
rect answers (no timing information). With so few incorrect answers it is not possible to
distinguish performance differences due to the form of the condition.

7.1.3 Exponential or Power law

Many source code measurements can be well fitted by an exponential and/or power law
equation. Ideally, the choice of equation is driven by the theory describing the processes
that generated the measurements, but such a theory may not be available. Sometimes, the
equation chosen may be based on the range of values considered to be important.

Figure 7.9 shows the same data fitted by an exponential (upper) and power law (lower);
note different x-axis scales are used. The choice of equation to fit might be driven by the
range of nesting depths considered to be important (or perhaps the range considered to
be unimportant), and the desire to use a simple, brand-name, equation, i.e., the complete
range of data may be fitted by a more complicated, and less well-known, equation.

In figure 7.39 an exponential was fitted, based on the assumption that the more deeply
nested constructs were automatically generated, and that the probability of encountering
a selection-statement in human written code did not vary with nesting depth.

Section 11.5.1 discusses the analysis needed to check whether it is statistically reasonable
to claim that data is fitted by a power law.

7.1.4 Folklore metrics

Two source code metrics, proposed in the 1970s, have become established folklore within
many software development communities: Halstead’s metric and McCabe’s cyclomatic
complexity metric. Use of these metrics persists, despite the studies902, 1077, 1191 finding
that they have predictive performance that is comparable to that of lines of code, when
used to model various program characteristics. Why do developers and researchers con-
tinue to use them? Perhaps counting lines of code is thought to lack the mystique that
the market craves, or is the demand for more accurate metrics insufficient to motivate a
search for something better?

Ptolomy’s theory (i.e., the Sun and planets revolved around the Earth) was not discredited
because it gave inaccurate answers, but because Copernicus’s theory eventuallyvii made
predictions that had a better fit to experimental measurements (once observing equipment
became more accurate).

The studies involving what became known as Halstead’s complexity metric were doc-
umented by Halstead in a series of technical reports278, 635, 714, 770, 771, 1427 published in
the 1970s. The later reports compared theory with practice, using tiny datasets; Hal-
stead’s early work771 is based on experimental data obtained for other purposes,2031

and later work635 used a data set containing nine measurements of four attributes (see
Github–faults/halstead-akiyama.R), others contained 11 measurements,714 or used measure-
ments from nine modules.1427

Halstead gave formula for what he called program length (with source code tokens as the
unit of measurement), difficulty, volume and effort. A dimensional analysis shows that
the first three each have units of length, and effort has units of area (i.e., length2), i.e.,
the names suggest that different quantities are being calculated, but they all calculate the
same quantity in different ways.

Researchers at the time found that Halstead’s metric did not stand up to scrutiny: Magidin
and Viso1191 used slightly larger datasets (50 randomly selected algorithms), and found
many mistakes in the methodology used in Halstead’s papers; a report by Shen, Conte and
Dunsmore,1688 Halstead’s colleagues at Purdue, written four years after Halstead’s flurry
of papers, contains a lot of background material, and points out the lack of any theoretical
foundation for some of the equations, that the analysis of the data was weak, and that a
more thorough analysis suggests theory and data don’t agree.

The Shen et al report explains that Halstead originally proposed the metrics as a way
of measuring the complexity of algorithms not programs, explains the background to

viiThanks to Isaac Newton.

7.2. DESIRABLE CHARACTERISTICS 183

10 20 50 100 500 2000
50

100

200

500

1000

2000

5000

10000

20000

50000

LOC

H
al

st
ea

d
vo

lu
m

e

10 20 50 100 500 2000

1

2

5

10

20

50

100

200

500

LOC
C

yc
lo

m
at

ic
 c

om
pl

ex
ity

Figure 7.10: Lines of code, Halstead’s volume and Mc-
Cabe’s cyclomatic complexity of the 62,365 C functions
containing at least 10 lines, in Linux version 2.6.9; fit-
ted regression lines have the form: Halstead_volume ∝

KLOC1.1 and McCabe_complexity ∝ KLOC0.8. Data from
Israeli et al.902 Github–Local

Halstead’s uses of the term impurities, and the discussion for the need for purification in
his early work. Halstead points out278 that the value of metrics for algorithms written by
students are very different from those for the equivalent programs published in journals,
and goes on to list eight classes of impurity that need to be purified (i.e., removing or
rewriting clumsy, inefficient or duplicate code) in order to obtain results that agree with
the theory, i.e., cleaning data in order to obtain results that more closely agree with his
theory.

A study by Israeli and Feitelson902 investigated the evolution of the Linux kernel. Fig-
ure 7.10 shows lines of code against Halstead’s volume and McCabe’s cyclomatic com-
plexity, for the 62,365 C functions containing at least 10 lines, in Linux version 2.6.9. Ex-
planations for the value of the exponents of the fitted power laws include: for Halstead’s
volume: the number of tokens per line increases with function size, and for McCabe’s
complexity: that the number of control structures decreases as function size increases.

The paper in which McCabe1229 proposed what he called complexity measures contains
a theoretical analysis of various graph-theoretic complexity measures, and some wishful
thinking that these might apply to software; no empirical evidence is given. Studies1077

have found a strong correlation between lines of code and McCabe’s complexity met-
ric. This metric also suffers from the problem of being very easy to manipulate, i.e., is
susceptible to software accounting fraud; see section 6.4.2.

7.2 Desirable characteristics

What characteristics are desirable in source code?

This section assumes that desirable characteristics are those that minimise one or more de-
veloper resources (e.g., cost, time), and developer mistakes (figure 6.9 suggests that most
of the code containing mistakes is modified/deleted before a fault is reported). Desirable
characteristics include:

• developers’ primary interaction with source code is reading it to obtain the information
needed to get a job done. The resources consumed by this interaction can be reduced
by:

– reducing the amount of code that needs to be read, or the need to remember previ-
ously read code,

– increasing the memorability of the behavior of code reduces the cost of rereading it
to obtain a good enough understanding,

– reducing the cognitive effort needed to extract a good enough understanding of the
behavior of what has been read,

– being consistent to support the use of existing information foraging1491 skills, and
reducing the need to remember exceptions,

• use of constructs whose behavior is the same across implementations (which has to be
weighed against the benefits provided by use of implementation specific constructs):

– reduces familiarisation costs for developers new to a project,
– recruitment is not restricted to developers with experience of a specific implementa-

tion; see section 3.3.2,

• interacts with people’s propensity to make mistakes in a fail-safe way:

– robust in the sense that any mistake made is less likely to result in a fault experience,
– use of constructs that contain redundant information, which provides a mechanism

for consistency checking,
– use of constructs that are fragile and likely to noticeably fail unless used correctly,

• executes within acceptable resource limits. While performance bottlenecks may arise
from interaction between the characteristics of the input and algorithm choices, there are
domains where individual coding constructs can have a noticeable performance impact,
e.g., SQL queries,248 or might be believed to have such an impact; see fig 7.30 and
fig 11.22.

184 7. Source code

From document

To
 d

oc
um

en
t

W3C

APP

RAI

TSV

INT

RTG

RTG INT
TSV RAI

APP
W3C

0 0 3 63 37 672

1 32 25 233 579 91

1 15 108 814 14 6

111 57 285 70 3 0

177 1004 194 176 90 16

420 140 39 14 0 0

Figure 7.11: Number of citations from Standard docu-
ments within protocol level, to documents in the same and
other levels (RTG routing, INT internet, TSV transport,
RAI realtime applications and infrastructure, APP Appli-
cations, W3C recommendations). Data from Simcoe.1707

Github–Local

Use of the terms maintainability, readability and testability are often moulded around the
research idea, or functionality, being promoted by an individual researcher, i.e., they are
essentially a form of marketing.

The production of books, reports, memos and company standards containing sugges-
tions and/or recommendations for organizing source code, and the language constructs
to avoid (or use), so-called coding guidelines, is something of a cottage industry, e.g., for
C.428, 629, 640, 784, 858, 909, 989, 1032, 1232, 1291, 1496, 1497, 1545, 1549, 1557, 1665, 1748, 1753, 1789

Stylistically, guideline documents are often more akin to literary criticism than engineer-
ing principles, i.e., they express personal opinions that are not derived from evidence
(other than perhaps episodes in a person’s life). Recommendations against the use of par-
ticular language constructs are sometimes based on the construct repeatedly appearing in
fault reports; however, the possibility that the use of alternative constructs will produce
more/fewer reported faults is rarely included in the analysis, i.e., the current usage may be
the least bad of the available options. The C preprocessor is an example of frequently crit-
icised functionality,1255 that is widely used because of the useful functionality it uniquely
provides.

While several ways of implementing the required functionality may be possible, at the
time of writing there is little if any evidence available showing that any construct is more/-
less likely to have some desirable characteristic, compared to another, e.g., less costly to
modify or to understand by future readers of the code, or less likely to be the cause of
mistakes.

7.2.1 The need to know

How might source code be organized to minimise the expenditure of cognitive effort per
amount of code produced?viii

One technique for reducing the expenditure of cognitive effort is to reduce the amount of
code that a developer needs to process to get a job done, e.g., reading code to understand-
ing it and writing new code.

How might a developer know whether it is necessary to understand code without first
having some understanding of it?

Many languages support functionality for breaking source up into self-contained units/-
modules,ix each having a defined interface; these self-contained units might be function-
s/methods, classes, files, etc. Language vary in the functionality they provide to allow
developers to control the visibility of identifiers defined within a module, e.g., private
in Java.

The concept of information hiding is sometimes used in connection with creating in-
terfaces and associated implementations. This term misrepresents the primary item of
interest, which is what developers need to know, not how much information is hidden.

Modularization is a technique used in other domains that build systems from subcompo-
nents, including:

• hardware systems use modularization to make it easier/cheaper to replace broken or
worn out components, and to simplify the manufacturing process (as well as manufac-
turing costs). These issues are not applicable to software, which does not wear out, and
has essentially zero manufacturing costs, however, the interface to the world in which
the software operates may change in a way that creates a need to modify the software,

• biological systems where connections between components have a cost (e.g., they cause
delays in a signalling pathway), and modularity is an organizational method that reduces
the number of connections needed;374 modularity as a characteristic that makes it easier
to adapt more quickly when the environment changes may be an additional benefit,
rather than the primary driver towards modularity. Simulations1263 have found that,
for non-trivial systems, a hierarchical organization reduces the number of connections
needed (for a viable implementation).

viiiThere is too much uncertainty around measuring quantity of functionality provided to make this a viable
end-point.

ixThe term module is given a specific meaning in some languages.

7.2. DESIRABLE CHARACTERISTICS 185

From file

To
 fi

le

Figure 7.12: A clustering of the 2,664 files containing
from/to method calls in the gfx module of Firefox version
20. Data kindly provided by Almossawi.43 Github–Local

GrimmPerraultRH2 GM1
GM3GM2GM4

RH1
Iran

Ibo

Catt2
Catt3
Catt5Catt1Catt4

RH3

LiegeTG1Huang
TG10
TG6

TG5TG8

TG9TG7TG11

TG4TG3 TG2
TG12

TG13TG14

Aesop1Aesop2

WK1

WK4

WK17WK3

WK9

WK7

WK10

WK11WK12

WK2

WK6

WK13WK8

WK14WK15

WK5Africa1Africa2

Africa3Africa5AntiguaAfrica4WK16

India

Figure 7.13: Phylogenetic tree of 58 folktales, based on 72
story characteristics; 18 classified as ATU 333 (red), 20 as
ATU 123 (blue), and 20 unclassified (green). Data from
Tehrani.1819 Github–Local

G
S

P
N

M
C

M
R

M

P
F

Q
N F
T

R
E

LG

Features

F
ile

s

Figure 7.14: Heat map of the fraction of each of 30 files’
basic blocks executed when performing a given feature
of the SHARPE program. Data from Wong et al.1976

Github–Local

Minimizing the need to know is one component of the larger aim of minimising the ex-
penditure of cognitive effort per amount of code produced, which is one component of
the larger aim of maximizing overall ROI, i.e., an increase in the need to know is a cost
that may be a worthwhile trade-off for a greater benefit elsewhere.

A study by Simcoe1707 investigated the modularity of communication protocol standards
involved in the implementation of the Internet. Figure 7.11 shows the number of cita-
tions from IEFT and W3C Standard documents, grouped by protocol layer, that reference
Standard documents in the same and other layers. Treating citations as a proxy for depen-
dencies: 89% are along the main diagonal (a uniform distribution would produce 17%);
dependencies discovered during implementation may substantially change this picture.

Dependencies between units of code can be used to uncover possible clusters of related
functionality. One dependency is function/method calls between larger units of code, with
units of code making many of the same calls likely to have something in common.

A study by Almossawi43 investigated the architectural complexity of early versions of
Firefox. The source code of the gfx module in Firefox version 20 is contained in 2,664
files, and makes 14,195 calls from/to methods in these files. Figure 7.12 shows one clus-
tering of files based on the number of from/to method calls.

7.2.2 Narrative structures

People are inveterate storytellers, and narrative is another way of interpreting source code.
People tell stories about their exploits, and a culture’s folktales are passed on to each new
generation. The narrative structures present in the folktales told within cultures have many
features in common.1532

The Aarne-Thompson-Uther Index (ATU) is a classification of 2,399 distinct folktale tem-
plates (based on themes, plots and characters). A study by Tehrani1819 investigated the
phylogeny of the European folktale “Little Red Riding Hood” (ATU 333), a very similar
folktale from Japan, China and Korea known as “The Tiger Grandmother” which some
classify as ATU 123 (rather than ATU 333), and other similar folktales not in the ATU
index. Figure 7.13 shows a phylogenetic tree of 58 folktales, based on 72 story charac-
teristics, with 18 classified as ATU 333 (red), 20 as ATU 123 (blue), and 20 not classified
(green).

The ability of some narrative structures to survive through many retellings, and to spread
(or be locally created), suggests they have characteristics that would be desirable in source
code, e.g., memorability and immunity to noise (such as introduction of unrelated sub-
plots).

A program’s narrative structure (i.e., its functionality) emerges from the execution of
selective sequences of code, which may be scattered throughout the source files used to
build a program. The source code of programs implemented using an Interactive Fiction
approach is essentially the program narrative.1211 The term programming plans is used in
some studies.1968

A study by Wong, Gokhale and Horgan1976 investigated the execution of basic blocks,
within the 30 source files making up the SHARPE program, when fed inputs that exercised
six of the supported features (in turn). Figure 7.14 shows the fraction of basic blocks in
each file executed when processing input exercising a particular feature.

The narratives of daily human activity are constrained by the cost of moving in space,
and the feasibility of separating related activities in time. The same constraints apply to
mechanical systems, along with the ability to be manufactured at a profit.

The narratives achievable in a software system are constrained by the cognitive capacity,
and knowledge of the people who implemented it, along with the ability to use the system
within the available storage and processing capacity.

Languages support a variety of constructs for creating narrative components that can be
fitted together, e.g., functions/methods, classes, and generics/templates. The purpose of
generics/templates is to provide a means of specifying a general behavior that can later
be instantiated for specific cases, e.g., the generic behavior is to return the maximum of a
list of values, and a specific instance involves the values having an integer type.

A study by Chen, Wu, Ma, Zhou, Xu and Leung343 investigated the use of C++ templates,
such as the definition and use of new templates by developers, and the use of templates
defined in the Standard Template Library. For the five largest projects: around 25% of

186 7. Source code

1 2 5 10 20 50
2

5

10

20

50

100

200

500

1000

2000

5000

Function template rank

In
st

an
tia

tio
ns

Chromium
Haiku
Blender
LibreOffice
Monero

Figure 7.15: Sorted number of instantiations of each
developer-defined C++ function template; fitted regression
lines have the form: Instantiations ∝ template_rank−K ,
where K is between 1.5 and 2. Data from Chen et al.343

Github–Local

1 10 100 1000 10000

1

100

10000

1000000

SLOC

M
et

ho
ds

/F
un

ct
io

ns

C
Java

Figure 7.16: Number of methods/functions contain-
ing a given number of source lines; 17.6M methods,
6.3M functions. Data kindly provided by Landman.1077

Github–Local

1 2 5 10 20 50 100

1

2

5

10

20

50

100

200

500

Commit length (lines)

C
om

m
its

Added
Deleted

Figure 7.17: Number of commits of a given length, in lines
added/deleted to fix various faults in Linux file systems.
Data from Lu et al.1164 Github–Local

developer-defined function templates and 15% of class templates were instantiated once,
and there were seventeen times as many instantiations of function templates defined in the
STL compared to developer-defined function templates (149,591 vs. 8,887). Figure 7.15
shows that a few developer-defined function templates account for most of the template
instantiations in a project.

Reasons for the greater use of STL templates include: the library supports the commonly
required functionality, and documentation on the available templates is readily available.
Developer-defined templates are likely to be application specific, and documentation on
them may not be readily available to other developers. The study found that most tem-
plates were defined by a few project developers, which may be an issue of developer
education, or applications only needing specific templates in specific cases.

Studies of the introduction of generics in C]997 and Java1447 found that while developers
made use of functionality defined in libraries using generics, they rarely defined their own
generic classes. Also, existing code in most projects was not refactored to use generics,
and the savings from refactoring (measured in lines of code) was small.

How much source code appears in the implementation of distinct components of a narra-
tive?

A study by Landman, Serebrenik, Bouwers and Vinju1077 measured 19K open source
Java projects, and the 9.6K packages (written in C) contained in a Linux distribution.
Figure 7.16 shows the number Java methods and C functions containing a given number
of source lines. While a power law provides a good fit, over some range, of both sets
of data, the majority of C functions have a size distribution that differs from Java; see
Github–sourcecode/Landman_m_ccsloc.R.

Figure 7.16 shows that most Java methods are very short, while the size range of the
majority C functions is much wider (i.e., four to ten lines); figure 7.25 shows that 50%
of Java source occurs within methods containing four lines or fewer, while in C 50% of
source appears in functions containing 114 lines, or less.

One study324 of function calls in eight C programs found, statically, that function calls
in some programs were mostly to functions defined in other files, while calls in the other
programs were to functions defined in the same file; the same static intra/inter file call
predominance tended to occur at runtime.

Narratives are created and motivated by pressures such as:

• startups seeking to bring a saleable narrative to market as quickly as possible (i.e.,
a minimum viable product), to enable them to use customer feedback to enrich and
extend the narrative,

• companies with established systems seeking to evolve the software to keep it consistent
with the real-world narrative within which it has become intertwined,

• open source developers creating narratives for personal enjoyment.

Language tokens (such as identifiers, keywords and integer literals) are not the source
code equivalent of words, but more like the phonemes (a distinct unit of sound) that are
used to form a word. Most lines only contain a few tokens (see fig 8.4), and might form a
distinct unit of thought or act as a connection between the adjacent lines.

7.2.3 Explaining code

Before a developer can successfully complete a source code related task, they have to in-
vest in obtaining a good enough explanation of the behavior of the appropriate code. The
nature of the task is likely to drive the approach the developer takes, to the explanation
process857 (the term understanding is often used by software developers, and comprehen-
sion is used in prose related research).

Human reasoning is discussed in section 2.6.

A small modification may only require understanding how the code implements the func-
tionality it provides (e.g., algorithms used), while a larger change may require searching
for existing code that could be impacted by the change; fixing a reported fault is a search
process that often involves localised understanding.

Figure 7.17 shows the size of commits involved in fixing reported faults in Linux; also
see fig 8.15.

7.2. DESIRABLE CHARACTERISTICS 187

5 10 15 20

1

100

10000

Authors

F
ile

s

Figure 7.18: Number of files, in Eclipse projects,
that have been modified by a given number of peo-
ple; line is a fitted regression model of the form:
Files ∝ e−0.87authors+0.01authors2

. Data from Taylor.1817

Github–Local

For some tasks the cost-effectiveness of understanding the behavior of a complete pro-
gram will decrease as the size of the program increases (because the task can be com-
pleted with an understanding of a subset of the program’s behavior). One study1154 based
around a 250-line Fortran program found some developers used an as-needed strategy,
and others attempted to understand the complete program.

To what extent do the contents of existing files affect the future coding habits of developers
(because they read and learn from the source code contained in one or more of these files)?

A lower bound on the number of times a file has been written is provided by version
control check-in history. It is not known, at the time of writing, whether check-outs can
be used as a good-enough proxy for the number of times a file is read.

A study by Taylor1817 investigated author contribution patterns to Eclipse projects. Fig-
ure 7.18 shows the number of files modified by a given number of people.

Developers do not understand programs, as such, they acquire beliefs about program be-
havior; a continuous process involving the creation of new beliefs and the modification
of existing ones, with no well-defined ending. The beliefs acquired are influenced by
existing beliefs about the programming language it is written in, general computing algo-
rithms, and the application domain.1674

People search for meaning and explanations.982 Developers may infer an intended mean-
ing of source code, i.e., a belief about what the meaning that the original author of the
code intended to implement. Code understanding is an exercise in obtaining an intended
meaning that is assumed to have existed.

The procedure is really quite simple. First you
arrange things into different groups depending on
their makeup. Of course, one pile may be sufficient
depending on how much there is to do. If you have
to go somewhere else due to lack of facilities that
is the next step, otherwise you are pretty well set.
It is important not to overdo any particular
endeavor. That is, it is better to do too few things at
once than too many. In the short run this may not
seem important, but complications from doing too
many can easily arise. A mistake can be expensive
as well. The manipulation of the appropriate
mechanisms should be self-explanatory, and we
need not dwell on it here. At first the whole
procedure will seem complicated. Soon, however,
it will become just another facet of life. It is
difficult to foresee any end to this task in the
immediate future, but then one never can tell.

Activities that appear to be very complicated, can have a simple, but difficult to discover,
explanation. For instance, some hunting rituals intended to select the best hunting location
are actually randomization algorithms,1676 whose effect is to reduce the likelihood of the
community over-hunting any location.

What can be done to reduce the cognitive effort that needs to be invested to obtain a
good-enough interpretation of the behavior of code?

Source code is an implementation of application requirements. An understanding of the
kinds of activities involved within the application domain provides a framework for guid-
ing an interpretation of the intended behavior of a program’s source.

A study by Bransford and Johnson246 investigated the impact of having a top-level de-
scription on the amount of information subjects’ remembered about a task. Try to give a
meaning to the task described in the outer margin, while remembering what is involved
(taken from the study).

Table 7.3 shows that subjects’ recalled over twice as much information, if they were given
a meaningful phrase (the topic), before reading the passage. The topic of the passage in the
margin is washing clothes.

No Topic
Given

Topic Given
After

Topic Given
Before

Maximum
Score

Comprehension 2.29 (0.22) 2.12 (0.26) 4.50 (0.49) 7
Recall 2.82 (0.60) 2.65 (0.53) 5.83 (0.49) 18

Table 7.3: Mean comprehension rating and mean number of ideas recalled from passage (standard deviation in parentheses). Adapted from Bransford and Johnson.246

In one study1466 investigating subject performance, answering questions about the code
contained in a 200-line program they had studied; developers who had built an application
domain model from the code performed best.

Some form of understanding may be achieved by assembling basic units of information
into a higher level representation. In human languages, native speakers effortlessly op-
erate on words, which are a basic unit of understanding. The complexity of human lan-
guages, which have to be processed in real-time while listening to the speaker, is con-
strained by the working memory capacity of those involved in the communication activ-
ity.674, 792 The capacity limits that make it difficult for speakers to construct complicated
sentences, in real-time, are a benefit for listeners (who share similar capacity limits).

A study by Futrell, Mahowald and Gibson641 investigated dependency length (the distance
between words, in a sentence, that depend on each other; see figure 7.19) in the use of

188 7. Source code

1

1

3

1

John threw out the trash

1

2
3

1

John threw the trash out

Figure 7.19: Two sentences, with their dependency rep-
resentations; upper sentence has total dependency length
six, while in the lower sentence it is seven. Based on
Futrell et al.641 Github–Local

Romulus, the legendary founder of Rome, took
 the women of the Sabine by force.

1
2
3
4

(took, Romulus, women, by force)
(found, Romulus, Rome)
(legendary, Romulus)
(Sabine, women)

1 3

 2

 4

Cleopatra's downfall lay in her foolish trust in the
 fickle political figures of the Roman world.

1
2
3
4
5
6
7
8

(because, α, β)
α → (fell down, Cleopatra)
β → (trust, Cleopatra, figures)
(foolish, trust)
(fickle, figures)
(political, figures)
(part of, figures, world)
(Roman, world)

1 3 4

 2

 5 6

 7 8

Figure 7.20: One sentence containing four, and the other
eight propositions, along with their propositional analyses.
Based on Kintsch et al.1006 Github–Local

2 3 4 5 6 7 8 9

10

12

14

16

18

20

Propositions in sentence

R
ea

di
ng

 ti
m

e
(s

ec
s)

Recalled by subjects
Presented to subjects

Figure 7.21: Mean reading time (in seconds) for sentences
containing a given number of propositions, and as a func-
tion of the number of propositions recalled by subjects;
with fitted regression models. Data extracted from Kintsch
et al.1006 Github–Local

37 human languages. The results suggest that speakers attempt to minimise dependency
length.

Sentence complexity349 has a variety of effects on human performance. A study by
Kintsch and Keenan1006 asked subjects to read single sentences, each containing the
same number of words, but varying in the number of propositions they contained; see
figure 7.20. The time taken to read each sentence and recall it (immediately after reading
it), was measured.

Figure 7.21 shows reading time (in seconds) for sentences containing a given numbers
of propositions (blue), and reading time for when a given number of propositions were
recalled by subjects (red); with fitted regression models. A later study1007 found that
reader performance was also affected by the number of word concepts in the sentence,
and the grammatical form of the propositions (subordinate or superordinate).

7.2.4 Memory for material read

Increasing the likelihood that information extracted from code will be accurately recalled
later reduces the costs associated with having to reextract the information.

What do people remember about the material they have read (human memory systems are
discussed in section 2.4)?

Again, the only detailed experimental data available is from studies based on human lan-
guage prose.

Studies245 have found that in the short term, syntax is remembered (i.e., words), while
over the longer term mostly semantics is remembered (i.e., the meaning); explicit verba-
tim memory for text does occur.759 Readers might like to try the following test (based on
Jenkins916); part 1: A line at a time, 1) read the sentence on the left, 2) look away and
count to five, 3) answer the question on the right, and 4) repeat process for the next line.

The girl broke the window on the porch. Broke what?
The hill was steep. What was?
The cat, running from the barking dog, jumped on the table. From what?
The tree was tall. Was what?
The old car climbed the hill. What did?
The cat running from the dog jumped on the table. Where?
The girl who lives next door broke the window on the porch. Lives where?
The car pulled the trailer. Did what?
The scared cat was running from the barking dog. What was?
The girl lives next door. Who does?
The tree shaded the man who was smoking his pipe. What did?
The scared cat jumped on the table. What did?
The girl who lives next door broke the large window. Broke what?
The man was smoking his pipe. Who was?
The old car climbed the steep hill. The what?
The large window was on the porch. Where?
The tall tree was in the front yard. What was?
The car pulling the trailer climbed the steep hill. Did what?
The cat jumped on the table. Where?
The tall tree in the front yard shaded the man. Did what?
The car pulling the trailer climbed the hill. Which car?
The dog was barking. Was what?
The window was large. What was?

You have now completed part 1. Please do something else for a minute, or so, before
moving on to part 2 (which follows immediately below).

Part 2: when performing this part, do not look at the sentences above, from part 1; look
at the sentences below. Now, a line at a time, 1) read the sentence on the left, 2) if you
think that sentence appeared as a sentence in part 1 express your confidence level by
writing a number between one and five (with one expressing very little confidence, and
five expressing a lot of confidence in the decision) next to old, otherwise write a number
representing your confidence level next to new, and 3) repeat process for the next line.

The car climbed the hill. old___, new ___
The girl who lives next door broke the window. old___, new ___
The old man who was smoking his pipe climbed the steep hill. old___, new ___
The tree was in the front yard. old___, new ___

7.2. DESIRABLE CHARACTERISTICS 189

1 2 3 4

−2

−1

0

1

2

3

4

Idea units

C
on

fid
en

ce
 le

ve
l

Experiment 1
Experiment 2

Figure 7.22: Subject confidence level, on a one to five
scale (yes positive, no negative), of having previously seen
a sentence containing a given number of idea units (ex-
periment 2 was a replication of experiment 1, plus ex-
tra sentences). Data extracted from Bransford et al.245

Github–Local

The window was on the porch. old___, new ___
The barking dog jumped on the old car in the front yard. old___, new ___
The cat was running from the dog. old___, new ___
The old car pulled the trailer. old___, new ___
The tall tree in the front yard shaded the old car. old___, new ___
The scared cat was running from the dog. old___, new ___
The old car, pulling the trailer, climbed the hill. old___, new ___
The girl who lives next door broke the large window on the porch. old___, new ___
The tall tree shaded the man. old___, new ___
The cat was running from the barking dog. old___, new ___
The cat was old. old___, new ___
The girl broke the large window. old___, new ___
The car climbed the steep hill. old___, new ___
The man who lives next door broke the window. old___, new ___
The cat was scared. old___, new ___

You have now completed part 2. Count the number of sentences you judged to be old.

The surprise is that all the sentences are new.

What is thought to happen is that while reading, people abstract and remember the general
ideas contained in sentences. In this case, they are based on the four idea sets: 1) “The
scared cat running from the barking dog jumped on the table.”, 2) “The old car pulling the
trailer climbed the steep hill.”, 3) “The tall tree in the front yard shaded the man who was
smoking his pipe.”, and 4) “The girl who lives next door broke the large window on the
porch.”.

A study by Bransford and Franks245 investigated subjects’ confidence of having previ-
ously seen a sentence. Sentences contained either one idea unit (e.g., “The cat was
scared.”), two idea units (e.g., “The scared cat jumped on the table.”), three idea units
(e.g., “The scared cat was running from the dog.”), or four idea units (e.g., “The scared
cat running from the barking dog jumped on the table.”). Subjects saw 24 sentences, after
a 4-5 minute break they were shown 28 sentences (24 of which were new sentences), and
asked to rank their confidence of having previously seen the sentence (on a 1 to 5 scale).

Figure 7.22 shows that subjects’ confidence of having previously seen a sentence increases
with the number of idea units it contains. New sentences contained one or more idea units
contained in previously seen sentences. The results are consistent with subject confidence
level being driven by the number of previously seen idea units in a sentence, rather than
the presence of new idea units.

People use their experience with the form and structure of often repeated sequences of
actions, to organize the longer-term memories they form about them. The following stud-
ies illustrate the effect that a person’s knowledge of the world can have on their memory
for what they have read, particularly with the passage of time, and their performance in
interpreting sequences of related facts they are presented with:

• A study by Bower, Black and Turner233 gave subjects a number of short stories describ-
ing various activities to read, such as visiting the dentist, attending a class lecture, going
to a birthday party, i.e., scripts. Each story contained about 20 actions, such as looking
at a dental poster, having teeth X-rayed, etc. After a 20-minutes interval, subjects were
asked to recall actions contained in the stories.

The results found that around a quarter of recalled actions might be part of the script,
but were not included in the written story. Approximately 7% of recalled actions were
not in the story, and would not be thought to belong to the script.

A second experiment involved subjects reading a list of actions, which in the real world,
would either be expected to occur in a known order or not be expected to have any order,
e.g., the order of the float displays in a parade. The results showed that, within ordered
scripts, actions that occurred at their expected location were recalled 50% of the time,
while actions occurring at unexpected locations were recalled 18% of the time at that
location. The recall rate for unordered scripts (i.e., the controls) was 30%.

• A study by Graesser, Woll, Kowalski and Smith725 read subjects stories representing
scripted activities, e.g., eating at a restaurant. The stories contained actions that varied
in the degree to which they were typical of the script, e.g., Jack sat down at the table,
Jack confirmed his reservation, and Jack put a pen in his pocket.

Table 7.4 shows the results; recall was not affected by typicality over short periods of
time, but after one week recall of atypical actions dropped significantly. Recognition

190 7. Source code

Memory Test Typical
(30 mins)

Atypical
(30 mins)

Typical
(1 week)

Atypical
(1 week)

Recall (correct) 0.34 0.32 0.21 0.04
Recall (incorrect) 0.17 0.00 0.15 0.00
Recognition (correct) 0.79 0.79 0.80 0.60
Recognition (incorrect) 0.59 0.11 0.69 0.26

Table 7.4: Probability of subjects recalling or recognizing, typical or atypical actions present in stories read to them, at two time intervals (30 minutes and 1 week) after
hearing them. Based on Graesser et al.725

0

10

20

30

40

Fa
ls

e
po

si
tiv

e
(p

er
ce

nt
)

Neutral Low Medium High

2 days

Before
After
Famous
Fictitious

0

10

20

30

40

Fa
ls

e
po

si
tiv

e
(p

er
ce

nt
)

Neutral Low Medium High

1 week

Before
After
Famous
Fictitious

Figure 7.23: Percentage of false-positive recognition er-
rors for biographies having varying degrees of thematic
relatedness to the famous person, in before, after, famous,
and fictitious groups. Data extracted from Dooling et
al.506 Github–Local

performance (i.e., subjects were asked if a particular action occurred in the story) for
typical vs. atypical actions was less affected by the passage of time.

• A study by Dooling and Christiaansen506 asked subjects to read a short biography con-
taining 10 sentences. The only difference between the biographies was that in some
cases the name of the character was fictitious (i.e., a made up name), while in other
cases it was the name of an applicable famous person. For instance, one biography
described a ruthless dictator, and used either the name Gerald Martin or Adolph Hitler.

After 2-days, and then after 1-week, subjects were given a list of 14 sentences (seven
sentences that were included in the biography they had previously read, and seven that
were not included), and asked to specify, which sentences they had previously read.

To measure the impact of subjects’ knowledge about the famous person, on recognition
performance, some subjects were given additional information. In both cases the addi-
tional information was given to the subjects who had read the biography containing the
made up name, e.g., Gerald Martin. The before subjects were told just before reading
the biography that it was actually a description of a famous person and given that per-
sons name, e.g., Adolph Hitler. The after subjects were told just before performing the
recognition test that the biography was actually a description of a famous person and
given that persons name (they were given one minute to think about what they had been
told).

Figure 7.23 shows that the results are consistent with the idea that remembering is
constructive. After a week subjects memory for specific information in the passage
was lost, and under these conditions sentence recognition is guided by subjects’ general
knowledge. Variations in the time between reading the biography, and identity of a
famous character being revealed, affected the extent to which subjects integrated this
information.

These results suggest that it is a desirable characteristic (i.e., more information, more
accurately recalled), for the contents of scripted stories to be consistent with readers’
prior knowledge and expectations, e.g., events that occur and their relative ordering. The
extent to which source code can be organised in this way will depend on the application
requirements and any demands for algorithmic efficiency.

7.2.5 Integrating information

Units of source code (e.g., statements) are sequenced in ways that result in a behavioral
narrative emerging during program execution. To modify an existing narrative a developer
needs to acquire a good enough understanding of how the units of code are sequenced to
produce the emergent behavior. Information has to be extracted and integrated into a
mental model of program operation.

Which factors have the largest impact on the cognitive effort needed to integrate source
code information into a mental model? Studies1005, 1246 of prose comprehension provide
some clues.

The process of integrating two related items of information involves acquiring the first
item, and keeping it available for recall while processing other information, until the
second item is encountered; it is then possible to notice that the two items are related, and
act on this observation.

A study by Daneman and Carpenter432 investigated the connection between various mea-
sures of subjects’ working memory span, and their performance on a reading comprehen-
sion task. The two measures of working memory used were the word span and reading
span. The word span test is purely a measure of memory usage. In the reading span test
subjects have to read, out loud, sequences of sentences while remembering the last word

7.2. DESIRABLE CHARACTERISTICS 191

0

20

40

60

80

100

Sentences between information
C

or
re

ct
 r

es
po

ns
es

 (
pe

rc
en

t)

2−3 4−5 6−7

reading span 5
reading span 4
reading span 3
reading span 2

Figure 7.24: Percentage of correct responses in a reading
comprehension test, for subjects having a given reading
span, using the pronoun reference questions as a function
of the number of sentences (x-axis) between the pronoun
and the referent noun. Data extracted from Daneman et
al.432 Github–Local

of each sentence, which have to be recalled at the end of the sequence. In the test, the
number of sentences in each sequence is increased until subjects are unable to success-
fully recall all the last words.

The reading comprehension test involves subjects reading a narrative passage containing
approximately 140 words, and then answering questions about facts and events described
in the passage. Passages are constructed such that the distance between the information
needed to answer questions varies. For instance, the final sentence of the passage might
contain a pronoun (e.g., she, her, he, him, or it) referring to a noun appearing in a previous
sentence, with different passages containing the referenced noun in either the second,
third, fourth, fifth, sixth, or seventh sentence before the last sentence.

In the excerpt: “ . . . river clearing . . . The proceedings were delayed because the leopard
had not shown up yet. There was much speculation as to the reason for this midnight
alarm. Finally, he arrived, and the meeting could commence.” the question: “Who finally
arrived?” refers to information contained in the last and third to last sentence; the question:
“Where was the meeting held?” requires the recall of a fact.

Figure 7.24 show the relationship between subject performance in the reading span test
and the reading comprehension test. A similar pattern of results was obtained when the
task involved listening, rather than reading. A study by Turner and Engle1857 found that
having subjects verify simple arithmetic identities, rather than a reading comprehension
test, did not alter the results. However, altering the difficulty of the background task (e.g.,
using sentences that required more effort to comprehend) reduced performance.

As a coding example, given the following three assignments, would moving the assign-
ment to x after the assignment to y, reduce the cognitive effort needed to comprehend the
value of the expression assigned to z?

x = ex_1 + ex_2; /* Could be moved to after assignment to y. */
y = complicated_expression; /* No dependencies on previous statement. */
z = y + ex_1;

This question assumes that ex_2 does not appear prior to the assignment to x, in which
case there may be a greater benefit to this assignment appearing close to the prior usage,
rather than close to the assignment to z; at the time of writing there is little if any evidence
available that might be used to help answer these questions.

Is reader cognitive effort reduced by having a single complex statement, rather than sev-
eral simpler statements?

A study by Daneman and Carpenter433 investigated subjects performance when integrat-
ing information within a single sentence, compared to across two sentences, e.g., “There
is a sewer near our home who makes terrific suits” (this is what is known as a garden
path sentence), and “There is a sewer near our home. He makes terrific suits.” The results
found that a sentence boundary can affect comprehension performance. It was proposed
that this performance difference was caused by readers purging any verbatim information
they held in working memory, about a sentence, on reaching its end. The availability of
previously read words, in the single sentence case, making it easier to change an interpre-
tation, based of what has already been read.

Putting too much information in one sentence has costs. A study by Gibson and Thomas675

found that subjects were likely to perceive complex ungrammatical sentences as being
grammatical. Subjects handled complex sentence that exceeded working memory capac-
ity by forgetting parts of the syntactic structure of the sentence, to create a grammatically
correct sentence.

A study by Kintsch, Mandel, and Kozminsky1008 investigated the time taken to read and
summarize 1,400 word stories. The order of the paragraphs (not the sentences) in the text
seen by some subjects was randomized. The results showed that while it was not possi-
ble to distinguish between the summaries produced by subjects reading ordered vs. ran-
domised stories, reading time for randomly ordered paragraphs was significantly longer
(9.05 minutes vs. 7.34).

A study by Ehrlich and Johnson-Laird533 asked subjects to draw diagrams depicting the
spatial layout of everyday items specified by a sequence of sentences. The sentences
varied in the extent to which an item appearing as the object (or subject, or not at all) in
one sentence appeared as the subject (or object, or not at all) in the immediately following
sentence. For instance, there is referential continuity in the sentence sequence “The knife
is in front of the pot. The pot is on the left of the glass. The glass is behind the dish.”, but

192 7. Source code

1 5 50 500 5000

0.001

0.010

0.100

1.000

10.000

Function length (lines)

To
ta

l S
LO

C
 (

pe
rc

en
ta

ge
)

C
Java

1 5 50 500 5000

20

40

60

80

100

Function length (lines)

C
um

m
ul

at
iv

ce
 S

LO
C

 (
pe

rc
en

ta
ge

)

C
Java

Figure 7.25: Lines of code (as a percentage of all lines
of code in the language measured) appearing in C func-
tions and Java methods containing a given number of
lines of code (upper); cumulative sum of SLOC per-
centage (lower). Data kindly provided by Landman.1077

Github–Local

● ● ● ●● ● ● ●

● ● ● ●● ● ● ●

● ● ● ●● ● ● ●

Figure 7.26: Hermann grid, with variation due to
Ninio and Stevens1384 to create an extinction illusion.
Github–Local

not in the sequence “The knife is in front of the pot. The glass is behind the dish. The pot
is on the left of the glass.”

The results found that when the items in the sentence sequences had referential continuity
57% of the diagrams were correct, compared to 33% when there was no continuity. Most
of the errors for the non-continuity sentences were items missing from the diagram drawn,
and subjects reported finding it difficult to remember the items as well as the relationship
between them.

Most functions contain a few lines (see fig 7.16), and figure 7.25 shows that, depending
on language, most of a program’s code appears in the shorter functions.

7.2.6 Visual organization

The human brain contains several regions that perform specific kinds of basic processing
of the visual input, along with regions that use this processed information to create higher
level models of the visual scene; see section 2.3.

High level visual attention is a limited resource, as illustrated by some of the black circles
in figure 7.26 not being visible when not directly viewed. How might the visual layout
of source code be organized to reduce the need for conscious attention, by making use of
the lower level processing capability that is available (e.g., indenting the start of adjacent
lines to take advantage of preattentive detection of lines)?

People’s ability to learn means that, with practice, they can adapt to handle a wide variety
of disparate visual organizations of character sequences. The learning process requires
practice, which takes time. Using a visual organization likely to be familiar to developers
reduces the start-up cost of adapting to a new layout, i.e., prior experience is used to
enable developer performance to start closer to their long-term performance.

How quickly might people achieve a reading performance, using a new text layout, that is
comparable to that achieved with a familiar layout (based on reading and error rate)?

A study by Kolers and Perkins1034 investigated the extent to which practice improved
reading performance. Subjects were asked to read pages of text written in various ways,
and the time taken for subjects to read a page of text having a particular orientation was
measured; the text could be one of: normal, reversed, inverted, or mirrored text, as in the
following:

• Expectations can also mislead us; the unexpected is always hard to perceive clearly.
Sometimes we fail to recognize an object because we. . .

• .ekam ot detcepxe eb thgim natiruP dnalgnE weN a ekatsim fo dnik eht saw tI .eb ot
serad eh sa yzal sa si nam yreve taht dias ecno nosremE

• These are but a few of the reasons for believing that a person cannot be conscious of all
his mental processes. Many other reasons can be. . .

•
Severalyearsagoaprofessorwhoteachespsychologyatalargeuniversityhadtoaskhis
assistant,ayoungmanofgreatintelligence...

Figure 7.27 shows the time taken to read a page containing text having a particular orien-
tation. In a study1033 a year later, Kolers measured the performance of the same subjects,
as they read more pages. Performance improved with practice, but this time the subjects
had prior experience, and their performance started out better and improved more quickly.

Eye-tracking is used in studies of reading prose to find out where subjects are looking,
and for how long; this evidence-based approach is only just starting to be used to study
the visual processes involved in processing source code (see fig 2.17), and the impact of
factors such as indentation.148

7.2.7 Consistency

People subconsciously learn and make use of patterns in events that occur within their
environment; see section 2.5. Consistently following patterns of behavior, when writing
source code, creates an opportunity for readers to make use of this implicit learning ability.
Individual developers write code in a distinct style,292 even if they cannot articulate every
pattern of behavior they follow.

7.2. DESIRABLE CHARACTERISTICS 193

1 2 5 10 20 50

2

5

10

Pages

T
im

e
(m

in
ut

es
)

Inverted
Inverted after year
Normal
Normal after year

Figure 7.27: Time taken by subjects to read a page of text,
printed with a particular orientation, as they read more
pages (initial experiment and repeated after one year);
with fitted regression lines. Results are for the same six
subjects in two tests more than a year apart. Based on
Kolers.1033 Github–Local

5 10 15

440

460

480

500

520

540

Segment (240 trials)

R
es

po
ns

e
tim

e
(m

se
c)

Figure 7.28: Mean response time for each of 17 seg-
ments; the regression line fitted to segments 2-15 has the
form: Response_time ∝ e−0.1Segment . Data extracted from
Lewicki et al.1120 Github–Local

0 20 40 60 80 100

0.05

0.10

0.20

0.50

1.00

2.00

5.00

Change rank

C
ha

ng
e

oc
cu

rr
en

ce
 (

pr
ob

ab
ili

ty
)

Figure 7.29: Percentage occurrence of kinds of source
changes (in rank order), with fitted exponentials over a
range of ranks (red lines). Data kindly provided by Mar-
tinez.1213 Github–Local

A study by Lewicki, Hill and Bizot1120 investigated the impact of implicit learning on
subjects’ performance, in a task containing no overt learning component. While sub-
jects watched a computer screen, a letter was presented in one of four possible locations;
subjects had to press the button corresponding to the location of the letter as quickly as
possible. The sequence of locations used followed a consistent, but complex, pattern. The
results showed subjects’ response times continually improving as they gained experience.
The presentation was divided into 17 segments of 240 trials (a total of 4,080 letters). The
pattern used to select the sequence of locations was changed after the 15th segment, but
subjects were not told about the existence of any patterns of behavior. After complet-
ing the presentation subjects were interviewed to find out if they had been aware of any
patterns in the presentation; they had not.

Figure 7.28 shows the mean response time for each segment. The consistent improve-
ment, after the first segment, is interrupted by a decrease in performance after the pattern
changes on the 15th segment.

A study by Buse and Weimer284 investigated Computer Science students’ opinions of the
readability of short snippets of Java source code, rating them on a scale of 1 to 5. The
students were taking first, second and third/fourth year Computer Science degree courses
or were postgraduates at the researchers’ University.

Subjects were not given any instructions on how to rate the snippets for readability, and
the attributes that subjects were evaluating when selecting a rating is not known, e.g.,
were subject ratings based of how readable they personally found the snippets to be, or
based on the answer they would expect to give when tested in an exam.

The results show that the agreement between students readability ratings, for short snip-
pets of code, improved as students progressed through course years 1 to 4 of a computer
science degree; see Github–developers/readability. The study can be viewed as an investi-
gation of implicit learning, i.e., students learned to rate code against what they had been
told were community norms of a quantity called readability.

A study by Corazza, Maggio and Scanniello400 investigated semantic relatedness, which
they called coherence, between a method’s implementation and any associated comment,
i.e., did the method implement the intent expressed in the comment. Five Java programs,
containing a total of 5,762 methods, were manually evaluated; the results found that
coherence was positively correlated with log(comment_lines), and negatively correlated
with method LOC; see Github–sourcecode/SQJ_2015.R.

A study by Martinez and Monperrus1213 investigated the kind of changes made to source
to fix reported faults. The top five changes accounted for 30% of all changes, i.e., add
method call, add if-statement, change method call, delete method call, and delete if-
statement. Figure 7.29 shows kind of source changes ranked by percentage occurrence,
and exponentials fitted over a range of ranks (red lines).

Software is created within a particular development culture, and differences can exist
between different cultures. Consistency of culture (as in unchanging) is only a good thing
while it provides good fit for the environment in which it operates.

Embedded software runs on resource limited hardware, which is often mass-produced,
and saving pennies per device can add up to a lot of money. Systems are populated
with the smallest amount of memory needed to run the code, and power consumption is
reduced by using the slowest possible clock speeds, e.g., closer to 1 MHz than 1 GHz.

Experienced embedded developers are aware of hardware performance limitations they
have to work within. Many low-cost processors have a very simple architecture with
relatively few instructions and parameter passing, to a function, can be very expensive (in
execution time and code size) compared to passing values to functions in global variables
on some processors.

A study by Engblom545 investigated differences in the characteristics of embedded C soft-
ware, and the SPECint95 benchmark. Figure 7.30 shows the percentage of function def-
initions containing a given number of parameters, for embedded software the SPECint95
benchmark and desktop software measured by Jones.930 A Poisson distribution provides
a reasonable fit to both sets of data; for desktop software, the Poisson distribution fitted to
function definitions having a given number of parameters has λ = 2, while for embedded
developers λ = 0.8.

These measurements were of source code from the late 1990s; have embedded systems
processor characteristics changed since then?

194 7. Source code

0 2 4 6 8 10

10

20

30

40

50

Number of parameters

F
un

ct
io

n
de

fin
iti

on
s

(p
er

ce
nt

ag
e)

C book
Fitted model
Embedded

Figure 7.30: Percentage of function definitions declared
to have a given number of parameters in: embedded appli-
cations, and the translated form of a sample of C source
code. Data for embedded applications kindly supplied
by Engblom,545 C source code sample from Jones.930

Github–Local

Today, companies are likely to be just as interested in profit, e.g., saving pennies. Compil-
ers may have become better at reducing function parameter overheads for some processor,
but it is beliefs that drives developer usage.

Embedded devices have become more mainstream, with companies selling IoT devices
with USB interfaces. This availability provides an opportunity for aspects of desktop and
mobile system development culture to invade the culture of embedded development. In
some cases, where code size or/and performance is critical, developers looking for savings
may learn about the overheads of parameter passing. Within existing embedded system
communities, past folklore may no longer apply (because the hardware has changed).

Is there a range of values of λ , depending on developer experience (old habits die hard
and parameter overhead will depend on processor characteristics, e.g., 4-bit, 8-bit and
16-bit processors)?

7.2.8 Identifier names

Identifier names provide a channel through which the person writing the code can commu-
nicate information to subsequent readers. The communications channel operates through
the semantic associations triggered in the mind of a person as they read the source (tools
might also attempt to gather and use this semantic information).

Semantic associations may be traceable to information contained in the source (e.g., the
declared type of an identifier), or preexisting cultural information present in writers’ or
readers’ memory, e.g., semantic interpretations associated with words in their native lan-
guage within the culture it was learned and used.

Given that most functions are only ever modified by the original author (see fig 7.18), the
primary beneficiary of any investment in naming of local identifiers is likely to be the
developer who created them.

< . >

13
0
1

([],
*)

{
,

;

* = ;
= ();

(>)
{
* = ;
}

{
(=0; < ; ++)

{
(([] < ’0’) ||
([] > ’9’))

{
* = ;
}

}
}

}

include string h

define MAX_CNUM_LEN
define VALID_CNUM
define INVALID_CNUM

int chk_cnum_valid char cust_num
int cnum_status

int i
cnum_len

cnum_status VALID_CNUM
cnum_len strlen cust_num
if cnum_len MAX_CNUM_LEN

cnum_status INVALID_CNUM

else

for i i cnum_len i

if cust_num i
cust_num i

cnum_status INVALID_CNUM

#include <string.h>

#define v1 13
#define v2 0
#define v3 1

int v4(char v5[],
int *v6)

{
int v7,

v8;

*v6=v2;
v8=strlen(v5);
if (v8 > v1)

{
*v6=v3;
}

else
{
for (v7=0; v7 < v8; v7++)

{
if ((v5[v7] < ’0’) ||

(v5[v7] > ’9’))
{
*v6=v3;
}

}
}

}

Figure 7.31: Three versions of the source of the same pro-
gram, showing identifiers, non-identifiers and in an anony-
mous form; illustrating how a reader’s existing knowl-
edge of English word usage can reduce the cognitive effort
needed to comprehend source code. Based on an example
from Laitinen.1069

Identifiers are the most common token in source code (29% of the visible tokens in .c
files,930 with comma the second most common at 9.5%), and they represent approximately
40% of all non-white-space characters in the visible source (comments representing 31%
of the characters in .c files).

Each identifier appearing in the visible source is competing for developer cognitive re-
sources. Identifiers having similar spellings, pronunciations, or semantic associations
may generate confusion, resulting in mistaken interpretations being made; identifiers with
long names may consume cognitive resources that are out of proportion to the benefits of
the information they communicate. Figure 7.32 shows the number of function defini-
tions containing a given number of occurrences of identifiers (blue/green), and of distinct
identifiers (red).

7.2. DESIRABLE CHARACTERISTICS 195

1 2 5 10 20 50 100

5

10

20

50

100

200

500

1000

2000

5000

Identifiers

F
un

ct
io

ns

Unique identifiers
All identifiers

Figure 7.32: Number of C function definitions contain-
ing a given number of identifier uses (unique in red, all in
blue/green). Data from Jones.930 Github–Local

2 4 6 8 10 12

0.005

0.010

0.050

0.100

0.500

1.000

5.000

10.000

Subjects (percentage)

S
am

e
w

or
d

(p
ro

ba
bi

lit
y)

Figure 7.33: Probability (averaged over all cue words)
that, for a given cue word, a given percentage of subjects
will produce the same word. Data from Nelson et al.1363

Github–Local

The meanings associated with a word, by a community, evolves,1066 with different changes
sometimes occurring in different geographic communities. One study434 found people
following a two-stage lifecycle: a linguistically innovative learning phase during which
members align with the language of the community, followed by a conservative phase in
which members don’t respond to changes in community norms.

The same word may trigger different semantic associations in different people. For in-
stance, the extent to which a word is thought to denote a concrete or abstract concept1478

(concrete words, defined as things or actions in reality, experienced directly through the
senses, whereas abstract words are not experienced through the senses, they are language-
based with their meaning depending on other words). What is the probability that an
identifier will trigger the same semantic associations in the mind of readers, when they
encounter the identifier in code?

A study by Nelson, McEvoy and Schreiber1363 investigated free association of words.
Subjects were given a word, and asked to reply with the first word that came to mind.
More than 6,000 subjects producing over 700,000 responses to 5,018 stimulus words.

What is the probability that the same response word will be given by more than one sub-
ject? Figure 7.33 shows the probability (averaged over all words) that a given percentage
of subjects will give the same word in response to the same cue word (values were cal-
culated for each word, for two to ten subjects, and normalised by the number of subjects
responding to that word). The mean percentage of unique responses was 18% (sd 9).

In this study subjects were not asked to think about any field of study and were mostly
students, i.e., were not domain experts. Domain experts may be more likely to agree on a
response, for terms specific to their domain.

Table 7.5 shows the percentage of identifiers occurring in each pair of seven large software
systems; top row is the total number of identifiers in the visible source of each system.

gcc idsoftware linux netscape openafs openMotif postgresql
identifiers 46,549 27,467 275,566 52,326 35,868 35,465 18,131
gcc - 2 9 6 5 3 3
idsoftware 5 - 8 6 5 4 3
linux 1 0 - 1 1 0 0
netscape 5 3 8 - 5 7 3
openafs 6 4 12 8 - 3 5
openMotif 4 3 6 11 3 - 3
postgresql 9 5 12 11 10 6 -

Table 7.5: Percentage of identifiers in one program having the same spelling as identifiers occurring in various other programs. First row is the total number of identifiers in
the program, and the value used to divide the number of shared identifiers in that column. Data from Jones.930

Identifiers do not appear in isolation, in source, they appear within the context of other
code. One study932 found that identifier names can have a large impact on decisions made
about the relative precedence of binary operators in an expression. Also, naming incon-
sistencies between the identifier passed as an argument, and the corresponding parameter
has been used to find coding mistakes.1578

A study1677 of word choice in a fill-in-the-blank task (e.g., “in tracking the . . . ”), found
that probability of word occurrence (derived from large samples of language use) was a
good predictor of both the words chosen, and the order in which subjects produced them
(subjects were asked to provide 20 responses per phrase).

English pronunciation can be context dependent, e.g., “You can lead a horse to water, but
a pencil must be lead.” and “Wind the clock when the wind blows.”

Speakers of different natural languages will have trained on different inputs, and during
school people study different subjects (each having its own technical terms). A study by
Gardner, Rothkopf, Lapan, and Lafferty652 asked subjects (10 engineering, 10 nursing,
and 10 law students) to indicate whether a letter sequence was a word or a nonword. The
words were drawn from a sample of high frequency words (more than 100 per million),
medium-frequency (10–99 per million), low-frequency (less than 10 per million), and
occupationally related engineering or medical words.

The results showed engineering subjects could more quickly and accurately identify the
words related to engineering (but not medicine); the nursing subjects could more quickly
and accurately identify the words related to medicine (but not engineering). The law

196 7. Source code

students showed no response differences for either group of occupationally related words.
There were no response differences on identifying nonwords. The performance of the
engineering and nursing students on their respective occupational words was almost as
good as their performance on the medium-frequency words.

Object naming has been found to be influenced by recent experience,1725 practical skills
(e.g., typists selecting pairs of letters that they type using different fingers1871) and ego-
tism, e.g., a preference for letters in one’s own name or birthday related numbers.1013, 1396

Developers may select the same identifier for different reasons. A study172 of the use
of single letter identifiers in five languages found that i was by far the most common in
source code written in four of the languages. This choice might be driven by abbreviating
the words integer (the most common variable type) or index, or by seeing this usage
in example code in books and on the web, or because related single letters were already
used.

Desirable characteristics in an identifier name include: high probability of triggering the
appropriate semantic associations in the readers’ mind, a low probability of being mis-
taken for another identifier present in the associated source code, and consuming cognitive
resources proportional to the useful information it is likely to communicate to readers.

Studies of the characteristics of words, in written form, found to have an effect on some
aspect of subject performance include: word length effect,1368 age of acquisition405, 1648

(when the word was first learned), frequency of occurrence98 (e.g., in spoken form and
various kinds of written material), articulatory features of the initial phoneme (listener
analysis of a spoken word is initiated when the first sounds are heard; differences at the
beginning enable distinct words to be distinguished sooner).

Most studies of words have investigated English, but a growing number of large scale
studies are investigating other languages.597 Orthography (the spelling system for the
written form of a language) can have an impact on reader performance, English has a
deep orthography (i.e., a complex mapping between spelling and sound), while Malay
has a shallow orthography (i.e., a one-to-one mapping between spelling and sound; also
Spanish), and word length in Malay has been found to be a better predictor of word
recognition than word frequency.1991

When creating a spelling for an identifier, a path of least cognitive effort is for developers
to rely on their experience of using their own native language, e.g., lexical conventions,
syntax,302 word ordering conventions (adjectives). The mistakes made by developers,
in the use of English, for whom English is not a native language are influenced by the
characteristics of their native language.1802

What are the characteristics likely to increase the likelihood that an identifier will be
mistaken for another one?

Dearest creature in creation,
Study English pronunciation.

I will teach you in my verse
Sounds like corpse, corps, horse, and worse.

I will keep you, Suzy, busy,
Make your head with heat grow dizzy.

Tear in eye, your dress will tear.
So shall I! Oh hear my prayer.

Pray, console your loving poet,
Make my coat look new, dear, sew it!

Just compare heart, beard, and heard,
Dies and diet, lord and word,

Sword and sward, retain and Britain.
(Mind the latter, how it’s written.)
Now I surely will not plague you

With such words as plaque and ague.
But be careful how you speak:

Say break and steak, but bleak and streak;
Cloven, oven, how and low,

Script, receipt, show, poem, and toe.

THE CHAOS (first two verses)
by Dr. Gerard Nolst Trenité, 1870-1946

A study by Lambert, Chang, and Gupta1072 investigated drug name confusion errors.x

Subjects briefly saw the degraded image of a drug name. Both the frequency of occurrence
of drug names, and their neighborhood density were found to be significant factors in
subject error rate.

An analysis of the kinds of errors made found that 234 were omission errors and 4,128
were substitution errors. In the case of the substitution errors, 63.5% were names of other
drugs (e.g., Indocin® instead of Indomed®), with the remaining substitution errors being
spelling-related or other non-drug responses, e.g., Catapress instead of Catapres®.

Identifiers often contain character sequences that do not match words in the native lan-
guage of the reader. Studies of prose have included the use non-words, often as a per-
formance comparison against words, and nonwords are sometimes read as a word whose
spelling it closely resembles.1515

Studies of letter similarity have a long history,1836 and tables of visual1322 (e.g., 1 (one)
and l (ell)) and acoustic1480 letter confusion have been published. When categorizing a
stimulus, people are more likely to ignore a feature than they are to add a missing feature,
e.g., Q is confused with O more often than O is confused with Q.

A study by Avidan96 investigated how look it took subjects to work out what a Java
method did, recording the time taken to reply. In the control condition subjects saw the
original method, and in the experimental condition the method name was replaced by xxx,

xErrors involving medication kill one person every day in the U.S., and injure more than one million every
year; confusion between drug names that look and sound alike account for 15% to 25% of reported medication
errors

7.2. DESIRABLE CHARACTERISTICS 197

10 20 50 100
0

10

20

30

40

50

60

Lines

S
ol

ut
io

ns

Python
C++
Java
C
C#

Figure 7.34: Number of solutions to one a problem posed
in a Google code jam competition, containing a given
number of lines, stratified by programming language.
Data from Back et al.106 Github–Local

with local and/or parameter names replaced by single letter identifiers; in all experimental
conditions the method name was replaced by xxx.

Subjects took longer to reply for the modified methods. When parameter names were left
unmodified, subjects were 268 seconds slower (on average), and when locals were left
unmodified 342 seconds slower (the standard deviation of the between subject differences
was 187 and 253 seconds, respectively); see Github–sourcecode/Avidan-MSc.R.

A study310 of the effectiveness of two code obfuscation techniques (renaming identifiers
and complicating the control flow) found that renaming identifiers had the larger impact
on the time taken by subjects to comprehend and change code; see Github–sourcecode/AssessEffectCodeOb.R.

One study841 found that the time taken to find a mistake in a short snippet of code was
slightly faster when the identifiers were words, rather than non-words; see Github–sourcecode/shorter-
iden.R.

The names of existing identifiers are sometimes changed.73 The constraints on identifier
renaming include the cost of making all the necessary changes in the code and dependen-
cies other software may have on existing names, e.g., identifier is in a published API.

One study1520 created a tool that learned patterns of identifier usage in Javascript, which
then flagged identifiers whose use in a given context seemed unlikely to be correct.

7.2.9 Programming languages

Thousands of programming languages have been created, and new languages continue to
be created (see section 4.6.1); they can be classified according to various criteria.1880

Do some programming languages require more, or less, effort from developers, to write
code having any of the desirable characteristics discussed in this chapter?

Every programming language has its fans, people who ascribe various positive qualities to
programs written in this language, or in languages supporting particular characteristics.
There is little or no experimental evidence for any language characteristics having an
impact on developer performance, and even less evidence for specific language features
having a performance impact.

The term strongly typed is applied as a marketing term to languages believed by the
speaker to specify greater than some minimum amount of type checking. The available
experimental evidence for the possible benefits of using strongly typed languages is dis-
cussed in section 7.3.6. Languages provide functionality and developers can choose to
make use of it, or not. It would be more appropriate to apply the term strongly typed
to source code that takes full advantage of the type checking functionality provided by a
language.

There is often a mechanism for subverting a language’s built-in type checks, e.g., the
use of unconstrained in Ada, the unsafe package in Go,407 and the unsafe keyword in
Rust.563

Factors that might generate a measurable difference in developer performance, when us-
ing different programming languages, include: individual knowledge and skill using the
language, and interaction between the programming language and problem to be solved,
e.g., it may be easier to write a program to solve a particular kind of problem using lan-
guage X than using language Y.

Studies1352, 1876, 2031 that compare languages using small programs suffer from the pos-
sibility of a strong interaction between the problem being solved, the available language
constructs (requiring a sample containing solutions to a wide variety of problems), and
the developers’ skill at mapping the problem constructs available in the language used.
Some languages include support for programming in the large (e.g., sophisticated sepa-
rate compilation mechanisms), and studies will need to use large programs to investigate
such features.

A study by Back and Westman106 investigated the characteristics of the 220,349 entries
submitted to the Google code jam program competition for the years 2012-2016 (a total
of 127 problems). Figure 7.34 shows the number of solutions containing a given number
of lines for one of the problems (the one having the most submitted solution: 2,624),
stratified by the five most commonly used languages.

A realistic comparison of two languages requires information from many implementations
of large systems targeting the same application domain.

198 7. Source code

1 100 10000

1

100

10000

Lines

R
ul

e
de

pe
nd

en
ci

es

autotools
cmake
qmake
hand

Figure 7.35: Number of lines against number of depen-
dencies contained in rules, in 19,689 makefiles, strat-
ified by method of creation. Data from Martin.1210

Github–Local

A study by Waligora, Bailey and Stark1917 compared various lines of code measurements
(e.g., measurements of declarations, executable statements and code reuse) of 11 Ada
and 19 Fortran implementations of NASA ground station software systems. While there
were differences in patterns of behavior for various line counts, these differences could
have been caused by factors outside the scope of the report (e.g., the extent to which
individual companies were involved in multiple projects and in a good position to evaluate
the potential for reuse of code from previous projects, or the extent to which project
requirements specified that code should be written in a way likely to make it easier to
reuse); see Github–projects/nasa-ada-fortran.R.

Differences in performance between subjects, and learning effects, can dominate studies
based on small programs, or experiments run over short intervals. It is possible to structure
an experiment such that subject performance improvement, on each reimplementation
(driven by learning that occurred on previous implementations), is explicitly included as
a variable; see section 11.6.

A study by Savić, Ivanović, Budimac and Radovanović1636 investigated the impact of a
change of teaching language on student performance in practical sessions (moving from
Modula-2 to Java). Student performance, measured using marks assigned, was unchanged
across the four practical sessions, as was mean score for each year; see Github–ecosystems/2016-
sclit-uup.R.

A study by Prechelt and Tichy1525 investigated the impact of parameter checking of func-
tion calls (when the experiment was performed, C compilers that did not perform any
checking on the arguments passed to functions, so-called K&R style, were still in com-
mon use). All subjects wrote two programs: one program using a compiler that performed
argument checking of function calls, and the second program using a compiler that did
not perform this checking. Subjects were randomly assigned to the problem to solve first,
and the compiler to use for each problem. The time to complete a correct program was
measured.

Fitting a regression model to the results shows that the greatest variation in performance
occurred between subjects (standard deviation of 74 minutes), the next largest effect was
problem ordering (with the second problem being solved 38 minutes, on average, faster
than the first). The performance improvement attributed to argument checking is 12 min-
utes, compared to no argument checking; see Github–experiment/tcheck98.R.

Studies1286 investigating the use of a human language, to specify solutions to problems,
have found that subjects make extensive use of the contextual referencing that is com-
mon in human communication. This use of context, and other issues, make it extremely
difficult to automatically process the implementation instructions.

Programming languages that support coding constructs at a level of abstraction higher
than machine code have to make some implementation decisions about lower level be-
havior, e.g., deciding the address of variables defined by the developer, and the amount of
storage allocated to hold them. These implementation decisions are implicit behavior.

Studies1045 have investigated the use of particular kinds of implicit behavior, and fault
repositories provide evidence that some coding mistakes are the result of developers not
understanding the implicit behavior present in a particular sequence of code.

Your author is not aware of any evidence-based studies showing that requiring all behavior
to be explicit, in the code, is more/less cost effective, i.e., supporting implicit behavior is
less/more costly than the cost of [the assumed] more coding mistakes. Neither is your
author aware of any evidence-based studies showing that alternative implicit behavior
result in fewer developer mistakes.

7.2.10 Build bureaucracy

Software systems are built by selectively combining source code, contained in multiple
files, libraries, and data files. Some form of bureaucracy is needed to keep track of the
components required to perform a build, along with any dependencies they have on other
components, and the tools (plus appropriate options) used to map the input files to the
desired final software system. Build systems that have been created include: tools that
process rules specifying operations to be performed (e.g., make operating on makefiles),
and tools that create files containing target specific rules from higher level requirements,
e.g., a configure script generates the makefiles appropriate to the build system; also see
section 5.4.7.

7.3. PATTERNS OF USE 199

20 50 200 1000 5000 20000

50

100

200

500

1000

2000

5000

10000

20000

50000

KLOC

F
ea

tu
re

 c
on

st
an

ts

Figure 7.36: Number of feature constants against LOC
for 40 C programs; fitted regression line has the form:
Feature_constants ∝ KLOC0.9. Data from Liebig et al.1138

Github–Local

40 50 60 70 80 90 100

1

10

100

1000

10000

Options enabled (cumulative percentage)

F
ile

s

Nested #includes
Direct

Figure 7.37: Cumulative percentage of configuration op-
tions impacting a given number of source files in the
Linux kernel. Data kindly provided by Ziegler.2027

Github–Local

0.0

0.1

0.2

0.3

0.4

Files per option

D
en

si
ty

1 3 7 20 55 148 403 1097

Version 5
Version 13
Version 22
Version 34

Figure 7.38: Density plot of the number of files contain-
ing code involved in supporting distinct options in four
versions of Google Chrome. Data from Rahman et al.1556

Github–Local

A study by Martin1210 investigated the features used in 19,689 makefiles. Figure 7.35
shows the number of lines contained in these makefiles, along with the number of de-
pendencies contained in the rules of the respective file. Most of the larger files have been
generated by various tools that process higher level specifications, with smaller files being
mostly handwritten.

Program source code may be written in a way that supports optional selection of features
at build time. One technique for selecting the code to process during compilation is
conditional compilation, e.g., #ifdef/#endif in C and C++ checks whether an identifier
is defining, or not (the identifier is sometimes known as a feature test macro, feature
constant, or build flag).

A study by Liebig, Apel, Lengauer, Kästner and Schulze1138 measured various attributes
associated with the use of conditional compilation directives in 40 programs written in
C (header file contents were ignored). Figure 7.36 shows the number of unique feature
constants appearing in programs containing a given number of lines of code.

How extensive is the impact of build flags on source code? A study by Ziegler, Rothberg
and Lohmann2027 investigated the number of source files in the Linux kernel affected by
configuration options. Figure 7.37 shows the number of files affected by the cumulative
percentage of configuration options. The impact of 37.5% of options is restricted to a
single file, and some options have an impact over tens of thousands of files.

Applications may be shipped with new features that are not fully tested, or that may some-
times have undesirable side effects. User accessible command line (or configuration file)
options may be used to switch features on/off. A study by Rahman, Shihab and Rigby1556

investigated the feature toggles supported by Google Chrome. The code supporting a
given feature may be scattered over multiple files and provides an insight into the organi-
zation of program source. Figure 7.38 shows a density plot of the number of files involved
in each feature of Google Chrome; the number of feature toggles grew from 6 to 34 over
these four releases.

As source code evolves the functionality provided by a package or library may cease to
be used, removing the dependency on this package or library. A missing dependency is
likely to be flagged at build time, but unnecessary dependencies are silently accepted. The
result is that over time the number of unnecessary, or redundant, dependencies grows.1739

One study2012 of C/C++ systems found that between 83% and 97% recompilations, speci-
fied in makefiles, were unnecessary.

7.3 Patterns of use

Patterns of source code use are of general interest to the extent they provide information
that aids understanding of the software development process. There are special interest
groups interested in common usage patterns, such as compiler writers wanting to max-
imise their investment in code optimizations by focusing on commonly occurring con-
structs, by static analysis tools focusing on the mistakes commonly made by developers,
and by teachers looking to minimise what students have to know to be able to handle most
situations (and common novice mistakes923); these groups are a source code data.

Patterns that occur during program execution1580 can be used to help tune the performance
of both the measured program and any associated runtime system; researchers sometimes
focus on individual language constructs.1579

The spoken form of human languages have common patterns of word usage1106 and
phrase usage,192 the written form of languages also have common patterns of letter us-
age.942 Common usage patterns are also present in the use of mathematical equations.1732

A theory has no practical use unless it can be used to make predictions that can be verified
(or not), and any theory of developer coding behavior needs to make predictions about
common patterns that appear in human written code. For instance, given the hypothesis
that developers are more likely to create a separate function for heavily nested code, then
the probability of encountering an if-statement should decrease with increasing nesting
depth.xi

Common usage patterns in human written source code are driven by developer habits (per-
haps carried over from natural language usage, or training material), recurring patterns of

xiWhich does not occur in practice, at least in C code; see figure 7.39.

200 7. Source code

1 2 5 10 20 50 200 500

1

100

10000

1000000

Characters on line

Li
ne

s

0 5 10 15 20 25

1

10

100

1000

10000

Nesting level

S
el

ec
tio

n−
st

at
em

en
ts

Figure 7.39: Number of selection-statements hav-
ing a given maximum nesting level; fitted regression line
has the form: num_selection ∝ e−0.7nesting. Data from
Jones.930 Github–Local

0.0

0.2

0.4

0.6

0.8

1.0

3 9 15 24 33 42 51 60

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

Sequence length

S
eq

ue
nc

e
du

pl
ic

at
ed

 (
fr

ac
tio

n)

Figure 7.40: Fraction of a project’s token sequences, con-
taining a given number of tokens, that appear more than
once in the projects’ Java source (for 2,637 projects); the
yellow line has the form: fraction ∝ a− b ∗ log(seq_len),
wherea and b are fitted constants. Data from Lin et al.1145

Github–Local

behavior in the application domain, hardware characteristics, the need to interface to code
written by others, or influenced by the characteristics of the devices used to write code.
For instance, the width of computer screens limits the number of characters visible on
a line within a window. Figure 7.39, upper plot, shows the number of lines, in C source
files, containing a given number of characters. The sharp decline in number of lines occurs
around a characters-per-line values supported by traditional character based terminals.xii

Some code may be automatically generated. Figure 7.39, lower plot, shows the number
of C selection-statementsxiii occurring at a given maximum nesting depth. One in-
terpretation of the decreasing trend, at around a nesting level of 13, is that automatically
generated code becomes more common at this depth, than human written code.

Common patterns may exist because a lot of code is built from sequences of simple build-
ing blocks (e.g., assigning one variable to another), and there are a limited number of such
sequences (particularly if the uniqueness of identifiers is ignored).

A study by Lin, Ponzanelli, Mocci, Bavota and Lanza1145 investigated the extent to which
the same sequence of tokens (as specified by the Java language, with identifiers having
different names treated as distinct tokens) occurred more than once in the source of a
project. Figure 7.40 shows violin plots of the fraction of a project’s token sequences of
a given length (for sequence lengths between 3 and 60 tokens) that appeared more than
once in the projects Java source (for each of 2,637 projects).

A study by Baudry, Allier and Monperrus146 investigated the possibility of generating
slightly modified programs (e.g., add, replace and delete a statement) having the same
behavior (i.e., passing the original program’s test suite; the nine large Java programs
used had an average statement coverage of 85%). On average, 16% of modified pro-
grams produced by the best performing generated add-statement algorithm passed the
test suite; 9% for best performing replace and delete; see Github–sourcecode/Synth-Diverse-
Programs.csv.xz.

Individual developers have personal patterns of coding usage.292 These coding accents are
derived from influences such as developer experience with using other languages, ideas
picked up from coding techniques appearing in books, course notes, etc.

There may be common patterns specific to application domains, programming language
or large organizations. The few existing studies have involved specific languages in broad
domains (e.g., desktop computer applications written in C930 and Java usage in open
source repositories734), and without more studies it is not possible to separate out the
influences driving the patterns found.

A variety of development practices can introduce bias into source code measurements,
including:

• when making use of source written by third-parties, it may be more cost effective to
maintain a local copy of the source files, than link to the original. A consequence of
this behavior is the presence of duplicate source files in public repositories (skewing
population measurements), and individual project measurements may be unduly influ-
enced by the behavior of developers working on other projects.

A study by Lopes, Maj, Martins, Saini, Yang, Zitny, Sajnani and Vitek1157 investigated
duplicate code in 4.5 million non-forked Github hosted projects, i.e., known forks of a
project were not included in the analysis. Of the 428+ millions source files written in
Java, C++ , Python or Javascript, 85 million were unique. Table 7.6 shows the percent-
age of unique files by language, and percentage of projects containing at least a given
percentage of duplicates files.

Figure 7.41 shows the number of Python files containing a given number of SLOC, for
a 10% sample of all 31,602,780 files, and the 9,157,622 unique files,

• the decision about which code matches a particular pattern may not be a simple yes/no,
but involve a range, e.g., the number of tokens needing to match before a code sequence
is considered to be a clone. Tools used to extract patterns from source code often
provide options for controlling their behavior,1554

• when modifying source, some developers commit every change they make to the project-
wide repository, while other developers only make project-wide commits of code they
have tested (i.e., they commit changes of behavior, not changes of code).1362

xiiHistorically, typewriters supported around 70 characters per line, depending on paper width, and punched
cards supported 80 characters.

xiiiif-statements and switch-statements.

7.3. PATTERNS OF USE 201

Java C++ Python JavaScript
Unique files 60% 27% 31% 7%
Projects 1,481,468 364,155 893,197 1,755,618
duplicates > 50% 14% 25% 18% 48%
duplicates > 80% 9% 16% 11% 31%
duplicates 100% 6% 7% 6% 15%

Table 7.6: Percentage of unique files for a given language, number of projects, and average percentage of duplicated files in projects for Github hosted projects written in
various languages. Data from Lopes et al.1157

1 10 100 1000 10000

1

100

10000

SLOC

F
ile

s

All files
Unique files

Figure 7.41: Number of Python source files containing a
given number of SLOC; all files, and with duplicates re-
moved. Data from Lopes et al.1157 Github–Local

2 5 10 20 50 100

10

20

50

100

200

500

1000

Revision difference

R
ei

nt
ro

du
ce

d
lin

e
se

qu
en

ce
s

1 2 5 10 20 50 100

10

100

1000

10000

100000

Number of lines

R
ei

nt
ro

du
ce

d
lin

e
se

qu
en

ce
s

Figure 7.42: Number of reintroduced line sequences
having a given difference in revision number between
deletion and reintroduction (upper), and number of
reintroduced line sequences containing a given number
of lines (lower); the fitted regression lines have the
form: Occurrence ∝ NumLines−1.4e0.1log(NumLines)2

and
Occurrences ∝ NumLines−1.7. Data kindly provided by
Kamiya.967 Github–Local

When every change is committed, there will be more undoing of previous changes, than
when commits are only made after code has been tested.

A study by Kamiya967 investigated how many deleted lines of code were added back
to the source in a later revision, in a FreeBSD repository of 190,000 revisions of C
source. Figure 7.42, upper: shows the number of reintroduced line sequences having
a given difference in revision number between deletion and reintroduction, and lower:
number of reintroductions of line sequences containing a given number of lines, with
fitted power laws.

7.3.1 Language characteristics

The idea that the language we use influences our thinking is known as the Sapir-Whorf
or Whorfian hypothesis.667 The strong language-based view is that the language used
influences its speakers’ conceptualization process; the so-called weak language-based
view is that linguistic influences occur in some cases, such as the following:

• language-as-strategy: language affects speakers performance by constraining what can
be said succinctly with the set of available words; a speed/accuracy trade-off, approx-
imating what needs to be communicated in a brief sentence rather than using a longer
sentence to be more accurate,877

• thinking-for-speaking: for instance, English uses count nouns, which need to modified
to account for the number of items, which requires speakers to pay attention to whether
one item, or more than one item, is being discussed; Japanese nouns make use of clas-
sifiers, e.g., shape classifiers such as hon (long thin things) and mai (flat things), and
measuring classifiers such as yama (a heap of) and hako (a box of). Some languages
assign a gender to object names, e.g., the Sun is feminine in German, masculine in
Spanish and neuter in Russian.

thinking for coding occurs when creating names for identifiers, where plurals may
sometimes be used (e.g., the rowsum and rowSums functions in R),

• languages vary in the way they articulate numbers containing more than one digit, e.g.,
the components contained in 24 might be ordered as 20+4 (English) or 4+20 (French).
Linguistic influences on numerical cognition have been studied.270

While different languages make use of different ways of describing the world, common
cross-language usage patterns can be found. A study by Berlin and Kay183 isolated what
they called the basic color terms of 98 languages. They found that the number and kind of
these terms followed a consistent pattern, see figure 7.43; while the boundaries between
color terms varied, the visual appearance of the basic color terms was very similar across
languages. Simulations of the evolution of color terms134 suggest that it takes time for
the speakers of a language to reach consensus on the naming of colors, and over time
languages accumulate more color terms.

Languages vary in their complexity, i.e., there is no mechanism that ensures all languages
are equally complex.1251

Many programming languages in common use are still evolving, i.e., the semantics of
some existing constructs are changing and support for new constructs is being added.
Changing the semantics of language existing constructs involves a trade-off between
alienating the developers and companies currently using the language (by failing to con-
tinue to process existing code), and fully integrating new constructs into the language.

At the end of 2008 the Python Software Foundation released Python 3, a new version of
the language that was not compatible with Python 2. Over time features only available in
Python 3 have been back-ported to Python 2. How have Python developers responded to
the availability of two similar, but incompatible languages?

202 7. Source code

Purple Pink
Orange Grey

Brown

Blue

Green Yellow

Red

Black White

Figure 7.43: The Berlin and Kay183 language color hier-
archy. The presence of any color term in a language im-
plies the existence, in that language, of all terms below it.
Papuan Dani has two terms (black and white), while Rus-
sian has eleven (Russian may also be an exception in that
it has two terms for blue.) Github–Local

2006 2010 2014 2018

50

60

70

80

90

100

Date

C
on

fo
rm

an
ce

 (
m

ea
n

pe
rc

en
ta

ge
) 2.0

2.2
2.3
2.4
2.4.3
2.5
2.6
2.7
2.7.2
3.0
3.1
3.2
3.3.0
3.5.0
3.6.0

Figure 7.44: Mean compatibility of 50 applications to 11
versions of Python, over time. Data from Malloy et al.1196

Github–Local

2004 2006 2008 2010 2012
1

10

100

1000

10000

Date

C
um

ul
at

iv
e

us
er

s
of

 fe
at

ur
e

AnnotDefine
AnnotUse
Assert
EnhancedFor
Enums
GenDefField
GenDefMethod
GenDefType
GenExtends
GenSuper
GenWildcard
Varargs
BinaryLit
Diamond
MultiCatch
SafeVarargs
TryResources
UnderscoreLit

Figure 7.45: Cumulative number of developers who have
committed Java source making use of particular new fea-
ture added to the language. Data from Dyer et al.524

Github–Local

A study by Malloy and Power1196 investigated the extent to which 50 large Python ap-
plications were compatible with various releases of the Python language. Figure 7.44
shows changes in the estimated mean compatibility of the 50 applications to 11 versions
of Python, over time.

While new features are often added to languages, it is rare for a feature to be removed (at
least without giving many years notice). The ISO Standards for both the Fortran and C
have designated some constructed as deprecated, i.e., to be removed in the next release,
but in practice they are rarely removed.xiv

Whatever the reason for the additions, removals, or modifications to a language, such
changes will influence the characteristics of some of the code written by some developers.
A new construct may add new functionality (e.g., atomics in C and C++), displace use of
an existing construct, e.g., lambda expressions replacing anonymous classes.1224

How quickly are new languages constructs adopted, and regularly used by developers?
Use of new language constructs depends on:

• compiler support. While vendors are quick to claim compliance with the latest standard,
independent evidence is rarely available (e.g., compiler validation by an accredited test
lab),xv

• existing developer knowledge and practices. What incentives do existing users of a
language have to invest in learning new language features, and to then spend time up-
dating existing habits? Is new language feature usage primarily driven by developers
new to the language, i.e., learned about the new feature as a by-product of learning the
language?.

A handful of compilers now dominate the market for many widely used languages. The
availability of good enough open source compilers has led to nearly all independent com-
piler vendors exiting the market.

For extensive compiler driven language usage to exist, widely used diverse compilers are
required (something that was once common for some languages). With the small number
of distinct compilers now in widespread use, any diversity of language construct use is
likely to be driven by the evolution of compiler support for new language constructs, and
the extent to which source has been updated to adapt to modified or new features.

A study by Dyer, Rajan, Nguyen and Nguyen524 investigated the use of newly introduced
Java language features, based on the source of commits made to projects on SourceForge.
Figure 7.45 shows the cumulative growth (adjusted for the growth of registered Source-
Forge users1996) in the number of developers who had checked in a file containing a use of
a given new feature, for the first time. Possible reasons for the almost complete halt in the
growth of developers using a new Java language construct for the first time include: the
emptying of the pool of developers willing to learn and experiment with new language
features, and developers switching to other software hosting sites, e.g., Github became
available in 2008.

A unit of source code may contain multiple languages, e.g., SQL,56 assembler,1586 or C
preprocessor directives (also used in Fortran source to support conditional compilation),
or database schema contained within string literals of the glue language used (such as
PHP or Python1147).

7.3.2 Runtime characteristics

The runtime characteristics of interest to users of software, and hence of interest to de-
velopers, are reliability and performance. Reliability is discussed in chapter 6, and issues
around the measurement of performance are discussed in chapter 13.

When execution time needs to be minimised, the relative performance of semantically
equivalent coding constructs are of interest. A study by Flater and Guthrie614 investigated

xivANSI X3.9-1978,65 known as Fortran 77, listed 24 constructs which it called conflicts with ANSI X3.9-
1966. Some of these conflicts were removal of existing features (e.g., Hollerith constants), while others were
interpretations of ambiguous wording. Subsequent versions of the Standard have not removed any language
constructs.

xvWhen the British Standards Institute first offered C compiler validation, in 1991, three small companies
new to the C compiler market paid for this service; all for marketing reasons. Zortech once claimed their
C compiler was 100% Standard compliant (it was not illegal to claim compliance to a yet to be published
standard still under development), and when the C Standard was published their adverts switched to claiming
99% compliance, i.e., a meaningless claim.

7.3. PATTERNS OF USE 203

1 100 10000 100000000

1

100

10000

1000000

100000000

Reads

W
rit

es

8−bit
16−bit
32−bit
Wider

 0
.0

05

 0.01

 0.01

 0.01

 0
.0

15

 0.015

 0.
02

Figure 7.46: Number of reads and writes to the same vari-
able, for 3,315 variables occupying various amounts of
storage, made during the execution of the Mediabench
suite; grey line shows where number of writes equals
number of reads. Data kindly provided by Caspi.305

Github–Local

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Lag (calls to j0)

A
C

F

Series diff(j0$argument)

Figure 7.47: Autocorrelation function of the argument val-
ues passed to the Bessel function j0. Data kindly provided
by Suresh.1798 Github–Local

50 500 5000 50000

5

10

20

50

100

200

500

1000

2000

5000

Total

D
yn

am
ic

Methods
LOC
Statements

Figure 7.48: The number of dynamic statements, LOC and
methods against total number of those constructs appear-
ing in 28 Ruby programs; lines are power law regression
fits. Data from Rodrigues et al.1597 Github–Local

the time taken to assign a value to an array element in C and C++ , using various lan-
guage constructs. A fitted regression model contains interactions between almost every
characteristic measured; see Github–benchmark/bnds_chk.R.

The interaction between algorithm used, size of data structures and hardware characteris-
tics can have a large impact on performance, see fig 13.21.

Patterns of behavior that frequently occur during the execution of particular sequences of
source code are of great interest to some specialists, and include (fig 7.6 illustrates that
the relationship between static and dynamic behavior may have its own patterns).

• a symbiosis between cpu design and existing code; developers interested in efficiency
attempt to write code that makes efficient use of cpu functionality, and cpu designers at-
tempt to optimise hardware characteristics for commonly occurring instruction usage28

and patterns of behavior (e.g., locality of reference1297 can make it worthwhile caching
previously used values, and the high degree of predictability of conditional branches,
statically126 and dynamically,1298 can make it worthwhile for the cpu to support branch
prediction),

• implementers of runtime libraries. Common patterns in the dynamic allocation of stor-
age include: relatively small objects, with program-specific sizes make up most of the
requests,1206 once allocated the storage usually has a short lifetime,1206 and objects
declared using the same type name tend to have similar lifetimes.1714

A study by Suresh, Swamy, Rohou and Seznec1798 investigated the value of arguments
passed to transcendental functions. Figure 7.47 shows the autocorrelation function of
the argument values passed to the Bessel function j0.

7.3.3 Statements

Statements have been the focus of the majority of studies of source code; see fig 9.12 for
percentage occurrence of various kinds of statements in C, C++ and Java.

Some languages support the creation of executable code at runtime, e.g., concatenating
characters to build a sequence corresponding to an executable statement and then calling
a function that interprets the string just as-if it had originally appeared in the source file.

A study by Rodrigues and Terra1597 investigated the use of dynamic features in 28 Ruby
programs. On average 2.6% of the language features appearing in the source were dy-
namic features; it was thought possible to replace 50% of the dynamic statements with
static statements.

Figure 7.48 shows the number of dynamic statements, LOC, and methods appearing in
Ruby programs containing a given number of dynamic constructs. Lines are a power law
regression fit, with the exponents varying between 0.8 and 0.9.

7.3.4 Control flow

An if-statement is a decision point, its use is motivated by either an application require-
ment or an internal house-keeping issue, e.g., an algorithmic requirement, or checking an
error condition.

Developers often using indentation to visually delimit constructs contained within partic-
ular control flows; see fig 11.64.

The ordering of if-statements may be driven by developer beliefs about the most effi-
cient order to perform the tests, as the code evolves adding new tests last, or other reasons.
One study1987 used profile information to reorder if-statements, by frequency of their
conditional expression evaluating to true; the average performance improvement, on a
variety of Unix tools, was 4%.

The control flow supported by many early programming languages closely mimicked the
support provided by machine code.

The goto-statement was the work-horse of program flow control, and the term spaghetti
code was coined to describe source code using goto-statements in a way that required
excessive effort to untangle control flows through a program. The sometimes heated
debates around the use of the goto-statement, from the late 1960s and 1970s,499, 1029

have become embedded in software folklore, and continue to inform discussion, e.g.,
guidelines recommending against the use of goto-statement.1291

204 7. Source code

1 100 10000

1

100

10000

Conditionals

N
ul

l c
he

ck
s

Figure 7.49: Total if-statements against if-statem
ents whose condition involves a null check, in each of
800 Java projects; regression line fitted has the form:
null_checks ∝ Conditionals. Data kindly provided by Os-
man.1425 Github–Local

1 2 3 4 5

0.1

0.5

1.0

5.0

10.0

50.0

100.0

Clauses

C
on

di
tio

ns
 (

pe
rc

en
ta

ge
)

Figure 7.50: Percentage of conditional expressions, in 63
Java programs, containing a given number of clauses; one
fitted regression model has the form: Num_conditions ∝

eNum_predicates×(log(SLOC)−0.6log(Files)−11), where each vari-
able is the total for a program’s source. Data from Durelli
et al.520 Github–Local

Over time higher level control flow abstractions have been introduced, e.g., structured
programming; code in the margin shows an example of unstructured and structured code.

if (a != 1) if (a == 1)
goto 100; {

b=1; b=1;
c=2; c=2;

100:; }
d=3; d=3;

A study by Osman, Leuenberger, Lungu and Nierstrasz1425 investigated the use of checks
against the null value in the if-statements within 800 Java systems. Figure 7.49 shows
the number of if-statements against the number of these if-statements whose con-
dition checks a variable against null.

Studies of the use of goto in Ada665 and C930 have found that it is mostly used to jump
out of nested constructs, to statements appearing earlier or later; one study1343 found that
80% of usage in C was related to error handling.

if ((c = *sp++) == 0)
goto cerror;

if (c == ’<’) { ... }
if (c == ’>’) { ... }
if (c == ’[’) { ... }
if (c == ’]’) { ... }
if (c >= ’1’ && c <= ’9’) { ... }

The lower plot in figure 7.39 shows the number of C selection-statements, occurring
at a given maximum nesting depth. The probability of encountering a selection-sta
tement remains relatively constant with nesting depth, implying that developers are not
more likely to create a function to contain more deeply nested code, than any other code.

Many languages support a statement to handle the need to select one control flow path
from multiple possibilities, based on the value of an expression, e.g., a switch-statem
ent. Even when such a statement is available, developers may choose to use a sequence
of if-statements. For instance, ordering the sequence to reflect the expected likelihood
of the condition being true (in the belief that this improves performance); the code in the
margin is from the source of a version of grep.

A study by Jones933 investigated developer choice of control flow construct, when the
problem allowed either if-statement or switch-statement, to be used. The questions
involved writing a function that used the value of a parameter to select the value to assign
to a specific variable; each question specified whether the parameter took 3, 4 or 5 values.
The following shows two possible solutions to one question:

switch(company)
{

if (company == 1) case 1: X = "Intel";
X = "Intel"; break;

else if (company == 20) case 20: y = "Motorola";
y = "Motorola"; break;

else if (company == 33) case 33: W = "IBM";
W = "IBM"; break;

else if (company == 41) case 41: p = "Sun";
p = "Sun"; break

}

A total of 199 questions were answered by 12 professional developers. One subject used
the if-else-if form when the parameter contained three values, and a switch-stat
ement when more than three values. Two subjects tended to always use the if-else-if
form, and nine subjects always used an switch-statement (a few subjects answered
one question using an if-statement).

A study by Durelli, Offutt, Li, Delamaro, Guo, Shi and Ai520 investigated clausesxvi

within the conditional expressions contained in 63 Java programs. Figure 7.50 shows the
percentage occurrence of conditional expressions containing a given number of clauses;
see Github–sourcecode/1-s2.R and Github–sourcecode/sast_2017.R.

Some languages include statements that provide a restricted form of goto-statement,
e.g., break for jumping just past the end of the associated loop; see fig 11.31. Use of this
form removes the need for those reading the code to deduce that the purpose of a goto)
is to exit a loop (and use of these forms do not have the perceived negative connotations
associated with the word goto).

Some languages include support for a more powerful form of goto-statement, origi-
nally based on functionality provided by the hardware, e.g., signal handling (known as
exception handling in some languages). The non-local nature of signal handling (it may
cause control flow to exit one or more functions in the call tree) can create a lot of need
to know.

A study by de Pádua and Shang456 investigated exception handling in seven C] projects
(1,502 try blocks) and nine Java projects (7,116 try blocks). Both C] and Java support
what are known as try-catch blocks; if the execution of code within a try block raises

xviA clause is a basic subexpression returning a boolean value, which may be combined with AND and OR
operators to form a more complicated expression.

7.3. PATTERNS OF USE 205

0 10 20 30 40

1

5

10

50

100

500

1000

Possible exceptions

Tr
y

bl
oc

ks

Java
C...

Figure 7.51: Number of try blocks whose code might
raise a given number of exceptions; fitted regression
models have the form: (lower) Num_tryBlocks ∝

Possible_exceptions−0.22 and (upper) Num_tryBlocks ∝

7300e−1.4Possible_exceptions + 1100e−0.21Possible_exceptions.
Data from de Pádua et al.456 Github–Local

an exception, it can be caught by the catch block (provided the particular exception raised
is specified in the list of exceptions handled).

How many exceptions might a try block raise? Figure 7.51 shows the number of try
blocks whose code is capable of raising a given number of exceptions, along with lines
showing fitted regression models. Possible reasons for the difference in fitted regression
models (i.e., exponential vs. bi-exponential) include: different language characteristics
affecting which runtime behaviors are capable of generating an exception, and a conse-
quence of the relatively small number of projects sampled.

7.3.5 Loops

Loop statements have traditionally been of interest because programs often spend most
of their time executing within a few loops (the characteristics of code within loops is
intensively studied by compiler writers, optimizing code that commonly occurs in loops
is likely to return the greatest ROI for new optimizations).

Compilers attempt to figure out the characteristics of code within loops, such as depen-
dencies between variables in successive iterations, to detect code optimizations34 that im-
prove the efficiency of the generated code. Calculating worst case program execution time
(WCET) requires accurate estimates of the number of iterations, along with the execution
time of a single iteration.1094

Loops might be classified based on difficulty of automated analysis.1444

7.3.6 Expressions

What do developers need to know about the semantics of expression evaluation?

Many languages may perform implicit type conversions on one or more of the operands
in an expression, e.g., casting one operand of a binary operator so that both operands have
the same type. For instance, many languages consider the operands in the expression 1+1.
0 to be some integer type and some floating-point type, respectively, and in languages with
C-like implicit conversion rules the behavior is as-if (double)1+1.0 had been written.

The implicit conversions that might be performed vary between languages. For instance,
the expression 1+"1" may return the result 2 (e.g., PHP and Lua), or "11" (e.g., Javascript),
or generate a compile-time error (e.g., many languages), or perhaps something else.

Implicit conversions remove the developer effort needed to write an explicit conversion
(and the effort involved in processing its visual form, if the code is later read), but creates
a need to know about the implicit conversions specified by the language.

The original need for operands to be converted to a common type, before being operated
on, was driven by the behavior of the underlying hardware instructions; the concept of
same type was synonymous with same underlying data representation. Some languages
have moved away from the concept of types being solely dependent on the underlying
representation, and provide a means for developers to specify new type compatibility
relationships.

type
celsius is new real;
fahrenheit is new real;

var
L_temp :celsius;
NY_temp :fahrenheit;

...
L_temp:=NY_temp; - types not compatible

The purpose of developer-defined type constraints is to detect coding mistakes, and their
ability to catch mistakes is dependent on the extent to which developers make use of the
available functionality. Some languages were explicitly designed to support developer-
defined type constraints (e.g., Ada; see margin code), while other language support such
functionality through the use of constructs designed for more general uses, e.g., C++ .214

When the functionality is available, the extent to which developers make use of user
defined type constraints appears to be cultural. For instance, while both Ada and C++

provide mechanisms offering the same level of support for user defined type constraints,
there is a culture of developer-defined type constraint use in the Ada community, but not
in the C++ community.

The following studies have experimental investigated differences in developer perfor-
mance when using languages the researchers claim differ in support for strong typing:

• Gannon:650 used two simple languages, which by today’s standards were weakly typed,
with one less so than the other (think BCPL and BCPL plus a string type and simple
structures). A single problem was solved by subjects, which had been designed to re-
quire the use of features available in both languages, e.g., a string oriented problem

206 7. Source code

1 2 5 10 20 50 100
100

10000

1000000

100000000

Numeric word value

W
or

ds

English
Russian
Italian

Figure 7.52: Yearly occurrence of number words (e.g.,
"one", "twenty-two"), averaged over each year since 1960,
in Google’s book data for three languages. Data kindly
provided by Piantadosi.1484 Github–Local

0

10

20

30

40

Digit

N
um

er
ic

 li
te

ra
l (

pe
rc

en
t)

1 3 5 7 9 B D F

Benford's law
Floating
Integer
Hexadecimal

Figure 7.53: Percentage occurrence of the most significant
digit of floating-point, integer and hexadecimal literals in
C source code. Data from Jones.930 Github–Local

(final programs were between 50-300 lines). The result data included number of er-
rors during development and number of runs needed to create a working program (this
happened in 1977, before the era of personal computers, when batch processing was
common; see Github–experiment/Gan77.R).

There was a small language difference in number of errors/batch submissions; the dif-
ference was about half the size of the effect of experimental order of language used
by subjects, both of which were small in comparison to the variation due to subject
performance differences. While the language effect was small, it was present. It is not
possible to separate out performance differences due to stronger typing, rather than built
in support for a string type only being available in one language.

• Mayer, Kleinschmager and Hanenberg:1023, 1223 Two experiments using different lan-
guages (Java and Groovy) and multiple problems; the performance metric was time
to complete the task. There was no significant difference due to just language, but
large differences due to language/problem interaction, with some problems solved more
quickly in Java and others more quickly in Groovy, and learning took place, i.e., the sec-
ond task was completed in less time than the first. As often occurs, there were large vari-
ations in performance between subjects; see Github–experiment/mayerA1-oopsla2012.R
and Github–experiment/kleinschmagerA1.R.

• Hoppe and Hanenberg:853 one language (Java) was used, and multiple problems; the
problems involved making use of either Java’s generic types or non-generic types.
Again, the only significant language difference effects occurred through interaction
with other variables in the experiment (e.g., the problem or the language ordering),
and there were large variations in subject performance.

To summarise: when a language typing/feature effect has been found, its contribution to
overall developer performance has been small. Possible reasons for the small or non-
existent effect, include: xvii the use of subjects with little programming experience (i.e.,
students; experienced developers are more likely to make full use of the consistency
checking provided by a type system), and the small size of the programs (type check-
ing comes into its own when used to organize, and control, large amounts of code).

Many languages contain more than twenty different kinds of operators which can appear
in expressions (supporting the wide variety of different kinds of operations that have been
created to combine values). By specifying operator precedence for the relative binding
strength of operators (commonly used languages have 10 to 15 precedence levels), to their
operands, languages remove the need for developers to explicitly specify the intended
binding of operands to operators (by using parenthesis). Expressions that do not use
parenthesis create a developer need to know for operator precedence.

One study931 found that the likelihood of developers knowing the correct relative prece-
dence of two binary operators increased with frequency of occurrence of the respective
pair of operators in existing C source; see fig 2.38.

Section 2.3.1 discusses studies investigating the processes involved in reading expres-
sions.

7.3.6.1 Literal values

Literal values appear in source for a variety of reasons, including: specific value required
by an algorithm,74 size or number of elements in the definition of an array,930 implemen-
tation specific values (e.g., urls, dates and developer credentials2025), application domain
values, personal preferences of developers (see section 2.7.1), and a representation of
no-value, i.e., a null value.

The distribution of numeric values in application domains will have been influenced by
real-world usage. Figure 7.52 shows the yearly occurrence of number words (averaged
over each year since 1960) in Google’s book data. The English counts are larger because
most of the books processed were written in English. Decade values (e.g., ten, twenty)
follow their own trend, and these are much more common than adjacent values.

Some languages support multiple ways of representing numeric literals, e.g., decimal,
binary, hexadecimal. Figure 13.5 suggests that the distribution of the value of numeric
literals depends on the representation used. Figure 7.53 shows that Benford’s law is a
very crude approximation for decimal integer and floating-point numeric literal usage in
source code.

xviiYour author declares his belief that when integrated into the design process, strong typing has cost/benefit
advantages.

7.3. PATTERNS OF USE 207

0 10 20 30 40 50
1

100

10000

References to same variable

F
un

ct
io

ns

Function
External
File

0 10 20 30 40 50
1

100

10000

References to all variable

F
un

ct
io

ns

Function
External
File

Figure 7.54: Number of C functions contains a given num-
ber of references to the same variable (upper), and a given
number of references to all variables (lower); reads are
full lines, writes dashed lines, colors indicate variable’s
visibility. Data from Jones.930 Github–Local

0 1 2 3 4 5 6 7

200

400

600

800

1000

Parameters

F
un

ct
io

ns

apache
bash2.01
cherokee
sylpheed

Figure 7.55: Number of functions defined with a given
number of parameters in the C source of four projects;
solid lines function body did not access global variables,
dashed lines function body accessed global variables.
Data from Gonzaga.702 Github–Local

The use of the value zero during the execution of many kinds of program is sufficiently
common that many RISC processors hard-code one register to contain zero; the use of the
whitespace character is very common in Cobol applications.xviii

7.3.6.2 Use of variables

What are the patterns of use of variables in source code?

Section 8.3.1 discusses models that relate frequency of local variable use and number of
variable declarations, within in a function.

A study by Sajaniemi and Prieto1629 investigated the roles of variables in source code.
They were able to categorise variable use into one of approximately 10 roles, which in-
cluded: stepper which systematically takes predictable successive values, follower which
obtains its new value from the old value of another variable, and temporary which holds
some value for a short time.

Variable use may be driven by the constructs supported by the language. For instance, in
C, the loop header often contains three appearances of the loop control variable, e.g., for
(i=0;i<10;i++); in languages that support constructs of the form for (i in v_list),
only one appearance is required. In languages that support vector operations, an explicit
loop may not be needed to perform some operations on variables, e.g., in R two vectors
can be added together using the binary plus operator.

An analysis381 of integer use in C found that around 20% of accesses to variables, having
an integer type, were made in a context having a signedness that was different from the
declared type; also the declarations of variables having an integer type were not usually
modified.

How often are variables read and written by functions? One study930 measured C source,
with variables local to the function, source file or externally visible. Figure 7.54 shows:
upper the number of functions containing a given number of references to the same vari-
able (the same function may be counted more than once), and lower: the number of
functions containing a given number of references to all variables; solid lines are reads,
dashed lines are writes. Most functions reference a few variables, which is consistent with
most functions containing a few lines; see fig 7.16.

A study by Gonzaga702 investigated the use of global variables and parameters in the
functions defined in 40 C programs. Comparing the number of function parameters, func-
tions that did not access global variables had 0.4 more parameters (on average). For 30
programs the larger number of parameters, for functions accessing/not accessing global
variables, was statistically significant; see Github–sourcecode/Gonzaga.R, and fig 7.30.

Figure 7.55 shows the number of functions defined to have a given number of parameters;
solid lines are functions that did not access global variables, dashed lines are functions
that accessed global variables.

7.3.6.3 Calls

Roughly 1-in-5 statements contains an explicit function/method call (compilers some-
times introduce additional calls to implement language constructs; see fig 7.6).

Some call sequences are part of a common narrative, e.g., open a file, write to it and
close it. Detecting narrative sequences can be straightforward in code written in object-
oriented language, because the variable name associated with an object is included in calls
to methods associated with that object, e.g., var.strLength().

A study by Mendez, Baudry and Monperrus1262 investigated method call sequences as-
sociated with the same variable, based on an analysis of 4,888 classes in 3,418 Jar files
(i.e., Java bytecode; some method calls may not explicitly appear in the original source,
e.g., the compiler maps string concatenation using binary + to a call to the method Stri
ngBuilder.append). Figure 7.56 shows the 10 most frequent sequences of java.lang.
StringBuilder methods called on the same variable (lines connect methods called in
sequence; method call argument types are ignored).

Figure 7.57 shows the number of sequences having a given length (i.e., measured in meth-
ods; in blue), and number of sequences that appear in the code (i.e., are used; in red) a

xviiiThe MicroFocus Cobol code generator for the SPARC processor, designed by your author, dedicated one
32-bit register to always hold the value 0x20202020, i.e., four whitespace characters.

208 7. Source code

append
353547

toString
193340

<init>
667

<init>−append
193327

toString−<init>
275

<init>−toString
202

append−toString
178

<init>−append−toString
5178

<init>−length−append−toString
158

<init>−append−length−toString
158

Figure 7.56: Sequences of methods, from java.lang.
StringBuilder, called on the same object; based on
3,418 Jar files. Data from Mendez et al.1262 Github–Local

1 5 50 500 5000

1

100

10000

Uses/Length

M
et

ho
d

se
qu

en
ce

s

Uses of sequence
Length of sequence

Figure 7.57: For each Java class, in 3,418 jar files, the
number of method sequences containing a given number
of calls (red), and the number of uses of each sequence
(blue). Data from Mendez et al.1262 Github–Local

10 100 1000 10000 100000

1

10

100

1000

10000

Project size (method calls)

A
P

I m
et

ho
ds

 (
di

st
in

ct
)

Figure 7.58: Number of distinct API methods called
in 1,435 Java projects containing a given number of
method calls; the line is a fitted regression model of the
form: unique ∝ calls0.78. Data from Lämmel et al.1073

Github–Local

given number of times; only classes containing method sequences used at least 100 times
are included.

How does the number of calls to distinct methods grow with project size?

A study by Lämmel, Pek and Starek1073 investigated calls to methods from third-party
APIs, and those defined within 1,435 projects. Figure 7.58 shows the number of distinct
API methods called against project size (measured in method calls).

The function/method called may be passed as an argument, e,g., a callback. A study by
Gallaba, Mesbah and Beschastnikh645 investigated the use of callbacks in 130 Javascript
programs. Figure 7.59 shows the total number of calls in each program, against the num-
ber of calls containing callbacks, and just anonymous callbacks.

7.3.7 Declarations

Declarationsxix are code bureaucracy that provides two basic services: a means of intro-
ducing a sequence of characters that is to be treated as a valid identifier (sometimes known
as a name), and specifying operations associated with uses of the identifier in source code
(these operations are derived from information appearing in the declaration of the name,
e.g., the type of an object).

Large programs may define tens of thousands of identifiers.930

Some languages do not require an identifier to be defined in a declaration, before (or after)
it appears in the source code. In such languages the context in which the identifier appears
is used to derived attributes associated with subsequent uses, e.g., variables have the type
of the value last assigned to them. A study558 of four large PHP applications found that
less than 1% of variables were assigned values having different types, e.g., assigning an
array and later assigning an integer.

Desirable characteristics of declarations are those that minimise the need to know about
the identifiers defined.

Some degree of visibility is one characteristic identifiers acquire during the definition
process, i.e., they can be referred to over some region of the source code. Reducing the
visibility of identifiers reduces the amount of information developers need to know, when
dealing with code where the identifiers are not required to be visible.

Many languages provide mechanisms for restricting the visibility of identifiers, e.g., the
private in Java and static in C; R is an example of a language that provides limited
functionality. While studies1900 have found that identifiers are sometimes declared with
greater visibility than necessary (given their existing use in code), there has not been any
analysis of the cost/benefit of supporting potential future unintended/intended uses; see
Github–sourcecode/TR_DCC-overExposure/TR_DCC-overExposure.R.

To what extent do declarations change over time?

A study by Neamtiu, Foster and Hicks1360 investigated the release history of three C
programs over 3-4 years, and a total of 48 releases. They found that one or more fields
were added to one or more existing structure or union types in 79% of releases, while
structure or union types had one or more fields deleted in 51% of releases; a later study1361

found one or more existing fields had their types changed in 35% of releases. Figure 7.60
shows the relationship between the number of global variables and lines of code, in three
C programs, over multiple releases.

A study by Robbes, Róthlisberger and Tanter1590 investigated data extensions (i.e., the
visitor pattern) and operation extensions to Smalltalk classes; the 2,505 projects analyzed
contained 95,662 classes, forming 48,595 class hierarchies (with 41% containing more
than one class). Figure 7.61 shows the number of data and operation extensions made to
1,560 class hierarchies containing both kinds of extension.

One study1353 of eight Java systems found that the number of methods and classes hav-
ing a given inheritance depth decreased by a factor of 0.25 per inheritance level; see
Github–sourcecode/JavaInherit.R

xixSome languages use the term definition, and some use both, e.g., in C a definition is a declaration that
causes storage to be allocated for an object.

7.3. PATTERNS OF USE 209

50 500 5000 50000

5

10

50

100

500

1000

5000

10000

Total calls

C
al

ls
 p

as
si

ng
 c

al
lb

ac
ks

All callbacks
Anonymous callbacks

Figure 7.59: Number of function calls, against corre-
sponding number of calls containing callbacks and anony-
mous callbacks, in 130 Javascript programs; lines are
fitted regression models of the form: allCallbacks ∝

allCalls0.86 and anonCallbacks ∝ allCalls0.8, respectively.
Data from Gallaba et al.645 Github–Local

10 20 50

50

100

150

200

250

KLOC

G
lo

ba
l v

ar
ia

bl
es

Vsftpd
Openssh
Apache

Figure 7.60: Number of global variables against lines of
code over 48 releases of three systems written in C. Data
kindly provided by Neamtiu.1360 Github–Local

1 2 5 10 20 50 100

1

2

5

10

20

50

100

Operation extensions

D
at

a
ex

te
ns

io
ns

Figure 7.61: Jittered number of data and operation
extensions to 1,560 Smalltalk class hierarchies containing
both kinds of extension; regression line has the form:
log(Data_extensions) ∝ log(Operation_extensions)2.
Data from Robbes et al.1590 Github–Local

7.3.8 Unused identifiers

Some identifiers are defined, and never referenced again, i.e., they are unused. Reasons
for the lack of use include: a mistake has been made (e.g., the variable should have been
referenced), the identifier was once referenced (i.e., the declaration is now redundant),
and there is an expectation of future need for the entity that has been defined.

Unused identifiers consume cognitive resources for no benefit.

It is not always cost effective to remove the definition of an unused identifier. For in-
stance, removing an unused function parameter may require a greater investment than is
likely to be worthwhile (because changing the number of function parameters requires
corresponding changes to the arguments of all calls).

Figure 7.62 shows the total number of functions having a given number of parameters, a
given number of unused parameters, and various fitted regression models. Unused func-
tion parameters, which at around 11% of all parameters are slightly more common than
unused local variables.

The fitted regression model, for the number of functions containing a given number of
unused parameters has the form: functions ∝ e−0.5unused (in practice, functions are likely
to acquire unused parameters one at a time, as the code evolves). An alternative formula

for estimating the number of functions containing u unused parameters is:
8

∑
p=u

Fp

7p
, where:

Fp is the total number of function definitions containing p parameters; figure 7.62 shows
how well this wet-finger model fits.

7.3.9 Ordering of definitions within aggregate types

Consistent patterns appear in the ordering of member declarations within many Java
class and C struct types; for instance, members sharing an attribute are often sequen-
tially grouped together, or have a preferred relative ordering.

These usage patterns may be the result of many developers making individual choices
(either explicitly or implicitly), or because externally specified ordering rules are being
followed, e.g., the Java coding conventions (JCC)1795 specifies a recommended ordering
for the declaration of: class variables (or fields), instance variables (or static initializers),
constructors and methods; see fig 12.8.

Statistical analysis techniques for items believed to have a preferred order are discussed
in section 12.4.

Patterns in the ordering of fields in C struct types are discussed in section 9.6.1. One in-
terpretation of the pattern seen, is developers wanting to reduce unused storage by group-
ing together objects whose types have the same alignment requirements.

A study by Geffen and Maoz664 investigated various patterns of method ordering within
Java classes; for instance, the rules specified by the StyleCop tool (e.g., group by access
modifiers), the commonly seen pattern of called methods appearing after the method that
involved them, and the concept of clustering, i.e., related methods appearing in the same
class or file.

A study by Biegel, Beck, Hornig and Diehl196 investigated the impact of the kind of
activity performed by a method on its relative ordering. The method activity attributes
considered were: 1) all static methods (declared using the static keyword), 2) initializers
(method name begins with init), 3) getters and setters (non-void return type and method
name begins with get, is or set followed by a capital letter) and 4) all other non-static
methods.

Figure 7.63 shows that methods performing two of the activities are very likely to be or-
dered before methods performing the two remaining other activities. Method declaration
sequences containing more than two kinds of method activity occurred in 62% of contexts
analysed, with 54% of these passing the threshold needed for analysis, leaving 33% of all
declarations sequences.

The original author of the code may not be responsible for maintenance, and it is possible
that declarations added during maintenance were not inserted into an existing structure/-
class declaration according to the ordering pattern used during initial development, e.g.,
some developers may prefer to add new declarations at the end of an existing structure/-
class.

210 7. Source code

1 2 3 4 5 6 7 8

1

10

100

1000

10000

Parameters in definition/Unused parameters

F
un

ct
io

n
de

fin
iti

on
s

Parameters
Unused parameters
Wet finger fit model

Figure 7.62: Number of C function definitions having
a given number of parameters (red) and unused param-
eters (green); parameter fitted regression line has the
form: functions ∝ e−0.67parameters. Data from Jones.930

Github–Local

W
or

th
 e

st
im

at
e

0.1

0.2

0.3

0.4

method

●

●

●

●

initializer
static

other

getter.setter

Figure 7.63: "Worth estimate" for the kind of method ac-
tivity attribute; see section 12.4. Data from Biegel et al.196

Github–Local

●

● ●
●

●
antlr−2.4.0

●

●

●

●

●

●

●
●

●

●

antlr−2.7.3

●

●

● ●

●

●

●

●

●

●

●

●

antlr−2.7.7

●

●

●

●

●

●

●

●

●
antlr−3.0

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

antlr−3.1

Figure 7.64: Dependencies between the Java packages in
various versions of ANTLR. Data from Al-Mutawa.29

Github–Local

7.4 Evolution of source code

Software only changes when developers have an incentive to spend time making the
changes, incentives include: being paid, and a desire to change the code to satisfy a
personal need, e.g., refactoring code to maintain a personal self-image, as a developer, be-
cause of a belief, for instance, that other developers reading the unrefactored code would
form a low opinion of the author.

If payment is involved, there is a customer, and the changes are supposed to address
customer needs (it can be very difficult to work out what the customer needs actually are,
and there may be as many opinions about these needs as there are people trying to keep
the customer happy).

The uncertainty of future customer demand creates uncertainty in the cost/benefit analysis
of investment decisions.

Software systems growth, in lines of code, over time is a commonly quoted metric; rea-
sons for growth include improvements to existing functionality and the addition of new
functionality. Some systems grow at a consistent rate over many years (e.g., for FreeBSD
see fig 11.2, and for the Linux kernel see fig 11.7), while others appear to have stopped
adding lines (e.g., the glibc library, see fig 11.52), or grow sporadically, e.g., the Groovy
compiler, see fig 11.9.

Growth can increase interdependencies between components; figure 7.64 shows the rela-
tionship between the separate components of ANTLR over various releases.

Factors influencing the rate of evolution of source code characteristics include:

• customer limited: insufficient customer demand (as measured by willingness to pay) for
it to be economically worthwhile updating existing functionality (to support changes in
the world), or adding new functionality, e.g., new hardware requiring device drivers,

• developer limited: bottlenecks in the development process that restrict the quantity of
change per unit time. For instance, a limited number of people with the necessary
skills, change requests requiring sign-off by a handful of senior managers, or increasing
developer resources required to support a growing system leading to diminishing returns
from adding more developers,

• competition from other applications: source code may cease to evolve because its host,
the application, is out-competed, e.g., customers stop using the application and/or it
looses developer mindshare,

• hardware characteristics: there may be benefits to adapting software to the characteris-
tics of the hardware on which it is used.

In Fortran, common blocks provide a means of specifying how different variables are
overlaid in memory; for several decades common blocks were widely used. As the
amount of memory available on computers grew, and compilers became more sophisti-
cated at optimizing memory allocation, the need to use common decreased.xx

A consistent rate of code growth suggests some degree of consistency in demand for new
updates, and developer resources available to do the work; see fig 11.2.

During the evolution of source code some of the contents of units of code (e.g., files or
functions) may be moved to other units.690 Studies of code evolution that do not take code
migration into account will overestimate the amount of code added and deleted, over time.

Updating existing functionality may result in source code being deleted.

Figure 7.65 shows the percentage of code in 130 releases of Linux that originated in
earlier releases, and fig 4.18 shows code shared between different releases of related BSD
operating systems; fig 11.70 shows the correlation between lines added/deleted for glibc,
fig 9.21 shows a Markov chain for the creation/modification/deletion of files in the Linux
kernel.

xxA common Fortran coding mistake was to assign to a variable sharing the same memory location as
another variable, and later to access the other variable believing it contained what was earlier assigned to it, i.e.,
the lifetimes of variables stored in the same memory location overlapped.

7.4. EVOLUTION OF SOURCE CODE 211

Linux version

1.2.0

2.2.20

2.6.18.3

1.2.0 2.2.20 2.6.18.3

0.0 0.2 0.4 0.6 0.8 1.0

Figure 7.65: Fraction of source in 130 releases of Linux
(x-axis) that originates in an earlier release (y-axis). Data
extracted from png file kindly supplied by Matsushita.1155

Github–Local

0 10 20 30 40 50

1

10

100

1000

10000

Modifications

F
un

ct
io

ns

5 10 15 20

1

5

10

50

100

500

1000

5000

Authors

F
un

ct
io

ns

Figure 7.66: Number of functions in Evolution modified
a given number of times (upper), and modified by a given
number of different people (lower); red line is a fitted bi-
exponential, green/blue lines are the individual exponen-
tials. Data from Robles et al.1595 Github–Local

7.4.1 Function/method modification

The likelihood of modifying existing code is an essential input to the cost/benefit anal-
ysis carried out prior to making any investment intended to reduce the cost of future
modifications. The expected lifespan of the system containing the code is a higher level
consideration discussed in section 4.2.2.

A new function/method definition is about to be written, and it is believed that at some
future time it may need to be modified. If an investment, I, in extra work is made today
to receive the benefit, B, for each of the Mt future modifications: like all investments, the
expected benefit is required to be greater than the investment, e.g., I < MtB.

Let s be the likelihood that a function is modified in the future, and that once modified
the likelihood of it being modified again remains unchanged; the expected number of
modifications of a given function is then: Mt = s+2s2 +3s3 + · · ·+nsn, where: n is the
maximum number of modifications of a function; this series sums to:

Mt =
s− (n+1)sn+1 +nsn+2

(1− s)2

substituting and rearranging the cost/benefit equation, and assuming (n+ 1)sn+1 is very
small, gives:

(1− s)2

s
<

B
I

What range of values might s have in practice? A study by Robles, Herraiz, German and
Izquierdo-Cortázar1595 analysed the change history of functions in Evolution (114,485
changes to functions over 10 years), and Apache (14,072 changes over 12 years).

Figure 7.66 shows the number of functions (in Evolution) that have been modified a given
number of times (upper), and the number of functions modified by a given number of
different authors (lower). A bi-exponential model provides a reasonable fit to both sets
of data. One interpretation of this bi-exponential model is that many functions are mod-
ified by the same developer (or core team members) during initial implementation (see
figure 7.68), with fewer functions modified after initial development (with non-core de-
velopers more likely to be involved).

The previous analysis assumes s is constant (i.e., the data is fitted by one exponential),
but figure 7.66 is fitted using a bi-exponential (which has a non-constant s). The mean

half-life of the bi-exponential: ae−λ1x + be−λ2x, is: τmean =
aτ2

1 +bτ2
2

aτ1 +bτ2
, where: τ1 = 1

λ1

and τ2 =
1

λ2
.

Using τmean gives, for Evolution: s = 0.64, and 0.56 < B
I . While using the post initial

development exponential, gives: s = 0.85, and 47×0.025 = 1.2 < B
I (the original invest-

ment was made in 47 times as many functions/methods as fitted by this exponential); see
Github–evolution/author-mod-func.R.

For Apache, the mean τmean gives: s = 0.81, and 0.046 < B
I , and post initial development

is: s = 0.95, and 96×0.0032 = 0.3 < B
I .

This model does not take into account any benefits received if developers read the code
without modifying it.

Figure 7.67 shows the number of modifications of a function, stratified by number of
authors. The form of the following equation was found by trial and error, it fits the data
reasonably well: log(num_authors)0.2(α +βnum_mods0.3)+ γnum_mods0.3, where: α ,
β and γ are fitted constants.

212 7. Source code

2 4 6 8 10 12 14

1

10

100

1000

10000

Modifications

F
un

ct
io

ns

1 author
2 authors
3 authors
4 authors
5 authors

Figure 7.67: Number of functions (in Evolution) modified
a given number of times, broken down by number of au-
thors; lines are a fitted regression model. Data from Rob-
les et al.1595 Github–Local

1

100

10000

Hours

F
un

ct
io

n
m

od
ifi

ca
tio

ns
 (

de
ns

ity
 *

 1
0^

6)

1 3 7 55 403 2981 59874

Evolution
Apache

Figure 7.68: Density plot of the time interval, in hours,
between each modification of the functions in Evolution
and Apache. Data from Robles et al.1595 Github–Local

1 5 10 50 500

1e+01

1e+03

1e+05

1e+07

UFO reports

V
iru

s
in

fe
ct

io
ns

 r
ep

or
te

d

Figure 8.1: Number of virus infections and UFO sight-
ing, reported in 3,072 U.S. counties during 2010; the line
is a fitted regression model of the form: virus_reports ∝

UFO_reports1.2. Data from Jacobs et al.908 Github–Local

●●

●
●●
●
●

●
●

●●

●●●
●●
●

●

●

●●

●

●
●●

●
●

●
●●
●
●
●●●
●
●●
●

●

●
●●
●●

●

●
●●

●
●
●●
●
●●

●●●

●
●

●●
●
●●
●
●●●
●●
●●
●
●
●●
●
●
●

●●

●●●●●●
●

●

●

●

●
●
●

●
●
●

●

●●
●●
●●●●
●●●
●
●
●

●

●●
●●
●●●●
●
●
●●●

●

●
●
●
●●
●●
●
●●
●●
●
●

●●
●
●●●
●●●

●

●●●●
●●
●
●●
●●

●

●●●
●
●
●
●

●
●

●

●

●
●
●
●

●
●
●
●

●

●
●●

●

●

●
●
●
●
●●●

●

●●●
●
●●
●●

●
●●
●●●
●

●
●
●●

●
●

●

●●●●●●
●

●

●●

●

●●
●●
●

●●
●

●

●

●
●●●
●●●
●
●●

●
●

●

●●

●●

●
●

●

●
●

●●
●

●●

●
●
●●
●

●
●●●●
●
●
●●
●

●
●
●●

●

●●
●
●●

●
●
●
●●

●●
●

●
●
●
●
●●

●●●

●

●●

●
●●●●●

●

●
●

●●●●●●●●

●
●●
●●
●

●
●●●●●●

●●●

●

●●

●
●●●●●

●●●
●

●
●
●

●

●
●●
●●●●
●
●
●
●●

●
●●●
●●
●●●●●

●
●
●
●
●
●
●●●●
●
●

●

●

●
●●●

●

●●
●●●
●

●

●
●

●
●
●
●
●
●
●

●

●●

●●

●

●●

●
●

●
●

●
●●●●●●

●●
●

●●●
●
●

●
●●
●●

●

●

●
●
●●
●
●

●
●

●
●●●●

●

●
●
●

●●
●
●●●●
●

●●
●●●●●

●●●●

●●
●●●●
●●●
●

●

●●
●●

●●
●

●
●

●
●
●
●
●
●
●
●
●●
●
●●
●

●
●●
●

●●

●●●

●

●
●
●
●●●●●

●

●
●●
●

●

●
●●

●

●●
●●
●
●

●
●●●●●

●

●
●●●
●
●
●
●
●
●●
●

●

●
●

●●
●
●
●
●
●
●
●

●
●

●

●

●

●●
●

●●
●

●
●
●

●

●
●
●

●

●

●●●●●●●

●
●
●●●
●●●●

●

●●
●●

●

●

●

●

●
●

●●
●

●●
●●●●
●
●

●
●

●
●

●
●
●
●
●
●●

●

●●
●
●●●
●●●
●

●
●

●●●●
●
●
●●●
●●

●
●●
●●●

●
●
●●●
●
●●●
●
●

●
●●
●●
●
●
●●●
●

●
●

●

●
●

●●
●

●

●

●●●
●●●

●

●

●

●
●●
●●
●

●
●

●

●

●
●●

●
●
●●●
●

●●
●
●●

●

●●●●●●●
●
●

●
●

●●

●
●●●
●
●

●

●●
●●

●

●

●

●

●
●●

●

●

●

●●●

●

●

●
●

●●●●
●●
●●●
●
●●
●

●

●
●
●

●

●●●●●
●
●

●

●
●
●

●

●●
●●●●●●

●
●●●●
●

●

●

●●
●●
●

●●

●

●●
●
●●
●

●
●

●
●●●●
●

●

●●

●

●
●

●

●
●
●
●●●●
●

●

●●●
●

●

●

●
●
●
●●
●●

●

●

●●
●●

●●●●●
●●
●
●

●
●

●●●
●
●
●

●

●●
●
●
●

●

●
●●●

●
●●●●

●
●

●●
●
●
●
●

●
●

●

●
●
●
●●

●
●

●

●
●
●●
●
●●

●

●●
●
●

●
●

●●
●●
●

●

●●
●●
●
●
●
●
●●
●●●
●●●●●

●

●
●
●
●●●●●

●

●
●●
●

●●

●

●
●

●
●

●●
●●
●

●

●

●
●●
●
●●

●
●
●●●●●●

●●
●●
●●

●●

●
●●
●
●●●●●●

●

●

●
●
●

●
●●

●●●
●●●

●

●
●
●

●

●
●
●●

●

●●

●
●
●
●●●●
●●
●●

●

●
●
●

●
●●●
●●
●●
●●
●

●●●●
●
●
●●
●●●
●
●
●
●

●

●●●

●
●●●
●
●
●
●
●
●●●

●
●
●●
●
●●
●●
●●●
●

●●
●
●
●●
●●●

●

●●●●
●●
●●
●

●

●●●●
●

●●●

●

●●●
●
●●
●
●●
●

●●
●●
●●●

●
●●●●●

●

●●

●

●●
●
●●

●

●
●
●●●●
●
●●

●

●
●
●●

●

●●
●●

●
●
●
●
●●

●

●
●

●●
●
●●●●
●
●

●
●

●
●

●●●●●●
●●●
●

●
●
●●
●●
●
●
●

●

●
●●
●

●●●
●

●●
●●

●

●
●
●
●●

●
●
●
●
●
●●
●
●

●

●

●
●
●
●

●

●
●●

●
●
●
●
●

●

●

●

●●
●●●

●

●
●
●

●
●

●
●●
●●
●
●●
●●●
●
●
●
●●●

●●

●

●
●●
●
●
●
●●
●

●●

●

●

●●●
●

●

●
●

●
●●●

●

●●●

●
●
●●

●●
●●●

●
●

●
●
●
●

●●
●

●

●

●●●
●●
●●
●

●
●●●●

●●●●●
●●
●
●

●

●●●
●

●●

●●
●

●

●●
●
●
●●
●
●
●
●
●
●
●

●

●
●●●

●
●●●●●

●
●
●●●●
●●

●●
●
●

●

●
●
●●
●●
●
●●●●
●
●
●●●●

●

●
●

●

●
●●

●

●●

●

●
●●
●
●
●●
●

●
●●●
●

●
●

●

●●●

●
●●●
●●●

●

●

●
●
●●●
●

●

●
●
●●
●

●

●
●●
●●
●●
●
●●●●
●●
●

●

●
●
●

●●
●

●

●
●

●●
●
●

●●●
●●
●
●●

●●
●●

●
●
●
●
●●
●
●
●
●
●
●
●

●
●●
●

●●
●●

●

●
●

●

●●
●●●
●

●

●

●

●
●
●

●
●●

●

●
●
●
●

●●

●

●
●
●
●●
●●
●●●
●
●●

●
●

●

●
●
●
●
●
●

●●
●
●
●
●●

●

●

●
●
●●

●

●
●●●
●
●●
●

●
●
●

●

●

●
●
●●
●●●●

●

●

●

●
●●

●

●●●
●●

●
●

●●

●
●●●
●

●
●●

●
●

●

●●
●●
●●

●

●●●●
●●●●●

●
●●
●●●
●
●
●
●
●
●
●

●
●●●
●

●

●

●

●

●
●
●
●

●●
●

●
●
●

●

●
●●●

●

●●

●●

●

●

●

●

●●●
●●●
●●●●●

●

●
●
●
●●
●●●●●

●
●

●
●●●
●●●
●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●
●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●
●●●

●
●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●
●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●
●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●
●●

●
●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●●

●
●

●

●

●

●
●

●

●●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●
●
●

●●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●

●●●
●●
●
●●●●●

●
●
●●●●
●●●●●●●●●●

●
●●
●●●●●

●
●
●
●
●
●●
●●●●

●

●●●
●
●

●●
●
●●●
●
●●

●
●●●●●●

●
●●●●

●
●
●
●●●●●

●●
●●
●●
●●●
●
●
●●●●
●

●
●●●●●

●
●
●
●●
●●●●
●●●
●

●

●●●

●●

●

●●●●●●

●

●●
●●
●●●●●●●

●
●●●
●
●

●

●

●●●

●
●

●

●

●

●
●●●
●●
●●

●

●●
●
●
●●●●
●

●
●
●
●●●
●
●
●●

●
●

●

●

●

●
●●
●●●
●
●●
●●

●
●●
●

●

●●

●
●●●●
●●●●●

●●
●
●

●●
●●
●●

●
●●
●●
●
●

●
●●

●

●

●

●
●●●

●
●
●

●●
●

●
●●
●
●
●
●

●
●

●

●

●
●

●●●●
●
●

●

●●●

●●
●
●●●

●

●●
●
●●

●

●●●
●●

●

●●
●●
●
●

●

●

●
●
●

●

●●●

●
●
●

●

●

●
●
●●●

●

●
●●
●
●
●

●

●
●

●
●

●●●
●
●
●●

●
●●
●

●

●

●
●
●

●

●●

●

●

●

●

●
●
●

●

●

●●

●

●
●●
●
●

●
●●●

●
●
●
●●
●
●

●

●
●●
●
●

●

●
●

●
●

●

●

●

●
●
●

●●

●●

●

●
●●

●

●

●

●

●

●●●

●

●
●
●
●

●
●

●●
●

●●

●
●
●

●

●
●●

●
●
●●

●

●●

●
●
●●
●
●
●
●

●

●

●
●
●●
●●●

●

●

●
●

●
●

●●
●●
●
●

●
●
●

●

●

●
●

●●
●

●

●
●

●●

●●

●

●

●

●
●
●

●
●
●
●

●

●

●

●

●

●
●

●
●

●●●

●
●

●

●●

●

●

●●

●
●

●

●

●
●●
●●●●

●
●
●
●●●
●

●
●●

●

●

●

●

●
●●

●

●●

●

●

●

●

●●

●
●
●●
●

●●

●

●

●●

●●
●

●

●●●

●

●

●
●●
●

●
●
●●
●
●
●

●

●
●●
●
●
●

●

●

●

●

●●

●

●

●

●
●
●
●

●

●

●

●

●

●

●
●
●
●●

●

●

●

●●

●●●●
●

●●
●

●

●

●
●

●

●
●
●

●

●

●

●

●

●
●
●
●

●

●

●
●

●

●

●

●
●●

●
●

●

●

●●●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●
●●

●

●●●●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●●

●
●●

●

●●●●

●●

●

●●
●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●●●

●
●
●
●

●

●●

●●●
●●

●

●●

●

●
●●

●

●

●

●●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●●
●

●●
●
●●

●●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●●
●
●

●

●

●

●

●

●

●●

●

●
●

●
●
●

●

●

●

●

●
●

●●

●

●●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●●

●
●●

●

●

●
●

●●

●●

●

●●

●●●

●

●
●

●

●

●
●

●●●

●●

●

●●

●
●●
●

●

●

●

●

●

●

●●●
●

●

●

●

●●

●

●

●
●

●

●●
●
●
●

●

●

●

●

●
●

●

●
●●

●●
●

●

●

●●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●
●
●●

●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●●●
●
●
●●

●

●

●
●

●

●

●●

●

●

●

●

●
●●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●●
●●
●

●

●

●

●
●

●
●
●
●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●
●
●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●●
●●●

●

●

●

●

●

●

●

●

●

●
●
●

●
●●
●

●

●●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●
●
●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●
●

●

●
●
●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●
●

●●
●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●
●

●
●
●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●●

●

●

●

●●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●
●

●

●

●
●
●

●
●

●

●

●
●
●
●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●

●

●

●

●
●

●

●

●
●

●

●

●●

●
●

●
●

●●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●
●●

●

●●

●

●

●●
●
●

●●
●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●
●
●
●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●
●●
●●●●●●●●●●

●●
●●●●●●●●●

●●●●●●●●●●
●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●
●●●●●

●●●●●●●
●●
●●●●
●
●●●●●●

●●●●●●●●●●●●●
●
●●
●●●●●

●●●
●●●●
●●●●●

●●●●
●●
●
●●●●●●●

●
●●●●
●
●
●
●●●●
●
●●●●●●●●

●●●●●●●●
●
●●
●●●●●●

●●
●
●●●●●●

●●●
●●●●●●●●

●
●
●●●●●●

●●
●
●
●
●●●
●●●●●

●●●●●
●●●●●●

●
●

●
●●●
●

●
●
●
●
●
●●●●●

●●●●●●●●●●●●
●●●●●

●●
●
●
●●●
●
●
●●
●
●
●
●
●●
●●●●
●●●●●●●●●●●●●

●●
●●●
●●
●●●●
●
●●●●●

●
●

●
●●●●●

●●●
●●
●
●

●
●

●●

●
●
●●
●●●●●●

●
●
●●
●●
●
●
●
●●●
●●

●
●●●●
●●●
●●
●●●●
●●

●
●●●●
●
●
●●
●
●
●●●●●

●

●●
●

●
●●
●●●●●●●●●

●●●●●
●●●
●
●●●
●●
●
●
●●●
●
●●●●●

●
●●●●
●
●●●●

●●
●●●
●
●●●●●

●

●●
●
●
●●●●
●

●
●●
●●
●●
●

●●

●
●●●●
●

●
●●
●
●●

●

●

●
●
●●●●●●●

●
●●
●●●

●●
●
●

●

●
●
●
●
●●
●
●●
●
●●●
●

●●●
●
●●
●●●
●●●
●

●

●
●●
●
●●●●
●
●
●●

●
●
●●●
●●●

●

●
●

●
●
●●●●
●

●
●
●
●
●
●

●●●
●●
●●
●
●●
●●●
●
●●●●●

●●●
●
●●●
●●
●
●
●
●●
●●
●●●
●●●
●

●●

●
●
●
●
●●
●●

●

●
●●
●

●

●
●●●
●

●
●●
●
●

●
●

●
●●
●
●●
●
●
●
●●

●
●
●●●●
●

●●

●
●
●
●●●●

●

●
●
●●●●
●
●
●●
●●
●
●●●
●
●
●●●

●

●
●
●
●●
●
●
●●

●
●
●●●

●

●●●
●
●
●
●

●●●●●
●
●●
●●●
●●●●●●●

●

●

●
●●●●
●
●●
●
●●
●

●

●

●

●
●
●●●●●●

●
●
●●●●●●●

●●

●

●
●●

●

●

●●
●
●
●
●●
●●●

●●
●●●●
●●

●

●

●
●●●
●

●●

●●
●
●●●●
●●

●
●
●

●
●
●
●
●
●
●
●●●
●
●

●
●●
●
●
●
●
●

●
●
●●
●●
●
●

●
●
●
●
●●●

●●

●

●

●

●

●

●
●●●●●●

●
●

●●●
●●●
●
●
●

●●
●●
●
●●

●

●
●●●
●●

●

●

●

●●

●
●●●
●

●
●
●

●●●●
●●
●
●

●
●
●

●

●

●
●●
●
●

●
●
●●

●
●●

●

●
●
●●

●
●
●
●
●

●
●
●●●
●
●●

●

●

●

●

●

●
●

●
●

●

●●●●

●
●

●
●
●
●

●
●
●
●

●●

●

●

●●●

●

●●
●●
●

●

●
●●●

●
●

●

●●●

●●

●
●
●
●
●
●●
●

●
●
●●
●
●
●
●
●●

●●

●
●

●
●
●●
●
●
●

●

●

●●
●
●●
●●

●●
●
●

●
●●
●
●●
●●
●
●
●●
●
●

●●●
●●●
●●
●●
●

●

●●●
●

●●
●
●
●
●●
●
●
●
●
●

●●
●●
●

●●

●●

●
●
●
●●

●●
●●●
●●

●●
●●●

●
●

●

●
●
●

●●●●
●
●

●

●
●●●

●
●

●

●
●●

●

●●
●
●

●●

●
●
●

●●●

●●
●
●

●

●
●

●

●

●●
●
●●
●●

●

●●
●

●

●●
●

●
●

●●

●
●
●
●
●

●
●

●

●●●

●

●
●●
●
●
●
●
●

●

●
●
●

●

●

●

●
●●
●

●
●
●●●
●

●
●●
●

●

●●
●
●

●
●●
●

●

●

●
●
●●
●●
●

●

●●

●●
●

●
●
●

●

●

●
●

●
●●
●●

●●
●

●

●●

●●●
●●
●
●

●●●

●

●
●

●

●

●

●

●
●●
●●
●

●

●●
●

●

●●
●●
●

●●
●
●

●

●●

●

●
●

●●

●●
●
●

●

●

●
●
●●

●

●
●

●

●
●

●●
●
●●

●
●●●●●●

●

●

●

●

●
●
●

●●
●

●

●
●
●

●

●
●●●

●

●
●●
●●●

●

●
●

●
●

●

●●

●
●
●
●

●

●
●
●

●

●
●

●

●
●
●

●
●
●●
●

●●●●
●

●●

●
●

●
●

●

●

●

●
●
●

●

●

●

●●

●
●●●

●

●

●

●●

●
●

●

●

●

●●

●

●

●
●

●●

●

●

●●
●

●

●

●●

●
●
●●●

●

●
●

●

●
●●
●
●

●

●

●
●

●

●

●

●

●
●

●
●
●

●●●

●●

●
●

●

●
●
●

●

●●●
●
●
●
●

●
●

●

●

●

●

●
●●
●

●

●
●

●

●●●
●

●●
●
●

●
●
●
●

●

●

●

●
●
●●●
●●
●

●

●●

●

●

●
●

●

●
●
●

●

●

●

●
●

●

●●
●●●

●

●
●

●

●

●●●●

●

●●
●●

●

●
●
●

●

●

●●
●●●
●

●
●●
●

●

●

●

●

●

●●
●
●

●●●

●●
●

●
●
●
●
●
●
●

●●

●

●

●

●

●
●
●●
●
●

●●
●
●

●

●
●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●●
●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

● ●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

● ●

●

●
●

●

●

●

●●

●

●●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

● ●

●
●

●

●●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●
●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

● ●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●●
●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●
●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●

● ●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 8.2: Data having values following various visual
patterns, when plotted. Github–Local

Chapter 8

Stories told by data

8.1 Introduction

Data analysis is the process of finding patterns in data and weaving a story around these
patterns.

Finding patterns in data is easy, weaving a believable narrative around them can be very
difficult. Figure 8.1 may be interpreted as evidence for a causal connection between UFO
activity and computer virus infections. Domain knowledge (e.g., personal experience of
reporting problems and events) might lead us to believe that these reports were made
by people, and an alternative interpretation is that U.S. counties with larger populations
experienced and reported more virus infections and UFO sightings, compared to counties
having smaller populations.

An understanding of common patterns found in data is the starting point for an apprecia-
tion of the kinds of stories that these patterns might be used to substantiate. This chapter
starts with an overview of techniques that may be used to uncover patterns in data, before
moving on to discussing the communication of these patterns to others. Those performing
the analysis are responsible for weaving a story around the patterns found; the figures, and
numeric values provide props that may be used to conjure a convincing narrative.

The patterns sought have the form of a relationship between two or more measured quan-
tities. Managers want to control software development, and to do this they need under-
standing of the processes that are driving it. Regression modeling is this book’s default
technique for modeling the relationships between the quantities that have been measured;
see chapter 11.

Ideally you, the data analyst, have:

• sufficient domain knowledge to be able to distinguish between spurious correlations that
may be present in the data, and correlations connected to the processes that generated
the data,

• practical ideas relating to the questions for which answers are sought, in practice there
may be a lot of uncertainty about what the questions are.

Questions have to have answers that can be used to make predictions about expected
patterns of behavior in the data (which can be searched for).

If a question does not have an associated answer that has a predictable, detectable,
pattern of behavior, then 42 is as good an answer as any other,

• the time and resources needed to obtain data likely to contain answers to the questions
asked; obtaining data is often time-consuming and/or expensive and it is often necessary
to make do with whatever data is cheaply and quickly available (even if it only indirectly
relate to the questions being asked). This book generally assumes that a dataset has been
obtained, some of the issues around obtaining data are discussed in chapter 13.

The data should contain as little noise, in practice the available data may be very noisey
and cleaning may be very time-consuming,

• the ability to deal effectively with uncertainty, and an awareness of personal cognitive
biases,823

213

214 8. Stories told by data

Java Perl PHP

5

10

15

20

language

Ye
ar

s
ex

pe
rie

nc
e

Figure 8.3: Years of professional experience in a
given language for experimental subjects. Data from
Prechelt.1523 Github–Local

• statistical analysis techniques capable of providing answers to the desired level of cer-
tainty; in practice it may not be possible to draw any meaningful conclusions from the
data or more questions will be uncovered.

Data analysis is like programming, in that people get better with practice; there are a few
basic techniques that can be used to solve many problems and doing what you did on a
previous successful project can save lots of time.

This, and subsequent chapters explicitly discuss the R code that was used (previous chap-
ters discuss the results of data analysis, not how the analysis was done).

There is no guarantee that the available data contains any information that might be used
to answer any of the questions being asked of it.

Considerations used to evaluate possible interpretations of patterns found in data include:
model simplicity, consistency with existing models of how things are believed to work,
and how well a model fits the available data. If the data does not contain population
information (and it cannot be easily obtained), the extent to which this alternative inter-
pretation is consistent with the report data can be checked. Without appropriate data,
alternative interpretation is based on the analysts model of the world from which the data
was obtained.

At a bare minimum, the story told by an analysis of data needs to meet the guidelines for
truthfulness in advertising that is specified by the national advertising standards’ authority.
If manufacturers of soap powder have to meet these requirements, when communicating
with the public, then so should you.

Check assumptions derived from visualizations Assumptions suggested by a visualiza-
tion of data need to be checked statistically. For instance, Figure 8.3 shows professional
software development experience, in years, of subjects taking part in an experiment using
a particular language. The visual appearance suggests that as a group, the PHP subjects
are more experienced than the Java subjects. However, a permutation test, comparing
years of experience for the PHP and Java developers, shows that the difference in mean
values is not significant (there are only nine subjects in each group, and the variation in ex-
perience is within the bounds of chance; see Github–communicating/postmortem-answers.R).

8.2 Finding patterns in data

When a specific pattern is expected, the data can be checked to see whether it contains
this pattern. Otherwise, the search for patterns is essentially a fishing expedition.

Figure 8.2 shows some common and less common patterns seen in data. The left column
shows data forming lines of various shapes; a straight line is perhaps the most commonly
encountered pattern in data and points may all be close to the line or form a band of
varying width. The right column shows data clustering together in various regular shapes.
Uncovering a pattern is the next step along the path to understanding the processes that
generated the sample measurements.

Vision is the primary pattern detection pathway used in this book. Animals have de-
veloped sophisticated visual pattern detection and recognition systems (see section 2.3);
number processing is a very new ability, and as such is relatively slow and unsophisti-
cated.

Compelling numbers. For small quantities of numeric data, the pattern present in the
printed form of the values may be the most compelling visual representation. For instance,
relative spacing is sometimes used within the visible form of expressions to highlight the
relative precedence of binary operators (e.g., more whitespace around the addition oper-
ator when it appears adjacent to a multiplication, as in: 5 + 2*3). Table 8.1 shows that
when relative spacing is used, it nearly always occurs in a form that where the opera-
tor with higher precedence has closer proximity to its operands (relative to the operator
having a lower precedence). The number of cases where the reverse occurs is small, sug-
gesting that either the developer who wrote the code did not know the correct relative
precedence or there is a fault in the code.

A study by Landy and Goldstone1080 found that subjects were more likely to give the
correct answer (and answer more quickly) to simple arithmetic expressions, containing
two binary operators, when there was greater visual proximity between the operands that
were separated by the binary operator having the higher precedence.

8.2. FINDING PATTERNS IN DATA 215

Total High-Low Same Low-High
no-space 34,866 2,923 29,579 2,364
space no-space 4,132 90 393 3,649
space space 31,375 11,480 11,162 8,733
no-space space 2,659 2,136 405 118
total 73,032 16,629 41,539 14,864

Table 8.1: Number of expressions containing two binary operators having the specified spacing in the visible source (i.e., no spacing, no-space, or one or more whitespace
characters {excluding newline}, space) between a binary operator and both of its operands. The High-Low column lists counts for expressions where the first operator of
the pair has the higher precedence (some are expressions where the both operators of the pair have the same precedence), the Low-High column lists counts for expressions
where the first operator of the pair has the lower precedence. For instance, x + y*z is space no-space because there are one or more space characters either side of the
addition operator and no-space either side of the multiplication operator, the precedence order is Low-High. Data from Jones.930

0 50 100 150 200 250
1

100

10000

Characters on line

Li
ne

s
.c files
.h files

0 20 40 60 80 100
1e+00

1e+02

1e+04

1e+06

Tokens on line

Li
ne

s

.c files

.h files

Figure 8.4: Total number of lines of C source, in .c and .h
files, having a given length, i.e., containing a given num-
ber of characters (upper) and tokens (lower). Data from
Jones.930 Github–Local

8.2.1 Initial data exploration

Initial data exploration starts with the messy issue of how the data is formatted (lines
containing a fixed number of delimited values is the ideal form, because many tools accept
this as input; if a database is provided it may be worth extracting the required data into
this form).

A programmer’s text editor is as good a tool as any for an initial look at data, unless the
filename suggests it is a known binary format, e.g., spreadsheet or database. For data held
in spreadsheets exporting the required values to a csv file is often the simplest solution.

This initial look at the data will reveal some basic characteristics, such as: number of
measurement points (often the number of lines) and number of attributes measured (often
the number of columns), along with the kind of attributes recorded, e.g., date, time, lines
of code, language, cost estimated, email addresses, etc.

The most important reason for viewing the file with an editor, first, is to identify the
character used to delimit columns.

A call to read.csv reads the entire contents of a text file into a data frame (what R calls a
structure or record type). The file is assumed to contain rows of delimited values (there is
an option to change the default delimiter); spurious characters or missing column entries
can cause subsequent values to appear in the incorrect column (chapter 14 provides some
suggestions for finding and correcting problems such as this). The foreign package
contains functions for reading data stored in a variety of proprietary binary forms.

Having read the file into a variable, the following functions are useful for forming an
initial opinion of the characteristics of the data that has been read (unless the dataset is
small enough to be displayed on a screen in its entirety):

• str returns information about its argument, e.g., the number of rows and columns,
along with the names, types and first few values of each column in a data frame,

• head and tail print six rows from the start/end of their argument respectively,

• table prints a count of the number of occurrences of each value in its argument, e.g., a
particular column of a data.frame (by default NAs are not included). The cut function
can be used to divide the range of its argument into intervals, and return the bounds of
the intervals and the corresponding counts in each interval.

If str reports a column having an unexpected type (e.g., chr rather than int), the likely
causes are missing values and spurious characters in the data.

When one or two columns are of specific interest, plot can be used to quickly visualize
the specific values of interest. Chapter 14 discusses techniques for cleaning data.

Figure 8.4, upper plot, shows a very noticeable change in the number of occurrences, in
C source files, of lines having a given length, i.e., number of characters on a line. What
might cause this pattern to occur?

The change occurs at around the maximum line length commonly supported by non-
GUI, non-flat screen, terminals (these measurements are of C source that is over 10 years
old, i.e., before flat screen monitors became available). One hypothesis is that a system
limit has a significant impact on the usage characteristics. A prediction derived from
this hypothesis is that code written by developers using terminals that supported more
characters per line would contain a greater number of longer lines, i.e., the downturn in
the plot would move to the right.

216 8. Stories told by data

CFP

0

500

1000

1500

2000

10 20
0

500

1000

1500

2000

2500

0 1000 2000

Haskell

Abstract

0 500 1500

0 1000 2500

10

15

20

25

0

500

1000

1500

C

Figure 8.5: Various measurements of work performed
implementing the same functionality, number of lines of
Haskell and C implementing functionality, CFP (COSMIC
function points; based on user manual) and length of for-
mal specification. Data kindly provided by Staples.1762

Github–Local

design

6

7

8

9

10

6 7 8 9 10

5

6

7

8

9

6 7 8 9

coding

testing

6 7 8 9

5 6 7 8 9

6

7

8

9

10

6

7

8

9

10

other

Figure 8.6: Effort, in hours (log scale), spent in various
development phases of projects written in Ada (blue) and
Fortran (red). Data from Waligora et al.1917 Github–Local

e n

duration.min

20
40
60
80 e= 0.72

n= 0.16

e= 0.9
n= 0.17

0.5

1.5

2.5

3.5
e= 0.17
n= −0.02

e= −0.45
n= −0.27

150 350

84
86
88
90
92

e= −0.68
n= −0.37

20 60

e n

changes

e= 0.86
n= 0.92

e= 0.13
n= −0.69

e= −0.07
n= −0.01

e= −0.15
n= −0.08

e n

TDD

e= 0.33
n= −0.78

e= −0.14
n= 0.12

0 40

e= −0.36
n= 0.05

0.5 2.0 3.5

e n

log(development.cycle.length)

e= −0.03
n= −0.4

e= 0.03
n= −0.36

e n

line.coverage

84 90

e= 0.91
n= 0.99

84 90

150

250

350

0

20

40

60

84
86
88
90
92

e n

block.coverage

Figure 8.7: Performance of experts (e) and novices (n) in
a test driven development experiment. Data from Muller
et al.1326 Github–Local

Figure 8.4, lower plot, illustrates that a different representation of the same information
may not have any immediately obvious visual pattern. This plot is a count of the number
of tokens per line. Knowing that average token length is around 3-4 characters, suggests
that the slight change in the downward slope of the data points just visible at around 25
tokens corresponds to the more dramatic dip seen in the characters-per-line plot.

When a data set contains many variables, plotting one pair of variables at a time is an
inefficient use of time. The plot, when given a data frame containing three or more
columns, creates nested plots of every pair of columns. Figure 8.5 shows four sets of
measurements relating to the same task; some measurement pairs are in a roughly linear
relationship, while no obvious visual pattern is apparent for other pairs.

work=read.csv(paste0(ESEUR_dir, "communicating/pub-fs-fp.csv.xz"), as.is=TRUE)
-1 removes the first column
plot(work[, -1], col=point_col, cex.labels=2.0)

A list of columns can be specified using the formula notation; the following code has the
same effect as the previous example:

plot(~ CFP+Haskell+Abstract+C, data=work[, -1], col=point_col, cex.labels=2.0)

If a more tailored visualization of pairs of columns is required, the pairs function sup-
ports a variety of options. For instance, separating out and highlighting subsets of a sam-
ple (known as stratifying) can be used to highlight differences and similarities. Figure 8.6
separates out measurements of Ada and Fortran projects. The lines are from fitting the
points using loess, a regression modeling technique; see below and section 11.2.5.

panel.language=function(x, y, language)
{

fit_language=function(lang_index, col_str)
{
points(x[lang_index], y[lang_index], col=pal_col[col_str])
lines(loess.smooth(x[lang_index], y[lang_index], span=0.7), col=pal_col[col_str])
}

fit_language(language == "Ada", 2)
fit_language(language != "Ada", 1)
}

rows 28 and 30 are zero, and we only want columns 16:19
pairs(log(nasa[-c(28, 30) , 16:19]), cex.labels=2.0,

panel=panel.language, language=nasa$language)

The default behavior of pairs produces a plot containing redundant information; it is pos-
sible to display different information in the upper and lower halves of the plot, and along
the diagonal. Figure 8.7 shows expert and novice performance (time taken to complete
various tasks and final test coverage) in a test driven development task, with a boxplot
along the diagonal and correlation between each pair of attributes, for the two kinds of
subjects, in the lower half of the plot. This plot, which primarily uses the default values
for its visual appearance, needs more work before being presented to customers.

panel_user=function(x, y, user)
{
expert=(user == "e")
points(x[expert], y[expert], col=pal_col[1])
points(x[!expert], y[!expert], col=pal_col[2])
}

panel_correlation=function(x, y, user)
{
expert=(user == "e")
r_ex=cor(x[expert], y[expert])
r_nov=cor(x[!expert], y[!expert])
txt = paste0("e= ", round(r_ex, 2), "\n", "n= ", round(r_nov, 2))
text(0.0, 0.5, txt, pos=4, cex=1.6)
}

panel_boxplot=function(x, user)
{

8.2. FINDING PATTERNS IN DATA 217

lifetime_minutes

1.00mergetime_minutes

0.29 0.29num_commits

0.47 0.47 0.57src_churn

0.08 0.08 0.17 0.15test_churn

0.47 0.47 0.32 0.54 0.12files_added

0.08 0.08 0.19 0.17 0.33 0.19files_deleted

−0.21−0.210.36−0.020.23−0.480.13files_modified

0.22 0.22 0.68 0.50 0.26 0.40 0.26 0.54files_changed

0.11 0.11 0.54 0.43 0.30 0.19 0.28 0.58 0.82src_files

0.09 0.09 0.16 0.10 0.30 0.12 0.35 0.20 0.23 0.20doc_files

0.09 0.09 0.15 0.09 0.25 0.17 0.36 0.16 0.26 0.17 0.34other_files

0.25 0.25 0.39 0.33 0.06 0.20−0.000.02 0.21 0.08 0.04 0.03num_commit_comments

0.55 0.55 0.35 0.41 0.11 0.27 0.05−0.010.24 0.15 0.08 0.10 0.29num_issue_comments

0.56 0.56 0.39 0.45 0.11 0.29 0.05−0.010.26 0.15 0.09 0.10 0.46 0.97num_comments

0.53 0.53 0.35 0.42 0.10 0.29 0.05−0.030.24 0.15 0.08 0.10 0.39 0.84 0.86num_participants

−0.25−0.250.06−0.10−0.01−0.20−0.060.13−0.04−0.05−0.04−0.040.20−0.11−0.07−0.21sloc

−0.23−0.230.02−0.11−0.02−0.21−0.060.13−0.06−0.04−0.05−0.040.13−0.12−0.09−0.200.70team_size

0.21 0.21 0.01 0.12 0.00 0.18 0.06−0.110.05 0.03 0.05 0.05−0.040.15 0.13 0.22−0.44−0.73perc_external_contribs

0.07 0.07 0.21 0.17 0.29 0.12 0.34 0.23 0.24 0.28 0.34 0.29 0.06 0.08 0.09 0.08−0.00−0.020.04commits_on_files_touched

−0.25−0.250.09−0.08−0.00−0.17−0.040.13−0.02−0.02−0.03−0.030.19−0.14−0.10−0.210.93 0.65−0.440.01test_lines_per_kloc

−0.25−0.250.10−0.080.00−0.16−0.040.12−0.01−0.02−0.03−0.030.18−0.14−0.10−0.200.90 0.62−0.400.02 0.99test_cases_per_kloc

−0.25−0.250.09−0.08−0.00−0.17−0.040.12−0.02−0.03−0.04−0.040.19−0.13−0.09−0.200.95 0.66−0.450.01 0.99 0.98asserts_per_kloc

−0.28−0.280.02−0.14−0.01−0.22−0.070.13−0.06−0.06−0.05−0.050.16−0.13−0.09−0.210.87 0.64−0.45−0.010.79 0.76 0.81watchers

−0.19−0.19−0.07−0.030.04−0.24−0.030.18−0.020.06−0.020.02−0.05−0.09−0.10−0.150.17 0.19−0.170.04 0.14 0.12 0.14 0.19prev_pullreqs

−0.01−0.010.06 0.07 0.16−0.020.02 0.13 0.12 0.14 0.04 0.11 0.03 0.07 0.07 0.06 0.07 0.03−0.010.21 0.07 0.07 0.08 0.06 0.28requester_succ_rate

−0.10−0.10−0.01−0.030.04−0.06−0.020.06 0.01 0.03−0.010.01−0.00−0.00−0.00−0.010.10 0.05−0.030.01 0.09 0.09 0.10 0.15 0.16 0.11followers

Figure 8.8: Correlations between pairs of attributes of
12,799 Github pull requests to the Homebrew repo, rep-
resented using numeric values and pie charts. Data from
Gousios et al.720 Github–Local

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t

pe
rc

_e
xt

er
na

l_
co

nt
rib

s
nu

m
_c

om
m

it_
co

m
m

en
ts

nu
m

_c
om

m
its

sr
c_

ch
ur

n
fil

es
_a

dd
ed

lif
et

im
e_

m
in

ut
es

m
er

ge
tim

e_
m

in
ut

es
nu

m
_p

ar
tic

ip
an

ts
nu

m
_i

ss
ue

_c
om

m
en

ts
nu

m
_c

om
m

en
ts

fil
es

_m
od

ifi
ed

fil
es

_c
ha

ng
ed

sr
c_

fil
es

fil
es

_d
el

et
ed

ot
he

r_
fil

es
te

st
_c

hu
rn

do
c_

fil
es

co
m

m
its

_o
n_

fil
es

_t
ou

ch
ed

te
am

_s
iz

e
w

at
ch

er
s

sl
oc

as
se

rt
s_

pe
r_

kl
oc

te
st

_l
in

es
_p

er
_k

lo
c

te
st

_c
as

es
_p

er
_k

lo
c

fo
llo

w
er

s
pr

ev
_p

ul
lre

qs
re

qu
es

te
r_

su
cc

_r
at

e

Pull related variables

Figure 8.9: Hierarchical cluster of correlation between
pairs of attributes of 12,799 Github pull requests to
the Homebrew repo. Data from Gousios et al.720

Github–Local

100 200 300 400 500

10

20

30

40

SPECint result

N
um

be
r

of
 c

om
pu

te
rs

Figure 8.10: Number of computers having a given
SPECint result; line is a loess fit. Data from SPEC.1742

Github–Local

t=data.frame(x, user)
boxplot(x ~ user, data=t, notch=TRUE, border=pal_col, add=TRUE)
}

pairs(~ duration.min+changes+TDD+
log(development.cycle.length)+line.coverage+block.coverage,

data=tdd, cex.labels=1.3,
upper.panel=panel_user, lower.panel=panel_correlation,
diag.panel=panel_boxplot, user=tdd$user)

The splom function in the lattice package supports creating more complex pair-wise
plots.

As the number of columns increases, the amount of detail visible in a pairs plot de-
creases. The correlation between pairs of columns can be compactly displayed, and pro-
vides the minimally useful information, i.e., a linear relationship exists.

The corrgram package implements various techniques for displaying correlation infor-
mation. Figure 8.8 shows the correlation between every pair of 27 columns, with correla-
tion used to control the color of each entry. In the upper triangle blue/clockwise denotes
a positive correlation, and red/anti-clockwise a negative one; in the lower triangle the
numeric values are also blue/red colored; looking at the numbers, more reader effort is
needed to locate pairs having a high correlation (coloring reduces the effort).

Having column names appear along the diagonal creates a compact plot; when many
columns are involved this form of display is better suited to situations where the names
follow a regular pattern. The plotcorr function in the ellipse package places column
names around the outside; see Github–communicating/pull-req-cor.R.

library("corrgram")

corrgram(ctab, upper.panel=panel.pie, lower.panel=panel.shade)

Hierarchical clustering is another technique for finding columns that share some degree
of similarity, based on a user supplied distance metric. The hclust function requires the
user to handle the details; the varclus function in the Hmisc package provides a higher
level interface. The following code uses as.dist to map the cross-correlation matrix
returned by cor to a distance, to produce figure 8.9:

library("dendextend") # for coloring effects

Cross correlation
ctab = cor(used, method = "spearman", use="complete.obs")

pull_dist=as.dist((1-ctab)^2)
t=as.dendrogram(hclust(pull_dist), hang=0.2)

col_pull=color_labels(t, k=5)
col_pull=color_branches(col_pull, k=2)
plot(col_pull, main="", sub="", col=point_col, xlab="", ylab="Height\n")
mtext("Pull related variables", side=1, padj=14, cex=0.7)

8.2.2 Guiding the eye through data

It may be difficult to reliably estimate the path of a central line through a collection of
points, in a plot (according to some other goodness of fit criteria; section 11.2.5 contains
a more detailed discussion of fitting a trend line to data). A way to quickly add such
a line to an existing plot is to use the loess.smooth function, with the following code
producing figure 8.10:

plot(res_tab$Var1, res_tab$Freq, col=pal_col[2],
xlab="SPECint result", ylab="Number of computers\n")

lines(loess.smooth(res_tab$Var1, res_tab$Freq, span=0.3), col=pal_col[1])

scatter.smooth(res_tab$Var1, res_tab$Freq, span=0.3, col=point_col,
xlab="SPECint Result", ylab="Number of computers\n")

218 8. Stories told by data

0 5 10 15 20
0

50

100

150

Project definition investment

C
os

t o
ve

rr
un

Figure 8.11: Effort invested in project definition (as per-
centage of original estimate) against cost overrun (as
percentage of original estimate). Data extracted from
Gruhl.750 Github–Local

1980 1990 2000 2010

1

10

100

1000

10000

Date of cpu introduction

R
el

at
iv

e
fr

eq
ue

nc
y

in
cr

ea
se

loess.smooth
smooth.spline
runmed

Figure 8.12: Relative clock frequency of cpus when first
launched (1970 == 1). Data from Danowitz et al.436

Github–Local

1980 1990 2000 2010
10

20

30

40

50

Year started

A
ge

 w
he

n
st

ar
tin

g

0.75 quartile
0.5 quartile
0.25 quartile

Figure 8.13: Year and age at which survey respon-
dents started contributing to FLOSS, i.e., made their
first FLOSS contribution. Data from Robles et al.1596

Github–Local

The scatter.smooth function both plots and draws the loess line (no options are avail-
able to control the color of the line).

Plotting a fitted line is a way of visually showing that expectations of a pattern of behavior
is being followed (or not). Figure 8.11 shows a loess fit (green) to NASA data750 on cost
overruns for various space probes, against effort invested in upfront project definition; the
upward arrow shows the continuing direction of the line seen in the original plot created
by one user of this data (who was promoting a message that less investment is always
bad).

There are a variety of techniques for calculating a smooth line that is visually less noisy
than drawing a line through all the points. Splines are invariably suggested in any discus-
sion of fitting a smooth curve to an arbitrary set of points; the smooth.spline function
will fit splines to a series of points and return the x/y coordinates of the fitted curve.

Splines originated as a method for connecting a sequence of points by a visually attrac-
tive smooth curve, not as a method of fitting a curve that minimises the error in some
measurement. LOESS is a regression modeling technique for fitting a smooth curve that
minimises the error between the points and the fitted curve; the loess.smooth function
fits a loess model to the points and return the x/y coordinates of the fitted curve.

Both splines and loess can be badly behaved when asked to fit points that include ex-
treme outliers, or have regions that are sparsely populated with data. The running median
(e.g., median(x[1:k]), median(x[(1+1):(k+1)]), median(x[(1+2):(k+2)]) and so
on for some k) is a smoothing function that is robust to outliers; the runmed function
calculates the running median of the points and returns these values (the points need to be
in increasing, or decreasing, order).

Figure 8.12 shows the relative clock frequency of cpus introduced between 1971 and
2010; the various lines were produced using the values returned by the smooth.spline,
loess.smooth and runmed functions; see fig 14.4. Don’t be lulled into a false sense
of security by the lines looking very similar, the smoothing parameter provided by each
function was manually selected to produce a visually pleasing fit in each case; the math-
ematics behind the functions can produce curves that look very different, and the choice
of function will depend on the kind of curve required and perhaps be driven by the char-
acteristics of the data.

plot(x_vals, y_vals, log="y", col=point_col,
xlab="Date of cpu introduction", ylab="Relative frequency increase\n")

lines(loess.smooth(x_vals, y_vals, span=0.05), col=pal_col[1])

smooth.spline and runmed don’t handle NAs
t=!is.na(x_vals) ; x_vals=x_vals[t] ; y_vals=y_vals[t]
t=!is.na(y_vals) ; x_vals=x_vals[t] ; y_vals=y_vals[t]

lines(smooth.spline(x_vals, y_vals, spar=0.7), col=pal_col[2])

t=order(x_vals)
lines(x_vals[t], runmed(y_vals[t], k=9), col=pal_col[3])

Lines drawn through a sample of measurements values often follow the path specified by
a central location metric, e.g., the mean value. In more cases it may be more informative
to fit a line such that 25% of measurements are below/above it, or some other percentage;
quantile regression is a popular technique used for fitting such lines. Figure 8.13 is based
on a study1596 of 2,183 replies from a survey of FLOSS developers; two questions being
the year and age at which those responding first contributed to FLOSS.

If you find yourself writing lots of algorithmic R code during initial data exploration,
you are either investing too much effort in one area, or you have found what you are
looking for and have moved past initial exploration. Why are you writing lots of R, there
is probably a package that does most of what you want to do and perhaps even more.

8.2.3 Smoothing data

Measured values sometimes fluctuate widely around a general trend (the data is said to be
noisey). Smoothing the data can make it easier to see any pattern that might be present
in the clutter of measured values. The traditional approach is to divide the range of mea-
surement values into a sequence of fixed width bins and count the number of data points
in each bin; the plotted form of this binning process is known as a histogram.

8.2. FINDING PATTERNS IN DATA 219

SPECint result

N
um

be
r

of
 c

om
pu

te
rs

10 20 30 40 50 60 70

0

200

400

600

800

10 20 30 40 50 60 70

0.005

0.010

0.015

0.020

0.025

0.030

SPECint result

D
en

si
ty

 (
of

 n
um

be
r

of
 c

om
pu

te
rs

)
Figure 8.14: Number of computers with a given SPECint
result, summed within 13 equal width bins (upper)
and kernel density plot (lower). Data from SPEC.1742

Github–Local

1 2 5 10 20 50 100

1

2

5

10

20

50

Lines of code

C
om

m
its

1 2 5 10 20 50 100
0.00

0.01

0.02

0.03

0.04

0.05

0.06

Lines of code

C
om

m
its

 (
de

ns
ity

)

Bug
Maintenance
Performance
Reliability
Feature

Figure 8.15: Number of commits containing a given num-
ber of lines of code made when making various categories
of changes to the Linux filesystem code (upper), and a
density plot of the same data (lower). Data from Lu et
al.1164 Github–Local

Histograms have the advantage of being easy to explain to people who do not have a math-
ematical background and existing widespread usage means that readers are likely to have
encountered them before. Until the general availability of computers, histograms also
had the advantage of keeping the human effort needed to smooth data within reasonable
limits.

Figure 8.14, upper plot, shows a count of computers having the same SPECint result,
aggregated into 13 fixed width bins (the number of bins selected by the hist function for
this data).

hist(cint$Result, main="", col=point_col,
xlab="SPECint result", ylab="Number of computers\n")

The histogram package supports a wider range of functionality and more options than is
available in the base system functions.

The advantage of the binning approach to smoothing and aggregating data is ease of
manual implementation, and for this reason it has a long history. The disadvantages of
histograms are: 1) changing the starting value of the first bin can dramatically alter the
visual outline of the created histogram, and 2) they do not have helpful mathematical
properties.

A technique that removes the arbitrariness of histogram bins’ starting position is averaging
over all starting positions, for a given bin width (known as a average shifted histogram);
this is exactly the effect achieved using kernel density with a rectangular kernel function.

It often makes sense for the contribution made by each value to be distributed across
adjacent measurement points, with closer points getting a larger contribution than those
further away. This kind of smoothing calculation is too compute-intensive to be suited to
manual implementation, but are easily calculated when a computer is available.

The distribution of values across close measurement points is known as kernel density;
histograms are the manual labourer’s poor approximation to Kernel density, if a computer
is available use the better technique.

The density function returns a kernel density estimate (which can be passed to plot or
lines); the following code produced the lower plot in figure 8.14:

plot(density(cint$Result))

Density plots also perform well when comparing rapidly fluctuating measurements of
related items. Figure 8.15, upper plot, shows the number of commits of different lengths
(in lines of code) to the Linux filesystem code, for various categories of changes; the
lower plot is a density plot of the same data.

The kernel density approach generalizes to more than one dimension; see the KernSmooth
and ks packages.

When dealing with measurements that span several orders of magnitude, a log scale is
often used. Creating a histogram using a log scale requires the use of bin widths that grow
geometrically (coding is needed to get the hist function to use variable width bins; the
histogram package contains built-in support for this functionality), and bin contents has
to be expressed as a density (rather than a count). A histogram based on counts, rather than
density, can produce misleading results; figure 8.16 was produced by the following code,
where y is assigned decreasing values (the histogram should be continuously decreasing
and not show a second peak, which is an artifact generated by inappropriate analysis):

x=1:1e6
y=trunc(1e6/x^1.5)
log_y=log10(y)

hist(log_y, n=40, xlim=c(0, 3),
main="", xlab="log(quantity)", ylab="Count\n")

8.2.4 Densely populated measurement points

Some samples contain data whose characteristics produce result in plots containing lots
of ink and little visual information; some common characteristics of the density of values
include:

220 8. Stories told by data

log(quantity)

C
ou

nt

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

1000

2000

3000

Figure 8.16: Histogram of the log of some measured quan-
tity. Github–Local

0 10 20 30 40
0

10

20

30

40

A
ct

ua
l h

ou
rs

0 10 20 30 40
0

10

20

30

40

Estimated hours

A
ct

ua
l h

ou
rs

●●
●

●

●

●

●

●●
●
●

●

●

●●●
●
●

●

●

●

●

●

●●
●
●
●
●
●

●

●

●

●●
●
●
●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40
0

10

20

30

40

A
ct

ua
l h

ou
rs

Figure 8.17: Developer estimated effort against actual ef-
fort (in hours), for various maintenance tasks, e.g., adap-
tive, corrective and perfective; upper as-is, middle jittered
values and lower size proportional to the log of the number
measurements. Data from Hatton.786 Github–Local

• adjacent values on the x-axis having widely different values on the y-values, e.g., fig-
ure 8.10,

• multiple points having the same x/y value, all combined visually as a single point in a
plot, e.g., figure 8.17,

• many very similar values that merge into a formless mass, when plotted, e.g., fig-
ure 8.18.

A plot of values gives a misleading impression when multiple measurements have the
same value, i.e., a single point represents many measurements (the problem is more likely
to occur for measurements that can only take a small set of values, e.g., discrete values);
see figure 8.17, upper plot. The jitter function returns its argument with a small amount
of added random noise; the middle plot of figure 8.17 shows the effect of jittering the
values used in the upper plot. Another possibility is for the size of the plotted symbol to
vary with the number of measurements at a given point (see figure 8.17, lower plot); as
discussed elsewhere, people are poor at estimating the relative area and so size should not
be treated as anything more than a rough indicator.

plot(maint$est_time, maint$act_time, col=point_col, xlab="",
ylab="Actual hours\n")

plot(jitter(maint$est_time), jitter(maint$act_time), col=point_col,
xlab="Estimated hours", ylab="Actual hours\n")

library("plyr")
t=ddply(maint, .(est_time, act_time), nrow)
plot(test_time, tact_time, cex=log(1+t$V1), pch=1, col=point_col,

xlab="", ylab="Actual hours\n")

A different kind of communications problem occurs when data points are so densely
packed together, that any patterns that might be present are hidden by the visual uni-
formity (figure 8.18, upper plot; also see fig 11.23). One technique for uncovering pat-
terns in what appears to be a uniform surface is to display the density of points. The
smoothScatter function calculates a kernel density over the points to produce a color
representation (middle plot); contour lines can be drawn with contour using the 2-D
kernel density returned by kde2d (lower plot).

plot(uddage, uddinsts, log="y", col=point_col,
xlab="Age (days)", ylab="Installations\n")

Bug in support for log argument :-(
smoothScatter(udd$age, log(udd$insts),

xlab="Age (days)", ylab="log(Installations)\n")

library("MASS")

plot(uddage, uddinsts, log="y", col=point_col,
xlab="Age (days)", ylab="Installations\n")

There is no log option, so we have to compress/expand ourselves.
d2_den=kde2d(udd$age, log(udd$insts+1e-5), n=50)
contour(d2_den$x, exp(d2_den$y), d2_den$z, nlevels=5, add=TRUE)

W
ee

kl
y

to
ta

l

10^0
10^3
10^6

1992 1993 1994 1995 1996

10^0
10^3
10^6

1997 1998 1999 2000 2001

10^0
10^3
10^6

2002 2003 2004 2005 2006

10^0
10^3
10^6

2007 2008 2009 2010 2011

Figure 8.19: Number of lines added to glibc each week.
Data from González-Barahona et al.704 Github–Local

The hexbin package is available for those who insist on putting values into bins, in this
case using hexagonal binning to support two dimensions.

8.2. FINDING PATTERNS IN DATA 221

1000 2000 3000 4000 5000
1

100

10000

Age (days)

In
st

al
la

tio
ns

1000 2000 3000 4000 5000
0

2

4

6

8

10

12

Age (days)

lo
g(

In
st

al
la

tio
ns

)

1000 2000 3000 4000 5000
1

100

10000

Age (days)

In
st

al
la

tio
ns

 1
e−

05

 2e−
05

 3e−05

 3e−05

 4e−
05

 5
e−

05

 5
e−

05

Figure 8.18: Number of installations of Debian packages
against the age of the package; middle plot was created by
smoothScatter and lower plot by contour. Data from
the "wheezy" version of the Ultimate Debian Database
project.1862 Github–Local

1e+02

1e+04

1e+06

1e+08

S
ec

on
ds

Lower hinge

First quartile

Median

Third quartile
Upper hinge

Potential
Outliers

1e+02

1e+04

1e+06

1e+08

Figure 8.20: Boxplot of time between a potential mis-
take in Eclipse being reported and the first response to
the report; right plot is notched. Data from Breu et al.252

Github–Local

4

6

8

10

12

14

16

18

●

lo
g(

S
ec

on
ds

)

Figure 8.21: Violin plot of time between bug being re-
ported in Eclipse and first response to the report. Data
from Breu et al.252 Github–Local

One solution to a high density of points in a plot, is to stretch the plot over multiple lines;
the xyplot function, in the lattice package, can produce a strip-plot such as the one in
figure 8.19, produced by the following code:

library("lattice")
library("plyr")

cfl_week=ddply(cfl, .(week),
function(df) data.frame(num_commits=length(unique(df$commit)),

lines_added=sum(df$added),
lines_deleted=sum(df$removed)))

Placement of vertical strips is sensitive to the range of values
on the y-axis, which may have to be compressed, e.g., sqrt(...).
t=xyplot(lines_added ~ week | equal.count(week, 4, overlap=0.1),

cfl_week, type="l", aspect="xy", strip=FALSE,
xlab="", ylab="Weekly total",
scales=list(x=list(relation="sliced", axs="i"),

y=list(alternating=FALSE, log=TRUE)))
plot(t)

8.2.5 Visualizing a single column of values

The available data may contain a single column of values, or only one column of interest,
i.e., there is no related column that can be used to create a 2-D plot. A box-and-whiskers
plot (or boxplot as it is more generally known) is a traditional visualization technique that
is practical to perform manually. Figure 8.20 highlights the following characteristics:

• median, i.e., the point that divides the number of values in half,

• first/third or lower/upper quartile, the 25th/75th percentiles respectively,

• lower/upper hinges, the points at a distance ±1.5 · IQR where IQR is the interquartile
range (the difference between the lower quartile and the upper quartile). The dotted line
joining the hinges to the quartile box are the whiskers,

• outliers, all points outside the range of the lower/upper hinge.

The boxplot function produces a boxplot; the argument notch=TRUE can be used to
create a plot that includes a notch indicating the 95% confidence interval of the median;
right boxplot in figure 8.20.

box_inf=boxplot(eclipse_rep$min.response.time, log="y",
boxwex=0.25, col="yellow", yaxt="n",
notch=TRUE, xlim=c(0.9, 1.3), ylab="")

When a computer is available to do the calculation, more visually informative techniques
can be used. What is known as a violin plot uses a kernel density of the values, as the
outline of the container image; see figure 8.21 (a mirror image is usually included in the
plot, hence the name). The vioplot function in the vioplot package is used for the
violin plots in this book.

library("vioplot")

vioplot(log(eclipse_rep$min.response.time), col="yellow", colMed="red",
ylim=range(log(eclipse_rep$min.response.time)),
xlab="", ylab="log(Seconds)")

Formula notation can be used to display multiple violin plots in the same plot, with the
following code producing figure 8.22:

vioplot(time ~ group+task, data=gs, horizontal=TRUE, col=pal_col,
xlab="Time (minutes)", ylab="")

A bar chart with error bars is regularly used to visually summarise values (sometimes
known as dynamite plots). A study403 investigating the effectiveness of various ways of
visually summarizing data (including boxplots, violin plots and others) found that when
extracting information from bar charts (with or without error bars) subjects did not per-
form as well as they did when using the other techniques.

222 8. Stories told by data

0 2000 4000 6000 8000 10000

offline.C_algebra

online.C_algebra

offline.C_maze

online.C_maze

offline.D_algebra

online.D_algebra

offline.D_maze

online.D_maze

●

●

●

●

●

●

●

●

Time (minutes)

Figure 8.22: Time taken for developers to debug vari-
ous programs using batch processing or online (i.e., time-
sharing) systems. Data kindly provided by Prechelt.1522

Github–Local

ada

ansic

asm

awk
cobolcpp

cs
csh

erlangexp

f90
fortran

haskell

java

jsp
lex

lisp

ml
modula3

objc pascal

perl

php

python

ruby

sed

sh

tcl
vhdl

yacc

Figure 8.23: Pairs of languages used together in the
same GitHub project with connecting line width, color
and transparency related to number of occurrences. Data
kindly supplied by Bissyande.203 Github–Local

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

LSAT
ADTSDRSR

LSADNRPC
RPCE

SAMR

SCMR

ADA1ADA2
ADA3ADSC

SRVS
DFSC

DFSNM

EERR

SMB
BRWSRRP

PCCRR

PCCRC

PCCRD

WSSFOFPSESQLTDS
TSQL

WDV

WDVRN

WDVRV

TSCHDCOMEVEN6
SFU WCCE

UNMP

CRTD

KILE
RCMPPAC

BKUP

FRS1
FRS2DLTCS

DLTW

RAP

NLMP

RPRN

WSMAN

WMI

SNTP
W32T

XCEP

WSSO

GPIE

GPOL

GPREG

SMB2

AIPS

IKEE

MAIL

HCEP

SOH
RNAP

ADLS

ASRT

SPNG

SRPL
ADDM

MSRP

CHAP
PEAP

OAUT
DLTM

BPDP
BPAU

BPCR

MWBE

MWBF

WSDS

PASS

N2HT

DSML

GPIPSEC

APDSDPSP GPSCR
GPDPC

GPSI

GPSB

EMFSPOOL
EMF

PAR

WMF

WKST

SAMS

WSPELD
WSTIM

DSSP

WMIO

EMFPLUS

BKRP
EFSR

PKCA

DFSRH

PAN

RDC

GPWL

WUSP

WSUSSS

VDS
DMRP

RSPRPCHNTHT

RSMP

EVEN

WSH

MCIS

RPCL

GPFR

ADCAP

GPPREF
WSP

CSSP

DHCPE
DHCPNWSTEP

RMPRS

RMPR

ICPR

IKEY

ADFWAP

WPRN

MFPP

SCMP

WSMV

CSRA

ADTG

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

LSAT

SCMR

SRVS

DFSC
DFSNM

EERR

BRWS

PCCRRPCCRCPCCRD

WSSFOFPSE
SQL

TDS

TSQL
WDV

WDVRNWDVRV TSCH

EVEN6

RRP

SFU

WCCE
CRTD

BKUP

FRS1

FRS2
DLTCS

DLTW

RAP
RPRN

WSMAN

WMI

SNTPW32T

XCEP

WSSO

GPIE

GPREG

AIPSIKEE

HCEP

SOH
RNAP

ADTS

ADLS

ASRT

MAIL SRPL

ADDM

SMB2

MSRP

CHAPPEAP
DLTM

BPDPBPAUBPCR

MWBEMWBF
PASS

DRSR

APDS

DPSP
RCMP

GPOL
GPIPSEC

GPSCR

GPDPC

GPSI

EMFSPOOLEMF
PAR

WMF

WKST

NRPC

SAMS

WSPELDWSDS
WSTIM

WMIO

EMFPLUS

EFSR

SMB

PAC

PKCA

SAMR

DFSRH

OAUT

PAN

RDC
GPWL

WUSPWSUSSS

VDSDMRP

RSP

RPCE
RPCH

NLMP

NTHT
EVEN

WSH

KILE

RPCL

ADCAP

GPPREF

DHCPEDHCPN

WSTEP

DCOM

DSSP

RMPRSRMPR

ICPR

ADA2

ADFWAP

LSAD

GPSB

WPRN

MFPP

SCMP WSMV
CSRA

ADTG

Figure 8.24: References from one document to another
in the Microsoft Server Protocol specifications. Data
extracted by your author from the 2009 document re-
lease.1277 Github–Local

8.2.6 Relationships between items

The relationship between two entities may be the attribute of interest. Graphs are the
data structure commonly associated with relationships, and the igraph package contains
numerous functions for processing graphs.

When displaying graphs containing large numbers of nodes, potentially useful informa-
tion in the visual presentation may be swamped by many nodes having relatively few
connections. Figure 8.23 is an attempt to show which languages commonly occur, within
the same project, with another language, in a sample of 100,000 GitHub projects. The
number of projects making use of a given pair of languages is represented using line
width and to stop the plot being an amorphous blob the color and transparency of lines
also changes with number of occurrences.

Perhaps items having relatively few connections are the ones of interest. The Microsoft
Server protocol specifications1277 contain over 16 thousand pages, across 130 documents
(the client specification documents are also numerous). Figure 8.24, upper plot, shows
dependencies between the documents (based on cross-document references in the 2009
release1277); the lower plot shows the dependencies after excluding the 18 most referenced
documents (plot based on the following code):

library("igraph")
library("sna")

interest_gr=graph.adjacency(interest, mode="directed")

V(interest_gr)[names(in_deg)]$size=3+in_deg^0.7
V(interest_gr)$size=1
V(interest_gr)$label.color="red"; V(interest_gr)$label.cex=0.75
E(interest_gr)$arrow.size=0.2

plot(interest_gr)

It is possible to use R to draw presentable graphs, however, if your primary interest is
drawing visually attractive graphs containing lots of information, then there other systems
that may be easier to use, e.g., GraphViz.728 Yes, an R interface to these systems may be
available, but if statistical analysis is not the primary purpose, why is R being used?

Alluvial plots are a method for visualizing the flow between connected entities. Fig-
ure 8.25 shows factors used to prioritize the application of Github pull requests, and the
relative orders in which they appear in a dataset of pull requests;721 the alluvial package
was used.

8.2.7 3-dimensions

We live in a world of three spatial dimensions, which is only one more than the two
dimensions available on flat screens and paper; various techniques for enhancing a flat
surface to display information in one more dimension are available.

Heatmaps use color to display information about a third quantity within a 2-D plot. Fig-
ure 8.26 shows the L3 cache bandwidth (color+number) of an Intel Sandy Bridge proces-
sor running at various clock frequencies and using various combinations of cores.

Both the heatmap function in the base system and the heatmap.2 function in the gplots
package, clusters the rows/columns and then plots a dendrogram; various arguments have
to be set to switch off this default behavior, with heatmap doing its best to make life
difficult including not coexisting with other plots in the same image; heatmap.2 is more
reasonable.

The levelplot function in the lattice package provides straightforward functionality
for producing heat maps, and it is used to produce all the heatmaps in this book.

library("lattice")

t=levelplot(L3_band,
col.regions=rainbow(100, end=0.9),
xlab="Clock frequency (Mhz)", ylab="Cores used",
scales=list(x=list(cex=0.70, rot=35),

y=list(cex=0.65)),

8.2. FINDING PATTERNS IN DATA 223

adherence to process

age

backward compatibility

complexity

contributor origincontributor responsiveness
contributor track record

criticality of fix

dependencies
easy ones firstexistence of tests

impact

merge conflicts
no prioritization
project roadmap

quality
relevance to projectreview cycle
reviewer availability
reviewer familiarity

size of change

type

urgency of feature

age

complexity

contributor origin
contributor track record

criticality of fix

dependencies

existence of tests

impact
merge conflicts
project roadmap

quality
relevance to project

review cycle
reviewer availability
reviewer familiarity

size of change

test result

type

urgency of feature

agecomplexity
contributor origincontributor responsivenesscontributor track record

criticality of fix
dependenciesexistence of tests

impact
merge conflictsno prioritizationproject roadmap

qualityrelevance to projectreview cyclereviewer availability
reviewer familiarity

size of change
test result

type
urgency of feature

Q.1 Q.2 Q.3

Figure 8.25: Alluvial plot of relative prioritization order
of selection and application of Github pull requests. Data
from Gousios et al.721 Github–Local

Clock frequency (Mhz)
C

or
es

 u
se

d

0

0−1

0,2

0−3

0,2,4

0−5

0,2,4,6

0−7

1600
1800

2000
2200

2400
2600

2800
3000

3200
3400

Tu
rbo

16.6 18.7 20.8 22.9 24.9 27 29.1 31.2 33.2 35.3 39.5

17.6 19.8 22.1 24.3 26.4 28.7 30.9 33.1 36.9 37.5 41.9

33.8 38.1 42.3 46.5 50.8 54.9 59.2 63.4 67.6 71.9 78.2

35.5 39.9 44.4 48.8 53.2 57.5 62 66.5 70.9 75.5 82.2

50.5 56.8 63 69.4 75.7 82 88.4 94.7 101 107 114

52.8 59.4 66 72.5 79.2 85.8 92.3 99.1 106 112 119

67.2 75.4 83.8 92.3 101 109 117 126 134 143 147

70 78.8 87.6 96.3 105 114 122 131 140 149 153

Figure 8.26: Intel Sandy Bridge L3 cache bandwidth in
GB/s at various clock frequencies and using combinations
of cores (0-3 denotes cores zero-through-three, 0,2,4 de-
notes the three cores: zero, two and four). Data from
Schone et al.1650 Github–Local

Processor speed (GHz)

M
em

or
y

si
ze

 (
M

by
te

)

 1

 1

 1

 1

 1

 1

 1

 2

 2

 2

 2

 3

 3

 3

 3

 4

 4

 4

 5

 5

 5

 6

 6

 6

 6

 7

 7

 8

 8

 8

 9

 9

 10

 10

 11

 11

 11

 11

 11

0.1 0.6 1 1.4 2 2.4 3 3.4 4

63
255
511
767

1023
1279
1535
1791
2047
2303
2559
2815
3071
3327
3583
3839
4095

Figure 8.27: Contour plot of number of sessions exe-
cuted on a computer having a given processor speed and
memory capacity. Data kindly provided by Thereska.1828

Github–Local

panel=function(...)
{
panel.levelplot(...)
panel.text(1:11, rep(1:8, each=11),

L3_band, cex=0.55)
})

plot(t, panel.height=list(3.8, "cm"), panel.width=list(6.2, "cm"))

A contour plot can be used for visualizing the relationship between a response variable
and two explanatory variables; the contour function is part of the base system. A study
by Thereska, Doebel, Zheng and Nobel1828 measured the performance of various appli-
cations running on a variety of desktop computers; the cpu speed and memory capacity
of the computer hosting each of the 4,924,467 user sessions was recorded. The contours
in figure 8.27 are based on the number of user sessions measured on computers having a
given processor speed and memory capacity.

library("plyr")

Um=unique(memcpu$MemorySize)
M_map=mapvalues(memcpu$MemorySize, from=Um, to=rank(Um))

Us=unique(memcpu$ProcSpeed)
S_map=mapvalues(memcpu$ProcSpeed, from=Us, to=rank(Us))

cnt_mat=matrix(data=0, nrow=length(Us), ncol=length(Um))

cnt_mat[cbind(S_map, M_map)]=log(memcpu$Session_Count)

contour(x=seq(min(Us)/max(Us), 1, length.out=length(Us)),
y=seq(min(Um)/max(Um), 1, length.out=length(Um)),
z=cnt_mat, col=pal_col, nlevels=10, axes=FALSE,
xlim=c(min(Us)/max(Us), 1), ylim=c(min(Um)/max(Um), 1),
xlab="Processor speed (GHz)",
ylab="Memory size (Mbyte)\n")

axis(1, at=sort(Us)/max(Us), labels=sort(Us))
axis(2, at=sort(Um)/max(Um), labels=sort(Um))

A variety of functions are available for representing a 3-D plot as on 2-D surface, includ-
ing the scatterplot3d function in the car, and the plot3d function in the rgl package.

Histograms in 3-dimensions provide more opportunities, than histograms in 2-dimensions,
for looking impressive with little data and misleading viewers. A study by Hamill and
Goseva-Popstojanov773 investigated the origin of 1,257 faults in 21 large safety critical
applications, recording where the fixes were made, e.g., requirements, design, code or
supporting files. Figure 8.28 shows a 3-D histogram of root cause/fix location on the x-y
axis and a count of occurrences on the z-axis. Color has the effect of enhancing the visual
appearance of the plot, and makes it easier to locate stacks having similar values, but it is
very difficult to obtain detailed information from this plot. Adding numeric values would
provide detail, but the real issue is what information is the plot intended to communicate?

library("lattice")
library("latticeExtra")

log transform pulls out small differences in majority of counts
transform_breaks= exp(do.breaks(range(log(1e-4+STVR_col$occurrences)), 20))
t=cloud(occurrences ~ fix+fault, STVR_col,

panel.3d.cloud=panel.3dbars,
xlab="Fixes involved", ylab="Fault found", zlab="Count",
xbase=0.5, ybase=0.5, aspect=c(1, 1),
col.facet = level.colors(STVR_col$occurrences,

at = transform_breaks,
col.regions = rainbow),

scales=list(arrows=FALSE, distance=c(2, 1.1, 1),
x=list(rot=-20) # Rotate tick labels

))
plot(t)

224 8. Stories told by data

reqs

reqs_design_code

reqs_code

reqs_code_supp

code

code_supp

other

code

design
integration

other
reqs

0

50

100

150

200

250

Fixes involved

Fault location

Count

Figure 8.28: Root source of 1,257 faults and where fixes
were applied for 21 large safety critical applications. Data
from Hamill et al.773 Github–Local

X Y

Z

20 %

40 %

60 %

80 %

20 %

40 %

60 %

80 %
20 %

40 %

60 %

80 %

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

X Y

Z

Figure 8.29: Ternary plots drawn with two possible vi-
sual aids for estimating the position of a point (red plus at
x=0.1, y=0.35, z=0.55); axis names appear on the vertex
opposite the axis they denote. Github–Local

A ternary, or triangle, plot has three axes. The axes are inclined at an angle of 60°to each
other, and practice is needed to become proficient at estimating the coordinates of any
point. Figure 8.29 shows two ways of labelling a ternary plot (with the three coordinates
summing to 100%), with labels appearing at the vertex rather than along the axis and
axis scales drawn either perpendicular to the axis or labeled along the axis and within the
triangle as a grid. The upper plot shows how lines perpendicular to the appropriate axis
are used to find the location of a point (at 10, 35, 55 in this case).

The closer points are to a vertex the larger the value of the corresponding variable, the
closer points are to an axis the smaller the value of the corresponding variable.

Ternary plots are used to visualize compositional data (see fig 5.32); the compositions
and vcd packages include support for creating ternary plots.

In the following code rcomp normalises its argument (so that rows sum to 100) using an
interval scale and returns an object having class rcomp (the compositions package has
overloaded functions for handing objects of this type):

library("compositions")

xyz=c(10, 35, 55)
plot(rcomp(xyz), labels="", col="red", mp=NULL)
ternaryAxis(side=-1:-3, labels=paste(seq(20, 80, by=20), "%"),

pos=c(0.5,0.5,0.5), col.axis=hcl_col, col.lab=pal_col,
small=TRUE, aspanel=TRUE,
Xlab="X", Ylab="Y", Zlab="Z")

lines(rcomp(rbind(xyz, c(10, 45, 45))), col=hcl_col[4])
lines(rcomp(rbind(xyz, c(32, 35, 33))), col=hcl_col[4])
lines(rcomp(rbind(xyz, c(22, 23, 55))), col=hcl_col[4])

plot(rcomp(xyz), labels="", col="red", mp=NULL)

isoPortionLines(col=hcl_col[4])
ternaryAxis(side=0, col.axis=hcl_col, small=TRUE, aspanel=TRUE,

Xlab="X", Ylab="Y", Zlab="Z")

8.3 Communicating a story

Results from data analysis are of no value unless they are reliably communicated to the
target audience.362 Reliably communicating information to other people is difficult; the
intended message may be misunderstood or important parts may simply be overlooked
by readers. The data analyst has to provide a narrative that tells the intended story. How
people process visual information is discussed in section 2.3.

No known algorithm is available that selects a method that ensures communication is
made in a way that will be correctly interpreted by the audience.i The main techniques
available for presenting numeric information, and how they might be implemented using
R, are covered in the rest of this chapter.

There are a wide variety of ways of presenting information, e.g., tables, pie charts, bar
charts and scatter plots. Which of these is best, at communicating information to readers?
The answer from a wide range of studies is that it depends on what information readers
are trying to obtain, and the following is a brief summary of some research findings:

• graph or table? Studies have found that except for reading-off specific values (and recall
of these values later), subjects perform better with line graphs, than tables. However,
while graphs have better performance when presenting a given perspective (e.g., by
selection of the axis), tables may be preferable241 when wanting to present data in a
way that does not favour any one perspective on the data; it boils down to selecting the
best cognitive fit,1893

• the ability of pie charts to communicate information has been questioned over the
years.418 A study1745 comparing subject performance using pie charts, a horizontal

iStudies have found that people are much better at extracting certain kinds of information when it is pre-
sented in the form of frequency of occurrence rather than as a percentage.678

8.3. COMMUNICATING A STORY 225

0 20 40 60 80 100
0

20

40

60

80

100

Actual size ratio

E
st

im
at

ed
 s

iz
e

ra
tio

Bars

0 20 40 60 80 100
0

20

40

60

80

100

Actual size ratio

E
st

im
at

ed
 s

iz
e

ra
tio

Spheres

Figure 8.30: Actual and estimated size ratio for bars and
spheres, for each of the ten subjects (in different colors,
with line from fitted regression model), with grey line
showing where estimate equals actual. Data from Jansen
et al.915 Github–Local

+

+

+

++

+

++

+

+++

+

++

+++++++++++++++++++
+

+
+

++
+

+

++

++
+

++++++
+
+

+

+

+

+

+
+

+++

+

+

+ +

+

+
+++

+

++

+

+
++++++++++++++++++++++++++++++++

+

+

+++ +
++

+

++

++

+

+

+

+

+
++++++++++++++++++++++++++++++++++++++

+

+

+
+++++++++

++++++
+++++++

+++++++++++++++++++++++++++++++++++++++

+
+++++++++++

+

+++++
+++++

++

+
+++++++++++++++++++++++++++++++

+++
+

+++++++
+++

+

++
++++

+
++

+

+++
++++

+++++++++++++++++++++++++++++++
+++++++++++

++++++
++

++++++++++++++++++++++++++++++++++++
+

+

+++
+

++++++++
+++++++++++++++++++

++++
+++++++++++++++++

+++

++++++++
+++++++++++++

+
++++

++
++++++

+++ + + +++++++

+
+

+++++
+++

++++++
+

++++
+

+

+

+

+

+

+
++

++++++ + + ++++++++
++

+
++++

++++++ + ++++++++
++

+

+++++++
+ +++++++

++

+

+++
+ ++++++

+

++
++

+

+
++

+

++++

++++++
+

+
++++

+

++
++

++
+

+++++
+

+
++++

+++++++++++++++++++++++++++++

+
+

++
++

+++

+

+++++++++++++++++++++
+
+++

+

+

++

+
++

+

+

++

+

++

+

+

+

+

+

+

+ +

+

+ +

++

+ ++

+

+

+

+
+

+
+

+

+
++
+
+++++++

+

+
+++++++++++++++++++++++++++++++

+

+
+

++++
+++
+++++

+

+

+
+

+

+

+
+

++

+

+

+

+

++

+

+

+
+

+

++++++++++++++++++++++++++++
+

+
+

+

++++++++++++++++++++++++++++++++++++++

+

+

+

++

+

Figure 8.31: Earth relative positions of NASA’s Orbview-
2 spacecraft when it experienced a single event upset (in
blue) on 12 July 2000. Data kindly provided by LaBel.1500

Github–Local

divided bar chart, a vertical bar charts and a table, found that except when direct mag-
nitude estimation was required pie charts were comparable to bar charts, but for combi-
nations of proportions pie charts were superior; a study1718 comparing the three visual
clues present in a pie chart (i.e., angle, area and circumference length) found that an-
gle and area were poor methods of communicating information, and that circumference
length was the best of three,

• adding a third dimension to a graph has been found to slow down reader performance,824

i.e., subjects take longer to extract information and may be less accurate. The conclu-
sion would appear to be, don’t use three dimensions when two will do. While subjects
have expressed a preference for using 3-D graphs to impress others, no studies have
investigated whether they have this effect,

• a study by Jansen and Hornbæk915 investigated the perceived relative size of bars and
spheres. Subjects saw an image containing either two bars of different length, or two
spheres of different size, and were asked to estimate the size ratio of the two objects.
Figure 8.30 shows the actual and estimated bar and sphere ratios for each of the ten
subjects, with fitted regression lines;ii grey line shows where estimate equals actual.
The lower plot shows subjects consistently underestimating the ratio of sphere sizes.

• studies by Cleveland are often cited in R related publications: one study373 asked sub-
jects to make judgements about graphical information encoded in various waysiii; the
results showed that accuracy of subjects’ answers varied slightly between encoding
methods, the ordering from most accurate to least accurate was: position along a com-
mon scale, positions along nonaligned scales, length, direction, angle, area, volume,
curvature and shading, color saturation. Later studies1745 suggest that the factors are
not so well-defined, with some effects found to be influenced by the structure of the
experiments, or performance with a particular encoding depending on the task subjects’
performed.

The thinking behind some layout details used by R’s plot function are based on exper-
imental work by Cleveland.372 Although not explicitly stated the aim appears to have
been to present data in a workman-like way that avoids the possibility of plotted data
values being obscured by plot markings, e.g., tick marks.

The plot function is a workhorse for handing the graphical display of data in R; it does a
good job of producing a reasonable looking plot from whatever it is passed. Based on this
book’s implementation goal of using one implementation technique, where-ever possible,
the plots in this book were generated using the plot function.

The lattice1635 and ggplot325 packages provide alternative world views on the plot-
ting of data; lattice is based on the Trellis graphics system160 from Bell Labs and has
an emphasis on multivariate data, while the design of ggplot is derived from the work
of Wilkinson.1963iv Both lattice and ggplot provide a great deal of control over the
created plot through the use of user supplied functions. While ggplot is widely used
by experienced R developers, its inability to sensibly handle whatever nonsense data is
thrown at it (e.g., nonsense in that there are mistakes in the R code that produced it) pre-
vents this package being recommended for casual use. A detailed technical overview R’s
graphics subsystems is available in “R Graphics” by Murrell.1336

Combining data with visual information familiar to readers helps them to extract patterns
that mean something to them. Figure 8.31 shows single event upsets (i.e., radiation in-
duced memory faults) experienced by NASA’s Orbview-2 spacecraft during one day in
2000. Overlaying the satellite location at the time of the upset on a map of the Earth
(using the map package) provides context to help readers understand where most upsets
occur.

In some cases the intent of a plot may be to communicate that life is complicated, or that
there are a few big fish and many small ones. Figure 8.32 shows an estimate of the market
share of Android devices in use in 2015, by brand/company and product name (based on
the 682,000 unique devices that downloaded an App from OpenSignal1421). Treemaps
encode information using area, a quantity that many readers have problems accurately
interpreting.

library("treemap")

iiBeta regression is used, because it provides a much better fit to the data than the model (based on Stevens’
power law) fitted1744 by Jansen and Hornbæk.

iiiOne study799 has replicated some of these findings.
ivThe title of Wilkinson’s book “The Grammar of Graphics” refers to the structure of software written to

display graphics rather than the structure of the displayed information.

226 8. Stories told by data

E39
V370 Z130

Z500S4K

S5E

ASUS_T00J

K012

Z10N1

M2
M3 P6

Nexus

4

Nexus
5

Nexus 6

Nexus

7

HTC

One X

HTC
One

HTC
One_M8

irisX8

C6730

??
Lenovo

A319

Lenovo
A369i

Lenovo

A536

Lenovo
A6000

LG−D802

LG−D855

XT1022XT1032

XT1033

XT1040

XT1058

XT1068

XT1069

XT907

Nokia_X

R1001

R831K

GT−I8190

GT−I8262

GT−I8552B

GT−I9060GT−I9060I GT−I9082

GT−I9100

GT−I9190

GT−I9192

GT−I9195

GT−I9300

GT−I9300I

GT−I9301I

GT−I9500

GT−I9505 GT−N7000

GT−N7100

GT−S5282

GT−S5360

GT−S7262

GT−S7562

GT−S7580

GT−S7582

SM−G350E

SM−G355H

SM−G360H

SM−G530H

SM−G7102

SM−G900F

SM−G900H

SM−N900

SM−N9005

SM−N910F

SM−T110

SM−T231

E15iLT22iLT26i

C1905

C2104

C2105

C2305

C6603

C6903

D2212

D2302

D2303

D2306

D2403

D2502

D5322

D5503D5803D6503

D6603

D6633
D6653

LT25i

ST26i

7040N

SCH−I545

HM

1SW

MI
3W

Mi 4i

Z970
ZTE

Blade

L2 aceradvan

alps

asus

blu

bmobile

bq

cce

condor fly

gionee
gm

google

hp
htchuawei

intex

iris

jiayu
kyocera

lanix lava

lenovo

lge

metropcs

micromax

motorola

nokia

oneplus

oppo philips

qmobile

rca

samsung

semc

smartfren

sony

tcl
tct

tecno

verizon

wiko

xiaomi

xolo

yu

zte

Figure 8.32: Estimated market share of Android devices
by brand and product, based on downloads from 682,000
unique devices in 2015. Data from OpenSignal.1421

Github–Local

5 10 15 20
0

20

40

60

80

100

Read accesses

V
ar

ia
bl

es

Total access=25

5 10 15 20
0

20

40

60

80

100

Read accesses

V
ar

ia
bl

es

Total access=50

5 10 15 20
0

20

40

60

80

100

Read accesses

V
ar

ia
bl

es

Total access=75

5 10 15 20
0

20

40

60

80

100

Read accesses

V
ar

ia
bl

es

Total access=100

Figure 8.33: Variables having a given number of read ac-
cesses, given 25, 50, 75 and 100 total accesses, calculated
from running the weighted preferential attachment algo-
rithm (red), the smoothed data (blue), and a fitted expo-
nential (green). Github–Local

and_tree=treemap(android, c("brand", "model"), "august2015",
title="", palette=pal_col,
border.col="white", border.lwds=c(0.5, 0.25))

8.3.1 What kind of story?

The kinds of output from statistical data analysis include the following:

• a description of the data, e.g., its mean and variance, how measurements cluster, an
equation summarizing the data. A descriptive model, built from the data, can be used to
help gain insights into the system that was measured, for comparing different descrip-
tions (e.g., benchmark results) and for building similar systems (e.g., automatically
creating file system contents17 for benchmarking purposes)

• a model built to mimic the behavior of a system (as expressed in the measurements
made), e.g., a simulator,

• a predictive model capable of making appropriately accurate predictions for values not
in the set of measurements used to build the model. The possible range of prediction
values may be within the range of values used to build the model or outside the range
of these values, e.g., making predictions about a future time,

A standard reply to any complaints about the adequacy of a model built using data is the
adage “All models are wrong, but some are useful.”

An example of the different kinds of model that can be built, and how their usefulness
depends on the problem they are intended to solve, is provided by a question involving
the use of local variables in the source code of a function definition.

If the source code contains a total of N read accesses to variables defined locally within
the function, what percentage of variables will be read from once, twice and so on (based
on a static count of the visible source code, not a dynamic count obtained by executing
the function)?

Data from an analysis of C source930 provides a description of "what is". Plotting the data
shows that a few variables account for most accesses, i.e., read from. After some experi-
mentation the following equation was found to be a good fit to the data (see figure 8.33):

pv = 34.2× e−0.26acc−0.0027N , where: pv is the percentage of variables, acc the number
of read accesses to a given variable, and N is the total number of accesses to all local
variables within a function. For example, when a function contains a total of 30 read
accesses of its local variables, the expected percentage of variables accessed twice is:
34.2× e−0.26×2−0.0027×20.

What other kind of model can be built to answer this question?

This problem has a form that has parallels with the growth of new pages and links to
existing pages on the World Wide Web. Each access of a local variable could be thought
of as a link to the information contained in that variable. One idea that has been found to
be integral to modeling the number of links between web pages is Preferential attachment.

With some experimentation an iterative algorithm based on preferential attachment, was
created, that produced a pattern of behavior close to that seen in the data. The algorithm
is as follows:

Assume we are automatically generating code for a function, and from the start of the
function, to the current point in the code L distinct local variables exist (and have been
accessed), with each accessed Ri times (i = 1, . . . ,L). The following weighted preferential
attachment algorithm is used to select the next local variable to access (global variables
are ignored in this analysis):

• With probability 1
1+0.5L create a new variable to access,v

• with probability 1− 1
1+0.5L select a variable that has previously been accessed in the

function, choose an existing variable with probability proportional to R+ 0.5L (where
R is the number of times the variable has previously been read from;); e.g., if the total
accesses up to this point in the code is 12, a variable that has had four previous read
accesses is 4+0.5·12

2+0.5·12 = 10
8 times as likely to be chosen as one that has had two previous

accesses.
vThe unweighted preferential attachment algorithm uses a fixed probability to decide whether to access a

new variable.

8.3. COMMUNICATING A STORY 227

0 20 40 60 80 100 120 140

5

10

15

20

Concurrent Workload

T
hr

ou
gh

pu
t (

jo
bs

 p
er

 u
ni

t t
im

e)

Amdahl
Quadratic Amdahl
Queuing

Figure 8.34: Throughput when running the SPEC SDM91
benchmark on a Sun SPARCcenter 2000 containing 8
CPUs, with the predictions from three fitted queuing mod-
els. Data from Gunther.758 Github–Local

The red points in figure 8.33 were calculated using the above algorithm.

This preferential attachment model provides insights into local variable usage that are very
different from those provided by the fitted exponential equation. Neither of them could
not be said to be realistic descriptions of the process used by developers, when writing
code. Both models are descriptions of the end result of the emergent process of writing a
function definition; each model has its own advantages and disadvantages, including the
following:

• the fitted equation is fast and simple to calculate, while the output from the iterative
model is slow (an average over 1,000 runs in the example code) and requires more
work to implement,

• the iterative model automatically generates a possible sequence of accesses (for ma-
chine generated source), while a fitted equation does not provide any obvious method
of generating a sequence of accesses,

• multiple executions of an iterative model can be used to obtain an estimate of standard
deviation, while the equation does not provide a method for estimating this quantity (it
may be possible to fit another regression model that provides this information),

• the equation provides an end-result way of thinking, while the iterative model provides
a choice-based way of thinking about variable usage.

A common technique for devising a model for a new problem is to find a very similar
problem that has a proven model, and to adapt this existing model to the new problem. A
model based on existing practice is often easier to sell to an audience, than a completely
new model.

Some multiprocessor system have a "shared nothing" architecture, which minimises the
sharing of hardware resources. Performance measurements of such systems, under vari-
ous loads, shows that even when tasks can be evenly distributed across all X processors
in the system, performance is rarely X times faster. Which model provides a good expla-
nation of the performance seen?

Amdahl’s law predicts changes in multiprocessor performance as the number of proces-
sors used changes, where the multiprocessor system has a shared hardware architecture.
Gunther757 extended this "law" to cover multiprocessors having "shared nothing" archi-
tecture; the adapted model, plus a further adaption, are not good fits to the data.

Gunther758 created a model based on queuing theory and simulated model performance
(with each job waiting in a queue for time t1 and executing for time t2). The argument for
using queuing theory is that data sharing between different programs can create resource
contention that the "shared nothing" hardware architecture cannot unblock. Figure 8.34
shows that the queuing model more accurately follows the pattern measured. Given the
small amount of data available it would be unwise to attempt further model tuning.

The R language does not contain features designed with simulation in mindvi, but like
most languages it can be adapted to solve problems outside its core domain; see the simF
rame and simmer packages.

Finding a workable model, based on the available data, can involve many iterations over
a long time. For instance, modeling the growth of the size and number of files/directories
in a filesystem has a long history, with current models1300 either involving a mixture of
two distributions for the equation fitting approach, or a generative approach based on
simulating the way new files are created from existing files.

Perhaps the most important question to answer when proposing any model is the purpose
to which it will be put. A model intended to gain insight might not be of any use in making
practical recommendations, and a model used to make predictions might not provide any
useful insight. For instance, modeling the connection between modifications to files and
the introduction of mistakes, which cause faults to be experienced may be used to predict
coding mistake rates based on modification history, but such a model has limited scope
for directly deriving methods for reducing faults, e.g., reduce faults by reducing file mod-
ifications, is of no use when customers want new or modified behavior in the applications
they use.

In most cases, a great deal of domain knowledge is required to build a model having
the desired level of performance. There is no guarantee that any created model will be
sufficiently accurate to be useful for the problem at hand; this is a risk that occurs in all

viInterfacing to Netlogo1527

228 8. Stories told by data

Figure 8.35: Illustration of the difference in cognitive ef-
fort needed to locate points differing by shape or color
(one is a serial search, while the other operates in paral-
lel). Github–Local

rainbow

rainbow_hcl

sequential_hcl

diverge_hcl

Figure 8.36: The three, seven and twelve color palettes
returned by calls to the diverge_hcl, sequential_hcl,
rainbow_hcl and rainbow functions. Github–Local

model building exercises. Ideally model building is driven by a theory describing the
behavior of the system being modeled. When a theory is complete there is no need for
new models, the fact that the creation of a new model is being considered implies that
existing models are lacking in some respect.

8.3.2 Technicalities should go unnoticed

The machinery of information presentation should not get in the way of reader’s access to
that information.

There are many books offering tips, suggests and recommendations for how best to present
visual information; the only book recommended by your author (it is based on a wide
range of empirical research) is “Graph Design for the Eye and Mind” by Stephen Koss-
lyn.1039 Sometimes multiple plots are used to tell an evolving story, McCloud1231 is a
great introduction to this art form.

8.3.2.1 People have color vision

Until the mid 1980s most people used computer terminals that were only capable of dis-
playing black and white (or green and black). Forty years later, the look-and-feel of
mid-1980s computer usage still predominates in serious works of data visualization.

This book treats color as an essential component of numeric story telling. Color provides
an extra dimension that enables more information to be present within the same area, and
make it easier for viewers to extract information from a plot.vii

Selecting the most appropriate colors to use requires skill and experience. The colo
rspace and RColorBrewer packages both include functions that automatically select a
color palette based on the arguments passed;viii the colorspace package provides a wider
range of functionality than RColorBrewer, and is used to select the colors for the plots
appearing in this book.

The Hue-Chroma-Luminence (HCL) color space is claimed2002 to provide a better map-
ping to the human color perceptual system (hue: dominant wavelength; chroma: color-
fulness, intensity compared to gray; and luminence: brightness, amount of gray), than
alternative spaces.ix The color palettes generated by the rainbow_hcl function are con-
sidered to be qualitative palettes, that are suitable for depicting different categories; those
generated by the sequential_hcl function to be suitable for coding numerical infor-
mation that ranges over a given interval, with the diverge_hcl function also encoding
numerical information, but including a neutral value.

The choose_palette function provides an interactive, slider based, method for develop-
ers to define their own color palettes.

Approximately 10% of men and 1% of women have some form of color blindness. The
dichromat package provides a way of showing how a plot containing color would appear
to a viewer having some form of color blindness. The package makes use of experimental
data1901 to simulate the effects of different kinds of color blindness, modifying the re-
quested colors to appear, to normal sighted viewers, like they would to viewers having the
selected kind of color blindness.

8.3.2.2 Color palette selection

Figure 8.37 shows how time varying data involving related items (in this case market
share of successive versions of Android) can be displayed in a way that preferentially
highlights one aspect of the data; the upper plots highlighting individual versions while
the lower plots show each version’s contribution to overall market share. Bold colors are
effective at drawing attention to individual lines, but can be overpowering when a large
area of color appears in the plot; the opposite can be the case for pastell colors.

viiR contains 657 built-in color names (the colors function lists them) and also supports hexadecimal RGB
literals.

viiiThe selection process is based on theories derived from the use of color in maps,253 which has a long
history.

ixRed-Green-Blue (RGB) is a specification based on the display of color on computer screens; Hue-
Saturation-Value (HSV) is a transformation of RGB that attempts to map to the human perceptual system and is
used by some other software packages.

8.3. COMMUNICATING A STORY 229

0 500000 1000000 1500000

2

4

6

8

Input cases

Fa
ilu

re

1e+00 1e+02 1e+04 1e+06

2

4

6

8

Input cases

Fa
ilu

re

Figure 8.38: Input case on which a failure occurred, for a
total of 500,000 inputs; plotted using a linear (upper) and
logarithmic (lower) x-axis. Data from Dunham et al.516

Github–Local

2010 2011 2012 2013 2014 2015
0

10

20

30

40

50

60

P
er

ce
nt

ag
e

of
 m

ar
ke

t

2010 2011 2012 2013 2014 2015
0

20

40

60

80

100

Date

P
er

ce
nt

ag
e

of
 m

ar
ke

t

2010 2011 2012 2013 2014 2015
0

10

20

30

40

50

60

P
er

ce
nt

ag
e

of
 m

ar
ke

t
2010 2011 2012 2013 2014 2015
0

20

40

60

80

100

Date

P
er

ce
nt

ag
e

of
 m

ar
ke

t

Figure 8.37: Percentage share of Android market by suc-
cessive Android releases, by individual version (top) and
by date (lower); pastell colors on left and bold on right.
Data from Villard.1902 Github–Local

8.3.2.3 Plot axis: what and how

The choice of plotting axis can have a dramatic impact on the visual perception of dis-
played data.

Linear and logarithmic are the two commonly used axis scales; square-root is common in
some application domains. When the range of plotted values span several orders of mag-
nitude, using a logarithmic axis can produce a more informative visualization; compare
the use of linear and log axis in figure 8.38. Plotting values drawn from an exponential,
or power law-like distribution, using a linear scale often results in many points being vi-
sually clumped together in a small area of the plot; use of a log scaled axis has the effect
of spreading out these clumped values.

The plot function (and many other R plotting functions) automatically selects the mini-
mum/maximum range of each axis, based on the range of data passed; by default 4% is
added at each end of the range.

The choice of quantity plotted along each axis is driven by the relationship, between the
two quantities, that the data analyst is seeking to highlight; the purpose of the plot is to
visually communicate this relationship.

Care needs to be taken to ensure that artificial relationships are not generated by the choice
of quantity used for one axis. An example of the wasted effort that can occur, when the
relationship implied by the quantities plotted along an axis are not carefully analysed, is
provided by the saga of program fault density vs. lines of code.

It was noticed that when fault density (i.e., number of faults divided by lines of code in
functions) was plotted against lines of code (in functions), the distribution of points had a
pattern that resembled a lopsided U. Some researchers proposed that the minimum of this
U represented an optimum for the length of a function.785

A study by El Emam, Benlarbi, Goel, Melo, Lounis and Rai537 showed that this U-shape
was an artefact generated by the choice of quantities plotted along each axis. Plotting
the ratio F

LOC against LOC, with F constant, will produce a tilted U-shape (blue line in
figure 8.39). If the number of faults grows faster than the number of lines of code (which
has been found to occur for large line counts) then U-shaped curves such as the red line
in figure 8.39 can occur (a growth rate was picked to illustrate one possibility; as in the
following code):

x=1:100 ; inv.x=1/x

230 8. Stories told by data

0 50 100 150 200

0

5

10

15

20

25

30

LOC

Fa
ul

ts
/L

O
C

Figure 8.39: Example of U-shape created when y-
axis values are a ratio calculated from x-axis values.
Github–Local

2 10 50 500
0

5

10

15

20

25

30

M
ea

n
T

im
e

to
 F

ai
l (

da
ys

)

Effective Source KLOC
2 10 50 500

1

2

5

10

20

Effective Source KLOC

Figure 8.40: Mean time to fail for systems of various sizes
(measured in lines of code); linear y-axis left, log y-axis
right. Data extracted from Figure 8.3 of Putnam et al.1538

Github–Local

−4 −2 0 2 4

−3

−2

−1

0

1

2

3

Figure 8.41: What’s up doc? Perhaps, not the ex-
pected pattern in the data. Equations from White.1946

Github–Local

plot(x, 3*inv.x, type="l", col=pal_col[1],
xlab="LOC", ylab="Faults/LOC\n")

lines(x, ((x+50)^3/5e4)*inv.x, col=pal_col[2])

The idea suggested by the U-shaped pattern, that there might be an optimal function
length, is the result of misinterpreting the mathematical behavior of a ratio quantity plotted
against one of the values used in the ratio calculation, i.e., the pattern seen in plots is an
artefact of the choice of quantities chosen for each axis.

By spreading data out, a log transform of an axis can sometimes visually hide potentially
useful information, rather than help reveal it. Figure 8.40 is from a study by Putnam and
Myers1538 (their Figure 8.3); in both cases the x-axis is log transformed. In the right plot
the y-axis is linear, and there is a visually distinct cluster of measurements across the
top; in the lower plot, where both axes are log transformed, this cluster is visually less
prominent.

8.3.3 Communicating numeric values

The output from statistical analysis can include visual plots, and a small collection of
numbers. What is the best way to communicate a story involving a small collection of
numbers?

The uncertainty associated with using descriptive phrases to denote probabilities is dis-
cussed in section 2.7.1 and section 6.1.4. Confidence intervals are a practical means of
communicating uncertainty and are discussed in section 11.2.1. Some government orga-
nizations publish guidance on communicating uncertainty.780

Regression modeling (chapter 11) finds a best fit of an equation to data, according to
some specified definition of the error between the equation and data. While the numeric
values (often referred to as parameters) are the output of model building, the information
being communicated is equation+parameter values. Giving the final fitted equation, with
confidence intervals, provides readers with all the information in one place, i.e., they don’t
have to decode wording in the text and mentally plug in the fitted values; see section 2.4.1

Complicated equations can exhibit unexpected behavior; figure 8.41 shows the result of
plotting the following set of equations, for −4.7≤ x≤ 4.7:

y1 =c(1,−0.7,0.5)
√

c(1.3,2,0.3)2− x2− c(0.6,1.5,1.75)

y2 =
0.6
√

4− x2−1.5
1.3≤ |x|

y3 =c(1,−1,1,−1,−1)
√

c(0.4,0.4,0.1,0.1,0.8)2− (|x|− c(0.5,0.5,0.4,0.4,0.3))2−

c(0.6,0.6,0.6,0.6,1.5)

y4 =
c(0.5,0.5,1,0.75) tan

(
π

c(4,5,4,5) (|x|− c(1.2,3,1.2,3))
)
+ c(−0.1,3.05,0,2.6)

c(1.2,0.8,1.2,1)≤ |x| ≤ c(3,3,2.7,2.7)

y5 =
1.5
√

x2 +0.04+ x2−2.4
|x| ≤ 0.3

y6 =
2||x|−0.1|+2||x|−0.3|−3.1

|x| ≤ 0.4

y7 =
−0.3(|x|− c(1.6,1,0.4))2− c(1.6,1.9,2.1)

c(0.9,0.7,0.6)≤ |x| ≤ c(2.6,2.3,2)

A table of numbers covering a wide range of values (e.g., table 8.2) can be difficult to
interpret quickly, unless it is something readers regularly do. An alternative representa-
tion separates out the mantissa and exponent, and combines them using area and color,
allowing a visual same/different comparison to be made: as in figure 8.42.

Packages are available for integrating the output from R programs into the workflow of
various document preparation systems, for instance, the ascii package provides func-
tions for producing Asciidoc compatible output, and the knitr package produces LATEX
output.

8.3. COMMUNICATING A STORY 231

Operation Approximate
runtime

L1 cache reference 1 ns
Branch mispredict 3 ns
L2 cache reference 4 ns
Mutex lock/unlock 17 ns
Main memory reference 100 ns
Send 2K bytes over commodity
network

177 ns

Compress 1K bytes with Zippy 2,000 ns
Read 1 MB sequentially: memory 7,000 ns
SSD random read 16,000 ns
Round trip within same datacenter 500,000 ns
Read 1 MB sequentially: magnetic disk 1,000,000 ns
Seek: magnetic disk 3,000,000 ns
Send packet CA→Netherlands→CA 150,000,000 ns

Table 8.2: Numbers Everyone Should Know, circa 2016. Data from Scott.1660

L1 cache reference, 1 ns
Branch mispredict

L2 cache reference

Mutex lock/unlock

100 ns =

Main memory reference

Send 2K bytes over commodity network

Compress 1K bytes with Zippy

10,000 ns = 10 µs =

Read 1 MB sequentially from memory

SSD random read

Round trip within same
datacenter

1,000,000 ns = 1 ms =

Read 1 MB sequentially from disk
Magnetic disk seek

Send packet
CA−>Netherlands−>CA

Figure 8.42: Alternative representation of numeric values
in table 8.2. Data from Scott.1660 Github–Local

8.3.4 Communicating fitted models

What is the most effective way of communicating information about a fitted model to
readers?

Software developers are likely to have had lots of experience reading and interpreting
equations (which are essentially a form of code). As casual users of statistical analysis,
software developers will probably have to put some effort in to correctly interpreting the
output produced by the summary function, for a fitted model; chapter 11 lists summary
output because readers need some practice at interpreting it.

Looking at equation 11.2 (copied below), it is not necessary to search through a block of
unfamiliar numbers for information about the fitted model parameters:

sloc = 1.139 ·105 +3.937 ·102Number_days

If more information needs to be communicated, such as the uncertainty in fitted coef-
ficients, equations enable this information to be specified at the point it applies, e.g.,
equation 11.3 (copied below):

sloc = (1.139 ·105±1.171 ·103)+(3.937 ·102±4.205 ·10−1)Number_days

The complete summary output (copied below) could be edited down, to remove infor-
mation that is unlikely to be of interest. But trying to maintain the visual form of the
summary output serves no useful purpose. Any additional statistical information (e.g.,
deviance explained) can be listed in a line of text. Github–Local

Call:
glm(formula = sloc ~ Number_days, data = kind_bsd)

Deviance Residuals:
Min 1Q Median 3Q Max

-82990 -32136 -3609 35389 87324

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.139e+05 1.171e+03 97.24 <2e-16 ***
Number_days 3.937e+02 4.205e-01 936.33 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 1657283104)

Null deviance: 1.4610e+15 on 4826 degrees of freedom
Residual deviance: 7.9964e+12 on 4825 degrees of freedom
AIC: 116172

Number of Fisher Scoring iterations: 2

232 8. Stories told by data

As model complexity increases, readers have to invest more effort to correctly interpret
equations (e.g., equation 11.6, copied below), and the number of readers willing to spend
even more effort interpreting summary is likely to be less.

Actual =−274.8+1.21Estimated+2625×!D+

Cfp(1862×!D−197.6×D)+

Ctp(−2270×!D−462.2×D)+

Cot(−2298×!D−234.3×D)

Chapter 9

Probability

9.1 Introduction

What are the chances of an event occurring?

Probability is the mathematics used to answer this question. Reasons for being interested
in the estimation of probabilities include:

• betting, making an insurance decision, and all decisions and predictions involving ques-
tions about whether particular cases need to be handled,

• deciding the extent to which an event is surprising. The level of surprise might be
used to decide whether something provides an opportunity or is going wrong or, when
performing statistical analysis, discriminating between hypotheses.

Readers are assumed to have some basic notion of the concepts associated with proba-
bilities, and to have encountered the idea of probability in the form of likelihood of an
event occurring; classic examples involve calculating the probability of a given combina-
tion or sequence of values occurring when flipping a coin or rolling a die, e.g., two heads
or rolling two sixes, or the probability of having to make N flips/rolls before some event
occurs.

What is the difference between probability and statistics?

Probability makes inferences about individual events based on the characteristics of the
population, while statistics makes inferences about the population based on the character-
istics of a sample of the populationi.

Another way to compare the two is that probability makes use of deductive reasoning,
while statistics makes use of inferential reasoning.

Probability and statistics are intertwined in that ideas and techniques from probability,
about individual events, may be used when solving problems involving statistics and re-
sults about the characteristics of a population, obtained from statistical analysis, may be
used to help solve problems involving probability.

People make use of various phrases to express their view of the likelihood of an event oc-
curring, e.g., "almost impossible" and "quite possible". Studies have found large cultural
and personal differences in the numeric probabilities assigned to such phrases; see fig 6.7
and fig 2.57.

This book is data driven, and so primarily makes use of statistical analysis. The following
example is a problem for which possible answers can be suggested using a probability
model (data on developer behavior would provide evidence).

Say, a vendor of a static analysis tool wants to add support for detecting a newly discov-
ered pattern of mistakes made by developers. An occurrence of this pattern, in code, is
not always a mistake. What is the upper bound on the probability of generating a false
positive, that keeps the likelihood of developers continuing to use the tool above some
limit (say 90%)?ii

iStatistics could be defined as the study of algorithms for data analysis.
iiExperience shows that tool false-positives are sufficiently unpopular (they are a source of wasted effort),

that a developer will stop using the tool concerned if they are encountered too often. Higher false-positive rates
for Tornado warnings result in more deaths and injuries,1709 through people ignoring the warning.

233

234 9. Probability

5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

Number of warnings

P
ro

ba
bi

lit
y

0.2

0.3

0.4

0.5

0.2
0.3

0.4

0.5

3 false positives
4 false positives

Figure 9.1: Probability that three (red) or four (blue) con-
secutive false positive warnings occur in some total num-
ber of warnings (false positive rate appears on the line).
Github–Local

20 40 60 80 100 120

20

50

100

200

500

1000

2000

5000

10000

Jokes rated

S
ub

je
ct

s

Figure 9.2: Number of subjects rating more than
eight jokes, with fitted bi-exponential model; line is
a fitted regression model of the form: Subjects ∝

4200e−0.09Jokes + 650e−0.02Jokes. Data from Goldberg et
al.695 Github–Local

Answering this question requires knowledge of the mental model used by developers to
evaluate analysis tool performance. The following are two possible mental models (both
assume zero correlation between difference warning occurrences and that developers as-
sign the same importance to all warning messages):

• an economic developer who tracks the benefit of processing each warning (e.g., false
positive warning −1 benefit, else +1 benefit), starting in an initial state of zero benefit
this economic developer stops processing warnings if the current sum of benefits ever
goes negative.

The Ballot theorem gives the probability that, when sequentially processing warnings,
the number of true warnings is always greater than the number of false positive warnings
(assuming equal weight is given to both cases, the alternative being more complex to
analyse). Let C be the number of correct warnings and F the number of false positive
warnings and assume C > F , then the probability is given by:

C−F
C+F

rewriting in terms of the probability of the two kinds of warning (i.e., C+F = 1), we
get: Cp−Fp

so, for instance, when the false positive rate is 0.25 the probability of a developer pro-
cessing all the warning generated by a tool is 0.75−0.25→ 0.5, and does not depend
on the total number of warnings.

• an instant gratification developer who processes each warning and stops when a se-
quence of N consecutive false positive warnings have been encountered. This kind
of thinking is analogous to that of the hot hand in sports (what psychologists call the
clustering illusion).

What is the probability that a sequence of N consecutive false positive warnings is not
encountered?

If the total number of warnings is k and q is the probability of a false positive occurring,
then the probability of a run of N consecutive false positive warnings occurring can be
calculated using the following recurrence:

P(k,q,N) = P(k−1,q,N)+qN(1−q)(1−P(k−N−1,q,N))

with initial values:

P(j,q,N) = 0, for j = 0,1, . . . ,N−1

P(j,q,N) = qN , for j = N

Figure 9.1 shows the probability of not encountering a sequence of three (red) or four
(blue) consecutive false positive warnings when processing some total number of warn-
ing messages, for various underlying false positive rates (ranging from 0.5 to 0.2).

When dealing with warnings involving complex constructs, a developer may be unwilling
to put the effort into understanding the situation and either goes along with what the static
analysis tool reports, thus underestimating the actual false positive rate, or defaults to
assuming the warning is a false positive, thus overestimating the actual false positive rate.

A study by Goldberg, Roeder, Gupta and Perkins695 investigated the ratings given to 150
jokes by 54,905 subjects. Subjects rated the jokes online, could choose whether to rate a
particular joke or not, and could stop rating at any time. Figure 9.2 shows the number of
subjects who rated more than eight jokes; numbers above 127 are somewhat erratic.

Finding an equation, or technique, to use in solving a problem involving probability re-
quires some knowledge of the terminology used in this field. Possible phrases to try in
search queries include: birth and death process, coin tossing, colored balls, combination,
ergodic, event, fair games, first passage time, generating function, Markov chain, Markov
process, occupancy problem, partitions, permutation, random walk, stochastic, trials and
urn model.

Finding a closed form solution to an equation can be difficult, even when one exists.
Sometimes the processes being studied contains so many interacting components that it is
not possible to model them analytically; an alternative approach is simulation, discussed
in section 12.5.

9.1. INTRODUCTION 235

9.1.1 Useful rules of thumb

If the distribution of the values taken by some attribute, in a population, is not known, the
following inequalities can be used as worst case estimates of the probability of various
relationships being true. Both inequalities are distribution independent (the price of this
generality is that the bounds are loose).

Markov inequality:

The Markov inequality uses the sample mean, µ , to calculate the maximum probability
that X (which is required to be nonnegative) is larger than some constant. The inequality
does not make any assumptions about the sample distribution:

P(X ≥ k)≤ µ

k
where: µ is the sample mean.

Example. If a sample has µ = 10, then the probability of the sample containing a value
greater than or equal to 20 (i.e., twice the mean) is: 10

20 .

Chebychev’s inequality:

If the standard deviation, σ , of a sample is known, then Chebychev’s inequality can be
used to calculate a tighter bound than that given by the Markov inequality, as follows:

P(|X−µ| ≥ kσ)≤ 1
k2

alternatively:

P(|X−µ| ≥ k)≤ σ

k2

Using the above example, the probability of the sample containing a value that differs
from the mean by at last 10 is less than or equal to: σ

102 .

Example: an analysis of the number of mutants needed to estimate test suite adequacy to
within a specified error and confidence bounds.711

Fréchet inequalities:

Bounds on the union and disjunction of two or more probabilities are given by the Fréchet
inequalities, as follows:

Logical conjunction: max(0,P(a1)+P(a2)−1)≤ P(a1∧a2)≤min(P(a1),P(a2))

Logical disjunction: max(P(a1),P(a2))≤ P(a1∨a2)≤min(1,P(a1)+P(a2))

Correlation between three variable pairs: If the correlation between two pairs of three
variables is known, say r12 and r13, the bounds on the correlation of the remaining pair,
r23, is given by:

r12r13−
√
(1− r2

12)(1− r2
13)≤ r23 ≤ r12r13 +

√
(1− r2

12)(1− r2
13)

As the number of variables involved increases, the expressions become more compli-
cated.273

Rule of three: Say N colored balls are drawn from a box, and the number of balls of each
color counted. If there are r red balls, a reasonable estimate of the expected percentage
of red balls remaining in the box is: r

N . If no green balls have been drawn, what is a
reasonable estimate for the number of green balls remaining in the box?

If the fraction of green balls in the box is g, the probability of not having drawn a green
ball is: (1−g)N . The 95% confidence bounds on this occurring is: (1−g)N ≤ 0.05.

N log(1−g)≤ log(0.05)≈−Ng≤−2.9957≈ g≤ 3
N

The non-appearance of any green balls suggests that g is very small, so: log(1−g)≈−g.

9.1.2 Measurement scales

Mathematically, measurement values can be characterised as discrete or continuous, along
with the properties of the scale used. Possible scales include the following:

• Discrete

236 9. Probability

English tree wood forest

French abre bois forêt

Dutch boom hout bos woud

German baum holz wald

Danish træ skov

Figure 9.3: The relationship between words for tracts of
trees in various languages. The interpretation given to
words (boundary indicated by the zigzags) in one language
may overlap that given in other languages. Adapted from
DiMarco et al.500 Github–Local

– nominal scale: each measurement value has an arbitrary number or name. Because
the choice of number/name is arbitrary, no ordering relationship exists between dif-
ferent numbers/names. A nominal scale is not a scale in the usual sense of the word.
Examples: the numbers on the back of footballers’ shirt, or the various sales regions
in which a product is sold.

– ordinal scale: each measurement value is a number or name of an item, and an or-
dering relationship exists between the numbers/names. The distance between distinct
values need not be the same. When names are assigned to entities, there may be cul-
tural differences in the selection process. Figure 9.3 shows how words are assigned
to tracts of trees having occupying various surface areas.
Example: Classifying faults by their severity, e.g., minor, moderate, serious.
If a minor fault is considered less important than a moderate fault, and a moderate
fault is less important than a serious fault, we can deduce that a minor fault is less
important than a serious fault.
Example: The addresses of members of a C structure type is increasing, for suc-
cessive members, but the difference between member addresses is not fixed because
different members can have different types.

• Continuous

– interval scale: each measurement is a number, a relative ordering exists, and a fixed
length interval of the scale denotes the same amount of quantity being measured.
A data point of zero does not indicate the absence of what is being measured.
Example: the start date of some event is an interval scale. If the start date of events
A, B and C are known, and the difference in start date between events A and B is the
same as between events C and D, it is possible to calculate the start date of event D.
Addition and subtraction can be applied to values on an interval scale but not mul-
tiplication or division, e.g., it makes no sense to say that the start date of event A is
twice that of event C.

– ratio scale: each measurement assigns a number to an item and this numeric scale
preserves: the ordering of items, the size of the interval between items and the ratios
between items. It differs from the interval scale in that a measurement of zero denotes
the lack of the attribute being measured.
The time difference between two events is a ratio scale.

The kinds of statistical analysis that can be legitimately performed on the values in a
sample will depend on the kind of measurement scale used.

9.2 Probability distributions

Probability distributions are mathematical descriptions of the properties of values calcu-
lated by following a pattern of behavior, i.e., an algorithm. For instance, the flipping a
coin pattern of behavior generates one of two results, a fixed probability of either result,
with each result being independent of the previous one, and a count of the number of
heads and tails has a binomial probability distribution.

If a sample of values can be fitted to a known probability distribution, then information
about the pattern of behavior that generated them can be inferred from what is known
about processes known to generate values having that particular distribution. For instance,
given a list of pairs of numbers, if the ratio formed from each pair (i.e., a

a+b) can be fitted
to a binomial distribution, there is strong evidence that the pairs are counts of a process
producing one of two possible values (e.g., heads/tails, yes/no, etc.), and the probability
of producing each value can be calculated from the fitted distribution.

While many probability distributions have been created,521 only a handful of them are
regularly used by analysts; R packages tend to support commonly occurring distributions,
with a few packages supporting a wide range of distributions.521

Fitting a distribution to a sample is a step towards understanding the processes that gen-
erated the measurements, not an end in itself.

Failure to fit a known distribution may mean that more than one distribution is involved,
e.g., two different coins are being used and both are biased in some way. Given enough
data it is sometimes possible to obtain a reasonable fit that involves two or more distribu-
tions.

9.2. PROBABILITY DISTRIBUTIONS 237

If there is reason for believing the processes being measured are driven by a known be-
havior, the quality of fit of the predicted probability distribution to the measured values
can be compared; perhaps also against the quality of fit to other distributions.

If there is no expectation of a particular behavior, then finding an acceptable fit of some
probability distribution to the measurement values is a starting point for understanding
the processes that are driving the measurements observed.

Beta binomial(θ, n)

Binomial(n, p)

 large θ

Poisson(λ)

 large n
small p

Normal(µ, σ)

 large n

Negative binomial(k, µ)

 large k

 large λ

Geometric(p)

 k=1

Discrete

Uniform

Beta(a, b)

 a=b=1

 large a and b

Gamma(shape, scale)

 large shape

 Log normal(µ, σ)

Exponential(λ)

 shape=1

Continuous

Figure 9.4: Relationships between commonly used dis-
crete and continuous probability distributions.

Every family of probability distributions is completely characterised by a small set of
numbers (often one or two) and a formula that the numbers parameterise. For instance,
everything about a Normal probability distribution can be calculated by plugging values
for the mean, µ , and standard deviation, σ , into the formula: P(x) = 1

σ
√

2π
e−(x−µ)2/2σ2

(this formula is often abbreviated as N(µ,σ)). Fitting data to a Normal distribution in-
volves finding appropriate values for µ and σ .

In practice, a few probability distributions are encountered much more often than others.
One of these common cases will often fit reasonably well to a wide spectrum of com-
monly encountered samples, and unless there are theoretical reasons for expecting a less
commonly encountered distributions, there is nothing to be gained by searching through
all known distributions to find the one that best fits a sample.

Some characteristics of sample values, that may or may not correspond to a known prob-
ability distributions include:

• mean value (sometimes called the arithmetic mean, central tendency or location value,
the last two terms may also be used to refer to the median): many distributions have a
finite mean (examples that don’t include power laws with an exponent greater than or
equal to −1 and the Cauchy distribution),

• scale parameter, variance (standard deviation is the square-root of variance): how
spread out the distribution is; a few distributions do not have a finite variance, e.g.,
power laws with an exponent between zero and −2,

• the extent to which the distribution is symmetrical/asymmetrical about its mean, the
skew of a distribution is a measure of how asymmetrical it is; a symmetric distribution
has a skew of zero, while a positive skew has a tail pointing towards larger positive
values, and a negative skew has a tail pointing towards negative values,

• where most of a distribution’s density resides, e.g., around the mean or in the tails.
The kurtosis of a distribution is a measure of how spiky the distribution is; possibilities
include tall and slim (known as leptokurtic; slender-curved), short and flat (known as
platykurtic) or medium-curved (known as mesokurtic; the Normal distribution has a
Kurtosis of three),

238 9. Probability

0 1 2 3 4 5

0 2 4 6 8 10

prob=0.2
prob=0.4
prob=0.6

0 2 4 6 8 10

size=10
prob=0.2

size=10
prob=0.4

size=25
prob=0.2

0 2 4 6 8 10

λ = 2
λ = 4
λ = 7

Figure 9.5: Shapes of commonly encountered discrete
probability distributions (upper to lower: Uniform, Geo-
metric, Binomial and Poisson). Github–Local

• number of distinct peaks, known as the modality of a distribution; a distribution with one
distinct peak is said to be unimodal, two distinct peaks bimodal (such as measurements
from two different distributions, e.g., height of men/women).

The moments package contains functions for calculating skewness, kurtosis, and moment
related attributes of a numeric vector.

Probability distributions can be divided into discrete and continuous distributions, with
discrete distributions only being defined at specific points (usually integer values). In R,
functions that involve discrete distributions usually require integer values while functions
involving continuous distributions take floating-point values.

There are various ways of representing a probability distribution, and the following are
often encountered:

• density function: for discrete distributions (see figure 9.5) this can be viewed as the
probability that x will have a given value, P(x = value); for continuous distributions
(see figure 9.7) the probability of any particular value occurring is zero, however there
is a finite probability of a measurement returning a value within a specified interval,

• cumulative density function: the probability that x will be less than or equal to a given
value, P(x < value), see figure 9.6,

• equation: an equation for the probability distribution. For the majority of people (in-

cluding your author), this is little more than eye candy, e.g., the equation, λ ke−λ

k!
, is

very difficult to visualize and is only of use to developers wanting to implement the
Poisson distribution.

Discrete distributions: Commonly encountered discrete distributions include the follow-
ing (see figure 9.5):

• Binomial distribution: for a random variable X ,

1. the process involves a sequence of independent trials,
2. each trial produces two possible outcomes, e.g., heads/tails,
3. the probability of either outcome (p, say, for heads) does not change,

– X counts the number of success (where success might be defined as a head
occurring) in n fixed trials.
The Binomial distribution is completely described by two parameters: B(n, p),
This process is sometimes described using the analogy of, drawing n objects
from a pool containing a finite number of two kinds of object, where the object
is placed back in the pool after it has been drawn (this kind of draw is said to
be: with replacement). The Hypergeometric distribution is the result, if objects
are not returned to the pool once they are drawn (this kind of draw is said to be:
without replacement).
A distribution supporting more than two discrete values is known as a Multino-
mial distribution (again with a fixed probability of each value occurring). The
XNomial package provides support for multinomial distributions,

• Negative Binomial distribution: this has the same three requirements as the Binomial
distribution, but differs in what is counted,

– X counts the number of trials up to and including the kth success (where success
might be defined as a head occurring after a continuous sequence of tails).
A process that produces values having a Negative Binomial distribution is randomly
drawing from a mixture of Poisson distributions, where the mean of the mixture of
Poisson distributions has a Gamma distribution,
This distribution is a generalised version of the Geometric distribution (which is
based on the probability of observing the first success on the nth trial).

• Poisson distribution: for a random variable X ,

1. the process involves independent events,
2. only one event can occur at any time,

– X counts the number of events that occur within a specified time.
The Poisson distribution is complete described by one parameter (λ , the distri-
bution mean): P(λ),

9.2. PROBABILITY DISTRIBUTIONS 239

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

prob=0.2
prob=0.4
prob=0.6

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

size=10
prob=0.2

size=10
prob=0.4

size=25
prob=0.2

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

λ = 2
λ = 4
λ = 7

Figure 9.6: Cumulative density plots of the discrete prob-
ability distributions in figure 9.5. Github–Local

The sum of two independent Poisson distributions P(λ1) and P(λ2) is the Pois-
son distribution: P(λ1 +λ2).
The Binomial and Poisson distributions are related in that as n→∞ and p→ 0,
then B(n, p)→ P(np), i.e., The Poisson distributions is a limit case of a Bino-
mial distribution having a very low probability of success over a long period.

Continuous distributions: Commonly encountered continuous distributions include the
following (in all but one case, the generating process clusters the values around a single
peak; see figure 9.7):

• Uniform distribution: all values between the lower and upper bounds of the interval
have an equal probability of occurring, i.e., no value is more likely to occur than any
other. For discrete values between 1 and n the probability of any value occurring is 1

n .

One process that generates a uniform distribution is a random number generator, such
as calling R’s runif function.

• Normal distribution: can be generated by adding together contributions from many in-
dependent processes; a consequence of the Central limit theorem. This distribution
crops up with great regularity, it has a mathematical form that is easier to manipu-
late analytically, than many other distributions, resulting in it being widely used before
computers reduced the need for analytic solutions to equations. This distribution is
described by its mean and variance.

While the Normal distribution is the result of adding contributions from many indepen-
dent processes, it is not true to say that adding contributions from many different kinds
of processes will result in this distribution (similarly, for multiplicative contributions
and a lognormal distribution). For instance, given the right conditions, adding values
drawn from many different Poisson distributions can result in a Negative Binomial dis-
tribution, a Geometric distribution or other distributions,976

• Lognormal distribution: the logarithm of a Normal distribution, which can be thought
of as being generated by multiplying together the sum of contributions from many in-
dependent processes;1299 samples drawn from a Lognormal distribution can produce a
straight line, over some of their range, when plotted using log-log axis,

• Exponential distribution: generated by a memoryless process, e.g., the waiting time
for an event to occur is independent of the amount of time that has passed since the last
event. This is the continuous form of the Geometric distribution, and like it, is described
by a single parameter.

Over some of its range the exponential distribution is visually similar to a power law,
which has led researchers to incorrectly claim that their sample fits a power law (a
fashionable distribution to have one’s sample following); see section 7.1.3. Power laws,
and associated scale-free networks are rare in many application domains, but common
in a few technological networks.261

The sum of a reasonably large number of independent exponential distributions has an
Erlang distribution, e.g., the interval between incoming calls to a telephone exchange,
where the interval between calls from any individual have an exponential distribution,

• Beta distribution: applies to processes where the explanatory variable is restricted to a
finite interval, e.g., the interval zero to one. This distribution is defined by two, non-
negative, shape parameters.

• Gamma distribution (Γ is the Greek uppercase Gamma, the symbol often used to denote
the Gamma function, is the lowercase version, γ): used to describe waiting times, e.g.,
Gamma(shape=3, scale=2) is the distribution of the expected waiting time (in some
units) for three events to occur, given that the average waiting time is 2 time units (yes,
the Gamma function differs from most other distribution names in the base system by
starting with an uppercase letter).

When shape=1, the Gamma distribution reduces to the Exponential distribution.

The Gamma distribution is the continuous equivalent of the Negative binomial distribu-
tion.

• Chi-squared distribution (sometimes written using χ , the Greek lowercase letter of that
name): is more often encountered in the mathematical analysis of statistics, than as
a distribution of a sample. A random variable has a chi-squared distribution, with d
degrees of freedom, if it is produced by a process which generates the values: Z2

1 +
Z2

2 + · · ·+Z2
d , where Zi are independent random variables having a Normal distribution.

The chi-squared distribution is a special case of the Gamma distribution.

240 9. Probability

0 1 2 3 4 5

0.0 0.5 1.0 1.5 2.0

rate=1
rate=2
rate=4

−5 0 5

σ = 1
σ = 2
σ = 4

0.0 0.2 0.4 0.6 0.8 1.0

shape1=0.5
shape2=0.5

shape1=2
shape2=2

shape1=2
shape2=5

Figure 9.7: Commonly encountered continuous probabil-
ity distributions (upper to lower: Uniform, Exponential,
Normal, beta). Github–Local

100 data points 1000 data points

Figure 9.8: Samples of randomly selected values drawn
from the same normal distribution (left: 100 points in each
sample, right 1,000 points in each sample). Github–Local

• Weibull distribution: this distribution drops out as the solution to various problems in
hardware reliability, e.g., time to failure, and is often used as the hazard function in
survival analysis. The Exponential and Rayleigh distributions are special cases of the
Weibull distribution,

• Cauchy distribution: this distribution is more famous for its unusual characteristics,
e.g., having an undefined mean and variance (because of its very fat tail), than through
its uses. The density function for the average of two random variables each having a
Cauchy density is a random variable with a Cauchy density; this self mapping is unique
to the Cauchy distribution. One consequence is that, if the error in a measurement has a
Cauchy density, then the average of many measurements will not be more accurate than
the individual measurements.

9.2.1 Are two sample drawn from the same distribution?

As always, visualization is a useful first step in judging whether two samples might be
drawn from the same distribution. However, be warned, small datasets can produce vi-
sualizations showing little resemblance to the distributions from which they were drawn;
as can be seen from figure 9.8, where all the samples are drawn from the same Normal
distribution.

A study by Veytsman and Akhmadeeva1895 measured subject reading rate, in words per
minute, for text printed using a Serif or Sans Serif font. Words per minute is a discrete
distribution and subject performance is likely cluster around similar values, i.e., there will
be duplicates. Figure 9.9 shows a density plot of the normalised data.

The various comparison methods are based on some measure of difference between the
shape of the sample distributions. The following tests are based on comparing the edf
(empirical distribution function) of the samples.

• The Anderson-Darling test is based on the largest difference between the edf of the two
distributions, it uses weights to ensure that the tails of the distribution have as much
influence as other parts of the distribution; it is possible to use this test to compare more
than two distributions. While the Kolmogorov-Smirnov test is often encountered, it has
been found to be less sensitive than the Anderson-Darling test1776 because it primarily
detects differences in the main body of the distribution, rather than over the complete
range of values.

The ad.test function in the kSamples package implements the Anderson-Darling test
for two or more samples.

The ks.test function, part of the base system, implements the Kolmogorov-Smirnov
test; other implementation include the ks.test function in the dgof package whose
interface is the same but includes support for discrete distributions.

Samples drawn from a continuous distribution are very unlikely to contain identical
values, and many implementations warn if a sample contains duplicate values.

• The Cramér-von Mises test is based on summing (the square of) differences between
edfs, rather than using a single maximum value, and can be more powerful against a
large class of alternative hypothesis.75

The cvm.test function in the dgof package implements the Cramér-von Mises test.

The bootstrap can be used to estimate the probability of two sample distributions differing
by the amount reported by the statistical test used.

The choice of statistical test depends on whether differences over the range of values in
the samples are of interest, whether tail values are uninteresting (perhaps because there are
few measurements in the tail, and so what is there is noisey), or the amount of difference
between sample distributions is the primary differentiator.

Comparison of samples drawn from discrete distributions is provided by the WRS pack-
age (on Github), which implements a version of the Kolmogorov-Smirnov test (the ks
function) that supports discrete data, and also the bmpmul function that uses the Brunner-
Munzel test (also see the ks.test function in the dgof package).

The following code shows various tests that check whether two samples are likely to have
been drawn from the same distribution (see Github–group-compare/tb104veytsman-dist.R):

9.2. PROBABILITY DISTRIBUTIONS 241

0.5 1.0 1.5

0.0

0.5

1.0

1.5

Words per minute

D
en

si
ty

Figure 9.9: Reading rate for text printed using a serif
(blue) and sans-serif (red) font, data has been normalised
and displayed as a density. Data from Veytsman et al.1895

Github–Local

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Items in dataset

C
or

re
ct

 d
ec

is
io

n
pr

ob
ab

ili
ty

exponential
uniform
log normal
normal

Figure 9.10: Probability, with p-value < 0.05, that
shapiro.test correctly reports that samples drawn from
various distributions are not drawn from a Normal dis-
tribution, and probability of an incorrect report when the
sample is drawn from a Normal distribution; 1,000 repli-
cations for each sample size. Github–Local

0 2 4 6 8
0

500

1000

1500

2000

2500

3000

Number of features

C
on

di
tio

na
lly

 c
om

pi
le

d
se

qu
en

ce
s

Figure 9.11: Number of conditionally compiled code se-
quences dependent on a given number of feature macros
(red overwritten by blue: Linux, blue: FreeBSD). Data
from Berger et al.179 Github–Local

library("dgof")
library("kSamples")
library("WRS")

From WRS
ks(serif$Standard_WPM, sansserif$Standard_WPM)
In fact unscaled measurements give the same result, i.e., not different
ks(serif$WordsPerMinute, sansserif$WordsPerMinute)

dgof::ks.test(serif$Standard_WPM, ecdf(sansserif$Standard_WPM))

From base system
ks.test(serif$Standard_WPM, sansserif$Standard_WPM)

Only applicable to continuous distributions
ad.test(serif$Standard_WPM, sansserif$Standard_WPM)

The hypothesis that the samples plotted in figure 9.9 are drawn from populations having
different distributions is rejected.

Note that many measurement points may be needed to reliably detect a difference in dis-
tributions, when one exists. For instance, when one sample is drawn from an Exponen-
tial distribution and the other from a Normal distribution, two samples of 150 points are
needed to obtain a 95% confidence level, using ad.test, that the samples are drawn from
different distributions (550 points are needed when the samples are drawn from Normal
and Uniform distributions); see Github–group-compare/ad-check.R.

For some analysts, testing whether a sample is drawn from a Normal distribution is a
common activity (techniques that are practical to perform manually often require that
samples be drawn from this distributioniii).

The result of testing whether a small sample is drawn from a Normal distribution has a
high degree of uncertainty. The points in figure 9.10 was obtained by testing samples,
all drawn from the same distribution (e.g., via a call to rexp), using the shapiro.test
function (replicated 1,000 times for each sample size). The y-axis shows the probability
of the Shairo-Wilk test detecting that the sample values are not drawn from a Normal
distribution (p-value < 0.05; when the values have been drawn from another distribution);
for the case when the values are drawn from a Normal distribution (e.g., a call to rnorm)
the y-axis gives the probability of this fact not being detected.

There is no guarantee that the values in a sample have a distribution that even closely
resembles any known probability distribution.

A study by Berger, She, Czarnecki and Wąsowski179 investigated the use of feature
macros used in the configuration of software product lines. Figure 9.11 shows the number
of conditionally compiled sections of source code that were dependent on a given number
of feature macros.

A Cullen and Frey graph shows that the characteristics of neither sample are close to
matching any common discrete distributions. A Kolmogorov-Smirnov test considers them
to be sufficiently different, that they are likely to have been drawn from different distribu-
tions; see Github–group-compare/cond-compile/2010-berger.R.

Samples may appear to have a similar shape, but have different mean values. Technically,
samples with different mean values (or standard deviations) are considered to be drawn
from different distributions. There may be theoretical reasons for believing that sam-
ples have been generated by the same processes and normalizing mean values (or even
variance) enables the shape of the sample distributions to be compared.

A study by Zhu, Whitehead, Sadowski and Song2026 counted the number of various kinds
of statements in a corpus of C, C++ and Java programs (approximately 100 programs,
around 10 million lines, for each language). Figure 9.12 shows the distribution of occur-
rence (expressed as a density on the y-axis) of various statements (expressed as a per-
centage on the x-axis), over the programs measured; a different color for each language,
figure out which is which, before looking at the code.

iiiReaders of this book learn techniques that don’t have this precondition

242 9. Probability

0.00 0.04 0.08 0.12
0

10

20

30

40

50
Function

0.00 0.10
0

5

10

15 If

0.00 0.02 0.04 0.06
0

10

20

30

40

50

60
Else

0.0 0.1 0.2 0.3 0.4
0

2

4

6

8

10

12
Assignment

0.0 0.1 0.2 0.3 0.4
0

2

4

6

8

10 Declaration

0.00 0.02 0.04 0.06
0

20

40

60

80

100

120
Break

0.00 0.04 0.08 0.12
0

5

10

15

20

25

30

35
Return

0.000 0.010
0

50

100

150

200 While

0.000 0.010
0

100

200

300

400 Switch

Figure 9.12: Percentage occurrence of statements (x-axis)
for each of 100 or so C, C++ and Java programs (colored
lines, figure it out or look at the code), plotted as a density
on the y-axis. Data from Zhu et al.2026 Github–Local

Differences in the probability of various kinds of statements being used, over a sample
of programs written in various languages, is evidence that language has an impact on
what code gets written (either because particular kinds of applications are written using a
given language, particular algorithm selection is influenced by language, or the impact of
differences in language semantics).

Might two or more of the languages measured be said to have the same distribution of if-
statement and/or assignment-statement usage? The interactions between different
statements makes the analysis non-trivial.

The takeaway from this section is that for small sample sizes, distribution comparison
produces unreliable answers, and for large samples comparison may be complicated.

Comparison of particular characteristics of sample distributions, e.g., sample means, is
discussed in section 10.5.

9.3 Fitting a probability distribution to a sample

Given a sample of values, which of the known, supported by R,521 probability distribu-
tions is the best fit?

There is no universal best-test statistic, for goodness-of-fit of a sample to a probability
distribution. The performance of the available tests depends on the (unknown) distribution
from which the sample was drawn.1768

The Normal distribution is often the default answer given, when people are asked about
the distribution of a sample. There are several reasons for this, including: historically
many techniques designed to be performed by a human calculator were derived from the-
ory that assumed normally distributed data (which often appeared to work reasonably
well, when the data only approximated a Normal distribution), along with a misunder-
standing of what the Central Limit theorem is about, driving a belief that a complex
process provides the mixing needed to produce a Normal distribution.

9.3. FITTING A PROBABILITY DISTRIBUTION TO A SAMPLE 243

●

0 1 2 3 4

Cullen and Frey graph

square of skewness

ku
rt

os
is

10

9

8

7

6

5

4

3

2

1 ● Observation
● bootstrapped values

Theoretical distributions

normal
uniform
exponential
logistic

beta
lognormal
gamma

(Weibull is close to gamma and lognormal)

●

●

●

●●

●
●

●

●

●●
●● ●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●● ●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●
●

●

●
●●

● ●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●
● ●
●

●

●
●● ●●

●

●
●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●
●

●
●

●
●

●

●

●

●

●●
●

●
●

●

●

●
●
●

●
●

●

●
●●

●
●

●

●

●

●
●

●

●
●●●

●

●

●
●

●

●

●

●

●
●

●●●●

●
●
●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●●
●

●

●
●●●

●

●

●
●

●

●
●

●
●
●

●

●●

●●
●

●
●

●

●

●●●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

● ●

●●

●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●●

●

●
●

●

●●

●

●●
●

●

●

●
●

●● ●

●
●●

●

●

●
●●

●

●

●

●
●

●●●

●

●

●

●

●

● ●
●

●●

●

●
●

●

●
●

●

●●
●

●

●
●

●
●

●●
●

●

●

●
●●

● ●●
●

●

●

●

●

● ●

●

●
●

●●

●
●

●
●

●
●

●
●

●

●

●
●●

●●●
●

●

●

●

●

●

●

● ●●
●●

● ●

●
●

●

●
●

●
●

●

●
●

●●●

●

● ●●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●●

●
●●●

●

●

●

●
●

●
●

●

●●

●

●●
●

●

●
●

●
●

●

●

● ●●●
●

●

●

●

●
● ●●

●

● ●
●

●
●

● ●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●● ●
● ●

●

●
●

●

●

●
●●

●

●

●
●

●

●
●

●●

●

● ●

●
●

●
●

●●●

Figure 9.13: A Cullen and Frey graph for the 3n + 1
program length data. Data kindly provided by van der
Meulen.1876 Github–Local

0 20 40 60 80 100 120
0

50

100

150

200

250

300

Lines of code

P
ro

gr
am

s

Normal
Poisson
Lognormal
Negative binomial

Figure 9.14: Number of 3n+1 programs containing a
given number of lines, with four distributions fitted to
this data. Data kindly provided by van der Meulen.1876

Github–Local

As always, knowledge of the processes driving the production of measured values can
be very useful. For instance, measurements of arrival times that are driven by a Poisson
process will result in inter-arrival times that are exponentially distributed, values created
via the multiplicative effect of many contributions may have a Lognormal distribution,
and a preferential attachment process often results in links or what they link-to following
a power law.

If there is no theoretical justification for a particular distribution, limiting the selection
process to those distributions having some degree of name recognition is likely to make
the one chosen an easier sell to readers. For instance, the Delaporte distributioniv might
happen to fit a particular sample slightly better than the Negative Binomial distribution,
but its lack of name recognition means that extra effort will have to be invested, justifying
its use.

A study by van der Meulen1876 posted the 3n+1 problem on a programming competition
website: 95,497 solutions were submitted and van der Meulen kindly sent me a copy of
these solutions (11,674 solutions were written in Pascal, the rest in C). The 3n+1 problem
is: write a program that takes a list of integers and outputs the length of each value, where
length is the number of iterations of the following algorithm:

for input integer ++pass:[n]++;
while (n != 1)

n = (is_even(n) ? n/2 : n*3+1);

Which distribution is a good approximation, to the number of lines of code contained in
the programs submitted as answers to this problem?

The first step of visualizing the sample provides basic information about the shape of
the distribution, e.g., decreasing/increasing, single/multiple peak, symmetric/skewed or
appearing to be nothing but random noise; see figure 9.14.

A method of narrowing down the list of possible distributions, is to plot a Cullen and
Frey graph. The descdist function, in the fitdistrplus package, plots this graph
and returns some descriptive distribution characteristics of the values (mean, median, sd,
skewness and kurtosis). Skew and kurtosis are not reliable estimators and descdist
includes an option to create and test bootstrap samples.

The blue circle and yellow points in figure 9.13 denote the sample and various boot-
strapped results for the 3n+ 1 program lengths, assuming a continuous distribution (the
average number of lines is large enough that the difference between discrete/continuous
is likely to be small). The sample does not overlay any of the grey lines/areas on the plot
that denote commonly occurring distributions. The code is:

library(fitdistrplus)

Default is to check continuous distributions
dummy=descdist(li, discrete=TRUE, boot=500)
dummy=descdist(li, boot=500)

The fitdist functionv in the fitdistrplus package can be used to fit a distribution
to the data, i.e., find values of the specified distribution’s parameters, such as mean and
variance, that minimise some measure of goodness-of-fit (the AIC of the fit is returned).
The gamlss package supports a wider range of distributions (see the help information for
the gamlss.family function) that fitdist can use to fit data.

Figure 9.14 shows fits for the Normal, Poisson, Lognormal and Negative binomial distri-
butions.

library(fitdistrplus)

tp=fitdist(li, distr="pois"); tnb=fitdist(li, distr="nbinom")
tn=fitdist(li, distr="norm"); tln=fitdist(li, distr="lnorm")

gofstat is a way of getting all the values used for plotting
theo_vals=gofstat(list(tn, tp, tln, tnb), chisqbreaks=1:120,

fitnames=c("Poisson", "Negative binomial",

ivA compound distribution derived from a Poisson distribution whose mean has a shifted Gamma distribu-
tion.

vThe MASS package contains the fitdistr function and the gamlss package contains the fitDist func-
tion, both of which fit distributions to data.

244 9. Probability

1

5

10

50

100

500

1000

Elapsed working days

F
ea

tu
re

s

1 2 3 5 8 13 22 36 70

Figure 9.15: A zero-truncated Negative Binomial distribu-
tion fitted to the number of features whose implementation
took a given number of elapsed workdays; first 650 days
used. Data kindly provided by 7digital.1 Github–Local

"Normal", "Lognormal"))

plot_distrib=function(dist_num)
{
lines(theo_vals$chisqbreaks, head(theo_vals$chisqtable[, 1+dist_num], -1),

col=pal_col[dist_num])
}

plot(theo_vals$chisqbreaks, head(theo_vals$chisqtable[, 1], -1), type="h",
xlab="Program length", ylab="Number of programs\n")

plot_distrib(1); plot_distrib(2)
plot_distrib(3); plot_distrib(4)

The large spike at 50 lines might be caused by solutions all doing the same thing, but with
different statement orderings, e.g., multiple submissions derived from a common solution.

Based on minimizing AIC, the Normal distribution is the best fit, with the Negative bino-
mial distribution a close second. Should either distribution be chosen as the best fitting,
or is it worthwhile attempting to fit other distributions? The answer depends on what the
fitted distribution will be used for, e.g., making predictions or building models. Jump-
ing to any conclusions based on one data-point (i.e., set of length measurements for one
problem) is always problematic.

9.3.1 Zero-truncated and zero-inflated distributions

Some distributions only make use of non-negative values, they start at zero, e.g., the
Poisson distribution. While zero is a common lower bound for measurement values, other
lower bounds occur, e.g., the number of minutes to complete a task (the zero time tasks,
that are never started, are not measured).

It is possible to adjust the equations that describe zero-based distributions, to have a non-
zero lower bound. Rebasing a distribution to start at one (rather than zero) is the common
case and after such an adjustment the distribution is said to be zero-truncated, e.g., zero-
truncated Poisson distribution.

The gamlss.tr package contains functions that support the creation of zero-truncated
(or truncation to the right or left of any value) distribution functions. The following code
creates a set of functions relating to the zero-truncated type II Negative binomial distri-
bution; the name of the created function is NBIItr and like other distribution functions
in R, the associated density, distribution, quantile and random functions are obtained by
prefixing the letters d, p, q and r, respectively, to NBIItr:

library(gamlss)
library(gamlss.tr)

gen.trun(par=0, family=NBII) # Bring various functions into existence

The 7Digital data1 (discussed in more detail in section 5.4.6) contains information on
3,238 features implemented between April 2009 and July 2012; the information consists
of three dates (Prioritised/Start Development/Done), from which a non-zero duration can
be calculated.

The Cullen and Frey graph suggests a negative binomial distribution might be a good fit.

The functions returned by gen.trun do not have a form that can be used in calls to the
fitdist function. The gamlss function in the gamlss.tr package has a special form
for handling these created functions, as shown in the following code (where day_list
contains the list of values and NBIItr was created by an earlier call to gen.trun). The
following code was used to produce figure 9.15:

library(gamlss)
library(gamlss.tr)

g.NBIItr=gamlss(day.list ~ 1, family=NBIItr)

NBII.mu=exp(coef(g.NBIItr, "mu")) # get mean coefficient
NBII.sigma=exp(coef(g.NBIItr, "sigma")) # standard deviation

plot(table(day.list), log="xy", type="p", col=point_col,

9.3. FITTING A PROBABILITY DISTRIBUTION TO A SAMPLE 245

20 40 60 80 100 120
0.00

0.02

0.04

0.06

0.08

0.10

0.12

Runtime (micro secs)

D
en

si
ty

Figure 9.16: Density plot of MPI micro-benchmark
runtime performance for calls to MPI_Allreduce with
1,000 Bytes (left curve) and to MPI_Scan with 10,000
Bytes (right curve). Data kindly supplied by Hunold.876

Github–Local

Time (micro secs)

D
en

si
ty

20 30 40 50

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Figure 9.17: Mixture model fitted by the normalmixEM
function to the performance data from calls to MPI_Allre
duce. Data kindly supplied by Hunold.876 Github–Local

xlab="Elapsed working days", ylab="Features\n")

lines(dNBIItr(1:93, mu=NBII.mu, sigma=NBII.sigma)*length(day.list), col="red")

One process generating values having a Negative binomial distribution is based on a mix-
ture of Poisson distributions, whose means have a Gamma distribution. It is possible to
generate other distributions by combining a mixture of Poisson distributions, are any of
these a better fit to the data? The Delaporte distribution sometimes fits slightly better and
sometimes slightly worse; the difference is not large enough to warrant switching from a
relatively well-known distribution, to one that is rarely covered in text books or supported
in software; if data from other projects is best fitted by a Delaporte distribution, then it
may be worthwhile spending time analysing how this distribution might be a better model
of project scheduling.

If the processes generating these values can be modeled by a mixture of Poisson distri-
butions, it is unlikely that a single subprocess is responsible for a large percentage of the
quantity measured, many subprocesses are involved.

Sometimes count data contain many more zero values than are expected, from the distri-
bution that the generating process is believed to follow. Two kinds of behavior that can
cause an excess of zeroes to appear in the measurements are:

• a process that generates zeroes, and a process that generates non-negative values; this
situation can be modeled by what is known as zero-inflated model. The gamlss package
supports zero-inflated distributions,

• the measurements involve two processes, one where the values are zero or non-zero,
and the other where values are always non-zero (i.e, zero-truncated); this situation can
be modeled by what is known as a hurdle model (the hurdle that has to be got over is
moving from zero to non-zero). The gamlss package supports what it calls zero altered
(or zero adjusted) distributions, while the pscl package uses the term hurdle.

Your author’s search for software engineering measurements containing an excess of ze-
roes located a few that appeared to contain an excess, but none could be fitted by the
models discussed above; see Github–probability/bolz_data_struct_racket.R for an example.

9.3.2 Mixtures of distributions

Sometimes sample measurements are generated by two or more distinct processes, result-
ing in values that appear to be drawn from two or more distinct distributions, e.g., a plot
shows multiple peaks. A model built using a mixture, or weighted sum, of distributions
is known as a finite mixture model or just a mixture model; a continuous mixture of dis-
tributions is known as a compounded distribution (the Negative Binomial distribution is a
compounded distribution).

The mixtools and rebmix packages contain functions for fitting samples drawn from
two or more of the same kind of distribution family, e.g., multiple Normal distributions.
The two packages differ in the structure of their API, e.g., one having many functions, and
the other having one main function taking many arguments (neither would win a prize for
user interface design).

A study by Hunold, Carpen-Amarie and Träf876 investigated the impact of external factors
on the performance of an MPI micro-benchmark. Figure 9.16 shows the runtime variation
of two different MPI calls, with each having two distinct peaks. The two peaks in the left
curve appear to be symmetrical and perhaps a mixture of two Normal distributions is a
good fit. Figure 9.17 shows the two distributions fitted by a call to the normalmixEM
function (in the mixtools package), along with a histogram (all produced by the same
call to the plot function provided by the package).

library("mixtools")

scan_dist=normalmixEM(fig1_Allreduce$time)

plot(scan_dist, whichplots=2, main2="", col2=pal_col,
xlab2="Time (micro secs)", ylab2="Density\n")

A call to summary returns the parameters of the fitted model; the first row (prefixed by
lambda) is the fraction contributed by each distribution, followed by the mean, standard
deviation and log likelihood (rather than AIC): Github–Local

246 9. Probability

0 2 4 6 8 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
cc

es
s

de
ns

ity

0 2 4 6 8 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

log(Minutes)

A
cc

es
s

de
ns

ity

Figure 9.18: Density plots of accesses to one article on
Slashdot, in minutes since its publication. The distinct
Normal distributions (colored and fitted to the log of the
data) contained in the mixture models fitted by the REBMIX
(upper) and normalmixEM (lower) functions. Data kindly
supplied by Kaltenbrunner.964 Github–Local

number of iterations= 17
summary of normalmixEM object:

comp 1 comp 2
lambda 0.611002 0.388998
mu 23.011364 40.703293
sigma 1.720527 3.378665
loglik at estimate: -28873.39

A plot of a sample drawn from a mixture of distributions does not always have visually
distinct peaks; if f1 and f2 are normal densities with means µ1 and µ2, respectively, and
both have the same variance σ2, then the mixture density f = 0.5 f1 + 0.5 f2 will have a
single peak if, and only if: abs(µ2−µ1)≤ 2σ .

A study by Kaltenbrunner, Gómez, Moghnieh, Meza, Blat and López964 analysed the
pattern of user activity of the Slashdot technical community news site. The black curve
in figure 9.18 shows the density of the number of accesses to one article in each minute
after first publication (a total of 1,567 accesses).

A possible explanation for the multiple upticks in number of accesses, is the article being
linked to from other websites, driving a fresh batch of readers to Slashdot. Which mix-
ture of distributions might best fit the access times of this Slashdot article? The Poisson
distribution is often used to model arrival times and is the obvious first choice, but in this
particular case turns out not to provide the best fit.

Figure 9.18 shows several Normal distributions fitted to data, on a log scale, using func-
tions from the rebmix and mixtools packages. The algorithms used by packages do not
guarantee to find the globally optimal solution and differences in the mix of distributions
selected can occur because of differences during the search process.

library("rebmix")

slash_mod=REBMIX(Dataset=list(data.frame(users=log(slash$users))),
Preprocessing="histogram", cmax=5,
Variables="continuous", pdf="normal", K=7:45)

plot_REBMIX_dist=function(dist_num)
{
y_vals=dnorm(x_vals, mean=as.numeric(slash_mod$Theta[[1]][2, dist_num]),

sd=as.numeric(slash_mod$Theta[[1]][3, dist_num]))
lines(x_vals, slash_mod$w[[1]][1, dist_num]*y_vals, col=pal_col[dist_num])
}

plot(work_den, main="", xlim=c(0, 10), ylim=c(0, 0.36),
xlab="", ylab="Access density\n")

plot_REBMIX_dist(1); plot_REBMIX_dist(2)
plot_REBMIX_dist(3); plot_REBMIX_dist(4)

Fitting a Normal distribution to log scaled data means that the sample actually has a Log-
normal distribution. Is the Lognormal distribution a good representation for the processes
driving readers to access Slashdot articles? As always in model building the answer de-
pends on what the model is to be used for. If the purpose is to make predictions, the
accuracy of prediction is of more interest than any underlying assumptions; if the pur-
pose is to understand what is going on, then a theory containing processes generating
Lognormal distributed behavior is needed.

It can take a lot of analysis, over many years, to settle on the distribution, or combinations
of distributions, that best describes the measured properties of a system. The study of
file-system characteristics18 is an example of how researchers’ ideas and models changed
over time,507, 896, 1300 becoming more sophisticated as more data became available, from
various platforms,447 and more analysis was performed.

9.3.3 Heavy/Fat tails

Heavy tailed is the term used to describe distributions where the majority of values occur
a long way from the mean value (fat tails and long tail are also used).vi When the 80/20

viThe term sub-exponential is sometimes used to describe tails that decay slower than exponential and super-
exponential for tails that decay faster than exponential.

9.4. MARKOV CHAINS 247

0.0

0.2

0.4

0.6

0.8

1.0

Total size (bytes)

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

16 512 16K 512K 16M 512M

files bytes

Figure 9.19: Cumulative probability distribution of files
size (red) and of number of bytes occupied in a file system
(blue). Data from Irlam.896 Github–Local

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Off InfusingOn_HoldSetRate

Set_VTBI

Show_Volume_Infused
L2

L5

L8

Rate_Lock

Dosing_Summary

Infusion_Setup
Set_VTBI_Over_Time

Adjust_Alarm_Volume

Pump_Details

500ml_tbi

ml/hr

Dosing_Only
Dosing_Units_Selection

Set_Weight

Set_Volume

Set_Drug_Amount
Confirm_DosingOnly_Setup

Figure 9.20: Graph of available state transitions for Alaris
volumetric infusion pump (the button presses that cause
transitions between states are not shown). Data kindly
supplied by Oladimeji.1412 Github–Local

rule applies the distribution is heavy tailed, and the frequency with which this rule is en-
countered suggests that such data is not rare. The poweRlaw package supports operations
involving a variety of heavy tailed distributions, including power laws.

Averaging the performance of multiple subjects can produce values that are well fitted by
a power law, while individual subject performance is well fitted by any of a variety of
other distributions.1334

The Pareto distribution is the mathematical name of a particular instance of a heavy tailed
distribution (sometimes going by the name power law in popular culture); Zipf’s law is a
particular instance of this distribution.

The mean value of a heavy tailed distribution may not exist (because it is infinite). Any
finite dataset has a finite mean, and if a sample is drawn from a heavy tailed distribution,
its mean value will jump around erratically.

It is more difficult to narrow down a distribution that best fits a sample drawn from a heavy
tailed distribution (because several fit equally well), compared to one without a heavy tail;
a sample may contain many values, but their density may be low because values are spread
out over a long tail (rather than in a high density cluster around a central location).

Figure 9.19 is from a survey896 of file sizes and shows that a small percentage of files
account for most of the disk spaced occupied (the vertical line meets the bytes line where
89.9% of disk space has yet to be consumed, and the files line where 12.5% of files still
remain to be accounted for). Another way of describing the situation is to say that there
is a mass/count disparity, i.e., a few files occupy most of the space.

Care needs to be taken to separate out concepts that are popularly associated with power
laws, e.g., scale invariant, which are a property of the distribution, not the generating
process. The process generating data fitted by a power law can be remarkably random,
e.g., the length of words in text produced by monkeys typing.395

9.4 Markov chains

A finite state machine (FSM) is a machine represented by a set of distinct states, connected
by edges denoting the possible transitions that can occur when a given event occurs, such
as when a particular character is input (FSMs are deterministic).

A Markov chain (MC) is also a machine represented by a set of distinct states connected
by edges, but the possible transition is chosen at random based on the transition proba-
bility of each edge (the transition probabilities, out of any state, that is not an absorbing
state, add to one); the next state only depends on the current state, i.e., the system is
memoryless.

A Markov chain is a discrete-time Markov chain (DTMC), if the transition between states
occurs at fixed time intervals; if the time interval between state transitions is not fixed, the
Markov chain is a continuous-time Markov chain (CTMC) (the memoryless requirement
means that transition times must have an exponential distribution). If the transition time
depends on how long the system has been in the current state, it is a semi-Markov process
(SMP).

Finite state machines provide a useful abstraction for modeling user interfaces. A study
by Oladimeji1412 investigated the user interface of the Alaris volumetric infusion pump (a
medical device used for controlled automatic delivery of fluid medication, or blood trans-
fusion, to patients); the user interface includes 14 buttons and an LCD display. Figure 9.20
shows the available transitions between states.

A FSM can be represented as a control flow graph. By using this representation functions
in the igraph package can be used to answer questions such as: the maximum number
of button presses needed to get to any state (12; the path.length.hist function returns
a count of all possible path lengths), and the average number of presses to transition
between any two states (4; using the average.path.length function).

If the behavior of a system (that can be represented using a FSM) is monitored, the prob-
ability of occurrence of every transition between states can be calculated. If the behavior
represents typical user interaction with the system, then the probabilities can be used to
create a Markov chain for this typical behavior.

248 9. Probability

0.48

0.8

0.05

0.03
0.32

0.65

0.03

0.49

0.17
0.030.01

0.03

●
●

●

●

●

●

I
new

mod

unmod

del

T

Figure 9.21: Discrete-time Markov chain for created/mod-
ified/deleted status of Linux kernel files at each major re-
lease from versions 2.6.0 to 2.6.39. Data from Tarasov.1814

Github–Local

A study by Tarasov, Mudrankit, Buik, Shilane, Kuenning and Zadok1814 used data on the
lifetime of source files in various systems, such as the Linux kernel, to generate realis-
tic filesystem contents (for deduplication analysis). Figure 9.21 shows a Markov chain
representing the life of source files in the Linux kernel (from being Initialised to new,
through modified/unmodified to deleted and reaching the Terminal state). The measure-
ment snapshot occurred at each of the 40 releases between versions 2.6.0 and 2.6.39, with
an average of 23k files per snapshot; the time between releases is roughly constant, so this
might be considered a discrete-time Markov chain.

The graph.data.frame function assumes there is a link between the row values in two
columns (from and to vertices) and builds a graph based on this assumption. The V and E
functions access the vertices and edges of the graph and various attributes can be set and
may be subsequently used by plot.

library("igraph")

atc=read.csv(paste0(ESEUR_dir, "probability/atc12-gra.csv.xz"), as.is=TRUE)
atc_gra=graph.data.frame(atc, directed=TRUE)

V(atc_gra)$frame.color=NA
V(atc_gra)$size=12 ; V(atc_gra)$color="yellow"
E(atc_gra)$arrow.size=0.5 ; E(atc_gra)$color="red"
E(atc_gra)$weight=E(atc_gra)$linux
E(atc_gra)$label=E(atc_gra)$weight/100

layout.lgl outperforms the default layout for this graph
plot(atc_gra, edge.width=0.3*sqrt(E(atc_gra)$weight),

edge.curved=TRUE, layout=layout.lgl)

The algorithm used by plot to layout a graph makes use of randomization, which means
that the layout returned by every call is different.

9.4.1 A Markov chain example

A study by Perugupalli716, 1474 investigated the reliability of gcc, based on the reliability
of its major subsystems. Information on the probability of a subsystem experiencing a
failure was calculated, using the regression suite for gcc version 3.3.3 (which contains
tests for 110 faults present in gcc version 3.2.3, out of 2,126 tests, of which 55 were
traced back to the source code of a single subsystem; the others faults involved multiple
subsystems). The researchers did not attempt to analyse failures involving more than one
subsystem, and assumed that subsystems fail independently of each other.

Subsystems were identified by instrumenting gcc to count the number of calls between
pairs of functions, made while executing the regression suite (this is not actually Markov
chain-like behavior because the called functions return, which is not transition-like behav-
ior). The 1,759 traced functions were manually assigned to one of 13 internal subsystems
(e.g., parsing, tree optimization and register allocation),

The reliability of gcc version 3.2.3 might be estimated using:

R = 1− Fc

Tc
= 1− 110

2126
= 0.948

where: Fc is the number of source files that it did not correctly compile and Tc is the total
number of files compiled.vii

This approach has the advantage of being simple to calculate, but does not provide any in-
formation on the impact of individual subsystems on overall reliability, for instance, what
is the sensitivity of overall system reliability to behavioral changes to one subsystem?

The probability of reaching subsystem n from subsystem 1 after k transitions is Qk (where
Q is the matrix of transition probabilities). Summing over all transitions (using an infinite
upper bound for the total number of transitions simplifies the mathematics), we get:1846

S =
∞

∑
k=0

Qk = (I−Q)−1

viiThe calculated reliability is very low because it is based on compiling a test suite of short code samples
designed to reveal faults.

9.5. SOCIAL NETWORK ANALYSIS 249

●
●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●
●

●
●

●
●●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

openbsd freebsd freebsdopenbsd

Figure 9.22: Directed graph of emails between FreeBSD
and OpenBSD developers, plus a few people involved in
both discussions, with developers who sent/received less
than four emails removed. Data from Canfora et al.300

Github–Local

where: I is the identity matrix. The expression (I−Q)−1 is easily calculated (i.e., invert-
ing the result of a matrix subtraction). The matrix S, is known as the fundamental matrix,
and can be used to calculate a variety of properties of systems modeled by the Markov
chain.

The composite and hierarchical methods are two techniques for combining information
on subsystem usage (i.e., subsystem transition probabilities and subsystem reliability, cal-
culated using the above formula), to calculate the reliability of a complete system:

• composite method:350 this calculates the probability of a successful transition between
each subsystem, by multiplying the transition probabilities of each subsystem by the
probability of the subsystem executing successfully. These individual successful tran-
sition probabilities are used to calculate the successful transition probability from the
initial subsystem to the final subsystem, i.e., the system’s fundamental matrix. The es-
timated reliability calculated for gcc is 0.9972,viii; see Github–reliability/gcc-reliability.R.

• hierarchical method: if Ri is the reliability of a subsystem, the probability of all execu-
tions of that subsystem being successful is RNi

i , where Ni is the number of transitions to
subsystem i during one execution of the system. Assuming that subsystems fail inde-
pendently, the expected value of system reliability is:

R = E

[
n

∏
i=1

RNi
i

]
Assuming subsystems are highly reliable, and the variance in the number of subsystem
transitions is very small, the first order Taylor approximation can be used:

R'
n

∏
i=1

RVi
i

where: Vi = E[Ni] is the expected number of times a transition occurs to subsystem i,
during a single execution of the complete system; Vi is obtained by solving:

Vi = qi +
n

∑
j=1

Vj p ji

where: qi is the probability that execution starts with subsystem i, and the p ji are
obtained from the subsystem transition probability matrix; see Github–reliability/gcc-
reliability.R.

The markovchain package supports discrete time Markov chains, and the msm package
supports continuous time through the use of multi-state models.

9.5 Social network analysis

The popularity of web based social networks has made the mathematics of social network
analysis a fashionable research topic. Unfortunately many published papers involve little
more than claiming to have found a power law, with only pretty pictures and hand waving
to show. Table 7.1 is an example of the kind of descriptive statistics encountered in social
network analysis.

Social networks are represented as graphs, and the igraph package supports reading
many graph data representation formats, along with a wide range of operations and anal-
ysis on graphs.

A study by Canfora, Cerulo, Cimitile and Di Penta300 analysed the developer’s mailing
lists for FreeBSD and OpenBSD, to obtain information on what they called Cross-System-
Bug-Fixings; the data contains information on 861 unique developers sending email and
1,062 unique developers receiving email. Both FreeBSD and OpenBSD were forked from
a common base and not only continue to share common code but faults fixed in one are
often applied, some time later, to the other. Figure 9.22 was produced using code very
similar to that used for the Markov chains in figure 9.21.

Many real world collections of linked node contain subgroups (e.g., clusters of devel-
opers or related code modules), and there are a variety of algorithms for detecting these
subgroups. Care needs to be exercised in interpreting the clusters returned by these algo-
rithms, as there may be many distinct high-scoring solutions, and a clear global maximum
may not exist.705

viiiIf the 55 fault count used in this analysis is plugged into the simple formula used above, the reliability
estimate is 0.974.

250 9. Probability

9.6 Combinatorics

The analysis of some systems makes it necessary to consider combinations of various
items, and there is a need to enumerate all possible sequences, to find the total number of
different sequences of items that could occur (or other related questions). The mathemat-
ics used to solve this kind of problem is known as combinatorics.

A few of the functions frequently used in combinatorial problem solving are included in
R’s base system, including:

• the choose function takes two arguments, n and k and returns the value
n!

k!(n− k)!
,

often written as
(

n
k

)
; the number of ways of selecting k items from n items,

• the combn function takes two arguments, x and k and returns an array containing all
combinations of the elements of x taken k at a time.

When an item is drawn, with replacement, from a pool of items the probability of drawing
the same item again is unchanged, when drawing without replacement the probability will
decrease by the appropriate amount. An item is distinct if it is treated as being different
from all other items in the pool (even when drawing with replacement), e.g., there are
four items in the pool x=c("a", "a", "b", "c"), but only three of them are distinct.

Table 9.1 show how the iterpc function in the iterpc package can be used to generate
sequences based on the distinctness of items and whether they are drawn with replacement
or not.

Distinct
True False

True I=iterpc(5, 2,
replace=TRUE)

x=c("a", "a", "b", "c")
I=iterpc(table(x), 2,
replace=TRUE)

Replacement
False I=iterpc(5, 2) x=c("a", "a", "b", "c")

I=iterpc(table(x), 2)
Table 9.1: Example iterpc calls generating particular kinds of sequences of length two (by passing the value returned to getall, e.g., getall(I)).

The treatment of item ordering is another factor, when considering all possible permuta-
tions; is the ordering of items significant or not, e.g., are the sequences a,b and b,a treated
as different or equivalent? When the ordering of items is significant calls to iterpc need
to set the optional argument ordered to TRUE, e.g., I=iterpc(5, 2, ordered=TRUE).

9.6.1 A combinatorial example

This example illustrates the kind of detailed analysis needed to solve a practical combi-
natorial problem.

A study by Jones934 investigated developer preferences for ordering members within C
struct types. The hypothesis was that members having the same type are likely to be
grouped together within the same struct type.

The data contains enough instances of struct types containing between three and eight
members, for the sample to be analysed with a reasonable level of confidence.ix

If a struct contains n members, the number of possible member sequences is n!. How-
ever, we are only interested in member types and don’t care about permutations of mem-

bers having the same type. The number of different member type sequences is
n!

n1!n2! · · ·
where n = n1 +n2 + · · · and n1, n2, etc are the number of members having a given unique
type.

Taking the example of a struct containing four members, two of type x and two of type
y the possible sequences of member types within a struct type are:

ixThe number of struct types containing a given number of members decreases approximately logarith-
micly with increasing number of members,930 i.e., most member sequences are relatively short.

9.6. COMBINATORICS 251

0 20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

0.5

Measured percent

R
an

do
m

 s
el

ec
tio

n
pr

ob
ab

ili
ty

Figure 9.23: Expected probability of a single instance (y-
axis) against the probability of a measured struct type
having grouped member types (x-axis); when both prob-
abilities are the same points will be along the blue line.
Data from Jones.934 Github–Local

xxyy xyxy yxxy xyyx yxyx yyxx

and if two members are of type x, one of type y and one of type z, the possible member
type sequences are:

xxyz xxzy xyxz xyzx xzxy xzyx yxxz yxzx yzxx zxyx zxxy zyxx

In the first case members are grouped together in 1
3 of cases and in the second, in 1

2 of
cases.

If there are t different types, there are t! possible unique sequences of types. If the ordering
of struct members is random, the probability of encountering a definition in which all

members having the same type are grouped together is:
t!
n!

n1!n2!···nt !
. For the two examples

above the probabilities of encountering a member ordering, where identical types are

grouped together, are:
2!
4!

2!2!
and

3!
4!

2!1!1!
(which is already known from enumerating out all

possible sequences).

When a struct contains four members, as in the above examples, it is not possible to dis-
tinguish between a developer intentionally choosing an order and random selection. For
structs types containing five members, the probability of random selection of member
order, grouping together the same member types is high; see the fifth column in table 9.2.

Total
members

Type
sequence

structs
seen

Grouped
occurrences

Random
probability

Occurrence
probability

4 1 1 2 239 185 0.50 2.83×10−18

4 1 3 185 146 0.50 4.75×10−16

4 2 2 98 61 0.33 4.58×10−09

5 1 1 1 2 57 50 0.40 1.03×10−13

5 1 1 3 94 61 0.30 3.13×10−12

5 1 2 2 86 49 0.20 5.18×10−14

Table 9.2: Various forms of struct types containing a given number of members, one possible type grouping, number of actual struct types measured, num-
ber having grouping, probability that one type will contain this grouping and probability that the number grouped, out of total seen, will be so grouped. Data from
Jones.934 Github–Local

Table 9.2 shows source code measurement counts and calculated probabilities for struct
types containing four and five members: the column Total members lists the number of
members in the type, Type sequence is a possible grouping of member types for a given
number of member types, structs seen is the number of measured structs containing
the given number of members/types, Grouped occurrences is the number of measured
structs having the grouping listed in the first column, Random probability is the proba-
bility of this grouping occurring randomly in one struct declaration containing the given
number of members and types, Occurrence probability is the probability of Grouped oc-
currences out of structs seen occurring, when the probability of a single instance occur-
ring is Random probability.

This analysis shows it is not possible to confidently distinguish between random and in-
tentional ordering, for individual struct types. However, programs contain many such
type definitions, and if we label each one "Yes" or "No", depending on whether their
member types are grouped or not, this list of Yes/No labels has a binomial distribution,
and the probability of a given number of Yes/No labels occurring through chance can be
calculated.

Taking the example of a struct containing four members, two of type x and two of type
y, the probability of a single random occurrence of this sequence is 1

3 ; the sample ana-
lyzed contains 98 struct types with four members having two distinct types, of which
61 have this sequence of member types; see columns 3 and 4 in table 9.2. The probabil-
ity of this occurring is calculated using pbinom(61-1, 98, 1/3, lower.tail=FALSE),
whose value is 4.58272e-09 (the lower.tail=FALSE option is used because we are in-
terested in the probability of seeing 60 or more occurrences).

Figure 9.23 shows the measured percentage of struct types whose members are grouped
by type (red pluses), and the percentage that would occur with random ordering (blue
line). The green line is the 99.9% probability bound, for the likelihood that 100 structs,

252 9. Probability

all sharing the same member types, will all have their members grouped by type when
member ordering is chosen at random. The distance of the red crosses from the 99.9%
bound shows that grouping of members by type is very unlikely to have been driven by
random selection.

9.6.2 Generating functions

Generating functions are discussed here purely to inform readers about a powerful tech-
nique, which is significantly different from the traditional approach to solving probability
problems using factorials; this technique is capable of solving problems that appear to be
otherwise intractable. If it is not possible to derive an expression specifying how many
possibilities can occur in some situation, then a search for the appropriate generating
function may provide an answer.

Generating functions are starting to be covered in texts on probability; some mathematical
sophistication is required.

A generating function is a polynomial a0x0 +a1x1 + · · ·+anxn, where the coefficients an
encode information about the quantity of interest.

The following is a simple example that could just as easily be calculated using factorials,
but illustrates the idea. How many ways can five items be selected, if A can be selected 0
or 1 times, B can be selected 0, 1 or 2 times and C can be selected 0, 1, 2, 3 or 4 times?
The generating function is (see the suggested reading for why this works):

(1+ x)(1+ x+ x2)(1+ x+ x2 + x3 + x4) = x7 +3x6 +5x5 +6x4 +6x3 +5x2 +3x+1

the coefficient of x5 is 5, so five different items orderings are possible.

A more complicated example is when items have a particular value and sequences that
sum to a specific total are required. If A is worth 1, B is worth 3 and C is worth 5, the
generating function is:

(1+ x+ x2 + · · ·)(1+ x3 + x6 + · · ·)(1+ x5 + x10 + · · ·) = 7x11+7x10 +6x9 +5x8 +4x7 +4x6+

3x5 +2x4 +2x3 + x2 + x+1

the coefficient of x10 is 7, so there are seven different ways of selecting items that sum to
ten.

The polynom package supports the symbolic manipulation of polynomials.

Chapter 10

Statistics

10.1 Introduction

Is a pattern of interest present in a population?

Statistics provides information about a population, based on a measurement sample drawn
from that population.

The developer input to statistical analysis process is their domain knowledge, which may
suggest patterns of behavior to search for, and provide one or more interpretations to any
patterns that are found (the feedback given may be that the pattern found is not interest-
ing).

The output from statistical analysis should be treated as a guide, not as a definitive state-
ment.

Correlation does not imply causation, a common mantra that is always worth repeating.

Traditionally, statistical techniques have had to be practical to perform manually. This has
resulted in general statistical problems being split into a profusion of specific subprob-
lems, and the creation of techniques tailored to handle each case. Doing statistic analysis
this way, involved mapping the sample characteristics to a particular subproblem and then
applying the corresponding technique. Computer availability makes it practical to apply
general solution techniques and general, powerful and robust statistical techniques are
available;550 however, many existing users of statistical techniques have simply switched
from manual to computer based calculation of familiar historical techniques, without ap-
preciating the original design rational for these techniques. Many statistical techniques
appearing in this book are impractical to apply manually (e.g., the bootstrap) a computer
is required.

The results from data analysis may vary with the person doing the analysis;1705 for in-
stance, people may use a technique because it is the one they know how to use, rather
than the technique best suited to the data being analyzed.

Existing books often invest effort massaging data into a form that permits the use of tech-
niques that depend on the data having a Normal distribution (also known as a _Gaussian
distribution_i). The reasons for this are historical (assuming Normality made the analysis
tractable in the days before computers), and data in the Social sciences (early adopters
of statistical techniques and a major market for statistical books) appearing to be drawn
from a Normal distribution (despite the claims made, data in this field often does not have
a Normal distribution1274). It might be said that nobody ever got fired for assuming a
Normal distribution.

Measurements of software engineering processes often produce values that are not drawn
from a Normal distribution; the Exponential and Poisson distributions are relatively com-
mon; measurement samples that are best described by a Normal distribution do occur, but
they do not have the dominant market share encountered in other, non-software related,
domains, e.g., the social sciences.

The input to statistical analysis is a sample and usually some expectations of behavior;
the expectations may be explicit (e.g., measurements are independent of each other) or

iThis book uses the term Normal because it appears to be more widely used.

253

254 10. Statistics

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Population

Sample

●

●

●●

●

Figure 10.1: Example of a sample drawn from a popula-
tion. Github–Local

1970 1975 1980 1985 1990 1995 2000

5

10

15

20

25

30

Year introduced

Li
fe

tim
e

(y
ea

rs
)

Figure 10.2: Date of introduction of a cpu against its com-
mercial lifetime; processors ceasing production in 2000 or
2010 would appear along one of the lines. Data from Cul-
ver.419 Github–Local

implicit, e.g., the choice of a statistical technique that only produces reliable results for
samples drawn from a population having certain characteristics.

The possibility for detecting patterns that might be present in a sample depends on the
quality and quantity of measurement data:

• quality: noise in the measurement process and errors in post measurement processing
(e.g., incorrect conversion of file formats or inaccurate calculations of values derives
from the raw data) are some of the problems that affect data quality,

• quantity: the number of measurements impacts the power and significance of statistical
tests, and the confidence bounds on the results of statistical analysis.

Finding a pattern in the data having the desired level of statistical certainty, moves the
discussion on to the practical engineering consequences of what has been found, e.g.,
mountain or molehill. A discussion of practical engineering consequences of patterns is
outside the scope of this book.

10.1.1 Statistical inference

The most commonly used statistical inference technique makes use of frequentist meth-
ods, i.e., how often events occur and long-run averages. All techniques have problems
associates with their use and frequentist, being the most widely used, has the greatest
number of detractors; a common problem is misuse of the concept of p-value; any widely
used technique will have a common failure mode, simply because of varying skills of
the people using it. The p-value is the fall-guy of the frequentist approach to statistical
analysis.

The frequentist approach is the technique predominantly used in this book because it
is commonly used in statistical books and articles; it is used by most R packages and
readers are likely to encounter it when interacting with other people involved in analysing
and using data.

Another technique is Bayesian statistics, which is growing in popularity; some R pack-
ages use this approach internally. A Bayesian approach has the potential to extract more
information from data, by making use of information about prior beliefs. What is known
as the prior, is a reasonable value for the probability of the event occurring, estimated
prior to any measurements being made (the measurements get factored in later); the se-
lection of a suitable prior opens the door to the bias of opinion and policy guidelines,234

e.g., a Bayesian approach to deciding whether the accused is guilty runs into the problem
that many legal systems assume people are innocent until proven guilty (i.e., the prior is
zero), a belief that percolates through calculations to always produce a not-guilty result.

A study by Furia637 reanalyzes several software engineering datasets using Bayesian tech-
niques.

Maximum likelihood estimation, MLE, is a technique for finding the set of parameters for
a model that make the observed data most likely to have occurred.

10.2 Samples and populations

It may not be practical to measure every member of a population, and the subset of the
population measured is known as a sample; see figure 10.1.ii Depending on the ques-
tion being asked, a set of measurements may be a population or a sample. For instance,
measurements of one particular program yields the parameters of a population when the
questions being asked concern just that one program, but they become the statistics of
a sample when generalizing the findings to questions about other programs (including
future versions of the one measured).

A sample is selected as a proxy for the entire population; experimental subjects are dis-
cussed in section 13.2.1. There are a variety of sampling techniques, including:

iiThe term statistic applies to values calculated from a sample, while the term parameter applies to values
calculated from a population. In some equations the value N − 1 is used, when N might appear to be more
appropriate. A mathematical distinction occurs between samples and populations, in that sample estimates
are based on degrees of freedom of the sample, i.e., the number of members in the sample minus one, while
population parameters are based on the number of members in the population, i.e., N.

10.2. SAMPLES AND POPULATIONS 255

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

Strata

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Strata

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

Strata

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 10.3: A population of items having one of three
colors, along with samples of the three strata (imper-
fect item selection introduces noise in the samples).
Github–Local

60 70 80 90 100
100

150

200

250

300

350

400

Load level

W
at

ts

lu
sha256
sort

Figure 10.4: Power consumed by three SERT benchmark
programs at various levels of system load; crosses at 2%
load intervals, lines based on 10% load intervals. Data
kindly provided by Kistowski.1012 Github–Local

Sample Size

N

Effect Size

ES

Power

1−P(Type II Error)

Significance Level

P(Type I Error)

Figure 10.5: The four related quantities in the design of
experiments; given three, the fourth can be calculated.
Github–Local

• a survey sample is collected when the items to be measured (often via a questionnaire)
are selected from a population assumed to share (unknown) fixed characteristics. The
measured characteristics of the random sample, drawn from this fixed population, are
used to estimate the characteristics of the population. The analysis of a sample ob-
tained via a survey is design-based (rather than model-based). See section 13.4 for a
discussion of questionnaire based surveys,

• a prospective study collects data as events unfold. Figure 10.2 shows the date of in-
troduction of a cpu against its commercial lifetime, in years.419 Processors that ceased
production in 2000 or 2010 would appear along one of the two colored lines,iii

• a retrospective study collects data after events have taken place,

• a convenience sample, as its name implies, makes do with what is available,

• snowball sampling, or chain sampling starts with an initial list of subjects, who are
asked to propose other subjects whom to them, with the process iterating until the num-
ber of new subjects falls below some threshold,

• stratified sampling divides the population into what are known as strata, with the strata
chosen such that similar cases tend to cluster within each one; each of these strata are
then sampled (using, say, random sampling) to produce the final sample (which is a set
of distinct stratum, see figure 10.3),

• sequential sampling is covered in section 13.2.4,

• interval sampling divides the measurement interval into a series of fixed points and
samples at just these points. The width of the sampling intervals puts a lower bound
on the behavior that can be resolved. An experimental studyiv by Kistowski, Block,
Beckett, Lange, Arnold and Kounev1012 measured power consumption, using programs
from SPEC’s Server Efficiency Rating Tool, at load level increments of 2% (crosses)
and 10% (lines); see figure 10.4. A cost/benefit analysis would compare the greater
accuracy obtained using finer measurement intervals against the likelihood of sudden
jumps in the response value, that could have a noticeable impact on the results.

Occasionally the subjects of interest are not present in the sample. For instance, the dam-
age experienced by aircraft returning from combat, during the second world war, was
analysed with a view to improving aircraft survival rate. A statistician involved in the
analysis pointed out that important subjects were missing from the sample,1198 aircraft
that had not returned. The return of a damaged aircraft provides evidence that the dam-
aged areas are not critical to survival; it was those areas not damaged in returning aircraft
that are likely to be critical to survival.

Guy760 proposed a strong law of small numbers, "There aren’t enough small numbers to
meet the many demands made of them.", listing 35 examples of numeric patterns found
in samples calculated using small integer values that disappear when larger integer val-
ues are used. The greater number of large values reduces the likelihood of coincidental
correctness.

Figure 10.5 shows the four connected statistical characteristics of a sample; given the
values of three of them, the fourth can be calculated.

While gathering a representative sample of the population as a whole is a common re-
quirement, sometimes samples having other characteristics are of interest, e.g., being di-
verse,1344 or intended to maximise the number of faults found.1254

The algorithm used to select the members of a sample can be non-trivial, even for uniform
sampling, e.g., uniform distribution of points within a circle, or uniform sampling from
Kconfig feature models.1407

10.2.1 Effect-size

Effect-size is the degree to which the characteristic of interest is present in the population
(from which a sample is drawn), e.g., if we are interested in the difference in the perfor-
mance of developers before and after attending a training course, how big is the difference
(answering this question may be the reason for obtaining measurements)?

The question to ask about a calculated effect-size is: “Does it matter?” The larger the
effect-size the more likely it is to be of interest in practice; in some cases a small effect-
size may be of interest (e.g., a small difference multiplied over a large population can

iiiEmail discussion with the author confirmed that the data had not been updated since 2010.
ivThe study was experimental because it did not meet all the requirements for an official SERT run.

256 10. Statistics

have a large impact), while in other cases only a large effect-size is of interest, e.g., when
the population is small a large effect-size may be needed to have a large impact.v

Smaller effect-sizes are likely to be more costly to detect because more measurements are
needed to isolate small effect-sizes compared to larger ones.

Figure 10.6 shows how percentage differences in the presence of a condition in a popula-
tion can have a dramatic effect on the false positive rate (in red), for the same statistical
power and p-value.

1%

99%

80%
20%

95%
5%

10,000
sample size

100
have condition

9900
do not have

condition

detected
80 True positives

not detected
20 False negatives

test negative
9405 True negatives

test positive
495 False positives

50%

50%

80%
20%

95%
5%

10,000
sample size

5000
have condition

5000
do not have

condition

detected
4000 True positives

not detected
1000 False negatives

test negative
4750 True negatives

test positive
250 False positives

99%

1%

80%
20%

95%
5%

10,000
sample size

9900
have condition

100
do not have

condition

detected
7920 True positives

not detected
1980 False negatives

test negative
95 True negatives

test positive
5 False positives

Figure 10.6: Examples of the impact of population preva-
lence, statistical power and p-value on number of false
positives and false negatives. Github–Local Methods for calculating effect-size depend on the kind of analysis being performed on the

sample,543 and include the following:

• correlation, e.g., the Pearson correlation coefficient, is a measure of effect-size,

• combining information on the mean and standard deviation of two samples into a single
value. For instance, Cohen’s d is one measure used when samples have similar standard
deviations, and is given by: d = µ1−µ2

σpooled
. There are a variety of effect-size calculations

associated with Cohen’s name.

Figure 10.7 illustrates how differences in mean and standard deviation, of two distribu-
tions, result in a given Cohen’s d,

0 1 2 3 4 5

d=0.5

0 1 2 3 4 5 6

d=1

0 1 2 3 4 5

d=0.5

0 2 4 6

d=1

Figure 10.7: Visualization of Cohen’s d for two normal
distributions having different means and the same stan-
dard deviation (two left), and different mean and standard
deviations (two right). Github–Local

• odds ratio (i.e., odds = p
1−p), that is, the ratio of the odds of an event occurring in one

sample divided by the ratio of the same event occurring in the other sample (perhaps a
control group).

vStatistical books378 and papers sometimes concern themselves with questions of where to draw the lines
that delimit large/medium/small effect-sizes, an approach that might be applicable when researchers are more
interested in publishing papers than making useful discoveries.

10.2. SAMPLES AND POPULATIONS 257

0.0 0.5 1.0 1.5 2.0

Exponential

size=10

0 1 2 3

Lognormal

size=10

0.5 1.5 2.5 3.5

Pareto

size=20

0.5 1.0 1.5

Exponential

size=20

0.5 1.5 2.5

Lognormal

size=20

1.4 1.8 2.2 2.6

Pareto

size=200

Figure 10.8: Distribution of 4,000 sample means, for two
sample sizes, drawn from exponential (upper), lognormal
(center) and Pareto (lower) distributions, vertical lines are
95% confidence bounds. The blue curve is the Normal
distribution, predicted by theory. Github–Local

1

2

5

10

20

50

100

E
xe

cu
tio

n
tim

e
(b

ill
io

n
cy

cl
es

)

Figure 10.9: Mean (red) and standard deviation (brown
line for each sample; not symmetrical because of log scal-
ing) of samples of 3 items drawn from a population of
1,000 items (whose mean shown by blue line and stan-
dard deviation by green lines). Data kindly provided by
Chen.344 Github–Local

10.2.2 Sampling error

If the reader agrees that sampling error is an important issue, this section can be skipped.
Otherwise, read on and be frightened into agreeing.

The Central Limit theorem is a statement about the mean value of samples drawn from a
population. If the population has a finite variance (power laws with an exponent between
zero and two have an infinite variance), then the distribution of sample means converges to
a Normal distribution as the sample size, N, increases (it does not matter what distribution
the population has, it is the distribution of sample means that converges to the Normal).

How quickly does the distribution of sample means converge? The Berry-Esseen the-
orem gives the best known estimate of convergence of the distribution of the mean of
independent, identically distributed, variables to a Normal distribution:

|Fn(x)−Φ(x)| ≤ 0.34(ρ +0.43σ3)

σ3
√

N

where: Fn is the cumulative distribution function of the means, Φ the cumulative distribu-
tion function of a Normal distribution, ρ the third moment of x (and less than infinity), σ

the standard deviation and N the sample size.

The only parameter available for influencing the error is the number of measurements; the
error is proportional to: 1√

N
, e.g., to halve the error in the sample mean, the sample size

needs to increase by a factor of four.

Figure 10.8 shows the distribution of mean values for samples drawn from three different
distributions (using two sample sizes); the vertical lines are 95% confidence bounds.vi

A study by Chen, Chen, Guo, Temam, Wu and Hu344 measured the performance of pro-
grams in the SPEC CPU2006 benchmark using 1,000 sets of input data for each program.
As an exercise in sampling let’s assume we only have access to three of a possible 1,000
input datasets, what range of execution times might we expect to see from processing just
three datasets?

Figure 10.9 was obtained by randomly sampling three items from the population of 1,000
and repeating the process 100 times. The red cross is the sample mean, and the vertical
brown lines each sample’s standard deviation; the blue line is the mean for the population
of 1,000 input sets and the green lines the bounds of this population’s standard deviation.

Figure 10.10 shows the distribution of sample means for sample sizes of 3 and 12 items.
As expected, the larger samples show less variation in the mean value.

Sources of noise (i.e., random variability) in a sample include the following:

• measurement error caused by imperfect tools used to make measurements, which can
include coding mistakes and the definition of what is being measured, e.g., lines of
code,1704

• demographic variability, e.g., measurements of particular kinds of programs, or devel-
opers working in a single location or for one company,

• environmental variability is the sea in which developers swim, or have swum in the
past, e.g., company culture or habits acquired from early teachers.

Figure 10.11 shows the number of commits to glibc704 for each day of the week, separated
out by year. The plot in the top left shows daily totals over all years. The combined plot
suggests that most commits occur near the middle of the week, with the number falling
off towards the beginning and end of the week. However, the yearly plots rarely show
anything like this pattern; is any interpretation of the pattern of commits in the combined
plot a just-so story?

10.2.3 Statistical power

If an effect exists, and an experiment is performed to measure it, what is the likelihood
that the effect will be detected? The numeric answer to this question is known as the
statistical power, of the experiment. The power of a statistical test is its ability to detect
a difference when one actually exists in the data. Failing to detect an effect, when one
exists, is known as making a Type II error, or more commonly as a false negative (β is

258 10. Statistics

0e+00 2e+10 4e+10 6e+10
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

D
en

si
ty

 (
tim

es
 1

0^
−

9)

3 items
12 items

Figure 10.10: Density plot of mean of samples containing
3 or 12 items randomly selected from a data set of 1,000
items; process repeated 1,000 times for each sample size.
Data kindly provided by Chen.344 Github–Local

0

10000

20000

30000

Total
0 3 6

0
200
400
600
800

1991
0 3 6

0
100
200
300
400
500

1992
0 3 6

0

100

200

300

1993
0 3 6

0
100
200
300
400
500

1994
0 3 6

0
500

1000
1500
2000
2500

1995
0 3 6

0

500

1000

1500

1996
0 3 6

0
500

1000
1500
2000
2500

1997
0 3 6

0

500

1000

1500

1998
0 3 6

0
500

1000
1500
2000
2500

1999
0 3 6

0
500

1000
1500
2000
2500

2000
0 3 6

0

2000

4000

6000

2001
0 3 6

0
500

1000
1500
2000
2500

2002
0 3 6

0

500

1000

1500

2003
0 3 6

0
2000
4000
6000
8000

2004
0 3 6

0
1000
2000
3000
4000

2005
0 3 6

0
500

1000
1500
2000
2500

2006
0 3 6

0
2000
4000
6000
8000

2007
0 3 6

0
200
400
600
800

2008
0 3 6

0

500

1000

1500

2009
0 3 6

0

200

400

600

2010
0 3 6

0
200
400
600
800

1000

2011
0 3 6

0
20
40
60
80

2012
6

Figure 10.11: Number of commits to glibc for each day
of the week, for the years from 1991 to 2012. Data from
González-Barahona et al.704 Github–Local

commonly used to denote the Type II error rate). Techniques for reducing Type II errors
include:

• being willing to accept a larger Type I error, or more commonly as a true negative (α is
commonly used to denote the Type I error rate),

• sampling from a population thought to have a higher probability of containing the
sought after characteristics. For instance, Vasa1883 excluded releases with less than
30 changed classes in a study of class change dynamics. If a subset of a population is
selected to maximise detection rate, care must be taken to ensure that any statement of
statistical power refers to the subset population, not the larger population from which it
was subsetted,

• increasing the number of measurements made, i.e., sample size.

Figure 10.12 is an example showing the distribution of measurements in two populations:
X (red) and Y (green), e.g., the time taken to execute all possible programs, with all
possible input, on two different computers. The upper and middle plot only differ in
mean value, while the middle and lower plot only differ in standard deviation. The false
positive rate, α , is shaded in red, and the false negative rate, β , in green. The two rates
are connected in that increasing one decreases the other, and vice versa.

When there is a large overlap between samples (middle plot), most of the measurements
in either sample have values that suggest they could have drawn from the other sample. In
the upper plot, the difference in the sample means makes it more likely that measurements
from Y will have values that appear to have been drawn from a different distribution, than
samples from X.

The area of the unknown distribution excluding β (i.e., 1−β), is known as the power of
the test.

A power of 80% is often quoted378 as being an acceptable lower limit of a test having
a high power, just like 5% is often quoted as an acceptable significance level in many
contexts.

If there is a need to estimate whether an effect exists (e.g., one computer is faster than
another, or a new algorithm uses less memory), before an experiment is run the question
to ask is whether a difference (if it exists) is likely to be detected using the available re-
sources, e.g., time and effort needed to obtain a measurement sample. A statistical power
calculation shows the tradeoffs that can be made between sample size and probability of
detecting an effect (assuming information on population mean, standard deviation and
estimated differences between two or more samples).

The pwr package supports power analysis calculations for a variety of standard statistical
tests. The functions are passed values for three sample characteristics and return the value
of the fourth; see fig 10.5.

A study by Syed, Robinson and Williams1805 investigated variations in the number of
intermittent failures experienced, when using the Firefox browser, at different processor
speeds, system memory and hard disc sizes. A total of 11 known coding mistakes, causing
intermittent failure (four of these did not produce fault experiences) and nine different
hardware configurations were selected. The conditions expected to cause each mistake to
result in a fault being experienced were created, and Firefox was executed 10 times with
each hardware configuration. Table 10.1 shows the number of each fault experienced with
each hardware configuration.

This experiment failed to detect a connection between hardware configuration differences
and faults experiences. What is the likelihood that if a connection existed, this experiment
would have detected it. Alternatively, how large would the connection need to be for this
experiment to detect it?

Analyzing the statistical power of an experiment involving a difference in proportions
(i.e., failures before and after) requires an estimate of effect size (calculated from the
proportion of failures before and after a change of hardware specification), the number of
runs (10 in this case), and the desired p-value; e.g., 0.05. In this study, there were multiple
changes of hardware specification and to keep things simple this analysis calculates the
power for one change.

Does a hardware change cause more or fewer faults to be experienced? Without a theory
providing a believable rationale for more/less, it has to be assumed that either could occur.
In other words, a two-sided test is required.

viThere will be fluctuations in the values drawn to create each sample.

10.2. SAMPLES AND POPULATIONS 259

Mhz-Mb-Gb 124750 380417 410075 396863 494116 264562 332330
667- 128- 2.5 4 10 6 5 2 3 5
667- 256-10 4 8 8 6 4 3 8
667-1000- 2.5 4 7 3 4 3 1 8

1000- 128-10 3 10 3 6 0 1 1
1000- 256- 2.5 3 9 0 6 0 1 2
1000-1000-10 2 9 4 5 0 0 1
2000- 128- 2.5 0 10 5 6 0 0 0
2000- 256-10 2 8 5 7 0 0 0
2000-1000-10 1 7 3 5 0 0 0

Table 10.1: Number of times, out of 10 execution, a known (numbered) coding mistake resulted in a detectable failure of Firefox running on a given hardware configuration
(cpu speed-memory-disk size). Data from Syed et al.1805

2 3 4 5 6 7

X Y

α
β

2 3 4 5 6 7

X Y

α
β

2 3 4 5 6 7

X Y

α
β

Figure 10.12: The impact of differences in mean and stan-
dard deviation on the overlap between two populations (α:
probability of making a false positive error, and β : proba-
bility of making a false negative error). Github–Local

In the following code: h is the effect size (the ES.h function, from the pwr package,
calculates this from the estimated proportion of runs that failed before/after the hardware
change), n is the number of runs, sig.level is the p-value significance level and power
the statistical power. The argument that is not specified (it is not necessary to specify
NULL, this is the default value), or is given a NULL value, is returned by the call.

The default value of the alternative parameter is "two.sided".

library("pwr")

pwr.2p.test(h=ES.h(before, before+diff), n=num_runs, sig.level=0.05, power=NULL)
pwr.2p.test(h=ES.h(before, before+diff), n=NULL, sig.level=0.05, power=0.8)

Figure 10.13, upper plot, shows the power achieved (y-axis), if a given difference in faults
experienced does occur (x-axis), the before proportions 0.05, 0.25 and 0.5 are plotted; the
power is plotted for 10 and 50 runs.

The probability of a difference being detected from 10 runs is below 0.5 (i.e., less than
50% chance of detecting a difference at a p-value of 0.05 or better), unless a change of
hardware has a large impact on the proportion of faults experienced.

Figure 10.13, lower plot, shows the number of runs needed (y-axis), to have an 80%
chance of detecting a given difference (x-axis) in proportion of faults experienced; the
before proportions 0.05, 0.25 and 0.5 are plotted, at a significance of 0.05.

This lower plot can be used to find how much difference needs to be experienced for an
experiment using 10 runs (per possible fault experience) to be likely to detect it. The fail-
ure of this experiment to detect any hardware configuration impact on number of known
faults experienced, provides evidence that if any difference does exist, its impact is to add
less than 50% or so to the proportion of intermittent fault experiences.

If the pwr package does not contain a function that calculates the power of the statistical
test being considered, a Monte Carlo simulation can be used to perform a power calcula-
tion for the test being considered. The algorithm simulates an experiment, by obtaining
samples from the population(s) that are thought to exist and performing the analysis on
each sample, counting each success/failure to detect a difference.

The following code creates two populations and then compares two samples drawn from
these populations. The user written function some_test_statistic compares two sam-
ples and returns the probability that an analysis of two samples will produce a given
value; Github–statistics/boot-power.R contains an example that checks for a difference in
mean value between samples drawn from two populations, see figure 10.14:

boot_power=function(pop_1, pop_2, sample_size, test_stat, alpha=0.05)
{
num_samples=5000 # Number of times to run the ’experiment’.
results=sapply(1:num_samples, function(X)

{
sample_1=sample(pop_1, size=sample_size, replace=TRUE)
sample_2=sample(pop_2, size=sample_size, replace=TRUE)
return(test_stat(sample_1, sample_2, alpha))
})

return(sum(results<alpha)/num_samples) # fraction detected
}

260 10. Statistics

0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

Difference

P
ow

er

50

10

Power of experiment

Before

0.05
0.25
0.5

0.1 0.2 0.3 0.4
10

20

50

100

200

500

1000

Difference

R
un

s

Runs needed

Before

0.05
0.25
0.5

Figure 10.13: Power analysis (50 and 10 runs at various p-
values) of detecting a difference between two runs having
a binomial distribution (runs needed to achieve power=0.8
at various p-values). Github–Local

20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Sample size

P
ow

er

0.1

0.3

0.5

0.7

0.9

Figure 10.14: The statistical power of detecting that
a difference exists between the mean values of sam-
ples of various sizes drawn from two populations; actual
mean difference between samples adjacent to colored line.
Github–Local

Create two slightly different populations (which happen to be Normal here).
population_1=rnorm(100000, mean=0, sd=1)
population_2=rnorm(100000, mean=0+0.5, sd=1)

expected_sample_size=20 # The expected size of the sample to be collected
boot_power=function(population_1, population_2, expected_sample_size,

some_test_statistic, alpha=0.05)

Figure 10.14 shows the results of a Monte Carlo simulation that tests for a difference
in the mean of two samples of various sizes, each drawn from a different population;
see Github–statistics/response-power.R for the values calculated using an analytic solution,
applicable for populations having a Normal distribution.

Obtaining good enough accuracy from a power analysis requires a good approximation of
the likely characteristics of the sample obtained by an experiment. This information about
the sample might be extracted from the results of related studies, a preliminary study or
theory of the processes involved.

10.3 Describing a sample

A list of values can overwhelm readers with too much detail and techniques for compress-
ing many values into a few, often just one value, are available.vii The few compressed
values are known as descriptive statistics, and the following are some common sample
descriptions:

• a point estimate of a central value and its variability, e.g., mean and standard deviation,

• an equation fitted to the sample data according to some condition, e.g., minimising
mean squared error,

• quartiles, a cluster of measurements based on where values are relative to other values
in the sample, e.g., a box-and-whiskers plot such as fig 8.20.

The mean and standard deviation are the two most commonly used descriptive statistics.
It is incorrect to think that two distributions having the same mean and standard deviation
will be very similar; see figure 10.15.

10.3.1 A central location

Perhaps the most widely used, single value summary of a sample, derives from the idea
of a middle or central location.

• the mean, is perhaps the most commonly used central location; obtained by adding
together the values, in a sample, and dividing by the number of values,

• the median is obtained by sorting the N values into numerical order and selecting the
value of the N+1

2 th element (if N is even the average of the middle two values is used),

• the mode is the value most likely to be sampled (R’s mode function is unrelated to the
statistical algorithm of that name, it returns the type or storage mode of an object). The
modeest package contains functions for estimating various kinds of mode.

For symmetric distributions the values of the mean, median and mode are equal, while for
asymmetric distributions, the three values can be very different.

When sample values are drawn from a unimodal distribution, the difference between the
median and mean is less than or equal to

√
0.6σ , and for other non-unimodal distributions

less than σ .

The difference between the median and mode is less than or equal to
√

3σ .

Unless the sample distribution is symmetric, it is not possible to sum multiple modes, e.g.,
cost estimates. For nonsymmetric distributions, adding underestimates the true value, e.g.,
for a Gamma distribution the mean is kθ and the mode is (k−1)θ , where k and θ describe
the Gamma distribution.

Figure 10.16 shows the distribution of execution times of the 1,000 input data sets from
Chen et al.344 If we are interested in an estimate of the execution time of a randomly

viiPlotting is a technique that can make use of all the values, and is the major focus of chapter 8.

10.3. DESCRIBING A SAMPLE 261

0 2 4 6 8

Figure 10.15: A Normal distribution with mean=4 and
variance=8 and a Chi-squared distribution with four de-
grees of freedom having the same mean and variance
(the vertical lines are at the distributions’ median value).
Github–Local

0.0e+00 4.0e+10 8.0e+10 1.2e+11
0e+00

1e−11

2e−11

3e−11

4e−11

5e−11

Execution time

D
en

si
ty

mean
median

mode

Figure 10.16: Density plot of execution time of 1,000 in-
put data sets, with lines marking the mean, median and
mode. Data kindly supplied by Chen.344 Github–Local

5 10 20 50 100 200

0.0

0.5

1.0

1.5

2.0

Sample size

B
ia

s
in

 s
ta

nd
ar

d
de

vi
at

io
n

of
 m

ea
n

0.9
0.7
0.5
0.3
0.2
0.1

−0.1
−0.2
−0.3
−0.5

5 10 20 50 100 200

0.8

0.9

1.0

1.1

1.2

Sample size

B
ia

s
in

 s
ta

nd
ar

d
de

vi
at

io
n

of
 s

am
pl

e

0.1
0.2
0.3
0.5
0.7
0.9

−0.9
−0.7
−0.5
−0.3
−0.2
−0.1

Figure 10.17: Impact of serial correlation, AR(1) in this
example, on the calculated mean (upper) and standard
deviation (lower) of a sample (the legends specify the
amount of serial correlation). Github–Local

chosen input data set, the median value, the point that equally divides the number of input
data sets is the obvious choice. If we are interested in an estimate of the execution time
most likely to be encountered, the value of the mode is the obvious choice.

Some distributions have such fat tails that the mean is infinite, e.g., the Cauchy distribu-
tion. In practice, the regularity with which very large values occur results in the mean
value of a sample jumping around erratically, as new measurements are made. A distribu-
tion that does not have a finite mean may still have a median; the median is not affected by
extreme values in the way the mean is, and any extreme values that do appear in a sample
do not prevent the median converging to a fixed value.

The median absolute deviation is based around using the median as a robust estimation of
variance; supported by the mad function.

The well-known algorithms for calculating the mean and standard deviation of a sample
require that each value be independent of the others. When a sequence of values is serially
correlated, i.e., the value of a measurement is related to the value of one or more immedi-
ately previous measurements, the calculated mean and standard deviation is biased. In the
case of the mean, the uncertainty in its value grows for positive correlation, and decreases
for negative correlation. Figure 10.17, upper plot, shows the fraction of this change for
various sample sizes; it is based on an AR(1) model, where each value correlates with
the immediately preceding value by an amount given in the legends on the right of the
plot; see section 11.10 for a discussion of AR models. A positive correlation causes the
ratio of the sample standard deviation, relative to the population standard deviation, to be
underestimated, while a negative correlation causes it to be overestimated; figure 10.17,
lower plot, shows the fraction of this change.

The sandwich package supports the calculation of various error measures that are caused
by serial correlation, e.g., the lrvar function calculates the error in the long term mean
of a series.

Circular data: Some measurements are made using a circular scale, with values that
increase and wrap around from the maximum value to start again at the minimum value,
e.g., angles take on values between 0 and 360.

The mean, if it exists, has a direction (or angle) and a length; figure 11.81 shows a calcu-
lated mean of values drawn from a circular distribution; see section 11.12.

Compositional data: The individual components of a sample of compositional data (i.e.,
data whose components always sum to a fixed value, such as percentages summing to
100%) are correlated, and the mean of each component cannot be calculated indepen-
dently of the other components. The mean function in the compositions package calcu-
lates the mean of compositional data; see section 10.3.6.

Several methods of calculating the variance and standard deviation of compositional data
have been proposed. The compositions package supports the mvar function, which cal-
culates what is known as the total variance (or generalized variance), and the msd function
which calculates the metric standard deviation (both return single values). The variation
matrix includes information about the relationship between every pair of components,
and is returned by the variation function; see Github–statistics/composite-variation.R for
the variance calculation of the values plotted in figure 5.31.

10.3.2 Sensitivity of central location algorithms

Samples sometimes contain values that are noticeably different from the other values (e.g.,
much smaller or larger; which may or may not be the result of noise); the terms outlier or
influential observation are used for such values. The percentage of sample values needed
to cause a statistical estimator to produce an arbitrarily large (positive or negative) value
is known as the breakdown point.

The breakdown point for the mean is proportional to 1
N , i.e., no matter how many obser-

vations are made, it only takes one extreme value to produce a completely spurious result
for the mean; the mean has the smallest breakdown point it is possible to have.

At the other end of the scale, the median has a breakdown point of 0.5 (i.e., half of the
measurements can have extreme value without affecting the result value) and for this
reason the median is often recommended, over the mean, when measurements values are
known to be very noisy. However, the median cannot be recommended for universal
use because there are situations where it does not perform as well as the mean. For

262 10. Statistics

Median

S
am

pl
es

6 6.5 7 7.5

Mean

S
am

pl
es

5.5 6.0 6.5 7.0

Figure 10.18: Number of sample median (upper) and
mean (lower) values for 1,000 samples drawn from a bi-
nomial distribution. Github–Local

instance, when values are drawn from a discrete distribution whose mean is roughly half-
way between measurable points, and the sample includes duplicate values, then most
samples will have a median value slightly larger/smaller than the actual mean, i.e., the
median is not evenly distributed across possible values in the way the mean is likely to be
distributed; see figure 10.18.

The probability of an outlier occurring depends on the reliability of the measurement
process and the characteristics of the population being sampled. The following two tech-
niques are robust in the presence of extreme values in a sample:

• trimmed mean removes a percentage of the largest and smallest values, before calculat-
ing the mean of the remaining values (it has been found that 20% is a good value for
general use). The mean function includes a trim argument for specifying the percentage
to be trimmed,

• winsorized mean replaces rather than remove values. The values of the lowest X%
are replaced with the lowest value that is just not within the specified percentage, and
the values of the highest X% are replaced with the highest value just not within this
percentage; the Winsorized mean is calculated using the updated list of values. The
psych package contains functions that calculate various quantities using the Winsorized
mean.

The trimmed and winsorized means may produce biased results when applied to samples
drawn from a population having an asymmetric distribution.

10.3.3 Geometric mean

The geometric mean of N values is:

Meang =

(
N

∏
i=1

Xi

) 1
N

For instance, the geometric mean of 10, 100, 1000 is (10×100×1000)
1
3 → 100.

The geometric mean is preferred to the arithmetic mean when ranking ratios or normalised
data (which is a kind of ratio), because it gives consistent results.

When one or more values, Xi, is negative or zero, calculating a geometric mean is a more
complicated process.761

Consider the (invented) benchmark performance of the three systems in table 10.2. Treat-
ing a as the base performance, what is the relative performance improvement of b and
c?

If the arithmetic mean is used, the performance ranking of b and c, relative to a, depends
on whether the calculation used is a ratio of their means, or the mean of their ratios.
The fourth column lists the mean of the values in the second and third column of the
corresponding row, and the fifth column lists the ratio of these mean values (relative to
a). The individual benchmark ratios for a and b are: 2

1 and 105
100 , and for a and c: 3

1 and
103
100 . The mean of these ratios is listed in the sixth column. Comparing columns five and
six shows that the ranking of b and c depends on the method of calculating the ratios; also
see table 13.1.

system integer float arithmetic
mean

ratio of
means

mean of ratios geometric
mean

a 1 100 50.5 10
b 2 105 53.5 53.5

50.5 → 1.0594 mean(2/1+105/100) ->
3.05

14.49

c 3 103 53 53
50.5 → 1.0495 mean(3/1+103/100) ->

4.03
17.58

Table 10.2: Example integer/float benchmark performance measurements of three systems and various methods of calculating relative performance. The relative performance
of b and c depends on which mean is used.

If the geometric mean is used, the relative order of the final ratio is not order dependent.

Sometimes the arithmetic and geometric means produce the same benchmark rankings,
e.g., a benchmark560 of eight Intel IA32 processors used the arithmetic mean of ratios

10.3. DESCRIBING A SAMPLE 263

−4 −2 0 2 4
0.0

0.1

0.2

0.3

0.4

Figure 10.19: Density plot of two samples; samples ei-
ther drawn from a Normal distribution or a Contaminated
Normal distribution (i.e., values drawn from two normal
distributions, with 10% of values drawn from a distribu-
tion having a standard deviation five times greater than the
other); the lines bounding the 95% quartile identify the
color used for each plot. Github–Local

to compare results, the results from using the geometric means was not large enough
to affect the relative ranking of processors for a given performance characteristic; see
Github–benchmark/powervperfasplos2011.R.

The Geometric mean might be used when values cover several orders of magnitude, e.g.,
a geometric or logarithmic series (such as: 2, 4, 8, 16, 32, 64)

Methods for calculating the geometric mean include the expression exp(mean(log(x))),
and the geometric.mean function in the psych package.

10.3.4 Harmonic mean

The harmonic mean is used to find the "average" of a list of ratios or proportions; it is
defined as:

Meanh =
N

∑
N
i=1

1
Xi

for instance, the harmonic mean of 1, 2, 3, 4, 5 is:
5

1
1 +

1
2 +

1
3 +

1
4 +

1
5

→ 2.189781

When there are two values the formula becomes:

Meanh = 2
x · y

x+ y , which has the same form as the F1 score, or F-measure, used in infor-

mation retrieval to combine the precision and recall:

F1 = (1+β
2)

precision · recall
β 2precision+ recall

Two methods of calculating the harmonic mean are: 1/mean(1/x), and the harmonic.
mean function in the psych package.

10.3.5 Contaminated distributions

A common assumption that often goes unquestioned, is that a sample, or the error present
in the measurements it contains, is best described by a Normal distribution. Textbooks are
filled with techniques that only exhibit the cited desirable attributes, when the Normality
assumption holds. There is also the lure of analytic solutions to a problem, which again
may only apply when the Normality assumption holds.

Even when sample values appear to be drawn from a Normal distribution, a small percent-
age of contaminated values can have a dramatic effect on the value returned by a statistical
algorithm.

The Contaminated Normal distribution is a mixture of values drawn from two Normal
distributions, both having the same mean, but with 10% of the values drawn from a distri-
bution whose standard deviation is five times greater than the other. Figure 10.19 shows
the kernel density of two samples, one containing 10,000 values drawn from a Normal
distribution and the other containing 10,000 values from a Contaminated Normal distri-
bution; visually they seem very similar; see Github–statistics/contam-norm.R to learn the
color used to plot each sample.

This Contaminated Normal distribution has a standard deviation that is more than three
times greater than the Normal distribution from which 90% of the values are drawn. This
illustrates that a Normal distribution contamination by just 10% of values from another
distribution can appear to be Normal, but have very different descriptive statistics.

A number of tests are available for estimating whether sample values have been drawn
from a Normal distribution. The Shapiro-Wilk test (the shapiro.test function), the
Kolmogorov-Smirnov Test (the ks.test function)viii, and the Anderson-Darling test are
common encountered. A comparison of four normality tests1565 found the Shapiro-Wilk
test to be the most powerful normality test; see fig 9.10.

When a data set contains very few values, even the Shapiro-Wilk test may fail to determine
(e.g., p-value < 0.05) that sample values are not drawn from a Normal distribution. In the
case of the Contaminated Normal distribution, samples containing only 10 values are
considered to have a Normal distribution in around 30% of cases (i.e., p-value > 0.05),
with the percentage dropping to 10% for samples containing 20 values.

Wilcox1958 provides an analysis of potential problems that outliers, skewed distributions,
and fat tails can cause.

viiiBoth included in R’s base system.

264 10. Statistics

10.3.6 Compositional data

Compositional data is an aggregate of components, each contributing a portion of the total,
i.e., ideally summing to 1 or 100%. The requirement of a fixed total creates a correlation
between the components, i.e., if one of component increases, one or more of the others
has to decrease correspondingly. Failure to take this correlation between variables into
account can analysis results having surprising characteristics, e.g., being unrealistic.

The theory needed to underpin techniques for handling compositional data is all very new,
and many issues are still unresolved.

The compositions package supports the analysis of compositional data, and offers four
approaches to the analysis of data (based on the geometries of the sample space). The
compositional mapping functions are:

• aplus: the total amount matters, but amounts are compared relatively, e.g., the differ-
ence between 1 and 2 is treated the same as the difference between 100 and 200,

• rplus: the total amount matters, and amounts are compared absolutely, e.g., the differ-
ence between 1 and 2 is treated the same as the difference between 100 and 101,

• acomp: the total amount is constant, but amounts are compared relatively, e.g., the
difference between 1 and 2 is treated the same as the difference between 100 and 200,

• rcomp: the total amount is constant, and amounts are compared absolutely, e.g., the
difference between 1 and 2 is treated the same as the difference between 100 and 101.

Figure 5.31 shows the proportion of development time spent in the design, coding and test-
ing phases of 39 applications. Which compositional mapping function is appropriate for
this data? The measurements are hours spent in each phase, and from a project duration
perspective a time difference of 1-hour is an absolute difference; see Github–statistics/composite-
variation.R. When the percentage of total time spent in each phase is of interest, the rcomp
function applies; when the absolute time is of interest, the rplus function applies.

library("compositions")

percent_phase=rcomp(est, parts=c("Design_Phase", "Code_Phase", "Test_Phase"))
hours_phase=rplus(est, parts=c("Design_Phase", "Code_Phase", "Test_Phase"))

mean(percent_phase)
mean(hours_phase)

The dist function can be used to calculate a distance between two compositional val-
ues. One use for a distance value is using the bootstrap to estimate the likelihood of a
given difference between two mean values; see Github–projects/composite-mean-diff.R and
section 10.5.2.

10.3.7 Meta-Analysis

Meta-analysis is the process of combining quantitative evidence from multiple studies to
create more accurate estimates of the characteristics studied.

If descriptive statistics of each sample is the only information available, the mean and
standard deviation can be pooled (creating a weighted single, combined value). The cal-
culation is as follows (it assumes that each sample is independent of other samples; at the
time of writing, no built-in functions are provided in R’s base system):

pooled_mean=function(df)
{
return(sum(dfs_n*dfs_mean)/sum(df$s_mean))
}

pooled_sd=function(df)
{
return(sqrt(sum(df$s_sd^2*(df$s_n-1))/sum(df$s_n-1)))
}

studies=data.frame(s_n=c(5, 10, 20),
s_mean=c(30, 31, 32),
s_sd=c(5, 4, 3))

10.4. STATISTICAL ERROR 265

pooled_mean(studies)
pooled_sd(studies)

Medical and social science experiments often measure one or more characteristics of a
system before/after an event, e.g., a drug or social program. Various meta-analysis tech-
niques have been created to deal with this kind of before/after study; the meta package
contains support for this analysis. In software engineering, replicating studies of this kind
is not (yet) a common occurrence.

A study by Sabherwal, Jeyaraj and Chowa1622 performed a meta-analysis of studies of the
determinants of success of information systems projects, based on 612 findings from 121
studies published between 1980 and 2004.

The file drawer problem is the situation where the results from a study fail to reach the
level of statistical significance needed for the work to be accepted for publication, i.e.,
a meta-analysis may be biased because the published results do not include studies with
poor statistical significance (these results are sitting a file draws).595

A study by Bem170 investigated premonition, i.e., a persons’ ability to predict future
events. In nine experiments subjects were asked to guess which of several stimuli would
be randomly selected, after their response has been recorded. Experiment 1 involved 50
men and 50 women, who saw a screen containing two images of a curtain and were asked
to select one of the curtain images. After a subject selected one curtain image, a picture
of either a brick wall or of something else was revealed; the something else picture was
either explicitly erotic or neutral. Each subject completed 36 trials. The sequencing of
pictures, and their left/right position was randomly selected.

The results found that 53% of subjects selected the curtain image revealing an erotic im-
age at a rate greater than chance (i.e., 50%); subject success rate for the neutral image was
47% (no significant subject sex difference was found). While bootstrap test shows that
neither of these percentages occur less than 5% of the time (see Github–statistics/FeelingFuture.R),
the binomial test used by the paper’s author found a statistically significant difference (the
statistical analysis performed was as good as, or better, than that seen in most software
engineering papers).

One solution to the file drawn problem is to preregister studies. Here, before collecting
any data, researchers submit a description of the study and the data analysis techniques
they plan to use; this information is kept confidential until the study is completed. Pre-
registration reduces the ability of researchers to engage in data dredging. One study1062

found significant differences in 12 of the 15 meta-analysis studies analysed, compared
using only published papers and then including preregistered studies.

10.4 Statistical error

The outputs from applying a statistical technique generally includes probabilities, and
it is the responsibility of the person doing the analysis to decide the cut-off probability
below/above which an event is considered to have/have not occurred.

The two kinds of statistical error that can be made are:

• treating a hypothesis as true when it is actually false; the statistical term is making a
Type I error, but false positive is more commonly used, and expressed in mathematics:
P(Type I error) = P(Reject H0|H0 true),

• treating a hypothesis as false when it is actually true; the statistical term is making a
Type II error, but false negative is more commonly used, and expressed in mathematics:
P(Type II error) = P(Do not reject H0|HA true), where HA is an alternative hypothesis.

Decision made
Reject H Fail to reject H

Actual H true Type I error Correct
H false Correct Type II error

Table 10.3: The four states available in hypothesis testing and their outcomes.

The practical consequences of a statistical error depend on who is affected by the outcome
of the decision made. For instance, consider the consequences of a manager’s decision

266 10. Statistics

on whether to invest more time and money testing the reliability of a software system.
An incorrect decision can result in more than losing the original investment (e.g., losing
market share to a competitor); the bearer of any loss depends on the actual situation and
the decision made, as table 10.4 illustrates:

Decision made
Finish testing Do more testing

Actual More testing needed Customer loss Ok
Testing is sufficient Ok Vendor loss

Table 10.4: Finish/do more testing decision and outcome based on who incurs any loss.

10.4.1 Hypothesis testing

A hypothesis is an unverified explanation of why something is the way it is. Hypothesis
testing is the process of collecting and evaluating evidence that may, or may not, be con-
sistent with the hypothesis, i.e., positive and negative testing.ix Once enough evidence
consistent with the hypothesis has been collected, people may feel confident enough to
start referring to it as a theory or law.453

The most commonly used statistical hypothesis testing technique is based on what is
known as the null hypothesis,x which works as follows:

• a hypothesis, H, having testable prediction(s) is stated,

• an experiment to test the prediction(s) is performed, producing data D,

• assuming the hypothesis is true, the probability of obtaining the data produced by the
experiment is calculated. The calculation made is: P(D|H); that is the probability of
obtaining the data D, assuming that the hypothesis H is true.

If the calculated probability is less than or equal to some prespecified value, the hypoth-
esis is rejected, otherwise it is said that the null hypothesis has not been rejected, i.e.,
the result of the experiment is not conclusive evidence that the null hypothesis is true.

Expressed in code, the null hypothesis testing algorithm is as follows:

void null_hypothesis_test(void *result_data, float p_value)
{
// H is set by reality, only accessed by running experiments
if (probability_of_seeing_data_when_H_true(result_data) < p_value ||

!H)
printf("Willing to assume that H is false\n");

else
printf("H might be true\n");

}

null_hypothesis_test(run_experiment(), 0.05);

A test statistic is said to be statistically significant, when it allows the null hypothesis to
be rejected. The phrase "statistically significant" is often shortened to just "significant", a
word whose common usage meaning is very different from its statistical one; this short-
ened usage is likely to be misconstrued when the audience is unaware that the statistical
definition is being used, and treating the word as-if it is being used in its everyday meaning
sense.

Statistical significance does not mean the pattern found by the analysis has any practical
significance, i.e., the magnitude of the pattern detected may be so small as to make it
useless for practical applications.

Running one experiment that produces a (statistically) surprisingly high/low p-value is a
step in the process of increasing peoples’ confidence that a hypothesis is true/false.

Replication of the results (i.e., repeating the experiment and obtaining similar measure-
ments) provides evidence that the first experiment was not a chance effect; another boost

ixGigerenzer677 discusses how people make decisions in an uncertain environment.
xAs the market leader in hypothesis testing techniques, over many decades, this technique attracts regular

criticism.379 The criticism is invariably founded on widespread misuse of the null hypothesis ritual; misuse is
the fate of all widely used techniques.

10.4. STATISTICAL ERROR 267

in confidence. Replication by others, who independently set up and run an experiment, is
the ideal replication (it reduces the possibility that unknown effects specific to a person or
group influenced the outcome); an even larger boost in confidence.

There is a great deal of confusion surrounding how the results from a null hypothesis test
should be interpreted. Studies have found679 that people (incorrectly) think that one or
more of the following statements apply:

• Replication fallacy: The level of significance measures the confidence that the results
of an experiment would be repeatable under the conditions described. This is equivalent
to saying: P(D|H) == 1−P(D), and would apply if the hypothesis was indeed true,

• the significance level represents the probability of the null hypothesis being true. This
is equivalent to saying: P(D|H) == P(H|D).

The Bayesian approach to hypothesis testing is growing in popularity and works as fol-
lows:

• two hypotheses, H1 and H2, having testable prediction(s) are stated (the second hypoth-
esis may just be that H1 is false),

• a non-zero probability is stated for the hypotheses being true, P(H1) and P(H2), known
as the prior probabilities,

• an experiment to test the prediction(s) is performed (producing data D),

• the previously estimated probabilities, that H1 and H2 are true, is updated. The calcula-
tion uses Bayes theorem, which for H1 is:

P(H1|D) =
P(H1)P(D|H1)

P(H1)P(D|H1)+P(H2)P(D|H2)

The updated prior probability, on the basis of the experimental data, is known as the
posterior probability of the hypothesis being true.

10.4.2 p-value

In a randomized experiment, the p-value is the probability that random variation alone
produces a test statistic as extreme, or more extreme, than the one observed.

The p-value for each coefficient of a fitted regression model (the subject of chapter 11)
is a test of the hypothesis that the coefficient is zero, i.e., there is no association. When
the actual value of a coefficient is close to zero, the reported p-value may be spurious.
One solution is to rotate the axes, which will have the effect of increasing the value of the
coefficient and removing this artefact from the p-value calculation (for this data).

In a commercial environment, the choice of p-value should be treated as an input param-
eter to a risk assessment comparing the costs and benefits of all envisioned possibilities.

In many social sciences, the probability of the null hypothesis being rejected is required to
be less than 0.05 (i.e., 5%, or slightly less than 2σ),xi for a result to be considered worth
publishing, while in civil engineering, a paper describing a new building technique that
created structures having a 1-in-20 chance of collapsing would not be considered accept-
able. High energy physics requires a p-value below 5σ → 5.7 ·10−7, for the discovery of
a new particle to be accepted.

As sample size increases, p-values will always become smaller. For instance, if some
aspect of flipping a coin very slightly favours heads, given enough coin flips a sufficiently
small p-value, for the hypothesis that the coin is not a fair one, will be obtained. There
is no procedure for adjusting p-values for hypothesis testing using very large amounts of
data.

When lots of measurement data, covering many variables, is available it is possible to go
on a fishing expedition, looking for relationships between variables.1592 The probability
of finding one significant result, when comparing n pairs of variables, using a p-value of
0.05, is 1− (1− 0.05)n (which is 0.4, when n = 10). When multiple comparisons are
made, the base p-value needs to be adjusted to take account of the increased probability
of noise being treated as a signal.

Perhaps the most common technique is the Bonferroni correction, which divides the base
p-value by the number of tests performed. In the above example, the base p-value would

xiJournals with high impact factors can be more choosy, and some specify a p-value of 0.01.

268 10. Statistics

p−value

P
ap

er
s

0.001 0.01 0.05 0.5 1

100

1000

10000

Figure 10.20: Number of papers reporting a p-value equal
to a given value; lines are a fitted segmented regression
model (four segments were specified). Data from Head et
al.795 Github–Local

0 5 10 15 20
0

1

2

3

4

5

False reports

C
or

re
ct

 r
ep

or
ts

Figure 10.21: Regression model (red line; pvalue=0.02)
fitted to the number of correct/false security code re-
view reports made by 30 professionals; blue lines are
95% confidence intervals. Data from Edmundson et al.531

Github–Local

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

0

2

4

6

8

0.0 2.5 5.0 7.5 10.0 12.5
false_report

co
rr

ec
t

Figure 10.22: Bootstrapped regression lines fitted to ran-
dom samples of the number of correct/false security code
review reports made by 30 professionals. Data from Ed-
mundson et al.531 Github–Local

be adjusted from 0.05 to 0.05
10 → 0.005, to account for the possibility of each of the ten

tests matching.

The p.adjust function supports p-value adjustment using a variety of different tech-
niques.

Researchers know their work only has a chance of being accepted for publication, if the
reported results have p-values below a journal’s cut-off value. Given the use of published
paper counts as a measure of academic performance, there is an incentive for researchers
to run many slightly different experiments2005 to find a combination that produces a suf-
ficiently low p-value, that the work can be written up and submitted for publication951 (a
process known as p-hacking1216).xii One consequence of only publishing papers contain-
ing studies achieving a minimum p-value, is that many results are likely to be false (while
a theoretical analysis suggests most are false,894 an empirical analysis suggests around
14% of false positives for medical research910).

A study by Head, Holman, Lanfear, Kahn and Jennions795 investigated the distribution of
p-values appearing in the results section of Open Access papers in the PubMed database.
Figure 10.20 shows the number of papers reporting a p-value equal to a given value,
with fitted segmented regression model (four segments were specified, but the segment
boundaries were selected by the fitting process).

10.4.3 Confidence intervals

Many statistical techniques return a single number, a point value. What makes this number
so special, would a value close to this number be almost as good an answer? If an extra
measurement was added to the sample, how likely is it that the original number would
dramatically change; what if one measurement were excluded from the sample, how much
would that change the answer?

A confidence interval is an upper and lower bound on the numeric point value(s) returned
by statistical technique. A common choice is the 95% confidence bound, the default value
used by many R packages.

Numeric confidence intervals can be mapped into visual form by adding them to a plot.
Figure 10.21 illustrates how confidence intervals provide an easier to digest insight into
the uncertainty of a fitted regression model, compared to the single number that is the
p-value. The red line shows a fitted regression model, whose predictor has a p-value of
0.02; the 95% confidence intervals in blue, showing how wide a range of lines could be
said to fit the sample almost as well, i.e., any straight line bounded by the blue lines.

A confidence interval is a random variable, it depends on the sample drawn. If many 95%
confidence intervals are obtained (one from each of many samples), the true fitted model
is expected to be included in this set of intervals 95% of the time (it is a common mistake
to think that the confidence interval of one sample has this property). The probability that
the next sample will be within the 95% confidence interval of the current sample, for a
Normal distribution, is 84% or around 5 out of 6.420

A closed form formula for calculating confidence intervals is only known for a few cases,
e.g., the mean of samples drawn from a Normal distribution; for a Binomial distribution
a variety of different approximations have been proposed.1490

Built-in support for calculating confidence intervals, in R packages, is sporadic. Monte
Carlo simulation can be used to calculate a confidence interval from the sample, e.g., the
bootstrap. This approach has the advantage that it is not necessary to assume that sample
values are drawn from any particular distribution. Figure 10.22 was created by fitting
many models, via bootstrapping, and using color to indicate density of fitted regression
lines.

10.4.4 The bootstrap

The bootstrap is a general technique for answering questions about uncertainties in the
estimate of a statistic calculated from a sample, e.g., calculating a confidence interval or
standard error.822 Bootstrap techniques operate on a sample drawn from a population,
and cannot extract information about the population that is not contained in the sample,

xiiWhich commercial company would not be willing to add warts to their software to keep an important
customer happy?

10.4. STATISTICAL ERROR 269

0 20 40 60 80

0.000

0.005

0.010

0.015

0.020

0.025

0.030

SPECint Result

D
en

si
ty

Figure 10.23: Kernel density plot, with 95% confidence
interval, of the number of computers having the same
SPECint result. Data from SPEC.1742 Github–Local

e.g., if the population contains reds and greens, and a sample only contains reds, then the
bootstrap will not provide any information about the greens.

The term bootstrapping denotes the process by which a computer starts itself from an
off-state. In statistics, it is used to denote a process where new samples are created from
an existing sample; the term resampling is sometimes used.

The bootstrap procedure often starts by assuming there is no difference, in some char-
acteristic, between samples; it then calculates the likelihood of two samples having the
characteristic they are measured to have. The assumption of no difference requires that
the items in both samples be exchangeable. Deciding which items, if any, in a sample are
exchangeable is a crucial aspect of using the bootstrap to answer questions about samples.

Individual time series measurements contain serial correlations. The block bootstrap is
one technique for applying bootstrap techniques to time series data. The tsboot function,
in the boot package, supports the bootstrapping of time series data.

Estimating the confidence interval for the mean value of a sample is a good example of
the basic bootstrap algorithm; the steps involved are as follows:

• create a sample by randomly drawing items from the original sample. Usually the items
are selected with replacement, i.e., an item can be selected multiple times. When items
are selected without replacement (i.e., can only be selected once), the term jacknife is
used,

• calculate the mean value of the created sample,

• iterate the create/calculate cycle, say, 5,000 times,

• analyze the 5,000 mean values, to obtain the lowest and highest 2.5%. The 95% confi-
dence interval for the mean of the original sample is calculated from this lowest/highest
band (several algorithms, giving slightly different answers, are available).

The boot package supports common bootstrap operations, including the boot.ci func-
tion for obtaining a confidence interval from a bootstrap sample.

The distribution of the sample from which the bootstrap algorithm draws values is known
as the empirical distribution.

The bootstrap distribution contains mn possible samples, when sampling with replace-
ment from m possible items to create samples containing n items; when the order of items
does not matter, there are

(2m−1
n

)
possible samples (a much smaller number).

The same bootstrap procedure can be applied to obtain confidence intervals on a wide
range of metrics. Figure 10.23 shows confidence intervals for the kernel density plotted
in figure 8.14, and was produced by the sm.density function, in the sm package, using
the following code:

library("sm")

res_sample=sample(cint$Result, size=1000) # generate 1000 samples

sm.density(res_sample, h=4, col=point_col, display="se", rugplot=FALSE,
ylim=c(0, 0.03),
xlab="SPECint Result", ylab="Density\n")

The importance of using the appropriate sample size, when using the bootstrap, is illus-
trated by the analysis of the data from a study by Davis, Moyer, Kazerouni and Lee,444

which investigated the use of regular expressions in eight languages; the sample size var-
ied between languages. The regex library provided by each language supports different
matching functionality, and to handle this the researchers mapped regexs found in each
language’s source code to a common representation. This mapping makes it possible to
assumes that regexs in their common representation form are interchangeable.

Table 10.5 shows, for each language, the mean length of regular expressions, sample size,
and the bootstrap probability that the mean observed is less than the bootstrapped means.
While Rust has the longest regex mean length, its sample size is relatively small, and
the bootstrap finds that it is not possible to rule out that possibility that the mean length
observed is not unusual, i.e., 8.8% of generated samples had a mean greater than 39.9.
Javascript and Java have, respectively, the second and third longest mean lengths, and their
larger sample sizes reduces the uncertainty in the expected mean length; a mean regex
length as large as the ones seen is very unlikely to be encountered, i.e., none appeared in
the generated samples.

270 10. Statistics

Language mean sam-
ple_size

Probability

rust 39.9 2005.0 8.2
go 30.2 21882.0 99.8
python 32.4 43486.0 79.5
php 27.7 43809.0 100.0
perl 23.7 141393.0 100.0
javascript 38.8 149479.0 0.0
ruby 33.7 151898.0 16.3
java 37.6 165859.0 0.0

Table 10.5: Mean length of sample of regular expressions in languages and bootstrapped probability of occurrence. Data from Davis et al.444 Github–Local

0 2 4 6 8
Two−tailed

Fail to reject
null hypothesis

Reject null
hypothesis

Reject null
hypothesis

0 2 4 6 8
One−tailed

Fail to reject null hypothesis

Reject null
hypothesis

Figure 10.24: One and two-sided significance testing.
Github–Local

10.4.5 Permutation tests

For small sample sizes, many computers are fast enough for it to be practical to calculate
a statistic (e.g., the mean) for all possible permutations of items in a sample. This kind of
test is known as a permutation test. Permutation tests do not have any preconditions on
the distribution of the sample, other than it be representative of the population, and they
return an exact answer.

Some techniques designed for manual implementation (e.g., Student’s t-test) are approx-
imations to the exact answer returned by a permutation test.

The coin package contains infrastructure for creating permutation tests and functions that
perform common tasks (the names of these functions are derived from the names of the
tests designed for manual implementation, e.g., spearman_test and wilcox_test).

The following permutation test calculates the likelihood that the professional experience
of the two samples of subjects appearing in figure 8.3 have different mean values:

library("coin")

The default is alternative="two.sided",
an option not currently listed in the Arguments section.
oneway_test(experience ~ as.factor(language), data=Perl_PHP, distribution="exact")

10.5 Comparing samples

The need to compare measurements, obtained from running experiments, kick-started
the development of statistics. The wide range of experimental designs (e.g., one/two/k
samples, parametric/non-parametric and between/within subject), along with the need for
practical manual solutions, resulted in the evolution of techniques designed to do a good
job of handling each specific kind of comparison. This book assumes a computer is
available to do the number crunching, and uses either regression (covered in chapter 11),
or the bootstrap.xiii

Samples may be compared to check whether they are the same/different, in some sense,
or by specifically testing whether one sample is greater than, or less than, the other:

• in a two-sided test (also known as a two-tailed or non-directional test) the samples are
checked for being the same or different, where an increase or decrease in some attribute
is considered a difference. Figure 10.24, upper plot, the percentage on each side is half
the chosen p-value,

• in a one-sided test (also known as a one-tailed or directional test) the samples are
checked for only one case, either an increase or a decrease in the measured attribute.
Figure 10.24, lower plot, the percentage on the one side is the chosen p-value.

A commonly encountered null hypothesis, when comparing two samples, is that there
is no difference between them. In many practical situations a difference is expected, or
hoped, to exist, otherwise no effort would have been invested in obtaining the data needed
to perform the analysis.

xiiiOther books tend to primarily cover the manual techniques: such as the t-test, which is a special case
of multiple regression using an explanatory variable indicating group membership, and the Wilcoxon-Mann-
Whitney test, which is essentially proportional odds ordinal logistic regression.

10.5. COMPARING SAMPLES 271

Experiments are often performed because a difference in one direction is of commercial
interest. However, expecting or wanting a result that shows a difference in one direction
is not sufficient justification for using a one-sided statistical test.

A one-sided test should only be used when the direction is already known, or when an
effect in the non-predicted direction would be ignored. If an effect in a particular direction
is expected, but an effect in the opposite direction would not be ignored (i.e., would be
considered significant) a two-sided test should be used.

Some of the kinds of sample comparisons commonly made include:

• a level of confidence that sample values have been drawn from the same/different dis-
tribution (discussed in section 9.2.1),

• the difference, dm, in the mean of two samples,

• the difference, dv, in the variance of two samples,

• the correlation, C, between values, paired from two samples.

Correlated measurements: Many data analysis techniques assume that each measure-
ment is independent of other measurements in the sample.

An experiment that measures the same subject before and after the intervention (i.e., a
within-subjects design; a between-subjects design involves comparing different subjects)
involves correlated data. One technique for handling this kind of correlated data is mixed-
effects models, discussed in section 11.6.

Time dependent measurements may be correlated, with later measurements affected by
earlier events that are not part of the benchmark (say). A correlation between successive
measurements, where none should exist, either needs to be removed or taken into account
during analysis. The Durban Watson test can be used to check for a correlation between
successive measurements within each run. The durbinWatsonTest function, in the car
package implements this test; see the discussion associated with figure 11.22.

Time series analysis deals with sequentially correlated data, see section 11.10.

10.5.1 Building regression models

Using regression modeling to analyse data may appear to be over-kill (it is used to analyse
many of the datasets appearing in this book). When a computer is available to do the
work, it makes sense to use the most powerful analysis techniques available that has the
fewest preconditions; learning to apply the appropriate, less powerful, technique, often
with stronger preconditions, is a waste time (unless you don’t have access to a computer).

Techniques designed for manual implementation, such as Pearson correlation, Spearman
correlation, t-test, Wilcoxon signed-rank test, etc., are all special cases of regression;
for examples of the correspondence with regression, see Github–statistics/manual-tests.R.
Manual implementation techniques for comparing two or more samples have been made
obsolete by the bootstrap (covered in section 10.4.4), when a computer is available.

Regression provides a simple unified framework for dealing with many data analysis prob-
lems; it is possible to start with a simple model, and progressively add more features.

A study by Potanin, Damitio and Noble1513 refactored the Java Development Kit col-
lection so that it nolonger made use of incoming aliases, e.g., following the owner-as-
dominator or owner-as-accessor encapsulation discipline. The DaCapo benchmark,207

which contains 14 separate programs, was used to compare the performance of the orig-
inal and refactored versions. The programs were each run 30 times, with measurements
made during each of the last five iterations; this process was repeated five times, generat-
ing 25 measurements for each program for a total of 350 measurements.

The researchers claimed that their changes to the aliasing properties of the original code
did not degrade performance. If the claim is true, the explanatory variable kind-of-
refactoring, will have a trivial impact on the quality of the fitted regression model. The
simplest model possible is based on the program name, and explains 99.9% of the vari-
ance (in this case the intercept is an unnecessary degree of freedom):

prog_mod=glm(performance ~ progname-1, data=dacapo_bench)

The fitted equation contains just the mean value of the runtime of each separate program,
for all programs in the sample. The summary function lists the details of the fitted model
as: Github–Local

272 10. Statistics

160 170 180 190 200 210
0

5

10

15

20

25

Reflection performance

R
ep

or
ts

Asus(1043 8508)
MSI(1462 3160)
Gigabyte(1458 367A) 4GB

Figure 10.25: Number of Reflection benchmark results
achieving a given score, reported for GTX 970 cards
from three third-party manufacturers. Data extracted from
UserBenchmark.com. Github–Local

Call:
glm(formula = performance ~ progname - 1, data = dacapo)

Deviance Residuals:
Min 1Q Median 3Q Max

-4174.6 -205.0 -9.0 116.6 3946.5

Coefficients:
Estimate Std. Error t value Pr(>|t|)

prognameavrora 22881.32 48.03 476.439 < 2e-16 ***
prognamebatik 2519.87 48.03 52.469 < 2e-16 ***
prognameeclipse 53660.53 48.03 1117.330 < 2e-16 ***
prognamefop 395.89 48.03 8.243 2.92e-16 ***
prognameh2 24100.39 48.03 501.823 < 2e-16 ***
prognamejython 15808.13 48.03 329.160 < 2e-16 ***
prognameluindex 708.00 48.03 14.742 < 2e-16 ***
prognamelusearch 7239.52 48.03 150.743 < 2e-16 ***
prognamepmd 4017.61 48.03 83.656 < 2e-16 ***
prognamesunflow 22788.81 48.03 474.513 < 2e-16 ***
prognametomcat 7672.11 48.03 159.750 < 2e-16 ***
prognametradebeans 27987.82 48.03 582.768 < 2e-16 ***
prognametradesoap 64888.58 48.03 1351.122 < 2e-16 ***
prognamexalan 26381.35 48.03 549.318 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 345970)

Null deviance: 1.5873e+12 on 2100 degrees of freedom
Residual deviance: 7.2169e+08 on 2086 degrees of freedom
AIC: 32759

Number of Fisher Scoring iterations: 2

Adding kind-of-refactoring as an explanatory variable (see Github–regression/dacapo_progname.R
for details), finds that it is not significant on its own, but an interaction exists between it
and a few programs (primarily sunflow). The model:

prog_refact_mod=glm(performance ~ progname+progname:refact_kind,
data=dacapo_bench)

explains 99.92% of the variance. There are 12 program/refactoring interactions with p-
values less than 0.05 (out of 84 possible interactions), with most of these changing the
estimated mean performance by around 1% and one making 8% difference (i.e., sunf
low); see Github–regression/dacapo_progname_refact.R.

Building a regression model has enabled us to confirm that, apart from a few, small,
interactions the various refactorings of JDK did not change the DaCapo benchmark per-
formance.

10.5.2 Comparing sample means

Comparing two samples, to check for a difference in their mean values, is perhaps the
most common statistical test performed. The bootstrap is a general purpose technique for
answering sample comparison questions; see section 10.4.4.

The nVidia GTX 970 is a popular graphics card, with many variations on the reference
design being sold (during August 2016 there were 51 variants included in the 64,392
results for this card in the UserBenchmark.com database). Figure 10.25 shows the num-
ber of Reflection benchmark results reported for GTX 970 cards, from three third-party
manufacturers.

The mean score of these Asus, MSI and Gigabyte cards are 176.2, 179 and 186.8 respec-
tively. Are these differences more likely to be the result of random variation or by some
real hardware/software difference?

The bootstrap can be used to answer this question, as follows.

10.5. COMPARING SAMPLES 273

Assume there is no difference in the mean performance of, say, MSI and Gigabyte on the
Reflection benchmark. In this case the benchmark results (255 from MSI and 73 from
Gigabyte) can be merged to form a sample of 328 results. Using this combined empirical
sample perform the following:

• randomly select, with replacement, 328 items from the empirical sample,

• divide this new sample into two subsamples, randomly selecting one to contain 255
items and the other 73 items,

• find the mean of the two subsamples, subtract the two mean values and record the result,

• repeat this process R times,

• count how many of these bootstrapped differences in the mean are greater than the
differences in the means of the two cards; no assumption is made about the direction of
the difference, i.e., this is a two-sided test.

The following code uses the boot function, from the boot package, to implement the
above algorithm, with the user provided function (mean_diff in this case) that is called
for each randomly generated sample (see Github–group-compare/UserBenchmark_compare.R):

library("boot")

mean_diff=function(res, indices)
{
t=res[indices]
return(mean(t[1:num_MSI])-mean(t[(num_MSI+1):total_reps]))
}

MSI_refl=MSI_1462_3160$Reflection
Giga_refl=Gigabyte_1458_367A$Reflection

num_MSI=length(MSI_refl) # Size of each sample
num_Giga=length(Giga_refl)
total_reps=num_MSI+num_Giga # Total sample size

GTX_boot=boot(c(MSI_refl, Giga_refl), mean_diff, R = 4999) # bootstrap

refl_mean_diff=mean(MSI_refl)-mean(Giga_refl) # Difference in sample means
Two-sided test
length(GTX_boot$t[abs(GTX_boot$t) >= abs(refl_mean_diff)]) # == E

The argument R specifies the number of resamples, with boot returning the result of
calling mean_diff for each resample.

The likelihood of encountering a difference in mean values, as large as that seen in the

MSI and Gigabyte performance (i.e., the p-value), is given by the equation:
E +1
R+1

, where:

E is the number of cases where the bootstrap sample had a larger mean difference. The

result varies around:
34+1

4999+1
→ 0.007 (the MSI/Asus the value is:

840+1
4999+1

→ 0.17).

If there were no difference in performance, a difference in mean value as large as that
seen for MSI/Gigabyte is expected to occur 0.7% of the time. Based on a 5% cut-off,
we can claim this percentage is so small that there is likely to be a real difference in
performance. A mean difference at least as large as the MSI/Asus mean difference, is
likely to occur 17% of the time, when there was no real difference in performance; a large
enough percentage to infer that there is unlikely to be any difference in performance.

If a difference is thought likely to exist, the next question is the likely size of the differ-
ence, and the confidence intervals on this value. A bootstrap procedure can be used to
answer these questions.

Once two samples are considered to be different, items within each sample can only be
treated as exchangeable with other items within the corresponding sample. The two sub-
sample now have to be selected from their respective empirical samples, as in the follow-
ing code (see Github–group-compare/UserBenchmark_mdiff.R):

library("boot")

mean_diff=function(res, indices)
{
t=res[indices,]

274 10. Statistics

return(mean(t$refl[t$vendor == "Gigabyte"])- mean(t$refl[t$vendor == "MSI"]))
}

Need to identify vendor used for each measurement.
MSI_refl=data.frame(vendor="MSI", refl=MSI_1462_3160$Reflection)
Giga_refl=data.frame(vendor="Gigabyte", refl=Gigabyte_1458_367A$Reflection)

MSI_Giga=rbind(MSI_refl, Giga_refl)

Pass combined dataframe and specify identifying column
GTX_boot=boot(MSI_Giga, mean_diff, R = 4999, strata=MSI_Giga$vendor)

The boot.ci function calculates confidence intervals from the values returned by boot
(in this case, the difference in mean values): Github–Local

> boot.ci(GTX_boot)
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 4999 bootstrap replicates

CALL :
boot.ci(boot.out = GTX_boot)

Intervals :
Level Normal Basic
95% (4.439, 11.168) (4.378, 11.095)

Level Percentile BCa
95% (4.534, 11.251) (4.908, 11.739)
Calculations and Intervals on Original Scale
> mean(GTX_boot$t)
[1] 7.825658
> sd(GTX_boot$t)
[1] 1.716761

Deciding if, and when, items in a sample are exchangeable can be non-trivial and requires
an understanding of the problem domain.

A study by Gandomani, Wei and Binhamid648 investigated the accuracy of software cost
estimates, made using both expert judgement and Planning Poker, on 15 projects in one
company, and both expert judgement and Wideband Delphi in 17 projects in another com-
pany; table 10.6 shows a subset.

Is there a difference in the estimates made using expert judgement and either of the other
two techniques?

Project Expert
judgement

Planning
Poker

Difference

P1 41 40 1
P4 60 56 4
P7 33 45 -12
P12 18 20 -2

Table 10.6: Effort estimates made using expert judgement and Planning Poker for several projects. Data from Gandomani et al.648

Each estimate is specific to one project, and it makes no sense to include estimates from
other projects in the random selection process; estimates from different projects are not
exchangeable. Possible ways of handing this include:

• treating each project as being exchangeable; the resampling could occur at the project
level with both estimates for each selected project being used. This makes no sense,
from the business perspective.

• randomly selecting from the set of estimates for each project. This possibility is not
ruled out, from the business perspective, even though there are only two estimates for
each project.

The following code randomly samples estimates for each project (see Github–group-compare/16.R):

mean_diff=function()
{

10.5. COMPARING SAMPLES 275

Amount bid

D
en

si
ty

A Outline
A Detailed
B Detailed

Figure 10.26: Density plots of project bids submitted by
companies before/after seeing a requirements document.
Data from Jørgensen et al.950 Github–Local

s_ind=rnorm(len_est_2) # random numbers centered on zero
Randomly assign estimates to each group
expert=c(est_2$expert[s_ind < 0], est_2$planning.poker[s_ind >= 0])
Sampling with replacement, so two sets of random numbers needed
s_ind=rnorm(len_est_2) # random numbers centered on zero
poker=c(est_2$expert[s_ind < 0], est_2$planning.poker[s_ind >= 0])
The code for sampling without replacement
poker=c(est_2$expert[s_ind >= 0], est_2$planning.poker[s_ind < 0])
return(mean(expert)-mean(poker))
}

est_mean_diff=abs(mean(est_2$expert)-mean(est_2$planning.poker))
len_est_2=nrow(est_2)

t=replicate(4999, mean_diff()) # Run the bootstrap

What percentage of means are as large as the experiment?
100*length(which(abs(t) > est_mean_diff))/(1+length(t))

The p-value for a two-sided test between Expert and Planning Poker is 0.02, which sug-
gests there is a difference, but does not provide any information about the direction of
difference; see Github–group-compare/16.R.

A study by Jørgensen and Carelius950 asked companies to bid on a software development
project.xiv In the first round of bidding 17 companies were given a one-page description
of user needs and asked to supply a non-binding bid; in the second round the original 17
companies plus an additional 18 companies (who had not participated in the first round)
were given an 11-page specification (developed based on feedback from the first round)
and asked to submit firm-price bids.

What difference, if any, did participating in the first round make to the second bids, sub-
mitted by the initial 17 companies (call them the A companies) and how did these bids
compare to those submitted by the second sample of 18 companies bidding for the first
time (call them the B companies)?

Figure 10.26 shows density plots of the submitted bids. The mean values were: kr183,051xv

for initial bid from A companies, kr277,730 for final bid from A companies and kr166,131
for single bid from B companies.

Are the items in each sample (the companies asked to submit a bid) exchangeable? Small
companies have lower operating costs than large companies; it is unrealistic to consider
bids from small/large companies to be exchangeable. The size of companies involved in
bidding were classified as small (five or fewer developers), medium (between 6 and 49
developers) and large (50 or more developers).

The call to boot has to include information on how the data is stratified, i.e., split into
different levels. The argument strata is used to pass a vector of integer values specifying
the strata membership of the values present in the first argument. Everything else stays
the same, with boot treating members of each strata as exchangeable when generating,
new samples (see Github–group-compare/compare-bid.R):

bid_boot=boot(comp_bid$Bid, mean_diff, R = 4999,
strata=as.factor(comp_bid$CompSize))

The p-value, for the hypothesis that the mean values are the same, is:
52+1

4999+1
→ 0.01,

i.e., a difference this large is (statistically) surprising.

Jørgensen and Carelius proposed the hypothesis that the main factor controlling the size
of the bids was the information contained in the project specification. I think this is rather
idealistic, more practical considerations are discussed in section 5.2.

The intervals of a time series are, by their very nature, not exchangeable. Bootstrapping a
time series requires its own distinct algorithm; the tsboot function handles the details.

Permutation tests: When the two samples contain only a few items, it is practical to
generate and test all possible item permutations.

A study by Grant and Sackman727 measured the time taken for subjects to write a program
using either an online or offline computer interface (this experiment was run during the

xivFour of the companies that submitted a bid were selected to independently implement the project.
xvThe exchange rate was approximately 10 Norwegian Krone to one Euro.

276 10. Statistics

0 1000 2000 3000 4000 5000
0e+00

2e−04

4e−04

6e−04

8e−04

Estimate

D
en

si
ty

No instructions
With instructions

Figure 10.27: Density plot of task implementation es-
timates: with no instructions (red) and with instruction
on what to do (blue). Data from Jørgensen el al.954

Github–Local

1960s mainframe era). Given 12 subjects, split into two groups of six, how likely is the
difference in mean time between the online/offline use cases?

This question is about the population of people who took part in the experiment, not a
wider population. For this population there are choose(12, 6) ==924 possible subject
combinations. The following is an excerpt of an implementation of a two-sided test (see
Github–group-compare/GS-perm-diff.R):

subj_time=c(online$time, offline$time) # Combine samples
subj_mean_diff=mean(online$time)-mean(offline$time)

Exact permutation test
subj_nums =seq(1:total_subj)
Generate all possible subject combinations
subj_perms=combn(subj_nums, subj_online)

mean_diff = function(x)
{
Difference in mean of one combination of subjects
mean(subj_time[x]) - mean(subj_time[!(subj_nums %in% x)])
}

Indexing by column iterates through every permutation
perm_res=apply(subj_perms, 2, mean_diff)

p-value of two-sided test
sum(abs(perm_res) >= abs(subj_mean_diff)) / length(perm_res)

For the Algebra program, 272 of the possible groups, of subject combinations, had a
difference in mean time greater than, or equal, to that of the empirical sample. Because

all possibilities have been calculated, the p-value is exact:
272
924
→ 0.2934.

The coin package provides this kind of exact calculation for many of the traditional group
comparison tests, e.g., the wilcoxsign_test function is the permutation test equivalent
of the wilcox.test function (in the base library).

The bootstrap techniques used to answer questions about differences in the mean of two
samples, can be generalised to a wide variety of comparison tests. A new comparison test
can be implemented by replacing the mean_diff function used in the earlier examples
(the requirement of exchangeability remains an integral requirement).

10.5.3 Comparing standard deviation

A study by Jørgensen and Moløkken954 asked 19 professional developers to estimate the
effort required to implement a task, along with an uncertainty estimate, i.e., minimum and
maximum about the most likely value. Nine of these developers were explicitly instructed
to compare the current task with similar projects they had worked on (they were also given
a table that asked them to assess similarity within various percentage bands).

The visual appearance of the density plots, in figure 10.27, suggests that there is a dif-
ference in the standard deviation of the estimates in the two samples. A bootstrap test,
of the difference in the standard deviations of the two samples, can be implemented by
replacing the mean_diff function used in the previous section, by the function sd_diff
as follows (see Github–group-compare/simula_04sd.R):

sd_diff=function(est, indices)
{
t=est[indices]
return(sd(t[1:num_A_est])-sd(t[(num_A_est+1):total_est]))
}

The p-value, for the hypothesis that the standard deviations are the same, is:
2170+1
4999+1

→ 0.43,

i.e., the difference is not that (statistically) surprising.

The ansari_test function, in the coin package, xvi performs an Ansari-Bradley Test (a
two-sample permutation test for a difference in variance); see Github–group-compare/simula_04_var.R.

xviThe ansari.test function is included in R’s base system.

10.5. COMPARING SAMPLES 277

10.5.4 Correlation

Correlation is a measure of linear association between variables, e.g., the extent to which
one variable always increases/decreases when another variable increases/decreases. The
range of correlation values is -1 (the variables change together, but in opposite directions)
to 1 (the variables always change together), with zero denoting no correlation.

Correlation is related to regression, except that: it treats all variables equally (i.e., there
are no response or explanatory variables), the correlation value is dimensionless and cor-
relation is a linear relationship (i.e., there need not be any correlation between variables
having a non-linear relationship, e.g., in the y = x2 relationship, y can be predicted x, but
there is zero correlation between them).

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

0.8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

0.4

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

−0.4

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

1

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

1

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

1

●●●●● ● ●● ●●●● ● ● ●● ●●● ● ●● ●● ●●● ●● ●●●● ● ●● ● ●●●● ●● ●●● ● ●● ●●● ●●●● ●●● ●● ●● ●● ●●● ●● ●● ●●● ● ●● ●●● ●● ●●● ●● ●● ●● ●●●●● ● ●● ●● ● ● ●●● ●●● ●● ●● ●● ●●●●● ● ●●● ●●● ● ●● ●●● ● ●●● ● ●● ●●● ●●● ●● ●●● ●●●● ●● ●●● ● ● ●● ●● ●●●●● ● ● ●● ●● ●●●● ●● ●● ● ●● ● ●● ●● ●●●● ●●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

−1

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

−1

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

−1

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.1

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

0.1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

0

●● ●

●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

Figure 10.28: Examples of correlation between samples
of two value pairs, plotted on x- and y-axis. Github–Local

Three commonly encountered correlation metrics are:

• Pearson product-moment correlation coefficient, (also known as Pearson’s R or Pear-
son’s r), which applies to continuous variables,

• Spearman’s rho, ρ (a lowercase Greek letter), is identical to Pearson’s coefficient except
the correlation is calculated from the ranked values, i.e., the sorted order (which makes
it immune to extreme values),

• Kendall’s tau, τ (a lowercase Greek letter), is like Spearman’s rho in that it is based
on ranked values, but the calculation is based on the number of items sharing the same
rank, i.e., relative difference in rank is not included in the calculation; Spearman’s rho
does include relative differences.

The cor.test function, included in the base system, supports all three coefficients and
provides confidence interval.

Dichotomous variables: When the result of a measurement has one of two values, the
standard techniques for calculating correlation, which require that most if not all values
be unique, cannot be used. It is possible to recast the problem in terms of probabilities,
which means that the approach taken for every problem could be different.

278 10. Statistics

The following is an example of one approach to a particular binary problem involving
binary measurements.

One technique for having high reliability access files, is to host the files on two or more
websites; if one site cannot be accessed, the file could be obtained from another site. The
naive analysis suggests, that, if the average reliability of the websites is 95%, then the
reliability of two paired sites would be 99.75%. However, this assumes the unavailability
of each website is independent of its paired site.

A study by Bakkaloglu, Wylie, Wang and Ganger123 had a client program read a file from
over 120 websites every 10-minutes, between September 2001 and April 2002. They
recorded whether the file was successfully accessed or not.

Most websites were available most of the time. Bakkaloglu et al proposed various tech-
niques for calculating correlated failures, based on the probability that site X is unavail-
able when site Y is unavailable, i.e., P(Xunavailable|Y unavailable). The following ex-
ample takes the mean value over all pairs of sites:

= mean(P(Xunavailable|Y unavailable))

= mean
(

P(X&Y unavailable)
P(Y unavailable)

)
The following calculates the average unavailability probability for one site paired with
every other site; see Github–probability/reliability/web-avail.R:

given=web_down[, ind]
others=web_down[, -ind]

both_down=(others & given)

av_prob=mean(colSums(both_down)/sum(given))

Averaged over all pairs of sites the probability of one site being unavailable, when its pair
is also unavailable, is 0.3 (at the 10-minute measurement point). Given that all accesses
originated from the same client, it is not surprising that this probability is much higher
than the average probability of one site being unavailable (0.1); all accesses start off
going through the same internet infrastructure and problems in this infrastructure will
affect access to all sites.

10.5.5 Contingency tables

Count data with categorical explanatory variables has a natural visual representation, as a
table of numbers; these tables are known as contingency tables. Table 10.7 shows a count
of items in the sample having both the listed row and column attributes.

Contingency tables are a technique for reducing lots of data to a compressed visual form.
Reasons for compressing data to this form include: wanting to hide information (i.e.,
readers have to think about what is being presented), not knowing how to make the best
use of available information, i.e., the compressed form throws away potentially useful
information. Analysis of the uncompressed data is likely to reveal more about it, than an
analysis of the simplified form.

Sometimes the only available data is present in a contingency table.

A study by Nightingale, Douceur and Orgovan1381 investigated the characteristics of hard-
ware failures over a very large number of consumer PCs. Table 10.7 shows a contingency
table containing the available data, i.e., the number of system crashes believed to have
been caused by hardware problems involving the system DRAM or CPU.

DRAM
failure

no DRAM
failure

CPU failure 5 2,091
no CPU failure 250 971,191

Table 10.7: Number of system crashes of consumer PCs traced to CPU or DRAM failures. Data from Nightingale et al.1381

The traditional, manual friendly, technique for analyzing this kind of data is the chi-
squared test (χ is the Greek letter), which provides a yes/no answer.xvii

xviiThe chisq.test function is part of the base system; if your readership demands a chi-squared test, the
chisq_test function in the coin package can be used to bootstrap confidence intervals.

10.5. COMPARING SAMPLES 279

Software fault

E
ffe

ct

corrupt

down

loss

opfail

perf

stale

co
nf

ig eh
ha

ng loa
d

log
ic op

t
ra

ce

sp
ac

e

3 22 0 0 120 8 16 0

16 33 28 5 56 7 20 23

4 10 1 0 50 1 13 1

19 92 6 3 204 6 29 7

26 7 1 3 149 196 6 20

1 2 2 0 10 2 22 1

Figure 10.29: Number of software faults having a given
consequence, based on an analysis of faults in Cassandra.
Data from Gunawi et al.755 Github–Local

A regression model can be fitted to this data (even though there is not a lot of it), extracting
more information than the chi-squared test. Github–Local

Call:
glm(formula = failures ~ CPU * DRAM, family = poisson, data = PC_crash)

Deviance Residuals:
[1] 0 0 0 0

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 13.786278 0.001015 13586.243 < 2e-16 ***
CPUTRUE -6.140881 0.021892 -280.505 < 2e-16 ***
DRAMTRUE -8.264818 0.063254 -130.661 < 2e-16 ***
CPUTRUE:DRAMTRUE 2.228858 0.452194 4.929 8.27e-07 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 2.6646e+06 on 3 degrees of freedom
Residual deviance: -7.7825e-11 on 0 degrees of freedom
AIC: 43.948

Number of Fisher Scoring iterations: 3

The information in the fitted model that is not immediately obvious from the numbers in
the table, is that the crash rate is higher when both the CPU and DRAM fail (although, in
this case, an obvious conclusion).

The regression approach makes it trivial to handle more rows and columns, as well as
non-straight line fits. As the number of values in the table increases, it becomes more
difficult to visually extract any patterns that may be present; figure 10.29 shows how a
heatmap might be one way of highlighting details.

There are a wide variety of techniques for comparing multiple contingency tables. Note:
different pair comparison algorithms can give very different results.1812

10.5.6 ANOVA

Readers are likely to encounter the acronym ANOVA (Analysis of variance), an analysis
technique that developed independently of linear regression and having its own special-
ized terminology. This technique was designed for manual implementation.

Functionally ANOVA and least squares are both special cases of the general linear model
(ANOVA is a special case of multiple linear regression with orthogonal, categorical pre-
dictors; ANCOVA adds covariates to mix). A one-way analysis of variance can be thought
of as a regression model having a single categorical predictor, that has at least two (usually
more) categories.

Treating the various kinds of ANOVA models as special cases of the family of regression
models, makes it possible to use the more flexible options available in regression model-
ing, e.g., easier handling of unequal group sizes, adjusting for covariates and methods for
checking models.

The anova function generates ANOVA style output, when passed a model built using
glm and some other regression model building functions; the Anova function in the car
package supports more functionality.

One-way ANOVA focuses on testing for differences among a group of means; it evaluates
the hypothesis that αi = 0 in the following equation:

Yi = µ +αi + εi

where: µ is the group mean, αi is the effect of the response variable on the i’th group and
εi is the corresponding error.

280 10. Statistics

Chapter 11

Regression modeling

11.1 Introduction

Regression modeling is the default hammer used in this book to create the output from
data analysis of software engineering data; figure 11.1, gives a high level overview of the
various kinds of hammers available in the regression modeling toolkit. Concentrating on
a single, general technique, removes the need for developers to remember how to select
from, and use, many special purpose techniques (which in many cases only return a subset
of the information produced by regression modeling).

The arrow lines connect related regression techniques, based on the characteristics of the
data they are designed to handle; the techniques highlighted in red are the common use
cases for their respective data characteristics.

General
Linear Models

Generalized
Linear Models

non-normal errors
nonlinearity

Nonlinear
Least-squares

nonlinearity

Mixed Models

random
effects

Time-Series &
Repeated-measures Models

correlation

Generalized
Additive
Models

smooth
nonlinearity

Quasilikelihood
Models

scaled
variance

Negative
Binomial Models

 overdispersion

Generalized Linear
Mixed Models

random
effects

Nonlinear
Time-Series

Models

non-normal errors
nonlinearity

random effects
correlation nonlinearity

Figure 11.1: Relationship between data characteristics
(edge labels) and applicable techniques (node labels) for
building regression models.Regression modeling is powerful enough to fit almost any data to within any selected error

bounds, which means overfitting is an ever present danger;i model validation (e.g., how
well a model might fit new data, or an estimation of the benefit obtained from including
each coefficient in a model) is an important self-correcting step.

As always, it is necessary to remember the adage: “All models are wrong, but some are
useful.”

The main reasons for building a regression model are:

• understanding: structuring the explanatory variable(s) in an equation that can be used
to interpret the impact they have on the response variable, i.e., build an understanding
of the processes that influence the response variable to behaves the way it does,

• prediction: that is predicting the value of the response variable, for values of the ex-
planatory variables that have not been measured.

The focus of interpretive modeling is understanding why, which creates a willingness to
trade-off prediction accuracy for model simplicity, while the focus of predictive model-
ing is accuracy of prediction, which creates a willingness to trade-off understanding of
behavior for greater accuracy.

iIt is possible to fit an expression containing a single parameter to any data, to any desired degree of
accuracy.229

281

282 11. Regression modeling

Understanding is the primary focus for the model building in this book; builders of com-
puting systems are generally interested in controlling what is happening and control re-
quires understanding; predicting is a fall back position. Model building for prediction is
often easier than building for understanding, once readers master building for understand-
ing they will not find it difficult to switch to a predictive focus.

Regression models contain a response variable, one or more explanatory variablesii, and
some form of error term.

The response variable is modeled as some combination of explanatory variables and
an additive or multiplicative error term (the error term associated with each explanatory
variable represents behavior not accounted for by the explanatory variable; different kinds
of regression model make different assumptions about the characteristics of the error).

It is always possible to concoct a model that fits some data to within any error tolerance,
i.e., the amount of variation in the measurements used, that the model does not explain.
It is very important to always ask how well a model is likely to fit all the data likely to be
encountered, not just the data used to build it.

If a sample contains many variables, then it is sometimes possible to build a model only
using a few of these variables, that has an impressive fit to the chosen response variable.
A study by Zeller, Zimmermann and Bird2005 built a fault prediction model whose perfor-
mance was comparable to the best available at the time. The model used four explanatory
variables to predict the probability of a fault report being associated with the source code
contained a file; the explanatory variables were the percentage occurrence of each of the
characters IROP in each file. The model was discovered by checking how good a job every
possible character did at predicting fault probability, and picking those that gave the best
fit.

11.2 Linear regression

The simplest form of regression model is linear regression, where the response variable
is modeled as a linear combination of explanatory variables and an additive error (the
error terms are assumed to be independent and identically distributed; ε denotes the total
error). The equation is:
y = α +β1x1 +β2x2 + · · ·+βnxn + ε (11.1)

Note that the term linear refers to the coefficients of the model, i.e., β , not the form taken
by the explanatory variables, which may have a non-linear form, as in:

y = α +βx2 + ε

or:

y = α +β log(x)+ ε

A linear model is perhaps the most commonly used regression model, reasons for this
include:

• many real world problems exhibit linear behavior, or a good enough approximation to
it for practical purposes, over their input range,

• they are much easier to fit manually than more sophisticated models, and until recently
software to build other kinds of models was not widely available,

• they can generally be built with minimal input from the user (apart from having to
decide which column of data to use as the response variable).

The glm functioniii builds a linear model, and the common use case has two arguments,
a formula expressing a relationship between variables (response variable on the left and
explanatory variable(s) on the right), and an object containing the data (this object is
required to contain columns whose names match the identifiers appearing in the formula).

iiBooks that focus on the predictive aspect of models, use the term prediction variable or just predictor,
while those that focus on running experiments use terms such as control variables or just the controls.

iiiMany books start by discussing the lm function, rather than glm, because the mathematics that underpins
it is easier to learn, another reason for this is herd mentality, it’s what everybody else does; if you dear reader
want to learn this mathematics I recommend taking this approach. As its name implies the Generalised Linear
Method has a wider range of applicability and its use here is in line with the aim of teaching one technique
that can be used everywhere. Also, the mathematics behind glm makes fewer assumptions about the sample
characteristics, e.g., it does not require that the variance in the error be constant (which lm does).

11.2. LINEAR REGRESSION 283

0 1000 2000 3000 4000

200

400

600

800

1000

1200

1400

Elapsed days
Li

ne
s

of
 c

od
e

(t
ho

us
an

ds
)

Figure 11.2: Total lines of source code in FreeBSD by
days elapsed since the project started (in 1993). Data from
Herraiz.817 Github–Local

The formula has the form of an equation, with the = symbol replaced by ~ (pronounced is
distributed according to) and the coefficients α and β are implicitly present, i.e., they do
not need to be explicitly specified in the code.

The following code uses glm to build a model showing the relationship between the num-
ber of lines of source code (sloc) in FreeBSD, and the number of days elapsed since the
project started (in 1993):

BSD_mod=glm(sloc ~ Number_days, data=bsd_info)

The fitted equation is:

E[sloc] = α +β ×Number_days

where: E[sloc] is the expected value of sloc (the error term is discussed below).

Figure 11.2 shows the measured data points, and a straight line based in the coefficients
contained in the object returned by glm.

The summary function takes the object returned by glm and prints details about the fitted
model;iv the following is for the model fitted to the FreeBSD data: Github–Local

Call:
glm(formula = sloc ~ Number_days, data = kind_bsd)

Deviance Residuals:
Min 1Q Median 3Q Max

-82990 -32136 -3609 35389 87324

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.139e+05 1.171e+03 97.24 <2e-16 ***
Number_days 3.937e+02 4.205e-01 936.33 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 1657283104)

Null deviance: 1.4610e+15 on 4826 degrees of freedom
Residual deviance: 7.9964e+12 on 4825 degrees of freedom
AIC: 116172

Number of Fisher Scoring iterations: 2

The table following the Coefficients: header, in the summary output, lists the fitted
values for α and β (Intercept and Number_days respectively), the standard error in these
estimates (Std.Error) and the probability that, if the true value of the coefficient was
zero, the estimated value would have occurred by chance (in the Pr(>|t|) column).

The values listed in the summary output can be plugged into the model formula to give
the following fitted equation:
sloc = 1.139 ·105 +3.937 ·102Number_days (11.2)

The fit between the model and the data is not perfect, and the following are the two forms
of uncertainty, or variation, present in the model:

1. Uncertainty in the values of the model coefficients. The values listed in the Std.
Error column denote one standard deviation, which when added to the model gives
the following:
sloc=(1.139 ·105±1.171 ·103)+(3.937 ·102±4.205 ·10−1)Number_days (11.3)

2. Uncertainty caused by the inability of the explanatory variable used in the model to
explain everything. This uncertainty is the ε appearing in equation 11.1; the term
residual is used to denote this quantity. In the general case it is unlikely that ε will
have a fixed value over the range of values supported by a model and glm does not
return any value(s).

In figure 11.2 the variations in the unexplained error, ε , appear to be small. The aov
function can be used to obtain a single fixed value; it returns 40,710 as the residual
standard error. The equation, including this estimate of the residual is:

ivOnly a few digits of the estimated values are printed by default.

284 11. Regression modeling

sloc = 1.139 ·105 +3.937 ·102Number_days±4.071 ·104

In other words, the difference between measured values and values calculated using
this fitted model are predicted to have a standard error of 4.071 ·104.

The object returned by the call to glm can be used to make predictions, and these can be
overlaid on the output from an earlier call to plot, as follows:

BSD_pred=predict(BSD_mod) # uses fitted model and measured values
lines(BSD_pred, col="red") # x-axis starts at 1 and increment

The predict/lines approach follows this book’s aim of using techniques that work for
the general case. Plotting a fitted straight line is such a common operation that there is
a function for doing just that, e.g., abline(reg=BSD_mod, col="red"), but this does
not always work when the axis have been scaled in some way and is of no use for fitted
models that are more complicated than a straight line.

Before being carried away with the high degree of agreement between this model and the
data, it is important to remember that the model has a number of characteristics that do
not reflect reality, including:

• source code does not spontaneously grow of its own accord, and the only justification
for treating number of days as an explanatory variable is that the resulting model pro-
vides potentially interesting insight into the rate of growth of these software systems.

• when it started the BSD project contained zero lines of code, but this model has an
Intercept of 1.39 ·105,

• the model shows the number of lines increasing forever, at a constant rate, whereas at
some point in the future growth must slow down and eventually stop,

• it says nothing about large amounts of code being added/removed over very short peri-
ods (known to exist because of visible breaks in the connectedness of plotted values).

While the model has various disconnects with reality, it does provide strong evidence
that growth has been remarkable constant over a long period. Unless there are seismic
changes within the FreeBSD development world, the constant rate of code growth would
be expected to continue to hold for a non-trivial number of days into the future.

Fitting a model to the data marks the start of the next stage of analysis; creating viable
explanations for the processes that could have produced the behavior found. Some factors
and processes that might be involved in driving FreeBSD’s essentially constant rate of
growth over 20 years include:

• developers working on the system have continually discovered new functionality to add,

– if there has always been functionality to add, why haven’t more developers become
involved, increasing the rate of growth until there is less to do?

– to what extent is the continual stream of new hardware devices responsible for driving
growth?

• what are the bottlenecks that have prevented increases in growth rate, when the re-
sources have been available?

– has growth rate remained constant because the developers working on the systems
have remained constant?

– is there a buffer of code waiting to be released, whose growing and shrinking hides
an internal growth rate that is much more variable than the externally visible rate?

The questions answered by the analysis of one set of measurements invariable raises more
questions, whose answers require more data.

The call to summary, passing the value returned by glm, is an example of function over-
loading in action. The value returned by glm has class glm, which, when passed as an
argument to summary, results in summary.glm being called; a call to predict results
in predict.glm being called (function overloading is the most common use of object-
oriented constructs in R programs; the use of a period in the function name is a naming
convention followed by the implementers and not something that changes the behavior of
the R compiler).

Some readers of data analysis may find a visual presentation of the coefficients of a fitted
model, along with their standard error, easier to process. The sjPlot package offers a
variety of options for plotting of fitted model information.

11.2. LINEAR REGRESSION 285

5 10 20 50 100 200

2

4

6

8

10

12

14

IT budget (million euro)

D
ur

at
io

n
(y

ea
rs

)

Figure 11.3: Estimated cost and duration of 73 large Dutch
federal IT projects, along with fitted model and 95% con-
fidence intervals (green for the bounds of the fitted line
and blue for the bounds of any new measurements). Data
from Kampstra et al.969 Github–Local

11.2.1 Scattered measurement values

In the FreeBSD analysis, the measurements ran together in a way that created a visually
recognizable line. The common case is not always so accommodating, and often when
many samples are plotted a scattering of visually disjoint points appears; viewed as a
whole a general trend may emerge.

A study by Kampstra and Verhoef969 investigated the estimated cost and duration of 73
large Dutch federal IT projects.v Figure 11.3 shows that few measurement points are close
to the (red) fitted line returned by glm; the variability of measured values is much larger
than that for the FreeBSD data. While numeric estimates of the uncertainty present in
the fitted model are readily available, interpreting these numeric values requires a degree
of effort and some experience. A confidence interval provides an easy to interpret visual
representation of the uncertainty in a fitted model.

The kind of uncertainty, in the fitted model, of interest will depend on whether the model
is built to gain understanding or make predictions:

• when understanding is the priority, the confidence interval of interest involves the esti-
mated model coefficients:

– a call to predict with the argument se.fit=TRUE, returns the standard error for
each fitted value. Multiplying se.fit by qnorm,vi converts the returned value to a
95% confidence interval (in this case, 2.5% above and below the fit; the two qnorm
values differ only in sign because the Normal distribution is symmetrical), i.e., there
is a 95% expectation that the actual model fits within the interval enclosed by these
lower/upper bounds. qnorm(0.975)==1.96 and the literal value is often used (some-
times the value 2 is treated as a sufficiently close approximation).vii

fed_pred=predict(fed_mod, newdata=list(log.IT=1:7, log.IT_sqr=(1:7)^2),
se.fit=TRUE)

lines(fed_pred$fit, col="green") # fitted line
CI above and below
lines(fed_pred$fit+qnorm(0.975)*fed_pred$se.fit, col="green")
lines(fed_pred$fit+qnorm(0.025)*fed_pred$se.fit, col="green")

– the confint function in the MASS package, or the boot.ci function in the boot
package, can be used to obtain a point estimate of the confidence interval of the fitted
model coefficients.

• when prediction is the priority, the interval is known as the prediction interval; the
bounds between which newly measured values are expected to appear. Two sources
of uncertainty are added to calculate the prediction interval: uncertainty in the model
coefficients (i.e., the confidence interval) plus the variance in the data not explained by
the fitted model; the calculation is (the predict function can perform this calculation
for a few types of fitted models):

print.aov also calculates it from residuals returned by glm...
MSE=sum(fed_mod$residuals^2)/(length(fed_mod$residuals)-2)
Variances, but not sd, can be added
pred_se=sqrt(fed_pred$se.fit^2+MSE)
lines(fed_pred$fit+1.96*pred_se, col="blue")
lines(fed_pred$fit-1.96*pred_se, col="blue")

When measurement values, and an associated fitted regression line, are plotted, it is easy
to visually fixate on the line and forget about the associated uncertainties. Including a
confidence band as part of a plot provides a vivid visual reminder of the uncertainty in the
fit.

Plotting values does not always reveal an obvious pattern in the distribution of points. The
absence of a visual pattern may be because no relationship exists between the response
and explanatory variables, or because the noise in the data is much greater than the signal,
i.e., a relationship that exists is swamped by noise present in the measurements.

How much random scattering of measurement values has to exist before a fitted regression
model can be said to be not worth bothering about?

vThey discovered there was a lot of uncertainty in the estimates given.
viThis calculation assumes that the measurement error has a Normal distribution, the default assumption

made by glm when building a model.
viiFor small sample sizes a call to qt may be more accurate.

286 11. Regression modeling

0 5 10 15 20 25
0

200

400

600

800

Number of updates

N
um

be
r

of
 fi

xe
s

Figure 11.4: Number of updates and fixes in each Linux
release between version 2.6.11 and 3.2. Data from Corbet
et al.402 Github–Local

The glm function, and many other model building functions available in R, is capable
of fitting models to data points that are randomly distributed. For instance, Figure 11.4
shows the number of updates and fixes made in various Linux versions released between
early 2011 and 2012. The standard error of the fitted line shows that its slope could have
a positive or negative value.

The output from summary shows how poor the fit actually is;the Pr(>|t|) column lists
the p-value for the hypothesis that the coefficient in the corresponding row is zero, i.e.,
that no relationship was found to exist for that component of the model. Github–Local

Call:
glm(formula = Fixes ~ Total.Updates, data = cleaned)

Deviance Residuals:
Min 1Q Median 3Q Max

-310.60 -223.67 0.48 184.51 525.26

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 356.233 101.522 3.509 0.0016 **
Total.Updates -4.464 8.478 -0.526 0.6029

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 60685.71)

Null deviance: 1655335 on 28 degrees of freedom
Residual deviance: 1638514 on 27 degrees of freedom
AIC: 405.62

Number of Fisher Scoring iterations: 2

11.2.2 Discrete measurement values

Regression models are not limited to fitting continuous numeric explanatory variables,
variables having nominal values (i.e., discrete) can also be included in a fitted model.

A study by Cook and Zilles396 investigated the impact of compiler optimization flags on
the ability of software to continue to operate correctly, when subject to random bit-flips,
i.e., simulating random hardware errors; 100 evenly distributed points in the program were
chosen and 100 instructions from each of those points were used as fault injection points,
giving a total of 10,000 individual tests run, for each of 12 programs from the SPEC2000
integer benchmark compiled using gcc version 4.0.2 (using optimization options: O0, O2
and O3) and the DEC C compiler (called osf).

The fitted model has percentage of correct benchmark program execution as the response
variableviii and optimization level as the explanatory variable; the call to glm is un-
changed:

bitflip_mod=glm(pass.masked ~ opt_level, data=bitflip)

The summary output of the fitted model is: Github–Local

Call:
glm(formula = pass.masked ~ opt_level, data = bitflip)

Deviance Residuals:
Min 1Q Median 3Q Max

-12.6689 -2.8454 -0.3478 4.4017 8.1100

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 28.589 1.825 15.665 < 2e-16 ***
opt_levelO2 9.161 2.581 3.550 0.00112 **
opt_levelO3 7.429 2.581 2.878 0.00677 **
opt_levelosf 11.642 2.414 4.822 2.74e-05 ***

viiiPercentage correct is always between 0 and 100%; technically correct techniques for handling response
variables having a lower and upper bound are discussed in section 11.3.6.

11.2. LINEAR REGRESSION 287

400 600 800 1000 1400

4000

6000

8000

10000

12000

14000

C
om

m
its

400 600 800 1000 1400

4000

6000

8000

10000

12000

14000

Developers

C
om

m
its

Figure 11.5: Number of commits made, and the num-
ber of contributing developers for Linux versions 2.6.0
to 3.12. The blue line in the right plot is the regres-
sion model fitted by switching the x/y values. Data from
Kroah-Hartman.1046 Github–Local

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 29.97578)

Null deviance: 1785.8 on 38 degrees of freedom
Residual deviance: 1049.2 on 35 degrees of freedom
AIC: 249.07

Number of Fisher Scoring iterations: 2

Plugging the model coefficients into the regression equation we get:

pass.masked = 28.6+9.2×DO2 +7.4×DO3 +11.6×Dosf

where: Di, known as a dummy variable or indicator variable, take one of two values:

Di =

{
1 optimization flag used
0 optimization flag not used

The value for optimization O0 is implicit in the equation, it occurs when all other opti-
mizations are not specified, i.e., its value is that of the intercept.

The standard error in the O2 and O3 compiler options is sufficiently large for their respec-
tive confidence bounds to have significant overlap; suggesting that these two options have
a similar impact on the behavior of the response variable.

11.2.3 Uncertainty only exists in the response variable

Many algorithms used to fit regression models attempt to minimise the difference between
the measured points and a specified equation. For instance, least-squares minimises the
sum of squares of the distance along one axis between each data point and the fitted
equation;ix alternative minimization criteria are discussed later, e.g., giving greater weight
to positive error than negative error.

An important, and often overlooked, detail, is that many regression techniques assume
that the values of the explanatory variable(s) contain no uncertainty (i.e., measurements
are exact), with all uncertainty, ε , occurring in the response variable; see equation 11.2.

A consequence of assuming uncertainty only exists in the response variable, is that the
equation produced by fitting a model that specifies, say, X as the explanatory variable and
Y the response variable will not be algebraicly consistent with a model that assumes Y is
the explanatory variable and X the response variable. That is, algebraicly transforming
the first equation produces an equation whose coefficients are different from the second.

A study by Kroah-Hartman1046 investigated the number of commits made between the
release of a version of Linux and the immediately previous version, and the number of
developers who contributed code to that release, for the 67 major kernel releases between
versions 2.6.0 and 4.6.

In the upper plot of figure 11.5, the number of developers is treated as the explanatory
variable (x-axis), and number of commits as the response variable (y-axis), with the fitted
regression line in red and dashed lines showing the difference between measurement and
fitted model. In the lower plot the explanatory/response roles played by the two variables,
when fitting the regression model, is switched; to simplify comparison the axis denote
the same variables in both plots, with the blue line denoting the newly fitted model, and
dashed lines showing the difference between measurement and model (now on the x-axis
response variable; the line fitted in the upper plot is also plotted for comparison, still in
red).

In the first case the fitted equation is:
commits =−237±523+(8.7±0.44)mathitNumber_devs (11.4)

transforming this equation we get:

Number_devs =
237+ commits

8.7
= 27+0.11commits (11.5)

ixMinimising the sum of squares in the error has historically been popular because it is a case that can be
analysed analytically.

288 11. Regression modeling

However, when a model is fitted by switching the roles of the two variables, in the formula
passed to glm, the model returned is described by the following equation:

Number_devs = 162±52+(0.10±0.005)commits

which differs from equation 11.5, obtained by transforming equation 11.4.

There is another difference between the two fitted models, the second model is a better fit
to the data. Somebody who is only interested in the quality of fit may be tempted to select
the second model, purely for this reason.

What is the procedure for deciding which measurement variables play the role of response
and explanatory variable, e.g., should number of developers be considered an explanatory
or response variable?

An important attribute of explanatory variable(s) is that their value is controlled by the
person making the measurement. For instance, the model building process used to create
figure 11.2 has number of days as the explanatory variable; this choice was completely
controlled by the person making the measurements.

The Kroah-Hartman commit measurements are based on the day of release of a version of
the Linux kernel, a date that is outside the control of the measurement process. In fact both
measurements have the characteristics of a response variables, that is, the value they have,
was not selected by the person making the measurement. Both the possibility of variation
in Linux version release dates and variation in number of commits made by developers
are sources of uncertainty, both variables need to be treated as containing measurement
error.

Building a regression model using explanatory variables containing measurement error
can result in models containing biased and inconsistent values, as well as inflating the
Type I error rate.269, 1683

There are a variety of regression modeling techniques that can take into account error
in the explanatory variable. These techniques are sometimes known as model II linear
regression techniques (model I being the case where there is no uncertainty in the ex-
planatory variables), and also as errors-in-variable models, total least-squares or latent
variable models; methods used go by names such as major axis, standard major axis and
ranged major axis.

If all the variables used to build a model contain some amount of error, then it is necessary
to decide how much error each variable contributes to the total error in the model. Some
model II techniques are not scale invariant, that is, they are only applicable if both axes
are dimensionless or denote the same units, otherwise rescaling one axis (e.g., converting
from kilometers to miles) will change its relative contribution. If each axis denotes a
different unit, it does not make sense to use a model building technique that attempts to
minimise some measure of combined uncertainty.

SIMEX (SIMulation-EXtrapolation) is a technique for handling uncertainty in explana-
tory variables that works in conjunction with a range of regression modeling techniques.
The SIMEX approach does not suffer from many of the theoretical problems that other
techniques suffer from, but requires that the model builder provide an estimate of the
likely error in the explanatory variable(s). The simex package implements this function-
ality, and supports a wide variety of regression models built by functions from various
packages.

Continuing with the Linux developer/commit count example, to build a regression model
using SIMEX, we need an estimate of the uncertainty in the number of developers con-
tributing at least one commit to any given release. The simex function taking a model
built using glm (and by other regression model building functions) and an estimate of the
uncertainty in one or more of the explanatory variables, and returns an updated model that
has been adjusted to take this uncertainty into account.

The following is a rough and ready approach to estimating the uncertainty in the Kernel
attributes, measured by Kroah-Hartman:

• the release date of a new version of Linux is assumed to have an uncertainty of ±14
days about the actual release date.x

• the possible variation in the unique contributor count for any release is assumed to be
uniformly distributed in the range: measured contributor count plus/minus number of
developers contributing their first commit in the last 14 days.

xPointers to a more reliable, empirically derived, value are welcome.

11.2. LINEAR REGRESSION 289

100 200 500 1000 2000

500

1000

2000

5000

10000

Size (function points)

E
ffo

rt
 (

ho
ur

s)

Figure 11.6: Effort/Size of various projects and regres-
sion lines fitted using Effort as the response variable (red,
with green 95% confidence intervals) and Size as the re-
sponse variable (blue). Data from Jørgensen et al.953

Github–Local

• based on these assumptions, a standard deviation of 41 is obtained for the number
of unique developers making at least one commit, averaged over all versions; see
Github–regression/clean/dev-commit.R.

Integrating this estimate of the standard deviation in the explanatory variable into a re-
gression model is a two-step process:

• first build a regression model using glm in the usual way, but with the optional named
parameter x set to TRUE (y also needs to be TRUE, but this is its default value and so the
assignment below is redundant),

• pass the model returned by glm to simex, along with the name of the explanatory vari-
able and its estimated standard deviation.

In code, the implementation is:

yx_line = glm(commits ~ developers, x=TRUE, y=TRUE)

sim_mod=simex(yx_line, SIMEXvariable="developers", measurement.error=41)

Compare equation 11.4 with the following equation, derived from the model returned by
simex (see Github–regression/dc-simex.R):xi

commits =−387±453+(8.9±0.4)Number_devs

The error in individual explanatory variable measurements can be specified by assigning
a vector to measurement.error (the argument asymptotic=FALSE is also required); see
fig 11.35.

How reliable is a fitted model that ignores any uncertainty/error in explanatory variable
measurements? The only way to answer this question is to build a model that takes this
error into account and compare it with one that does not. The difference between the two
ways of structuring fitted models can sometimes be much larger than that in figure 11.5.

The question of whether economies of scale exist for software development might be
answered by analysing project effort/size data. Figure 11.6 shows lines for two fitted
regression models, one with Effort as the explanatory variable, the other with Size as the
explanatory variable (from a study by Jørgensen, Indahl and Sjøberg953). If economies
of scale exist, the slope of the effort/size line will be less than one (diseconomies of
scale produce a slope greater than one). In this case, one slope is less than one and the
other greater than one. The models fitted by switching response/explanatory variables are
outside each other’s 95% confidence intervals (there is no reason to expect them to be
inside).

Many measurement values treated as explanatory variables in this book were not under
the control of the person who measured them. For instance, lines of code, number of
files and reported problems measured at a given point in time are all response variables.
To reduce your author’s workload, most model fitting in this book does not make any
adjustments for errors in the explanatory variables.

There are techniques, and R packages, for building complete models starting from the
data, rather than refitting an existing regression model. For those wanting to a build
model from scratch, the lmodel2 package provides functions that implement many of the
available methods.

11.2.4 Modeling data that curves

A model based on a straight line is a wonderful thing to behold, it is simple to explain
and often aligns with people’s expectations (many real world problems are well fitted by
a straight line). However, life is complicated and throws curved data at us.

Having encountered an operating system having constant lines of code growth over many
years, it is tempting to draw a conclusion about the growth rate of other operating systems.
However, the way in which the data points curve around the fitted line in the upper plot of
figure 11.7, suggests that some of the processes driving the growth of the Linux kernel are
different from those driving FreeBSD; perhaps a quadratic or exponential equation would
be a better fit (these possibilities were chosen because they are two commonly occurring
forms for upwardly curving data).

xiReaders might like to experiment with the value of measurement.error, to see the impact on the model
coefficients.

290 11. Regression modeling

0 1000 2000 3000 4000 5000
0

2

4

6

8

Days

To
ta

l l
in

es
 o

f c
od

e
(m

ill
io

n)

0 1000 2000 3000 4000 5000
0

2

4

6

8

Days

To
ta

l l
in

es
 o

f c
od

e
(m

ill
io

n)

Figure 11.7: Lines of code in every initial release (i.e.,
excluding bug-fix versions of a release) of the Linux ker-
nel since version 1.0, along with fitted straight line (upper)
and quadratic (lower) regression models. Data from Israeli
et al.902 Github–Local

This section is about fitting linear models, so the possibility of an exponential fit is put to
one side for the time being; building non-linear models, including better fitting non-linear
models to this data, is discussed later; see section 11.5.

The following call to glm fits an equation that is quadratic in the variable Number_days;
the righthand side of the formula contains Number_days+I(Number_daysˆ2). The I
(sometimes known as as-is) causes its argument to remain unevaluated and is treated as a
distinct explanatory variable (the ˆ operator has a distinct meaning within glm’s formula
notation, see table 11.2, and use of I prevents the expected binary operator usage being
overridden). An alternative way of including a squared explanatory variable in the model,
is to assign the value Number_daysˆ2 to a new variable and include this new variable’s
name on the righthand side of the formula. Figure 11.7, lower plot, shows the result of
fitting this equation.

linux_mod=glm(sloc ~ Number_days+I(Number_days^2), data=linux_info)

The quadratic fit looks like it is better than linear, but perhaps a cubic, quartic or higher
degree polynomial would be even better fits. The higher the order of the polynomial
used, the smaller the error between the fitted model and the data. The error decreases
because the additional terms make it possible to do a better job of following the random
fluctuations in the data. A method of applying Occam’s razor is needed, to select the
number of terms that produces the simplest model consistent with the data, and having an
acceptable error.

The Akaiki Information Criterion, AIC, is a commonly used metric for comparing two or
more models (available in the AIC function). It takes into account both how well a model
fits the data, and the number of free coefficients in the model (i.e., constants selected by
the model building process, such as polynomial coefficients); free coefficients have to pay
their way by providing an appropriate improvement in a model’s fit to the data.xii AIC
can also be viewed as the information loss when the true model is not among those being
considered.281

One set of selection criteria281 are that models whose AIC differs by less than 2 are more
or less equivalent, those that differ by between 4 and 7 are clearly distinguishable, while
those differing by more than 10 are definitely different.

How much better does a quadratic equation fit Linux SLOC growth, compared to a straight
line and how much better do higher degree polynomials fit? The following list gives the
AIC for models fitted using polynomials of degree 1 to 4 (lower values of AIC are better).
After initially decreasing the AIC starts to increase, once a fourth degree polynomial
is reached; the third degree polynomial is thus the chosen linear polynomial, of those
tested (other forms of equation could provide better fits using fewer free coefficients.)
Github–Local

[1] Degree 1, AIC= 13998.0004739753
[1] Degree 2, AIC= 13674.6883243397
[1] Degree 3, AIC= 13220.8542892188
[1] Degree 4, AIC= 13221.7072389496

The following is the summary output for the fitted cubic model: Github–Local

Call:
glm(formula = LOC ~ Number_days + I(Number_days^2) + I(Number_days^3),

data = latest_version)

Deviance Residuals:
Min 1Q Median 3Q Max

-428217 -80061 6503 64889 620500

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.432e+05 2.876e+04 11.935 < 2e-16 ***
Number_days -3.664e+02 5.144e+01 -7.123 3.79e-12 ***
I(Number_days^2) 8.167e-01 2.456e-02 33.258 < 2e-16 ***
I(Number_days^3) -9.184e-05 3.371e-06 -27.242 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

xiiA negative AIC value may be the result of a nominal explanatory variable having many values, e.g., dates
that are represented as strings, which are could be converted using as.Date.

11.2. LINEAR REGRESSION 291

3000 4000 5000 6000 7000
1

2

3

4

5

6

7

8

Days

Li
nu

x
ke

rn
el

 s
iz

e
(M

LO
C

)

Figure 11.8: Actual (left of vertical line), and predicted
(right of vertical line) total lines of code in Linux at a given
number of days since the release of version 1.0, derived
from a regression model built from fitting a cubic polyno-
mial to the data (dashed lines are 95% confidence bounds).
Data from Israeli et al.902 Github–Local

0 500 1000 1500 2000

200

400

600

800

Days since version 1.0.0

N
um

be
r

of
 c

la
ss

es

version 1.0.x

version 1.1.x to 1.6.x

Figure 11.9: Number of classes in the Groovy compiler
at each release, in days since version 1.0. Data From
Vasa.1883 Github–Local

(Dispersion parameter for gaussian family taken to be 23001633959)

Null deviance: 1.8867e+15 on 494 degrees of freedom
Residual deviance: 1.1294e+13 on 491 degrees of freedom
AIC: 13221

Number of Fisher Scoring iterations: 2

Regression modeling produces the best fit for an equation over the range of data values
used, and AIC helps prevent overfitting. No claims are made about how well the model
is likely to fit data outside the range values used to fit it. Using a model, optimized to
fit the available data, to make predictions outside the interval of the data values used can
produce unexpected results.

What is the behavior of the above cubic model outside its fitted range, and in particular,
what predictions does it make about future growth? Figure 11.8 shows that the model
predicts a future decrease in the number of lines of code. A decreasing number of lines
is the opposite of previous behavior, this prediction does not appear believable (if this
decreasing behavior were predicted by a more detailed model of code growth, that closely
mimicked real-world development by using information on the number of developers
actively involved, and a list of functionality likely to be implemented, it would be more
believable).

A quadratic equation might not fit the data as well as a cubic equation, but the form of its
predictions (increasing growth) is consistent with expectations.

If the purpose of modeling is to gain understanding, then the quadratic model maps more
closely to anticipated behavior; if the purpose is prediction within the interval of the fitted
data, then the cubic model is likely to have a smaller error.

What about fitting other kinds of equations to the data? Equations such as Y = αeβX + ε

and Y = αXβ + ε are nonlinear in β ; non-linear model building is discussed in sec-
tion 11.5.

For a software system to grow, more code has to be added to it than is deleted. A constant
rate of growth suggests either a constant amount of developer effort, or a bottleneck hold-
ing things up; an increasing rate of growth (i.e., quadratic) suggests an increasing rate of
effort. The different code growth pattern seen in the Linux kernel, compared to NetB-
SD/FreeBSD and various other applications, has been tracked down689 to device driver
development; new hardware devices often share many interface similarities with existing
devices; for Linux developers tend to copy an existing driver, modifying it to handle the
hardware differences. It is this reuse of existing code that is the source of what appears to
be a non-linear growth in developer effort. This method of creating a new device driver,
performed by many developers working independently, can continue for as long as the
new devices coming to market have common interfaces.

A linear regression model is not restricted to combining explanatory variables using poly-
nomials, any function can be used as long as the coefficients of the model occur in linear
form. For instance, the FreeBSD model plotted in figure 11.2 might include a seasonal
term that varies with time of year; while a model containing the term Asin(2π f t +φ)xiii

is nonlinear (because of φ , the phase shift), it can be written in linear form the follows:

Asin(2π f t +φ) = αs sin(2π f t)+αc cos(2π f t)

where: αs = Acosφ and αc = Asinφ ; A =
√

α2
s +α2

c and φ = arctan αs
αc

.

The call to glm is now (the argument to the trig functions is in radians):

rad_per_day=(2*pi)/365
freebsd$rad_Number_days=rad_per_day*freebsd$Number_days
season_mod=glm(sloc ~ Number_days+sin(rad_Number_days)+cos(rad_Number_days),

data=freebsd)

The summary output, from the fitted model, shows that while a seasonal component exists,
its overall contribution is small; see Github–regression/Herraiz-BSD-season.R.

While fitting a model using all available measurements points is a reasonable first step,
subsequent analysis may suggest that the data might best be treated as two or more disjoint

xiiiSome books use Acos(2π f t +φ), which changes the phase by 90°and flips some signs.

292 11. Regression modeling

1e+03 1e+05 1e+07 1e+09
1

100

10000

Github: lines checked in

S
ta

ck
ov

er
flo

w
: l

an
gu

ag
e

ta
gs

1e+03 1e+05 1e+07 1e+09
1

100

10000

Github: lines checked in

S
ta

ck
ov

er
flo

w
: l

an
gu

ag
e

ta
gs

Figure 11.10: For each distinct language, the number
of lines committed on Github, and the number of ques-
tions tagged with that language. Data from Kunst.1059

Github–Local

0 1 2 3 4 5 6 7
0

20

40

60

80

100

Years working in security

P
er

ce
nt

ag
e

of
 v

ul
ne

ra
bi

lit
ie

s
de

te
ct

ed

Figure 11.11: Percentage of vulnerabilities detected by
developers who have worked a given number of years
in security. Data extracted from Edmundson et al.531

Github–Local

samples. There may be time dependent factors that have a strong influence on growth
patterns.

Figure 11.9 shows the number of classes in the Groovy compiler at each release, in days
since version 1.0. There are noticeable kinks in the growth rate at around 1,300 and 1,500
days. Fitting a model to the complete sample, shows upward trending quadratic growth in
the number of classes over time, but fitting separate models to two halves of the sample,
shows quadratic growth that flattens out.

An investigation the Groovy compiler developer, finds that the kink occurs at a transi-
tion between version numbers. It is possible to invent a variety of explanations for the
pattern of behavior seen, but treating the measurements as-if they came from a single
continuously developed code base, is probably not one of them; further investigation of
the circumstances behind the development of the Groovy compiler is needed, to obtain
the desired level of confidence in one of these, or other, models.

11.2.5 Visualizing the general trend

Even when the measurement points are scattered in what appears to be a general direction,
it is little work to confirm this general trend.

A general technique for highlighting the trend followed by data is to fit a regression model
to a consecutive sequence of small intervals of the data, joining this sequence of fits to-
gether to form a continuous line. Two methods based on this idea (both fitting such that
the lines smoothly run together), are LOWESS (LOcally WEighted Scatterplot Smooth-
ing) and LOESS (LOcal regrESSion); lowess and loess are the respective functions,
with loess being used in this book.

A study by Kunst1059 counted, for 148 languages, the number of lines committed to
Github (between February 2013 and July 2014), and the number of questions tagged with
that language name on Stackoverflow.

Figure 11.10, upper plot, shows lots of points that look as-if they trend along a straight
line. The loess fit, red line in lower plot, shows the trend having a distinct curve. Exper-
imenting with a quadratic equation in log(lines_committed) shows (blue line in lower
plot) that this more closely follows the loess fit, than a straight line (a quadratic fit also
has a lower AIC than a linear one; see Github–regression/langpop-corger-nl.R).

A call to loess has the same pattern as a call to glm, with the possible addition of an
extra argument; span is used to control the degree of smoothing:

loess_mod=loess(log(stackoverflow) ~ log_github, data=langpop, span=0.3)
x_points=1:max(langpop$log_github)
loess_pred=predict(loess_mod, newdata=data.frame(log_github=x_points))
lines(exp(x_points), exp(loess_pred), col=pal_col[1])

A study by Edmundson, Holtkamp, Rivera, Finifter, Mettler and Wagner531 investigated
the effectiveness of web security code reviews, asking professional developers to locate
vulnerabilities in code.

The lowess fit, blue line in figure 11.11, suggests that the percentage of vulnerabilities
found increases as the number of years working in security increases, but then rapidly
decreases. This performance profile seems unrealistic. A fitted straight line, in red, shows
a decreasing percentage with years of work in the security field (its p-value is 0.02).

Perhaps the correct interpretation of this data, is that average performance does increase
with years worked in the field, but that the subjects with many years working in security,
who took part in the study, were more managerial and customer oriented people (who had
time available to take part in the experiment), i.e., this data contains sampling bias. At the
time of the study, software security work was rapidly expanding, so the experience profile
is likely to be skewed with more subjects being less experienced.

When it is not necessary to transform either argument, the value returned by the loess.
smooth function can be passed directly to lines.

lines(loess.smooth(dev$experience, dev$written, span=0.5), col=pal_col[2])

A loess visualization can also helpful when the number of data points is so large, they
coalesce into formless blobs. The Ultimate Debian Database is an example; see fig 11.23.

11.2. LINEAR REGRESSION 293

10000 20000 30000 40000 50000

20

40

60

80

100

120

140

Effort (hours)

Li
ne

s
of

 c
od

e
(K

lo
c)

Figure 11.12: Hours to develop software for 29 embedded
consumer products, and the amount of code they contain,
with fitted regression model and loess fit (yellow). Data
from Fenton el al.593 Github–Local

10000 20000 30000 40000 50000

20

40

60

80

100

120

140

Effort (hours)

Li
ne

s
of

 c
od

e
(K

lo
c)

Figure 11.13: Points remaining after removal of overly
influential observations, repeatedly applying Cook’s dis-
tance and Studentized residuals. Data from Fenton el
al.593 Github–Local

0.0

0.1

0.2

0.3

C
oo

k'
s

di
st

an
ce 2725 28

−1
0
1
2
3

S
tu

de
nt

iz
ed

 r
es

id
ua

ls

25 27

28

0.0
0.2
0.4
0.6
0.8
1.0

B
on

fe
rr

on
i p

−
va

lu
e

25 27

1

0.05

0.10

0.15

0.20

ha
t−

va
lu

es

0 5 10 15 20 25 30

2928

1

Index

Figure 11.14: influenceIndexPlot for the model hav-
ing the fitted line shown in figure 11.12; top three
data points highlighted. Data from Fenton el al.593

Github–Local

The loess function divides the range of x-axis values into fixed intervals, which means
that when the range of x-values varies by orders of magnitude, the fitted curve can appear
over stretched at the low values and compressed at high values.

One solution is to reduce the range of x-values by, for instance, taking the log, smoothing,
and then expanding (see Github–regression/java-api-size.R); the following code is used in
figure 11.32:

t=loess.smooth(log(API$Size), API$APIs, span=0.3)
lines(exp(t$x), t$y, col=loess_col)

11.2.6 Influential observations and Outliers

Influential observations are observations that have a disproportionate impact on the values
of a model’s fitted coefficients, e.g., a single observation significantly changes the slope of
a fitted straight line. The terms leverage (or, based on the mathematical symbol used, hat-
value) refer to the amount of influence a data point has on a fitted model; the hatvalues
function takes the model returned by glm and returns the leverage of each point.

Influential observations might be removed or modified, or a regression technique used that
reduces the weight given to what are otherwise overly influential points, e.g., the glmrob
function in the robustbase package (which is not always as robust as desired and manual
help may be required; see Github–regression/a174454-reg.R).

Outliers are discussed as a general issue in section 14, this subsection discusses outliers
in the context of regression modeling. In this context an outlier might be defined as
a data point having a disproportionately large standardized residual (here Studentized
residuals are used). To repeat an important point made in that chapter: excluding any
influential observations or outliers from the analysis is an important decision that needs
to be documented in the results.

Cook’s distance (also known as Cook’s D) is a commonly used metric, which combines
leverage and outlierness into a single number.

A study by Fenton, Neil, Marsh, Hearty, Radliński and Krause593 involved data from 31
software systems for embedded consumer products. Figure 11.12 shows development
effort against the number of lines of code, along with a fitted straight line and standard
error bounds. At the right edge of the plot are two projects that consumed over 50,000
hours of effort, and the number of lines of code for these projects looks very small in
comparison with other projects. Is the fitted model overly influenced by these two projects
and should they be ignored or adjusted in some way?

As the number of points in a sample grows, there is an increasing probability that one
or more of them will be some distance away from the fitted line; in any large sample a
few apparent outliers are to be expected as a natural consequence of the distribution of
the error. The following analysis illustrates the dangers of not taking sample size into
account, when making judgements about the outlier status of a measurement point.

Figure 11.13 shows the result of building a model, after removing measurements having
both a high Cook’s distance and Studentized residuals, and repeating the process until
points stop being removed. At the end of the process, most measurement points have
been removed.

Removing overly influential points until everything looks respectable is seductive, it is an
easy-to-follow process that does not require much thought about the story that the data
might have to tell. For those who don’t want to think about their data, the outlierTest
function, in the car package, can be used to automate outlier detection and removal (it
takes a model returned by glm and returns the Studentized residuals of points whose
Bonferroni corrected p-value is below a cutoff threshold; default cutoff=0.05).

A method of visualizing the important influential observation and outlier information is
required. The influenceIndexPlot function, in the car package, takes the model re-
turned by glm and plots the Cook’s distance, Studentized residual, Bonferroni corrected
p-value and hat-value for each data-point; figure 11.14 is for the Fenton et al data.

all_mod=glm(KLoC ~ I(Hours^0.5), data=loc_hour)
influenceIndexPlot(all_mod, main="", col=point_col, cex.axis=0.9, cex.lab=1.0)

294 11. Regression modeling

10000 20000 30000 40000 50000

20

40

60

80

100

120

140

Effort (hours)

Li
ne

s
of

 c
od

e
(K

lo
c)

Figure 11.15: Points remaining after removal of overly
influential observations, also taking into account the Bon-
ferroni p-value of the Studentized residuals; the line shows
the fitted model and 95% confidence interval (loess fit in
yellow). Data from Fenton el al.593 Github–Local

10

20

30

40

50

60

Fortnights

R
ep

or
te

d
pr

od
uc

t r
ec

al
ls

2006−05−16 2008−11−25 2010−06−30

Figure 11.16: Number of medical devices reported re-
called by the US Food and Drug Administration, in two
week bins; fitted straight line and confidence bounds,
with loess fit (yellow). Data from Alemzadeh et al.30

Github–Local

5

10

15

20

25

30

35

40

Fortnights

R
ec

al
ls

2006−05−16 2008−10−27 2010−04−26

Figure 11.17: Two fitted straight lines and confidence in-
tervals, one up to the end of 2010 and one after 2010. Data
from Alemzadeh et al.30 Github–Local

The upper plot shows four data points having a large Cook’s distance, but only two of them
have a significant corrected p-value (second plot from the bottom). These two data points
were removed, and the process of building a model and calling influenceIndexPlot
repeated; on this iteration one point is removed and iterating again finds no other data
points as worthwhile candidates for removal.

Figure 11.15 shows the results of removing data points having both a high Cook’s dis-
tance, and Studentized residuals whose corrected p-value is below the specified limit.

Outliers are loners, appearing randomly scattered within a plot. When multiple points
appear to be following a different pattern than the rest of the data, the reason for this may
be a different process driving behavior, or a change of behavior in what went before.

A study by Alemzadeh, Iyer, Kalbarczyk and Raman30 investigated safety-critical com-
puter failures in medical devices between 2006 and 2011 (as reported by the US Food and
Drug Administration). Figure 11.16 shows the number of devices recalled for computer
related problems (20-30% of all recalls), binned by two-week intervals.

Data points that stand out in figure 11.16 are the two large recall rates in the middle of
the measurement interval, and recall rates at later dates appearing to increase faster than
earlier; adding a loess fit (yellow) shows peaks around the two suspicious periods. The
fitted straight line shows a distinct upward trend. Is this fitted line being overly influenced
by the two middle period points or end of measurement period recall rates?

The measurement points appear in regular time slots, and deleting one of these time slots
does not make sense; replacing an outlier with the mean of all measurements is one so-
lution for handling this situation. Doing this (see Github–regression/Alemzadeh-Recalls.R)
finds there is little change in the fitted regression model, i.e., these two outliers had lit-
tle influence. Did a substantive change in the processes driving recalls, or recording of
recalls, occur around the start of 2011? Further investigation, or domain knowledge, is
needed to answer this question.

Figure 11.17 shows two fitted models, one using data up until the end of 2010 and the
other using the data after 2010. This illustrates that blindly fitting a straight line to a
sample can produce a misleading model. A change in reporting appears to have occurred
around the end of 2010, which had a significant impact on reported recalls (work is needed
to uncover the reason for this change) and fitting data up to the end of 2010 shows a
much smaller increase, and perhaps even no increase, in recall rates, compared to when
measurements after this date are included.

A change-point analysis of this data is discussed in section 11.2.9.

When combining results from multiple studies, it is possible for an entire study to be an
outlier, relative to the other related studies.

A study by Amiri and Padmanabhuni52 analysed the methods used by eleven other studies
to convert between two common methods of counting function points.xiv Many studies
included in the analysis have small sample sizes, include both student and commercial
projects, and the function points are sometimes counted by academics rather than indus-
trial developers.

Figure 11.18 shows function points counted using the COSMIC and FPA algorithms
(counts made by students have been excluded). Both lines are loess fits, with red used
for industry points and blue for academic researchers; the academic line overlays the
industry line if one sample (i.e., Cuadtado_2007) is excluded.

The impact of influential observations on a fitted model can vary enormously, depending
on the form on the equation being fitted. Figure 11.19 shows the lines of five separate
equations fitted to the Embedded subset of the COCOMO 81215 data, with the upper plot
using the original data, and the lower plot the data after three influential observations have
been removed.

In some cases outlier removal has had little impact on the model fitted, while in other
cases there has been dramatic changes in the coefficients of the fitted model.

11.2.7 Diagnosing problems in a regression model

The commonly used regression modeling functions are capable of fitting a model to al-
most any sample, without reporting an error (some functions are so user-friendly they

xivFunction point counting is a technique for estimating development effort by counting the functionality
contained in the software requirements specification.

11.2. LINEAR REGRESSION 295

20 50 100 200 500 1000

50

100

200

500

1000

COSMIC

F
PA

Cuadtado_2007
Desharnais_2005
Desharnais_2006
Fetcke
Rabbi
Rabbobank
Sogeti
Demirors_2009
Gencel_2007

Figure 11.18: Results from various studies of software
requirements function points counted using COSMIC
and FPA; lines are loess fits to studies based on indus-
try and academic counters. Data from Amiri et al.52

Github–Local

5 10 20 50 100 200

10

50

100

500

1000

5000

10000

KSLOC

M
an

 m
on

th
s

5 10 20 50 100 200

10

20

50

100

200

500

1000

2000

KSLOC

M
an

 m
on

th
s

Figure 11.19: Five different equations fitted to the Em-
bedded subset of the COCOMO 81 data before influential
observation removal (upper) and after influential observa-
tion removal (lower). Data from Boehm.215 Github–Local

gracefully handle data that produces a singular matrix, an error that is traditionally flagged,
because it suggests that something somewhere is wrong). It is the analysts’ responsibility
to diagnose any problems in the model returned.

Looking at figure 11.20, it is visually obvious that at least two of the fitted regression
lines completely fail to capture the pattern present in the data. The data set is famous, it
is known as the Anscombe quartet.64 The four samples each contain two variables, with
each sample having the same mean, standard deviation, Pearson correlation coefficient
and are fitted using linear regression to produce a straight line having the same slope and
intercept.

Problems with a regression model are not always as obvious as the Anscombe quartet
case, and diagnosing the cause of the problem can be difficult. As always, domain knowl-
edge is very useful for suggesting alternative models or possible changes to a fitted model.

The difference between the measured value of the response variable, and the value pre-
dicted by a fitted model is known as the residual. While many model diagnosis techniques
are based on the use of the residual, they often require more knowledge of the mathemat-
ics of regression modeling than is covered in this book.xv

The suggested model diagnostic techniques, for casual users of statistics, are visualization
based.

Figure 11.21, upper plot, shows the residual of the straight line fitted to the Linux kernel
growth data analysed in figure 11.7. Ideally the residual is randomly scattered around
zero, and the V-shape seen in this plot is typical of a straight line fitted to values that curve
around it (the smallest residual is in the center, where the model fits best, and is greatest
at the edges; the smaller peak is a localised change of behavior, and may explain why a
cubic produces a slightly better fit). This plot is one of the four diagnostic visualizations
produced by plot, when it is passed a regression model, as follows:

m1=glm(LOC ~ Number_days, data=latest_version)
plot(m1, which=1, caption="", col=point_col)

Figure 11.21, lower plot, shows the original data, straight line fit (red) and loess fit (blue).
Both the residual plot and loess fit express the same pattern of curvature around about
the straight line fit. Both visualizations have their advantage, the loess line can be drawn
before any model is fitted, while details are easier to extract, from a residual plot, e.g.,
values for the size of the difference.

The mathematics behind linear regression requires that each measurement be independent
of all the other measurements in a sample. A common form of dependence between
measurements is serial correlation, i.e., correlation between successive measurements. A
fitted regression model can be tested for serial correlation using the Durbin Watson test;
supported by the durbinWatsonTest function in the car package.

A study by Flater and Guthrie614 measured the time taken to assign a value to an array
element in C and C++ , using twelve different techniques, some of which checked that the
assignment was within the defined bounds of the array (two array sizes were used, large
and small); the programs benchmarked were compiled using seven different compiler
optimization options.

Figure 11.22 shows the timings from 2,000 executions of one technique for assigning to an
array element, compiled using gcc with the O0 option (upper) and O3 option (lower). The
results for O0 show a clustering of execution times for groups of successive measurements.

A Durbin Watson test confirms that the O0 measurements are serially correlated; see
Github–benchmark/array-durbanwatson.R.

Some regression modeling functions can adjust for the presence of serial correlation (in-
formation about the correlation is passed in an optional argument). The gls function,
in the nlme package, supports a correlation option; the dynlm package supports the
use of time series operators (e.g., diff and lag) in the specification of model formula; the
tscount package supports the fitting of generalized linear models to time series of count
data.

When measurements contain a significant amount of serial correlation, time-series analy-
sis techniques may provide useful information; see section 11.10. The tsglm function, in
the tscount package, supports regression modeling of count time series.

xvIt is not obvious that the cost/benefit of learning the necessary mathematics is worthwhile (but it is a good
source of homework exercises for students).

296 11. Regression modeling

5 10 15

4

6

8

10

12

x

y

5 10 15

4

6

8

10

12

x

y

5 10 15

4

6

8

10

12

x

y

5 10 15

4

6

8

10

12

x

y

Figure 11.20: Anscombe data sets with Pearson cor-
relation coefficient, mean, standard deviation, and line
fitted using linear regression. Data from Anscombe.64

Github–Local

0 2 4 6 8

−0.5

0.0

0.5

1.0

Predicted values

R
es

id
ua

ls

1

2
3

0 1000 2000 3000 4000 5000

2

4

6

8

Days

To
ta

l l
in

es
 o

f c
od

e
(M

LO
C

)

Figure 11.21: Residual of the straight line fit to the Linux
growth data analysed in figure 11.7. Data from Israeli et
al.902 Github–Local

11.2.8 A model’s goodness of fit

How well does a model fit the data? The term goodness of fit is often used to describe this
quantity. Various formula for calculating a goodness of fit have been proposed, and often
involve the difference between the value measured and the corresponding value predicted
by the model.

For the end-user of results of the analysis, meeting expectations of behavior is an impor-
tant model characteristic.

When fitting equations to gain understanding, the structure of the processes suggested by
the terms of the equation are an important characteristic.

When making predictions, the primary quantity of interest is the accuracy of new pre-
dictions, i.e., the amount of expected error in predictions for values that are not in the
sample used to build the model. The error structure is also a consideration; is the priority
to minimise total error, worse case error, to prefer over-estimates to under-estimates (or
vice versa) or does some complicated weighting (over the range of values that explanatory
variable(s) might take) have to be taken into account?

When dealing with one explanatory variable, it is possible to get a good idea of how well a
model fits the data through visualization, e.g., by plotting them both. Does the fitted line
look correct and how wide are the confidence intervals? However, for data containing
more than one explanatory variable, accurate visualizations are problematic.

To create a model by fitting it to data, is to create a just so story. The predictions made
by a model, outside the range of the data used to build it, are just something to discuss
when considering expectations of behavior (which might be derived from a theory of the
processes involved in generating the data used to fit the model).

Confidence intervals, see fig 11.3, provide information about the goodness of fit at every
point. The following discussion looks at some ways of producing a single numeric value,
to represent goodness of fit.

The leftover variation in a sample that is not accounted for by the fitted model, the resid-
ual, is invariably a component in any equation in the calculation of a single value to
summarise how well the model performs. Some of the metrics used include:

• null deviance is a measure of the difference between the data and the mean of the
data, deviance is a measure of the difference between the data and a fitted model
(both values are listed in the summary output of a model fitted by glm). The percentage
difference between the deviance and null deviance is a measure of the variance in the
data that is not explained by the mode,

• R-squared (also known as the coefficient of determination and commonly written R2)
can be interpreted as the amount of variance in the data (as measured by the residuals)
that is explained by a model. It takes values between zero and one (which has the
advantage of being scale invariant) and is a measure of correlation, not accuracy.

Sometimes the adjusted R2, written R̄2, is used, which takes into account the number of
explanatory variables, p, and sample size, n: R̄2 = R2− (1−R2) p−1

n−p

• mean squared error (MSE): the mean squared error is the mean value of the square of the
residuals and as such has no upper bound (and will be heavily influenced by outliers);
root mean squared error (RMSE) is the square-root of MSE.

The following equation shows how MSE and R2 are related: R2 = 1− MSE
σ2

• mean absolute error (MAE): the mean absolute error is the mean value of the absolute
value of the residuals. This measure is more robust in the presence of outliers than
MSE.

Apart from the R2 metric, the metrics listed (plus AIC) are scale dependent, e.g., map-
ping measurements from centimeters to inches changes their value; transforming the scale
(e.g., taking logs) will also change metric values.

The choice of a metric is driven by what information is available and what model charac-
teristics are considered important, e.g., how important is being able to handle outlier. In a
competitive situation, people might not be willing to reveal details about their model and
so any public metric has to be based on predictive accuracy, e.g., model builders provide
the predictions made by their model to a test data set.

R2 is the only scale invariant metric, and it provides an indication of how much improve-
ment might be possible over an existing model.

11.2. LINEAR REGRESSION 297

5000 10000 15000

24.0

24.5

25.0

25.5

26.0

Successive measurements

T
im

e

5000 10000 15000
16.80

16.85

16.90

16.95

17.00

Successive measurements

T
im

e

Figure 11.22: Array element assignment benchmark com-
piled with gcc using the O0 (upper) and O3 (lower) op-
tions (measurements were grouped into runs of 2,000 ex-
ecutions). Data from Flater et al.614 Github–Local

0 1000 2000 3000 4000 5000

1

100

10000

Age (days)

In
st

al
la

tio
ns

Figure 11.23: Number of installations of Debian packages
against the age of the package, plus fitted model and loess
fit. Data from the "wheezy" version of the Ultimate De-
bian Database project.1862 Github–Local

It is possible for the coefficients of a fitted model to be known with a high degree of
accuracy, and yet for this model to explain very little of the variance present in the data,
and for there to appear to be little chance of improving on the model given the available
data.

The Ultimate Debian Database project1862 collects information about packages included
in the Debian Linux distribution. Figure 11.23 shows the age of a packaged application
plotted against the number of systems on which that application is installed, for 14,565
applications in the "wheezy" version of Debian; also, see fig 6.4 and fig 8.18.

The fitted linear model (red line, hidden by the 95% confidence interval in green over-
writing it; loess fit in blue) has a very low p-value, a consequence of the large number of,
and uniform distribution of, data points. The predictive accuracy of this model is almost
non-existent, the only information it contains is that older packages are a little more likely
to be installed that younger ones.

A study by Jørgensen and Sjøberg958 investigated developers’ ability to predict whether
any major unexpected problems would occur during a software maintenance task. Build-
ing a regression model, using the available measured attributes, finds that lines of code is
the only explanatory variable having a p-value less than 0.05. However, only 3.3% of the
variance in the response variable is explained by the number of lines of code; while the
explanatory variable was statistically significant, its practical significance was negligible;
see Github–maintenance/10.1.1.37.38.R.

11.2.9 Abrupt changes in a sequence of values

When the processes generating the measured values change, the statistical properties of
the post-change sequence of values may abruptly change. The point where the statistical
properties of a sequence of values significantly changes is known as a change-point.

The changepoint package supports basic change-point analysis of the mean and variance
of a sequence of values. The cpt.mean function checks for significant shifts in the mean
value; the method="AMOC" (At Most One Change) option searches for what its name
implies; other values support searching for a specified maximum number of changes,
with method="PELT" selecting what is considered to be the optimum number of changes.

An earlier analysis of electronic device recalls (see fig 11.17) suggested that a significant
shift in the processes driving reported recalls occurred at the end of 2010. Figure 11.24
shows the output from the following calls to cpt.man:

library("changepoint")

change_at=cpt.mean(as.vector(t2))
plot(change_at, col=point_col,

xlab="", ylab="Reported product recalls\n")

change_at=cpt.mean(as.vector(t2), method="PELT")
plot(change_at, col=point_col,

xlab="Fortnights", ylab="Reported product recalls\n")

For an example of detecting changes in variance and changes in both mean and variance,
see Github–regression/hpc-read-write.R.

The segmented function, in the segmented package, adjusts a fitted regression model to
take account of change-points; at the time of writing this function only fits connected line
segments, i.e., no disjoint line boundaries, such as that present in figure 11.17. A model
is fitted using glm is passed to segmented, which attempts to estimate the appropriate
change points and fit a series of line segments between each change-point (the number
of change-points can be explicitly specified). Figure 11.25 shows the output from the
following code (also see fig 10.20):

library("segmented")

plot(t2$fortnight, t2$freq, type="l", col=pal_col[2], xaxs="i",
xlab="Fortnights", ylab="Recalls\n")

al_mod=glm(freq ~ fortnight, data=t2) # fit model as usual

298 11. Regression modeling
R

ep
or

te
d

pr
od

uc
t r

ec
al

ls

10 20 30 40 50 60 70

10

20

30

40

50

60

Fortnights

R
ep

or
te

d
pr

od
uc

t r
ec

al
ls

10 20 30 40 50 60 70

10

20

30

40

50

60

Figure 11.24: Change-points detected by cpt.mean, up-
per using method="AMOC" and lower using method=
"PELT". Data from Alemzadeh et al.30 Github–Local

10 20 30 40 50 60 70

10

20

30

40

50

60

Fortnights

R
ep

or
te

d
pr

od
uc

t r
ec

al
ls

Figure 11.25: Fitted regression model (blue) and adjusted
model with one change-point (red). Data from Alemzadeh
et al.30 Github–Local

pred=predict(al_mod)
lines(pred, col=pal_col[3]) # add fitted line to plot

seg_mod=segmented(al_mod, npsi=1) # adjust fitted model with one change-point

plot(seg_mod, col=pal_col[1], add=TRUE) # add fitted lines to plot

When the location of the change-point is known, or the segmented function fails to find
a reasonable fit, an abrupt change can be modeled using glm to effectively fit multiple
equations; one equation over each discontinuity separated interval. While each equation
may be fitted by an independent call to glm, it may be possible to build a single model
incorporating every discontinuity.

Figure 11.26 shows an abrupt change in the sales volume of 4-bit microprocessors (green).
Straight lines have been fitted to the two periods before/after April 1998 (red), with the
yearly sales cycle modeled by a sine wave (blue).

The technique for fitting a model that handles discontinuous patterns of behavior makes
use of an interaction between the explanatory variable (date in this case), and a dummy
variable whose 0/1 value depends on date, relative to the change-point. The code for the
straight line model (red line) is:

y_1998=as.Date("01-04-1998", format="%d-%m-%Y") # estimated discontinuity point

p4=glm(bit.4 ~ date*(date < y_1998)+date*(date >= y_1998), data=proc_sales)

and the summary output is: Github–Local

Call:
glm(formula = bit.4 ~ date * (date < y_1998) + date * (date >=

y_1998), data = proc_sales)

Deviance Residuals:
Min 1Q Median 3Q Max

-19756.9 -6372.8 -558.7 6533.2 19086.4

Coefficients: (2 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.050e+04 5.802e+04 1.215 0.2265
date 7.072e-01 5.368e+00 0.132 0.8954
date < y_1998TRUE -8.357e+04 5.873e+04 -1.423 0.1572
date >= y_1998TRUE NA NA NA NA
date:date < y_1998TRUE 1.045e+01 5.466e+00 1.912 0.0581 .
date:date >= y_1998TRUE NA NA NA NA

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 80003408)

Null deviance: 2.0763e+10 on 131 degrees of freedom
Residual deviance: 1.0240e+10 on 128 degrees of freedom
AIC: 2782.6

Number of Fisher Scoring iterations: 2

Sales follow a seasonal trend that can be approximated using a sine wave having a 12-
month frequency, adding this to the straight line model as follows:

season_p4=glm(bit.4 ~ date*(date < y_1998)+date*(date >= y_1998)+
sin(rad_days)+cos(rad_days), data=proc_sales)

11.2.10 Low signal-to-noise ratio

Measurements sometimes contain a large amount of noise, relative to the signal present,
i.e., a low signal-to-noise ratio. Fitting a model to such data can be difficult, because
many equations do an equally (not very) good job.

11.2. LINEAR REGRESSION 299

1990 1992 1994 1996 1998 2000

60

70

80

90

100

110

120

Date

U
ni

ts
 s

ol
d

(m
ill

io
n)

Two straight−lines
Data
Sine wave+straight lines

Figure 11.26: Monthly unit sales (in millions) of 4-bit
microprocessors. Data kindly supplied by Turley.1854

Github–Local

The two plots along the upper row in figure 11.27 show data generated from a quadratic
equation containing noise, along with two fitted models (red and blue lines). The equation
used to generate the two sets of data is:

y = x2 +K× (5+ rnorm(length(x)))

where: K = 103 (left column), and K = 102 (right column).

It is not possible to tell by looking at the upper left plot whether a quadratic (blue),
or an exponential (red), is a better fit; the output from summary is not much help; see
Github–regression/noisey-data.R. The upper right plot contains less noise, and it is easier to
see that the exponential fit does not follow the data as well as the quadratic.

Sometimes the peaks (or troughs) in the plotted data can be an indicator of the shape of
the data. The upper left plot includes a quadratic and exponential fit to the three largest
values at each x-value (the fitted model does not seem to have less the uncertainty in this
case).

The ratio test is a technique that can help rule out some equations as possible candidates
for modeling. If f (x) is the function being fitted to the data and this data was generated

by the function g(x), the ratio
g(x)
f (x)

will converge to a constant as x becomes small/large

enough such that the signal dominates the noise.

The two plots along the lower row in figure 11.27, show ratio tests for quadratic (blue),
cubic (red) and exponential (green) equations. The exponential equation shows no sign
of converging to a constant, while quadratic is closer to doing this than cubic (which can
be ruled out because it does a poor job of fitting the data).

20 40 60 80 100

4000

6000

8000

10000

12000
14000
16000
18000

X

Y

20 40 60 80 100

1e−06

1e−04

1e−02

1e+00

1e+02

X

R
at

io

20 40 60 80 100

500

1000

2000

5000

10000

X

Y

20 40 60 80 100

1e−06

1e−04

1e−02

1e+00

1e+02

X

R
at

io

Figure 11.27: Quadratic relationship with various
amounts of added noise, fitted using a quadratic and ex-
ponential model. Github–LocalThe ratio test rules out an exponential equation being a good candidate for fitting a model

to the data in figure 11.27.

A study by Vasilescu, Serebrenik, Goeminne and Mens1884 investigated contributions to
the Gnome ecosystem, from the point of view of workload (measured as the number of
file touches, e.g., commits), breaking it down by projects, authors and number of activity
types, e.g., coding, testing, documentation, etc.

Figure 11.28, upper plot, shows, for individual authors, workload and the number of
activity types they engaged in. There is a large amount of noise in the data (or variance
not explained by the explanatory variable used for the x-axis). Figure 11.28, lower plot,
shows a ratio test, with an exponential failing to level off, the linear equation slowly
growing, and the quadratic looking like it is trying to grow.

Perhaps the behavior would become clearer with more activity types, but the quadratic is
the only candidate not ruled out.

300 11. Regression modeling

2 4 6 8 10 12

1

100

10000

Activity types per author

A
ut

ho
r

w
or

kl
oa

d

0 2 4 6 8 10 12

1e−03

1e−01

1e+01

1e+03

Activity types per author

R
at

io

Linear
Quadratic
Exponential

Figure 11.28: Author workload against number of activity
types per author (upper) and ratio test (lower). Data from
Vasilescu et al.1884 Github–Local

0 1 2 3 4 5
−2

 0
 2

 4
 6

 8

X

Y

E
rr

or
 p

ro
ba

bi
lit

y

0 1 2 3 4 5
−2

 0
 2

 4
 6

 8

0 1 2 3 4 5
−2

 0
 2

 4
 6

 8

0 1 2 3 4 5
−2

 0
 2

 4
 6

 8

0 1 2 3 4 5
−2

 0
 2

 4
 6

 8

Figure 11.29: Fitted regression line to points (in red) and
3-D representation of assumed Normal distribution for
measurement error. Github–Local

11.3 Moving beyond the default Normal error

Measurements sometimes have properties that do not meet the requirements assumed by
the mathematics on which glms default argument values are based. Some measurement
properties that non-default argument values can handle, include the response variable
having values that:

• can never go below zero, e.g., count data,

• can never be greater than some maximum value, e.g., some percentages can never be
greater than 100,

• span several orders of magnitude and contain an additive error.

By default, glm uses a Normal distribution for the measurement error. Figure 11.29 shows
a fitted regression line with four data points (red stars adjacent to a black line); the colored
Normal curves over each point represents the probability distribution of the measurement
error that is assumed to have occurred for that measurement (the center of each error dis-
tribution curve is directly above the fitted line at each explanatory variable measurement
point).

glm’s family argument has the default value family=gaussian(link="identity"),
which can be shortened to family=gaussian (the default link function for gaussian
islink="identity").

The Normal distribution includes negative values and when a measurement cannot have
a negative value, using an error distribution that includes negative values can distort the
fitted model. One alternative is the Poisson distribution, which is zero for all negative
values. The following call to glm specifies that the measurement error has a Poisson
distribution:

a_model=glm(a_count ~ x_measure, data=some_data, family=poisson)

After Normal, the Poisson and Beta distributions are the most common measurement error
distributions used by the analysis in this book.

Calling glm, with a non-default value for the family argument, requires knowing some-
thing about the mathematics behind generalised regression model building. The equation
actually being fitted by glm is:

l(y+ ε) = α +β1x1 +β2x2 + · · ·+βnxn

which differs from the one given at the start of the chapter in having l(y + ε) on the
left-hand-side, rather than y. This l is known as the link function, which for the Normal
distribution is the identity function (this leaves its argument unmodified, and the equation
ends up looking like the one given at the start of this chapter).

Once a regression model is fitted, the value of the response variable is calculated from:

y = l−1(α +β1x1 +β2x2 + · · ·+)− ε

where: l−1 is the inverse of the link function used, e.g., the inverse of log is e raised to the
appropriate power.

Every error distribution has what is known as a canonical link function, which is the
function that pops out of the mathematical analysis for that distribution. By default, glm
uses the canonical link function for each error distribution, and allows some alternatives
to be specified. The canonical link function for the Poisson distribution is log.

When the link function is not identity, prediction values and confidence intervals need
to be mapped as follows:

a_pred=predict(a_model, se.fit=TRUE)
inv_link=family(a_model)$linkinv # get the inverse link function

lines(x_values, inv_link(a_pred$fit)) # fitted line
confidence interval above and below
lines(x_values, inv_link(a_pred$fit+1.96*a_pred$se.fit))
lines(x_values, inv_link(a_pred$fit-1.96*a_pred$se.fit))

The analysis in the following sections involve measurements that require the use of a
variety of measurement error distributions and link functions.

11.3. MOVING BEYOND THE DEFAULT NORMAL ERROR 301

0 2 4 6 8 10

0

1

2

3

4

5

C
or

re
ct

 r
ep

or
ts

0 2 4 6 8 10

0

1

2

3

4

5

Previous web security reviews

C
or

re
ct

 r
ep

or
ts

Figure 11.30: Number of vulnerabilities detected by pro-
fessional developers with web security review experience;
upper: technically correct plot of model fitted using a
Poisson distribution, lower: simpler to interpret curve rep-
resentation of fitted regression models assuming measure-
ment error has a Poisson distribution (continuous lines), or
a Normal distribution (dashed lines). Data extracted from
Edmundson.531 Github–Local

0 5 10 15 20 25 30
5

10

50

100

500

1000

5000

10000

50000

breaks

F
un

ct
io

n
de

fin
iti

on
s

Figure 11.31: Number of functions containing a given
number of break statements and a fitted Negative Bino-
mial distribution. Data from Jones.930 Github–Local

11.3.1 Count data

Count data has two defining characteristics, it is discrete and has a lower bound of zero.
The discrete distribution taking on non-negative values, supported by glm, is the Poisson
distribution.

In practice, when measurement values are sufficiently far away from zero (where far may
be more than 10) there is little difference between models fitted using the Normal and
Poisson distributions. For measurements close to zero, the main difference between mod-
els fitted using different distributions is the confidence intervals (which are usually not
symmetric, and may be larger/smaller).

The canonical link function for the Poisson distribution is log, and the following two calls
to glm are equivalent:

p_mod=glm(y ~ x, data=sample, family=poisson)
p_mod=glm(y ~ x, data=sample, family=poisson(link="log"))

The log link function means that the equation being fitted is actually:

y = eα+βx + ε

To fit the equation: y = α +βx+ ε , for a Poisson error distribution, the identity link
function has to be used, as follows (experience shows that glm sometimes fails to converge
when family=poisson(link="identity") is specified and that start values have to
be specified):

p_mod=glm(y ~ x, data=sample, family=poisson(link="identity"))

A study of the effectiveness of security code reviews by Edmundson, Holtkamp, Rivera,
Finifter, Mettler and Wagner531 asked professional developers, with web security review
experience, to locate vulnerabilities in web code. The number of vulnerabilities found
can only be a non-negative integer value and in this study were single digit values.

The values fitted to a discrete distribution consists of a series of discrete steps, as the upper
plot of figure 11.30 shows (fitted line and 95% confidence intervals). While this plot is
technically correct, it is ambiguous: are the values specified by the top left edge, or the
bottom right edge of the staircase?xvi Plots using continuous lines are simpler for readers
to interpret and so are used in this book.

The dashed lines in figure 11.30, lower plot, were fitted using glm’s default values,xvii

while the argument family=poisson(link="identity") was used to fit the model rep-
resented by the smooth lines.

The two fitted lines are virtually identical (the green dashed line is drawn over the contin-
uous red line), but the 95% confidence intervals do differ. This pattern of behavior is very
common, unless the response variable has many values near zero.

Is the difference between fitting a model using the technically correct Poisson distribution,
or a Normal distribution, worth the effort (for the analyst, not the use of any additional
computing resources)?

Sometimes the Poisson distribution is used because a log link function transforms the
response variable, while keeping an additive measurement error.

When fitting models containing multiple explanatory variables (discussed later) and a
response variable containing count data, it can be more difficult to detect differences
between using a Poisson and Normal distribution. While use of the Poisson distribution
may involve more effort, it removes uncertainty and is always worth trying.

The Negative Binomial distribution is perhaps the second most commonly encountered
count distribution. A study by Jones930 included counting the number of break statements
in C functions. Figure 11.31 shows the number of functions containing a given number
of break statements, along with a fitted Negative Binomial distribution.

A break statement can occur zero or more times within a loop or switch statement, and
these statements can occur zero or more times within a function definition. A Negative
Binomial distribution can be generated by drawing values from multiple Poisson distri-
butions (whose characteristics have been drawn from a Gamma distribution); might the
number of break statements in each function different Poisson distribution?

xviThe choice is selectable via the type argument to plot/lines.
xviiTo achieve an acceptable p-value, three outliers were removed.

302 11. Regression modeling

1e+01 1e+03 1e+05 1e+07
0

5

10

15

20

25

Lines of code

A
P

Is

Figure 11.32: Number of APIs used in Java programs
containing a given number of LOC; lines are fitted mod-
els based on a zero-truncated Poisson (red), Poisson and
Normal distributions (blue, with confidence intervals in
green), yellow line is loess fit. Data from Starek.1763

Github–Local

The gamlss package1766 supports a wide variety of probability distributions, including
the NBI distribution (Negative binomial type I distribution; there is also a type II) used in
the following code:

library("gamlss")

breaks=rep(j_brk$occur, j_brk$breaks)
nbi_bmod=gamlss(breaks ~ 1, family=NBI)

plot(function(y) max(jumps$breaks, na.rm=TRUE)* # Scale probability distribution
dNBI(y, mu=exp(coef(nbi_bmod, what="mu")),

sigma=exp(coef(nbi_bmod, what="sigma"))),
from=0, to=30, n=30+1, log="y", col=pal_col[1],
xlab="breaks", ylab="Function definitions\n")

points(jumps$occur, jumps$breaks, col=pal_col[2])

While zero is a common lower bound, other lower bounds are sometimes encountered; see
section 9.3.1. Both the gamlss.tr and VGAM packages support a wide variety of truncated
distributions; gamlss and related packages are used in this book because of the volume
and quality of their documentation.

A study by Starek1763 investigated API usage in Java programs. Figure 11.32 shows the
number of APIs used in Java programs containing a given number of lines of code. The
API count starts at one, not zero, and many programs use a few APIs, suggesting that a
Poisson distribution may be applicable; the range of the number of APIs used does not
suggest a log scale.

In the following code, gen.trun creates a zero-truncated Poisson distribution (derived
from PO in the gamlss.tr package) having the identity function as the link for its mean
(rather than the default log link).

library("gamlss")
library("gamlss.tr")

gen.trun(par=0, family=PO(mu.link=identity))

tr_mod=gamlss(APIs ~ l_size+I(l_size^2), data=API, family=POtr)

Figure 11.32 shows the fitted model in red. The other lines are fitted models using a
Poisson distribution that is not zero-truncated and a Normal distribution, along with 95%
confidence intervals. The yellow line is a loess fit. Other explanatory variables could be
added to the model to improve the fit to the data.

11.3.2 Continuous response variable having a lower bound

Measurements of the response variable may be drawn from a continuous distribution, e.g.,
measurements involving length or time. The continuous distribution taking non-negative
values, supported by glm, is the Gamma distribution.

In practice, when most measurement values are sufficiently far away from zero (where far
away could be a large single digit value) there is little difference between models fitted
using the Normal and Gamma distributions. For measurements closer to zero the main
difference between models fitted using different distributions is in the confidence intervals
(which are usually not symmetric, and may be larger/smaller).

The canonical link function for the Gamma distribution is inverse, and the following
two calls are equivalent:

G_mod=glm(y ~ x, data=sample, family=Gamma) # Yes, capital G
G_mod=glm(y ~ x, data=sample, family=Gamma(link="inverse"))

The inverse link function means that the equation being fitted is (the identity link
function is supported):

y =
1

α +βx
+ ε

Figure 11.33 comes from a code review study (discussed in section 13.2) and shows meet-
ing duration when reviewing various amounts of code. Meeting duration must be greater

11.3. MOVING BEYOND THE DEFAULT NORMAL ERROR 303

200 400 600 800 1000

0.5

1.0

1.5

2.0

2.5

Non−comment source lines

M
ee

tin
g

du
ra

tio
n

(h
ou

rs
)

Figure 11.33: Code review meeting duration for a given
number of non-comment lines of code; fitted regression
model, assuming errors have a Gamma distribution (red,
with confidence interval in blue), or a Normal distribution
(green). Data from Porter et al.1507 Github–Local

5 10 20 50 200 500

0.1

0.2

0.5

1.0

2.0

5.0

10.0

20.0

KLOC

D
ev

el
op

m
en

t c
os

t (
$m

ill
io

n)

O

Figure 11.34: Annual development cost and lines of
Fortran code delivered to the US Air Force between
1962 and 1984; lines show fitted regression models (red:
log transformed, blue: using a log link function) be-
fore(solid)/after(dotted) outlier removed (circled in red).
Data extracted from NeSmith.1366 Github–Local

than zero, and a Gamma measurement error distribution is assumed to apply (the variables
are assumed to have a linear relationship, and the identity link function is used). The red
line is the model fitted using a Gamma error distribution (plus confidence bounds), the
green line is the Gaussian distribution fit.

The data contains a few points with high leverage, and the loess fit suggests that there
may be a change-point, so a more involved analysis is appears necessary.

11.3.3 Transforming the response variable

When plotting sample points, values along one or both axes are sometimes transformed
to compress or spread out the points, for the purpose of improving data visualization.

A regression model is fitted to a pattern (represented by an equation) and if a plot using
transformed axis, contains visible pattern(s) of behavior, it is worth investigating a model
that uses similarly transformed values.

Applying a non-linear transform to the response variable changes its error distribution,
and a regression model built using this transformed response variable may not be a natural
fit to the processes that produced the measurements. Explanatory variables are assumed
not to contain any error and transforming them does not change this assumption.

For example, in the following regression model the error, ε , is additive:

y = α +βx+ ε

while fitting a log-transformed response variable:

logy = α +βx+ ε

produces a model where the error is multiplicative, i.e., the error is a percentage of the
measured value:

y = eα+βxeε

The error in a model fitted using a log link function is additive, because the equation fitted
is:

log(y+ ε) = α +βx

which becomes (the error randomly fluctuates around zero, and negating it changes noth-
ing):

y = eα+βx + ε

If the response variable is transformed, the decision on whether to transform it directly, or
via a link function, is driven by whether the error is thought to be additive or multiplica-
tive; as always, domain knowledge is crucial.

A log link can be specified for glm’s default Normal distribution by passing: family=
gaussian(link="log"). If this use fails to converge, the Poisson distribution is a good
approximation to the Normal distribution (except when many sample values are close to
zero) and can be substituted when the response variable takes integer values; see fig 7.36.

One advantage of log transforming a response variable is that it reduces the influence of
outliers (because the range of values is compressed). Figure 11.34 illustrates the impact
of removing one highly influential value (circled in red) from the data used to fit a model
using a log link function (blue lines, dashed is after removal), and a model fitted using
a log transformed response variable (red lines, dashed is after removal);xviii the vertical
shift is the difference between treating measurement error as additive and multiplicative.

The visual appearance of outliers and influential observations plotted using log axis can
be deceiving, i.e., they may not appear to be that far removed from the general trend;
see fig 8.40. As always, assumptions based on visual appearance need to be checked
numerically.

Many data analysts continue to fixate on fitting data whose measurement error has a Nor-
mal distribution. The Box-Cox transformation continues to be used to map a response
variable to have a more Normal distribution-like error. The boxcox function in the MASS
package, and the powerTransform function in the car package, provide support for this
functionality.

xviiiThe visual difference is less dramatic if the axes are switched.

304 11. Regression modeling

1 5 50 500

0.2

0.5

1.0

2.0

5.0

10.0

20.0

50.0

Lines added+updated

E
ffo

rt
 (

da
ys

)

Figure 11.35: Maintenance task effort and lines of code
added+updated, with fitted regression model (red), and
SIMEX adjusted for estimated 10% error (blue). Data
from Jørgensen.945 Github–Local

50 100 150 200 250
Test code changed LOC

Student

Professional

Figure 11.36: Regression modeling 0/1 data with a
straight line and a logistic equation. Github–Local

A traditional approach to simplifying a problem is to map a continuous variable to a
number of discrete values, e.g., small/medium/large. Throwing away information may
simplify a problem, but the cost can be a considerable loss of statistical power and resid-
ual confounding.1615 Using a computer removes the need to simplify just to reduce the
manual effort needed to perform the analysis. See Github–regression/melton-statics.R for an
example where building a regression model provides a lot more information about the
characteristics of the continuous data, compared to mapping values to large/small and
running a chi-squared test.

Adjusting a fitted model to handle uncertainty in the explanatory variables, when the
model contains a multiplicative error, requires specifying the measurement error for every
value of an explanatory variable. The following option assigns a 10% error: measurem
ent.error=maint$lins_up/10.

A study by Jørgensen945 investigated maintenance tasks and obtained developer effort and
code change data. Figure 11.35 shows the effort (in days) and number of lines inserted
and updated for 89 maintenance tasks. The original fitted regression line is in red, and the
SIMEX adjusted line is in blue. The call to simex is:

maint_mod=glm(EFFORT ~ lins_up, data=maint,
family=gaussian(link="log"), x=TRUE, y=TRUE)

y_err=simex(maint_mod, SIMEXvariable="lins_up",
measurement.error=maint$lins_up/10, asymptotic=FALSE)

11.3.4 Binary response variable

When the response variable takes one of two possible values, e.g., (false, true) or (0, 1), it
has a binomial distribution. If the value of the response variable switches from 0 to 1 (or 1
to 0), as the explanatory variable increases (or decreases), and then always has that value
for further increases (decreases) in the explanatory variable, there is no need to build a
regression model (simply find the switch point). When the response variable can have
two possible values over some range of the explanatory variable, regression modeling fits
an equation that minimises some metric for the residual error.

A study by Höfer837 investigated the various aspects of the implementation a problem
by students and professional developers (working in pairs). Figure 11.36 shows the
number of lines of test code changed by students and professionals (measurement de-
noted by the grey plus is treated as an outlier and not included in the model building),
along with fitted regression lines, a straight line and a logistic equation. (For an anal-
ysis of Microsoft’s C/C++ compiler price differential under MSDOS and Windows, see
Github–economics/upgrade-languages.R).

The canonical link function for the Binomial distribution is logit, and the following two
calls are equivalent:

b_mod=glm(y ~ x, data=sample, family=binomial)
b_mod=glm(y ~ x, data=sample, family=binomial(link="logit"))

The equation for the logit link function is:

log
y

1− y
= α +βx

where the response has the form of a log-odds ratio. This equation can also be written as:

log
p
q
= α +βx, where: p proportion of successes, q proportion of failures (q = 1− p).

p =
eα+βx

1+ eα+βx

The values returned by predict, for a fitted binomial model, are in the range 0 . . .1. The
person doing the analysis has to decide the value that divides this continuous range, such
that predictions are either zero or one. One approach is to treat predicted values greater
than 0.5 as predicting one, and predicted values less than or equal to 0.5 as predicting
zero. A more sophisticated approach looks at the distribution of predictions, and makes
an informed trade-off between the true/false positive rate (often calculated using recall
and precision).

11.3. MOVING BEYOND THE DEFAULT NORMAL ERROR 305

False positive

Tr
ue

 p
os

iti
ve

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.9

0.81 0.72

0.6 0.53

0.44 0.39

0.28 0.16 0.09

Figure 11.37: ROC curve for the data listed in table 11.1.
Github–Local

A ROC curve (receiver operating characteristics; named after a technique originally used
to measure the performance of radio receivers) is a visualization technique showing the
trade-offs between two rates, i.e., the true positive rate and false positive rate; it is a
common technique for displaying the trade-offs from predictions returned by machine
learning models. The ROCR package supports the creation and plotting of ROC curves.

The columns in table 11.1 show an example of the impact of selecting particular cut-off
values, for distinguishing between true/false (for 10 data points). Reading left-to-right,
at a cut-point of 0.9 there is one correct prediction (a true positive), at a 0.81 cut-point
another correct prediction, while at 0.72 an incorrect prediction (a false positive) is made
(at this cut-point the response rate for correct predictions is 40% and 20% for incorrect
predictions).

t t f t f t f t f f
0.90 0.81 0.72 0.60 0.53 0.44 0.39 0.28 0.16 0.09

Table 11.1: Example list of prediction outcome occurring at various cut-point values. Github–Local

Figure 11.37 shows the ROC curve for this data.

11.3.5 Multinomial data

When a discrete response variable takes on more than two values, it has a multinomial
distribution.

nominal: when a response variable can take N distinct values and πi is the probability
of the ith value occurring (∑N

i=1 πi = 1), then the baseline-category logit model (with one
explanatory variable, x, in this example) is:

log
πn

πN
= αn +βix, for n = 1, . . . ,N−1.

Fitting a model results in N−1 equations, with separate coefficients for each.

The mlogit package supports the building of multinomial logit models for response vari-
ables containing nominal data.

ordinal: fitting an independent logit model to each pair of adjacent values (as is done for
nominal models) fails to make use of all the available information; the logit function can
be extended to include the ordering information present in ordinal data.

Given an ordinal response variable, Y , that can appear in one of j = 1, . . . ,N possible
categories, then Y has a multinomial distribution; its cumulative probability is given by:

P(Yi ≤ j) = πi1 +πi2 + · · ·+πiN , where: πi j is the probability that the ith measurement
appears in response category j, and ∑

N
j=1 πi j = 1

The cumulative logits treats P(Y ≤ j) as the response variable in a model fitting process
that uses a logit link function (other, related functions can be used).

The ordinal package supports the building of cumulative link models, also known as
ordinal regression models.

A study by Luthiger and Jungwirth1176 investigated the importance of fun as a motivation
for software development. The survey, which had 1,330 responses from people working
on open source projects, asked for an estimate of the percentage of their spare time people
spent on activities involving open source development. Possible answers were restricted
to intervals of 10%, an ordinal scale. The clm functions fits a cumulative link model;
predict returns a vector of predictions, one for each ordinal value (six vectors in this
example):

library("ordinal")

f_mod=clm(q42 ~ q31, data=fasd) # Best fitting model is q42 ~ q5+q29+q31

pred=predict(f_mod, newdata=data.frame(q31=1:6))

plot(-1, type="n", xlim=c(1, 6), ylim=c(0, 0.6),
xlab="Answer given to q31", ylab="Probability\n")

dummy=sapply(1:10, function(X) lines(1:6, pred$fit[,X], col=pal_col[X]))

306 11. Regression modeling

1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Answer given to q31

P
ro

ba
bi

lit
y

0−10%
10−20%
20−30%
30−40%
40−50%
50−60%
60−70%
70−80%
80−90%
90−100%

Figure 11.38: Probability of subject response being within
a given percentage interval, based on their response to
question q31. Data kindly provided by Luthiger1176 .
Github–Local

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Path coverage

P
er

ce
nt

ag
e

m
ut

an
ts

 k
ill

ed

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

● ●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

LOC ≈ 101

LOC ≈ 103

LOC ≈ 105

Figure 11.39: Percentage of mutants killed at various per-
centage of path coverage for 300 or so Java projects; fit-
ted Beta regression (red), with 95% confidence intervals
(blue) and glm (green) regression models. Data from
Gopinath et al.712 Github–Local

Figure 11.38 shows the probability of a subject giving an answer within a given 10%
band, given their answer to question q31 (the formula: q42 ~ q5+q29+q31, is a better fit,
but is not easily plotted in 2-D).

11.3.6 Rates and proportions response variables

When dealing with a response variable that is a rate or proportion, there is a fixed lower
and upper bound, e.g., 0 and 100. Measurements within a fixed interval often share two
characteristics: they exhibit more variation around the mean and less variation towards
the lower and upper bounds,xix, and they have an asymmetrical distribution. These char-
acteristics can be modeled by a Beta equation. A regression model where the response
variable is fitted to a Beta equation is known as a Beta regression model.

The betareg package contains functions that support the fitting of Beta regression mod-
els. When fitting basic models, calls to betareg have the same form as calls to glm; both
functions include options that are not supported by the other.

Figure 11.39 shows fitted curves from a beta regression model (red), bootstrapped con-
fidence intervals (blue), and a call to glm (green); the study that produced the data is
discussed elsewhere, see fig 6.54. The equation fitted is: mutantskilled ∝

√
coverage, and

was chosen because it is something simple that works reasonably well. Searching for the
best fitting exponent, using nls (the betareg package does not support fitting non-linear
models), shows that 0.44 is a better fit than 0.5 for this sample.

The summary output for a Beta regression model includes extra information, as follows:
Github–Local

Call:
betareg(formula = y_measure ~ I(x_measure^0.5))

Standardized weighted residuals 2:
Min 1Q Median 3Q Max

-2.6881 -0.6403 -0.1279 0.6399 3.1829

Coefficients (mean model with logit link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.5460 0.1891 -13.46 <2e-16 ***
I(x_measure^0.5) 4.7093 0.3502 13.45 <2e-16 ***

Phi coefficients (precision model with identity link):
Estimate Std. Error z value Pr(>|z|)

(phi) 4.9641 0.5386 9.217 <2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Type of estimator: ML (maximum likelihood)
Log-likelihood: 80.37 on 3 Df
Pseudo R-squared: 0.6323
Number of iterations: 13 (BFGS) + 1 (Fisher scoring)

The phi coefficient (the Greek letter φ) is the second coefficient of the fitted Beta distri-
bution, B(µ,φ).

The predict function returns the expected value of the response variable, E(y) = µ , but
does not support a se.fit option (when passed a Beta regression model). The bootstrap
can be used to calculate a confidence interval from the predictions made by many models,
as follows:

library("betareg")
library("boot")

boot_reg=function(data, indices)
{
cov_data=data[indices,]
b_mod=betareg(mut_cov ~ I(path_cov^0.5), data=cov_data)
A vector must be returned, i.e., no data frames
return(predict(b_mod, newdata=data.frame(path_cov=x_vals)))
}

xixThe measurement sample is heteroskedastic.

11.4. MULTIPLE EXPLANATORY VARIABLES 307

1500 2500 3500 4500

10

20

30

40

50

60

70

Processor speed MHz

S
P

E
C

20
06

 in
t

1500 2500 3500 4500

10

20

30

40

50

60

70

Processor speed MHz

S
P

E
C

20
06

 in
t

4000 8000 12000 16000

10

20

30

40

50

60

70

Memory peak transfer rate (MB/sec)

S
P

E
C

20
06

 in
t

Figure 11.40: SPECint 2006 performance results for pro-
cessors running at various clock rates, memory chip fre-
quencies and processor family. Data from SPEC.1742

Github–Local

cov_boot=boot(pm_info, boot_reg, R = 4999)

ci=apply(cov_boot$t, 2, function(X) quantile(X, c(0.025, 0.975)))
lines(x_vals, ci[1,], col=pal_col[3])
lines(x_vals, ci[2,], col=pal_col[3])

The default link function used by the betareg function is logit, the same default link used
by glm, for the argument family=binomial.

11.4 Multiple explanatory variables

Linear regression can be used to fit models containing more than one explanatory variable;
multiple regression is the term used for modeling with more than one explanatory variable
(the term bivariate regression is sometimes applied to the single explanatory variable+re-
sponse variable case). In theory there is no limit on the number of explanatory variables,
but in practice available processing resources, and the need to hold data in storage set an
upper bound.

Visualization is much more complicated when there are multiple explanatory variables.
Chapter 8 contains examples for visualizing two variables, and the general approach is to
break down multiple regression visualization into pairs of variables.

System performance is affected by many factors; figure 11.40 shows SPECint 2006 re-
sults for processors running at various frequencies (upper), color coded by memory chip
frequency (center) and name of processor family (lower).

The SPECint results include 36 columns of information relating to the benchmarked sys-
tem. Which of these columns contains information that can be used to succinctly model
the performance of a system, and what equation best describes the form of their contribu-
tion?

The R formula notation includes a symbol that denotes all columns in the data frame as
explanatory variables, except the one specified as the response variable; the dot symbol is
used as follows:

spec_mod=glm(Result ~ ., data=cint)

Given enough cpu power and memory, it can be more productive to start by considering all
explanatory variables and remove underperforming variables, rather than starting with the
explanatory variables believed to be the most important and then adding more variables.

The stepAIC function, in the MASS package, automates the process of removing underper-
forming explanatory variables from a fitted model, to create a model having a minimum
AIC (the step function, in the base system, is a rather minimal implementation).xx

When some domain knowledge is available (e.g., performance often correlates with clock
rate and is not usually affected by date of execution), experimentation of fitting models
containing explanatory variables considered to be most likely to have a large impact on
the response variable, can help refine the analyst’s appreciation of the impact of different
explanatory variables on overall performance.

For this SPEC dataset, there is so much detail recorded in the Processor column of the
Spec results, that each entry is often unique; making it possible to create an almost perfect,
but completely uninformative, model using just this one explanatory variable.

The following model explains 80% of the variance in the Result values:

spec_mod=glm(Result ~ Processor.MHz+mem_rate+mem_freq, data=cint)

where: Processor.MHz is the processor clock rate, mem_rate the peak memory transfer
rate and mem_freq the frequency at which memory is clocked.

The + binary operator, in the above formula, specifies that explanatory variables are added
together. The summary output shows that the equation fitted by glm is:

Result =−2.4 ·101 +Processor.MHz7.3 ·10−3 +mem_rate2.5 ·10−3 +mem_freq1.0 ·10−2

xxThis fishing expedition approach to model building requires that p-values be suitably reduced, e.g., using
a Bonferroni corrected value.

308 11. Regression modeling

1500 2000 2500 3000 3500 4000 4500
−15

−10

−5

0

5

10

15

20

Processor.MHz

C
om

po
ne

nt
+

R
es

id
ua

l(R
es

ul
t)

●

●

●●

●
●

●●

●
●●

●

●●

●

●

●

●●

●●

●●

●
●●
●●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●
●

●
●●

●
●
●

●
●

●

●
●

●

●●
●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●
●

●
●●

●
●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●
●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●●●

●

●●

●

●●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

● ●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

● ●

● ●

●

●

●

●

●

●

● ●
●

●
●●

● ●
● ●

●

●

● ●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●
●●

● ●
●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

● ●

●●●
●●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●●●●

●
●

●
●

●

●

●

●
●

●●

●

●
●

●●

●

●●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●
●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●

●
●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●
●

●
●

●

●

●●

● ●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●
●

●
● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●● ●●

●●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●●

●

●

●
●●

●

●

●

●●

●

●
●

●●

●

●

●●

●

●
●

●●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

● ●
●

●

●

●

●

●

800 1000 1200 1400 1600 1800
−15

−10

−5

0

5

10

mem_freq

C
om

po
ne

nt
+

R
es

id
ua

l(R
es

ul
t)

●

●●●

●●

●
●

●

●●

●

●●

●

●

●

●●

●●

●
●

●

●●

●●

●

●

●

●●
●

●

●

●●●

●

●
●
●

●

●
●●

●

●

●

●

●

● ●

●

●
● ●●
●

●

●

● ●
● ●

●

●

●●

●

●

●

●

●

●

●
● ●

●
●
●

●

●

●

●

●

●
●
●

●

●●●

●

●●

●

●
●

●●
●●●

●●
●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●●

●

●

●
●

●

●
● ●

●
●
●

●

●

●

●

●

●
●
●

●

●●●

●

●●

●

●
●

●●
●●
●

●●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●
● ●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●
●●

●●
●

●

●●

●
●●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●●

●

●●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

● ●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●●

●

●●

●

●●
●

●

●

●

●

●

●
●●

●●●

●●
●

●

●●●

●

●●
●

●●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

● ●●

●

●●●

● ●●

●

●●

●

●●●

●

●●●●

●

●●●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●●
● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●●

●

●●

●

●
●

●●

●●

●
●

●

●

●
●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●●

●

●●

●●

●●

●
●
●●

●●
●●

●●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●●●

●

●●

●

●●

●

●

●

●

●

●

●●●●

●
●

●●●

●
●

●
●

●●
●

●●

●●

●

●●
●

●●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●●
●

●●● ●

●●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●●●

●●

● ●●
●

●

●
●
●●

●

●●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●●●

●
●

●

●

●

●

●●

●

●
●
●●
●

●

●

●
●●

●

●

●

●
●
●

●

●

●
●

●●●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●●

●

●●

●
●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●●●

●

●

●

●
●

●●

●
●●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

4000 6000 8000 12000 16000

−20

−10

0

10

mem_rate

C
om

po
ne

nt
+

R
es

id
ua

l(R
es

ul
t)

●

●●

●

●●

●●

●
●●

●

●●

●●
●

●●

●●

●●

●
●●
●●

●●
●

●●

●

●
●

●●●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●
●
●
●

●

●
●

●
●

●
●
●

●

●●●

●
●●
●

●●
●●
●●●
●●●

●

●●

●

●●●

●

●

●

●

●

●
●

●

●

●

●●

●●
●

●

●

●

●

●
●

●

●●

●
●
●
●

●

●
●

●
●

●
●
●

●

●●●

●
●●
●

●●
●●●
●●
●●●

●

●
●

●

●●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●
●
●
●

●

●
●

●

●

●

●
●●●●●

●

●

●

●

●
●

●

●
●

●

●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●●
●
●
●

●

●

●●

●

●●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●
●
●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●●

●
●

●
●

●
●

●
●

●

●

●

●
●
●

● ●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●
●●●●
●

●

●●

●●
●

●
●

●

●

●

●
●

●

●
●

●●
●

●
●

●
●●●

●

●

●●

●

●●●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●
●

●●
●

●●
●●

●

●

●

●
●

●

●●

●●
●

●

●

●

●
●

●

●●
●
●

●

●

●

●●

●
●

●

●

●

●
●
●
●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●●●

●

●

●●

●

●●
●

●
●

●

●

●

●

●

●●
●●

●
●

●● ●

●

●

●●
●

●

●●

●

●●●

●

●

●

●

●

●
●●

●●●

●

●
●

●
●●●

●

●●

●

●●

●

●
●

●●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●
●

●

●

●
●

● ●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●●

●

●●●

●

●●

●

●●

●

●●

●

●

●●●●

●

●●●
●

●
●
●

●
●

●
●●

●

●

●
●
●

●

●

●

●

●
●

●

●
●●

●●

●
●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●●

●●●●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●
●●●

●

●

●

●

●●
●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●
●
●●

●
●
●●

●
●●

●

●●

●●

●●●
●

●

●

●
●
●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●●●

●●

●●
●
●●

●●
●●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●●
●●●●●
●

●

●●

●

●

●

●

●

●

●●●●

●●
●●●

●
●
●●

●●
●
●●
●●
●
●●
●
●●
●●

●
●
●

●● ●
●

●

●

●●

●
●

●● ●
●

●

●
●
●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●●

●●

●
●

● ●

●

●

●

●●●
●●●

●

●●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●●
●●

●
●

●

●

●

●

●

●

●●●●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●
●●

●

●
●

●

●
●

●●●

●●

●

●●●

●

●
●
●

●

●

●●

●
●●

●

●
●

●

●
●
●

●

●

●

●

●●

●

●●

●

●
●

●

●●●
●
●●
●

●

●

●
●

●
●●●●

●

●

●
●

●
●●●●
●
●

●

●

●

●

●●

●

●

●●●●

●
●

●
●●

●

●

●

●●
●

●

●

●
●

●●●

●●

●

●

●

●
●
●
●
●
●

●●

●●
●●

●
●

●

● ●

●

●

●
●

●

●●●●
●●●

●
●

●●●

●
● ●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●●

●

●●

●
●

●

●

●

●

●●

●●
●
●

●

●

●

●

●

●
●
●●
●
●●

●●●

●●●

●

●

●

●
●

●●
●

●●

●

●

●
●

●

●

●

●●

●

●●●

●

●

●
●

●

●
●

●

●

● ●

●

Figure 11.41: Component+residual plots for three
explanatory variables in a fitted SPECint model.
Github–Local

With a single explanatory variable, it is easy to visually compare model predictions
against measured values; with multiple variables things are not so simple. One approach
is to analyse the impact of each variable, on predictions, in turn.

The crPlot and crPlots functions, in the car package, produce a component+residual
plot (also known as a partial-residual plot); the y-axis contains the predicted value plus
the residual, the x-axis contains the value of the explanatory variable:

library("car")

spec_mod=glm(Result ~ Processor.MHz+mem_rate+mem_freq, data=cint)

crPlots(spec_mod, term= ~ ., layout=c(3, 1), col=point_col,
cex.lab=1.5, cex.axis=1.5, ylab="Component+Residuals\n", main="")

Figure 11.41 shows the component+residual plots produced by the above code. The red
dotted line is derived from the fitted model, and the green line a loess fit; if the form of an
explanatory variable, in the formula used to fit a model, is close to reality, the two lines
will be closely intertwined. For the SPEC model there is consistent divergence of the two
lines, over ranges of the measurement interval, for two variables and perhaps some for a
third.

Experience of hardware characteristics suggests that performance does not increase for-
ever, as clock rates are increased. Adding quadratic forms of the explanatory variables to
the model is a step up in complexity, to try out with a fitted model (an exponential is more
realistic, in that its maximum converges to a limit, but this form of modeling requires the
use of non-linear regression, which is covered later).

Adding quadratic terms, for two of the three explanatory variables, to the fitted model
explains another 4% of the variance, but significantly reduces the error at higher processor
and memory frequencies; see figure 11.42.

Some of the systems benchmarked contained error correcting memory, which might be
expected to slightly reduce performance. The update function can be used to add, or
remove, explanatory variables from a previously fitted model. The following code adds
the variable ecc to the previously fitted model, spec_mod:

ecc_spec_mod=update(spec_mod, . ~ . + ecc)

The advantage of using update is a reduction in the system resources needed to fit the
model, compared with starting from the beginning again.

The summary output shows that systems containing error correcting memory have slightly
better performance. Before jumping to the conclusion that adding error correction im-
proves system performance, it is worth noting that this kind of memory tends to be used
in high-end systems, where it is likely that money has been spent to improve performance
and reliability.

The choice of cpu and memory frequency is based on information that is not present in
the SPEC result data, the intended price point the computing system is designed to be sold
at, and the trade-off in the cost/performance of the components needed to build it.

What contribution does each explanatory variable make to a fitted model? Some ways in
which individual contributions can be measured include:

• the amount of variance, in the response variable, explained by an explanatory variable.

The calc.relimp function, in the relaimpo package, calculates the contribution made
by each explanatory variable to the variance explained by the fitted model,

• the impact each explanatory variable can have on the range of values taken by the re-
sponse variable (with all other explanatory variables maintaining a fixed value).

For very simple models, xxi one way of calculating the maximum impact on the value
of the response variable is by multiplying the minimum/maximum value taken by an
explanatory variable by the corresponding coefficient in the fitted model. For instance,
range(cint$Processor.MHz)*7.3*10ˆ-3 evaluates to 11.68 35.04, a difference of
23.36.

The visreg function, in the visreg package, produces a visual representation of the
impact of each explanatory variable on the response variable.

xxiThose that are linear in the explanatory variable, with no interactions between variables.

11.4. MULTIPLE EXPLANATORY VARIABLES 309

1500 2500 3500 4500

20

25

30

35

40

45

50

Processor.MHz

f(
P

ro
ce

ss
or

.M
H

z)

●

●

●●

●

●

●
●

●

●●

●

●●

●

●

●

●●

●●

●
●

●

●●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●

●●

●

●● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

● ●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

4000 8000 12000 16000

10

15

20

25

30

35

40

mem_rate

f(
m

em
_r

at
e)

●

●●

●

●
●

●
●

●

●●

●

●●

●●

●

●●

●●

●
●

●

●●

●●

●●

●

●●

●

●

●

●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●●

●

●●

●●
●●●
●●
●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●●

●

●●

●●
●●●
●●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●●

●
●●

●

●●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●●
●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●●

●

●●
●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●●●
●

●

●
●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●●

●

●●

●

●●●

●

●●

●

●●

●

●●

●

●

●
●●●

●

●●●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

● ●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●●

●

●
●

●

●
●

●
●

●●

●●

●

●

●
●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●
●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

●●

●

●

●

●

●

●

●●●
●

●
●
●●●

●
●●
●
●
●
●●●●●●●
●
●●●●●

●

●

●

●
● ●

●

●

●

●●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●
●●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●
●

●●

●

●
●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●
●

●

●
●●●

●

●

●
●

●

●
●●●

●

●

●

●

●

●

●●

●

●

●●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●
●

●

●

●

●●

●●

●
●

●

●

●

● ●

●

●

●

●

●

●●●●

●●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

800 1000 1200 1400 1600 1800

20

25

30

35

40

mem_freq

f(
m

em
_f

re
q) ●

●●●

●
●

●

●

●

●●

●

●●

●

●

●

●●

●●

●

●

●

●●

●●

●

●

●

●●
●

●

●

●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

● ●

●

●

●

●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●●

●●●

●●
●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●●
●●●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●●

●
●●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●●

●

●●

●

●
●●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●●

●
●
●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●●●

●

●●

●

●●

●

●●

●

●

●

●●●

●

●●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●
●

●
●

●●

●●

●

●

●
●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●
●

●

●●

●

●●●

●

●

●

●

●

●●●
●

●
●

●●
●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●●

●

●●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●
●●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 11.42: Individual contribution of each explanatory
variable to the response variable in a quadratic model of
SPECint performance. Github–Local

10

20

30

40

50

2000 3000 4000

4000

6000

8000

10000

12000

14000

16000

Processor.MHz

m
em

_r
at

e

Figure 11.43: Contour map of Result values predicted
by a fitted model of SPECint performance, over range of
Processor.MHz and mem_rate values. Github–Local

Nomograms are a visual method for calculating the value of a response variable when
each explanatory variable has a particular value: the DynNom function in the DynNom
package supports interactive exploration of model behavior in a web browser.

Normalising values prior to fitting a model is sometimes suggested (e.g., using the
scale function); the relative values of the model coefficients can then be directly com-
pared. This method only works when all explanatory variable values are drawn from a
Normal distribution.

The relaimpo package supports a variety of functions745 for calculating the relative con-
tribution made to a model by each explanatory variable it contains. For instance, the
calc.relimp function calculates: first, the variance explained by a model containing
just each variable, last, the variance explained when a variable is added to a model that
already contains the other variables, betasq, the standardized coefficients of the model
(i.e., one fitted after normalising the data; effectively a metric for the contribution of each
explanatory variable to the response variable value), and lmg (named after the initials of
its creators), the variance explained by each variable; the boot.relimp function returns
confidence intervals for these values.

library("relaimpo")

spec_mod=glm(Result ~ Processor.MHz+I(Processor.MHz^2)+mem_rate
+ I(mem_rate^2)+mem_freq, data=cint)

How much does each explanatory variable contribute?
calc.relimp(spec_mod, type = c("first", "last", "betasq", "lmg"))

The calc.relimp output is: Github–Local

Response variable: Result
Total response variance: 81.56
Analysis based on 1346 observations

5 Regressors:
Processor.MHz I(Processor.MHz^2) mem_rate I(mem_rate^2) mem_freq
Proportion of variance explained by model: 83.77%
Metrics are not normalized (rela=FALSE).

Relative importance metrics:

lmg last first betasq
Processor.MHz 0.06189 0.017807 0.04609 0.6888
I(Processor.MHz^2) 0.04556 0.005698 0.02962 0.2201
mem_rate 0.29380 0.028909 0.55554 2.0853
I(mem_rate^2) 0.29050 0.006363 0.58253 0.4768
mem_freq 0.14598 0.067531 0.28997 0.1258

Average coefficients for different model sizes:

1X 2Xs 3Xs 4Xs 5Xs
Processor.MHz 4.308e-03 1.290e-02 1.568e-02 1.823e-02 1.666e-02
I(Processor.MHz^2) 6.560e-07 -4.894e-07 -9.880e-07 -1.728e-06 -1.788e-06
mem_rate 2.343e-03 1.562e-03 2.236e-03 3.303e-03 4.540e-03
I(mem_rate^2) 1.280e-07 1.488e-07 8.108e-08 -1.286e-08 -1.158e-07
mem_freq 2.429e-02 2.012e-02 1.558e-02 1.457e-02 1.600e-02

the second set of columns, under the line starting Average coefficients, lists the
model coefficients for each explanatory variable, if that variable were to appear in a model
containing X variables (values are averaged over all combinations of other variables). The
values in the last column (5Xs in this case) are the same as those produced by the summary
function for the fitted model.

How do changes in the value of each explanatory variable individually affect the value of
the response variable? The visreg package supports functions for plotting the relation-
ship between the response variable and individual explanatory variables (with the other
variables held constant at their median value).

Figure 11.42 shows the individual contribution made by each explanatory variable to the
value of the response variable (along with confidence intervals in grey), for the following
model of SPECint performance:

310 11. Regression modeling

2000 6000 10000 14000

5000

10000

15000

Estimated

A
ct

ua
l

Daily
not Daily

Figure 11.44: Estimated and actual effort broken down
by communication frequency, along with individually fit-
ted straight lines. Data from Moløkken-Østvold et al.1306

Github–Local

library("visreg")

spec_mod=glm(Result ~ Processor.MHz + I(Processor.MHz^2)+mem_freq
+mem_rate+I(mem_rate^2), data=cint)

visreg(spec_mod)

Figure 11.43 shows a contour plot created using the visreg2d function.

Sometimes including an explanatory that has no correlation with the response variable
improves the performance of a model; why does this happen? An explanatory variable
may correlate with the residual of a model, and adding this new variable has the effect of
improving a model by reducing its residual.

11.4.1 Interaction between variables

In the models fitted so far, each explanatory variable has been independent of the others.
The glm function and many other regression modeling functions provide mechanisms
for specifying interactions between explanatory variables, using binary operators in the
formula, such as :, * and ˆ.

Operator Effect
+ causes both of its operands to be included in the equation.
: denotes an interaction between its operands, e.g., a:b or a:b:c.
* denotes all possible combinations of + and : operators, e.g., a*b is equivalent to

a+b+a:b.
ˆ denotes all interactions to a specific degree, e.g., (a+b+c)ˆ2 is equivalent to

a+b+c+a:b+a:c+b:c.
. denotes all variables in the data-frame specified in the data argument except the

response variable.
- specifies that the right operand is removed from the equation, e.g., a*b-a is

equivalent to b+a:b.
-1 specifies that an intercept is not to be fitted (many regression fitting functions

implicitly include an intercept).
I() "as-is", any operators in the enclosed expression are not treated as formula

operators, the behavior is that applying outside a formula.
Table 11.2: Symbols that can be used within a formula to express relationships between explanatory variables.

As with all data analysis, the choice of interactions between explanatory variables should
be driven by domain knowledge. When there is a lot of uncertainty about which inter-
actions are significant, it may be easiest to start by specifying all pairs of interactions
between variables (or triple interactions if there are not too many variables), and to then
simplify, either automatically using stepAIC, or through manual inspection of summary
output of the fitted models.

Stepwise regression techniques, such as that provided by stepAIC, can return models that
suffer from a variety of problems, such as overfitting. There are techniques available to
help avoid these problems; the train function in the caret package supports some of
these techniques. The glmulti package automates the process of finding an optimal, in
a sense specified by the user (e.g., minimise AIC or some other measure), explanatory
variable interaction; a list of variables is specified, and the function permutes through the
possibilities, e.g., glmulti("y", c("a", "b", "c", "d"), data=some_data).

A study by Moløkken-Østvold and Furulund1306 investigated the impact of daily com-
munication between the customer and contractor on the accuracy of effort estimates, for
18 software projects. Figure 11.44 shows estimated vs. actual effort broken down by
communication frequency (i.e., daily or not daily), along with individually fitted straight
lines.

It is possible to fit one regression model that simultaneously fits both straight lines to this
data; the following code shows one possibility:

sim_mod=glm(Actual ~ Estimated+Estimated:Communication, data=sim)

The fitted equation is (based on summary output):

11.4. MULTIPLE EXPLANATORY VARIABLES 311

Actual =−270.1+1.18Estimated+0.51Estimated×D

=−270.1+(1.18+0.51D)Estimated

where: Actual is the actual and Estimated the estimated effort, and D has one of two
values:

D =

{
1 daily communication
0 not daily communication

Is this formula the best fit possible using the available data? The formula used was se-
lected by your author, because of a belief that the benefit of communication will increase
as project size increases.

There are six data points for each of the 18 projects, computationally small enough for the
brute force approach of examining all possible models; but with only 18 projects, some
formula possibilities cannot be fitted because they contain more variables than available
data points (a unique solution requires fewer variables than data points).

The formula in the following code fits four explanatory variables individually, plus each
variable paired with every other variable (one at a time). stepAIC is used as a quick
way of removing explanatory variables that are not paying their way (automatic model
selection is fraught with problems, with perhaps the largest being that it allows analysts
to stop thinking about the data):

sim_mod=glm(Actual ~ (Estimated+Communication+Contract+Complexity)^2, data=sim)

min_sim=stepAIC(sim_mod)
summary(min_sim)

This book fits regression models as a means of building understanding, and minimising
AIC is often a useful step along the way. Another way of removing low impact variables
from a model is to consider the p-value of each fitted component.

The summary output for ordinal and nominal explanatory variables, lists p-values for each
value that these variables take in the data. The Anova function, in the car package, lists
p-values at the variable level, and its output for the above model is: Github–Local

Analysis of Deviance Table (Type II tests)

Response: Actual
LR Chisq Df Pr(>Chisq)

Estimated 45.879 1 1.258e-11 ***
Communication 17.272 1 3.240e-05 ***
Contract 6.767 3 0.07971 .
Complexity 1.543 1 0.21423
Estimated:Communication 2.546 1 0.11060
Communication:Contract 5.020 3 0.17034
Contract:Complexity 3.197 2 0.20224

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The variable Complexity has the highest p-value, and repeatedly removing the compo-
nent having the highest p-value, for successively smaller models (smaller in the sense of
containing fewer components) leads to the following model:

sim_mod=glm(Actual ~ Estimated+Communication+Communication:Contract, data=sim)

which fits the following equation:
Actual =−274.8+1.21Estimated+2625×!D+

Cfp(1862×!D−197.6×D)+

Ctp(−2270×!D−462.2×D)+

Cot(−2298×!D−234.3×D) (11.6)

where the new variables are: Cfp is a fixed price contract, Ctp is a target price contract and
Cot other kind of contract.

Cfp =

{
1 fixed price contract
0 not fixed price contract

Ctp =

{
1 target price contract
0 not target price contract

312 11. Regression modeling

50
5

45

20

15

10

55

X2X1

Y

50
5

45

20

15

10

55

X2X1

Y

Figure 11.45: Illustration of the shared and non-shared
contributions made by two explanatory variables to the re-
sponse variable Y. Github–Local

Cot =

{
1 other contract
0 not other contract

This model explains a greater percentage of the variance in the data than the first model
fitted, it also has a slightly smaller AIC. While it makes use of extra information (i.e.,
the kind of contract), a more noticeable difference is that Communication has a constant
effect (i.e., it does not increase with estimated size); the case of fixed price contracts, with
no daily communication cries out for attention.

Following the numbers has produced a model that is a better fit to the data, but not to
expectations (which may, of course, be wrong).

11.4.2 Correlated explanatory variables

The mathematics behind many approaches used to fit linear regression models assumes
that explanatory variables are independent of each other. If a linear relationship exists
between one or more pairs of explanatory variables (i.e., a relationship of the form: PV1 =
a+b×PV2, where PV1 and PV2 are explanatory variables, a is any constant and b a non-
zero constant), then this needs to be taken into account by the model building technique
used.xxii

Multicolinearity is said to occur, when a linear relationship exists between two or more
explanatory variables, the term colinearity is often used when only two variables are
involved.

Figure 11.45 illustrates how the variance in Y explained by combining X1 and X2 may be
less than the sum of the variance explained by each individually, because the two variables
are not independent; there is a shared contribution.

The impact of multicolinearity is to increase the standard error in the calculated value
of the fitted model coefficients (i.e., the βn), potentially resulting in a model that is not
considered acceptable or is unreliable (in the sense that small changes in the data result
in large changes in the coefficients of the fitted model). The increased uncertainty, in
some variables, will make it more difficult to isolate the effects of individual explanatory
variables and will increase the width of the confidence intervals for the predicted values
of the response variable.

The Variance Inflation Factor (VIF) is a measure of the uncertainty created by the pres-
ence of multicolinearity. The impact of VIF is the same as reducing the sample size.
When no multicolinearity is present, VIF has a value of one. The impact on the standard
error is:

εstandard ∝

√
VIF

observations

When is a VIF value too large? A large VIF is more likely to be acceptable with a large
sample, compared to a small one, e.g., the standard error is proportionally the same for
10,000 observations having a VIF of 400 and for 100 observations having a VIF of 4.

Suggested maximum VIF values appear in print, e.g., 5 or 10 are sometimes suggested.
As always, think about what the VIF value means in the context of how the results will be
used; pick a value that makes sense given the sample size, the error in the measurements
and the level of error that is acceptable in the business context.

The car and rms packages support a vif function, that takes the model returned by a call
to, for instance, glm and returns the VIF for each explanatory variable.

A study by Kroah-Hartman1046 investigated the amount of change in the Linux kernel
source code occurring between each release. Figure 11.46 shows the number of lines
added, modified and removed, plus overall growth, number of files and total number of
lines at each initial release of the Linux kernel from version 2.6.0 to 3.9 (two outliers have
been excluded).

xxiiIt is ok for a nonlinear relationship to exist in linear models, e.g., PV1 = a+b×PV2
2.

11.4. MULTIPLE EXPLANATORY VARIABLES 313

added

2e+05

4e+05

6e+05

8e+05

0e+00
2e+05
4e+05
6e+05
8e+05

200000 1200000

1.0e+07

1.5e+07

2.0e+07

2e+05 8e+05

removed

modified

100000

0e+00 6e+05

growth

files

20000 50000

1.0e+07

200000
400000
600000
800000
1000000
1200000

100000

150000

200000

20000

30000

40000

50000

total lines

Figure 11.46: pairs plot of lines added/modified/re-
moved, growth and number of files and total lines in ver-
sions 2.6.0 through 3.9 of the Linux kernel. Data from
Kroah-Hartman.1046 Github–Local

Building a model of the Linux kernel growth is complicated by the potentially high cor-
relation between some measured variables, including:

• the growth, in lines of code, between releases is the difference between lines added
and lines removed; these three variables are perfectly correlated in that knowing two of
them enables the third to be calculated,

• lines added appears strongly correlated with lines removed. Perhaps existing function-
ality is being rewritten, rather than unrelated functionality being added,

• the decision about whether a line has been modified or removed/added is made algo-
rithmically (rather than asking the developer who made the change). The amount of
misclassified lines is not known,

• system level measurements are also correlated, e.g., number of files and total lines of
code.

Modeling the number of modified lines, using the Kroah-Hartman data, finds that both
lines added and lines removed individually explain around half of the deviance (61%
and 41% respectively). However, combining them in a model does not produce any im-
provement; the following output from summary was obtained by including the argument
correlation=TRUE. Github–Local

Call:
glm(formula = lines.modified ~ lines.added + lines.removed, data = amr_out)

Deviance Residuals:
Min 1Q Median 3Q Max

-72376 -12049 321 11274 54964

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.705e+04 8.625e+03 10.093 9.40e-14 ***
lines.added 9.958e-02 2.093e-02 4.759 1.64e-05 ***
lines.removed -1.500e-02 3.117e-02 -0.481 0.632

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 639477748)

Null deviance: 6.2276e+10 on 53 degrees of freedom

314 11. Regression modeling

Residual deviance: 3.2613e+10 on 51 degrees of freedom
AIC: 1253.1

Number of Fisher Scoring iterations: 2

Correlation of Coefficients:
(Intercept) lines.added

lines.added -0.54
lines.removed -0.06 -0.76

The correlation between the model coefficients appears at the end of the output and
shows a high negative correlation between lines.added and lines.removed; the vari-
able lines.added is a better predictor of lines.modified and has been selected over
lines.removed (whose p-value is significantly larger than when just this variable ap-
peared in a model).

A call to the vif produces the following: Github–Local

lines.added lines.removed
2.39311 2.39311

With only two explanatory variables, there is no ambiguity about which variables are
involved in a linear relationship, but with more than two variables things are not always
so obvious. The correlation table produced by summary can be used to identify related
variables; the alias function generates just this information, when the argument part
ial=TRUE is specified.

Approaches to dealing with multicolinearity, to reduce any undesirable impact it may have
on fitting a model, include:

• removing one or more of the correlated explanatory variables. The choice of which
explanatory variables to remove might be driven by:

– the cost of collecting information on the variable(s),
– a VIF driven approach. The process involves fitting a model using the current set

of explanatory variables, removing the explanatory variable with the largest VIF (re-
moving one variable affects the VIF of those that remain and may reduce the VIF
of other variables to an acceptable level) and iterating until all explanatory variables
have what is considered to be an acceptable VIF,

• combining the strongly correlated variables in a way that makes use of all the informa-
tion they contain.

The disadvantages of excluding explanatory variables from a model include:

• ignoring potentially useful information present in the excluded variable,

• creating a model that gives a false impression about which explanatory variables are
important, i.e., readers will assume that the variables appearing in the model are the
only important ones, unless information about the excluded variables is also provided,

• it provides the opportunity for the analyst to select the model that favours the hypothesis
they want to promote (by selecting which explanatory variables appear in the model).

The SPEC power benchmark1741 is designed to measure single and multi-node server
power consumption, while executing a known load. The results contain 515 measure-
ments of six system hardware characteristics, such as number of chips, number of cores
and total memory, as well as average power consumption at various load factors.

A model of average power consumption, at 100% load, containing a linear combination
of all explanatory variables, shows very high multicolinearity for the number of chips (its
VIF is 27.5 and several other variables have a high VIF; see Github–hardware/SPECpower.R).
Removing this variable reduces the VIF of the remaining variables, but the AIC drops
from 6798.7 to 7182.1. Whether this decrease in model performance is important depends
on the reason for building the model, e.g., prediction or understanding. Do the values of
the model coefficients, after removing this variable, provide more insight than the coeffi-
cient values of the original model? These kinds of questions can only be answered by a
person having detailed domain knowledge. This example shows how removing a variable
solves one problem and raises others.

A study of fault prediction by Nagappan, Zeller, Zimmermann, Herzig and Murphy1345

produced data containing six explanatory variables having an exact linear relationship

11.5. NON-LINEAR REGRESSION 315

 Michaelis−Menten

Exponential

Logistic

Weibull

Gompertz

Bell−shaped

Biexponential

Ricker curve

Figure 11.47: Example plots of functions listed in ta-
ble 11.3. These equations can be inverted, so they start
high and go down. Github–Local

with other explanatory variables. The glm function detects the existence of this relation-
ship and makes a decision about explanatory variables to exclude from the model (the
value returned for their fitted coefficients is NA); see Github–regression/change-burst-sum.R.

Two explanatory variables having an exact linear relationship will have a correlation of
±1, as a call to alias will show.

11.4.3 Penalized regression

Penalized regression handles multicolinearity by automatically selecting how much each
explanatory variable should contribute to the model; explanatory variables are penalized,
based on their relative contribution to the model. The penalized package supports pe-
nalized regression.

The traditional technique for fitting a regression model involves minimising some measure
of a specified error, where the error is defined to be the difference between actual and
predicted values, e.g., the sum of squared error, whose equation is:

SSE =
n

∑
i=1

(yi− ŷi)
2

Penalised regression modifies this equation to include a penalty (the λ in the equation
below), for the P coefficients in the model (β in the equation below).

SSEenet =
n

∑
i=1

(yi− ŷi)
2 +λ1

P

∑
j=1
|β j|+λ2

P

∑
j=1

β
2
j

This technique of using both first- and second-order penalties is known as the elastic net.
When only the first order term, λ1, is used, it is known as the Least Absolute Shrinkage
and Selection Operator method (lasso). When only the second order term, λ2, is used, it
is known as ridge regression.

In theory the penalization penalties, λ1 and λ2, are chosen by the analyst. In practice,
software packages provide a function that automatically finds values (using the bootstrap)
that minimise the error.

The lasso tends to pick one from each set of correlated variables and ignores the rest
(by setting the corresponding β s to zero). Ridge regression has the effect of causing the
coefficients, β , of the corresponding correlated variables to converge to a common value,
i.e., the coefficient chosen for k perfectly correlated variables is 1

k th the size chosen, had
just one of them been used.

The calculation of mean squared error (MSE) adds contributions from both variance and
bias. The default regression modeling techniques are unbiased, i.e., they attempt to min-
imise bias. It is possible to build models with lower MSE by trading off bias for variance
(see Github–hardware/SPECpower.R for an example; in this case the use of penalised regres-
sion makes little difference to the final model).

11.5 Non-linear regression

The regression models fitted in earlier sections are linear models because the coefficients
of the model (e.g., β1 in the equation at the start of this chapter) are linear (the form of
the explanatory variables is irrelevant). In a non-linear regression model one or more of
the coefficients have a non-linear form, e.g., θ1 in the following equation:

y = α1 +β1xθ1 + ε

Table 11.3 lists some commonly occurring non-linear equations, and figure 11.47 illus-
trates example instances of these equations.

The nls function (Nonlinear Least Squares) is part of the base system and can be used
to build non-linear regression models; it requires that the response variable error have a
Normal distribution (glm’s default behavior). The gnm package (Generalized nonlinear
models) contains support for other forms of error distribution.

From the practical point of view there are several big differences between using glm and
using nls, including:

316 11. Regression modeling

Shape Name Equation
Asymptotic growth to a limit Michaelis-Menten y = ax

1+bx
Asymptotic growth to a limit Exponential y = a(1−be−bx)

S-Shaped Logistic y = a+ b−a
1+e(c−x)/d

S-Shaped Weibull y = a−be−cxd

S-Shaped Gompertz y = aebe−cx

Humped Bell-shaped y = ae−|bx|2

Humped Biexponential y = ae−bx− ce−dx

Humped Ricker curve y = axe−bx

Table 11.3: Some commonly encountered non-linear equations, see figure 11.47.

0 5 10 15

100

200

300

400

500

L2 cache size (MB)

T
im

e
(s

ec
s)

Exponential
Michaelis−Menten
Gompertz
Weibull

Figure 11.48: Time to execute a computational biology
program on systems containing processors with various
L2 cache sizes. Data kindly provided by Hazelhurst.794

Github–Local

• nls may fail to fit a model; the techniques used to find the coefficients of a non-linear
model are not guaranteed to converge,

• nls may return a fitted model that differs from the actual solution; the techniques used
to find the coefficients of a non-linear model may become stuck in a local minimum,
that is good enough, and fail to find a better solution,

• nls often requires the analyst to provide estimate(s) for the initial value of each model
coefficient, that is close to the final values (using the start argument),

• names for the model coefficients being estimated have to explicitly appear in the for-
mula (i.e., implicit names are not created automatically),

• the operators appearing in the expression to the right of ~ have their usual arithmetic
interpretation, i.e., the R formula specific behaviors listed in table 11.2 do not apply.

The biggest problem with fitting non-linear regression models, is finding a combination
of starting values that are good enough for nls be able to converge to a fitted model.
Possible techniques for finding these values include:

• using a "self-start" function, if available (e.g., SSlogis for Logistic models); these
attempt to find good starting values to feed into nls, and functions, in turn, may require
starting values (but at least there is a known method for calculating them),

• fitting a linear model that is close enough to the non-linear model and working with the
coefficients of the fitted linear model as possible starting values,

• using the argument trace=TRUE, which outputs the list of model coefficients that are
being used internally, as a source of ideas,

• picking a few points in the plotted data that a fitted line is likely to pass through and
calculating values that would result in the equation being fitted, passing close to these
points.

A study by Hazelhurst794 measured the performance of various systems running a com-
putational biology program. Figure 11.48 shows four non-linear equations fitted to one
processor characteristic (L2 cache size). The calls to nls are as follows:xxiii

b_mod=nls(T1 ~ c+a*exp(b*L2), data=bench, start=list(a=300, b=-0.1, c=60))

mm_mod=nls(T1 ~ (1+b*L2)/(a*L2), data=bench, start=list(b=3, a=0.004))

gm_mod=nls(T1 ~ a/exp(b*exp(-c*L2)), data=bench,
start=list(a=80, b=-1, c=0.1), trace=FALSE)

Asym = 0.0125
Drop = 0.002
lrc = -1.0
pwr = 2.5
1/SSweibull does not have the desired effect, so have to invert the response.
getInitial(1/T1 ~ SSweibull(L2, Asym, Drop, lrc, pwr), data=bench)
wb_mod=nls(1/T1 ~ SSweibull(L2, Asym, Drop, lrc, pwr), data=bench)

At the start of this chapter, various linear models were fitted to the growth of Linux, see
fig 11.7. Polynomials containing integer powers were used, perhaps the data is better fitted
by a polynomial containing non-integer powers. The following call to nls attempts to fit
such an equation, it uses starting values extracted from the quadratic model fitted earlier:

xxiiiIt is difficult to separate inspiration from suck it and see, in this process.

11.5. NON-LINEAR REGRESSION 317

0 1000 2000 3000 4000 5000 6000

2

4

6

8

Days since version 1.0 release

To
ta

l l
in

es
 o

f c
od

e
(M

LO
C

)

Figure 11.49: A logistic equation fitted to the lines of code
in every non-bugfix release of the Linux kernel since ver-
sion 1.0. Data from Israeli et al.902 Github–Local

0 1000 2000 3000 4000 5000 6000

2

4

6

8

Days since version 1.0 release

Li
nu

x
ke

rn
el

 s
iz

e
(M

LO
C

)

Figure 11.50: Predictions made by logistic equations fitted
to Linux SLOC data, using subsets of data up to 2900,
3650, 4200 number of days and all days since the release
of version 1.0. Data from Israeli et al.902 Github–Local

m1=nls(LOC ~ a+b*Number_days+Number_days^c, data=h2,
start=list(a=3e+05, b=-4e+2, c=2.0))

The summary and AIC output is: Github–Local

Formula: LOC ~ a + b * Number_days + Number_days^c

Parameters:
Estimate Std. Error t value Pr(>|t|)

a -1.679e+05 2.969e+04 -5.656 2.61e-08 ***
b 7.319e+02 3.463e+01 21.131 < 2e-16 ***
c 1.806e+00 4.616e-03 391.211 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 231800 on 498 degrees of freedom

Number of iterations to convergence: 5
Achieved convergence tolerance: 4.299e-06

[1] "AIC = 13805.2100165816"

showing that the equation:

sloc = (−1.68 ·105±3 ·104)+(7.32 ·102±3.5 ·101)Number_days+Number_days1.81±4.6·10−3

is a slightly better fit than a cubic equation (i.e., a lower AIC) and also predicts continuing
growth (unlike the cubic equation).

It is possible that further experimentation will find a polynomial model with a lower AIC.
However, the purpose of this analysis is to understand what is going on, not to find the
equation whose fitted model has the lowest AIC.

A more practical issue is to create a model that makes what are considered to be more
realistic future predictions. The growth in the number of lines in the Linux kernel will not
continue forever, at some point the number of lines added will closely match the number
of lines deleted. One commonly seen growth pattern, starts slow, has a rapid growth
period, followed by a levelling off converging to an upper limit, i.e., an S-shaped curve.
The Logistic equation is S-shaped and is often used to model this pattern of growth; the
equation involves four unknowns (third row in table 11.3).

Fitting a Logistic equation the hard and easy (when it works) way:

suck it and see...
m3=nls(LOC ~ a+(b-a)/(1+exp((c-Number_days)/d)), data=h2,

start=list(a=-3e+05, b=4e+6, c=2000, d=800))
no thinking needed, SSfpl works out of the box for this data :-)
m3=nls(LOC ~ SSfpl(Number_days, a, b, c, d), data=h2)

The AIC for the fitted Logistic equation is slightly worse than the cubic polynomial
(13,273 vs. 13,220), but a lot better than the quadratic fit and it predicts a future trend
that is likely to occur, eventually.

While the predict function includes parameters to request confidence interval and stan-
dard error information, support for both is currently unimplemented for models fitted
using nls. The confint function, in the MASS package, when passed a model built using
nls, returns the confidence intervals for each model coefficient; bootstrapping can also
be used to find confidence intervals.

Figure 11.49 shows the fitted model predicting a slow down in growth, with the maximum
being reached at around 10,000 days. Who is to say whether this prediction is more likely
to occur, over the specified number of days, than the continuing increase predicted by the
quadratic model? Given that the one explanatory variable used to fit the models, time,
does not directly impact the production of source, it is no surprise that the predictions of
future behavior made by the various models vary so wildly.

One technique for getting a rough idea of the accuracy of the future predictions made by
a model, is to fit models to subranges of the data, and then check the predictions made
against the known data outside the subrange. Figure 11.50 shows logistic equations fitted
to subranges of the data, e.g., all data up to 2900, 3650, 4200 number of days and all days.

318 11. Regression modeling

1995 2000 2005 2010

1e−01

1e+00

1e+01

1e+02

1e+03

Production Date

A
re

al
 D

en
si

ty
 (

gi
ga

bi
ts

/m
^2

)

1st MR head

1st GMR head

1st AFC media

Figure 11.51: Increase in areal density of hard disks enter-
ing production over time. Data from Grochowski et al.744

Github–Local

2000 4000 6000 8000

200

400

600

800

1000

Days since 1 Jan 1990

K
S

LO
C

Figure 11.52: Lines of code in the GNU C library
against days since 1 January 1990. Data from González-
Barahona.704 Github–Local

The lesson to learn from figure 11.50 is to be careful what you ask for, asking for a
logistic equation fitted to the data may get you one. The fitting process is driven by your
expectations (in the form of a formula), and the data it is given.

The processes generating the data fitted by a Logistic equation may not in themselves
follow this pattern, the contributions of independent processes may combine to create
an emergent pattern. A study by Grochowski and Fontana744 showed that increases in
the density of data stored on hard disks could be viewed as a sequence of technologies
that each rapidly improved, e.g., magneto-resistive and antiferromagnetically-coupled.
Figure 11.51 shows the areal density (think magnetic domains) of various models of hard
disk on first entering production. Improvements in each technology can be fitted with its
own Logistic equation, as can the overall pattern of performance improvements.

A codebase showing some evidence of having completed its major expansion phase is
glibc, the GNU C library (i.e., its growth rate has levelled off); see figure 11.52. The
summary of the fitted model is (the SSfpl function automatically estimates initial values
for a Logistic equation): Github–Local

Plugging the fitted model coefficients into the Logistic equation give:

KLOC =−28+
1115− (−28)

1+ e(3652−Days)/935

Since these measurements were made, the C Standard’s committee, JTC1 SC22/WG14,
have started work on revising the existing specification; the model’s prediction that glibc
will max out at around 1,115,000 lines is unlikely to remain true for many more years.

A study by Chen, Groce, Fern, Zhang, Wong, Eide and Regehr345 investigated fault ex-
periences in a C compiler and JavaScript engine, by having them process randomly gen-
erated programs. Some programs failed to be correctly processed (1,298 in gcc and 2,603
in Mozilla’s SpiderMonkey), and many of these failures could be traced back to the same
few underlying mistakes in the code, i.e., some fault experiences were encountered more
often than others. Figure 11.53 shows the number of failing programs that could be traced
back to the same mistake, the curved green line is a regression fit (a biexponential, or
double exponential); the two straight lines are the exponentials that are added to form the
bi-exponential.

The nls has a SSbiexp starter function, which performs poorly for this data (or, at least,
your author could not make it do well).

The sample contains count data, with many very small values, implying a Poisson er-
ror distribution. The gnm function, in the gnm package, has an option to select an error
distribution.

The formula notation used by gnm is based on function calls,1856 rather than the binary
operators used by glm and nls. The formula argument in the following call (used to fit the
model plotted in figure 11.53), contains two exponentials (specified using the instances
function), the literal 1 is a placeholder for an unknown constant multiplied (the Mult
function) by an exponential (the Exp function); as with calls to nls, starting values are
required:

library("gnm")

fail_mod=gnm(count ~ instances(Mult(1, Exp(ind)), 2)-1,
data=wrong_cnt, verbose=FALSE,
start=c(2000.0, -0.6, 30.0, -0.1),
family=poisson(link="identity"))

See fig 6.25 for a discussion of one possible reason the biexponential is such a good fit.

Various natural processes can be modeled using a sum of (possibly) many exponentials,
and specific techniques have been created to fit data to this specific non-linear case; some
of these technique have the advantage of being able to operate with a very approximate
starting estimates of the exponent.

The mexpfit function, in the pracma package, implements one such technique. Support
is rudimentary, at the time of writing, but mexpfit can save a lot of time by providing a
workable estimate for a call to gnm.

library("pracma")

me_mod=mexpfit(wrong_cnt$ind, wrong_cnt$count, p0=c(-0.9, -0.1))
print(me_mod) # no summary support, at the time of writing

11.5. NON-LINEAR REGRESSION 319

0 5 10 15 20 25 30 35

1

2

5

10

20

50

100

200

500

Fault id

Fa
ili

ng
 p

ro
gr

am
s

gcc

0 5 10 15 20 25

1

5

10

50

100

500

1000

Fault id
Fa

ili
ng

 te
st

 p
ro

gr
am

s

SpiderMonkey

Figure 11.53: Number of failing programs caused by
unique fault experiences in gcc (upper) and SpiderMonkey
(lower). Fitted model in green, with two exponential com-
ponents in red and blue. Data kindly provided by Chen.345

Github–Local

11.5.1 Power laws

Plotting values drawn from a power law distribution using a log scale for both axis, pro-
duces a straight line. This straight line characteristic is not unique to power laws, it can
also appear to occur with samples drawn from other distributions, e.g., an exponential
distribution;xxiv see section 7.1.3.

The poweRlaw package includes functions for fitting and checking whether a power law
is likely to be a good fit for a sample.371

When the model being fitted contains one explanatory variable, thought to have the form
of a power law, functions from the poweRlaw package can be used. However, this package
does not support more complicated models, and so other regression modeling functions
have to be used when a power law is one of multiple components in a model, e.g., nls.

A study by Queiroz, Passos, Valente, Hunsen, Apel and Czarnecki1546 analysed the con-
ditional compilation directives (e.g., #ifdef) used to control the optional features in 20
systems written in C. Researchers in this area use the term feature constant to denote
macro names used to control the selection of optional features and scattering degree to
describe the number of ifdefs that refer to a given feature constant, e.g., if the macro
SUPPORT_X appears in two ifdefs, it has a scattering degree of two.

Figure 11.54 shows the total number of feature constants (y-axis) having a given scattering
degree (x-axis) in these 20 systems, lines are a power law (red) and exponential (blue) of
fitted models; the numbers are the p-values for the fit (higher is better, i.e., fail to reject
the hypothesis). This analysis is a fishing expedition involving 20 systems, and a power
law is suggested by the visual form of the plotted data; with multiple tests it is necessary
to take into account the increased likelihood of a chance match.

If 0.05 is taken as the p-value cutoff, for one test, below which the distribution hypothesis
is rejected, then (1− 0.9520)→ 0.64 is the cutoff when 20 tests are involved. Some
systems have p-values above the cutoff for one of the power law or exponential fitted
models, and so the given distribution is not rejected for these systems.

The poweRlaw package supports discrete and continuous forms of heavy tailed distribu-
tions. The scattering degree is an integer value, and the following code fits both a discrete
power law and exponential to the data (the continuous forms are conpl and conexp re-
spectively):

1 2 5 10 50

0.01
0.02
0.05
0.10
0.20
0.50
1.00

Scattering degree

0.31

0.434

1 2 5 10 50
0.005

0.020
0.050

0.200
0.500

Scattering degree

0.76

0.012

1 2 5 20 50

0.01
0.02
0.05
0.10
0.20
0.50
1.00

Scattering degree

0.158

0.324

1 5 20 100
0.001

0.005

0.050

0.500

Scattering degree

0.764

0.008

1 5 20 100

0.01
0.02
0.05
0.10
0.20
0.50
1.00

Scattering degree

0.214

0.752

1 2 5 20 50

0.005

0.020
0.050

0.200
0.500

Scattering degree

0.162

0.17

1 5 20 100
5e−04

5e−03

5e−02

5e−01

Scattering degree

0.208

0.96

1 5 20 100
5e−04

5e−03

5e−02

5e−01

Scattering degree

0.002

0.714

1 2 5 20 50
0.001

0.005

0.050

0.500

Scattering degree

0.04

0.752

1 2 5 20 50

0.002
0.005
0.020
0.050
0.200
0.500

Scattering degree

0.062

0.004

1 5 20 100
0.005

0.020
0.050

0.200
0.500

Scattering degree

0.02

0.244

1 5 20 100 500

0.002
0.005
0.020
0.050
0.200
0.500

Scattering degree

0.026

0.026

1 5 20 100

5e−04

5e−03

5e−02

5e−01

Scattering degree

0.798

0.026

1 5 20 100 500

5e−04

5e−03

5e−02

5e−01

Scattering degree

0.952

0.002

1 5 20 100 500

0.001

0.005

0.050

0.500

Scattering degree

0.032

0.052

1 2 5 20 100
0.002
0.005
0.020
0.050
0.200
0.500

Scattering degree

0.05

0.648

1 5 20 100 500

5e−04

5e−03

5e−02

5e−01

Scattering degree

0.832

0.614

1 5 20 100 500
5e−04

5e−03

5e−02

5e−01

Scattering degree

0

0.17

1 5 50 500
1e−04

1e−03

1e−02

1e−01

1e+00

Scattering degree

0

0

1 5 50 500

1e−04

1e−03

1e−02

1e−01

1e+00

Scattering degree

0.514

0

Figure 11.54: Power law (red) and exponential (blue) fits
to feature macro usage in 20 systems written in C; fail to
reject p-value for 20 systems is 0.64. Data from Queiroz
et al.1546 Github–Local

xxivPapers1163 claiming to have found a power law, purely on the basis of a plot showing points scattered
roughly along a straight line, are a common occurrence.

320 11. Regression modeling

library("poweRlaw")

Fit scattering degree
displ is the constructor for the discrete power law distribution
pow_mod=displ$new(FS$sd)
exp_mod=disexp$new(FS$sd) # discrete power exponential

Estimate the lower threshold of the fit
pow_mod$setXmin(estimate_xmin(pow_mod))
exp_mod$setXmin(estimate_xmin(exp_mod))

Plot sample values
plot(pow_mod, col=point_col, xlab="Scattering degree", ylab="")
lines(pow_mod, col=pal_col[1]) # Plot fitted line
lines(exp_mod, col=pal_col[2])

Bootstrap to test hypothesis that sample drawn from a power law
bs_p=bootstrap_p(pow_mod, threads=4, no_of_sims=500)
text(40, 0.5, bs_p$p, pos=2, col=pal_col[1]) # Display value

The power law equation includes a minimum value of x, scattering degree in this case,
below which it does not hold. The estimate_xmin function estimates the value, xmin,
that minimises the error between the fitted model and the data. The new function, called
by the constructor, sets xmin to the minimum value present in the data. It is common for
power laws to fit a subset of the data.

11.6 Mixed-effects models

Mixed-effects models are used to model measurements of multiple correlated measure-
ments of the same subjects (e.g., before/after measurements of the same subject), and
clusters of related subjects. The regression techniques discussed so far assume that mea-
surements are not correlated with each other.

In a mixed-model the explanatory variables are classified as either a fixed-effect, or a
random-effect (sometimes called a covariate). Technically the effects are not fixed and
are not randomxxv. One way to think about classifying the two kinds of explanatory
variables, is to look at the impact they have on the response variable:

• fixed effects influence the mean value of the response variable, and are associated with
the entire population,

• random effects influence the variance of the response variable, and are associated with
individual subjects.

A study by Balaji, McCullough, Gupta and Agarwal124 measured the power consumption
of six different Intel Core i5-540M processors executing the SPEC2000 benchmark at
various clock frequencies; the six processors are a sample of the entire population of Intel
Core i5-540M processors. The power consumption characteristics might be modeled by
combining the data from all six processors; the following is the summary output for this
model: Github–Local

Call:
glm(formula = meanpower ~ frequency, data = power_bench)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.5746 -0.1882 0.0413 0.1902 2.2965

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.12594 0.01506 141.2 <2e-16 ***
frequency 1.95248 0.00767 254.6 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

xxvSome authors point this out, and then proceed to use what they consider to be more technically correct
terms, this book follows common usage because it is common; these terms crop up as named parameters in
functions, and appear in output information.

11.6. MIXED-EFFECTS MODELS 321

1.2 1.4 1.6 1.8 2.0 2.2 2.4

4

5

6

7

8

9

Frequency (GHz)

M
ea

n
po

w
er

 (
w

at
ts

)

Figure 11.55: Power consumption of six different Intel
Core i5-540M processors running at various frequencies;
colored lines denote fitted regression models for each pro-
cessor. Data from Balaji et al.124 Github–Local

0 1
0

1

0 1
0

1

0 1
0

1

Figure 11.56: Example showing the three ways of
structuring a mixed-effects model, i.e., different inter-
sections/same slope (upper), same intersection/different
slopes (middle) and different intersections/slopes (lower).
Github–Local

(Dispersion parameter for gaussian family taken to be 0.1429928)

Null deviance: 10692.7 on 9980 degrees of freedom
Residual deviance: 1426.9 on 9979 degrees of freedom
AIC: 8916.2

Number of Fisher Scoring iterations: 2

This model does not provide any information about how performance varies between
processors. The identity of the processor measured could be included in the model (see
Github–regression/hotpower-proc.R), but this is a model of the sample, and it cannot be used
to deduce anything about the population from which it was drawn.

How might the sample of processors be modeled in a way that provides an estimate of
population variability? Possible techniques include:

• building a regression model for each processor, and average these six models in some
way, e.g., use the coefficients from each of the six models to build a regression model
that is a model of models,

Electronic circuit theory tells us that processor power consumption is proportional to
clock frequency, and figure 11.55 shows the results of fitting a separate straight line to
the data for each processor.

• building a mixed-effects model. A mixed-effects model (also known as a hierarchical
model) might be viewed as a model of models; mathematically it uses a more direct
approach, making more effective use of the available data than the method described
above.

A number of different packages are available for fitting mixed-effects models, this book
uses lme4, whose workhorse functions are the glmer and lmer functions.xxvi

The lme4 package extends the formula notation to support the specification of random
effects. In the following code:

library("lme4")

Express in Gigahertz (otherwise lmer does not converge)
power_bench$frequency=power_bench$frequency/1000000

p_mod=lmer(meanpower ~ frequency + (1 | processor), data=power_bench)
p_mod=lmer(meanpower ~ frequency + (frequency-1 | processor), data=power_bench)
p_mod=lmer(meanpower ~ frequency + (frequency | processor), data=power_bench)
p_mod=lmer(meanpower ~ frequency + (1 | processor) + (frequency-1 | processor),

data=power_bench)

• first call to lmer: frequency is the fixed-effect and (1 | processor) is the random-
effect; the 1 specifies variation in the intercept value, and the source of this variation
is the processor variable, i.e., the column having this name in the data frame. When
plotted the model might look something like the upper plot of figure 11.56, with six
lines intersecting the y-axis at different points, but all having the same slope,

• second call to lmer: (frequency-1 | processor) specifies there is variation in the
slope, and the source of this variation is the processor variable (this can also be written
as: (frequency+0 | processor)). When plotted the model might look like the lines
in the middle of figure 11.56, where all lines intersect the y-axis at the same point but
have different slopes,

• third call to lmer: (frequency | processor) specifies that variation in the proces
sor variable may cause both the intercept and the slope to vary, and the intercept and
slope are correlated (can also be written as: (1+frequency | processor)). When
plotted, the models might look like the lines in the lower plot of figure 11.56, where the
lines have different intersections and slopes,

• fourth call to lmer: the operands (1 | processor)+(frequency-1 | processor)
differs from the third call in that the intercept and slope are not correlated.

The following is the summary output from a mixed-effects model, where the processor is
a random-effect on both the intercept and slope: Github–Local

xxviA call to the glmer function that uses the default family distribution, i.e., gaussian, generates a warning
that this usage is deprecated and lmer should be used.

322 11. Regression modeling

p2

p5

p1

p6

p4

p3

−0.6 −0.2 0.20.4

●

●

●

●

●

●

(Intercept)

−0.6 −0.2 0.20.4

●

●

●

●

●

●

frequency

p2

p4

p5

p6

p3

p1

−0.4−0.2 0.0 0.2 0.4

●

●

●

●

●

●

(Intercept)

−0.4−0.2 0.0 0.2 0.4

●

●

●

●

●

●

shift_freq

Figure 11.57: Confidence intervals, 95%, for first (upper)
and second (lower) call to lmer; within-subject intercepts
(left column) and slopes (right column) for the mixed-
effects models in the adjacent code. Github–Local

Linear mixed model fit by REML [’lmerMod’]
Formula: meanpower ~ frequency + (frequency | processor)

Data: power_bench

REML criterion at convergence: 6300.3

Scaled residuals:
Min 1Q Median 3Q Max

-4.0533 -0.4866 0.1453 0.4994 6.6744

Random effects:
Groups Name Variance Std.Dev. Corr
processor (Intercept) 0.13202 0.3634

frequency 0.07552 0.2748 -0.99
Residual 0.10941 0.3308

Number of obs: 9981, groups: processor, 6

Fixed effects:
Estimate Std. Error t value

(Intercept) 2.1740 0.1490 14.59
frequency 1.9156 0.1124 17.04

Correlation of Fixed Effects:
(Intr)

frequency -0.993
convergence code: 0
Model failed to converge with max|grad| = 0.0314161 (tol = 0.002, component 1)

The values for (Intercept) and frequency, listed under Fixed effects:, are very
similar to the combined data model fitted earlier. Annoyingly, the summary output does
not include p-values. These can be obtained using the Anova function from the car pack-
age.

The Random-effects: table lists the variation introduced by processor (listed in the
Groups column, on the variables listed in the Name column); the Std.Dev. column lists
the estimated standard deviation in the corresponding coefficient listed in the Fixed eff
ects: table. Residual lists the residual random effects left after taking into account all
the specified random-effects.

As an example, taking frequency, there are two sources of uncertainty in its contribution
to the response variable (as expressed in its model coefficient), one from fixed-effects,
and a random-effect caused by the variation between processors.

Plotting the 95% confidence intervals, for the intercept and slope of a mixed-effects
model, provides a visualization of the relative contribution of the sources of variation.
Figure 11.57 was generated using the following code, with data from the six processors:

library("lattice")
library("lme4")
library("gridExtra")

proc_mod=lmer(meanpower ~ frequency +(frequency | processor),
data=power_bench)

dp_orig=dotplot(ranef(proc_mod, condVar=TRUE), main=FALSE)

power_bench$shift_freq=power_bench$frequency-min(power_bench$frequency)
proc_mod=lmer(meanpower ~ shift_freq +(shift_freq | processor),

data=power_bench)

dp_shift=dotplot(ranef(proc_mod, condVar=TRUE), main=FALSE)

dotplot comes from the lattice package, which uses grid layout
grid.arrange(dp_orig$processor, dp_shift$processor, nrow=2)

Figure 11.57, upper plot, is the model fitted using the original data; the intercept (up-
per left) and slope (upper right) appear to be correlated. Looking at the straight line fits
for each processor in figure 11.55, they appear to share an origin starting at the lowest
frequency measured; an intercept included as a random effect has a common origin as-
sumed to start at zero; see figure 11.56. Shifting frequency values down, by the minimum

11.7. GENERALISED ADDITIVE MODELS 323

measured value, and refitting a model produces the confidence intervals in the lower plot.
The correlation has disappeared; perhaps including the intercept as a random effect is not
worthwhile.

Refitting a model without the intercept as a random effect, produces a model that differs
from previous models by a small amount; see Github–regression/hotpower-mix-plot.

There is an upper limit on the number of random effects (i.e., number of unknowns)
that can occur in a model. The total number of unknown random effects must be less
than the number of observations, otherwise the equations do not have a unique solution.
A continuous explanatory variable counts as a single unknown, while a variable holding
nominal or ordinal values contributes one unknown for each of the possible discrete values
(there is no slope associated with fitting a variable that is not treated as being continuous).

The bootstrap can be used to calculate confidence intervals for a mixed-effects model.

11.7 Generalised Additive Models

The regression modeling techniques discussed so far have required the analyst to specify
an equation expressing the detailed relationship between explanatory variables and the
response variable (these are said to be parametric models). If no equation provides a
reasonable fit, or accuracy of prediction is important (rather than understanding), then a
Generalised additive model (GAM) is an alternative approach. A GAM only requires a
list of explanatory variables and a response variable to be specified (these are said to be
nonparametric models).

A GAM is built by finding the best fit for a sequence of polynomial equations (e.g., some
form of spline), that smoothly captures the shape of the data. These smooth equations
might be used to make predictions, or when the fitted model is plotted may suggest pos-
sible parametric equations. The details of the fitted equations are not a source of under-
standing, but they may make good predictions.

The gam function, in the mgcv package, can be viewed as extending the functionality of
glm to support a variety of nonparametric smoothing functions (the gam package is sim-
pler, but does not offer such a wide range of functionality). The following code shows
formulas using a potentially different smoothing polynomial for each explanatory vari-
able (first line below), a different smoothing polynomial for some combinations of ex-
planatory variables (second and third line), a combination of a smoothing polynomial and
parameterised form (fourth line), or an interaction between a smoothed and non-smoothed
variable (fifth line; the by parameter, rather than the : operator is used):

mod=gam(y ~ s(x_1) + s(x_2) + s(x_3), data=foo_bar)
mod=gam(y ~ s(x_1) + s(x_2, x_3), data=foo_bar)
mod=gam(y ~ s(x_1) + s(x_2, x_3) + s(x_3, x_4) + s(x_4), data=foo_bar)
mod=gam(y ~ x_1 + s(x_2) + x_3, data=foo_bar, family="poisson")
mod=gam(y ~ x_1 + s(x_2, by=x_1) + x_3, data=foo_bar, family="poisson")

The smoothing function, s, supports a variety of options for controlling the fitting process;
two that are likely to be encountered are k, which specifies an upper limit on the degrees
of freedom that can be used in the fitted polynomial, and bs, a string identifying the kind
of smoother, e.g., "tp", the default, for a thin plate regression spline and "cr" for a cubic
regression spline.

The value of k needs to be large enough to support the degrees of freedom needed by
a polynomial capable of representing the underlying pattern in the data; the gam.check
function provides information about fitted models that can be used to help select a value
for k.

The fitting procedure used, by the mgcv version of gam, tries to avoid overfitting by making
every degree of freedom pay its way (using, for instance, penalized regression splines).
Criteria used for measuring the cost-effectiveness of more complicated models include
generalised cross-validation (GCV; the default) and AIC. The select argument provides
support for null space penalization, see package documentation for details.

A study by Lee and Brooks1103 built a model to predict the performance and power con-
sumed by applications running on processors having various hardware configurations,
e.g., number of registers, size of cache and instruction latency.

324 11. Regression modeling

The following additive model is based on the one proposed by Lee et al, and explains
over 95% of the variance in the data; see Github–regression/lee2006.R. While this model is
likely to be useful for prediction, it provides virtually no insight into the impact of various
hardware attributes on performance characteristics.

l_mod=gam(sqrt(bips) ~ benchmark + fix_lat
+s(depth, k=4) + s(gpr_phys, k=10)
+s(br_resv, k=6) + s(dmem_lat, k=10) +

s(fpu_lat, k=6)
+s(l2cache_size, k=5) + s(icache_size, k=3) +

s(dcache_size, k=3)
+s(depth, gpr_phys, k=10)+s(depth, by=width, k=6)
+s(gpr_phys, by=width, k=10)

, data=lee)

The analysis associated with figure 8.33 used two approaches to modeling the number of
accesses to a function’s local variables. Without knowing anything about what relation-
ships might exist between explanatory and response variables, and being willing to use
very high degree polynomials, it is possible to build and use gam to build a prediction
model.

In the calls to gam below, the first assumes there is an interaction between the two explana-
tory variables (allowing up to 75 degrees of freedom), and the second assumes the vari-
ables are independent (allowing up to 50 degrees of freedom for each of them). While the
fitted model might make usable predictions, the use of such high degree polynomials sug-
gests that the underlying processes have a non-polynomial form; see Github–sourcecode/local-
use/obs-fit.R.

locg_mod=gam(norm_occur ~ s(object.access, total.access, k=75),
data=common_loc, family=Gamma)

locp_mod=gam(norm_occur ~ s(object.access, k=50)+s(total.access, k=50),
data=common_loc, family=Gamma)

11.8 Miscellaneous

Topics that your author has had to deal with, from time to time.

11.8.1 Advantages of using lm

This book promotes glm as a one-stop solution, however, the lm function has some ad-
vantages over glm, including:

• requiring less cpu time to fit a model. If many models need to be fitted on a regular
basis, the performance difference may be worth considering,

• requiring less memory to fit a model. For extremely large datasets, memory require-
ments may be excessive for glm; possible solutions that continue to use glm are dis-
cussed below,

• the algorithm used by lm is always guaranteed to converge to a solution, singularities
generated by a correlation between explanatory variables excluded. There are edge
cases where glm does not find a solution without being given some reasonable starting
values.

The implementation of lm is based on the mathematics of Ordinary Least Squares (OLS),
and the data has to satisfy additional conditions for OLS to be applicable. Perhaps the
most important new condition is that the error variance in the measurements be constant
(in practice close to constant is usually good enough). The ncvTest function, in the
car package, checks that a fitted model meets this requirement; the spreadLevelPlot
function provides some visualization; also, see the lmtest function.

A user interface issue with models fitted using glm is that they do not come with a scale-
invariant goodness of fit number, i.e., the R-squared value.

11.9. EXTREME VALUE STATISTICS 325

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●●

●

●●

●

● ●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

● ●

● ●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●● ●●

●

●

●
●

●●
●

● ●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10
2

4

6

8

10

12

14

16

log(Files)

lo
g(

S
LO

C
)

50% quantile
95% quantile
5% quantile

Figure 11.58: Number of files and lines of code in
3,782 projects hosted on Sourceforge; lines are 95%, 50%
and 5% quantile regression fits. Data from Herraiz.817

Github–Local

11.8.2 Very large datasets

The biglm package supports fitting regression models using data that is too large to fit
in memory all at once; the models are built using an incremental algorithm, which only
requires a subset of the data to be held in memory at any time. A variety of options are
available for creating chunks of data to feed into the model building process, including
incremental reading from files and databases.

The biganalytics package extends the bigmemory package by providing interfaces to
various analytic packages, such as biglm; see Github–benchmark/bounds_chk.R.

11.8.3 Alternative residual metrics

The error metric used by many regression techniques is based around squaring the differ-
ence between the actual and predicted value. This choice has been driven by the theoret-
ical usefulness of the mathematical properties of sum-of-squares. Other error metrics are
available to fit models, e.g., the absolute difference between actual and predicted values.

The rlm function, in the MASS package, supports analyst specified functions for calcu-
lating the residual to be minimised when fitting a model. The robustbase and robust
packages support a wide variety of functionality.

11.8.4 Quantile regression

The techniques discussed up to this point are based around predicting the expected value
of the mean. Quantile regression is based on the proportion of data points above/below
the fitted equation; it is robust to the presence of outliers, and is not influenced by the
form of the error distribution.

The rq function, in the quantreg package, fits quantile regression models. Figure 11.58
was generated using the following code (also see fig 8.13):

library("quantreg")

quant_fit=function(tau_val, col_str)
{
rq_mod=rq(log(SLOC) ~ log(Files), data=proj_inf, tau=tau_val) # tau is the quantile
pred=predict(rq_mod, newdata=data.frame(Files=x_bounds))

lines(log(x_bounds), pred, col=col_str)

return(rq_mod)
}

plot(log(proj_inf$Files), log(proj_inf$SLOC),
col=densCols(log(proj_inf$Files), log(proj_inf$SLOC)), pch=20,
xlab="log(Files)", ylab="log(SLOC)\n")

x_bounds=exp(seq(0, log(1e5), by=0.1))

rq05_mod=quant_fit(0.05, pal_col[3]) # specify quantile and color
rq50_mod=quant_fit(0.5, pal_col[1])
rq95_mod=quant_fit(0.95, pal_col[2])

A line fitted to the 50% quartile has half the measurement points below/above it, while
the 95% quartile line divides the measurements such that 95%/5% are below/above (the
division of measurements for the 5% quartile is reversed).

11.9 Extreme value statistics

Extreme value statistics deals with the probability of occurrence of extreme values, e.g.,
use of maximum memory available memory, or minimum response time. The two main
techniques are Generalized Extreme Value (GEV) and Generalized Pareto (GP); the ext
Remes package supports both techniques.

326 11. Regression modeling

5 10 20 50 100

100

150

200

250

Return Period (months)

R
et

ur
n

Le
ve

l

Figure 11.59: Expected maximum number of daily emails
to the C++ lib email list expected to occur within a
given period of months, with 95% confidence intervals;
a GEP fitted model (corresponding plot function does
not provide any user interface options). Data kindly ex-
tracted from the WG21 mailing list archive by Roger Orr.
Github–Local

10
00

30
00

da
ta

−
10

00
0

10
00

se
as

on
al

60
0

12
00

18
00

tr
en

d

−
10

00
0

10
00

0 1 2 3 4 5 6 7

re
m

ai
nd

er

time

Figure 11.60: The three components of the hourly rate of
commits, during a week, to the Linux kernel source tree;
components extracted from the time series by stl. Data
from Eyolfson et al.566 Github–Local

The GEV approach analyses each maximum value that occurs in a specified interval (e.g.,
maximum daily fault reports within each month), while the GP approach analyses all val-
ues above a specified threshold value, e.g., all program runs taking longer than x seconds.
The equation fitted by each approach both contain three parameters: µ (the mean value
for GEV, and the threshold for GP), σ a multiplier that scales the function, and ξ (greek
lower-case xi) a shape parameter (depending on whether ξ is equal/greater/less than zero,
the equations simplify to more well-known distributions; Gumbel, Fréchet and Weibull
respectively for GEV, and Exponential, Pareto and Beta for GP).

Some of the WG21 (the ISO C++ Standard working group) email reflectors receive a
lot of traffic, particularly the Core and Lib reflectors. What is the maximum number of
messages on one day that is likely to occur within a 10-year period?

Roger Orrxxvii kindly extracted the date of every message posted since February 2016
(configuration changes over the years make it non-trivial to obtain data before this date)
to the Core and Lib mailing list.

The fevd function, in the extRemes package, calculates the parameters for the extreme
value distribution that best fits the data. When using GP a threshold has to be chosen, and
the threshrange.plot can be used to help select a value.

The default value of options assume stationary data (i.e., the mean does not change over
time); an equation can be given for each model parameter specifying how it changes with
time.

library("extRemes")

max_mod=fevd(month_max$V1, type="GEV", period.basis="month")
plot(max_mod, rperiods=c(6, 12, 18, 36, 72, 120), type="rl", col="red", main="")

summary(max_mod)

Figure 11.59 shows a GEP fitted model for the maximum number of daily emails expected
to occur (y-axis) within a given number of months (x-axis), for WG21’s the Lib email list;
the pluses are actual occurrences, and dashed lines 95% confidence intervals.xxviii

The model used is very simplistic, and does not take into account the growth in members
joining these lists and traffic lost when a new mailing list is created for a new committee
subgroup.

11.10 Time series

Time series analysis deals with measurements that are sequentially correlated. An exam-
ple of correlated measurements is current room temperature, which is likely to be similar
to the temperature 10 minutes ago, and the temperature 10 minutes from now. Techniques
developed to analyse time-series can be used to analyse measurements of any quantity,
where a correlation exists between successive measurements.

The base system provides basic functions for analyzing time series of continuous values.

A time series contains one or more of the following three components:

• underlying trend: which changes slowly,

• regular recurring pattern of changes (known as seasonality): for instance, expected
daytime temperature throughout the year,

• random, irregular or fluctuating component.

The stl function (Seasonal Trend using Lowess) provides a way of splitting a time series
into these three components (the argument must be an object of type ts, with a user
specified frequency; the stl function does not automatically detect the recurrence period),
and there is a corresponding plot function.xxix

Figure 11.60, from a study by Eyolfson, Tan and Lam,566 shows the three time-series
components of the hourly rate of commits to the Linux kernel source tree, over the days
of a week (the commits during the same hour of the same day were summed). The stl

11.10. TIME SERIES 327

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Lag

A
C

F

Series bc_ts

Figure 11.61: Autocorrelation of number of defects found
on a given day, for development project C. Data kindly
provided by Buettner.275 Github–Local

function assumes a fixed, recurring, pattern of seasonal behavior, a slowly changing trend,
with everything else classified as random noise.

A seasonal frequency has to be specified
hr_ts=ts(linux_hr, start=c(0, 0), frequency=24)
plot(stl(hr_ts, s.window="periodic"))

Possible outputs from time-series analysis include:

• a fitted model specifying how the value of a quantity at time t depends on its values at
earlier measurement times (often at t−1),

• a regression model, adjusted for the correlation between sequential measurements,

• a power spectrum showing the dominant frequencies present in the data,

• a hierarchical clustering of multiple time series,

• a list of patterns, motifs, that occur within a time series.

Structure is often added to the linear nature of time by imposing repeating fixed length
intervals, such as hours of the day and days of the week. Many time series analysis
techniques require measurements to be made at fixed length intervals; analysis of mea-
surements at irregular intervals is not discussed here.

Some library functions use a time series datatype for representing time related measure-
ments. The ts function, part of the base system, converts a vector to class ts (many time
series functions will automatically convert vectors to this class).

The xyplot function, in the lattice package, can be used to create a time series strip
chart, see fig 8.19.

11.10.1 Cleaning time series data

Many time series techniques implicitly assume that measurement data occurs at regular
intervals. A measurement process may only record events when they occur and if no
event occurred in within an interval there may be no data-point for that interval. The
cleaning process includes ensuring that every interval contains a value (which may be
zero or inferred from surrounding values).

A study by Buettner275 gathered project staffing information for several commercial de-
velopment software projects. On large commercial projects the amount of work done at
weekends is likely to be zero (except for the weeks prior to major deliveries), and the
autocorrelation of project activity is likely to show a recurring pattern involving two con-
secutive days separated by seven days, i.e., weekends and weekdays.

Figure 11.61 shows the autocorrelation of the number of defects found on a given day, for
one development project. The seven-day recurring pattern contains a three consecutive
day pattern, are the developers only working a four-day week? It turns out xxx that con-
tractors on some projects work a two-week cycle, with extra hours worked one week and
then not working the Friday of the following week. The extent to which regular staffing
level differences, between Friday and other weekdays, has to be taken into account, will
depend on the kind of analysis performed (weekends can be handled by excluding them
from the analysis, focusing on where most effort occurs, i.e., week days).

Measurements made on public holidays, such as the New Year, are very likely to differ
from normal work days. Removing public holidays from the data will scramble the asso-
ciation with day of the week. The extent to which day of the week is a more important
factor in the analysis, than public holidays, has to be considered.

11.10.2 Modeling time series

The expected mean of a time series can be modeled using one or both of the following
two approaches (series whose variance is serially correlated are discussed later):

xxviiRoger is the convenor of the UK’s BSI C++ panel.
xxviiiThe plot function supports very few visual presentation configuration options.

xxixThe decompose function, part of the base system, implements the same functionality in a less sophisticated
way.

xxxEmail discussion with Buettner.

328 11. Regression modeling

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Lag

A
C

F

xt = 0.8xt−1+wt

0 2 4 6 8 10

−0.4
−0.2

0.0
0.2
0.4
0.6
0.8
1.0

Lag

A
C

F

Series time_m5_series

xt = −0.5xt−1+wt

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Lag

A
C

F

Series time_m5_series

xt = 0.8wt−1+wt

0 2 4 6 8 10

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Lag

A
C

F

Series time_m5_series

xt = −0.5wt−1+wt

Figure 11.62: Autocorrelation of two AR models (upper
plots) and two MA models (lower plots); the same models
are used in figure 11.63. Github–Local

2 4 6 8 10

0.0

0.2

0.4

0.6

Lag

P
ar

tia
l A

C
F

xt = 0.8xt−1+wt

2 4 6 8 10

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

Lag

P
ar

tia
l A

C
F

Series time_m5_series

xt = −0.5xt−1+wt

2 4 6 8 10

−0.2

0.0

0.2

0.4

Lag

P
ar

tia
l A

C
F

Series time_m5_series

xt = 0.8wt−1+wt

2 4 6 8 10

−0.3

−0.2

−0.1

0.0

Lag

P
ar

tia
l A

C
F

Series time_m5_series

xt = −0.5wt−1+wt

Figure 11.63: Partial autocorrelation of two AR models
(upper plots) and two MA models (lower plots); the same
models are used in figure 11.62. Github–Local

• the Autoregressive model (AR), models the value at time t as a weighted combination
of values from earlier time steps, plus some amount of added noise, wt , for instance:

xt = φ1xt−1 +φ2xt−2 +wt

is an autoregressive model of order 2, abbreviated AR(2); it is based on values going
back two time steps (with weights φ1 and φ2).

The ar function fits data to an autoregressive model.

• the Moving Average model (MA), models the value at time t as the sum of noise, wt ,
and a weighted combination of the noise from earlier time steps, for instance:

xt = wt +θ1wt−1

is a moving average model of order 1, abbreviated MA(1); it uses a value from one time
step back (with weight θ1).

The arima function, with the first two values of the order argument set to zero, fits
data to a moving average model.

The autocorrelation function, acf, returns and plots the correlation of a time series with
itself at successive lag intervals (i.e., the correlation of the measurement at time t with
the measurement at time t +n; the default sequence of lags is n=1:25); see figure 11.62.
For the AR(1) model, xt = φxt−1, the impact of serial correlation on values separated by
k lags (time intervals) decreases by φ k.

The lag 0 autocorrelation is always one, and the two dotted blue lines are 0.05 p-value
bounds. Each lag is a hypothesis test, and with 25 hypothesis tests (the default) at least one
calculated value is expected to exceed a 0.05 p-value with probability 1−0.9525→ 0.72;
also, successive measurements are correlated, so neighbouring lag points are likely to
show similar significance levels.

The partial autocorrelation function (the pacf function) calculates and plots the corre-
lation at lag k, after removing the effect of any correlation generated by terms at shorter
lags; see figure 11.63. The partial autocorrelation at lag k is the kth coefficient of an AR(k)
model.

The previous two plots illustrate how short range correlations in an AR model have a long
range impact on the values returned by acf, but an MA model does not have a long range
impact, while the opposite behavior is seen in the values returned by pacf. An ARMA
model always behaves in the most unhelpful way.

An ARMA model (Autoregressive Moving Average) is a combination of an AR and MA
model, e.g., ARMA(2, 1) is the sum of an AR(2) and MA(1) model, such as the following:

xt = φ1xt−1 +φ2xt−2 +wt +θ1wt−1

The ARMAacf function takes a specification of an ARMA model, and returns what acf
would return when passed a time series following this model (the pacf=TRUE option
switches the behavior to that of pacf).

A time series is said to be stationary if the expected mean value does not change over
successive measurements, i.e., E[ti] = E[ti+k]. The mathematics behind both the basic
AR and MA model fitting techniques assume a stationary time series (more sophisticated
techniques are available; ARIMA (Autoregressive Integrated Moving Average) handles
some non-stationary time series: supported by the arima function).

Many software engineering processes include non-stationary components, e.g., varying
number of developers working on a project, increasing number of customers, system up-
dates, etc.

Time series analysis techniques are not limited to measurements involving time, they can
be applied to any data that has serial correlation between measurements.

A study by Hindle, Godfrey and Holt832 investigated the indentation of the first non-
whitespace character on a line, for code written in a variety of languages. Figure 11.64
shows the autocorrelation of a list, ordered by indentation, of the total number of lines
having a given indentation.

11.10. TIME SERIES 329

0 200 400 600 800

0

5

10

15

20

25

Days

F
ea

tu
re

s
st

ar
te

d

200 400 600 800

−5

0

5

10

15

20

Days

F
ea

tu
re

s
st

ar
te

d

Figure 11.65: Number of features started for each day and
fitted regression trend line (upper) and number of features
after subtracting the trend (lower). Data kindly supplied
by 7Digital.1 Github–Local

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

Characters

A
C

F

Series indent$V1

cpp

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

Characters

A
C

F
Series indent$V1

c

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

Characters

A
C

F

Series indent$V1

java

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

Characters

A
C

F

Series indent$V1

php

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

Characters

A
C

F

Series indent$V1

pl

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

Characters

A
C

F

Series indent$V1

py

Figure 11.64: Autocorrelation of indentation of source
code written in various languages. Data from Hindle et
al.832 Github–Local11.10.2.1 Building an ARMA model

ARMA modeling takes as input a time series; if this time series is non-stationary, it has to
be converted to a stationary form before model building can begin. Common reasons for
a time series not being stationary and possible transforms to a stationary series include:

• a non-zero trend: for instance, the following equation contains an increasing time de-
pendent trend:

xt = α +β t +wt

Differencing can be used to remove trends, but care needs to be taken because this can
introduce signals that are not in the original data. For instance, differencing the above
equation gives:

∆xt = xt − xt−1 = b+wt −wt−1

an MA(1) process, which the original series does not contain.

Subtracting the trend α +β t leaves just wt ; see the lower plot of figure 11.65,

• non-constant variance; known as volatility in the analysis of financial time series.

If the growth in variance, over time, approximately follows the growth of the mean
(i.e., a relatively consistent percentage change at each time step, e.g., yt = (1+xt)yt−1),
then a log transform produces a time series with approximately constant variance (i.e.,
∆(logyt)≈ xt , assuming log(1+ xt)≈ xt).

A log transform requires special processing of any zero values; possible solution include
adding a small amount to every value xxxi and setting non-finite log-transformed values
to zero (both have some impact on a fitted regression model). The 7digital data has
increasing variance (more developers are employed and time to implement features
decreases), and many zeroes; see Github–time-series/agile-day-starts.R.

• seasonality: this is a cyclic trend, e.g., changes recurring every year. Implementations
of ARMA often include support for including a seasonal component in the model, e.g.,
the seasonal to the arima function,

The Augmented Dickey-Fuller test is a well known technique for checking whether a time
series is stationary, others include the Phillips-Person test and the KPSS-test (supported
by the adf.test, pp.test and kpss.test functions in the tseries package). These
tests all have low power (i.e., fail to detect that a time series is non-stationary; they all
fail to detect that the untransformed 7digital data is not stationary, and sometimes give
contradictory results; see Github–time-series/agile-day-starts.R.

The plots produced by acf and pacf provide useful information about the likely structure
and order of an ARMA model:

xxxiThe value should not be so small that its log is a large negative value.

330 11. Regression modeling

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

Lag (working days)

A
C

F

0 5 10 15 20 25 30

0.0

0.1

0.2

0.3

Lag (working days)

P
ar

tia
l A

C
F

Series lwd

Figure 11.66: Autocorrelation (upper) and partial auto-
correlation (lower) of the number of features started on
a given day (after differencing the log transformed data),
over the entire period of the 7digital data. Data kindly
supplied by 7Digital.1 Github–Local

• if the acf plot shows a decreasing trend, while the pacf shows a sharp cut-off (see
figure 11.62), an AR model is a good place to start,

• if the acf plot shows a sharp cut-off, while the pacf shows a decreasing trend (see
figure 11.63), an MA model is a good place to start,

• if both plots show a decreasing trend, then some combination of AR and MA model is
likely to be needed.

Figure 11.66 was produced using the following code:

lwd=log(weekdays+1e-1) # handle days with zero values

acf(lwd, xlab="Lag (working days)")
pacf(lwd, xlab="Lag (working days)")

Models fitted, by calling arima with various values of its order argument, can be com-
pared using AIC (arima only returns the series mean, when a difference value of zero
is passed to order; the Arima function, in the forecast package, is not limited in this
way). The auto.arima function, in the forecast package, can be used to automatically
find ARIMA model values that minimise AIC.

library("forecast")

arima(lwd, order=c(5, 0, 1))
auto.arima(lwd, max.order=7)
arima(lwd, order=c(1, 0, 1))

The two best fitting models, for the feature start data, are ARMA(5, 1) and ARMA(1, 1).
The output from the last call to arima above is: Github–Local

Call:
arima(x = lwd, order = c(1, 0, 1))

Coefficients:
ar1 ma1 intercept

0.9627 -0.7993 0.561
s.e. 0.0158 0.0380 0.241

sigma^2 estimated as 1.789: log likelihood = -1465.67, aic = 2939.35

The Coefficients: table lists the model coefficients and their standard error. The inte
rcept column is the mean value of the time series. The equation for one of the models is:

xt −0.5610 = 0.9627(xt−1−0.5610)+wt −0.7344wt−1

which simplifies to:

xt = 0.5610(1−0.9627)+0.9627xt−1 +wt −0.7993wt−1

The constant (log transformed) increment per time step is: 0.5610(1−0.9627)→ 0.0209253.

Which of these two models provides the better explanation of the data? Features take
different amounts of time to implement, and work can only start on a new feature when
enough people have been freed up, through completion of work on other features. The
coefficients of the AR component, of the ARMA(5, 1) model, can be interpreted as a
probability that people working on a feature started a given number of days earlier will
become available to start work on a new feature; see table 11.4.

AR Duration
ar1 0.19 0.32
ar2 0.11 0.16
ar3 0.09 0.11
ar4 0.07 0.07
ar5 0.10 0.05

Table 11.4: AR coefficients of ARMA(5, 1) model and percentage of features taking a given number of days to implement. Data kindly supplied by 7Digital.1 Github–Local

This may be a just-so story, but stories are useful tools, but your author cannot think of
one for the ARMA(1, 1) model.

11.10. TIME SERIES 331

Month

U
ni

ts
 s

ol
d

20 40 60 80

5000

10000

15000

20000

Figure 11.67: Monthly sales of spreadsheets in the UK,
starting January 1987, with 12-months of sales predic-
tions (shaded light blue are 80% confidence intervals, grey
shaded 95%). Data from Givon et al.684 Github–Local

Handling seasonal trends: A seasonal ARIMA model can include AR, difference and
MA components at an offset equal to the number of measurement intervals in the sea-
son. By default, the auto.arima function, in the forecast package, will return seasonal
components (if any are found). The seasonal option can be used to specify seasonal
components to the arima function.

The following code estimates a seasonal ARIMA model, for hourly commits to the Linux
kernel source tree (see fig 11.60):

library("forecast")

hr_ts=ts(linux_hr, start=c(0, 0), frequency=24)

auto.arima(hr_ts)
arima(linux_hr, order = c(2,1,1), seas = list(order = c(1,0,1), period=24))

The coefficients of the first and second fitted models, below, differ because of differences
in the algorithms used by the functions that fitted them, but are within each other’s stan-
dard error (the third set of coefficients is for a slightly simpler model): Github–Local

Series: hr_ts
ARIMA(2,1,2)(1,0,0)[24] with drift

Coefficients:
ar1 ar2 ma1 ma2 sar1 drift

-0.892 -0.5348 0.5087 0.221 0.6751 13.0240
s.e. 0.244 0.1621 0.2694 0.223 0.0708 50.1094

sigma^2 estimated as 143870: log likelihood=-1233.06
AIC=2480.12 AICc=2480.83 BIC=2501.95

Call:
arima(x = linux_hr, order = c(2, 1, 1), seasonal = list(order = c(1, 0, 1),

period = 24))

Coefficients:
ar1 ar2 ma1 sar1 sma1

-0.8124 -0.2862 0.4483 0.8909 -0.4516
s.e. 0.2995 0.1177 0.3058 0.0546 0.1404

sigma^2 estimated as 129070: log likelihood = -1229.02, aic = 2470.03

Call:
arima(x = linux_hr, order = c(2, 1, 0), seasonal = list(order = c(1, 0, 1),

period = 24))

Coefficients:
ar1 ar2 sar1 sma1

-0.3632 -0.1174 0.8980 -0.4727
s.e. 0.1007 0.0964 0.0519 0.1391

sigma^2 estimated as 129942: log likelihood = -1229.71, aic = 2469.42

The sar1 is the seasonal AR coefficient and sma1 the seasonal MA coefficient.

The output from auto.arima is a suggested model. In this case the ar and sar coeffi-
cients are pulling in opposite directions, and the standard error for the ma1 coefficient is
very high. Removing the MA component produces a model (second call to arima above),
where the coefficients are not almost cancelling each other out; the model is (24 is the
seasonal period):

xt =−0.4xt−1−0.1xt−2 +0.9xt−24×1−0.5wt−24×1

What happened 24 hours ago contributes more to the predictor, than what happened in the
previous hour or two.

Predictions made using a fitted ARMA model: A fitted ARIMA model can be used to
predict what may occur after a measurement at time t; the relatively large noise component
present in some ARMA models means that the confidence bounds of the predicted values
may quickly become very wide. The R’s system supports a predict function that accepts
models fitted by the arima function; the Arima and forecast functions, from the for

332 11. Regression modeling

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

Lag

A
C

F

Series a

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

Lag

A
C

F

Series a^2

Figure 11.68: Time series whose values are uncorrelated
(upper), but whose squared values are correlated (lower);
see code for generation process. Github–Local

2006 2007 2008 2009 2010

1

5

10

50

100

500

1000

Date

C
om

m
its

Kconfig
Linux

Figure 11.69: The number of commits per week to Linux
kernel source and its Kconfig files. Data kindly provided
by Lotufo.1162 Github–Local

ecast package, support more options for fitting and forecasting of time-series data. In
the following code, the include.drift=TRUE option specifies that trend information be
included in the model; for this data, the increasing volume of sales generates an increasing
trend:

library("forecast")

Ar_mod=Arima(data$Spreadsheets, order=c(1, 0, 1), include.drift=TRUE)

f_pred=forecast(Ar_mod, h=10)
plot(f_pred, col=point_col, main="", xaxs="i",

xlab="Month", ylab="Monthly sales\n")

A study by Givon, Mahajan and Muller684 investigated UK sales of PC’s, wordprocessors
and spreadsheets. Figure 11.67 shows monthly sales of spreadsheets, and based in an
arima model, 12-months of predicted sales; shaded areas are 80% and 95% confidence
intervals.

11.10.3 Non-constant variance

Time-series data containing rapid changes in variance is said to be volatile; correlated
variance is common during periods of volatility (a time series is heteroskedastic if the
change in variance is regular, and conditionally heteroskedastic if the change is irregular).
Techniques for building an autoregressive model, for the variance, include autoregressive
conditional heteroskedastic (ARCH) and generalised ARCH (GARCH) models.

An increase in frequency of commits leading up to a major new release is an example of
behavior that can cause a change of variance in a time series.

The autocorrelation of a time-series may not show any correlation, but if its variance
changes the square of the zero adjusted values will have a pattern of decreasing correlation
in its ACF, as seen in figure 11.68; the code is:

acf(t_series)
acf((t_series-mean(t_series))^2) # Check for changing variance

The rugarch package supports the fitting of GARCH models; see Github–time-series/splc-
2010-fm.R.

A study by Lotufo, She, Berger, Czarnecki and Wąsowski1162 investigated the evolution
of the Linux variability model, through the lens of commits to Kconfig files. Figure 11.69
shows the number of commits per week made to the Linux kernel source and its associated
Kconfig files. The commit bursts occur immediately prior to new releases.

11.10.4 Smoothing and filtering

Smoothing a time-series can make it easier to visually identify larger scale patterns, and
also provides a simple approximation to predicting immediate future values. Even when
data does not contain a systematic trend, or seasonal effects (perhaps because they have
been removed), it may still be possible to make a useful estimate of immediate future
values based on immediate past values.

Smoothing using the exponentially weighted moving average (EWMA; also known as
exponential moving average, EMA) uses the formula:

EMAt = φxt +(1−φ)EMAt−1, where: φ determines the amount of smoothing.

The exponential moving standard deviation (EMS) is given by:

EMSt =
√

φEMS2
t−1 +(1−φ)(xt −EMAt)2

EMA and EMS can be used to detect when a real-time data stream trends outside pre-
specified bounds.

Holt-Winters smoothing is a generalization of exponential smoothing, that uses three pa-
rameters: estimated level, slope and seasonality; the HoltWinters function can be used
to both estimate and apply these parameters.

The filter function can be used to apply AR and MA filters to a time series.

11.10. TIME SERIES 333

−20 −10 0 10 20

0.0

0.2

0.4

0.6

0.8

Weeks

A
C

F

cfl_week$lines_added & cfl_week$lines_deleted

Figure 11.70: Cross-correlation of source lines
added/deleted per week to the glibc library. Data from
González-Barahona.704 Github–Local

Jul Sep Nov

50

100

200

500

1000

Date

C
om

m
its

Kconfig
Linux kernel

Figure 11.71: The number of commits per week to Linux
kernel source and its Kconfig files, during the last half of
2005. Data kindly provided by Lotufo.1162 Github–Local

11.10.5 Spectral analysis

A series of measurements in the time domain can be transformed into a sequence in the
frequency domain; see fig 1.14.

The spectrum function estimates the spectral density of a vector, which is assumed to be
a time-series (the default behavior is to call the spec.pgram function). The spec.arma
function takes a specification of an ARMA model, and returns its power spectrum, i.e.,
behaves like a call to spectrum when passed a time series that follows this model.

A stationary time-series does not contain components at specific frequencies, but can be
described in terms of an average frequency composition.

11.10.6 Relationships between time series

Time series analysis can be used to find relationships between multiple time series, where
each time series comes from measuring separate variables associated with some evolving
process.

The simplest technique is cross-correlation, the correlation, at various lags, between two
stationary time-series. Figure 11.70 shows the cross-correlation between the number of
source lines added/deleted, per week, to the glibc library. In calls to the ccf function, the
first argument is the one which is shifted, while the second is fixed. In the following call:

ccf(lines_added, lines_deleted, col=point_col, xlab="Weeks")

the plot shows correlation spikes, above the confidence bounds, occurring between the
sequence pairs lines_addedt+2/lines_deletedt and lines_addedt+8/lines_deletedt
(i.e., changes involving lines_deleted is correlated with changes to lines_added two
and 10 weeks later; a positive lag means the first argument follows the second, a negative
lag that it leads the second); there are small spikes at: lines_addedt-8/lines_deletedt
and lines_addedt-13/lines_deletedt. Your author has no explanation for this correla-
tion.

Techniques are available for building models of the relationship between two time series.

After making a commit to the Linux kernel, it may be discovered that an associated Kcon-
fig file needs to be updated, i.e., the pattern of commits to Kconfig files will lag that of the
commits of Linux source. Figure 11.71 shows the first six months of the two time series
in figure 11.69, with the number of Kconfig commits shifted up to align with the kernel
commits. The Kconfig commits often lag behind kernel commits.

The following calls to the lags.select function report a lag of 2-weeks for binned
weekly data, and 7-9 days for daily data (which contains many zeroes):

library("tsDyn")

Oldest comes first, and they need to be the same length
By week
lags.select(cbind(head(log(linux_week$freq), -1), log(kconfig_week$freq)))
By day
lags.select(cbind(head(log(linux_day$freq+1e-1), -2),log(kconfig_day$freq+1e-1)))

What are the interdependencies between Linux source commits and Kconfig commits?
The following code fits a Vector Autoregression (VAR) model (see Github–time-series/kconfig-
evol.R):

library("tsDyn")

Oldest comes first, using lag returned by lags.select
day_mod=lineVar(cbind(head(log(linux_day$freq+1e-1), -2),

log(kconfig_day$freq+1e-1)),
lag=9)

the fitted equations for, log, Linux and Kconfig daily commits, are (the error terms have
been omitted for brevity):

L_commitst =1.6+0.2L_commitst−1 +0.07K_commitst−1 +0.08K_commitst−2

+0.09L_commitst−3 +0.1L_commitst−6 +0.1L_commitst−7−0.09L_commitst−9

K_commitst =−1.1+0.3L_commitst−1 +0.09K_commitst−1 +0.09K_commitst−2

+0.06L_commitst−3 +0.2L_commitst−6 +0.09K_commitst−7−0.1L_commitst−9

334 11. Regression modeling

Weeks

K
LO

C

20 40 60 80 100

0

500

1000

1500

2000

2500

Figure 11.72: Visualization of alignment between lines of
code, in NetBSD’s (blue) and FreeBSD’s (red) first 100
weeks. Data from Herraiz817 Github–Local

ho
l_

no
np

ro
j

lo
w

_l
ev

_t
es

t

sy
s_

ac
c_

te
st

co
di

ng

re
q_

te
st

m
an

ag
e

so
ftw

_r
eq

to
p_

le
v_

de
si

gn

0.8
1.0
1.2
1.4
1.6

C
or

re
la

tio
n

di
st

an
ce

co
di

ng

to
p_

le
v_

de
si

gn

m
an

ag
e

sy
s_

ac
c_

te
st

so
ftw

_r
eq

re
q_

te
st

lo
w

_l
ev

_t
es

t

ho
l_

no
np

ro
j0

2000

4000

E
uc

lid
ea

n
di

st
an

ce

0 20 40 60 80
0

500

1000

1500

Week

E
ffo

rt
 (

pe
rs

on
 h

ou
rs

)

Figure 11.73: Effort distribution (person hours) over the
eight main tasks of a development project at Rolls-Royce
and a hierarchical clustering of each task effort time se-
ries based on pair-wise correlation and Euclidean distance
metrics. Data extracted from Powell.1517 Github–Local

showing Kconfig commits having a small influence, over a few days, on Linux commits,
and Linux commits having a larger and longer term impact on Kconfig commits, than
even earlier Kconfig commits.

Other forms of relationship that may exist between two or more time-series include:

Alignment: A time series is a sequence of values, with each value being larger, smaller
or equal to the value immediately before it. If two time series are generated by the same,
or similar, process they may contain subsequences of values that share the same pattern
of up, down and no-change. A non-time series application of this kind of subsequence
matching is extracting word sequences that commonly appear in two or more documents.

Dynamic time warping (DTW) is a class of algorithms that compares two series of values
by stretching or compressing one of them (treated as the reference series), so it resembles
the other (treated as the query series). The dtw package contains functions to perform and
support DTW alignment of two series.

A study by Herraiz817 investigated the evolution of various long-lived software systems,
and measured the growth of NetBSD and FreeBSD (in lines of code). These two operating
systems started from the same base, continue to share developers (see fig 9.22) and code
continues to be ported between them. Figure 11.72 shows the alignment, found by a call
to dtw, between the weekly measurements of the lines of code in each OS (for the first
100 weeks of their development).

library("dtw")

bsd_align=dtw(freebsd_weeks, netbsd_weeks, keep=TRUE,
step=asymmetric, open.end=TRUE, open.begin=TRUE)

plot(bsd_align, type="twoway", offset=1, col=pal_col, xlab="Weeks")

Clustering: The pair-wise similarity of multiple time-series can be used as a clustering
metric. Many techniques for measuring the distance between two time-series have been
invented (at the time of writing, the diss function, in the TSclust package, supports 22
distance metrics).

A study by Powell1517 investigated task effort allocation in a development project at Rolls-
Royce. Figure 11.73 shows effort (in person hours) spent on eight major tasks (lower plot,
from the bottom up: s/w requirements, top-level design, coding, low level test, require-
ment test, system acceptance test, management and holiday/non-project), and a hierarchi-
cal clustering of each task by its effort time series, with pair-wise distance between time
series calculated using correlation (upper) and Euclidean (middle) metrics.

library("TSclust")

eff_dist=diss(t(all_effort), METHOD="COR")
plot(hclust(eff_dist), main="", sub="", xlab="", ylab="Correlation distance")

11.10.7 Miscellaneous

Regression of time series data: Some of the issues involved in building regression mod-
els with serially correlated data are discussed in section 11.2.7.

Stochastic processes: Events involving future uncertainty may be modeled as a stochastic
process; see section 3.2.4. The Sim.DiffProc package can be used to numerically solve
stochastic differential equations of the Itô type;230 section 3.2.4 discusses this topic in
more detail.

The Ornstein-Uhlenbeck process is the continuous time version of an AR(1) model,503

and the AR(1) process corresponding to equation 3.1 is:

xt − xt−1 = x̂(1− e−η)+(e−η −1)xt−1 + εt

Matrix profile988 is an efficient new technique for finding motifs in time series. The
tsmp package supports a variety of matrix profile related techniques; see Github–time-
series/BSD-dtw.R.

11.11. SURVIVAL ANALYSIS 335

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Time

h(
t)

Lognormal
Weibull
Weibull

Figure 11.74: Two commonly used hazard functions;
Weibull is monotonic (always increases, decreases or re-
mains the same, depending on the equation coefficients),
and Lognormal which can increase and then decrease.
Github–Local

11.11 Survival analysis

Survival analysis is the analysis of data where the response variable has the form of time-
to-event. Historically this kind of model building has been used to compare the impact of
different medical procedures, or drugs, on subject survival rate.

Survival analysis often deals with one kind of event, which causes a transition to a ter-
minal state, e.g., there is returning from the dead. Competing risk models deal with the
situation where one of several risk events can cause the transition to the final state. Mul-
tistate models handle the situation where some transitions are to states that are not final,
i.e., an appropriate event can cause a transition to another state.

In some cases, the event of interest may not occur during the measurement period, in
this case the measurement is said to be censored; for instance, when measuring the time
interval between a function definition being written and the first time it is modified, the
measurement data is said to be right censored, when one or more functions have not been
modified over the time interval for which data is available.

Survival analysis makes greater use of available censored information, to produce esti-
mates containing less error, than other forms of regression modeling; a linear regression
model comparing mean time-to-event between groups would have to ignore censored
data, while a logistic regression model, using 0/1 to indicate whether a subject survived
or not, would again have to ignore censored data.

Possible outputs from survival analysis include:

• a survival function, S(t), the probability of surviving a given amount of time. This
can be used to estimate time-to-event for a group of subjects or compare time-to-event
between subjects in two or more groups,

• a hazard function, h(t), the hazard rate, that is, the probability of an entity surviving to
time t experiencing an event in the next time interval, e.g., having survived 69 years 11
months before reading this sentence the probability that you die in the next month (the
interval used to denote an instant is small compared to the time spans involved). The
survival and hazard functions can be derived from each other:

h(t) =
f (t)
S(t)

where: f (t) is a probability density function, the probability of the event occurring at
exactly t time units in the future, e.g., the probability of a baby born 70 years ago living
long enough to read this sentence, but not before,

• a regression model specifying the impact of explanatory variables on time-to-event.
This may be a non-parametric model, such as the Cox proportional hazard model, be-
cause parametric models can be very difficult to build.

Time-to-event is always positive and so has a skewed distribution (which means it cannot
have a Normal distribution).

The survival package contains functions implementing the functionality needed to per-
form survival analysis.

11.11.1 Kinds of censoring

Ideally censoring is uninformative, i.e., the distribution of censoring times provides no
information about the distribution of survival times. When a period of study is decided in
advance, the censoring information is uninformative.

When censoring is not under experimenter control, it is said to occur at random. For
instance, a subject may decide to stop taking part in a study because they are not happy
with their performance.

336 11. Regression modeling

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

Years

S
ur

vi
va

l

Figure 11.76: The Kaplan-Meier curve for survivability of
new releases: (blue) ETPs using only official APIs, (blue)
ETPs calling internal APIs (red); dotted lines are 95% con-
fidence intervals. Data from Businge.285 Github–Local

Time

Right−censored
subject

Subject
experiences event

Uncensored
subject

Subject
experiences event

Observation
period

Subjects not
observed

Started measuring
t=0

Stopped measuring

Figure 11.75: Observation period of study, with events in-
side and outside the study period. Github–Local

Kinds of censoring that can occur include:

• left truncation: subject not observed before t0, experienced an event before that time
and is not included in the study (the event may have been such that it rendered the
subject unable to join the study, e.g., developer left the company),

• left censored (also left truncated): a subject included in the study is known to have had
the event prior to time t, but with the exact time not being known,

• right censored: described at the start of the subsection,

• interval censored: when measurements are made at regular intervals, the exact time of
an event is not known, only that it occurred between two measurement points,

• non-detect: the measurement process may fail to detect an event because the strength of
the event is below the detection threshold. This kind of censoring is not covered here,
see Helsel.802

11.11.1.1 Input data format

The Surv function creates a survival object from data, and the object it returns plays the
role of the response variable in formula passed to model building functions. The required
data format depends on the kind of censoring and presence of time dependencies. The
following is an example of the basic information required:

id,start_time,end_time,failure_status,explanatory_v1,explanatory_v2

where: id is a unique identifier denoting each subject (only needed when information on
the same subject occurs on multiple lines), start_time/end_time the starting time (or
date) of measurement, and the end time (either when the event occurred, the end of the
study or the last recorded time of a subject who was not seen again) and failure_status
one of two values specifying whether an event occurred or not; followed by an optional
list of explanatory variables.

The time of interest is the difference between the start/end time, and the data may contain
just this value.

11.11.2 Survival curve

The Kaplan-Meier curve is a descriptive statistic of time-to-event measurements; it shows
the percentage of subjects who have not experienced an event up to a point in time, along
with an optional confidence interval; see figure 11.76.

The median is preferred over mean as the measure of central tendency for survival data,
because the mean underestimates the true value when samples contain censored data.
The median is measured as the point where the Kaplan-Meier curve falls before 0.5 and
printing the model returned by survfit gives this value along with its 95% confidence
intervals.

A study by Businge285 investigated the number of releases of Eclipse third-party plug-ins
(ETP) between 2003 and 2010; the history of each ETP was traced from the year of its
first release and any releases in subsequent years were noted.

The Eclipse framework includes a published list of officially recognised APIs, but each
Eclipse SDK release also includes support for APIs considered to be for internal use, i.e.,

11.11. SURVIVAL ANALYSIS 337

not to be used by applications. The status difference between official/internal APIs is that
internal APIs can be changed without notice, while the official APIs are intended to have
some degree of permanence (they may change on major releases but are not intended to
change on minor releases; starting in 2004 all yearly releases were minor).

At some point there are no new releases of an ETP in a year and this cessation of new
releases could be regarded as the death of development of the ETP (some ETP develop-
ment died for one year only to be resurrected the following year; for simplicity the small
number of such recurring events are ignored).

For this analysis ETP yearly release counts are divided into two groups, those that only
made use of official APIs, and those that made use of one or more internal APIs; table 11.5
shows the number of ETPs using only the official API.

2003 2004 2005 2006 2007 2008 2009 2010
2003 35 10 3 1 1 2 0 0
2004 33 4 4 2 2 0 0
2005 41 10 4 3 1 1
2006 61 7 1 0 2
2007 37 12 4 6
2008 38 7 2
2009 25 3
2010 16

Table 11.5: Total number of distinct ETPs released in a year; left column lists year of first release and releases in subsequent years. Data from Businge.285

Figure 11.76 shows the Kaplan-Meier curve for ETPs using only official APIs (blue)
and ETPs that use internal APIs (red); the dotted lines are 95% confidence intervals.
The following is the essential code (calling the Surv function to create a survival object,
containing time and censored information on each subject, is the first step in most survival
analysis using R):

library("survival")

api_surv=Surv(all_API$year_end-all_API$year_start,
event=(all_API$survived == 0), type="right")

api_mod=survfit(api_surv ~ all_API$API)
plot(api_mod, col=pal_col, conf.int=TRUE, xlim=c(0,7), xlab="Years")

The summary function can be used to obtain values of the survival curve at each time
measurement point.

Comparing two survival curves: Are the two survival curves statistically different? The
survdiff function can be used to answer this question. The p-value returned by the
call (bottom right) shows that the two survival curves are very unlikely to be the same:
Github–Local

Call:
survdiff(formula = Surv(year_end - year_start, event = (survived ==

0), type = "right") ~ API, data = all_API)

N Observed Expected (O-E)^2/E (O-E)^2/V
API=0 381 334 372 3.83 29
API=1 289 260 222 6.41 29

Chisq= 29 on 1 degrees of freedom, p= 7e-08

By default, survdiff performs a log-rank test, which gives equal weight to all events.
Passing the argument rho=1 causes greater weight to be given to earlier events, while the
argument rho=-11 gives greater weight to later events. The hazard function is returned
by survfit functions when is it passed the argument type="fh".

Why, on average, do new releases of an ETP using internal APIs occur over a greater
number of years? Is it because there are changes to the internal APIs that break the ETP,
requiring the ETP to be updated to handle the change and a new version released, or is it
because authors who use internal APIs are more committed to creating the best possible
product and so continue to refine their ETP over more years?

338 11. Regression modeling

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

Years

S
ur

vi
va

l

Figure 11.77: The Kaplan-Meier curve for survivability of
ETPs ability to be built using SDK released in subsequent
years: (blue) ETPs using only official APIs, (red) ETPs
calling internal APIs; dotted lines are 95% confidence in-
tervals. Data from Businge.285 Github–Local

Perhaps, suspecting that changes to the SDK were a significant factor, Businge285 inves-
tigated the source compatibility of ETPs with the Eclipse SDK across releases 1.0 to 3.7,
i.e., releases in every year from 2001 to 2011. Every ETP was built using each of these
11 SDK releases (yes, even SDKs created before an ETP was first released). To allow
easy comparison with the ETP analysis above, the following analysis only considers SDK
builds released after an ETP was first made available.

Figure 11.77 shows the survival of ETPs’ ability to build under Eclipse SDKs released
in each successive year. ETPs using internal APIs (red) are much more likely to fail to
build (precompiled plug-ins may still function, if they don’t call any changed internal
API) when a new Eclipse SDK is released, compared to ETPs using only the official APIs
(blue).

This analysis suggests that developers using internal APIs in their ETP, are more likely to
be forced to release an update, if they want their ETP to continue to function with later
releases. However, this data does not address the possibility that developers who make
use of internal APIs are more committed to creating the best possible product.

11.11.3 Regression modeling

Survival data implicitly contains information that is not present in other forms of re-
gression modeling: the probability of an event occurring at a given time, i.e., a hazard
function. Estimating the appropriate hazard function for survival data requires knowing
the coefficients of the explanatory variables in the regression model, while estimating the
coefficients of the explanatory variables requires knowing the hazard function.

When building a model, R functions will attempt to fit the shape of the hazard function
specified (by the analyst), but if this hazard function is incorrect, the returned model may
be substantially incorrect. In practice, parametric models have been found to be very
sensitive to the explanatory variables provided as input to the model fitting process.

There is no single statistic available for definitively selecting the best model, i.e., hazard
function and appropriate explanatory variables.

The Cox proportional-hazards model does not require the specification of a hazard func-
tion, which breaks the circularity of needing to select regression coefficients for such a
function and removes some of the dangers associated with use of an incorrect hazard func-
tion (the Cox modeling approach is not guaranteed to always build a reasonably accurate
model). If there is any doubt about the appropriate parametric distribution, the Cox model
is a safe choice.

While the Cox proportional hazards model has many advantages, a potentially big disad-
vantage is that without specifying a hazard function, it is not possible to make predictions
outside the interval covered by the measurements.

The flexsurv package supports the fitting of complex parametric distributions, and the
censReg package supports fitting regression models to censored data.

11.11.3.1 Cox proportional-hazards model

The Cox proportional-hazards regression model has been found to provide reasonably
good estimates for the coefficients of the explanatory variables and hazard ratios (not
absolute values, ratios) for a wide variety of data. The Cox model is popular because
it is robust, and will closely approximate the correct parametric model. If the correct
parametric model has a Weibull hazard function (whose shape parameter is unknown),
the Cox model will give similar results to those obtained from this parametric model. If
the parameters of the Weibull hazard function are known, a model built using them will
outperform a Cox model.

The Cox likelihood (known as a partial likelihood) is based on the observed order of
events, rather than the interval between them (so it only considers subjects’ experiencing
an event).

In the equation for the basic Cox model, time is not included as an explanatory variable,
xki, i.e., the variables cannot be time dependent. The equation is:

hi(t) = h0(t)eβ1x1i+···+βkxki

11.11. SURVIVAL ANALYSIS 339

where: hi(t) is the hazard function for subject i at time t, h0(t) is a baseline hazard func-
tion, the contents of the exponent expression are explanatory variables and their regression
coefficients (β0 is included as part of the baseline hazard).

This equation can be written as a log ratio of the hazard functions:

log
hi(t)
h0(t)

= β1x1i + · · ·+βkxki

or, as a hazard ratio for two subjects, i and j (where, h0(t), the baseline hazard function
cancels out):

hi(t)
h j(t)

= eβ1(x1i−x1 j)+···+βk(xki−xk j)

In this proportional hazards model, the effect of each explanatory variable is multiplicative
on the hazard function. In accelerated failure time (AFT) models the multiplicative effect
is on the survival function.

The coxph function, in the survival package, builds Cox proportional-hazard models;
the basic usage follows the pattern used by glm, with the object returned by Surv playing
the role of the response variable. For example:

p_mod=coxph(Surv(patch_days, !is_censored) ~ log(cvss_score)+opensource,
data=ISR_disc)

The cox.zph function can be used to check the assumption that the explanatory variables
are not time dependent (at least during the measurement period).

If two or more events occur at the same time the associated data is said to be tied. The
default value of the option ties="efron", can handle some tied data, but if many events
occur at the same time (e.g., the ETP data in table 11.5), calls to coxph might need to use
ties="exact".

The techniques for formula specification and refinement used with glm can also be applied
to models created with coxph, e.g., starting with a complicated model and using stepAIC
to simplify it.

A study by Arora, Krishnan, Telang and Yang78 investigated the time taken by vendors
to release patches, to fix vulnerabilities reported in their product; explanatory variables
included information about the software vendor, whether the vendor was privately notified
about the vulnerability, or the vendor first found out about it through a public disclosure.

The following is the summary output from a model fitted by coxph to the data for public
disclosure vulnerabilities: Github–Local

Call:
coxph(formula = Surv(patch_days, !is_censored) ~ log(cvss_score) +

opensource + y2003 + smallvendor + small_loge + log(cvss_score):y2002 +
y2002:smallvendor + y2003:smallvendor, data = ISR_np)

n= 945, number of events= 824

coef exp(coef) se(coef) z Pr(>|z|)
log(cvss_score) 0.23283 1.26217 0.08570 2.717 0.00659 **
opensource 0.42235 1.52555 0.09167 4.607 4.08e-06 ***
y2003 0.83643 2.30811 0.10459 7.997 1.27e-15 ***
smallvendor -0.40940 0.66405 0.17331 -2.362 0.01816 *
small_loge 0.02926 1.02969 0.01346 2.173 0.02975 *
log(cvss_score):y2002 0.23048 1.25920 0.04961 4.646 3.39e-06 ***
smallvendor:y2002 0.59685 1.81638 0.19540 3.054 0.00226 **
y2003:smallvendor 0.58999 1.80396 0.22502 2.622 0.00874 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

exp(coef) exp(-coef) lower .95 upper .95
log(cvss_score) 1.262 0.7923 1.0670 1.4930
opensource 1.526 0.6555 1.2747 1.8258
y2003 2.308 0.4333 1.8803 2.8332
smallvendor 0.664 1.5059 0.4728 0.9326
small_loge 1.030 0.9712 1.0029 1.0572
log(cvss_score):y2002 1.259 0.7942 1.1425 1.3878
smallvendor:y2002 1.816 0.5505 1.2384 2.6640

340 11. Regression modeling

y2003:smallvendor 1.804 0.5543 1.1606 2.8039

Concordance= 0.647 (se = 0.011)
Likelihood ratio test= 199 on 8 df, p=<2e-16
Wald test = 184.9 on 8 df, p=<2e-16
Score (logrank) test = 198.3 on 8 df, p=<2e-16

The first half of the output is similar to the summary output produced by a model fitted
using glm. The table of numbers in the middle are 95% confidence intervals, which are
printed by default. The bottom section of the output lists the R-squared of the fitxxxii (0.19
in this case, showing that only a small amount of the variance in the data is described by
the model), and p-values for various tests of the null hypothesis that the coefficients are
zero (abbreviated to a single letter, p).

The explanatory variable coefficients are proportions, not absolute values (the Cox model
is a proportional-hazards model). The coefficients specify the expected impact of the re-
spective explanatory variable, when the values of all the other variables are kept constant.
The explanatory variables cannot be used to independently calculate response variable
values, they can only be used to predict the change in a known value of the response
variable, i.e., the value of the response variable known to occur for specific values of the
explanatory variables.

Taking the values in the log(cvss_score) row as an example, the value 1.26217 appears
in its exp(coef) column; what impact will a ±1 change in the value of log(cvss_score)
have on the response variable (i.e., time taken to produce a patch)? The percentage change
in the response variable is: ±(1.2621− 1)× 100→±26.21%; a value of less than one,
in the exp(coef) column, reverses the sign of the percentage change, e.g., an increase
in the value of the explanatory variable is predicted to decrease the value of the response
variable.

Model adequacy can be checked using Cox-Snell residuals, and influential observations
searched for using score residuals (which specify how each regression coefficient would
change if a particular observation was removed; see Github–survival/vulnerabilities/patch-
cph.R).

Frailty of subjects: Unobserved differences in subject performance may result in some
variation in the hazard function they experience;90 frailty is the term used to denote these
random (multiplicative) changes in hazard function. Introducing a random effect, v j, the
frailty of group j that xi belongs to, modifies the Cox model as follows:

hi(t) = h0(t)v jeβ1x1i+···+βkxki

The previous analysis of time-to-patch, implicitly assumes there is no difference between
vendors, in their ability to respond and fix reported vulnerabilities. The frailty function
can be included in a formula, to specify explanatory variables that identify particular
groups of subjects sharing the same frailty.

fp_mod=coxph(Surv(patch_days, !is_censored) ~ log(cvss_score)+opensource
+frailty(vendor), data=ISR_disc)

The summary output includes the information: Variance of random effect=0.374;
see Github–survival/vulnerabilities/patch-frailty.R.

The v j in the above equation is assumed to have a mean and variance that is calculated
as part of the model building process (in this case it is 0.374). The main consequence of
including frailty in a Cox model is to explicitly allocate some of the variance present in
the data to a specific explanatory variable (the model coefficients of explanatory variables
may also change).

The frailtypack package provides a wider range of frailty related options and function-
ality, than is available in the survival package. The coxme package supports the fitting
of mixed-effects Cox models (frailty can be handled as a specific kind of random effect).

11.11.3.2 Time varying explanatory variables

The behavior of an explanatory variable may change over time. Options for handling this
behavior includes, excluding all affected subjects from the analysis or using a technique
that handles time dependent behavior.

xxxiiThe value printed is the Cox & Snell pseudo R-squared, which can be less than one; the maximum possible
value for the data is given in the summary output.

11.11. SURVIVAL ANALYSIS 341

0 100 200 300 400 500 600
0.0

0.2

0.4

0.6

0.8

1.0

Time to release patch

S
ur

vi
va

l r
at

e

Private, patched and public
Public then patched
Private, public then patched

Figure 11.78: Kaplan-Meier curves for time-to-release a
patch for a reported vulnerability, with private, public, and
private then public notification. Data from Arora et al.78

Github–Local

The Arora et al study (discussed earlier) investigated the impact of public disclosure of
vulnerabilities, on the time taken by vendors to release patches for their product. Possible
event sequences were:

• vendor was privately notified about a vulnerability and some time later a simultaneous
announcement of the vulnerability and a vendor patch was made (213 of 755 private
notifications),

• vendor was privately notified about a vulnerability, but information about the vulner-
ability was later made public before a patch was available for release (the vendor’s
patch being released some time later in 542 of 755 private notifications); this is a time
dependent change of a significant attribute.

• the vendor learned about a vulnerability when information about it was made public,
and sometime later released a patch (945 cases),

If privately notified and public disclosure fix rates are compared using a Kaplan-Meier
curve, any privately notified vulnerabilities that become public before a patch is available
have to be treated as censored (ignoring them biases fix rates towards a lower value; see
figure 11.78).

The Cox models discussed earlier, were fitted using vulnerability data where the vendor
found out about the vulnerability via public disclosure.

Building a regression model using all the vulnerability data, requires handling time depen-
dent explanatory variables; the data has to be restructured to make the time dependencies
explicit. The time dependency, for this data, is a possible change of state, from the vul-
nerability not being public, to the information being public.

The original data looks something like the following:

notify,publish,patch,vendor,employee,os
2000-10-16,2000-11-18,2000-12-20,"abc",1000,unix

When vulnerability information is made public before a patch is released, extra informa-
tion is involved. For this data, five columns are added: one to uniquely identify each
vulnerability, the start/end dates of the interval during which the information was private
or disclosed, a flag specifying private/disclosed, and a flag for whether an event (i.e., re-
lease of a patch) occurred in the interval. The first interval starts on the date the vendor
was notified and ends on the date the vulnerability is made public, a second interval occurs
for vulnerabilities that change state from private to disclosed before a patch is available
and starts on the date of disclosure and ends on the date a patch became available, as
follows:

id,start,end,priv_di,notify,publish,patch,event,vendor,os
1,2000-10-16,2000-11-17,1,2000-10-16,2000-11-18,2000-12-20,0,"abc",unix
1,2000-11-18,2000-12-20,0,2000-10-16,2000-11-18,2000-12-20,1,"abc",unix

Treating priv_di as an explanatory variable (1 for private disclosure to vendor and zero
for public disclosure), enables the impact of disclosure on patch time to be included in a
model.

When all the measurement data needs to be split on the same date, the survSplit function
can be used to create the necessary rows, otherwise (as in this case) specific data mangling
code has to be written.

The call to coxph, or survreg, has to include the term cluster(id), which ties together
(by vulnerability id in this case) the rows associated with the same subject. The call to
coxph looks something like the following:

td_mod=coxph(Surv(patch_days, !is_censored) ~ priv_di*cvss_score
+cluster(id), data=ISR_split)

It is not possible for both cluster and frailty to appear in the same formula (clus
ter is based on GEE model building, while frailty is based on mixed-effects model
building).

The summary output for the time dependent model is: Github–Local

Call:
coxph(formula = Surv(patch_days, !is_censored) ~ priv_di + cvss_score +

y2 + small_loge + priv_di:cvss_score + priv_di:c_o + priv_di:dis_by_s +

342 11. Regression modeling

0 200 400 600 800 1000

1000

2000

3000

4000

5000

Days

Is
su

es

Reported
Closed

0 100 200 300
0.0

0.2

0.4

0.6

0.8

1.0

Days

S
ur

vi
va

l

Reported < 400 days
400 days < Reported < 800 days
800 days < Reported

Figure 11.79: Cumulative number of issues reported and
closed, and issue survival curves for three intervals. Data
from Lunesu.1172 Github–Local

priv_di:os + priv_di:y2 + priv_di:smallvendor + priv_di:small_loge +
cvss_score:c_o + cvss_score:dis_by_s + cvss_score:s_app +
c_o:opensource + dis_by_s:opensource + os:s_app + y2:s_app,
data = ISR_split, cluster = ID)

n= 2242, number of events= 2081

coef exp(coef) se(coef) robust se z Pr(>|z|)
priv_di 2.798750 16.424106 0.216150 0.209360 13.368 < 2e-16 ***
cvss_score 0.153926 1.166404 0.016806 0.017733 8.680 < 2e-16 ***
y2 0.277421 1.319722 0.044042 0.044590 6.222 4.92e-10 ***
small_loge 0.037114 1.037811 0.007262 0.008817 4.210 2.56e-05 ***
priv_di:cvss_score -0.114788 0.891555 0.017327 0.016795 -6.835 8.22e-12 ***
priv_di:c_o 0.644347 1.904743 0.228463 0.211989 3.040 0.002369 **
priv_di:dis_by_s 0.475405 1.608665 0.116261 0.106601 4.460 8.21e-06 ***
priv_di:os -0.331847 0.717597 0.098936 0.086976 -3.815 0.000136 ***
priv_di:y2 -0.614162 0.541094 0.063296 0.061954 -9.913 < 2e-16 ***
priv_di:smallvendor -0.440845 0.643492 0.138900 0.099310 -4.439 9.03e-06 ***
priv_di:small_loge -0.082120 0.921161 0.016589 0.014449 -5.683 1.32e-08 ***
cvss_score:c_o -0.060084 0.941685 0.012861 0.011990 -5.011 5.42e-07 ***
cvss_score:dis_by_s -0.061114 0.940716 0.008798 0.011002 -5.555 2.78e-08 ***
cvss_score:s_app -0.096771 0.907764 0.014972 0.014853 -6.515 7.27e-11 ***
c_o:opensource 0.443978 1.558896 0.137952 0.118459 3.748 0.000178 ***
dis_by_s:opensource 0.414151 1.513086 0.091161 0.102359 4.046 5.21e-05 ***
os:s_app 0.815803 2.260991 0.077450 0.093536 8.722 < 2e-16 ***
y2:s_app 0.291007 1.337774 0.047420 0.045599 6.382 1.75e-10 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Concordance= 0.654 (se = 0.007)
Likelihood ratio test= 590.1 on 18 df, p=<2e-16
Wald test = 376.9 on 18 df, p=<2e-16
Score (logrank) test = 586.8 on 18 df, p=<2e-16, Robust = 454.6 p=<2e-16

(Note: the likelihood ratio and score tests assume independence of
observations within a cluster, the Wald and robust score tests do not).

There are two parts to the contribution made by priv_di; as a standalone variable it has a
large impact, but its interactions with other variables create a large impact in the opposite
direction (the model building process tries to minimise its error metric, not make it easy
for analysts to understand what is going on).

The component of the fitted equation of interest is:

epriv_di(2.8−0.11cvvs_scorei+0.64c_o+0.48dis_by_s−0.33os−0.61y2−0.44smallvendor−0.08small_loge)

where: priv_di is 0/1, cvvs_score varies between 1.9 and 10 (mean 7), c_o 0/1 NA
otherxxxiii (mean 0.13), dis_by_s 0/1 disclosed by SecurityFocus (mean 0.38), os 0/1 vul-
nerability in O/S (mean 0.26), y2 years since 2000 (mean 1.9), smallvendor 0/1 small
vendor flag (mean 0.25) and small_loge zero for small vendors, otherwise the log of num-
ber of employees (mean 5).

Applying some hand waving to average away variables:

epriv_di×(2.8−0.11·7+0.64·0.13+0.48·0.38−0.33·0.26−0.61·1.9−0.44·0.25−0.08·5)

→ epriv_di×(2.8−0.77+0.08+0.18−0.09−1.2−0.11−0.4)→ e0.49priv_di

produces a (hand waved mean) percentage increase of (e0.49− 1)× 100→ 63%, when
priv_di changes from zero to one. The percentage change for patches, for vulnerabilities
with a low cvvs_score is around 90% and for a high cvvs_score around 13%, i.e.,
the patch time of vulnerabilities assigned a low priority improves a lot when they are
publically disclosed, but patch time for those assigned a high priority is only slightly
affected.

The process of calculating the 95% confidence bounds, based on the values in the summ
ary output, is fiddly and left to the reader.

Time varying changes may occur, but the information needed to model these changes may
not be available.

xxxiiiNo information is available on what this variable represents.

11.11. SURVIVAL ANALYSIS 343

0 2000 4000 6000 8000
0.0

0.2

0.4

0.6

0.8

1.0

Snapshot

P
ro

po
rt

io
n

fla
gg

ed
 is

su
es

 'd
ea

d'

was removed
disappeared samba

0 1000 2000 3000 4000 5000
0.0

0.2

0.4

0.6

0.8

1.0

Snapshot

P
ro

po
rt

io
n

fla
gg

ed
 is

su
es

 'd
ea

d'

was removed
disappeared squid

Figure 11.80: Cumulative incidence curves for problems
reported by the splint tool in Samba and Squid (time is
measured in number of snapshot releases). Data from Di
Penta et al.492 Github–Local

A study by Lunesu1172 investigated the maintenance activities of a large software com-
pany; between 2005 and 2010 there were 5,854 issues. The response time for an issue
(i.e., the time between an issue being opened to it being closed) depends on the rate issues
are reported, and the resources available to handle issues.

Extra resources were added to handle the growing number of issues (after around 400
days), and the number of issues reported decreased after around 800 days (it is not known
whether this resulted in issue handling resources being decreased, or the same level of
resources applied to fewer issues). The level of resources used to resolve issues cannot be
included in a model, because this information is not available.

Figure 11.79 shows the cumulative number of issues reported and closed, over time (up-
per); the lower plot shows the survival curve for issues reported in the first 400 days,
reported between 400 and 800 days and reported after 800 days. As expected, the extra
resources added after 400 days reduced open issue survival times, but the reduction in
reported issues after 800 days does not appear to have had much impact on survival rates
(perhaps because it is easier to move existing staff to other work, than to add new staff).

11.11.4 Competing risks

When more than one possible kind of event can occur (i.e., there are multiple terminal
states), a competing risk model might be used or each distinct event type might be an-
alyzed separately from the other event types (data involving other events is flagged as
censored at the time the other event occurs).

The Kaplan-Meier plot for a single event, in a competing risk context, may give a mis-
leading impression of the actual situation for events that rarely occur. The cumulative
incidence curve (CIC) is a commonly used alternative, which includes information on
every event (when there is only one event, CIC = 1−KM). CIC does not assume that
competing risks are independent and estimates the marginal probability of an event.

The cmprsk package supports the modeling of competing risks.

A study by Di Penta, Cerulo and Aversano492 investigated the history of mistakes in
source code flagged by various static analysis tools. Newly written source code con-
taining a flagged construct was tracked through subsequent versions. Possible competing
events include the removal of the code containing the flagged construct and the flagged
construct being modified such that it is no longer flagged, e.g., a bug fix.

Figure 11.80 shows the cumulative incidence curves (created by the cuminc function, in
the cmprsk package) for problems reported in the Samba and Squid source by the splint
static analysis tool.

library("cmprsk")

plot_cif=function(sys_str)
{
t=cuminc(rats$failtime, rats$type, cencode=0, subset=(rats$SYSTEM == sys_str))

plot(t, col=pal_col, cex=1.25,
curvlab=c("was removed", "disappeared"),
xlab="Snapshot", ylab="Proportion flagged issues ’dead’\n")

text(max(t[[1]]$time)/1.5, 0.9, sys_str, cex=1.5)
}

plot_cif("samba")
plot_cif("squid")

11.11.5 Multi-state models

Multistate models deal with time to event processes, where there are multiple events with
potential changes of state between them.

The mstate package supports the building of multi-state Cox models and competing risk
models, the msm package supports the building of multi-state Markov models.

344 11. Regression modeling

Mon

Tue

Wed

Thu

Fri

Sat

Sun

+

Linux

Mon

Tue

Wed

Thu

Fri

Sat

Sun

+

OpenBSD

Figure 11.81: Rose diagram of number of commits in each
3-hour period of a day for Linux and FreeBSD. Data from
Eyolfson et al.566 Github–Local

A study by Goeminne and Mens692 investigated the evolution in the use of four database
frameworks in 2,818 Java projects. A project might start using, say, Spring, then add
support for another framework or switch from using Spring to a different framework.

What is the probability of changes, over time, in the number of database frameworks,
used by a project?

Table 11.6 shows the estimated likelihood of a project migrating from using i database
frameworks to using j frameworks, within 365 days.

from to 1 to 2 to 3 to 4
1 0.89 0.09 0.02 0.00
2 0.07 0.74 0.17 0.03
3 0.02 0.07 0.77 0.14
4 0.01 0.01 0.05 0.93

Table 11.6: Estimated likelihood that within 365 days, a project using i database frameworks will migrate to using j frameworks. Data kindly provided by Goeminne.692

The following call to msm fits a multi-state Markov model for the number of database
frameworks (dbs) used by projects (X) over time (date). The matrix Q is an initial estimate
of the state transition probabilities of a project currently using i frameworks migrating to
use j frameworks; any transition that cannot occur must contain zero in the corresponding
non-diagonal element (specifying gen.inits=TRUE results in an approximate estimate
being calculated internally; see Github–survival/icsme2015era.R).

library(msm)

Q=matrix(nrow=4, ncol=4,
c(0, 0.1, 0.1, 0.01,
0.1, 0, 0.1, 0.01,
0.1, 0.1, 0, 0.1,
0.1, 0.1, 0.1, 0))

Fit a multi-state Markov model
db_msm=msm(dbs ~ date, subject=X, data=uses,

qmatrix=Q, gen.inits=TRUE, exacttimes=TRUE)

Extract the estimated transition probability matrix from the fitted
model at time 365 (a year)
pmatrix.msm(db_msm, t=365)
Estimate mean time spent in each transient state of the model
sojourn.msm(db_msm)

11.12 Circular statistics

Some measurements are based on a circular scale, with values wrapping around to the
minimum value when incremented past the maximum value, e.g., time of day, or months
of the year. Circular statistics1477 is the name given to the analysis of data measured using
such a scale. Circular statistics has only become widely studied in the last 40 years or so,
and techniques for handling operations that are well-established in other areas of statistics
are still evolving. The circular package supports the analysis of data measured using a
circular scale.

Differences between measurements based on circular and linear scales include:

• plotting uses a polar representation, rather than x/y-axis (the circular package in-
cludes support for plot, lines, points and curve functions),

• the mean has two components: mean direction (θ , an angle) and mean resultant length
(R; if this value is zero, the data has no mean), returned by the mean and rho.circular
functions respectively (the trigonometric.moment function provides another way of
obtaining this information). The median.circular function returns a median (multiple
medians may exist, but only one is returned),

• the term variance, on its own, is ambiguous. The circular variance, V , is defined as
V = 1− R and varies between zero and one. Another measure is angular variance
(returned by the angular.variance function), which varies between zero and two.

11.12. CIRCULAR STATISTICS 345

0

π

2

π

3π

2

+

0

π

2

π

3π

2

+

0

π

2

π

3π

2

+

Figure 11.82: The Cartwright (red; dcarthwrite),
wrapped Cauchy (green; dwrappedcauchy) and wrapped
von Mises (blue; dvonmises) circular probability distribu-
tions for various values of their parameters. Github–Local

0

π

2

π
3π

2

+

0

π

2

π
3π

2

+

0

π

2

π
3π

2

+

Figure 11.83: Asymmetric extended wrapped forms of the
Cardioid (upper), von Mises (middle) and Cauchy (lower)
probability distributions for various values of their param-
eters. Github–Local

The circular standard deviation is returned by the sd.circular function (it is not
calculated by taking the square root of the variance; its formula is:

√
−2logR),

• the von Mises distribution plays a role similar to that filled by the Normal distribution
on linear measurement scales.

The mean resultant length, R, is a measure of how spread out data points are around the
circle. If the points have a symmetric distribution R equals zero and if all the points are
concentrated in one direction R equals one; for unimodal distributions the term concen-
tration is applied to R to denote the extent to which measurements concentrate around the
mean direction.

Figure 11.81 is a Rose diagram of the number of commits to Linux and FreeBSD for each
3-hour period of the days of the week (the same data is plotted using a linear scale in
figure 5.6).

The rose.diag function plots Rose diagrams. By default, the area of each segment
is proportional to the number of measurement points in the segment (the behavior used
when plotting histograms).

library("circular")

Map to a 360-degree circle
HoW=circular((360/hrs_per_week)*week_hr, units="degrees", rotation="clock")
rose.diag(HoW, bins=7*8, shrink=1.2, prop=5, axes=FALSE, col=col_str)
axis.circular(at=circular(day_angle, units="degrees", rotation="clock"),

labels=c("Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"))

text(0.8, 1, repo_str, cex=1.4)
arrows.circular(mean(HoW), y=rho.circular(HoW), col=pal_col[2], lwd=3)

The arrow at the center shows the direction of the mean, and the length of its shaft is its
resultant length. Linux has fewer commits at weekends, compared to weekdays, and a
mean direction near the middle of the week looks reasonable. The number of commits to
FreeBSD does not seem to vary between days; the mean length is 0.03 (it almost does not
have a mean), compared to Linux’s mean length of 0.2.

If the measurement scale is very granular (e.g., measuring commit time once by day, rather
than hour or minute), then R will be underestimated, and introduce errors in the calcula-
tion of the various location measures that use this value; see Github–statistics/circular/circle-
bin.R. The correction to R, for calculating circular standard deviation, when measuring
in units of days rather minutes, is to multiply the calculated value of R by 1.034 (the
correction for higher order moments involves much larger values).

11.12.1 Circular distributions

Circular distributions that are often encountered include the uniform distribution, wrapped
Cauchy, wrapped von Mises and the Cartwright distributions.

Figure 11.82 shows differences in the shapes of three popular, symmetrical, single peak,
wrapped circular distributions.xxxiv The Jones-Pewsey distribution includes them all, and
others, as special cases.

Figure 11.83 shows asymmetric extended forms of some common circular distributions.
The circular package does not include support for asymmetric distributions, but code
is available in Pewsey et al.1477

The discrete circular uniform distribution consists of m points, equally spaced around a
unit circle, with each point occurring with probability 1

m .

The continuous circular uniform distribution treats all directions as being equally likely;
the probability of point occurring between the angles φ and ψ is: P(φ < θ < ψ) = φ−ψ

2π
.

The circular package supports the dcircularuniform and rcircularuniform func-
tions, but not p and q forms.

The choice of which circular uniformity test to use, for measurements on a continuous
scale, i.e., many possible measurement points around the circle, depends on how the data
is thought to deviate from uniformity. The two uniformity deviation possibilities are:

xxxivThe implementation of the Cartwright distribution, up to at least version 0.4.93 of the circular package,
uses the spelling carthwrite.

346 11. Regression modeling

January

February

March

April

May

JuneJuly

August

September

October

November

December

+

Figure 11.84: Number of readers of author’s blog, whose
birthday falls within a given month and who have worked
on a compiler. Data from Jones.935 Github–Local

0

1

2

3
4

567
8

9

10

11

12

13

14

15
16

17 18 19
20

21

22

23

+

Fault

0

1

2

3
4

567
8

9

10

11

12

13

14

15
16

17 18 19
20

21

22

23

+

non−Fault

Figure 11.85: Number of commits (upper) and number of
commits in which a fault was detected (lower) by hour of
day of the commit, for Linux. Data from Eyolfson et al.567

Github–Local

• a single peak over some range of values, i.e., a unimodal distribution. In this case
the Rayleigh test is the most powerful known test; available in the rayleigh.test
function,

• multiple peaks in the distribution of values around the circle. There are three tests that
are more powerful than the Rayleigh test, when the data distribution could be more
complicated than a single peak, but no single one is superior to the others; support
for these tests is available in the kuiper.test, watson.test and rao.spacing.test
functions.

Unless there is a good reason to think that the measurements could have a single peak,
one (or all) of the omnibus tests should be used.

Your author was once a member of a four-person compiler implementation team, all born
in February; we all agreed that the best compiler implementers are born in February.
An alternative, easier to test hypothesis, is that most compiler implementers are born in
February. Your author ran a survey on his compiler oriented blog,935 asking readers their
birth month and whether they had spent more than four months working on a compiler
project (132 responded, of which 82 had worked on a compiler).

Figure 11.84 shows that while February was the most common birth month, with 15% of
implementers it is substantially below a majority (weighting by the number of days in a
month, or the yearly percentage of births in each month, does not have much impact).

How likely is it that compiler implementer birthdays are uniformly distributed over the
months? When the measurements have been grouped into a few bins, e.g., months of
the year, a grouped data test has to be used; see Github–statistics/circular/grp-data-boot.R for
examples using bootstrap. All tests for uniformity fail.

A study by Eyolfson, Tan and Lam567 investigated the correlation between commit time
and the likelihood of a fault being experienced because of a mistake in the commit code,
for Linux and PostgreSQL. Figure 11.85 shows the number of non-fault commits (upper)
and number of commits in which a fault was detected (lower), made in each hour of
combined weekdays (the pattern of commits on weekdays differs from weekend days,
and the following analysis is based on weekdays only).

What differences, if any, exist between the two sets of daily commit times and in particular
are commits made at certain times of the day more likely to cause a fault experience?

• testing for a common mean direction: The watson.williams.test function assumes
that both samples are drawn from a von Mises distribution; the Watson large sample
non-parametric test does not even require the samples to share a common shape; see
Github–statistics/circular/common-mean.R. When any sample has a size less than 25, a
bootstrap version of these tests should be used. The daily commit times do not share
a common mean direction (15.5 hours for fault commits and 16.2 hours for non-fault
commits); the mean result lengths are 0.33 and 0.32 respectively,

• testing for a common concentration: Are the points concentrated around a common di-
rection? The Wallraff test is not supported by the circular package, but is described
in Pewsey et al;1477 see Github–statistics/circular/common-concen.R. The two commit sam-
ples do not share a common concentration.

11.12.2 Fitting a regression model

When one or more variables are measured on a circular scale the technique used to build
a regression model depends on whether the circular variable is an explanatory or response
variable.

When the response variable is measured on a linear scale, existing techniques and func-
tions can be used; there may be one or more circular or linear explanatory variables,

When the response variable is measured on a circular scale, the lm.circular function,
in the circular package, can be used

11.12.2.1 Linear response with a circular explanatory variable

Circular explanatory variables can be modeling using periodic functions, and the regres-
sion modeling techniques discussed in earlier sections; sine and cosine functions can be

11.13. COMPOSITIONAL DATA 347

0 5 10 15 20
0

500

1000

1500

2000

2500

3000

3500

Hour

C
om

m
its

non−fault commits
fault commits

Figure 11.86: Number of non-fault related commits, and
commits related to fixing a reported fault, per hour for
weekdays, for linux; with fitted models. Data from Ey-
olfson et al.567 Github–Local

0 5 10 15 20

500

1000

1500

2000

2500

3000

3500

Hour

no
n−

fa
ul

t c
om

m
its

0 5 10 15 20

500

1000

1500

2000

2500

3000

3500

Hour

no
n−

fa
ul

t c
om

m
its

Figure 11.87: Number of commits per hour for
each weekday, fitted using cos(. . .cos . . .) (upper), and
cos(. . .cos+sin . . .) (lower), for Linux; in both cases the
fitted fault model (red) has been rescaled to allow compar-
ison. Data from Eyolfson et al.567 Github–Local

combined to model any periodic function. As always, a model containing the fewest
number of distinct parameters is desired.

The cosine function can be modified in various ways to change its shape, including:

y = α +β cos(ωx+φ)

and higher order harmonics can be added:

y = α +β1 cos(ωx+φ)+β2 cos(2ωx+φ) · · ·

The shape of the peaks and troughs can be modified by adding a sine wave to the angular
argument. In the following a positive λ sharpens the peaks and flattens the troughs while
a negative λ has the opposite effect.

y = α +β cos(ωx+φ +λ sin(ωx+φ))

A skewed period (which is what asymmetrical distributions have) can be modeled by
adding a cosine wave to the angular argument (provided −π/6 ≤ λ ≤ π/6; outside this
range it also affects other shape characteristics):

y = α +β cos(ωx+φ +λ cos(ωx+φ))

These are all non-linear equations, which can be fitted using the nls function.

Figure 11.85 shows the number of commits to the Linux kernel, per hour; it is asymmetric,
and the following code fits an extended cosine regression model (the gam values were
estimated from the height of the cycle, and omega from fitting 24 hours into 2π radians):

basic_mod = nls(freq ~ gam0+gam1*cos(omega*hour-phi+nu*cos(omega*hour-phi)),
start=list(gam0=800, gam1=700, omega=0.3, phi=1, nu=0),
data=week_basic)

Figure 11.86 shows the number of non-fault related commits, and fault related commits,
per hour for every week day; with fitted models.

Both fits handle the skewed period but not the sharp peak and flat trough. A sine con-
tribution can be added to help handle this shape and improve the fit, the call to nls is
below:

basic_2mod = nls(freq ~ gam0
+gam1*cos(omega*hour-phi+nu*cos(omega*hour-phi))
+gam2*cos(2*omega*hour-phi+nu*sin(omega*hour-phi)),

start=list(gam0=800, gam1=700, gam2=100,
omega=0.3, phi=1, nu=0),

data=week_basic)

Figure 11.87 overlays the fitted curve for non-fault and fault (red) commits over the non-
fault hourly commits for each workday.

The lm.circular function supports circular response variables.

11.13 Compositional data

A study by Machiry, Tahiliani and Naik1184 measured the performance of two application
test generators, by comparing the number of lines of program source code covered by the
tests generated by each tool (50 Android apps were tested); human performance was also
measured. The application source lines covered by human and tool generated tests was
recorded.

One measure of human vs. tool performance is to compare just those source lines that are
covered by tests. What percentage, for each application, is covered by both human and
tool generated tests, and what percentage uniquely covered by human or tool tests?

Figure 11.88 shows three quantities in one plot. For each of the 50 applications, the source
line coverage common to human and Dynodroid tests (as a percentage of all covered
lines), percentage only covered by Dynodroid generated tests and coverage of human
only tests. Normalizing coverage counts, to a percentage of source lines covered, allows
performance across different applications to be compared.

Fitting three regression models, one for each kind of coverage, using application source
lines as the explanatory variable fails to make use of all the available information, i.e., the

348 11. Regression modeling

100 500 2000 5000 20000

0.2

0.4

0.6

0.8

1.0

Lines in Application

P
er

ce
nt

ag
e

of
 c

ov
er

ed
 li

ne
s

Human & Dynodroid
Dynodroid
Human

Figure 11.88: Lines of source against percentage test cov-
erage achieved by both Human & Dynodroid tests, only
by Dynodroid tests and only by Human tests, for each
of the 50 applications. Data from Machiry et al.1184

Github–Local

Dynodroid Human

Human & Dynodroid

1097

8103

59874

442413

3269017

Figure 11.89: Ternary plot composed from source lines
covered by both Human & Dynodroid tests, by only
by Dynodroid tests and only by Human tests (measure-
ments in blue); fitted regression line (green) and prediction
points (red) for various total source lines (numeric values).
Data from Machiry et al.1184 Github–Local

relationship between the three percentages. A method of combining the three percentages
into a single entity, that can be used as a response variable, is required. The isometric
log-ratio transformation, ilr, is one possibility, and the compositions package supports
the ilr function.

Figure 11.89 shows the same information in a ternary plot (in blue), along with a fitted
regression model (green line). The explanatory variable is application source, and the
red plus signs show predictions for various totals (tick marks on the axis are measure-
ment points where one of the three components is zero). The quality of fit is very poor,
with potentially many outliers and non-constant variance; other explanatory variables, not
present in the data, may enable the building of a better fitting model.

The clustering of points near the Human & Dynodroid vertex shows that tests created
by these two generators tend to cover the same source lines. More points are near the
Dynodroid axis than the Human axis, suggesting that Dynodroid generated tests cover
fewer unique source lines.

The following code was used to fit the regression model:

library("compositions")

covered=acomp(dh, parts=c("LOC.covered.exclusively.by.Dyno..D.",
"LOC.covered.exclusively.by.Human..H.",
"LOC.covered.by.both.Dyno.and.Human..C."))

plot(covered, labels="", col=point_col, mp=NULL)
ternaryAxis(side=0, small=TRUE, aspanel=TRUE,

Xlab="Dynodroid", Ylab="Human", Zlab="Human & Dynodroid")

dh$l_total_lines=log(dh$Total.App.LOC..T.)

comp_mod=lm(ilr(covered) ~ I(l_total_lines^2), data=dh) # fit model

d=ilrInv(coef(comp_mod)[-1,], orig=covered) # extract model coefficients
straight(mean(covered), d, col="green") # line of fitted model

The acomp function normalises the columns passed as an argument using a ratio scale,
and returns an object having class acomp (named after Aitchison, who pointed out the
useful mathematical properties that a ratio scale bring to compositional analysis).

The ilr function is not currently handled by glm, so lm has to be used. Understanding
the following code requires a lot more background knowledge than is appropriate here;
see van den Boogaart and Tolosana-Deldago1872 for more details.

10 20 30 40 50
1e−13

1e−10

1e−07

1e−04

1e−01

Dimensions

V
ol

um
e

Figure 12.1: Volume of unit sphere in 1 to 50 dimen-
sions, e.g., sphere has volume 4

3 pi in three dimensions.
Github–Local

Chapter 12

Miscellaneous techniques

12.1 Introduction

This chapter covers techniques which produce results that do not have the explicit equa-
tional form available with regression models.

12.2 Machine learning

Machine learning is the name given to a collection of techniques for automatically build-
ing a black-box prediction model, learned from training examples.

Users of machine learning do not need to understand the data (although it helps if they
do), and as such, this approach to model building is ideal for clueless button pushers.
From time to time, we are all clueless button pushers; machine learning is an easy-to-use
tool that can help find a path through the fog.

This book’s emphasis is on understanding the processes involved in software engineering,
not building black-box prediction models.

The quality of the predictions made by models built using machine learning, depend on
the quality of the training data used. It is worth noting that: the blacker the prediction box,
the faster feedback is needed on prediction accuracy. Following black box predictions,
without regular feedback on their accuracy is a recipe for disaster.

A sample containing information about many variables is always useful to have; domain
knowledge might be used to select an appropriate subset. However, when all the variables
are included in the analysis at the same time the curse of dimensionality arises.

A common metric used by machine learning algorithms is the distance between points.
Each measurement can be viewed as a point in an n-dimensional space, where n is the
number of attributes associated with each measured item. For ease of comparison in the
following analysis, every side in this n-dimensional space is assumed to have length one,
and so its volume is also one. In 3-dimensions the volume of a sphere of diameter one
is 4

3 π0.53→ 0.52, that is the sphere occupies 52% of the unit cube, i.e., if the unit cube
contains multiple points, there is a 52% probability that a point at the center of the unit
cube is within 1-unit distance of another point. As the number of dimensions increases the
sphere/unit cube volume ratio increases to a peak at five dimensions, and then decreases
rapidly. Figure 12.1 shows how the volume of a sphere changes, relative to the volume of
the unit cube, as the number of dimensions increases.

As the number of dimensions increases, the distance from a point to the point nearest to
it approaches the distance to the point furthest from it;191 an effect that can occur with
as few as 10-15 dimensions. This behavior means that any algorithm relying on distance
between points effectively ceases to work at higher dimensions.

Text analysis Software engineering produces often produces large quantities of text writ-
ten in natural language, e.g., English. Like source code, this natural language text is raw
material from which useful information might be extracted.

Automated extraction of semantics from natural language is an unsolved problem, for
the general case. Approximate answers can sometimes be obtained to specific kinds of

349

350 12. Miscellaneous techniques

semantic questions. Some algorithms are based on using prelearned examples, e.g., senti-
ment analysis is a popular technique for estimating whether text expresses a positive and
negative opinion, but the results depend on the training data and tool used943 (researchers
are starting to collate software engineering specific training data1146). Dependence on
training data is an important issue for any approach based on using pretrained models.

Available R packages for text analysis include tm (along with extension packages, such
as tm.plugin.mail for processing emails and tm.plugin.webmining for mining web
pages), and spacyr provides an interface to the spacy.io natural language processing sys-
tem. For an example, see Github–faults/reopened_text.R.

12.2.1 Decision trees

As the name suggests decision tree models take the form of a tree like structure. Each
node of the tree contains either an expression whose result is used to select which of
two branches to follow, or a value denoting the result. The rparti package supports the
creation of binary decision trees.

Tree models are popular for use cases where a model is needed that can be interpreted by
the people making a decision, based on what they observe, e.g., Doctors. Decision trees
are the canonical example of a machine learning model that is not a black-box.

Each tree node contains a binary relationship, which selects the branch to follow to the
next node, with the process continuing until a leaf node is reached. The model building
process decides whether a leaf node should be split into a condition node and two leaf
nodes using a method known as cost complexity pruning; any node split that does not
improve the overall fit by a factor of CP is not attempted.

A study by Shihab, Ihara, Kamei, Ibrahim, Ohira, Adams, Hassan and Matsumoto1695

investigated reopened faults in the Eclipse project. Of the 18,312 bug reports, 3,903 were
resolved (i.e., closed at least once) and 1,530 of these could be linked to code changes.
Of the 1,530 that could be linked to code changes, 246 had been reopened at the time of
the study. Shihab et al cast their net very wide, extracting 22 factors that could possibly
be associated with reopened faults.

Figure 12.2 shows the first few levels of a fitted decision tree, which is visibly very clut-
tered. The names of the people reporting and fixing problems is part of the fitted model,
resulting in some overly long lines (names have been truncated to two characters, so some-
thing is visible). The rpart package provides basic plotting functionality, and rpart.
plot package provides much more functionality; the following is the essential code:

library("rpart")
library("rpart.plot")

dt=rpart(remod ~ time+week_day+month_day+month+time_days+description_size+
severity+priority+pri_chng+ num_fix_files+num_cc+prev_state+
fixer_exp+fixer_name+reporter_exp+reporter_name,

data=raw_data, weight=data_weight,
method="class", x=TRUE, model=TRUE, parms=list(split="information"))

rpart.plot(weighted_model, cex=1.2, split.font=1, under.col=point_col,
box.palette=c("green", "red"), branch.col="grey",
under=TRUE, type=4, extra=100, branch=0.3, faclen=2)

iRecursive partitioning.

12.2. MACHINE LEARNING 351

time_days < 14

fixer_name = a_,b.,br,d_,D_S,D_W,ec,j−,jh_,k−,M_V,mc,n_,ot,sx,T_

reporter_name = A_,C_,D_M,D_S,D_W_,E_B,I_,J_B,J−M_L,J_A,J−M_P,K_B,K_H,L_,M_A,Mc_V,M_V_,N_,ot,P_R,P_M,R_C,R_H,S_C,S_D,T_

fixer_name = a_,D_W,j−,jh_,k−,M_V,mc,n_

reporter_name = A_,D_B,D_P,E_B,L_,Mc_V,M_V_,N_,P_R,P_M,S_C

reporter_name = C_,D_S,Dr_W,D_W_,D_B,DJ,E_B,I_,J−M_L,J__,J_A,J−M_P,K_H,M_K,M_A,Mc_V,N_,ot,P_R,R_C,T_

fixer_name = b.,B_,M_R,M_V,mc,sx

reporter_name = C_,D_S,D_W_,D_B,DJ,E_B,J__,J_A,J−M_P,M_K,Mc_V,R_C,T_

week_day = Fr,Ts

fixer_name = a_,d_,D_W,j−,n_,ot

month_day < 9

description_size >= 276

fixer_name = br,jh_,k−,M_V,n_,s_,t.

 >= 14

d.,jr_,kr,t.

Dr_W,D_B,DJ,D_P,E_G,J__,M_K

d_,D_S,ec,ot,T_

D_M,D_S,Dr_W,E_G,J_B,J−M_L,K_B,M_K,ot,S_D

A_,D_M,D_P,E_G,J_B,K_B,L_,M_V_,P_M,R_H,S_C,S_D

a_,br,d_,D_S,D_W,d.,ec,jr_,j−,jh_,k−,kr,n_,ot,s_,t.,T_

Dr_W,I_,J−M_L,K_H,M_A,N_,ot,P_R

Mn,Th,Wd

D_S,d.,ec,jr_,jh_,k−,kr,t.,T_

 >= 9

 < 276

a_,b.,d_,D_S,D_W,d.,ec,jr_,j−,kr,mc,ot,sx,T_

100%

28%

19%

13%

6%

3% 3%

9%

1% 8%

72%

54%

6%

48%

12%

4%

8%

1%

7%

2% 5%

36%

1% 35%

17%

1% 16%

0

0

0

0

1

0 1

1

0 1

1

1

0

1

0

0

1

0

1

0 1

1

0 1

1

0 1

Figure 12.2: Top levels of the decision tree fitted to the
reopened fault data (overly long lines are names of people
who reported and fixed the fault). Data from Shihab et
al.1695 Github–Local

Which variables contribute most to the model? The summary (the cp=0.4 argument re-
moves lots of details from the output; the printcp function does not provide any infor-
mation on variable importance):

> summary(weighted_model, cp=0.4)
Call:
rpart(formula = remod ~ time + week_day + month_day + month +

time_days + severity + priority + pri_chng + num_fix_files +
num_cc + prev_state + description_size + fixer_exp + fixer_name +
reporter_exp + reporter_name, data = raw_data, weights = data_weight,
method = "class", model = TRUE, x = TRUE, parms = list(split = "information"))

n= 1530

CP nsplit rel error xerror xstd
1 0.17010632 0 1.0000000 1.0792683 0.01972982
2 0.02814259 1 0.8298937 0.8900876 0.01966538
3 0.02751720 2 0.8017511 0.8905566 0.01966642
4 0.02095059 5 0.6957473 0.8858662 0.01965584
5 0.01485303 6 0.6747967 0.8952470 0.01967656
6 0.01414947 7 0.6599437 0.8586617 0.01958573
7 0.01407129 9 0.6316448 0.8685116 0.01961284
8 0.01219512 10 0.6175735 0.8708568 0.01961901
9 0.01000000 13 0.5795810 0.8771107 0.01963491

Variable importance
fixer_name reporter_name time_days week_day

32 32 13 6
description_size fixer_exp reporter_exp month_day

4 3 2 2
priority severity prev_state num_fix_files

1 1 1 1
month

1

Node number 1: 1530 observations
predicted class=0 expected loss=0.4990637 P(node) =1
class counts: 1284 1279.2

probabilities: 0.501 0.499

The variables making the largest contribution to the model, and a measure of their relative
importance, appear at the end (at least when a large cp argument is passed).

For the identity of people fixing and reporting problems to play such a large role in the
model, either this subset of people do work that is more likely to need to be looked at
again in the future , or the faults they close have some characteristic that causes the faults
they close to be reopened. This issue cannot be analyzed further using the available data.

352 12. Miscellaneous techniques

freeBSD 2.0

freeBSD 2.0.5

freeBSD 2.1
freeBSD 2.2

freeBSD 3.0

BSD−lite

BSD−lite2

netBSD 0.8

netBSD 0.9

netBSD 1.0

netBSD 1.1

netBSD 1.2.1netBSD 1.2netBSD 1.3

openBSD 2.0
openBSD 2.1

Figure 12.3: Unrooted tree denoting a phylogenetic tree
estimated from the paired similarity of the correspond-
ing source files contained in some releases of the major
variants of BSD unix. Data kindly supplied by Kanda.971

Github–Local

The columns of numbers in the middle of the output contain two measures of error, for
various values of CP. Decision trees are susceptible to overfitting, and the xerror column
estimates the error using ten-fold cross validation (the error listed in the rel error col-
umn does not use cross validation and gives a rosier estimate). The output above suggests
that building a model using the CP value listed in the second row is likely to produce more
accurate results than other values (the default value of CP is 0.01).

See Github–odds-and-ends/wcre2012-delaystudy.R for an example of a decision tree analysis
of data containing many variables.

12.3 Clustering

Clustering is the process of grouping together items (into one or more clusters), such
that items in a given cluster are more similar to each other than items in other clusters.
Some commonly used measures of similarity include distance between items, density of
items, and distance from a set of items chosen to be representative of some collection of
characteristics of interest.

A clustering approach to data analysis requires a method for measuring item similarity,
and an algorithm for using this information to group the appropriate items within the same
cluster. Examples of attempts to understand data, via clustering, include: location based
distance (fig 2.19), similarity between Linux distributions based on packages they contain
(fig 4.17), trading relationships between companies (fig 4.40), developers contributing to
the same Apache project (fig 4.32), density of variables experiencing a given number of
read/writes (fig 7.46) and correlation between attributes of Github pull requests (fig 8.9).

A study by Kanda, Ishio and Inoue971 reverse engineered the evolutionary history of nine
large software systems by comparing the similarity of the files containing the source code
used to build successive releases. Figure 12.3 shows an unrooted tree representation of the
phylogenetic tree estimated from the paired similarity of corresponding files contained in
various releases of OpenBSD, FreeBSD and NetBSD.

12.3.1 Sequence mining

Recurring subsequences may occur in a collection of related item (or event) sequences.
A common application of sequence mining is recommendation systems, such as finding
items that shoppers often buy together, or in sequence (e.g., as children grow up), or
shared buying patterns between groups of shoppers.

Common sequences often occur in calls to a given API, e.g., open/read/close.

The arules package supports the mining of association rules and frequent item sets.

Given N sequences of items, the fraction of these sequences containing a particular item,
say X , is known as the Support for X . Given that X appears in a sequence, what is the
likelihood that Y will also appear in that sequence (written {X ⇒ Y})? The following are
two common answers:

Confidence{X ⇒ Y}= Support{X ,Y}
Support{X}

Lift{X ⇒ Y}= Support{X ,Y}
Support{X}×Support{Y}

=
Confidence{X ⇒ Y}

Support{Y}

A study by Fowkes and Sutton627 investigated the sequence of API calls made within the
method bodies of 17 Java systems. The following call to apriori searches for sequences
of method calls (in the drools business management system) having a given support and
confidence; see Github–odds-and-ends/drools.R:

library("arules")

drools=read.transactions(paste0(ESEUR_dir, "odds-and-ends/drools.csv"),
format="single", cols=c(1, 2))

rules=apriori(drools, parameter=list(support=0.0001, confidence=0.1))

summary(rules)
inspect(head(rules, n=3, by = "confidence"))

12.4. ORDERING OF ITEMS 353

●

●

●

●

order 5

order 4

order 3

order 2

0.00015 2e−04 0.00025 3e−04

0.4

0.6

0.8

1

support

co
nf

id
en

ce

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●●●●●●●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●●

●

●

●

●

●

●

●

●●●

●

●●●●●

●

●●●●●

●

●●●

●

●

●

●

●

●

●

●●●●●

●

●

●

●●●●●●●

●

●●●●●●●

●

●●●

●

●

●

●

●

●

●

●●●●●

●

●●●●●

●

●

●

●●●●●

●

●

●

●

●

●●●

●

●

●

●●●

●

●●●●●●●●●

●

●●●●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●●●●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●●●●●●●●●

●

●

●

●●●

●

●●●

●

●

●

●

●

●●●●●

●

●

●

●

●

●●●●●●●●●

●

●●●

●

●

●

●●●

●

●●●

●

●●●●●●●

●

●●●

●

●

●

●●●

●

●●●●●●●

●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●●●

●

●

●

●

●

●●●

●

●●●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●●●

●

●●●

●

●●●

●

●●●

●

●

●

●

●

●●●

●

●●●

●

●

●

●●●

●

●

●

●●●●●

●

●●●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●●●●●

●

●

●

●●●

●

●●●

●

●●●

●

●

●

●●●

●

●●●

●

●●●●●

●

●

●

●

●

●●●●●●●

●

●

●

●●●

●

●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●

●

●

●

●●●●●●●

●

●

●

●●●

●

●●●

●

●●●●●●●

●

●

●

●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●●●●●●●

●

●

●

●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●

●

●●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●●●

●

●●●

●

●

●●●

●●●

●

●

●●●●●

●●●

●

●●●

●

●

●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●●●

●

●●●

●●●

●

●

●

●●

●●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●●●●

●●●●●●●●●●●●●

●

●

●

●●●●

●●●●●●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●

●

●

●

●●●

●

●●●

●

●●

●●●●●●●

●

●

●

●

●

●

●

●●●

●●●

●

●

●●●

●

●●●●

●●●●

●

●

●

●

●

●

●

●

●

●●●

●●●

●

●

●

●●●●●●●●●●●●●●●

●

●

●

●●●

●

●

●

●●●●●

●

●

●

●●●

●

●

●●●

●

●

●

●

●●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●●●●●●●●●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●●

●●●●●●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●●●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●●●●●●

●

●●●●●●

●●●●●●●

●

●●●

●

●

●●

●

●●

●●●●

●●●●●●●●●

●

●●●●●

●

●●●

●

●

●

●

●

●●

●

●

●●●

●

●●

●●●

●

●●●●●●●

●

●

●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

Figure 12.4: A two-key plot of associating mining re-
sults; order indicates number of items in rules. Data from
Fowkes et al.627 Github–Local

11 7 10 1 6 8 2 9 5 3

Date.crop.sown
Date.crop.harvested
Fertilizer.used
Weed.killer.used
Seed.supplier
Acres.animals
Market.value.crop
Average.labor.cost.crop
Fertilizer.costs
Farm.location
Farm.owner
Number.animals
Date.last.vet.inspection
Date.animal.born
Feed.stuff.costs
Average.labor.cost.animal
Market.value.animal
Average.shipment.weight
Antibiotics.used
Organically.produced
Field.location
Acres.crops
Date.animal.slaughtered
Pedigree.ID
Genetic.ID

Figure 12.5: A Bertin plot for items included in the same
data structure as the item “Antibiotics used”, for each
numbered subject, after reordering by seriate. Data
from Jones.934 Github–Local

The number of rules, of a given length, found were (lhs and rhs refer to the two sides of
the⇒ symbol):

rule length distribution (lhs + rhs):sizes
2 3 4 5

1478 252 32 5

If many results are returned, some form of visualization can help reduce the effort needed
to appreciate the distribution of results. The arulesVis package supports a variety of
ways of visualizing association mining results. Figure 12.4 shows what is known as a two-
key plot of the above results; the colored orders indicates the number of items contained
in each rule.

The apriori algorithm treats each item, in a sequence, as being independent. The order
of method calls may be significant, and the arulesSequences package adds sequence
mining functionality to the arules package.

A required call may be missing from a sequence of method calls; the recommenderlab
package provides support for developing and testing recommendation algorithms.

12.4 Ordering of items

Arranging items in order can reveal information about the form of the calculation used to
select the relative positions of ordered items. Given multiple orderings of the same items,
ordering patterns of subsequences of items, common to multiple sequences may indicate
a shared semantics for those items.

A ranking is created when items are placed in an order relative to each other. Items are
rated when, for instance, people are asked to provide a relative rating based on an ordinal
scale, e.g., the extent to which a person like/disliked a book. The analysis of rating data
is discussed in section 13.4.

12.4.1 Seriation

Seriation is the process of placing items into a linear order, based on a metric derived from
some item characteristics. The number of possible item orderings grows as n!, making it
impractical to evaluate every possibility for non-trivial sample sizes; heuristic algorithms
have to be used. The seriation package supports a variety of functions that attempt to
find an optimal linear ordering of items; see fig 4.32 and fig 7.12.

A study by Jones934 investigated the extent to which developers create similar data struc-
tures to hold information listed in a specification, e.g., grouping together identifiers con-
taining related information in the same data structure. The hypothesis was that shared
cultural and professional experiences would result in subjects defining data structures
containing similar contents.

Subjects were given a list of items from the “Department of Agriculture”, and asked to
design a C/C++ API containing this information. The results, from each subject, were
the structs or classes defined and their fields/members (with each field containing one
item of API information, e.g., “Date crop harvested” and “Organically produced”).

Ordering the data highlights API information that tends to be colocated in the same data
structure, and the subjects making similar choices.

Figure 12.5 shows the items placed in the same data structure as the information item “An-
tibiotics used”, by each subject (colored squares indicate presence). The matrix passed
to seriate contains boolean values (indicating presence in the same data structure), and
the subjects/fields are ordered so that shared usage appears adjacent. The bertinplot
function provides a particular visualization of the ordered data.

library("seriation")

fser=seriate(fmat, method="BEA", control = list(rep = 10))
bertinplot(fmat, fser, options=list(panel=panel.squares, spacing=0,

gp_labels=gpar(cex=0.6)))

354 12. Miscellaneous techniques

D
at

e.
la

st
.v

et
.in

sp
ec

tio
n

A
cr

es
.a

ni
m

al
s

Fa
rm

.lo
ca

tio
n

Fa
rm

.o
w

ne
r

P
ed

ig
re

e.
ID

N
um

be
r.a

ni
m

al
s

A
ve

ra
ge

.la
bo

r.c
os

t.a
ni

m
al

G
en

et
ic

.ID
M

ar
ke

t.v
al

ue
.a

ni
m

al
F

ee
d.

st
uf

f.c
os

ts
D

at
e.

an
im

al
.b

or
n

D
at

e.
an

im
al

.s
la

ug
ht

er
ed

A
nt

ib
io

tic
s.

us
ed

O
rg

an
ic

al
ly

.p
ro

du
ce

d
F

ie
ld

.lo
ca

tio
n

A
ve

ra
ge

.s
hi

pm
en

t.w
ei

gh
t

A
cr

es
.c

ro
ps

D
at

e.
cr

op
.s

ow
n

D
at

e.
cr

op
.h

ar
ve

st
ed

F
er

til
iz

er
.u

se
d

W
ee

d.
ki

lle
r.u

se
d

S
ee

d.
su

pp
lie

r
M

ar
ke

t.v
al

ue
.c

ro
p

A
ve

ra
ge

.la
bo

r.c
os

t.c
ro

p
F

er
til

iz
er

.c
os

ts

Date.last.vet.inspection
Acres.animals
Farm.location

Farm.owner
Pedigree.ID

Number.animals
Average.labor.cost.animal

Genetic.ID
Market.value.animal

Feed.stuff.costs
Date.animal.born

Date.animal.slaughtered
Antibiotics.used

Organically.produced
Field.location

Average.shipment.weight
Acres.crops

Date.crop.sown
Date.crop.harvested

Fertilizer.used
Weed.killer.used

Seed.supplier
Market.value.crop

Average.labor.cost.crop
Fertilizer.costs

Figure 12.6: A visualization of the Robinson matrix based
on number of times pairs of items co-occur in the same
data structure (the closer to the diagonal the more often
they occur together). Data from Jones.934 Github–Local

A single item’s pattern of association, with all the other items, can be generalised by
counting occurrences of every pair of items in the same data structure. A Robinson matrix
has the property that the value of its matrix elements decrease, or stay the same, when
moving away from the major diagonal; this matrix has been used to study commonality
in subjects’ categorization behavior.1605 Figure 12.6 shows a visualization of a Robinson
matrix for the Jones data.

library("seriation")

fdist = as.dist(1 - fmat/max(fmat)) # Normalise counts
fser = seriate(fdist, method="BBURCG")

pimage(fdist, fser, col=pal_col, key=FALSE, gp=gpar(cex=0.8))

12.4.2 Preferred item ordering

A list of items may have a preferred ordering. The ordering may be the result of ranking,
rating or a comparison between pairs of items.

Bradley-Terry statistics are a traditional technique for calculating an ordering for a list
of items, based on results from pairwise comparisons, e.g., football match results (there
is an extension for analyzing results from simultaneous comparisons of more than two
items). This section is based around use of the BradleyTerry2 package for simple paired
comparisons, and the PlackettLuce package for the more complicated cases.

An alternative approach to analyzing item ordering is discussed in section 9.6.1.

Given a contest between i and j, the probability that i beats j is assumed to have the form:

P(i > j) =
αi

αi +α j
, where αi and α j might be thought of as some measure of ability of i

and j.

Bradley-Terry statistics uses logistic regression to model this equation, and fits the β s in
the following equation:

P(i > j) =
eβi

eβi + eβ j
, where: αi = eβi and α j = eβ j .

A study by Jones931 investigated developer beliefs about binary operator precedence. Sub-
jects saw an expression, such as a + b % c, and were asked to insert parenthesis such
that the behavior (as interpreted by the compiler) remained unchanged. Based on subject
answers, what is the relative precedence of the binary operators used in the study (which
may be different from the actual precedence)?

The parenthesis specifies the operator that can be treated as winning a precedence contest.
The BTm function, in the BradleyTerry2 package1855 takes the results from paired com-
parisons, and returns the coefficients of a fitted model (internally, the glm.fit function
is used to fit a logit regression model).

library("BradleyTerry2")

prec_BT=BTm(cbind(first_wl, second_wl), first_op, second_op, data=nodraws)

summary(prec_BT)

A less interesting plot than the one specifically created
plot(qvcalc(BTabilities(prec_BT)), col=point_col, main="",

xlab="Operator", ylab="Relative order")

The output produced by summary has the same form as that produced for other regression
models. Note: the summary function does not list the factor with value zero (the subtrac-
tion operator, for this data). The BTabilities function lists all factors and their values,
and the call to plot uses this information to visualize the estimated coefficients and their
corresponding standard error.

Figure 12.7 shows the estimated β coefficients (along with a corresponding standard er-
ror), and can be used to estimate subjects beliefs about relative binary operator prece-
dence. The probability of, for instance, equality, ==, winning a precedence choice against

12.5. SIMULATION 355

−2 −1 0 1
β

O
pe

ra
to

r

!=

||

==

&&

%

<

|

<<

&

−

+

^

*

/

Figure 12.7: Relative ordering of binary operator prece-
dence (i.e., value of β), and corresponding standard error,
based on subject responses to binary operator precedence
questions. Data from Jones.931 Github–Local

−0.5 0.0 0.5
β

private

protected

default

public

Figure 12.8: Fitted values of β for access control (visibil-
ity) of method definitions within a Java class. Data from
Biegel et al.196 Github–Local

binary plus, +, is (based on the values returned by the fitted model): e−2.08

e−2.08 + e0.26 → 0.088,

and the probability of binary plus, +, winning against == is: 0.912.

In a sports match, the home team is often considered to have an advantage over the away
team. Perhaps, when developers are uncertain they are more likely to select the first
binary operator, of a pair. A model can include information on first position wins, for each
operator pair (the effect is very small for this data); see Github–developers/jones_prec.R for
details.

The two item model can be extended to where three or more items are ranked by ordering
them according to some preference criteria. For instance, for a ranking of three items:

P(i > j > k) =
αi

αi +α j +αk
×

α j

α j +αk

The PlackettLuce package supports the analysis of rankings of more than two items, tied
ranks (i.e., items having the same rank), and rankings where some items do not appear in
every ranking.

A study by Biegel, Beck, Hornig and Diehl196 investigated the ordering of definitions ap-
pearing in 5,372 classs, from 16 Java programs. The Java coding conventions (JCC)1795

recommends a particular ordering of the four kinds of definitions, and on average over
80% of classes in these projects follow the JCC ordering recommendation: class variable
(or field), instance variable (or static initializer), constructor and method.

Java definitions include access control information, via the use of the keywords: private,
protected, public and no keyword (the default behavior given in the language speci-
fication is used). The ordering of definitions in the source code, by identifier visibility
(i.e., access control), can be treated as a ranking. The declarations in a source file may
not contain an instance of every kind of access control, i.e., some rankings will include a
subset of items.

Figure 12.8 shows the relative ordering (ranking) of method definitions by access control
keyword, over all projects investigated; see Github–sourcecode/member-order/vis-key_order-
pref.R, which also includes details of other kinds of declarations. If the methods defined
in a class have three kinds of visibility (only 3% of cases in the study), the probability
of, for instance, the visibility order being public, protected, then private is (using β

values from the fitted model):

e0.36

e0.36 + e−0.36 + e−0.67 ×
e−0.36

e−0.36 + e−0.67 → 0.54×0.58→ 0.31

When teams are ranked, with varying team membership, the hyper2 package may be of
use in obtaining a ranking of the individuals.

12.4.3 Agreement between raters

A measurement may be based on human judgement, e.g., assigning a product rating.
Different people may make different judgements of the same characteristic/entity, and a
way of evaluating the agreement between the different judgements is needed.

Cohen’s Kappa is a measure of inter-rater agreement between two raters, it varies from
zero (no agreement) to one (perfect agreement). Fleiss’s Kappa is a measure of inter-rater
agreement between three or more raters.

The kappa2 function, in the irr package, supports Cohen’s Kappa (weighting is sup-
ported by passing the argument weight="squared"); the kappam.fleiss function cal-
culates Fleiss’s Kappa.

A study by Schach, Jin, Yu, Heller and Offutt1640 categorised the kinds of maintenance
activity performed on various systems. Table 12.1 lists the categories assigned by two
raters to 215 maintenance categories involving the first 20 versions of Linux. The Cohen’s
Kappa for these two raters is 0.805; see Github–group-compare/agreement.R.

12.5 Simulation

Simulating a process or system, via an executable model, is a means of gaining informa-
tion about the operational characteristics of the process or system (assuming the charac-
teristics of the model are sufficiently accurate). Varying the characteristics of a simulation

356 12. Miscellaneous techniques

Adaptive Corrective Perfective Other Total
Adaptive 2 0 0 0 2
Corrective 0 82 16 0 98
Perfective 0 5 99 2 106
Other 0 0 0 9 9
Total 2 87 115 11 215

Table 12.1: Maintenance categories assigned by two raters (row and column) for the first 20 versions of the Linux kernel at the change-log level. Data from Schach et al.1640

0.06 0.03

0.25 0.05

0.04 0.17

0.08 0.21

0.01 0.1

Figure 12.9: Region populations and their connections:
initial conditions used in Duggan’s513 numerical solution
of the Bass equation. Github–Local

model can provide possible answers to what-if questions. Some of the kinds of simulation
methods available include:

• discrete event simulation: the system modeling is based on the discrete events that can
occur; supported by the simmer package, e.g., staff scheduling, see Github–projects/impl-
sim.R,

• agent-based modeling: a set of agents, having specified attributes, interact with each
other in a computer simulation. After a given number of time steps the state of the
system is measured, with the results from many simulation runs combined to calculate
probabilities for the various end-states. NetLogo is a widely used system for agent-
based modeling and the RNetLogo package provides an R interface,

• system dynamics: represents a system using causal loops between all the interacting
components, essentially an analogy representation of differential equations. This ap-
proach has been used to simulate software project staffing,3, 275, 1188

• differential equations: if a system can be described using a set of differential equations,
the deSolve package can be used to numerically solve these equations.

Fitting sales data to the Bass diffusion model was discussed in section 3.6.3. Dug-
gan513 investigated the impact, on sales volume, of the spatial separation of potential
customers living in 10 regions. Figure 12.9 shows the connections between regions,
and the percentage of total population they contain, given as initial conditions in the
numerical solution; see Github–odds-and-ends/RJ-2017.R for implementation details.

Chapter 13

Experiments

13.1 Introduction

Does doing X have a significant effect on S? Traditionally X might have been a new kind
of fertiliser (or drug) and S the crop yield (or being cured of some illness). In software
engineering the effect sought is often a performance improvement, and X the latest snake
oil. Detecting discontinuities in data is discussed in section 11.2.9.

In an observational study the researcher is a passive observer, simply recording what
happened, or is happening. In an experimental study the researcher actively attempts
to control the values of the explanatory variables (a common technique is to vary the
values of one explanatory variable, while the others are held constant; in some cases,
the environment in which events occur form a natural experiment, in that the explanatory
variables of interest vary in a way that an experimenter might vary them).

A controlled experiment is the technique used to obtain the data needed to test a hypoth-
esis. The controlled experiment that most developers are likely to be familiar with is
benchmarking.

Dramatic changes in performance, after doing X, are relatively common in software devel-
opment, and in such cases using statistics to confirm that a noticeable change has occurred
is almost a formality. At the other extreme, differences that require statistical analysis to
be detected are often not worth being concerned about in practice.

Advice for running experiments often follows the waterfall model of software develop-
ment, with lots of upfront planning and little or no feedback from actual use until the
end of the process. This advice has its roots in the environment in which experiments are
carried out by the readership of many statistics text books, where running an experiment
is costly (in money or time), or is a once only opportunity.i

Some experimental questions in software engineering are amenable to iteration. Running
quick, inexpensive experiments, can be a cost effective technique for filtering possible
questions of interest, and obtaining information on which, of the myriad of variables,
have a worthwhile impact on the response variable(s).

Finding the right question to ask is sometimes the most useful output from running an
experiment.

An important point to remember is, that, it is better to have an inexact answer to the right
question, than an exact answer to the wrong question.

Like all software development activities, experiments have to pay their way. Some of the
answers needed for a cost-benefit analysis include: the cost of running an experiment,
capable of producing the information of interest, within acceptable confidence intervals;
the usefulness of the data likely to be obtained, by running an experiment, using a given
amount of resources (such as time and money).

Many software engineering tasks are performed within complex environments. Control-
ling and measuring all the variables in the environment has been perceived as being time-
consuming and expensive that few researchers have been willing to attempt realistic con-
trolled experiments. Consequently, much of the hypothesis testing performed in commer-

iExperiments in the social sciences, major producer of experimental studies, are often grant funded, with
limited opportunities for rerunning experiments that failed to produce data that can be published.

357

358 13. Experiments

727
879

16076

254

1193

7791

4065

2184

30359

2248
1287 50

52

367

125

Callgraph Understand

Code2flow Pyan

727
879

16076

254

1193

7791

4065

2184

30359

2248
1287 50

52

367

125

Callgraph Understand

Code2flow Pyan

Figure 13.1: Number of nodes in the Python call graphs
built by four tools, broken down by number of nodes com-
mon to each tool. Data from Li.1130 Github–Local

cial environments has been based on convenience samples, obtained from experimentally
uncontrolled, production software projects.

Running an experiment with minimal funding means that experimental subjects are often
unpaid volunteers, from a pool containing who ever is available.

Software engineering is not known as a research area where experiments are commonly
performed. A study1717 of 5,453 papers in software engineering journals, published be-
tween 1993 and 2002, found that only 1.9% reported controlled experiments (of which
72.6% used students, only, as subjects), and the statistical power of many of these exper-
iments fell below expected norms.523

13.1.1 Measurement uncertainty

The term measurement error is often applied to measurements involving physical quan-
tities. It is based on the assumption that any different between the measured and actual
value is caused by errors made by the measurement process.

In software engineering, some quantities can be measured exactly, e.g., lines of code in a
source code file. However, the process that generated the code (e.g., a software developer)
may produce a different number of lines, if repeated using a different developer or even the
original developer (reimplementing the program); see fig 5.23. The code that is measured
is a sample drawn from a population, and measurements involving this code needs to be
treated as having an accompanying uncertainty.

Goodhart’s law is an observation about human behavior, rather than a law: “Any ob-
served statistical regularity will tend to collapse once pressure is placed on it for control
purposes.” If the measurements collected were actively used to control or evaluate the
development team (for instance), then developers have a motivation to cause the measure-
ments to move in a direction favorable to themselves.

A study by Perry, Staudenmayer and Votta1472 investigated various software development
activities (e.g., working time on an activity, and activities performed throughout the day),
as measured by the developers involved (i.e., self reports) and as measured by external
observers. Differences in reported measurement values included, developers reporting
activity time 2.8% higher, on average, than that reported by an observer; the measurement
agreement rate for activities performed varied between 0.6 and 0.95.

A series of studies996 of social network data, as reported by those within the network and
extracted from externally observed information, found that differences were large enough
to render invalid any analysis of a network characteristics based on member supplied
information.

Random variability in the performance of, what are intended to be, identical hardware
components, is discussed in section 13.3.2.1.

Different tools, or different tool options may produce different results, e.g., the diff al-
gorithms supported by Git,1394 reported statement coverage,1990 or clone detection tech-
nique.1834

A study by Li1130 investigated the call graphs built by four Python tools. Figure 13.1
shows the number of nodes in the call graphs built by four tools, broken down by number
of nodes common to each tool.

Programs sometimes consume increasing amounts of memory, the longer they are run;
sometimes known as software aging. One consequence of changes in the behavior of the
environment in which a benchmark is executed, is to introduce systematic noise into the
results.

A study by Cotroneo, Iannillo, Natella and Pietrantuono410 investigated the impact of
running two applications on three versions of Android, installed on four different phones,
running with low/high available memory, and three kinds of event interactions (i.e., 2 ∗
3∗4∗2∗3 combinations of App, environment, and usage); there were an average of 272
App executions per combination, i.e., 39,187 total executions. A fitted regression model
finds that the amount of memory used consistently changed by a small amount with each
successive App execution, with the amount depending on environment and event use (less
than 10 bytes); see Github–benchmark/2005-11523.R.

13.2. DESIGN OF EXPERIMENTS 359

13.2 Design of experiments

Randomization is the foundation on which any claims of causation, involving experimen-
tal results, are based, i.e., doing X caused Y. Without randomization, the most that can be
said is that a correlation has been observed between doing X, and Y occurring.

The purpose of running an experiment is to obtain data that can be used to help answer
one or more questions. Experiments have to be carefully designed, to ensure that the
data obtained is representative of the processes involved for the question(s) being asked.
Design issues include:

• recruiting the appropriate subjects from the available population (sampling is discussed
in section 10.2),

• creating an experimental task(s) that shares all the important characteristics of the tasks
associated with the questions of interest,

• creating an environment for the subjects, in which they can give a suitable performance,
during the experiment.

Subject characteristics can sometimes interfere with good experimental design, e.g.,
human subjects have memories of their previous experiences that they cannot choose to
erase,

• controlling all variables that could have a significant impact on the response variable(s)
of interest. Failure to take into account, and control, variables having a significant
impact, can cause a tiny effect to appear to be a large effect and vice versa. One person’s
tongue-in cheek-advice on how to bias an experiment to get the desired outcome1288 is
another person’s list of thoughtless mistakes.

When factors cannot be controlled, they need to have their impact contained. One tech-
nique for handling the problem of uncontrolled variables is to group subjects into blocks
based on the variable that is suspected of influencing the response (a process known as
blocking), randomization of subjects then occurs within each block. The identity of the
block becomes another explanatory variable during analysis of the results.

A study by Basili, Green, Laitenberger, Lanubile, Shull, Sørumgård and Zelkowitz140

compared the performance of subjects when using perspective based reading (which in-
structs reviewers to read a document from a specified perspective, e.g., a designer, tester
or user), against the reading technique currently used by the professional developers who
were the subjects.

The researchers thought it likely that, training subjects to use the new technique would
alter their performance when using whatever technique they currently used, and decided
to measure subject performance using their existing review technique first, before giving
subjects training in the new, perspective based reading, technique.

Having all subjects use the perspective-based reading technique second, means it is not
possible to separate out ordering effects in the results, e.g., effects such learning during
the experiment, and any random distraction effects that only occurred at certain times.

Factors outside the control of these researchers, which could affect the results, include:

• the time taken for subjects to become proficient at using a new technique; old habits die
hard. How much practice do subjects need, for them to be able to give a performance
that makes it possible to reliable compare the new technique? In this study subjects
were taught PBR two days after the first part of the experiment, they trained on a test
document, reviewed one document, received more training and then reviewed another
document.

• the kind of review technique used by subjects in the first half of the experiment. A
change in performance is expected, but it is not known what technique any change is
relative to (it is assumed that adhoc techniques are being used),

• the characteristics of the seeded faults. Were more faults found in the NASA documents
because readers were familiar with reading that kind of document, or perhaps the char-
acteristics of the seeded faults was such that they were harder to detect in one kind of
document than another?

The experimental output included, for each subject, the number of faults detected (which
has a known upper limit, and a yes/no detection status), and the number of false positives
in each document reviewed (which has no upper limit, in theory); see Github–faults/basili/pbr-
experiment.R for details of fitting a regression model.

360 13. Experiments

500 1000 1500 2000

0.490

0.495

0.500

0.505

0.510

0.515

0.520

Run

W
al

l t
im

e
(s

ec
on

ds
)

Figure 13.2: Time taken by 2,000 runs of a Javascript Bi-
naryTree benchmark, with JIT enabled, on a quad-core In-
tel i7-4790; three colors are three iterations of the process:
reboot machine, execute 2,000 runs. Data from Barrett et
al.136 Github–Local

Basing all experimental choices on random selection does not automatically create sam-
ples that maximise the information that can be obtained.

A study by Porter, Siy, Mockus and Votta1507 investigated software inspections. The
structure of the inspection process was manipulated by varying the number of reviewers
(1, 2 or 4), number of meeting (1 or 2), and for multiple meetings whether reported faults
were repaired between meetings (88 inspections occurred, involving 130 meetings and 17
reviewers).

Selecting the treatment to use, for a review, from successive entries on a randomised
list of all possible treatment structure combinations (created at the start of the study),
would ensure that the results are balanced across the variables of interest. However,
in this study the choice of treatment to use was randomly selected from all possibili-
ties, as each unit of code became available for review, resulting in some combinations
of reviewers/meetings/repaired not being used, and some used very often. The results
contain an unbalanced set of experimental conditions, making it difficult to fit a reliable
model; see Github–experiment/porter-siy/inspection.R, Github–experiment/porter-siy/meeting.R
and fig 11.33.

The complexity of computing platforms means their behavior can quickly change. A
study by Barrett, Bolz-Tereick, Killick, Mount and Tratt136 investigated the performance
of Just-in-time compilers. The computer system (three different systems were measured)
was rebooted and a benchmark run 2,000 times, this process was repeated 30 times, i.e.,
60,000 executions of every benchmark on three systems. Every effort was made to reduce
measurement noise, e.g., as many background processes as possible were disabled.

Figure 13.2 shows the wall time taken for three sequences of 2,000 executions of a
Javascript BinaryTree benchmark, running on a quad-core Intel i7-4790. The abrupt
changes in performance match a change in the processor core used to execute the code;
the benchmark process could have been locked to a given core, but would that be represen-
tative of real-life use? As discussed later (see fig 13.22) performance variability between
system reboots can be larger than between a sequence of runs during one uptime.

13.2.1 Subjects

Experimental subjects might be people or artefacts, e.g., hardware or source code. An es-
sential requirement for generalising the results from an experiment, to a larger population
of subjects, is that the characteristics of the sample of experimental subjects are repre-
sentative of the applicable characteristics of the population of interest. Statistical issues
around sampling are discussed in section 10.2.

The major issues involved in having computer hardware as an experimental subject are
covered in section 13.3, while the major issues in human cognitive performance are cov-
ered in chapter 2. A limiting factor, when designing an experiment involving human
subjects, is typically the amount of time the subjects are likely to be willing to make
available to participate.1716

When people are the subjects in experiments, a variety of human factors introduce uncer-
tainty into the results; people constantly adapt to their environment, including the envi-
ronment of an experiment (e.g., they learn and retain memories of their experiences; see
section 2.5), they also experience fatigue, and their attention ebbs and flows during an
experiment.

Professional developers, working within different ecosystems, may share a set of basic
skills and knowledge, such as being able to fluently use at least one programming lan-
guage.

Much of the published research involving human subjects, in software engineering ex-
periments, has used students. Students are a convenience sample for many researchers,
with results based on student subjects being accepted for publication by some journals.
Industry is well aware that students’ software engineering skills are not representative of
professional developers (who have a few years experience); industry is where many grad-
uates find employment after graduation, and the abilities of these new employees is plain
for everyone in industry to see.

• students’ commercial software skills and knowledge is likely to be very poor, in com-
parison to professional developers.1326 This lack of experience and know-how means
that student subjects need to spend time on activities that are second nature to profes-
sionals, or they simply make noncommercial judgement calls,

13.2. DESIGN OF EXPERIMENTS 361

128 512 896 1280 1664 2048

Move result from GPU
GPU matrix multiply
Move data to GPU

Matrix size (N x N)

T
im

e
(m

se
c)

0

20

40

60

80

Figure 13.3: Time taken to transfer and multiply 2-
dimensional matrices of various sizes on a GTX 480 GPU.
Data kindly supplied by Gregg.738 Github–Local

• students, typically, have very little experience of writing software, perhaps 50 to 150
hours (and many have no basic coding skills1152, 1234, 1867), while commercial software
developers are likely to have between 1,000 to 10,000 hours of experience. This lack
of programming fluency means that student programming performance is likely to con-
tains a large learning component, as well as student performance being much lower than
professional developers,1305

In other research areas students subjects may be more representative of the target pop-
ulation, because they have had many years of experience performing the activities and
tasks used in those areas, e.g., processing text written in English and everyday image
processing, which are activities used in cognitive psychology experiments.

When experimental results are intended to be applied to the population of university stu-
dents studying a software related subject, subjects drawn from this population can be
representative.

In the US, UK and some other countries, students pay to attend university, and like all
businesses universities have to respond to customer demand. When a student decides
to study a computing related subject, the University’s interests are in ensuring that the
student meets its minimum entry requirements and can pay; the likelihood of that person
being offered employment in a software related job is not a consideration (in the UK
computer science graduates have a much higher unemployment rate, six-months after
graduation, compared to those studying other STEM subjects1673). Given the high failure
rate for computing degrees1978 and introductory programming courses,1933 many students
on such courses may not even have any software development skill or ability.

Note on terminology: many academic studies use the phrase expert to describe subjects
who are final-year undergraduates or graduate students, with the term novice used to de-
scribe first-year undergraduates. In a commercial software development environment a
recent graduate is considered to be a novice developer, while somebody with five or more
years of commercial development experience might know enough to be called an expert.

Amazon’s Mechanical Turk is becoming popular as a resource for finding subjects and
running experiments (in 2015 the population of workers was estimated to be 7,3001781).
Subjects can stop taking part in a MTurk experiment at any time and care needs to be taken
to ensure that the characteristics of subjects who remain does not bias the results.2020

Instances of source code can be measured exactly, but different people write different
code, i.e., measurements of source code contain implicit variability; see figure 5.23.

13.2.2 The task

Generalizing experimental results to daily work conditions, requires that the character-
istics of the tasks performed by subjects share the essential characteristics of the work
tasks. That is, the task needs to mimic realistic activities (the technical term is being
ecologically valid):

• being representative of real world intended usage requires information about how a
system will be used in practice, along with the inputs it is likely to experience; lack of
resources to perform an analysis of real world usage often means that a convenience
sample is used. In a rapidly changing environment, it may not be possible to specify
usage patterns in sufficient detail, and perhaps one of the important real world behaviors
that needs to be benchmarked is adaptability to change.

A study by Gregg and Hazelwood738 provides an example where data usage character-
istics are the deciding factor in a cost/benefit trade-off. The time taken to perform a
matrix multiply, when the CPU uses a local GPU (the SGEMM implementation in the
nVidia CUBLAS package1397 was used) was measured. Figure 13.3 shows that mov-
ing data between the CPU and GPU consumes a significant amount of time, relative
to the work done on the data once inside the GPU. Estimating whether GPU usage is
worthwhile, depends on the size of matrices encountered in the real world use case,
the performance may be slower because of the data transfer overhead, or faster if the
matrices are large enough to consume the larger amount of compute resources.

Another example of the impact of variations in the input data relates to fig 10.9,

• Products that appear to be very similar can have very different performance character-
istics (this is one reason why they exist as different products; the other common reason
is marketing). Using a product that is identical to the one used in production avoids this
problem.

362 13. Experiments

Tuned for

E
xe

cu
te

d
on

BG/P

Clovertown

Barcelona

Nehalem

Niagara2

Native
BG.P

Clovertown

Barcelona

Nehalem
Niagara2

0.35 1 0.4 0.54 0.78 0.55

0.52 0.28 1 0.97 0.85 0.79

0.25 0.24 0.75 1 0.74 0.65

0.28 0.17 0.37 0.43 1 0.61

0.55 0.04 0.05 0.05 0.23 1

Figure 13.4: Relative performance (y-axis) of libraries op-
timized to run on various processors (x-axis). Data from
Bird.201 Github–Local

1 5 10 50 500
1e+01

1e+02

1e+03

1e+04

1e+05

Numeric value

In
te

ge
r

lit
er

al
s

Decimal
Hexadecimal

Figure 13.5: Number of integer constants, appearing in the
visible form of C source code, having the lexical form of a
decimal-constant (the literal 0 is also included in this set)
and hexadecimal-constant that have a given value. Data
from Jones.930 Github–Local

In a study by Bird,201 a performance optimization expert took the existing generic code
of a library and created tuned versions for each of five different processors (IBM’s Blue
Gene P and four different members of Intel’s x86 product line). The performance of the
generic, and all tuned versions of the code, was measured on all processors. Figure 13.4
shows relative performance, with the x-axis listing the processor the code was tuned for,
and the y-axis the processor on which it was run; the numbers are relative performance
difference, compared to running code on the processor for which it was specifically
written.

Availability of resources is often a constraining factor, for running an experiment that
mimics real world usage. For example, benchmarking backup/restore tools, or desktop
search applications, requires realistic file system contents (e.g., the file system must con-
tain a realistic number of files, directory depth, disk fragmentation, etc); getting to a
position of being able to generate realistic file systems is a non-trivial task,16 let alone
realistic file content characteristics.1814

13.2.3 What is actually being measured?

Subjects may not solve the problems they are presented with, in an experimental, in ways
that were intended by the person who designed the experiment.

The history of research into human memory provides an example of how early experimen-
tal results were misinterpreted.928 These early experiments asked subjects to remember
sequence of digits, the results suggested that short term memory has a capacity limit of
7±2 items.1284 After many years and more experiments, the 7±2 digit limit model was
replaced by a model based on a limit of 2 seconds of sound113 (in English this corre-
sponds to around 7 digits, 5.8 in Welsh542 and around 10 digits in Chinese:851 the number
of digits that can be held in memory when people use these languages).

Software developers are problem solvers and get plenty of practice in finding patterns that
can be used to achieve a goal. Unless an experiment is carefully constructed, it is naive to
assume that developers will use any of the techniques anticipated by the person designing
the experiment.

Your author once ran several experiments,931 expecting to find a two seconds of sound
effect in developers short term memory of source code (sequences of simple assignment
statements were used). A great deal of effort was invested in creating code sequences
whose spoken form required either more or less than two seconds of sound, but the results
did not contain any evidence of the expected effect, i.e., a difference in performance
caused by the length of sound in the spoken form of source code statements.

At the end of one experiment, a subject mentioned a strategy used to help improve his
performance: remembering the first letter of each variable (your author had not noticed
that the variables in each list had unique first letters). Use of this strategy reduced the
amount of STM the subject needed to use, providing one explanation why the expected
effect was not found. The last task, on subsequent experiments, asked subjects to list any
strategies they had used during the experiment.

What appear to be small differences, can have a large impact. Human written source code
contains very similar constructs where, what might be thought to be small differences
in semantics, have usage patterns which are very different. For instance, many languages
allow numeric literals to be specified using decimal and hexadecimal notation; figure 13.5
shows that the distribution of literal values written using each notation is different (at least
in C source).

A study753 of how subjects split identifiers, in source code, into components, and ex-
panded them, or not, into words, measured individual performance against what was con-
sidered to be the definitive expansion of each identifier. The results of this experiment
could also be used to measure the performance of the researchers, in creating a list of
identifier expansions that maximised the likelihood of developers correctly decoding the
intended information.

Subject motivation is an important factor in obtaining reliable experimental data. Subjects
who feel they are being coerced may respond by providing spurious responses, or simply
attempt to find short-cuts that minimise the time then need to spend taking part in the
experiment, without attracting attention by making too many mistakes.791 Your author
always requests that subjects put as much effort into performing the task, as they would
at work: not more, not less.

13.2. DESIGN OF EXPERIMENTS 363

13.2.4 Adapting an ongoing experiment

The costs of running an experiment makes it tempting to stop, as soon as what is thought to
be enough data has been obtained (to produce a sufficiently reliable result). For instance,
a researcher may process subjects in batches, running statistical tests after each batch of
results, to find out whether the numbers look good/bad enough to stop. One study184 of
A/B testing estimated that 73% of experimenters stopped their experiment once a 90%
confidence level was reached.

As each subject is analysed, differences in subject performance cause the aggregated val-
ues to fluctuate, and it is possible that some cut-off value (e.g., a p-value cutoff level) is
achieved; however, later data may cause it to fluctuate to a less extreme value.

When running an experiment on a live system (or on a stream of subjects), an analysis of
the ongoing measurements may suggest that certain changes to the experiment may have
a worthwhile impact. Adaptive designs is the term used for experimental designs that
support modification of an experiment as results become available.

An adaptive design might be used to reduce the number of different combinations that
need to be measured, e.g., benchmarking a computing system supporting many options.1535

13.2.5 Selecting experimental options

The behavior of some systems may be configured by selecting from a variety of options;
an estimate of the impact of individual options, on system performance, may be required.
One way of obtaining this information, is to measure system performance for all possible
combinations of option values. This approach might be practical for a few options, each
having relatively few values, e.g., Apache supports nine build time yes/no options giving
29 possible configurations (out of these 512, only 192 are valid). However, large systems
often support so many options, that building and executing every configuration would be
impractical, e.g., SQLite supports 3,932,160 valid options.

A study by Lee and Brooks1103 investigated the impact of configuration option values on
the performance and power consumption of a computer architecture by simply selecting
three values for each of the 23 design space options; see Github–experiment/lee2006/lee.R.

Randomly selecting option values is an inefficient use of resources, because some option
values are over/under used; see Github–experiment/SQL_PWR.R.

An experiment in which all possible permutations of option values are tested, is known
as a full factor design (options go by the experimental term factors). The fac.des
ign function, in the DoE.base package, takes a specification of factor levels and re-
turns a list of all combinations that need to be run to perform a full factor design; see
Github–experiment/design_fac.R.

A study by Citron and Feitelson366 investigated the performance impact of adding, what
they called a Memo-Table (essentially a cache designed to store and reuse the results of
previously executed instruction sequences), to the IBM Power4 cpu architecture. The
configuration options for the Memo-Table were: Size (1k or 32k), Associativity (1-way
or 8-way), Mapping (indexing by program counter or operand+opcode) and Replacement
method (random or least recently used).

Four configuration parameters, each having two possible values, gives 42→ 16 possible
configurations. Citron and Feitelson benchmarked all 16 possibilities, enabling them to
check for interactions between all factors. In many experiments the number of interac-
tions between factors is small, and a common cost saving is to only consider interactions
between pairs of factors (rather than, say, between three factors).

Factor having just two possible values is a common case, and is known as a two-factor
factorial design: it is a full two-factor design when all combinations used, and a fractional
two-factor design when a subset is used.

The FrF2 function, in the FrF2 package, generates a list of the combinations of factor
values that need to be run, to analyse N factors having a resolution of R (the ability to
separate out main effects and interactions between factors; to be able to separate out main
effects a resolution of 3 is required, a resolution of 4 enables detection of separate pairs of
interactions). In the following list, 1 indicates the option is enabled, -1 that it is disabled;
the output from some functions uses +/-, rather than 1/-1:

364 13. Experiments

32 1000
ops

pc

1

8

size

associativity

mapping

●●

●●

●●

●●●

● ●●

●

●●

● ●

●

●

●

●●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

13.9 55.8

15.4 66.4

5.1 36.6

8.9 49

Figure 13.6: A cube plot of three configuration factors and
corresponding benchmark results (blue) from Memory ta-
ble experiment. Data from Citron et al.366 Github–Local

10

20

30

40

50

M
ea

n
ci

nt

32

1000

1

8

ops

pc

lrurnd

size

associativity

mapping

replacement

Figure 13.7: Design plot showing the impact of each
configuration factor on the performance of Memo table
on benchmark performance. Data from Citron et al.366

Github–Local

> library("FrF2")
> FrF2(nfactors=4, resolution=3, alias.info=3)

A B C D
1 1 1 1 1
2 1 -1 1 -1
3 -1 1 -1 1
4 1 -1 -1 1
5 -1 -1 -1 -1
6 1 1 -1 -1
7 -1 1 1 -1
8 -1 -1 1 1
class=design, type= FrF2

The price paid for running a fractional, rather than full, factorial design experiment, is that
it is not possible to distinguish interactions between some combinations of factors. For
instance, after running the eight combinations listed above, it is not possible to distinguish
between an effect caused by a combination of the AB factors, and one caused by the
combination CD; this combination is said to be aliased. The complete list of aliased factors
is:

> design.info(FrF2(nfactors=4, resolution=3, alias.info=3))$aliased
$legend
[1] "A=A" "B=B" "C=C" "D=D"

$main
[1] "A=BCD" "B=ACD" "C=ABD" "D=ABC"

$fi2
[1] "AB=CD" "AC=BD" "AD=BC"

$fi3
character(0)

To distinguish between an effect caused by any of these combinations, all 16 factor com-
binations have to be run.

Factorial designs require the number of runs to be a power of two, so the number of
different runs grows very quickly as the number of factors increases.

A Plackett and Burman design requires that the number of runs be a multiple of four and
at least one greater than the number of factors (they are non-regular fractional factorial
2-level designs). The down-side of these designs is that the results from experiments us-
ing them will only support the analysis of the main factors, i.e., any interactions between
factors will not be detected; also Plackett and Burman designs can contain complex alias-
ing between the main factors and (possible) interactions between pairs of factors. The pb
function, in the FrF2 package, generates Plackett and Burman designs.

Multiple fractional factorial designs can be combined to isolate effects, i.e., remove alias-
ing between combinations of factors. Some signs in the original design are switched,
creating what is known as a fold over of the original; switching the signs of all factors is
known as a full fold over. The fold.design function generates a foldover design from
an existing design.

13.2.6 Factorial designs

A variety of techniques are available to help visualise the results from an experiment using
a factorial design. The analysis is the same for full and partial fractional designs, the only
difference is the number of interactions between factors that will be available for analysis.

The study by Citron and Feitelson,366 discussed earlier, used the SPEC CPU 2000 bench-
mark, and the values measured were integer floating-point performance, power consump-
tion, processor timing, and die area of the chip.

For simplicity consider three of the factors (ignoring, for the time being, the replacement
method), the results can be visualised as a cube with each of the eight vertices representing
one combination of factor values; the values at each vertice of figure 13.6 are the SPEC
benchmark cint performance figures.

13.3. BENCHMARKING 365

10

20

30

40

50

60

size

M
ea

n
ci

nt
 p

er
fo

rm
an

ce

32 1000

 mapping

ops
pc

Figure 13.8: Interaction plot showing how cint changes
with size, for given values of mapping. Data from Citron
et al.366 Github–Local

5 10 15 20 25

0.5

1.0

1.5

absolute effects

ha
lf−

no
rm

al
 s

co
re

s

 P1

 P2

 P3

 P4

 P5

 P6

 P7

Figure 13.9: Half-normal plot of data from a Plackett and
Burman design experiment. Data from Debnath et al.464

Github–Local

1e−01 1e+01 1e+03 1e+05

2

5

10

20

50

100

200

500

1000

2000

Operations per second

S
ec

on
ds

 p
er

 d
ol

la
r

1961
1957
1953

Figure 13.10: Performance and rental cost of early com-
puters, with straight line fits for a few years. Data from
Knight.1026 Github–Local

Imagine taking two opposite faces of the above cube, say the two for size on the left and
right going into the page, and finding the mean cint value for both faces, the difference
between these two values is known as the main effect for size; the main effect for the
other factors is similarly calculated.

A design plot is a visualisation of these main effects, with a central horizontal line showing
the overall mean value of the response variable. Figure 13.7, created using the plot.
design function, shows the impact that each factor can have on the value of cint, offset
from the mean value.ii

For an example involving more changeable parameters; see Github–experiment/lee2006/lee.R.

At a finer level of granularity, an interaction plot shows the interaction between pairs of
factors. Figure 13.8 shows how the mean value of cint varies as size is changed, for a
given value of mapping (see legend).

For an equation based analysis, a fitted regression model can be used to investigate the
interactions between factors. For instance, the following model specifies interactions be-
tween all variable pairs; see Github–experiment/MemoPower03.R for details:

Memo_glm=glm(cint ~ (size+associativity+mapping)^2, data=Memo)

A study by Pallister, Hollis and Bennett1439 investigated the power consumed by various
embedded programs when compiled with gcc using various command lines parameters.
The design used contained partial aliases, which many plotting functions cannot handle;
the halfnormal function, from the DoE.base package, has an option to orthogonalize
the design; see Github–experiment/pallister/gcc-power.R.

Plackett and Burman designs do not contain enough information to fit a regression model,
a bespoke method has to be used, e.g., the DanielPlot function, in the FrF2 package
(in the plot produced, the x-axis shows effect size, the y-axis contains diagnostic infor-
mation). If the data is the result of random variation (i.e., changing factor values has no
effect), differences between pairs of factor averages have a (roughly) normal distribution;
plotting values from a normal distribution using a normal probability scale produces a
straight line. If many of the points displayed by DanielPlot appear to form a straight
line, then the corresponding factors are likely to have had little effect on the results; any
factors well off the line are of interest.

A study by Debnath, Mokbel and Lilja464 investigated the impact of seven system con-
figuration settings on PostgreSQL performance, on the TPC-H benchmark. High and low
values were chosen for the configuration values and a Plackett and Burman design with
full fold-over was used. Figure 13.9 shows the half-normal plot from the 16 runs; factors
P4 and P7 do not fall on a straight line that passes close by the other factors, and they also
exhibit the largest effect.

13.3 Benchmarking

Benchmarking is the process of running an experiment to obtain information about the
performance of some aspect of hardware and/or software. Common reasons for bench-
marking, in software engineering, include comparing before/after performance and ob-
taining numbers to put in a report. For a more general audience, benchmarking infor-
mation is often used as input to a selection process and as such often has a marketing
orientation. Accurate measurements are not always necessary, showing that a system is
good enough, may be good enough.

The time taken to add and multiply values was used to compare the performance of early
computers.206, 1252, 1941, 1942 Studies by Knight1026, 1027 calculated performance based on
a weighted average of instruction times, based on the kinds of instructions executed by
commercial and scientific programs. Based on a study of over 300 computers available
between 1944 and 1967, the rental cost for performing an operation decreased with in-
creasing computer performance; see figure 13.10, the lines are fitted power laws with
exponents between two and three; see Github–benchmark/EvolvingCompPerf_1963-1967.R.

Obtaining accurate benchmark data for many questions relating to computing platforms it
may to be economically infeasible.iii A consequence of the continual reduction in the size

iiplot.design makes some unexpected display decisions when the explanatory variables are not factors.
iiiObtaining accurate benchmark results has always been an expensive and time-consuming process, but

at least it was once possible to rely on devices sharing the same part number to have the same performance
characteristics.

366 13. Experiments

1980 1990 2000 2010

50

100

200

500

1000

2000

5000

10000

20000

Year

F
ea

tu
re

 s
iz

e
(in

 S
ili

co
n

at
om

s)

Figure 13.11: Feature size, in Silicon atoms, of mi-
croprocessors; line is a fitted regression of the form:
Silicon_atoms ∝ e−0.17Year . Data from Danowitz et al.436

1995 2000 2005 2010
1

5

10

50

100

500

1000

Year

G
ig

ab
yt

es
 s

or
te

d

Minute sort
Penny sort

2006 2008 2010 2012 2014

10

20

30

40

50

60

70

Measurement date

S
P

E
C

20
06

 in
t

Figure 13.12: Maximum number of records sorted in 1
minute and using 1 penny’s worth of system time (up-
per), and SPEC2006 integer benchmark results (lower,
with loess fit). Data from Gray et al731 and SPEC.1742

Github–Local

of components within microprocessors (see figure 13.11 and fig 11.51), is that individual
components are now so small that variations in the fabrication process (e.g., differences
in the number of atoms added or removed during the fabrication process) can noticeably
change their geometry, leading to large variations in the runtime electrical characteristics
of supposedly identical devices.187

Manufacturers offer computing systems having a range of performance characteristics;
figure 13.12, lower plot, shows all published results for the integer SPEC2006 bench-
mark. While hardware performance has now improved to the point where for many uses
it appears to be good enough, it is still possible to buy hardware that is under-powered for
the job it is expected to perform; figure 13.12, upper plot, shows the orders of magnitude
improvements in cost and performance of sorting over 15 years.

Benchmark results published for general consumption are sometimes little more than mar-
keting claims. The author(s) may have reasons for wanting to create a favourable impres-
sion for one system, in preference to others, or may just have done a sloppy job (perhaps
because of inexperience, incompetence or lack of resources to do a decent job). A class
action suite alleged that:673 “Intel used its enormous resources and influence in the com-
puting industry to, in Intel’s own words, "falsely improve" the Pentium 4’s performance
scores. It secretly wrote benchmark tests that would give the Pentium 4 higher scores,
then released and marketed these "new" benchmarks to performance reviewers as "inde-
pendent third-party" benchmarks. It paid software companies to make covert program-
ming changes to inflate the Pentium 4’s performance scores and even disabled features on
the Pentium III so that the Pentium 4’s scores would look better by comparison.”iv Us-
ing an established benchmark does not guarantee the results are free of vendor influence.
One class action suite alleged1612 “Samsung intentionally rigged the GS4 to operate at a
higher speed when it detected certain benchmarking apps. In versions of the GS4 using
the Qualcomm Snapdragon 600 processor, Samsung wrote code into the firmware (em-
bedded software) of the GS4 to automatically and immediately drive Central Processing
Unit ("CPU") voltage/frequency to their highest state, and to immediately engage all four
of the processing cores of the CPU.”v

In some consumer goods markets, product benchmark results receive a lot of publicity,
with potential customers thought to be influenced by the results achieved by similar prod-
ucts. A study by Shimpi and Klug,1698 of Android benchmarks, found that some mobile
phone vendors detected when a particular benchmark was being run and raised the devices
thermal limits (allowing the system clock rate to run faster for longer; a 4.4% performance
improvement was measured).

Researchers are happy to complain about poor benchmarking practices, but are not always
willing to name names.1874

In published benchmark results the Devil is in the detail, or more often in the lack of
detail, as illustrated by the following:

• Bailey116 lists twelve ways in which parallel supercomputer benchmarks have been
written in a way likely to mislead readers, including: quoting 32-bit, not 64-bit results,
quoting figures for the inner kernel of the computation, as if they applied to the complete
application, and comparing sequential code against parallelized code.

• Citron365 analysed the ways in which many research papers using the SPEC CPU2000
suite have produced misleading results, by only using a subset of the benchmark pro-
grams (of 115 papers surveyed, 23 used the whole suite). In one case a reported speed
up of 1.42 is reduced to 1.16 when the whole suite is included in the analysis (reduction
from 1.43 to 1.13 in another and from 1.76 to 1.15 in a third).

The primary purpose of this section is to highlight the many sources of variability present
in modern computing systems. The available evidence suggests that large variations in
benchmark results are now the norm. Large variations in measured performance do not
prevent accurate results being obtained, the impact is to increase the time and money
needed, i.e., it is simply a case of making enough measurements. Advice on how to
perform benchmarks is available elsewhere.585, 758

People interested in consistent performance will want to minimise the variation in bench-
mark results (which did occur for some programs), while those interested in actual bench-
mark performance will be interested that significant changes in the mean occurred for
some programs.

ivThe class action was settled1785 with Intel agreeing to pay $15 to Pentium 4 purchasers, $4 million to a
non-profit entity and an amount not to exceed $16.45 million to the lawyers who brought the suit.

vThe class action was settled1612 with Samsung agreeing to pay $2.55 million, with each member of the
class action estimated to receive $38.38.

13.3. BENCHMARKING 367

When comparing different systems, benchmark performance may be normalised to pro-
duce a relative performance ranking. The geometric mean needs to be used when com-
paring normalized values, otherwise the results can be inconsistent.

R M Z R/M M/R R/Z Z/R M/Z Z/M
E 417.00 244.00 134.00 1.71 0.59 3.11 0.32 1.82 0.55
F 83.00 70.00 70.00 1.19 0.84 1.19 0.84 1.00 1.00
H 66.00 153.00 135.00 0.43 2.32 0.49 2.05 1.13 0.88
I 39449.00 33527.00 66000.00 1.18 0.85 0.60 1.67 0.51 1.97

K 772.00 368.00 369.00 2.10 0.48 2.09 0.48 1.00 1.00
Arithmetic 8157.40 6872.40 13341.60 1.32 1.01 1.50 1.07 1.09 1.08
Geometric 586.79 503.13 498.68 1.17 0.86 1.18 0.85 1.01 0.99

Table 13.1: Benchmark results for three processors (R, M, Z), running five benchmarks (E thru K), with normalisation using different processors, along with arithmetic and
geometric means. Data from Fleming et al.615 Github–Local

Table 13.1 shows the results of five benchmark programs (E to K) from three systems
(i.e., columns R, M and Z); two other sets of columns list normalised values, with different
processors used as the reference. The bottom two rows list the arithmetic and geometric
mean of the columns; note: for the arithmetic mean, both ratios R/M and M/R are greater
than one, while for the geometric mean one ratio is less than one (the same pattern is
occurs for the other ratios). A ranking based on the arithmetic mean depends on the pro-
cessor used as the base for normalization, while the geometric mean produces a consistent
ranking; see section 10.3.3.

13.3.1 Following the herd

When choosing a benchmark, there is a lot to be said for doing what everybody else does,
advantages include:

• can significantly reduce the cost and time needed to obtain benchmark data,

• an established benchmark is likely to be usable out-of-the-box. It takes time for a
benchmark to become established; an analysis1462 of one Java source code corpora was
able to build 86 of the 106 Java systems in the corpus, with 56 of these having to be
patched to get them to build,

• it is easier to sell the results to audiences, when the benchmark used is known to them.

The disadvantage of following the herd is that there may be fitness-for-purpose issues
associated with using the benchmark, i.e., herd behavior is adapted to environments that
may be substantially different from the environment in which the system is intended op-
erate. For instance, the SPEC benchmark is often used to compare compiler performance,
but SPEC’s intent is for it to be used for benchmarking processor performance.

Commonly used benchmarks suffer from vendors tuning their products to perform well
on the known characteristics of the benchmark. The SPEC benchmark has been used over
many years for compiler benchmarking and compiler vendors often use it in-house for
performance regression testing.

13.3.2 Variability in today’s computing systems

In the good old days, computer performance tended to be relatively consistent across
identical, but physically different, components, i.e., the same model of cpu or memory
chip. Also, software tended to have relatively few options that could significantly alter its
performance characteristics.

Modern hardware may contain components that are fabricated using handfuls of atoms,
with process variations, of an atom or two here and there, producing surprisingly different
performance characteristics,1296 but externally looking like identical devices. Further re-
ductions, in the number of atoms used to fabricate devices, will lead to greater variations
in the final product. Today’s consumer of benchmark results has to chose between:

• accepting a wide margin of error,

• executing a benchmark very many times, to ensure the sample size is large enough to
achieve the desired statistical confidence interval for the results.

368 13. Experiments

1.5 2.0 2.5 3.0
20

25

30

35

40

45

Target frequency

La
te

nc
y

(m
ill

is
ec

on
ds

)

1.6
1.7
1.9
2
2.1
2.2
2.4
2.5
2.6
2.8
2.9
3
3.1
3.3
3.4

Figure 13.13: Mean time for an Intel IvyBridge to tran-
sition from a given frequency (colored lines) to another
frequency (x-axis). Data kindly provided by Mazouz.1226

Github–Local

1500 2000 2500

100

200

300

400

500

600

Frequency (MHz)

P
ow

er
 (

Jo
ul

es
)

Radix

Figure 13.14: Total system power consumed when sorting
10, 20, 30, 40, 50 million integers (colored pluses), us-
ing Radix sort on the same processor running at different
clock frequencies. Data from Götz et al.719 Github–Local

400 600 800 1000 1200 1400
0

200

400

600

800

1000

Frequency (MHz)

P
ow

er
 c

on
su

m
ed

 (
m

W
)

1 core
2 cores
3 cores
4 cores

Figure 13.15: Power consumed by an Exynos-7420 A53
processor at various frequencies, and one to four cores un-
der load, with fitted regression lines. Data kindly provided
by Frumusanu.633 Github–Local

Both approaches require checking that a wide range of, possible unknown, factors are
controlled for, by those running the benchmark.

Intrinsic variability in system performance impacts development teams that regularly
monitor the performance of their products during ongoing development. For instance,
Mozilla regularly measures the performance of the latest checked-in version of Firefox
source code, if an update results in a performance decrease exceeding a predefined limit,
the update is rolled back. Successful implementation of such a policy requires careful
control of external factors that could impact performance.

Performance variation has to be addressed from a system wide perspective,vi hardware/-
software interaction can have a significant performance impact and there are often mul-
tiple, independent, sources of variation. At the systems level differences in component
characteristics (e.g., differences in system clock frequency drift in multiprocessor sys-
tems875) can interact to produce emergent effects.

DVFS (Dynamic Voltage and Frequency Scaling) provides an example of how the com-
plexities of system component interactions make it difficult to reliably predict perfor-
mance. As its name suggests, DVFS allows processor voltage and frequency to be changed
during program execution; an analysis of system power consumption1998 concludes that
total power consumed, executing a program from start to finish, is minimised by running
the processor as fast as possible (assuming there is no waiting for user input).

A change in voltage or frequency is not instantaneous, it can take many clock cycles.
A study by Mazouz, Laurent, Pradelle and Jalby1226 investigated the latency of CPU
frequency transition. Figure 13.13 shows the mean time, in milliseconds, taken by an
Intel IvyBridge to transition from one clock frequency (colored lines) to another (x-axis);
original paper shows median time.

A study by Götz, Ilsche, Cardoso, Spillner, Aßmann, Nagel and Schill719 investigated
how the total system power consumed by implementations of various algorithms varied
with cpu clock frequency, with the intent of finding the frequency that minimised power
consumption.

Figure 13.14 shows that total power consumption does not always decline with frequency,
there is a frequency below the maximum that minimises power consumed.459 The power
minimisation frequency depends on the implementation of the sorting algorithm, with
the difference between minimum and maximum depending on the number of items being
sorted. Predicting the power consumed199 by a program is a non-trivial problem.

Programming languages are starting to support constructs that provide developers with
options for dealing with power consumption issues.1633

13.3.2.1 Hardware variation

This section outlines some evidence for large variations in hardware component perfor-
mance. Much of the data used in the analysis was obtained using programs executing on
components manufactured five to ten years before this book was published; variability has
likely increased in the subsequent years. The hardware components covered include:

• CPU: performance, power consumption and instruction counts,

• main storage: hard disc performance and power consumption,

• memory: performance and power consumption,

When computing devices are connected to the mains power supply, there is rarely any
need to be concerned about the characteristics of the supply. Batteries have characteristics
that can affect the performance of devices connected to them, such as the level of power
delivery being dependent on the current charge state and power draw frequency character-
istics. In a mobile computing environment, power consumption can be just as important as
runtime performance, if not more so; there are limits to the amount of electrochemical en-
ergy that can be stored.1218 Peltonen et al1465 is a public dataset of power consumption on
149,788 mobile devices, containing 2,535 different Android models; Jongerden944 anal-
yses various models of battery powered systems and Buchmann271 covers rechargeable
batteries in detail.

In mobile devices, a large percentage of power is consumed by the display; optimization
of display intensity and choice of color,1759 while an app is running, is not discussed here.

viThe following two sections separately discuss performance variation whose root cause in hardware or
software; this is for simplicity of presentation.

13.3. BENCHMARKING 369

20 30 40 50 60

50

100

150

200

250

300

Temperature (C)

P
ow

er
 (

m
ill

i−
W

at
t)

Sleeping

−20 0 20 40 60 80 100
8.0

8.5

9.0

9.5

10.0

Temperature (C)

P
ow

er
 (

m
ic

ro
−

W
at

t)

4MHz

Figure 13.16: Power consumed by 10 Amtel SAM3U mi-
crocontrollers at various temperatures when sleeping or
running. Data from Wanner et al.1925 Github–Local

1.01 1.02 1.03 1.04 1.05 1.06 1.07

280

285

290

295

300

305

Frequency

S
ec

on
ds

65 Watts

●

●

Figure 13.17: Time taken to execute the EP benchmark
and clock frequency of 2,386 Intel processors, with a
RAPL of 65 Watts. Data kindly provided by Rountree.1202

Github–Local

CMOS (complementary metal-oxide-semiconductor) is the dominant technology used in
the fabrication of the chips contained in computing devices; until a so-called beyond-
CMOS device1383 technology becomes commercially viable, this section only considers
the characteristics of CMOS devices.

CPU: The processors executing code are often considered to be interchangeable with
any other, mass-produced, etched slices of silicon stamped with the same model number;
while never exactly true, deviations from this interchangeability assumption were once
small enough to only be of interest within specialised niches, e.g., hardware modders
interested in running systems beyond rated limits.

The micro-architecture of modern processors has become so complicated that apparently
minor changes to an instruction sequence can have a major impact on performance;874 a
trivial change to the source code, or the use of a different compiler flag may be enough.

Power consumption and clock frequency are directly connected; increasing clock fre-
quency increases power consumption (a good approximation for processor power con-
sumption is P = αFV 2 + I0V , where: α is a device dependent constant, F is clock fre-
quency, V is voltage supplied to the cpu,vii and I0 is leakage current). Processors clocked
at the same frequency execute instructions at the same rate. However, variations in the
number of atoms implementing internal circuitry produces variations in power consump-
tion. Some processors reach their maximum operating temperature more quickly than oth-
ers; to prevent device destruction through overheating, power consumption is reduced by
reducing the clock rate. Different processors have different sustained performance rates
because of differences in their power consumption characteristics. Vogeleer458 discusses
the modeling of low level temperature/power relationships for the kind of processors used
to run applications.

A study by Frumusanu633 measured the power and voltage, at various frequencies, of
an Exynos-7420 A53 processor idling and at load. Figure 13.15 shows measured power
consumption, involving one to four cores under load, at various frequencies and a fitted
regression model.

Any benchmark made using a single instance of a processor is a sample drawn from a
population that could vary by something like 5-10% or more when executing code and
several hundred percent when idling. The extent to which results based on this minimum
sample size is of practical use will depend on the questions being asked. If the power
consumption characteristics of the population of a particular CPU is required, then it is
necessary to benchmark a sample containing an appropriate number of identical proces-
sors. Methodologies for benchmarking power consumption1743 require detailed attention
to many issues.

A study by Wanner, Apte, Balani, Gupta and Srivastava1925 measured the power con-
sumed by 10 separate Amtel SAM3U microcontrollers at various ambient temperatures.
Figure 13.16 shows a 5-to-1 difference, between supposedly identical processors, in power
consumption when in sleep-mode (upper plot), and around 5% difference when operating
at 4MHz.

Section 11.6 discusses the building of mixed-effects models for power variations of the
Intel Core processor.

A study by Marathe, Zhang, Blanks, Kumbhare, Abdulla and Rountree1202 investigated
the variation in performance of 2,386 Intel Sandy Bridge XEON processors while oper-
ating under a running average power limit (RAPL). Figure 13.17 shows the time taken
by 2,386 processors to complete the Embarrassingly parallel benchmark and their clock
frequency, with a RAPL of 65 Watts.

How accurate are power consumption measurements? These measurements are often
implemented by periodically sampling the voltage across a known resistance. A study by
Saborido, Arnaoudova, Beltrame, Khomh and Antoniol1623 investigated the measurement
error introduced by different sampling rates, on mobile devices. Figure 13.18 shows the
power spectrum of the Botanica App, executing on a BeagleBone Black running Android
4.2.2, sampled at 500K per second. By using a very high sampling rate, it is possible to
see the noticeable peak in power consumed by very short-lived events, something that low
frequency sampling would not detect (the paper lists error estimates for lower sampling
rates).

viiOn some processors there is a linear relationship between voltage and frequency,458 i.e., P = βV 3 + I0V ,
or P = γF3 + I0V .

370 13. Experiments

0 10000 30000 50000

1e−11

1e−09

1e−07

1e−05

Frequency

P
ow

er
 d

en
si

ty

Figure 13.18: Power spectrum of the electrical power
consumed by the Botanica App executing on a Beagle-
Bone Black running Android 4.2.2. Data from Saborido
et al.1623 Github–Local

0 5 10 15 20 25 30 35

40

45

50

55

60

65

70

Offset (GB)

B
an

dw
id

th
 (

M
B

 s
ec

)

0 50 100 150

30

40

50

60

70

80

Offset (GB)

B
an

dw
id

th
 (

M
B

 s
ec

)

Figure 13.19: Read bandwidth at various offsets for new
disks sold in 2002 (upper) and 2006 (lower). Data kindly
provided by Krevat.1044 Github–Local

In theory, counting the instruction executed by a program is a means of obtaining, power
independent, answers to questions about comparative program performance. Some pro-
cessors include hardware support for counting the number of operations performed, e.g.,
instruction opcodes executed and cache misses; however, the purpose of these counters is
to help manufacturers debug their processors, not provide end-user functionality. Conse-
quently, counter values are not guaranteed to be consistent across variants of processors
within the same family1934 and fixing faults in the counting hardware does not have a high
priority (e.g., counting some instructions twice or not at all; Weaver and Dongarra1934

found that in most cases the differences were a fraction of a percent of the total count,
but for some kinds of instructions, such as floating-point, the counts were substantially
different). A study by Weaver and McKee1935 found that it was possible to adjust for the
known faults in the hardware counters; see Github–benchmark/iiswc2008-i686.R.

How are calls into operating system routines, which may execute at higher privilege levels,
counted? Also, the execution time of some instructions may depend on other instructions
executed at around the same time (modern processors have multiple functional units and
allocate resources based on the instructions currently in the pipeline), the time taken to
execute other instructions can be very unpredictable, e.g., time taken to load a value from
memory depends on the current contents of the cache and other outstanding load requests.
A study by Melhus and Jensen1259 showed that address aliasing of objects in memory
could have a huge impact on the relative values of some hardware performance counters.

Hardware counters need not be immune to observer effects; in particular, the values re-
turned can depend on the number of different hardware counters being collected.1342

Main storage: Traditionally main storage has meant hard disks (sometimes backed-up
with tape), but solid state devices (SSD) are rapidly growing in capacity1800 and use; for
extremely large capacity magnetic tape is used: this niche use is not discussed here.

Data is read/written to a hard disk by moving magnetic sensors across a rotating surface.
These spatial movements create a correlation between successive operations, e.g., the
time taken to perform the second read will depend on its location on the disk relative to
the first. Disks spin at a constant rate, and in the same time interval more data can be read
from the area swept out near the outer edge of a platter than from one near the spindle
(the staircase effect in the upper plot in figure 13.19 is a result of zoning). This location
dependent performance characteristic makes disk benchmark performance dependent on
the history of the data that has been added/deleted.

Further correlations are created by data buffering, by the operating system and the device
itself, and access requests being reordered to optimise overall throughput.

Storage farms organise files so that those most likely to be accessed are stored on the outer
tracks, while files less likely to be accessed are stored on the inner tracks. A growing
percentage of disks are used in data centers and at some point manufacturers may decide
to concentrate on designing drives for this market.254

The continuing increase in the number of bits that can be stored within the same area of
rotating rust has been achieved by reducing the size of the magnetic domain used to store
a bit. Like silicon wafer production, variations in the fabrication process of disc platters
can now result in large differences in the performance of supposedly identical drives.

A study by Krevat, Tucek and Ganger1044 measured the performance of disk drives orig-
inally sold in 2002, 2006, 2008 and 2009. Figure 13.19, upper plot, shows the read
bandwidth of nine disks from 2002, each displayed using a different color and there is
little variation between different disks (fitting a regression model finds that disk identity
is not a significant predictor of performance, p-values around 0.2). The lower plot shows
the read bandwidth of nine disks from 2006, each displayed using a different color; the
visibility of different colors shows the variation between different disks (fitting a regres-
sion models finds that disk identity is a significant component of performance prediction,
p-values around 10−16).

To increase recording density, drive manufacturers are now using Shingled Magnetic
Recording (SMR), where tracks overlap like rows of shingles on a roof. Singled discs
have very different performance characteristics,14 but little data is publicly available at
the time of writing.

SSDs are sufficiently new that little performance data is publicly available at the time of
writing.

A study by Kim998 ran eight different benchmarks on SSD cards from nine different
vendors. The range of performance values was different for both vendors and benchmark.

13.3. BENCHMARKING 371

po
vr

ay

sje
ng

na
m

d

ga
m

es

go
bm

k

pe
rlb

en
ch

gr
om

ac
s
gc

c

h2
64

re
f

ca
lcu

lix

as
ta

r

de
alI

I

to
nt

o

bz
ip2

Ave
ra

ge

ze
us

m
p

so
ple

x

xa
lan

cb
m

k

om
ne

tp
p

lib
qu

an
tu

m

m

cf
m

ilc

ca
ctu

sA
DM

lbm

hm
m

er

sp
hin

x3

wrf

bw
av

es

ge
m

sF
DTD

les
lie

3d
 38

33
28
23
18
13

8
3
2
7

12
17
22
27
32
37

SPEC_CPU2006_FP gt1 cpu1 X3D VC PR

Chipset

Disk

GPU
Memory
Controller
Memory

CPU

P
ow

er
 (

w
at

ts
)

0

5

10

15

20

25

Figure 13.20: Average power consumed by one server’s
CPU (four Pentium 4 Xeons; red) and memory (8
GB PC133 DIMMs; blue) running the SPEC CPU2006
benchmark (upper) and breakdown by system component
when executing various programs. Data from Bircher.199

Github–Local

1e+00 1e+02 1e+04 1e+06 1e+08

0.05

0.10

0.20

0.50

1.00

Array size

R
un

tim
e

(s
ec

s)

L1 L2 L3

Figure 13.21: Time taken to find a unique item in arrays
of various size, containing distinct items, using various
search algorithms; grey lines are L1, L2 and L3 proces-
sor cache sizes. Data from Khuong et al.995 Github–Local

Building a regression model, using normalised benchmark scores, finds that one vendor’s
products have a sufficiently consistent performance that they can be included in a model
(these products appear to have the best performance, the other vendors appear to have the
same performance); see Github–benchmark/hyojun/hyojun.R.

Memory: Memory chips tend to be thought about in terms of their capacity and not
their performance (such as, read/write delays or power consumption). Performance is
governed by access rate and by the number of bytes transferred per access, with accesses
usually made via some form of memory control chip (the capabilities of this controller
have a significant impact on performance). Many motherboards provide options to select
memory chip timing characteristics.

A study by Bircher199 investigated the power consumed by the various hardware of a
server, while it executed the SPEC CPU2006 benchmark. Figure 13.20, upper plot, breaks
down average power by CPU (red) and memory (blue), while the lower plot breaks the
power down by the major subcomponents of the server.

There is often a performance hierarchy for memory, with on (cpu) chip cache providing
faster access to frequently used data. The interaction between the size of the various mem-
ory caches, and an algorithm’s use of storage, can result in performance characteristics
that change as the size of the objects processed changes.

A study by Khuong and Morin995 measured the performance of several search algorithms,
when operating on arrays of various sizes (items were stored appropriately in the array,
for the algorithm used). Figure 13.21 shows the time taken by different algorithms to find
an item in an array, for arrays of various sizes; the grey lines show the total size of the
processor L1, L2 and L3 caches.

The following are some examples of memory chip characteristics that have been found to
noticeably fluctuate:

• a study by Gottscho, Kagalwalla and Gupta718 measured power consumption variability
of 13 DIMMs, of the same model of 1G DRAM from four vendors. The variation about
the mean, at one standard deviation, was 5% for read operations, 9% for write and 7%
for idling; see Github–benchmark/J20_paper.R,

• a study by Gottscho717 measured the power consumption of 22 DDR3 DRAMs, manu-
factured in 2010 and 2011, from four vendors. Read operations consumed around 60%
of the power needed for write operations, with idle consuming around 40%; the stan-
dard deviation varied from 10% to 20%. The power consumed also varied with value
being read/written, e.g., writing 1 to storage containing a 0 required 25% more power
than writing a 0 over a 1; see Github–benchmark/MSTR10-DIMM.R for data,

• a study by Schöne, Hackenberg and Molka1650 found that memory bandwidth was re-
duced by up to 60%, as the frequency of the cpu was reduced, that memory performance
characteristics varied between consecutive generations of Intel processors and between
server and desktop parts.

The variability of memory chip performance is likely to increase, as vendors further re-
duce power consumption and improve performance by lengthening DRAM refresh times;
optimising each computer by tuning it to the unique characteristics of the particular chips
present in each system.1104

Chandrasekar322 provides a detailed discussion of DRAM power issues, including code
for a tool to obtain detailed information about the memory chips installed on a system.

13.3.2.2 Software variation

This section outlines some of the evidence for large variations in software performance,
briefly covering the following software components and processes:

• The environment: interaction with the environment, file system, support libraries and
aging,

• Configurations,

• Creating an executable: compiler optimization and link order,

• Tools.

372 13. Experiments

variable

T
im

e
(m

s)

580

585

590

595

600

605

Figure 13.22: FFT benchmark executed 2,048 times fol-
lowed by system reboot, repeated 10 times. Data kindly
provided by from.963 Github–Local

0 20 40 60 80 100

−1

0

1

2

3

4

5

Characters added to the environment

P
er

ce
nt

ag
e

pe
rf

or
m

an
ce

 d
iff

er
en

ce

Figure 13.23: Percentage change, relative to no environ-
ment variables, in perlbench performance as characters are
added to the environment. Data extracted from Mytkowicz
et al.1341 Github–Local

43
3.

m
ilc

45
9.

G
em

s

42
9.

m
cf

47
1.

om
ne

48
2.

sp
hi

40
3.

gc
c

48
1.

w
rf

47
3.

as
ta

43
6.

ca
ct

46
5.

to
nt

44
5.

go
bm

45
4.

ca
lc

45
6.

hm
m

e

44
4.

na
m

d

45
3.

po
vr

shared cache: Hits
shared cache: Conflict misses
shared cache: Capacity misses
shared memory bus: Accesses

S
lo

w
do

w
n

pe
rc

en
ta

ge

0

50

100

150

Figure 13.24: Changes in SPEC CPU2006 performance
caused by cache and memory bus contention, for one dual
processor Intel Xeon E5345 system. Data kindly provided
by Babka.101 Github–Local

The environment: Programs execute within an environment that often contains a com-
plicated ensemble of interconnecting processes and services that cannot be treated as in-
dependent standalone components. One consequence of this complexity,925 and intercon-
nectedness, is that the order in which processes are initiated during system startup can
have a noticeable impact on system performance.

The impact of a system’s prior history, on program performance, is seen in a study by
Kalibera, Bulej and Tůma,963 who measured the execution time of multiple runs of var-
ious programs. Figure 13.22 shows 10 iterations of the procedure: reboot computer and
make 2,048 performance measurements. The results show performance variation after
each reboot is around 0.1%, but rebooting can cause a shift of 3% in the average perfor-
mance (the ordering of processes executed during system startup varies across reboots,
due to small changes in the time taken to execute the many small scripts that are invoked
during startup; execution ordering affects placement of data in memory, which can have
an impact on performance). A later study836 found that the non-determinism of initial
program execution, in this case, could be reduced by having the operating system use
cache-aware page allocation.

Environmental interactions are not always obvious. A study by Mytkowicz, Diwan,
Hauswirth and Sweeney1341 increased the number of bytes occupied by a Linux envi-
ronment variable between runs of the Perlbench program. The results from each of 15
executions were recorded, an environment variable increased in size by one character, and
the procedure repeated 100 times. Figure 13.23 shows the percentage change in perfor-
mance, relative to the environment variable containing zero characters, at each size of
environment variable, along with 95% confidence intervals of the mean of each 15 runs.

Incremental operating system updates can produce a change in program performance. A
study by Flater613 compared the performance of cpu intensive and I/O bound programs
on two different versions of Slackware, running on the same hardware (versions 14.0 and
14.1, using Linux kernels 3.12.6 and 3.14.3 respectively). The results show consistent
differences in performances of up to 1.5% (rebooting did not have any significant impact
on performance).

Many systems allow multiple programs to share system resources, by executing at the
same time. Sharing becomes a performance bottleneck when one program cannot imme-
diately access resources when it requests them; access to memory is a common resource
contention issue on multi-processing systems. A study by Babka101 investigated the per-
formance of multicore processors having a shared cache. Figure 13.24 shows changes in
SPEC CPU2006 performance caused by cache and memory bus resource contention, on
a dual processor Intel Xeon E5345 system.

A study by Mazouz1225 investigated the performance of the SPEC OpenMP 2001 pro-
grams, compiled using gcc 4.3.2 and icc 11.0, running on multicore devices. It is possible
for a program’s code to execute on a different core after every context switch. Allowing
the operating system to select the core to continue program execution is good for system
level load balancing, but can reduce the performance of individual programs because re-
cently accessed data is less likely to be present in the cache of any newly selected core.
Thread affinity is the process of assigning each thread to a subset of cores, with the in-
tent of improving data locality, i.e., recently accessed data is more likely to available in
accessible caches.

Figure 13.25 shows the time taken to execute one program in 2, 4, and 6 threads, with
thread affinity set to compact (threads share an L2 cache), no affinity (allow the OS to
assign threads to cores) and scatter (distribute the threads evenly over all cores), each
repeated 35 times.

Configuring the system being benchmarked to only run one program at a time solves
some, but not all, cache contention issues. Walking through memory, in a loop, may result
in a small subset of the available cache storage being used (main memory is mapped to a
much smaller cache memory, which means that many main memory addresses are mapped
to the same cache address). Figure 13.26, from a study by Babka and Tůma,102 shows the
effect of walking through memory using three different fixed width strides; for 32 and 64
byte strides accesses to even cache lines is faster than odd lines, with the pattern reversed
for a 128 byte stride.

Operating systems generally have background processes that spend most of their time
idling, but wake up every now and again. When a background processes wakes up, it
will consume system resources and can have an impact on the performance reported by a
benchmark, i.e., background processes are a source of variation.

13.3. BENCHMARKING 373

S
ec

on
ds

4.5

5.0

5.5

compact
no affinityscatter

gcc
2

compact
no affinityscatter

icc
2

gcc
4

4.5

5.0

5.5

icc
4

4.5

5.0

5.5

gcc
6

icc
6

Figure 13.25: Execution time of 330.art_m, an OpenMP
benchmark program, using different compilers, number of
threads and setting of thread affinity. Data kindly provided
by Mazouz.1225 Github–Local

0 1000 2000 3000 4000

220

240

260

280

300

Byte offset within page

A
cc

es
s

tim
e

32

64

128

Figure 13.26: Access times when walking through mem-
ory using three fixed stride patterns (i.e., 32, 64 and 128
bytes) on a quad-core Intel Xeon E5345; grey lines at one
standard deviation. Data kindly provided by Babka.102

Github–Local

N
or

m
al

is
ed

 p
er

fo
rm

an
ce

0.98
0.99
1.00
1.01
1.02

OriginalStablised

a11y

OriginalStablised

dromaeo_basics

dromaeo_css

0.98
0.99
1.00
1.01
1.02

dromaeo_dom
0.98
0.99
1.00
1.01
1.02

dromaeo_jslib dromaeo_sunspider

Figure 13.27: Performance variation of programs from the
Talos benchmark run on original OS and a stabilised OS.
Data from Larres.1088 Github–Local

A study by Larres1088 investigated how the performance of one version of Firefox changed
as various operating system features were disabled (the intent being to reduce the like-
lihood that external factors added noise to the result). The operating system features
modified were: 1) every process that was not necessary was terminated, 2) address-space
randomization was disabled, 3) the Firefox process was bound exclusively to one cpu, and
4) the Firefox binary was copied to and executed from a RAMDISK.

Every program in the Talos benchmark (the performance testing framework used by
Mozilla) was run 30 times. Figure 13.27 shows the performance of various programs
running in original and stabilised (i.e., low-noise) configurations.

File systems: These provide the housekeeping structure for keeping track of information
on a storage device. The traditional view of a file, as a leaf in a directory tree, has become
blurred, with many file system managers now treating compressed archived files (e.g., zip
files) as-if they had a directory structure that can be traversed; Microsoft’s .doc format
contains a FAT (File Allocation Table, just like a mounted Windows file system) that can
refer to contents that may exist outside the file, other vendor applications can be more
complicated.781

A study by Zhou, Huang, Li and Wang2022 investigated the performance interplay be-
tween file systems and Solid State Disks (SSD), by running a file-server benchmark on a
Kingston MLC 60 GB SSD. Four commonly used Linux filesystems (ext2, ext3, reiserfs
and xfs) were mounted in turn using various options, e.g., various block sizes, noatime,
etc.

Figure 13.28 shows the number of operations per second for a file-server benchmark (see
paper and data for other benchmarks). A linear regression model involving the filesystem
and mount options is a poor fit to the data; see Github–benchmark/filesystem-SSD.R.

A study by Sehgal, Tarasov and Zadok1668 compared the power used when four com-
monly used filesystems were mounted in various ways, e.g., fixed vs. variable sector
size, different journal modes, etc. Various server workloads running on Linux were mea-
sured; web server power consumption varied by a factor of eight, mail server by a factor
of six and file and database by a factor of two.

Creating an executable: Many applications are built by translating source code to an
executable binary, with the translation tools often supporting many options, e.g., gcc sup-
ports over 160 different options for controlling machine independent optimization be-
havior. Compiler writers strive to improve the quality of generated code, and it is to be
expected that the performance of each release of a compiler will be different from the
previous one; there have been around 150 released versions of gcc in its 30-year history.

A study by Makarow1195 measured the performance of nine releases of gcc, made between
2003 and 2010, on the same computer using the same benchmark suite (SPEC2000), at
optimization levels O2 and O3.

Figure 13.29 shows the percentage change in SPEC number, relative to version 4.0.4, for
the 12 integer benchmark programs compiled using six different versions of gcc. SPEC
has a long history of being used for compiler benchmarking, and it is possible that the
versions of gcc used for this comparison have already been tuned to do well on this
benchmark, meaning there is little, benchmark specific, improvement to be had in the
successive versions used in this study.

The following summary output is from a mixed-effect model with the random effect on
the intercept and slope: Github–Local

Linear mixed model fit by REML [’lmerMod’]
Formula: value ~ gcc_version + (gcc_version | Name)

Data: lme_O2

REML criterion at convergence: 400.6

Scaled residuals:
Min 1Q Median 3Q Max

-2.7256 -0.2748 -0.0683 0.3039 4.3372

Random effects:
Groups Name Variance Std.Dev. Corr
Name (Intercept) 1192.792 34.537

gcc_version 3.155 1.776 -1.00
Residual 8.632 2.938

374 13. Experiments

0

500

1000

1500

2000

Filesystem

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

ext2 ext3 rfs xfs

Figure 13.28: Operations per second of a file-sever
mounted on one of ext2, ext3, rfs and xfs filesystems
(same color for each filesystem) using various options.
Data kindly supplied by Huang.2022 Github–Local

gcc version

P
er

ce
nt

ag
e

pe
rf

or
m

an
ce

 c
ha

ng
e

0

10

20

30

4.0.44.1.24.2.44.3.14.4.04.5.0

164.gzip 175.vpr

4.0.44.1.24.2.44.3.14.4.04.5.0

176.gcc

181.mcf 186.crafty

0

10

20

30

197.parser

0

10

20

30

252.eon 253.perlbmk 254.gap

255.vortex

4.0.44.1.24.2.44.3.14.4.04.5.0

256.bzip2

0

10

20

30

300.twolf

Figure 13.29: Percentage change in SPEC number, rela-
tive to version 4.0.4, for 12 programs compiled using six
different versions of gcc (compiling to 64-bits with the O3
option). Data from Makarow.1195 Github–Local

50

100

150

200

250

300

350

400

Optimization level

C
lo

ck
 ti

m
e

(s
ec

s)

−O0 −O1 −Os −O2 −O3

1.6GHz Nano X2
600MHz ARM
3.2GHz P4
3.4GHz i7
3.3GHz i5
1.6GHz P4
1.6GHz P4

Figure 13.30: Execution time of the xy file compressor,
compiled using gcc using various optimization options,
running on various systems (lines are mean execution time
when compiled using each option). Data kindly supplied
by Petkovich.454 Github–Local

Number of obs: 72, groups: Name, 12

Fixed effects:
Estimate Std. Error t value

(Intercept) -29.7469 11.0553 -2.691
gcc_version 1.4126 0.5513 2.562

Correlation of Fixed Effects:
(Intr)

gcc_version -0.997
convergence code: 0
boundary (singular) fit: see ?isSingular

The general picture painted by the model results is of a small improvement with each gcc
release, which is swamped by the size of the random effects, while the picture painted by
figure 13.29, is of some releases having a large impact on some programs.

A study by de Oliveira, Petkovich, Reidemeister and Fischmeister454 investigated the
impact of compiler optimization and object module link order on program performance.
Figure 13.30 shows the time taken by the xy file compression program, compiled by
gcc using various optimization options, to process the Maximum Compression test set
on various systems. The results show that different optimization levels have a different
performance impact on different systems (the lines would be parallel if optimization level
had the same impact for each system).

Compiling is the first step in the chain of introducing system variability into program
performance, the next step is linking. Figure 13.31 shows execution time of Perlbench
(one of the SPEC benchmark programs), on six systems, when the object files used to
build the executable are linked in three different orders and with address randomization
on/off. Some systems share a consistent performance pattern across link orderings, and
some systems are not affected by address randomization. But there is plenty of variation
across all the variables measured.

Tools: Dynamic profiling tools such a grpof work by interrupting a program at regular
intervals during execution (e.g., once every 0.01 seconds) and recording the current code
location (often at the granularity of a complete function). The results obtained can depend
on interrupt frequency and the likelihood of being in the process of calling/returning from
the profiled function.612

13.3.3 The cloud

Cloud computing has become a popular platform for applications that require non-trivial
compute resources. The service level agreements offered by cloud providers specify min-
imum levels of service, e.g., Amazon’s June 2013 EC2 terms specify 99.95% monthly
uptime.50 Cloud services general run virtualized instances, which means access to the
real hardware may sometimes be shared. Shared hardware access causes performance to
vary from one run to the next; what form might the characteristics of this variation take?

A study by Schad, Dittrich and Quiané-Ruiz1641 submitted various benchmarks, as jobs,
to Amazon’s Elastic Computing Cloud (EC2), twice an hour over a 31-day period; a
variety of resource usage measurements were recorded. Figure 13.32 shows one set of
resource usage measurements, the Unix benchmark utility (Ubench; a cpu benchmark)
running on small (upper) and large (lower) EC2 instances located both in Europe (red)
and the US (green).

Both plots show more than one distinct ranges of performance. This data is an example of
the variation experienced in Amazon’s EC2 performance over one particular time period,
and there is no reason to believe that any subsequent benchmarking will exhibit one, two,
three or more distinct performance ranges.

13.3.4 End user systems

Benchmark data supplied by end-users, run on the computing systems they own, is likely
to be subject to numerous known and unknown unknowns.

It may be impractical to switch off the many background processes that may be run-
ning on, for instance a user’s Windows machine, which might include: Internet based

13.4. SURVEYS 375

Link order

R
un

 T
im

e
(s

ec
s)

155
160
165
170
175
180

off

1.
5G

H
z

X
eo

n

156
158
160
162

on

86.5
87.0
87.5
88.0

1.
6G

H
z

N
an

o
X

2

86.5
87.0
87.5
88.0

150
160
170
180

1.
6G

H
z

P
4

150

155

160

160
170
180

1.
6G

H
z_

P
4

155
160
165
170

72

73

74

3.
2G

H
z

P
4

71.6
71.8
72.0

30.5
31.0
31.5

3.
3G

H
z

i5

30.6
30.8
31.0
31.2

29.0
29.5
30.0
30.5

Alpha Default Reverse

3.
4G

H
z

i7

29.5

30.0

30.5

Alpha Default Reverse

Figure 13.31: Execution time of Perlbench, part of the
SPEC benchmark, on six systems, when linked in three
different orders and address randomization on/off. Data
kindly supplied by Reidemeister.454 Github–Local

00 10 20 30 40 50

0e+00

1e+05

2e+05

3e+05

4e+05

5e+05

2009−2010

U
be

nc
h

cp
u

pe
rf

or
m

an
ce

00 10 20 30 40 50

0

20000

40000

60000

80000

100000

120000

2009−2010

U
be

nc
h

cp
u

pe
rf

or
m

an
ce

Figure 13.32: Ubench cpu performance on small (up-
per) and large (lower) EC2 instances, Europe in red
and US in green. Data kindly provided by Dittrich.1641

Github–Local

toolbars, anti-virus systems and general OS housekeeping processes. PassMark Soft-
ware specializes in benchmark solutions for Microsoft Windows based computers, and
Wren1980 kindly provided 10,000 memory benchmark results.

Figure 13.33 shows the results (in sorted order) from 783 systems containing an Intel Core
i7-3770K processor (whose official clock speed is 3.5GHz, some users may be overclock-
ing). This is another example (see fig 10.25) of the wide range of performance reported
for apparently very similar end-user systems.

User applications can have complex internal structures and modes of operation that inval-
idate assumptions made by a benchmark. For instance, application data files may not be
represented as a contiguous sequence of bytes, but contain internal meta-data and pointers
to blocks of data in other files.781

13.4 Surveys

This section discusses questionnaire surveys. Organizations use surveys are used to ob-
tain information about customers and the market(s) they are targeting, e.g., characteristics
of open source developers;1596 see fig 8.13. Applications need to run reasonably well on
the computers that customers currently use (see fig 8.27), and to coexist (or interoperate)
with the versions of libraries and other applications installed on these computers. A lot of
software engineering information only exists in the heads’ of the people who build soft-
ware systems, and this information can only be obtained by asking these people questions
and analysing their answers.

The survey package supports the analysis of samples obtained via surveys.

The characteristics of data encountered in survey samples include:422

• missing data: people don’t answer all the questions or stop answering after some point,

• misleading answers: giving answers that show those involved in a better light, such as
job adverts listing trendy topics and languages to attract more applicants,

• spatial information: how subjects are distributed geographically,

Studies have found518 that self-assessment of skills and character have a tenuous to mod-
est relationship with actual performance and behavior. The correlation between self-
ratings of skill and actual performance in many domains is moderate to meager.

Several studies by your author931, 932, 934 included a component that asked developers
about how many lines of code they had read and written during their professional career.

This question requires a lot of thought to answer, and there are many ways of adding up
the numbers. Does reading the same line twice count as two lines, or one line unless the
developer involved had forgotten reading it? How much does visually searching a screen
of code (e.g., for a particular identifier) count towards lines read? Counting the number
of lines in the programs written by a developer is likely to underestimate the number of
lines they have written; a line of code may be written and then deleted, an existing line
may be modified slightly.

Figure 13.34 shows the number of lines of code that 101 professional developers estimate
they have written. While an exponential model fits the data, the variance explained is
small.

A survey of the knowledge, or skill, of members of a population requires subjects to
provide correct answers to questions.

Item response theory (IRT) deals with the design, analysis, and scoring of tests and ques-
tionnaires. The ltm package (latent trait models) supports the analysis of item response
data.

What is the probability that a subject, m, will give the correct answer to the ith question,
xmi, when the subject has a knowledge/skill level of zm? The answer given by IRT156 is:

P(xmi = 1|zm) = ci +(1− ci)g(αi× (zm−βm))

where: ci is the probability that a subject will guess the correct answer, αi is a measure
of how well the question discriminates between subjects having a low/high level, βi the
question difficulty, and g(.) a link function (often the logit function; the default used by
the function in the ltm package).

376 13. Experiments

200 400 600

5

10

15

20

Sorted order

R
ea

d
sp

ee
d

(G
B

/s
ec

)

Figure 13.33: Performance of PassMark memory bench-
mark on 783 Intel Core i7-3770K systems; line is fit-
ted logit model. Data kindly supplied by Wren.1980

Github–Local

0 5 10 15 20 25 30

50

100

150

200

Experiences (years)

W
rit

te
n

(t
ho

us
an

d
lin

es
)

Quadratic
Loess
Exponential

Figure 13.34: Number of lines of code that 101 profes-
sional developers, with a given number of years experi-
ence, estimate they have written, lines are various regres-
sion fits. Data from Jones.931, 932, 934 Github–Local

−3 −2 −1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

Subject ability

P
ro

ba
bi

lit
y

co
rr

ec
t

Can.the.version.of.the.client.program.compiled.with.lib.1.0.jar.be.executed.with.lib.2.0.jar
Can.the.client.program.be.compiled.and.then.executed.with.lib.2.0.jar

Can.the.version.of.the.client.program.compiled.with.lib.1.0.jar.be.executed.with.lib.2.0.jar.1

Can.the.client.program.be.compiled.and.then.executed.with.lib.2.0.jar.1

Can.the.version.of.the.client.program.compiled.with.lib.1.0.jar.be.executed.with.lib.2.0.jar.2

Can.the.client.program.be.compiled.and.then.executed.with.lib.2.0.jar.2

Can.the.version.of.the.client.program.compiled.with.lib.1.0.jar.be.executed.with.lib.2.0.jar.3

Can.the.client.program.be.compiled.and.then.executed.with.lib.2.0.jar.3

Can.the.version.of.the.client.program.compiled.with.lib.1.0.jar.be.executed.with.lib.2.0.jar.4

Can.the.client.program.be.compiled.and.then.executed.with.lib.2.0.jar.4

Can.the.version.of.the.client.program.compiled.with.lib.1.0.jar.be.executed.with.lib.2.0.jar.5

Can.the.client.program.be.compiled.and.then.executed.with.lib.2.0.jar.5

Can.the.version.of.the.client.program.compiled.with.lib.1.0.jar.be.executed.with.lib.2.0.jar.6

Can.the.client.program.be.compiled.and.then.executed.with.lib.2.0.jar.6

Can.the.version.of.the.client.program.compiled.with.lib.1.0.jar.be.executed.with.lib.2.0.jar.7

Can.the.client.program.be.compiled.and.then.executed.with.lib.2.0.jar.7

Can.the.version.of.the.client.program.compiled.with.lib.1.0.jar.be.executed.with.lib.2.0.jar.8

Can.the.client.program.be.compiled.and.then.executed.with.lib.2.0.jar.8

What.is.the.console.output.if.the.client.program.version.compiled.with.lib.1.0.jar.is.executed.with.lib.2.0.jar

What.is.the.console.output.if.the.client.program.version.compiled.with.lib.1.0.jar.is.executed.with.lib.2.0.jar.1

What.is.the.console.output.if.the.client.program.version.compiled.with.lib.1.0.jar.is.executed.with.lib.2.0.jar.2

What.is.the.console.output.if.the.client.program.version.compiled.with.lib.1.0.jar.is.executed.with.lib.2.0.jar.3

Figure 13.35: Probability that a subject, having a given
relative ability, will answer a question correctly: lines are
for each question in a fitted Rasch model. Data from Di-
etrich et al.497 Github–Local

The Rasch model is simpler, and widely used; it contains a single parameter, βi, and
assumes there is no guessing (i.e., ci = 0), and questions share the same ability to dis-
criminate between subjects at different levels (i.e., αi = 1); the logit function is used as
the link function, and the equation is:

P(xmi = 1|zm) =
ezm−βm

1+ ezm−βm

The ltm package supports the fitting of Item response models having one (the Rasch
model), two (αi is included) and three (all parameters are included) parameter models;
the logit function is the default link function.

A study by Dietrich, Jezek and Brada497 investigated one aspect of developer knowledge
of a language: knowledge of Java type compatibility. The yes/no answers to 22 questions
provided by the 184 professional developers can be fitted to an IRT model.

The following code fits a Rasch model (single parameter), and a two parameter model
using the ltm function (z1 and z2 are dummy names used to denote each factor); a three
parameter model fails to be fitted by the tpm function.

library("ltm")

corr_mod1=ltm(corr_df ~ z1)

plot(corr_mod1)

corr_mod2=ltm(corr_df ~ z1+z2)

summary(corr_mod2)

t=tpm(corr_df) # fails to fit

Figure 13.35 shows: the probability that a subject having a given level of ability will
correctly answer each question.

Section 12.4.2 discusses the analysis of ranked items, i.e., placed in a preferred order.

The results of many studies62 have found that most subject ratings are based on an ordinal
scale (i.e., there is no fixed relationship between the difference between a rating of 2 and
3, and a rating of 3 and 4), that some subjects will be overly generous or miserly in their
rating, and that without strict rating guidelines different subjects apply different criteria
when making their judgements (which can result a subject providing a list of ratings that
is inconsistent with all other subjects).

There is no guarantee that data can be fitted, using this model. A study by Wohlin, Rune-
son and Brantestam1974 investigated the faults found in an 18-page document by student
and professional developers. Your author was unable to fit an IRT model to the data; see
Github–regression/stvr95.R.

When software systems are built by a small group of people, the developers may be called
on to solve a wide range of computer related issues, including the testing and tuning of
the user interface. The System Usability Scale (SUS)263, 264 is a widely used usability
questionnaire that produces a single number for usability. One study1853 compared five
methods of evaluating website usability, and found that SUS produced the most consistent
results for smaller sample sizes.

1e+00 1e+02 1e+04 1e+06
0.1

0.5

1.0

5.0

10.0

50.0

100.0

500.0

LOC

R
ev

ie
w

 ti
m

e
(m

in
ut

es
)

Figure 14.1: Reported LOC and duration of 2,751 code re-
views, for one company; reported reviews lasting less than
30 seconds (below green line), involving more than 2,000
LOC (to right of red line), processing at a rate greater than
1,500 LOC per hour (above blue line). Data extracted
from Cohen et al.380 Github–Local

Chapter 14

Data preparation

14.1 Introduction

The most important question to keep asking yourself while examining, preparing and
analyzing any data is: Do I believe this data?

Do patterns appear where none are expected, are expected patterns absent, are human
errors missing from the raw data, does the data collector believe whatever they are told,
does the measurement process create incentives for people to game it?

Books and presentations on data analysis rarely mention that a large percentage of the
time spent on data analysis often has to be invested in data preparation (perhaps 80%,
or more, of analysis effort), getting data into a form suitable for the chosen statistical
analysis techniques (or statistical package).i

Perhaps the largest task within data preparation is data cleaning; an often overlooked1137

aspect of data analysis that is an essential part of the workflow needed to avoid falling
foul of the adage: garbage in, garbage out.

Domain knowledge is essential for data cleaning; patterns have to be understood in the
context in which they occur. The fact that many data cleaning activities are generic does
not detract from the importance of domain knowledge. For instance, software knowledge
tells us that 1.1 is not a sensible measurement value for lines of code (this appears in the
NASA MDP dataset), talking to developers at a company to discover they don’t work
at weekends (e.g., the dates in the 7digital data) and knowing that system support staff
used the Unix pwd command to check that the system was operational (an analysis of job
characteristics for a NASA supercomputer586 has to first remove 56.8% of all logged jobs,
which are uses of pwd).

A study by Cohen, Teleki and Brown380 investigated data from 2,751 code reviews, from
one company over a 10-month period. During the data cleaning process they removed
all code reviews reported taking less than 30 seconds, involving more than 2,000 LOC
and processing code at a rate greater than 1,500 lines per hour. Figure 14.1 shows all
reported data points, with points inside the triangle being the only measurements retained
for analysis.

Data cleaning is often talked about as-if it is something that happens before data analysis,
in practice, the two activities intermingle; the time spent checking and cleaning the data
provides insights that lead to a better understanding of the kinds of analysis that might
be applicable, also, results from a preliminary analysis can highlight data needing to be
cleaned in some way. Data preparation is discussed here in its own chapter, as-if it was
performed as a stand-alone activity, in order to simplify the discussion of material in other
chapters.

Once cleaned, data may need to be restructured, e.g., rows/columns contained in different
files merged into a single data table, or the row/columns in an existing table reorganised
in some way. The required structure of the data is driven by the operations that need to be
performed on it (e.g., finding the median value of some attribute), or the requirements of
the library function used to perform the analysis.

iIn early versions, this chapter appeared immediately after the Introduction, but in response to customer
demand, it was moved here (the penultimate chapter); people want to read about the glamorous stuff, data
analysis, not the grunt work of data preparation.

377

378 14. Data preparation

It may be necessary to remove confidential information from the data, or to anonymize in-
formation that might be used to identify individuals (or companies). Datasets do not exist
in isolation, and it may be possible to combine apparently anonymous datasets to reveal
information;ii k-anonymity and l-diversity are popular techniques for handling anonymity
requirements (in a k-anonymized dataset each record is indistinguishable from at least
k− 1 other records, while l-diversity requires at least l distinct values for each sensitive
attribute). Techniques for anonymizing data are not covered here; Fung et al636 survey
techniques for privacy-preserving data publishing, Templ et al1821 provide an introduc-
tion to statistical disclosure control and the sdcMicro package.

The behavior of tools used during software development may result in information being
lost during some activities. For instance, the Git distributed version control system does
not carry-over information from the originator of push/pull requests, and allows commits
to be rebased (which changes their history timeline).670

While a lot of software engineering data comes from measurements made using software
tools, some is still derived from human written records (which can contain a substantial
number of small mistakes922).

Data cleaning involves a lot of grunt work that often requires making messy trade-offs and
having to make do. Tools are available to reduce the amount of manual work involved,
but these sometimes require placing trust in the tool doing the right thing; available tools
include:

• OpenRefine1420 (was Google Refine) reads data into a spreadsheet-like form and sup-
ports sophisticated search/replace and data transformations editing,

• the editrules package checks data values for consistency with user specified rules
involving named columns, e.g., total_fruit ==total_apples+total_oranges,

• the deducorrect package performs automatic value transformations based on user
specified consistency rules, relating to column values that must be met (e.g., failure
to meet the condition total_x > 0 will result in any value in that column having a
negative sign removed); this package can also impute missing values,

• there are a variety of special purpose packages that handle domain specific data, e.g.,
the CopyDetect package detects copying of exam answers in multi-choice questions.

14.1.1 Documenting cleaning operations

Documenting the changes made to the original data, during the cleaning process, serves a
variety of purposes, including:

• enabling third-parties to check that the changes are reasonable and don’t produce an
unrealistic analysis,

• enabling potential sources of uncertainty to be checked when multiple analysts publish
results based on the same dataset, i.e., if there are differences in the results, it is pos-
sible to check whether these differences are primarily the result of differences in data
cleaning,

• providing confidence to users of the final results of the analysis, that the researcher
doing the work is competent, i.e., that cleaning was performed.

Ideally the operations performed on the original data, to transform it into what is consid-
ered a clean state, are collected together as a script for ease of replication.

Some cleaning activities are trivial and yet need to be performed to prevent the analysis
being overwhelmed by what appears to be many special cases. For instance, an analysis78

of different company’s response to vulnerabilities reported in their products, started from
raw data that sometimes contained slightly different ways of naming the same company.
The company names data had to be cleaned to ensure that a single name was consistently
used to denote each organization; see Github–data-check/patch-behav.R.

The NASA Metrics Data Program (MDP) dataset contains fault data on 13 projects, and
has been widely used by researchers (a literature survey for the period 2000 to 2010769

found that 58 out of 208 fault prediction papers used it). This dataset contains many
problems730 that need to sorted out, e.g., columns with all entries having the same value
(suggesting a measurement or conversion error has occurred), duplicate rows, missing

ii63% of the US population can be uniquely identified using only gender, ZIP code and full date of birth.700

14.2. OUTLIERS 379

2 3 4 5 6 7

2

4

6

8

10

12

Width (inches)

H
ei

gh
t (

in
ch

es
)

2 3 4 5 6

2

4

6

8

10

12

H
ei

gh
t (

in
ch

es
)

Figure 14.2: Screen height and width reported by
682,000 unique devices that downloaded an App from
OpenSignal in 2015 (upper), reported measurements or-
dered so height always the larger value (lower). Data from
OpenSignal.1421 Github–Local

values (many occurred in rows calculated from other rows and involved a divide by zero),
inconsistent values (e.g., number of function calls being greater than the number of oper-
ators) and nonsensical values, e.g., lines of code having fractional values.

Despite the non-trivial work needed to clean the MDP dataset, to remove spurious data,
the authors of many papers using this dataset, have either not cleaned it, or only given a
cursory summary of the cleaning operations,217 e.g., “ . . . removes duplicate tuples . . .
along with tuples that have questionable values . . . ”, does not specify what values were
questionable. Consequently, even although the original dataset is publicly available it is
difficult to compare the results published in different papers, because no information is
available on what, if any, data cleaning operations were performed; so much of the data
is in need of cleaning that any results based on an uncleaned version of this dataset must
be treated with suspicion.

See Github–data-check/NASA_MDP-data_check.R for examples of integrity checks performed
on the MDP dataset.

It is possible that the values appearing in a sample are correct, but have been misclassified.

A survey of 682,000 unique Android devices in use during 2015, by OpenSignal,1421

included the screen height and width reported by the device; see figure 14.2, upper plot.
Many devices appear to have greater width than height, particularly those with smaller
screens. Perhaps the device owners are viewing the OpenSignal website with their phones
in landscape mode; the lower plot in Figure 14.2 switches the dimensions so that height
has the larger value; switched values in red.

The fault repositories of open source projects are publicly available, and the repositories
of larger projects are a frequent source of data for fault analysis/prediction researchers.

A study by Herzig, Just and Zeller820 manually classified over 7,000 issue reports ex-
tracted from the fault repositories of seven large Java projects. They found that on average
42.6% of reports had been misclassified, with 39% of files marked as defective not actu-
ally containing any reported fault (any fault prediction models built using the uncleaned
data are likely to be misleading at best and possibly very wrong). An earlier analysis821

had found that between 6 and 15% of bug fixing changes addressed more than one issue.

Possible reasons for the misclassification include: the status of an issue not being specified
when the initial report is filed, resulting in the default setting of Bug being used; issue
submitters having the opinion that a missing feature is a bug (request for enhancement
was the most commonly reclassified status); and bug reporting systems only supporting
a limited number of different issue statuses (forcing the submitter to use an inappropriate
status).

The study also highlighted how much effort data cleaning consumes; the work was per-
formed independently by two people and took a total of 725 hours (90 working days).

Sometimes the measured values from one or more subjects (e.g., people or programs)
are remarkably different from the values measured for other subjects. It can be tempting
to clean the data by removing the value for these subjects from the sample. A study by
Müller and Höfer1326 removed data on seven out of 18 subjects, because they considered
the performance of these subjects was so poor that they constituted a threat to the valid-
ity of the experiment (whose purpose was to compare the performance of students and
professional developers). This kind of activity might be classified as outlier removal or
manipulating data to obtain a desired result, either way, documenting the cleaning activity
makes it possible for readers of the analysis to decide.

14.2 Outliers

“An outlier is an observation which deviates so much from the other observations as to
arouse suspicions that it was generated by a different mechanism”.789

In some applications, observations that deviate from the general trend are the ones of
interest,321 e.g., intrusion detection and credit card fraud. This subsection covers the
case where deviate observations are unwanted; some later subsections cover software
engineering situations where deviate observations are themselves the subject of study.

Methods for handling outliers include:

380 14. Data preparation

0

100

200

300

400

V
ul

ne
ra

bi
lit

ie
s

pu
bl

is
he

d

2002−01−11 2003−05−21 2003−11−03

Figure 14.3: Number of reported vulnerabilities, per
day, in the US National Vulnerability Database for
2003. Data from the National Vulnerability Database.890

Github–Local

• using a statistical technique that does not assign too much weight to observations that
deviate from the patterns followed by most other observations. Techniques capable of
performing the desired statistical analysis are not always available, but when R func-
tions implementing them are available they may be discussed in the appropriate section,

• detecting and excluding outliers from the subsequent analysis. Traditionally outliers
have been manually selected and excluded from subsequent analysis. This approach
can work well when the sample contains a small amount of data, and the person doing
the detection has sufficient domain knowledge. There are a variety of functions that
automate the process of outlier selection and handling, some of these are discussed
below; see section 11.2.6.

another definition of outlier detection is “ . . . the problem of finding patterns in data
that do not conform to the expected normal behavior.”321 This definition requires that
an expected normal behavior be known, along with a method of comparing values for
outlyingness.

Figure 14.3 shows a suspicious spike in the number of daily reported vulnerabilities
recorded in the US National Vulnerability Database for 2003. What behavior could ex-
plain this pattern? Perhaps all vulnerabilities that had been reported, but not yet fully
processed, were simply published, for the public to see, at the end of the year?

A study by Zheng, Mockus and Zhou2018 investigated what they called problematic val-
ues, in the task completion time for Mozilla projects. A manual analysis found that for
various reasons, some patches for reported faults were being committed in batches (so the
commit date did not reflect the date the code for the patch was created). Enough informa-
tion was available (i.e., there was data redundancy) to build a model that suggested values
more likely to be correct (50% more accurate was claimed).

The date when an event occurred may appear unlikely, based on domain knowledge, e.g.,
staff rarely work at weekends. The following output shows a count of the number of
features recorded as being Done, in a company using an Agile process,1 for each day
of the week. Monday is day 0, and the counts for Saturday/Sunday should be zero; the
non-zero values suggest a 2-4% error rate, comparable with human error rates for low
stress/non-critical work. Github–Local

> table(Done_day %% 7)
0 1 2 3 4 5 6

670 708 669 716 447 12 16

Should outliers be removed from the sample used for analysis?

While removing outliers may improve the quality of the model fitted to an equation, does
it improve the quality of the fit of the model to reality?

Without understanding the processes that generated the data, there is no justification for
removing any value.

The real issue with outliers is the impact they have on the final result. In a large sample,
a few unusual values are unlikely to have any real impact data.

However, outliers are handled, any decision to exclude them from analysis needs to be
documented.

14.3 Malformed file contents

A sign that data, or its organization in a file, is malformed in some way, is that the variable
into which a file has been read does not have the expected contents (e.g., incorrect number
of columns, or a surprising type for the data in one or more columns, e.g., a string where
a number was expected). The str function provides a quick and easy way of checking
the types of columns in a data frame.

File formatting issues to watch out for include:

• functions for reading data in R (e.g., read.csv and read.table) often use the first few
lines of the file being read as the format to use when reading the rest of the file, i.e.,
the number of columns contained in each row and the datatype of the values in each
column. If there are one or more rows that do not follow the format selected at the
start of the file (e.g., different number of column delimiters; perhaps the result of non-
delimited strings such as a missing pair of quote characters), then subsequent values
may appear in the other columns, or be converted to a different type,

14.4. MISSING DATA 381

• termination delimiter missing from a string value; this can result in the contents of the
following row being treated as part of the current row (because the newline is treated as
part of the string),

• cut-and-pasting of data between media introducing conversion errors, e.g., the digit zero
treated as the letter D or G during image to character conversion.

A variety of ad-hoc techniques are available for locating the cause of problems. For
instance, the following code will convert all values that do not have the format of a number
to NA, which are then easily located using base-library support for processing NAs, with
their row index found using the which function:

which(is.na(as.number(as.character(data_frame$column_name))))

The complete.cases function returns a vector specifying which rows in its data.frame
argument are complete, i.e., do not contain any NAs; the na.omit function returns a copy
of its argument with any rows containing NA omitted.

14.4 Missing data

Missing data (for instance, a survey where the entry for a person’s age is empty) is often
the rule, rather than the exception, and books have been written on the subject. Missing
data may be disguised, in that it appears as a reasonable value1460 (e.g., zero when the
range of possible legitimate values includes zero), or it may not be visible to the measure-
ment process (e.g., intermittent check-ins to version control obscuring the detailed change
history1362), or the input process provides a two item choice (e.g., male/female), with one
item being the default and thus appearing as the missing value when no explicit choice is
made.

The starting point for handling missing data is to normalise how it is denoted, to the
representation used by R, i.e., NA (Not Available). Normalisation ensures that all miss-
ing values are treated consistently; special case handling of NA is built into R and many
functions include options for handling NA.

A wide variety of different representations for missingness may be encountered (e.g.,
special values that cannot occur as legitimate data values, such as: 9999, "#N/A", "mi
ssing", or no value appearing between two commas in a comma separated list), and it
is not uncommon for different columns within a dataset to use different representations
(because they originate from different measurement sources).

The following code illustrates one method for changing a known representation of missing
value to NA (the second form would be necessary if 9999 could appear as a legitimate value
in a column other than size):

data[data == 9999] = NA # set all elements having value 999 to NA

set all elements of column size having value 999 to NA
data$size[data$size == 9999] = NA

Once missing values have been explicitly identified it is possible to move on to deciding
whether to ignore these cases or to replace NA with some numeric value. Some algorithms
can handle missing values while others cannot; R functions vary in their ability to handle
missing values. A few techniques for selecting the replacement value are discussed below.

The R base I/O functions, such as read.csv, have conventions for handling the case of
zero characters appearing between the delimiters on each line of a file. The behavior de-
pends on the type that has been assigned to values in a particular column. For columns
assigned a numeric type, zero characters are treated as-if NA appeared between the de-
limiters, while for columns assigned a string type the zero character case is treated as the
empty string rather than NA, i.e., treated the same as the string "". These functions sup-
port a variety of options for changing the default the handling of zero characters and the
handling of leading/trailing white-space between delimiters.

As an example: reading a file containing the columns below left has the same effect as
reading a file containing the columns below right:

X,Y_str,Z X,Y_str,Z
1,"abc",2.2 1,"abc",2.2
2,,3.1 2,"",3.1
,NA,2 NA,NA,2

382 14. Data preparation

The table function counts occurrences of values, and by default does not include NA in
the count; the useNA options has to be used to explicitly specify that NA be counted:

table(data$some_column, useNA="ifany") # limit the count to one column

This one column use can be expanded to cover every column in data. If the output is
too voluminous, the number of columns processed can be reduced, or the call to table
replaced by a call to tabulate, which provides more options to control behavior:

sapply(colnames(data), function(x) table(data[, x], useNA="ifany"))

While there may be documentation specifying how missing values are represented, such
details may not be documented. An analysis of a dataset using the above code may show
a suspiciously large number of values such as 9999 or -1 (for an attribute that can never
be negative), a result that suggests further investigation is worthwhile.

14.4.1 Handling missing values

When deciding what to do about missing values, it is important to try to understand why
the values are missing. The following categories are commonly encountered in the anal-
ysis of missing data:

• Missing completely at random (MCAR): As the name suggests, the selection of missing
values occurred completely at random. Statistically this is the most desirable kind of
missingness, because it means there is no bias in the missing values,

• Missing at random (MAR): This sounds exactly like MCAR, but it is not completely
random in the sense that the choice of which values are missing is influenced by other
values in the sample. For instance, the level of seniority may correlate with the likeli-
hood that survey questions about salary are answered,

• Missing not at random (MNAR): This missingness could be as random as MAR, with
the one difference that the choice of missing values is influenced by values not in the
sample. For instance, the name of the developer who originally wrote the code ref-
erenced in a fault report may be missing if that developer is friendly with the person
reporting the fault, with friendship not being a recorded in the sample.

The following code can be used to get a rough estimate of the correlation between the
rows of a data.frame that contain missing values (figure 8.8 illustrates a method of
visualizing this information):

x=is.na(some_data_frame)
highlight rows having some, but not all, missing values
cor(subset(x, sd(x) > 0))

Many analysis techniques handle missing values by ignoring the rows or columns that
contain them; if the sample contains many rows and a low percentage of missing values,
this behavior may not be a problem. However, if the sample contains a large percentage
of missing values, any analysis will either have to make do with a smaller number of mea-
surements, be limited to using techniques that can gracefully adapt to missing data (i.e.,
don’t ignore rows containing one or more missing values) or be forced to use estimated
values for the missing data.

The ideal approach is to use an algorithm capable of handling samples that include miss-
ing data.

The process of estimating a value to use, where none is present in the sample, is known
as imputing.

A quick and dirty method of imputing values, that can be effective, is to replace a missing
value by the mean of the values in the corresponding column containing the missing value;
alternatively, if the data is ordered in some way (e.g., dates), the last value appearing
before the missing value might be used.

A more sophisticated approach to imputing values involves filling the missing value en-
tries using other values present in the sample. The Amelia, naniar and VIM packages
provide a variety of functions for visualizing datasets containing missing values and im-
puting values for these entries.

14.5. RESTRUCTURING DATA 383

0 100 200 300 400 500
0

10

20

30

40

50

Week

E
st

im
at

ed
 p

eo
pl

e

Figure 14.4: Estimated staff working on a project during
each week; lines are a fitted loess model and 95% confi-
dence bounds. Data from Buettner.275 Github–Local

A study by Buettner275 investigate project staffing, but was not able to obtain complete
staffing information. Figure 14.4 shows a loess fit and the 95% confidence bounds.

Some R functions support the use of splines for interpolating values. Splines originated
as a method for connecting a sequence of points by a smooth curve, not as a method for
fitting a curve minimizing some error metric. Apart from their familiarity, there is no
reason to prefer the use of splines over other techniques (implementation issues also exist
with the bs and ns functions, in the splines package, when fitting a model with the
predict.glm function1888 and then making predictions using new data points).

Data may be missing because the sample may not be large enough to be likely to contain
instances of rarely occurring cases (which would be seen in a larger sample). Good-Turing
smoothing643 is a technique for adding non-zero counts to adjust for unseen items.

14.4.2 NA handling by library functions

R functions vary in their ability to handle data.frames containing NA, with the behaviors
exhibited including:

• behaving in unpredictable ways when NA is encountered,

• behaving in predictable ways, that perhaps is surprising to the unknowledgeable, e.g.,
the value of NA ==NA is NA, as is NA !=NA,

functions that operate on complete rows or columns have a variety of behaviors when
they counter one or more NAs, including:

– supporting a parameter, often called na.rm, which can be used to select among vari-
ous methods for handling any NA that occur,

– ignoring rows containing one or more NA, e.g., glm ignores these rows by default, but
this behavior can be changed using the na.action option,

– making use of information present in rows containing one or more NA, e.g., the rpart
function,

Some regression model building functions return information associated with individual
data points, such as residuals. If the function removes rows containing any NA before
building the regression model, the number of data rows included in the returned model
may be less than originally passed in, unless rows containing NA is reinserted, e.g., by
using the naresid function.

14.5 Restructuring data

When the data of interest is spread over several files, it may be necessary to read two or
more files and merge their contents into a single data.frame.

If two datasets contain shared columns (i.e., column names, column ordering and infor-
mation held are the same), the rbind function can be used to join rows together, returning
a single data.frame; the cbind function performs the join operation for columns.

The merge function merges the contents of two data.frames based on one or more
criteria, e.g., shared column names.

14.5.1 Reorganizing rows/columns

The organization of rows and columns in a data.frame may not be appropriate for that
used by the library functions used to perform the analysis.

The values in a dataset are may be held in a wide format (i.e., a few rows and many
columns), but a long format (i.e., many rows and a few columns) is required, or vice
versa.

An example of wide format data is that used in figure 2.5; the IQ test scores have the
form:

384 14. Data preparation

test,gender,1,2,3,4,5,6,7,8,9
verbal,Boy,8455,14171,17596,29308,30490,27544,16037,9857,4635
verbal,Girl,5448,10570,15312,28591,32385,30830,18557,11443,5321
quantitative,Boy,3138,19634,18258,29037,23255,30376,16504,12565,5095
quantitative,Girl,2313,16905,19002,32707,26438,32413,15215,10007,3406
non-verbal,Boy,1390,18144,20713,29245,25720,27077,18095,11369,6077
non-verbal,Girl,1165,14370,18564,30488,29342,30458,18387,10450,5075
CAT3,Boy,2505,14505,19556,29917,29607,30327,17960,9392,2787
CAT3,Girl,1813,10927,17872,31059,32867,33269,18016,9041,2394

The melt function, in the reshape2 package, transforms data.frames to a long format,
such as the following (only the first 11 lines are shown):

test gender stanine count
1 verbal Boy X1 8455
2 verbal Girl X1 5448
3 quantitative Boy X1 3138
4 quantitative Girl X1 2313
5 non-verbal Boy X1 1390
6 non-verbal Girl X1 1165
7 CAT3 Boy X1 2505
8 CAT3 Girl X1 1813
9 verbal Boy X2 14171
10 verbal Girl X2 10570
11 quantitative Boy X2 19634

which was reorganized using the call (where b_g_IQ contains the data):

b_g=melt(b_g_IQ, id.vars=c("test", "gender"),
variable.name="stanine", value.name="count")

It is also possible to convert from long to wide format.

14.6 Miscellaneous issues

14.6.1 Application specific cleaning

The analysis of some kinds of data has acquired established preprocessing procedures;
the data is not wrong, but transforming it in some way improves the quality of subsequent
analysis. For instance, before analyzing text, common low interest words (such as “the”
and “of”, known as stop words) are removed; also words may be stemmed (a process that
removes suffixes with the intent of uncovering the root word, e.g., kicked and kicking
both become kick).

14.6.2 Different name, same meaning

Typos in character based data may be detected because of constraints on what can appear
in domain specific sequences, e.g., the spelling of words. More difficult to detect problems
include different people using different terminology for the same concept, or the same
terminology for different concepts.

The SPEC 2006 benchmark results often include a description of the characteristics of the
memory used by the computer under test. For historical marketing reasons, two scales are
commonly used to specify memory performance; the DDR scale is based on peak band-
width, while the PC scale uses clock rate. The SPEC result descriptions are not consistent
in their choice of scale, and so before any analysis can be performed the values have to
be converted to a single form. Also, for marketing reasons, the values are rounded to re-
duce the number of non-zero digits; an analyst interested in high accuracy would map the
marketing values to their actual values; see Github–benchmark/scripts/SPEC-memory.awk.

An email address is sometimes the only unique identifying information available, e.g., the
list of developers who have contributed to an open source project. The same person may
have used more than one email address over the period of their involvement in a project,
and it is necessary to detect which addresses belong to the same person.1956

14.6. MISCELLANEOUS ISSUES 385

0

5

10

15

20

First hex digit

P
er

ce
nt

 o
cc

ur
re

nc
e

2 4 6 8 a c e

C source
Google books

Figure 14.5: Percentage occurrence of the first digit of
hexadecimal numbers in C source and estimated from
Google book data. Data from Jones930 and Michel et
al.1276 Github–Local

14.6.3 Multiple sources of signals

Sometimes a value appearing in a sample could have come from multiple sources, only
one of which is of interest. An example of this is the question: when did hexadecimal
literals first appear as such in print?

One way of answering this question is to analyze the word n-grams (and associated
year of book publication) Google have made available from their English book scanning
project.708

The regular expression ˆ[0oO[xX][0-9a-fA-FoOl]] (ohh, Ohh and ell were treated as
the corresponding digits) returned 89 thousand matches.

OCR mistakes have resulted in some words being treated as hexadecimal literals, e.g.,
Oxford was sometimes scanned as 0xf0fd. The character sequence oxo is common, and
looking at some of the contexts in which this sequence occurs suggests that the usage
is mainly related to chemical formula (some uses are also likely to be references to a
cooking product of this name).

Assuming that hexadecimal notation did not start appearing in books before electronic
computers were invented, books prior to say 1945 (i.e., the end of World War II) can be
ignored.

Your author also assumed that, if any hexadecimal literal appears in a book, at least
one more such literal is likely to appear; applying this final filtering rule, the number
of matches was reduced to 7,292; with 319 unique character sequences.

Figure 14.5 shows a comparison of the use of hexadecimal literals in C source with those
extracted from Google books n-grams.

14.6.4 Duplicate data

Duplicate data can cause some analysis techniques to fail (e.g., regression modeling) or
skew the calculated results.

Duplication data is easily generated: the collation of data from multiple sources can result
in the same measurements appearing more than once, and there may be multiple measure-
ments of the same event (e.g., logging of computer faults where a single root cause pro-
duces the same message at sporadic times after the fault is experienced1806 and spatially or
functionally adjacent units to generate messages;1132 see Github–data-check/Blue-Gene.log).

The duplicated function returns information about rows that are exact duplicates. More
subtle duplication may involve the values in a row/column differing by a constant factor
from those in another row/column, e.g., one row contains temperature in Celsius while
another uses Fahrenheit.

When the data is numeric, close duplicates can be highlighted using pairwise correlation;
see section 10.5.4.

Some R functions handle duplicate row/columns gracefully (e.g., the glm function), while
others give unpredictable results (e.g., the solve function, which inverts a matrix), the
behavior depends on the algorithm used and what if any consistency checks were added
by the implementer of the code.

14.6.5 Default values

Sometimes a measurement process returns what is considered to be a reasonable value,
if it cannot return the actual value. For instance, IP geolocation services are always able
to associate a country with an IP address, but when they are unable to further refine the
location within a country, they return a location near the center of the country; for the
USA this is close to the town of Potwin in Kansas (population 449) which appears to
experience orders of magnitude more Internet related events, for its population size, than
other towns in the US.908

14.6.6 Resolution limit of measurements

Some kinds of measurement are inherently inexact, e.g., time. When working close to the
resolution limit of the measuring process, false signals can be generated by the interaction
between the measurement resolution and the processes generating measurement events.

386 14. Data preparation
N

um
be

r
of

 p
ro

ce
ss

es

0.5 0.6 0.7 0.8 0.9 1.0

0

200

400

600

800

1000

2 significant digits

Runtime (seconds)

N
um

be
r

of
 p

ro
ce

ss
es

0.5 0.6 0.7 0.8 0.9 1.0

0

200

400

600

800

1000

6 significant digits

Figure 14.6: Number of processes executing for a given
amount of time, with measurements expressed using
two and six significant digits. Data from Feitelson.585

Github–Local

A study by Feitelson585 measured the runtime of processes, executed on a system, to
an accuracy of two decimal digits. Initial analysis of the number of processes whose
execution fell within a given time interval found an unexpected behavior, there were many
time intervals that did not contain any processes; see figure 14.6, upper plot. Further
analysis found that the timer resolution was 1/64 second, and the gaps were an artefact of
the number of digits recorded, recording more digits (see figure 14.6, lower plot) resulted
in fewer intervals containing no measurement points.

14.7 Detecting fabricated data

A sample is not always derived from accurate measurements, the accuracy failures may
be accidental or intentional, or might not involve any actual measurements, e.g., it has
been fabricated.

Like all data analysis, detection of fabricated data is based on finding known patterns in
the data, i.e., patterns that have previously been found to appear in known fabricated data.
As always, the interpretation of why the data contains these patterns is the responsibility
of the audience of the results; it is always worth repeating that domain knowledge is key.

One pattern of behavior observed in real world data, with some regularity, is the first
digit of numeric values following Benford’s law to a reasonable degree of approximation
(while a figure of 30% of all datasets has been quoted, the actual figure is likely to be
much smaller1663). The failure of data to follow Benford’s law has been used to detect ac-
counting and election1610 fraud, identification of fake survey interviews1654 and scientific
research.496

While references to Benford’s law usually involve the first digit of numeric values, there
is a form that applies to the second and perhaps other significant digits.1382 There has
also been work157 suggesting that the digit at the opposite end of numeric literals, the
least significant digit, sometimes has a uniform distribution.

Benford’s law specifies that the probability of the first digit having value d is given by:
P(d) = log10(1+

1
d)

Figure 7.53 shows percentage occurrences for the first digit of numeric literals in C source
code.

If a set of independent and identically distributed random variables are sorted, the dis-
tribution of digits of the differences between adjacent sorted values is close to Benford’s
law.1287 A test based on this fact can detect rounded data, data generated by linear regres-
sion and data generated by using the inverse function of a known distribution.1382

The BenfordTests package contains a variety of function for evaluating the conformity
of a dataset to Benford’s law.

When generating fabricated data, it is sometimes necessary to produce a random sequence
of items. People hold incorrect beliefs211 about the properties of random sequences and
when asked to generate them produce sequences that contain predictable patterns, i.e.,
they are not random.

One study1657 was able to build a model that predicted repeated patterns in an individual’s
randomly selected sequence, with around 25% success rate, but when the model built for
one person’s behavior was used to make predictions about another persons the success
rate dropped to around 18%.

Detecting divergence from, or agreement with, these patterns of behavior depends on the
authors of the data being unfamiliar with the expected patterns of behavior, or being lazy
(i.e., being unwilling to spend the time making sure that the data they generate has the
expected characteristics; the creators of the fictitious accounts publicly published by Mad-
off’s companies, before his fraud was uncovered, made the effort to ensure they followed
Benford’s law1667).

An excess of round numbers has been used to suggest that data has been fabricated.1031

If people are willing to invest some effort, it is possible to manipulate data such that some
statistical tests meet expectations;1219 see Github–communicating/warp-pts.R.

Chapter 15

Overview of R

This chapter gives a brief overview of R for developers who are fluent in at least one
other computer language. The discussion pays attention to language features that are very
different from languages the reader is likely to be familiar with; the focus is on a few
language features that can be used to solve most problems.

The R language is defined by its one implementation; available from the R core team.1548

A language definition,1547 written in English prose, is gradually being written.

R programs tend to be very short, compared to programs in languages such as C++ and
Java; 100 lines is a long R program. It is assumed that most readers will be casual users
of R, whose programs generally follow the pattern:

d=read_data()
clean_d=clean_and_format(d)
d_result=applicable_statistical_routine(clean_d)
display_results(d_result)

If your problem cannot be solved using this algorithm, then the most efficient solution
may be for you, dear reader, to use the languages and tools you are already familiar with,
to preprocess the data so that it can be analysed and processed using R.

R is a domain specific language, whose designers have done an excellent job of creating
a tool suited to the tasks frequently performed when analysing the kinds of datasets en-
countered in statistical analysis. Yes, R is Turing complete, so any algorithm that can be
implemented in other programming languages can be implemented in R, but it has been
designed to do certain things very well, with no regard to making it suitable for general
programming tasks.

As a language the syntax and semantics of R is a lot smaller than many other languages.
However, it has a very large base library, containing over 1,000 functions. Most of the
investment needed to become a proficient user of R has to be targeted at learning to how
to combine these functions to solve the problem at hand. There are over 10,000+ add-on
packages available from the CRAN (Comprehensive R Archive Network).

Help on a specific identifier, if any is available, can be obtained using the ? (question
mark) unary operator, followed by the identifier. The ?? unary operator, followed by the
identifier, returns a list of names associated with that identifier for which a help page is
available.

The call library(help=circular), lists the functions and objects provided by the pack-
age named in the argument.

15.1 Your first R program

Much like Python, Perl and many other interpreted implementations, R can be run in
an interactive mode, where code can be typed and immediately executed (with "Hello
world" producing the obvious output).

Your first R program ought to read some data and plot it, not just print "Hello World".
The following program reads a file containing a single column of values and plots them,
to produce figure 15.1:

387

388 15. Overview of R

 d e h l o r w
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 15.1: Plot produced by hello_world.R program.
Github–Local

the_data=read.csv("hello_world.csv")

plot(the_data)

The read.csv function is included in the library that comes bundled with the base system
(functions not included in this library have to be loaded using the library function,
before they can be referenced; the package containing them may also need to be installed
via the install.packages function) and has a variety of optional arguments (arguments
can be omitted if the function definition includes default values for the corresponding
parameter). Perhaps the most commonly used optional arguments are sep (the character
used to separate, or delimit, values on a line, defaults to comma) and header (whether
the contents of the first line should be treated as column names, default TRUE).

The value returned by read.csv has class data.frame, which might be thought of as a
C struct type (it contains data only, there are no member functions as such).

The plot function attempts to produce a reasonable looking graphic of whatever data is
passed, which for character data is a histogram of the number of occurrences. Users of
R are not expected to be interested in manipulating low level details, and some effort is
needed to get at the numeric values of characters.

There are a wide variety of options to change the appearance of plot output; these can be
applied on each call to plot, or globally for every call (using the par function).

All objects in the current environment can be saved to a file using the save function, and
a previously saved environment can be restored using the load function. When quiting an
R session (by calling q()), the user is given the option of saving the current environment
to a file named .RData; if a file of this name exists in the home directory, when R is
started, its contents are automatically loaded.

15.2 Language overview

R is a language and an environment. Like Perl, it is defined by how its single implemen-
tation behaves, i.e., the software maintained by the R project.1548

R was designed, in the mid-1990s, to be largely compatible with S (a language, which
like C, started life in the mid-1970s at Bell Labs). When S was created, Fortran was the
dominant engineering language and the Fortran way of doing things had a strong impact
on early design decisions, i.e., R does not have a C view of the world; for instance, it uses
a row/column, rather than column/row ordering.

The designers of R have called it a functional language, and it does support a way of do-
ing things that is most strongly associated with functional program languages (including
making life cumbersome for developers wanting to assign to global variables).

The language also contains constructs that are said to make it an object-oriented lan-
guage, and it certainly contains some features found in object-oriented languages. Object-
oriented constructs were first added in the third iteration of the S language, and were more
of an addition to the functional flavor of the language than a complete make-over. The
primary OO feature usage is function overloading, when accessing functions from library
packages.

Lateral thinking is often required to code a problem in R, using knowledge of functions
contained in the base system, e.g., calling order to map a vector of strings to a unique
vector of numbers.

Some data analysts write non-trivial programs in R, which means they have to deal with
the testing and debugging issues experienced by users of other languages.

Base library support for debugging includes support for single stepping through a func-
tion, via the debug function, and setting breakpoints via the setBreakpoint function;
package support includes: RUnit package for unit testing, and the covr package for mea-
suring code coverage.

15.2.1 Differences between R and widely used languages

The following list describes language behaviors that are different from that encountered
in other commonly used languages (Fortran developers will not consider some of these to
be differences):

15.2. LANGUAGE OVERVIEW 389

• there are no scalars, e.g., 2 is a vector containing one element and is equivalent to
writing c(2). Most unary and binary operators operate on all elements of a vector
(among other things).

Many operations that involve iterating over scalar values in other languages, e.g., adding
two arrays, can be performed without explicit iteration in R, e.g., c(1, 2) + c(3, 4)
has the value c(4, 6),

• arrays start at one, not zero,

• matrices and data frames are indexed in row-column order (C-like languages use column-
row order),

• case is significant in identifiers, e.g., some_data and Some_data are considered to refer
to different objects,

• the period (dot, full stop, i.e., .) is a character than can occur in identifiers (e.g., a.
name), it is not a separate token having the role of an operator,

• some language constructs, implemented via specific language syntax in other languages,
are implemented as function calls in R, e.g., the functionality of return and switch is
provided by function calls,

• assignment to a variable in an outer scope, from within a function, is specified using
the <<- operator. The other assignment operators (e.g., <-, -> and =) always assign to
a local variable (creating one, if a variable of the given name does not already exist, in
local scope),

• vectors/arrays/data.frames can be sliced to return a subset of the original,

• explicit support for NA (Not Available). This value denotes a number that may exist, but
whose value is unknown. Operations involving NA, return NA, when the result value is
not known because the value of NA is unknown, but will return a value when the result
is independent of the value of NA, e.g., NA || TRUE,

• type conversion behavior may be driven by semantics rather than the underlying repre-
sentation, e.g., as.numeric("1") ==1 and as.numeric("a") returns NA.

The following R language features are found in commonly used languages:

• objects and functions come into existence, during program execution, when they are
assigned a value, appear as a function parameter, or in more obscure ways (there is no
mechanism for declaring any kind of identifier),

• the type of an object is the type of the value last assigned to it,

• decimal and hexadecimal literals have type numeric (literals starting with zero are not
treated as octal literals; any leading zero is ignored) even if they look like integers,
because they do not contain a decimal point. Some input functions, e.g., read.csv,
consider a column to have integer type, if all its values can be represented as an integer,

• what most other languages consider to be a statement (i.e., something that does not
return a value) R treats as an expression, e.g., if/for statements return a value.

15.2.2 Objects

Operations in R are performed on objects, sometimes known as variables. Objects are
characterized by their names and their contents; with the contents in turn being character-
ized by attributes specifying the kind of data contained in the object.

The R type system has evolved over time, and includes the terms mode (a higher level
view of the value representation, at least sometimes, than typeof, e.g., integer and double
have mode numeric), storage.mode (a concept going back to the S language) and typeof
(the underlying representation used by the C implementation of the language).

The mode, storage.mode and typeof functions return a string containing the respective
information, e.g., numeric, integer or function.

The length of an object is the number of elements it contains, e.g., a two-dimensional
array containing i rows and j columns, contains i× j elements. The length function
returns the number of elements in its argument.

The assignment operator creates an object, with the object name being the left operand
and its value and type being that of the right operand (left/right is reversed when the ->
assignment operator is used).

390 15. Overview of R

15.3 Operations on vectors

15.3.1 Creating a vector/array/matrix

An R vector can be thought of as a one-dimensional array. Vectors are indexed starting at
1 (not zero), and it is possible to added additional elements to a vector, but not remove an
existing element.

x = 2 # new vector containing one value
x = c(2, 4, 6, 8, 10) # new vector containing five values
new vector containing the contents of x and two values
x = c(x, 12, 14)
y = vector(length=5) # new vector created by function call
y = 3:8 # same as c(3, 4, 5, 6, 7, 8)
z = seq(from=3, to=13, by=3) # create a sequence of values
All elements converted to a common type
z = c(1, 2, "3") # String has the greater conversion precedence

Multidimensional arrays can be created using the array function, with the common case
of 2-dimensional arrays supported by a specific function, i.e., the matrix function.

> # create 3-dimensional array of 2 by 4 by 6, initialized to 0
> a3=array(0, c(2, 4, 6))
> matrix(c(1, 2, 3, 4, 5, 6), ncol=2) # default, populate in column order

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
> # specify the number of rows and populate by row order
> matrix(c(1, 2, 3, 4, 5, 6), nrow=2, byrow=TRUE)

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
> x = matrix(nrow=2, ncol=4) # create a new matrix
> y = c(1, 2, 3)
> z = as.matrix(y) # convert a vector to a matrix
> str(y)
num [1:3] 1 2 3

> str(z)
num [1:3, 1] 1 2 3

15.3.2 Indexing

One or more elements of a vector/array/matrix can be accessed using indexing. Accesses
to elements that do not exist return NA. Negative index values specify elements that are
excluded from the returned value.

The zeroth element returns an empty vector.

> x = 10:19
> x[2]
[1] 11
> x[-1] # exclude element 1
[1] 11 12 13 14 15 16 17 18 19
> x[12] # there is no 12’th element
[1] NA
> x[12]=100 # there is now
> x
[1] 10 11 12 13 14 15 16 17 18 19 NA 100

Multiple elements can be returned by an indexing operation:

> x = 20:29
> x[c(2,5)] # elements 2 and 5
[1] 21 24
> y = x[x > 25] # all elements greater than 25
> y
[1] 26 27 28 29

15.3. OPERATIONS ON VECTORS 391

> # The expression x > 25 returns a vector of boolean values
> i = x > 25
> i
[1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE

> # an element of x is returned if the corresponding index is TRUE
> x[i]
[1] 26 27 28 29

Matrix indexing differs from vector indexing in that out-of-bounds accesses generate an
error.

> x = matrix(c(1, 2, 3, 4, 5, 6), ncol=2)
> x[2, 1]
[1] 2
> # x[2, 3] need to be able to handle out-of-bounds subscripts in Sweave...
> x[, 1]
[1] 1 2 3
> x[1,]
[1] 1 4
> x[3,]=c(0, 9)
> x

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 0 9
> x=cbind(x, c(10, 11, 12)) # add a new column
> x

[,1] [,2] [,3]
[1,] 1 4 10
[2,] 2 5 11
[3,] 0 9 12
> x=rbind(x, c(5, 10, 20)) # add a new row
> x

[,1] [,2] [,3]
[1,] 1 4 10
[2,] 2 5 11
[3,] 0 9 12
[4,] 5 10 20

15.3.3 Lists

The difference between a list and a vector is that different elements in a list can have
different modes (types) and existing elements can be removed.

> x = list(name="Bill", age=25, developer=TRUE)
> x
$name
[1] "Bill"

$age
[1] 25

$developer
[1] TRUE
> x$name
[1] "Bill"
> x[[2]]
[1] 25
> x = list("Bill", 25, TRUE)
> x
[[1]]
[1] "Bill"

[[2]]
[1] 25

[[3]]
[1] TRUE
> y = unlist(x) # convert x to a vector, all elements are converted to strings

392 15. Overview of R

> y
[1] "Bill" "25" "TRUE"
> x = list(name="Bill", age=25, developer=TRUE)
> x$sex="M" # add a new element
> x
$name
[1] "Bill"

$age
[1] 25

$developer
[1] TRUE

$sex
[1] "M"
> x$age = NULL # remove an existing element
> x
$name
[1] "Bill"

$developer
[1] TRUE

$sex
[1] "M"

The [[]] operator returns a value, while [] returns a sublist (which has mode list).

15.3.4 Data frames

From the perspective of a programmer coming from another language, it may seem ap-
propriate to think of a data frame as behaving like a matrix, and in some cases it can
be treated in this way, e.g., when all columns have the same type, functions expecting a
matrix argument may work. However, a better analogy is to think of it as an indexable
structure type (where different members can have different types).

The read.csv functions reads a file containing columns, of potentially different types,
and returns a data frame.

When indexing a data frame like a matrix, elements are accessed in row-column order
(not the column-row order used in C-like languages). The following code selects all rows
for which the num column is greater than 2.

> x = data.frame(num=c(1, 2, 3, 4), name=c("a", "b", "c", "d"))
> x
num name

1 1 a
2 2 b
3 3 c
4 4 d
> # Middle two values of the column named num
> x$num[2:3]
[1] 2 3
> # Have to remember that rows are indexed first and also specify x twice
> x[x$num > 2,]
num name

3 3 c
4 4 d
> # Using the subset function removes the possibility of making common typo mistakes
> # No need to remember row/column order and only specify x once
> subset(x, num > 2)
num name

3 3 c
4 4 d

If one or more columns contain character mode values (i.e., strings), read.csv will cre-
ate, by default, a factor rather than a vector. The argument: as.is=TRUE causes strings to
be represented as such.

15.4. OPERATORS 393

Where ever possible, the code written for this book uses the subset function, rather than
relying on correctly indexing a data frame.

15.3.5 Symbolic forms

An R expression can have a value which is its symbolic form.

exp = expression(x/(y+z))
eval(expr) # evaluate expression using the current values of x, y and z

Uses of expression values include: specifying which vectors in a table to plot in a graph,
and including equations in graphs, for instance:

text(x, y, expression(p == over(1, 1+e^(alpha*x+beta))))

results in the following equation being displayed at the point (x, y): p =
1

1+ eαx+β

The D function takes an expression as its first argument, and based on the second argu-
ment, returns its derivative:

> D(expression(x/(y + z)^2), "z")
-(x * (2 * (y + z))/((y + z)^2)^2)

15.3.6 Factors and levels

When manipulating non-numeric values (e.g., names) statisticians sometimes find it con-
venient to map these values to integer values and manipulate them as integers. In pro-
gramming terminology, a variable used to represent one or more of these integer values
could be said to have a factor type, with the actual numeric values known as levels (a
parallel can be drawn with the enumeration types found in C++ and C, except these assign
names to integer values).

> factor(c("win", "win", "lose", "win", "lose", "lose"))
[1] win win lose win lose lose
Levels: lose win

Some operations implicitly convert a sequence of values to a factor. For instance, read.
csv will, by default, convert any column of string values to a factor; this conversion is a
simplistic form of hashing, and (when a megabyte was considered a lot of memory) was
once driven by the rationale of saving storage. These days the R implementation uses
more sophisticated hashing, and we live with the consequences of historical baggage.

Operations of objects holding values represented as factors sometimes have surprising
effects, for those unaware of how things used to be.

15.4 Operators

Operators in R have the same precedence rules as Fortran, which in some cases differ
from the C precedence rules (which most commonly used languages now mimic). An
example of this difference is: !x ==y which is equivalent to !(x ==y) in R, but in C-like
languages is equivalent to (!x) ==y (if x and y have type boolean, there is no effective
difference, but expressions such as: !1 ==2 produce a different result).

A list of operators and their precedence can be obtained by typing ?Syntax, at the R
command line.

Within an expression operand evaluation is left to right, except assignment which evalu-
ates the right operand and then the left.

In most cases, all elements of a vector are operated on by operators:

> c(5, 6) + 1
[1] 6 7
> c(1, 2) + c(3, 4)
[1] 4 6

394 15. Overview of R

> c(7, 8, 9, 10) + c(11, 12)
[1] 18 20 20 22
> c(0, 1) < c(1, 0)
[1] TRUE FALSE

in the last two examples recycling occurs, that is the elements of the shorter vector are
reused until all the elements of the longer vector have been operated on.

The && and || operators differ from & and | in that they operate on just the first element
of their operands, returning a vector containing one element, e.g., c(0,1) && c(1,1)
returns the vector FALSE.

The base system includes a set of bitw??? functions, that perform bitwise operations on
their integer arguments; there is the bitops package.

Operators Description
:: ::: access variables (right operand) in a name space (left operand)
$ @ component / slot extraction (member selection has lower precedence than

subscripting in C-influenced languages)
[[[array and list indexing
ˆ ** exponentiation (associates right to left)
- + unary minus and plus
: sequence operator
%any% special operators (%% and %/% has the same precedence as * and / in

C-influenced languages)
* / multiply and divide
+ - (binary) add and subtract
< > <= >= == != relational and equality (non-associative; equality has lower precedence in

C-influenced languages)
! negation (greater precedence than any binary operator in C-influenced

languages)
& && and of all elements and the first element
| || or of all elements and the first element
~ as in formulae
-> ->> local and global rightwards assignment
= assignment (associates right to left)
<- <<- local and global assignment (associates right to left)
? help (unary and binary)

Table 15.1: R operators listed in precedence order.

The character used for exclusive-or in C-influenced languages, ˆ, is used for exponentia-
tion in R; the xor function performs an exclusive-or of its operands. Like Fortran, R also
supports the use of ** to denote exponentiation.

The [and [[operators differ by more than being array and list indexing. The result of
the index x[1] has the same type as x, i.e., the operation preserves the type), while the
result of x[[1]] is a simplified version of the type of x (if simplification is possible.i

> x = c(a = 1, b = 2)
> x[1]
a
1
> x[[1]]
[1] 1
> x = list(a = 1, b = 2)
> str(x[1])
List of 1
$ a: num 1

> str(x[[1]])
num 1

> x = matrix(1:4, nrow = 2)
> x[1,]
[1] 1 3
> x[1, , drop = FALSE]

[,1] [,2]

iOut-of-bounds handling is also different, but I’m sure readers’ don’t do that sort of thing.

15.4. OPERATORS 395

[1,] 1 3
> # x[[1,]] is not allowed
>
> df = data.frame(a = 1:2, b = 1:2)
> str(df[1])
’data.frame’: 2 obs. of 1 variable:
$ a: int 1 2

> str(df[[1]])
int [1:2] 1 2

> str(df[, "a", drop = FALSE])
’data.frame’: 2 obs. of 1 variable:
$ a: int 1 2

> str(df[, "a"])
int [1:2] 1 2

15.4.1 Testing for equality

In addition to the equality operators, the base system includes two equality related func-
tions, identical and all.equal.

> x = 1:5 ; y = 1:5
> x == y # Return the result of equality test for each corresponding element
[1] TRUE TRUE TRUE TRUE TRUE
> identical(x, y) # Return a single value denoting exact equality
[1] TRUE
> 1L == 1 # 1L is stored internally as an integer, 1 is stored as a double
[1] TRUE
> identical(1L, 1) # identical requires the stored type be the same
[1] FALSE
> 0.9 == (1.1 - 0.2) # could be affected by lack of precision
[1] FALSE
> all.equal(0.9, 1.1 - 0.2) # do a fuzzy compare
[1] TRUE
> all.equal(0.9, 1.1 - 0.2, tolerance=0) # find out much how fuzz there is
[1] "Mean relative difference: 1.233581e-16"

The default tolerance used by the all.equal function is .Machine$double.epsˆ0.5.

Comparisons against NA always returns NA. The is.na function can be used to check for
this quantity; the anyNA function returns TRUE, if its argument contains at least one NA.

15.4.2 Assignment

Four of the ways of assigning a value to a variable in R include:

x <- 3 # Operator used by people who follow the herd
x <<- 3 # Assigns to the x at global scope

3 -> x # Rarely encountered outside descriptions of the language

x = 3 # Supported since R version 1.4

Many R books and articles use the two characters <-.ii Developers are used to seeing the
= token, and with nothing other than conformity to existing R usage to recommend the
alternative, the assignment token that developers are already very familiar with, is used in
this book.

There is one context where = does not behave like normal assignment. R supports the
use of parameter names in arguments to function calls, to explicitly specify that a named
parameter is to be assigned a given value. In the context of a function argument list, the
left operand of = is treated as the name of a parameter and the right operand as the value
to be assigned. An error is flagged, if the function definition does not have a parameter
having the specified name.

iiThe developers of the S language used terminals that had a single key for this symbol sequence.

396 15. Overview of R

func = function (a, b, c) a + b * c

func(2, 3, 9)
func(c=9, b=3, a=2)

func(d=3, 4, 5) # no parameter named d, an error is raised

use <- if the intent is to assign to d and pass this value as an argument
func(d<-3, 4, 5)

15.5 The R type (mode) system

R supports values having the following basic types (R also has the concept of mode, which
is based on semantics rather than underlying representation, e.g., the mode function returns
numeric where typeof returns either integer or double):

• NULL:

• raw: essentially uninterpreted byte values,

• logical: holds one of the values: TRUE, FALSE, T or F. The conversion as.logical(an
y_non_zero_value) returns TRUE,

• character: what many other languages call a string type,

• integer: the only integer type, contains 32 bits (NA is represented using the most negative
value, so this value is not available as an integer; trying to generate this, or any other
value outside the representable value of a 32-bit integer, will result in a value having a
double type),

• double: the only floating-point type, contains 64 bits. Can exactly represent all 32-bit
integers,

• complex: contains a real and imaginary double type,

An object may be reported to have one of these basic types, but it may actually be a vector
or array of this type.

More complicated types may be created, such as lists, data frames, etc.

15.5.1 Converting the type (mode) of a value

It is often possible to convert the mode (type) of a value by calling the as.some_mode
function, where some_mode is the name of a mode, e.g., integer. If a conversion fails,
NA is returned.

Conversion precedence

NULL < raw < logical < integer < real < complex < character < list < expression

15.6 Statements

R contains the usual language constructs that look like statements, but they can behave
like expressions:

• function: defines a function, whose value has to be assigned to an object:

f=function(p1, p2) {return(p1+p2)}

• blocks of code are bracketed using the punctuation pair: { and },

• ; (semicolon) is required to delimit multiple expressions on the same line, but is other-
wise optional,

• if: which takes an optional else arm (there is no then keyword, but there is an ifthene
lse function),

• for: which has the form for (i in x), where x is a vector (such as 1:10),

• while and repeat loops are available,

15.7. DEFINING A FUNCTION 397

• loops may be terminated using the break keyword or the break function, and may be
continued at the next iteration using the next keyword or next function,

• return is a function: return(1+return(1)) returns the value 1,

• switch is a function.

15.7 Defining a function

> g=1 # a global variable
> f = function(p1, p2) # define a function and assign it to f
+ {
+ l=g # Value access, check lexical and dynamic scope for g
+ g=2 # Assignment: only check local scope, if no variable exists, create one
+
+ m=h # h is dynamically in scope
+
+ return(return(1)+1) # return is a function call
+ }
> h=2 # another global variable
> f(1, 2)
[1] 1
> g
[1] 1
> h=3 # At global scope, so must be global variable

Argument evaluation is lazy, that is, they are evaluated the first time their value is required.

The ... token (three dots) specifies that a variable number of unknown arguments may
be passed.

unk_args=function(...)
{
a=list(...) # Convert any arguments passed to a list of values
Access the list of values in a
}

15.8 Commonly used functions

Technically every operation is a function call (so ’+’(1, 2) and 1+2 are equivalent), but
not all function calls have equivalent operator tokens.

> x = 1:10
> if (any(x > 7)) print("At least one value greater than 7")
[1] "At least one value greater than 7"
> if (all(x > 0)) print("All values greater than zero")
[1] "All values greater than zero"
> rep(1:2, 3)
[1] 1 2 1 2 1 2

• head/tail mimics the behavior of the Unix head/tail programs,

• length returns the number of elements in its vector argument,

• nrow/ncol return the number of rows/columns in the data frame argument (NROW/NCOL
gracefully handle vector arguments),

• order returns a vector containing an index in to the argument in the order needed to
sort the argument values,

• str lists the columns in a variable, along with their type and the first few values in each
row; it provides a quick way of verifying that columns have the expected type.

• which returns a vector of values containing the index of the argument values that are
true,

• methods: list functions overloaded on the argument name

• installed.packages: list all installed packages

• ls: lists variables that exist in the current environment,

• system.time, proc.time: cpu time used, and the real, and cpu time of the currently
running R process.

398 15. Overview of R

15.9 Input/Output

Functions are available for reading data having a variety of formats (e.g., comma sep-
arated values), from all the common data sources, e.g., files, databases, web pages. In
some cases the contents of a compressed file will be automatically uncompressed before
reading. In the case of files, all the data contained in the file is often read, and returned as
a single object.

Many functions try to automatically deduce the datatype of the data read, e.g., whether
it is integer, real, character sequence, etc. Sometimes the datatype selected is not correct,
and work has to be done to ensure the data is treated as having the desired type; the read.
csv function bases its decision on the type of each column, by analysing the first 6, or so,
lines of the file.

Some functions in the base system, e.g., read.csv, convert columns containing string
values to factors, by default; the original intent was, presumably, to reduce the storage
needed to hold the data. A column of factors, as a type, does not always behave the same
as a column of strings and this default conversion behavior is often a liability. Using the
argument as.is=TRUE prevents values being converted to factors (it is used in all of this
book’s example code).

data=read.csv("measurements.csv.gz", as.is=TRUE) # file will be uncompressed

data=read.csv("measurements.csv", sep="|", as.is=TRUE) # change separator

data=read.csv("https://github.com/Derek-Jones/ESEUR-code-data/blob/master/benchmark/MSTR10-DIMM.csv.xz", as.is=TRUE)

The first line of the input file is assumed to denote the name of each column, specifying
header=FALSE switches off this default behavior.

All characters on an input line after, and including, the comment character, #, are ignored
(various options interact with this behavior, including the comment.char option which
can be used to change the character used).

The foreign package supports the reading (and some writing) of data stored in some of
the binary file formats used by other applications, e.g., read.spss.

If data is not already in a form that can be easily processed by R, it may be simpler to
convert it using a language or tool that you are already familiar with, rather than using R.

The R environment includes a simple spreadsheet like editor for manual data entry and
modifying existing data.

scores = edit(scores) # invoke built-in spreadsheet like editor

There are corresponding write functions for many of the read functions, e.g., write.
csv.

The print function performs relatively simple formatted output (the format function
can be used to create more sophisticated formatting, that can then be output); the cat
function performs relatively little formatting, but is more flexible, and in particular does
not terminate its output with a newline; the sink function can be used to specify an
alternative location to write console output.

15.9.1 Graphical output

There are probably more functions supporting graphical output, in R, than textual output.
Perhaps the most commonly used graphical output function is plot. This function often
does a good job of producing a reasonable graphical representation of the data. Over-
loaded versions of this function are often provided by packages, to plot data having a
particular class created by the package.

By default, graphical output is sent to the console device; this behavior can be overridden
to produce a file having a particular format, e.g., pdf, jpeg, png and pictex. The list of
supported output devices varies across the operating systems on which R runs.

The behavior of the plot function can be influenced by previous calls to the par function,
which set configurable options.

Various packages providing graphical output are available, with the ggplot package prob-
ably being the most commonly used by frequent R users.

15.10. NON-STATISTICAL USES OF R 399

0 500 1500 2500 3500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

File offset

F
ra

ct
io

n
U

ni
qu

e
Figure 15.2: The unique bytes per window (256 bytes
wide) of a pdf file. Github–Local

15.10 Non-statistical uses of R

While the target of R’s domain specialised functionality is statistical data analysis, there
are other application domains where this functionality could be useful (but may not war-
rant effort needed to learn R).

A variety of functions designed for manipulating the rows and columns of delimited data
files are available; see Github–Rlang/Top500.R.

A technique for spotting whether a file contains compressed data (e.g., a virus hidden in
a script by compressing it to look like a jumble of numbers) is to plot the fraction of dis-
tinct values appearing in successive, fixed size, blocks; see figure 15.2. Compressed data
is likely to contain an approximately uniform distribution of byte values (compression
is achieved by reducing apparent information content), your mileage may vary between
compression methods.

The following code reads a pdf file, applies a sliding window to the data and then plots
the fraction of distinct values in each window (at a given offset).

window_width=256 # if less than 256, divisor has to change in plot call

plot_unique=function(filename)
{
t=readBin(filename, what="raw", n=1e7)

Sliding the window over every point is too much overhead
cnt_points=seq(1, length(t)-window_width, 5)

u=sapply(cnt_points, function(X) length(unique(t[X:(X+window_width)])))
plot(u/256, type="l", xlab="Offset", ylab="Fraction Unique", las=1)

return(u)
}

dummy=plot_unique("http://www.coding-guidelines.com/R_code/requirements.tgz")

15.11 Very large datasets

While most existing software engineering datasets tend to be small, exceptions may oc-
cur from time to time. A variety of techniques are available for handling large datasets,
including:

• the bigmemory package provides software defined memory management, e.g., swap-
ping data between memory and main storage. The bigtabulate package, along with
other big??? packages contain functions that perform commonly used operations on
this data.

• the data.table package extends data.frames to support up to 100G of storage,

References

1. 7Digital, Ltd. 7digital development team statistical analysis report april
2011-2012. blog article, July 2012. http://www.7digital.com. 137,
244, 329, 330, 380

2. J. T. Abbott, J. L. Austerweil, and T. L. Griffiths. Random walks on se-
mantic networks can resemble optimal foraging. Psychological Review,
122(3):558–569, July 2015. 33

3. T. Abdel-Hamid and S. E. Madnick. Software Project Dynamics: An
Integrated Approach. Prentice-Hall, Inc, 1991. 128, 356

4. D. Aboody and B. Lev. The value relevance of intangibles: The case of
software capitalization. Journal of Accounting Research, 36:161–191,
1998. 84

5. ACAA Technical Agent. Ada conformity assessment test suite
(ACATS). organization website, Jan. 2018. http://www.ada-
auth.org/acats.html. 171

6. A. Adamatzky. A brief history of liquid computers. Philosophical
Transactions of The Royal Society B, 374(1774), June 2019. 1

7. E. N. Adams. Optimizing preventive service of software products. IBM
Journal of Research and Development, 28(1):2–14, Jan. 1984. 157, 159

8. J. Adams. Risk and Freedom: The record of road safety regulation.
Transport Publishing Projects, 1985. 53

9. B. Adelson. Problem solving and the development of abstract categories
in programming languages. Memory & Cognition, 9(4):422–433, July
1981. 34, 35

10. ADPE Selection Office. Federal COBOL compiler testing service com-
piler validation request information. Report No FCCTS/TR-77/05, De-
partment of the Navy, USA, May 1977. 171

11. J. Agar. The Government Machine A Revolutionary History of the Com-
puter. The MIT Press, 2003. 92

12. R. Agarwal and M. Gort. The evolution of markets and entry, exit
and survival of firms. The Review of Economics and Statistics,
78(3):489–498, Aug. 1996. 99

13. P. J. Ågerfalk. Insufficient theoretical contribution: a conclusive ra-
tionale for rejection? European Journal of Information Systems,
23(6):593–599, Nov. 2014. 8

14. A. Aghayev and P. Desnoyers. Skylight-A window on shingled disk op-
eration. In 13th USENIX Conference on File and Storage Technologies,
FAST’15, pages 135–149, Feb. 2015. 370

15. O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir.
Deconstructing Amazon EC2 spot instance pricing. ACM Transactions
on Economics and Computation, 1(3), Sept. 2013. 62, 63

16. N. Agrawal. Representative, reproducible, and practical benchmark-
ing of file and storage systems. PhD thesis, University of Wisconsin-
Madison, 2009. 362

17. N. Agrawal, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Gener-
ating realistic impressions for file-system benchmarking. ACM Trans-
actions on Storage, 5(4):125–138, Dec. 2009. 226

18. N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch. A five-
year study of file-system metadata. ACM Transactions on Storage,
3(3):31–45, Oct. 2007. 246

19. M. Ahasanuzzaman, S. Hassan, C.-P. Bezemer, and A. E. Hassan. A
longitudinal study of popular ad libraries in the Google Play Store. Em-
pirical Software Engineering, 25(1):824–858, Jan. 2020. 93

20. N. Ahmad. Measuring investment in software. OECD Science, Tech-
nology and Industry Working Papers 2003/06, OECD, May 2003. 82

21. N. Ahmad, C. Aspden, and OECD Task Force on R&D and Other Intel-
lectual Property Products. Handbook on Deriving Capital Measures of
Intellectual Property Products. OECD Publishing, 2010. 82

22. J. J. Ahonen and P. Savolainen. Software engineering projects may fail
before they are started: Post-mortem analysis of five cancelled projects.
Journal of Systems and Software, 83(11):2175–2187, Nov. 2010. 120

23. J. J. Ahonen, P. Savolainen, H. Merikoski, and J. Nevalainen. Reported
project management effort, project size, and contract type. The Journal
of Systems and Software, 109(C):205–213, Nov. 2015. 125

24. S. Ajami, Y. Woodbridge, and D. G. Feitelson. Syntax, predicates, id-
ioms – What really affects code complexity? Empirical Software Engi-
neering, 24(1):287–328, Feb. 2019. 181

25. F. Akdemir and F. A. Kirmani. Synergy: A synthetic study on teams.
Thesis (m.s.), Umeo̊ School of Business, July-Sept. 2008. 80, 81

26. G. A. Akerlof. The market for "Lemons": Quality uncertainty
and the market mechanism. The Quarterly Journal of Economics,
84(3):488–500, Aug. 1970. 77

27. K. Akita, S. Itagaki, Y. Masawa, M. Nonaka, T. Hatani, K. Hattori,
S. Morisaki, Y. Yanagida, T. Takaya, T. Furuyama, and O. Takashi. Soft-
ware Development Data White paper 2012-2013. SEC BOOKS, 2012.
113, 119, 120

28. A. Akshintala, B. Jain, C.-C. Tsai, M. Ferdman, and D. E. Porter. x86-
64 instruction usage among C/C++ applications. In 12th ACM Inter-
national Systems and Storage Conference, SYSTOR ’19, pages 68–79,
June 2019. 203

29. H. A. A. Al-Mutawa. On the classification of cyclic dependencies in
Java programs. Thesis (m.s.), Massey University, New Zealand, 2013.
210

30. H. Alemzadeh, R. K. Iyer, Z. Kalbarczyk, and J. Raman. Analysis of
safety-critical computer failures in medical devices. IEEE Security &
Privacy, 11(4):14–26, July 2013. 294, 298

31. N. Ali, Z. Sharafi, Y.-G. Guéhéneuc, and G. Antoniol. An empirical
study on requirements traceability using eye-tracking. In 28th IEEE
International Conference on Software Maintenance, ICSM’12, pages
191–200, Sept. 2012. 29

32. T. Allee and M. Elsig. Are the contents of international treaties copied-
and-pasted? Evidence from preferential trade agreements. Working
Paper No. 8, World Trade Institute, Aug. 2016. 81

33. E. J. Allen, P. M. Dechow, D. G. Pope, and G. Wu. Reference-dependent
preferences: Evidence from marathon runners. Management Science,
63(6):1657–1672, June 2017. 134, 135

34. R. Allen and K. Kennedy. Optimizing Compilers for Modern Architec-
ture. Morgan Kaufmann Publishers, Mar. 2002. 205

35. R. C. Allen. The British industrial revolution in global perspective:
How commerce created the industrial revolution and modern economic
growth. Nuffield College, Oxford, 2006. 92

36. T. J. Allen and R. Katz. The dual ladder: Motivational solution or man-
agerial delusion? Working Paper 1692-85, Massachusetts Institute of
Technology, Sloan School of Management, Aug. 1985. 108

37. K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon. AndroZoo: Collect-
ing millions of Android apps for the research community. In Proceed-
ings of the 13th International Conference on Mining Software Reposi-
tories, MSR’16, pages 468–471, May 2016. 4

38. L. Allodi. Economic factors of vulnerability trade and exploitation. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS’17, pages 1483–1499, Oct.-Nov. 2017.
154

39. L. Allodi and F. Massacci. A preliminary analysis of vulnerability
scores for attacks in wild: The EKITS and SYM datasets. In Pro-
ceedings of the 2012 ACM Workshop on Building analysis datasets and
gathering experience returns for security, DABGERS’12, pages 17–24,
Oct. 2012. 154

40. D. A. Almeida, G. C. Murphy, G. Wilson, and M. Hoye. Do software
developers understand open source licenses? In 25th IEEE Interna-
tional Conference on Program Comprehension, ICPC’17, pages 1–11,
May 2017. 69

41. M. G. Almiron, E. S. Almeida, and M. N. Miranda. The reliability
of statistical functions in four software packages freely used in nu-
merical computation. Brazilian Journal of Probability and Statistics,
23(2):107–119, 2009. 15

42. M. G. Almiron, B. Lopes, A. L. C. Oliveira, A. C. Medeiros, and A. C.
Frery. On the numerical accuracy of spreadsheets. Journal of Statistics,
34(4):1–29, Apr. 2010. 15

43. A. Almossawi. How maintainable is the Firefox codebase? personal
website, May 2013. http://almossawi.com/firefox/prose. 185

44. W. H. Alsup. ORACLE AMERICA, INC., plaintiff-appellant v.
GOOGLE LLC, defendant-cross-appellant. Decision 3:10-cv-03561-
WHA, United States District Court for the Northern District of Califor-
nia, Mar. 2018. 113

401

45. L. E. Alteneder. The learning curve in solving a jig-saw puzzle: A
teaching device. Journal of Educational Psychology, 26(3):231–232,
Mar. 1935. 36

46. E. M. Altmann. Episodic Memory for External Information. PhD thesis,
Carnegie Mellon University, Aug. 1996. 30

47. E. M. Altmann. Functional decay of memory for tasks. Psychological
Research, 66(4):287–297, 2002. 26

48. E. M. Altmann, J. G. Trafton, and D. Z. Hambrick. Effects of interrup-
tion length on procedural errors. Journal of Experimental Psychology:
Applied, 23(2):216–229, June 2017. 33

49. H. Aman, S. Amasaki, T. Yokogawa, and M. Kawahara. A survival
analysis of source files modified by new developers. In International
Conference on Product-Focused Software Process Improvement, PRO-
FES 2017, pages 80–88, Nov.-Dec. 2017. 163

50. Amazon, Inc. Amazon ec2 service level agreement. https://
aws.amazon.com/ec2/sla, June 2013. 374

51. S. Ambler. IT project success survey results. http://
www.ambysoft.com/surveys, 2017. 120

52. J. M. Amiri and V. V. K. Padmanabhuni. A comprehensive evaluation
of conversion approaches for different function points. Thesis (m.s.),
Blekinge Institute of Technology, Sweden, Sept. 2011. 294, 295

53. L. An, O. Mlouki, F. Khomh, and G. Antoniol. Stack Overflow: A code
laundering platform? In eprint arXiv:cs.SE/1703.03897, Mar. 2017. 82

54. B. C. D. Anda, D. I. K. Sjøberg, and A. Mockus. Variability and repro-
ducibility in software engineering: A study of four companies that de-
veloped the same system. IEEE Transactions on Software Engineering,
35(3):407–429, May 2009. 120, 130

55. C. Anderson, J. A. D. Hildreth, and L. Howland. Is the desire for sta-
tus a fundamental human motive? A review of the empirical literature.
Psychological Bulletin, 141(3):574–601, May 2015. 74

56. D. Anderson. Modeling and analysis of SQL queries in PHP systems.
Thesis (m.s.), Department of Computer Science, East Carolina Univer-
sity, Apr. 2018. 202

57. J. R. Anderson. Learning and Memory: An Integrated Approach. John
Wiley & Sons, Inc, second edition, 2000. 40

58. J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass, C. Lebiere,
and Y. Qin. An integrated theory of the mind. Psychological Review,
111(4):1036–1060, Oct. 2007. 21

59. J. R. Anderson and R. Milson. Human memory: An adaptive perspec-
tive. Psychological Review, 96(4):703–719, Oct. 1989. 35

60. M. L. Anderson. Neural reuse: A fundamental organizational principle
of the brain. Behavioral and Brain Sciences, 33(4):245–313, Apr. 2010.
19

61. D. Andriesse, X. Chen, V. van der Veen, A. Slowinska, and H. Bos.
An in-depth analysis of disassembly on full-scale x86/x64 binaries. In
Proceedings of the 25th USENIX Security Symposium, SEC’16, pages
583–600, Aug. 2016. 172

62. J. Annett. Subjective rating scales: science or art? Ergonomics,
45(12):966–987, 2002. 376

63. A. Ansar. ’AppStore secrets’ (What we’ve learned from 30,000,000
downloads). Presentation, pinch media, 2009. 109

64. F. J. Anscombe. Graphs in statistical analysis. The American Statisti-
cian, 27(1):17–21, Feb. 1973. 295, 296

65. ANSI X3.9. American National Standard programming language FOR-
TRAN. American National Standards Institute, inc., Nov. 1978. 202

66. Z̆. Antolić. Fault slip through measurement process implementation in
CPP software verification. In International Conference on Business In-
telligence Systems, miproBIS 2007, May 2007. 168

67. K. Aoki and M. W. Feldman. Evolution of learning strategies in tempo-
rally and spatially variable environments: A review of theory. Theoret-
ical Population Biology, 91:3–19, Feb. 2014. 75

68. J. Aranda. Anchoring and adjustment in software estimation. The-
sis (m.s.), Graduate Department of Computer Science, University of
Toronto, 2005. 127

69. L. Argote, C. A. Insko, N. Yovetich, and A. A. Romero. Group learning
curves: The effects of turnover and task complexity on group perfor-
mance. Journal of Applied Social Psychology, 25(6):512–529, Mar.
1995. 77

70. H. R. Arkes, R. M. Dawes, and C. Christensen. Factors influencing the
use of a decision rule in a probabilistic task. Organizational Behavior
and Human Decision Processes, 37:93–110, 1986. 56

71. P. Armer. SHARE – A eulogy to cooperative effort. Technical Report
P-969, The RAND Corporation, Oct. 1956. 68, 112

72. J. S. Armstrong. The seer-sucker theory: The value of experts in fore-
casting. Technology Review, pages 16–24, June-July 1980. 39

73. V. Arnaoudova, L. M. Eshkevari, M. Di Penta, R. Oliveto, G. Antoniol,
and Y.-G. Guéhéneuc. REPENT: Analyzing the nature of identifier re-
namings. IEEE Transactions on Software Engineering, 40(5):502–532,
May 2014. 197

74. J. Arndt. Matters Computational: Ideas, Algorithms, Source Code.
Springer, 2010. 206

75. T. B. Arnold and J. W. Emerson. Nonparametric goodness-of-fit tests
for discrete null distributions. The R Journal, 3(2):34–39, Dec. 2011.
240

76. A. Arora, S. Belenzon, A. Patacconi, and J. Suh. The changing struc-
ture of American innovation: Some cautionary remarks for economic
growth. Working Paper No. 25893, National Bureau of Economic Re-
search, Aug. 2019. 10

77. A. Arora and A. Gambardella. From Underdogs to Tigers: The Rise
and Growth of the Software Industry in Brazil, China, India, Ireland,
and Israel. Oxford University Press, Mar. 2005. 62

78. A. Arora, R. Krishnan, R. Telang, and Y. Yang. An empirical analy-
sis of software vendors’ patch release behavior: Impact of vulnerability
disclosure. Information Systems Research, 21(1):115–132, Mar. 2010.
154, 339, 341, 378

79. W. B. Arthur. Competing technologies, increasing returns, and lock-
in by historical events. The Economic Journal, 99(394):116–131, Mar.
1989. 101

80. W. B. Arthur. Increasing Returns and Path Dependency in the Economy.
The University of Michigan Press, 1994. 100, 101

81. S. E. Asch. Studies of independence and conformity: A minority of one
against a unanimous majority. Psychological Monographs: General
and Applied, 70(9):1–70, 1956. 54

82. A. H. Ashouri, W. Killian, J. Cavazos, G. Palermo, and C. Silvano.
A survey on compiler autotuning using machine learning. In eprint
arXiv:cs.PL/1801.04405, Mar. 2018. 178

83. T. A. Åstebro, S. A. Jeffrey, and G. K. Adomdza. Inventor persever-
ance after being told to quit: The role of cognitive biases. Journal of
Behavioral Decision Making, 20(3):253–272, Apr. 2007. 55

84. S. Atkinson and G. Benefield. Software development: Why the tradi-
tional contract model is not fit for purpose. In 46th Hawaii International
Conference on System Sciences, HICSS, pages 4842–4851, Jan. 2013.
124

85. V. Atlidakis, J. Andrus, R. Geambasu, D. Mitropoulos, and J. Nieh.
POSIX abstractions in modern operating systems: The old, the new,
and the missing. In Proceedings of the Eleventh European Conference
on Computer Systems, EuroSys’16, page 19, Apr. 2016. 115, 116

86. Audit Scotland. i6: a review. Report, Audit Scotland, Mar. 2017. 120

87. Auerbach. Auerbach guide to time sharing. Computer technology re-
port, Auerbach Publishers Inc., Jan. 1973. 105

88. N. R. Augustine. Augustine’s Laws. American Institute of Aeronautics
and Astronautics, Inc, sixth edition, 1997. 176

89. R. Auler and E. Borin. A LLVM just-in-time compilation cost analy-
sis. Technical Report IC-13-13, Instituto de Computação Universidade
Estadual de Campinas, May 2013. 180, 181

90. P. C. Austin. A tutorial on multilevel survival analysis: Methods, mod-
els and applications. International Statistical Review, 85(2):185–203,
Aug. 2017. 340

91. R. D. Austin. The effects of time pressure on quality in software
development: An agency model. Information Systems Research,
12(2):195–207, June 2001. 79

92. AUTOSAR. Guidelines for the use of the C++14 language in critical
and safety-related systems. AUTOSAR, 839 edition, Mar. 2017. 153

93. J. L. Autran, D. Munteanu, P. Roche, and G. Gasiot. Real-time
soft-error rate measurements: A review. Microelectronics Reliability,
54(8):1455–1476, Aug. 2014. 166

94. J.-L. Autran, S. Semikh, D. Munteanu, S. Serre, G. Gasiot, and
P. Roche. Soft-error rate of advanced SRAM memories: Modeling and
monte carlo simulation. In M. Andriychuk, editor, Numerical Simu-
lation – From Theory to Industry, chapter 15, pages 309–336. InTech,
Sept. 2012. 166

95. G. Avelino, L. Passos, A. Hora, and M. T. Valente. Measuring and
analyzing code authorship in 1+118 open source projects. Science of
Computer Programming, 176:14–32, May 2019. 141

96. E. Avidan. The significance of method parameters and local variables
as beacons for comprehension: An empirical study. Thesis (m.s.), The
Hebrew University of Jerusalem, Nov. 2016. 196

97. P. Azoulay, C. Fons-Rosen, and J. S. G. Zivin. Does science advance
one funeral at a time? Working Paper No. 21788, National Bureau of
Economic Research, USA, Dec. 2015. 10

98. R. H. Baayen, P. Milin, and M. Ramscar. Frequency in lexical process-
ing. Aphasiology, 30(11):1174–1220, Mar. 2016. 196

99. C. Babbage, ESQ. Reflections on the Decline of Science in England,
and on Some of its Causes. B. Fellows, Ludgate Street; and J. Booth,
Duke Street, 1830. 11

100. C. Babbage, ESQ. On the Economy of Machinery and Manufactures.
Charles Knight, Pall Mall East, 1832. 61

101. V. Babka. Improving Accuracy of Software Performance Models on
Multicore Platforms with Shared Caches. PhD thesis, Faculty of Math-
ematics and Physics, Charles University in Prague, Oct. 2012. 372

102. V. Babka and P. Tůma. Investigating cache parameters of x86 family
processors. In Proceedings of the 2009 SPEC Benchmark Workshop on
Computer Performance Evaluation and Benchmarking, pages 77–96,
Jan. 2009. 372, 373

103. D. Baccarini, G. Salm, and P. E. D. Love. Management of risks in infor-
mation technology projects. Industrial Management & Data Systems,
104(4):286–295, 2004. 130

104. A. Bacchelli and C. Bird. Expectations, outcomes, and challenges of
modern code review. In Proceedings of the 2013 International Con-
ference on Software Engineering, ICSE’13, pages 712–721, May 2013.
169

105. A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A. Bernstein. The
missing links: Bugs and bug-fix commits. In Proceedings of the 18th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2010, pages 97–106, Nov. 2010. 152

106. A. Back and E. Westman. Comparing programming languages in
Google code jam. Thesis (m.s.), Department of Computer Science and
Engineering, Chalmers University of Technology, 2017. 197

107. J. Backus. The history of FORTRAN I, II, and III. SIGPLAN Notices,
13(8):165–180, 1978. 112

108. J. Backus. Programming in America in the 1950s– some personal im-
pressions. In N. Metropolis, J. Howlett, and G.-C. Rota, editors, A His-
tory of Computing in the Twentieth Century, pages 125–135. Academic
Press, Feb. 1981. 112, 113

109. J. W. Backus, R. J. Beeber, S. Best, R. Goldberg, H. L. Herrick, R. A.
Hughes, L. B. Mitchell, R. A. Nelson, R. Nutt, D. Sayre, P. B. Sheridan,
H. Stern, and I. Ziller. The FORTRAN Automatic Coding System for the
IBM 704 EDPM: Programmer’s Reference Manual. International Busi-
ness Machines Corporation, 590 Madison Avenue, New York 22, N.Y.,
Oct. 1956. 113

110. A. Bacon, S. Handley, and S. Newstead. Individual differences in strate-
gies for syllogistic reasoning. Thinking & Reasoning, 9(2):133–168,
2003. 45

111. A. Baddeley. Working memory. In A. Baddeley, M. W. Eysenck, and
M. Anderson, editors, Memory, chapter 3, pages 41–69. Psychology
Press, Feb. 2009. 31

112. A. Baddeley. Working memory: Theories, models, and controversies.
Annual Review of Psychology, 63:1–29, Sept. 2012. 31

113. A. D. Baddeley, N. Thomson, and M. Buchanan. Word length and the
structure of short-term memory. Journal of Verbal Learning and Verbal
Behavior, 14(6):575–589, Dec. 1975. 31, 362

114. M. Bagherzadeh, N. Kahani, C.-P. Bezemer, A. E. Hassan, J. Dingel,
and J. R. Cordy. Analyzing a decade of Linux system calls. Empirical
Software Engineering, 23(3):1519–1551, June 2018. 116

115. J. N. Bailenson, M. S. Shum, S. Atran, D. L. Medin, and J. D. Coley.
A bird’s eye view: biological categorization and reasoning within and
across cultures. Cognition, 84:1–53, 2002. 43

116. D. H. Bailey. Misleading performance reporting in the supercomputer
field. Technical Report RNR-92-005, Numerical Aerodynamic Simula-
tion Division, NASA Ames Research Center, Dec. 1992. 366

117. S. Baily, R. Gilbertson, and E. Straub. Modular multimode radar
(CMMR) software acquisition study. Technical Report 2302-01-1-2291,
ARINC Research Corporation, Mar. 1981. 107

118. E. Bainomugisha, A. L. Carreton, T. van Cutsem, S. Mostinckx, and
W. de Meuter. A survey on reactive programming. ACM Computing
Surveys, 45(4):52, Aug. 2013. 179

119. P. Bajari, S. Tadelis, and S. Houghton. Bidding for incomplete con-
tracts: An empirical analysis of adaptation costs. American Economic
Review, 104(4):1288–1319, Oct. 2011. 123

120. S. S. Bajwa, X. Wang, A. N. Duc, and P. Abrahamsson. Failures to be
celebrated: an analysis of major pivots of software startups. In eprint
arXiv:cs.SE/1710.04037, Oct. 2017. 130

121. A. H. Baker, D. M. Hammerling, M. N. Levy, H. Xu, J. M. Den-
nis, B. E. Eaton, J. Edwards, C. Hannay, S. A. Mickelson, R. B.
Neale, D. Nychka, J. Shollenberger, J. Tribbia, M. Vertenstein, and
D. Williamson. A new ensemble-based consistency test for the Com-
munity Earth System Model (pyCECT v1.0). Geoscientific Model De-
velopment, 8:2829–2840, Sept. 2015. 151

122. F. T. Baker. Chief programmer team management of production pro-
gramming. IBM Systems Journal, 11(1):56–73, 1972. 73, 141

123. M. Bakkaloglu, J. J. Wylie, C. Wang, and G. R. Ganger. On correlated
failures in survivable storage systems. Technical Report CMU-CS-02-
129, Carnegie Mellon University, May 2002. 278

124. B. Balaji, J. McCullough, R. K. Gupta, and Y. Agarwal. Accurate char-
acterization of the variability in power consumption in modern mobile
processors. In Proceedings of the 2012 USENIX conference on Power-
Aware Computing and Systems, HotPower’12, Oct. 2012. 320, 321

125. M. Baldwin. Scientific autonomy, public accountability, and the rise of
"peer review" in the Cold war United States. Isis, 109(3):538–558, Sept.
2018. 11

126. T. Ball and J. R. Larus. Branch prediction for free. Technical Re-
port #1137, Computer Sciences Department, University of Wisconsin–
Madison, Feb. 1993. 203

127. S. Baltes and S. Diehl. Usage and attribution of Stack Overflow code
snippets in GitHub projects. In eprint arXiv:cs.SE/1802.02938, Feb.
2018. 82

128. S. Baltes and P. Ralph. Sampling in software engineering research: A
critical review and guidelines. ACM Transactions on Software Engi-
neering and Methodology, ???(???):???, Apr. 2020. 9

129. N. Banerjee, A. Rahmati, M. D. Corner, S. Rollins, and L. Zhong. Users
and batteries: Interactions and adaptive energy management in mobile
systems. In International Conference on Ubiquitous Computing, Ubi-
Comp 2007, pages 217–237, Sept. 2007. 95

130. P. Banyard and N. Hunt. Something missing? The Psychologist,
13(2):68–71, 2000. 21

131. L. Bao, Z. Xing, X. Xia, D. Lo, and S. Li. Who will leave the com-
pany?: A large-scale industry study of developer turnover by mining
monthly work report. In Proceedings of the 14th International Confer-
ence on Mining Software Repositories, MSR’17, pages 170–181, May
2017. 141

132. J. H. Barkow, L. Cosmides, and J. Tooby. The Adapted Mind: Evolu-
tionary Psychology and the Generation of Culture. Oxford University
Press, 1992. 20

133. W. P. Barnett. The Red Queen among Organizations: How competitive-
ness evolves. Princeton University Press, 2008. 5, 95

134. A. Baronchelli, V. Loreto, and A. Puglisi. Individual biases, cultural
evolution, and the statistical nature of language universals: The case of
colour naming systems. PLoS ONE, 10(5):e0125019, May 2015. 201

135. D. R. Barrett. World Christian Encyclopedia: A Comparative Survey of
Churches and Religions in the Modern World AD 1900-2000. Oxford
University Press, 1982. 96

136. E. Barrett, C. F. Bolz-Tereick, R. Killick, S. Mount, and
L. Tratt. Virtual machine warmup blows hot and cold. In eprint
arXiv:cs.PL/1602.00602v4, July 2017. 360

137. L. Barrett, R. Dunbar, and J. Lycett. Human Evolutionary Psychology.
Palgrave Macmillan, 2002. 20

138. L. A. Barroso and U. Hölzle. The datacenter as a computer: An intro-
duction to the design of warehouse-scale machines. Report, Morgan &
Claypool, 2009. 95

139. V. R. Basili and J. Beane. Can the Parr curve help with manpower distri-
bution and resource estimation problems? The Journal of Systems and
Software, 2(1):59–69, Feb. 1981. 128

140. V. R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull,
S. Sørumgård, and M. V. Zelkowitz. The empirical investigation of
perspective-based reading. In Proceedings of the Twentieth Annual Soft-
ware Engineering Workshop, pages 21–69, Dec. 1995. 9, 359

141. V. R. Basili, N. M. Panlilio-Yap, C. L. Ramsey, C. Shih, and E. E. Katz.
A quantitative analysis of software developed in Ada. Technical Report
TR-1403, Department of Computer Science, University of Maryland,
May 1984. 49

142. V. R. Basili and A. J. Turner. Iterative enhancement: A practical tech-
nique for software development. IEEE Transactions on Software Engi-
neering, SE-1(4):390–396, Dec. 1975. 132

143. F. M. Bass. A new product growth model for consumer durables. Man-
agement Science, 15(5):215–227, Jan. 1969. 87

144. P. I. Bass and F. M. Bass. Diffusion of technology gen-
erations: A model of adoption and repeat sales. com-
pany website, 2001. www.bassbasement.org/F/N/FMB/Pubs/
Bass and Bass 2001.pdf. 87

145. H. A. Bastiaanse. Very, Many, Small, Penguins: Vaguely Related Topics.
PhD thesis, Institute for Logic, Language and Computation, Universiteit
van Amsterdam, Mar. 2014. 49

146. B. Baudry, S. Allier, and M. Monperrus. Tailored source code trans-
formations to synthesize computationally diverse program variants. In
eprint arXiv:cs.SE/1401.7635v1, Jan. 2014. 163, 200

147. F. L. Bauer and H. Wössner. The "Plankalkül" of Konrad Zuse: a
forerunner of today’s programming languages. Communications of the
ACM, 15(7):678–685, July 1972. 113

148. J. Bauer, J. Siegmund, N. Peitek, J. C. Hofmeister, and S. Apel. Inden-
tation: Simply a matter of style or support for program comprehension?
In Proceedings of the 27th International Conference on Program Com-
prehension, ICPC’19, pages 154–164, May 2019. 192

149. A. Baumann. Hardware is the new software. In Proceedings of the
16th Workshop on Hot Topics in Operating Systems, HotOS’17, pages
132–137, May 2016. 118

150. R. F. Baumeister. Is There Anything Good About Men? Oxford Univer-
sity Press, 2010. 21

151. R. T. Baust. Computer Characteristics Quarterly: Volume 7, Number
4-Volume 8, Number 1. adams associates, 1968. 94

152. G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella. The
evolution of project inter-dependencies in a software ecosystem: the
case of Apache. In Proceedings of the 2013 IEEE International Confer-
ence on Software Maintenance, ICSM’13, pages 280–289, Sept. 2013.
102

153. G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella. How
the Apache community upgrades dependencies: An evolutionary study?
Empirical Software Engineering, 20(5):1275–1317, Oct. 2015. 102, 103

154. O. Baysal, O. Kononenko, R. Holmes, and M. W. Godfrey. The influ-
ence of non-technical factors on code review. In 20th Working Confer-
ence on Reverse Engineering, WCRE’13, pages 122–131, Oct. 2013.
144, 145

155. B. L. Bayus, S. Jain, and A. G. Rao. Truth or consequences: An analysis
of vaporware and new product announcements. Journal of Marketing
Research, 38(1):3–13, Feb. 2001. 78

156. A. A. Beaujean. Latent Variable Modeling Using R. Routledge, 2014.
375

157. B. Beber and A. Scacco. What the numbers say: A digit-based test for
election fraud. Political Analysis, 20(2):211–234, Apr. 2012. 386

158. C. Becker, F. Fagerholm, R. Mohanani, and A. Chatzigeorgiou. Tem-
poral discounting in technical debt: How do software practitioners dis-
count the future? In eprint arXiv:cs.SE/1901.07024, Jan. 2019. 56

159. G. S. Becker. Investment in human capital: A theoretical analysis. Jour-
nal of Political Economy, 70(5):9–49, Oct. 1962. 71

160. R. A. Becker and W. S. Cleveland. Trellis Graphics User’s Manual.
AT&T Bell Laboratories, Murray Hill, Dec. 1995. 225

161. J. Beckhusen. Occupations in information technology. American Com-
munity Survey Report ACS-35, U.S. Census Bureau, Aug. 2016. 108

162. M. Bekoff, C. Allen, and G. M. Burghardt. The Cognitive Animal: Em-
pirical and Theoretical Perspectives on Animal Cognition. The MIT
Press, 2002. 20

163. R. W. Belk and G. Tumbat. The cult of Macintosh. Consumption, Mar-
kets and Culture, 8(3):205–217, Sept. 2005. 74

164. C. G. Bell. Fundamentals of time shared computers. Computer Design,
7(2):44–59, Feb. 1968. 1

165. C. G. Bell. The mini and micro industries. Computer, 17(10):14–30,
Oct. 1984. 94

166. G. Bell. Bell’s law for the birth and death of computer classes: A theory
of the computer’s evolution. MSR-TR 2007-146, Microsoft Research,
Silicon Valley, Nov. 2007. 94

167. G. Bell. Supercomputers: The amazing race (A history of supercom-
puting, 1960-2020). Technical Report MSR-TR-2015-2, Microsoft Re-
search, Nov. 2014. 94

168. V. A. Bell and P. N. Johnson-Laird. A model theory of modal reasoning.
Cognitive Science, 22(1):25–51, 1998. 44, 45

169. M. Beller, A. Zaidman, A. Karpov, and R. A. Zwaan. The last line
effect explained. Empirical Software Engineering, 22(3):1508–1536,
June 2017. 82, 163

170. D. J. Bem. Feeling the future: Experimental evidence for anomalous
retroactive influences on cognition and affect. Journal of Personality
and Social Psychology, 100(3):407–425, Mar. 2011. 265

171. R. W. Bemer. a view of the history of COBOL. Honeywell Computer
Journal, 5(3):130–135, Nov. 1959. 112

172. G. Beniamini, S. Gingichashvili, A. Klein Orbach, and D. G. Feitelson.
Meaningful identifier names: The case of single-letter variables. In 25th
IEEE International Conference on Program Comprehension, ICPC’17,
pages 45–54, May 2017. 196

173. J. R. Beniger. The Control Revolution: Technological and Economic
Origins of the Information Society. Hardvard University Press, 1986. 5

174. Y. Benkler. Coase’s Penguin, or, Linux and the nature of the firm. The
Yale Law Journal, 112(3), Dec. 2002. 61, 68

175. A. Benson, D. Li, and K. Shue. Promotions and the Peter principle.
Working Paper n. 3047193, US universities, Feb. 2018. 108

176. R. A. Bentley, C. P. Lipo, H. A. Herzog, and M. W. Hahn. Regular
rates of popular culture change reflect random copying. Evolution and
Human Behavior, 28(3):151–158, May 2007. 76

177. F. C. Y. Benureau and N. P. Rougier. Re-run, repeat, reproduce, reuse,
replicate: Transforming code into scientific contributions. In eprint
arXiv:cs.GL/1708.08205, Aug. 2017. 113

178. E. D. Berger, C. Hollenbeck, P. Maj, O. Vitek, and J. Vitek. On the im-
pact of programming languages on code quality: A reproduction study.
ACM Transactions on Programming Languages and Systems, 41(4):21,
Nov. 2019. 4

179. T. Berger, S. She, K. Czarnecki, and A. Wąsowski. Feature-to-code
mapping in two large product lines. In J. Bosch and J. Lee, editors, Soft-
ware Product Lines: Going Beyond, volume 6287 of Lecture Notes in
Computer Science, pages 498–499. Springer Berlin Heidelberg, 2010.
241

180. T. Berger, S. She, R. Lotufo, A. Wąsowski, and K. Czarnecki. Vari-
ability modeling in the systems software domain. Technical Report
GSDLAB-TR 2012-07-06, Generative Software Development Labora-
tory, University of Waterloo, July 2012. 139

181. E. Berghout, M. Nijland, and K. Grant. Seven ways to get your favoured
IT project accepted – politics in IT evaluation. The Electronic Journal
of Information Systems Evaluation, 8(1):31–40, 2005. 122

182. M. Berglund, W. Bester, and B. van der Merwe. Formalising Boost
POSIX regular expression matching. In International Colloquium on
Theoretical Aspects of Computing, ICTAC 2018, pages 99–115, Oct.
2018. 172

183. B. Berlin and P. Kay. Basic Color Terms: Their Universality and Evo-
lution. Berkeley: University of California Press, 1969. 201, 202

184. R. Berman, L. Pekelis, A. Scott, and C. Van den Bulte. p-hacking and
false discovery in A/B testing. Working Paper n. 3204791, US univer-
sities, Dec. 2018. 363

185. D. Bermbach and E. Wittern. Benchmarking web API quality. In Inter-
national Conference on Web Engineering, ICWE’16, pages 188–206,
June 2016. 167

186. A. Bernardo and I. Welch. On the evolution of overconfidence
and entrepreneurs. Journal of Economics & Management Strategy,
10(3):301–330, 2001. 73

187. K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch, B. L. Ji, S. R.
Nassif, E. J. Nowak, D. J. Pearson, and N. J. Rohrer. High-performance
CMOS variability in the 65-nm regime and beyond. IBM Journal of
Research and Development, 50(4/5):433–449, July 2006. 366

188. D. M. Berry, K. Daudjee, J. Dong, I. Fainchtein, M. A. Nelson, T. Nel-
son, and L. Ou. User’s manual as a requirements specification: Case
studies. Requirements Engineering, 9(1):67–82, Feb. 2004. 136

189. D. M. Berry, E. Kamsties, and M. M. Krieger. From contract drafting
to software specification: Linguistic sources of ambiguity. Nov. 2003.
162

190. L. M. A. Bettencourt, A. Cintrón-Arias, D. I. Kaiserd, and C. Castillo-
Chávez. The power of a good idea: Quantitative modeling of the spread
of ideas from epidemiological models. Physica A, 364:513–536, May
2006. 76

191. K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is
"nearest neighbor" meaningful? In C. Beeri and P. Buneman, edi-
tors, Database Theory: 7th International Conference, ICDT’99, pages
217–235. Springer-Verlag, Jan. 1999. 349

192. D. Biber, S. Johansson, G. Leech, S. Conrad, and E. Finegan. Longman
Grammar of Spoken and Written English. Pearson Education, 1999. 45,
162, 199

193. C. Bicchieri. The Grammar of Society: The Nature and Dynamics of
Social Norms. Cambridge University Press, Mar. 2006. 72, 78

194. B. Biddle, A. White, and S. Woods. How many standards in a laptop?
(and other empirical questions). Working Paper n. 1619440, Arizona
State University (ASU) - College of Law, Sept. 2010. 81

195. S. Biddle. Like everyone else, Twitter hides from U.S.
taxes in Ireland. Gawker news site, Oct. 2013. http:
//valleywag.gawker.com/like-everyone-else-twitter-hides-
from-u-s-taxes-in-ir-1447085830. 85

196. B. Biegel, F. Beck, W. Hornig, and S. Diehl. The order of things: How
developers sort fields and methods. In 28th IEEE International Con-
ference on Software Maintenance, ICSM’12, pages 88–97, Sept. 2012.
209, 210, 355

197. S. Bikhchandani, D. Hirshleifer, and I. Welch. A theory of fads, fash-
ion, custom, and cultural change as informational cascades. Journal of
Political Economy, 100(5):992–1026, Oct. 1992. 54

198. P. Bilton, P. Dodimead, E. Livingstone, I. Rayner, G. Turner, M. Wyn-
niatt, and S. Howes. Managing the risks of legacy ICT to public service
delivery. HC 539 SESSION 2013-14, National Audit Office, UK, Sept.
2013. 95, 144

199. W. L. Bircher. Predictive Power Management for Multi-Core Proces-
sors. PhD thesis, The University of Texas at Austin, Dec. 2010. 368,
371

200. C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov, and
P. Devanbu. Fair and balanced? Bias in bug-fix datasets. In Proceedings
of the 7th joint meeting of the European Software Engineering Confer-
ence and the ACM SIGSOFT symposium on the Foundations of Software
Engineering, FSE 2009, pages 121–130, Aug. 2009. 152

201. S. Bird. Software knows best: A case for hardware transparency and
measurability. Thesis (m.s.), Department of Electrical Engineering and
Computer Science, University of California at Berkeley, May 2010. 362

202. P. G. Bishop and R. E. Bloomfield. Worst case reliability prediction
based on a prior estimate of residual defects. In Proceedings 13th In-
ternational Symposium on Software Reliability Engineering, ISSRE’02,
pages 295–303, Nov. 2002. 159

203. T. F. Bissyandé, F. Thung, D. Lo, L. Jiang, and L. Réveillère. Popularity,
interoperability, and impact of programming languages in 100,000 open
source projects. In 37th Annual International Computer Software &
Applications Conference, COMPSAC 2013, pages 303–312, July 2013.
141, 222

204. Bitsavers’ pdf document archive. organization website, July 2019.
http:bitsavers.trailing-edge.com/pdf. 115

205. E. Biyalagorsky, W. Boulding, and R. Staelin. Stuck in the past: Why
managers persist with new product failures. Journal of Marketing,
70(2):108–121, Apr. 2006. 59, 134

206. N. M. Blachman. A survey of automatic digital computers. Survey
111293, Office of Naval Research, Washington, D.C., 1953. 112, 365

207. S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khan, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann.
The DaCapo benchmarks: Java benchmarking development and analy-
sis (extended version). Technical Report TR-CS-06-01, Department of
Computer Science, Australian National University, Aug. 2006. 271

208. A.-R. Blais and E. U. Weber. A domain-specific risk-taking
(DOSPERT) scale for adult populations. Judgment and Decision Mak-
ing, 1(1):33–47, Apr. 2006. 53

209. D. M. Blank and G. J. Stigler. The Demand and Supply of Scientific
Personnel. National Bureau of Economic Research, Inc., 1957. 108,
133

210. M. S. Blaubergs and M. D. S. Braine. Short-term memory limitations
on decoding self-embedded sentences. Journal of Experimental Psy-
chology, 102(4):745–748, 1974. 32

211. D. S. Blinder and D. M. Oppenheimer. Beliefs about what types of
mechanisms produce random sequences. Journal of Behavioral Deci-
sion Making, 21(4):414–427, Oct. 2008. 386

212. N. Bloom, T. Kretschmer, and J. van Reenen. Are family-friendly work-
place practices a valuable firm resource? Strategic Management Jour-
nal, 32(4):343–367, Apr. 2011. 109

213. B. I. Blum. Improving software maintenance by learning from the past:
A case study. Proceedings of the IEEE, 77(4):596–606, Apr. 1989. 146

214. J. Boccara. Good news: strong types are (mostly) free in C++. blog:
Fluent C++, May 2017. http://www.fluentcpp.com/2017/05/05/
news-strong-types-are-free. 205

215. B. W. Boehm. Software Engineering Economics. Prentice-Hall, Inc,
1981. 294, 295

216. B. W. Boehm and P. N. Papaccio. A value-chain analysis or software
productivity. Technical Report USC-CSE-86-500, Center for Systems
and Software Engineering, University of Southern California, 1986. 85

217. G. D. Boetticher. Improving credibility of machine learner models in
software engineering. In D. Zhang and J. J. P. Tsai, editors, Advances
in Machine Learning Applications in Software Engineering, chapter 3,
pages 52–73. Idea Group Publishing, Oct. 2006. 379

218. J. G. Bolten, R. S. Leonard, M. V. Arena, O. Younossi, and J. M.
Sollinger. Sources of weapon system cost growth: Analysis of 35 major
defense acquisition programs. Monograph series, RAND Corporation,
2008. 125

219. R. Bond and P. B. Smith. Culture and conformity: A meta-analysis of
studies using Asch’s (1952b, 1956) line judgment task. Psychological
Bulletin, 119(1):111–137, Jan. 1996. 54

220. C. F. Bond, Jr. and L. J. Titus. Social facilitation: A meta-analysis of
241 studies. Psychological Bulletin, 94(2):265–292, Sept. 1983. 80

221. J. Bonvoisin, R. Mies, J.-F. Boujut, and R. Stark. What is the "source" of
open source hardware? Journal of open hardware, 1(1):5, Sept. 2017.
70

222. C. F. Borges. An improved algorithm for HYPOT(A,B). In eprint
arXiv:math.NA/1904.09481, June 2019. 150

223. R. Bornat, S. Dehnadi, and Simon. Mental models, consistency and pro-
gramming aptitude. In Tenth Australasian Computing Education Con-
ference, ACE’08, pages 53–61, Jan. 2008. 179

224. L. Boroditsky. Metaphoric structuring: understanding time through spa-
tial metaphors. Cognition, 75:1–28, 2000. 106

225. A. Börsch-Supan and M. Weiss. Productivity and age: Evidence from
work teams at the assembly line. Technical Report 148-2007, Manheim
Research Institute for the Economics of Aging, 2007. 59

226. L. Bossavit. The Leprechauns of Software Engineering: How folklore
turns into fact and what to do about it. Leanpub, 2016. 83

227. N. Bostrom and A. Sandberg. The wisdom of nature: An evolution-
ary heuristic for human enhancement. In J. Savulescu and N. Bostrom,
editors, Human Enhancement, chapter 18, pages 375–416. Oxford Uni-
versity Press, Jan. 2011. 20

228. A. Botchkarev. Estimating the accuracy of the return on investment
(ROI) performance evaluations. Interdisciplinary Journal of Informa-
tion, Knowledge, and Management, 10:217–233, 2015. 63

229. L. Boué. Real numbers, data science and chaos: How to fit any dataset
with a single parameter. In eprint arXiv:cs.LG/1904.12320, Apr. 2019.
281

230. K. Boukhetala and A. Guidoum. Sim.DiffProc: A package for simula-
tion of diffusion processes in R. HAL Id: hal-00629841, HAL archives-
ouvertes.fr, Oct. 2011. 334

231. J. Bourn. New IT systems for Magistrates’ courts: the Libra project.
Report by the Comptroller and Auditor General HC 327 Session 2002-
2003, National Audit Office, UK, Jan. 2003. 123, 124

232. E. M. Bowden and M. Jung-Beeman. Normative data for 144 compound
remote associate problems. Behavior Research Methods, Instruments,
& Computers, 35(4):634–639, Dec. 2003. 80

233. G. H. Bower, J. B. Black, and T. J. Turner. Scripts in memory for text.
Cognitive Psychology, 11(2):177–220, Apr. 1979. 189

234. J. S. Bowers and C. J. Davis. Bayesian just-so stories in psychology and
neuroscience. Psychological Bulletin, 138(3):389–414, 2012. 21, 254

235. R. Boyd and P. J. Richerson. Why does culture increase human adapt-
ability. Ethology and Sociobiology, 16(2):125–143, Mar. 1995. 75

236. R. Boyd and P. J. Richerson. Why culture is common, but cultural evo-
lution is rare. Proceedings of the British Academy, 88:77–93, Apr. 1996.
73

237. M. G. Bradac, D. E. Perry, and L. G. Votta. Prototyping a process
monitoring experiment. IEEE Transactions on Software Engineering,
20(10):774–784, 1994. 133, 134

238. T. F. Brady, T. Konkle, G. A. Alvarez, and A. Oliva. Visual long-
term memory has a massive storage capacity for object details. PNAS,
105(38):14325–14329, Sept. 2008. 57

239. D. Braha and Y. Bar-Yam. The statistical mechanics of complex product
development: Empirical and analytical results. Management Science,
53(7):1127–1145, July 2007. 179

240. T. Brahe. Tychonis Brahe Dani Scripta Astronomica. Glydendaliana,
1915. Edited by I. L. E. Dreyer. 2

241. D. W. Braithwaite and R. L. Goldstone. Flexibility in data interpre-
tation: effects of representational format. frontiers in Psychology,
4(980):1–16, Dec. 2013. 224

242. N. R. Bramley. Constructing the world: Active causal learning in cog-
nition. PhD thesis, University College London, Feb. 2017. 47, 48

243. M. C. Branco, Y. Xiong, K. Czarnecki, J. Küster, and H. Völzer. An
empirical study on consistency management of business and IT process
models. Technical Report GSDLAB-TR 2012-03-02, Generative Soft-
ware Development Laboratory, University of Waterloo, Mar. 2012. 102

244. S. Brand. How buildings Learn: What happens after they’re built.
Viking, 1994. 144

245. J. D. Bransford and J. J. Franks. The abstraction of linguistic ideas.
Cognitive Psychology, 2(4):331–350, Oct. 1971. 188, 189

246. J. D. Bransford and M. K. Johnson. Contextual prerequisites for under-
standing: Some investigations of comprehension and recall. Journal of
Verbal Learning and Verbal Behavior, 11(6):717–726, Dec. 1972. 187

247. G. Branwen. Laws of tech: Commoditize your complement. blog: Gw-
ern, Mar. 2018. http://www.gwern.net/Complement. 89

248. S. Brass and C. Goldberg. Semantic errors in SQL queries: A quite
complete list. Journal of Systems and Software, 79(5):630–644, May
2006. 183

249. H. Braverman. Labor and Monopoly Capital: The Degradation of Work
in the Twentieth Century. Monthly Review Press, Jan. 1974. 61, 73

250. R. A. Brealey, S. C. Myers, and F. Allen. Principles of Corporate Fi-
nance. McGraw-Hill Irwin, 10th edition, 2011. 64, 82

251. B. Brembs, K. Button, and M. Munafò. Deep impact: Unintended con-
sequences of journal rank. Frontiers in Human Neuroscience, 7(291),
June 2013. 11

252. S. Breu, R. Premraj, J. Sillito, and T. Zimmermann. Information needs
in bug reports: Improving cooperation between developers and users.
In Proceedings of the 2010 ACM conference on Computer supported
cooperative work, CSCW’10, pages 301–310, Feb. 2010. 221

253. C. A. Brewer. Color use guidelines for mapping and visualization. In
A. M. Maceachren and D. R. F. Taylor, editors, Visualization in Modern
Cartography, chapter 7, pages 123–147. Pergamon, Nov. 1994. 228

254. E. Brewer, L. Ying, L. Greenfield, R. Cypher, and T. Ts’o. Disks for
data centers. Technical report, Google, Inc, Feb. 2016. 370

255. Brigham Young trace repository. No longer available: website, 201?
Copy kindly supplied by Dror G. Feitelson. 156

256. P. Brinch Hansen and R. House. The COBOL compiler for the Siemens
3003. BIT, 6(1):1–23, Mar. 1966. 113

257. F. Brittman. The most common habits from more than 200 English pa-
pers written by graduate Chinese engineering students. Jan. 2007. 165

258. S. Broadbent. Font requirements for next generation air traffic man-
agement systems. Technical Report HRS/HSP-006-REP-01, European
Organisation for the Safety of Air Navigation, 2000. 29

259. G. W. Brock. The U.S. Computer Industry: A Study of Market Power.
Ballinger Publishing Company, 1975. 92

260. L. D. Brock and H. A. Goodman. Reliability analysis of the F-8 digital
fly-by-wire system. NASA Contractor Report 163110, Dryden Flight
Research Center, Oct. 1981. 147

261. A. D. Broido and A. Clauset. Scale-free networks are rare. In eprint
arXiv:physics.soc-ph/1801.03400, Jan. 2018. 239

262. G. Bronevetsky and B. R. de Supinski. Soft error vulnerability of iter-
ative linear algebra methods. In Proceedings of the 22nd Annual Inter-
national Conference on Supercomputing, ICS’08, pages 155–164, June
2008. 167

263. J. Brooke. SUS: A ’quick’ and ’dirty’ usability scale. In P. W. Jordan,
B. Thomas, B. A. Weerdmeester, and I. L. McClelland, editors, Us-
ability Evaluation in Industry, chapter 21, pages 189–194. Taylor and
Francis, June 1996. 376

264. J. Brooke. SUS: A retrospective. Journal of Usability Studies,
8(2):29–40, Feb. 2013. 376

265. R. Brooks. A model of human cognitive behavior in writing code for
computer programs, vol I. Report AFOSR-TR-75-1084, Carnegie Mel-
lon University, May 1975. 37

266. F. P. Brooks, Jr. The Mythical Man-Month. Addison–Wesley, anniver-
sary edition, 1995. 9, 142

267. G. D. A. Brown, I. Neath, and N. Chater. A temporal ratio model of
memory. Psychological Review, 114(3):539–576, July 2007. 33, 34

268. N. C. C. Brown and A. Altadmri. Novice Java programming mistakes:
Large-scale data vs. educator beliefs. ACM Transactions on Computing
Education, 17(2):7, June 2017. 161

269. J. Brunner and P. C. Austin. Inflation of Type I error rate in multiple
regression when independent variables are measured with error. The
Canadian Journal of Statistics, 37(1):33–46, Mar. 2009. 288

270. M. Brysbaert, W. Fias, and M.-P. Noël. The Whorfian hypothesis and
numerical cognition: is ’twenty-four’ processed in the same way as
’four-and-twenty’? Cognition, 66(1):51–77, Apr. 1998. 201

271. I. Buchmann. Batteries in a Portable World: A Handbook on recharge-
able Batteries for Non-engineers. Cadex Electronix Inc, third edition,
2011. 368

272. J. B. Buckheit and D. L. Donoho. WaveLab and reproducible research.
In A. Antoniadis and G. Oppenheim, editors, Wavelets and Statistics,
chapter 5, pages 55–81. Springer-Verlag, 1995. 10

273. M. Budden, P. Hadavas, L. Hoffman, and C. Pretz. Generating valid 4×
4 correlation matrices. Applied Mathematics E-Notes, 7:53–59, 2007.
235

274. D. V. Budescu, H.-H. Por, S. B. Broomell, and M. Smithson. The in-
terpretation of IPCC probabilistic statements around the world. Nature
Climate Change, 4:508–512, Apr. 2014. 153

275. D. J. Buettner. Designing an Optimal Software Intensive System Acqui-
sition: A Game Theoretic Approach. PhD thesis, University of Southern
California, Sept. 2008. 128, 135, 142, 327, 356, 383

276. E. Bugnion, S. Devine, M. Rosenblum, J. Sugerman, and E. Y. Wang.
Bringing virtualization to the x86 architecture with the original VMware
workstation. ACM Transactions on Computer Systems, 30(4):12, Nov.
2012. 122

277. M. Bullynck. What is an operating system? A historical investigation
(1954–1964). HAL Id: halshs-01541602, HAL archives-ouvertes.fr,
Aug. 2017. 112

278. N. Bulnet and M. H. Halstead. Impurities found in algorithm implemen-
tations. Technical Report CSD-TR 111, Purdue University, Mar. 1974.
182, 183

279. J. S. Bunderson and K. M. Sutcliffe. Management team learning orien-
tation and business unit performance. Journal of Applied Psychology,
88(3):552–560, June 2003. 76

280. Bureau of labor statistics. BLS website, July 2019. https://
www.bls.gov/ces. 103

281. K. P. Burnham and D. R. Anderson. Multimodel inference: Under-
standing AIC and BIC in model selection. Sociological Methods and
Research, 33(2):261–304, Nov. 2004. 290

282. J. C. Burns. The evolving market for word processing and typesetting
systems. In Proceedings of the National Computer Conference and Ex-
position, AFIPS’76, pages 617–623, June 1976. 92

283. Q. L. Burrell. A note on ageing in a library circulation model. Journal
of Documentation, 41(2):100–115, 1985. 35

284. R. P. L. Buse and W. R. Weimer. Learning a metric for code readabil-
ity. IEEE Transactions on Software Engineering, 36(4):546–558, July
2010. 193

285. J. Businge. Co-evolution of the Eclipse Framework and its Third-party
Plug-ins. PhD thesis, Eindhoven University of Technology, Sept. 2013.
336, 337, 338

286. R. W. Butler and G. B. Finelli. The infeasibility of quantifying the relia-
bility of life-critical real-time software. IEEE Transactions on Software
Engineering, 19(1):3–12, 1993. 157

287. G. Butts and K. Linton. The joint confidence level paradox: A history
of denial. In NASA 2009 Cost Estimating Symposium. NASA Center for
Aerospace Information, Apr. 2009. 126

288. D. Byrne and C. Corrado. ICT prices and ICT services: What do they
tell us about productivity and technology? Finance and Economics
Discussion series 2017-015, Federal Reserve Board, Washington, D.C.,
Feb. 2017. 5

289. B. Calder, D. Grunwald, and B. Zorn. Quantifying behavioral differ-
ences between C and C++ programs. Journal of Programming Lan-
guages, 2(4):313–351, 1995. 180

290. E. G. Cale, L. L. Gremillion, and J. L. McKenney. Price/performance
patterns of U.S. computer systems. Communications of the ACM,
22(4):225–233, Apr. 1979. 106

291. J. Calhoun, C. Savoie, M. Randolph-Gips, and I. Bozkurt. Human reli-
ability analysis in spaceflight applications. Quality and Reliability En-
gineering International, 29(6):869–882, Aug. 2013. 23

292. A. Caliskan-Islam, R. Harang, A. Liu, A. Narayanan, C. Voss, F. Ya-
maguchi, and R. Greenstadt. De-anonymizing programmers via code
stylometry. In Proceedings of the 24th USENIX Conference on Security
Symposium, SEC’15, pages 255–270, Aug. 2015. 179, 192, 200

293. C. F. Camerer and E. F. Johnson. The process-performance paradox
in expert judgment: How can the experts know so much and predict
so badly? In K. A. Ericsson and J. Smith, editors, Towards a general
theory of expertise: Prospects and limits. Cambridge University Press,
1991. 40

294. J. I. D. Campbell. On the relation between skilled performance of sim-
ple division and multiplication. Journal of Experimental Psychology:
Learning, Memory, & Cognition, 23(5):1140–1159, 1997. 51

295. M. Campbell-Kelly. Foundations of Computer Programming in Britain
(1945 - 1955). PhD thesis, Department of Mathematics and Computer
Studies, Sunderland Polytechnic, June 1980. 106

296. M. Campbell-Kelly. From Airline Reservations to Sonic the Hedgehog:
A History of the Software Industry. The MIT Press, Apr. 2004. 62

297. M. Campbell-Kelly and D. D. Garcia-Swartz. Economic perspectives
on the history of the computer time-sharing industry, 1965–1985. IEEE
Annals of the History of Computing, 30(1):16–36, Jan.-Mar. 2008. 105

298. M. Campbell-Kelly and D. D. Garcia-Swartz. Pragmatism not ideol-
ogy: IBM’s love affair with open source software. Working Paper n.
1081613, UK universities, Jan. 2008. 68

299. M. Caneill and S. Zacchiroli. Debsources: Live and historical views on
macro-level software evolution. In Proceedings of the 8th ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement, ESEM’14, pages 28:1–28:10, Sept. 2014. 116

300. G. Canfora, L. Cerulo, M. Cimitile, and M. Di Penta. Social inter-
actions around cross-system bug fixings: the case of FreeBSD and
OpenBSD. In Proceedings of the 8th Working Conference on Mining
Software Repositories, MSR’11, pages 143–152, May 2011. 249

301. L. F. Capretz, P. Waychal, and J. Jia. Comparing popularity of testing
careers among Canadian, Chinese, Indian students. In IEEE/ACM 41st
International Conference on Software Engineering, ICSE-SEET, pages
258–259, May 2019. 108

302. B. Caprile and P. Tonella. Nomen est omen: Analyzing the language of
function identifiers. In Proceedings of the 6th Working Conference on
Reverse Engineering, WCRE’99, pages 112–122, Oct. 1999. 196

303. J. R. Carlberg. Scientific/engineering work stations: A market survey.
Departmental Report DTNSRDC/CMLD-83/07, David W. Taylor Naval
Ship Research and Development Center, May 1983. 115

304. S. Carter-Thomas and E. Rowley-Jolivet. If -conditionals in medical
discourse: From theory to disciplinary practice. Journal of English for
Academic Purposes, 7(3):191–205, July 2008. 45

305. E. Caspi. Empirical study of opportunities for bit-level specialization in
word-based programs. Thesis (m.s.), University of California, Berkeley,
2000. 203

306. D. Castelvecchi. The biggest mystery in mathematics: Shinichi
Mochizuki and the impenetrable proof. Nature, 526(7572):178–181,
Oct. 2015. 148

307. M. P. Catherwood. Manpower impacts of electronic data processing.
Publication B-171, New York State Department of Labor, Division of
Research and Statistics, Sept. 1968. 92

308. A. C̆aus̆ević, R. Shukla, S. Punnekkat, and D. Sundmark. Effects of
negative testing on TDD: An industrial experiment. In H. Baumeis-
ter and B. Weber, editors, Agile Processes in Software Engineering and
Extreme Programming, volume 149 of Lecture Notes in Business Infor-
mation Processing, pages 91–105. Springer Berlin Heidelberg, 2013.
175

309. J. P. Cavanagh. Relation between the immediate memory span and the
memory search rate. Psychological Review, 79(6):525–530, Nov. 1972.
32

310. M. Ceccato, M. Di Penta, P. Falcarin, F. Ricca, M. Torchiano, and
P. Tonella. A family of experiments to assess the effectiveness and
efficiency of source code obfuscation techniques. Empirical Software
Engineering, 19(4):1040–1074, 2014. 197

311. C. Cecot and W. K. Viscusi. Judicial review of agency benefit-cost anal-
ysis. George Mason Law Review, 22(3):575–617, Nov. 2015. 149

312. C. Cederström and P. Fleming. Dead Man Working. Zero books, 2012.
67

313. A. Celik, K. Palmskog, M. Parovic, E. J. G. Arias, and M. Gligoric. Mu-
tation analysis for Coq. In 34th IEEE/ACM International Conference on
Automated Software Engineering, ASE’19, pages 539–551, Nov. 2019.
149

314. D. Centola and A. Baronchelli. The spontaneous emergence of
conventions: An experimental study of cultural evolution. PNAS,
112(7):1989–1994, Feb. 2015. 76

315. D. Centola, J. Becker, D. Brackbill, and A. Baronchelli. Exper-
imental evidence for tipping points in social convention. Science,
360(6393):1116–1119, June 2018. 75

316. P. E. Ceruzzi. The early computers of Konrad Zuse, 1935 to 1945. An-
nals of the History of Computing, 3(3):241–262, July 1981. 1

317. H. S. Cha. Disrupting the Management Supply Chain: An Organiza-
tional Learning Model of IT Offshore Outsourcing. PhD thesis, Faculty
of the Committee on Business Administration, The University of Ari-
zona, July 2007. 77

318. F. Chandler, I. A. Heard, M. Presley, A. Burg, E. Midden, and P. Mon-
gan. NASA human error analysis. Technical report, NASA Office of
Safety and Mission Assurance, Sept. 2010. 23

319. F. T. Chandler, Y. H. J. Chang, A. Mosleh, J. L. Marble, R. L. Bor-
ing, and D. I. Gertman. Human reliability analysis methods: Selection
guidance for NASA. Nasa/osma technical report, NASA Headquarters
Office of Safety and Mission Assurance, July 2006. 23

320. D. Chandlera and A. Kapelner. Breaking monotony with meaning: Mo-
tivation in crowdsourcing markets. In eprint arXiv:stat.OT/1210.0962,
Oct. 2012. 74

321. V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection–A survey.
ACM Computing Surveys, 41(3):1–58, July 2009. 379, 380

322. K. Chandrasekar. High-Level Power Estimation and Optimization of
DRAMs. PhD thesis, Technische Universiteit Delft, Oct. 2014. 371

323. A. C. Chang and P. Li. Is economics research replicable? Sixty pub-
lished papers from thirteen journals say "usually not". Finance and Eco-
nomics Discussion Series 2015-083, Washington: Board of Governors
of the Federal Reserve System, Sept. 2015. 4

324. P. P. Chang, S. A. Mahlke, W. Y. Chen, and W. mei W. Hwu. Profile-
guided automatic inline expansion for C programs. Software–Practice
and Experience, 22(5):349–369, May 1992. 186

325. W. Chang. R Graphics Cookbook. O’Reilly, 2012. 225

326. A. Chao. Estimating population size for sparse data in capture–
recapture experiments. Biometrics, 45(2):427–438, June 1989. 103

327. A. Chao, C.-H. Chiu, and L. Jost. Unifying species diversity, phylo-
genetic diversity, functional diversity, and related similarity and differ-
entiation measures through Hill numbers. Annual Review of Ecology,
Evolution and Systematics, 45(1):297–324, Nov. 2014. 96

328. A. Chao, R. K. Colwell, C.-W. Lin, and N. J. Gotelli. Sufficient sam-
pling for asymptotic minimum species richness estimators. Ecology,
90(4):1125–1133, Apr. 2009. 104

329. A. Chao, S.-M. Lee, and S.-L. Jeng. Estimating population size for
capture–recapture data when capture probabilities vary by time and in-
dividual animal. Biometrics, 48(1):201–216, Mar. 1992. 104

330. A. Chao and C.-W. Lin. Nonparametric lower bounds for species rich-
ness and shared species richness under sampling without replacement.
Biometrics, 68(3):912–921, Sept. 2012. 103

331. A. Chao and M. C. K. Yang. Stopping rules and estimation for recapture
debugging with unequal failure rates. Biometrika, 80(1):193–201, Mar.
1993. 175

332. C. Chapman, P. Wang, and K. T. Stolee. Exploring regular expres-
sion comprehension. In Proceedings of the 32nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE’17, pages
405–416, Nov. 2017. 181

333. C. A. Chapman. Usage and refactoring studies of python regular ex-
pressions. Thesis (m.s.), Iowa State University, 2016. 172

334. M. R. Chapman. In Search of Stupidity: Over 20 years of High-Tech
Marketing Disasters. Apress, second edition, 2006. 85, 92, 147

335. M. R. Chapman and R. J. Hujar. The softletter financial hand-
book 2011: Metrics and benchmarks mergers, IPOs, and ven-
ture finance compensation operations. company website, Sept.
2011. https://softletter.com/wp-content/uploads/2017/02/
FINHANDBOOK_A0055E.pdf. 62

336. P. Charbachi, L. Eklund, and E. Enoiu. Can pairwise testing perform
comparably to manually handcrafted testing carried out by industrial
engineers? In eprint arXiv:cs.SE/1706.01636, June 2017. 175

337. G. Charness and U. Gneezy. Strong evidence for gender differ-
ences in risk taking. Journal of Economic Behavior & Organization,
83(1):50–58, June 2012. 53

338. W. G. Chase and K. A. Ericsson. Skill and working memory. In G. H.
Bower, editor, The Psychology of Learning and Motivation, Vol. 15,
pages 1–58. Academic Press, 1982. 40

339. N. Chater. The Mind is Flat: The Illusion of Mental Depth and the
Improvised Mind. Allen Lane, Mar. 2018. 20

340. P. D. Chatzoglou and L. A. Macaulay. Requirements capture and
analysis : A survey of current practice. Requirements Engineering,
1(2):75–87, June 1996. 135

341. M. Chekaf, N. Gauvrit, A. Guida, and F. Mathy. Compression in work-
ing memory and its relationship with fluid intelligence. Cognitive Sci-
ence, 42(53):904–922, June 2018. 34

342. D. D. Chen and G.-J. Ahn. Security analysis of x86 processor mi-
crocode. Thesis (b.sc.), Arizona State University, Dec. 2014. 161

343. L. Chen, D. Wu, W. Ma, Y. Zhou, B. Xu, and H. Leung. How C++
templates are used for generic programming: An empirical study on 50
open source systems. ACM Transactions on Software Engineering and
Methodology, 29(1):3, Feb. 2020. 185, 186

344. T. Chen, Y. Chen, Q. Guo, O. Temam, T. Wu, and W. Hu. Statistical per-
formance comparisons of computers. In 18th International Symposium
on High Performance Computer Architecture, HPCA’12, pages 1–12,
Feb. 2012. 257, 258, 260, 261

345. Y. Chen, A. Groce, X. Fern, C. Zhang, W.-K. Wong, E. Eide, and
J. Regehr. Taming compiler fuzzers. In Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI’13, pages 197–208, June 2013. 172, 318, 319

346. P. W. Cheng, K. J. Holyoak, R. E. Nisbett, and L. M. Oliver. Pragmatic
versus syntactic approaches to training deductive reasoning. Cognitive
Psychology, 18(3):293–328, July 1986. 40

347. A. Chesson and G. Chamberlin. Survey-based measures of software
investment in the UK. Economic Trends 627, Office for National Statis-
tics, UK, Feb. 2006. 62

348. R. N. Chesterman. Report of Queensland health payroll system com-
mission of inquiry. Report, Queensland Government, Australia, July
2013. 120, 123

349. H. Cheung and S. Kemper. Competing complexity metrics and adults’
production of complex sentences. Applied Psycholinguistics, 13:53–76,
1992. 188

350. R. C. Cheung. A user-oriented software reliability model. IEEE Trans-
actions on Software Engineering, 6(2):118–125, 1980. 249

351. J. Y. Chiao, A. R. Bordeaux, and N. Ambady. Mental representations of
social status. Cognition, 93(2):B49–B57, Sept. 2004. 50

352. J. J. Chilenski. An investigation of three forms of the modified condi-
tion decision coverage (MCDC) criterion. Final Report DOT/FAA/AR-
01/18, U.S. Department of Transportation, Federal Aviation Adminis-
tration, Apr. 2001. 174

353. J. J. Chilenski and S. P. Miller. Applicability of modified condition/de-
cision coverage to software testing. Software Engineering Journal,
9(5):193–200, Sept. 1994. 174

354. S. Chilton, J. Covey, M. Jones-Lee, G. Loomes, and H. Metcalf. Valua-
tion of health benefits associated with reductions in air pollution. Tech-
nical report, Department for Environment, Food and Rural Affairs, May
2004. 152

355. C.-H. Chiu, Y.-T. Wang, B. A. Walther, and A. Chao. An improved non-
parametric lower bound of species richness via a modified Good–Turing
frequency formula. Biometrics, 70(3):671–682, Sept. 2014. 104

356. H. Cho. System-Level Effects of Soft Errors. PhD thesis, Department of
Electrical Engineering, Stanford University, Aug. 2015. 158

357. N. Chomsky. Syntactic Structures. Walter de Gruyter & Co, 13th edi-
tion, 1975. 177

358. K. R. Christensen. Negative and affirmative sentences increase ac-
tivation in different areas in the brain. Journal of Neurolinguistics,
22(1):1–17, Jan. 2009. 162

359. S. Christey and B. Martin. Buying into the bias: Why vulnerability
statistics suck. blackhat USA 2013, July-Aug. 2013. 152

360. T. Christie. The widespread and persistent myth that it is
easier to multiply and divide with Hindu-Arabic numerals
than with Roman ones. blog: Tony Christie, Feb. 2017.
https://thonyc.wordpress.com/2017/02/10/the-widespread-
and-persistent-myth-that-it-is-easier-to-multiply-and-
divide-with-hindu-arabic-numerals-than-with-roman-ones.
107

361. R. A. Chubon and M. R. Hester. An enhanced standard computer key-
board system for single-finger and typing-stick typing. Journal of Re-
habilitation Research and Development, 25(4):17–24, Oct.-Dec. 1988.
96

362. A. CIA. Analytic thinking and presentation for intelligence producers:
Analysis training handbook. Technical report, Office of Training and
Education, Central Intelligence Agency, Aug. 199? 224

363. Z. J. Ciechanowicz and A. C. De Weever. The ’completeness’ of the
Pascal test suite. Software–Practice and Experience, 14(5):463–471,
1984. 162

364. J. Cito, G. Schermann, J. E. Wittern, P. Leitner, S. Zumberi, and H. C.
Gall. An empirical analysis of the Docker container ecosystem on
GitHub. In Proceedings of the 14th International Conference on Mining
Software Repositories, MSR’17, pages 323–333, May 2017. 114, 140

365. D. Citron. MisSPECulation: Partial and misleading use of SPEC
CPU2000 in computer architecture conferences. In Proceedings of
the 30th annual International Symposium on Computer Architecture,
ISCA’03, pages 52–61, June 2003. 366

366. D. Citron and D. G. Feitelson. "look it up" or "do the math": An en-
ergy, area, and timing analysis of instruction resuse and memoization.
Technical Report H-0196, International Business Machines Corpora-
tion, Oct. 2003. 363, 364, 365

367. I. Ciupa, A. Pretschner, M. Oriol, A. Leitner, and B. Meyer. On the
number and nature of faults found by random testing. Software Testing,
Verification and Reliability, 21(1):3–28, Mar. 2011. 171

368. Civil Service Department, UK. Computers in Central Government Ten
years ahead. Her Majesty’s Stationery Office, Jan. 1971. 105

369. H. H. Clark. Understanding language. Cambridge University Press,
1996. 178

370. H. H. Clark and D. Wilkes-Gibbs. Referring as a collaborative process.
Cognition, 22:1–39, 1986. 76

371. A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law distributions
in empirical data. SIAM Review, 51(4):661–703, 2009. 319

372. W. S. Cleveland. The Elements of Graphing Data. Wadsworth Ad-
vanced Book Program, 1985. 225

373. W. S. Cleveland and R. McGill. Graphical perception: Theory, exper-
imentation, and application to the development of graphical methods.
Journal of the American Statistical Association, 79(387):531–554, Sept.
1984. 225

374. J. Clune, J.-B. Mouret, and H. Lipson. The evolutionary origins of
modularity. Proceedings of the Royal Society B: Biological Sciences,
280(1755):20122863, Jan. 2013. 184

375. A. Coad. Investigating the exponential age distribution of firms.
Economics: The Open-Access, Open-Assessment E-Journal, 4(2010-
17):1–30, Mar. 2010. 107

376. N. M. Coe. The growth and locational dynamics of the UK computer
services industry, 1981-1996. PhD thesis, Department of Geography,
University of Durham, 1996. 107

377. J. Coelho and M. T. Valente. Why modern open source projects fail.
In Proceedings of the 11th joint meeting of the European Software En-
gineering Conference and the ACM SIGSOFT symposium on the Foun-
dations of Software Engineering, ESEC/FSE’17, pages 186–196, Sept.
2017. 122

378. J. Cohen. Statistical Power Analysis for the Behavioural Sciences. Rout-
ledge, second edition, 1988. 256, 258

379. J. Cohen. The Earth is round (p < 0.05). American Psychologist,
49(12):997–1003, 1994. 266

380. J. Cohen, S. Teleki, and E. Brown. Best Kept Secrets of Peer Code
Review. SmartBear Software, 2012. 377

381. Z. Coker, S. Hasan, J. Overbey, M. Hafiz, and C. Kästner. Integers in C:
An open invitation to security attacks? Technical Report CSSE14-01,
Auburn University, Feb. 2014. 207

382. M. Cokol, I. Iossifov, R. Rodriguez-Esteban, and A. Rzhetsky. How
many scientific papers should be retracted? European Molecular Biol-
ogy Organization, 8(5):422–423, Apr. 2007. 11

383. R. E. Cole. Managing Quality Fads: How American Business Learned
to Play the Quality Game. Oxford University Press, Feb. 1999. 149

384. E. G. Coleman. Coding Freedom: The Ethics and Aesthetics of Hack-
ing. Princeton University Press, Dec. 2012. 107

385. M. Collard, A. Ruttle, B. Buchanan, and M. J. O’Brien. Population size
and cultural evolution in nonindustrial food-producing societies. PLoS
ONE, 8(9):e72628, Sept. 2013. 76

386. C. Collberg, T. Proebsting, and A. M. Warren. Repeatability and bene-
faction in computer systems research-A study and a modest proposal.
Technical Report TR 14-014, Department of Computer Science, Uni-
versity of Arizona, Feb. 2015. 4

387. D. Comin and B. Hobijn. Cross-country technology adoption: mak-
ing the theories face the facts. Journal of Monetary Economics,
51(1):39–83, 2004. 7

388. C. Commeyne, A. Abran, and R. Djouab. Effort estimation with story
points and cosmic function points - an industry case study. Software
Measurement News, 21(1):25–36, 2016. 129, 130

389. Comptroller General of the United States. Multiyear leasing and
government-wide purchasing of automatic data processing equipment
should result in significant savings. Technical Report B-115369, U.S.
General Accounting Office, Apr. 1971. 105

390. Comptroller General of the United States. Federal agencies’ mainte-
nance of computer programs: Expensive and undermanaged. Technical
Report AFMD-81-25, U.S. General Accounting Office, Feb. 1981. 114

391. Computing Technology Industry Association, The. Cyberstates 2019:
The definitive guide to the U.S. tech industry and tech workforce. Re-
search report, The Computing Technology Industry Association, Mar.
2019. 71

392. S. Condon, M. Regardie, M. Stark, and S. Waligora. Cost and schedule
estimation study report. Technical Report SEL-93-002, Goddard Space
Flight Center, Nov. 1993. 82, 133

393. Foundations for evidence-based policymaking Act of 2018 H.R.4175,
Jan. 2018. 115th Congress of the United States of America, 2nd session.
2

394. M. Conoscenti, V. Besner, A. Vetrò, and D. M. Fernández. Combin-
ing data analytics and developers feedback for identifying reasons of
inaccurate estimations in agile software development. The Journal of
Systems and Software, 156:126–135, Oct. 2019. 129

395. B. Conrad and M. Mitzenmacher. Power laws for monkeys typing ran-
domly: The case of unequal probabilities. IEEE Transactions on Infor-
mation Theory, 50(7):1403–1414, July 2004. 247

396. J. J. Cook and C. Zilles. A characterization of instruction-level er-
ror derating and its implications for error detection. In IEEE Inter-
national Conference on Dependable Systems and Networks With FTCS
and DCC, DSN 2008, pages 482–491, June 2008. 286

397. K. Cook. Ubuntu security hardening statistics (amd64). personal web-
site, July 2019. 102

398. P. Coombs. IT Project Estimation: A Practical Guide to the Costing of
Software. Cambridge University Press, 2003. 121

399. T. Copeland and V. Antikarov. Real Options A Practitioner’s Guide.
Texere Publishing Limited, Apr. 2001. 66, 67

400. A. Corazza, V. Maggio, and G. Scanniello. Coherence of comments
and method implementations: a dataset and an empirical investigation.
Software Quality Journal, 26(2):751–777, June 2018. 193

401. J. Corbet, G. Kroah-Hartman, and A. McPherson. Linux kernel devel-
opment: How fast it is going, who is doing it, what they are doing, and
who is sponsoring it? Technical report, The Linux Foundation, Dec.
2010. 121

402. J. Corbet, G. Kroah-Hartman, and A. McPherson. Linux kernel devel-
opment: How fast it is going, who is doing it, what they are doing, and
who is sponsoring it. Technical report, The Linux Foundation, Mar.
2012. 286

403. M. Correll and M. Gleicher. Error bars considered harmful: Exploring
alternate encodings for mean and error. IEEE Transactions on Visual-
ization and Computer Graphics, 20(12):2142–2151, Dec. 2014. 221

404. J. W. Cortada. The Digital Flood: The Diffusion of Information Tech-
nology Across the U.S., Europe and Asia. Oxford University Press, Sept.
2012. 7, 102

405. M. J. Cortese and M. M. Khanna. Age of acquisition predicts naming
and lexical-decision performance above and beyond 22 other predictor
variables: An analysis of 2,342 words. The Quarterly Journal of Ex-
perimental Psychology, 60(8):1072–1082, Aug. 2007. 196

406. L. Cosmides and J. Tooby. Evolutionary psychology: A primer. Tech-
nical report, Center for Evolutionary Psychology, University of Califor-
nia, Santa Barbara, 1998. 20, 44

407. D. E. Costa, S. Mujahid, R. Abdalkareem, and E. Shihab. Breaking
type-safety in Go: An empirical study on the usage of the unsafe pack-
age. In eprint arXiv:cs.SE/2006.09973, June 2020. 197

408. D. L. Costa and M. E. Kahn. Changes in the value of life, 1940-
1980. Working Paper No. 9396, National Bureau of Economic Re-
search, USA, Dec. 2002. 153

409. V. Costan and S. Devadas. Intel SGX explained. In Cryptology ePrint
Archive: Report 2016/086, Jan. 2016. 95

410. D. Cotroneo, A. K. Iannillo, R. Natella, and R. Pietrantuono. A compre-
hensive study on software aging across Android versions and vendors.
In eprint arXiv:cs.SE/2005.11523, May 2020. 358

411. D. Cotroneo, R. Pietrantuono, S. Russo, and K. Trivedi. How do bugs
surface? A comprehensive study on the characteristics of software bugs
manifestation. The Journal of Systems and Software, 113(C):27–43,
Mar. 2016. 150

412. J. D. Couger and M. A. Colter. Maintenance Programming: Improving
Productivity Through Motivation. Prentice-Hall, Inc, 1985. 71

413. N. Cowan. The magical number 4 in short-term memory: A recon-
sideration of mental storage capacity. Behavioral and Brain Sciences,
24(1):87–185, 2001. 31

414. M. F. Cowlishaw. Decimal floating-point: Algorism for computers.
In Proceedings of the 16th IEEE Symposium on Computer Arithmetic,
pages 104–111, June 2003. 150

415. J. F. Coyle and G. D. Polsky. Acqui-hiring. Duke Law Journal,
63(2):281–346, Nov. 2013. 93

416. Cray Research. M Series Site Planning Reference Manual. Cray Re-
search, Inc, Apr. 1983. 94

417. W. Crooymans, P. Pradhan, and S. Jansen. Exploring network modelling
and strategy in the Dutch software business ecosystem. In Proceedings
of the International Conference on Software Business, ICSOB 2015,
pages 45–59, June 2015. 108

418. F. E. Croxton and R. E. Stryker. Bar charts versus circle diagrams.
Journal of the American Statistical Association, 22(160):473–482, Dec.
1927. 224

419. J. Culver. The life cycle of a CPU. blog: The cpushack, 2010.
http://www.cpushack.com/life-cycle-of-cpu.html. 254, 255

420. G. Cumming and R. Maillardet. Confidence intervals and replication:
Where will the next mean fall? Psychological Methods, 11(3):217–227,
2006. 268

421. C. R. Cummins. The interpretation and use of numerically-quantified
expressions. PhD thesis, Research Centre for English and Applied Lin-
guistics, University of Cambridge, Nov. 2011. 50

422. P. G. Curran and K. A. Hauser. I’m paid biweekly, just not by lep-
rechauns: Evaluating valid-but-incorrect response rates to attention
check items. Journal of Research in Personality, 82(103849), Oct. 2019.
375

423. B. Curtis, H. Krasner, and N. Iscoe. A field study of the soft-
ware design process for large systems. Communications of the ACM,
31(11):1268–1287, Nov. 1988. 130

424. B. Curtis, S. B. Sheppard, and E. Kruesi. Evaluation of software life
cycle data from the PAVE PAWS project. Technical Report RADC-TR-
80-28, Rome Air Development Center, Griffiss Air Force Base, Mar.
1980. 133, 134, 151, 161, 162

425. M. A. Cusumano. Factory concepts and practices in software develop-
ment: An historical overview. Working Paper #3095-89 BPS, Alfred P.
Sloan School of Management, Dec. 1989. 73, 141

426. M. A. Cusumano. Shifting economies: From craft production to flexible
systems and software factories. Working Paper #3325-91/BPS, Alfred
P. Sloan School of Management, Aug. 1991. 141

427. M. A. Cusumano, A. Gawer, and D. B. Yoffie. The Business of Plat-
forms: Strategy in the Age of Digital Competition, Innovation, and
Power. Harper Business, June 2019. 109

428. K. Cwalina and B. Abrams. Framework Design Guidelines: Conven-
tions, Idioms, and Patterns for Reusable .NET Libraries. Addison–Wes-
ley, 2006. 184

429. J. Czerwonka. On use of coverage metrics in assessing effectiveness
of combinatorial test designs. In Sixth International Conference on
Software Testing, Verification and Validation, Workshops Proceedings,
ICST 2013, pages 257–266, Mar. 2013. 173

430. J. T. Daly. A higher order estimate of the optimum checkpoint
interval for restart dumps. Future Generation Computer Systems,
22(3):303–312, Feb. 2006. 167

431. A. Damasio. Self Comes to Mind: Constructing the Conscious Brain.
Vintage books, 2012. 20

432. M. Daneman and P. A. Carpenter. Individual differences in working
memory and reading. Journal of Verbal Learning and Verbal Behavior,
19(4):450–466, Aug. 1980. 190, 191

433. M. Daneman and P. A. Carpenter. Individual differences in integrat-
ing information between and within sentences. Journal of Experimental
Psychology: Learning, Memory, & Cognition, 9(4):561–584, 1983. 191

434. C. Danescu-Niculescu-Mizil, R. West, D. Jurafsky, J. Leskovec, and
C. Potts. No country for old members: User lifecycle and linguistic
change in online communities. In Proceedings of the 22nd Interna-
tional Conference on World Wide Web, WWW 2013, pages 307–318,
May 2013. 195

435. B. Danglot, P. Preux, B. Baudry, and M. Monperrus. Correctness at-
traction: A study of stability of software behavior under runtime pertur-
bation. Empirical Software Engineering, 23(4):2086–2119, Aug. 2018.
158, 159

436. A. Danowitz, K. Kelley, J. Mao, J. P. Stevenson, and M. Horowitz. CPU
DB: Recording microprocessor history. Communications of the ACM,
55(4):55–63, Apr. 2012. 96, 218, 366

437. J. Darley and C. D. Batson. "from Jerusalem to Jericho": A study of
situational and dispositional variables in helping behavior. Journal of
Personality and Social Psychology, 27(1):100–108, 1973. 23

438. P. A. David. Clio and the economics of QWERTY. The American Eco-
nomic Review, 75(2):332–337, May 1985. 96

439. P. A. David. Computer and dynamo: The modern productivity paradox
in a not-too distant mirror. No. 339, Department of Economics, Stanford
University, July 1989. 6

440. J. W. Davidson, J. R. Rabung, and D. B. Whalley. Relating static and
dynamic machine code measurements. Technical Report CS-89-03, De-
partment of Computer Science, University of Virginia, July 1989. 180

441. C. J. Davis. The spatial coding model of visual word identification.
Psychological Review, 117(3):713–758, July 2010. 32, 177

442. J. C. Davis, C. A. Coghlan, F. Servant, and D. Lee. The impact of
regular expression denial of service (ReDoS) in practice: An empirical
study at the ecosystem scale. In Proceedings of the 26th joint meeting of
the European Software Engineering Conference and the ACM SIGSOFT
symposium on the Foundations of Software Engineering, ESEC/FSE’18,
pages 246–256, Nov. 2018. 148

443. J. C. Davis, L. G. Michael, F. Servant, C. A. Coghlan, and D. Lee. Why
aren’t regular expressions a lingua franca? An empirical study on the
re-use and portability of regular expressions. In Proceedings of the 27th
joint meeting of the European Software Engineering Conference and the
ACM SIGSOFT symposium on the Foundations of Software Engineer-
ing, ESEC/FSE’19, pages 443–454, Aug. 2019. 172

444. J. C. Davis, D. Moyer, A. M. Kazerouni, and D. Lee. Testing regex gen-
eralizability and its implications A large-scale many-language measure-
ment study. In Proceedings of the 34th IEEE/ACM International Con-
ference on Automated Software Engineering, ASE’19, pages 427–439,
Nov. 2019. 269, 270

445. S. J. Davis and B. S. de la Parra. Application flows. Working paper,
University of Chicago Booth School of Business, Mar. 2017. 108, 114

446. S. J. Davis, J. MacCrisken, and K. M. Murphy. Economic perspec-
tives on software design: PC operating systems and platforms. Working
Paper No. 8411, National Bureau of Economic Research, USA, Aug.
2001. 1

447. S. Dayal. Characterizing HEC storage systems at rest. Technical Report
CMU-PDL-08-109, Parallel Data Laboratory, Carnegie Mellon Univer-
sity, July 2008. 246

448. R. de Bliek. Empirical studies on the economic impact of trust. PhD the-
sis, Erasmus Research Institute of Management, Rotterdam, May 2015.
72

449. S. De Deyne, S. Verheyen, E. Ameel, W. Vanpaemel, M. J. Dry,
W. Voorspoels, and G. Storms. Exemplar by feature applicability ma-
trices and other Dutch normative data for semantic concepts. Behavior
Research Methods, 40(4):1030–1048, Nov. 2008. 43

450. A. D. de Groot. Thought and Choice in Chess. Amsterdam University
Press, 2008. 39

451. J. L. de la Vara, M. Borg, K. Wnuk, and L. Moonen. An industrial
survey of safety evidence change impact analysis practice. IEEE Trans-
actions on Software Engineering, 42(12):1095–1117, Dec. 2016. 112,
144

452. B. B. de Mesquita, A. Smith, R. M. Siverson, and J. D. Morrow. The
Logic of Political Survival. The MIT Press, 2005. 130

453. R. A. De Millo, R. J. Lipton, and A. J. Perlis. Social processes
and proofs of theorems and programs. Communications of the ACM,
22(5):271–280, May 1979. 148, 266

454. A. B. de Oliveira, J.-C. Petkovich, T. Reidemeister, and S. Fischmeister.
DataMill: Rigorous performance evaluation made easy. In Proceedings
of the 4th ACM/SPEC International Conference on Performance Engi-
neering, ICPE’13, pages 137–148, Apr. 2013. 374, 375

455. F. G. de Oliveira Neto, R. Torkar, R. Feldt, L. Gren, C. A. Furia,
and Z. Huang. Evolution of statistical analysis in empirical soft-
ware engineering research: Current state and steps forward. In eprint
arXiv:cs.SE/1706.00933, June 2017. 9

456. G. B. de Pádua and W. Shang. Revisiting exception handling practices
with exception flow analysis. In International Conference on Source
Code Analysis and Manipulation, SCAM’17, pages 11–20, Sept. 2017.
204, 205

457. C. B. De Soto, M. London, and S. Handel. Social reasoning and spatial
paralogic. Journal of Personality and Social Psychologs, 2(4):513–521,
1965. 46

458. K. De Vogeleer. La loi de convexité énergie-fréquence de la consomma-
tion des programmes : modélisation, thermosensibilité et applications.
PhD thesis, Informatique [cs] Telecom ParisTech, Sept. 2015. 369

459. K. De Vogeleer, G. Memmi, and P. Jouvelot. Parameter sensitivity anal-
ysis of the energy/frequency convexity rule for nanometer-scale appli-
cation processors. In eprint arXiv:cs.DS/1508.07740, Aug. 2015. 368

460. I. De Voldere, J.-F. Romainville, S. Knotter, E. Durinck, E. Engin, A. Le
Gall, P. Kern, E. Airaghi, T. Pletosu, H. Ranaivoson, and K. Hoelck.
Mapping the creative value chains: A study on the economy of culture
in the digital age. Final report, Directorate-General for Education and
Culture Directorate D, European Commission, 2017. 85

461. G. de Wit. Firm size distributions: An overview of steady-state distribu-
tions resulting from firm dynamics models. Technical Report N200418,
EIM Business and Policy Research, Jan. 2005. 107

462. J. Dearden, B. W. Ickes, and L. Samuelson. To innovate or not to inno-
vate: Incentives and innovation in hierarchies. The American Economic
Review, 80(5):1105–1124, Dec. 1990. 5, 74

463. I. J. Deary. Intelligence: A Very Short Introduction. Oxford University
Press, 2001. 52

464. B. K. Debnath, M. F. Mokbel, and D. J. Lilja. Exploiting the impact
of database system configuration parameters: A design of experiments
approach. IEEE Data Engineering Bulletin, 31(1):3–10, Mar. 2008. 365

465. Debsources developers, The. Statistics | Debian sources. organization
website, June 2019. https://sources.debian.org/stats. 113

466. A. Decan and T. Mens. What do package dependencies tell us about
semantic versioning? IEEE Transactions on Software Engineering,
???(???):???, Nov. 2019. 117

467. A. Decan, T. Mens, and M. Claes. An empirical comparison of de-
pendency issues in OSS packaging ecosystems. In IEEE 24th Interna-
tional Conference on Software Analysis, Evolution and Reengineering,
SANER 2017, pages 2–12, Feb. 2017. 117

468. A. Decan, T. Mens, M. Claes, and P. Grosjean. On the development and
distribution of R packages: An empirical analysis of the R ecosystem.
In Proceedings of the 2015 European Conference on Software Architec-
ture Workshops, ECSAW’15, page 41, Sept. 2015. 116

469. A. Decan, T. Mens, M. Claes, and P. Grosjean. When GitHub meets
CRAN: An analysis of inter-repository package dependency problems.
In 23rd International Conference on Software Analysis, Evolution, and
Reengineering, SANER’16, pages 493–504, Mar. 2016. 116

470. A. Decan, T. Mens, and E. Constantinou. On the impact of security vul-
nerabilities in the npm package dependency network. In Proceedings
of the 15th International Conference on Mining Software Repositories,
MSR’18, pages 181–191, May 2018. 165

471. L. A. DeChurch and J. R. Mesmer-Magnus. Maintaining shared men-
tal models over long-duration exploration missions: Literature review
& operational assessment. Technical Memorandum TM-2015-218590,
National Aeronautics and Space Administration, Sept. 2015. 140

472. Defence technical information center. Search page for DTIC reports,
July 2016. http://dsearch.dtic.mil. 8

473. Defense, Department of. Military standard DOD-STD-2167 defense
system software development. Standard DOD-STD-2167, U.S. Depart-
ment of Defense, 1985. 131

474. Defense, Department of. Standard practice system safety. Standard
MIL-STD-882E, U.S. Department of Defense, May 2012. 153

475. S. Dehaene. Symbols and quantities in parietal cortex: elements of
a mathematical theory of number representation and manipulation. In
P. Haggard, Y. Rossetti, and M. Kawato, editors, Sensorimotor Foun-
dations of Higher Cognition (Attention and Performance) XXII, chap-
ter 24, pages 527–574. Oxford University Press, Nov. 2007. 48

476. S. Dehaene. Reading in the Brain: The Science and evolution of a hu-
man invention. Viking, 2009. 19

477. S. Dehaene. The Number Sense. Oxford University Press, revised and
updated edition, 2011. 46, 48

478. S. Dehaene, S. Bossini, and P. Giraux. The mental representation of
parity and number magnitude. Journal of Experimental Psychology:
General, 122(3):371–396, Sept. 1993. 22

479. S. Dehaene, E. Dupoux, and J. Mehler. Is numerical comparison dig-
its? Analogical and symbolic effects in two-digit number comparisons.
Journal of Experimental Psychology: Human Perception and Perfor-
mance, 16(3):626–641, 1990. 49

480. S. Dehaene, V. Izard, E. Spelke, and P. Pica. Log or linear? Distinct
intuitions of the number scale in Western and Amazonian indigene cul-
tures. Science, 320(5880):1217–1220, May 2008. 21, 48

481. S. M. Dekleva. The influence of the information systems development
approach on maintenance. MIS Quarterly, 16(3):355–372, Sept. 1992.
143

482. R. T. DeLamarter. Big Blue: IBM’s Use and Abuse of Power. Pan
Books, 1988. 77, 105, 130, 131

483. S. DellaVigna. Psychology and economics: Evidence from the field.
Working Paper No. 13420, National Bureau of Economic Research,
USA, Sept. 2007. 56

484. J. Demmel and Y. Hilda. Accurate floating point summation. Techni-
cal Report UCB/CSD-02-1180, University of California, Berkeley, May
2002. 147

485. M. Derex, J.-F. Bonnefon, R. Boyd, and A. Mesoudi. Causal under-
standing is not necessary for the improvement of culturally evolving
technology. Nature Human Behaviour, 3(5):446–452, May 2019. 75

486. G. Destefanis. Which programming language should a company use?
A Twitter-based analysis. Technical Report CRIM-14/10-23-MODL,
Computer Research Institute of Montréal, Oct. 2014. 114

487. S. Deutsch and M. H. Jørgensen. Studying the hidden costs of off-
shoring – the effect of psychic distance. Thesis (m.s.), Copenhagen
Business School, Aug. 2014. 127

488. J. P. DeVale. High Performance Robust Computer Systems. PhD thesis,
Electrical and Computer Engineering, Pittsburgh, Oct. 2001. 156

489. T. Dey and A. Mockus. Deriving a usage-independent software quality
metric. In eprint arXiv:cs.SE/2002.09989, Feb. 2020. 156

490. A. Di Franco, H. Guo, and C. Rubio-González. A comprehensive study
of real-world numerical bug characteristics. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE’17, pages 509–519, Nov. 2017. 161

491. C. Di Martino, Z. Kalbarczyk, R. K. Iyer, F. Baccanico, J. Fullop, and
W. Kramer. Lessons learned from the analysis of system failures at
petascale: The case of Blue Waters. In 44th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks, DSN 2014,
pages 610–621, June 2014. 166

492. M. Di Penta, L. Cerulo, and L. Aversano. The life and death of statically
detected vulnerabilities: an empirical study. Information and Software
Technology, 51(10):1469–1484, Oct. 2009. 153, 154, 343

493. A. Di Sorbo, J. Spillner, G. Canfora, and S. Panichella. "won’t we fix
this issue?" Qualitative characterization and automated identification of
wontfix issues on GitHub. In eprint arXiv:cs.SE/1904.02414, Apr. 2019.
4, 149

494. T. F. Dickey. Programmer variability. Proceedings of the IEEE,
69(7):844–845, July 1981. 10

495. L. S. Dickstein. The effect of figure on syllogistic reasoning. Memory
& Cognition, 6(1):76–83, 1978. 45

496. A. Diekmann. Not the first digit! Using Benford’s law to detect fraud-
ulent scientific data. Journal of Applied Statistics, 34(3):321–329, Oct.
2007. 386

497. J. Dietrich, K. Jezek, and P. Brada. What Java developers know about
compatibility, and why this matters. In eprint arXiv:cs.SE/1408.2607v1,
Aug. 2014. 376

498. S. Dietrich, I. Hertrich, and H. Ackermann. Training of ultra-fast speech
comprehension induces functional reorganization of the central-visual
system in late-blind humans. Frontiers in Human Neuroscience, 7(701),
Oct. 2013. 19

499. E. W. Dijkstra. Go to statement considered harmful. Communications
of the ACM, 11(3):147–148, Mar. 1968. 203

500. C. DiMarco, G. Hirst, and M. Stede. The semantic and stylistic differen-
tiation of synonyms and near-synonyms. In AAAI Spring Symposium on
Building Lexicons for Machine Translation, pages 114–121, Mar. 1993.
236

501. A. Dinaburg. Bitsquatting: DNS hijacking without exploitation. Refer-
ence 2011-307, Raytheon Company, July 2011. 167

502. D. K. Dirlam. Most efficient chunk sizes. Cognitive Psychology,
3(2):355–359, Apr. 1972. 34

503. A. K. Dixit and R. S. Pindyck. Investment under Uncertainty. Princeton
University Press, 1994. 65, 66, 334

504. H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel. An empirical study
of the effect of time constraints on the cost-benefits of regression testing.
In Proceedings of the 16th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2008, pages 71–82, Nov.
2008. 175

505. C. Domas. Breaking the x86 ISA. blackhat USA 2017, July 2017. 161

506. D. J. Dooling and R. E. Christiaansen. Episodic and semantic aspects
of memory for prose. Journal of Experimental Psychology: Human
Learning and Memory, 3(4):428–436, 1977. 190

507. J. R. Douceur and W. J. Bolosky. A large-scale study of file-system
contents. In Proceedings of the 1999 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, SIG-
METRICS’99, pages 59–70, July 1999. 246

508. J. Downer. Watching the watchmaker: On regulating the social in lieu
of the technical. Discussion Paper 54, London School of Economics
and Political Science, June 2009. 149

509. J. R. Doyle. Survey of time preference, delay discounting models. Judg-
ment and Decision Making, 8(2):116–135, Mar. 2013. 56

510. G. Dréan. The Computer Industry: Structure, economics, perspectives.
Gérard Dréan, english edition, 2012. 94

511. S. Drobisz, T. Mens, and R. Di Cosmo. A historical analysis of De-
bian package conflicts. In Proceedings of the 12th Working Conference
on Mining Software Repositories, MSR’15, pages 212–223, June 2015.
117

512. S. Duffy, J. Huttenlocher, L. V. Hedges, and L. E. Crawford. Category
effects on stimulus estimation: Shifting and skewed frequency distri-
butions. Psychonomic Bulletin & Review, 17(2):224–230, Apr. 2010.
49

513. J. Duggan. Implementing a metapopulation Bass diffusion model using
the R package deSolve. The R Journal, 9(1):153–163, June 2017. 356

514. R. I. M. Dunbar and R. Sosis. Optimising human community sizes.
Evolution and Human Behavior, 39(1):106–111, Jan. 2018. 99, 100

515. J. R. Dunham and L. A. Lauterbach. An experiment in software reliabil-
ity additional analyses using data from automated replications. NASA
Contractor Report 178395, Research Triangle Institute, North Carolina,
Jan. 1988. 157

516. J. R. Dunham and J. L. Pierce. An experiment in software reliabil-
ity. NASA Contractor Report 172553, NASA Langley Research Center,
Mar. 1986. 157, 158, 229

517. L. M. Dunn. An Investigation of the Factors Affecting the Lifecycle
Costs of COTS-Based Systems. PhD thesis, School of Computing, Uni-
versity of Portsmouth, June 2011. 111

518. D. Dunning, C. Heath, and J. M. Suls. Flawed self-assessment: Impli-
cations for health, education, and the workplace. Psychological Science
in the Public Interest, 5(3):69–106, Apr. 2004. 375

519. S. Duplichan. Intel overstates FPU accuracy. personal website, June
2013. http://notabs.org/fpuaccuracy. 150

520. V. H. S. Durelli, J. Offutt, N. Li, M. E. Delamaro, J. Guo, Z. Shi, and
X. Ai. What to expect of predicates: An empirical analysis of pred-
icates in real world programs. The Journal of Systems and Software,
113:324–336, Mar. 2016. 204

521. C. Dutang. CRAN task view: Probability distributions. website, June
2016. http://CRAN.R-project.org/view=Distributions. 236, 242

522. G. Dutilh, J. Annis, S. D. Brown, P. Cassey, N. J. Evans, R. P. P. P.
Grasman, G. E. Hawkins, A. Heathcote, W. R. Holmes, A.-M. Krypo-
tos, C. N. Kupitz, F. P. Leite, V. Lerche, Y.-S. Lin, G. D. Logan, T. J.
Palmeri, J. J. Starns, J. S. Trueblood, L. van Maanen, D. van Raven-
zwaaij, J. Vandekerckhove, I. Visser, A. Voss, C. N. White, T. V. Wiecki,
J. Rieskamp, and C. Donkin. The quality of response time data infer-
ence: A blinded, collaborative assessment of the validity of cognitive
models. Psychonomic Bulletin & Review, 26(4):1051–1069, Aug. 2019.
22

523. T. Dybå, V. B. Kampenes, and D. I. K. Sjøberg. A systematic review of
statistical power in software engineering experiments. Information and
Software Technology, 48(8):745–755, Aug. 2006. 8, 358

524. R. Dyer, H. Rajan, H. A. Nguyen, and T. N. Nguyen. Mining billions
of AST nodes to study actual and potential usage of Java language fea-
tures. In Proceedings of the 36th International Conference on Software
Engineering, ICSE’14, pages 779–790, May-June 2014. 202

525. P. C. Earley. Social loafing and collectivism: A comparison of the
United States and the People’s Republic of China. Administrative Sci-
ence Quarterly, 34(4):565–581, Dec. 1989. 72

526. H. Ebbinghaus. Über das Gedächtnis. Untersuchungen zur experi-
mentellen Psychologie. Teachers College, Columbia University, 1885.
English translation by Henry A. Ruger and Clara E. Bussenius as Mem-
ory: A Contribution to Experimental Psychology (Teachers College,
Columbia University, 1913). 35

527. A. Eckbreth, C. Saff, K. Connolly, N. Crawford, C. Eick, M. Goorsky,
N. Kacena, D. Miller, R. Schafrik, D. Schmidt, D. Stein, M. Stroscio,
G. Washington, and J. Zolper. Sustaining Air Force aging aircraft into
the 21st century. Technical Report SAB-TR-11-01, United States Air
Force Scientific Advisory Board, Aug. 2011. 98

528. Economist Data team. The changing US technology sector: Daily chart
for april 21 2015. The Economist website, Apr. 2015. As of Q1 2015,
Sources: Thomson Reuters; awk scripts+R converted the data embed-
ded in Javascript. 5

529. EDB. Offensive security’s exploit database archive. https://
www.exploit-db.com, Mar. 2018. 151

530. S. Eder, M. Junker, E. Jürgens, B. Hauptmann, R. Vaas, and K.-H. Prom-
mer. How much does unused code matter for maintenance? In 34th
International Conference on Software Engineering, ICSE’12, pages
1102–1111, June 2012. 65

531. A. Edmundson, B. Holtkamp, E. Rivera, M. Finifter, A. Mettler, and
D. Wagner. An empirical study on the effectiveness of security code
review. In Proceedings of the 5th International Conference on Engi-
neering Secure Software and Systems, ESSoS’13, pages 197–212, Feb.
2013. 268, 292, 301

532. M. A. Edwards and S. Roy. Academic research in the 21st century:
Maintaining scientific integrity in a climate of perverse incentives and
hypercompetition. Environmental Engineering Science, 34(1):51–61,
Jan. 2017. 10

533. K. Ehrlich and P. N. Johnson-Laird. Spatial descriptions and refer-
ential continuity. Journal of Verbal Learning and Verbal Behavior,
21(3):296–306, June 1982. 191

534. S. G. Eick, C. R. Loader, M. D. Long, L. G. Votta, and S. V. Wiel.
Estimating software fault content before coding. In Proceedings of
the 14th International Conference on Software engineering, ICSE’92,
pages 59–65, May 1992. 169

535. P. Ein-Dor. Grosch’s law re-revisited: CPU power and the cost of com-
putation. Communications of the ACM, 28(2):142–151, Feb. 1985. 94

536. T. Eisensee and D. Strömberg. News droughts, news floods, and U.S.
disaster relief. The Quarterly Journal of Economics, 122(2):693–728,
May 2007. 152

537. K. El Emam, S. Benlarbi, N. Goel, W. Melo, H. Lounis, and S. N. Rai.
The optimal class size for object-oriented software. IEEE Transactions
on Software Engineering, 28(5):494–509, Mar. 2002. 229

538. K. El Emam and A. G. Koru. A replicated survey of IT software project
failures. IEEE Software, 25(5):84–90, Apr. 2008. 122

539. A. Elci. The dependence of operating system size upon allocatable re-
sources. Technical Report 75-172, Department of Computer Science,
Purdue University, Dec. 1975. 110

540. I. R. Elliott. Life cycle planning for a large mix of commercial systems.
In B. Elkins and L. Hunt, editors, Software Phenomenology – Work-
ing Papers of the Software Life Cycle Management Workshop, chap-
ter 10, pages 203–215. Computer Systems Command, United States
Army, Aug. 1977. 143

541. J. Elliott, M. Hoemmen, and F. Mueller. Exploiting data representation
for fault tolerance. In eprint arXiv:cs.NA/1312.2333v1, Dec. 2013. 147

542. N. C. Ellis and R. A. Hennelly. A bilingual word-length effect: Implica-
tions for intelligence testing and the relative ease of mental calculation
in Welsh and English. British Journal of Psychology, 71:43–51, 1980.
31, 362

543. P. D. Ellis. The Essential Guide to Effect Sizes: Statistical Power, Meta-
Analysis, and the Interpretation of Research Results. Cambridge Uni-
versity Press, 2010. 256

544. R. Engbert, A. Nuthmann, E. M. Richter, and R. Kliegl. SWIFT: A
dynamical model of saccade generation during reading. Psychological
Review, 112(4):777–813, Oct. 2005. 28

545. J. Engblom. Why SpecInt95 should not be used to benchmark embed-
ded systems tools. ACM SIGPLAN Notices, 34(7):96–103, July 1999.
193, 194

546. B. Enke and F. Zimmermann. Correlation neglect in belief formation.
The Review of Economic Studies, 86(1):313–332, Jan. 2019. 39

547. J. Ensign and D. K. Akaka. Defense acquisitions: DOD has paid bil-
lions in award and incentive fees regardless of acquisition outcomes.
Technical Report GAO-06-66, United States Government Accountabil-
ity Office, Dec. 2005. 124

548. N. L. Ensmenger. Letting the "computer boys" take over: Technology
and the politics of organizational transformation. International Review
of Social History, 48(S11):153–180, Dec. 2003. 131

549. Y.-H. Eom and H.-H. Jo. Generalized friendship paradox in com-
plex networks: The case of scientific collaboration. In eprint
arXiv:cs.SI/1401.1458, Apr. 2014. 100

550. D. M. Erceg-Hurn and V. M. Mirosevich. Modern robust statistical
methods. American Psychologist, 63(7):591–601, Oct. 2008. 253

551. K. A. Ericsson and N. Charness. Expert performance. American Psy-
chologist, 49(8):725–747, Aug. 1994. 39

552. K. A. Ericsson and K. W. Harwell. Deliberate practice and proposed
limits on the effects of practice on the acquisition of expert performance:
Why the original definition matters and recommendations for future re-
search. frontiers in Psychology, 10:2396, Oct. 2019. 39

553. K. A. Ericsson, R. T. Krampe, and C. Tesch-Römer. The role of delib-
erate practice in the acquisition of expert performance. Psychological
Review, 100(3):363–406, July 1993. also University of Colorado, Tech-
nical Report #91-06. 40

554. K. A. Ericsson and A. C. Lehmann. Expert and exceptional perfor-
mance: Evidence of maximal adaption to task constraints. Annual Re-
view of Psychology, 47:273–305, 1996. 40

555. K. Eriksson, D. H. Bailey, and D. C. Geary. The grammar of approxi-
mating number pairs. Memory & Cognition, 38(3):333–343, Apr. 2010.
49

556. K. Eriksson, F. Jansson, and J. Sjöstrand. Bentley’s conjecture on popu-
larity toplist turnover under random copying. The Ramanujan Journal,
23(1-3):371–396, Dec. 2010. 76

557. N. A. Ernst, J. C. Carver, D. Mendez, and M. Torchiano. Un-
derstanding peer review of software engineering papers. In eprint
arXiv:cs.SE/2009.01209, Sept. 2020. 10

558. L. Eshkevari, F. D. Santos, J. R. Cordy, and G. Antoniol. Are PHP ap-
plications ready for Hack? In IEEE 22nd International Conference on
Software Analysis, Evolution and Reengineering, SANER 2015, pages
63–72, Mar. 2015. 208

559. L. M. Eshkevari, V. Arnaoudova, M. Di Penta, R. Oliveto, Y.-G.
Guéhéneuc, and G. Antoniol. An exploratory study of identifier renam-
ings. In Proceedings of the 8th Working Conference on Mining Software
Repositories, MSR’11, pages 33–42, May 2011. 139

560. H. Esmaeilzadeh, T. Cao, X. Yang, S. M. Blackburn, and K. S. McKin-
ley. Looking back on the language and hardware revolutions: Measured
power, performance, and scaling. In Proceedings of the sixteenth In-
ternational Conference on Architectural support for Programming Lan-
guages and Operating Systems, ASPLOS XVI, pages 319–332, Mar.
2011. 262

561. W. K. Estes. Classification and Cognition. Oxford University Press,
1994. 42

562. J. A. Etzel, J. M. Zacks, and T. S. Braver. Searchlight analysis: promise,
pitfalls, and potential. NeuroImage, 78:261–269, Sept. 2013. 177

563. A. N. Evans, B. Campbell, and M. L. Soffa. Is Rust used safely by soft-
ware developers? In Proceedings of the 42nd International Conference
on Software Engineering, ICSE’20, pages 246–257, July 2020. 197

564. J. S. B. T. Evans, J. L. Barston, and P. Pollard. On the conflict be-
tween logic and belief in syllogistic reasoning. Memory & Cognition,
11(3):295–306, 1983. 45, 46

565. J. L. Eveleens and C. Verhoef. The rise and fall of the Chaos report
figures. IEEE Software, 27(1):30–36, Jan. 2010. 122

566. J. Eyolfson, L. Tan, and P. Lam. Do time of day and developer expe-
rience affect commit bugginess? In Proceedings of the 8th Working
Conference on Mining Software Repositories, MSR’11, pages 153–162,
May 2011. 121, 326, 344

567. J. Eyolfson, L. Tan, and P. Lam. Correlations between bugginess and
time-based commit characteristics. Empirical Software Engineering,
19(4):1009–1039, Aug. 2014. 346, 347

568. Facebook. Facebook Inc. 2013 Form 10-K. SEC web-
site, 2014. https://www.sec.gov/Archives/edgar/data/1326801/
000132680114000007/fb-12312013x10k.htm. 88

569. Facebook. Facebook Inc. 2015 Form 10-K. SEC web-
site, 2016. https://www.sec.gov/Archives/edgar/data/1326801/
000132680116000043/fb-12312015x10k.htm. 88

570. R. Falk and C. Konold. Making sense of randomness: Implicit encoding
as a basis for judgment. Psychological Review, 104(2):301–318, Apr.
1997. 51

571. D. Fanelli. How many scientists fabricate and falsify research? A
systematic review and meta-analysis of survey data. PLoS ONE,
4(5):e5738, May 2009. 11

572. D. Fanelli. "Positive" results increase down the hierarchy of the sci-
ences. PLoS ONE, 5(4):e10068, Apr. 2010. 4

573. F. C. Fang, R. G. Steen, and A. Casadevall. Misconduct accounts for the
majority of retracted scientific papers. PNAS, 109(42):17028–17033,
Oct. 2012. 11

574. M. Fang and M. Hafiz. Discovering buffer overflow vulnerabilities in
the wild: An empirical study. In Proceedings of the 8th ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement, ESEM’14, pages 23:1–23:10, Sept. 2014. 152

575. L. Farr and B. Nanus. Factors that affect the cost of computer program-
ming, volume I. Technical Documentary Report ESD-TDR-64-448,
United States Air Force, L. G. Hanscom Field, Bedford, Massachusetts,
July 1964. 127

576. L. Farr and H. J. Zagorski. Factors that affect the cost of computer
programming, volume II: A quantitative analysis. Technical Documen-
tary Report ESD-TDR-64-448, United States Air Force, L. G. Hanscom
Field, Bedford, Massachusetts, Sept. 1964. 127

577. J. Farrell and P. Klemperer. Coordination and lock-in: Competition with
switching costs and network effects. In M. Armstrong and R. H. Porter,
editors, Handbook of Industrial Organization, Volume 3, chapter 31,
pages 1967–2072. North-Holland, Oct. 2007. 100

578. J. Farrell and C. Shapiro. Dynamic competition with switching costs.
RAND Journal of Economics, 19(1):123–137, 1988. 100

579. S. Farrell, M. J. Hurlstone, and S. Lewandowsky. Sequential dependen-
cies in recall of sequences: Filling in the blanks. Memory & Cognition,
41(6):938–52, Aug. 2013. 34

580. S. Farrell, K. Oberauer, M. Greaves, K. Pasiecznik, S. Lewandowsky,
and C. Jarrold. A test of interference versus decay in working mem-
ory: Varying distraction within lists in a complex span task. Journal of
Memory and Language, 90:66–87, Oct. 2016. 33

581. FDA. General principles of software validation. Final guidance for in-
dustry and FDA staff, U.S. Food and Drug Administration, Jan. 2002.
153

582. Federal Food and Drug Administration. PMA approvals. FDA web-
site, July 2019. https://www.fda.gov/medical-devices/device-
approvals-denials-and-clearances/pma-approvals. 154

583. Federal Register. United States v. Adobe Systems, Inc., et al.; Proposed
Final Judgment and Competitive Impact Statement, 2010. 75 (No. 190;
October 1), 24624. 109

584. Federal Trade Commission. DELL COMPUTER CORPORATION
CONSENT ORDER, ETC., IN REGARD TO ALLEGED VIOLATION
OF SEC. 5 OF THE FEDERAL TRADE COMMISSION ACT, Docket
C-3658. In P. C. Epperson, editor, Federal Trade Commission deci-
sions: Findings, opinions and orders volume 121, pages 616–643. U.S.
Government Printing Office, May 1996. 81

585. D. G. Feitelson. Workload Modeling for Computer Systems Perfor-
mance Evaluation. Cambridge University Press, 2014. 112, 366, 386

586. D. G. Feitelson and B. Nitzberg. Job characteristics of a production
parallel scientific workload on the NASA Ames iPSC/860. In D. G.
Feitelson and L. Rudolph, editors, Job Scheduling Strategies for Par-
allel Processing, volume 949 of Lecture Notes in Computer Science,
chapter 19, pages 337–360. Springer-Verlag, June 1995. 377

587. S. L. Feld. Why your friends have more friends than you do. The Amer-
ican Journal of Sociology, 96(6):1464–1477, May 1991. 100

588. J. Feldman. Minimization of boolean complexity in human concept
learning. Nature, 407:630–633, Oct. 2000. 42, 43

589. J. Feldman. An algebra of human concept learning. Journal of Mathe-
matical Psychology, 50(4):339–368, Aug. 2006. 42

590. A. Feldstein and P. Turner. Overflow, underflow, and severe loss of
significance in floating-point addition and subtraction. IMA Journal of
Numerical Analysis, 6(2):241–251, Apr. 1986. 156

591. M. Felici. Observational Models of Requirements Evolution. PhD the-
sis, School of Informatics, University of Edinburgh, 2004. 144

592. S. Feng, S. Gupta, A. Ansari, and S. Mahlke. Shoestring: Probabilistic
soft error reliability on the cheap. In Proceedings of the fifteenth edition
of ASPLOS on Architectural support for programming languages and
operating systems, ASPLOS’10, pages 385–396, Mar. 2010. 167

593. N. Fenton, M. Neil, W. Marsh, P. Hearty, Ł. Radliński, and P. Krause.
On the effectiveness of early life cycle defect prediction with Bayesian
nets. Empirical Software Engineering, 13(5):499–537, Oct. 2008. 293,
294

594. D. V. Ferens and D. S. Christensen. Calibrating software cost models to
Department of Defense databases-A review of ten studies. ISPA Journal
of Parametrics, XVIII(2):55–74, Nov. 1998. 128

595. C. J. Ferguson and M. Heene. A vast graveyard of undead theories:
Publication bias and psychological science’s aversion to the Null. Per-
spectives on Psychological Science, 7(6):555–561, Nov. 2012. 4, 265

596. P. Fernández. Valuing real options: Frequently made errors. Work-
ing Paper n. 274855, Instituto de Estudios Superiores de la Empresa,
Madrid, June 2001. 67

597. L. Ferrand, M. Brysbaert, E. Keuleers, B. New, P. Bonin, A. Méot,
M. Augustinova, and C. Pallier. Comparing word processing times in
naming, lexical decision, and progressive demasking: evidence from
Chronolex. frontiers in Psychology, 2(306), Nov. 2011. 196

598. S. Ferson, J. O’Rawe, A. Antonenko, J. Siegrist, J. Mickley, C. C. Luh-
mann, K. Sentz, and A. M. Finkel. Natural language of uncertainty:
numeric hedge words. International Journal of Approximate Reason-
ing, 57:19–39, Feb. 2015. 50

599. R. G. Fichman and C. F. Kemerer. Incentive compatibility and system-
atic software reuse. Journal of Systems and Software, 57(1):45–60, Apr.
2001. 82

600. A. Filippin and P. Crosetto. A reconsideration of gender differences in
risk attitudes. IZA DP No. 8184, The Institute for the Study of Labor,
Bonn, May 2014. 53

601. C. J. Fillmore. Topics in lexical semantics. In R. W. Cole, editor,
Current Issues in Linguistic Theory, pages 76–138. Indiana University
Press, 1977. 44

602. Financial Accounting Standards Board. Statement of financial account-
ing standards no. 86. Technical report, Financial Accounting Founda-
tion, Aug. 1985. 84

603. M. Finifter. Towards evidence-based assessment of factors contributing
to the introduction and detection of software vulnerabilities. Techni-
cal Report UCB/EECS-2013-49, Electrical Engineering and Computer
Sciences, University of California at Berkeley, May 2013. 169, 170

604. E. Fischer. The evolution of character codes, 1874-1968. Nov. 2002.
106

605. D. A. Fisher. A common programming language for the Department
of Defense – background and technical requirements. Paper P-1191,
Institute for Defense Analyses, Science and Technology Division, June
1976. 113

606. J. Fisher and R. A. Hinde. The opening of milk bottles by birds. British
Birds, 42(11):347–357, 1949. 75

607. J. C. Fisher and R. H. Pry. A simple substitution model of technologi-
cal change. Technological Forecasting & Social Change, 3:75–88, Apr.
1971-1972. 86

608. P. Flajolet, P. Dumas, and V. Puyhaubert. Some exactly solvable models
of urn process theory. In P. Chassaing, editor, Proceedings of Fourth
Colloquium on Mathematics and Computer Science Algorithms, Trees,
Combinatorics and Probabilities, pages 59–118, 2006. 102

609. K. Flamm. Targeting the Computer. The Brookings Institution, Wash-
ington, D.C., 1987. 8, 104

610. K. Flamm. Creating the Computer. The Brookings Institution, Wash-
ington, D.C., 1988. 1

611. K. Flamm. Measuring Moore’s law: Evidence from price, cost, and
quality indexes. Working Paper No. 24553, National Bureau of Eco-
nomic Research, USA, Apr. 2018. 7

612. D. Flater. Estimation of uncertainty in application profiles. NIST
TN.1826, National Institute of Standards and Technology, Apr. 2014.
374

613. D. Flater. Screening for factors affecting application performance in
profiling measurements. NIST Technical Note 1855, National Institute
of Standards and Technology, Oct. 2014. 372

614. D. Flater and W. F. Guthrie. A case study of performance degradation
attributable to run-time bounds checks on C++ vector access. Jour-
nal of Research of the National Institute of Standards and Technology,
118(012):260–279, May 2013. 202, 295, 297

615. P. J. Fleming and J. J. Wallace. How not to lie with statistics: The
correct way to summarize benchmark results. Communications of the
ACM, 29(3):218–221, Mar. 1986. 367

616. J. I. Flombaum, J. A. Junge, and M. D. Hauser. Rhesus monkeys
(Macaca mulatta) spontaneously compute addition operations over
large numbers. Cognition, 97(3):315–325, Oct. 2005. 49

617. B. Floyd, T. Santander, and W. Weimer. Decoding the representation of
code in the brain: An fMRI study of code review and expertise. In Pro-
ceedings of the 39th International Conference on Software Engineering,
ICSE’17, pages 175–186, May 2017. 177

618. B. Flyvbjerg. How planners deal with uncomfortable knowledge:
The dubious ethics of the American Planning Association. Cities,
32:157–163, June 2013. 127

619. B. Flyvbjerg, M. S. Holm, and S. L. Buhl. Underestimating costs in
public works projects: Error or lie? Journal of the American Planning
Association, 68(3):279–295, June 2002. 125

620. J. Fodor. The Modularity of Mind: An Essay on Faculty Psychology.
The MIT Press, 1983. 20

621. R. A. Foley. An evolutionary and chronological framework for human
social behaviour. Proceedings of the British Academy, 88:95–117, 1996.
19

622. P. Fonseca, K. Zhang, X. Wang, and A. Krishnamurthy. An empiri-
cal study on the correctness of formally verified distributed systems. In
Proceedings of the Twelfth European Conference on Computer Systems,
EuroSys’17, pages 328–343, Apr. 2017. 168

623. R. E. Fontana Jr. and G. M. Decad. Moore’s law realities for record-
ing systems and memory storage components: HDD, tape, NAND, and
optical. AIP Advances, 8(5):056506, May 2018. 98

624. C. E. Ford and S. A. Thompson. Conditionals in discourse: A text-based
study from English. In E. C. Traugott, A. T. Meulen, J. S. Reilly, and
C. A. Furguson, editors, On Conditionals, chapter 18, pages 353–372.
Cambridge University Press, 1986. 45

625. C. Foroughi and A. D. Stern. Digital innovation with high costs of entry:
Evidence from software-driven medical devices. HBS Working Paper
#18-094, Harvard Business School, Mar. 2018. 141

626. J. Förster, E. T. Higgins, and A. T. Bianco. Speed/accuracy decisions in
task performance: Built-in trade-off or separate strategic concerns? Or-
ganizational Behavior and Human Decision Processes, 90(1):148–164,
Jan. 2003. 24

627. J. Fowkes and C. Sutton. Parameter-free probabilistic API mining
across GitHub. In Proceedings of the 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, FSE 2016,
pages 254–265, Nov. 2016. 352, 353

628. M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring:
Improving the Design of Existing Code. Addison–Wesley, 1999. 9

629. W. B. Frakes, C. J. Fox, and B. A. Nejmeh. Software Engineering in the
Unix/C Environment. Prentice-Hall, Inc, 1991. 184

630. S. Frederick, G. Loewenstein, and T. O’Donoghue. Time discounting:
A critical review. Journal of Economic Literature, 40(2):351–401, June
2002. 178

631. D. P. Freedman and G. M. Weinberg. Handbook of Walkthroughs, In-
spections, and Technical Reviews. Dorset House Publishing, 1990. 169

632. P. A. Freund and N. Kasten. How smart do you think you are? A
meta-analysis on the validity of self-estimates of cognitive ability. Psy-
chological Bulletin, 138(2):296–321, Mar. 2011. 21

633. A. Frumusanu. The Samsung Exynos 7420 deep dive - Inside a
modern 14nm SoC. Anantech news site, June 2015. http://
www.anandtech.com/show/9330/exynos-7420-deep-dive/5. 368,
369

634. W.-T. Fu and W. D. Gray. Memory versus perceptual-motor tradeoffs
in a blocks world task. In Proceedings of the Twenty-second Annual
Conference of the Cognitive Science Society, pages 154–159. Erlbaum,
2000. 25

635. Y. Funami and M. H. Halstead. A software physics analysis of
akiyama’s debugging data. Technical Report CSD-TR 144, Purdue Uni-
versity, May 1975. 182

636. B. M. Fung, K. Wang, R. Chen, and P. S. Yu. Privacy-preserving data
publishing: A survey of recent developments. ACM Computing Surveys,
42(4):1–53, June 2010. 378

637. C. A. Furia. Bayesian statistics in software engineering: Practical guide
and case studies. In eprint arXiv:cs.SE/1608.06865, Aug. 2016. 254

638. G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais. Statisti-
cal semantics: Analysis of the potential performance of key-word infor-
mation systems. The Bell System Technical Journal, 62(6):1753–1805,
July-Aug. 1983. 106

639. G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais. The vo-
cabulary problem in human-system communication. Communications
of the ACM, 30(11):964–971, Nov. 1987. 106

640. T. Futagami, M. Itoh, Y. Mihara, F. Mitsuhashi, H. Nishiyama,
M. Shukuguchi, N. Tachi, K. Toyama, H. Obata, Y. Ooizumi,
T. Shimizu, and S. Takeichi. ESCR Embedded System development
Coding Reference guide [C Language Edition]. Information-technology
Promotion Agency, Japan, 2.0 edition, 2017. 184

641. R. Futrell, K. Mahowald, and E. Gibson. Large-scale evidence
of dependency length minimization in 37 languages. PNAS,
112(33):10336–10341, Aug. 2015. 187, 188

642. M. T. Gailliot and R. F. Baumeister. The physiology of willpower: Link-
ing blood glucose to self-control. Personality and Social Psychology
Review, 11(4):303–327, Nov. 2007. 57

643. W. A. Gale. Good-Turing smoothing without tears. Technical Report
94.5, AT&T Bell Laboratories, Aug. 1994. 383

644. K. Gallaba, C. Macho, M. Pinzger, and S. McIntosh. Noise and het-
erogeneity in historical build data: An empirical study of Travis CI. In
Proceedings of the 33rd IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE’18, pages 87–97, Sept. 2018. 140

645. K. Gallaba, A. Mesbah, and I. Beschastnikh. Don’t call us, we’ll call
you: Characterizing callbacks in JavaScript. In International Sympo-
sium on Empirical Software Engineering and Measurement, ESEM’15,
pages 247–256, Oct. 2015. 208, 209

646. C. R. Gallistel, S. Fairhurst, and P. Balsam. The learning curve: Impli-
cations of a quantitative analysis. PNAS, 101(36):13124–13131, Sept.
2004. 36

647. C. R. Gallistel, M. Krishan, Y. Liu, R. Miller, and P. E. Latham. The
perception of probability. Psychological Review, 121(1):96–123, Jan.
2014. 51

648. T. J. Gandomani, K. T. Wei, and A. K. Binhamid. A case study research
on software cost estimation using experts’ estimates, Wideband Delphi,
and Planning Poker technique. International Journal of Software Engi-
neering and Its Applications, 8(11):173–182, Apr. 2014. 274

649. A. Gandy. The entry of established electronics companies into the early
computer industry in the UK and USA. PhD thesis, London School of
Economics and Political Science, 1992. 1, 112

650. J. D. Gannon. An experimental evaluation of data type conversions.
Communications of the ACM, 20(8):584–595, Aug. 1977. 205

651. Z. Gao, Y. Liang, M. B. Cohen, A. M. Memon, and Z. Wang. Making
system user interactive tests repeatable: When and what should we con-
trol? In Proceedings of the 37th International Conference on Software
Engineering, ICSE’15, pages 55–65, May 2015. 174

652. M. K. Gardner, E. Z. Rothkopf, R. Lapan, and T. Laferty. The word
frequency effect in lexical decision: Finding a frequency-based compo-
nent. Memory & Cognition, 15(1):24–28, 1987. 195

653. M. R. Garman. The generalizability of private sector research on soft-
ware project management in two USAF organizations: An exploratory
study. Thesis (m.s.), Air Force Institute of Technology, USA, Mar. 2003.
139

654. R. Garner and F. R. Dill. The legendary IBM 1401 data processing sys-
tem. IEEE Solid-State Circuits Magazine, 2(1):28–39, Jan. 2010. 105

655. V. Garousi, M. Borg, and M. Oivo. Cut to the chase: Revis-
iting the relevance of software engineering research. In eprint
arXiv:cs.SE/1812.01395, Dec. 2018. 9

656. Gartner. Worldwide smartphone sales. https://en.wikipedia.org/
wiki/Mobile_operating_system, July 2017. 5, 93

657. J. Gascoigne. Introducing open salaries at buffer our transparent
formula and all individual salaries buffer. company website, Dec.
2013. https://open.buffer.com/introducing-open-salaries-
at-buffer-including-our-transparent-formula-and-all-
individual-salaries. 71

658. B. Gates. Shell plans - iShellBrowser. Plaintiff’s Exhibit 2151, JOE
COMES, RILEY PAINT, INC., SKEFFINGON’S FORMAL WEAR,
INC., PATRICIA ANNE LARSEN vs. MICROSOFT CORPORA-
TION; IOWA District Court for Polk County, Oct. 1994. 117

659. D. C. Gause and G. M. Weinberg. Exploring Requirements: Quality
before design. Dorset House Publishing, 1989. 135

660. G. Gay, A. Rajan, M. Staats, M. Whalen, and M. P. E. Heimdahl. The
effect of program and model structure on the effectiveness of MC/DC
test adequacy coverage. ACM Transactions on Software Engineering
and Methodology, 25(3):25, Aug. 2016. 174

661. J. E. Gayek, L. G. Long, K. D. Bell, R. M. Hsu, and R. K. Larson. Soft-
ware cost and productivity model. Technical Report ATR-2004(8311)-
1, Aerospace Corporation, Feb. 2004. 84

662. Gcc releases. organization website, July 2019. https://gcc.gnu.org/
releases.html. 95, 118

663. Y. Ge and B. Xu. Dynamic staffing and rescheduling in software project
management: A hybrid approach. PLoS ONE, 11(6):e0157104, June
2016. 130, 132

664. Y. Geffen and S. Maoz. On method ordering. In IEEE 24th Interna-
tional Conference on Program Comprehension, ICPC’16, pages 1–10,
May 2016. 209

665. W. Gellerich, M. Kosiol, and E. Ploedereder. Where does GOTO go to?
In Reliable Software Technology – Ada-Europe 1996, volume 1088 of
LNCS, pages 385–395. Springer, 1996. 204

666. S. A. Gelman and E. M. Markman. Categories and induction in young
children. Cognition, 23:183–209, 1986. 41

667. D. Gentner and S. Goldin-Meadow. Language In Mind: Advances in
the Study of Language and Thought. The MIT Press, 2003. 201

668. S. L. Gerhart and L. Yelowitz. Observations of fallibility in applica-
tions of modern programming methodologies. IEEE Transactions on
Software Engineering, SE-2(3):195–207, Sept. 1976. 168

669. M. Gerlach, B. Farb, W. Revelle, and L. A. N. Amaral. A robust data-
driven approach identifies four personality types across four large data
sets. Nature Human Behaviour, 2(10):735–742, Sept. 2018. 52

670. D. M. German, B. Adams, and A. E. Hassan. Continuously mining dis-
tributed version control systems: An empirical study of how Linux uses
git. Empirical Software Engineering, 21(1):260–299, Feb. 2016. 4, 378

671. D. M. German and J. M. González-Barahona. An empirical study of
the reuse of software licensed under the GNU general public license. In
The 5th International Conference on Open Source Systems, OSS 2009,
pages 185–198, June 2009. 68

672. D. M. German, Y. Manabe, and K. Inoue. A sentence-matching method
for automatic license identification of source code files. In Proceedings
of the IEEE/ACM International Conference on Automated Software En-
gineering, ASE’10, pages 437–446, Apr. 2010. 69

673. E. H. Gibbs, G. A. Munroe, A. M. Zeman, and C. T. Cottingham.
JANET SKOLD and DAVID DOSSANTOS, on behalf of themselves
and all others similarly situated and the general public, v. INTEL COR-
PORATION, HEWLETT PACKARD COMPANY and DOES 1-50,
case no. 1-05-CV-039231, filing #g-43414. Opinion, Superior court
of the state of California for the county of Santa Clara, 2012. 366

674. E. Gibson. Linguistic complexity: locality of syntactic dependencies.
Cognition, 68(1):1–76, Aug. 1998. 187

675. E. Gibson and J. Thomas. Memory limitations and structured forgetting:
The perception of complex ungrammatical sentences as grammatical.
Language and Cognitive Processes, 14(3):225–248, 1999. 191

676. G. Gigerenzer. Striking a blow for sanity in theories of rationality. In
M. Augier and J. G. March, editors, Models of a man: Essays in mem-
ory of Herbert A. Simon, pages 389–409. The MIT Press, May 2004.
53

677. G. Gigerenzer. Rationality for Mortals-How People cope with Uncer-
tainty. Oxford University Press, 2008. 43, 266

678. G. Gigerenzer, W. Gaissmaier, E. Kurz-Milcke, L. M. Schwartz, and
S. Woloshin. Helping doctors and patients make sense of health statis-
tics. Psychological Science in the Public Interest, 8(2):53–96, Apr.
2008. 224

679. G. Gigerenzer, S. Krauss, and O. Vitouch. The null ritual: What you al-
ways wanted to know about significance testing but were afraid to ask.
In D. Kaplan, editor, The Sage handbook of quantitative methodology
for the social sciences, chapter 21, pages 391–408. Sage Publications,
Inc, 2004. 267

680. G. Gigerenzer, P. M. Todd, and The ABC Research Group. Simple
Heuristics That Make Us Smart. Oxford University Press, 1999. 20,
43, 53

681. B. Gilchrist and R. E. Weber. Employment of trained computer
personnel–A quantitative survey. In Proceedings of the Spring Joint
Computer Conference, AFIPS’72, pages 641–648, May 1972. 108

682. J. Gimpel. Software that checks software: The impact of PC-lint. IEEE
Software, 31(1):15–19, Jan.-Feb. 2014. 144

683. V. Girotto, A. Mazzocco, and A. Tasso. The effect of premise order on
conditional reasoning: a test of the mental model theory. Cognition,
63:1–28, 1997. 45

684. M. Givon, V. Mahajan, and E. Muller. Software piracy: Estimation of
lost sales and the impact on software diffusion. Journal of Marketing,
59(1):29–37, Jan. 1995. 88, 331, 332

685. T. J. Glauthier. Computer time sharing: Its origins and development.
Computers and Automation, 16(10):23–27, Oct. 1967. 1

686. A. Glenberg. Few believe the world is flat: How embodiment is chang-
ing the scientific understanding of cognition. Canadian Journal of Ex-
perimental Psychology, 69(2):165–171, June 2015. 22

687. F. Gobet. Understanding Expertise: A Multi-disciplinary Approach.
Palgrave, 2016. 39

688. D. R. Godden and A. D. Baddeley. Context-dependent memory in two
natural environments: On land and underwater. British Journal of Psy-
chology, 66(3):325–331, 1975. 33

689. M. W. Godfrey and Q. Tu. Evolution in open source software: A
case study. In 16th International Conference on Software Maintenance,
ICSM’00, pages 131–142, Oct. 2000. 291

690. M. W. Godfrey and L. Zou. Using origin analysis to detect merging
and splitting of source code entities. IEEE Transactions on Software
Engineering, 31(2):166–181, Feb. 2005. 210

691. A. L. Goel. An experimental investigation into software reliability. Fi-
nal Technical Report RADC-TR-88-213, CASE Center, Syracuse Uni-
versity, Oct. 1988. 163

692. M. Goeminne and T. Mens. Towards a survival analysis of database
framework usage in Java projects. In 31st International Conference on
Software Maintenance and Evolution, ICSME 2015, pages 551–556,
Sept.-Oct. 2015. 344

693. S. S. Gokhale and R. E. Mullen. The marginal value of increased test-
ing: An empirical analysis using four code coverage measures. Journal
of the Brazilian Computer Society, 12(3):13–30, Dec. 2006. 175

694. M. M. Gold. A methodology for evaluating time-shared computer sys-
tem usage. Technical report, Carnegie Mellon University, Aug. 1967.
118

695. K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigentaste: A con-
stant time collaborative filtering algorithm. In Information Retrieval, 4,
pages 133–151, July 2001. 234

696. L. R. Goldberg. An alternative "description of personality": The big-
five factor structure. Journal of Personality and Social Psychologs,
59(6):1216–12297, 1990. 52

697. L. R. Goldberg, J. A. Johnson, H. W. Eber, R. Hogan, M. C. Ashton,
C. R. Cloninger, and H. G. Gough. The international personality item
pool and the future of public-domain personality measures. Journal of
Research in Personality, 40(1):84–96, 2006. 52

698. M. S. Goldberg and A. Touw. Statistical methods for learning curves
and cost analysis. Technical Report CIMD0006870.A3/1Rev, The CNA
Corporation, Mar. 2003. 76

699. H. H. Goldstine and J. von Neumann. Planning and coding of prob-
lems for an electronic computing instrument. Technical Report Part II,
Volume 1-3, Institute for Advanced Study, Princeton, Apr. 1947. 131

700. P. Golle. Revisiting the uniqueness of simple demographics in the US
population. In Proceedings of the 5th ACM workshop on Privacy in
electronic society, WPES’06, pages 77–80, Oct. 2006. 378

701. R. W. Gomulkiewicz. Enforcement of open source software licenses:
The MDY trio’s inconvenient compliations. Yale Journal of Law &
Technology, 14:106–137, 2011. 70

702. I. R. Gonzaga, Jr. Empirical studies on fine-grained feature dependen-
cies. Thesis (m.s.), Universidade Federal de Alagoas, Instituto de Com-
putação, Aug. 2015. 207

703. R. Gonzalez and G. Wu. On the shape of the probability weighting
function. Cognitive Psychology, 38(1):129–166, Feb. 1999. 51

704. J. M. González-Barahona, G. Robles, I. Herraiz, and F. Ortega. Studying
the laws of software evolution in a long-lived FLOSS project. Journal
of Software: Evolution and Process, 26(7):589–612, July 2014. 220,
257, 258, 318, 333

705. B. H. Good, Y.-A. de Montjoye, and A. Clauset. The perfor-
mance of modularity maximization in practical contexts. In eprint
arXiv:physics.data-an/0910.0165v2, Apr. 2010. 249

706. J. Goodman. Lessons learned from seven Space Shuttle missions.
NASA Contractor Report CR-2007-213697, Lyndon B. Johnson Space
Center, Jan. 2007. 148

707. P. Goodridge, J. Haskel, and G. Wallis. Estimating UK investment in
intangible assets and intellectual property rights. Technical Report No.
2014/36, Intellectual Property Office, UK government, Sept. 2014. 6

708. Google books ngram dataset. corporate website, 2015.
http://storage.googleapis.com/books/ngrams/books/
datasetsv2.html. 385

709. A. Gopal and B. R. Koka. The role of contracts on quality and returns
to quality in offshore software development outsourcing. Decision Sci-
ences, 41(3):491–516, Aug. 2010. 124

710. R. Gopinath. On the Limits of Mutation Analysis. PhD thesis, Oregon
State University, June 2017. 175

711. R. Gopinath, A. Alipour, I. Ahmed, C. Jensen, and A. Groce. How
hard does mutation analysis have to be, anyway? In IEEE 26th Inter-
national Symposium on Software Reliability Engineering, ISSRE’15,
pages 216–227, Nov. 2015. 175, 235

712. R. Gopinath, C. Jensen, and A. Groce. Code coverage for suite evalua-
tion by developers. In Proceedings of the 36th International Conference
on Software Engineering, ICSE’14, pages 72–82, June 2014. 174, 175,
306

713. R. Gopinath, C. Jensen, and A. Groce. Mutations: How close are they
to real faults? In IEEE 25th International Symposium on Software Re-
liability Engineering, ISSRE’14, pages 189–200, Nov. 2014. 164, 175

714. R. D. Gordon and M. H. Halstead. An experiment comparing Fortran
programming times with the software physics hypothesis. Technical
Report TR 167, Purdue University, Oct. 1975. 182

715. R. J. Gordon. The postwar evolution of computer prices. Working Paper
No. 2227, National Bureau of Economic Research, USA, Apr. 1987. 5

716. K. Goševa-Popstojanova, M. Hamill, and R. Perugupalli. Large empiri-
cal case study of architecture-based software reliability. In Proceedings
of the 16th IEEE International Symposium on Software Reliability En-
gineering, ISSRE’05, pages 43–52, Nov. 2005. 248

717. M. Gottscho. ViPZonE: Exploiting DRAM power variability for energy
savings in Linux x86-64. Thesis (m.s.), Electrical Engineering, UCLA,
Mar. 2014. 371

718. M. Gottscho, A. A. Kagalwalla, and P. Gupta. Power variability in
contemporary DRAMs. IEEE Embedded Systems Letters, 4(12):37–40,
June 2012. 371

719. S. Götz, T. Ilsche, J. Cardoso, J. Spillner, U. Aßmann, W. Nagel, and
A. Schill. Energy-efficient data processing at sweet spot frequencies. In
OTM Workshops, 2014, pages 154–171, Apr. 2014. 368

720. G. Gousios and A. Zaidman. A dataset for pull-based development re-
search. In Proceedings of the 11th Working Conference on Mining Soft-
ware Repositories, MSR’14, pages 368–371, May 2014. 217

721. G. Gousios, A. Zaidman, M.-A. Storey, and A. van Deursen. Work
practices and challenges in pull-based development: The integrator’s
perspective. In Proceedings of the 37th International Conference on
Software Engineering, ICSE’15, pages 358–368, May 2015. 222, 223

722. E. M. Grabbe, S. Ramo, and D. E. Wooldridge. Handbook of Automa-
tion, Computation, and Control, Volume 2: Computers and Data Pro-
cessing. John Wiley & Sons, Inc, 1959. 113

723. P. Grady. Termination of the SIREN ICT project. Grant Thornton UK
LLP, June 2014. 132

724. R. B. Grady and D. L. Caswell. Software Metrics: Establishing a
company-wide program. Prentice-Hall, Inc, 1987. 151

725. A. C. Graesser, S. B. Woll, D. J. Kowalski, and D. A. Smith. Memory
for typical and atypical actions in scripted activities. Journal of Experi-
mental Psychology: Human Learning and Memory, 6(5):503–515, June
1980. 189, 190

726. S. Graillat, F. Jézéquel, R. Picot, F. Févotte, and B. Lathuilière. Auto-
tuning for floating-point precision with discrete stochastic arithmetic.
HAL Id: hal-01331917, HAL archives-ouvertes.fr, June 2016. 150

727. E. E. Grant and H. Sackman. An exploratory investigation of program-
mer performance under on-line and off-line conditions. IEEE Transac-
tions on Human Factors in Electronics, 8(1):33–48, Mar. 1967. 10, 57,
275

728. Graphviz-graph visualization software. organization website, 2015.
http://www.graphviz.org. 222

729. C. A. Graver, W. M. Carriere, E. E. Balkovich, and R. Thibodeau. Cost
reporting elements and activity cost tradeoffs for defense system soft-
ware (study results). Technical Report ESD-TR-77-262, Vol. 1, General
Research Corporation, May 1977. 133

730. D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson. The misuse
of the NASA metrics data program data sets for automated software de-
fect prediction. In 15th Annual Conference on Evaluation & Assessment
in Software Engineering 2011, EASE 2011, pages 96–103, Apr. 2011.
378

731. J. Gray, C. Nyberg, M. Shah, and N. Govindaraju. Sort benchmark.
http://sortbenchmark.org, July 2014. 366

732. K. Gray, D. G. Rand, E. Ert, K. Lewis, S. Hershman, and M. I. Nor-
ton. The emergence of "us and them" in 80 lines of code: Modeling
group genesis in homogeneous populations. Association for Psycholog-
ical Science, 25(4):982–990, Apr. 2014. 78

733. W. D. Gray, C. R. Sims, W.-T. Fu, and M. J. Schoelles. The soft con-
straints hypothesis: A rational analysis approach to resource allocation
for interactive behavior. Psychological Review, 113(3):461–482, July
2006. 25

734. M. Grechanik, C. McMillan, L. DeFerrari, M. Comi, S. Crespi,
D. Poshyvanyk, C. Fu, Q. Xie, and C. Ghezzi. An empirical inves-
tigation into a large-scale Java open source code repository. In Pro-
ceedings of the 2010 ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement, ESEM’10, pages 11:1–11:10,
Sept. 2010. 200

735. J. H. Greenberg. Some universals of grammar with particular reference
to the order of meaningful elements. In J. H. Greenberg, editor, Univer-
sals of Language, chapter 5, pages 58–90. The MIT Press, 1963. 45

736. H. I. Greenfield. An economist looks at data processing. Computers
and Automation, 6(10):18–23, Oct. 1957. 105

737. S. Greenstein. Did computer technology diffuse quickly?: Best and av-
erage practice in mainframe computers, 1968-1983. Working Paper No.
4647, National Bureau of Economic Research, USA, Feb. 1994. 99

738. C. Gregg and K. Hazelwood. Where is the data? Why you cannot debate
CPU vs. GPU performance without the answer. In IEEE International
Symposium on Performance Analysis of Systems and Software, ISPASS,
pages 134–144, Apr. 2011. 361

739. P. Grice. Studies in the Way of Words. Harvard University Press, 1989.
178

740. D. A. Grier. The ENIAC, the verb "to program" and the emergence
of digital computers. IEEE Annals of the History of Computing,
18(I):51–55, 1996. 1

741. D. A. Grier. When Computers were Human. Princeton University Press,
2005. 1, 92

742. S. Grimstad and M. Jørgensen. Inconsistency of expert judgement-
based estimates of software development effort. Journal of Systems and
Software, 80(11):1770–1777, Nov. 2007. 126

743. R. E. Griswold, J. F. Poage, and I. P. Polonsky. The SNOBOL 4 Pro-
gramming Language. Prentice-Hall, Inc, second edition, 1968. 172

744. E. Grochowski and R. E. Fontana, Jr. Future technology challenges for
NAND flash and HDD products. Flash Memory Summit 2012, Santa
Clara, CA, July 2012. 318

745. U. Grömping. Relative importance for linear regression in R: The pack-
age relaimpo. Journal of Statistical Software, 17(1):1–27, Sept. 2006.
309

746. E. H. B. M. Gronenschild, P. Habets, H. I. L. Jacobs, R. Mengelers,
N. Rozendaal, J. van Os, and M. Marcelis. The effects of FreeSurfer
version, workstation type, and Macintosh operating system version on
anatomical volume and cortical thickness measurements. PLoS ONE,
7(6):e38234, June 2012. 150

747. H. R. J. Grosch. High speed arithmetic: The digital computer as a re-
search tool. Journal of the Optical Society of America, 43(4):306–310,
Apr. 1953. 1

748. A. S. Grove. Only the Paranoid Survive: How to Exploit the Crisis
Points That Challenge Every Company and Career. HarperCollins-
Busines, Apr. 1988. 92

749. A. Grübler and N. Nakićenović. Long waves, technology diffusion, and
substitution. Technical Report RP-91-17, International Institute for Ap-
plied Systems Analysis Laxenburg, Austria, Oct. 1991. 2

750. W. Gruhl. Lessons learned cost/schedule assessment guide. Slides of
talk, July 199? 218

751. M. Gubler. Protean and boundaryless career orientations - an empir-
ical study of IT professionals in Europe. PhD thesis, Loughborough
University, July 2011. 71

752. T. Gue. Triggering infection: Distribution and derivative works under
the GNU general public license. Journal of Law, Technology & Policy,
2012(1):95–140, 2012. 68

753. L. Guerrouj, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol. An
experimental investigation on the effects of context on source code
identifiers splitting and expansion. Empirical Software Engineering,
19(6):1706–1753, Dec. 2014. 362

754. A. Gunasekaran, E. W. T. Ngai, and R. E. McGaughey. Information
technology and systems justification: A review for research and appli-
cations. European Journal of Operational Research, 173(3):957–983,
Sept. 2006. 119

755. H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-anake, T. Do,
J. Adityatama, K. J. Eliazar, A. Laksono, J. F. Lukman, V. Martin, and
A. D. Satria. What bugs live in the cloud? A study of 3000+ issues in
cloud systems. In Proceedings of the 5th ACM Symposium on Cloud
Computing, SOCC’14, pages 1–14, Nov. 2014. 279

756. H. S. Gunawi, C. Rubio-González, A. C. Arpaci-Dusseau, R. H. Arpaci-
Dusseau, and B. L. Liblit. EIO: Error handling is Occasionally correct.
In Proceedings of the 6th USENIX Conference on File and Storage Tech-
nologies, FAST’08, pages 207–222, Feb. 2008. 163

757. N. J. Gunther. A simple capacity model of massively parallel transaction
systems. In Proceedings of the 19th International CMG Conference,
pages 1035–1044, Dec. 1993. 227

758. N. J. Gunther. Analysing Computer System Performance with
Perl::PDQ. Springer-Verlag, 2005. 227, 366

759. O. Gurevich, M. A. Johnson, and A. E. Goldberg. Incidental verbatim
memory for language. Language and Cognition, 2(1):45–78, May 2010.
188

760. R. K. Guy. The strong law of small numbers. American Mathematical
Monthly, 95(8):697–712, Oct. 1988. 255

761. E. A. E. Habib. Geometric mean for negative and zero values.
International Journal of Research & Reviews in Applied Sciences,
11(3):419–432, June 2012. 262

762. Hackerone. The 2018 hacker report. Technical report, hackerone, Dec.
2017. 68

763. J. Haidt. The Righteous Mind. Vintage books, 2012. 44

764. S. Haine. As low as reasonably practicable (ALARP) risk-informed
decision framework applied to public utility safety. Staff white paper,
California Public Utilities Commission, Dec. 2015. 147

765. A. G. Haldane and R. Davies. The short long. Speech, May 2011.
29th Société Universitaire Européene de Recherches Financiéres Collo-
quium. 107

766. A. Halin, A. Nuttinck, M. Acher, X. Devroey, G. Perrouin, and
B. Baudry. Test them all, is it worth it? A ground truth comparison
of configuration sampling strategies. In eprint arXiv:cs.SE/1710.07980,
Oct. 2017. 140, 169

767. T. Halkjelsvik and M. Jørgensen. Time Predictions: Understanding and
Avoiding Unrealism in Project Planning and Everyday Life. Springer
International Publishing AG, Apr. 2018. 129

768. B. H. Hall and M. MacGarvie. The private value of software patents.
Research Policy, 39(7):994–1009, Sept. 2010. 68

769. T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. A systematic
literature review on fault prediction performance in software engineer-
ing. IEEE Transactions on Software Engineering, 38(6):1276–1304,
Nov. 2012. 378

770. M. H. Halstead. A theoretical relationship between mental work and
machine language programming. Technical Report CSD-TR 67, Pur-
due University, Feb. 1972. 182

771. M. H. Halstead and P. M. Zislis. Experimental verification of two theo-
rems of software physics. Technical Report TR 97, Purdue University,
June 1973. 182

772. D. Z. Hambrick, F. L. Oswald, E. M. Altmann, E. J. Meinz, F. Gobet,
and G. Campitelli. Deliberate practice: Is that all it takes to become an
expert? Intelligence, 45(1):34–45, July-Aug. 2014. 39

773. M. Hamill and K. Goševa-Popstojanova. Exploring the missing link:
an empirical study of software fixes. Software Testing, Verification and
Reliability, 24(8):684–705, Dec. 2014. 223, 224

774. M. T. Hannan and G. R. Carroll. Dynamics of Organizational Popula-
tions: Density, Legitimation, and Competition. Oxford University Press,
Jan. 1992. 99

775. J. E. Hannay, D. I. K. Sjøberg, and T. Dybå. A systematic review of
theory use in software engineering experiments. IEEE Transactions on
Software Engineering, 33(2):87–107, Feb. 2007. 8

776. M. Harchol-Balter and A. B. Downey. Exploiting process lifetime dis-
tributions for dynamic load balancing. Report No. UCB/CSD-95-887,
Computer Science Division, University of California Berkeley, Nov.
1995. 112

777. D. Harhoff, B. H. Hall, G. von Graevenitz, K. Hoisl, S. Wagner,
A. Gambardella, and P. Giuri. The strategic use of patents and its im-
plications for enterprise and competition policies. Final Report EN-
TR/05/82, DG Enterprise, European Commission, July 2007. 68

778. B. R. Harmon and N. I. Om. Schedule assessment methods for bal-
listic missile defense ground-based software development. IDA Paper
P-3600, Institute for Defense Analyses, Aug. 2003. 128

779. N. Harrand, S. Allier, M. Rodriguez-Cancio, M. Monperrus, and
B. Baudry. A journey among Java neutral program variants. In eprint
arXiv:cs.SE/1901.02533, Jan. 2019. 179

780. A. Hart, L. Maxim, M. Siegrist, N. Von Goetz, C. da Cruz, C. Merten,
O. Mosbach-Schulz, M. Lahaniatis, A. Smith, and A. Hardy. Guidance
on communication of uncertainty in scientific assessments. EFSA Jour-
nal, 17(1):5520, Jan. 2019. 230

781. T. Harter, C. Dragga, M. Vaughn, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. A file is not a file: Understanding the I/O behavior of
Apple desktop applications. ACM Transactions on Computer Systems,
30(3):10, Aug. 2012. 373, 375

782. J. Haskel and S. Westlake. Capitalism without Capital: The Rise of the
Intangible Economy. Princeton University Press, 2018. 6, 61

783. H. Hata, C. Treude, R. G. Kula, and T. Ishio. 9.6 million links in
source code comments: Purpose, evolution, and decay. In eprint
arXiv:cs.SE/1901.07440, Jan. 2019. 118

784. L. Hatton. Safer C : Developing Software for High-integrity and Safety-
critical Systems. McGraw-Hill, 1995. 184

785. L. Hatton. Reexamining the fault density-component size connection.
IEEE Software, 14(2):89–97, Mar. 1997. 229

786. L. Hatton. How accurately do engineers predict software maintenance
tasks? Computer, 40(2):64–69, Feb. 2007. 144, 145, 220

787. M. D. Hauser, S. Carey, and L. B. Hauser. Spontaneous number rep-
resentation in semi-free-ranging rhesus monkeys. Proceedings of the
Royal Society B: Biological Sciences, 267(1445):829–833, Apr. 2000.
20

788. J. P. Haverty and R. L. Patrick. Programming languages and standard-
ization in command and control. Research Memorandum RM-3447-PR,
The RAND Corporation, Jan. 1963. 113

789. D. M. Hawkins. Identification of Outliers. Springer, 1980. 379

790. G. Hawkins, S. D. Brown, M. Steyvers, and E.-J. Wagenmakers. Con-
text effects in multi-alternative decision making: Empirical data and a
Bayesian model. Cognitive Science, 36(3):498–516, Apr. 2012. 59

791. G. E. Hawkins, S. D. Brown, M. Steyvers, and E.-J. Wagenmakers.
An optimal adjustment procedure to minimize experiment time in de-
cisions with multiple alternatives. Psychonomic Bulletin & Review,
19(2):339–348, Apr. 2012. 362

792. J. A. Hawkins. Efficiency and Complexity in Grammars. Oxford Uni-
versity Press, 2007. 187

793. B. Hayes. Third base. American Scientist, 89(6):490–494, 2001. 8

794. S. Hazelhurst. Truth in advertising: Reporting performance of com-
puter programs, algorithms and the impact of architecture and systems
environment. South African Computer Journal, 46:24–37, Dec. 2010.
316

795. M. L. Head, L. Holman, R. Lanfear, A. T. Kahn, and M. D. Jennions.
The extent and consequences of p-hacking in science. PLoS Biology,
13(3):e1002106, Mar. 2015. 268

796. S. Head and J. Nelson. Data rights valuation in software acquisi-
tions. Technical Report DRM-2012-001825-Final, CNA Analysis &
Solutions, Sept. 2012. 70

797. A. Heathcote, S. Brown, and D. J. K. Mewhort. The power law repealed:
The case for an exponential law of practice. Psychonomic Bulletin &
Review, 7(2):185–207, Apr. 2000. 36

798. R. Heeks. The uneven profile of Indian software exports. Working Paper
No. 3, University of Manchester, Oct. 1998. 62

799. J. Heer and M. Bostock. Crowdsourcing graphical perception: Using
Mechanical Turk to assess visualization design. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI
2010, pages 203–212, Apr. 2010. 225

800. K. Heinze, N. Claussen, and V. LaBolle. Management of computer
programming for command and control systems: A survey. Techni-
cal Memorandum TM-903/000/02, System Development Corporation,
Santa Monica, May 1963. 57

801. D. H. Helmer, S. Mackay, K. Selvey-Clinton, R. Yoon, and H. Fu-
rukawa. Worldwide capital and fixed assets guide 2016. Technical
Report EYG no. DL1528, EYGM Limited, 2016. 84

802. D. R. Helsel. Statistics for Censored Environmental Data using Minitab
and R. John Wiley & Sons, second edition, 2012. 336

803. A. Hemel and R. Koschke. Reverse engineering variability in source
code using clone detection-A case study for Linux variants of consumer
electronic devices. In 19th Working Conference on Reverse Engineer-
ing, WCRE’12, pages 357–366, Oct. 2012. 97

804. M. Hendrickson. 2010 state of the computer book market. company
website, Feb. 2011. http://radar.oreilly.com/2011/02/2010-
book-market-1.html. 114

805. A. Henik and J. Tzelgov. Is three greater than five: The relation between
physical and semantic size in comparison tasks. Memory & Cognition,
10(4):389–395, 1982. 50

806. J. Henrich. How adaptive cultural processes can produce maladaptive
losses–The Tasmanian case. American Antiquity, 69(2):197–214, Apr.
2004. 77

807. J. Henrich. The evolution of costly displays, cooperation and religion:
credibility enhancing displays and their implications for cultural evolu-
tion. Evolution and Human Behavior, 30(4):244–260, July 2009. 74

808. J. Henrich. The Weirdest People in the World: How the West Became
Psychologically Peculiar and Particularly Prosperous. Allen Lane,
Sept. 2020. 21

809. J. Henrich, M. Chudek, and R. Boyd. The big man mechanism: how
prestige fosters cooperation and creates prosocial leaders. Philosophi-
cal Transactions of The Royal Society B, 370(1683), Dec. 2015. 119

810. J. Henrich and F. J. Gil-White. The evolution of prestige: Freely con-
ferred deference as a mechanism for enhancing the benefits of cultural
transmission. Evolution and Human Behavior, 22(3):165–196, May
2001. 75

811. J. Henrich, S. J. Heine, and A. Norenzayan. The weirdest people in the
world? Working Paper No. 139, German Data Forum (RatSWD), Apr.
2010. 21

812. J. Henrich and R. McElreath. Are peasants risk-averse decision makers?
Current Anthropology, 43(1):172–181, Feb. 2002. 53

813. I. Heras-Saizarbitoria and O. Boiral. Symbolic adoption of ISO 9000 in
small and medium-sized enterprises: The role of internal contingencies.
International Small Business Journal, 33(3):299–320, May 2015. 149

814. S. Herculano-Houzel. The remarkable, yet not extraordinary, human
brain as a scaled-up primate brain and its associated cost. PNAS,
109(1):10661–10668, June 2012. 19

815. F. Hermans and E. Murphy-Hill. Enron’s spreadsheets and related
emails: A dataset and analysis. In Proceedings of the 37th Interna-
tional Conference on Software Engineering-Volume 2, ICSE’15, pages
7–16, May 2015. 179

816. T. Herr, B. Schneier, and C. Morris. Taking stock: Estimating vulner-
ability rediscovery. Paper, Belfer Center for Science and International
Affairs, Harvard Kennedy School, Oct. 2017. 160

817. I. Herraiz Tabernero. A statistical examination of the properties and
evolution of libre software. PhD thesis, Universidad Rey Juan Carlos,
Oct. 2008. 180, 283, 325, 334

818. E. Herrmann, J. Call, M. V. Hernández-Lloreda, B. Hare, and
M. Tomasello. Humans have evolved specialized skills of so-
cial cognition: The cultural intelligence hypothesis. Science,
317(5843):1360–1366, Sept. 2007. 52, 75

819. R. Hersh. 18 Unconventional Essays on the Nature of Mathematics.
Springer, 2006. 149

820. K. Herzig, S. Just, and A. Zeller. It’s not a bug, it’s a feature: How
misclassification impacts bug prediction. In Proceedings of the 2013
International Conference on Software Engineering, ICSE’13, pages
392–401, May 2013. 4, 149, 152, 379

821. K. Herzig and A. Zeller. The impact of tangled code changes. In Pro-
ceedings of the 10th Working Conference on Mining Software Reposito-
ries, MSR’13, pages 121–130, May 2013. 379

822. T. Hesterberg. What teachers should know about the bootstrap:
Resampling in the undergraduate statistics curriculum. In eprint
arXiv:stat.OT/1411.5279, Nov. 2014. 268

823. R. J. Heuer, Jr. Psychology of Intelligence Analysis. Central Intelligence
Agency, 1999. 213

824. M. Hicks, C. O’Malley, S. Nichols, and B. Anderson. Comparison of 2D
and 3D representations for visualising telecommunication usage. Be-
haviour & Information Technology, 22(3):185–201, May 2003. 225

825. E. T. Higgins. Value from regulatory fit. Current Directions in Psycho-
logical Science, 14(4):209–213, 2005. 24

826. N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
1996. 147

827. M. Hilbert and P. López. Supporting online material for: The world’s
technological capacity to store, communicate, and compute informa-
tion. Science, 332(6025):60–65, Apr. 2011. 94

828. B. M. Hill and A. Monroy-Hernández. A longitudinal dataset of five
years of public activity in the Scratch online community. Scientific
Data, 4(170002), Jan. 2017. 179

829. T. P. Hill. An evolutionary theory for the variability hypothesis. In
eprint arXiv:q-bio.PE/1703.04184, Aug. 2018. 21

830. T. T. Hills, P. M. Todd, and M. N. Jones. Foraging in semantic
fields: How we search through memory. Topics in Cognitive Science,
7(3):513–534, July 2015. 33

831. D. J. Hilton. The social context of reasoning: Conversational inference
and rational judgment. Psychological Bulletin, 118(2):248–271, 1995.
44

832. A. Hindle, M. W. Godfrey, and R. C. Holt. Reading beside the lines:
Indentation as a proxy for complexity metrics. In The 16th IEEE In-
ternational Conference on Program Comprehension, ICPC 2008, pages
133–142, June 2008. 328, 329

833. T. Hirao, A. Ihara, Y. Ueda, P. Phannachitta, and K. ichi Matsumoto.
The impact of a low level of agreement among reviewers in a code re-
view process. In IFIP International Conference on Open Source Sys-
tems, OSS 2016, pages 97–110, May-June 2016. 169

834. S. C. Hirtle and J. Jonides. Evidence for hierarchies in cognitive maps.
Memory & Cognition, 13(3):208–217, 1985. 50

835. C. A. R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12(10):576–583, Oct. 1969. 148

836. M. Hocko and T. Kalibera. Reducing performance non-determinism via
cache-aware page allocation strategies. In Proceedings of the First Joint
WOSP/SIPEW International Conference on Performance Engineering,
WOSP/SIPEW’10, pages 223–234, Jan. 2010. 372

837. A. Höfer. Exploratory comparison of expert and novice pair program-
mers. Computing and Informatics, 29(1):73–91, 2010. 304

838. E. Hoffer. The True Believer: Thoughts on the Nature of Mass Move-
ments. HarperPerennial, 1951. 99

839. D. D. Hoffman. Visual Intelligence: How We Create What We See. W.
W. Norton, 2000. 19, 26

840. R. Hofman. Behavioral Products Quality Assessment Model on the Soft-
ware Market. PhD thesis, Poznan University of Economics, Oct. 2011.
139

841. J. Hofmeister, J. Siegmund, and D. V. Holt. Shorter identifier names take
longer to comprehend. In 24th International Conference on Software
Analysis, Evolution and Reengineering, SANER 2017, pages 217–227,
Feb. 2017. 197

842. G. Hofstede. Culture’s Consequences: International Differences in
Work-Related Values. Sage Publications, abridged edition, 1984. 73

843. R. M. Hogarth and H. J. Einhorn. Order effects in belief updating: The
belief-adjustment model. Cognitive Psychology, 24(1):1–55, Jan. 1992.
38, 39

844. R. M. Hogarth, C. R. M. McKenzie, B. J. Gibbs, and M. A. Marquis.
Learning from feedback: Exactness and incentives. Journal of Exper-
imental Psychology: Learning, Memory, & Cognition, 17(4):734–752,
1991. 39

845. B. D. Holbrook and W. S. Brown. A history of computing research at
Bell Laboratories (1937-1975). Computing Science Technical Report
No. 99, AT&T Bell Laboratories, 1982. 92

846. M. Holdway. An alternative methodology: Valuing quality change for
microprocessors in the PPI. In Issues in Measuring Price Change and
Consumption. Bureau of Labor Statistics, June 2000. 7

847. W. B. Holland. Soviet cybernetics technology: viii. Report on the al-
gorithmic language ALGEC (final version). Research Memorandum
RM-5136-PR, The RAND Corporation, Dec. 1966. 107

848. J. K. Hollmann. Estimate accuracy: Dealing with reality. Cost Engi-
neering Journal, 54(6):17–27, Nov.-Dec. 2012. 125

849. Hood & Strong. Mozilla foundation and subsidiary december 31, 2015
and 2014. Independent auditors’ report and consolidated financial state-
ments, Hood & Strong LLC, Nov. 2016. 121

850. A. A. Hook, B. Brykczynski, C. W. McDonald, S. H. Nash, and
C. Youngblut. A survey of computer programming languages currently
used in the Department of Defense. IDA Paper P-3054, Institute for
Defense Analyses, Jan. 1995. 114

851. R. Hoosain. Correlation between pronunciation speed and digit span
size. Perception and Motor Skills, 55:1128–1128, 1982. 362

852. R. Hoosain and F. Salili. Language differences, working memory, and
mathematical ability. In M. M. Grunberg, P. E. Morris, and R. N. Sykes,
editors, Practical aspects of memory: Current research and issues, vol-
ume 2, pages 512–517. John Wiley & Sons, Inc, 1988. 31

853. M. Hoppe and S. Hanenberg. Do developers benefit from generic types?
An empirical comparison of generic and raw types in Java. In Pro-
ceedings of the 2013 ACM SIGPLAN International Conference on Ob-
ject Oriented Programming Systems Languages & Applications, OOP-
SLA’13, pages 457–474, Oct. 2013. 206

854. W. Hoppitt and K. N. Laland. Social Learning: An Introduction to
Mechanisms, Methods, and Models. Princeton University Press, July
2013. 75

855. W. Hordijk, M. L. Ponisio, and R. Wieringa. Harmfulness of code dupli-
cation a structured review of the evidence. In 13th International Confer-
ence on Evaluation and Assessment in Software Engineering, EASE’09,
pages 88–97, Apr. 2009. 82

856. V. Horký. Performance Awareness in Agile Software Development. PhD
thesis, Charles University, Faculty of Mathematics and Physics, Mar.
2018. 138

857. Z. Horne, M. Muradoglu, and A. Cimpian. Explanation as a cognitive
process. Trends in Cognitive Sciences, 23(3):187–199, Mar. 2019. 186

858. M. R. Horton. Portable C Software. Prentice-Hall, Inc, Upper Saddle
River, NJ 07458, USA, 1990. 184

859. S. Hossenfelder. Lost in Math: How Beauty Leads Physics Astray. Ba-
sic Books, June 2018. 12

860. D. A. Hounshell. From the American System to Mass Production 1800-
1932: The Development of Manufacturing Technology in the United
States. The Johns Hopkins University Press, 1984. 101

861. A. D. Householder and J. M. Foote. Probability-based parameter se-
lection for black-box fuzz testing. Technical Note CMU/SEI-2012-TN-
019, Software Engineering Institute, Carnegie Mellon University, Aug.
2012. 173

862. M. W. Howard and M. J. Kahana. Context variability and serial position
effects in free recall. Journal of Experimental Psychology: Learning,
Memory, & Cognition, 25(4):923–941, 1999. 34

863. J. Howison and J. B. Herbsleb. Incentives and integration in scientific
software production. In Proceedings of the 2013 conference on Com-
puter supported cooperative work, CSCW’13, pages 459–470, Mar.
2013. 74

864. L. Hribar, S. Bogovac, and Z. Marinčić. Implementation of fault slip
through in design phase of the project. In miproBIS 2008: International
Conference on Business Intelligence Systems, May 2008. 168

865. H. Hsu. The Appsmiths: Community, Identity, Affect and Ideology
Among Cocoa Developers From NeXT to Iphone. PhD thesis, Graduate
School of Cornell University, May 2015. 74

866. http archive. https:httparchive.org, July 2018. 98

867. X. Huang, J. Xie, N. O. Otecko, and M. Peng. Acces-
sibility and update status of published software: Benefits and
missed opportunities. Frontiers in Research Metrics and Analytics,
2(doi.org/10.3389/frma.2017.00001), Feb. 2017. 144

868. B. A. Huberman. The dynamics of organizational learning. Computa-
tional & Mathematical Organization Theory, 7(2):145–153, Aug. 2001.
76

869. H. Huijgens and R. van Solingen. Measuring best-in-class software re-
leases. In Joint Conference of the 23rd International Workshop on Soft-
ware Measurement and the 8th International Conference on Software
Process and Product Measurement, pages 137–146, Oct. 2013. 129

870. H. Huijgens and F. Vogelezang. Do estimators learn? On the effect of
a positively skewed distribution of effort data on software portfolio pro-
ductivity. Technical Report TUD-SERG-2016-004, Delft University of
Technology, 2016. 77

871. J. C. Hull. Options, Futures, and other Derivatives. Pearson, seventh
edition, Oct. 2010. 65

872. C. Hulme, S. Maughan, and G. D. A. Brown. Memory for famil-
iar and unfamiliar words: Evidence for a long-term memory contribu-
tion to short-term memory span. Journal of Memory and Language,
30(6):685–701, 1991. 32

873. C. R. Hulten. Decoding Microsoft: Intangible capital as a source of
company growth. Working Paper 15799, National Bureau of Economic
Research, USA, Mar. 2010. 83

874. R. Hundt, E. Raman, M. Thuresson, and N. Vachharajani. MAO-an
extensible micro-architectural optimizer. In Proceedings of the 9th An-
nual IEEE/ACM International Symposium on Code Generation and Op-
timization, CGO’11, pages 1–10, Apr. 2011. 369

875. S. Hunold and A. Carpen-Amarie. MPI benchmarking re-
visited: Experimental design and reproducibility. In eprint
arXiv:cs.DC/1505.07734v3, Sept. 2015. 368

876. S. Hunold, A. Carpen-Amarie, and J. L. Träff. Reproducible MPI micro-
benchmarking isn’t as easy as you think. In Proceedings of the 21st Eu-
ropean MPI Users’ Group Meeting, EuroMPI/ASIA’14, pages 69–76,
Sept. 2014. 245

877. E. Hunt. The Whorfian hypothesis: A cognitive psychology perspective.
Psychological Review, 98(3):377–389, July 1991. 201

878. J. E. Hunter, F. L. Schmidt, and M. K. Judiesch. Individual differences
in output variability as a function of job complexity. Journal of Applied
Psychology, 75(1):28–42, Feb. 1990. 57

879. M. J. Hurlstone, G. J. Hitch, and A. D. Baddeley. Memory for serial
order across domains: An overview of the literature and directions for
future research. Psychonomic Bulletin & Review, 140(2):229–373, Mar.
2014. 34

880. A. A. Hwang, I. A. Stefanovici, and B. Schroeder. Cosmic rays don’t
strike twice: Understanding the nature of DRAM errors and the implica-
tions for system design. In Proceedings of the seventeenth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS XVII, pages 111–122, Mar. 2012. 166

881. J. Hwang. The Social Shaping of ICTs Standards: A Case of National
Coded Character Set Standards Controversy in Korea. PhD thesis, The
University of Edinburgh, 2005. 106

882. S. Ibba, F. E. Pani, J. G. Stockton, G. Barabino, M. Marchesi, and
D. Tigano. Incidence of predatory journals in computer science liter-
ature. Library Review, 66(6-7):505–522, Sept. 2017. 11

883. IBM. Specifications for the IBM mathematical FORmula TRANSlating
system, FORTRAN. Programming Research Group, Applied Science
Division, International Business Machines Corporation, Nov. 1954. 113

884. R. Ierusalimschy, L. H. de Figueiredo, and W. Celes. The evolution of
Lua. In Proceedings of the Third ACM SIGPLAN conference on History
of Programming Languages, HOPL III, pages 1–26, June 2007. 93

885. J. Iivonen. Identifying and characterizing highly performing testers-A
case study in three software product companies. Thesis (m.s.), Helsinki
University of Technology, Department of Computer Science and Engi-
neering, Oct. 2009. 58

886. S. Ikeda, A. Ihara, R. G. Kula, and K. Matsumoto. An empirical study
of README contents for JavaScript packages. IEICE Transactions on
Information & Systems, E102-D(2):280–288, Feb. 2019. 178

887. Y. Ikutani, T. Kubo, S. Nishida, H. Hata, K. Matsumoto, K. Ikeda, and
S. Nishimoto. Expert programmers have fine-tuned cortical representa-
tions of source code. In bioRxiv doi: 10.1101/2020.01.28.923953, Jan.
2020. 177

888. I. Imbo and J.-A. LeFevre. Cultural differences in complex addi-
tion: Efficient Chinese versus adaptive Belgians and Canadians. Jour-
nal of Experimental Psychology: Learning, Memory, & Cognition,
35(6):1465–1476, Nov. 2009. 49

889. I. Imbo, A. Vandierendonck, and E. Vergauwe. The role of work-
ing memory in carrying and borrowing. Psychological Research,
71(4):467–483, July 2007. 49

890. Information Technology Laboratory. National vulnerability database.
https://nvd.nist.gov, Dec. 2014. 151, 380

891. L. Inozemtseva and R. Holmes. Coverage is not strongly correlated with
test suite effectiveness. In Proceedings of the 36th International Con-
ference on Software Engineering, ICSE’14, pages 435–445, June 2014.
174

892. Intel. 6th generation Intel processor family. Specification update
332689-010EN, Intel Corporation, Apr. 2017. 161

893. J. P. A. Ioannidis. Contradicted and initially stronger effects in highly
cited clinical research. JAMA, 294(2):218–228, July 2005. 4

894. J. P. A. Ioannidis. Why most published research findings are false. PLoS
Medicine, 2(8):e124, Aug. 2005. 268

895. A. Iosup, M. Jan, O. Sonmez, and D. H. J. Epema. On the dynamic
resource availability in grids. Rapport de recherche no 6172, Institut
National de Recherche en Informatique et en Automatique, Apr. 2007.
167

896. G. Irlam. Unix file size survey-1993. http://www.base.com/gordoni/
ufs93.html, Sept. 1993. 246, 247

897. F. Irving. Github users since service started. https://
classic.scraperwiki.com/scrapers/github_users_each_year,
Mar. 2016. 87

898. ISO. ISO/IEC Guide 25:1990 General requirements for the competence
of calibration and testing laboratories. International Organization for
Standardization, 1990. 172

899. ISO. ISO/IEC 9945:2008 Information technology – Portable Operating
System Interface (POSIX®). International Organization for Standard-
ization, 2008. 115, 162

900. ISO SC22. ISO/IEC 18009:1999 Information technology – Program-
ming languages – Ada: Conformity assessment of a language processor.
International Organization for Standardization, 1990. Last reviewed and
confirmed in 2015. 172

901. ISO SC22. ISO/IEC 13210:1999 Information technology – Require-
ments and guidelines for test methods specifications and test method
implementation for measuring conformance to POSIX standards. Inter-
national Organization for Standardization, 1999. 172

902. A. Israeli and D. G. Feitelson. The Linux kernel as a case study in soft-
ware evolution. Journal of Systems and Software, 83(3):485–501, Mar.
2010. 182, 183, 290, 291, 296, 317

903. R. K. Iyer, S. E. Butner, and E. J. McCluskey. An exponential fail-
ure/load relationship: Results of a multi-computer statistical study.
Technical Report #CRC-81-6, Computer Systems Laboratory, Stanford
University, Aug. 1981. 151

904. J. L. C. Izquierdo and J. Cabot. A survey of software foundations in
Open Source. In eprint arXiv:cs.SE/2005.10063.pdf, May 2020. 93

905. M. Y. Jaber. Learning and forgetting models and their applications. In
A. B. Badiru, editor, Handbook of Industrial and Systems Engineering,
chapter 30. CRC Press-Taylor & Francis Group, Dec. 2005. 76

906. A. N. Jackson. Formats over time: Exploring UK web history. In eprint
arXiv:cs.DL/1210.1714v1, Oct. 2012. 111

907. P. Jackson. Opus Development Postmortem: JOE COMES, RILEY
PAINT, INC., SKEFFINGON’S FORMAL WEAR, INC., PATRICIA
ANNE LARSEN vs. MICROSOFT CORPORATION. Plaintiff’s Ex-
hibit 8875, IOWA District Court for Polk County, Dec. 1989. 141, 142

908. J. Jacobs and B. Rudis. Data-Driven Security: Analysis, Visualization
and Dashboards. John Wiley & Sons, Inc, 2014. 213, 385

909. R. Jaeschke. Portability and the C Language. Hayden Books, 4300
West 62nd Street, Indianapolis, IN 46268, USA, 1989. 184

910. L. R. Jager and J. T. Leek. Empirical estimates suggest most published
research is true. Biostatistics, 15(1):1–12, 2014. 268

911. B. Jamtveit, E. Jettestuen, and J. Mathiesen. Scaling properties of Eu-
ropean research units. PNAS, 106(32):13160–13163, Aug. 2009. 108

912. A. R. Jansen. Encoding and Parsing of Algebraic Expressions by Expe-
rienced Users of Mathematics. PhD thesis, School of Computer Science
and Software Engineering, Monash University, Jan. 2002. 29

913. A. R. Jansen, K. Marriott, and G. W. Yelland. Parsing of algebraic ex-
pressions by experienced users of mathematics. European Journal of
Cognitive Psychology, 19(2):286–320, 2007. 29

914. C. J. M. Jansen and M. M. W. Pollmann. On round numbers: Pragmatic
aspects of numerical expressions. Journal of Quantitative Linguistics,
8(3):187–201, 2001. 49

915. Y. Jansen and K. Hornbæk. A psychophysical investigation of size as
a physical variable. IEEE Transactions on Visualization and Computer
Graphics, 22(1):479–488, Jan. 2016. 225

916. J. J. Jenkins. Remember that old theory of memory? Well, forget it!
American Psychologist, 29(11):785–795, 1974. 188

917. J. Jiang, D. Lo, J. He, X. Xia, P. S. Kochhar, and L. Zhang. Why and
how developers fork what from whom in GitHub. Empirical Software
Engineering, 22(1):547–578, Feb. 2017. 96

918. Y. Jiang, B. Adams, and D. M. German. Will my patch make it? And
how fast? Case study on the Linux kernel. In Proceedings of the 10th
Working Conference on Mining Software Repositories, MSR’13, pages
101–110, May 2013. 145

919. D. D. P. Johnson, N. B. Weidmann, and L.-E. Cederman. Fortune
favours the bold: An agent-based model reveals adaptive advantages
of overconfidence in war. PLoS ONE, 6(6):e20851, Apr. 2011. 55

920. J. A. Johnson. Measuring thirty facets of the Five Factor model with a
120-item public domain inventory: Development of the IPIP-NEO-120.
Journal of Research in Personality, 51:78–89, Aug. 2014. 52

921. L. Johnson. Applied data research inc. (ADR). Technical report, Com-
puter History Museum, Feb. 2010. 107

922. P. M. Johnson and A. M. Disney. A critical analysis of PSP data
quality: Results from a case study. Empirical Software Engineering,
4(4):317–349, Dec. 1999. 378

923. W. L. Johnson. Intention-Based Diagnosis of Novice Programming Er-
rors. Morgan Kaufmann Publishers, Inc, 1986. 199

924. C. I. Jones. The facts of economic growth. In J. B. Taylor and H. Uh-
lig, editors, Handbook of Macroeconomics, Volume 2A, chapter 1, pages
3–69. Elsevier B. V., Nov. 2016. 7

925. D. Jones. Why userspace sucks–or 101 really dumb things your app
shouldn’t do. In Proceedings of the Linux Symposium, Volume One,
pages 441–450, July 2006. 372

926. D. M. Jones. Who guards the guardians? www.knosof.co.uk/
whoguard.html, 1992. 162

927. D. M. Jones. The Open Systems Portability Checker Reference Manual.
Knowledge Software Ltd, ??? edition, May 1999. 162

928. D. M. Jones. The 7±2 urban legend. MISRA C 2002 conference
http://www.knosof.co.uk/cbook/misart.pdf, Oct. 2002. 30, 362

929. D. M. Jones. Memory for a short sequence of assignment statements
(part 2 of 2). C Vu, 17(1):34–37, Feb. 2005. 182

930. D. M. Jones. The new C Standard: An economic and cultural commen-
tary. Knowledge Software, Ltd, 2005. 94, 115, 136, 163, 174, 193, 194,
195, 200, 204, 206, 207, 208, 210, 215, 226, 250, 301, 362, 385

931. D. M. Jones. Developer beliefs about binary operator precedence. C Vu,
18(4):14–21, Aug. 2006. 37, 38, 53, 59, 206, 354, 355, 362, 375, 376

932. D. M. Jones. Operand names influence operator precedence decisions.
C Vu, 20(1):5–11, Feb. 2008. 53, 195, 375, 376

933. D. M. Jones. Deciding between if and switch when writing code. C
Vu, 21(5):14–20, Nov. 2009. 204

934. D. M. Jones. Developer characterization of data structure fields deci-
sions. C Vu, 20(6):14–18, Jan. 2009. 43, 59, 250, 251, 353, 354, 375,
376

935. D. M. Jones. Birth month of compiler writers. blog: The Shape of Code,
Feb. 2012. http://shape-of-code.coding-guidelines.com. 346

936. D. M. Jones. Effects of risk attitude on recall of assignment statements.
C Vu, 23(6):19–22, Jan. 2012. 53

937. D. M. Jones. Amount of end-user usage of code in Firefox. blog:
The Shape of Code, July 2013. http://shape-of-code.coding-
guidelines.com/2013/07/26/amount-of-end-user-usage-of-
code-in-firefox. 161, 162

938. D. M. Jones. Tag data extracted from stack overflow website. url-
https://stackoverflow.com, July 2019. 114

939. D. M. Jones. Code & data used in: Evidence-based software engineer-
ing: based on the publicly available data. http://www.github.com/
Derek-Jones/ESEUR, 2020. 1, 2

940. D. M. Jones and R. Borgatti. The Renzo Pomodoro dataset: a conversa-
tion. http://www.github.com/Derek-Jones/renzo-pomodoro, Dec.
2019. 143

941. D. M. Jones and S. Cullum. A conversation around the analysis of the
SiP effort estimation dataset. In eprint arXiv:cs.SE/1901.01621, Jan.
2019. 126, 127, 137, 138, 141

942. M. N. Jones and D. J. K. Mewhort. Case-sensitive letter and bigram
frequency counts from large-scale English corpora. Behavior Research
Methods, Instruments, & Computers, 36(3):388–396, 2004. 199

943. R. Jongeling, P. Sarkar, S. Datta, and A. Serebrenik. On negative results
when using sentiment analysis tools for software engineering research.
Empirical Software Engineering, 22(5):2543–2584, Oct. 2017. 350

944. M. R. Jongerden. Model-based energy analysis of battery powered sys-
tems. PhD thesis, Centre for Telematics and Information Technology,
University of Twente, Dec. 2010. 368

945. M. Jørgensen. An empirical study of software maintenance tasks. Soft-
ware Maintenance: Research and Practice, 7(1):27–48, Jan. 1995. 304

946. M. Jørgensen. Regression models of software development ef-
fort estimation accuracy and bias. Empirical Software Engineering,
9(4):297–394, Dec. 2004. 126

947. M. Jørgensen. Better selection of software providers through trialsourc-
ing. IEEE Software, 33(5):48–53, Sept.-Oct. 2016. 126, 130

948. M. Jørgensen. A survey on the characteristics of projects with suc-
cess in delivering client benefits. Information and Software Technology,
78:83–94, Oct. 2016. 135

949. M. Jørgensen. Unit effects in software project effort estimation: Work-
hours gives lower effort estimates than workdays. Journal of Systems
and Software, 117:274–281, July 2016. 51

950. M. Jørgensen and G. J. Carelius. An empirical study of software project
bidding. IEEE Transactions on Software Engineering, 30(12):953–969,
Dec. 2004. 123, 275

951. M. Jørgensen, T. Dybå, K. Liestøl, and D. I. K. Sjøberg. Incorrect re-
sults in software engineering experiments: How to improve research
practices. Journal of Systems and Software, 116:133–145, June 2016.
268

952. M. Jørgensen and S. Grimstad. Software development estimation bi-
ases: The role of interdependence. IEEE Transactions on Software
Engineering, 38(3):677–693, May 2012. 21, 25

953. M. Jørgensen, U. Indahl, and D. I. K. Sjøberg. Software effort estima-
tion by analogy and "regression toward the mean". Journal of Systems
and Software, 68(3):253–262, Dec. 2003. 289

954. M. Jørgensen and K. Moløkken. Eliminating over-confidence in soft-
ware development effort estimates. In F. Bomarius and H. Iida, editors,
Product Focused Software Process Improvement, volume 3009 of Lec-
ture Notes in Computer Science, pages 174–184. Springer Berlin Hei-
delberg, Apr. 2004. 276

955. M. Jørgensen and K. Moløkken. Reasons for software effort estima-
tion error: Impact of respondent role, information collection approach,
and data analysis method. IEEE Transactions on Software Engineering,
30(12):993–1007, Dec. 2004. 23, 129

956. M. Jørgensen and K. Moløkken. How large are software cost overruns?
A review of the 1994 CHAOS report. Journal Information and Software
Technology, 48(4):297–301, Apr. 2006. 122

957. M. Jørgensen and D. I. K. Sjøberg. The impact of customer expecta-
tion on software development effort estimates. International Journal of
Project Management, 22(4):317–325, May 2004. 24, 127

958. M. Jørgensen and D. I. K. Sjøberg. Learning from experience in
a software maintenance environment. Journal of Computer Science,
1(4):538–542, Apr. 2005. 297

959. D. Joseph, W. F. Boh, S. Ang, and S. A. Slaughter. The career paths less
(or more) travelled: A sequence analysis of IT career histories, mobility
patterns, and career success. MIS Quarterly, 36(2):427–452, June 2012.
109

960. J. Jung, H. Hu, D. Solodukhin, D. Pagan, K. H. Lee, and T. Kim. Fuzzi-
fication: Anti-fuzzing techniques. In 28th USENIX Security Sympo-
sium, SEC’19, pages 1913–1930, Aug. 2019. 173

961. S. Kahrs. Mistakes and ambiguities in the definition of standard ML.
LFCS report ECS-LFCS-93-257, University of Edinburgh, Scotland,
Apr. 1993. 165

962. J. W. Kalat. Biological Psychology. Wadsworth, seventh edition, 2001.
20

963. T. Kalibera, L. Bulej, and P. Tma. Benchmark precision and ran-
dom initial state. In International Symposium on Performance Evalua-
tion of Computer and Telecommunication Systems, SPECTS’05, pages
853–862. Society for Modeling and Simulation (SCS), July 2005. 372

964. A. Kaltenbrunner, V. Gómez, A. Moghnieh, R. Meza, J. Blat, and
V. López. Homogeneous temporal activity patterns in a large online
communication space. In eprint arXiv:cs.NI/0708.1579, Aug. 2007. 246

965. C. Kaltenecker, A. Grebhahn, N. Siegmund, J. Guo, and S. Apel.
Distance-based sampling of software configuration spaces. In Pro-
ceedings of the 41st International Conference on Software Engineering,
ICSE’19, pages 1084–1094, May 2019. 172

966. D. Kaminsky, M. Eddington, and A. Cecchetti. Showing how security
has (and hasn’t) improved, after ten years of trying. CanSecWest Ap-
plied Security Conference, Dec. 2011. 159, 160

967. T. Kamiya. How code skips over revisions. In Proceedings of the 5th
International Workshop on Software Clones, IWSC 2011, pages 69–70,
May 2011. 201

968. V. B. Kampenes, T. Dybå, J. E. Hannay, and D. I. K. Sjøberg. A sys-
tematic review of effect size in software engineering experiments. In-
formation and Software Technology, 49(11-12):1073–1086, Apr. 2007.
8

969. P. Kampstra and C. Verhoef. Benchmarking the expected loss of a fed-
eral IT portfolio. July 2009. 285

970. P. Kampstra and C. Verhoef. Reliability of function point counts.
http://www.cs.vu.nl/~x/rofpc/rofpc.pdf, 2009. 129

971. T. Kanda, T. Ishio, and K. Inoue. Approximating the evolution history
of software from source code. IEICE Transactions on Information &
Systems, E98-D(6):1185–1193, June 2015. 352

972. C. Kaner. Liability for defective documentation. In Proceedings of the
21st annual International Conference on Documentation, SIGDOC’03,
pages 192–197, Oct. 2003. 139, 165

973. C. Kaner and D. Pels. Bad Software: What To Do When Software Fails.
John Wiley & Sons, Inc, 1998. 154

974. Y. Kang, B. Ray, and S. Jana. APEx: Automated inference of error
specifications for C APIs. In Proceedings of the 31st IEEE/ACM In-
ternational Conference on Automated Software Engineering, ASE’16,
pages 472–482, Sept. 2016. 174

975. S. J. Karau and K. D. Williams. Social loafing: A meta-analytic re-
view and theoretical integration. Journal of Personality and Social Psy-
chologs, 65(4):681–706, Oct. 1993. 72, 80

976. D. Karlis and E. Xekalaki. Mixed Poisson distributions. International
Statistical Review, 73(1):35–58, Apr. 2005. 239

977. J. Karlsson and K. Ryan. A cost-value approach for prioritizing require-
ments. IEEE Software, 14(5):67–74, Sept. 1997. 136

978. D. S. Katz, K. McHenry, C. Reinking, and R. Haines. Research software
development & management in universities: Case studies from Manch-
ester’s RSDS group, Illinois’ NCSA, and Notre Dame’s CRC. In eprint
arXiv:cs.SE/1903.00732, Mar. 2019. 109

979. G. Kawasaki. Selling the Dream: How to Promote Your Product, Com-
pany, or Ideas–and Make a Difference–Using Everyday Evangelism.
HarperBusiness, Jan. 1991. 74, 100

980. D. Kawrykow and M. P. Robillard. Non-essential changes in version
histories. In Proceedings of the 33rd International Conference on Soft-
ware Engineering, ICSE’11, pages 351–360, May 2011. 139

981. M. Kazandjieva, B. Heller, O. Gnawali, P. Levis, and C. Kozyrakis.
Green enterprise computing data: Assumptions and realities. In
Proceedings of the 2012 International Green Computing Conference,
IGCC’12, pages 1–10, June 2012. 95

982. F. C. Keil. Explanation and understanding. Annual Review of Psychol-
ogy, 57:227–254, Jan. 2006. 187

983. M. Keil and D. Robey. Blowing the whistle on troubled software
projects. Communications of the ACM, 44(4):87–93, Apr. 2001. 134

984. P. Keil, J. M. Bennett, B. Bourgeois, G. E. Garcá-Peña, A. A. M. Mac-
Donald, C. Meyer, K. S. Ramirez, and B. Yguel. From computer op-
erating systems to biodiversity: co-emergence of ecological and evolu-
tionary patterns. PNAS, 4:e2367, Aug. 2016. 97

985. C. F. Kemerer. An empirical validation of software cost estimation mod-
els. Communications of the ACM, 30(5):416–429, May 1987. 128

986. Z. Kenessey. The primary, secondary, tertiary and quaternary sectors of
the economy. The Review of Income and Wealth, 33(4):359–385, Dec.
1987. 61

987. D. O. Kennedy and A. B. Scholey. Glucose administration, heart rate
and cognitive performance: effects of increasing mental effort. Psy-
chopharmacology, 149(1):63–71, May 2000. 57

988. E. Keogh and A. Mueen. Time series data mining using the matrix pro-
file: A unifying view of motif discovery, anomaly detection, segmen-
tation, classification, clustering and similarity joins. Tutorial at KDD
2017, Aug. 2017. 334

989. B. W. Kernighan and R. Pike. The Practice of Programming. Addi-
son–Wesley, 1999. 184

990. N. L. Kerr. HARKing: Hypothesizing After the Results are Known.
Personality and Social Psychology Review, 2(3):196–217, Aug. 1998. 3

991. E. Keuleers, P. Lacey, K. Rastle, and M. Brysbaert. The British lexicon
project: Lexical decision data for 28,730 monosyllabic and disyllabic
English words. Behavior and Research Methods, 44(1):287–304, Mar.
2012. 35

992. H. Khalid, M. Nagappan, E. Shihab, and A. E. Hassan. Prioritizing the
devices to test your app on: A case study of Android game apps. In
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2014, pages 610–620, Nov.
2014. 84

993. L. M. Khan. Amazon’s antitrust paradox. The Yale Law Journal,
126(3):710–805, Jan. 2017. 102

994. M. W. Khaw, L. Stevens, and M. Woodford. Discrete adjustment to a
changing environment: Experimental evidence. Journal of Monetary
Economics, 91(C):88–103, 2017. 51, 52

995. P.-V. Khuong and P. Morin. Array layouts for comparison-based search-
ing. In eprint arXiv:cs.DS/1509.05053, Mar. 2017. 371

996. P. D. Killworth and H. R. Bernard. Informant accuracy in social network
data. Human Organization, 35(3):269–286, Sept.-Nov. 1976. 358

997. D. Kim, E. Murphy-Hill, C. Parnin, C. Bird, and R. Garciad. The re-
action of open-source projects to new language features: An empirical
study of C# generics. The Journal of Object Technology, 12(4):1–26,
Nov. 2013. 186

998. H. Kim. Informed Storage Management for Mobile Platforms. PhD the-
sis, College of Computing, Georgia Institute of Technology, Dec. 2012.
370

999. J. D. Kim. Startup acquisitions as a hiring strategy: Worker choice and
turnover. SSRN Working Paper 3252784, Wharton School, University
of Pennsylvania, Mar. 2020. 109

1000. J. Y. Kim, S. Shepherd, T. H. Campbell, and A. C. Kay. Understand-
ing contemporary forms of exploitation: Attributions of passion serve
to legitimize the poor treatment of workers. Journal of Personality
and Social Psychology: Interpersonal Relations and Group Processes,
118(1):121–148, Jan. 2020. 71

1001. S. Kim. The classification of information and communication technol-
ogy investment in financial accounting. Thesis (m.s.), School of Infor-
mation Technologies, University of Sydney, 2013. 84

1002. K. Kina, M. Tsunoda, H. Hata, H. Tamada, and H. Igaki. Analyzing
the decision criteria of software developers based on prospect theory. In
IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering, SANER’16, pages 644–648, Mar. 2016. 55

1003. D. King and C. Janiszewski. The sources and consequences of
the fluent processing of numbers. Journal of Marketing Research,
XLVIII(2):327–341, 2011. 50

1004. J. King and M. A. Just. Individual differences in syntactic process-
ing: The role of working memory. Journal of Memory and Language,
30:580–602, 1991. 32

1005. W. Kintsch. Comprehension: A paradigm for cognition. Cambridge
University Press, 1998. 190

1006. W. Kintsch and J. Keenan. Reading rate and retention as a function of
the number of propositions in the base structure of sentences. Cognitive
Psychology, 5(3):257–274, Nov. 1973. 188

1007. W. Kintsch, E. Kozminsky, W. J. Streby, G. McKoon, and J. M. Keenan.
Comprehension and recall of text as a function of content variables.
Journal of Verbal Learning and Verbal Behavior, 14(2):196–214, Apr.
1975. 188

1008. W. Kintsch, T. S. Mandel, and E. Kozminsky. Summarizing scrambled
stories. Memory & Cognition, 5(5):547–552, 1977. 191

1009. K. N. Kirby and R. J. Herrnstein. Preference reversals due to myopic
discounting of delayed reward. Psychological Science, 6(2):83–89, Mar.
1995. 56

1010. D. Kirsh and P. Maglio. On distinguishing epistemic from pragmatic
action. Cognitive Science, 18(4):513–549, Oct. 1994. 22

1011. L. B. Kish. Moore’s law and the energy requirement of computing
versus performance. IEE Proceedings-Circuits, Devices and Systems,
151(2):190–194, Apr. 2004. 166

1012. J. V. Kistowski, H. Block, J. Beckett, K.-D. Lange, J. A. Arnold, and
S. Kounev. Analysis of the influences on server power consumption and
energy efficiency for CPU-intensive workloads. In Proceedings of the
6th ACM/SPEC International Conference on Performance Engineering,
ICPE’15, pages 223–234, Jan. 2015. 255

1013. S. Kitayama and M. Karasawa. Implicit self-esteem in Japan: Name-
letters and birthday numbers. Personality & Social Psychology Bulletin,
23(7):736–742, 1997. 196

1014. B. Kitchenham, S. L. Pfleeger, B. McColl, and S. Eagan. An empir-
ical study of maintenance and development estimation accuracy. The
Journal of Systems and Software, 64(1):57–77, Oct. 2002. 126

1015. B. A. Kitchenham and N. R. Taylor. Software project development cost
estimation. The Journal of Systems and Software, 5(4):267–278, Nov.
1985. 133

1016. A. Kivi, T. Smura, and J. Töyli. Technology product evolution and the
diffusion of new product features. Technological Forecasting & Social
Change, 79(1):107–126, Jan. 2012. 87

1017. D. Klahr, W. G. Chase, and E. A. Lovelace. Structure and process in
alphabetic retrieval. Journal of Experimental Psychology: Learning,
Memory, & Cognition, 9(3):462–477, 1983. 34

1018. K. C. Klauer, J. Musch, and B. Naumer. On belief bias in syllogistic
reasoning. Psychological Review, 107(4):852–884, Oct. 2000. 45

1019. J. Klayman and Y.-W. Ha. Confirmation, disconfirmation, and informa-
tion in hypothesis testing. Psychological Review, 94(2):211–228, Apr.
1987. 25

1020. B. Klein. The decision making problem in development. In
Universities-National Bureau Committee for Economic Research, Com-
mittee on Economic Growth of the Social Science Research Council,
editor, The Rate and Direction of Inventive Activity: Economic and So-
cial Factors, chapter 19, pages 477–508. Princeton University Press,
1962. 130

1021. S. B. Klein, L. Cosmides, J. Tooby, and S. Chance. Decisions and the
evolution of memory: Multiple systems, multiple functions. Psycholog-
ical Review, 109(2):306–329, Apr. 2002. 29

1022. J. Kleinberg and M. Raghu. Team performance with test scores. In
eprint arXiv:cs.DS/1506.00147v2, Mar. 2018. 141

1023. S. Kleinschmager, R. Robbes, A. Stefik, S. Hanenberg, and É. Tanter.
Do static type systems improve the maintainability of software systems?
An empirical study. In 20th International Conference on Program Com-
prehension, ICPC’12, pages 153–162, June 2012. 206

1024. S. Klepper and K. L. Simons. Technological extinctions of industrial
firms: An inquiry into their nature and causes. Industrial and Corpo-
rate Change, 6(2):379–460, Mar. 1997. 107

1025. P. Klint, D. Landman, and J. Vinju. Exploring the limits of domain
model recovery. In 29th IEEE International Conference on Software
Maintenance, ICSM’13, pages 120–129, Sept. 2013. 136

1026. K. E. Knight. Changes in computer performance. Datamation,
12(9):40–54, Sept. 1966. 365

1027. K. E. Knight. Evolving computer performance 1963-1967. Datamation,
14(1):31–35, Jan. 1968. 8, 365

1028. D. E. Knuth. The Art of Computer Programming: Sorting and Search-
ing, volume 3. Addison–Wesley, first edition, 1973. 94

1029. D. E. Knuth. Structure programming with go to statements. Comput-
ing Surveys, 6(4):261–301, Dec. 1974. 203

1030. D. E. Knuth. The errors of TEX. Software–Practice and Experience,
19(7):607–685, 1989. 151

1031. D. Kobak, S. Shpilkin, and M. S. Pshenichnikov. Integer percentages as
electoral falsification fingerprints. In eprint arXiv:stat.AP/1410.6059v4,
June 2016. 386

1032. A. Koenig. C Traps and Pitfalls. Addison–Wesley, 1989. 184

1033. P. A. Kolers. Reading A year later. Journal of Experimental Psychology:
Human Learning and Memory, 2(3):554–565, 1976. 192, 193

1034. P. A. Kolers and D. N. Perkins. Spatial and ordinal components of
form perception and literacy. Cognitive Psychology, 7(2):228–267, Apr.
1975. 192

1035. J. G. Koomey, S. Berard, M. Sanchez, and H. Wong. Implications of
historical trends in the electrical efficiency of computing. IEEE Annals
of the History of Computing, 33(3):46–54, July-Sept. 2011. 6

1036. A. Koriat. How do we know that we know? The accessibility model
of the feeling of knowing. Psychological Review, 100(4):609–639, Oct.
1993. 33

1037. A. G. Koru, K. El Emam, D. Zhang, H. Liu, and D. Mathew. The-
ory of relative defect proneness: Replicated studies on the functional
form of the size-defect relationship. Empirical Software Engineering,
13(5):473–498, Oct. 2008. 164

1038. J. Kossik. Clark’s sector model for US economy 1850-2009.
personal website, 2011. http://www.63alfred.com/whomakesit/
clarksmodel.htm. 61

1039. S. M. Kosslyn. Graph Design for the Eye and Mind. Oxford University
Press, 2006. 228

1040. S. M. Kosslyn and S. P. Shwartz. Empirical constraints on theories of
visual imagery. In J. Long and A. D. Baddeley, editors, Attention and
Performance IX, pages 241–260. Lawrence Erlbaum Associates, 1981.
22

1041. KPMG. Project Tesla due diligence assistance. submitted as evidence
in Autonomy/HP court case, Aug. 2011. 83

1042. P. Kraft. Programmers and Managers: The Routinization of Computer
Programming in the United States. Springer-Verlag, July 1977. 73, 141

1043. M. Kremer. The O-ring theory of economic development. The Quar-
terly Journal of Economics, 108(3):551–575, Aug. 1993. 141

1044. E. Krevat, J. Tucek, and G. R. Ganger. Disks are like snowflakes: No
two are alike. In Proceedings of the 13th USENIX conference on Hot
topics in operating systems, HotOS’13, May 2013. 370

1045. F. Křikava, H. Miller, and J. Vitek. Scala implicits are everywhere:
A large-scale study of the use of implicits in the wild. In eprint
arXiv:cs.PL/1908.07883, Aug. 2019. 198

1046. G. Kroah-Hartman. Linux kernel statistics. Github account, June 2016.
https://www.github.com/gregkh/kernel-history. 287, 312, 313

1047. J. K. Kruschke. Human category learning: Implications for backpropa-
gation models. Connection Science, 5(1):3–36, 1993. 36, 37

1048. J. K. Kruschke. Dimensional relevance shifts in category learning. Con-
nection Science, 8(2):225–247, June 1996. 36, 37

1049. E. C. Kubie. Recollections of the first software company. IEEE Annals
of the History of Computing, 16(2):65–71, June 1994. 107

1050. M. Kubovy and M. van den Berg. The whole is equal to the sum of its
parts: A probabilistic model of grouping by proximity and similarity in
regular patterns. Psychological Review, 115(1):131–154, Jan. 2008. 27,
28

1051. T. Kuchta, T. Lutellier, E. Wong, L. Tan, and C. Cadar. On the correct-
ness of electronic documents: studying, finding, and localizing incon-
sistency bugs in PDF readers and files. Empirical Software Engineering,
23(6):3187–3220, Dec. 2018. 111

1052. B. M. Kuhn, Free Software Foundation, Inc., Software Freedom Law
Center, A. K. Sebro, Jr., D. Gingerich, and C. Legal. Copyleft and the
GNU General Public License: A Comprehensive Tutorial and Guide.
copyleft.org, 2018. 68

1053. D. R. Kuhn, R. N. Kacker, and Y. Lei. A model for t-way fault profile
evolution during testing. In IEEE International Conference on Software
Testing, Verification and Validation Workshops, ICSTW 2017, pages
162–170, Mar. 2017. 173

1054. M. Kuhrmann, C. Konopka, P. Nellemann, P. Diebold, and J. Münch.
Software process improvement: Where is the evidence? In Proceedings
of the 2015 International Conference on Software and System Process,
pages 107–116, Aug. 2015. 9

1055. R. Kumar. The business of scaling. IEEE Solid-State Circuits Society
Newsletter, 12(1):22–26, 2007. 7

1056. S. Kumar. Enforcing the GNU GPL. Journal of Law, Technology &
Policy, 2006(1), 2006. 70

1057. G. Kunda. Engineering Culture: Control and Commitment in a High-
Tech Corporation. Temple University Press, 1992. 107

1058. P. Küngas, S. Vakulenko, M. Dumas, C. Parra, and F. Casati. Reverse-
engineering conference rankings: What does it take to make a reputable
conference? Scientometrics, 96(2):651–665, Aug. 2013. 11

1059. G. Kunst. Language popularity. http://langpop.corger.nl/
results, 2013. 292

1060. R. Kurzban, A. Duckworth, J. W. Kable, and J. Myers. An opportunity
cost model of subjective effort and task performance. Behavioral and
Brain Sciences, 36(6):661–679, Dec. 2013. 26

1061. D. S. Kusumo, M. Staples, L. Zhu, and R. Jeffery. Analyzing differences
in risk perceptions between developers and acquirers in OTS-based cus-
tom software projects using stakeholder analysis. In Proceedings of the
ACM/IEEE International Symposium on Empirical Software Engineer-
ing and Measurement, ESEM’12, pages 69–78, Sept. 2012. 124

1062. A. Kvarven, E. Strømland, and M. Johannesson. Comparing meta-
analyses and preregistered multiple-laboratory replication projects. Na-
ture Human Behaviour, 4(4):423–434, Apr. 2020. 265

1063. C. Labbé and D. Labbé. Duplicate and fake publications in the scien-
tific literature: how many SCIgen papers in computer science? HAL Id:
hal-00641906, HAL archives-ouvertes.fr, July 2012. 11

1064. T. Labiner. A big decision: Lease or buy? Computers and Automation,
6(10):6–8, Oct. 1957. 105

1065. W. Labov. The boundaries of words and their meaning. In C.-J. N. Bai-
ley and R. W. Shuy, editors, New ways of analyzing variation of English,
pages 340–373. Georgetown Press, 1973. 43

1066. W. Labov. Principles of Linguistic Change, volume 3: Cognitive and
Cultural Factors. Wiley-Blackwell, 2010. 195

1067. E. Labro and L. Stice-Lawrence. Updating accounting systems: Lon-
gitudinal evidence from the health care sector. Management Science,
???(???):???, Apr. 2019. 92

1068. J. C. Lagarias. The Kepler Conjecture: The Hales-Ferguson Proof by
Thomas C. Hales Samuel P. Ferguson. Springer, 2010. 148

1069. K. Laitinen. Natural naming in software development and maintenance.
PhD thesis, University of Oulu, Finland, Oct. 1995. 194

1070. G. Lakoff and M. Johnson. Metaphors We Live By. The University of
Chicago Press, 1980. 47, 106

1071. A. LaMarca and R. E. Ladner. The influence of caches on the perfor-
mance of sorting. Journal of Algorithms, 31(1):66–104, Apr. 1999. 94

1072. B. L. Lambert, K.-Y. Chang, and P. Gupta. Effects of frequency and sim-
ilarity neighborhoods on pharmacists’ visual perception of drug names.
Social Science and Medicine, 57(10):1939–1955, Nov. 2003. 196

1073. R. Lämmel, E. Pek, and J. Starek. Large-scale, AST-based API-usage
analysis of open-source Java projects. In Proceedings of the 2011 ACM
Symposium on Applied Computing, SAC’11, pages 1317–1324, Mar.
2011. 208

1074. B. W. Lampson. A critique of "an exploratory investigation of program-
mer performance under on-line and off-line conditions". IEEE Trans-
actions on Human Factors in Electronics, 8(1):33–48, Mar. 1967. 10

1075. T. K. Landauer. How much do people remember? Some estimates of
the quantity of learned information in long-term memory. Cognitive
Science, 10:477–493, 1986. 57

1076. R. M. Landers, J. B. Rebitzer, and L. J. Taylor. Rat race reduce: Ad-
verse selection in the determination of work hours in law firms. The
American Economic Review, 86(3):329–348, June 1996. 78

1077. D. Landman, A. Serebrenik, E. Bouwers, and J. J. Vinju. Empirical
analysis of the relationship between CC and SLOC in a large corpus
of Java methods and C functions. Journal of Software: Evolution and
Process, 28(7):589–618, July 2016. 163, 179, 180, 182, 183, 186, 192

1078. D. Landy, D. Brookes, and R. Smout. Abstract numeric relations and
the visual structure of algebra. Journal of Experimental Psychology:
Learning, Memory, & Cognition, 40(5):1404–1418, Sept. 2014. 27

1079. D. Landy, A. Charlesworth, and E. Ottmar. Categories of large numbers
in line estimation. Cognitive Science, 41(2):326–353, Mar. 2017. 48,
49

1080. D. Landy and R. L. Goldstone. Proximity and precedence in arithmetic.
The Quarterly Journal of Experimental Psychology, 63(10):1953–1968,
Oct. 2010. 214

1081. D. Landy, B. Guay, and T. Marghetis. Bias and ignorance in demo-
graphic perception. Psychonomic Bulletin & Review, 25(5):1606–1618,
Oct. 2018. 51

1082. E. J. Langer. The illusion of control. Journal of Personality and Social
Psychologs, 32(2):311–328, 1975. 56

1083. R. N. Langlois. External economies and economic progress: The case of
the microcomputer industry. The Business History Review, 66(1):1–50,
1992. 94

1084. LANL. LANL failure data. http://institute.lanl.gov/data/
lanldata.shtml, 2006. 167

1085. L. Lapointe and S. Rivard. A multilevel model of resistance to informa-
tion technology implementation. MIS Quarterly, 29(3):461–492, Sept.
2005. 120

1086. I. Larkin. The cost of high-powered incentives: Employee gaming in
enterprise software sales. Technical Report 13-073, Harvard Business
School, Feb. 2013. 88

1087. C. Larman and V. R. Basili. Iterative and incremental development: A
brief history. Computer, 36(6):47–56, June 2003. 131

1088. J. Larres. Performance variance evaluation on Mozilla Firefox. Thesis
(m.s.), Victoria University of Wellington, May 2012. 373

1089. R. H. Larson, J. K. Salmon, R. O. Dror, M. M. Deneroff, C. Young,
J. Grossman, Y. Shan, J. L. Klepeis, and D. E. Shaw. High-throughput
pairwise point interactions in Anton, a specialized machine for molec-
ular dynamics simulation. In IEEE 14th International Symposium
on High Performance Computer Architecture, HPCA 2008, pages
331–342, Feb. 2008. 112

1090. B. Latané and J. M. Darley. Bystander "apathy". American Scientist,
57(2):244–269, June-Sept. 1969. 80

1091. B. Latané, K. Williams, and S. Harkins. Many hands make light the
work: The causes and consequences of social loafing. Journal of Per-
sonality and Social Psychology, 37(6):822–832, 1979. 80

1092. R. Latorre. Effects of developer experience on learning and applying
unit test-driven development. IEEE Transactions on Software Engin-
eering, 40(4):381–395, Apr. 2014. 37, 38

1093. P. R. Laughlin. Group Problem Solving. Princeton University Press,
Apr. 2015. 80

1094. J. Laukemann, J. Hammer, J. Hofmann, G. Hager, and G. Wellein. Au-
tomated instruction stream throughput prediction for Intel and AMD mi-
croarchitectures. In IEEE/ACM Performance Modeling, Benchmarking
and Simulation of High Performance Computer Systems, PMBS 2018,
pages 121–131, Nov. 2018. 205

1095. E. Laukkanen, M. Paasivaara, J. Itkonen, C. Lassenius, and T. Arvonen.
Towards continuous delivery by reducing the feature freeze period: A
case study. In Proceedings of the 39th International Conference on
Software Engineering: Software Engineering in Practice Track, ICSE-
SEIP’17, pages 23–32, May 2017. 140

1096. S. Laumer, C. Maier, A. Eckhardt, and T. Weitzel. Work routines as an
object of resistance during information systems implementations: theo-
retical foundation and empirical evidence. European Journal of Infor-
mation Systems, 25(4):317–343, July 2016. 120

1097. L. Lauterbach. Development of N-version software samples for an ex-
periment in software fault tolerance. NASA Contractor Report 178363,
Software Research and Development Center for Digital Systems Re-
search, Sept. 1987. 130, 162

1098. C. W. Lazar. Lease/buy decisions for computer acquisition under con-
ditions of uncertain technological change. In Proceedings–1968 ACM
National Conference, pages 685–690, Jan. 1968. 105

1099. E. Lazear and M. Gibbs. Personnel Economics for Managers. John
Wiley & Sons, Inc, second edition, 2007. 72, 108, 141

1100. C. Lebiere. The Dynamics of Cognition: An ACT-R Model of Cognitive
Arithmetic. PhD thesis, Carnegie Mellon University, Nov. 1998. 49

1101. P. L’Ecuyer and R. Simard. TestU01: A C library for empirical test-
ing of random number generators. ACM Transactions on Mathematical
Software, 33(4):1–22, Aug. 2007. 165

1102. A. L. Lederer and J. Prasad. Causes of inaccurate software development
cost estimates. Journal of Systems and Software, 31(2):125–134, Nov.
1995. 125

1103. B. C. Lee and D. M. Brooks. Regression modeling strategies for mi-
croarchitecture performance and power prediction. Technical Report
TR-08-06, Division of Engineering and Applied Sciences, Harvard Uni-
versity, Mar. 2006. 323, 363

1104. D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. Chang, and
O. Mutlu. Adaptive-latency DRAM: Optimizing DRAM timing for the
common-case. In Proceedings of the IEEE International Symposium on
High Performance Computer Architecture, HPCA’15, pages 489–501,
Feb. 2015. 371

1105. M. D. Lee, K. A. Gluck, and M. M. Walsh. Understanding the com-
plexity of simple decisions: Modeling multiple behaviors and switching
strategies. Decision, 6(4):335–368, Oct. 2019. 51

1106. G. Leech, P. Rayson, and A. Wilson. Word Frequencies in Written and
Spoken English. Pearson Education, 2001. 46, 156, 199

1107. L. Lefebvre and N. J. Boogert. Avian social learning. In M. D. Breed
and J. Moore, editors, Encyclopedia of Animal Behavior: volume 1,
pages 124–130. Oxford: Academic Press, July 2010. 75

1108. J.-A. LeFevre and J. Liu. The role of experience in numerical skill:
Multiplication performance in adults from Canada and China. Mathe-
matical Cognition, 3(1):31–62, 1997. 51

1109. G. E. Legge, T. A. Hooven, T. S. Klitz, J. S. Mansfield, and B. S. Tjan.
Mr. Chips 2002: New insights from an ideal-observer model of reading.
Vision Research, 42(18):2219–2234, Aug. 2002. 28

1110. C. Leggett. The Ford Pinto case: The valuation of life as it applies to the
negligence-efficiency argument. https://users.wfu.edu/palmitar/
Law&Valuation/Papers/1999/Leggett-pinto.html, 1999. 155

1111. D. R. Lehman, R. O. Lempert, and R. E. Nisbett. The effects of graduate
training on reasoning. American Psychologist, 43(6):431–442, 1988. 40

1112. L. Lehmann, K. Aoki, and M. W. Feldman. On the number of indepen-
dent cultural traits carried by individuals and populations. Philosophical
Transactions of The Royal Society B, 366(1563):424–435, Feb. 2011.
76, 103

1113. P. Lemaire and M. Fayol. When plausibility judgments supersede fact
retrieval: The example of the odd-even effect on product verification.
Memory & Cognition, 23(1):34–48, Feb. 1995. 49

1114. P. Lennie. The cost of cortical computation. Current Biology,
13(6):493–497, Mar. 2003. 57

1115. F. Lequiller, N. Ahmad, S. Varjonen, W. Cave, and K.-H. Ahn. Re-
port of the OECD task force on software measurement in the national
accounts. STD/NA (2002)2, Organisation for Economic Co-operation
and Development, Sept. 2002. 82

1116. K. Lerman, X. Yan, and X.-Z. Wu. The "majority illusion" in social
networks. PLoS ONE, 11(2):e0147617, Feb. 2016. 100

1117. K. Letrud and S. Hernes. Affirmative citation bias in scientific myth de-
bunking: A three-in-one case study. PLoS ONE, 14(9):e0222213, Sept.
2019. 9

1118. D. E. Levari, D. T. Gilbert, T. D. Wilson, B. Sievers, D. M. Amodio, and
T. Wheatley. Prevalence-induced concept change in human judgment.
Science, 360(6396):1465–1467, June 2018. 52

1119. B. W. Leverett, R. G. G. Cattell, S. O. Hobbs, J. M. Newcomer, A. H.
Reiner, B. R. Schatz, and W. A. Wulf. An overview of the production-
quality compiler-compiler project. Technical Report CMU-CS-79-105,
Carnegie Mellon University, Feb. 1979. 178

1120. P. Lewicki, T. Hill, and E. Bizot. Acquisition of procedural knowledge
about a pattern of stimuli that cannot be articulated. Cognitive Psychol-
ogy, 20(1):24–37, Jan. 1988. 193

1121. A. C. Lewis. A study of idea generation over time. Thesis (m.s.), Geor-
gia Institute of Technology, June 1972. 81

1122. G. Lewis and P. Bajari. Incentives and adaptation: Evidence from high-
way procurement in Minnesota. Working Paper 17647, National Bureau
of Economic Research, USA, Dec. 2011. 129

1123. J. R. Lewis. Evaluation of procedures for adjusting problem-discovery
rates estimated from small samples. International Journal of Human-
Computer Interaction, 13(4):445–479, Dec. 2001. 170

1124. K. Li, E. Yan, and Y. Feng. How is R cited in research outputs?
Structure, impacts, and citation standard. Journal of Informetrics,
11(4):989–1002, Nov. 2017. 11

1125. L. Li, T. F. Bissyandé, and J. Klein. MoonlightBox: Mining Android
API histories for uncovering release-time inconsistencies. In IEEE
29th International Symposium on Software Reliability Engineering, IS-
SRE’18, pages 212–223, Oct. 2018. 84

1126. L. Li, T. F. Bissyandé, Y. L. Traon, and J. Klein. Accessing inacces-
sible Android APIs: An empirical study. In International Conference
on Software Maintenance and Evolution, ICSME 2016, pages 411–422,
Oct. 2016. 117

1127. Q. Li and H. Pham. A testing-coverage software reliability model con-
sidering fault removal efficiency and error generation. PLoS ONE,
12(7):e0181524, July 2017. 158

1128. X. Li. Soft Error Modeling and Analysis for Microprocessors. PhD
thesis, University of Illinois at Urbana-Champaign, May 2008. 167

1129. X. Li, L. Molleman, and D. van Dolder. Conditional punishment:
descriptive social norms drive negative reciprocity. Working Paper
3571220, Centre for Decision Research and Experimental Economics,
University of Nottingham, May 2020. 79

1130. Y. Li. Empirical study of Python call graph. In 34th IEEE/ACM In-
ternational Conference on Automated Software Engineering, ASE’19,
pages 1274–1276, Nov. 2019. 358

1131. Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: Finding copy-paste
and related bugs in large-scale software code. IEEE Transactions on
Software Engineering, 32(3):176–192, Mar. 2006. 82

1132. Y. Liang, Y. Zhang, A. Sivasubramaniam, R. K. Sahoo, J. Moreira, and
M. Gupta. Filtering failure logs for a BlueGene/L prototype. In Pro-
ceedings of the International Conference on Dependable Systems and
Networks, DSN’05, pages 476–485, June 2005. 385

1133. S. Lichtenstein and B. Fischhoff. Do those who know more also know
more about how much they know? Organizational Behavior and Hu-
man Performance, 20:159–183, 1977. 55

1134. S. Lichtenstein, P. Slovic, B. Fischhoff, M. Layman, and B. Combs.
Judged frequency of lethal events. Journal of Experimental Psychol-
ogy: Human Learning and Memory, 4(6):551–578, Nov. 1978. 152

1135. Y. Lichtenstein and A. McDonnell. Pricing software development ser-
vices. In European Conference on Information Systems, ECIS 2003,
2003. 124

1136. C. Lidbury, A. Lascu, N. Chong, and A. F. Donaldson. Many-core com-
piler fuzzing. In Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI’15, pages
65–76, June 2015. 155

1137. G. A. Liebchen and M. Shepperd. Data sets and data quality in software
engineering. In Proceedings of the 4th International workshop on Pre-
dictor Models in Software Engineering, PROMISE’08, pages 39–44,
May 2008. 377

1138. J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze. An analysis
of the variability in forty preprocessor-based software product lines. In
Proceedings of the 32nd ACM/IEEE International Conference on Soft-
ware Engineering-Volume 1, ICSE’10, pages 105–114, May 2010. 199

1139. J. Liebig, A. von Rhein, C. Kästner, S. Apel, J. Dörre, and C. Lengauer.
Scalable analysis of variable software. In Proceedings of the 9th joint
meeting of the European Software Engineering Conference and the
ACM SIGSOFT symposium on the Foundations of Software Engineer-
ing, ESEC/FSE’13, pages 81–91, Aug. 2013. 172

1140. F. Lieder, T. L. Griffiths, Q. J. M. Huys, and N. D. Goodman. The an-
choring bias reflects rational use of cognitive resources. Psychonomic
Bulletin & Review, 25(1):322–349, Feb. 2018. 24

1141. J. H. Lienhard. How Invention Begins: Echoes of Old Voices in the Rise
of New Machines. Oxford University Press, 2006. 96

1142. J. S. Light. When computers were women. Technology and Culture,
40(3):455–483, July 1999. 108

1143. S. L. Lim. Social Networks and Collaborative Filtering for Large-Scale
Requirements Elicitation. PhD thesis, School of Computer Science and
Engineering, University of New South Wales, Aug. 2010. 135, 136, 144

1144. S. L. Lim, P. J. Bentley, N. Kanakam, F. Ishikawa, and S. Honiden.
Investigating country differences in mobile app user behavior and chal-
lenges for software engineering. IEEE Transactions on Software Engi-
neering, 41(1):40–64, Jan. 2015. 105

1145. B. Lin, L. Ponzanelli, A. Mocci, G. Bavota, and M. Lanza. On the
uniqueness of code redundancies. In IEEE/ACM 25th International
Conference on Program Comprehension, ICPC’17, pages 121–131,
May 2017. 200

1146. B. Lin, F. Zampetti, G. Bavota, M. Di Penta, M. Lanza, and R. Oliveto.
Sentiment analysis for software engineering: How far can we go? In
Proceedings of the 40th International Conference on Software Engi-
neering, ICSE’18, pages 94–104, May-June 2018. 350

1147. D.-Y. Lin and I. Neamtiu. Collateral evolution of applications and
databases. In Proceedings of the joint International and annual ERCIM
workshops on Principles of software evolution and Software Evolution
workshops, IWPSE-Evol’09, pages 31–40, Aug. 2009. 202

1148. L. C. H. Lin and N. Shen. GPL-3.0 in the Chinese intellectual property
court in Beijing. International Free and Open Source Software Law
Review, 10(1):1–7, 2018. 70

1149. M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. Di Penta,
R. Oliveto, and D. Poshyvanyk. API change and fault proneness: A
threat to the success of Android apps. In Proceedings of the 9th joint
meeting of the European Software Engineering Conference and the
ACM SIGSOFT symposium on the Foundations of Software Engineer-
ing, ESEC/FSE’13, pages 477–487, Aug. 2013. 155

1150. K. R. Linberg. Software developer perceptions about software
project failure: a case study. The Journal of Systems and Software,
49(2–3):177–192, Dec. 1999. 120

1151. K. Lind and R. Heldal. A practical approach to size estimation of em-
bedded software components. IEEE Transactions on Software Engin-
eering, 38(5):993–1007, Sept.-Oct. 2012. 130, 131

1152. R. Lister, E. S. Adams, S. Fitzgerald, W. Fone, J. Hamer, M. Lind-
holm, R. McCartney, J. E. Moström, K. Sanders, O. Seppälä, B. Simon,
and L. Thomas. A multi-national study of reading and tracing skills
in novice programmers. ACM SIGCSE Bulletin, 36(4):119–150, Dec.
2004. 361

1153. T. Little. Schedule estimation and uncertainty surrounding the cone of
uncertainty. IEEE Software, 23(3):48–54, May 2006. 134, 135

1154. D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway. Mental models and
software maintenance. In E. Soloway and S. Iyengar, editors, Empiri-
cal Studies of Programmers, chapter 6, pages 80–98. Ablex Publishing
Corporation, 1986. 187

1155. S. Livieri, Y. Higo, M. Matsushita, and K. Inoue. Analysis of the Linux
kernel evolution using code clone coverage. In Fourth International
Workshop on Mining Software Repositories, MSR’07, pages 22–25,
May 2007. 211

1156. G. D. Logan. Shapes of reaction-time distributions and shapes of
learning curves: A test of the instance theory of automaticity. Jour-
nal of Experimental Psychology: Learning, Memory, & Cognition,
18(5):883–914, 1992. 36

1157. C. V. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny, H. Saj-
nani, and J. Vitek. DéjàVu: A map of code duplicates on GitHub. In
Conference on Object-Oriented Programming Systems, Languages, and
Applications, OOPSLA’17, page 84, Oct. 2017. 200, 201

1158. C. V. Lopes and J. Ossher. How scale affects structure in Java programs.
In eprint arXiv:cs.SE/1508.00628, Aug. 2015. 180

1159. I. Lorge and H. Solomon. Two models of group behavior in the solution
of Eureka-type problems. Psychometrika, 20(2):139–148, June 1955.
80

1160. M. Lorko, M. Servátka, and L. Zhang. Anchoring in project duration
estimation. Journal of Economic Behavior & Organization, 162:49–65,
June 2019. 40

1161. D. D. Loschelder, M. Friese, M. Schaerer, and A. D. Galinsky. The too-
much-precision effect: When and why precise anchors backfire with
experts. Psychological Science, 27(12):1573–1587, Oct. 2016. 123

1162. R. Lotufo, S. She, T. Berger, K. Czarnecki, and A. Wąsowski. Evo-
lution of the Linux kernel variability model. In Proceedings of the
14th International Conference on Software Product Lines: going be-
yond, SPLC’10, pages 136–150, Sept. 2010. 332, 333

1163. P. Louridas, D. Spinellis, and V. Vlachos. Power laws in software. ACM
Transactions on Software Engineering and Methodology, 18(1):1–26,
Sept. 2008. 319

1164. L. Lu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and S. Lu. A study
of Linux file system evolution. In 11th USENIX Conference on File and
Storage Technologies, FAST’13, pages 31–44, Feb. 2013. 186, 219

1165. J. D. Lucente. On the Viability of Quantitative Assessment Methods
in Software Engineering and Software Services. PhD thesis, School of
Engineering and Computer Science, University of Denver, Jan. 2015.
155

1166. L. Lucia. Ranking-Based Approaches for Localizing Faults. PhD thesis,
Singapore Management University, June 2014. 164

1167. L. Lucia, D. Lo, L. Jiang, F. Thung, and A. Budi. Extended compre-
hensive study of association measures for fault localization. Journal of
Software: Evolution and Process, 26(2):172–219, Feb. 2014. 163

1168. K. M. Lui and K. C. C. Chan. Pair programming productivity: Novice-
novice vs. expert-expert. International Journal of Human-Computer
Studies, 64(9):915–925, Sept. 2006. 37

1169. A. W. Lukaszewski, M. Gurven, C. R. von Rueden, and D. P. Schmitt.
What explains personality covariation? A test of the socioecological
complexity hypothesis. Social Psychological and Personality Science,
8(8):943–952, Nov. 2017. 52

1170. P. Lukowicz, E. A. Heinz, L. Prechelt, and W. F. Tichy. Experimental
evaluation in computer science: A quantitative study. Technical Report
17/94, University of Karlsruhe, Germany, Aug. 1994. 8

1171. A. Lundqvist and D. Rodic. GNU/Linux distribution timeline. personal
website, Oct. 2012. http://futurist.se/gldt. 99

1172. M. I. Lunesu. Process Software Simulation Model of Lean-Kanban Ap-
proach. PhD thesis, Department of Electrical and Electronic Engineer-
ing, University of Cagliari, Apr. 2013. 342, 343

1173. Y. Luo, S. Govindan, B. Sharma, M. Santaniello, J. Meza, A. Kansal,
J. Liu, B. Khessib, K. Vaid, and O. Mutlu. Characterizing ap-
plication memory error vulnerability to optimize datacenter cost via
heterogeneous-reliability memory. In Proceedings of the 2014 44th An-
nual IEEE/IFIP International Conference on Dependable Systems and
Networks, pages 467–478, June 2014. 166

1174. A. K. Luria. Towards the problem of the historical nature of psycho-
logical processes. International Journal of Psychology, 6(4):259–272,
1971. 21, 44

1175. A. R. Luria. The Mind of a Mnemonist. Penguin Education, 1975. 35

1176. B. Luthiger and C. Jungwirth. Pervasive fun. First Monday, 12(1), Jan.
2007. 305, 306

1177. W. J. Lynn III. A new approach for delivering information technology
capabilities in the Department of Defense. Report to Congress, Office
of the Secretary of Defense, Nov. 2010. 131

1178. W. Ma, L. Chen, X. Zhang, Y. Zhou, and B. Xu. How do developers
fix cross-project correlated bugs? A case study on the GitHub scien-
tific Python ecosystem. In IEEE/ACM 39th International Conference
on Software Engineering, ICSE’17, pages 381–392, May 2017. 152

1179. W. Ma, J.-C. S. Liu, and A. Forin. Design and testing of a CPU emu-
lator. Technical Report MSR-TR-2009-155, Microsoft Research, Aug.
2009. 165

1180. F. MacCrory, V. Choudhary, and A. Pinsonneault. Designing promotion
ladders to mitigate turnover of IT professionals. Information Systems
Research, 27(3):648–660, Sept. 2016. 71

1181. N. Macdonald. Computing services survey. Computers and Automation,
7(7):9–12, July 1958. 105

1182. N. Macdonald. Computer Census 1962-74. Computers and People,
1974. 105

1183. J. N. MacGregor. Short-term memory capacity: Limitation or optimiza-
tion? Psychological Review, 94(1):107–108, Jan. 1987. 34

1184. A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An input genera-
tion system for Android apps. In Proceedings of the 9th joint meeting of
the European Software Engineering Conference and the ACM SIGSOFT
symposium on the Foundations of Software Engineering, ESEC/FSE’13,
pages 224–234, Aug. 2013. 347, 348

1185. C. E. Mackenzie. Coded Character Sets, History and Development.
Addison–Wesley, 1980. 106

1186. D. MacKenzie. Computer-related accidental death: an empirical explo-
ration. Science and Public Policy, 21(4):233–248, Aug. 1994. 153

1187. I. S. MacKenzie. Fitts’ law as a research and design tool in human-
computer interaction. International Journal of Human-Computer Inter-
action, 7(1):91–139, Mar. 1992. 58

1188. R. J. Madachy. Software Process Dynamics. John Wiley & Sons, Inc,
2008. 128, 356

1189. A. Maddison. Business cycles, long waves and phases of capital de-
velopment. In A. Maddison, editor, Dynamic Forces in Capitalist De-
velopment: A Long-run Comparative View, chapter 4, page 85. Oxford
University Press, Oct. 1991. 7

1190. W. T. Maddox and C. J. Bohil. Costs and benefits in perceptual catego-
rization. Memory & Cognition, 28:597–615, 2000. 41

1191. M. Magidin and E. Viso. On the experiments in algorithm dynamics.
Technical Report UAMR0853, Universidad Autónoma Metropolitana-
Iztapalapa, México, Oct. 1976. 182

1192. T. Maillart, M. Zhao, J. Grossklags, and J. Chuang. Given enough eye-
balls, all bugs are shallow? Revisiting Eric Raymond with bug bounty
programs. Journal of Cybersecurity, 3(2):81–90, June 2017. 109

1193. S. Majd and R. S. Pindyck. Time to build, option value, and investment
decisions. Journal of Financial Economics, 18(1):7–27, Mar. 1987. 62

1194. V. Makarov. 2016 Export of Russian software development industry.
Annual Survey 13-th, RUSSOFT Association, Aug. 2016. 62, 113

1195. V. N. Makarow. SPEC benchmark page. http://
vmakarov.fedorapeople.org/spec/index.html, July 2014. 373,
374

1196. B. A. Malloy and J. F. Power. Quantifying the transition from Python
2 to 3: An empirical study of Python applications. In Interna-
tional Symposium on Empirical Software Engineering and Measure-
ment, ESEM’17, pages 314–323, Dec. 2017. 202

1197. S. Mandal, R. Gandhi, and H. Siy. Modular norm models: practical
representation and analysis of contractual rights and obligations. Re-
quirements Engineering, 25(3):383–412, Sept. 2020. 125

1198. M. Mangel and F. J. Samaniego. Abraham Wald’s work on air-
craft survivability. Journal of the American Statistical Association,
79(386):259–267, June 1984. 255

1199. Manpower. Computers in offices. Studies No. 4, Manpower Research
Unit, Ministry of Labour, G.B., 1965. 92

1200. M. M. Mantei and T. J. Teorey. Cost/benefit analysis for incorporating
human factors in the software lifecycle. Communications of the ACM,
31(4):428–438, Apr. 1988. 130

1201. M. V. Mäntylä and J. Itkonen. How are software defects found? The role
of implicit defect detection, individual responsibility, documents, and
knowledge. Information and Software Technology, 56(12):1597–1612,
Dec. 2014. 174

1202. A. Marathe, Y. Zhang, G. Blanks, N. Kumbhare, G. Abdulla, and
B. Rountree. An empirical survey of performance and energy efficiency
variation on Intel processors. In Proceedings of the 5th International
Workshop on Energy Efficient Supercomputing, E2SC’17, pages 1–8,
Nov. 2017. 369

1203. A. Marchand. The power of an installed base to combat lifecycle de-
cline: The case of video games. International Journal of Research in
Marketing, 33(1):140–154, Mar. 2016. 87

1204. M. Marcozzi, Q. Tang, A. F. Donaldson, and C. Cadar. Compiler
fuzzing: How much does it matter? ACM Transactions on Program-
ming Languages and Systems, 3:155, Oct. 2019. 171

1205. J. N. Marewski and L. J. Schooler. Cognitive niches: An ecological
model of strategy selection. Psychological Review, 118(3):292–437,
July 2011. 53

1206. B. H. Margolin, R. P. Parmelee, and M. Schatzoff. Analysis of free-
storage algorithms. IBM Systems Journal, 10(4):283–304, 1971. 203

1207. P. Marinescu, P. Hosek, and C. Cadar. COVRIG: A framework for the
analysis of code, test, and coverage evolution in real software. In Pro-
ceedings of the 2014 International Symposium on Software Testing and
Analysis, ISSTA’14, pages 93–104, July 2014. 172

1208. F. Marotta-Wurgler. What’s in a standard form contract? An empiri-
cal analysis of software license agreements. Journal of Empirical Legal
Studies, 7(4):677–713, Dec. 2007. 124

1209. F. Marotta-Wurgler. Will increased disclosure help? Evaluating the
recommendations of the ALI’s "principles of the law of software con-
tracts". University of Chicago Law Review, 78(1), 2011. 70

1210. D. Martin. An Empirical Analysis of GNU Make Feature Use in Open
Source Projects. PhD thesis, School of Computing, Queen’s University,
Ontario, Apr. 2017. 198, 199

1211. F. Martineau. PNFG: A framework for computer game narrative analy-
sis. Thesis (m.s.), School of Computer Science, McGill University, June
2006. 185

1212. A. G. Martínez. Chaos Monkeys: Inside The Silicon Valley Money Ma-
chine. Ebury Press, 2016. 93

1213. M. Martinez and M. Monperrus. Mining software repair models for
reasoning on the search space of automated program fixing. In eprint
arXiv:cs.SE/1311.3414v1, Nov. 2013. 193

1214. M. Maruyama, C. Pallier, A. Jobert, M. Sigman, and S. Dehaene. The
cortical representation of simple mathematical expressions. NeuroIm-
age, 61(4):1444–1460, July 2012. 29

1215. E. Masanet, A. Shehabi, J. Liang, L. Ramakrishnan, X. Ma, V. Hen-
drix, B. Walker, and P. Mantha. The energy efficiency potential of
cloud-based software: A U.S. case study. LBNL Paper LBNL-6298E,
Lawrence Berkeley National Laboratory, June 2013. 95

1216. E. J. Masicampo and D. R. Lalande. A peculiar prevalence of p val-
ues just below .05. The Quarterly Journal of Experimental Psychology,
65(11):2271–2279, Aug. 2012. 268

1217. F. Massacci, S. Neuhaus, and V. H. Nguyen. After-life vulnerabilities: A
study on Firefox evolution, its vulnerabilities, and fixes. In Proceedings
of the Third International Conference on Engineering secure software
and systems, ESSoS’11, pages 195–208, Feb. 2011. 160, 161, 162

1218. R. C. Masse, C. Liu, Y. Li, L. Mai, and G. Cao. Energy storage through
intercalation reactions: electrodes for rechargeable batteries. National
Science Review, 4(1):26–53, 2017. 368

1219. J. Matejka and G. Fitzmaurice. Same stats, different graphs: Generat-
ing datasets with varied appearance and identical statistics through sim-
ulated annealing. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI’17, pages 1290–1294, May 2017.
386

1220. B. G. Mateus and M. Martinez. On the adoption, usage and
evolution of Kotlin features on Android development. In eprint
arXiv:cs.CS/1907.09003, July 2019. 113

1221. F. Mathy, M. Chekaf, and N. Cowan. Simple and complex working
memory tasks allow similar benefits of information compression. Jour-
nal of Cognition, 1(31):1–12, May 2018. 32, 33

1222. E. Matias, I. S. MacKenzie, and W. Buxton. One-handed touch-typing
on a QWERTY keyboard. International Journal of Human-Computer
Interaction, 11:1–27, 1996. 23

1223. C. Mayer, S. Hanenberg, R. Robbes, É. Tanter, and A. Stefik. An em-
pirical study of the influence of static type systems on the usability of
undocumented software. In Proceedings of the ACM International Con-
ference on Object Oriented Programming Systems Languages and Ap-
plications, OOPSLA’12, pages 683–702, Oct. 2012. 206

1224. D. Mazinanian, A. Ketkar, N. Tsantalis, and D. Dig. Understanding
the use of lambda expressions in Java. In Proceedings of the ACM on
Programming Languages, OOPSLA’17, page 85, Oct. 2017. 202

1225. A. Mazouz. An Empirical Study of Program Performance of OpenMP
Applications on Multicore Platforms. PhD thesis, Université de
Versailles-Saint Quentin en Yvelines, Dec. 2013. 372, 373

1226. A. Mazouz, A. Laurent, B. Pradelle, and W. Jalby. Evaluation of CPU
frequency transition latency. Computer Science - Research and Devel-
opment, 29(3-4):187–195, Aug. 2014. 368

1227. M. Mazzucato. Risk, variety and volatility in the PC industry: New
economy or Early life-cycle? In NY Federal Reserve Bank conference
on "Productivity Growth: A New Era?", Nov. 2001. 100

1228. D. F. McAllister and M. A. Vouk. Experiments in fault tolerant soft-
ware reliability. Technical Report 5–NAG-1-667, North Carolina State
University, Apr. 1989. 130, 175

1229. T. J. McCabe. A complexity measure. IEEE Transactions on Software
Engineering, SE-2(4):308–320, Dec. 1976. 183

1230. J. C. McCallum. Historical cost of computer memory and storage.
http://www.jcmit.com, July 2016. 1

1231. S. McCloud. Understanding Comics. HarperPerennial, 1993. 228

1232. S. McConnell. Code Complete. Microsoft Press, 1993. 184

1233. M. H. McCormack. The Terrible Truth about Lawyers. Beech Tree
books, William Morrow, 1987. 124

1234. M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D. Hagan, Y. B.-
D. Kolikant, C. Laxer, L. Thomas, I. Utting, and T. Wilusz. A multi-
national, multi-institutional study of assessment of programming skills
of first-year CS students. ACM SIGCSE Bulletin, 33(4):125–180, June
2001. 361

1235. R. R. McCrae and P. T. Costa, Jr. Reinterpreting the Myers-Briggs type
indicator from the perspective of the five-factor model of personality.
Journal of Personality, 57(1):17–40, Mar. 1989. 52

1236. B. D. McCullough. Microsoft Excel’s ’Not The Wichmann-Hill’ ran-
dom number generator. Computational Statistics & Data Analysis,
52:4587–4593, 2008. 165

1237. B. D. McCullough and D. A. Heiser. On the accuracy of statistical
procedures in Microsoft Excel 2007. Computational Statistics & Data
Analysis, 52:4570–4578, 2008. 15

1238. J. Mcdonald. The impact of project planning team experience on
software project cost estimates. Empirical Software Engineering,
10(2):219–234, Apr. 2005. 125, 126

1239. R. McElreath and R. Boyd. Mathematical Models of Social Evolution:
A Guide for the Perplexed. The University of Chicago Press, 2008. 75,
100

1240. D. McFadden. Rationality for economists? Journal of Risk and Uncer-
tainty, 19:73–105, 1999. 53

1241. R. W. McGee. Accounting for Software in the United States. PhD thesis,
School of Industrial and Business Studies, University of Warwick, Apr.
1986. 82

1242. B. McGonigle, M. Chalmers, and A. Dickinson. Concurrent disjoint and
reciprocal classification by Cebus apella in seriation tasks: evidence for
hierarchical organization. Animal Cognition, 6(3):185–197, Sept. 2003.
41

1243. S. McJohn. The GPL meets the UCC: Does free software come with
a warranty of no infringement? Journal of High Technology Law,
XV(1):1–62, 2014. 70

1244. K. B. McKeithen, J. S. Reitman, H. H. Rueter, and S. C. Hirtle. Knowl-
edge organization and skill differences in computer programmers. Cog-
nitive Psychology, 13(3):307–325, July 1981. 39, 40

1245. J. McManus and T. Wood-Harper. Understanding the sources of infor-
mation systems project failure: A study in IS project failure. Manage-
ment Services, 51(3):38–43, Aug. 2007. 122

1246. D. S. McNamara and J. Magliano. Toward a comprehensive model of
comprehension. In B. Ross, editor, The Psychology of Learning and
Motivation, Vol. 51, chapter 9, pages 297–384. Academic Press, Nov.
2009. 190

1247. T. P. McNamara, J. K. Hardy, and S. C. Hirtle. Subjective hierarchies in
spatial memory. Journal of Experimental Psychology: Learning, Mem-
ory, & Cognition, 15(2):211–227, 1989. 30

1248. J. McNerney, J. D. Farmer, S. Redner, and J. E. Trancik. Role of design
complexity in technology improvement. Proceedings of the National
Academy of Sciences, 108(22):9008–9013, May 2011. 76

1249. D. L. McNicol. Influences on the timing and frequency of cancellations
and truncations of major defense acquisition programs. IDA Paper P-
8280, Institute for Defense Analyses, Mar. 2017. 122

1250. I. McPhee. Customs’ cargo management re-engineering project: Aus-
tralian customs service. Audit Report No.24 2006-07, Australian Na-
tional Audit Office, Aug. 2007. 122

1251. J. H. McWhorter. The world’s simplest grammars are creole grammars.
Linguistic Typology, 5(2-3):125–166, 2001. 201

1252. A. D. Meacham. Data Processing Equipment Encyclopedia: Electronic
Devices, volume 2. Gille Associates, Inc., 1962. 112, 365

1253. F. Mechner. Probability relations within response sequences under ra-
tio reinforcement. Journal of the Experimental Analysis of Behavior,
1(2):109–121, Apr. 1958. 20

1254. F. Medeiros, C. Kästner, M. Ribeiro, R. Gheyi, and S. Apel. A com-
parison of 10 sampling algorithms for configurable systems. In eprint
arXiv:cs.SE/1602.02052, Feb. 2016. 140, 169, 255

1255. F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi, and R. Gheyi. The
love/hate relationship with the C preprocessor: An interview study. In
Proceedings of the 29th. European Conference on Object-Oriented Pro-
gramming, ECOOP’15, pages 495–518, July 2015. 184

1256. M. Meeks. German comments in LibreOffice. personal webpage,
Apr. 2017. https://people.gnome.org/~michael/data/2015-08-
01-5.5-data.ods. 107

1257. M. Meeter, J. M. J. Murre, and S. M. J. Janssen. Remembering the
news: Modeling retention data from a study with 14,000 participants.
Memory & Cognition, 33(5):793–810, July 2004. 35, 36

1258. M. Mehrara and T. Austin. Exploiting selective placement for low-cost
memory protection. ACM Transactions on Architecture and Code Opti-
mization, 5(3):1–24, Nov. 2008. 166

1259. L. K. Melhus and R. E. Jensen. Measurement bias from address aliasing.
In Eleventh International Workshop on Automatic Performance Tuning,
iWAPT 2016, pages 1506–1515, May 2016. 370

1260. R. Meloca, G. Pinto, L. Baiser, M. Mattos, I. Polato, I. S. Wiese, and
D. M. German. Understanding the usage, impact, and adoption of non-
OSI approved licenses. In Proceedings of the 15th International Confer-
ence on Mining Software Repositories, MSR’18, pages 270–280, May
2018. 69, 70

1261. M. Mencher. Get in the Game! Careers in the Game Industry. New
Riders Publishing, Oct. 2002. 108

1262. D. Mendez, B. Baudry, and M. Monperrus. Empirical evidence of
large-scale diversity in API usage of object-oriented software. In In-
ternational Conference on Source Code Analysis and Manipulation,
SCAM’13, pages 43–52, Apr. 2013. 207, 208

1263. H. Mengistu, J. Huizinga, J.-B. Mouret, and J. Clune. The evolution-
ary origins of hierarchy. PLoS Computational Biology, 12(6):e1004829,
June 2016. 184

1264. H. Mercier and D. Sperber. Why do humans reason? Arguments for an
argumentative theory. Behavioral and Brain Sciences, 34(2):57–111,
Apr. 2011. 44

1265. H. Mercier and D. Sperber. Why do humans reason? Arguments
for an argumentative theory. HAL Id: hal-00904097, HAL archives-
ouvertes.fr, Nov. 2013. 44

1266. R. C. Merkle. Energy limits to the computational power of the human
brain. Foresight Update, 6, Aug. 1989. 56

1267. E. W. Merrow, L. McDonnel, and R. W. Argüden. Understanding the
outcomes of megaprojects: A quantitative analysis of very large civil-
ian projects. Report R-3560-PSSP, The RAND Corporation, Mar. 1988.
125

1268. S. Mertens and C. Baethge. The virtues of correct citation. Deutsches
Ärzteblatt International, 108(33):550–552, Apr. 2011. 148

1269. A. Mesoudi. Cultural evolution: A review of theory, findings and con-
troversies. Evolutionary Biology, 43(4):481–497, Dec. 2016. 73

1270. P. W. Metzger. Managing a Programming Project. Prentice-Hall, Inc,
second edition, Mar. 1981. 131

1271. A. N. Meyer, L. E. Barton, G. C. Murphy, T. Zimmermann, and T. Fritz.
The work life of developers: Activities, switches and perceived produc-
tivity. IEEE Transactions on Software Engineering, 43(12):1178–1193,
Dec. 2017. 137

1272. L. A. Meyerovich and A. Rabkin. How not to survey developers and
repositories: Experiences analyzing language adoption. In Proceed-
ings of the Workshop on Evaluation and Usability of Programming Lan-
guages and Tools, PLATEAU’12, pages 7–16, Oct. 2012. 115

1273. X. Mi, Y. Zhang, F. Qian, and X. Wang. An empirical characterization
of IFTTT: Ecosystem, usage, and performance. In Proceedings of the
2017 Internet Measurement Conference, IMC’17, pages 398–404, Nov.
2017. 179

1274. T. Micceri. The unicorn, the normal curve, and other improbable crea-
tures. Psychological Bulletin, 105(1):156–166, Apr. 1989. 253

1275. S. E. Michalak, A. J. DuBois, C. B. Storlie, H. M. Quinn, W. N. Rust,
D. H. DuBois, D. G. Modl, A. Manuzzato, and S. P. Blanchard. Assess-
ment of the impact of cosmic-ray-induced neutrons on hardware in the
Roadrunner supercomputer. IEEE Transactions on Device and Materi-
als Reliability, 12(2):445–454, May 2012. 167

1276. J.-B. Michel, Y. K. Shen, A. P. Aiden, A. Veres, M. K. Gray, The Google
Books Team, J. P. Pickett, D. Hoiberg, D. Clancy, P. Norvig, J. Orwant,
S. Pinker, M. A. Nowak, and E. L. Aiden. Quantitative analysis of cul-
ture using millions of digitized books. Science, 14(6014):176–182, Jan.
2011. 114, 385

1277. Microsoft server protocol documentation. corporate website, 2015.
http://www.microsoft.com. 81, 118, 165, 222

1278. S. Milgram. Obedience to Authority. McGraw-Hill, 1974. 54

1279. S. Milgram, L. Bickman, and L. Berkowitz. Note on the drawing power
of crowds of different size. Journal of Personality and Social Psy-
chologs, 13(2):79–82, 1969. 75

1280. A. Mili, S. F. Chmiel, R. Gottumukkala, and L. Zhang. Managing soft-
ware reuse economics: An integrated ROI-based model. Annals of Soft-
ware Engineering, 11(1):175–218, Nov. 2001. 81

1281. K. Milis. Success factors for ICT projects: Empirical research, utilising
qualitative and quantitative approaches (incl. Bayesian networks, Prob-
abilistic feature models). PhD thesis, Toegepaste Economische Weten-
schappen, Limburgs Universitair Centrum, Dec. 2002. 120

1282. D. M. Miller. Application of Halstead’s timing model to predict the
compilation time of Ada compilers. Thesis (m.s.), School of Engineer-
ing of the Air Force Institute of Technology, USA, Dec. 1986. 180

1283. D. R. Miller. Exponential order statistic models of software reliabil-
ity growth. NASA Contractor Report 3909, NASA Langley Research
Center, July 1985. 103, 152, 159

1284. G. A. Miller. The magical number seven, plus or minus two: Some
limits on our capacity for processing information. The Psychological
Review, 63(2):81–97, Mar. 1956. 30, 362

1285. G. A. Miller and S. Isard. Free recall of self-embedded English sen-
tences. Information and Control, 7:292–303, 1964. 32

1286. L. A. Miller. Natural language programming: Styles, strategies, and
contrasts. IBM Systems Journal, 29(2):184–215, 1981. 198

1287. S. J. Miller and M. J. Nigrini. Order statistics and Benford’s law. In-
ternational Journal of Mathematics and Mathematical Sciences, 2008,
2008. 386

1288. W. R. Miller and M. Sanchez-Craig. How to have a high success rate
in treatment: advice for evaluators of alcoholism programs. Addiction,
91(6):779–785, Apr. 1996. 359

1289. S. Minakawa, T. Hirata, K. Masame, H. Okada, and K. Maruyama. A
psychological analysis on the meaning of "reliance". Tohoku Psycho-
logica Folia, 46(1-4):111–117, Apr. 1987. 152

1290. C. H. Mireles. Marketing Modeling for New Products. PhD thesis,
Erasmus University, Rotterdam, June 2010. 87

1291. MISRA. MISRA-C:2004 Guidelines for the Use of the C Language in
Vehicle Based Software. Motor Industry Research Association, 2004.
153, 184, 203

1292. MISRA. MISRA-C++:2008 Guidelines for the Use of the C++ Lan-
guage in Critical Systems. Motor Industry Research Association, June
2008. 153

1293. K. E. Mitchell. The copyleft bust up: loopholes, licenses,
and realpolitik in open source. blog: /dev/lawyer blog, Nov.
2018. https://writing.kemitchell.com/2018/11/04/Copyleft-
Bust-Up.html. 68

1294. R. K. Mitchell, B. R. Agle, and D. J. Wood. Toward a theory
of stakeholder identification and salience: Defining the principle of
who and what really counts. The Academy of Management Review,
22(4):853–886, Oct. 1997. 136

1295. K. Mitropoulou. Performance Optimizations for Compiler-based Error
Detection. PhD thesis, School of Informatics, University of Edinburgh,
Oct. 2014. 167

1296. S. Mittal. A survey of architectural techniques for managing process
variation. ACM Computing Surveys, 48(4), May 2016. 367

1297. S. Mittal. A survey of value prediction techniques for leveraging value
locality. Concurrency and Computation: Practice and Experience,
29(21):e4250, Nov. 2017. 203

1298. S. Mittal. A survey of techniques for dynamic branch prediction. In
eprint arXiv:cs.AR/1804.00261, Apr. 2018. 203

1299. M. Mitzenmacher. A brief history of generative models for power
law and lognormal distributions. Internet Mathematics, 1(2):226–251,
2003. 239

1300. M. Mitzenmacher. Dynamic models for file sizes and double Pareto
distributions. Internet Mathematics, 1(3):305–333, Apr. 2004. 227, 246

1301. O. Mlouki. On the detection of licenses violations in the Android
ecosystem. Thesis (m.s.), Université de Montréal, Apr. 2016. 69

1302. A. Mockus and L. G. Votta. Identifying reasons for software changes
using historic databases. In Proceedings of the International Confer-
ence on Software Maintenance, ICSM’00, pages 120–130, Oct. 2000.
143

1303. A. Mockus and D. M. Weiss. Predicting risk of software changes. Bell
Labs Technical Journal, 5(2), Apr.-June 2000. 37

1304. S. N. Mohanty. Software cost estimation: Present and future. Soft-
ware–Practice and Experience, 11(2):103–121, Feb. 1981. 128

1305. T. Moher and G. M. Schneider. Methods for improving controlled
experimentation in software engineering. In Proceedings of the 5th

International Conference on Software Engineering, ICSE’81, pages
224–233, Mar. 1981. 361

1306. K. Moløkken-Østvold and K. M. Furulund. The relationship between
customer collaboration and software project overruns. In 2007 Agile
Conference, AGILE’07, pages 72–83, Aug. 2007. 310

1307. K. Moløkken-Østvold, M. Jørgensen, S. S. Tanilkan, H. Gallis, A. C.
Lien, and S. E. Hove. A survey on software estimation in the Norwe-
gian industry. In Proceedings 10th International Symposium on Soft-
ware Metrics, pages 208–219, Sept. 2004. 122, 123

1308. C. Montalvo, D. Peck, and E. Rietveld. A longer lifetime for prod-
ucts: Benefits for consumers and companies. Study IP/A/IMCO/2015-
11, Policy Department A: Economic and Scientific Policy, European
Parliament, June 2016. 98

1309. G. E. Moore. Cramming more components onto integrated circuits.
Electronics, 38(8):114–117, Apr. 1965. 7

1310. S. K. Moore. The node is nonsense: There are better ways to measure
progress than the old Moore’s law. IEEE Spectrum, 57(8):25–30, Aug.
2020. 7

1311. A. C. Morgan, D. J. Economou, S. F. Way, and A. Clauset. Prestige
drives epistemic inequality in the diffusion of scientific ideas. In eprint
arXiv:cs.SI/1805.09966, Oct. 2018. 74

1312. T. J. H. Morgan, L. E. Rendell, M. Ehn, W. Hoppitt, and K. N. Laland.
The evolutionary basis of human social learning. Proceedings of the
Royal Society B: Biological Sciences, 279(1729):653–662, Jan. 2012.
54

1313. F. L. Morris and C. B. Jones. An early program proof by Alan Turing.
Annals of the History of Computing, 6(2):139–143, Apr. 1984. 147

1314. R. J. Morrison, R. E. Nolan, and J. S. Devlin. Work Measurement in Ma-
chine Accounting: Controls, Incentives, Scheduling, and Costing Pro-
cedures. The Ronald Press Company, Dec. 1963. 73

1315. S. P. Morse, B. W. Ravenel, S. Mazor, and W. B. Pohlman. Intel micro-
processors: 8008 to 8086. IEEE Computer, 13(10):42–60, Oct. 1980.
94

1316. T. Moscibroda and R. Oshman. Resilience of mutual exclusion algo-
rithms to transient memory faults. In Proceedings of the 30th annual
ACM SIGACT-SIGOPS symposium on Principles of distributed com-
puting, PODC’11, pages 69–78, June 2011. 167

1317. F. Mosteller and C. Youtz. Quantifying probabilistic expressions. Sta-
tistical Science, 5(1):2–12, Feb. 1990. 153

1318. C. Motta. Analysing the evolution of system requirements – A case
study of AUTOSAR at Volvo car group. Thesis (m.s.), Department of
Computer Science and Engineering, Gothenburg, June 2016. 105, 106

1319. J. F. Motz. IN RE MICROSOFT CORPORATION ANTITRUST LIT-
IGATION * SUN MICROSYSTEMS, INC. v. MICROSOFT CORPO-
RATION. Opinion MDL 1332 * Civil No. JFM-02-2739, UNITED
STATES DISTRICT COURT FOR THE DISTRICT OF MARYLAND,
2002. 110, 172

1320. Y. Moy and A. Wallenburg. Tokeneer: Beyond formal program verifi-
cation. In Proceedings of the 5th International Congress on Embedded
Real Time Software and Systems, ERT S2 2010, May 2010. 168

1321. S. T. Mueller and A. Krawitz. Reconsidering the two-second decay
hypothesis in verbal working memory. Journal of Mathematical Psy-
chology, 53(1):14–25, Feb. 2009. 31

1322. S. T. Mueller and C. T. Weidemann. Alphabetic letter identifica-
tion: Effects of perceivability, similarity, and bias. Acta Psychologica,
139(1):19–37, Jan. 2012. 23, 196

1323. D. Mulcahy, B. Weeks, and H. S. Bradley. "we have met the enemy. . .
and he is us" Lessons from twenty years of the Kauffman Foundation’s
investments in venture capital funds and the triumph of hope over expe-
rience. Report, Ewing Marion Kauffman Foundation, May 2012. 93

1324. C. W. Mulford and S. Misra. Capitalization of software development
costs: Accounting practices in the software industry, 2014 and 2015.
Technical report, Georgia Tech College of Management, Jan. 2016. 62,
83, 84

1325. C. W. Mulford and J. Roberts. Capitalization of software development
costs: A survey of accounting practices in the software industry. Tech-
nical report, Georgia Tech College of Management, May 2006. 84

1326. M. M. Müller and A. Höfer. The effect of experience on the test-driven
development process. Empirical Software Engineering, 12(6):593–615,
2007. 216, 360, 379

1327. J. Mulligan and B. Patrovsky. Developing Online Games: An Insider’s
Guide. New Riders Publishing, 2003. 130

1328. E. Mumford. Job Satisfaction: A study of computer specialists. Long-
man Group Limited, Oct. 1972. 68, 71

1329. A. M. Munñiz Jr. and H. J. Schau. Religiosity in the abandoned
Apple Newton brand community. Journal of Consumer Research,
31(4):737–747, Mar. 2005. 74

1330. D. Muna, M. Alexander, A. Allen, R. Ashley, D. Asmus, R. Azzollini,
M. Bannister, R. Beaton, A. Benson, G. B. Berriman, M. Bilicki,
P. Boyce, J. Bridge, J. Cami, E. Cangi, X. Chen, N. Christiny, C. Clark,
M. Collins, J. Comparat, N. Cook, D. Croton, I. D. Davids, É. Depagne,
J. Donor, L. A. dos Santos, S. Douglas, A. Du, M. Durbin, D. Erb,
D. Faes, J. G. Fernández-Trincado, A. Foley, S. Fotopoulou, S. Frimann,
P. Frinchaboy, R. Garcia-Dias, A. Gawryszczak, E. George, S. Gon-
zalez, K. Gordon, N. Gorgone, C. Gosmeyer, K. Grasha, P. Green-
field, R. Grellmann, J. Guillochon, M. Gurwell, M. Haas, A. Ha-
gen, D. Haggard, T. Haines, P. Hall, W. Hellwing, E. C. Herenz,
S. Hinton, R. Hlozek, J. Hoffman, D. Holman, B. W. Holwerda,
A. Horton, C. Hummels, D. Jacobs, J. J. Jensen, D. Jones, A. Kar-
ick, L. Kelley, M. Kenworthy, B. Kitchener, D. Klaes, S. Kohn,
P. Konorski, C. Krawczyk, K. Kuehn, T. Kuutma, M. T. Lam, R. Lane,
J. Liske, D. Lopez-Camara, K. Mack, S. Mangham, Q. Mao, D. J. E.
Marsh, C. Mateu, L. Maurin, J. McCormac, I. Momcheva, H. Mon-
teiro, M. Mueller, R. Munoz, R. Naidu, N. Nelson, C. Nitschelm,
C. North, J. Nunez-Iglesias, S. Ogaz, R. Owen, J. Parejko, V. Pa-
trício, J. Pepper, M. Perrin, T. Pickering, J. Piscionere, R. Pogge,
R. Poleski, A. Pourtsidou, A. M. Price-Whelan, M. L. Rawls, S. Read,
G. Rees, H. Rein, T. Rice, S. Riemer-Sørensen, N. Rusomarov, S. F.
Sanchez, M. Santander-García, G. Sarid, W. Schoenell, A. Scholz,
R. L. Schuhmann, W. Schuster, P. Scicluna, M. Seidel, L. Shao,
P. Sharma, A. Shulevski, D. Shupe, C. Sifón, B. Simmons, M. Sinha,
I. Skillen, B. Soergel, T. Spriggs, S. Srinivasan, A. Stevens, O. Stre-
icher, E. Suchyta, J. Tan, O. G. Telford, R. Thomas, C. Tonini, G. Trem-
blay, S. Tuttle, T. Urrutia, S. Vaughan, M. Verdugo, A. Wagner,
J. Walawender, A. Wetzel, K. Willett, P. K. G. Williams, G. Yang,
G. Zhu, and A. Zonca. The Astropy problem. In eprint arXiv:astro-
ph.IM/1610.03159, Oct. 2016. 74, 121

1331. B. B. Murdoch, Jr. The serial position effect of free recall. Journal of
Experimental Psychology, 64(5):482–488, 1962. 34

1332. E. M. Murphy. In the matter of Knight Capital Americas LLC respon-
dent. Order instituting administrative and cease-and-desist proceedings,
pursuant to sections 15(b) and 21c of the securities exchange Act of
1934, making findings, and imposing remedial sanctions and a cease-
and-desist order. Administrative Proceeding File No. 3-15570, Securi-
ties and Exchange Commission, Oct. 2013. 154

1333. E. Murphy-Hill, C. Parnin, and A. P. Black. How we refactor, and how
we know it. In Proceedings of the 31st International Conference on
Software Engineering, ICSE’09, pages 287–297, Apr. 2009. 139

1334. J. M. J. Murre and A. G. Chessa. Power laws from individual differ-
ences in learning and forgetting: mathematical analyses. Psychonomic
Bulletin & Review, 18(3):592–597, June 2011. 247

1335. J. M. J. Murre and J. Dros. Replication and analysis of Ebbinghaus’
forgetting curve. PLoS ONE, 10(7):e0120644, July 2015. 35

1336. P. Murrell. R Graphics. Chapman & Hall/CRC, 1st edition, 2006. 225

1337. M. Muthukrishna, J. Henrich, W. Toyokawa, T. Hamamura, T. Kameda,
and S. J. Heine. Overconfidence is universal? Elicitation of genuine
overconfidence (EGO) procedure reveals systematic differences across
domain, task knowledge, and incentives in four populations. PLoS ONE,
13(8):e0202288, Aug. 2018. 56

1338. M. Muthukrishna, B. W. Shulman, V. Vasilescu, and J. Henrich. Social-
ity influences cultural complexity. Proceedings of the Royal Society B:
Biological Sciences, 281(1774), Nov. 2013. 77

1339. L. H. Mutuel. Single event effects mitigation techniques report. Final
Report DOT/FAA/TC-15/62, U.S. Department of Transportation, Fed-
eral Aviation Administration, Feb. 2016. 166

1340. G. J. Myers. A controlled experiment in program testing and code walk-
throughs/inspections. Communications of the ACM, 21(9):760–768,
Sept. 1978. 169

1341. T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney. We have it
easy, but do we have it right? In International Symposium on Parallel
and Distributed Processing, IPDPS 2008, pages 1–7, Apr. 2008. 372

1342. T. Mytkowicz, P. F. Sweeney, M. Hauswirth, and A. Diwan. Observer
effect and measurement bias in performance analysis. Technical Report
CU-CS 1042-08, University of Colorado at Boulder, June 2008. 370

1343. M. Nagappan, R. Robbes, Y. Kamei, É. Tanter, S. McIntosh, A. Mockus,
and A. E. Hassan. An empirical study of goto in C code from GitHub
repositories. In Proceedings of the 10th joint meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT sympo-
sium on the Foundations of Software Engineering, ESEC/FSE’15, pages
404–414, Aug.-Sept. 2015. 204

1344. M. Nagappan, T. Zimmermann, and C. Bird. Diversity in software en-
gineering research. In Proceedings of the 9th joint meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT sympo-
sium on the Foundations of Software Engineering, ESEC/FSE’13, pages
466–476, Aug. 2013. 255

1345. N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, and B. Murphy.
Change bursts as defect predictors. In IEEE 21st International Sympo-
sium on Software Reliability Engineering, ISSRE’10, pages 309–318,
Nov. 2010. 314

1346. P. M. Nagel, F. W. Scholz, and J. A. Skrivan. Software reliability: Addi-
tional investigations into modeling with replicated experiments. NASA
Contractor Report 172378, Boeing Computer Services Company, Space
and Military Applications Division, June 1984. 157

1347. P. M. Nagel and J. A. Skrivan. Software reliability: Repetitive run ex-
perimentation and modeling. NASA Contractor Report 165836, Boeing
Computer Services Company, Space and Military Applications Divi-
sion, Feb. 1982. 156, 157

1348. T. Nagle, J. Hogan, and J. Zale. The Strategy and Tactics of Pricing.
Pearson, fifth edition, 2015. 85

1349. J. S. Nairne. The loss of positional certainty in long-term memory. Psy-
chological Science, 3(2):199–202, May 1992. 34

1350. J. S. Nairne. Adaptive memory: Evolutionary constraints on remem-
bering. In B. H. Ross, editor, Psychology of Learning and Motivation,
Volume 53, chapter 1, pages 1–32. Academic Press, June 2010. 29

1351. J. Nandhakumar and D. E. Avison. The fiction of methodological devel-
opment: a field study of information systems development. Information
Technology & People, 12(2):176–191, Feb. 1999. 131

1352. S. Nanz and C. A. Furia. A comparative study of programming lan-
guages in Rosetta Code. In eprint arXiv:cs.SE/1409.0252v1, Aug. 2014.
197

1353. E. Nasseri. An Empirical Investigation of Inheritance Trends in Java
OSS Evolution. PhD thesis, Department of Information Systems, Com-
puting and Mathematics, Brunel University, June 2009. 208

1354. M. B. Nathanson. Desperately seeking mathematical truth. Notices of
the AMS, 55(7):773–773, Aug. 2008. 148

1355. National Research Council. Setting Priorities for Large Research Facil-
ity Projects Supported by the National Science Foundation (2004). The
National Academies Press, Jan. 2004. 2

1356. National Statistics, UK Office for. GFCF estimates for computer soft-
ware purchases, own account computer software. ONS website, June
2017. http://www.ons.gov.uk/ons/rel/bus-invest/business-
investment/index.html. 6, 105

1357. P. Naur and B. Randell. Software engineering report on a conference
sponsored by the NATO science committee. Technical report, NATO,
Jan. 1969. 8, 112

1358. A. D. Navarro and E. Fantino. The sunk cost effect in pigeons and hu-
mans. Journal of the Experimental Analysis of Behavior, 83(1):1–13,
Jan. 2005. 59

1359. D. J. Navarro and A. F. Perfors. Hypothesis generation, sparse
categories, and the positive test strategy. Psychological Review,
118(1):120–134, Jan. 2011. 25

1360. I. Neamtiu, J. S. Foster, and M. Hicks. Understanding source code evo-
lution using abstract syntax tree matching. In Proceedings of the 2005
International Workshop on Mining Software Repositories, MSR’05,
pages 1–5, May 2005. 208, 209

1361. I. G. Neamtiu. Practical Dynamic Software Updating. PhD thesis, Uni-
versity of Maryland, College Park, Aug. 2008. 208

1362. S. Negara, M. Vakilian, N. Chen, R. E. Johnson, and D. Dig. Is it dan-
gerous to use version control histories to study source code evolution?
In Proceedings of the 26th European conference on Object-Oriented
Programming, ECOOP’12, pages 79–103, June 2012. 200, 381

1363. D. L. Nelson, C. L. McEvoy, and T. A. Schreiber. The university
of South Florida word association, rhyme and word fragment norms.
w3.usf.edu/FreeAssociation, 1998. 195

1364. E. A. Nelson. Management handbook for the estimation of computer
programming costs. Technical Documentary Report ESD-TDR-67-66,
United States Air Force, L. G. Hanscom Field, Bedford, Massachusetts,
Oct. 1966. 127

1365. D. A. Nembhard and N. Osothsilp. An empirical comparison of
forgetting models. IEEE Transactions on Engineering Management,
48(3):283–291, Aug. 2001. 76

1366. R. E. NeSmith II. A study of software maintenance costs of Air Force
large scale computer systems. Thesis (m.s.), School of Systems and
Logistics, Air Force Institute of Technology, USA, Sept. 1986. 120,
303

1367. D. Nettle. Explaining global patterns of language diversity. Journal of
Anthropological Archaeology, 17(4):354–374, Dec. 1998. 113

1368. B. New, L. Ferrand, C. Pallier, and M. Brysbaert. Reexamining the
word length effect in visual word recognition: New evidence from the
English lexicon project. Psychonomic Bulletin & Review, 13(1):45–52,
Feb. 2006. 196

1369. A. Newell. Unified Theories of Cognition. Harvard University Press,
1991. 20

1370. A. Newell and P. S. Rosenbloom. Mechanisms of skill acquisition and
the power law of practice. Technical report, Carnegie Mellon Univer-
sity, Aug. 1982. 35

1371. S. E. Newstead and K. R. Coventry. The role of context and function-
ality in the interpretation of quantifiers. European Journal of Cognitive
Psychology, 12(2):243–259, June 2000. 50

1372. G. Nezlek and G. DeHondt. An empirical investigation of gender
wage differences in information systems occupations: 1991-2008. In
Proceedings of the 43rd Hawaii International Conference on System
Sciences–2010, HICSS, pages 4059–4068, Jan. 2010. 71

1373. T. H. D. Nguyen, B. Adams, and A. E. Hassan. A case study of bias in
bug-fix datasets. In 17th Working Conference on Reverse Engineering,
WCRE’10, pages 259–268, Oct. 2010. 152

1374. V. H. Nguyen and F. Massacci. The (un)reliability of NVD vulnerable
versions data: an empirical experiment on Google Chrome vulnerabili-
ties. In Proceedings of the 8th ACM SIGSAC symposium on Information,
computer and communications security, ASIA CCS’13, pages 493–498,
May 2013. 152

1375. T. Nicholas. VC: An American History. Harvard University Press, June
2019. 93

1376. T. Nichols. A penny saved: Psychological pricing. blog: Gum-
road, Oct. 2013. http://blog.gumroad.com/post/64417917582/a-
penny-saved-psychological-pricing. 86

1377. W. Nichols. The end to the myth of "Individual Programmer Productiv-
ity". IEEE Software, 36(5):71–75, Sept.-Oct. 2019. 57

1378. W. R. Nichols, J. D. McHale, D. Sweeney, W. Snavely, and A. Volkman.
Composing effective software security assurance workflows. Tech-
nical Report CMU/SEI-2018-TR-004, Software Engineering Institute,
Carnegie Mellon University, Oct. 2018. 73, 141, 161, 168, 169

1379. A. Nieder. The adaptive value of numerical competence. Trends in
Ecology & Evolution, 35(7):605–617, July 2020. 20

1380. J. Nielsen and T. K. Landauer. A mathematical model of the finding of
usability problems. In Proceedings of the conference on Human factors
in computing systems, INTERCHI’93, pages 206–213, Apr. 1993. 170

1381. E. B. Nightingale, J. R. Douceur, and V. Orgovan. Cycles, cells and plat-
ters: An empirical analysis of hardware failures on a million consumer
PCs. In Proceedings of the sixth conference on Computer systems, Eu-
roSys’11, pages 343–356, Apr. 2011. 278

1382. M. J. Nigrini and S. J. Miller. Data diagnostics using second order
tests of Benford’s law. Auditing: A Journal of Practice and Theory,
28(2):305–324, June 2009. 386

1383. D. E. Nikonov and I. A. Young. Overview of beyond-CMOS de-
vices and a uniform methodology for their benchmarking. In eprint
arXiv:cond-mat.mes-hall/1302.0244, Feb. 2013. 369

1384. J. Ninio and K. A. Stevens. Variations on the Hermann grid: an extinc-
tion illusion. Perception, 29(10):1209–1217, Oct. 2000. 192

1385. R. E. Nisbett, D. H. Krantz, C. Jepson, and Z. Kunda. The use of statis-
tical heuristics in everyday inductive reasoning. Psychological Review,
90(4):339–363, Oct. 1983. 41

1386. S. Nørby. Why forget? On the adaptive value of memory loss. Perspec-
tives on Psychological Science, 10(5):551–578, Sept. 2015. 35

1387. P. V. Norden. Resource usage and network planning techniques. In
B. V. Dean, editor, Operations Research in Research and Development,
chapter 5, pages 149–169. John Wiley & Sons, Inc, 1963. 128

1388. W. D. Nordhaus. The progress of computing. Cowles Foundation Dis-
cussion Paper No. 1324, Yale University, Sept. 2001. 1

1389. J. A. Norton and F. M. Bass. A diffusion theory model of adoption
and substitution for successive generations of high-technology products.
Management Science, 33(9):1069–1086, Sept. 1987. 87

1390. M. A. Nowak. Evolutionary Dynamics: Exploring the Equations of
Life. The Belknap press of Harvard University press, 2006. 100

1391. M. A. Nowak and K. Sigmund. Evolution of indirect reciprocity by
image scoring. Nature, 393(6685):573–577, June 1998. 78

1392. D. Nowroth, I. Polian, and B. Becker. A study of cognitive resilience
in a JPEG compressor. In IEEE International Dependable Systems and
Networks With FTCS and DCC, DSN 2008, pages 32–41, June 2008.
166

1393. H.-C. Nuerk, G. Wood, and K. Willmes. The universal SNARC effect:
The association between number magnitude and space is amodal. Ex-
perimental Psychology, 52(3):187–194, 2005. 22, 23

1394. Y. S. Nugroho, H. Hata, and K. Matsumoto. How different are different
diff algorithms in Git? Use -histogram for code changes. In eprint
arXiv:cs.SE/1902.02467, July 2019. 358

1395. R. E. Núñez. No innate number line in the human brain. Journal of
Cross-Cultural Psychology, 42(4):651–668, 2011. 48

1396. J. M. Nuttin, Jr. Affective consequence of mere ownership: The name
letter effect in twelve European languages. European Journal of Social
Psychology, 17:381–402, 1987. 196

1397. NVIDIA. CUDA CUBLAS Library. NVIDIA Corporation, CA, USA,
3.1 edition, Aug. 2010. 361

1398. A. Nyman and M. E. Stamer. How to attract talented software develop-
ers: Developing a culturally differentiated employee value proposition.
Thesis (m.s.), Department of Management and Engineering Industrial
Economics, Linköpings universitet, 2013. 74

1399. M. Oaksford and N. Chater. A rational analysis of the selection task
as optimal data selection. Psychological Review, 101(4):608–631, Oct.
1994. 44

1400. K. Oberauer, S. Lewandowsky, E. Awh, G. D. A. Brown, A. Conway,
N. Cowan, C. Donkin, S. Farrell, G. J. Hitch, M. Hurlstone, W. J. Ma,
C. C. Morey, D. E. Nee, J. Schweppe, E. Vergauwe, and G. Ward.
Benchmarks for models of short term and working memory. Psycho-
logical Bulletin, 144(9):885–958, Sept. 2018. 30

1401. K. Oberauer, H.-M. Süß, O. Wilhelm, and W. W. Wittmann. The mul-
tiple faces of working memory: Storage, processing, supervision, and
coordination. Intelligence, 31(2):167–193, Mar.-Apr. 2003. 31

1402. M. Ochodek, J. Nawrocki, and K. Kwarciak. Simplifying effort estima-
tion based on use case points. Information and Software Technology,
53(3):200–213, Mar. 2011. 129

1403. O. O. Odeh, A. M. Featherstone, and J. S. Bergtold. Reliability
of statistical software. American Journal of Agricultural Economics,
92(5):1472–1489, Sept. 2010. 15

1404. OECD. OECD Digital Economy Outlook 2015. OECD Publishing,
2015. 62

1405. C. Ogden. Killed by Google. https://killedbygoogle.com, Oct.
2020. 65, 99, 100

1406. S. Ogilvie. The European Guilds: An Economic Analysis. Princeton
University Press, Feb. 2019. 79, 99

1407. J. Oh, D. Batory, M. Heule, M. Myers, and P. Gazzillo. Uniform sam-
pling from Kconfig feature models. Technical Report 19-02, The Uni-
versity of Texas at Austin, Department of Computer Science, 2019. 255

1408. S. Ohlsson. The learning curve for writing books: Evidence from Pro-
fessor Asimov. Psychological Science, 3(6):380–382, Nov. 1992. 39

1409. M. Ohm, H. Plate, A. Sykosch, and M. Meier. Backstabber’s knife
collection: A review of open source software supply chain attacks. In
eprint arXiv:cs.CR/2005.09535, May 2020. 161

1410. H. Ohtsuki, C. Hauert, E. Lieberman, and M. A. Nowak. A simple rule
for the evolution of cooperation on graphs and social networks. Nature,
441(7092):502–505, May 2006. 78

1411. H. Ohtsuki and Y. Iwasa. How should we define goodness?–reputation
dynamics in indirect reciprocity. Journal of Theoretical Biology,
231(1):107–120, Nov. 2004. 78

1412. P. Oladimeji. Devices, errors and improving interaction design-A case
study using an infusion pump. Thesis (m.res.), Department of Computer
Science, Swansea University, Oct. 2008. 247

1413. A. Oliner and J. Stearley. What supercomputers say: A study of five sys-
tem logs. In 37th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks, DSN’07, pages 575–584, June 2007.
168

1414. P. Oliver. Experiences in building and using compiler validation sys-
tems. In R. Merwin and J. Zanca, editors, AFIPS Conference Proceed-
ings, Volume 48, pages 1051–1057, June 1979. 171, 172

1415. S. O’Mahony. Can Medicine be Cured? The Corruption of a Profession.
Head of Zeus Ltd, Feb. 2019. 12

1416. O*NET OnLine. organization website, July 2019. https://
www.onetonline.org. 108

1417. Open Group, The. The Austin common standards revision group.
http://austingroupbugs.net, July 2017. 163

1418. Open Science Collaboration. Estimating the reproducibility of psycho-
logical science. Science, 349(6251):aac4716, Aug. 2015. 4

1419. OpenCorporates. UK registered company data. https://
opencorporates.com, Mar. 2015. 107

1420. OpenRefine. organization website, Oct. 2014. http://
openrefine.org. 378

1421. OpenSignal. Android fragmentation visualized (august 2015). Techni-
cal report, OpenSignal, Aug. 2015. 225, 226, 379

1422. A. Orlitsky, A. T. Suresh, and Y. Wu. Optimal prediction of the number
of unseen species. PNAS, 113(47):13283–13288, Nov. 2016. 104

1423. N. Osaka. Eye fixation and saccade during kana and kanji text reading:
Comparison of English and Japanese text processing. Bulletin of the
Psychonomic Society, 27(6):548–550, 1989. 28

1424. A. T. Oskarsson, L. V. Boven, G. H. McClelland, and R. Hastie. What’s
next? Judging sequences of binary events. Psychological Bulletin,
135(2):262–285, 2009. 21, 51

1425. H. Osman, M. Leuenberger, M. Lungu, and O. Nierstrasz. Track-
ing null checks in open-source Java systems. In IEEE 23rd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering,
SANER’16, pages 304–313, Mar. 2016. 204

1426. E. Ostrom, J. Walker, and R. Gardner. Covenants with and without a
sword: Self-Governance is possible. The American Political Science
Review, 86(2):404–417, June 1992. 79

1427. L. M. Ottenstein, V. B. Schneider, and M. H. Halstead. Predicting the
number of bugs expected in a program module. Technical Report CSD-
TR 205, Purdue University, Oct. 1976. 182

1428. M. A. Oumaziz, A. Charpentier, J.-R. Falleri, and X. Blanc. Documen-
tation reuse: Hot or not? An empirical study. In 16th International
Conference on Software Reuse, ICSR 2017, pages 12–27, May 2017.
163

1429. G. L. Ourada. Software cost estimating models: A calibration, valida-
tion, and comparison. Thesis (m.s.), Air Force Institute of Technology,
USA, Dec. 1991. 8, 128

1430. C. Overney, J. Meinicke, C. Kästner, and B. Vasilescu. How to not get
rich: An empirical study of donations in OpCn $our¢e. In 42nd Inter-
national Conference on Software Maintenance, ICSE’20, page ???, July
2020. 93

1431. S. Owsowitz and A. Sweetland. Factors affecting coding errors.
Research Memorandum RM-4346-PR, The RAND Corporation, Apr.
1965. 23

1432. D. Oyserman, H. M. Coon, and M. Kemmelmeier. Rethinking indi-
vidualism and collectivism: Evaluation of theoretical assumptions and
meta-analyses. Psychological Bulletin, 128(1):3–72, Jan. 2002. 54

1433. S. C. Özbek. Introducing Innovations into Open Source Projects. PhD
thesis, Freie Universität Berlin, Aug. 2010. 132

1434. A. Ozment and S. E. Schechter. Milk or wine: Does software security
improve with age? In USENIX Security Symposium, SEC’06, pages
93–104, July-Aug. 2006. 144

1435. P. Padfield. Battleship. Thistle Publishing, 2015. 5

1436. R. Paleari, L. Martignoni, G. F. Roglia, and D. Bruschi. A fistful of
red-pills: How to automatically generate procedures to detect CPU em-
ulators. In Proceedings of the 3rd USENIX conference on Offensive
technologies, WOOT’09, pages 2–2, Aug. 2009. 148

1437. N. Palix, J. Lawall, and G. Muller. Tracking code patterns over mul-
tiple software versions with Herodotus. In Proceedings of the 9th
International Conference on Aspect-Oriented Software Development,
AOSD’10, pages 169–180, Mar. 2010. 154

1438. N. Palix, S. Saha, G. Thomas, C. Calvès, J. Lawall, and G. Muller.
Faults in Linux: Ten years later. Technical Report RR-7357, Institut
National de Recherche en Informatique et en Automatique, Aug. 2010.
147

1439. J. Pallister, S. Hollis, and J. Bennett. Identifying compiler options
to minimise energy consumption for embedded platforms. In eprint
arXiv:cs.PF/1303.6485, Aug. 2013. 365

1440. E. M. Palmer, T. S. Horowitz, A. Torralba, and J. M. Wolfe. What
are the shapes of response time distributions in visual search? Jour-
nal of Experimental Psychology: Human Perception and Performance,
37(1):58–71, Feb. 2011. 27, 28

1441. S. E. Palmer. Vision Science: Photons to Phenomenology. The MIT
Press, 1999. 27

1442. H.-Y. Pan, A. Chao, and W. Foissner. A nonparametric lower bound
for the number of species shared by multiple communities. Journal of
Agricultural, Biological, and Environmental Statistics, 14(4):452–468,
Dec. 2009. 104

1443. K. Pan. Using Evolution Patterns to Find Duplicated Bugs. PhD the-
sis, Department of Computer Science, University of California at Santa
Cruz, Oct. 2006. 163

1444. T. Pani. Loop patterns in C programs. Thesis (m.s.), Fakultät für Infor-
matik der Technischen Universität Wien, Dec. 2013. 182, 205

1445. R. Parker and B. Grimm. Recognition of business and government ex-
penditures for software as investment: Methodology and quantitative
impacts, 1959-98. In BEA Advisory Committee meeting, May 2000. 61

1446. A. Parkhomenko, A. Redkina, and O. Maslivets. Estimating hedonic
price indexes for personal computers in Russia. MPRA Paper No. 5019,
Higher School of Economics, Jan. 2007. 86

1447. C. Parnin, C. Bird, and E. Murphy-Hill. Adoption and use of Java gener-
ics. Empirical Software Engineering, 18(6):1047–1089, Dec. 2013. 186

1448. F. N. Parr. An alternative to the Rayleigh curve model for software
development effort. IEEE Transactions on Software Engineering, SE-
6(3):291–296, May 1980. 128

1449. H. E. Pashler. The Psychology of Attention. The MIT Press, 1999. 26

1450. L. Passos, J. Guo, L. Teixeira, K. Czarnecki, A. Wąsowski, and P. Borba.
Coevolution of variability models and related artefacts: A case study of
the Linux kernel. In Proceedings of the 17th International Software
Product Line Conference, SPLC’13, pages 91–100, Apr. 2013. 97

1451. A. Patel. Auditors’ belief revision: Recency effects of contrary and sup-
porting audit evidence and source reliability. Technical Report 2001-1,
Department of AFM/SSE, University of South Pacific, June 2001. 39

1452. M. R. Patterson. Antitrust Law in the New Economy :Google, Yelp, LI-
BOR, and the Control of Information. Harvard University Press, 2017.
94, 102

1453. F. M. Paulus, L. Rademacher, T. A. J. Schäfer, L. Müller-Pinzler, and
S. Krach. Journal impact factor shapes scientists’ reward signal in the
prospect of publication. PLoS ONE, 10(11):e0142537, Nov. 2015. 10

1454. A. Pavese and C. Umiltà. Symbolic distance between numerosity and
identity moulates Stroop-like interference. Journal of Experimental
Psychology: Human Perception and Performance, 24(5):1535–1545,
1998. 30

1455. E. Pavese, E. Soremekun, N. Havrikov, L. Grunske, and A. Zeller. In-
puts from hell: Generating uncommon inputs from common samples.
In eprint arXiv:cs.SE/1812.07525, Dec. 2018. 173

1456. J. W. Payne, J. R. Bettman, and E. J. Bettman. The Adaptive Decision
Maker. Cambridge University Press, 1993. 53, 54

1457. G. Paz-y-Miño C, A. B. Bond, A. C. Kamil, and R. P. Balda. Pinyon
jays use transitive inference to predict social dominance. Nature,
430:778–781, Aug. 2004. 46

1458. R. D. Pea. Language-independent conceptual "bugs" in novice program-
ming. Journal of Educational Computing Research, 2(1):25–36, Feb.
1986. 178

1459. J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge
University Press, 2000. 47

1460. R. K. Pearson. The problem of disguised missing data. ACM SIGKDD
Explorations Newsletter, 8(1):83–92, June 2006. 381

1461. Y. Peers. Econometric Advances in Diffusion Models. PhD thesis, Eras-
mus University, Rotterdam, Dec. 2011. 87

1462. E. Pek. Corpus-based Empirical Research in Software Engineering.
PhD thesis, Department of Computer Science, Universität Koblenz-
Landau, Oct. 2013. 367

1463. D. G. Pelli, C. W. Burns, B. Farell, and D. C. Moore-Page. Feature
detection and letter identification. Vision Research, 46(28):4646–4674,
2006. 29

1464. J. Peltokorpi and E. Niemi. Effects of group size and learning on manual
assembly performance: an experimental study. International Journal of
Production Research, 57(2):452–469, 2019. 142

1465. E. Peltonen, E. Lagerspetz, P. Nurmi, and S. Tarkoma. Energy modeling
of system settings: A crowdsourced approach. In IEEE International
Conference on Pervasive Computing and Communications, PerCom’15,
pages 37–45, Mar. 2015. 368

1466. N. Pennington. Comprehension strategies in programming. In G. Ol-
son, S. Shepard, and E. Soloway, editors, Empirical Studies of Program-
mers: Second Workshop, chapter 7, pages 100–113. Ablex Publishing
Corporation, 1987. 187

1467. N. Pennington. Stimulus structures and mental representations in ex-
pert comprehension of computer programs. Cognitive Psychology,
19(3):295–341, July 1987. 34

1468. B. T. Pentland and H. H. Rueter. Organizational routines as grammars of
action. Administrative Science Quarterly, 39(3):484–510, Sept. 1994.
106

1469. C. Perez. Technological Revolutions and Financial Capital: The Dy-
namics of Bubbles and Golden Ages. Edward Elgar Publishing, 2003.
5, 7

1470. D. Perez and B. Livshits. Smart contract vulnerabilities: Does anyone
care? In eprint arXiv:cs.CR/1902.06710, Feb. 2019. 151

1471. D. E. Perry and W. M. Evangelist. An empirical study of software in-
terface faults – An update. In Proceedings of the Twentieth Annual
Hawaii International Conference on Systems Sciences, Vol II, HICSS,
pages 113–126, Jan. 1987. 9, 151

1472. D. E. Perry, N. A. Staudenmayer, and L. G. Votta, Jr. Understanding
and improving time usage in software development. In A. Fuggetta
and A. L. Wolf, editors, Trends in Software Process, chapter 5, pages
111–135. John Wiley & Sons, Mar. 1995. 358

1473. D. E. Perry and C. S. Stieg. Software faults in evolving a large, real-time
system: a case study. In Proceedings of the 1993 European Software
Engineering Conference, pages 48–67, Sept. 1993. 151

1474. R. Perugupalli. Empirical assessment of architecture-based reliability
of open-source software. Thesis (m.s.), Department of Computer Sci-
ence and Electrical Engineering, West Virginia University, May 2004.
248

1475. H. Petroski. Design Paradigms: Case Histories of Error and Judgment
in Engineering. Cambridge University Press, 1994. 148

1476. C. Peukert. Switching costs and information technology: The case of
IT outsourcing. In 1st ICT Conference Munich on ICT and Economic
Growth, Nov. 2010. 140

1477. A. Pewsey, M. Neuhäuser, and G. D. Ruxton. Circular Statistics in R.
Oxford University Press, 2013. 344, 345, 346

1478. P. M. Pexman and M. J. Yap. Individual differences in semantic pro-
cessing: Insights from the Calgary semantic decision project. Jour-
nal of Experimental Psychology: Learning, Memory, & Cognition,
44(7):1091–1112, Feb. 2018. 195

1479. R.-H. Pfeiffer. What constitutes software? An empirical, descriptive
study of artifacts. In Proceedings of the 17th International Conference
on Mining Software Repositories, MSR’20, page ???, June 2020. 178

1480. S. A. Phatak, A. Lovitt, and J. B. Allen. Consonant confusions in white
noise. Journal of the Acoustic Society of America, 124(2):1220–1233,
Aug. 2008. 196

1481. A. Phillips. Technology and Market Structure: A Study of the Aircraft
Industry. Heath Lexington Books, 1972. 99

1482. C. Phillips. Order and Structure. PhD thesis, M.I.T., Aug. 1996. 32

1483. M. Phister, Jr. Data Processing Technology and Economics. Santa Mon-
ica Publishing Company and Digital Press, second edition, 1979. 8, 105

1484. S. T. Piantadosi. Zipf’s word frequency law in natural language: a
critical review and future directions. Psychonomic Bulletin & Review,
21(5):1112–1130, Oct. 2014. 206

1485. S. T. Piantadosi. A rational analysis of the approximate number system.
Psychonomic Bulletin & Review, 23(3):877–886, June 2016. 48

1486. R. Pieters and L. Warlop. Visual attention during brand choice: The
impact of time pressure and task motivation. International Journal of
Research in Marketing, 16:1–16, 1999. 28

1487. D. J. Pigott and B. M. Axtens. Online historical encyclopedia of pro-
gramming languages. http://hopl.info, 2015. 113

1488. R. S. Pindyck. Investments of uncertain cost. Journal of Financial Eco-
nomics, 34(1):53–76, Aug. 1993. 66

1489. J. Pipitone. Software quality in climate modelling. Thesis (m.s.), De-
partment of Computer Science, University of Toronto, 2010. 156

1490. A. M. Pires and C. Amado. Interval estimators for a binomial propor-
tion: Comparison of twenty methods. REVSTAT-Statistical Journal,
6(2):165–197, June 2008. 268

1491. P. Pirolli. Information Foraging Theory: Adaptive Interaction with In-
formation. Oxford University Press, May 2007. 183

1492. D. J. Pittenger. Measuring the MBTI . . . And coming up short. Journal
of Career Planning and Employment, 54(1):48–52, Nov. 1993. 52

1493. PK. How many developers are there in America, and where do they
live? company website, Apr. 2019. https://dqydj.com/number-of-
developers-in-america-and-per-state. 103

1494. J. Plamondon. Effective Evangelism: JOE COMES, RILEY PAINT,
INC., SKEFFINGON’S FORMAL WEAR, INC., PATRICIA ANNE
LARSEN vs. MICROSOFT CORPORATION. Plaintiff’s Exhibit 3096,
IOWA District Court for Polk County, Jan. 2000. 86

1495. A. Pluchino, A. Rapisarda, and C. Garofalo. The Peter princi-
ple revisited: A computational study. In eprint arXiv:physics.soc-
ph/0907.0455v3, Oct. 2009. 71

1496. T. Plum. Reliable data structures in C. Plum Hall, 1985. 184

1497. T. Plum. C Programming guidelines. Plum Hall, 1989. 184

1498. I. P. L. Png. On the reliability of software piracy statistics. Electronic
Commerce Research and Applications, 9(5):365–373, Sept.-Oct. 2010.
88

1499. A. Pogačnik and A. Črnič. iReligion: Religious elements of the
Apple phenomenon. The Journal of Religion and Popular Culture,
26(3):353–364, Sept.-Nov. 2014. 74

1500. C. Poivey, J. L. Barth, K. A. LaBel, G. Gee, and H. Safren. In-flight
observations of long-term single-event effect (SEE) performance on
Orbview-2 solid state recorders (SSR). In 2003 IEEE Radiation Effects
Data Workshop, pages 102–107, July 2003. 225

1501. C. Politowski, F. Petrillo, G. C. Ullmann, J. de Andrade Werly, and Y.-
G. Guéhéneuc. Dataset of video game development problems. In eprint
arXiv:cs.SE/2001.00491, Jan. 2020. 125

1502. R. Pollack. How to believe a machine-checked proof. In G. Sambin and
J. M. Smith, editors, Twenty Five Years of Constructive Type Theory,
chapter 11, pages 205–220. Oxford University Press, Oct. 1998. 149

1503. A. Pollatsek, E. D. Reichle, and K. Rayner. Tests of the E-Z reader
model: Exploring the interface between cognition and eye-movement
control. Cognitive Psychology, 52(1):1–56, Feb. 2006. 29

1504. G. Poo-Caamaño and D. M. German. Software patents: A replication
study. In Proceedings of the 11th International Symposium on Open
Collaboration, OpenSym’15, pages 5:1–5:4, Aug. 2015. 68

1505. D. Pope and U. Simonsohn. Round numbers as goals: Evidence from
baseball, SAT takers, and the lab. Psychological Science, 22(1):71–79,
Jan. 2011. 49

1506. K. R. Popper. Conjectures and Refutations. Routledge, 1969. 25

1507. A. Porter, H. Siy, A. Mockus, and L. Votta. Understanding the sources
of variation in software inspections. ACM Transactions on Software
Engineering Methodology, 7(1):41–79, Jan. 1998. 169, 303, 360

1508. M. E. Porter. Competitive Advantage: Creating and Sustaining Superior
Performance. First Free Press, 1985. 85

1509. M. E. Porter. The five competitive forces that shape strategy. Harvard
Business Review, 86(1):78–93, Jan. 2008. 63, 100

1510. R. D. Portugal and B. F. Svaiter. Weber-Fechner law and the optimality
of the logarithmic scale. Minds & Machines, 21(1):73–81, Feb. 2011.
58

1511. A. S. Posamentier and I. Lehmann. Magnificent mistakes in mathemat-
ics. Prometheus books, 2013. 148

1512. D. E. Post and R. P. Kendall. Software project management and qual-
ity engineering practices for complex, coupled multi-physics, massively
parallel computational simulations: Lessons learned from ASCI. Report
LA-UR-03-1274 Rev. 2, Los Alamos National Laboratory, Mar. 2004.
111

1513. A. Potanin, M. Damitio, and J. Noble. Are your incoming aliases really
necessary? Counting the cost of object ownership. In Proceedings of the
2013 International Conference on Software, ICSE’13, pages 742–751,
May 2013. 271

1514. E. M. Pothos and N. Chater. Rational categories. In Proceedings of the
Twentieth Annual Conference of the Cognitive Science Society, pages
848–853, 1998. 41

1515. M. C. Potter, A. Moryadas, I. Abrams, and A. Noel. Word percep-
tion and misperception in context. Journal of Experimental Psychology:
Learning, Memory, & Cognition, 19(1):3–22, 1993. 196

1516. J. Potts, J. Hartley, L. Montgomery, C. Neylon, and E. Rennie. A jour-
nal is a club: A new economic model for scholarly publishing. Working
Paper n. 2763975, Australian universities, Apr. 2016. 11

1517. A. L. Powell. Right on Time: Measuring, Modelling and Managing
Time-Constrained Software Development. PhD thesis, Department of
Computer Science, University of York, Aug. 2001. 121, 334

1518. D. A. Powner and K. A. Rhodes. Business systems modernization: IRS
needs to complete recent efforts to develop policies and procedures to
guide requirements development and management. Technical Report
GAO-06-310, United States Government Accountability Office, Mar.
2006. 135

1519. M. Pradel. Program Analyses for Automatic and Precise Error Detec-
tion. PhD thesis, ETH Zurich, 2012. 157, 158

1520. M. Pradel and T. Sen. DeepBugs: A learning approach to name-based
bug detection. In Proceedings of the ACM on Programming Languages,
OOPSLA’18, page 147, Nov. 2018. 197

1521. V. Prasad, A. Vandross, C. Toomey, M. Cheung, J. Rho, S. Quinn, S. J.
Chacko, D. Borkar, V. Gall, S. Selvaraj, N. Ho, and A. Cifu. A decade
of reversal: An analysis of 146 contradicted medical practices. Mayo
Clinical Proceedings, 88(8):790–798, Aug. 2013. 4

1522. L. Prechelt. The 28:1 Grant/Sackman legend is misleading, or: How
large is interpersonal variation really? Technical Report iratr-1999-18,
Universität Karlsruhe, 1999. 10, 57, 222

1523. L. Prechelt. Plat_Forms 2007: The web development platform com-
parison – evaluation and results. Technical Report B-07-10, Institut für
Informatik, Freie Universität Berlin, June 2007. 130, 131, 135, 137, 214

1524. L. Prechelt, D. Graziotin, and D. M. Fernández. On the sta-
tus and future of peer review in software engineering. In eprint
arXiv:cs.SE/1706.07196, June 2017. 11

1525. L. Prechelt and W. F. Tichy. A controlled experiment measuring the
effect of procedure argument type checking on programmer productiv-
ity. IEEE Transactions on Software Engineering, 24(4):302–312, Apr.
1998. 198

1526. L. Prechelt, F. Zieris, and H. Schmeisky. Difficulty factors of obtaining
access for empirical studies in industry. In Proceedings of the Third
International Workshop on Conducting Empirical Studies in Industry,
CESI’15, pages 19–25, May 2015. 8

1527. L. S. Premo and S. L. Kuhn. Modeling effects of local population ex-
tinctions on cultural change and diversity in the paleolithic. PLoS ONE,
5(12):e15582, Dec. 2010. 76, 227

1528. R. A. Prentice and J. H. Langmore. Beware of vaporware: Product
hype and the securities fraud liability of high-tech companies. Harvard
Journal of Law & Technology, 8(1):1–74, Oct.-Dec. 1994. 77

1529. C. C. Presson and D. R. Montello. Updating after rotational and transla-
tional body movements: coordinate structure of perspective space. Per-
ception, 23:1447–1455, 1994. 22

1530. T. Preston-Werner. Semantic versioning 2.0.0. organization website,
July 2019. https://semver.org. 117

1531. D. Pritchard. Frequency distribution of error messages. In Proceed-
ings of the 6th Workshop on Evaluation and Usability of Programming
Languages and Tools, PLATEAU’15, pages 1–8, Oct. 2015. 163

1532. V. Propp. Morphology of the Folktale. University of Texas Press, second
edition, 1968. English translation by Laurence Scott. 185

1533. J. Prümper, D. Zapf, F. C. Brodbeck, and M. Frese. Some surprising dif-
ferences between novice and expert errors in computerized office work.
Behaviour & Information Technology, 11(6):319–328, 1992. 147

1534. Public Accounts, Committee of. HM revenue and customers: ASPIRE–
re-competition of outsourced IT services. Technical Report Twenty-
eighth Report of Session 2006-07, UK Parliament, June 2007. 100, 124

1535. D. Pukhkaiev. Energy-efficient benchmarking for energy-efficient soft-
ware. Thesis (m.s.), Technische Universität, Dresden, Dec. 2015. 363

1536. R. Purushothaman and D. E. Perry. Toward understanding the rhetoric
of small source code changes. IEEE Transactions on Software Engin-
eering, 31(6):511–526, June 2005. 164, 165

1537. L. H. Putnam. A general empirical solution to the macro software sizing
and estimating problem. IEEE Transactions on Software Engineering,
SE-4(4):345–361, July 1978. 128

1538. L. H. Putnam and W. Myers. Measures for Excellence: Reliable soft-
ware on time, within budget. Prentice-Hall, Inc, 1992. 230

1539. PwC. Converging forces are building that could re-shape the entire in-
dustry. Global 100 software leaders, PwC Technology Institute, May
2013. 88

1540. PwC. The growing importance of apps and services. Global 100 soft-
ware leaders, PwC Technology Institute, Mar. 2014. 88

1541. PwC. Digital intelligence conquers the world below and the cloud
above. Global 100 software leaders, PwC Technology Institute, 2016.
88

1542. PwC. IPO review full-year and Q4 2015. Global technology, PwC
Technology Institute, Feb. 2016. 93

1543. Z. Pylyshyn. Is vision continuous with cognition? The case for cog-
nitive impenetrability of visual perception. Behavioral and Brain Sci-
ences, 22(3):341–423, 1999. 27

1544. X. Qu. Configuration aware prioritization for regression testing. PhD
thesis, The Graduate College at the University of Nebraska, Apr. 2010.
174

1545. S. Qualline. C Elements of Style. M&T Books, 1992. 184

1546. R. Queiroz, L. Passos, M. T. Valente, C. Hunsen, S. Apel, and
K. Czarnecki. The shape of feature code: an analysis of twenty C-
preprocessor-based systems. Journal on Software and Systems Model-
ing, 16(1):77–96, Feb. 2017. 319

1547. R Core Team. R language definition. Technical Report 3.3.1, R Foun-
dation for Statistical Computing, June 2016. 387

1548. R Core Team. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria, 2019.
ISBN 3-900051-07-0. 387, 388

1549. H. Rabinowitz and C. Schaap. Portable C. Prentice-Hall, Inc, 1990.
184

1550. J. J. Rachlinski, A. J. Wistrich, and C. Guthrie. Can judges make re-
liable numeric judgments? Distorted damages and skewed sentences.
Indiana Law Journal, 90(2):695–739, Apr. 2015. 49

1551. J. W. Radatz. Analysis of IV & V data. Technical Report RADC-TR-
81-145, Rome Air Development Center, Griffiss Air Force Base, June
1981. 162

1552. G. Radden and R. Dirven. Cognitive English Grammar. John Benjamins
Publishing Company, 2007. 178

1553. D. Raffo, J. Settle, and W. Harrison. Investigating financial measures for
planning software IV&V. Technical Report TR-99-05, Portland State
University, 1999. 64

1554. C. Ragkhitwetsagul, J. Krinke, and D. Clark. A comparison of code sim-
ilarity analysers. Empirical Software Engineering, 23(4):2464–2519,
Aug. 2018. 200

1555. F. Rahman, C. Bird, and P. Devanbu. Clones: What is that smell?
In Proceedings of the 7th International Workshop on Mining Software
Repositories, MSR’10, pages 72–81, May 2010. 9

1556. M. T. Rahman, E. Shihab, and P. C. Rigby. The modular and feature tog-
gle architectures of Google Chrome. Empirical Software Engineering,
24(2):826–853, July 2019. 199

1557. J. Ranade and A. Nash. The Elements of C Programming Style.
McGraw-Hill, Inc, 1992. 184

1558. A. Rashid, H. Chivers, G. Danezis, E. Lupu, and A. Martin. CyBOK:
The cyber security body of knowledge. Technical Report 1.0, The Na-
tional Cyber Security Centre, UK, Oct. 2019. 153

1559. R. Ratcliff, G. McKoon, and P. Gomez. A diffusion model account of
the lexical decision task. Psychological Review, 111(1):159–182, Jan.
2004. 22

1560. R. Ratcliff, P. L. Smith, S. D. Brown, and G. McKoon. Diffusion deci-
sion model: Current issues and history. Trends in Cognitive Sciences,
20(4):260–281, Apr. 2016. 22

1561. B. Ray. Analysis of Cross-System Porting and Porting Errors in Soft-
ware Projects. PhD thesis, University of Texas at Austin, Aug. 2013.
97, 98

1562. B. Ray, M. Wilcox, and C. Voskoglou. Developer economics | State of
the developer nation q3 2015. State of the Nation 9th edition, Vision-
Mobile, July-Sept. 2015. 114

1563. K. Rayner. Eye movements and attention in reading, scene perception,
and visual search. The Quarterly Journal of Experimental Psychology,
62(8):1457–1506, 2009. 28

1564. K. Rayner. Eye movements in reading: Models and data. Journal of
Eye Movement Research, 2(5):1–10, Apr. 2009. 28

1565. N. M. Razali and Y. B. Wah. Power comparisons of Shapiro-Wilk,
Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal
of Statistical Modeling and Analytics, 2(1):21–33, 2011. 263

1566. J. Reason. Human Error. Cambridge University Press, 1990. 147, 161

1567. A. S. Reber and S. M. Kassin. On the relationship between implicit and
explicit modes in the learning of a complex rule structure. Journal of Ex-
perimental Psychology: Human Learning and Memory, 6(5):492–502,
1980. 36

1568. J. L. Recón. Building skyscrapers, and spending on major projects.
Github account, Oct. 2018. https://nintil.com/2018/10/07/
building-skyscrapers-and-spending-on-major-projects. 126

1569. B. Regnell, M. Höst, J. N. och Dag, P. Beremark, and T. Hjelm. An in-
dustrial case study on distributed prioritisation in market-driven require-
ments engineering for packaged software. Requirements Engineering,
6(1):51–62, Apr. 2001. 54, 136

1570. P. Reibel, H. Yousaf, and S. Meiklejohn. Why is a Ravencoin like a To-
kenDesk? An exploration of code diversity in the cryptocurrency land-
scape. In eprint arXiv:cs.CR/1810.08420, Oct. 2018. 117

1571. E. D. Reichle, T. Warren, and K. McConnell. Using E-Z reader to model
the effects of higher-level language processing on eye movements dur-
ing reading. Psychonomic Bulletin & Review, 16(1):1–21, Feb. 2009.
29

1572. R. J. Reid. The Reid list of the first course language for computer sci-
ence majors. http://www.csee.wvu.edu/~vanscoy/reid.htm, Aug.
2002. 115

1573. J. Reimer. Computer smartphone and tablet marketshare: 1975-
2012. personal website, Dec. 2012. http://jeremyreimer.com/m-
item.lsp?i=137. 5, 93

1574. G. A. Reis III. Software Modulated Fault Tolerance. PhD thesis, De-
partment of Electrical Engineering, Princeton University, June 2008.
167

1575. G. Remillard. Implicit learning of second-, third-, and fourth-order ad-
jacent and nonadjacent sequential dependencies. The Quarterly Journal
of Experimental Psychology, 61(3):400–424, Apr. 2008. 30

1576. R. W. Remington, H. W. H. Yuen, and H. Pashler. With practice, key-
board shortcuts become faster than menu selection: A crossover inter-
action. Journal of Experimental Psychology: Applied, 22(1):95–106,
2016. 41

1577. Research Councils, UK. RCUK policy on open access and supporting
guidance. Technical report, RCUK, Mar. 2013. 11

1578. A. Rice, E. Aftandilian, C. Jaspan, E. Johnston, M. Pradel, and
Y. Arroyo-Paredes. Detecting argument selection defects. Proceedings
of the ACM on Programming Languages, 1(1):104, Oct. 2017. 195

1579. G. Richards, C. Hammer, B. Burg, and J. Vitek. The eval that men
do A large-scale study of the use of eval in JavaScript applications. In
Proceedings of the 25th European conference on Object-oriented pro-
gramming, ECOOP’11, pages 52–78, July 2011. 199

1580. G. Richards, S. Lebresne, B. Burg, and J. Vitek. An analysis of the
dynamic behavior of JavaScript programs. In ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI’10,
pages 1–12, June 2010. 199

1581. R. Richardson. 2008 CSI computer crime & security survey. Technical
report, Computer Security Institute, Aug. 2008. 154

1582. D. F. Rico. Short history of software methods. http://
davidfrico.com/rico04e.pdf, July 2004. 131

1583. R. K. Ridgway. Compiling routines. In Proceedings of the 1952 ACM
national meeting (Toronto), ACM’52, pages 1–5, Sept. 1952. 113

1584. R. Riesen, K. Ferreira, J. Stearley, R. Oldfield, J. H. Laros III, K. Pe-
dretti, and R. Brightwell. Redundant computing for exascale systems.
Technical Report SAND2010-8709, Sandia National Laboratories, Dec.
2010. 166

1585. M. Rigger, S. Marr, B. Adams, and H. Mössenböck. Understanding
GCC builtins to develop better tools. In eprint arXiv:cs.PL/1907.00863,
July 2019. 115

1586. M. Rigger, S. Marr, S. Kell, D. Leopoldseder, and H. Mössenböck. An
analysis of x86-64 inline assembly in C programs. In Proceedings of
the 14th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, VEE’18, pages 84–99, Mar. 2018. 202

1587. M. Rinard, C. Cadar, and H. H. Nguyen. Exploring the acceptability en-
velope. In Companion to the 20th annual ACM SIGPLAN conference on
Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA’05, pages 21–30, Oct. 2005. 147

1588. M. Ringelmann. Recherches sur les moteurs animés: Travail de
l’homme. Annales de l’Institut National Agronomique, 2(XII):1–40,
1913. 80

1589. J. S. Riordon. An evolution dynamics model of software systems de-
velopment. In B. Elkins and L. Hunt, editors, Software Phenomenol-
ogy Working Papers of the Software Life Cycle Management Workshop,
pages 339–360. US Army Institute for Research in Management Infor-
mation and Computer SCience, Aug. 1997. 138

1590. R. Robbes, D. Róthlisberger, and É. Tanter. Object-oriented software
extensions in practice. Empirical Software Engineering, 20(3):745–782,
June 2015. 208, 209

1591. M. J. Roberts, D. J. Gilmore, and D. J. Wood. Individual differences
and strategy selection in reasoning. British Journal of Psychology,
88:473–492, 1997. 44

1592. S. Roberts and J. Winters. Linguistic diversity and traffic acci-
dents: Lessons from statistical studies of cultural traits. PLoS ONE,
8(8):e70902, Aug. 2013. 267

1593. D. E. Robinson. Fashions in shaving and trimming of the beard: The
men of the Illustrated London News, 1842-1972. American Journal of
Sociology, 81(5):1133–1141, Mar. 1976. 10

1594. G. Robles and J. M. González-Barahona. A comprehensive study of
software forks: Dates, reasons and outcomes. In The 8th International
Conference on Open Source Systems, OSS 2012, pages 1–14, Sept.
2012. 96

1595. G. Robles, I. Herraiz, D. M. Germán, and D. Izquierdo-Cortázar. Mod-
ification and developer metrics at the function level: Metrics for the
study of the evolution of a software project. In 3rd International Work-
shop on Emerging Trends in Software Metrics, WETSoM’12, pages
49–55, June 2012. 211, 212

1596. G. Robles, L. A. Reina, A. Serebrenik, B. Vasilescu, and J. M.
González-Barahona. FLOSS 2013: A survey dataset about free software
contributors: Challenges for curating, sharing, and combining. In Pro-
ceedings of the 11th Working Conference on Mining Software Reposito-
ries, MSR’14, pages 396–399, May 2014. 218, 375

1597. E. Rodrigues, Jr. and R. Terra. How do developers use dynamic fea-
tures? The case of Ruby. Computer Languages, Systems & Structures,
53:73–89, Sept. 2018. 203

1598. W. H. Roetzheim. When the software becomes a nightmare: Dealing
with failed projects. Business Law Today, 13(6):42–48, July-Aug. 2004.
134

1599. R. D. Rogers and S. Monsell. Costs of a predictable switch between
simple cognitive tasks. Journal of Experimental Psychology: General,
124(2):207–231, 1995. 26

1600. M. Rönkkö, O.-P. Mutanen, N. Koivisto, J. Ylitalo, J. Peltonen, A.-M.
Touru, S. Hyrynsalmi, P. Poikonen, O. Junna, J. Ali-Yrkkö, A. Val-
takoski, Y. Huang, and J. Kantola. The Finnish software industry in
2007. National Software Industry Survey 2008, Software Business Lab,
2008. 62

1601. E. Rosch, C. B. Mervis, W. D. Gray, D. M. Johnson, and P. Boyes-
Braem. Basic objects in natural categories. Cognitive Psychology,
8(3):382–439, July 1976. 41

1602. L. Rosen. Open Source Licensing: Software Freedom and Intellectual
Property Law. Prentice Hall PTR, July 2004. 68

1603. M. Rosenfelder. The Language Construction Kit. Yonagu Books, 2010.
113

1604. A. Ross. No-Collar: The Humane Workplace and its Hidden Costs.
Temple University Press, 2003. 107

1605. B. H. Ross and G. L. Murphy. Food for thought: Cross-classification
and category organization in a complex real-world domain. Cognitive
Psychology, 38(4):495–552, June 1999. 354

1606. L. Ross, M. R. Lepper, and M. Hubbard. Perseverance in self-
perception and social perception: Biased attributional processes in the
debeliefing paradigm. Journal of Personality and Social Psychologs,
32(5):880–892, 1975. 39

1607. B. Rossi, B. Russo, and G. Succi. Path dependent stochastic models to
detect planned and actual technology use: A case study of OpenOffice.
Information & Software Technology, 53(11):1209–1226, Nov. 2011.
102

1608. J. Rost and R. L. Glass. The Dark Side of Software Engineering: Evil
on Computing Projects. John Wiley & Sons, Inc, 2011. 122, 135

1609. V. Rothberg, N. Dintzner, A. Ziegler, and D. Lohmann. Feature mod-
els in Linux-from symbols to semantics. In Proceedings of the Tenth
International Workshop on Variability Modelling of Software-intensive
Systems, VaMoS’16, pages 65–72, Jan. 2016. 97

1610. B. F. Roukema. A first-digit anomaly in the 2009 Iranian presidential
election. In eprint arXiv:stat.AP/0906.2789, June 2013. 386

1611. G. Rousseau, R. Di Cosmo, and S. Zacchiroli. Software provenance
tracking at the scale of public source code. HAL Id: hal-02543794,
HAL archives-ouvertes.fr, Apr. 2020. 9

1612. E. G. Roy, D. C. Quintero, J. R. Hurley, A. Cierny, and D. Norcia. Plain-
tiffs, vs. SAMSUNG TELECOMMUNICATIONS AMERICA, LLC,
a New York Corporation, and SAMSUNG ELECTRONICS AMER-
ICA, INC., a New Jersey Corporation, Defendants. PLAINTIFF’S
NOTICE OF UNOPPOSED MOTION AND UNOPPOSED MOTION
FOR PRELIMINARY APPROVAL OF CLASS ACTION SETTLE-
MENT; MEMORANDUM OF POINTS AND AUTHORITIES CASE
NO. 3:14-cv-582-JD, UNITED STATES DISTRICT COURT NORTH-
ERN DISTRICT OF CALIFORNIA, Oct. 2019. 366

1613. M. M. Roy, N. J. S. Christenfeld, and C. R. M. McKenzie. Under-
estimating the duration of future events: Memory incorrectly used or
memory bias? Psychological Bulletin, 131(5):738–756, 2005. 56

1614. W. W. Royce. Managing the development of large software systems. In
Technical Papers of Western Electronic Show and Convention, WesCon,
pages 1–9, Aug. 1970. 131

1615. P. Royston, D. G. Altman, and W. Sauerbrei. Dichotomizing continu-
ous predictors in multiple regression: a bad idea. Statistics in Medicine,
25(1):127–141, Jan. 2006. 304

1616. D. C. Rubin, S. Hinton, and A. Wenzel. The precise time course of
retention. Journal of Experimental Psychology: Learning, Memory, &
Cognition, 25(5):1161–1176, Sept. 1999. 35, 36

1617. D. C. Rubin and A. E. Wenzel. One hundred years of forget-
ting: A quantitative description of retention. Psychological Review,
103(4):734–760, Oct. 1996. 35

1618. C. Rubio-González and B. Libit. Expect the unexpected: Error code
mismatches between documentation and the real world. In Proceedings
of the 9th ACM SIGPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering, PASTE’10, pages 73–80, June 2010.
165

1619. C. Rubio-González, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan,
K. Sen, D. H. Bailey, C. Iancu, and D. Hough. Precimonious: Tuning as-
sistant for floating-point precision. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, SC’13, Nov. 2013. 150

1620. J. Ruohonen and V. Leppänen. How PHP releases are adopted in the
wild? In eprint arXiv:cs.SE/1710.05570, Oct. 2017. 98

1621. A. L. Russell. ’rough consensus and running code’ and the internet-OSI
standards war. IEEE Annals of the History of Computing, 28(3):48–61,
July-Sept. 2006. 132

1622. R. Sabherwal, A. Jeyaraj, and C. Chowa. Information systems suc-
cess: Individual and organizational determinants. Management Science,
52(12):1849–1864, Dec. 2006. 265

1623. R. Saborido, V. Arnaoudova, G. Beltrame, F. Khomh, and G. Antoniol.
On the impact of sampling frequency on software energy measurements.
Peerj PrePrints, 3:e1219, July 2015. 369, 370

1624. H. Sackman, W. J. Erikson, and E. E. Grant. Exploratory experimental
studies comparing online and offline programming performance. Com-
munications of the ACM, 11(1):3–11, Jan. 1968. 10

1625. M. Sadat, A. B. Bener, and A. V. Miranskyy. Rediscovery datasets:
Connecting duplicate reports. In eprint arXiv:cs.SE/1703.06337v1,
Mar. 2017. 151, 160, 161

1626. M. Sadinle. On the performance of dual system estimators of population
size: A simulation study. Documentos de CERAC No. 13, Centro de
Recursos parael Análisis de Conflictos, Bogotá, Columbia, Dec. 2008.
103

1627. D. Sahal. Patterns of Technological Innovation. Addison–Wesley, Dec.
1981. 5

1628. S. K. Sahoo, J. Criswell, and V. Adve. An empirical study of reported
bugs in server software with implications for automated bug diagno-
sis. In Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering, ICSE’10, pages 485–494, May 2010. 152

1629. J. Sajaniemi and R. N. Prieto. Roles of variables in experts’ program-
ming knowledge. In 17th Workshop of the Psychology of Programming
Interest Group, PPIG’05, pages 145–159, June 2005. 207

1630. A. Salahirad, H. Almulla, and G. Gay. Choosing the fitness function
for the job: Automated generation of test suites that detect real faults.
Software Testing, Verification and Reliability, 29(4-5):e1701, June-Aug.
2019. 173

1631. P. H. Salus. A Quarter Century of UNIX. Addison–Wesley, 1994. 115

1632. P. H. Salus. Duelling UNIXes and the UNIX wars. ;login:, 40(2):66–68,
Apr. 2015. 115

1633. A. Sampson, W. Dietl, E. Fortuna, and D. Gnanapragasam. EnerJ: Ap-
proximate data types for safe and general low-power computation. In
Proceedings of the 32nd ACM SIGPLAN conference on Programming
language design and implementation, PLDI’11, pages 164–174, June
2011. 368

1634. D. M. Sanbonmatsu, S. S. Posavac, A. A. Behrends, S. M. Moore, and
B. N. Uchino. Why a confirmation strategy dominates psychological
science. PLoS ONE, page e0138197, Sept. 2015. 25

1635. D. Sarkar. Lattice Multivariate Data Visualization with R. Springer
Science+Business Media, 2008. 225

1636. M. Savić, M. Ivanović, Z. Budimac, and M. Radovanović. Do students’
programming skills depend on programming language? In American
Institute of Physics Conference Proceedings, page 240006, June 2016.
198

1637. SC22/WG14. Implementation of ISO/IEC 9899:1990 (E) Programming
languages – C. British Standards Institution, Dec. 1990. 162

1638. W. Scacchi. Understanding software productivity. In W. D. Hurley, ed-
itor, Software Engineering and Knowledge Engineering: Trends for the
Next Decade Vol. 4, chapter 10, pages 273–316. World Scientific Press,
June 1995. 57

1639. S. R. Schach, T. O. S. Adeshiyan, D. Balasubramanian, G. Madl, E. P.
Osses, S. Singh, K. Suwanmongkol, M. Xie, and D. G. Feitelson. Com-
mon coupling and pointer variables, with application to a Linux case
study. Software Quality Journal, 15(1):99–113, Mar. 2006. 170

1640. S. R. Schach, B. Jin, L. Yu, G. Z. Heller, and J. Offutt. Determining
the distribution of maintenance categories: Survey versus measurement.
Empirical Software Engineering, 8(4):351–363, Dec. 2003. 355, 356

1641. J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz. Runtime measurements in
the cloud: Observing, analyzing, and reducing variance. In Proceedings
of the VLDB Endowment, pages 460–471, Sept. 2010. 374, 375

1642. K. W. Schaie. Developmental Influences on Adult Intelligence: The
Seattle Longitudinal Study. Oxford University Press, second edition,
2013. 59

1643. R. R. Schaller. Technological Innovation in the Semiconductor Indus-
try: A Case Study of the International Technology Roadmap for Semi-
conductors (ITRS). PhD thesis, George Mason University, 2004. 95

1644. M. Schief. Business Models in the Software Industry: The Impact on
Firm and M&A Performance. Springer Gabler, Apr. 2014. 85, 89

1645. F. L. Schmidt, I.-S. Oh, and J. A. Shaffer. The validity and utility of
selection methods in personnel psychology: Practical and theoretical
implications of 100 years of research findings. Working paper, Tippie
College of Business, University of Iowa, Oct. 2016. 21

1646. E. Schneider, M. Maruyama, S. Dehaene, and M. Sigman. Eye gaze
reveals a fast, parallel extraction of the syntax of arithmetic formulas.
Cognition, 125(3):475–490, Dec. 2012. 29

1647. S. Schneider. The dirty little secret of software pricing. website, 2012.
http://www.rti.com/whitepapers/Dirty_Little_Secret.pdf. 85

1648. J. Schock, M. J. Cortese, M. M. Khanna, and S. Toppi. Age of ac-
quisition estimates for 3,000 disyllabic words. Behavior and Research
Methods, 44(4):971–977, Dec. 2012. 196

1649. A. Scholey and L. Owen. Effects of chocolate on cognitive function
and mood: a systematic review. Nutrition Reviews, 71(10):665–681,
Apr. 2013. 57

1650. R. Schöne, D. Hackenberg, and D. Molka. Memory performance at re-
duced CPU clock speeds: An analysis of current x86_64 processors. In
Proceedings of the 2012 USENIX conference on Power-Aware Comput-
ing and Systems, HotPower’12, Oct. 2012. 223, 371

1651. M. Schonlau, W. DuMouchel, W.-H. Ju, A. F. Karr, M. Theus, and
Y. Vardi. Computer intrusion: Detecting masquerades. Statistical Sci-
ence, 16(1):58–74, 2001. 72

1652. L. J. Schooler and R. Hertwig. How forgetting aids heuristic inference.
Psychological Review, 112(3):610–628, July 2005. 35

1653. E. R. Schotter, B. Angele, and K. Rayner. Parafoveal processing in
reading. Attention, Perception & Psychophysics, 74(1):5–35, Jan. 2012.
29

1654. J.-P. Schraepler and G. G. Wagner. Identification of faked interviews in
surveys by means of Benford’s law?: An analysis by means of genuine
fakes in the raw data of SOEP. Technical report, Technische Universiät
Berlin, Aug. 2004. 386

1655. A. Schulman, M. Pietrek, and D. Maxey. Undocumented Windows:
A Programmers Guide to Reserved Microsoft Windows API Functions.
Addison–Wesley, July 1992. 117

1656. J. F. Schulz, D. Bahrami-Rad, J. P. Beauchamp, and J. Henrich. The
church, intensive kinship, and global psychological variation. Science,
366(6466):eaau5141, Nov. 2019. 21

1657. M.-A. Schulz, B. Schmalbach, P. Brugger, and K. Witt. Analysing hu-
manly generated random number sequences: A pattern-based approach.
PLoS ONE, 7(7):e41531, July 2012. 386

1658. P. Schuurman, E. Berghout, and P. Powell. Benefits are from Venus,
costs are from Mars. CITER WP/010/PSEBPP, University of Gronin-
gen Centre for IT Economics Research, June 2008. 119

1659. E. S. Schwartz and C. Zozaya-Gorostiza. Investment under uncertainty
in information technology: Acquisition and development projects. Man-
agement Science, 49(1):57–70, Jan. 2003. 66

1660. C. Scott. Numbers every programmer should know. Github
account, Oct. 2016. https://github.com/colin-scott/
interactive_latencies. 231

1661. C. F. Scott, P. Cole, R. B. Hesse, and P. R. Malone. UNITED STATES
OF AMERICA, et al., v. ORACLE CORPORATION. Plaintiff’s post-
trial brief CASE NO. C 04-0807 VRW, UNITED STATES DISTRICT
COURT NORTHERN DISTRICT OF CALIFORNIA SAN FRAN-
CISCO DIVISION, July 2004. 102

1662. M. D. Scott. Tort liability for vendors of insecure software: Has the
time finally come? Maryland Law Review, 67(2):425–484, 2008. 154

1663. P. D. Scott and M. Fasli. Benford’s law: An empirical investigation
and a novel explanation. CSM Technical Report 349, Department of
Computer Science, University of Essex, Aug. 2001. 386

1664. S. Scribner. Modes of thinking and ways of speaking: culture and logic
reconsidered. In P. N. Johnson-Laird and P. C. Wason, editors, Thinking:
Readings in Cognitive Science, chapter 29, pages 483–500. Cambridge
University Press, 1977. 44

1665. R. C. Seacord. The CERT C Secure Coding Standard. Addison–Wesley,
2009. 184

1666. R. C. Seamans, Jr. Aiming at Targets: The Autobiography of Robert C.
Seamans, Jr. NASA History Office, 1996. 120

1667. SEC. The world’s largest hedge fund is a fraud. SEC MADOFF
EXHIBITS-04451, Nov. 2005. November 7, 2005 Submission to the
SEC, Madoff Investment Securities, LLC. 386

1668. P. Sehgal, V. Tarasov, and E. Zadok. Evaluating performance and en-
ergy in file system server workloads. In Proceedings of the 8th USENIX
conference on File and storage technologies, FAST’10, Feb. 2010. 373

1669. J. Selby and K. Mayer. Startup firm acquisitions as a human resource
strategy for innovation: The acqhire phenomenon. Academy of Manage-
ment Annual Meeting Proceedings, 1:17109–17109, Nov. 2013. 109

1670. R. W. Selby, Jr., V. R. Basili, and F. T. Baker. CLEANROOM software
development: An empirical evaluation. Technical Report TR-1415, De-
partment of Computer Science, University of Maryland, Feb. 1985. 130

1671. L. L. Selwyn. Economies of Scale in Computer Use: Initial Tests and
Implications for the Computer Utility. PhD thesis, Alfred P. Sloan
School of Management, June 1969. 105

1672. J. A. Sexton. Detecting errors in software using a parameter checker: An
analysis. Thesis (m.s.), Rochester Institute of Technology, Apr. 1989.
163

1673. N. Shadbolt. Shadbolt review of computer sciences degree accreditation
and graduate employability. Technical Report IND/16/5, Department
for Business, Innovation & Skills, UK, Apr. 2016. 72, 361

1674. T. M. Shaft and I. Vessey. The relevance of application domain knowl-
edge: Characterizing the computer program comprehension process.
Journal of Management Information Systems, 15(1):51–78, 1998. 187

1675. C. R. Shalizi. g, a statistical myth. blog: Three-Toed Sloth, Oct. 2007.
http://bactra.org/weblog/523.html. 52

1676. J. Shallit. Randomized algorithms in "primitive" cultures or what
is the oracle complexity of a dead chicken? ACM SIGACT News,
23(4):77–80, Sept.-Nov. 1992. 187

1677. C. Shaoul, R. H. Baayen, and C. F. Westbury. N-gram probability effects
in a cloze task. The Mental Lexicon, 9(3):437–472, 2014. 195

1678. C. Shapiro and H. R. Varian. The art of standards wars. California
Management Review, 41(2):8–32, Jan. 1999. 81

1679. R. Sharp, M. Paul, A. Nagesh, D. Bell, and M. Surdeanu. Ground-
ing gradable adjectives through crowdsourcing. In Proceedings of the
Eleventh International Conference on Language Resources and Evalu-
ation, LREC 2018, May 2018. 153

1680. W. F. Sharpe. The Economics of Computers. Columbia University Press,
1969. 105

1681. O. Shatnawi. Measuring commercial software operational reliability:
an interdisciplinary modelling approach. Eksploatacja i Niezawodnosc
– Maintenance and Reliability, 16(4):585–594, 2014. 155

1682. D. E. Shaw, R. O. Dror, J. K. Salmon, J. P. Grossman, K. M. Macken-
zie, J. A. Bank, C. Young, M. M. Deneroff, B. Batson, K. J. Bowers,
E. Chow, M. P. Eastwood, D. J. Ierardi, J. L. Klepeis, J. S. Kuskin,
R. H. Larson, K. Lindorff-Larsen, P. Maragakis, M. A. Moraes, S. Piana,
Y. Shan, and B. Towles. Millisecond-scale molecular dynamics simula-
tions on Anton. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, SC’09, page 39, Nov.
2009. 112

1683. B. R. Shear and B. D. Zumbo. False positives in multiple regression:
Unanticipated consequences of measurement error in the predictor vari-
ables. Educational and Psychological Measurement, 73(5):733–756,
Oct. 2013. 288

1684. D. Shefer. Pricing for software product managers. 2005. 86

1685. B. A. Sheil. The psychological study of programming. ACM Computing
Surveys, 13(1):101–120, Mar. 1981. 9

1686. S. Shekhar, M. Dietz, and D. S. Wallach. AdSplit: Separating smart-
phone advertising from applications. In Proceedings of the 21st
USENIX conference on Security symposium, Security’12, page 28, Aug.
2012. 89

1687. T.-J. Shen, A. Chao, and C.-F. Lin. Predicting the number of new species
in further taxonomic sampling. Ecology, 84(3):798–804, Mar. 2003.
104

1688. V. Y. Shen, S. D. Conte, and H. E. Dunsmore. Software science revis-
ited: A critical analysis of the theory and its empirical support. Techni-
cal Report CSD-TR 375, Purdue University, Jan. 1981. 182

1689. A. Shenhav, S. Musslick, F. Lieder, W. Kool, T. L. Griffiths, J. D. Co-
hen, and M. M. Botvinick. Toward a rational and mechanistic account
of mental effort. Annual Review of Neuroscience, 40:99–124, July 2017.
26

1690. R. N. Shepard, C. I. Hovland, and H. M. Jenkins. Learning and mem-
orization of classifications. Psychological Monographs: General and
Applied, 75(15):1–39, 1961. 42

1691. R. N. Shepard and J. Metzler. Mental rotation of three-dimensional ob-
jects. Science, 171:701–703, Feb. 1971. 22

1692. S. B. Sheppard and E. Kruesi. The effects of the symbology and spa-
tial arrangement of software specifications in a coding task. Technical
Report TR-81-388200-3, Information Systems Programs, General Elec-
tric, Feb. 1981. 162

1693. M. Shepperd, C. Mair, and M. Jørgensen. An experimental evaluation of
a de-biasing intervention for professional software developers. In eprint
arXiv:cs.SE/1804.03919, Apr. 2018. 127

1694. L. Shi, H. Zhong, T. Xie, and M. Li. An empirical study on evolution of
API documentation. In Proceedings of the 14th International Confer-
ence on Fundamental approaches to software engineering, FASE’11/E-
TAPS’11, pages 416–431, Apr. 2011. 118

1695. E. Shihab, A. Ihara, Y. Kamei, W. M. Ibrahim, M. Ohira, B. Adams,
A. E. Hassan, and K. ichi Matsumoto. Predicting re-opened bugs: A
case study on the Eclipse project. In 17th Working Conference on Re-
verse Engineering, WCRE’10, pages 249–258, Oct. 2010. 350, 351

1696. E. Shihab, Z. M. Jiang, W. M. Ibrahim, B. Adams, and A. E. Hassan.
Understanding the impact of code and process metrics on post-release
defects: A case study on the Eclipse project. In Proceedings of the 2010
ACM-IEEE International Symposium on Empirical Software Engineer-
ing and Measurement, ESEM’10, pages 1–4, Sept. 2010. 164

1697. M. Shimasaki, S. Fukaya, K. Ikeda, and T. Kiyono. An analysis of Pas-
cal programs in compiler writing. Software–Practice and Experience,
10(2):149–157, Feb. 1980. 129, 130

1698. A. L. Shimpi and B. Klug. They’re (almost) all dirty: The
state of cheating in Android benchmarks. Anantech news site,
Oct. 2013. http://www.anandtech.com/show/7384/state-of-
cheating-in-android-benchmarks. 366

1699. T. C. Shrum. Calibration and validation of the checkpoint model to the
Air Force electronic systems center software database. Thesis (m.s.),
Graduate School of Logistics and Acquisition Management or the Air
Force Institute of Technology, USA, Sept. 1997. 8

1700. A. Shterenlikht. On quality of implementation of Fortran 2008 complex
intrinsic functions on branch cuts. In eprint arXiv:cs.MS/1712.10230,
Dec. 2017. 165

1701. O. Shy. How to Price: A Guide to Pricing Techniques and Yield Man-
agement. Cambridge University Press, 2008. 85

1702. R. M. Siegfried, J. P. Siegfried, and G. Alexandro. A longitudinal analy-
sis of the Reid list of first programming languages. Information Systems
Education Journal, 14(6):47–54, Nov. 2016. 115

1703. N. Siegmund, M. Rosenmüller, C. Kästner, P. G. Giarrusso, S. Apel,
and S. S. Kolesnikov. Scalable prediction of non-functional properties
in software product lines: Footprint and memory consumption. Infor-
mation and Software Technology, 55(3):491–507, Mar. 2013. 138

1704. I. Siket, Á. Beszédes, and J. Taylor. Differences in the definition and
calculation of the LOC metric in free tools. Technical Report TR2014-
001, Department of Software Engineering, University of Szeged, 2014.
257

1705. R. Silberzahn, E. L. Uhlmann, D. P. Martin, P. Anselmi, F. Aust,
E. Awtrey, Š. Bahník, F. Bai, C. Bannard, E. Bonnier, R. Carls-
son, F. Cheung, G. Christensen, R. Clay, M. A. Craig, A. D. Rosa,
L. Dam, M. H. Evans, I. F. Cervantes, N. Fong, M. Gamez-Djokic,
A. Glenz, S. Gordon-McKeon, T. J. Heaton, K. Hederos, M. Heene,
A. J. H. Mohr, F. Högden, K. Hui, M. Johannesson, J. Kalodimos,
E. Kaszubowski, D. M. Kennedy, R. Lei, T. A. Lindsay, S. Liverani,
C. R. Madan, D. Molden, E. Molleman, R. D. Morey, L. B. Mulder,
B. R. Nijstad, N. G. Pope, B. Pope, J. M. Prenoveau, F. Rink, E. Ro-
busto, H. Roderique, A. Sandberg, E. Schlüter, F. D. Schönbrodt, M. F.
Sherman, S. A. Sommer, K. Sotak, S. Spain, C. Spörlein, T. Stafford,
L. Stefanutti, S. Tauber, J. Ullrich, M. Vianello, E.-J. Wagenmakers,
M. Witkowiak, S. Yoon, and B. A. Nosek. Many analysts, one data
set: Making transparent how variations in analytic choices affect re-
sults. Advances in Methods and Practices in Psychological Science,
1(3):337–356, Apr. 2018. 253

1706. T. Simcoe. Standard setting committees: Consensus governance
for shared technology platforms. American Economic Review,
102(1):305–336, Feb. 2013. 81

1707. T. Simcoe. Modularity and the evolution of the internet. In A. Goldfarb,
S. M. Greenstein, and C. E. Tucker, editors, Economic Analysis of the
Digital Economy, chapter 1, pages 21–47. University of Chicago Press,
May 2015. 184, 185

1708. T. S. Simcoe and D. M. Waguespack. Status, quality and attention:
What’s in a (missing) name? Management Science, 57(2):274–290,
Sept. 2011. 74, 75

1709. K. M. Simmons and D. Sutter. False alarms, tornado warnings, and tor-
nado casualties. Weather, Climate, and Society, 1(1):38–53, Oct. 2009.
233

1710. H. A. Simon. Models of Bounded Rationality: Behavioral Economics
and Business Organization. The MIT Press, 1982. 53

1711. H. A. Simon. Making management decisions: the role of intuition
and emotion. The Academy of Management Executive (1987-1989),
1(1):57–64, Feb. 1987. 38

1712. I. Simonson. Choice based on reasons: The case of attraction and com-
promise effects. Journal of Consumer Research, 16:158–173, Sept.
1989. 54

1713. I. C. Simpson, P. Mousikou, J. M. Montoya, and S. Defior. A letter
visual-similarity matrix for Latin-based alphabets. Behavior and Re-
search Methods, 45(2):431–439, June 2013. 23

1714. J. Singer, M. Luján, and I. Watson. Meaningful type names as a basis
for object lifetime prediction. In Proceedings of the 2008 ACM SIG-
PLAN International Conference on Object Oriented Programming Sys-
tems Languages & Applications, OOPSLA’08, page ???, Apr. 2008. 203

1715. P. V. Singh and C. Phelps. Networks, social influence, and the choice
among competing innovations: Insights from open source software li-
censes. Information Systems Research, 24(3):539–560, Nov. 2013. 69

1716. D. I. K. Sjøberg, B. Anda, E. Arisholm, T. Dybå, M. Jørgensen, A. Kara-
hasanović, E. F. Koren, and M. Vokác. Conducting realistic experiments
in software engineering. In Proceedings of the 2002 International Sym-
posium on Empirical Software Engineering, ISESE’02, pages 17–26,
Oct. 2002. 360

1717. D. I. K. Sjøberg, J. E. Hannay, O. Hansen, V. B. Kampenes, A. Kara-
hasanović, N.-K. Liborg, and A. C. Rekdal. A survey of controlled ex-
periments in software engineering. Technical Report 2004-4, SIMULA
Research Laboratory, 2004. 358

1718. D. Skau and R. Kosara. Arcs, angles, or areas: Individual data encod-
ings in pie and donut charts. In Eurographics Conference on Visualiza-
tion, EuroVis’16, pages 121–130, June 2016. 225

1719. J. Skelley. Open source tactics: Bargaining power for strategic litiga-
tion. Chicago-Kent Journal of Intellectual Property, 16(1), 2016. 70

1720. I. Skoulis. Analysis of schema evolution for databases in open-source
software. Thesis (m.s.), University of Ioannina, Greece, Sept. 2013.
145, 146

1721. G. Slade. Made to Break: Technology and Obsolescence in America.
Harvard University Press, 2007. 6, 167

1722. S. A. Slaughter, S. Ang, and W. F. Boh. Firm-specific human capi-
tal and compensation-organizational tenure profiles: An archival analy-
sis of salary data for IT professionals. Human Resource Management,
46(3):373–394, 2007. 71

1723. S. A. Sloman. The empirical case for two systems of reasoning. Psy-
chological Bulletin, 119(1):3–22, 1996. 43

1724. S. A. Sloman. Categorical inference is not a tree: The myth of inheri-
tance hierarchies. Cognitive Psychology, 35(1):1–33, Feb. 1998. 41

1725. S. A. Sloman, M. C. Harrison, and B. C. Malt. Recent exposure affects
artifact naming. Memory & Cognition, 30(5):687–695, 2002. 196

1726. S. A. Sloman and D. Lagnado. Causality in thought. Annual Review of
Psychology, 66:223–247, 2015. 47

1727. S. A. Sloman and D. A. Lagnado. Do we "do"? Cognitive Science,
29(1):5–39, Jan.-Feb. 2005. 47

1728. P. Slovic. The Perception of Risk. Earthscan Publications Ltd, 2000.
152

1729. P. E. Smaldino and R. McElreath. The natural selection of bad science.
Royal Society Open Science, 3:160384, Aug. 2016. 11

1730. D. S̆mite, R. Britto, and R. van Solingen. Calculating the extra costs and
the bottom-line hourly cost of offshoring. In IEEE 12th International
Conference on Global Software Engineering, ICGSE’17, pages 96–105,
May 2017. 127

1731. G. K. Smith, A. A. Barbour, T. L. McNaugher, M. D. Rich, and W. L.
Stanley. The use of prototypes in weapon system development. Report
R-2345-AF, The RAND Corporation, Mar. 1981. 135

1732. C. M. So. An analysis of mathematical expressions used in practice.
Thesis (m.s.), The University of Western Ontario, 2005. 199

1733. F. Söhnchen and S. Albers. Pipeline management for the acqui-
sition of industrial projects. Industrial Marketing Management,
39(8):1356–1364, Nov. 2010. 123

1734. M. Sojer, O. Alexy, S. Kleinknecht, and J. Henkel. Understanding the
drivers of unethical programming behavior: The inappropriate reuse of
internet-accessible code. Journal of Management Information Systems,
31(3):287–325, 2014. 124

1735. Solganick & Co. Software M&A update. http:
//www.solganickco.com/wp-content/uploads/2017/02/
Solganick-Software-Q4-2016-final.pdf, Apr. 2016. 93

1736. M. B. Solomon, Jr. Economies of scale and the IBM System/360. Com-
munications of the ACM, 9(6):435–440, June 1966. 94

1737. G. S. Sommer. Astronomical Odds A Policy Framework for the Cosmic
Impact Hazard. PhD thesis, Pardee RAND Graduate School, USA, June
2004. 152

1738. J. Sonnemans. Price clustering and natural resistance points in the
Dutch stock market: A natural experiment. European Economic Re-
view, 50(8):1937–1950, Nov. 2006. 49

1739. C. Soto-Valero, M. Monperrus, N. Harrand, and B. Baudry. A com-
prehensive study of bloated dependencies in the Maven ecosystem. In
eprint arXiv:cs.SE/2001.07808, Jan. 2020. 199

1740. R. W. Soukoreff. Quantifying Text Entry Performance. PhD thesis, York
University, Toronto, Canada, Apr. 2010. 23

1741. SPEC. SPEC power_ssj 2008. http://spec.org/power_ssj2008,
June 2016. 314

1742. SPEC. Standard performance evaluation corporation. http://
spec.org, Sept. 2020. 91, 217, 219, 269, 307, 366

1743. SPECpower Committee. Power and performance benchmark method-
ology. V 2.2, Standard Performance Evaluation Corporation (SPEC),
Dec. 2014. 369

1744. I. Spence. Visual psychophysics of simple graphical elements. Jour-
nal of Experimental Psychology: Human Perception and Performance,
16(4):683–692, Nov. 1990. 225

1745. I. Spence and S. Lewandowsky. Displaying proportions and percent-
ages. Applied Cognitive Psychology, 5(1):61–77, Apr. 1991. 224, 225

1746. M. Spence. Job market signalling. The Quarterly Journal of Economics,
87(3):355–374, Aug. 1973. 72

1747. D. Sperber and D. Wilson. Relevance: Communication and Cognition.
Blackwell Publishers, second edition, 1995. 44, 178

1748. D. Spinellis. Code Reading: The Open Source Perspective. Addi-
son–Wesley, 2003. 184

1749. D. Spinellis, V. Karakoidas, and P. Louridas. Comparative language
fuzz testing: Programming languages vs. fat fingers. In Proceedings of
the Workshop on Evaluation and Usability of Programming Languages
and Tools, PLATEAU’12, pages 25–34, Oct. 2012. 163

1750. D. Spinellis, Z. Kotti, K. Kravvaritis, G. Theodorou, and P. Louri-
das. A dataset of enterprise-driven open source software. In eprint
arXiv:cs.SE/2002.03927, Feb. 2020. 3

1751. J. Spolsky. Fog Creek professional ladder. https:
//www.joelonsoftware.com/2009/02/13/fog-creek-
professional-ladder, Feb. 2009. 71

1752. J. Sprouse and D. Almeida. Assessing the reliability of textbook data
in syntax: Adger’s core syntax. Journal of Linguistics, 48(3):609–652,
Nov. 2012. 162

1753. D. Spuler. C++ and C debugging, testing and reliability. Prentice-Hall,
Inc, 1994. 184

1754. L. R. Squire and A. J. O. Dede. Conscious and unconscious memory
systems. Perspectives in Biology, 7(3):a021667, Mar. 2015. 29

1755. J. Srinivasan. Lifetime Reliability Aware Microprocessor. PhD thesis,
University of Illinois at Urbana-Champaign, Oct. 2006. 166

1756. E. B. Staats. Millions in savings possible in converting programs from
one computer to another. Technical Report FGMSD-77-34, Office of
Management and Budget, Nationai Bureau of Standards, Sept. 1977.
113

1757. C. B. Stabell and Ø. D. Fjeldstad. Configuring value for competitive ad-
vantage: On chains, shops, and networks. Strategic Management Jour-
nal, 19(5):413–437, May 1998. 85

1758. Standish Group. The CHAOS report. Technical report, The Standish
Group International, Inc, Aug. 1994. 122

1759. P. Stanley-Marbell, V. Estellers, and M. Rinard. Crayon: Saving power
through shape and color approximation on next-generation displays. In
Proceedings of the Eleventh European Conference on Computer Sys-
tems, EuroSys’16, page 11, Apr. 2016. 368

1760. K. E. Stanovich. Who Is Rational? Studies of Individual Differences in
Reasoning. Lawrence Erlbaum Associates, 1999. 43, 44

1761. K. E. Stanovich and R. F. West. Individual differences in reasoning:
Implications for the rationality debate? Behavioral and Brain Sciences,
23(5):645–726, Oct. 2000. 43

1762. M. Staples, R. Kolanski, G. Klein, C. Lewis, J. Andronick, T. Murray,
R. Jeffery, and L. Bass. Formal specifications better than function points
for code sizing. In International Conference on Software Engineering,
ICSE’13, pages 1257–1260, May 2013. 216

1763. J. Starek. A large-scale analysis of Java API usage. Thesis (m.s.), Insti-
tut für Informatik, Universität Koblenz-Landau, Mar. 2010. 302

1764. E. Starr. The use, abuse, and enforceability of non-compete and no-
poach agreements: A brief review of the theory, evidence, and recent
reform efforts. Issue brief, Economic Innovation Group, Washington
D.C., Feb. 2019. 109

1765. T. N. Starr, L. K. Picton, and J. W. Thornton. Alternative evolution-
ary histories in the sequence space of an ancient protein. Nature,
549:409–413, Sept. 2017. 96

1766. M. Stasinopoulos, B. Rigby, V. Voudouris, G. Heller, and F. D. Bastiani.
Flexible regression and smoothing: The GAMLSS packages in R. draft
book, July 2015. 302

1767. G. Stasser and W. Titus. Effects of information load and percentage of
shared information on the dissemination of unshared information dur-
ing group discussion. Journal of Personality and Social Psychologs,
53(1):81–93, July 1987. 80

1768. M. Steele and J. Chaseling. Powers of discrete goodness-of-fit test
statistics for a uniform null against a selection of alternative distri-
butions. Communications in Statistics-Simulation and Computation,
35(4):1067–1075, Apr. 2006. 242

1769. G. L. Steele, Jr. and R. P. Gabriel. The evolution of Lisp. In The sec-
ond ACM SIGPLAN conference on History of Programming Languages,
HOPL II, pages 231–270, Apr. 1993. 113

1770. R. G. Steen, A. Casadevall, and F. C. Fang. Why has the number of
scientific retractions increased? PLoS ONE, 8(7), Apr. 2013. 11

1771. J. Steffens. Newgames: Strategic Competition in the PC revolution.
Pergamon Press, 1994. 94

1772. T. Stengos and E. Zacharias. Intertemporal pricing and price discrim-
ination: A semiparametric hedonic analysis of the personal computer
market. Discussion Paper 2002-11, Department of Economics, Univer-
sity of Cyprus, June 2002. 88

1773. K. Stenning and M. van Lambalgen. Semantics as a foundation for psy-
chology: A case study of Wason’s selection task. Journal of Logic,
Language and Information, 10(3):273–317, June 2001. 43

1774. K. Stenning and M. van Lambalgen. A little logic goes a long way:
basing experiment on semantic theory in the cognitive science of con-
ditional reasoning. Cognitive Science, 28(4):481–530, July-Aug. 2004.
44

1775. K. Stenning and M. van Lambalgen. Human Reasoning and Cognitive
Science. The MIT Press, 2008. 44

1776. M. A. Stephens. EDF statistics for goodness of fit and some
comparisons. Journal of the American Statistical Association,
69(347):730–737, Sept. 1974. 240

1777. R. J. Sternberg and E. M. Weil. An aptitude-strategy interaction in linear
syllogistic reasoning. Technical Report 15, Department of Psychology,
Yale University, Apr. 1979. 44

1778. S. Sternberg. Memory-scanning: Mental processes revealed by
reaction-time experiments. American Scientist, 57(4):421–457, 1969.
31

1779. A. Stevens and P. Coupe. Distortions in judged spatial relations. Cog-
nitive Psychology, 10(4):422–437, Oct. 1978. 41

1780. N. Stewart, N. Chater, and G. D. A. Brown. Decision by sampling.
Cognitive Psychology, 53(1):1–26, Jan. 2006. 54

1781. N. Stewart, C. Ungemach, A. J. L. Harris, D. M. Bartels, B. R. Newell,
G. Paolacci, and J. Chandler. The average laboratory samples a popula-
tion of 7,300 Amazon Mechanical Turk workers. Judgment and Deci-
sion Making, 10(5):479–491, Sept. 2015. 361

1782. G. Stikkel. Dynamic model for the system testing process. Information
and Software Technology, 48(7):578–585, July 2006. 170, 171

1783. V. Stodden, P. Guo, and Z. Ma. Toward reproducible computational
research: An empirical analysis of data and code policy adoption by
journals. PLoS ONE, 8(6):e13636, June 2013. 11

1784. Z. Stojanova, D. Dobrilovic, and J. Stojanova. Analyzing trends for
maintenance request process assessment: Empirical investigation in a
very small software company. Theory and Applications of Mathematics
& Computer Science, 3(2):59–74, Nov. 2013. 144

1785. G. P. Stone, D. B. Levin, H. Hwang, M. Kim, and C. Mckay. JANET
SKOLD and DAVID DOSSANTOS, on behalf of themselves and
all others similarly situated, v. INTEL CORPORATION, HEWLETT
PACKARD COMPANY and DOES 1-50, case no. 1-05-CV-039231,
filing #g-64475. Opinion, Superior court of the state of California for
the county of Santa Clara, 2014. 366

1786. H. S. Stone. Life-cycle cost analysis of instruction-set architecture stan-
dardization for military computer systems. Computer, 12(4):35–47,
Apr. 1979. 96

1787. J. Stone, M. Greenwald, C. Partridge, and J. Hughes. Performance of
checksums and CRCs over real data. IEEE/ACM Transactions on Net-
working, 6(5):529–543, Oct. 1998. 151

1788. P. Stoneman. Technological Diffusion and the Computer Revolution:
The UK experience. Cambridge University Press, Jan. 1976. 1, 87, 92

1789. D. Straker. C-Style standards and guidelines. Prentice-Hall, Inc, 1992.
184

1790. S. Strand, I. J. Deary, and P. Smith. Sex differences in cognitive abili-
ties test scores: A UK national picture. British Journal of Educational
Psychology, 76(3):463–480, Apr. 2006. 20, 21

1791. W. Stroebe, B. A. Nijstad, and E. F. Rietzschel. Beyond productivity
loss in brainstorming groups: The evolution of a question. Working Pa-
per No. 2014-05, Center for Research in Economics, Management and
the Arts, CREMA Südstrasse 11 CH, 2014. 80

1792. R. Sudan, S. Ayers, P. Dongier, A. Muente-Kunigami, and C. Z.-W.
Qiang. The global opportunity in IT-based services: Assessing and en-
hancing country competitiveness. Report, The World Bank, 2010. 62

1793. C. Sun, V. Le, Q. Zhang, and Z. Su. Toward understanding compiler
bugs in GCC and LLVM. In Proceedings of the 25th International Sym-
posium on Software Testing and Analysis, ISSTA’16, pages 294–305,
July 2016. 160

1794. L. Sun. What we are paying for: A quality adjusted price index for lap-
top microprocessors. Honors thesis, Wellesley College, Apr. 2014. 85,
86

1795. Sun Microsystems, Inc. Java code conventions. Technical report, Sun
Microsystems, Inc, Sept. 1997. 209, 355

1796. T. Sunada, A. Monden, and K. Matsumoto. On estimating source lines
of code from a binary program. In Joint Conference of International
Workshop on Software Measurement and International Conference on
Software Process and Product Measurement, IWSM/Mensura 2011,
pages 3–6, Nov. 2011. 180

1797. C. R. Sunstein. The Cost-Benefit Revolution. The MIT Press, Aug.
2018. 149

1798. A. Suresh, B. N. Swamy, E. Rohou, and A. Seznec. Intercepting func-
tions for memoization: A case study using transcendental functions.
Transactions on Architecture and Code Optimization, 12(2):18, July
2015. 203

1799. P. Suthipornopas, P. Leelaprute, A. Monden, H. Uwano, Y. Kamei,
N. Ubayashi, K. Araki, K. Yamada, and K. ichi Matsumoto. Industry
application of software development task measurement system: TaskPit.
IEICE Transactions on Information & Systems, E100(3):462–472, Mar.
2017. 137

1800. K. Suzuki and S. Swanson. A survey of trends in non-volatile memory
technologies: 2000-2014. In IEEE International Memory Workshop,
IMW, pages 1–4, May 2015. 370

1801. T. N. Suzuki, D. Wheatcroft, and M. Griesser. Experimental evi-
dence for compositional syntax in bird calls. Nature Communications,
7(10986), Mar. 2016. 20

1802. M. Swan and B. Smith. Learner English: A teacher’s guide to interfer-
ence and other problems. Cambridge University Press, second edition,
2001. 196

1803. E. B. Swanson and C. M. Beath. Maintaining Information Systems in
Organizations. John Wiley & Sons, Inc, 1989. 108, 142

1804. G. M. Swift and S. M. Guertin. In-flight observations of multiple-
bit upset in DRAMs. IEEE Transactions on Nuclear Science,
47(6):2386–2391, Dec. 2000. 166

1805. R. A. Syed, B. Robinson, and L. Williams. Does hardware configuration
and processor load impact software fault observability? In Third Inter-
national Conference on Software Testing, Verification and Validation,
ICST’10, pages 285–294, Apr. 2010. 258, 259

1806. N. Taerat, N. Naksinehaboon, C. Chandler, J. Elliott, C. B. Leangsuk-
sun, G. Ostrouchov, S. L. Scott, and C. Englemann. Blue Gene/L log
analysis and time to interrupt estimation. In International Conference
on Availability, Reliability and Security, ARES’09, pages 173–180, Oct.
2009. 385

1807. L. Takeyama. The shareware industry: Some stylized facts and esti-
mates of rates of return. Economics of Innovation and New Technology,
3(2):161–174, Jan. 1994. 85

1808. P. P. Tallon, R. J. Kauffman, H. C. Lucas, A. B. Whinston, and K. Zhu.
Using real options analysis for evaluating uncertain investments in in-
formation technology: Insights from the ICIS 2001 debate. Commu-
nications of the Association for Information Systems, 9:136–167, Sept.
2002. 119

1809. K. Y. Tam. Capital budgeting in information systems development. In-
formation & Management, 23(6):345–357, Dec. 1992. 62

1810. T. Tamai. Experiment on coordination within software development
teams. Information and Software Technology, 34(7):437–442, July
1992. 137

1811. T. Tamai and Y. Torimitsu. Software lifetime and its evolution pro-
cess over generations. In Proceedings of 1992 Conference on Software
Maintenance, pages 63–69, Nov. 1992. 65, 99, 100

1812. P.-N. Tan and V. K. J. Srivastava. Selecting the right objective mea-
sure for association analysis. Information Systems, 29(4):293–313, June
2004. 279

1813. E. Tang, E. Barr, X. Li, and Z. Su. Perturbing numerical calculations
for statistical analysis of floating-point program (in)stability. In Pro-
ceedings of the 19th International symposium on Software testing and
analysis, ISSTA’10, pages 131–142, July 2010. 150

1814. V. Tarasov, A. Mudrankit, W. Buik, P. Shilane, G. Kuenning, and
E. Zadok. Generating realistic datasets for deduplication analysis.
In Proceedings of the 2012 USENIX Annual Technical Conference,
ATC’12, June 2012. 248, 362

1815. R. C. Tausworthe. Staffing implications of software productivity mod-
els. In E. C. Posner, editor, The Telecommunication and Data Acquisi-
tion Report 42-72, pages 70–77. Jet Propulsion Laboratory, California
Institute of Technology, Oct.-Dec. 1982. 142

1816. F. W. Taylor. The Principles of Scientific Management. Harper & Broth-
ers Publishers, 1919. 73

1817. Q. C. Taylor. Analysis and characterization of author contribution pat-
terns in open source software development. Thesis (m.s.), Brigham
Young University, Apr. 2012. 187

1818. M. Tedre. Computing as a science: A survey of competing viewpoints.
Minds & Machines, 21(3):361–387, Aug. 2011. 8

1819. J. J. Tehrani. The phylogeny of little red riding hood. PLoS ONE,
8(11):e78871, Nov. 2013. 185

1820. J. Teixeira, G. Robles, and J. M. González-Barahona. Lessons learned
from applying social network analysis on an industrial free/libre/open
source software ecosystem. Journal of Internet Services and Applica-
tions, 6(1):1–27, 2015. 81, 82

1821. M. Templ, B. Meindl, and A. Kowarik. Introduction to statistical disclo-
sure control (SDC). Technical report, International Household Survey
Network, Oct. 2015. 378

1822. K. Tentori, D. Osherson, L. Hasher, and C. May. Wisdom and ageing:
Irrational preferences in college students but not older adults. Cogni-
tion, 81(3):B87–B99, 2001. 53

1823. P. E. Tetlock. Accountability: The neglected social context of judgment
and choice. Research in Organizational Behavior, 7:297–332, 1985. 54

1824. P. E. Tetlock. An alternative metaphor in the study of judgment and
choice: People as politicians. Theory and Psychology, 1(4):451–475,
1991. 54

1825. Tezzaron Semiconductor. Soft errors in electronic memory. Technical
Report 1.1, Tezzaron Semiconductor, Naperville, IL, Jan. 2004. 166

1826. T. A. Thayer, M. Lipow, and E. C. Nelson. Software Reliability. North-
Holland Publishing Company, 1978. 8, 151

1827. The Commission. Report of investigation pursuant to section 21(a) of
the securities exchange Act of 1934: The DAO. Release No. 81207,
Securities and Exchange Commission, July 2017. 148

1828. E. Thereska, B. Doebel, A. X. Zheng, and P. Nobel. Practical perfor-
mance models for complex, popular applications. In Performance Eval-
uation Review, SIGMETRICS’10, pages 1–12, June 2010. 223

1829. D. R. Thomas. Security metrics for computer systems. PhD thesis, Cam-
bridge Computer Laboratory, University of Cambridge, Sept. 2015. 149

1830. M. Thomas and V. Morwitz. Penny wise and pound foolish: The
left-digit effect in price cognition. Journal of Consumer Research,
32(1):54–64, June 2005. 86

1831. M. Thomas, D. H. Simon, and V. Kadiyali. Do consumers perceive
precise prices to be lower than round prices? Evidence from labora-
tory and market data. Research Paper Series #09-07, Johnson School,
Cornell University, Sept. 2007. 86

1832. B. Thompson. The Bill Gates line. blog: Stratechery, May 2018.
https://stratechery.com/2018/the-bill-gates-line. 110

1833. P. Thompson. How much did the Liberty shipbuilders forget? Manage-
ment Science, 53(6):908–918, June 2007. 76, 77

1834. S. Thummalapenta, L. Cerulo, L. Aversano, and M. Di Penta. An empir-
ical study on the maintenance of source code clones. Empirical Software
Engineering, 15(1):1–34, Feb. 2010. 9, 358

1835. J. D. Tinder. ENTRY GRANTING REASSERTED MOTION TO
DISMISS (Docket No. 34): DANIEL WALLACE, v. FREE SOFT-
WARE FOUNDATION, INC. Case 1:05-cv-0618-JDT-TAB, UNITED
STATES DISTRICT COURT SOUTHERN DISTRICT OF INDIANA
INDIANAPOLIS DIVISION, Mar. 2006. 70

1836. M. A. Tinker. The relative legibility of the letters, the digits, and of cer-
tain mathematical signs. Journal of Generative Psychology, 1:472–494,
1928. 196

1837. B. Tognazzini. Principles, techniques, and ethics of stage magic and
their application to human interface design. In Conference on Human
Factors in Computing Systems, INTERCHI’93, pages 355–362, May
1993. 7

1838. J. E. Tomayko. Computers in spaceflight: The NASA experience.
NASA Contractor Report 182505, Wichita State University, Kansas,
Mar. 1988. 114

1839. J. T. Townsend. Theoretical analysis of an alphabetic confusion matrix.
Perception & Psychophysics, 9(1A):40–50, 1971. 23

1840. T. S. Traaen. The Brooks Act: An 8-bit act in a 64-bit world? An inves-
tigation of the Brooks Act and its implications to the Department of De-
fense information technology acquisition process. Executive Research
Project S18, The Industrial College of the Armed Forces, National De-
fense University, Washington, D.C., May 1995. 105

1841. Transactions on Mathematical Software. Collected algorithms. organi-
zation website, Oct. 2020. http://www.acm.org/calgo. 177

1842. Transport, Department for. The accidents sub-objective. Transport
Analysis Guidance Unit 3.4.1, Department for Transport, United King-
dom, Apr. 2011. 152

1843. L. M. Trick and Z. W. Pylyshyn. What enumeration studies can show us
about spatial attention: Evidence for limited capacity preattentive pro-
cessing. Journal of Experimental Psychology: Human Perception and
Performance, 19(2):331–351, 1993. 48

1844. J. E. Triplett. Performance measures for computers. In Deconstructing
the Computer, pages 99–139, Feb. 2003. 1

1845. D. Trippas, D. Kellen, H. Singmann, G. Pennycook, D. J. Koehler, J. A.
Fugelsang, and C. Dubé. Characterizing belief bias in syllogistic reason-
ing: A hierarchical Bayesian meta-analysis of ROC data. Psychonomic
Bulletin and Review, 25(2):2141–2174, Apr. 2018. 45

1846. K. S. Trivedi. Probability & Statistics with Reliability, Queuing and
Computer Science Applications. John Wiley & Sons, Inc, second edi-
tion, 2002. 248

1847. J. S. Trueblood and J. R. Busemeyer. A quantum probability account of
order effects in inference. Cognitive Science, 35(8):1518–1552, Nov.-
Dec. 2011. 39

1848. C.-C. Tsai, B. Jain, N. A. Abdul, and D. E. Porter. A study of mod-
ern Linux API usage and compatibility: What to support when you’re
supporting. In Proceedings of the Eleventh European Conference on
Computer Systems, EuroSys’16, page 16, Apr. 2016. 116

1849. N. P. Tschacher. Typosquatting in programming language package man-
agers. Thesis (b.sc.), Department of Informatics, University of Ham-
burg, Mar. 2016. 165

1850. T. K. Tsingos. Enforceability of free/open source software licensing
terms: A critical review of the global case - law. In Fourth International
Conference on Information Law, ICIL 2011, May 2011. 70

1851. TSMC. TSMC historical operating data. http://www.tsmc.com/
english/investorRelations/historical_information.htm,
May 2017. 95

1852. M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lu-
cia, and D. Poshyvanyk. There and back again: Can you compile that
snapshot? Journal of Software: Evolution and Process, 29(4):e1838,
Apr. 2017. 140

1853. T. S. Tullis and J. N. Stetson. A comparison of questionnaires for as-
sessing website usability. In Proceedings of Usability Professionals As-
sociation, pages 1–12, June 2004. 376

1854. J. Turley. Embedded processors. http://www.extremetech.com, Jan.
2002. 94, 299

1855. H. Turner and D. Firth. Bradley-Terry models in R: The
BradleyTerry2 package. Journal of Statistical Software, 48(9):1–21,
2012. 354

1856. H. Turner and D. Firth. Generalized nonlinear models in R: An
overview of the gnm package. University of Warwick, UK, 1.0-8 edition,
Apr. 2015. 318

1857. M. L. Turner and R. W. Engle. Is working memory capacity task depen-
dent? Journal of Memory and Language, 28(2):127–154, Apr. 1989.
191

1858. R. Turner. Weathering Heights: The Emergence of Aeronautical Mete-
orology as an Infrastructural Science. PhD thesis, University of Penn-
sylvania, May 2010. 2, 92

1859. L. D. Tyson. Who’s Bashing Whom? Trade Conflict in High-Technology
Industries. Institute for International Economics, Nov. 1992. 61

1860. J. Tzelgov, V. Yehene, L. Kotler, and A. Alon. Automatic comparisons
of artificial digits never compared: Learning linear ordering relations.
Journal of Experimental Psychology: Learning, Memory, & Cognition,
26(1):103–120, 2000. 50

1861. UBM. Then, now: What’s next? Embedded Market Study 2014, UBM
Electronics, 2014. 114

1862. The ultimate Debian database. organization website, 2014. http:
//wiki.debian.org/UltimateDebianDatabase. 150, 221, 297

1863. G. Ülkümen, M. Thomas, and V. G. Morwitz. Will i spend more in 12
months or a year? The effect of ease of estimation and confidence on
budget estimates. Journal of Consumer Research, 35(2):245–256, Mar.
2008. 127

1864. Unicode Consortium, The. The Unicode Standard Version 11.0 – Core
Specification. The Unicode Consortium, June 2018. 106

1865. P. United States. Fiscal year 2018 activities. Aeronautics and space
report of the president, National Aeronautics and Space Council, Sept.
2018. 2

1866. S. S. N. Upadhyay, K. J. Houghtonb, and C. M. Klin. Is "few" al-
ways less than expected?: The influence of story context on readers’
interpretation of natural language quantifiers. Discourse Processes,
56(8):708–727, 2018. 153

1867. I. Utting, D. Bouvier, M. Caspersen, A. E. Tew, R. Frye, Y. B.-D. Ko-
likant, M. McCracken, J. Paterson, J. Sorva, L. Thomas, and T. Wilusz.
A fresh look at novice programmers’ performance and their teachers’
expectations. In Proceedings of the ITiCSE working group reports con-
ference on Innovation and Technology in Computer Science Education-
Working Group Reports, ITiCSE-WGR’13, pages 15–32, June 2013.
361

1868. A. Vahabzadeh, A. M. Fard, and A. Mesbah. An empirical study of bugs
in test code. In International Conference on Software Maintenance and
Evolution, ICSME 2015, pages 101–110, Oct. 2015. 172

1869. M. Välimäki. Dual licensing in open source software industry. Systemes
d’Information et Management, 8(1):63–75, 2003. 68

1870. J. van Angeren, C. Alves, and S. Jansen. Can we ask you to collaborate?
Analyzing app developer relationships in commercial platform ecosys-
tems. Journal of Systems and Software, 113:430–445, Mar. 2016. 91,
92

1871. O. Van den Bergh, S. Vrana, and P. Eelen. Letters from the heart: Af-
fective categorization of letter combinations in typists and nontypists.
Journal of Experimental Psychology: Learning, Memory, & Cognition,
16(6):1153–1161, 1990. 196

1872. K. G. van den Boogaart and R. Tolosana-Deldago. Analyzing Composi-
tional Data with R. Springer, 2013. 348

1873. J.-B. van der Henst, L. Carles, and D. Sperber. Truthfulness and rele-
vance in telling the time. Mind & Language, 17(5):457–466, Nov. 2002.
50

1874. E. van der Kouwe, D. Andriesse, H. Bos, C. Giuffrida, and G. Heiser.
Benchmarking crimes: An emerging threat in systems security. In eprint
arXiv:cs.CR/1801.02381, Jan. 2018. 366

1875. C. van der Merwe. An engineering approach to an integrated value
proposition design framework. Thesis (m.s.), Faculty of Industrial En-
gineering at Stellenbosch University, Mar. 2015. 88

1876. M. J. P. van der Meulen. The Effectiveness of Software Diversity. PhD
thesis, Centre for Software Reliability, City University, Nov. 2007. 130,
179, 197, 243

1877. M. J. P. van der Meulen, P. G. Bishop, and M. Revilla. An exploration of
software faults and failure behaviour in a large population of programs.
In 15th International Symposium on Software Reliability Engineering,
ISSRE’04, pages 101–120, Nov. 2004. 162

1878. M. P. van Oeffelen and P. G. Vos. A probabilistic model for the discrim-
ination of visual number. Perception & Psychophysics, 32(2):163–170,
1982. 48

1879. K. E. van Oorschot, J. W. M. Bertrand, and C. G. Rutte. Field studies
into the dynamics of product development tasks. International Journal
of Operations & Production Management, 25(8):720–739, 2005. 134,
135

1880. P. Van Roy. Programming paradigms for dummies: What every pro-
grammer should know. In G. Assayag and A. Gerzso, editors, New com-
putational paradigms for computer music, chapter 2. Delatour France,
Jan. 2009. 197

1881. H. VanLehn. Mind Bugs: The Origins of Procedural Misconceptions.
The MIT Press, 1990. 23, 49

1882. Y. Vardi and E. Weitz. Misbehavior in Organizations: Theory, Re-
search, and Management. Lawrence Erlbaum Associates, Sept. 2004.
78

1883. R. Vasa. Growth and Change Dynamics in Open Source Software Sys-
tems. PhD thesis, Faculty of Information and Communication Technol-
ogy, Swinburne University of Technology, Melbourne, Oct. 2010. 111,
258, 291

1884. B. Vasilescu, A. Serebrenik, M. Goeminne, and T. Mens. On the varia-
tion and specialisation of workload-A case study of the Gnome ecosys-
tem community. Empirical Software Engineering, 19(4):955–1008,
Aug. 2012. 299, 300

1885. C. Vassallo, G. Grano, F. Palomba, H. C. Gall, and A. Bacchelli. A
large-scale empirical exploration on refactoring activities in open source
software projects. Science of Computer Programming, 180:1–15, July
2019. 139

1886. P. Vassiliadis, M.-R. Kolozoff, M. Zerva, and A. V. Zarras. Schema
evolution and foreign keys: a study on usage, heartbeat of change
and relationship of foreign keys to table activity. Computing,
101(10):1431–1456, Oct. 2019. 145

1887. VCDB. VERIS community database. https://github.com/vz-
risk/VCDB, Mar. 2018. 151

1888. W. N. Venables and B. D. Ripley. Modern Applied Statistics with S.
Springer, fourth edition, 2002. 383

1889. C. Vendome, M. Linares-Vásquez, G. Bavota, M. Di Penta, D. German,
and D. Poshyvanyk. License usage and changes: A large-scale study on
GitHub. Empirical Software Engineering, 22(3):1537–1577, June 2017.
69

1890. P. Verghese and D. G. Pelli. The information capacity of visual atten-
tion. Vision Research, 32(5):983–995, 1992. 57

1891. C. Verhoef. Quantitative IT portfolio management. Science of Computer
Programming, 45(1):1–96, Oct. 2002. 128

1892. C. Vesel. Language bias in accident investigation. Thesis (m.s.), Lund
University, Sweden, May 2012. 161

1893. I. Vessey. Cognitive fit: A theory-based analysis of the graphs versus
tables literature. Decision Sciences, 22(2):219–240, Mar. 1991. 224

1894. A. Vetrò, R. Dürre, M. Conoscenti, D. M. Fernández, and M. Jørgensen.
Combining data analytics with team feedback to improve the estimation
process in agile software development. Foundations of Computing and
Decision Sciences, 43(4):305–334, Dec. 2018. 138

1895. B. Veytsman and L. Akhmadeeva. Towards evidence-based typography:
First results. TUGboat, 33(2):156–156, Apr. 2012. 240, 241

1896. Vgchartz global yearly chart: 2005-2016. VGChartz news site, Feb.
2017. http://www.vgchartz.com/yearly/2016/Global. 87

1897. V. B. Viard. Information goods upgrades: Theory and evidence. The B.
E. Journal of Theoretical Economics, 7(1):1–34, 2007. 85, 86

1898. C. Vickrey and A. Neuringer. Pigeon reaction time, Hick’s law, and in-
telligence. Psychonomic Bulletin & Review, 7(2):284–291, June 2000.
58

1899. N. M. Victor and J. H. Ausubel. DRAMs as model organisms for study
of technological evolution. Technological Forecasting & Social Change,
69(3):243–262, Apr. 2002. 92

1900. S. Vidal, A. Bergel, J. A. Díaz-Pace, and C. Marcosa. Over-exposed
classes in Java: An empirical study. Computer Languages, Systems &
Structures, 46:1–19, Nov. 2016. 208

1901. F. Viénot, H. Brettel, and J. D. Mollon. Digital video colourmaps for
checking the legibility of displays by dichromats. COLOR research and
application, 24(4):243–252, Aug. 1999. 228

1902. V. Villard. Android version distribution history. http://
www.bidouille.org/misc/androidcharts, 2015. 99, 229

1903. T. H. Vines, A. Y. K. Albert, R. L. Andrew, F. Débarre, D. G. Bock,
M. T. Franklin, K. J. Gilbert, J.-S. Moore, S. Renaut, and D. J. Renni-
son. The availability of research data declines rapidly with article age.
In eprint arXiv:abs/1312.5670, Dec. 2013. 11

1904. W. K. Viscusi and J. E. Aldy. The value of a statistical life: A critical
review of market estimates throughout the world. Working Paper No.
9487, National Bureau of Economic Research, USA, Feb. 2003. 152

1905. R. Viseur and G. Robles. First results about motivation and impact of
license changes in open source projects. In 11th IFIP WG 2.13 Interna-
tional Conference, OSS 2015, pages 137–145, May 2015. 69

1906. H. M. Vollmer, J. J. McAuliffe, R. I. Hirshberg, and K. D. Moll. Orga-
nizational design – An exploratory study. R&D Studies Series AFOSR-
67-2450, Stanford Research Institute, Dec. 1967. 71

1907. J. Volstorf. Against all noise: On noise-robust strategies
in the emergence of cooperation. PhD thesis, Mathematisch-
Naturwissenschaftlichen Fakultät II, Humboldt-Universität, Feb. 2013.
78

1908. K. G. Volz and G. Gigerenzer. Cognitive processes in decisions un-
der risk are not the same as in decisions under uncertainty. frontiers in
Neuroscience, 6:105, July 2012. 53

1909. K. von Fintel and L. Matthewson. Universals in semantics. The Lin-
guistic Review, 25(1-2):139–201, 2008. 43

1910. A. von Rhein, J. Liebig, A. Janker, C. Kästner, and S. Apel. Variability-
aware static analysis at scale: An empirical study. ACM Transactions
on Software Engineering and Methodology, 27(4):18, Nov. 2018. 172

1911. S. L. R. Vrhovec, T. Hovelja, D. Vavpotič, and M. Krisper. Diagnosing
organizational risks in software projects: Stakeholder resistance. Inter-
national Journal of Project Management, 33(6):1262–1273, Aug. 2015.
135

1912. M. Wachs. When planners lie with numbers. Journal of the American
Planning Association, 55(4):476–479, Apr. 1989. 127

1913. J. Wagemans, J. H. Elder, M. Kubovy, M. A. Peterson, S. E. Palmer,
M. Singh, and R. von der Heydt. A century of Gestalt psychology in vi-
sual perception: I. Perceptual grouping and figure-ground organization.
Psychological Bulletin, 138(6):1172–1217, 2012. 27

1914. J. Wai, M. Cacchio, M. Putallaz, and M. C. Makel. Sex differences in
the right tail of cognitive abilities: A 30 year examination. Intelligence,
38(4):412–423, July-Aug. 2010. 21

1915. J. Wainer, C. G. N. Barsottini, D. Lacerda, and L. R. M. de Marco.
Empirical evaluation in computer science research published by ACM.
Information and Software Technology, 51(6):1081–1085, June 2009. 8

1916. L. Wakeham. Government policy on the management of risk, volume
I: Report. HL Paper 183-I, Select Committee on Economic Affairs, UK
House of Lords, June 2006. 153

1917. S. Waligora, J. Bailey, and M. Stark. Impact of Ada and object-oriented
design in the flight dynamics division at Goddard space flight cen-
ter. Technical Report SEL-95-001, Goddard Space Flight Center, Mar.
1995. 198, 216

1918. D. R. Wallace and D. R. Kuhn. Failure modes in medical device soft-
ware: An analysis of 15 years of recall data. International Journal of
Reliability, Quality and Safety Engineering, 8(4):351–372, Dec. 2001.
151

1919. H. Wang, H. Li, L. Li, Y. Guo, and G. Xu. Why are Android apps
removed from Google play? A large-scale empirical study. In Proceed-
ings of the 15th International Conference on Mining Software Reposi-
tories, MSR’18, pages 231–242, May 2018. 110

1920. P. Wang. Chasing the hottest IT: Effects of information technology fash-
ion on organizations. MIS Quarterly, 34(1):63–85, Mar. 2010. 6, 10

1921. P. Wang and K. T. Stolee. How well are regular expressions tested
in the wild? In Proceedings of the 26th joint meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT sympo-
sium on the Foundations of Software Engineering, ESEC/FSE’18, pages
668–678, Nov. 2018. 172

1922. W. Wang. Toward improved understanding and management of soft-
ware clones. Thesis (m.s.), University of Waterloo, Ontario, Canada,
May 2012. 82

1923. Y. Wang. Language matters. In Proceedings of the ACM/IEEE Inter-
national Symposium on Empirical Software Engineering and Measure-
ment, ESEM’15, pages 1–10, Oct. 2015. 107

1924. Y. Wang and J. Zhang. The effort distribution of software development
phases. Computer Science and Application, 7(5):428–437, May 2017.
127, 130

1925. L. Wanner, C. Apte, R. Balani, P. Gupta, and M. Srivastava. A case for
opportunistic embedded sensing in presence of hardware power vari-
ability. In Proceedings of the 2010 International Conference on Power
aware computing and systems, HotPower’10, pages 1–8, Oct. 2010. 369

1926. G. Ward, L. Tan, and R. Grenfell-Essam. Examining the relationship
between free recall and immediate serial recall: the effects of list length
and output order. Journal of Experimental Psychology: Learning, Mem-
ory, & Cognition, 36(5):1207–1241, Sept. 2010. 34

1927. P. J. Ward. Euclid’s Elements, from Hilbert’s axioms. Thesis (m.s.),
The Ohio State University, 2012. 148

1928. C. Ware. Information Visualization Perception for Design. Morgan
Kaufmann Publishers, 2000. 26

1929. W. H. Ware, S. N. Alexander, P. Armer, M. M. Astrahan, L. Bers, H. H.
Goode, H. D. Huskey, and M. Rubinoff. Soviet computer technology–
1959. Research Memorandum RM-2541, The RAND Corporation, Mar.
1960. 8

1930. P. C. Wason. On the failure to eliminate hypotheses in a conceptual task.
The Quarterly Journal of Experimental Psychology, XII(3):129–140,
1960. 25

1931. P. C. Wason. Reasoning about a rule. The Quarterly Journal of Experi-
mental Psychology, 20(3):273–281, 1968. 44

1932. J. Waters. Variable marginal propensities to pirate and the diffusion of
computer software. MPRA Paper No. 46036, Nottingham University
Business School, Apr. 2013. 88

1933. C. Watson and F. W. B. Li. Failure rates in introductory programming
revisited. In Proceedings of the 2014 conference on Innovation tech-
nology in computer science education, ITiCSE’14, pages 39–44, June
2014. 361

1934. V. M. Weaver and J. Dongarra. Can hardware performance counters pro-
duce expected, deterministic results? In 3rd Workshop on Functionality
of Hardware Performance Monitoring, pages 1–11, Dec. 2010. 370

1935. V. M. Weaver and S. A. McKee. Can hardware performance counters
be trusted? In IEEE International Symposium on Workload Character-
ization, IISWC’08, pages 141–150, Sept. 2008. 370

1936. M. Webb, N. Bloom, N. Short, and J. Lerner. Some facts of high-tech
patenting. Working Paper No. 18-023, Stanford Institute for Economic
Policy Research, July 2018. 68

1937. E. U. Weber, A.-R. Blais, and N. E. Betz. A domain-specific risk-
attitude scale: Measuring risk perceptions and risk behaviors. Journal
of Behavior and Decision Making, 15(4):263–290, Apr. 2002. 53

1938. B. F. Webster. Patterns in IT litigation: Systems failure (1976-2000). A
study, PriceaterhouseCoopers LLP, 2000. 124

1939. B. S. Weekes. Differential effects of number of letters on word and
nonword naming latency. The Quarterly Journal of Experimental Psy-
chology, 50A(2):439–456, 1997. 32

1940. D. M. Wegner. The Illusion of Conscious Will. The MIT Press, 2002.
20

1941. M. H. Weik. A survey of domestic electronic digital computing systems.
Technical Report 971, Ballistic Research Laboratories, Maryland, Dec.
1955. 112, 365

1942. M. H. Weik. A third survey of domestic electronic digital computing
systems. Technical Report 1115, Ballistic Research Laboratories, Mary-
land, Mar. 1961. 112, 365

1943. G. F. Weinwurm and H. J. Zagorski. Research into the management of
computer programming: A transitional analysis of cost estimation tech-
niques. Technical Documentary Report ESD-TR-65-575, United States
Air Force, L. G. Hanscom Field, Bedford, Massachusetts, Nov. 1965.
127

1944. M. V. Welser. Opposing the monetization of Linux: McHardy v. Geni-
atech & addressing copyright "trolling" in Germany. International Free
and Open Source Software Law Review, 10(1):9–20, 2018. 70

1945. J. West and J. Dedrick. Innovation and control in standards architec-
tures: The rise and fall of Japan’s PC-98. Information Systems Research,
11(2):197–216, June 2000. 96

1946. J. A. White. Grapher pics. http://www.talljerome.com/
mathnerd.html, Oct. 2012. 230

1947. M. White. Scaled CMOS technology reliability users guide. JPL Pub-
lication 09-33 01/10, Jet Propulsion Laboratory, California Institute of
Technology, 2010. 7, 166

1948. White House, The. Guidelines and discount rates for benefit-cost anal-
ysis of federal programs. OMB Circular A-94, U.S. Government, 1992.
64

1949. D. Whitfield. Cost overruns, delays and terminations: 105 outsourced
public sector ICT projects. ESSU Research Report 3, European Services
Strategy Unit, Dec. 2007. 122

1950. R. M. Whyte. Order Re Sun’s Motions for Preliminary Injunction
Against Microsoft. Re: Sun Microsystems v. Microsoft, Case No. 97-
20884 RMW(PVT). Opinion, UNITED STATES DISTRICT COURT
FOR THE NORTHERN DISTRICT OF CALIFORNIA, 1998. 110, 172

1951. W. F. Whyte. Money and Motivation: An Analysis of Incentives in In-
dustry. Harper Torchbooks, Jan. 1970. 73, 74

1952. J. M. Wicherts, M. Bakker, and D. Molenaar. Willingness to share re-
search data is related to the strength of the evidence and the quality of
reporting of statistical results. PLoS ONE, 6(11):e26828, Nov. 2011. 11

1953. W. A. Wickelgren. Size of rehearsal group and short-term memory.
Journal of Experimental Psychology, 68(4):413–419, 1964. 34

1954. G. Wiederhold. What is your software worth? Communications of the
ACM, 49(9):65–75, Sept. 2006. 84

1955. A. Wierzbicka. Semantics: Primes and Universals. Oxford University
Press, 1996. 43

1956. I. S. Wiese, J. T. da Silva, I. Steinmacher, C. Treude, and M. A. Gerosa.
Who is who in the mailing list? Comparing six disambiguation heuris-
tics to identify multiple addresses of a participant. In International Con-
ference on Software Maintenance and Evolution, ICSME 2016, pages
345–355, Oct. 2016. 384

1957. Wikipedia. List of most expensive video games to develop.
organization website, 2018. https://en.wikipedia.org/
List_of_most_expensive_video_games_to_develop. 63

1958. R. Wilcox. Introduction to Robust Estimation & Hypothesis Testing.
Elsevier, 3rd edition, 2012. 263

1959. J. Wiley. Expertise as mental set: The effects of domain knowledge in
creative problem solving. Memory & Cognition, 26(4):716–730, 1998.
40

1960. M. V. Wilkes. Memoirs of a Computer Pioneer. The MIT Press, 1984.
147

1961. M. V. Wilkes, D. J. Wheeler, and S. Gill. The Preparation of Programs
for an Electronic Digital Computer. Addison–Wesley, second edition,
1957. 115

1962. J. H. Wilkinson. Rounding Errors in Algebraic Processes. Dover Pub-
lications, 1994. 150

1963. L. Wilkinson. The Grammar of Graphics. Springer, second edition,
2005. 225

1964. J. C. Williams. A data-based method for assessing and reducing hu-
man error to improve operational performance. In Fourth Conference
on Human Factors and Power Plants, pages 436–450, June 1988. 23

1965. P. Williams and B. Curtis. A matched project evaluation of modern pro-
gramming practices: Scientific report on the ASTROS plan. Technical
Report RADC-TR-80-6, Vol II, General Electric Company, Feb. 1980.
141

1966. R. R. Willis, R. M. Rova, M. D. Scott, M. I. Johnson, J. F. Ryskowski,
J. A. Moon, K. C. Shumate, and T. O. Winfield. Hughes Aircraft’s
widespread deployment of a continuously improving software process.
Technical Report CMU/SEI-98-TR-006, Raytheon Systems Company,
May 1998. 83

1967. H. E. Willman, Jr., T. A. James, A. A. Beaureguard, and P. Hilcoff.
Software systems reliability: A Raytheon project history. Final Techni-
cal Report RADC-TR-77-188, Rome Air Development Center, Griffiss
Air Force Base, June 1977. 151

1968. L. M. Wills. Automated program recognition by graph parsing. A.I.
Technical Report No. 1358, MIT Artificial Intelligence Laboratory, July
1992. 185

1969. M. P. Wilmot and D. S. Ones. A century of research on conscientious-
ness at work. PNAS, 116(46):23004–23010, Nov. 2019. 56

1970. R. Wiltbank and W. Boeker. Returns to angel investors in groups. Work-
ing Paper 1028592, US universities, Nov. 2007. 93

1971. K. Winter, H. Femmer, and A. Vogelsang. How do quantifiers affect the
quality of requirements? In eprint arXiv:cs.SE/2002.02672, Feb. 2014.
162

1972. J. C. Wise, D. L. Hannaman, P. Kozumplik, E. Franke, and B. L. Leaver.
Methods to improve cultural communication skills in special operations
forces. ARI Contract Report 98-06, United States Army Research Insti-
tute for the Behavioral and Social Sciences, July 1998. 106

1973. K. Wnuk, J. Kabbedijk, S. Brinkkemper, B. Regnell, and D. Callele.
Factors affecting decision outcome and lead-time in large-scale re-
quirements engineering. Journal of Software: Evolution and Process,
27(9):647–673, Sept. 2015. 133

1974. C. Wohlin, P. Runeson, and J. Brantestam. An experimental evalua-
tion of capture-recapture in software inspections. Journal of Software
Testing, Verification and Reliability, 5(4):213–232, 1995. 376

1975. R. W. Wolverton. The cost of developing large-scale software. IEEE
Transactions on Computers, c-23(6):615–636, June 1974. 131

1976. W. E. Wong, S. S. Gokhale, and J. R. Horgan. Quantifying the closeness
between program components and features. The Journal of Systems and
Software, 54(2):87–98, Oct. 2000. 185

1977. A. Wood. Software reliability growth models. Technical Report 96.1,
Tandem Computer, Sept. 1996. 157, 158

1978. R. Woodfield. Undergraduate retention and attainment across the disci-
plines. Report, The Higher Education Academy, York, UK, Dec. 2014.
361

1979. World Semiconductor Trade Statistics. Semiconductor monthly sales
volume: 1975–2016. corporate website, Mar. 2016. https://
www.wsts.org. 7

1980. D. Wren. Passmark website. http://www.passmark.com, July 2014.
375, 376

1981. J. D. Wren, A. Valencia, and J. Kelso. Reviewer-coerced citation: case
report, update on journal policy and suggestions for future prevention.
Bioinformatics, 35(18):3217–3218, Sept. 2019. 11

1982. R. Wright. The Evolution of GOD. Little, Brown Book Group, 2009.
96

1983. A. Wrzesniewski, C. McCauley, P. Rozin, and B. Schwartz. Jobs, ca-
reers, and callings: People’s relations to their work. Journal of Research
in Personality, 31(1):21–33, Mar. 1997. 74

1984. S. D. Wu, C. Rossin, K. G. Kempf, M. O. Atan, B. Aytac, S. A. Shirod-
kar, and A. Mishra. Extending Bass for improved new product forecast-
ing. Wagner Prize, Apr. 2009. 87

1985. G. Xiao, Z. Zheng, B. Jiang, and Y. Sui. An empirical study of
regression bug chains in Linux. IEEE Transactions on Reliability,
69(2):558–570, June 2020. 151

1986. J. Yan and W. Zhang. Compiler-guided register reliability improvement
against soft errors. In Proceedings of the 5th ACM International Confer-
ence on Embedded software, EMSOFT’05, pages 203–209, Sept. 2005.
167

1987. M. Yang, G.-R. Uh, and D. B. Whalley. Efficient and effective branch
reordering using profile data. ACM Transactions on Programming Lan-
guages and Systems, 24(6):667–697, Nov. 2002. 203

1988. M. C. K. Yang and A. Chao. Reliability-estimation & stopping-rules for
software testing, based on repeated appearances of bugs. IEEE Trans-
actions on Reliability, 44(2):315–321, June 1995. 175

1989. X. Yang, Z. Wang, J. Xue, and Y. Zhou. The reliability wall for exascale
supercomputing. IEEE Transactions on Computers, 61(6):767–779,
June 2011. 167

1990. Y. Yang, Y. Zhou, H. Sun, Z. Su, Z. Zuo, L. Xu, and B. Xu. Hunt-
ing for bugs in code coverage tools via randomized differential testing.
In IEEE/ACM 41st International Conference on Software Engineering,
ICSE’19, pages 488–499, May 2019. 165, 358

1991. M. J. Yap, S. J. R. Liow, S. B. Jalil, and S. S. B. Faizal. The Malay lex-
icon project: A database of lexical statistics for 9,592 words. Behavior
Research Methods, 42(4):992–1003, Nov. 2010. 196

1992. J. Yates. Structuring the Information Age: Life Insurance and technol-
ogy in the Twentieth Century. The Johns Hopkins University Press, Nov.
2008. 105

1993. Y. C. B. Yeh. Triple-triple redundant 777 primary flight computer.
In Proceedings Aerospace Applications Conference (vol 1), pages
293–307, Feb. 1996. 167

1994. J. R. Yost. Making IT Work: A History of the Computer Services Indus-
try. The MIT Press, 2017. 105

1995. A. G. Yu. Managing Application Software Suppliers in Information Sys-
tem Development Projects. PhD thesis, Department of Management and
Organisation, University of Stirling, Nov. 2003. 131, 132

1996. L. Yu and S. Ramaswamy. A study of SourceForge users and user net-
work. AAAI Technical Report FS-13-05, Association for the Advance-
ment of Artificial Intelligence, Nov. 2013. 202

1997. D. Yuan, S. Park, and Y. Zhou. Characterizing logging practices in
open-source software. In Proceedings of the 34th International Con-
ference on Software Engineering, ICSE’12, pages 102–112, June 2012.
168

1998. T. Yuki and S. Rajopadhye. Folklore confirmed: Compiling for speed =
compiling for energy. Technical Report CS13-107, Computer Science
Department, Colorado State University, Aug. 2013. 368

1999. A. Zaidman, B. V. Rompaey, A. van Deursen, and S. Demeyer. Study-
ing the co-evolution of production and test code in open source and in-
dustrial developer test processes through repository mining. Technical
Report TUD-SERG-2010-035, Software Engineering Research Group,
Delft University of Technology, 2010. 172

2000. M. J. Zbaracki. The rhetoric and reality of total quality management.
Administrative Science Quarterly, 43(3):602–636, Sept. 1998. 78

2001. S. F. Zeigler. Comparing development costs of C and Ada. Technical
report, Rational Software Corporation, Mar. 1995. 58

2002. A. Zeileis, K. Hornik, and P. Murrell. Escaping RGBland: Selecting
colors for statistical graphics. Computational Statistics & Data Analy-
sis, 53(9):3259–3270, July 2009. 228

2003. M. V. Zelkowitz. The effectiveness of software prototyping: A case
study. In ACM Washington Chapter 26th Annual Technical Symposium,
pages 7–15, June 1987. 133

2004. A. Zeller, R. Gopinath, M. Böhme, G. Fraser, and C. Holler. The
Fuzzing Book: Tools and Techniques for Generating Software Tests.
Authors, Dec. 2019. 172

2005. A. Zeller, T. Zimmermann, and C. Bird. Failure is a four-letter word-
A parody in empirical research-. In Proceedings of the 7th Inter-
national Conference on Predictive Models in Software Engineering,
PROMISE’11, pages 5:1–5:7, Sept. 2011. 268, 282

2006. A. Zerouali and T. Mens. Analyzing the evolution of testing library
usage in open source Java projects. In IEEE 24th International Con-
ference on Software Analysis, Evolution and Reengineering, SANER
2017, pages 503–507, Feb. 2017. 145

2007. J. Zhang and H. Wang. The effect of external representations on
numeric tasks. The Quarterly Journal of Experimental Psychology,
58(5):817–838, Oct. 2005. 49

2008. J. Zhang, M. Zhu, D. Hao, and L. Zhang. An empirical study on the
scalability of selective mutation testing. In Proceedings 25th Inter-
national Symposium on Software Reliability Engineering, ISSRE’14,
pages 277–287, Nov. 2014. 175

2009. Q. Zhang, C. Sun, and Z. Su. Skeletal program enumeration for rigorous
compiler testing. In Proceedings of the 38th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI’17,
pages 347–361, June 2017. 172

2010. T. Zhang, D. Yang, C. Lopes, and M. Kim. Analyzing and supporting
adaptation of online code examples. In eprint arXiv:cs.SE/1905.12111,
May 2019. 69

2011. X. Zhang. An Analysis of the Effect of Environmental and Systems
Complexity on Information Systems Failures. PhD thesis, University
of North Texas, Aug. 2001. 102

2012. Y. Zhang, Y. Jiang, C. Xu, X. Ma, and P. Yu. ABC: Accelerated building
of C/C++ projects. In Asia-Pacific Software Engineering Conference,
APSEC 2015, pages 182–189, Dec. 2015. 199

2013. Y. Zhang, J. W. Lee, N. P. Johnson, and D. I. August. DAFT: Decoupled
acyclic fault tolerance. In Proceedings of the 19th International Con-
ference on Parallel architectures and compilation techniques, PACT’10,
pages 87–98, Sept. 2010. 167

2014. M. Zhao, J. Grossklags, and P. Liu. An empirical study of web vulnera-
bility discovery ecosystems. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, CCS’15, pages
1105–1117, Oct. 2015. 109, 151

2015. M. Zhao and P. Liu. Empirical analysis and modeling of black-box mu-
tational fuzzing. In International Symposium on Engineering Secure
Software and Systems, ESSoS 2016, pages 173–189, Apr. 2016. 158,
159

2016. Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and B. Vasilescu. The im-
pact of continuous integration on other software development practices:
A large-scale empirical study. In Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, ASE’17,
pages 60–71, Oct.-Nov. 2017. 140

2017. J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, and
M. A. Vouk. On the value of static analysis for fault detection in soft-
ware. IEEE Transactions on Software Engineering, 32(4):240–253,
Apr. 2006. 170

2018. Q. Zheng, A. Mockus, and M. Zhou. A method to identify and correct
problematic software activity data: Exploiting capacity constraints and
data redundancies. In Proceedings of the 10th joint meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT sympo-
sium on the Foundations of Software Engineering, ESEC/FSE’15, pages
637–648, Aug.-Sept. 2015. 380

2019. H. Zhong and Z. Su. An empirical study on real bug fixes. In Pro-
ceedings of the 37th International Conference on Software Engineering,
ICSE’15, pages 913–923, May 2015. 164

2020. H. Zhou and A. Fishbach. The pitfall of experimenting on the web:
How unattended selective attrition leads to surprising (yet false) re-
search conclusions. Journal of Personality and Social Psychologs,
111(4):493–504, Oct. 2016. 361

2021. J. Zhou, S. Wang, C.-P. Bezemer, Y. Zou, and A. E. Hassan. Bounties
in open source development on GitHub: A case study of Bountysource
bounties. In eprint arXiv:cs.SE/1904.02724, Apr. 2019. 154, 155

2022. K. Zhou, P. Huang, C. Li, and H. Wang. An empirical study on the inter-
play between filesystems and SSD. In 7th International Conference on
Networking, Architecture and Storage, NAS’12, pages 124–133, June
2012. 373, 374

2023. M. Zhou and A. Mockus. Developer fluency: Achieving true mastery in
software projects. In Proceedings of the 18th ACM SIGSOFT Interna-
tional Symposium on the Foundations of Software Engineering, FSE’10,
pages 137–146, Nov. 2010. 58

2024. S. Zhou, B. Vasilescu, and C. Kästner. What the fork: A study of inef-
ficient and efficient forking practices in social coding. In Proceedings
of the 27th joint meeting of the European Software Engineering Confer-
ence and the ACM SIGSOFT symposium on the Foundations of Software
Engineering, ESEC/FSE’19, pages 350–361, Aug. 2019. 145

2025. Y. Zhou, L. Wu, Z. Wang, and X. Jiang. Harvesting developer creden-
tials in Android apps. In Proceedings of the 8th ACM Conference on Se-
curity & Privacy in Wireless and Mobile Networks, WiSec’15, page 23,
June 2015. 206

2026. X. Zhu, E. J. Whitehead, Jr., C. Sadowski, and Q. Song. An analy-
sis of programming language statement frequency in C, C++, and Java
source code. Software–Practice and Experience, 15(11):1479–1495,
Nov. 2015. 241, 242

2027. A. Ziegler, V. Rothberg, and D. Lohmann. Analyzing the impact of
feature changes in Linux. In Proceedings of the Tenth International
Workshop on Variability Modelling of Software-intensive Systems, Va-
MoS’16, pages 25–32, Jan. 2016. 199

2028. T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy.
Cross-project defect prediction. In Proceedings of the 7th joint meet-
ing of the European Software Engineering Conference and the ACM
SIGSOFT symposium on the Foundations of Software Engineering, ES-
EC/FSE 2009, pages 91–100, Aug. 2009. 170

2029. T. Zimmermann, R. Premraj, and A. Zeller. Predicting defects for
Eclipse. In Proceedings of the Third International Workshop on Pre-
dictor Models in Software Engineering, PROMISE’07, May 2007. 164

2030. J. O. Zinn. The proliferation of ’at risk’ in The Times: A corpus ap-
proach to historical social change, 1785-2009. Historical Social Re-
search, 43(2):313–364, 2018. 152

2031. P. M. Zislis. An experiment in algorithm implementation. Technical
Report CSD-TR 96, Purdue University, June 1973. 37, 38, 182, 197

2032. F. Zlotnick. The POSIX.1 Standard: A Programmer’s Guide. The Ben-
jamin/Cummings Publishing Company, 1991. 115

2033. W. Zou, W. Zhang, X. Xia, R. Holmes, and Z. Chen. Branch use in prac-
tice: A large-scale empirical study of 2,923 projects on GitHub. In 19th
International Conference on Software Quality, Reliability and Security,
QRS 2019, pages 306–317, July 2019. 138, 139

2034. K. Zuse. Über den allgemeinen Plankalkül als mittel zur for-
mulierung schematisch-kombinativer aufgaben. Archiv der Mathematik,
1:441–449, 1949. 113

2035. O. Zwikael and S. Globerson. Benchmarking of project planning and
success in selected industries. Benchmarking: An International Journal,
13(6):688–700, 2006. 120

